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Résumé

De nombreux matériaux réels comme le plastique, la neige et le métal brossé, sont con-

stitués de facettes microscopiques complexes qui diffusent la lumière. L’apparence de

ces reflets haute fréquence est difficile à reproduire fidèlement dans une scène virtuelle,

d’autant plus sous un éclairage polygonal. Le rendu d’un seul pixel sous éclairage polygo-

nal nécessite une intégration spatiale sur la projection du pixel et une intégration angulaire

de la réflectance à chaque microfacette pour calculer la contribution de la lumière. Un

tel calcul est d’un coût prohibitif dans une pipeline graphique en temps réel, et les ap-

proximations plus rapides induisent des d’artefacts de crénelage. Nous visons à restituer

des surfaces normales détaillées sous un éclairage de lumière polygonale à une vitesse

interactive, tout en minimisant le crénelage et en préservant les détails spéculaires. Nous

étudions l’utilisation des distributions “Linearly Transformed Cosines” (LTC) pour pré-

filtrer la carte de normales à différentes échelles et points de vue. Nous tabulons ensuite les

données filtrées dans une hierarchie de textures, et les interpolons pour un rendu en temps

réel. Bien que notre méthode soit sujette a des pertes d’énergie et du floutage mineur, elle

produit des rendus sans artefact de crenelage et préserve les détails de la surface.

Mots clés: rendu en temps réel, rasterisation, anti-crénelage, filtrage de normales, distribution

cosinus
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Abstract

Many real-world materials like plastic, snow, and brushed metal, are covered in complex

microscopic facets which scatter light. The appearance of these high frequency glints is

difficult to reproduce faithfully in a virtual scene, even more so under area light illumina-

tion. Rendering a single pixel under polygonal illumination requires a spatial integration

over the pixel footprint, and an angular integration of the reflectance at each microfacet

to compute the contribution of the light. Such a computation is prohibitively expensive

in a real-time graphics pipeline, and faster approximations suffer from shading aliasing

artifacts. We aim to render detailed normal-mapped surfaces under polygonal light il-

lumination at an interactive speed, whilst minimizing shading aliasing and preserving

specular detail. We investigate the use of Linearly Transformed Cosine distributions (LTC)

to pre-filter the normal map at different scales and view directions. We then tabulate the

filtered data into a mip herarchy and interpolate it in a real-time renderer. Although our

method is subject to minor energy loss and overblurring, it produced aliasing-free renders

and preserves the normal map details.

Key words: real time rendering, rasterization, numerical methods, antialiasing, normal map

filtering, linearly transformed cosine distributions
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Chapter 1

Introduction

In video games and in motion pictures, realistic image rendering is playing a major role as

artists aim to improve the visual appearance of environments, and enhance the immersion

for audiences. From a description of the geometry of the scene, of its materials, and of the

lighting, the rendering engine computes for each frame the illumination hitting the surfaces

and determines the color of each pixel. With the ultimate goal to make virtual images

perfectly photorealistic, offline techniques can spend several minutes or hours to render

each frame using expensive algorithms, for example by using high numbers of samples.

On the other hand, real-time (or online) rendering methods are given a few milliseconds (or

less) to display the frame to the screen. Viewers of real time media, like video games and

virtual reality, are still expecting some level of visual realism. To achieve such performance,

methods aimed at real-time engines avoid pure physical simulation of light, and prefer

to make use of mathematical approximations along with GPU optimizations to bring

visual realism into an interactive scene. Recent hardware improvements enabling real-

time ray tracing bring us closer to interactive photorealism (figure 1.1), but many scene

configurations are still immensely challenging to process interactively. Among those, we

can mention volumetric media, bright emissive materials, transparency, soft shadows,

caustics, and high frequency glints.

1



Figure 1.1: Image rendered interactively in the Unreal Engine 5, showcasing real time

global illumination and volumetric media (Source: https://docs.unrealengine.com/5.0/en-

US/lumen-global-illumination-and-reflections-in-unreal-engine/).

This thesis focuses on the real time rendering of specular materials with a complex

surface structure of microfacets. Materials of this type are omnipresent in the real world,

including snow, glitter, glittery paint, brushed metals, textured plastics, and varnished

wood. Their surfaces are composed of microscopic facets, which scatter light and can

create a shimmery effect. This effect is most significant when illuminated from a small (or

distant) light source, but is still noticeable with larger (or closer) sources. It is also more

remarkable when the base material is more specular or shiny (as opposed to rough or

diffuse) (figure 1.2). To represent such surfaces in virtual scenes, techniques describe the

normal orientation and variation analytically (with statistical methods), or using a normal

map texture. The higher the resolution of the normal map, the finer the details we can

represent. In opposition to the statistical method, a normal map can convey important

macroscopic features such as scratches or grain, which would match with the details on the

albedo. Models that represent these surfaces also make use of a Bidirectional Reflectance

Distribution Function (BRDF), a spherical function that describes the directions in which
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Figure 1.2: Real time render of a water surface illuminated by a distant sun using LEAN

mapping [OB10]. We can see both diffuse illumination and specular glints (image taken

from [OB10]).

light is scattered when reflecting off a material. Modern models such as GGX can be very

elaborate, and have become widespread in realistic rendering.

We aim to render such materials in real time under polygonal light source illumination,

while preserving the glinty effect of the specular material, and the normal map details at

several viewing scales. To achieve it, we would require both spatial integration and angular

integration inside each pixel. Indeed, we first need to check all the surface microfacets that

can be seen by the pixel, whose count can range from one to several thousands depending

on the display resolution, the view distance and the normal map resolution. Then, for

each microfacet, we need to integrate the BRDF on the area covered by the polygonal light

source, to compute its illumination.

Moreover, major complications can occur when a pixel projects over many microfacets.

Each sample normal within the pixel footprint can yield very different shading results,

and we cannot simply take normals and average them. Shading aliasing is a category
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of undesirable rendering artifacts occuring when the sampling rate is lower than the

frequency of the signal, in the context of computing the reflectance of a surface. This will

almost always occur when several normals fall within a pixel footprint, and be manifested

as flickering or the loss of small features. When the base BRDF is more specular, or

when the light source is small, shading aliasing is more obvious. Aliasing is also more

important when the density of texels increase, and it is a very current problem since texture

resolutions can get arbitrarily large, while pixel density cannot increase as fast due to

hardware limitations.

Thus, the difficulty of preventing aliasing of the higher frequency details on the surface

is compounded with the problem of computing real time illumination from an arbitrary

area light in real time. To tackle this, we aim to use an appearance pre-filtering technique

on the normal map, which should reproduce features of any scale or frequency. In a signal

processing framework, we can think of the method proposed here as pre-filtering the

normal map at the bandlimit of the final result. The filtered result therefore depends on

the number of texels inside the pixel footprint projected over the shading surface, as well

as on the width of the main BRDF lobe, and the size/distance of the light source.

We contribute to this problem by presenting a prefiltering step where we fit the effective

BRDF (which is the base BRDF convolved with the normal distribution function of the

pixel) with a Linearly Transformed Cosine (LTC) distribution, for each view angles and

scale. More specifically, our technical contribution is the following:

• A stochastic sampling algorithm for the effective BRDF of a pixel.

• Extension of anistropic LTC fitting in [KHDN22] to the effective BRDF of a normal

map region, for tabulated view angles and scales. Filtering of the specular component

and diffuse component separately.

• Runtime bilinear software interpolation of LTC matrices on top of MIP hardware

trilinear interpolation.
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The prefiltering ensures shading anti-aliasing, and once we render the surface at runtime,

we only have to sample the filtered result once per pixel. The use of (LTC) allows us to

integrate analycally over the area light. Our results show that we succeed in developing

a technique that deliver aliasing-free and time-stable renderings of such surfaces under

polygonal illumination. However, the two main limitations of our technique are the lack

of high energy glints when the area light is small, and overblurring at grazing view angles.

1.1 Thesis overview

This thesis is divided into the background and related works chapter, the method chapter,

the results, and finally the discussion, future works and conclusion. In the first part, we

lay an overview of the fields related to this thesis, the works that came previously and that

led to our research problem. We also provide the mathematical background required to

understand our contribution. The method chapter is divided in two parts. The first part

shows an overview of our contribution and the design decisions behind our algorithm. The

second part, presented in a literate programming style, contains a detailed description of

our technique, the tools used and the experiments conducted to evaluate the performance

of our approach. It serves as documentation for the code base developed for that project,

and shows the full implementation. In the results section, we provide measures and visual

comparisons between the reference, the baseline method and our renders. Finally, we

discuss the significance of the results, the improvements to bring to our technique, and

future avenues of research.
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Chapter 2

Background and related works

This chapter addresses related works and mathematical tools, useful to understand the

method we developed. We first consider light transport and modeling surface illumination

virtually; then we look at methods which, through approximations, allow us to render

realistic scenes in real time; and finally we review filtering techniques designed to prevent

shading aliasing.

2.1 Light transport and reflection

We are interested in modeling and approximating light when it hits a material on the

surface of a 3D mesh, and reflects back into the eye or the camera. There are several

models that describe light at some level of physical accuracy, and that have become

ubiquitous. Spectral models, for example, use the spatio-temporal properties of light to

display behavior such as dispersion and scattering. We favor geometric optics, a simpler

model where light rays travel in straight lines in a vacuum, until they are reflected or

transmitted through a material.
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2.1.1 Shading point and coordinate system

A shading point is a point at the surface of a 3D mesh on which we need to perform

lighting computations. To do this, a spherical coordinate system is usually defined, to

parametrize the directions to and from a shading point x. The set of directions visible

from x is a hemisphere based around the normal of the surface at x. We refer to it as the

Ω+ space, and we parametrize it using spherical coordinates: an elevation angle θ and an

azimuthal angle φ (figure 2.1). The shading point can also be seen as a differential area of

the shading surface (dA).

For the purpose of integrating energy on a spherical domain, we introduce the solid

angle dω, which is the three dimensional equivalent of the planar angle. We define the

solid angle subtended by a surface as the surface area of the surface’s projection onto the

unit sphere. The unit of the solid angle is steradians (sr).

Figure 2.1: Spherical coordinates around the shading point.

We also introduce the projected area of a surface onto a plane, which is the product of

the surface’s area A and the cosine of the angle between the two surface’s normals cos(θ).

2.1.2 Radiometry

In light transport simulation, the important radiometric quantities to compute light energy

are the irradiance and the radiance:

The irradiance,
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E(x) =
dΦ

dA(x)
, (2.1)

is the radiant flux Φ per unit area dA received by a surface from all directions. It is

measured in W /m2.

The radiance,

L(x,w) =
d2Φ

dω dA(x) cos(θ)
, (2.2)

is the light intensity reflected, received or emitted by a projected unit area dA cos θ, in

the differentiable solid angle dω of direction ω. It is measured in W /m2/sr. In this case, θ is

the angle between ω and the normal to the surface (figure 2.1).

The radiance reaching x from a given direction is called the incident radiance, and the

radiance leaving x towards a given direction is the exitant/outgoing. In our geometric

model, the radiance is invariant along a ray, since we assume that light travels in a vacuum

and does not encounter a participating medium.

2.1.3 The Bidirectional Reflectance Function

The behavior of a ray of light interacting at the shading point is characterized by the

Bidirectional Reflectance Function (BRDF). It is a simple model of surface reflectance, as it

assumes that all incident light is either absorbed or reflected, and it does not account for

subsurface scattering [Noe99].

Let’s consider Li, the radiance incident to x from direction ωi, and dLr the exitant

radiance from x in direction ωr, considering only the energy from Li (figure 2.2). We call

BRDF the ratio of dLr to Li scaled by a foreshortening term cos(θi), where θi is the angle

between the surface normal and ωi:

f(x,ωr, ωi) =
dLr(x,ωr)

Li(x,ωi) cos(θi)dωi

. (2.3)
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Thus, for a given incident direction, the BRDF is defined on Ω+2 with real positive

values everywhere (IR+).

Figure 2.2: Incident and reflected radiance.

Since the reflection is a linear relation, the total light energy reflected by a surface in ωr

can be computed from an integration over the hemisphere of all radiance Li. The terms

can therefore be rearranged in the form of the reflectance equation (scattering equation),

Lr(x,ωr) = ∫
Ω+

f(x,ωr, ωi)Li(x,ωi) cos(θi)dωi. (2.4)

The product of f and cos(θi) is also known as the transfer function.

2.1.4 Properties of the BRDF

A BRDF is a specific spherical function following two interesting properties [Noe99].

First, the Helmholtz reciprocity principle (2.5) states that the value of the BRDF is

identical if the incident and outgoing directions are swapped, for any direction on the

hemisphere. That is,

∀(ωi, ωr) ∈ Ω+2f(x,ωr, ωi) = f(x,ωi, ωr). (2.5)

Then, the BRDF follows the rule of conservation of energy (2.6), meaning that for any

incoming direction, the integral of the foreshortened BRDF over all reflected directions is

at most 1:
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∀ωi ∈ Ω+,∫
Ω+

f(x,ωr, ωi) cos(θi)dωr ≤ 1. (2.6)

This ensures that no energy is created when light reflects off the surface.

2.1.5 Types of BRDF

Isotropy

BRDFs can be either isotropic or anisotropic. In the more general anisotropic case, the

reflection behavior of the material depends on the rotation of the surface around its normal

(or on the relative incident azimuth of the light). This means that to capture the reflectance

of the material comprehensively, we need to measure the reflected light for all incident

light directions (all azimuth and elevation values). This is the case for materials with a

specific microstructure such as polished materials and brushed metals. An isotropic BRDF,

on the other hand, shows an identical reflection behavior regardless of the rotation of

the material around its normal. We can therefore capture all of its reflectance patterns

by choosing an arbitrary azimuth for the incident light, and varying its elevation. For

concerns of storage space, the base BRDFs we will consider are isotropic.

Empirical BRDFs

Empirical BRDFs abide by the properties cited in the previous section, but they are not

based on physical models. Among them, we can note the perfect mirror, the Phong and

Blinn-Phong models, and Ward (for anisotropic BRDFs). The Lambertian BRDF (2.7), or

perfect diffuse BRDF, is widely used for its simplicity, with only one constant parameter

ρ ∈ [0,1] determining the reflectivity of the surface:

f(x,ωr, ωi) =
ρ

π
. Lambertian BRDF (2.7)
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In general, empirical BRDFs are simple to compute, but the disadvantage is that their

parameters have no direct correspondence to physical phenomena, which makes it difficult

to find the parameters that make the analytic BRDFs behave like real observed materials.

Physically based BRDFs

Physically based BRDFs such as Cook-Torrance and Beckmann, are based on the optical

properties of real materials (unlike empirical BRDFs). They are microfacet reflectance

models, which assume that the surface is covered in microscopic mirror-like facets. These

models rely on aggregate statistical formulations of the normal distribution function (NDF)

of the surface specular microfacets, we call D.

Today’s physically based shading models largely rely on the Trowbridge–Reitz (GGX)

microfacet BRDF [TR75] [WMLT07]. It is more accurate than previous models for rough

transmissive materials, and generally considered the most realistic parametric BRDF

[HMB+15]. Like the Cook-Torrance BRDF, GGX is composed of a geometric attenuation

term G, a fresnel term F , and normal distribution D (2.8), such that

f(x,ωr, ωi) = ρd + ρs (
D(x,ωh)F (ωi ⋅ ωh)G(ωi, ωo)

4 (n ⋅ ωi)(n ⋅ ωo)
) . (2.8)

The isotropic GGX will be used as the base BRDF for our project.

Measured BRDFs

We could finally mention measured BRDFs, which require an experimental setup to

measure and sample, and describe the reflectance behavior or real-world materials. They

are presented in the form of tabulated measurements, for many different viewing or light

angles.
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2.1.6 Types of illumination models

The reflectance equation (2.4) allows us to compute the reflected light distribution at a

shading point, given the distribution of incident light and a BRDF. It is therefore crucial to

obtain an accurate representation of the incident light at the shading point. There are two

types of models we can use for this.

Global illumination models take into account illumination from indirect light as it

bounces around the scene. They are an important tool to reach photorealism, and modern

GPUs are now able to compute some levels of global illumination in real time (figure 2.3).

Local/direct illumination models only take into account light sources and their interac-

tion with surfaces. We choose to use a simple model of unshadowed direct illumination:

it is the direct interaction between a light source and a surface, and we do not compute

shadows cast from this light.

Figure 2.3: Global illumination scene from Assassin’s Creed Unity rendered

in real time in the AnvilNext graphics engine, using a baked light map

(Source: https://www.nvidia.com/en-us/geforce/news/assassins-creed-unity-graphics-

and-performance-guide/).
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2.1.7 The rendering equation

The rendering equation, introduced in [Kaj86], is the fundamental equation to solve in

light transport simulation. This equation describes how to compute, at any shading point

x, the outgoing radiance Lo towards direction wr (2.9). It is the sum of the emitted radiance

Le and the reflected radiance Lr towards this direction (described in (2.4)):

Lo(x,ωr) = Le(x,ωr) +Lr(x,ωr). (2.9)

In global illumination, we would consider the outgoing radiance from a shading point

to other points in the scene, but from now on we work in a direct illumination framework.

Thus, the only outgoing radiance direction we compute at a shading point is towards the

eye, and ωo refers to the view direction. Furthermore, non-emissive materials, which do

not generate light, have a Le term of zero : Lo = Lr.

