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Abstract
The asset allocation problem can be defined as the decision making process

of periodic redistribution of capital into different financial assets. The goal is to
maximize the return obtained while restraining the risk.

Most of the classical methods for asset allocation rely on assumptions regarding
the distributions of return and risks, as well as models for the correlation structures
between various resources/assets. However, estimation of these quantities often
fails to produce good results as financial markets are extremely challenging to
model due to their dynamic, nonlinear, nonstationary, and noisy nature.

On the other hand, representing the market as a discrete-time stochastic
system allows the usage of reinforcement learning as an alternative framework.
In this case, no assumptions are made about statistical moments of financial time
series or prediction of future prices.

The goal of this thesis is to develop a reinforcement learning model that is
able to optimize a portfolio given a particular set of information. We present
two extensions for the Recurrent Reinforcement Learning algorithm and compare
their performance with other reinforcement learning baselines, including existing
extensions of this same algorithm. The proposed model outperforms all the
baselines in terms of cumulative return in our evaluations. In addition, we also
analyze the model’s capability of selecting better assets within an asset class,
generating more returns while maintaining the same risk level.
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Sommaire
Le problème de l’allocation d’actifs peut être défini comme le processus

décisionnel de redistribution continue du capital entre différents actifs financiers.
L’objectif est de maximiser le rendement obtenu tout en limitant le risque.

La plupart des méthodes classiques d’allocation d’actifs reposent sur des
hypothèses de distribution de rendement et de risques, ainsi que sur les structures
de corrélations entre différents actifs. Cependant, ces estimations échouent souvent
à produire de bons résultats car les marchés financiers sont extrêmement difficiles
à modéliser en raison de leur nature dynamique, non linéaire, non stationnaire et
bruyante.

D’autre part, représenter le marché comme un système stochastique à temps
discret permet d’utiliser l’apprentissage par renforcement pour une approche
différente. Dans ce cas, aucune hypothèse n’est faite sur les moments statistiques
des séries chronologiques financières ou sur la prévision des prix futurs.

L’objectif de cette thèse est de développer un modèle d’apprentissage par
renforcement capable d’optimiser un portfolio à partir d’un ensemble particulier
d’informations. Nous présentons deux extensions pour l’algorithme d’apprentissage
récurrent par renforcement et comparons leurs performances avec d’autres bases
d’apprentissage par renforcement, y compris les extensions de ce même algorithme
créées par d’autres auteurs. Le modèle proposé a surpassé tous les niveaux de
référence en termes de rendement cumulatif dans nos évaluations. En outre, nous
analysons également la capacité du modèle à sélectionner de meilleurs actifs au
sein d’une classe d’actifs, générant plus de rendements tout en maintenant le
même niveau de risque.
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Chapter 1

Introduction

Traditional resource allocation techniques that rely on simple heuristics often fail to
achieve good performance on complex systems, such as virtual servers, cloud services and
telecommunication networks [118]. In the field of finance, resource allocation applications
are essential to optimize investment decisions. These problems contain scarce resources as
well as interconnected and time-dependent tasks. Recently, machine learning approaches are
being used with success to manage and optimize these systems.

1.1 Motivation
In the field of finance, machine learning techniques are gaining ground quickly. In recent

years, significant impact has been made on different applications, such as stock prediction
[27, 49, 99], bankruptcy prediction [4, 64], stock trading [26, 33] and portfolio allocation
[18, 60, 77].

In this thesis, we are interested in applying machine learning techniques for portfolio
optimization, a form of resource allocation. Resource allocation problems are of high practical
importance, arising in many fields, such as fleet and personnel management, scheduling of
computer programs, manufacturing production control, control of mobile telecommunication
networks and finance applications [1, 6, 24, 34].

Real world resource management problems are challenging for several reasons: 1) the
underlying systems are complex and often impossible to model accurately; 2) decisions should
be made online with noisy inputs and work well under diverse conditions; 3) some performance
metrics are often hard to optimize.

In this context, machine learning can provide a viable alternative to human-generated
heuristics that are often used in this field [81]. More specifically, the sub-field of reinforcement
learning is often used to tackle these problems. It solves sequential decision making problems
by interacting directly with the environment.

Some successful examples of applying reinforcement learning to decision-making domains
have been presented recently, such as playing games [87, 106], routing telecommunication
networks [52] and medicine [100].
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In this thesis, we are interested in the portfolio management problem, which is the decision
making process of periodically reallocating an amount of funds into a number of different
financial investment products, aiming to maximize the return while restraining the risk [50].
One of the most effective ways to formulate this problem is by using a discrete-time (partially
observable) Markov Decision Process (MDP) [9, 93]. Hence, it becomes a stochastic optimal
control problem where the system being controlled in discrete time is the portfolio with
multiple assets, and the controls are the fractions of capital allocations. This representation
enables the development of trading agents using the reinforcement learning framework.

1.2 Thesis Organization and Contributions
This section outlines the structure of this thesis and summarizes the technical contributions

that are proposed.
— Chapter 2 - Background: Reinforcement Learning

We present the background material on reinforcement learning that is needed for this
thesis. We start by presenting the fundamentals of Reinforcement Learning, and the
definition of a Markov Decision Process. Then, we discuss policies and the methods
used to estimate them. To conclude, we present the differences between model-based
and model-free algorithms.

— Chapter 3 - Financial Theory
In this chapter, we present a brief overview of financial concepts that are required for
this thesis. Then, we introduce the task of portfolio optimization, two methods to
solve it, and some common metrics that are used to evaluate a portfolio’s performance.

— Chapter 4 - Literature Review
We present a concise literature review of reinforcement learning applications in finance,
with a special focus on asset allocation.

— Chapter 5 - Methodology and Proposed Extensions
We formalize the problem of asset allocation in order to be compatible with the
reinforcement learning framework. We define the main assumptions, types of agent
used, and how the environment is modelled. Next, we validate the baselines using this
methodology. Finally, We propose two extensions for the Recurrent Reinforcement
Learning algorithm and discuss their practical implications and benefits.

— Chapter 6 - Results
We start the chapter with a brief discussion on expected returns and covariance
estimation, which are essential components of classical portfolio optimization methods.
Next, we present a brief discussion of the reinforcement learning models used in this
thesis. Finally, we present the results for different experiments.

— Chapter 7 - Conclusion
We provide a summary of the main contributions of the thesis, discuss the implications
of the results and make some suggestions for future work.
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1.2.1 Contributions

— Chapters 5 and 6 - Methodology, Proposed Extensions, and Experiments
Prof. Mark Coates provided guidance with the research plan and experimental proce-
dure. I designed and implemented the algorithm. I also conducted the experiments to
evaluate the proposed methods.
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Chapter 2

Background: Reinforcement Learning

Reinforcement learning is a sub-field of machine learning which aims to complete a
given task by maximizing the rewards obtained by a software agent that interacts with an
environment. Unlike supervised learning, the model does not learn by using input/output
pairs provided by a supervisor. Instead, the agent learns by trial and error. One of the
challenges is to find the balance between exploring new actions and exploiting already known
paths.

During the interaction with the environment, the agent receives a numerical reward based
on its action and state. The goal of the agent is to maximize the cumulative return obtained.
The environment can keep evolving in a stochastic manner, so an action taken by the agent
can influence the circumstances that it will encounter in the future. Therefore, another
common challenge is balancing how short-sighted the agent’s desire to obtain an immediately
reward is in contrast to obtaining a delayed, but larger, reward.

We start this chapter by presenting in Section 2.1 a brief overview of other machine learning
paradigms, known as supervised and unsupervised learning, followed by the fundamentals
of Reinforcement Learning (Section 2.2), and the definition of a Markov Decision Process
(Section 2.3). Next, we discuss policies in more detail in Section 2.4, followed by two classes
of methods used to estimate them, value-based methods in Section 2.5, and policy-based
methods in Section 2.6. We conclude the chapter with Section 2.7, which presents the
differences between model-based and model-free algorithms.

2.1 Other Machine Learning Paradigms
In this section, we present a brief description of other machine learning paradigms.

2.1.1 Supervised Learning

Perhaps the most studied paradigm of machine learning, supervised learning is character-
ized by the existence of labeled examples provided by a knowledgeable external supervisor

7



[110]. In other words, each example seen by the model during training has a corresponding
“true output”, a label in the case of a classification task or a real value in case of a regression.

The goal of the supervised system is generalizing its predictions to unseen data, i.e.,
data not presented in the training set. This sub-field of machine learning is widely used
nowadays with applications in many different industries. However, it also has some limitations,
especially the dependency on labeled examples.

In some problems, it is impractical to obtain examples of desired behavior. For instance,
in interactive problems, the training data must be able to represent all the different situations
that an agent might encounter and specify its expected behaviour in these situations. For this
type of problem, an agent’s ability to learn from its own experience is extremely valuable.

2.1.2 Unsupervised Learning

The other main paradigm of machine learning is known as unsupervised learning. Unlike
supervised learning, there is no supervisor to provide labeled examples. Instead, the goal of
this paradigm is finding structure hidden in collections of unlabeled data [110].

Both unsupervised and reinforcement learning techniques do not depend on labeled data.
The main difference between these two methodologies is their goal. The goal of reinforcement
learning is to maximize the cumulative reward obtained by an agent; the goal of unsupervised
learning is to discover hidden structure in the data.

2.2 Elements of Reinforcement Learning
The learning procedure of a reinforcement learning agent has two main distinctions

compared to other paradigms: the agent learns which actions are desirable by trying them,
and some of its actions may affect not only the immediate reward but also subsequent rewards.
Reinforcement learning emphasizes learning by interacting directly with an environment in
terms of states, actions and rewards.

2.2.1 Reward

The reward Rt is a scalar feedback signal that represents how well the agent is doing at
step t. The goal of the agent is to maximize the total reward received over the whole episode
of interaction with the environment.

The reward is then used to describe to the agent what are good and bad outcomes. It
is the primary basis for altering the behaviour of the agent; if a selected action is followed
by low reward, then the agent may change its action in that situation in the future. The
learning procedure is based on the reward hypothesis [45].

Hypothesis 1 (Reward Hypothesis). All goals can be described by the maximization of
expected cumulative reward.

8



As a consequence, it is essential to select an appropriate reward signal for each application,
as it is used to describe the agent’s goal. Let Rt+1, Rt+2, Rt+3, ... denote the sequence of
rewards obtained after time step t. We define the cumulative return Gt as the sum of rewards:

Gt = Rt+1 +Rt+2 + ...+RT , (2.1)

where T is the final time step. In situations where the notion of final step is clear, i.e., when
the agent’s interaction with the environment is naturally divided into sub-sequences, this
approach is often used. However, in many cases the identification of individual episodes is
not straightforward. Instead, the agent and environment interact continuously throughout
time and there is no final time step.

The main implication of the return formulation in (2.1) is that the agent could achieve a
sub-optimal solution and still achieve a high reward by just repeating the same action forever.
The definition of return can be improved by introducing a discount rate γ , 0 ≤ γ ≤ 1, and
considering the discounted cumulative reward, defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 . (2.2)

The parameter γ determines what is the present value of future rewards. If γ is close to
0, the agent will be more concerned about immediate rewards, as future rewards are deeply
discounted. On the other hand, if γ is close to 1, the return will place more emphasis on future
rewards, because even after discounting a higher reward in the future can be worth more
than a smaller reward in the present. In other words, the agent becomes more farsighted.

2.2.2 Agent and Environment

One of the main characteristics of reinforcement learning is the direct interaction between
the agent, the term used to refer to the controller, and the environment, which is the
system with which the agent interacts. At each step t, the agent takes an action at ∈ A,
receives a reward Rt, and makes an observation Ot. On the other hand, the environment
receives the action At and outputs the observation Ot+1 and reward Rt+1. This relationship is
illustrated in Figure 2.1. The sequence of observations, actions and rewards is called history
Ht:

Ht = O1, R1, a1, ..., Ot, Rt, at−1

.
Another fundamental element of reinforcement learning is the state st ∈ S. It contains

the information used to determine what happens at each time step. Formally, the state is
a function of the history. There are two distinct states: the environment state set and the
agent state sat . The former is the internal representation of the environment and is used to
determine the next observation and reward. The latter can be any function of the history
f(Ht), and contains the information used by the agent to select the next action.

In some cases, the agent is able to observe the environment state. Therefore, Ot = sat = set .
These are known as fully observable environments. If the environment state set is not

9



Figure 2.1: Agent and environment dynamics

observable, which is often the case, the agent state acts as an indirect representation of
the environment. In other words, the agent indirectly observes the environment. As a
consequence, the agent state sat should contain all relevant information for the agent to take
action at+1.

To simplify notation, we will represent the agent state as st. The set of possible states S
can be either discrete S = {k1, k2, ...} or continuous S ⊆ RK .

2.3 Markov Decision Processes
In sequential decision making problems, an agent interacts with an environment by

selecting a series of actions in order to achieve its goal. One of the most commonly used
frameworks to model this task is the Markov Decision Process (MDP). In this formulation,
actions influence not just immediate rewards, but also subsequent states and actions.

2.3.1 Markov Property

In a finite MDP, the sets of states (S), actions (A), and rewards have a finite number
of elements. In this case, the random variable that represents the state st has a discrete
probability distribution which depends only on the preceding state and action. That is, for
any given state, the previous state contains all information needed to define its probability
distribution. This property is known as the Markov Property. Formally, a state st is
Markov if:

P [st|st−1, st−2, ..., s1] = P [st|st−1] . (2.3)

10



This property implies that the previous state captures all relevant information from the
history Ht.

2.3.2 Definition

An MDP is a stochastic dynamical system characterized by a tuple 〈S,A,P , γ,R〉 [45],
where:

— S is the state space, a finite set of states which satisfy the Markov condition.
— A is the action space, a finite set of actions.
— P is a state transition probability matrix, which determines the probability of moving

to a given state st+1 after taking action a at state s. Thus Ps,s′ = P [St+1 = s′|st =
s, at = a] .

— R is a reward function.
— γ is the discount rate.
A Markov Decision Process is defined by its state, action and environment dynamics in

the next time step. Given an action a and state s, the probability of a given state-reward
pair s′, r is:

p(s′, r | s, a) = P [st+1 = s′, Rt+1 = r | st = s, at = a]. (2.4)

Here p defines a probability distribution for each state s and action a. In other words, all
possible combinations are described by p. Hence,∑

s∈S

∑
r∈R

p(s′, r | s, a) = 1, for all s ∈ S and a ∈ A. (2.5)

The MDP framework is a powerful abstraction for solving sequential decision making
problems by learning from interaction. The problem is reduced to three components: actions,
states and rewards. This methodology may not be applicable to all types of decision-learning
problems, but it has proved useful in multiple application domains [110].

2.4 Policies
As stated previously, the purpose of an RL agent is formalized as maximizing the

cumulative reward received. In order to achieve its goal, the agent has to decide at each time
step which action At ∈ A to take, depending on the agent’s current state st.

This decision is based on the agent’s policy. A policy is a mapping from state to action
and defines the agent’s behaviour. For example, let π be the policy at time t, then π(a|s)
defines the probability of taking action at = a in state st = s. The policy can also be
deterministic, i.e., π(s) = a, s ∈ S, a ∈ A.

As a consequence, the goal of a RL problem can also be defined in terms of its policy.
The purpose then becomes finding an optimal policy which maximizes the cumulative reward
acquired. Different reinforcement learning methods specify different ways to adapt the policy
as a result of interaction with the environment.

A policy can be improved in two different ways:
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— Directly: The policy can be learned directly by using the reward obtained to update
the agent’s behaviour. Such methods are called policy-based.

— Indirectly: Instead of learning the policy directly, in this methodology an agent
learns a value (or action-value) function and uses it to guide its actions. Techniques
adopting this approach are known as value-based methods.

2.5 Value Functions
Value-based reinforcement learning algorithms are based on estimating value functions,

which define how good it is for the agent to be in a given state. The notion of “how good” is
defined in terms of expected future rewards.

Since the agent’s behaviour depends on its policy, the value function is also a function of
the policy π. In this case, vπ(s) is the value of state s under a policy π, i.e., the expected
return when starting in state s and following the policy π from there on. We define vπ(s) as:

vπ(s) = Eπ[Gt | st = s] , (2.6)

where Eπ[·] is the expected return given that the agent follows π.
Similarly, we can define the action-state value function qπ(s, a) as the expected return for

taking action a in state s and following the policy π afterward:

qπ(s, a) = Eπ[Gt | st = s, at = a] = Eπ[
∞∑
k=0

γkRt+k+1 | st = s, At = a] =
∞∑
k=0

γkR(sk, ak).

(2.7)
We can separate equation (2.7) into two parts:

qπ(s, a) = R(s, a) +
∞∑
k=1

γkR(sk, ak)

= R(s, a) + γ
∞∑
k=1

γk−1R(sk, π(sk))

= R(s, a) + γvπ(s′).

(2.8)

The first component is the immediate reward R(s, a) obtained by taking action a in state s.
The second term is the expected return by following policy π starting from s′.

Both value functions qπ and vπ can be estimated from experience. A fundamental property
of value functions is that they satisfy some recursive relationships. For any policy π and any
state s, the value of s and the value of its possible future states follow the condition:

vπ(s) = Eπ[Gt | st = s]

= Eπ[Rt+1 + γGt+1 | st = s]

= Eπ[Rt+1 + γvπ(s′) | st = s].

(2.9)
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The actions a are taken from A, the states s and s′ from S, and the reward r from R.
Equation (2.9) is known as the Bellman equation for the value function following policy π
and it forms the basis of several ways to learn and compute value functions. 1

Value functions and state-value functions are used as indirect ways to find an optimal
policy, i.e., finding a policy that achieves the highest cumulative reward. For MDPs, we
can use these functions as a way to order different policies. An arbitrary policy π is defined
to be better than another policy π′ if its value function vπ is greater than vπ′ for all states.
Formally, π ≥ π′ if and only if vπ(s) ≥ vπ′(s) ∀s ∈ S.

There always exists at least one optimal policy, a policy that is better than or equal to all
other policies [110]. Optimal policies are denoted by π∗. The optimal value function is then
defined as:

v∗(s) = max
π

vπ(s). (2.10)

Similarly, we can also define the optimal action-state value function as:

q∗(s, a) = max
π

qπ(s, a). (2.11)

Methods that rely on value functions aim to maximize these functions as way of improving
their behaviour (policy) and, consequently, maximizing the reward obtained. After the
optimal v∗(s) or q∗(s, a) is found, the agent only has to act greedily with respect to these
functions.

2.6 Policy Gradient Methods Overview
An alternative approach is to improve the policy directly without relying on value functions.

The goal of policy optimization is to maximize a function J(πθ) = E
τ∼πθ

[
∑T

t=0 Rt] = E
τ∼πθ

[R(τ)]

by updating the parameterized policy πθ. This is achieved by using gradient ascent, iteratively
adapting the parameters, with the k-th update being:

θk+1 = θk + α∇θJ(πθ)|θk (2.12)

The gradient of the policy performance ∇θJ(πθ) is called policy gradient. In order to
actually use this algorithm we need an expression for numerically computing this term, which
was derived in [111].

Let the probability of a given trajectory τ = (s0, a0, ..., sT+1) following the policy πθ be
defined as:

P (τ |θ) = ρ0(s0)
T∏
t=0

P (st+1|st, at)πθ(at|st) , (2.13)

1. We do not elaborate in greater details on the Bellman equation in this thesis, an extensive discussion
can be found in [110].
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where st is the state at time t, at is the action taken at time t and ρ0 is the initial state
probability. The policy gradient is then given by

∇θJ(πθ) = ∇θ E
τ∼πθ

[R(τ)] (2.14)

= ∇θ

∫
τ

P (τ |θ)R(τ) Expanding expectation (2.15)

=

∫
τ

∇θP (τ |θ)R(τ) Bringing gradient under integral (2.16)

We can use the log-derivative trick to write the derivative of the trajectory as

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ). (2.17)

Inserting this in (2.16) and rewriting as an expectation, we have:

∇θJ(πθ) = E
τ∼πθ

[∇θ logP (τ |θ)R(τ)] (2.18)

Since the environment has no dependence on θ, the gradient of the log-probability of the
trajectory becomes simply

∇θ logP (τ |θ) =
T∑
t=0

∇θ log πθ(at|st). (2.19)

The final expression for the policy gradient is then:

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)R(τ)

]
(2.20)

2.6.1 REINFORCE: Monte-Carlo Policy Gradient

One of the simplest policy gradient algorithms is the Monte-Carlo Policy Gradient, also
known as REINFORCE [122]. It addresses the calculation of the expectation of the ∇θJ(πθ)
term by obtaining samples such that the expectation of this sample gradient is proportional
to the actual gradient of the performance measure.

If we let an agent act according to a policy πθ, we can estimate its policy gradient by
collecting enough trajectories D = {τi}i=1,...,N and averaging them using

ĝ =
1

N

∑
τ∈D

T∑
t=0

∇θ log πθ(at|st)R(τ) (2.21)

The actions are decided by sampling the policy πθ. The key idea underlying this method
is to increase the probability of taking actions that lead to higher returns and decrease the
probabilities of actions that lead to lower returns. Each update in the gradient is proportional
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to the product of the sum of returns (Gt) and the gradient of the probability of taking those
actions.

In the case where the action space is discrete, the output of the policy network is a
probability distribution over actions, which is used to sample new actions based on their
probabilities.

In continuous action spaces, the actions are also chosen based on their probability. However,
instead of being a probability distribution, the output of the policy network is the mean
vector of a multivariate Gaussian distribution. The variance of this distribution can be fixed
or can decrease over time or can be learned. In this thesis, we consider a fixed variance,
denoted by an exploration parameter σe.

The REINFORCE algorithm has good theoretical convergence properties as the expected
update over an period T is in the same direction as the performance gradient. However, this
method suffers from high variance and, consequently, slow learning [110].

2.6.2 Actor-Critic algorithms

One tool that is often used to reduce the variance in REINFORCE is to subtract a baseline
function b(st) from the return Gt. This operation leaves the expected value of the update
unchanged, but it can have a large effect on its variance [110].

The gradient update equation then becomes

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)

(
T∑
t′=t

Rt′ − b(st)

)]
. (2.22)

A natural choice for the baseline is an estimate of the state value, v̂(st;φ), where φ is a weight
vector that can be learned via a Monte Carlo method.

The idea of incorporating both value function and direct policy is the key point of actor-
critic methods 2, which aim to take advantage of both value-based and policy-based techniques
while eliminating some of their drawbacks [70].

Actor-critic methods consist of two models, which may optionally share parameters:
— Critic: updates the value function parameters φ according to the reward received.
— Actor: updates the policy parameters θ for πθ(s|a), in the direction suggested by the

critic.
Approaches that combine policy and value based method have achieved state-of-the-art

performance for solving reinforcement learning problems. In the following sections we present
two of the most prominent policy gradient algorithms used in deep reinforcement learning:
trust region policy optimization (TRPO) and proximal policy optimization (PPO).

2. Although the REINFORCE method with baseline briefly introduced in this section learns both policy
and value functions, it is not consider an actor-critic method as its value function is used only as a baseline,
not as a critic. A more detailed discussion can be found in [110].
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2.6.3 Trust Region Policy Optimization

One of the limitations of simple policy gradient methods such as REINFORCE is that
training can become unstable if the step sizes α are not chosen carefully. A small change
in the parameter space can have a large impact on performance, making this algorithm
susceptible to training instabilities. For this reason, the learning rate is often very small,
thus reducing the sample efficiency of the algorithm. Another limitation is that the whole
trajectory is sampled before updating the policy. A trajectory may contain hundreds or
thousands of steps, so updating just once for each trajectory is not sample efficient.

The Trust Region Policy Optimization (TRPO) [103] algorithm aims to solve these
limitations by updating policies while satisfying a special constraint on how close the new
and old policies are allowed to be, expressed in terms of Kullback-Leibler (KL) divergence.
The improvement in policies is guaranteed by iteratively maximizing a lower bound function
for the expected reward η(πθ) of a given policy πθ. This is based on a type of majorization-
minimization (MM) algorithm [55].

For each iteration, the algorithm finds a surrogate function M which is a lower bound
function for the expected reward η. This should be a good representation of η at the current
policy and easy to optimize. After obtaining M , we find the optimal point θ′ for it and use it
to specify the parameters θi+1 of the current policy. Then, we re-evaluate a new lower bound
Mi+1 for the new policy and repeat the process. The procedure is illustrated in Figure 2.2.

Figure 2.2: Illustration of the MM iterations

We define the advantage function Aπ as the difference between the action-state value
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function and the state value function:

qπ(st, at) = Est+1,at+1,...

[
∞∑
l=0

γlR(st+1)

]
, (2.23)

vπ(st) = Eat,st+1,...

[
∞∑
l=0

γlR(st+1) ,

]
(2.24)

Aπ(s, a) = qπ(s, a)− vπ(s) , (2.25)

where at ∼ π(at, st), st ∼ P (st+1|st, at) ∀t > 0, and γ is the discount rate. The advantage
function Aπ is important because it allows us to express the expected reward of a policy
using another policy. The expected cost accumulated over timesteps of a policy π̃ in terms of
the advantage over π is:

Eτ∼π̃

[
∞∑
l=0

γlAπ(st, at)

]
=
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (2.26)

where the actions At are sampled from π̃ and ρπ is the sum of discounted visitation frequencies:

ρπ(s) = P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + . . . (2.27)

We can rewrite the left-hand side of equation (2.26) as:

Eτ∼π̃

[
∞∑
l=0

γlAπ(st, at)

]
= Eτ∼π̃

[
∞∑
l=0

γl(R(st) + γvπ(st+1)− vπ(st))

]

= η(π̃) + Eτ∼π̃

[
∞∑
l=0

γl+1vπ(st+1)−
∞∑
l=0

γlvπ(st)

]
= η(π̃)− Eτ∼π̃ [vπ(s0)]

= η(π̃)− η(π)

(2.28)

Using equation (2.28) we can define a local approximation function L:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a) (2.29)

Due to the complex dependency of ρπ̃(s) on π̃, ρπ(s) is used as an approximation instead. 3

This equation indicates that an improvement in L(π) will also improve η. However, it does
not provide any guidance on how big of a step to take. With this in mind, Schulman et al.
use KL divergence in [103] to find a lower bound on the policy improvement.

3. For a parameterized policy πθ, if π(a|s) is a differentiable function of θ, then Lπ(π̃) is a good first order
approximation to η(π̃) [62].
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Let DKL(P |Q) = Exlog P (x)
Q(x)

denote the KL divergence. The lower bound for a new policy
π̃ can be expressed as:

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃)

where ε = max
s,a
|Aπ(s, a)|,

C =
4εγ

(1− γ)2
,

Dmax
KL (π, π̃) = max

s
DKL(π(·|s)||π̃(·|s))

(2.30)

Equation (2.30) shows that we can generate a monotonically improving sequence of policies.
In other words, η(π0) ≤ η(π1) ≤ η(π2) ≤ .... Let Mi(π) = Lπi(π)− CDmax

KL (πi, π) denote the
lower bound after the i-th iteration. Then

η(πi+1) ≥Mi(πi+1)

η(πi) = Mi(πi), therefore,
η(πi+1)− η(πi) ≥Mi(πi+1)−M(πi)

(2.31)

Thus, by maximizing Mi we can guarantee that the true objective function η is non-
decreasing at each iteration. The optimization problem can be written as follows:

maximize
θ

[Lθold(θ)−Dmax
KL (θold, θ)] (2.32)

However, equation (2.32) poses two challenges. First, finding the maximum KL divergence
among all policies is intractable. Second, the penalty coefficient C would make the step sizes
very small in practice. So, the optimization is rewritten using the average KL instead of the
maximum and a trust region constraint on the KL divergence between the new and old policy
is enforced. The new problem becomes

maximize
θ

Lθold

subject to D̄
ρθold
KL (θold, θ) ≤ δ .

(2.33)

Here D̄
ρθold
KL (θold, θ) := Es∼ρ[DKL(πθ1(.|s)||πθ2(.|s))]. Moreover, using the definition of L in

equation (2.29) and importance sampling, the optimization can be written as:

maximize
θ

Es∼ρθold ,a∼q
[
πθ(a|sn)

q(a|sn)
Aθold(sn, a)

]
subject to D̄

ρθold
KL (θold, θ) ≤ δ

(2.34)

Despite these modifications, the theoretical TRPO update remains challenging to im-
plement and some approximations are needed. The constraint and objective can be Taylor
expanded around θ, but even with this approximation there are still some computations that
are computationally expensive and complex.
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2.6.4 Proximal Policy Optimization

The Proximal Policy Optimization [104] (PPO) is motivated by the same idea behind
TRPO: take the largest improvement step on a policy without causing any performance
collapse. PPO is based on first-order methods that keep new policies close to old policies. It
performs at least as well as TRPO empirically and is significantly simpler to implement.

One of the most significant differences between PPO and TRPO is the lack of the KL-
divergence term or additional constraints. Instead, PPO uses a clipping operation in the
objective function in order to keep the new policy not too far from the old. The policy
weights θ are updated via:

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)] , (2.35)

where L is defined as

L(s, a, θk, θ) = min (ψ(θ)Aπθk (s, a), clip (ψ(θ), 1− ε, 1 + ε)Aπθk (s, a) , ) (2.36)

and ψ(θ) is the probability ratio πθ(a|s)
πθk (a|s) .

The clip function is used to keep the ratio ψ(θ) within the range [1 − ε, 1 + ε], i.e.,
1− ε ≤ ψ(θ) ≤ 1 + ε. The objective function of PPO takes the minimum between the original
ratio and its clipped version. Hence, we avoid increasing the policy update to extremes
for better rewards. The PPO has some of the benefits of trust region policy optimization
(TRPO), while being much simpler to implement, more general, and having better sample
complexity [104].

2.7 Model-Based and Model-Free RL
The process of learning and improving a policy from experience is a key aspect of model-

free reinforcement learning (RL), as there is no explicit model of the environment. This is
often useful in real-world applications, where the complete knowledge regarding the dynamics
of the environment is impossible to obtain or very costly to compute.

Nonetheless, if the dynamics of the environment are known (or can be approximated
relatively well), the agent’s decisions can be based on a predictive model of this environment
and the MDP can be solved using dynamic programming [85] or other methods. This
framework is known as model-based RL and its approach to solving a task differs from
conventional model-free algorithms.

Instead of using experience to learn a value function (or policy), model-based RL uses
experience to learn a model of the environment. Then, using the learned model, the agent
constructs a policy or value function [45]. A model M is a representation of an MDP
〈S,A,P , γ,R〉 that is parameterized by a function φ. Additionally, the state and action
space are assumed to be known. The state transitions and reward of a modelM = 〈Pφ,Rφ〉
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can be represented as:

st+1 ∼ Pφ(st+1|st, at) (2.37)
Rt+1 = Rφ(Rt+1|st, at) (2.38)

The goal is to estimateM from experience {s1, a1, R2, ...}. This estimation can be done
using supervised learning, as we have input-output pairs. Given sT , aT we want to find
sT+1, RT+1. Learning the mapping from state and action to reward is a regression problem,
whereas learning the state transition probabilities is a density estimation problem. The
parameters of φ are then found by minimizing an empirical loss function such as mean-squared
error for regression or KL-divergence for density estimation.

Some advantages of model-based RL are that it can learn a model using supervised
learning methods, account for model uncertainty and provide a greater sample efficiency
when compared to model-free RL. However, since it has to learn a model then construct a
policy, this framework suffers from two sources of approximation error. Moreover, it is often
burdensome to approximate the environment.

2.8 Summary
Reinforcement learning is a machine learning paradigm that differs from supervised and

unsupervised learning by its focus on learning from direct interaction with its environment.
This is achieved using the Markov decision process framework, which uses states, actions and
rewards to define the interaction between an agent and its environment.

We introduced in this chapter the concepts of policies and value functions. These are
major elements of reinforcement learning methods, and they are used to define the behaviour
of an agent. We also discussed two main variants of policy gradient methods.

Lastly, we provided a brief overview of different classes of RL. Policy-based methods learn
a policy directly while value-based methods learn the policy indirectly by using value (or
action-value) functions. We explained how RL algorithms can be divided into model-based
and model-free methods, depending on the availability and usage of knowledge concerning
the dynamics of the problem’s environment.
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Chapter 3

Financial Theory

The relationship between time and money is one of the most fundamental in finance and
economics. The basic assumption is that an individual always prefers present consumption to
future consumption. Therefore, these individuals require a greater quantity of consumption
in the future if they are postponing their consumption in the present. This is the basic idea
of interest and investments.

All applications in finance involve this notion of money and time. Consequently, most
of the problems encountered are modelled as inference and operations on time series, i.e.,
manipulation and analysis of sequences of observations indexed by time.

This chapter presents a brief overview of financial theory, starting with basic financial
concepts (Section 3.1) such as assets and returns. Next, we introduce the task of portfolio
optimization (Section 3.2). Finally, in Section 3.3 we present the most commonly used metrics
for evaluating a portfolio’s performance.