As shown in (2.4), the total reflected radiance towards ωr can be obtained by integrating

the BRDF f over the hemisphere of incident directions ωi. We simply substitute Lr in (2.9)

by (2.4), and obtain the full rendering equation in its solid angle form,

Lo(x,ωr) = Le(x,ωr) + ∫
Ω+

f(x,ωr, ωi)Li(x,ωi) cos(θi)dωi. (2.10)

2.1.8 Monte Carlo integration

Monte Carlo (MC) integration is one of the most powerful tools commonly used in light

transport algorithm design: it is a method that uses random sampling to estimate the

values of integrals, such as the value of the rendering equation over the visible hemisphere

[Vea98].

To estimate the value of an integrand over a space, MC throws random samples from a

distribution with respect to a solid angle that has a known Probability Density Function p,
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and computes an evaluation of the integrand at those points:

Lo(x,ωr) = ∫
Ω+

f(x,ωr, ωi)Li(x,ωi) cos(θi)dωi (2.11)

≈
1

N

N

∑
j=1

f(x,ωr, ωj)Li(x,ωj) cos(θj)

p(ωj)
. (2.12)

On average, MC gives the correct estimate for the integrand, and given an infinite amount

of time (and samples), it would converge to the true result. A great property of MC

integration is that it does not suffer from the curse of dimensionality: the convergence rate

of the estimator is independent of the dimensionality of the integrand.

The probability distribution p of the random samples has an important effect on the

variance of the MC estimator. Indeed, if the samples are chosen carefully, so that p

approximates the true integrand, the estimator will converge faster on average. Of course,

the integrand is unknown because it is the quantity we are trying to approximate, but we

can have good ideas about some of its components. A very popular family of techniques,

called importance sampling [Vea98], throws samples according to known terms of the

integrand such as the BRDF and the incident radiance Li. Veach also introduces Multiple

Importance Sampling (MIS), in which some samples are taken from one distribution, and

some samples are taken from another [Vea98].

2.1.9 Polygonal light illumination

Point light illumination supposes that light is emitted from an infinitely small point in

space, so incident radiance reaching x is from a single direction ωL. From (2.4), we obtain

Lr(x,ωr) = ∫
Ω+

f(x,ωr, ωi) δ(ωi − ωL)Li(x,ωi) cos(θi)dωi (2.13)

= f(x,ωr, ωL)Li(x,ωL) cos(θL). (2.14)

It is a purely theoretical situation, used as a fast approximation when the light source is

small or very far away.
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Spherical light and polygonal lights are closer to what we could encounter in real-

ity, and are commonly used lighting models. Estimating the total outgoing radiance

Lo(x,ωr) requires solving the reflectance equation (2.4) over directions ωL in the solid

angle subtented by the polygon P , also called polygonal domain. The integral is expressed

as

Lo(x,ωo) = ∫
P
f(x,ωo, ωL)Li(x,ωL) cos(θL)dωL. (2.15)

Even unshadowed area light illumination is much more challenging to compute in real

time than shadowed point light illumination, since the integration usually cannot be solved

in closed form.

We are more specifically interested in constant (or uniform) polygonal light illumination.

This means that the radiance emitted by the polygon is the same in all directions ωL, and is

the same over the whole surface of the light. In other words, the radiance to the shading

point is constant inside the solid angle subtented by the polygon, no matter the orientation

of the shading surface or the light (Li(x,ωL) = L). The radiance term can therefore be left

out of the integral in equation (2.15), which yields

Lo(x,ωo) = L∫
P
f(x,ωo, ωL) cos(θL)dωL. (2.16)

However, even with the simplest BRDFs, (2.16) can be very challenging to compute.

Modern physically based models of BRDFs are sophisticated, having to support anisotropy

and skewness, and their spherical integration over a polygonal domain is often undefined

[HDHN16]. This is where Monte Carlo sampling techniques shine, such as Multiple

Importance Sampling (section 2.1.8). With enough samples and time, the Monte Carlo

estimate of the integral over the polygonal light converges towards ground truth, but it is

either too slow or too noisy for our real-time application.
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2.2 Interactive rendering techniques

We now cover real time techniques, where an approximation of the rendering equation

integral (2.10) can be computed quickly. We give an overview of the real-time rendering

pipeline, and we review analytic lighting techniques which can yield noise-free images

under broad radiance (radiance coming from an area light or from the environment).

Specifically, we look at Image Based Lighting, which models radiance coming from the

whole domain of Ω+, and we investigate real time polygonal illumination using Linearly

Transformed Cosines [HDHN16].

2.2.1 The real-time rendering pipeline

In a conventional real-time graphics pipeline, data such as textures, shaders and geometry

are first copied from system memory (RAM) to video memory. The Graphics Processing

Unit (GPU) has quick access to the video memory, and it runs operations on its own cache

memory [Fer04] (figure 2.4). More specifically, it is able to process scene vertices in parallel,

and screen pixels in parallel through the use of shaders.

Vertex shaders are small programs that run in parallel on the chip of the GPU, to

process each vertex in the scene and apply the appropriate transformations. The scene then

undergoes rasterization, which has become the standard technique in real time rendering.

For a thorough explanation of the rasterization steps, please refer to section 3.2.2 in the

method chapter.

The real-time rendering pipeline relies on GPU hardware architecture specialized for

this type of computationally intensive and highly parallelizable problem. More recently,

new frameworks for general-purpose computing on GPUs (GPGPU) allowed the graphics

programmers to leverage their general computational capability, in particular for large

linear algebra operations. Notably, the CUDA platform and programming language

enables the development of programs capable of running on thousands of GPU cores in

parallel, but not tied to the fixed graphics pipeline [Kir07]. These frameworks have found
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Figure 2.4: Real-time graphics pipeline and the transfers between system memory and

GPU-accessible memory (Source: [Fer04]).

widespread adoption in applications beyond computer graphics such as deep learning

and simulation. We use the CUDA plaform to leverage the parallel processing capabilities

of the GPU, and we will not use conventional shaders of the real-time pipeline.

2.2.2 Pre-computation

The real-time rendering pipelines used video game engines allow for a limited time budget

for vertex and fragment shaders (a few milliseconds per frame). Interactive rendering

algorithms can therefore sometimes sacrifice storage space, to ensure that each frame can

be rendered fast. Recent improvements in graphics hardware have even made Monte Carlo

and ray-tracing techniques possible in real time, for example using reservoir sampling

[BWP+20]. While such real-time stochastic approaches can be powerful for arbitrary

materials, stochastic approximation of integration over broad incident radiance still leads

to noisy results.

To leave the least amount of work for the real time/runtime part, a widespread strat-

egy in real time lighting algorithms is to pre-compute a part of the rendering integral
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offline, with slower algorithms, such as fitting, sampling and antialiasing operations.

This can be done once and for all, or each time a scene is loaded, etc. The precom-

puted results can then be stored in a texture or a file, to be fetched at runtime, e.g.,

[Wil83][HSRG07][Kar13][HDHN16].

For instance, Light Mapping is a common technique used in video games (figure 2.5).

It consists in pre-calculating the irradiance on the surface of static objects, and storing

it in texture maps to use at render time. This only works for diffuse materials, as the

Lambertian BRDF is view independent.

Figure 2.5: Unlit scene (left), light map (center), lit scene (right). Source:

https://unity.com/how-to/advanced/optimize-lighting-mobile-games.

2.2.3 Environment maps and image based lighting

Environment mapping is a widely used category of techniques used to model radiance

coming to the shading point from all directions on the sphere. Maps can be stored in a set

of 6 textures forming a cube, or in spherical coordinates. With Reflection Mapping [BN76],

textures are used to create real time reflections from a distant environment.

Environment maps can also be helpful for inexpensive image-based lighting (IBL)

[Deb03], where the image represents the emitted radiance of each point in the environment

towards the shading point (figure 2.6). Real time IBL techniques usually require pre-

computing an irradiance map from real photographs or from a capture of the virtual

environment. For example, Ramamoorthi and Hanrahan convolve the incident radiance
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with a lambertian kernel and fit it with spherical harmonics [RH02]. Spherical harmonic

functions define a basis to represent functions on the spherical domain, analogous to the

Fourier series in the 1-dimensional domain [RH02].

Figure 2.6: A shading point lit by an environment map.

We recall the rendering equation we want to solve over the domain Ω+, and how we

approximated it using Monte Carlo integration (2.11). Evaluating this formulation for IBL

requires many samples per pixel for sufficient quality (depending on the nature of the

environment map). The split sum technique [Kar13] enables highly performant real time

IBL, by splitting the Monte Carlo formula into two parts. One with the radiance from the

environment Li and one with the foreshortened BRDF term :

Lo(x,ωr) ≈
1

N

N

∑
j=1

f(x,ωr, ωj)Li(x,ωj) cos(θj)

p(ωj)
(2.17)

≈ (
1

N

N

∑
j=1

Li(x,ωj))(
1

N

N

∑
j=1

f(x,ωr, ωj) cos(θj)

p(ωj)
) . (2.18)

This approximation is exact for a constant Li(x,ωj) = L, and the authors postulate that it is

fairly accurate for most environments. We believe that it is the case because importance

sampling the areas of high radiance leads to a low variance among Li samples. It is

probably less accurate for high contrast environments. The first sum, which does not take

the view direction into account, can be precomputed once for each environment map and

for each material roughness value, and stored in a prefiltered mipmap. The second sum

can be precomputed, and reconstructed exactly at runtime
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2.2.4 Analytic solutions to area lighting

To compute lighting from a polygonal or area light, we integrate the BRDF over the

polygonal domain covered by the light (2.16). Real-time rendering techniques aim for a

closed-form solution of this integral; thus, strategies generally fall into two categories:

approximating the radiance, and approximating the reflectance. For instance, a commonly

used technique in video game engines is to approximate the area light with a representative

point light, e.g. [WLWF08]. Unfortunately, the results can be orders of magnitude away

from the ground truth, and often yield unconvincing visuals [LDR14].

Figure 2.7: Integral of the polygon on the uniform hemispherical domain.

While the GGX BRDF cannot be analytically integrated over the polygon, we can find

simpler spherical distributions that can. The Spherical Gaussian model [Fis53] and the

Spherical Harmonics are both popular approximations for simple spherical functions

as it can fit distributions of many frequencies. However, there is no analytic solution

for their integration over spherical polygons [XCM+14]. The simplest case of a suitable

function is the uniform spherical distribution, whose integral over a spherical polygon is,

by definition, the solid angle of that polygon (Girard’s theorem) (figure 2.7). Similarly, the

hemispherical distribution’s integral on the same domain is the solid angle of the polygon

clipped to the hemisphere.

Noteworthy functions with analytical integration properties are the cosine-like distribu-

tions, the simplest being the ideal diffuse (Lambertian) distribution. The closed form of the

cosine distribution’s integral over a spherical polygonal domain [Lam60] was introduced
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to graphics by Baum et al. [BRW89]. This was extended by Arvo to Phong distributions

with arbitrary roughness [Arv95], with a drawback that the integration cost was propor-

tional to the number of polygon vertices, and to the Phong exponent. This was fixed in

[LDSM16] with a real-time solution for the integral that did not increase in cost with the

sharpness of the distribution.

The current state of the art for analytic area light illumination, described in the next

section, was introduced in [HDHN16], and has since been extended to linear lights and

sphere/disk lights [HH17], and to anisotropic materials [KHDN22].

2.2.5 Linearly Transformed Distributions

Heitz et al. introduce Linearly Transformed Spherical Distributions (LTSD): by applying a

linear transformation (3 × 3 matrix M ) to its direction vectors ωo, the original distribution

can be reshaped (2.19) [HDHN16]. Reciprocally, we recover the original direction vector

ωo with the inverse transformation M−1 applied to ω (2.20):

ω =
M ωo

∥M ωo∥
(2.19) ωo =

M−1 ω
∥M−1 ω∥

. (2.20)

By definition, the original distribution Do and the linearly transformed distribution D

are related with this equality [HDHN16]:

D(ω) =Do(ωo)
dωo

dω
. (2.21)

For all M , the uniform spherical distribution Ω stays identical under linear transformation.

Therefore, for all M , the norm of Do over the spherical domain is identical to the norm of

D:

∫
Ω
D(ω)dω = ∫

Ω
Do(ωo)

dωo

dω
dω = ∫

Ω
Do(ωo)dωo. (2.22)

Furthermore, the authors show that if the integration of Do over a spherical polygonal

domain has an analytic solution, this property extends to D [HDHN16]. Indeed, the
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Figure 2.8: Samples of D have the same probability of intersecting P as samples of Do with

Po. Figure from [HDHN16].

integral of D over a polygon P is the integral of Do over the polygon Po =M−1P (figure

2.8):

∫
P
D(ω)dω = ∫

Po

Do(ωo)dωo. (2.23)

2.2.6 Linearly Transformed Cosines

Heitz et al. also introduce Linearly Transformed Cosines (LTC) [HDHN16]. As a base distri-

bution, they choose the normalized cosine (Lambertian) clamped to the upper hemisphere

Ω+:

Do(ωo = (x, y, z)) =
max(0, z)

π
. (2.24)

From this base distribution and (2.21), we can generate a family of linearly transformed

variants D we call Linearly Transformed Cosines. Since the Lambertian distribution is

known to have an analytic integral over a polygon, all LTCs can be analytically integrated

over a polygon.

Approximating GGX with LTC

LTCs can yield good approximations to physically based BRDFs,

D ≈ f(x,ωr, ωi) cos(θi), (2.25)
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using the parameters of M to warp the space to support various roughness, anisotropy and

skewness. Specficially, we can approximate the GGX microfacet BRDF [WMLT07] from a

single well-fitted LTC lobe (figure 2.9). The BRDF is cosine-weighted and is view-evaluated

for a given view elevation, since the reflectance distribution of isotropic material only

varies with the view elevation.

For fitting, Heitz et al. use gradient descent to find the matrix parameters that minimize

the L3 loss between the two distributions [HDHN16]. They rely on cleverly selected

starting points, such as using the already optimized neighboring entries to fit the next

entry, since L3 is prone to null gradients.

Figure 2.9: Linearly Transformed Cosine distributions D fit view-evaluated GGX BRDFs

at different view elevations. Figure from [HDHN16].

Due to the planar symmetry of isotropic BRDFs and due to the scale invariance of LTCs,

the authors show that they only need to optimize 4 matrix parameters to approximate

most GGX shapes; and the other terms are known to be 0 [HDHN16]:

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a 0 b

0 c 0

d 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.26)
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2.2.7 Anisotropic Linearly Transformed Cosines

Since 2017, real-time rendering engines have been using an LTC approximation of the

isotropic GGX model, based on the method explained above. KT et al. extend this idea to

anisotropic GGX so that they can support materials such as brushed metals [KHDN22].

Our own contribution is based on the technique presented in [KHDN22]; for more details

please refer to the method chapter.

For more flexibility in the shape of the distribution, the autors compute a 84 look-up

table (LUT) storing all 9 matrix parameters for each view elevation θ, view azimuth φ, and

pair of anisotropic roughness coefficients (αx, αy). Indeed, the shape of anisotropic BRDFs

also varies with φ, thus they fit LTCs to view-evaluated GGX BRDFs over several view

azimuths. They leverage the 4-way azimuthal symmetry of the roughness coefficients,

by only tabulating for φ ∈ [0, π/2] (while the real range of φ is [0,2π]). This reduces the

storage size by a factor of 4.

Error metric

The authors solve the problem of the null gradients with the L3 error metric used in

[HDHN16], especially when the starting distribution has no overlap with the target dis-

tribution [KHDN22]. They instead choose the Sliced Wasserstein (SW) loss [BRPP15] for

fitting the LTC distribution to the target GGX. It is a sample-wise loss, approximating

the optimal transport between the two distributions f and g, and which always provides

smooth gradients. It is defined as

LSW (f, g) = Eω∈Ω [∫
1

0
∣F −1ω (u) −G

−1
ω (u)∣du] (2.27)

≈ lim
nÐ→inf

Eω∈Ω [
1

n

n

∑
i=1
∣fi,ω − gi,ω ∣du] . (2.28)

In other words, the integral of the difference between inverse CDFs can be approxi-

mated stochastically by using n sorted samples from the original distributions (2.28) (figure
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Figure 2.10: Illustration of the sliced Wasserstein metric employed in [KHDN22]. We

importance sample the fitted distribution (a) and the reference distribution (b), and project

the samples onto a random direction. Finally, we sort the projections and compute the

absolute difference between them (c). Image from [KHDN22].

2.10). They propagate the gradient of the loss back to M and finish with a gradient descent

step. In this work, we also use SW as a measure for loss.

Other concerns

Finally, we can note a few precautions taken by KT et al. when fitting LTCs in the

anisotropic case [KHDN22].

The first problem is the artifacts that arise when several LTC matrices yield the same

distribution (non-uniqueness of LTC). Indeed, the cosine distribution is invariant under

rotations around the z-axis, and under x-y axis flipping. Thus, two adjacent matrices in

the LUT could be fitted properly and still contain widely different parameters. This would

yield incorrect parameters when interpolating between two matrices at runtime. Therefore,

the authors use a minimization process on the parameters post-fitting to cancel rotations

and flipping, and ensure coherence between adjacent matrices in the LUT.

They also fix certain values known to be 0 in certain configurations, which gives more

stability to the generated lobes. For instance, when θ = 0, the non-diagonal elements of M

are 0, and the diagonal elements are identical regardless of φ.
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2.2.8 Area light shading with LTCs

In [HDHN16] and [KHDN22], after fitting BRDFs with LTC distributions at a few discrete

view directions, and storing the matrices in LUTs, we can linearly interpolate the LTC

parameters to approximate BRDFs at unseen elevations. This allows both techniques to

stay lightweight and fast at runtime.