3.1 Financial Concepts
This section presents some key definitions of financial terms that are used throughout the

thesis.

3.1.1 Asset

An asset represents an item of economic value from which future economic benefits are
expected to be obtained. Some examples of assets are stocks, bonds, gold, loans, and cash.

As a practical consideration, we assume that assets considered in this work are liquid.
This means that assets can be bought and sold with no loss of value during the transaction.
Moreover, we consider that historical data is available for usage and analysis.
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3.1.2 Portfolio

A portfolio is a collection of multiple financial assets. It can include assets from different
classes, such as stocks, bonds and other products. For a portfolio with N assets, we define
its weights as:

wt = [w1,t, ... , wN,t]
T ∈ RN where

N∑
i=1

wi,t = 1 (3.1)

Portfolios can be considered as a more general representation of financial assets since a
portfolio can also be used to represent an individual asset. For instance, an asset j can be
represented as a portfolio using the weights wj,t = 1 and wi,t = 0 ∀t, i 6= j.

3.1.3 Financial Time Series

The prices of financial series are dynamic due to the nature of the economy. The variations
are a result of the supply and demand balance that keeps changing over time. Time series
analysis and modelling together constitute a good framework for representing and inferring
market dynamics.

Let pi,t ∈ R be the price of asset i at time t. Hence, for a time interval of interest divided
into T discrete smaller time intervals, the prices of asset i are:

pi,0:T =


pi,0
pi,1
...
pi,T

 . (3.2)

Similarly, we can define the prices for N assets at time t as:

pt =
[
p1,t p2,t . . . pN,t

]
. (3.3)

The prices for all time steps and N assets can then be represented as a matrix of prices:

P =

p1,t p2,t . . . pN,t
... . . .

. . . ...
p1,T p2,T . . . pN,T

 . (3.4)

3.1.4 Returns

For investors, the prices of assets are generally not directly useful in the process of decision
making (although there are exceptions). The prices are usually analyzed by considering their
changes over time. In other words, the focus is on the return of a given asset.

The gross return can be used to derive a scaling factor that relates the current value after
a given time interval to the amount originally invested. For example, a return of 10% over a
month means that the current amount after one month is 10% higher than the initial amount
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invested. Formally, the gross return is the ratio of the price at time t0 and the price at time
tf :

R
(g)
tf ,t0

=
pt0
ptf

, (3.5)

where t0 and tf are the times at the beginning and end of the considered period, respectively.
Often the return is expressed in daily or monthly terms. If each time step represents one
month, the monthly return for every t is given by:

R
(g)
t =

pt
pt−1

. (3.6)

Despite its simplicity, the gross return is not widely used in practice. Instead, a slight
variation is more common, known as the simple return R(s)

t :

R
(s)
t =

pt − pt−1

pt−1

= R
(g)
t − 1 . (3.7)

The main advantage of using the simple return is its interpretability. A positive value indicates
that the asset is more valuable than before and vice-versa.

Let Ri,t represent the return of asset i at time t. Similar to the matrix of prices, we can
define the returns for all the assets in a portfolio ∀t as:

R =

R
(s)
1,t R

(s)
2,t . . . R

(s)
N,t

... . . .
. . . ...

R
(s)
1,T R

(s)
2,T . . . R

(s)
N,T

 ∈ RT×N , (3.8)

where T is the length of the time period and N is the number of possible assets in the
portfolio. As portfolios can be considered to be a more general representation of an asset, we
can define the simple and gross return for a portfolio in similar fashion.

The return of the portfolio is simply the linear combination of its weights and the assets’
returns for a given time step. Formally,

Rt =
T∑
i=1

wi,tR
(s)
i,t = Rtwt . (3.9)

where Rt is the t-th row of return matrix R and wt the corresponding allocation for time
step t.

The simple return offers an intuitive way of representing profit or loss in an investment.
However, its asymmetry makes comparison of strategies harder to interpret. As an alternative,
logarithmic returns (log returns) are often used due to several advantageous properties. As an
illustration, consider the returns presented in Table 3.1. The simple return of 20% followed
by −20% does not result in the same initial price. In fact, the original value is only reached
after an additional 4% increase. On the other hand, it is easy to see that the log returns
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Table 3.1: Illustration of the asymmetry of simple returns and symmetry of log return

Time Price Simple Return Log Return
0 100 - -
1 120 0.20 0.18
2 96 -0.20 -0.22
3 100 0.04 0.04

represent in a clear way that the price in time 2 is lower than in time 0. The log return at
time t is defined as

rt = ln(R
(g)
t ) = ln

(
pt
pt−1

)
(3.10)

where ln is the natural logarithm.
Logarithmic returns have a direct link with the compounding function, because the sum

of successive returns can be interpreted as the continuously compounded return [54]. This
property is advantageous when considering returns over several time periods as the cumulative
log return is simply the sum of the individual log returns. Continuously compounded returns
are time additive and it is easier to derive the time series properties of additive processes
than multiplicative processes.

Another advantage of using log returns is that asset prices are often modeled via Brownian
motion [23, 36], which makes the logarithmic returns of the security normally distributed.
Additionally, for small magnitudes, logarithmic returns and simple returns have approximately
the same value.

We can derive the return of the portfolio in log terms equation (3.9)

rlogt = ln(1 + Rtwt) (3.11)

Figure 3.1 shows how both simple and log returns are centered around zero. However, despite
the shape of their distribution, they are not normal. External events and crises frequently
provoke returns that are multiple standard deviations away from the mean. Such returns
would be extremely unlikely if normal distributions were accurate models.
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Figure 3.1: Simple and log (daily) returns of two example stocks – Apple and AMD over the
time period July 2015 - Mar. 2020.

3.2 Portfolio Optimization
In the investment industry, dynamic portfolio optimization is one of the problems most

frequently encountered [35]. It can be defined as the process of selecting the best asset
distribution (portfolio) out of the set of all other asset combinations being considered,
according to some objective. Typically, the aim is to maximize some desirable factors such as
expected return while minimizing others such as risk.
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Recall that a portfolio of N assets at time t is defined as:

wt = [w1,t, ... , wN,t]
T ∈ Rm for

M∑
i=1

wi,t = 1 , (3.12)

where wi,t denotes the percentage allocated on the asset i at time t. Our goal is to find an
optimal allocation W∗, which denotes for each time step what the allocation wt should be
such that a cumulative performance function is maximized (or minimized). The main goal
of using portfolios is combining assets with different properties in order to mitigate some
negative aspects while amplifying positive aspects of the market.

3.2.1 Modern Portfolio Theory

Markowitz’s Modern Portfolio Theory (MPT) [83] is the dominant paradigm in portfolio
optimization. It consists of computing the Mean-Variance Efficient Frontier (EF). This is
defined as the selections of investments that yields the highest return with respect to the
risk-free rate for any given level of risk measured in terms of standard deviation.

Specifically, it considers a universe of N investments with returns r, empirical estimates
of the expected returns µ = [µ1, ... , µN ]T ∈ RN , standard deviation σ, covariance matrix
Σ = [σij ] (where σii = σ2

i and σij = ρσiσj for i 6= j), and the portfolio weight vector w ∈ RN .
The objective is to minimize the risk (variance) of the portfolio, subject to the constraints
that the weights of the portfolio sum up to one and the portfolio’s return at least achieves
the target return. Formally, the problem can be specified as:

min
w

1

2
wTΣw (3.13a)

subject to wT1N = 1 , (3.13b)
wTµ ≥ rp , (3.13c)

where 1N is a column vector of ones and rp is the target return.
The solution to the portfolio optimization is obtained by minimizing the Lagrange function

with respect to w. The Lagrange function is:

L(w, γ, λ) =
1

2
wTΣw − γ(wT1N − 1)− λ(wTµ− rp) , (3.14)

where γ and λ are scalar multipliers.
The first order conditions for minimizing L(w, γ, λ) are the following linear equations:

∂L(w, γ, λ)

w
= Σw + γ1N + λµ = 0 , (3.15)

∂L(w, γ, λ)

λ
= wTµ− rp = 0 , (3.16)

∂L(w, γ, λ)

γ
= wT1N − 1 = 0 , (3.17)
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or, in matrix form: Σ µ 1N
µT 0 0
1TN 0 0

w
λ
γ

 =

 0
rp
1

 . (3.18)

The portfolio weights are determined by solving the linear system in (3.18). The solution is
the portfolio with minimum variance with expected return rp.

There are other variations for constructing the optimal portfolio. One alternative is to
maximize return while providing an upper-bound for the variance (risk):

max
w

wTµ , (3.19a)

subject to wT1N = 1 , (3.19b)
wTΣw ≤ σ2

p , (3.19c)

where σp is the maximum allowable volatility (standard deviation of the portfolio returns).
Additionally, we can define a trade-off function between risk and return that can be used

to find optimal portfolios based on a coefficient φ that captures risk aversion:

min
w

φwTΣw −wTµ (3.20a)

subject to wT1N = 1 . (3.20b)

Larger values of φ result in a portfolio with a higher sensitivity to volatility.
Finally, we can also consider as an objective function the ratio of expected returns and

their standard deviation 1. In this case, the optimization problem becomes:

max
w

wTµ√
wTΣw

(3.21a)

subject to wT1N = 1 . (3.21b)

Figure 3.2 presents an example of the mean-variance portfolio. Ten assets were randomly
selected from the S&P500 index 2. Their returns and volatility over the considered period can
be seen in the figure. Note how the optimal allocation, selected by using the mean-variance
approach, offers the best achievable return for a specified allowable risk (volatility).

1. This quantity is known as the Sharpe Ratio, and it will be discussed in further detail in the following
sections.

2. The S&P 500 is a stock market index that measures the stock performance of 500 large companies
listed on stock exchanges in the United States.
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Figure 3.2: Efficient Frontier of a portfolio with 10 assets

The selected assets and their weights in the mean-variance portfolio are presented in
Table 3.2. Note that the portfolio is not composed solely of the best performing asset (in
terms of return), but consists of a combination of different assets in order to maximize the
return while keeping the volatility relatively low.

Table 3.2: Hypothetical portfolio composed of ten stocks using mean-variance optimization.

Ticker Company Name Return (%) Volatility(%) Weight in portfolio
AAPL Apple 23.19% 18.44% 12.5%
AMD Advanced Micro Devices 60.79% 66.20% 0%
AMZN Amazon 51.03% 28.92% 48.0%
BAC Bank of America 20.77% 28.86% 0%
BBY Best Buy 27.48% 35.84% 17.1%
GE General Electric -14.58% 21.57% 0%
GOOG Google 23.17% 23.22% 0%
JPM JP Morgan 22.36% 21.70% 8%
SBUX Starbucks 15.29% 20.10% 0%
WMT Walmart 4.78% 20.50% 14.2%

Despite having higher return and lower volatility, the portfolio’s weight of AAPL is lower
than WMT. This is a consequence of how different assets relate to each other. If two assets
are highly correlated, their price movements tend to behave similarly. From an investor’s
point of view, this makes an investment riskier, as both assets have the same price direction.
The mean variance portfolio tries to incorporate this by using the covariance of the assets.
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The correlation matrix is shown in Figure 3.3. Note how the correlation of WMT with other
assets is, on average, lower than its counterparts, which makes it an attractive alternative for
diversification in order to reduce the risk of the portfolio.

Figure 3.3: Correlation matrix of the 10 selected assets

The mean-variance analysis is a very commonly used technique for optimizing a portfolio.
Its simplicity is one of the key strengths of this framework, as it just requires the means,
variances, and the covariance of asset returns for finding the trade-off between return and
risk. However, this model has several shortcomings [65].

The first limitation is the usage of variance as a metric for risk. Due to the nature of the
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variance calculation, both positive and negative returns have the same effect. Nevertheless,
large positive returns are usually not considered as a risk for the investor. For example,
consider the returns of two hypothetical portfolios, as presented in Table 3.3.

Table 3.3: Quarterly returns of two portfolios

First Quarter Second Quarter Third Quarter Last Quarter
Portfolio 1 5.0% 1.5% 3.0% 2.5%
Portfolio 2 10.0% 0.5% 0.3% 12.5%

Both portfolios had positive returns in all quarters, but from a investor’s point of view,
the portfolios are quite different. Portfolio 2 is much more attractive, as the average return
is higher and there are no severe losses. However, this portfolio might not be selected in a
Markowitz framework as it presents high variability, despite its higher return.

One of the reasons that variance is used as a risk metric is the assumption that returns
are normally distributed. If that was the case, this metric would be more appropriate as the
normal distribution is symmetric. It is known that historical equity returns are not normally
distributed. The empirical distribtuions tend to have fat-tails, especially on the negative side.

The second limitation is the challenge of estimating returns. These values have to be
estimated (forecast) if we want to use this framework to derive the optimal allocations for
a future period. Consequently, the model is affected by estimation errors, and the optimal
allocations for the true and estimated returns can show considerable disparity.

With respect to variance as a risk estimator, there are some alternatives that can be used
instead of the variance. One of them is the semivariance, which only considers deviation in
one direction. The semivariance for a target return of 0% only considers the deviation of
negative returns and is defined as:

Semiσ2 =
1

T

T∑
t=1

min(0, rt)
2 , (3.22)

where rt is the return of the asset on time t and min is the minimum between 0 and rt.
Another alternative is using a probabilistic approach to model risk. One of the most

commonly used metrics is known as value-at-risk (VaR). It measures the probability of losing
a certain amount over a time interval. For instance, if the 5% VaR during a year is 10%,
it is equivalent to saying that the probability of losing more than 10% is less than 5%. In
other words, there is a 95% probability that the loss will be lower than 10%. The VaR can
be estimated from historical data; its estimation does not require any assumptions about the
distribution of returns.

3.2.2 Black-Litterman Model

A more sophisticated alternative to the mean-variance framework is the Black-Litterman
model [16]. It uses a Bayesian approach to combine particular views of an investor regarding
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the expected returns of one or more assets with a prior distribution (the market equilibrium
expected return) to form a new estimate of expected returns.

This model is particularly interesting because most portfolio managers have expertise in
a specific industry, sector or class of assets. Therefore, they may have a more accurate view
of these portions of the market when compared to all the other market components. The
Black-Litterman model can take into account these subjective views to determine the asset
allocation.

The equilibrium state of the Black-Litterman model is based on the capital asset pricing
model (CAPM) [37]. According to the CAPM, the excess return of an asset can be expressed
as:

E(ri) = rf + βi(E(rM)− rf ) , (3.23)

where ri, rM and rf are the returns of the asset i, the market and the risk-free asset, respectively.
The parameter βi is the covariance between the returns of the asset considered and the market
divided by the variance of market returns. Furthermore, let wm = (wm,1, ..., wm,N) be the
weights of each asset that form the market return with N assets. The expected excess returns
of asset i can be written as

Πi = E(ri)− rf ≡ βi(E(rM)− rf ) . (3.24)

Using the definition of βi, we have:

Πi =
cov(ri, rM)

σ2
M

(E(rM)− rf ) . (3.25)

Finally, by using the fact that the return of the market can be expressed as rM =
∑N

k=1 wM,krk,
we can rearrange the terms as follows:

Πi =
(E(rM)− rf )

σ2
M

N∑
k=1

cov(ri, rM)wM,k (3.26)

Let δ =
(E(rM )−rf )

σ2
M

be defined as the risk premium of the market over its variance. Then
the expected excess returns can then be written in matrix-form as

Π = δΣwM ,

where Π ∈ RN , Σ ∈ RN x N are defined as

Σ =

 cov(r1, r1) . . . cov(r1, rN)
... . . . ...

cov(rN , r1) . . . cov(rN , rN)

 , Π =

Π1
...

ΠN

 . (3.27)

Black and Litterman assumed that the market is expected to be in the equilibrium state
on average but may deviate from it depending on other market conditions. This deviation
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can be modelled as normal noise εΠ ∈ RN with mean zero and covariance matrix Σ. The
prior distribution of the returns can be expressed as

µ ∼ N (Π, τΣ) , (3.28)

where τ ∈ (0, 1] represents the confidence on the estimate of excess return. In other words, it
reflects the investor’s belief in the CAPM model. Small values of τ represent high confidence
in the estimate of returns.

The Black-Litterman model is able to incorporate investors’ views regarding the market
equilibrium. There are two type of views that can be incorporated. The first is absolute
view. For example, if one portfolio manager believes that “Asset A” will be have a return of
15% over the next year, it is possible to incorporate this view in absolute terms. The other
view concerns performance relative to another asset. For example, we can incorporate a view
that “Asset B” will outperform “Asset C” by 10% without knowing the exact returns of either
asset, but only the difference in performance.