We recall that the objective of the real time portion is to estimate (2.16) analytically, at

each shading point. The final analytic polygonal light integration unfolds in the same way

in both works. For a given shading point, the n vertices of polygon P are expressed in the

referential of the shading point, and are transformed by M−1 to obtain Po. Finally, they use

[Lam60] to compute the irradiance of the clamped cosine distribution over the spherical

polygonal domain of Po.

Using the precomputed matrices

In the prefiltering, Heitz et al. stored the inverse of the LTC matrices M−1 in the LUT

[HDHN16]. Thus in the real time part, they look up M−1, determined by the material

roughness and view elevation, and linearly interpolate between the closest tabulated

values. It allows them to multiply the polygon whith M−1 without having to invert it first.

In contrast, KT et al. stored the regular matrices M in the LUT, which enables a coarser

tabulation resolution [KHDN22]. They compute the view angle and interpolate matrix

parameters for both the elevation and azimuth. The true range of φ is [0,2π], yet values

were stored for φ ∈ [0, π/2], so they extrapolate the values of M in other directions using

symmetry. Finally, they invert the matrices which is an additional cost not present in

[HDHN16], which directly stored the inverse.
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Summary

In summary, the entire derivation of how to approximate the integral of the view evaluated

BRDF over the polygonal domain using LTCs is

Lo(x,ωr) = ∫
P
f(x,ωr, ωi)Li(x,ωi) cos(θi)dωi (2.29)

= L∫
P
f(x,ωr, ωi) cos(θi)dωi (2.30)

≈ L∫
P
D(ωi)dωi (2.31)

≈ L∫
Po

Do(ωio)dωio (2.32)

≈ LE(Po). (2.33)

D stands for the LTC distribution, and Do stands for the clamped cosine distribution. In

(2.33), the integral of Do over the polygon Po is the irradiance E of the polygon [BRW89].
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2.3 Normal map appearance filtering

We now look at the aliasing problems encountered when rendering highly detailed surface

microstructures, and we will review previous techniques that tackled these problems.

2.3.1 Microfacet models

Real world surfaces are not perfectly smooth: materials are composed of microscopic

structures of varying scale, direction and roughness, which have the effect of scattering

light. The appearance of those surfaces can be represented with microfacet models [CT82]

[WMLT07], which model the complex surface with a simplified macrosurface, for which

the BRDF matches the general scattering direction of the microfacets. These models, such

as the GGX microfacet BRDF [WMLT07] presented in section 2.1.5 (2.8), assume that micro-

surface details are too small to be seen individually by the viewer. To characterize the

reflectance behavior of the surface, we are therefore interested in the statistical distribution

of normals on the surface with respect to the underlying macrosurface (or geometric)

normal ng (figure 2.11). These models offer flexibility with a varying roughness parameter,

and good results under distant views and under broad illumination.

Figure 2.11: (a) A microfacet model with high roughness has a lot of variation among

microfacet normals n(q). (b) A smooth surface has little variation of microfacet normals

(Image inspired by [HMB+15]).

However, surface details of all scales affect the appearance of a surface and certain

larger features are individually discrenable. For instance, microstructures contained in
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metallic paints, plastics and brushed metal, are a few micrometers in size, and give these

materials their distinguishable glinty appearance (figure 2.12). These effects cannot be

replicated by positing infinitely small microfacets, or by applying the same BRDF to the

whole surface. The visually rich behavior caused by those microfacets is more noticeable

when the light source subtends a small solid angle, which is either a distant or small light

source. However, specular highlights which catch the surface detail are still noticeable

under broad or global illumination [GGN18].

Figure 2.12: The surfaces presented in [YHJ+14] are covered in high-frequency microfacets,

and the specular highlights catch the surface detail.

2.3.2 Normal mapping

Among techniques targeting accurate renderings of high-frequency normal variation, we

can discern if the description of the underlying normals is implicit or explicit. Implicit, or

procedural approaches, rely on statistical processes to describe the normal variation. For

instance, Jakob et al. distribute discrete specular point scatterers randomly, to render high

frequency glittery surfaces [JHY+14]. More recently, chermain et al. proposed a physically

based procedural BRDF, using a compact representation for normal distributions inside of

a mip hierarchy [CSDD20]. These methods lead to faster runtime performance and lower
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storage requirements, as the normal distribution can be available analytically. However,

this is at the cost of reduced control over appearance.

To explicitly represent geometry at a sufficient resolution to reveal the features that

cause glints, the tool of choice is a high-resolution normal map. Normal mapping [Bli78]

is the application of a texture to surface so that it specifies the normal direction at each

surface point. It enables higher control over the surface appearance, but the downside of

storing the orientation of each microfacet is larger memory requirements. On the left of

figure 2.13 is a height map, also called bump map or height field, and it stores the apparent

vertical offset from the surface normal. On the right is a regular normal map, which is the

derivative of the height field. We choose to work with this explicit approach, so that we

support any arbitrary normal map texture to represent the surface detail.

Figure 2.13: A height map (left) and its corresponding normal map (right). The

RGB color value of each texture element (texel) in the normal map stores the

(x, y, z) direction of the normal vector at that texel in tangent space (Source:

https://docs.unity3d.com/2017.2/Documentation/Manual/StandardShaderMaterial

ParameterNormalMap.html).

2.3.3 Normal Distribution Function and effective BRDF

The rendering equation we have seen in (2.10) describes the outgoing radiance from a

shading point towards the camera. However, when shading a pixel in a renderer, we really

need to consider the outgoing light towards the camera from the whole surface covered by
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this pixel. For this purpose, we define the footprint F of a pixel as the area subtended by

its projection onto the shading surface (figure 2.14).

Figure 2.14: The pixel footprint F and the texel normals n(q) that lie within F .

NDF

Let us now formalize a way to manipulate normals within a footprint. For a patch F of

the shading surface, the Normal Distribution Function γF is the distribution of normals

that lie within F [HSRG07]. For a discrete normal map of texels q with normals n(q), and

a direction n ∈ Ω+, γF (n) is defined as

γF (n) =
1

N
∑
q∈F

δ (n − n(q)) , (2.34)

where N is the number of normals in γF . The value of the Normal Distribution Function is

1/N when n is aligned with a texel normal within F . We note that each q is located at a

different shading point inside F , but for simplicity we assume that for all normals in F ,

the view direction and incident radiance from a given direction are computed at the center

x of F .

eBRDF

Now, if we add the base BRDF f to the model of the reflectance of F , we can define the

effective BRDF (eBRDF) f eff of F as the weighted sum of f evaluated at all texels q in
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Figure 2.15: (a) The base BRDF of the macrosurface. (b) A discrete NDF of microfacets. (c)

The effective BRDF is computed as the convolution of the previous two.

F [HSRG07] (2.36). More generally the eBRDF is an integral over the hemisphere of the

base BRDF weighted by γF (2.35). Thus, the eBRDF of a patch can also be viewed as the

convolution between the BRDF and the NDF of that region, as discussed in [HSRG07]

(figure 2.15). The two ways of computing the eBRDF are

f eff (x,ωo, ωi) = ∫
Ω+

f(x,Rn(ωo),Rn(ωi))γF (n)dn (2.35)

=
1

N
∑
q∈F

f (x,Rn(q)(ωo),Rn(q)(ωi)) , (2.36)

where the operator Rn(ω) rotates ω to a local texel frame where n is vertical. Indeed,

the eBRDF is computed in the tangent frame of the macrosurface, but the base BRDF is

computed in the local texel frame. We note that like the BRDF, the eBRDF respects the

conservation of energy principle. If the patch contains a single normal, the eBRDF is the

same as the base BRDF, but rotated to the local frame of the texel.

2.3.4 Shading aliasing

Shading the appearance of a high resolution normal map for a given pixel amounts to

accurately evaluating the effective BRDF of that pixel’s footprint. This means sampling

every n(q) in γF , evaluating the base BRDF at each n(q), and averaging the results (2.36).
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Inefficient sampling

However, sampling every texel normal in γF is prohibitively costly, as thousands of

normals could lie in the patch (either when the camera is far, or when the normal map is

high resolution). We would think that a stochastic method is preferred, but Monte Carlo

integration over the pixel’s footprint is revealed to be impractical [YHJ+14]. Indeed, the

energy of the pixel will be concentrated in a few microfacets whose normals are at the half

angle between the light and the view direction. These texels take up a minuscule fraction

of the pixel, so uniform pixel sampling is ineffective at hitting these highlights.

We note that at this stage, it is the spatial integral over the pixel that is inefficiently

sampled, not the BRDF integral over incident radiance; therefore MIS [Vea98] would not

solve the issue [YHJ+14]. More effective strategies have been suggested, such as efficiently

pruning the NDF normals that will contribute to the final shading, given the light and view

directions [JHY+14][YHJ+14][YHMR16]. In short, these techniques find ways to efficiently

query normals closely aligned with the half vector.

Non-linear shading

Futhermore, when sampling pixel points stochastically and computing the illumination of

the surface, each sample will probably yield a very different shading result. In the final

render, this would cause a category of undesirable artifacts we call shading aliasing. They

tend to erase the recognizable macroscopic features of the normal map, and cause fireflies

and flickering (we show examples of this in the result section). The artifacts are more

pronounced under high frequency lighting, i.e. when the base BRDF is specular or when

the light source is small. In the perspective of signal processing, aliasing occurs when we

sample the signal at a lower frequency than what is required to reconstruct it. The artifacts

therefore stem from the frequency difference between the pixel and the texture elements.
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Figure 2.16: (a) The two normals of the surface lie in the NDF of the pixel’s footprint. (b)

The average of the two normals is equal to the geometric normal ng, which yields a much

different shading than with the two opposite normals.

Antialiasing normal maps is a difficult task because, unlike color, each normal does not

contribute linearly to the shading [OB10]:

∫
q∈F

f(q)dq ≠ f (∫
q∈F

q dq) . (2.37)

Thus, we cannot linearly average the normals within the footprint to simplify the task. As

a major example of non-linear shading, we consider the v-groove geometry presented in

[HSRG07] (figure 2.16).

2.3.5 Texture filtering

The main approach to address shading aliasing is a family of techniques called texture

filtering, where we pre-process the texels that will be then mapped to screen pixels. In the

case of anti-aliasing high-resolution normal maps, we use minification methods, which

usually involves the implementation of a low pass filter. In other words, we pre-process

the texels that occur at a higher frequency than what is required to display on screen

[HSRG07].

Mip-mapping are widespread filtering techniques used for spatial anti-aliasing and

for savings on memory/computation [Wil83]. These methods are effective at reducing
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Figure 2.17: Left: the checkerboard texture is not filtered and shows seri-

ous aliasing in the form of moiré patterns. Right: a mipmap is applied,

which removes the aliasing artifacts at the expense of blurring and loss of de-

tail (Source: https://textureingraphics.wordpress.com/what-is-texture-mapping/anti-

aliasing-problem-and-mipmapping/).

aliasing in image textures, at the expense of some blurring [EWWL98] (figure 2.17). A mip

hierarchy is composed of a pyramid of textures where each texture is half the resolution

of the previous. Each level is computed with simple bilinear interpolation from the level

above. At runtime, the number of texels in the pixel footprint determines the MIP level to

use to shade the point (i.e. the more texels per pixel, the higher the MIP level used). To

determine the final color of the pixel, the most commonly used techniques are bilinear

interpolation, and trilinear interpolation on adjacent MIP levels.

MIP-mapping image textures is commonplace in real time applications, and is even

sometimes used for normal map filtering. However, as mentioned in 2.3.4, due to the

nonlinearities in shading, we cannot average nearby surface normals to approximate the

shading behavior of a patch [HSRG07]. It would either smooth out the texture so that we

would loose the glinty effect we desire (figure 2.16), or it would manifest as flickering of

specular highlights. Ideally, filtering techniques adapted to normal maps keep surface

details throughout different scales and completely erase shading aliasing. The next parts
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of the appearance filtering chapter will describe minification techniques that are useful for

efficient shading anti-aliasing.

2.3.6 Real-time normal map filtering techniques

Initial work on antialiasing for explicit normal maps was led by the interactive graphics

community, and the filtering methods cited in the following sections are improvements on

mipmapping.

Normal map filtering techniques can deliver renderings free of aliasing in real time,

by approximating the pixel’s NDF by a single smooth distribution at each scale and by

leveraging the hardware optimized for mipmaping. These approaches store the filtered

normal map in a mip hierarchy separate from the original texture, and interpolate adjacent

mip texels linearly such that larger patches of microfacets are approximated as flat surfaces

with higher roughness. Although they all eliminate aliasing, these techniques differ in the

amount of detail they can represent. Schilling [Sch97] fits the NDF using 2D covariance

matrices, and Olano and North [ON97] use a single 3D Gaussian. Toksvig [Tok05] presents

a more affordable method, especially useful for the diffuse component of shading. They

show how the shortening occuring when interpolating unit normals inside an NDF can

be used as a measure of normal variation, and can help minimize the effects of shading

aliasing.

It can be argued that a single lobe is insufficient to fit complex NDFs [HSRG07]. For

instance, Tan et al. [TLQ+05] fit a mixture of several 2D Gaussian lobes to a planar projec-

tion of the NDF at each texel. Han et al. [HSRG07] present a more accurate antialiasing

method where the multi-scale NDFs are precomputed and fitted by a mixture of spherical

harmonics for low frequency materials. For higher frequency materials, they use a small

number of von Mises-Fisher distributions (spherical Gaussians).

Olano and Baker introduce Linear Efficient Antialiased Normal (LEAN) Mapping

[OB10]. This method enables the filtering and combination of several layers of bump maps

linearly, and is fast enough for complex time-varying bump effects. They represent bump
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variation as the variance of gaussians, and store in textures the mean and second moment

of the gaussian lobes. They are able to represent directional highlights spreading across

bumps, using an anisotropic model based on [War92]. It has been widely adopted as it is

efficient and easy to add to existing pipelines (figure 2.18).

Finally, Dupuy et al. present Linear Efficient Antialiased Displacement and Reflectance

(LEADR) mapping, which is an extension to displacement maps [DHI+13]. Unlike tech-

niques for flat normal maps, their technique accounts for view- and light-dependent effects

such as masking and shadowing on the geometry.

All these real time applications fit a single or a few lobes to the NDF, and while they are

able to yield anti-aliased results, they mostly fail to capture the anisotropies of multi-scale

NDFS that would produce high frequency glints. Furthermore, fitering the NDF using

broad lobes is only accurate if the illumination is itself low-frequency, which would make

the complex features disappear anyway [YHJ+14].

The recent real-time technique presented in [CLS+21] improves the method from

[CSDD20], by minimizing the aliasing of glints on surfaces with high curvature. They add

a BRDF parameter to the model proposed in [CSDD20], making glint rendering compatible

with normal map filtering and closer to explicit representations. Their method uses LEAN

mapping to extract the roughness and the correlation factor of the normal map NDFs, but

it is still limited to the filtering of specific NDFs, and it only works under punctual or

directional lighting.

2.3.7 Offline normal map filtering techniques

Under high-frequency illumination, the normals that contribute to the glint are those

aligned with the half-vector between the eye and the light direction, and it would be

prohibitively inefficient to use importance sampling to find them. Thus, the following

techniques offer significant improvements over Monte Carlo, and are much faster than

supersampling all texels within the pixel. However, they are not aimed at a real time

rendering pipeline as rendering an image takes seconds to minutes.
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Figure 2.18: Antialiasing of checker grid bump map [OB10]. (a) ground truth computed

with supersampling (×64). (b) mip-mapped normal map, showing shading aliasing ar-

tifacts at further distances (c) LEAN mapping with trilinear mip filtering, removing all

shading aliasing (d) LEAN mapping with anisotropic mip filtering, which fixes some

over-blurring.

Yan et al. [YHJ+14] target the accurate offline rendering of specular glints with a

deterministic approach. They shade the surface patch seen through a pixel by evaluating

the true pixel NDF for the half-vector, which can be done using the assumption of a

Gaussian pixel filter. The normal map is tessellated into small triangular elements, as the

integrals of Gaussians over triangles can be approximated.

Broad incident radiance

Until now, we reviewed filtering techniques that assume a fixed incident radiance from a

point or directional light. If we shade a patch from a microfaceted surface under broad

radiance, we must now compute an expensive double integration:

Lo(P,ωr) = ∫
F
∫
Ω+

f (x,Rn(q)(ωo),Rn(q)(ωi)) Li(x,ωi) cos(θi)dωi dq. (2.38)
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The outer integration is the spatial integral of texels over the pixel footprint (NDF), and the

inner one is the evaluation of the BRDFs over the incident radiance directions. This makes

the appearance filtering problem much more difficult when considering environmental

lights or area light sources (figure 2.19).

Using a discrete normal map, we can estimate (2.38) with

Lo(P,ωr) =
1

N
∑
q∈F
∫
Ω+

f (x,Rn(q)(ωo),Rn(q)(ωi)) Li(x,ωi) cos(θi)dωi. (2.39)

Figure 2.19: Shading a high resolution normal map under broad incident radiance (area

light) involves solving a double integral: a spatial integral over the pixel’s patch and an

angular integral over the polygonal light.

The technique presented in [YHMR16] is more efficient than [YHJ+14] (×100 faster), and

can also integrate over area lights. It involves fitting a mixture of 4D Gaussian elements to

the NDF. The authors show that although the mixture can contain millions of Gaussians,

and hundreds of Gaussians can contribute to a single NDF, a half-vector query will only

depend on a few select lobes. They finally present an efficient gaussian query/pruning

method for a given footprint and half-vector.

Belcour et al. [BYRN17] broaden the investigation around surface appearance aliasing

to the context of indirect bounces, but is limited to high frequency lighting. Gamboa et al.

[GGN18] extends the rendering of sparkles and glints to arbitrary incoming radiance such

as global illumination and large area lights, and outperforms previous offline approaches

in terms of speed. Indeed, previous works sample the NDF normals that contribute
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to most of the pixel’s energy for a given view and lighting direction, which becomes

prohibitively expensive under broad illumination. The filtered model in [GGN18] uses

spherical histogram accumulation to gather statistics of the normals within a given NDF.

This allows for efficient numerical integration of the double integral (2.38).

In conclusion, the difficulty of preventing shading aliasing of the normal mapped

surface is compounded with the problem of computing real time illumination from an

arbitrary area light. This was tackled in offline rendering research, and to our knowledge,

there are no existing techniques to solve the double integration in real time.
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Chapter 3

Method

The first part of this chapter shows an overview of our contribution to the shading aliasing

problem and the design decisions behind our algorithm. The following parts, written in

a literate programming style [Knu84], will serve as documentation for the code base we

developed for this project.

3.1 Our contribution

Our technique is explained in plain words (section 3.1.1), formally using equations (section

3.1.2), and visually using flow chart diagrams (section 3.1.3). The implementation and

documentation surrounding our method can be found in section 3.4.

3.1.1 Overview

Our method aims to accurately render a detailed normal mapped surface under polygonal

illumination in real time. In short, we tackle shading aliasing by pre-filtering the normal

map and fetching the filtered result at runtime to integrate over the area light efficiently.

To do this, we fit a LTC distribution to the view-evaluated effective BRDF of each normal

map region at each scale.
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When choosing a high frequency base BRDF prone to aliasing, we want to preserve as

much of the high frequency components of the effective BRDF for the filtering step. Thus,

we run the whole process for a specular GGX base BRDF, and for a diffuse lambertian base

BRDF separately. The two components are added together at runtime, when compositing

the final image.

From the base BRDF (either a highly specular GGX or a diffuse Lambertian), we

generate an importance sampled view-evaluated effective BRDF (eBRDF) for the whole

normal map at different MIP levels. We fit the eBRDF with a Linearly Transformed Cosine

(LTC) distribution, for each view angle and scale. By filtering the view-evaluated eBRDF

with this technique, we are approximating both the spatial integral over the pixel footprint

and the angular integral over the hemisphere. The use of (LTC) allows us to integrate

analycally over the area light in the real-time portion. In short, the prefiltering step ensures

shading anti-aliasing, and once we render the surface at runtime, we only have to sample

the filtered result once per pixel, by fetching the correct LTC matrix.

Our technical contribution is the following:

• A stochastic sampling algorithm for the view-evaluated effective BRDF of a pixel,

using importance sampling on the underlying BRDF lobes.

• Extension of anistropic LTC fitting in [KHDN22] to specular and diffuse effective

BRDFs separately, for different view angles and scales.

• Runtime bilinear software interpolation of LTC matrices on top of MIP hardware

trilinear interpolation.

3.1.2 Formal description

We provide here a formal description of our approach, based on the equations seen in the

related works chapter. The integrals in (2.38) can be reversed so that

Lo(F,ωr) = ∫
Ω+
∫
F
f (x,Rn(q)(ωo),Rn(q)(ωi)) Li(x,ωi) cos(θi)dq dωi. (3.1)
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With a discrete normal map and a discrete NDF in the pixel footprint, we can write

Lo(F,ωr) = ∫
Ω+

1

N
∑
q∈F

f (x,Rn(q)(ωo),Rn(q)(ωi)) Li(x,ωi) cos(θi)dωi. (3.2)

If we choose to only illuminate the surface from a constant polygonal light P , from (2.16)

we get

Lo(F,ωr) = L∫
P

1

N
∑
q∈F

f (x,Rn(q)(ωo),Rn(q)(ωL)) cos(θL)dωL. (3.3)

To filter the normal map, our contribution is to fit a single anisotropic LTC lobe to the

effective BRDF of the pixel’s footprint (similarly to (2.25) for a regular GGX). We obtain

Lo(F,ωr) = L∫
P
f eff(x,ωo,wL) cos(θL)dωL ≈ L∫

P
D(wL)dωL (3.4)

which has been shown in (2.33) to be the irradiance of the inversely transformed polygon.

The use of LTC therefore allows us to compute the angular integral over the solid angle

subtended by the area light, in real time:

Lo(F,ωr) ≈ LE(Po) (3.5)

We note that the approximation in (3.4) is highly dependant on the view direction ωo,

as well as the size of F . Filtering the texture for high resolution detail at one scale would

not fix aliasing at other scales. This is the reason we filter the normal map by computing a

fit at many scales and view angles in the style of an anisotropic mip hierarchy.

3.1.3 Diagrams of the algorithm
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Figure 3.1: The main part of the algorithm is a pre-filtering step. The objects and tensors

are indicated inside rounded rectancles, the main operations are inside diamonds, and

the dimensions of the objects are indicated in dark red. The output of this step is 2 LUTs

containing LTC matrices, one for the diffuse and one for the specular component.
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Figure 3.2: The second part of the algorithm happens during the real-time rendering step.

The 2 LTC look-up-tables computed in the first step are copied to the GPU to be used. The

output of this step is the final rendered image.
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3.2 Presentation of the code base

In this second part, we present the code’s structure and how to use it to render scenes, and

we describe the implementation of our method. The documentation will be paired with

fragments of code, but the full code is accessible at this github repository.

The code base developed for this project is constructed for experimentation and for

fast prototyping in a rasterizing pipeline, based on the nvdiffrast library. It allows for

the easy creation of scenes and their components, and provides a flexible set of options

for GPU accelerated rendering of images. The end goal was to develop and present our

contribution on top of this framework.

3.2.1 Repository structure

To start with, the code is based in python, with some parts in C++ and in CUDA. From

now on, the . directory refers to the root directory of the project repository. The ./src

directory stores the source code, and the ./data directory contains files to be used in the

rendering of scenes:

• ./data/mesh contains the mesh descriptions in PLY formats

• ./data/tex contains image textures and normal maps

• ./data/LUT contains precomputed LTC lookup tables

3.2.2 Rasterizing with the nvdiffrast library

Rasterization pipeline

Like many real time graphics applications, we use a variant of the rasterization pipeline, in

contrast with a path tracing pipeline, for example. During rasterization, we first project the

vertices making up the 3D geometry onto the image plane, and then determine the pixels

they cover (figure 3.3(b)). Then, at each pixel, the vertex attributes are interpolated across
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triangles (figure 3.3(c)). Finally, fragment or pixel shaders determine the final color of the

screen pixels using texture and lighting information. For efficiency, these programs are

run independently and concurrently so that any given shader does not know the state or

the output of another. The output of the fragment shaders is sent to a frame buffer, which

can then be displayed to the screen or used in another computation (figure 2.4).

Nvdiffrast and pytorch

We base our primitive graphics functionalities on NVidia’s nvdiffrast library [LHK+20]. It

is a fast and low level PyTorch library (also supporting TensorFlow), relying on a CUDA

kernel and on the graphics pipeline hardware for GPU acceleration. We implemented every

scene attribute, renderer and pre-filtering algorithm on top of the nvdiffrast framework;

and following the structure of the library, all our screen buffers and textures are stored

in pytorch float tensors. For fast parallel operations, we ensured that all of this tensor

data was stored in the GPU. nvdiffrast is presented with a python API containing 4 main

functions, and these functions carry their gradients over, for use in differentiable rendering:

• nvdiffrast.torch.rasterize() rasterizes triangles. It takes as argument a

set of vertices expressed in view space. The camera is therefore assumed to be

at the origin and looking down the z axis (figure 3.3(a)). The triangles are then

projected to screen space so that we can compute the pixels they overlap (figure

3.3(b)). The function outputs, for each screen pixel, the depth of its projection, triangle

ID, and image-space derivatives of barycentrics. By default, the rasterizer uses point

sampling which is prone to aliasing on the edge of triangles.

• nvdiffrast.torch.interpolate() linearly interpolates a set of attributes

across the pixels covered by the triangles (figure 3.3(c)). This tool takes as input

a tensor where each scene vertex is mapped to any number of attributes, and the

outputs from the rasterize() operation. It outputs an image-sized buffer where the

parameters are interpolated over all pixels.
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• nvdiffrast.torch.texture() applies a texture to the pixels on screen (figure

3.3(d)). It takes as argument an image texture as a tensor, and the interpolated

per-pixel uv coordinates. It can optionally load and apply a MIP hierarchy with

hardware MIP interpolation. Finally, it outputs a screen buffer where the texture is

applied over the pixels.

• nvdiffrast.torch.antialias() returns an anti-aliased copy of the screen

buffer, using the output from the rasterizer. The anti-aliasing performed is a linear

interpolation at the edges of triangles, which blurs and erases ‘stepping’ effects

(figure 3.3(e)).

Nvdiffrast comes with a few other useful tools, such as nvdiffrast.torch.

RasterizeGLContext(), a fast way to create new openGL rasterizer contexts. It can also

rasterize multiple depth layers using the nvdiffrast.torch.DepthPeeler() class.

Finally, it provides a mip-map constructor (nvdiffrast.torch.texture_construct

_mip()) which takes an image texture and outputs a hierarchy of downsampled versions

of the same texture.
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(a) The vertices are expressed in view space. (b) The triangle is projected and rasterized.

(c) The vertex attributes are interpolated. (d) A texture is applied using the uv attribute.

(e) The edges are antialiased.

Figure 3.3: Main steps of the rasterizing pipeline applied to a single triangle.
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3.3 Main functionalities and rendering a scene

3.3.1 The Scene class

Figure 3.4: This diagram shows an overview of the class structure, and the main operations

that are possible with our system. The classes are shown in red, and the two main

operations are shown in green diamonds. On the left are the scene attributes loaded from

the disk with the dataloader, and on the right are scene attributes built on-the-fly.

The Scene class, located in ./src/scene.py, contains all objects, textures and ren-

dering parameters, and also contains the various buffers creating during rasterization and

rendering (figure 3.4). Inspired by the logic of a scene graph, our scene creator is object

based, in which each scene attribute is a class instance.

The Scene attributes are instances of classes in ./src/parameters.py. This in-

cludes Camera, Texture, Mesh, PolygonalLight and Material. For creating base-

lines, we also included DirLight and PointLight.
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Another attribute created at the same time as the scene instance is the scene.

resolution (set using scene.setResolution()). This integer determines the size of

one side of the rasterized image, when the scene gets renders.

Below is an example of a standard scene, located in ./src/sampleScenes.py. To

create a scene, we first create the attributes:

def standardScene(resolution = 1024, name = "LTCscene"):

cam = Camera(camera_distance=20)

mesh = Mesh(f’{datadir}/mesh/planeflat.ply’, cam, ty=-2.0, rx=-np.pi/2.0)

material = Material(roughness=0.05, diffuseR=1.0, diffuseG=1.0, diffuseB

Ç =1.0)

quad = PolygonalLight(cam)

quad.offsetIdx(mesh.numVertex)

And then load them in the Scene instance:

scene = Scene(resolution, cam, mesh, material, quad, name)

We can finally add special attributes such as LTC lookup tables:

scene.setIsotropicLUT(f’{datadir}/LTC-bin/ltc_parameters_works.bin’, f’{

Ç datadir}/LTC-dds/ltc_amp32_test.dds’, LUTsize=32)

return scene

3.3.2 The main pipeline

We will now go over the main pipeline: how to create a scene, rasterize it and render it.

The main file ./src/main.py contains sample methods showcasing the functionalities

of our framework: loading a scene and then launching a real time render.

The function run() takes as argument a scene instance, rasterizes it, and and renders

it using the chosen rendering algorithm. Finally, it displays the result to the screen:

glctx = nvdiffrast.RasterizeGLContext()

scene = normalMapSceneVertical(resolution = 512, superSample=False, enable_mip

Ç =True, normalMap=’stone256.jpg’)

run(scene)
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def run(sc. display = True):

img = sc.render(glctx, ’isotropicLTC’)

display = img[0].cpu().numpy()[::-1]

if display:

util.display_image(display, size=sc.resolution, title=’Render output’)

util.writeImage(display)

runLoop() also render the scene to the screen, but for a certain number of frames

(taken as argument). It allows for scene parameters to be updated between frames (mesh,

camera and light transformations, material properties, etc.). runCompare() is similar to

runLoop(), but renders two or more scenes simultaneously at each frame and displays

them side-by side.

Finally, the function runOptimize() function is a sample workflow to leverage the

differentiable rendering functionality of nvdiffrast. It renders and displays two scenes

side-by side and optimizes the parameters of one of them using gradient descent on image

space loss, at each frame. This functionality is detailed in the last part of the method

section.

3.3.3 Scene attributes

This section covers the various classes and attributes to attach to a Scene.

Camera

It can be loaded to the scene with scene.setCamera(). It takes as argument the camera

distance and the frustum parameters x, n and f; and sets its projection matrix with the

frustum parameters, either using an orthographic projection or a perspective projection.

We do not use a view-to-world matrix as we assume that view space is world space (figure

3.3(a)).

class Camera:
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def __init__(self, camera_distance = 20, x = 1.0, n = 2.0, f = 400.0):

self.camera_distance = camera_distance

self.setProj(x, n, f)

def setScene(self, scene):

self.scene = scene

def setDistance(self, camera_distance):

self.camera_distance = camera_distance

self.scene.rasterized = False

def setProj(self, x = 1.0, n = 2.0, f = 50.0, orthographic = False):

self.x = x

self.n = n # near frustum

self.f = f # far frustum

if orthographic: self.proj = util.torch_projection_orthographic(x=x,

Ç n=n, f=f)

else: self.proj = util.torch_projection(x=x, n=n, f=f)

try: self.scene.rasterized = False

Mesh

It can be loaded to the scene with scene.setMesh(). The Mesh takes as argument the

name of the mesh file, the camera, the rotation and translation, the mesh scale and the

uv scale. We start by extracting the object space vertex coordinates from a PLY file using

dataloader.dataFromPLY(), and we note that we only support triangular meshes.

The PLY format also contains the triangle id, normal and uv at each vertex.

class Mesh:

def __init__(self, filename, camera, scale = 100.0, uvscale = 1.0, rx=0.0,

Ç ry=0.0, rz=0.0, tx=0.0, ty=0.0, tz=0.0):

self.camera = camera

#load mesh data

self.basepos, self.npidx, self.normals, baseuv = dataloader.

Ç dataFromPLY(filename)

self.uv = baseuv * uvscale
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self.pos = self.basepos * scale

self.numVertex = self.pos.shape[0]

self.numTriangles = torch.tensor(self.npidx.shape[0], device=torch.

Ç device(’cuda:0’))

We then converts the vertex and triangle properties (in object space) to torch GPU tensors.

self.idx = torch.from_numpy(self.npidx.astype(np.int32)).cuda()

self.vtx_pos = torch.from_numpy(self.pos.astype(np.float32)).cuda()

self.vtx_pos4 = torch.cat([self.vtx_pos, torch.ones([self.numVertex,

Ç 1]).cuda()], axis=1)

self.vtx_uv = torch.from_numpy(self.uv.astype(np.float32)).cuda()

self.vtx_n = torch.from_numpy(self.normals.astype(np.float32)).cuda()

self.vtx_n_transpose = torch.transpose(self.vtx_n, 0, 1)

if self.pos.shape[1] == 4: self.pos = self.pos[:, 0:3]

We note that we keep a vec3 version of the vertex positions to compute the object T,B,N ma-

trix, as well as a vec4 version in homogeneous coordinates to multiply with the modelview

matrix.

The next step is to set the local modelview matrix and calls setWorldPos() to com-

pute the vertex world position, as well as the clip position of each vertex (using the

camera’s projection matrix).

self.setTranslationRotation(rx, ry, rz, tx, ty, tz)

def setTranslationRotation(self, rx, ry, rz, tx, ty, tz):

self.rx=rx; self.ry=ry; self.rz=rz

self.tx=tx; self.ty=ty; self.tz=tz

self.rotation = torch.matmul(torch.matmul(util.torch_rotate_z(rz),

Ç util.torch_rotate_y(ry)), util.torch_rotate_x(rx))

self.translation = util.torch_translate(tx, ty, tz-self.camera.

Ç camera_distance)

self.setWorldPos()
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The tangent directions on the mesh can be later accessed through the computation of

the Tangent, Bitangent, Normal matrix (TBN) of each vertex in object space:

def objectTBN(self):

return normal_util.objectTBN(self.vtx_pos, self.vtx_uv, self.idx, self

Ç .vtx_n, self.numVertex)

PointLight and DirLight

They are loaded with scene.setLight(). Directional and point lights are used for

testing BRDFs and generating baselines. They take as argument the intensity/color of the

light, and the properties of direction or position.

class DirLight:

def __init__(self, intensity = 10.0, dirx=0.0, diry=0.0, dirz=0.0):

lightdirnp = np.asarray([dirx, diry, dirz])

lightdirnp /= np.linalg.norm(lightdirnp)

self.dir = torch.from_numpy(lightdirnp.astype(np.float32)).cuda()

self.intensity = torch.tensor(intensity).cuda()

class PointLight:

def __init__(self, intensity = 10.0, x=3.0, y=3.0, z=-3.0):

pointlightposnp = np.asarray([[x, y, z]])

self.pos = torch.from_numpy(pointlightposnp.astype(np.float32)).cuda()

self.intensity = torch.tensor(intensity).cuda()

PolygonalLight

It can be loaded to the scene using scene.setQuad(). In the current version of the code

base, we only support quadrilaterial lights. The PolygonalLight takes as argument the

light intensity, which is constant over the mesh:

class PolygonalLight:

def __init__(self, camera, intensity=1.0, twoSided = False, clip = True,

Ç xscale=2.0, yscale=2.0, rx=0.0, ry=0.0, rz=0.0, tx=0.0, ty

Ç =1.0, tz=0.0):
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self.camera = camera

self.intensity = torch.tensor(intensity, device=torch.device(’cuda:0’)

Ç )

self.quadcolor = torch.tensor([self.intensity, self.intensity, self.