These views are integrated by two components in the model. Let K represent the total
number of views, which accounts for both absolute and relative views. The first component
is a vector q ∈ RK with the expected returns. In our example, this would be a vector
q = [0.15 0.10]T . The second component is a matrix P ∈ RK×N , where N is the number of
assets considered. This matrix indicates how each asset is related to a given view, where each
row represents a different view. The entry (k, i) represents how the i-th asset is relevant to
the k-th view. If a particular asset is irrelevant to a given view, its entry is zero. The matrix
P, along with the vector q, for the example are illustrated below.[

0.15
0.10

]
=

[
1 0 0
0 1 −1

]µAµB
µC

 (3.29)

Similarly to predicted returns, it is also possible to incorporate uncertainty in the views
εq ∈ RK . The expression then becomes:

Q = Pµ+ εq . (3.30)

One of the assumptions is that the deviations (errors) from the views are independent of
each other, which will result in a diagonal covariance matrix Ω ∈ RK×K . The uncertainty is
incorporated by setting the covariance Ω of the distribution εq ∼ N (0,Ω). This allows the
investor to add different confidence levels to different views.

There are different ways to incorporate the views [102] and arrive at the expected return
from the model

µ̂BL = [(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1Π + PTΩ−1Q] . (3.31)

The Bayesian interpretation is that the posterior distribution of the expected returns is a
normal distribution with parameters:

N ([(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1Π + PTΩ−1Q], [(τΣ)−1 + PTΩ−1P]−1) (3.32)
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The Black-Litterman model is illustrated in Figure 3.4. The final distribution is a
combination of the prior equilibrium distribution and the view distribution. The weights
can then be found using classical mean-variance optimization. If both q and Ω are zero, i.e.,
the investor has no views, the expected return from the model is simply Π. However, in the
case where the investor incorporates views into the model, the robustness of the model can
increase.

Figure 3.4: Schematic of Black-Litterman Portfolio

Estimation of Extra Parameters

When compared to the standard mean-variance portfolio, the Black-Litterman (BL) model
requires some extra input parameters, namely τ , which reflects the uncertainty of implied
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returns, the subjective views determined by Q and their uncertainty, defined by Ω. The BL
model combines implied returns and subjective return estimates to create combined returns
estimates.

The parameter τ controls how distinctly the optimized portfolio may differ from the
reference portfolio. There are some works dedicated entirely to discussing this parameter [2,
117]. For values close to zero, the combined returns converge to implied returns and the BL
optimized portfolio converges to the reference portfolio. On the other hand, for large values
of τ , the BL portfolio converges to a mean-variance portfolio with the subjective views as
return estimates. According to Bessler et al., the values used for τ typically range between
0.025 and 0.300. In our experiments in this thesis, we choose a default value for τ of 0.05.

In terms of subjective return estimates and their reliability, there is no clear answer in
the literature on how to derive them. Numerous studies simply assume that estimates are
provided by an external source or specialist [51, 56] and their uncertainty can be represented
using confidence intervals [16]. However, these approaches make the performance of the BL
model hard to compare to other methods, such as the MV portfolio. As an alternative, the
sample means of returns can be used as the subjective return estimates [13].

Finally, to estimate the confidence on these estimates, expressed in terms of the matrix
Ω, we use the approach proposed by [84], which assumes that the reliability of views is
proportional to the variance of the priors:

Ω = PΣPT 1

c
, (3.33)

where 1/c is the proportionality factor, usually a small value close to zero.

3.3 Performance Criteria
There are several ways to evaluate an allocation for a given investment horizon. For

example, an investor could focus on maximizing the final wealth or surpassing a benchmark
index while minimizing the volatility.

Despite some limitations of the mean-variance framework, some of its main ideas are often
used by investors. The notion of risk and reward is very important. For the same risk, the
investor wants to maximize the expected return. In the same vein, for the same expected
return, the investor wants to minimize the volatility. Some evaluation metrics that take into
account these aspects are introduced in the following sections.

3.3.1 Cumulative Returns

The simple return is defined as the ratio of the price at the end of the period and the price
at the beginning of the period. However, we often want to evaluate a strategy over a longer
time horizon. Hence, the definition of return has to incorporate several time steps in order
to represent the final performance of the investment. This is achieved by compounding the
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returns over time. Formally, we define the cumulative simple return from time 1 to time T as

cRT =
pT
p1

− 1 =
T∏
t=1

(R
(g
t )− 1 =

[
T∏
t=1

(Rt + 1)− 1

]
(3.34)

Similarly, we can define the cumulative log return as

crT = ln(
pT
p1

) = ln

(
T∏
t=1

(R
(g
t )

)
=

T∑
t=1

rt (3.35)

The equation above shows one of the advantages of using the log returns, as we have a sum
of returns instead of the product over all previous time steps.

3.3.2 Sharpe Ratio

The idea of selecting the portfolio with the highest expected return compared to others
with the same risk or choosing the portfolio with lowest volatility compared to others with the
same expected return is intuitive. However, in most cases the risk and reward for each portfolio
will be different and selecting the most attractive portfolio might not be straightforward.

The Sharpe Ratio [105] addresses this limitation, by incorporating both risk (standard
deviation) and reward (cumulative return). It is defined as:

ST =
√
T

E(Rt)√
V ar(Rt)

, (3.36)

where T is the length of the time period, E is the expected value operator and V ar is the
variance, both over the same time period T .

By using the Sharpe ratio, a risk-adjusted return metric, one can compare portfolios with
different characteristics. It is important to notice that the risk in the Sharpe ratio is defined
as the standard deviation of returns, which presents several limitations, as discussed above.

3.3.3 Drawdown

As an alternative to measure risk, the drawdown (DD) is often used as a risk indicator in
the investment industry [44]. The drawdown measures the decline of returns compared to
its historical peak and it was first introduced in the context of Brownian motion [114]. The
drawdown can be defined as:

DDt = −max
u∈[0,t]

(cRu)− cRt , (3.37)

where max is the maximum operator and cRt the cumulative return. It is often useful to
represent the drawdown in percentage terms by dividing DDt by max

u∈[0,t]
(cRu).
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Another way to incorporate the drawdown as a risk metric is to consider how long it
takes, on average, to recover from a drawdown, i.e., to reach the level of cumulative return of
the last peak. This is known as the average drawdown time.

In the field of active portfolio management, the reduction of drawdown has received
considerable attention as a risk metric [20, 46]. In practice, however, investors are usually
concerned with the maximum drawdown (MDD) a portfolio can suffer over the return horizon
T , which is defined as:

MDDT = −max(DDt)
t∈[0,T ]

(3.38)

This means that the maximum drawdown is represented by a single value in a given
return horizon T . Nonetheless, it is important to consider the distribution of the maximum
drawdowns. By examining it, one can form reasonable expectations about the risks of a given
portfolio over a given investment horizon.

3.3.4 Calmar Ratio

The Calmar Ratio (CalRt) is similar to Sharpe ration, but instead of using the standard
deviation to reflect risk, it uses uses maximum drawdown [5].

CalRt =
E(Rt)

MDDt

(3.39)

3.3.5 Hit Ratio

The Hit Ratio represents the proportion of simple returns from a portfolio Rt that were
higher than a benchmark return brt over a time period T . Formally, we can define the hit
ratio as:

HRT =

∑T
t=0 1(Rt ≥ brt)

T
(3.40)

where 1 is the indicator function and T the length of the period considered.
Most of the time, investors want to consider additional factors other than just performance

when evaluating portfolios. The goal is to understand the risk exposure of a specific strategy.
In some cases, the risk exposure might not compensate the possibility of higher returns. For
this reason, risk-adjusted metrics offer an attractive way to evaluate portfolios.

3.4 Summary
In this chapter, we introduce key definitions of some financial concepts that are used by

investors and financial industry. Moreover, we introduce the modern portfolio theory, also
known as mean-variance or Markowitz portfolio optimization, which was the first mathematical
framework introduced to optimize a portfolio with respect to returns and risks.
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Some improvements of this framework were later proposed, one example is the Black-
Litterman portfolio, also introduced in the chapter. Additionaly, we present some of the most
used metrics to evaluate the performance of a portfolio.
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Chapter 4

Literature Review

The reinforcement learning framework has several inherent advantages for financial
applications when compared to other machine learning paradigms. In particular, it facilitates
the combination, in one integrated procedure, of the portfolio creation process with a
performance metric that is closely related to an investor’s objective.

In Section 4.1 we present a thorough literature review of reinforcement learning applications
in finance. More specifically, we focus on the task of asset allocation, starting with works that
use value-based algorithms, and then proceeding to survey policy-based techniques. Finally,
we conclude the chapter in Section 4.2 with some key observations based on the literature
review.

4.1 Reinforcement Learning Applications in Finance
In the next subsections, we present some of the most relevant works that have applied

the reinforcement learning framework in finance. The key idea in most of the papers is to
treat the asset allocation problem as an MDP. We will divide the works into the categories of
value-based algorithms, policy-based algorithms and other variants.

4.1.1 Value-based Algorithms

The application of reinforcement learning to portfolio management was first introduced
in [93]. Neuneier presented an approach in which an agent traded into two strategies: choosing
at each time step between currency pairs (U.S. dollar or Deutsche Mark 1) and choosing
between a risky asset (DAX Index 2) or staying in a risk free asset (Deutsche Mark). The
agent decided in which asset to invest based on its action-value function. More specifically, it
was based on the Q-Learning algorithm [119]. The key idea of this algorithm is to maximize
the action-value function q in order to optimize a policy, as in Eq. (2.11). The action-value

1. German currency used before the creation of Euro
2. The DAX is a stock market index consisting of the 30 major German companies trading on the Frankfurt

Stock Exchange
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function is updated according to the following expression:

Q(st, at)←− Q(st, at) + α(Rt+1 + γ max
a

Q(st+1, at+1)−Q(st, at)) . (4.1)

Neuneier used DAX prices and other market variables to model the state space and the
reward was modelled as the return obtained after discounting transaction costs. This model
outperformed a neural network benchmark, which was trained to predict whether the DAX
would yield a positive return on the following day.

This approach was later improved by considering an intermediate deterministic step after
each change in allocations [94]. This step takes into account transaction costs and reduces the
overall number of transactions at each time step. In other words, the agent holds its position
for longer periods. One key advantage of using RL is the flexibility of the reward function
which can be conditioned on states, actions and incorporate risk aversion of the investor. For
instance, Neuneier enhanced his previous model by incorporating risk aversion in the reward
function. More precisely, the agent used the log return of the portfolio as reward function
Rt = log( Pt

Pt−1
), where Pt is the portfolio value at time t. Due to the asymmetry of simple

returns, log returns offer a more compelling reward function.
Similarly to [94], [40] trades the same currency pair and uses the same definition of

state and immediate reward. It proposes a hybrid model that combines two approaches:
an algorithm based on Q-Learning that maximizes the return and strives to maximize the
Sharpe Ratio, using the same approach as [21]. A neural network is used as the function
approximator for the state space. The model surpasses all the benchmarks proposed: the
model defined in [93], a trading system based on supervised learning that optmizes the Sharpe
ratio, and a trading system based on return forecasts. One of the limitations of this work is
that the system only deals with a discrete action space.

In an attempt to simulate a human investor’s behavior, Lee et al. [73] defined a multi-agent
Q-learning (MQ) model with four agents. It divides the task of stock trading into two parts:
timing, which requires two agents (buy and sell signals), and pricing, which requires another
two agents (buy and sell orders). The authors argue that the investor usually considers
different aspects when buying and selling. Thus, the separation is necessary to allow the
agents to have different state representations.

Instead of using the raw price data as state representation, the signal agents use moving
averages to represent the long-term price movements. The buy signal agent identifies buying
opportunities while the sell signal agent observes the development of the buy orders and
decides when to sell them. The order agents use information from the Japanese candlestick
representation to define the state space. A candlestick is made up of four prices: the open,
high, low and closing prices during a specific time interval. The order agents are triggered by
the signal agents and their goal is to determine the buy and sell prices.

The proposed model outperforms the benchmarks, which include a supervised learning
model and some simpler variants of MQ. However, the model has high computational costs
as four different agents must be trained and it takes 5,000,000 episodes to converge to an
optimum policy. Another limitation is the fact that the model only supports single-asset
trading.
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The Q-learning algorithm is also used by Bertoluzzo and Corazza in [12], but they also
evaluate a different algorithm, Kernel-based reinforcement learning (KbRL) [95]. In order to
specify KbRL, we first define Sa = {(sak, rak, ŝak, )|k = 1, ..., t− 1} as a collection of historical
transitions where action a was taken, with a ∈ A, s ∈ S and rak ∈ R. Let φ : R+ −→ R+ be a
Lipschitz continuous function satisfying

∫ 1

0
φ(x)d(x) = 1. Let kτ (s, s′) be a kernel function

defined as:
kτ (s, s

′) = φ

(
||s− s′||

τ

)
, (4.2)

where τ ∈ R is the kernel’s width. The normalized kernel function associated with action a
can also be defined as:

kaτ (s, s
a
i ) =

kτ (s, s
a
i )∑na

j=1 kτ (s, s
a
j )
, . (4.3)

The action-value function can be determined as:

Q̂(st, at)←−
na∑
i=1

kaτ (s, s
a
i )
[
rai + γV̂ (sai )

]
. (4.4)

Ormoneit and Sen have shown in [95] that, if na → ∞ for all a ∈ A and the kernel’s
width τ decreases at an “admissible” rate, the probability of choosing a suboptimal action
based on Q̂(s, a) converges to zero. Therefore, the KbRL has strong theoretical guarantees.
Nevertheless, the model constructed by it grows with the number of sample transitions,
resulting in high computational costs [7].

Bertoluzzo and Corazza used the Sharpe ratio calculated in the last L (5 and 22) days as
reward function. The authors claim that the Q-learning performed better than kernel-based
reinforcement learning, but the results vary across the 1000 performed replications of artificial
data and they only performed tests on a single real world stock. Therefore, it is still unclear
if the result holds for other assets.

All papers described until this point either focus on the trading of one currency pair or
deciding whether or not to allocate on a risky asset (as opposed to allocating on a risk-free
asset). The number of trading assets is expanded in [58], where a RL-based asset allocation
strategy is proposed. Similar to [73], the framework is composed of multiple parts. The
first part is called local traders, which is implemented by a neural network that is trained to
forecast patterns and identify trading opportunities based on threshold values. The focus
in [58] is on four meaningful patterns, which are derived from moving averages of prices. For
each pattern there is a local trader that consists of a predictor and a local policy. Predictors
estimate the future price of shares, and local policies specify how to use the predicted values
given by its predictor.

The second part uses Q-learning to distribute the investments among the local traders.
The states are modelled by the output of each local trader as well as the available cash. The
actions represent the amount of money (discretized to four different values) that each local
trader can invest per trade. It is important to notice that the action space grows exponentially
with respect to the number of traders. Also, the performance of this system depends on the
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forecasts of future prices, which is a challenging task, making this model hard to use as a
benchmark for systems that do not rely on explict forecasts.

Tan et al. [113] also expand the number of assets, using 5 stocks from the S&P index.
However, the proposed system is always fully invested in the chosen stock, i.e., it only holds
one asset at a time. An Adaptive Network Fuzzy Inference System (ANFIS) [57] is used
as a trading agent. RL is employed in two different ways. The first application is related
to determining optimal parameters for the cycle identification (period of moving averages)
component that is used to process the price information and to tune the hyperparameters of
the ANFIS component. The second application of RL is related to the actual trading. It uses
as the state the output from the ANFIS system and historical components.

The backtesting results of [113] are encouraging as the proposed model outperforms the
market by 50% over 13 years of testing. However, more rigorous evaluation is required, as
only five stocks were used.

In general, value-based methods suffer from the curse of dimensionality of the action space.
The usage of Q-Learning when there are a finite number of discrete action is straightforward
since the max operation poses no problem. However, this is usually not the case for asset
allocation problems since the action space for a portfolio of N assets is defined by the weight
vector ∈ RN . Using optimization algorithms to solve max

a
Qk(st, at) for each time step is

infeasible.
However, more recently, [98] proposes a portfolio trading strategy using Deep Q-Learning

(DQL) [87]. The authors argue that action spaces that are directly related to the portfolio
weights, i.e., at = wt, do not provide a direct guide to portfolio managers that is applicable
to a real-world trading scenario, which includes transaction costs and many different ways to
transition from the current portfolio weight to the portfolio weight in the next period.

In [98], the state space is defined as the previous allocation and five market features for
each asset i: the rate of change of the closing price of asset i in period t, the ratio of the
opening price in period t to the closing price in period t−1 for asset i, the ratio of the closing
price to the highest price of asset i in period t, the ratio of the closing price to the lowest
price of asset i in period t, and the rate of change of the volume of asset i in period t.