Ç intensity], device=torch.device(’cuda:0’))

We note that in the webGL fragment shader provided by [HDHN16], the intensity of the

polygonal light is set to 4.0 by default. The polygonal light also inherits the geometric

properties of a mesh, such as scale, position, translation and normal:

self.xscale = xscale

self.yscale = yscale

self.quadpoints0 = torch.tensor([[-self.xscale, self.yscale, 0.0,

Ç 1.0], [self.xscale, self.yscale, 0.0, 1.0], [self.xscale, -

Ç self.yscale, 0.0, 1.0], [-self.xscale, -self.yscale, 0.0,

Ç 1.0]]).cuda()

self.setTranslationRotation(rx, ry, rz, tx, ty, tz)

self.idx = torch.tensor([[0,1,2], [2,3,0]], dtype=torch.int32).cuda()

self.quad_n = torch.tensor([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0,

Ç 0.0, 1.0], [0.0, 0.0, 1.0]]).cuda()

self.quad_n_transpose = torch.transpose(self.quad_n, 0, 1)

It finally allows to set twoSided = True if we want the light emitted on both sides, and

to set clip = True if the polygonal light is clipped to the upper hemisphere of each

shading point. Currently, our polygonal light clipping algorithm only supports rectangular

or triangular lights.

self.twoSided = constants.ZERO

if twoSided:

self.twoSided = constants.ONE

self.clip = clip
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Material

It can be loaded to the scene with scene.setMaterial(), and gets applied to the

surfaces of the Mesh. A Material takes as arguments the roughness parameter, a BRDF

name, a diffuse color and a specular color.

class Material:

def __init__(self, roughness, BRDF = ’ggx’, diffuseR=1.0, diffuseG=1.0,

Ç diffuseB=1.0, specularR=1.0, specularG=1.0, specularB=1.0):

self.setDiffuse(diffuseR, diffuseG, diffuseB)

self.setSpecular(specularR, specularG, specularB)

self.setRoughness(roughness)

self.brdf = BRDF

In our implementation, the reflectance of the material is the sum of a specular BRDF

(GGX in this case), and a diffuse Lambertian BRDF. The specular color is used as a factor

for the specular BRDF, and the diffuse color is mulitplied with the Lambertian BRDF.

Three base BRDFs are implemented in the renderer: Blinn-Phong (blinnphong), Cook-

Torrance (cooktorrance) and GGX (ggx). As the Roughness parameter does not have

a true physical interpretation, its appearance varies depending on the BRDF chosen. For

example, for a realistic result, the range for Roughness is between [20,200] for Blinn-

Phong, [0.05,0.4] for Cook-Torrance, and [0.2,0.8] for GGX. If we render the scene with

LTC, the range of Roughness is [0.01,1].

Texture

It can be loaded as a normal map into the scene with scene.setNormalMap() or as

an image texture with scene.setTexture(). It can also be loaded into a prefiltering

algorithm to generate a filtered version. Texture takes as argument the name of the

image file, the option to enable or disable the mip mapping, the maximum mip level

constructed and the option to supersample at render time.
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In the current version of the code base, we only use textures as normal maps, but they

can easily be used as albedo maps or roughness maps with little reworking of the code.

We therefore keep the name of the class as Texture.

class Texture:

def __init__(self, filename, enable_mip = False, superSample = False,

Ç max_mip_level = None):

self.setTexture(filename)

self.enable_mip = enable_mip

if self.enable_mip:

self.setMip(max_mip_level, superSample)

else:

self.mip_object = None

self.filter_mode=’linear’ # default for non mip-mapped normal maps

self.superSample = False

Texture.setTexture loads the data from a file using dataloader.dataFromImg(),

which acceps all formats supported by the pillow library. Since textures can be used for

normal maps, Texture.setTexture also shifts the values to the [−1,1] range (to allow

for negative normals).

def setTexture(self, filename):

self.data = dataloader.dataFromImg(filename)

self.torch_tex = torch.from_numpy(self.data.astype(np.float32)).cuda()

Ç * 2.0 - 1.0 # allow for negative normal coordinates

self.torch_tex = torch.nn.functional.normalize(self.torch_tex, dim=2)

self.dimension = float(self.torch_tex.size(dim=0))

If mip-mapping is enabled, nvdiffrast.torch.texture_construct_mip() is called

to create the mip hierarchy.

def setMip(self, max_mip_level = None, superSample = False):

self.max_mip_level = max_mip_level

self.mip_object = dr.texture_construct_mip(torch.unsqueeze(self.

Ç torch_tex,0),max_mip_level=self.max_mip_level)

self.filter_mode=’linear-mipmap-linear’
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self.superSample = superSample

3.3.4 Loading LTC parameters

A scene can also take as argument lookup tables (LUTs) containing LTC parameters, that

will be used to shade over the polygonal light at rendertime. All LUTs are copied as GPU

tensors when they are loaded, similarly to how a conventional rendering pipeline sets a

texture to be GPU accessible.

• IsotropicLUT (loaded with scene.setIsotropicLUT()) is organized in the

same way as the method presented in [HDHN16]. It is a 2 dimensional LUT tabulat-

ing over nθ view elevations, nα material roughness, and storing 4 matrix parameters

at each point. The LTC parameter texture and the LTC magnitude texture can either

be from binary files or from textures such as Microsoft’s DDS format. Our current

implementation sets nθ = nα = 16.

• AnisotropicLUT (loaded with scene.setAnisotropicLUT()) comes as a nu-

mpy array and has a structure based on the implementation of [KHDN22]. It tabu-

lates over view elevations, view azimuths, and optionally over material roughness, 9

matrix parameters at stored at each point.

• FilteredLUT (loaded with scene.setFilteredLUT()) is the prefiltered LTC

look up table from our contribution, presented in section 3.4.

3.3.5 The rasterizer

After the scene is created, we can call the function scene.render() to display it. If

this is the first frame or if scene geometry has moved since the last frame, the attribute

scene.rasterized is set to False, meaning we first call the rasterizer.

def render(self, glctx, mode, antialias = False, renderOption = False):

if not self.rasterized:
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self.rasterize(glctx)

In the rasterizer, we start by concatenating the vertex positions in clip space, and

triangle ID for the meshes:

def rasterize(self, glctx):

self.all_clip = torch.cat((self.mesh.pos_clip, self.quad.quad_clip),

Ç 1)

self.all_idx = torch.cat((self.mesh.idx, self.quad.idx), 0)

Then, we rasterize the triangles using the function included in nvdiffrast;

self.rast_out, self.rast_out_db = dr.rasterize(glctx, self.all_clip,

Ç self.all_idx, resolution=[self.resolution, self.resolution])

This creates the screen buffer using the scene.resolution parameter, and we can

see that our current implementation generates a square image.

We create a mask for the polygonal light, and a mask for all the triangles, if we need

to render them on a different layer. This is possible because we added an offset to all the

vertex IDs belonging to the polygonal light triangles:

self.lightMask = torch.clamp(self.rast_out[..., -1:] - self.mesh.

Ç numTriangles, ZERO, ONE)

self.triangleMask = torch.clamp(self.rast_out[..., -1:], ZERO, ONE)

We interpolate pixel attributes that will be useful in our renderers, specifically the

normal direction and positions in world space at each pixel. First, we create 2 buffers

containing the 3D position and the view directions of each surface point:

self.all_positions = torch.cat((self.mesh.world_positions, self.quad.

Ç world_quadpoints), 0)

self.position, _ = dr.interpolate(self.all_positions[None, ...], self.

Ç rast_out, self.all_idx)

self.viewdir = torch.nn.functional.normalize(-self.position, p=2.0,

Ç dim=3) #camera is always at 0,0,0

Finally, the rasterizer creates screen buffers of the tangents and normal directions at

each pixel.
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self.computeNormalAndTangentBuffers()

This function computeNormalAndTangentBuffers() either interpolates UVs and

apply a normal map, or just interpolates the surface normals using the vertex attributes. If

we need to compute the view azimuth in the renderer, we also ensure that we interpolate a

tangent direction at each pixel (using the object TBN matrix). We finally give the option to

enable normal map superSampling, and in this case each pixel will store all the normals in

its footprint.

def computeNormalAndTangentBuffers(self):

if self.hasFilteredLUT: # get the geometric normal and tangent buffers

self.surfacenormalimage, self.surfacetangentimage = normal_util.

Ç surfaceNormalsAndTangents(self)

elif self.computeTangents:

self.normalimage, self.tangentimage = normal_util.

Ç surfaceNormalsAndTangents(self)

if self.hasNormalMap: # apply a normal map

if self.normalMap.enable_mip: # uv image with mip map enabled

self.uvimage, self.uvimaged = dr.interpolate(self.mesh.vtx_uv[

Ç None, ...], self.rast_out, self.mesh.idx, rast_db=self.

Ç rast_out_db, diff_attrs=’all’)

else: # uv image with mip map disabled

self.uvimage, _ = dr.interpolate(self.mesh.vtx_uv[None, ...],

Ç self.rast_out, self.mesh.idx)

if self.normalMap.superSample:

self.normalimage, self.normalsPerPixel = normal_util.

Ç exhaustiveNormalMap(self)

else:

self.normalimage = normal_util.normalMap(self)

else: # do not apply a normal map and do not compute tangent

self.normalimage = normal_util.surfaceNormals(self.rast_out, self.

Ç mesh.mv_33, self.mesh.vtx_n_transpose, self.mesh.idx)
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We finally set scene.rasterized to True, and we can proceed to a renderer. The

choice of renderer is given to scene.render() via the String argument mode.

3.3.6 The baseline renderers

Rendering algorithms have been implemented in the ./src/renderer.py, and play

the same role as fragment shaders in a regular rendering pipeline. To emulate this in our

pytorch framework, a renderer gets pixel attributes (such as position, normal, tangent)

in GPU tensors representing image buffers. For example, if the scene resolution is r × r,

the renderer receives the pixel normal directions in a buffer of size r × r × 3, and output a

r × r × 3 tensor (3 color channels). This allow every pixel to be handled concurrently on the

GPU.

The renderers take as argument the Scene instance and use the attributes necessary to

compute the color at each pixel. This includes the output from the rasterizer, the normal

direction at each pixel, the 3D position of each vertex and light in the scene, etc.

The most basic type of renderer we implemented is renderPointLit() and it is

called with the mode pointlit. It computes unshadowed direct illumination from a

single point light with a BRDF.

We start by computing the direction and squared distance from the light to each point.

def renderPointLit(sc):

lightdir = torch.nn.functional.normalize(sc.pointlight.pos.sub(sc.position

Ç ), p=2.0, dim=3)

dsquared = torch.squeeze(torch.pow(torch.cdist(sc.position, sc.pointlight.

Ç pos), 2), 3)

Then, we compute the amplitude of each BRDF in the direction of the light (in this case,

we chose GGX as our specular BRDF):

diffuse = BRDF.lambertianEval(sc.normalimage, lightdir)

specular = BRDF.evaluate(sc.mat.brdf, sc.mat.roughness, sc.normalimage,

Ç lightdir, sc.viewdir)
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And finally we sum the energy contribution from the ambient, diffuse and specular terms.

color = torch.mul(torch.div(specular + diffuse, dsquared), sc.pointlight.

Ç intensity)

colorRGB = torch.stack((color, color, color),3)

return colorRGB

The other basic renderer is renderDirLit() (called with the mode dirtlit) and

computes the illumination at each point from a fixed lighting direction. Some debugging

renderers are also available, to display various properties on the geometry; for example

normals, tangents, texeldensity, etc.

3.3.7 LTC renderers

Some renderers in ./src/renderer.py are designed to render a scene under polygonal

light illumination using a lookup table of LTC parameters. Depending on the mode

argument provided to scene.render(), the corresponding LTC renderer is executed.

def render(self, glctx, mode, antialias = False):

if not self.rasterized:

self.rasterize(glctx)

We have the option of rendering a scene with our filtered method (described in section

3.4.2):

if mode == ’filtered’: # Our method

if self.hasFilteredLUT:

self.RGBcolor = renderer.renderLTCLUT(self)

or with the baseline methods:

elif mode == ’isotropicLTC’: # Eric Heitz (2016) method

if self.hasIsotropicLUT:

self.RGBcolor = renderer.renderLTCIsotropic(self)

elif mode == ’anisotropicLTC’: # Aakash KT (2022) method

if self.hasAnisotropicLUT:

self.RGBcolor = renderer.renderLTCAnisotropic(self)
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The method renderer.renderLTCIsotropic() is a re-implementation of [HDHN16],

adapted to our framework, and renderer.renderLTCAnisotropic() is a re-imple-

mentation of [KHDN22]. These two renderers are used to generate ground truth and naive

baselines with which to compare our own method.

Finally, renderer.renderLTCAnalytic() does not load a LUT, but enables the

rendering of the scene using an analytic formula for the LTC parameters. Using differ-

entiable rendering, we can optimize an analytic function that take as argument the view

elevation and/or the material roughness, and outputs the 4 LTC parameters we need to

reconstruct the lobe. It is an experimental rendering mode but shows promising results, as

can be seen on the main github repository.

elif mode == ’analyticLTC’: # Analytic experimental method

if self.hasAnalyticLTC:

self.RGBcolor = renderer.renderLTCAnalytic(self)

In the last part of scene.render(), we add ambient lighting (if any):

if self.ambient:

self.RGBcolor = self.RGBcolor + ONE * self.ambientColor

we also mask out the geometry to replace background color, and we mask out the polygonal

light to display its color:

self.RGBcolor = torch.where(self.triangleMask == ZERO, ZEROPOINTFIVE,

Ç self.RGBcolor) # mask background

self.RGBcolor = torch.where(self.lightMask == ONE, WHITE, self.

Ç RGBcolor) # mask light quad

and finally, we antialiase the image if enabled:

if antialias:

self.RGBcolor = dr.antialias(self.RGBcolor, self.rast_out, self.

Ç all_clip, self.all_idx)

return self.RGBcolor
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Render using isotropic LTC [HDHN16]

As an example, we present here a high level overview of our implementation of the

renderer in [HDHN16], provided in this webGL fragment shader. We start by computing

the cosine of the view elevation at each point:

def renderLTCIsotropic(sc):

costheta = torch.sum(sc.normalimage * sc.viewdir, dim=3)

We fetch and interpolate the 4 LTC parameters in the 2D lookup table, for each fragment.

In the texture, the u direction is the material roughness, and v is the view elevation.

uv = torch.nn.functional.pad((torch.acos(costheta)/HALFPI).unsqueeze(3),

Ç (1, 0), mode=’constant’, value=sc.material.roughness)

uv[:,:,:,0] = uv[:,:,:,0] * (sc.LUT_size - 1.0)/sc.LUT_size + 0.5/sc.

Ç LUT_size

uv[:,:,:,1] = uv[:,:,:,1] * (sc.LUT_size - 1.0)/sc.LUT_size + 0.5/sc.

Ç LUT_size

LTC_parameters_image = dr.texture(sc.LTC_param_tex[None, ...], uv,

Ç filter_mode=’linear’)

We then reconstruct the full inverse matrix M−1 from the 4 parameters, by filling the rest

of the matrix with 0:

Minv = LTC.transformationMatrixFromFourParameters(LTC_parameters_image)

And we compute the coordinates of the polygonal light points, with respect to each surface

point, along with the transformation matrix associated with each surface point:

L = LTC.computeLocalLightPoints(sc)

localmat = LTC.computeLocalMat(sc, costheta)

Finally, we integrate the LTC lobes over the polygonal domain (details are omitted):

diff = LTC.renderLTC(sc, sc.diffmatrix, localmat, L) * sc.material.

Ç diffusecolor

spec = LTC.renderLTC(sc, Minv, localmat, L) * sc.material.speccolor

return spec + diff
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(a) (b) (c)

Figure 3.5: Isotropic LTC renders using the standard Scene in ./src/sampleScenes.py.

We set the roughness parameters to (a) 0.01 (b) 0.3 (c) 0.5. The resolution of each render is

512 × 512.

To see the implementation of other renderers such as renderLTCAnisotropic(),

please visit ./src/renderer.py.
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3.4 Implementation of our method

3.4.1 Normal map prefiltering

The offline prefiltering step, located in ./src/fitEBRDF.py, can be ran once for each

normal map and each material roughness. It is based on the fitting algorithm presented in

[KHDN22].

Loading a normal map

Our model is explicit, meaning that we support arbitrary normal map inputs. The first step

is to load an image texture as a GPU tensor, and normalize each texel so that it represents a

tangent space normal vector. We denote m the number of texels on one side of the square

normal map.

normalMap = Texture(f’{datadir}/tex/stone128.jpg’).torch_tex

Normal maps of size up to m×m = 128×128 can be loaded in the pre-filtering algorithm

(figure 3.6).

Since we want to leverage parallel GPU computation, we want to fit all data in video

memory. We are filtering the normal map in texture space, and using the pytorch frame-

work, we process all the texels of the base texture in parallel. When m = 128, the base BRDF

sampling buffer (described in section 3.4.1) occupies (128 × 128) × (16 × 8 + 2 × 4) × 128 × 3×

FLOAT32 = 3.22 GB. When m = 256 (we want to use powers of 2), the same buffer occupies

(256 × 256) × (16 × 8 + 2 × 4) × 128 × 3× FLOAT32 = 12.88 GB. It makes it impossible to fit

the buffer in GPU memory for m ≥ 256, the limitation being our access to 8 GB of video

memory. This is the main reason why we do not filter larger normal maps.

The textures we use are seamless, we can therefore visualize larger normal maps by

tiling the map at runtime. Furthermore, absolute normal map resolution is not crucial

when working on aliasing; the important quantity is the ratio of texel to pixel.
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Figure 3.6: STONE normal map (128 × 128). Source: Sergün Kuyucu

(https://www.artstation.com/artwork/kbnmy).

View tabulations

We prepare an array of nθ view elevations θ and nφ view azimuths φ. These view directions

are the final angles at which we will tabulate our results, therefore we express them in the

surface tangent frame, i.e. with respect to the geometric normal ng (figure 3.7).

def getThetaPhis(nTheta, nPhi):

thetaList = []

phiList = []

The range of θ is [0, π/2], computed from ng.

if nTheta == 1: thetaList.append(0.1)

else:

for theta in range(nTheta):

t = theta / (nTheta-1.0) * 0.999 * math.pi/2.0

thetaList.append(t)

The effective BRDF will be highly assymmetric due to the normals in the pixel footprint,

and the reflectivity will change radically when rotating the view around the geometric

normal. Thus, we do not limit the range of φ to [0, π/2] range like in [KHDN22] (we do

not have any symmetry to leverage). Instead, we tabulate our view azimuths over the

whole circle [0,2π].
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Figure 3.7: 8 tabulated view elevations θ with the same azimuth φ, with respect to the

geometric/surface tangent frame. For visual simplicity, we do not show the true magnitude

of the x, y and z axis, which is 1.

if nPhi == 1: phiList.append(0.1)

else:

for phi in range(nPhi):

p = phi / (nPhi-1.0) * math.pi * 2.0

phiList.append(p)

return thetaList, phiList

Finally, we found that having the azimuthal angular resolution being half the elevation

angular resolution yielded acceptable results, so we chose nθ = 8 and nφ = 16.

Sampling the base BRDF

The base BRDF we sample is a GGX microfacet model, where we choose the roughness

parameters αx, αy = 0.01 (highly specular). If we want to try a different base BRDF

roughness, it must be changed here (and the pre-filtering process has to be run again).

We importance sample this function for samplesPerEBRDF directions at each texel

belonging to the full resolution normal map (MIP 0), for all views v (θ, φ). We choose sam-

plesPerEBRDF = 128 samples in each GGX lobe, which provides a good compromise

between fitting accuracy and lightweight storage.
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baseSamples = generateBaseGGXsamples_GPU(elevations, azimuths, nTheta, nPhi,

Ç samplesPerEBRDF, normalMap, alphax, alphay, diffuse=diffuse)

First, for each tabulated view v and each MIP 0 texel q, we compute the view elevation

θq with respect to the microfacet normal n(q). We clamp this elevation to positive values

since we cannot shade a texel if the view is underneath the microfacet.

def generateBaseGGXsamples_GPU(elevations, azimuths, nTheta, nPhi,

Ç samplesPerEBRDF, normalMap, alphax, alphay, diffuse = False):

with torch.no_grad():

ng = torch.tensor([0.0, 0.0, 1.0], dtype=torch.float, device=torch.

Ç device(’cuda:0’)) # geometric normal

ngimage = ng.repeat(texSize, texSize, 1)

samplesPerEBRFMore = int(samplesPerEBRDF * 1.4)

allGGXSamples = []

for elevation in elevations:

for azimuth in azimuths:

vg = getEyeSpherical(elevation=elevation,azimuth=azimuth,

Ç localdevice=’cuda:0’) # geometric view direction

thetaLocal = torch.dot(vg, normalMap)

thetaLocal = torch.acos(torch.where(thetaLocal > ZEROZEROONE,

Ç thetaLocal, ZEROZEROONE))

Then, we generate the GGX distribution in the local texel frame using a vertical normal

n0 = (0,0,1), and a view v0 with θ0 = θq and φ0 = 0 (figure 3.8(a)). This is possible

because the base GGX BRDF we chose is isotropic (unlike the effective BRDF which is

highly anisotropic). We importance sample this distribution using rejection sampling at

samplesPerEBRDF directions, giving us the shape of the GGX at θq.

v0 = getEyeSphericalBatch(thetaLocal, ZERO)

samples = utils.rejection_sampling_torch(samplesPerEBRFMore,

Ç v0, alphax, alphay, texSize=texSize, sampleCount=

Ç samplesPerEBRDF)

The GGX rejection sampling method is directly taken from [KHDN22].
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Expressing the base BRDF in the geometric frame

The GGX samples we generated in the local microfacet frame (figure 3.8(a)) have to be

expressed in the geometric frame, so that all base BRDFs in a patch are expressed in the

same referential.

For that reason, we compute a 3D rotation R0 so that R0(n0) = n(q). We apply R0 to v0

to obtain vr, and apply R0 to all base BRDF samples (figure 3.8(b)).

cosThetaNormal = torch.sum(ng * normalMap, dim=2).unsqueeze(2)

sinThetaNormal = torch.sqrt(ONE - (cosThetaNormal * cosThetaNormal))

E = torch.nn.functional.normalize(torch.cross(ngimage, normalMap), dim=2)

vr = rotateAroundTorch(pivot=E, vector=v0, cosAngle=cosThetaNormal, sinAngle =

Ç sinThetaNormal)

samples = rotateAroundTorch(pivot=E.unsqueeze(2).repeat(1,1,samplesPerEBRDF,1)

Ç , vector=samples, cosAngle=cosThetaNormal.unsqueeze(3),

Ç sinAngle = sinThetaNormal.unsqueeze(3))

The second 3D rotation R1, rotating around n(q) so that R1(vr) = v. We also apply R1 to all

samples (figure 3.8(c)).

pr = torch.nn.functional.normalize(vr - torch.sum(vr * normalMap, dim=2,

Ç keepdim=True) * normalMap, dim=2)

pg = torch.nn.functional.normalize(vg - torch.sum(vg * normalMap, dim=2,

Ç keepdim=True) * normalMap, dim=2)

cosThetaNormal = torch.sum(pr * pg, dim=2, keepdim=True)

sinThetaNormal = torch.sqrt(ONE - (cosThetaNormal * cosThetaNormal))

E = torch.nn.functional.normalize(torch.cross(pr, pg), dim=2)

samples = rotateAroundTorch(pivot=E.unsqueeze(2).repeat(1,1,samplesPerEBRDF,1)

Ç , vector=samples, cosAngle=cosThetaNormal, sinAngle=

Ç sinThetaNormal)

After the two rotations, some samples can have z < 0, but we do not clamp them at 0. We

now have a list of nθ × nφ tensors of length m ×m × samplesPerEBRDF × 3, describing the

GGX distribution at each texel, epressed in the geometric frame.
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(a) Samples in the local microfacet frame,
for a given view θ and for φ = 0. The
normal n0 is vertical.

(b) Samples after applying R0. The nor-
mal matches the microfacet normal n(q).

(c) GGX samples after applying R0 and
R1. Both the normal and the view di-
rections match their real direction in the
geometric frame.

Figure 3.8: 128 GGX samples (blue), the view direction (red) and the normal (green),

rotated to different frames. The tool we developed to generate these plots is included in

our code base, in ./src/viz.py.

Sampling the effective BRDF

As seen previously, the effective BRDF (eBRDF) can be formally written as the weighted

sum of its underlying BRDFs (2.36). We have generated samples for the base BRDFs at

each MIP 0 texel, and expressed them in the surface geometric frame; therefore they can be

used to obtain an importance sampled eBRDF for different scales and footprints.
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We note that, at the finest MIP level (MIP 0), the eBRDF of a pixel is the same as the

base BRDF (but expressed in a different frame). We can therefore save storage space by

not generating the eBRDF at MIP 0, and instead using the technique from [HDHN16] at

runtime. We provide details about this step in section 3.4.2.

MIPSamples, LUT_sizes = getEBRDFsamples(nTheta, nPhi, baseSamples,

Ç samplesPerEBRDF, elevations, azimuths)

We start by iterating over footprint sizes (mip levels):

def getEBRDFsamples(nTheta, nPhi, baseSamples, samplesPerEBRDF, elevations,

Ç azimuths):

with torch.no_grad():

pixelSize = 12 # XYZ, float32

allEBRDFSamples = []

LUT_sizes = []

viewCount = nTheta*nPhi

size = baseSamples[0].shape[0]

tileSize = 2

while tileSize <= size:

numTiles = int(size/tileSize) # number of mip texels in the mip

LUT_sizes.append((numTiles, numTiles, nTheta, nPhi))

numFacets = tileSize*tileSize

We want to use samplesPerEBRDF samples to represent the eBRDF, to keep the

memory footprint reasonable. Thus, if there are tileSize MIP 0 texels in our current

footprint, we stochastically select samplesPerEBRDF/tileSize samples in each un-

derlying BRDF 3.9(a)). We do not need a random seed as the base samples were already

generated randomly.

samplesPerFacet = math.ceil(samplesPerEBRDF/numFacets)

currentMIP_samples = torch.zeros(viewCount, numTiles, numTiles,

Ç samplesPerEBRDF, 3, dtype=torch.float, device=’cpu’)

for elevation in range(nTheta):

for azimuth in range(nPhi):

viewIndex = nPhi * elevation + azimuth
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sampleBuffer = baseSamples[viewIndex]

sampleBuffer = sampleBuffer[:,:,:samplesPerFacet, :]

The MIP 0 texels belonging to each patch are then isolated using square axis-aligned

footprints in texture space.

c = np.lib.stride_tricks.as_strided(sampleBuffer,

shape=(numTiles, numTiles, tileSize, tileSize,

Ç samplesPerFacet, 3),

strides=(tileSize * size * samplesPerFacet * pixelSize,

tileSize * samplesPerFacet * pixelSize,

size * samplesPerFacet * pixelSize,

samplesPerFacet * pixelSize,

pixelSize,

4))

In higher mip levels, we will have samplesPerEBRDF < numFacets, meaning that we

cannot sample from all texels in the patch. In this case, we stochastically select samples-

PerEBRDF microfacets using uniform sampling, and keep one sample from each.

if samplesPerEBRDF < numFacets:

c = c.reshape(numTiles,numTiles,numFacets,3)

perm = torch.randperm(numFacets, device=’cpu’)[:

Ç samplesPerEBRDF]

perm = perm.repeat(numTiles,numTiles,1)

perm = torch.stack([perm,perm,perm], dim=3)

c = torch.gather(c, 2, perm)

At these scales, the eBRDF will be highly multi-modal and our stochastic sampling will

lead to a rougher surface, which is desirable [OB10]. We trust that we can capture some of

the complexity of the eBRDF with the many view azimuths. Furthermore, the effective

BRDF is a lower frequency signal that the NDF, and it gets blurrier as the filtering footprint

gets larger (figure 3.9(c)).
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Finally, we rotate all eBRDF samples about ng, so that φ = 0 no matter the view azimuth.

This ensures that the LTCs we fit to the eBRDF are all computed in a frame where the view

azimuth is 0, which simplifies the transformations in the real-time part.

samples = rotateAroundTorch(pivot=ng, vector=samples, cosAngle=math.cos(-

Ç azimuths[azimuth]), sinAngle=math.sin(-azimuths[azimuth]), cpu

Ç =True)

At that point, for each filtering footprint at each scale, and for each view angle v, we

have stored samplesPerEBRDF directional samples on the view-evaluated eBRDF. For a

given mip level l containing ml = m/tileSize texels, the data is stored in a tensor of

dimensions ml ×ml × nθ × nφ × samplesPerEBRDF × 3.

Fitting LTCs

In this step, we filter the effective BRDF at each footprint and view angle, using a single

LTC lobe (figure 3.9). We initializing a model of anisotropic LTC for each mip level, which

will contain all LTC parameters for a given mip level. This means that we optimize all 9

parameters of the LTC matrix. This procedure is based on the code KT et al. [KHDN22].

for MIP_level in range(1, max_MIP+1):

model = ltc.LTCAnisotropic(lut_size=LUT_sizes[MIP_level-1], type=torch

Ç .float32)

MIP = fitLTC_EBRDF(MIPSamples[MIP_level-1].cuda(), model, MIP_level,

Ç LUT_sizes[MIP_level-1], samplesPerEBRDF)

We start by setting the parameters for a Stochastic Gradient Descent optimizer.

def fitLTC_EBRDF(MIPSamples, model, MIP_level, LUT_size, samplesPerEBRDF):

epochs = 100

lr = 1.0

eps = 0.1

opt = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.0)

model.train()

model.optimize_mat()
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(a) eBRDF (numFacets = 4). (b) eBRDF (numFacets = 16). (c) eBRDF (numFacets = 64).

(d) fitted LTC for (a). (e) fitted LTC for (b). (f) fitted LTC for (c).

Figure 3.9: 128 effective BRDF samples and the corresponding fitted LTC samples, for a

given filtering region, at different scales. For the sake of simplicity, v is vertical (aligned

with ng). For more visualization options and to interact with the 3-dimensional plots,

please use the functions in ./src/viz.py.

We then divide our samples into batches for faster backpropagation of loss, and set the

parameters for our batch backpropagation. For example, for a 64 × 64 mip level, nθ = 8 and

nφ = 16, we have to fit 524288 ltc matrices in 32 batches of mul_fac = 16384 matrices.

NUMBER_OF_DIRECTIONS = 32

view_count = LUT_size[0]*LUT_size[1]*LUT_size[2]*LUT_size[3]

batch = max(min(int(view_count/16),32),1)

mul_fac = int(view_count / batch)

LTCSamples = samplesPerEBRDF

For each training epoch, we generate LTCSamples from the LTC model. On the first

epoch, the LTC matrix is initialized as the 3 × 3 identity matrix. This is because our
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optimization technique method always ensure a non-zero gradient. Also, initializing

with guesses from optimized neighbors is useless since neighboring regions of eBRDF

can be arbitrarily different. Thus, the model begins by returning samples from a cosine

distribution (LTC with identity matrix), for all filtering footprints and all view angles. The

following code is from KT et al. [KHDN22]:

for epoch in range(epochs):

with torch.enable_grad():

wi_cos = utils.sample_cosine_batch(view_count, LTC_samples, dtype=

Ç torch.float32)

ltc_wi = model.transform_to_target(wi_cos)

For each batch, we first compute some random directions from the standard normal

distribution.

for idx in range(0, batch):

opt.zero_grad()

directions = torch.randn(mul_fac, NUMBER_OF_DIRECTIONS, 3,

Ç device=’cuda:0’)

directions = directions / torch.norm(directions, dim=2,

Ç keepdim=True)

We then compute a stochastic estimator of the Sliced Wasserstein (SW) distance [BRPP15]

between the LTC distribution and the eBRDF samples, as shown in (2.28). The samples

from both distributions are projected on the random directions we just generated, and this

is done only for the view angles and footprints in the current batch. This code is from KT

et al. [KHDN22]:

lower = idx*mul_fac

higher = (idx+1)*mul_fac

feat_op_projected = torch.einsum(’abc,aec->aeb’, ltc_wi[lower:

Ç higher].cuda(), directions)

feat_gt_projected = torch.einsum(’abc,aec->aeb’, MIPSamples[

Ç lower:higher], directions)
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feat_op_projected = torch.sort(feat_op_projected, dim=2)[0]

feat_gt_projected = torch.sort(feat_gt_projected, dim=2)[0]

We finally compute the mean L1 loss of the projections over the random directions, and

backpropagate the loss gradient to the LTC matrix. The benefit of using SW is that the

gradient is not Null, regardless of the initial LTC distribution.

loss = (feat_gt_projected - feat_op_projected).abs()

loss = torch.mean(torch.mean(loss, dim=2), dim=1)

loss = eps * torch.sum(loss)

loss.backward(retain_graph=True)

opt.step()

eps *= 0.999

At the end of the fitting epochs, we return the LTC matrix parameters M .

ltc_mat = model.LUT.detach().cpu().numpy()

return ltc_mat

For each MIP level (starting at MIP 1), we write a compressed numpy table file .npy

containing the fitted parameters of the LTC matrices. Adjacent filtering footprints are

stored next to each other for fast interpolation at runtime. Each MIP level is fitted and

written to disk separately; we can therefore fit each of them on a different machine if

needed. The details about storage space usage can be found in the next part.

writeLUT(MIP, f’MIP{MIP_level}’,isotropic=isotropicLTC, directoryName=

Ç directoryName)

Filtering the diffuse component

We filtered the specular component and ignored the diffuse component of the reflectance

until now. Although aliasing is much more obvious with high frequency BRDFs (like the

specular GGX we chose), it is still significant with the diffuse component. Directly filtering

a sum of GGX and Lambertian BRDFs would be inefficient, as the effective BRDF would
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lose its high frequency components and we would not achieve specular reflections in the

render.