The action space is composed of three possible actions for each asset: buy, sell or hold.
Thus, the number of possible actions is 3N , where N is the number of assets considered, and
at ∈ ZN : at,i ∈ {−1, 0, 1} ∀i, t. Moreover, the orders are carried out at a fixed trading size,
i.e., the agent can only sell or buy a predetermined amount. Park et al. argue that this
limitation is similar to the restrictions on hedge funds that allow portfolio traders to only
trade below a certain amount each day. Thus, they believe is not an unrealistic assumption.

However, this choice of action space imposed several challenges for the authors. First,
some actions are infeasible depending on the state. For instance, the agent cannot buy more
assets if there is no available capital or cannot sell assets that it did not buy beforehand. In
order to deal with the infeasibility of some actions, the authors propose a rule-based mapping.
Given an an originally infeasible action, the algorithm derives a similar action set including
only actions that are feasible, and that do not have any opposite direction of each asset
compared to the directions under the original action.
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To illustrate, consider the case where the action of buying both asset1 and asset2 is
infeasible due to the lack of available funds. A similar set proposed by the mapping would be
all the actions that do not involve selling these two assets (i.e., holding asset1 and buying
asset2, buying asset1 and holding asset2, and holding both asset1 and asset2).

Then, the rule finds the most valuable action (i.e., the action with the largest Q-value) in
the similar action set, and it maps the infeasible action to the identified feasible action. This
mapping function can be considered a heuristic approach for solving a quadratic programming
to handle RL in a constrained action space [14].

The value for Q̂(st, at) is approximated by a deep neural network. The algorithm is closely
related to [87], but the authors introduce several changes. Motivated by [112], instead of just
taking one action per time step, the model simulates several actions and updates their Q
values. However, this results in a severe computational overhead. Park et al. argue that this
technique can relax the data shortage issue that arises when deriving a multi-asset trading
strategy and multi-core parallel computing can prevent this computational time from greatly
increasing.

With respect to the deep neural network architecture, the authors first employ an LSTM
autoencoder [108] to extract relevant information from the market data. Then, the output
of this network is concatenated with the previous portfolio position and fed through a fully
connected neural network.

The authors compared their results with 4 different traditional strategies using two
portfolios with 3 assets each. The model outperforms the proposed benchmark. However, the
number of assets evaluated is fairly low, the benchmark strategies are relatively simple and
the performance gain is not very significant. Moreover, using Q-Learning introduces several
challenges that could be avoid by using policy-based methods.

4.1.2 Policy-based Algorithms

The policy gradient method was first applied to finance by Moody et al. in [90]. Their
approach is called Recurrent Reinforcement Learning (RRL), and is based on the following
steps: the system takes actions (makes trades), receives feedback based on its performance
(such as profit, utility or risk-adjusted return) and then adjusts its internal parameters to
increase its future rewards. Therefore, the policy is optimized directly.

Let wt denote the portfolio weights. In the case of only one asset with fixed position sizes,
wt would only assume two values, either long or short 3, i.e., wt ∈ {−1, 1}. The position
at time t is a function of the previous allocation wt−1 and past returns rt ∈ RM . Both
quantities can be expressed as the state matrix St ∈ RN×M+2, where N is the number of
assets considered, M is the number of time lags considered and the other two extra columns
are the bias, which is set to 1, and the past allocation percentage of each asset.

According to the RRL framework, a single asset trading system has the following decision

3. The short operation involves borrowing shares and selling them afterward. These shares have to be
repurchased later, so a profit is made when the repurchasing price is lower than the price when they were
first sold.

42



function:
wt = f(θt; St) , (4.5)

where θt = [θb, θ1, ..., θω] ∈ RM+2 denotes the learned policy parameters at time t. In the
case of a trading system with only one asset and fixed position size, the allocation function
can be written as:

wt = sign(θb + θ1 × rt + θ2 × rt−1 + · · ·+ θM × rt−M + θω ×wt−1)

wt = sign(Stθt
T )

(4.6)

where sign is the sign function, θω is the corresponding weight of the previous allocation and
θb is the weight of the bias term. In this setting, the agent will take a long position when
wt > 0 and short position when wt < 0.

This model can be easily extended to allow continuous allocations by replacing the sign
function with other non-linear functions f(.), such as tanh(·) when short orders are allowed,
or sigmoid(·) in a long-only portfolio.

The RRL algorithm can also be extended to deal with multiple assets. Denoting wi,t as
the portfolio weight of the i-th asset at time t, the allocations in a long-only portfolio with
N assets have to satisfy the following conditions:

wt,i ≥ 0 and
N∑
i=1

wt,i = 0, ∀t . (4.7)

One straightforward way to impose these constraints without performing a constrained
optimization is to use a softmax function in the output of the model:

wt,i =
exp(T fi(.))∑N
i=1 exp(T fi(.))

(4.8)

where fi(.) is the i-th column of f(Stθt
T ), which represents the score function of asset i

(output before normalization), and T is the temperature parameter 4, often set to 1. Hence,
the contribution of each asset is normalized in order to satisfy the allocations constraints.
Moreover, it is possible

Since our application is concerned with a long-only portfolio, we employed the sigmoid
function. The allocation at each time step is then determined by

wt,i =
exp(sigmoidi(Stθt

T )∑N
i=1 exp(sigmoidi(Stθt

T )
, (4.9)

where sigmoid(x) =
1

1 + e−x
.

4. For low temperatures, the allocations are less concentrated, i.e., closer to an uniform portfolio. For
higher temperatures, the allocation is more aggressive in the sense that assets with higher score get assigned
greater weights.
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As an RL-based method, the RRL algorithm aims to maximize a performance function Jt
by adjusting its policy parameters θt in a continuous manner. These functions are related to
the portfolio profits (or losses) obtained after a sequence of continuous allocation during T
time steps. The optimization task is thus:

max J(Rt;θt) , (4.10)

where Rt is the portfolio return, as defined in eq. (3.9). The performance function can be
expressed as a function of the sequence of portfolio returns J(R1,R2, ...,RT ), which we
denote as JT.

This maximization for a complete sequence of T allocations can be performed offline using
batch optimization algorithms, or online using stochastic optimization methods. Using the
chain rule, we can write the gradient of JT with respect to the policy parameters θ of the
model after a sequence of length T as

dJT(θ)

dθ
=

T∑
t=1

dJT

dRt

{
dRt

dwt

dwt

dθ
+

dRt

dwt−1

dwt−1

dθ

}
(4.11)

The performance function UT can be optimized in batch mode by repeatedly computing
its value on forward passes and updating the policy parameters θ by using an optimization
method. For example, the update rule for gradient ascent becomes:

θk+1 = θk + α∆θ ,

with ∆θ =
dJT(θ)

dθ
,

(4.12)

where α is the learning rate.

It is worthwhile to note that due to the inherent recurrence, the derivatives
dwt

dθ
depend

upon the entire sequence of previous time steps. Therefore, it requires the use of recurrent
algorithms such as backpropagation through time (BPTT) [121] or real-time recurrent learning
(RTRL) [123] to correctly compute the weight updates.

The derivative of wt with respect to the policy parameters θ can be written as:

dwt

dθ
=
∂wt

∂θ
+

∂wt

∂wt−1

dwt−1

dθ
(4.13)

Additionally, we can use a simple online approximation of equation (4.11) by considering
during the forward pass only the terms that depend on the most recent return:

dJt(θ)

dθ
=

dJt
dRt

{
dRt

dwt

dwt

dθ
+

dRt

dwt−1

dwt−1

dθ

}
(4.14)

Similarly to the offline optimization, the policy parameters can be updated using gradient
ascent

θt+1 = θt + α∆θt

with ∆θt =
dJt(θt)

dθt
,

(4.15)
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and the stochastic version of equation (4.13):

dwt

dθt
≈ ∂wt

∂θt
+

∂wt

∂wt−1

dwt−1

dθt
. (4.16)

In a follow-up paper, Moody and Saffell [88] show that RRL produces better trading
strategies than systems that use Q-Learning. The performance was evaluated on trading
currency-pairs and risky assets. They argue that value-based methods are natural for problems
where immediate feedback on performance is not readily available at each point in time.
However, for many financial decision making problems, results accumulate over time, and
one can immediately measure short-term performance and use it to update the policy of the
agent.

Building upon the RRL algorithm, in [43] Gold explores the effects of using more complex
decision functions for trading currency pairs. More specifically, the proposal introduces a
hidden layer, allowing the agent to learn more complex decision rules. The decision function
becomes:

wt = sign(htρ
T
t + v′)

ht = tanh(stθt
T ) ,

(4.17)

where ρ and v′ represent the weights and bias of the second layer, respectively, and st is
modelled as the last M exchange rate variations of a given currency-pair.

The model was evaluated for 25 different currency-pairs using hourly-data. Instead of
using the conventional method of splitting training and testing sets by time, Gold splits 10
pairs for training and 15 for testing. However, such an evaluation strategy is not recommended
as it could cause look-ahead bias.

The overall performance was positive, but Gold attributes the high performance to the
simplicity of the price model used in the simulations, as just a single price quote is used
at each half hour and the trader is guaranteed to transact at that price. In reality, foreign
exchange prices are very noisy [89], so many of the prices used in simulation are probably not
available in real time.

Gold also analyses the impact of changing the network parameters (number of neurons)
and training parameters (learning rate, number of epochs used for training and length of the
training). Overall, the optimal parameters varied widely depending on the currency-pair.
Moreover, the author found that the two-layer neural network performance was worse than
the performance achieved by a single layer network, due to overfitting. Nonetheless, as the
first to model the policy as a neural network, [43] can be considered as an early precursor of
the deep recurrent reinforcement learning methods such as [38].

Dempster and Leemans [29] expand the RRL algorithm in another direction by embedding
an RRL trader into a larger trading system with three layers. The first layer of the system
is composed of the RRL agent with two proposed performance tweaks. First, the authors
rescaled the model’s weights as soon as one of the weights hit a certain threshold value. This
was done to avoid weights with large values, but a more reasonable choice could be using
regularization in the gradient update [15]. The second proposed change aims to improve the
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position updating scheme by recalculating the output of the trading model twice: once after
the new inputs have been received and again after the weights are updated.

The second layer performs risk management by introducing a stop-loss for every trade,
which is set and adjusted so that it is always a given level under or above the best price
reached during that position. If the price reaches this value, the order is stopped (closed).
In addition, a “cool-down period” is introduced after a position is stopped to avoid another
unexpected loss in succession. Finally, this layer also terminates the agent’s operations if the
maximum drawdown is reached during the period.

The final layer aims to optimize the investor’s utility function by updating the previous
layers’ parameters. The authors define a custom risk measure Λ:

Λ =

∑T
t=0R2

t1(Rt < 0)∑T
t=0R2

t1(Rt > 0)
, (4.18)

and a utility function U defined by

U(R̄,Λ, v) = a(1− v)R̄ − vΛ , (4.19)

where Rt is the portfolio’s return, R̄ is the average portfolio return in the period of length T
considered, v is the system risk aversion and a is a constant.

The utility U aims to penalize large negative rewards via Λ and control the risk via the v
parameter. The function U is also used to tune several parameters, such as the stop-loss level
and the learning rate. The model was evaluated on minute-to-minute EUR/USD exchange
rate, achieving an impressive 26% annualized return. One of the most important contributions
of this paper is to present a multi-layer system with a recurrent reinforcement learning trader.

Instead of adding more layers, Maringer and Ramtohul [82] proposed a regime-switching
model. They argue that linear models might not be suitable to capture all the intricate aspects
of financial data but, on the other hand, black-box approaches such as neural networks should
be avoided because it is important to understand how economic variables affect financial
markets.

With this in mind, Maringer and Ramtohul define models that can have different regimes,
where each regime may have different dynamics. This framework is better adapted to deal
with dramatic changes in behaviour in financial series, such as those caused by major crises
or changes in government policy [48].

Maringer and Ramtohul considered two threshold-based regime-switching methods, the
threshold autoregressive (TAR) and smooth transition autoregressive (STAR) models. These
can be defined as

Gt =

{
1[qt > c], for TAR
[1 + exp(−γ[qt − c])]−1, for STAR ,

(4.20)

where qt is the transition/indicator variable, c is a threshold value, and γ defines the
smoothness of the transition. The values Gt for the threshold model are binary values, while
for the smooth transition version, Gt can take any value in the range [0,1].
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The regime-switch recurrent reinforcement learning (RSRRL) model is given by:

wt = yt,1Gt + yt,2(1−Gt)

yt,j = tanh(stθ
T
t ) for j = {1, 2}

(4.21)

where yt,j is the same as in standard RRL. The model can be interpreted as a combination
of two RRL agents with different weights and regimes. The final output is defined by the
weighted average of the output of each model and they can be trained by the same procedure
described in [91]. The weights Gt are determined according to the volatility of returns.

The RSRRL was evaluated using daily data from 12 stocks that compose the Dow Jones
Industrial Average (DJIA) index. The authors showed that the performance of RSRRL is
superior to RRL in the majority of cases, specially in situations where the data sets are
characterised by distinctly different regimes such as financial crises or economic policy changes.
However, the results are not sufficient to conclude that RSRRL is consistently superior to
standard RRL, as RRL outperformed the regime-switching variants in some cases. Moreover,
other data frequencies should be used and different stocks included in order to have a more
significant comparison.

Similarly, Zhang and Maringer also used multiple RRL agents [125], but instead of
averaging their output according to the regime-switching framework, the parameters of all
models were averaged to determine the final model’s weights. The intuition was that by
considering different agents trading the same asset, the noise would be reduced and the model
would be more robust.

More specifically, Zhang and Maringer propose two update scheme. The first scheme is
called “average elitist”, and in this method several models are initialized with random weights
and trained using the training data. The training period also covers an evaluation period,
which is used to rank the best n ∈ N agents according to their Sharpe ratio.

Then, a new RRL agent is initialized using the average parameters of the “elite” members
for the testing period. More formally, letting t0 = Ttrain + 1 be the first testing step, the
policy parameters are initialized as:

θ̂t0 =
1

n

n∑
i=1

θt0,i. (4.22)

The updates of the policy parameters are:

θ̂t+1 = θ̂t + α∆θ̂t

with ∆θ̂t =
1

n

n∑
i=1

dJt(θt,i)

dθt,i
,

(4.23)

The second scheme is called “multiple elitist”, which is based on training different RRL
agents using the “average elitist” technique, and aggregating their parameters based on the
correlation among assets. Let m be a group of Ma highly correlated assets. The gradient
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update of the elite agent associated with m is given by

∆θ̌mt =

(
φ∆θ̌mt + (1− φ)

1

Ma − 1

∑
j 6=m

∆θ̂t
j

)
, (4.24)

where φ is the parameter that controls the influence of gradients from outside m. The weights
are initialized using Eq. (4.22) and updated using

θ̌
m

t+1 = θ̌
m

t + α∆θ̌mt . (4.25)

The Pearson correlation coefficient is used to identify highly correlated stocks in these groups.
The agents were evaluated using daily prices from the companies of the S&P 500 index

and each of the RRL trading systems consisted of 100 individual agents. The “average
elitist” approach selected the top 5% performing agents. The presented results show that the
system is able to beat the buy&hold strategy and a random agent. However, the results are
not very impressive when compared to these simple strategies, considering the amount of
extra computation. There is no comparison with standard RRL. Moreover, estimating the
correlation between assets can lead to large errors if the number of assets is large compared
to the number of observations [61]. This may be one of the reasons why the authors did not
find any meaningful improvement by employing the multiple elitist when compared to its
average version.

Some extensions of RRL have also been proposed in the literature to deal with high-
frequency trading. However, these extensions are based on preprocessing or using other
information as input. We present only a brief overview of these papers as these applications
are concerned with high-frequency data, and our main goal is to deal with low-frequency
asset allocation.

Gabrielsson and Johansson in [39] use RRL with data from Japanese candlesticks to trade
the S&P 500 equity index futures contract. According to their results, the agent trained
on the candlestick outperformed the basic RRL trader. An alternative approach was used
by Deng et al. in [31] to deal with high-frequency trading. Sparse coding is used to create
features, based on the argument that it has significant advantages in noise reduction and
task-driven dictionary learning.