We therefore run the same sampling in generateBaseGGXsamples_GPU() using an

ideal Lambertian base BRDF instead of GGX.

samples = utils.sample_cosine(samplesPerEBRDF).unsqueeze(0).unsqueeze(0).

Ç repeat(texSize,texSize,1,1)

The fitting procedure is then identical; which means that we also fit the diffuse effective

BRDF with the standard LTC model. We note that whilst the Lambertian BRDF might be

view independant, rotating it to the referential of the microfacet makes it view dependant

(and hence, the effective BRDF too). To make storage lighter and because the filtering is at

much lower frequency, we tabulate the diffuse LUT for nθ = 2 and nφ = 4.

Post-processing LTCs

Whilst the LTC matrices may be correctly fitted to the eBRDFs, different matrices can

produce the same LTC distribution [KHDN22]. Thus, interpolation between two adjacent

matrices in the LUT may sometimes be ill-defined and cause artifacts. We use the parame-

ter alignment technique presented in [KHDN22], which minimizes the average squared

distance between the original cosine distribution samples, and the LTC samples. The im-

plementation can be accessed in processLTCs() in ./src/fitEBRDF.py. This ensures

that we store the ‘simplest’ LTC matrix and guarantees the well-defined interpolation of

parameters in the real time part.

Storage

For a mip level l, the final dimension of the FLOAT32 parameters tensors is ml ×ml ×

nθ × nφ × 9. With a normal map of size 128 × 128, we start storing MIP1 with ml = 64, and

every higher MIP level until ml = 1. We store the specular component at nθ × nφ = 8 × 16

tabulations and the diffuse component at nθ × nφ = 2 × 4. Thus, the total size of the LUTs

on disk is (64 × 64 + 32 × 32...) × (8 × 16 + 2 × 4) × 9× FLOAT32 = 26.7 MB. This is evidently
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substantial compared to the sum of a mip-mapped normal map and a regular LTC LUTs

(from [KHDN22] or [HDHN16]).

When we increase the resolution of a 2D texture, its size on the disk increases O(m2),

m being the length of one side of the texture. Our LUTs are 5-dimensional, and if we filter

a normal map of side length m, their size on the disk also follow O(m2).
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3.4.2 Real time rendering

We load the stored mip hierarchies into a scene using scene.setFilteredLUT() (sec-

tion 3.3.4), and copy them to GPU memory. The fact that the whole hierarchy fits in video

memory at once is important for performance.

Our real-time algorithm consists of applying our LUT as a texture and correctly inter-

polating the LTC parameters. However, we do not need to manually interpolate between

mip levels of our hierarchy: we leverage nvidia’s mip hardware and automatically inter-

polate tri-linearly between adjacent mip texels and between mip levels. Therefore, even

if our texture cannot really be ’applied’ yet to the surface, each region gets the correct

LTC parameters fitted for that normal map location. This works because we use the same

surface uv coordinates used to apply the regular normal map.

Preparation

We start by computing image buffers for the view elevation (theta) and azimuth (phi) with

respect to the geometric frame (true surface normals)

def renderLTCLUT(sc, smoothDiffuse = False):

costheta = torch.sum(sc.surfacenormalimage * sc.viewdir, dim=3)

theta = torch.acos(torch.where(costheta>ZERO, costheta, ZERO))*MAXBOUND

viewproj = torch.nn.functional.normalize(sc.viewdir - torch.unsqueeze(

Ç costheta, 3) * sc.surfacenormalimage, p=2.0, dim=3)

cross = torch.cross(sc.surfacetangentimage, viewproj)

sign = torch.sum(cross * sc.surfacenormalimage, dim=3)

cosphi = torch.sum(sc.surfacetangentimage * viewproj, dim=3) * MAXBOUND

phi = torch.acos(cosphi)

phi = torch.where(sign > ZERO, phi, TWOPI - phi)

phi = torch.remainder(phi - HALFPI, TWOPI)

We then compute the light point coordinates and local matrices, like in 3.3.7:
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L = LTC.computeLocalLightPoints(sc)

localmat = LTC.computeLocalMat(sc, costheta, useSurfaceNormals=True)

Rendering the specular component

Then, we interpolate the uv coordinates and apply LUT_spec as a mip map. After trilinear

mip interpolation, we are left with a buffer of size r × r × (nφ × nθ × 9) float32 values.

uv, dxy = dr.interpolate(sc.mesh.vtx_uv[None, ...], sc.rast_out, sc.all_idx,

Ç rast_db=sc.rast_out_db, diff_attrs=’all’)

M = dr.texture(sc.LUT_spec.MIP1, uv, uv_da=dxy, mip = sc.LUT_spec.MIP,

Ç filter_mode=’linear-mipmap-linear’, max_mip_level=None)

M = torch.transpose(torch.reshape(M, (1, sc.resolution, sc.resolution, sc.

Ç LUT_spec.numTheta * sc.LUT_spec.numPhi, sc.LUT_spec.

Ç numChannels)), 3, 4)

For each pixel, we fetch the two closest azimuths and closest elevation and perform

software bilinear interpolation of the LTC parameters. We are then left with a buffer of

size r × r × 9, each pixel containing its 9 matrix parameters.

M = softwareInterpolate(M, theta, phi, sc.LUT_spec.numTheta, sc.LUT_spec.

Ç numPhi, sc.LUT_spec.numViews, sc.LUT_spec.numChannels,

Ç interpolate = True)

We can reshape the parameters into the 3 × 3 matrix M , and invert it to obtain M−1 at

each pixel.

M = torch.reshape(M, (1, sc.resolution, sc.resolution, 3,3))

Minv = torch.inverse(M)

Finally, we run this buffer of matrices through the same LTC integrator as used in the

baseline.

MIP_specular = LTC.renderLTC(sc, Minv, localmat, L) * sc.material.speccolor
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Rendering the diffuse component

Rendering the diffuse component is the same as the specular component, only using the

table LUT_diff, which contains different LTC parameters and yield a different Minv.

Both localmat and L are identical as in the specular component.

MIP_diffuse = LTC.renderLTC(sc, Minv, localmat, L) * sc.material.diffusecolor

Rendering at MIP 0 and compositing the final image

We only filtered the effective BRDF for MIP 1 and above; and we will obtain blurry results

if we use our technique when the shading surface is close to the camera, that is, when the

number of texels per pixel is lower than a threshold. In practice, we check that a pixel’s

footprint contains less than two texels in width: dTexel/dPixel < 2, and in this case, we switch

to MIP 0 rendering. Another approach is to use dTexel/dPixel as a weight to interpolate

between MIP 0 and our technique.

Rendering at MIP 0 boils down to shading in texel space and using the method from

[HDHN16]. In other words, we point-sample the center of the pixel, compute the elevation

between the view and the texel normal, and fetch the appropriate LTC fitted to the base

BRDF (section 3.3.7). We finally composite the final image with both techniques.

RGBMIP0 = spec + diff

RGBMIP = MIP_specular + MIP_diffuse

duv = dxy * sc.LUT_spec.sizeMIP0_torch

threshold = TWO

MIP0_flag = (torch.sum((torch.abs(duv) > threshold), dim=3)>ZERO)

colorRGB = torch.where(MIP0_flag, RGBMIP, RGBMIP0)

return colorRGB
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Chapter 4

Results

We first explain the error metrics, baseline and ground truth methods, as well as the pa-

rameters and scenes chosen to generate the results. We then present the renders generated

with our system and evaluate them. Finally, we show some real time performance results.

4.1 Presentation of the results

To estimate the visual quality of our filtering method (described in section 3.1 and imple-

mented in section 3.4), we compare it with a ground truth and with a naive baseline that

also use LTC for area light integration. To the best of our knowledge, there are no real

(a) STONE (b) GLITTER (c) SCRATCH

Figure 4.1: 128 × 128 tangent space normal maps we used to test our technique.
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time techniques that tackle the double integration of spatial pixel filtering and area light

shading. Thus, we do not compare our results with other existing techniques.

For the ground truth, we shade in texel space by supersampling the pixel, and then

average the results. This ensures that each texel in the patch contributes to the shading.

For each normal, we evaluate the view elevation and use the standard technique from

[HDHN16] to integrate over the light. Finally, we average the contribution of each sample

to obtain the color of the pixel.

The naive baseline is a standard linear mipmap of the texture. We generate the mipmap

using the constructor included in nvdiffrast, and sample it at runtime using trilinear

interpolation. We do not show the results of sampling the normal map’s MIP 0 (using

point sampling or linear interpolation) since the aliasing has a similar appearance. After

sampling a normal from the mip hierarchy, we shade the pixel using the standard technique

from [HDHN16].

4.1.1 Error metrics

The first image error metric we use is the absolute Square Error (L2) between pixels, and

we also compute the Mean Square Error of a whole region. MSE is suitable to evaluate

the renders as it is sensitive to strong outliers such as fireflies, which are typical aliasing

artifacts we are tying to remove.

We also use the FLIP difference evaluator presented in [ANAM+20]. It is a more

perceptual image metric than MSE, as it reflects more accurately what a human viewer

would consider different or similar. We set the FLIP algorithm with the default viewing

parameter of 67 pixels per degree. We also compute the mean FLIP over whole images as a

general similarity score.
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4.1.2 Parameters chosen

We apply a normal map of dimensions 128 × 128 to a plane, and tile the texture 5 × 5 times

to obtain a normal map of dimensions 640 × 640. We judged that it represented enough

surface detail, especially at smaller scales, and thus we did not need to filter a larger texture.

Furthermore, it allowed us to save on storage space as we could re-use each filtered texel

25 times during render. The normal maps used in these results are presented in figure 4.1.

We chose a sharp GGX as our specular base BRDF (roughness of 0.1), since it is more

prone to shading aliasing. We use it both in the pre-filtering step of our technique, and for

LTC lookup in the ground truth and baseline techniques. For our technique, we prefilter

the specular component at a resolution of 8 elevations θ and 16 azimuths φ. The diffuse

component is prefiltered separately, using a lambertian base BRDF (as specified in the

method), and its tabulation resolution is 2 elevations θ and 4 azimuths φ.

For precomputations, we use a NVIDIA GeForce RTX 2070 SUPER GPU with 8GB video

memory (a source of limitations in our prefiltering algorithm). We have access to 64GB

RAM and a Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz with 10 cores. With our tabulation

settings (nθ = 8, nφ = 16, 128x128 normal map), the filtering of the specular component,

takes around 4 hours, and it takes around 15 minutes for the diffuse component.
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4.1.3 The scenes

For each normal map, we setup two scenes to evaluate the results (figure 4.2).

We study the visual difference between the three techniques when the camera distance

increases, for both scenes. As we get further, the plane occupies less screen space, thus we

magnify the image with nearest neighbor extrapolation to compensate. This has the same

effect as lowering the display resolution or increasing the number of samples per pixel.

We then study the difference between the techniques when the scale of the polygonal

light increases. The energy output by a polygonal light is proportional to its surface area.

To make the computation of error fair as the light scale changes, we therefore decrease the

intensity of the light proportionally to its size.

Figure 4.2: (a) SCENE 1. the view to the shading surface is vertical so we are close to θ = 0

for all pixels. (b) SCENE 2. The plane is viewed at a low elevation and the light is facing

the camera. In general, a grazing view angle or light angle is a more difficult case to filter,

thus we expect visual quality to be generally better in SCENE 1 than in SCENE 2.
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4.2 STONE

We start to test our method using the STONE normal map, created by Sergün Kuyucu at

https://www.artstation.com/artwork/kbnmy.

This normal map has large bumps and ridges, which exacerbates the effects of aliasing

in both the diffuse and specular components (mipmapping in figures 4.3 and 4.11). Please

see specific comments on the figures.
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Figure 4.3: Visual comparison of the three methods for several view distances for SCENE 1.

We see that our method yields a result free of aliasing at all scales, but it also displays a

small energy loss. As expected, the naive mipmapping technique shows heavy aliasing.

It has some fireflies at a closer scale, and even its diffuse component breaks down as the

view distance increases. 89



Figure 4.4: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several view distances, for SCENE 1.

Figure 4.5: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several view distances, for SCENE 1.
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Figure 4.6: Error metrics pooled over the whole images, between our method and the

ground truth (blue), and between the naive method and the ground truth (red) as a function

of view distance, for SCENE 1. We can see that at a closer distance, both techniques have

similar MSE and FLIP scores, as barely any filtering is needed. As the view distance

increases, our technique compares better to the ground truth than naive mipmapping, for

both error metrics.
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Figure 4.7: Visual comparison for several camera distances, for SCENE 2. We see that at

this low view angle and at further distances, our technique yields considerable blurring

whereas the naive technique averages the normals to a practically flat surface.
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Figure 4.8: Squared error at several camera distances, for SCENE 2.

Figure 4.9: FLIP error at several camera distances, for SCENE 2.
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Figure 4.10: Pooled error metrics between two methods and the ground truth as a function

of view distance, for SCENE 2. At small distances, again, the error metrics are similar for

both techniques. Our technique performs better with the MSE metric at all scales except

the closest, and the mipmapping technique performs better at all scales with the FLIP

metric. Thus, overblurring affects the FLIP metric a lot more than the smoothing of the

surface.
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Figure 4.11: Visual comparison for several polygonal light sizes, for SCENE 1, at a fixed

camera distance of 25. We see that our technique struggles to display the glints occuring

further away from the light source when it is small, while the baseline shows fireflies at all

light scales.
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Figure 4.12: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several light scales, for SCENE 1.

Figure 4.13: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several light scales, for SCENE 1.
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Figure 4.14: Pooled error metrics between our method and the ground truth, and between

the baseline and the ground truth, as a function of light scale for SCENE 1. We can see that

a larger polygonal light means lower frequency illumination, which is easier to filter. As

the source gets larger, our results resemble the ground truth better. It is the opposite with

the naive baseline, as its error increases with both metrics as the light gets larger.
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Figure 4.15: Visual comparison for several light scales, for SCENE 2. When the light source

is small, SCENE 2 makes it more obvious that our technique displays some blurring of the

highlights instread of the high frequency glints. In general however, our renders are free

of aliasing at all light scales.
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Figure 4.16: Squared error at several light scales, for SCENE 2.

Figure 4.17: FLIP at several light scales, for SCENE 2.
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Figure 4.18: Pooled error metrics between the two methods and the ground truth as a

function of light scale, for SCENE 2. Our MSE error metric is consistently better than the

baseline, but out FLIP metric beats the baseline for larger light sources only. We see that

it is mainly due to our technique’s diffuse component which is wrong for smaller quad

lights.
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4.3 GLITTER

We proceed with the same studies for the GLITTER normal map. This texture was obtained

from https://help.autodesk.com/view/ARENDERING/ENU/?guid=GUID-97CC0DD3-

35A8-4D8F-80A0-B1C4AD54D2B0.

This normal map shows less structure and more noisy detail than the STONE normal

map. Moreover, each glitter flake is the same size so it is harder to distinguish glints from

aliased fireflies. Thus, we expect the naive mipmapping to perform better.
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Figure 4.19: Visual comparison for several camera distances for SCENE 1. We can see that

at this high amount of noisy detail, our technique is visually almost undistinguishable

from the ground truth at all scales. The naive technique does not perform well for further

distances and almost always misses the polygonal light at a distance of 160.
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Figure 4.20: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several view distances, for SCENE 1.

Figure 4.21: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several view distances, for SCENE 1.
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Figure 4.22: Error metrics pooled over the whole images, as a function of view distance,

for SCENE 1. Our method’s error metrics stays relatively constant with distance, while the

baseline’s errors increases with distance.
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Figure 4.23: Visual comparison for several camera distances for SCENE 2. Unlike in

SCENE 1, the visual quality of our method breaks down at further distances, and shows

considerable overblurring. In contrast, the ground truth maintains high frequency glints

that are difficult for our technique to filter. The fitted LTC lobes are too broad, which also

cause energy loss. 105



Figure 4.24: Squared error at several camera distances, for SCENE 2. The error with our

method is high because of overblurring, and the error with the baseline is high because of

the averaging of normals, which produces a smoother surface than desired.

Figure 4.25: FLIP error at several camera distances, for SCENE 2.
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Figure 4.26: Pooled error metrics between two methods and the ground truth as a function

of view distance, for SCENE 2. The mean FLIP is similar for both techniques, but the visual

result is poor for two different reasons. For our technique, it is overblurring, and for the

naive baseline, it is an overly specular reflection of the area light.
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Figure 4.27: Visual comparison for several light scales, for SCENE 1. Our technique yields

pleasing and convincing results, but it fails to render some small and distant glints when

the area light is smaller than 4. We also see a minor energy loss at all scales. With the

baseline, the noisier result is accompanied by a large excess of energy.
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Figure 4.28: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several light scales, for SCENE 1.

Figure 4.29: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several light scales, for SCENE 1.
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Figure 4.30: Pooled error metrics between our method and the ground truth, and between

the baseline and the ground truth, as a function of light scale for SCENE 1. As observed in

other SCENE 1 comparisons, our results are consistently better than the baseline.
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Figure 4.31: Visual comparison for several light scales, for SCENE 2. Our technique’s

renders contains is some minor blurring and energy loss, but visually the results are more

convincing than with naive mipmapping.
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Figure 4.32: Squared error at several light scales, for SCENE 2.