More recently, Almahdi and Yang proposed in [3] a recurrent reinforcement portfolio
allocation model using particle swarm optimization (PSO) methods 5 [63]. The trading signals
for each individual asset are generated by the RRL agent, which is trained using the Calmar
ratio (a risk-adjusted metric) as the reward function. Since both short and long operations
are allowed, the score function of each asset i is given by:

ft,i = tanh(st,iθt
T ). (4.26)

5. Particle swarm optimization is a population based approach similar to genetic algorithms where a
collection of particles moves in the solution space and at each step the algorithm evaluates the fitness function
for every particle moving in the space.
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As the RRL will only act indicating if the signal is to long or short a given asset, the
authors imposed the following rule:

ft,i =

{
−1, if tanh(st,iθt

T ) < 0

+1, if tanh(st,iθt
T ) > 0

(4.27)

Next, the weights of the portfolio are obtained by using the Calmar ratio as the fitness
function for the PSO. The particle swarm optimization procedure described is closely related
to [25].

The assets with the K highest fitness are selected and then normalized, according to their
fitness value. Some other constraints are also taken into consideration, such as cardinality,
floor and ceiling values. This results in PSO weights psot,i and the final portfolios weights
are obtained as follows:

wt,i = ft,i psot,i, (4.28)

respecting the constraint
∑K

i |wt,i| = 1,∀t.
This model was evaluated using data from 2011 to 2015 from the S&P 100 index and the

authors experimented with four variants of the PSO algorithm. The parameter K was set
to 10, so the portfolio was always composed of 10 different stocks. The results show that
one variant consistently outperformed the other variants and the benchmark. One of the
limitations of [3] is that the number of equities is fixed throughout the whole period. This
could limit the risk diversification under periods of financial stress. Moreover, information is
discarded by imposing Eq. (4.27). With this approach, a score of 0.99 and 0.01 are treated
the same way. Finally, it is unclear why the model is evaluated over only 5 years of data.

One of the first attempts to apply deep reinforcement learning in an asset allocation
problem is proposed by Deng et al. in [30]. The system consists of two components. First, a
fuzzy layer is used to reduce the uncertainty in the original financial data [69, 97]. The fuzzy
sets are defined in groups based on their trends (increasing, decreasing, or no trend). The
second component is the trader system, implemented as a recurrent neural network with 4
layers. The reward is simple returns and the agent actions are mapped by a tanh function,
so the trader can stay long or short. The model was backtested on minute by minute data of
three Chinese futures markets, and on daily data for the S&P 500 index. As opposed to most
previous works, this paper compared their proposed model with models from other papers.
The result was compared to the shallow version of their proposed algorithm, to standard
RRL [88], to RRL using sparse coding [31] and to the Buy&Hold strategy.

Guo et al. [47] use a Convolutional Neural Network (CNN) to directly approximate the
policy function with the goal of maximizing the expected logarithmic return of a portfolio.
The proposed algorithm is called Robust Log-Optimal Strategy with Reinforcement Learning
and is based on two steps. The first step is to estimate the optimal portfolio allocation vt
using estimations for the mean and covariance matrix of the assets’ returns. These estimations
are done by computing the Pearson correlation coefficient between the current price returns
and historical returns, and choosing the time period in which the coefficient is the highest.

The second step is to use a CNN to approximate the policy in order to obtain the final
weight allocation. The state is composed of the initial portfolio estimations and other input
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features such as opening, highest and lowest prices. The model was evaluated on 100 randomly
selected constituent stocks of the CSI 300 index.

A deep learning approach was also used in [59]. The input features consist of asset prices
and the agent policy is approximated by a deep neural network in order to compute a set
of portfolio weights as the agent’s action. The gradient of the state-action value function is
simply the portfolio’s adjusted sample return after taking an action. This action is determined
in a constrained matter based on the softmax voting scores from the output layer.

The neural network consists of a CNN with two hidden layers: a convolution layer and
a fully-connected layer. The height of the convolution layer’s filter is equal to the number
of assets. Pooling is not applied after the convolution layer as it causes loss of location
information. Following the convolution layer there is a fully connected layer, and a softmax
output layer. The proposed method outperformed most of the benchmark strategies when
trading a portfolio with 12 cryptocurrencies 6.

4.1.3 Actor-critic algorithms

In this section, we present papers that have used actor-critic methods in portfolio opti-
mization problems. This methodology combines value-based and policy-based algorithms,
and is the basis of state-of-the-art RL methods [103, 104].

Zhang et al. evaluated three deep reinforcement learning algorithms in the task of trading
future contracts: deep Q-learning [87], deep policy gradient, and Advantage Actor Critic
(A2C) [86]. They represented the state space using past returns along with two technical
indicators: the moving average convergence divergence (MACD) and the relative strength
index (RSI) indicators [11].

The policy and Q-function are approximated using a two-layer LSTM network [41], and a
separated model is trained for each asset class. The reward function is set as profits obtained,
representing a risk-insensitive trade.

The model evaluation was fairly comprehensive, as they evaluated the performance of
each of the three models using 9 years of data and multiple different metrics, including
the annualized returns, volatility, volatility of negative returns, Sharpe ratio, Calmar ratio,
maximum drawdown, percentage of positive trade returns and the ratio between positive and
negative trade returns.

Moreover, the performance of the RL agents was also compared to other stategies, such as
Buy&Hold, and methods based on technical analysis. The RL agents were able to outperform
the benchmarks, but only one asset was traded at a time. It would be interesting to expand
the number of assets and experiment with other reward functions.

Li et al. [76] propose a novel Adaptive Deep Deterministic Reinforcement Learning
approach for the portfolio allocation problem. The key idea of their model is to adjust the
amplitude of changes according to the signal of the prediction errors (difference between the
actual and expected rewards). In this case, the learning rate can be adjusted from one time

6. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin
as the best-known example.
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step to the next.
The model is mainly based on the Deep Deterministic Policy Gradient (DDPG) [107],

which aims to combine a policy gradient network (actor) with a Q-learning network (actor).
Inspired by [74], the authors modified the Q-Learning update to the following:

Qπ(st+1, at+1) = Qπ(st, at) +

{
α−δ(t), if δ(t) < 0

α+δ(t), if δ(t) > 0 ,
(4.29)

where δ(t) is the prediction error, calculated as follows:

δ(t) = Rt −Qπ(st, at) , (4.30)

which represents the difference between the actual and expected rewards.
The state space comprises past returns and past allocation, the actions are the weights

of the portfolio and the reward is the cumulative return. Random Gaussian noise is added
to encourage the actor to explore the action space and a softmax rule is used to control the
exploration-exploitation for the Q-Learning.

The proposed method was evaluated in terms of Sharpe ratio and cumulative return
trading 30 stocks from the DJIA index using 17 years of data. The authors set α− = 0 and
α+ = 1 in Eq. (4.29), making the Q-learning only update its values when δ(t) is positive.
These changes enhance the model when compared to the standard DDPG, as the reported
results show significant improvement. Moreover, the proposed model also outperformed the
mean-variance portfolio and Buy&Hold strategies.

One of the main advantages of policy-based RL methods is that they can be applied
directly to large continuous domains. However, one of the drawbacks of approximating the
optimal policy with a deep neural network is the large number of parameters, which can
make the model suffer from suboptimal solutions.

Moreover, the fact that model-free RL solves portfolio optimization problems by adjusting
its policy parameters for each new state and action makes the dynamics of its learning
fundamentally dependent on the samples used. Since historical prices used for training are
just a realization of a complex process of market price, model-free RL is particularly sample
inefficient in this case.

Another concern with approximating the policy function with an overly complex function
(like a deep neural network) is overfitting. This is a particular concern in our case, since the
availability of data is limited.

4.1.4 Model-based Reinforcement Learning

Unlike model-free algorithms, model-based RL methods uses simulated transitions to
learn a model, resulting in increased sample efficiency and, consequently, increased stability.
The main challenge lies in simulating transitions of a complex problem. A novel alternative
is proposed by [124]. The authors use a Generative Adversarial Network (GAN) to generate
synthetic market data to overcome sample inefficiency. This is achieved by training a Recurrent
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GAN (RGAN) using real historical price data to produce more data. The synthetic data is
then used to make price predictions and train the off-policy actor-critic DDPG algorithm
in an imitation learning framework. Despite its promising results, the implementation is
highly-complex and lacks interpretability.

4.2 Key Observations
After reviewing the existing literature on the topic of reinforcement learning for portfolio

allocation, we can identify some desirable characteristics of the design and evaluation process
of a robust asset allocation model that uses reinforcement learning:

— Comprehensive Evaluation: the proposed model is evaluated using several metrics,
including but not limited to cumulative return, maximum drawdown, Sharpe ratio and
volatility. Additionally, the model should be tested during different market conditions.

— Comparison with other reinforcement learning methods: the proposed model’s perfor-
mance metrics are compared with other similar RL algorithms.

— Comparison with classical portfolio techniques: the proposed model performance
metrics are also compared to classical portfolio techniques, such as those described in
Section 3.2.

— Interpretability: a model whose decisions can be interpreted offers a higher degree
of transparency and less uncertainty to a human expert. This factor also ensures
that automated trading systems are more tractable, making it easier to fine-tune its
parameters whenever performance starts to deteriorate.

We aim to address these aspects in our proposed methodology and contribution, described
in the next chapter.

4.3 Summary
We presented a literature review of the application of reinforcement learning to the

portfolio allocation problem. Over the past two decades, the RL research community has
made considerable advances in this field.

However, there are still room for improvement. In particular, a more rigorous and standard
evaluation procedure would lead to more reliable assessment of new proposals.
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Chapter 5

Methodology and Proposed Extensions

In Chapters 2 and 3, we introduced basic concepts of reinforcement learning and financial
theory. Our goal is to use reinforcement learning in a portfolio optimization task. Nevertheless,
we need to first formulate our application problem of interest so that it is an suitable form
for the RL framework.

The problem of asset allocation consists in dynamically deciding in which assets to invest
the available capital at each time step t in order to maximize the expected total return or
another relevant performance measure, such as the risk-adjusted return. It can be formalized
as a discrete-time stochastic optimization problem and the most natural formulation is a
Markov Decision Process (MDP).

This chapter starts by casting the problem of asset allocation as a reinforcement learning
task. Section 5.1 discusses the assumptions underpinning the formulation. In Section 5.2
we describe the types of agent that are used, and in Sections 5.3, 5.4 and 5.5, we define the
key aspects of the environment. In Section 5.6, we discuss suitable reinforcement learning
frameworks and outline an approach for validation of baselines. Finally, we propose two
extensions to the RRL algorithm in Section 5.7.

5.1 Assumptions
In order to evaluate an asset allocation model, we have to backtest it, i.e., estimate its

performance as if it had been deployed in the past, without knowing any “future” market
information. This requires a series of assumptions regarding past conditions, which we present
below. Despite being simplifications, these assumptions are quite realistic if we are considering
assets that trade at a high volume [60].

5.1.1 Zero Slippage

The difference between the expected price of an order (buy or sell) and the actual price
that it is executed is referred to as Slippage. This often occurs in periods of high market
volatility or when the total value of the order is large compared to the trading volume of
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an asset. In our models and experiments, we assume zero slippage. Under the zero slippage
assumption, all orders are executed at the expected price.

5.1.2 Zero Market Impact

Very large orders can affect the market behaviour, provoking what is called a herd effect. 1

We assume that the agent orders are sufficiently small that they have zero market impact,
i.e., they have no influence on the market.

5.1.3 Sufficient Liquidity

All assets considered are assumed liquid, i.e, they can be converted into cash quickly, and
under the same conditions.

5.1.4 No Transaction Costs

When assessing the performance of a portfolio allocation strategy it is usually essential
to incorporate transaction costs [60, 90]. These are expenses related to trading and include
brokerage fees and commissions. Consideration of such costs is critical in preventing an agent
from gravitating towards very frequent changes in portfolio structure. The fees associated
with excessive changes can often outweigh the benefits of choosing a better balance of assets.

In this thesis, we restrict the portfolio allocation strategy to make changes at most
once per month, meaning that the transaction costs have a much reduced impact on the
performance. Moreover, commission-free brokers are becoming more popular recently [96].
For these reasons, in our experiments we assume that all agents can change their allocations
at no extra cost.

5.2 Types of Agents
We consider two different kinds of models. The first type is based on the portfolio

optimization algorithms presented in Chapter 2. We refer to the agents in these models
as classical portfolio (CP) agents. They rely on assumptions concerning expected returns
and intra-asset correlation to determine the portfolio allocation. The second type does not
depend on these assumptions. Instead, it is based on the reinforcement learning framework.
We refer to the agents in the models belonging to the second type as RL agents.

The following discussion regarding reward, action and space states only concerns the RL
agents, as the framework of CP agents does not depend on these elements.

1. A herd effect exists in the financial market when a group of investors ignores their own information and
instead only follows the decisions of other investors.
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5.3 Action Space
We consider a financial market consisting of N different assets, traded only at discrete

times t ∈ {0, 1, 2..., T}, and with prices defined by a price vector pt = [p1,t, ... , pN,t].
The agent observes the state of the market at each time step t, and based on this

information it chooses how to redistribute the portfolio allocations. The change in wealth
(profit or loss) from the allocation at time t− 1 is also observed and is used to update the
policy of the agent. The agent’s goal is to maximize a given performance measure.

In order to allocate assets, the RL agent has to determine the portfolio vector wt for all
T time steps. Therefore, the action at at time t is the assignment of a portfolio weight to
each of the N assets:

at ≡ wt = [w1,t, ... , wN,t]
T . (5.1)

As a consequence, the action space A is defined on a continuous N -dimensional real space
RN :

at ∈ A ⊆ [0, 1]N , ∀t subject to
N∑
i=1

ai,t = 1 (5.2)

We are assuming a long-only portfolio, i.e., the weights are non-negative since short-selling is
not allowed.

5.4 State Space
The agent interacts with the environment, defined as the financial market. This environ-

ment is extremely complex, containing all available information in the markets and including
its participants’ expectations towards future events and earnings. Hence, it is impossible to
provide all this information for the agent. Nonetheless, asset prices are publicly available and
it is believed that they contain enough information to drive investment decisions [68, 79].

At each time step, the agent can observe the asset prices and use this information to
allocate the portfolio weights accordingly. Let pt = [p1,t, ... , pN,t] denote the closing prices
for all N assets at time t and denote the log-return of asset i at time t as ri,t = log(

pi,t
pi,t−1

).
The log return vector can then be defined as

rt = [ri,t, ... , rN,t]. (5.3)

Additionally, we want the model to consider its previous allocation (wt−1) as one of the
state components. This helps the model to avoid dramatic fluctuations in the allocations
from one time step to the next. This is particularly important when transaction costs are
taken into account. The state st at time t is defined as

St =


w1,t−1 r1,t r1,t−1 . . . r1,t−M
w2,t−1 r2,t r2,t−1 . . . r2,t−M

...
... . . . . . .

wN,t−1 rM,t rM,t−1 . . . rM,t−M

 (5.4)
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where ri,t−M is the log-return of the i-th asset between times t−M−1 and t−M . Hence, the
state is a function of the previous action and past returns. 2

5.5 Reward
The last component remaining to be defined is the reward signal. This scalar value has

to fully specify the objective of the agent since the goal of a RL agent is to maximize the
cumulative reward Gt, as defined by equation (2.1). As a result, the reward function can
have significant a impact on the strategies employed by the agents. The goal of a portfolio
manager is usually to maximize the return while minimizing the risk. Moody et al. [90]
suggests two reward function that can be used in RL applications: the log return and the
differential Sharpe ratio.

5.5.1 Log return

Let Rt be the reward obtained at time t, Rt be the t-th row of return matrix R and wt be
the corresponding action (allocation) for time step t. If we consider the log-return as reward
function, the goal of the RL agent is defined as:

maximize
θ

T∑
t=1

E[γtln(1 + Rtwt)] (5.5)

The agent using the log return obtained by its allocation in the previous step is performing
a multi-step maximization of the cumulative log return, defined by the sum of the log returns
obtained during the evaluation period (see eq. (3.35)). The agent trained using log returns
as the reward is only focused on maximizing the returns, and the volatility is not penalized.

5.5.2 Differential Sharpe Ratio

In practice, a good portfolio manager should always consider the risk exposure when
constructing a portfolio [35]. One of the most commonly used metrics that combines the risk
and reward trade-off is the Sharpe ratio [105], defined as:

SRT =
√
T

E(Rt)√
V ar(Rt)

, (5.6)

where T is the length of the time period, Rt is the portfolio return, E is the expected value
operator and V ar the variance, both over the same time period T .

In order to use the Sharpe ratio as a reward function for on-line training, we need to
compute the influence on the Sharpe ratio of the return at time t. The differential Sharpe
ratio (DSR), introduced by [90], allows to approximate this influence.