Figure 4.33: FLIP at several light scales, for SCENE 2.
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Figure 4.34: Pooled error metrics between the two methods and the ground truth as a

function of light scale, for SCENE 2. For both SCENE 1 and SCENE 2, our technique’s MSE

and mean FLIP decreases as the light source gets larger. With the baseline method, it is

more unpredictable. Our FLIP metric only beats the baseline when the light source is not

too small.
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4.4 SCRATCH

We finally run the same studies on the SCRATCH normal map, taken from https://www.

turbosquid.com/FullPreview/Index.cfm/ID/1061804. For this normal map, the detail

exclusively occurs at very high spatial frequency, thus we use another strategy to render

the diffuse component.

Since there are no large spatial patterns in this map and only small scratch details,

most of the normals on the texture are vertical. In this case, there is almost no aliasing of

the diffuse component and our filtered diffuse component is of no use (and it does not

correctly fit the lambertian reflectance of the flat surface). Therefore, we choose to use our

filtered specular component, and to compute the diffuse component on the flat surface

with the standard isotropic LTC technique (as if the surface had no normal map).
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Figure 4.35: Visual comparison for several camera distances for SCENE 1. We see that some

fine glints displayed by the ground truth are missing from our method, and are especially

hard to represent at large distances. The naive baseline shows important aliasing as the

normal directions around the scratches are averaged.
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Figure 4.36: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several view distances, for SCENE 1. The only

difference between our technique and the ground truth are very fine glints.

Figure 4.37: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several view distances, for SCENE 1.
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Figure 4.38: Error metrics pooled over the whole images, as a function of view distance,

for SCENE 1. We see that the baseline’s aliasing is more important as the distance increases,

but our technique approximately maintains the same accuracy for both image metrics.
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Figure 4.39: Visual comparison for several camera distances for SCENE 2. Our method

shows some overblurring at distances 40 and above, and this is expected since the eBRDF

lobes of such fine details are hard to filter. However, the shape of the highlights are

preserved. At further distances, the naive baseline completely averages the normals to a

flat surface. 118



Figure 4.40: Squared error at several camera distances, for SCENE 2. The small amount

of blurring by our method does not generate a high L2 error, as the highlight shape is

accurate. This is not the case with the mipmapping technique, which completely misses

the shape of the highlight.

Figure 4.41: FLIP error at several camera distances, for SCENE 2.
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Figure 4.42: Pooled error metrics between two methods and the ground truth as a function

of view distance, for SCENE 2. The FLIP metric is more forgiving to the misshapen highlight

generated by the baseline method. However, MSE is higher with the baseline than with

our technique, and the gap increases as the distance increases.
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Figure 4.43: Visual comparison for several light scales, for SCENE 1. With the smaller light

source, it is obvious that our technique cannot display some of the finer, high energy glints.

At larger light scales, we also miss the glints that are further from the main light reflection.
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Figure 4.44: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several light scales, for SCENE 1.

Figure 4.45: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several light scales, for SCENE 1.
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Figure 4.46: Pooled error metrics between our method and the ground truth, and between

the baseline and the ground truth, as a function of light scale for SCENE 1. For both image

metrics and at all light scales, our render performs better than the baseline.
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Figure 4.47: Visual comparison for several light scales, for SCENE 2. The overblurring of

our method is obvious when the area light is small, and is not as perceptible when the

light is large. Our techniques preserves the shape and direction of the details, unlike the

baseline which shows a much smoother surface.
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Figure 4.48: Squared error at several light scales, for SCENE 2.

Figure 4.49: FLIP at several light scales, for SCENE 2.
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Figure 4.50: Pooled error metrics between the two methods and the ground truth as a

function of light scale, for SCENE 2. While both techniques’ MSE decreases as the light

scale increases, our technique is more accurate as it is able to display the scratches in the

middle of the main light reflection. Both methods yield the same approximate FLIP score,

since the differences appear on fine details and 1 pixel wide scratches.
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4.5 Specular component only

We study the error metrics for the specular component only, for the STONE normal map, as

a function of view distance. In the baseline and ground truth methods, this means only

using the tabulated LTC parameters, and not using the diffuse cosine distribution. For our

own method, this means only using the specular pre-filtered LUT.

127



Figure 4.51: Visual comparison for several camera distances for SCENE 1, for the specular

component only.
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Figure 4.52: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several view distances, for SCENE 1, for the specular

component only.

Figure 4.53: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several view distances, for SCENE 1, for the specular

component only.
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Figure 4.54: Error metrics pooled over the whole images, as a function of view distance,

for SCENE 1, for the specular component only. Without the diffuse component (compared

to figure 4.6), both of our method’s error metrics are a lot more stable throughout view

distances. This might indicate that our diffuse component is not filtered correctly.
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Figure 4.55: Visual comparison for several camera distances for SCENE 2, for the specular

component only. We clearly see the overblurring of our method’s specular component at

grazing angles.

131



Figure 4.56: Squared error between our method and the ground truth, and between the

naive method and the ground truth at several view distances, for SCENE 2, for the specular

component only.

Figure 4.57: FLIP error between our method and the ground truth, and between the naive

method and the ground truth at several view distances, for SCENE 2, for the specular

component only.
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Figure 4.58: Error metrics pooled over the whole images, as a function of view distance,

for SCENE 2, for the specular component only. As with SCENE 1, when there is no diffuse

component, both our error metrics are more stable and decrease gradually as the view

distance increases.
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4.6 Storage and time measures

We now review the time and space performance of the three techniques we compared.

Gnd Ours Naive

29 KB 24 MB 29 KB

Table 4.1: Storage ocuppied by the textures/LUTs to run each technique, with a normal

map of size 128 × 128. This is the data that needs to be loaded to video memory at render

time.

We first show performance for the STONE normal map in SCENE 1, at a resolution of

512 × 512. The measurements here were made on a ground truth scene on both CPU and

GPU, with 49 samples per pixel. They were measured in the real-time rendering portion,

at the moment of LTC integration. We are mindful that the naive technique and ours run

in constant time on the GPU, but the ground truth technique’s cost increases with the

number of samples per pixel. We note that at a certain sampling density (strictly more

than 49 spp), the ground truth supersampling technique does not fit in GPU memory, and

we must switch to a much slower CPU rendering.

Gnd (GPU) Gnd (CPU) Ours (GPU) Naive (GPU)

1512 >40000 163 46

Table 4.2: Render time per frame (ms). Average over 20 frames.

Gnd (GPU) Gnd (CPU) Ours (GPU) Naive (GPU)

CUDA mem reserved 5964 1184 1285 208

CUDA mem allocated 1424 80 149 88

RAM usage 1380 1531 1507 1370

Table 4.3: Memory usage (MB) to render the scene at resolution 512 × 512. Average over 20

frames.
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Due to the environment in which the method was implemented, there is overhead in

the python application such that it is difficult to completely isolate the cost of the rendering

part of the algorithm. We derive the memory overhead of the python framework (and

of our technique, by extension), by rendering the same scene at different resolutions.

We obtain these numbers with a NVIDIA GeForce GTX 1050 Ti with 8GB shared video

memory.

Figure 4.59: CUDA memory used by our technique as a function of the normal map size

we filter. We deduce an overhead of 21 MB for the memory allocated. This is coherent with

the fact that our filtered LUT is 24 MB in size.
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Figure 4.60: Time to render our technique and the baseline as a function of the normal

map size we filter (averaged over 20 frames). We see that even at a resolution of 1 × 1, the

baseline takes 17 ms to render, which is the overhead of the python application. At the

lowest resolution, our technique takes twice the time to render the scene.
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Chapter 5

Discussion and conclusion

We first discuss the quality of the results, we then suggest directions for future work and

finally we conclude.

5.1 Discussion

In view of the results, we can say that we succeeded in filtering the normal map, which

involved preserving the detail at the bandlimit of our display resolution, and preventing

aliasing. Our technique yields a detailed surface that is free of aliasing artifacts such as

reflection smoothing and fireflies, and it accurately shades over the area light.

Our results are also stable throughout several frames, as we do not see flickering. The

animated results can be seen on the github repository.

The method we presented is a memory tradeoff, to keep rendering real time at all scales

for all light sources. In general, as the light gets smaller, the accuracy of our technique

decreases, but the result are still visually pleasing and free of aliasing. On the other hand,

when the camera gets further or the display resolution decreases, our methods holds well

to the ground truth. We see an accurate translation of many directional highlights into an

anisotropic lobe, as discussed in [OB10].
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(a) Ground truth (b) Our technique

Figure 5.1: Comparison of a glinty region of the SCRATCH normal map.

5.1.1 Limitations

There are some cases in which we did not capture the glinty appearance of surfaces

(figure 5.1). This is especially significant when the detail is very small, and when the area

light is small, as our method was limited to fitting a single lobe to a highly multi-modal

function. We think that in such cases where the glints are high frequency, the point light

approximation can be used in conjunction with a standard filtering method such as the

one in [OB10].

The energy loss we observed in many scenes could be fixed with a single factor, but it

is a limitation that needs to be investigated. This is especially bothersome in normal maps

with small details such as GLITTER and SCRATCH, where a lot of the energy from the light

is captured by small glints that are further from the main reflection.

We could observe overblurring in several configurations for SCENE 2 (at grazing view

angles), which shows the limitation of fitting a single lobe to the comlpex eBRDF. It also

reflects the inaccuracies inherent to LTCs when integrating over an area light at grazing

view angles. It was therefore unsurprising that performance was generally better in SCENE

1 than in SCENE 2.

Finally, a main drawback of our technique is the lack of control over the material

roughness. When fitting a base BRDF, its roughness dictates the size/width of the LTC
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lobe. As we fit our distribution to the eBRDF, we have little control over the roughness,

especially if we are aiming for a more specular material. We have no control over the small

amount of blurring that occurs with our technique; and it is both positive as it ensures an

aliasing-free render, but it is also a key reason why it cannot exhibit high energy glints at a

distance.

5.1.2 Disk and memory usage

To our knowledge, real time filtering techniques rarely fit a distribution to the effective

BRDF as it is view dependant, and tabulating at a sufficient resolution involves significant

storage space. Indeed, our technique requires more space, as we prefilter a view-evaluated

reflectance function similar to [KHDN22]. A challenge was to ensure that it still fits in

GPU memory for fast lookup and interpolation. We therefore saved a lot of memory usage

by starting the filtering at MIP1. The size of our LUT increases O(m2) with the normal

map resolution, so adding a mip level would double the size of our LUT. As a reminder,

for a 128 × 128 normal map occupying 13 KB on the disk, the size of our filtered LUT is 24

MB.

Furthermore, increasing the tabulation resolution did not improve the visual accuracy

but it significantly increased the size of the LUT, so the compromise we found was 8

elevations θ and 16 azimuths φ. This is because the limit of our technique’s visual accuracy

is probably not caused by the low angular sampling of view directions, but by the nature

of the spherical function we are trying to fit.

Previous antialiasing methods prefer to fit a function to the NDF, and add the reflectance

component at runtime. The effective BRDF is a convolution of the NDF with the base BRDF,

which often manifests as a shifted blur filter applied to the NDF [HSRG07]. Therefore, it is

lower frequency than the patch NDF, and easier to fit using a smooth spherical distribution

like the LTC. We observed, however, that some normal maps had details and patterns that

are difficult to filter using a single 9-parameter LTC lobe. These functions, while they are
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practical for tabulating and interpolating between close view directions, cannot represent

spikes or multi-modal distributions.

5.1.3 Real-time performance

We inherited some performance limitations of [KHDN22], notably the cost of inverting the

LTC matrix at runtime; but this step is necessary if we want to keep our coarse tabulation

resolution. In theory, the end of the algorithm is as fast as [KHDN22] and [HDHN16], since

there is one LTC distribution to integrate per pixel for the specular component, and one for

the filtered diffuse component. However, due to inefficiencies in our implementation, it is

possible that the performance results we obtained are not representative of the potential of

our technique.

The costliest part, specific to our algorithm, is the 2 dimensional software interpolation

of the LTC parameters, across azimuths and elevation. Indeed, the mip interpolation can

only be trilinear: between adjacent mip levels, and between adjacent texels in the u and v

directions. Thus, we had to add software interpolation of the view directions, and that

meant a much higher GPU memory usage at runtime. The hardware interpolation across

mip texels and levels is fast, but has a heavy memory footprint due the GPU copy of all

views at each pixel.

5.2 Future work

Many potential future works could be explored, both in the pre-filtering algorithm and

in the real-time part. First, there are performance improvements to be made in pre-

processing, for example by dividing the normal map into chunks, and fitting them on

different machines concurrently. This would yield time improvements for the same size

normal map, but it could also allow for larger normal maps to be filtered efficiently on the

GPU. Indeed, with our current pytorch approach, the base GGX samples for normal maps

larger than 128 × 128 do not fit in GPU memory.
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Then, we could explore the benefits of fitting more than one LTC lobe to the specular

effective BRDF. By clustering the eBRDF samples, and fitting one lobe to each cluster, we

suspect that it would yield a higher quality render with brighter glints, still free of aliasing.

This would of course translate into higher memory usage, so the goal would be to find the

right compromise between space and visual quality.

Another aspect to explore is the use of different base BRDFs. We already tabulate the

base GGX at each microfacet for many azimuthal angles. Thus, using an anisotropic base

BRDF would not be more expensive in terms of pre-computation or storage and we could

see the effect on the appearance of surfaces.

An important future work will be to adapt our technique to curved meshes. Indeed,

while our system supports arbitrary mesh inputs, we noticed that when the view angle

is low (grazing the surface), the visual quality was inconsistent and we often ended up

overblurring the specular reflection.

Furthermore, there are perspectives to improve memory usage. For a relatively easy

gain of space, we could store float16 matrix parameters in the LUT (instead of float32). We

were unable to do this due to the lack of float16 support in some pytorch functions. We

could also explore optimizations where we only fit some parameters of the LTC matrix,

such as [HDHN16] who only fit 4 parameters for isotropic LTCs. Thus, we could try fitting

any number of parameters between 4 and 8. This is especially promising to antialias the

diffuse component, which is lower frequency. There might be other ways to improve the

fitting of the diffuse component since it showed true difference with the ground truth.

There is a paradox we are trying to solve here, since we want to reap all the benefits of

high resolution data (high frequency glints) while drastically minimizing the time or the

storage cost. Therefore, a key avenue of research for pre-computation based methods such

as ours, is the use of data compression. This would allow us to keep as more information

about the effective BRDF distributions, while using less space. Since each effective BRDF

(or NDF) uses information that can be found in lower levels of the mip hierarchy, there is

some redundancy that can be exploited with techniques like compressed sensing.
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(a) Ground truth (b) Our technique (c) Naive baseline

Figure 5.2: Comparison of the shape of the polygonal light reflection in the SCRATCH

normal map, at a view distance of 80.

Finally, we believe some improvements can be considered in the real time rendering

portion. The mip hardware enables us to trilinearly interpolate between adjacent mip

tiles and mip levels. Since our table is 5 dimensional, the method would benefit from fast

quintilinear interpolation, but we ignore if it is possible using our hardware. Additionally,

since elevation and azimuthal samples are distributed spherically, we could explore the use

of spherical interpolation (SLERP) between adjacent samples to estimate missing values.

This could be especially beneficial in the azimuthal direction, which has a lower angular

resolution.

5.3 Conclusion

In this work, we investigated the use of linearly transformed cosine distributions to tackle

the problem of normal map appearance filtering, under area light illumination.

We first reviewed the fundamentals of light transport and the reflectance of surfaces.

We looked at the bidirectional reflectance function, and the angular integration required

when the incident radiance’s domain is an arbitrary solid angle on the hemisphere. We then

studied existing real time polygonal illumination methods, especially LTCs [HDHN16],

and its extension to anisotropy [KHDN22]. We examined techniques that model surface
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micro-geometry, and the difficult problem of shading aliasing when using an explicit nor-

mal map. This is especially striking with surfaces that present glints and small highlights

at the same time as macro geometry visible to the viewer. Using the definition of the NDF

and the effective BRDF, we reviewed techniques tackling normal map filtering, offline and

in real time.

We then presented our contribution, based on anisotropic mip-mapping and LTC fitting.

We pre-filter the normal map by computing the shape of the effective BRDF at each mip

texel, level, view azimuth and elevation; and fit it with a single LTC lobe. At render time,

we look up the correct LTC lobe in a large mip hierarchy using hardware interpolation,

and software interpolation for the view angles. We finally integrate each LTC over the

polygonal light using an analytic technique [HDHN16].

Our technique renders satisfactory antialiased results in real time, that can accurately

shade over an area light. Also, our technique optimizes a directional patch of microfacets

into a directional anisotropic lobe, which preserves the shape of the ground truth reflection.

This is not possible when simply mipmapping the normal map (figure 5.2). According to

the MSE metric, we perform consistently better than the ground truth (due to the absence

of high energy fireflies). With the FLIP error metric, in general, we perform better when the

view angle is straight on. Our method presents limitations, notably overblurring in some

configurations, and it misses fine, high frequency glints when the light is small. Finally, its

high memory requirements is a limitation that needs to be addressed.

In conclusion, we explored how the shading aliasing of detailed surfaces is com-

pounded with the difficulty of integrating radiance over an area light. We postulated

that shading a normal mapped surface under a polygonal light is an expensive double

integration, involving the spatial integral of texels over the pixel footprint, and the integral

of BRDFs over the incident radiance. We have seen that solving this integration in real

time is a major rendering problem that remains partly unsolved, especially when trying to

render high energy glints. However, carefully fitted spherical functions offer a strategy to

tackle both.
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Theses, Ecole Nationale Supérieure des Mines de Saint-Etienne ; Université
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