2. In some cases, the state can also include an extra column of ones to represent the bias term.
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Let us define two auxiliary variables, AT = 1
T

∑T
t=1Rt and BT = 1

T

∑T
t=1R2

t . The Sharpe
ratio can then be written as:

SRt =
At√

Bt − A2
t

. (5.7)

Moreover, we can express At and Bt in terms of their exponential moving estimates

At = ηRt + (1− η)At−1 = At−1 + η(Rt − At−1)

Bt = ηRt + (1− η)Bt−1 = Bt−1 + η(R2
t −Bt−1)

(5.8)

The quantity η controls the magnitude of the influence of the return Rt on the Sharpe ratio
St. The DSR is obtained by expanding (5.7) to first order in decay rate η:

SRt ≈ SRt−1 + η
dSRt

dη
|η→0 (5.9)

As only the first-order term in (5.9) depends upon the return Rt at time t, the differential
Sharpe ratio Dt can be defined as:

Dt ≡
dSRt

dη
=
Bt−1(Rt − At−1)− 1

2
At−1(R2

t −Bt−1)

(Bt−1 − A2
t−1)

3
2

(5.10)

We can understand the influences of risk and reward by observing the terms in the
numerator. The first term becomes positive when Rt > At−1, i.e., when the return obtained
exceeds the moving average of past returns. On the other hand, the second term is negative
if R2

t exceeds the moving average of past squared returns Bt−1, so even positive returns can
be penalized if the return is too abrupt.

5.6 Validation of Reinforcement Learning Agents
In this section, we start by discussing which RL methods are best suited to our problem.

Subsequently, we specify and describe the reinforcement learning algorithms that will be used
as baselines in our experiments. We use agents trained using the REINFORCE [122] and
PPO [104] algorithms.

5.6.1 Suitable RL Framework

In the reinforcement learning framework, the goal is to find an optimal policy such that
the obtained cumulative reward is maximized. This can be achieved either by using the
agent’s experience to improve a policy or to improve a model of the environment and then
derive a policy.

The inherent uncertainty of the financial market presents a great challenge when modelling
it as the environment, since just fitting a model to predict asset prices is itself a challenging
problem. In the RL frameworks that attempt to model the environment, the significant
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approximation error, induced by both the modeling and the optimization, can propagate over
time and hinder performance. As a consequence, most RL approaches in financial applications
use model-free frameworks, as seen in the Chapter 4. Hence, we will consider this type of
methodology in the rest of this work.

In the model-free RL framework, algorithms can be divided into value-based, policy-based,
or a combination of the two. In value-based RL methods (such as Q-Learning [120] and
SARSA[101]), the agent’s action is determined by finding the optimal policy π∗ indirectly
via an optimal state-action value function q∗(s, a) that defines how good an action is after
following the actual policy in a given state. This approach is straight-forward in problems
with discrete state and action spaces, as all state-action values can be stored in a look-up table.
If the number of possible states is too large to be stored or if the state space is continuous,
using a look-up table is no longer possible. In this case, we can use a approximation function,
such as a neural network or a linear model, to approximate q(., a) ∀a ∈ A.

However, this approach cannot be directly applied to continuous domains since finding
the optimal action in a continuous space would require an iterative optimization process at
every time step. One alternative is discretizing the action space, but it would suffer from
the curse of dimensionality and it is not ideal for an asset allocation application where the
dimension of the action space is linked with the number of assets considered.

Consequently, policy-based approaches seem more suitable for the portfolio allocation
problem. These methods learn the policy parameters θ based on the gradient of the perfor-
mance measure J(θ) with respect to the policy parameter. A benefit of using policy gradient
methods is the ability to implement stochastic policies, which allow the agent to deal with the
exploration/exploitation trade-off 3 in an intuitive manner. The action is chosen by sampling
a probability distribution based on the policy, which allows the agent to explore new actions.

With these aspects in mind, we choose two different policy gradient methods to use as
baselines. The first is the REINFORCE algorithm, which is one of the simplest PG algorithms
that can be parametrized by a deep neural network. This aspect is important since we are
interested in understanding the benefits and shortcomings of employing a “black-box” model.
Since the REINFORCE presents several shortcomings, we also include the PPO algorithm, a
state-of-the-art policy gradient method, as a baseline.

5.6.2 REINFORCE Evaluation

In order to validate the REINFORCE algorithm implementation, we perform an experiment
using this algorithm with a small set of real financial data. More specifically, the agent is
trained using data from equities index and bonds from two major economies: the United
States (S&P 500 index and U.S. 10 Year Treasury Note) and Germany (DAX index and
Germany 10 Year Government Bond). The algorithm to train the REINFORCE agent is
presented in Algorithm 1.

3. The exploration-exploitation trade-off arises in decision-making systems where there is a frequent pay-off
uncertainty. In essence, the system has to decide whether to repeat decisions that have worked well so far
(exploit), or to make novel decisions, hoping to obtain even greater rewards (explore).
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Algorithm 1 REINFORCE (Monte Carlo Policy Gradient)

1: Inputs: N assets, states St ∈ RN×M , prices P, exploration parameter σe
2: Initialize: Policy parameters θ0, initial allocation weights w0

3: Initialize trajectory buffer: D
4: Returns: Optimal weights θ∗
5: while θ has not converged or maximum number of epochs has not been reached do
6: ∆θ = 0, G = 0
7: for t = 1, ..., T do
8: get state st
9: sample asset allocation from policy wt ∼ π(.|St, θ, σe)
10: evaluate reward Rt(wt)
11: accumulate rewards Gt ←− Rt +Gt

12: accumulate log gradients ∆θ ←− ∇θ log πθ(wt|St)Rt + ∆θ (Eq. 2.21)
13: end for
14: update policy parameters θ (Eq. (2.20))
15: end while
16: θ∗ = θ

It is important to emphasize that the reported performance for the training set does not
have a direct connection with the out-of-sample performance. The weights that are obtained
during the training procedure are updated at every epoch, which means that the algorithm
ends up incorporating future information during training after the first pass through the
data. For example, the agent’s weights during a given epoch at time t = 4 have already been
updated considering information from t > 4 in previous epochs. We conduct this exercise
merely to validate the REINFORCE approach and explore the impact of different parameter
settings on training performance.

The goal is to evaluate if the agent is able to outperform the benchmark, in this case, a
balanced (1/N) portfolio 4. In other words, we want to verify if the agent is able to learn
profitable strategies. Despite its simplicity, the 1/N portfolio proved to be quite competitive
in terms of out-of-sample performance when compared to other optimization methods [28].

In Figure 5.1, we present the results for the REINFORCE agents trained using monthly
returns data from 1980 to 2012 (approximately 80% of the available data). The policy was
approximated by a fully-connected (FC) neural network that can be defined as follows:

h1 = ReLU(W(1)[St ‖wt−1] + b(1))

h2 = ReLU(W(2)h1 + b(2))

wt = Softmax((W(3)h2 + b(3)))

(5.11)

where ‖ denotes the concatenation operation, ReLU the rectified linear unit activation
function [92], and W and b are the policy parameters.

4. A balanced portfolio always divide its resources equally, e.g., for a portfolio with N assets, all the
portfolio weights are equal to 1

N .
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The maximum number of epochs is set to 10,000 as the performance ceases to improve
after approximately 8,000 epochs. The network is trained using the Adaptive neural network
optimization algorithm (Adam) [66], with learning rate = 5× 10−5 as optimizer and weight
decay [80]. Adam is a common choice for training neural networks and we use weight decay
to prevent overfitting by penalizing weights with higher magnitudes. We opt for this simple
neural network architecture as the amount of data available is limited, because we are working
with monthly data. However, this architecture is still able to solve common RL test problems,
such as OpenAI gym 5 [17].

Other architectures such as Long-Short Term Memories (LSTMs) [53] and gated recurrent
units (GRUs) [22] are often used for time-series. However, the fine tuning of parameters can
be very time-consuming. The usage of FC layers is fairly common in RL as the main focus is
the optimization of a policy function. For example, FC layers were used to evaluate TRPO
and PPO when they were proposed. Finally, a FC network is the most general architecture
and does not introduce a strong inductive bias [8], which can affect the performance of the
baselines.

The reward is set to the portfolio return obtained during the last time step and the state
St is modelled as the monthly assets’ returns from the past 6 months. After training, the
agent obtained an annualized return of 10.6 %, slightly higher than the 9.98% from the
benchmark.

Figure 5.1: Reinforce training performance during different stages of training.

It is clear that it takes several thousands epochs before the agent is able to beat the

5. OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms.
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benchmark. In fact, the REINFORCE algorithm is known for its poor sample efficiency.
Therefore, it is common to take thousands of epochs until the agent performs better than a
random policy or a specific benchmark.

In the next subsection we present the validation results of a significantly more sample-
efficient method, the Proximal Policy Optimization algorithm.

5.6.3 PPO Evaluation

For the purpose of evaluating the PPO performance, we repeat the same experiment
performed on a small set of market data. The pseudo-code for PPO is presented in Algorithm 2.

Algorithm 2 Proximal Policy Optimization (PPO)

1: Inputs: N assets, states St ∈ RN×M , prices P, exploration parameter σe
2: Initialize: Policy parameters θ0, Critic parameters φ0, initial allocation weights w0

3: Initialize trajectory buffer: D
4: Returns: Optimal weights θ∗
5: while θ has not converged or maximum number of epochs has not been reached do
6: for k = 0, 1, 2, ... do
7: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment

for T timesteps.
8: Compute rewards Rt.
9: Compute advantage estimates, Ât based on the current value function Vφk .
10: Update the policy by maximizing the PPO objective (Eq. 2.36):

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min (L(s, a, θk, θ)) ,

using a stochastic gradient ascent method.
11: Fit value function by minimizing the mean-squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2

,

using a stochastic gradient descent method.
12: end for
13: end while
14: θ∗ = θ

The assets are the same as the ones used in the REINFORCE experiment, as well as the
architecture of the neural network, the reward function and the optimizer used. The only
difference is that the PPO model also employ a critic network, which is almost equal to the
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actor network. The only difference is on the final layer, as the critic outputs the estimate of
the value function instead of the assets’ weights. Figure 5.2 shows the results.

Figure 5.2: PPO Training Performance at different epochs

It becomes clear that the PPO can outperform the benchmark, even at the beginning of
the training. It achieved an annualized return of 17.5%, fairly superior to the one achieved
by the REINFORCE. Moreover, the difference in terms of sample efficiency is also quite
noticeable. Even after 8000 iterations, the REINFORCE agent still underperforms the PPO
agent trained for only 1250 epochs.

Nevertheless, more experiments are needed in order to draw solid conclusions, as training
performance can often be misleading. Financial markets have remarkably complex dynamics,
and even a model that performs well on out-of-the-sample data in the past can fail to achieve
good results in the future. Therefore, it is important to understand that impressive training
results do not imply favorable out-of-the-sample performance. In fact, even good backtesting
results do not guarantee profits in real applications.

5.7 Proposed Extensions
Despite all proposed extensions to the RRL model, none of them explicitly considered

each asset in a portfolio separately, i.e., the weight for a given input parameter is the same
irrespective of the asset. Different types of assets often have different behaviours that should
be taken into account. For the works that used neural networks to approximate the policy, if
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the asset class is ignored, the model loses its interpretability. With this in mind, we propose
two extensions in this direction.

First, we consider a matrix of weights Θ ∈ RN×M+2, instead of the conventional weight
vector θ ∈ RM+2. Additionally, we propose training different agents for different asset classes
or different economic sectors, and an agent with all assets to determine the final classes’
weights.

Finally, Moody and Saffell does not refer to any kind of regularization, but we implement
L2-regularization (with λ = 10−2) during training to avoid overfitting.

5.7.1 Matrix form

The components of the weight vector θ can be interpreted as the importance of each
state constituent. For example, if the largest weight component corresponds to the previous
monthly return, it means that this quantity has the most influence in the decision process 6.
In other words, it is possible to understand what drives the final allocation of the model.

This can be particularly valuable in the financial domain, as most of the time real
capital is being invested based on computer algorithms. Therefore, the interpretability is a
major advantages of the RRL when compared to the previous deep learning models. Before
committing capital and risking loss, an investor often wants to understand what drove the
investment decision.

REINFORCE and PPO depend on neural networks to approximate their policy. Despite
their outstanding performance in several domains such as as text [32], images [71], and graphs
[67, 116], they are still a black-box type of model. Their behavior and underlying mechanisms
are difficult to explain, in spite of recent efforts in promoting interpretability of deep learning
models [19].

According to the work of Lipton [78], the word ’interpretability’ in the context of machine
learning can be have two different meanings. The first is concerned with how the model
works (which is referred to as transparency) and the second consists of understanding and
extracting information from trained models. The RRL model is considered interpretable in
both senses.

The simplicity of RRL can be one great benefit when using it in a real-world application
where decision makers might need to understand the model’s behaviour. However, the
multi-asset version proposed by Moody et al. assumes that the policy can be described as a
vector θt ∈ RM+2, where M is the number of market variables for each asset, which implies
that a given state component has the same importance irrespective of the nature of the asset.

This simplification can hinder the model’s ability to deal with assets with different
dynamics. For example, let θ2 be the weight associated with the return two time steps ago.
For each asset i, the contribution of ri,t−2 would be given by ri,t−2 × θ2. It is clear that for
every asset, ri,t−2 has the same impact on the derived portfolio weight.

However, one of the key aspect of portfolio risk management is including assets from a

6. This is only true if the inputs have the same scale. Otherwise, higher weights might not be indicative
of greater importance.
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variety of different classes, e.g., bonds, equities, precious metals and commodities. These
assets are usually exposed to different risks. Since risk and return are closely related, “safer”
investments (lower volatility) like bonds usually have lower returns when compared to more
volatile alternatives, such as equities. Thus, one should not expect the past returns of different
assets to be treated with the same importance.

With this in mind, we propose a simple alternative to incorporate flexibility for each asset.
Instead of approximating the policy using a vector θ ∈ RM+2, we let each asset-indicator pair
have a different weight. The policy becomes a matrix Θ ∈ RN×M+2 defined as:

Θ =


b1 θ1,1 . . . θ1,M ω1

b2 θ2,1 . . . θ2,M ω2
... . . .

. . . ...
bN θN,1 . . . θN,M ωN


N×M+2

(5.12)

where θi,j represents the weight of the j-th state constituent of the i-th asset, and bi and ωi
are the corresponding bias and past allocation weight, respectively.

The main difference when compared to the vector version is that the allocation now
depends on the Hadamard product 7 between Θ and St. More specifically, it depends on the
column sums of these two matrices. We can define a score function of asset i as:

fi = sigmoidi(
∑
j

(St ◦Θt)ij). (5.13)

We can write the column sums of the Hadamard product in terms of the diagonal of a matrix
multiplication as follows [109]:∑

j

(St ◦Θt)ij = (ΘTSt)ii = diag(ΘTSt). (5.14)

The decision function that determines the allocation on asset i at time t becomes:

wt,i =
exp(sigmoidi(diag(ΘTSt))∑N
i=1 exp(sigmoidi(diag(ΘTSt))

. (5.15)

The weights can be updated using the same procedures described in Eq.4.11 and 4.12, i.e.,
updating the parameters according to their influence on the performance function.

The importance of having different weights for different assets is illustrated in the next
two figures. We report the out-of-sample performance of both the RRL vector form and
weight form in allocating a portfolio with only two assets (gold and commodities) in Fig. 5.3.
The details of the experiment are presented in the Appendix B.

7. For two matrices A = {aij} and B = {bij} with the same dimensions m× n, their Hadamard product
is the m× n matrix of element wise products A ◦B = {aijbij}.
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Figure 5.3: Comparison of performance between RRL using a vector of weights and using a
matrix of weights.

Note that only the matrix agent had a positive performance in the period. In order to
understand the difference behaviour of the two RRL variants, we can analyze the weights for
each model, presentend in Fig. 5.4.
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Figure 5.4: Weights of the RRL vector and RRL matrix presented as a heatmap.

All the weights in the vector variant are positive, meaning that the agent will act on
the asset’s momentum. In other words, if prices of a specific asset continue to increase,
the tendency to allocate more in that asset is also higher. This is also the case for the
commodities’ weights for the matrix variant. However, note that the weights for the most
recent time lags are significantly higher, making the short-term momentum response stronger.
At the same time, the weights associated with gold are very different. The bias term is
significantly negative, which creates a resistance in allocating in this asset. Also, the price
momentum has much less impact due to the negative weight on the rt−4 component.

These subtle differences help to illustrate how the matrix form of RRL can provide a
better model for allocating assets.

5.7.2 Decoupling

The second proposed extension is based on decoupling the allocation process in different
classes of assets or sectors. For example, we can divide stocks into different sectors (technology,
energy, utilities, etc) if we were to trade only equities from a specific stock market, or divide
assets into classes, such as bonds, equities index, commodities, gold, if we are allocating
macro assets.

In the decoupling framework, an independent agent is trained for each asset class, and an
additional model is trained with all asset classes. Essentially, the objective of the decoupled
models is to allocate all the resources within its asset class, and the coupled agent decides
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the final allocation percentage on each asset class. This procedure is illustrated in Fig. 5.5.

Figure 5.5: Decoupled version architecture.

For example, the equities model will always be allocated 100% in equities, but the coupled
version might decide to only invest 10% in equities. Therefore, the final allocation will be
10% in equities according to the proportions defined by the decoupled equities model. If the
decoupled version had allocated 50% in German equities and 50% in Canadian equities, the
final allocation would be 5% in each.

The decoupling processing allows flexibility with respect to two characteristics: the
individual dynamics and risk exposure of each asset class. With regards to risk exposure,
we can be aggressive on the decoupled model’s allocation by setting a high temperature for
this agents softmax function but more conservative on the final allocation by setting a lower
temperature for the coupled model. For example, even if the bond’s model decides to allocate
100% to a specific market, the coupled version can scale it down according to its convictions.

As the decoupled models are independent, different indicators and time lags can be defined
for each of them. Equities’ prices and dynamics tend to vary faster than bonds, so longer
time lags for equities might not be as informative as they are for bonds. Another advantage
is being able to incorporate indicators of different asset classes into the model.

These characteristics were not used in this work, but they can be useful when using states
that contain more complex indicators, instead of just historical prices. For instance, bonds
and equities tend to have opposite price movements 8. By incorporating a bond price indicator

8. This is not always true. For instance, in the 2020 sell-off due to the COVID-19 pandemic, both equities
and bonds prices fell sharply.
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into the decoupled equities model, the agent could potentially achieve a better performance.
The algorithm for training the RRL using the matrix form is presented in Algorithm 3.

Algorithm 3 Recurrent Reinforcement Learning - Matrix version (RRLM)

1: Inputs: Nd subset of assets, states st ∈ RN×M , prices pt, learning rate α
2: Initialize: Policy parameters Θ0, initial allocation weights w0

3: Returns: Optimal weights Θ∗

4: while Θ has not converged or maximum number of epochs has not been reached do
5: G = 0
6: for t = 1, ..., T do
7: get state st
8: get asset allocation from policy according to Eq. 5.15
9: evaluate allocation Jt = J(Rt)
10: accumulate the performance value G←− Jt
11: end for
12: update policy parameters Θ according to equations 4.11 and 4.12
13: end while
14: Θ∗d = Θ

The decoupled methodology is presented in Algorithm 4.

Algorithm 4 Recurrent Reinforcement Learning - Decoupled version (RRLD)

1: Inputs: N assets, states st ∈ RN×M , prices pt, learning rate α
2: Initialize: List of asset classes or financial sectors L
3: Returns: Final allocations w∗, trained decoupled weights Θ∗d
4: for i = 1, ..., |L| do
5: current_class = L[i]
6: train RRL model according to Algorithm 3 with Nd = current_class
7: store optimum asset class weight Θ∗d and final allocations wd

8: end for
9: train RRL model with all assets according to Algorithm 3
10: store weights wall

11: normalize individual allocations wd using the proportions from wall

12: w∗ = normalized allocations

The original RRL proposed by Moody et al. [88, 90, 91] uses an online version to optimize
the trading decisions. However, since the computational cost is low compared to deep learning
techniques, we employ batch gradient ascent as the optimization method.
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5.8 Summary
In the first section of this chapter, we formalized our financial market environment in

mathematical terms. Using this methodology, we enable RL agents to interact with the
environment and optimize a target portfolio. The agents’ actions are defined in terms of the
available assets, and the states are derived from market information and past actions. In
this framework, we have flexibility to define the agent’s goal by specifying different reward
functions. Subsequently, we identified the most appropriate RL methodology to apply to the
asset allocation problem. We conducted preliminary experiments to validate the baseline
agents.

We proposed two extensions to the RRL model, and showed that having different policy
parameters for each asset can improve the performance. More detailed and complete exper-
iments are presented in the next chapter. These allow us to more fully evaluate the value
added by these proposed extensions.
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Chapter 6

Results

In this chapter, we presents the results for the classical portfolio and reinforcement learning
agents described in previous chapters using real market data.

6.1 Data Description
In this work, we use financial data from 26 different assets that can be divided into three

different classes:
— Equities - Country-level stock indexes from 12 major developed economies: Australia

(S&P/ASX 200 ), Canada (S&P/TSX Composite), France (CAC 40), Italy (Milano
Italia Borsa), Spain (IBEX 35), Germany (DAX), Switzerland (Swiss Market), Japan
(Nikkei 225), Sweden (OMX Stockholm 30), Norway (OBX), United Kingdom (UK
100) and United States (S&P 500). These indexes represent the performance of the
largest public traded companies listed in their respective stock exchanges.

— Bonds - Sovereign 10-year bonds from the same 12 countries. These assets are debt
obligations that are issued by national governments to support spending. They are
considered safer than equities as their volatility is lower, and the default risk of a
sovereign bond from a developed economy is very low.

— Others (Alternative investments) - The last two assets are gold and commodities
(represented by the S&P GSCI index), aggregated into the “others” class. Despite
being in the same class, they are quite different. Gold is considered a safe haven asset
[10] 1, while commodities are considered a good investment in times of an optimistic
economic outlook.

The data consists in monthly prices of the assets presented above from January of 1980
to January of 2020.

1. Safe havens are financial assets that investors turn to to protect themselves or even profit from periods
of market turmoil.
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6.2 Classic Portfolio Optimization
Both Mean-variance and Black-Litterman portfolios depend on estimating the covariance

matrix and the expected returns. The Black-Litterman portfolio uses a Bayesian approach to
form new estimations of these quantities. On the other hand, the standard mean-variance
portfolio does not provide any specific technique on how to estimate them. Coming up with
good estimators for these quantities can be challenging, and is currently the main limitation
of these models. Their optimization procedure is robust with strong mathematical guarantees,
but estimation errors can have significant impact on the model’s performance.

In the following two subsections we present two alternative methods to estimate returns
and the covariance matrix.

6.2.1 Expected Return

The simplest and most intuitive approach to estimate expected returns is to calculate the
average of historical returns, which can be defined for an asset i over a period T as:

R̄s
i =

1

T

T∑
i=1

Rs
it (6.1)

where N denotes the total number of assets and 1 ≤ i ≤ N, 1 ≤ t ≤ T .
One of the limitations of the simple historical returns estimate is that it assigns equal

importance for all returns. However, the most recent information is often more relevant that
older information. As an alternative to simple historical returns, we can use exponentially-
weighted average (EWA) returns, which gives higher weight to more recent data. We can
define the EWA as:

EWAt =

∑t
i=0 kiR

s
t−i∑t

i=0 ki
, (6.2)

where ki = (1− 2
s+1

)i, and s ≥ 1 is the term that controls the decay of the series. Therefore,
the further away the observation is compared to most recent period, the lower the weight it
receives.

6.2.2 Covariance Estimation

Similar to the sample mean, the sample covariance matrix is the simplest method to
estimate the covariance. Besides being easy to compute, it is also an unbiased estimator.
However, this estimation can present significant errors if the number of assets is large compared
to the number of observations [61].

One alternative is using shrinkage to reduce estimation errors. The key idea of this
technique is combining the estimated sample covariance with a structured estimator F . The
estimator becomes:

Σ̂ = δF + (1− δ)S , (6.3)
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where δ is the shrinkage constant,which controls the compromise between the two estimators
and S is the sample covariance matrix. This process tends to pull the most extreme coefficients
toward more central values, reducing estimation errors. In this thesis, we use the Ledoit-Wolf
shrinkage as the shrinkage method [72].

Let sij denote the entries of the sample covariance matrix S. We can write the sample
correlations (ν) between assets i and j as

νij =
sij√
sijsjj

. (6.4)

The sample correlations are:

ν̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

νij . (6.5)

Finally, the entries of the matrix F are:

fii = sii and fij = ν̄
√
siisjj . (6.6)

In order to define the shrinkage coefficient, we need to first define three components. The
first element is the error of the shrinkage target χ̂.

χ̂ =
N∑
i=1

N∑
j=1

(fij − sij)2 . (6.7)

The other two components are estimates of the sum of asymptotic variances of the entries of
the sample covariance matrix φ̂ and the sum of asymptotic covariances of the entries of the
shrinkage target with the entries of the sample covariance matrix ρ̂, both scaled by

√
T .

φ̂ =
N∑
i

N∑
j

φ̂ij with φ̂ij =
1

T

T∑
t=1

{(Rit − R̄i)(Rjt − R̄j)− sij}2 , (6.8)

ρ̂ =
N∑
i=1

φ̂ij +
N∑
i=1

N∑
j=1,j 6=i

ν̄

2

(√
sjj
sii
ω̂ii,ij +

√
sii
sjj
ω̂jj,ij

)
, (6.9)

where

ω̂ii,ij =
1

T

T∑
t=1

{(Rit − R̄i)
2 − sii}{(Rit − R̄i)(yjt − R̄j)− sij} (6.10)

Finally, the optimal shrinkage constant is given by:

δ̂ = max

{
0,min

{
κ̂

T
, 1

}}
. (6.11)

The new covariance estimate can then be calculated by plugging δ̂ back into (6.3). In
order to assess if using different methods to estimate returns and covariance improves the
portfolio performance, we conduct an experiment with both methodologies and compare their
results.
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Table 6.1: Different investor profiles, their allocations, and volatility constraints. The volatility
constraint is based on the historical volatility from the in-sample period (1980-2012).

Investor
Profile

Equities
Allocations (%)

Bonds
Allocations (%)

Commodities
and Gold

Allocations (%)

Historical
Volatility

Maximum
Volatility
Constraint

Conservative 15% 80% 5% 4.6% 5%
Moderate 45% 40% 15% 7.5% 10%
Aggressive 65% 10% 25% 10.5% 15%

6.2.3 Parameter optimization

One way to evaluate portfolio allocation models is to considered different settings. For
example, what would be the performance of a portfolio derived from a given method for a
given risk level? With this in mind, we can define three “types” of investors 2, presented in
the Table 6.1.

A conservative investor is more risk averse, and he/she would allocate most of the available
capital to government bonds, as these are inherently safer than equities and commodities.
Therefore, this investor keeps 80 % of the portfolio invested in bonds at all times, and the
remaining 20% is divided into equities (15 %) and gold/commodities (5%).

A investor with moderate risk profile would be willing to experience higher volatility when
compared to the conservative investor, thus, he/she would invest more capital in equities and
gold/commodities. For this reason, the distribution is 45% equities, 40 % bonds and 15%
commodities/gold.

Finally, the aggressive investor would be willing to support even higher levels of volatility,
so the allocation percentages are set to 65% equities, 10% bonds and 25% commodities/gold.
These proportions are based on [13].

We use a volatility constraint in the optimization procedure of the mean-variance and
Black-Litterman portfolios, as presented in (3.19). In other words, we optimize these models
using the “risk tolerance” (maximum volatility contraint) as the σp parameter in (3.19).

Additionally, instead of defining an upper bound for the maximum volatility allowed, we
can define an additional unconstrained version that maximizes the Sharpe ratio (Eq. (3.21)).
This is referred as the “unconstrained” investor as there are no impositions on the amount
allocated in each asset class.

It is important to assess how the portfolio performance varies for different risk profiles.
A rational investor would only accept more risk if it results in a higher expected return.
However, the relative performances of mean-variance portfolios do not necessarily accord
with target risk profiles. Estimating returns is challenging, so an investor might be exposed
to more risk than anticipated.

In order to assess the performance of different parameter estimates, we evaluate three
different portfolios for the risk profiles presented in Table 6.1. The in-sample period was set

2. Here, we aggregated gold and commodities due to how we divided the data. In practice, gold is not
often seen in aggressive portfolios. Nevertheless, this does not affect the main goal of this experiment.
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from January 1980 to April 2012, and the out-of-sample period from May 2012 to January
2020. The portfolios were rebalanced every month, i.e., the most recent available data was
incorporated to estimate the next month’s allocation. Fig. 6.1 shows the out-of-sample
performances of Markowitz, Markowitz “naive” (expected return and covariance are estimated
by their sample quantities), and Black-Litterman portfolios.

Figure 6.1: Out-of-sample performance for Markowitz portfolio with exponentially-weighted
moving average and covariance shrinkage, Markowitz "naive" (sample mean and sample
covariance) and Black-Litterman portfolios for 4 different risk profiles.

It is important to note that comparing cumulative return does not represent the whole
picture of a portfolio performance. For instance, we would expect lower volatility for the
conservative profile and, as a consequence, lower cumulative return. In order to compare
their risk-adjusted returns, we evaluate the Sharpe ratio of each portfolio, presented in the
Table 6.2.

There are two significant aspects to notice in the results of Table 6.2. First, the naive
version of the mean-variance achieves a lower Sharpe ratio than the version with shrinkage
and EWA returns. Second, the conservative portfolios have significantly higher Sharpe ratios
when compared to their more aggressive counterparts. This may imply that the higher returns
obtained by these portfolios do not compensate the additional risk (volatility) exposure.
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Table 6.2: Sharpe ratios calculated over one year of the evaluated portfolios.

Markowitz Markowitz Naive Black Litterman
aggressive 0.87 0.78 0.92
moderate 1.20 1.12 1.20
conservative 1.53 1.47 1.39
unconstrained 1.27 1.25 1.26

6.3 Reinforcement Learning Models
The RL framework outlined in the previous chapter does not depend on estimates of

returns and covariance. On the other hand, there are other parameters that must be defined.
These include the number of time lags that will compose the state space, the exploration
parameter, the discount rate, the architecture of the neural network, and the learning rate.

As the number of possible combinations is very large, we need to limit the scope and
define the parameters that can be adjusted. These parameters are: the number of lags (M)
used to model the state (St) and the exploration parameter (σe).

All the other parameters are fixed, and they were obtained by validating the RL algorithms
on different OpenAI gym 3 environments [17]. More specifically, we solved two environments
(“Pendulum-v0” and “LunarLanderContinuous-v2”) using PPO and REINFORCE. These
environments contain continuous state and action spaces, similar to our model for the
environment.

For both algorithms, we use a discount factor of γ = 0.99, as the rewards obtained in the
future are approximately as good as the rewards obtained in the initial time steps. This is
the case since we are modelling rewards as the return of the portfolio. For the PPO, we use
the recommended clipping factor ε = 0.2 from the original paper [104].

The neural network used was the same used to validate the agents in Section 5.6. Figure
6.2 presents the architecture of the neural network used to model the actor. The input
corresponds to all M time lags of the N assets plus the previous allocation, and the output
layer has the same dimension as the number of assets. The final output is normalized by a
softmax function.

The PPO model also employs a critic network, which has an almost identical architecture
as the one Fig. 6.2. The only differences are in the output layer, which contains only one
neuron that is used to calculate the advantage as defined by Eq. 2.25, and there is no softmax
in the output.

The architectures of the actor and critic are very similar for simplicity, as tuning multiple
neural networks can be a time-consuming task. Some researchers even propose using genetic
algorithms to [75, 115] to design them.

3. OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms.
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Figure 6.2: Illustration of the neural network architecture used. Not all nodes are represented
for the sake of clarity.

For the purpose of selecting the optimum parameters, we employ the same experiments
for both REINFORCE and PPO. These consist in training for up to 10000 epochs using 80%
of the data (January 1980 to April 2012), and testing in the 20 % remaining (May 2012 to
January 2020).

First, we test each model with 3 different time lag setting, M ∈ {3, 6, 12} Next, we
select the M which yields the best performance, and vary the exploration parameter σe ∈
{0.1, 0.25, 0.5}. We also tested the remaining combinations, the results can be found in the
Appendix A.

The REINFORCE results are presented in Fig. 6.3. Note that the only variant that was
able to beat the benchmark was the one with M = 6 and σe = 0.1.
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Figure 6.3: Out-of-the-sample results for the REINFORCE algorithm under different hyper-
parameter configurations.

One of the main limitations of the REINFORCE is its performance variance, as small
changes in the policy can result in dramatic changes in the performance. Since the number
of epochs were limited to 10,000, which was when the model performance stopped improving
during training, agents with higher σe may have trouble in converging to a local maximum.
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This shortcoming may be the reason why the best performance was obtained with the lowest
value of σe among the values considered. The results for other time lags and σe combinations
(see Appendix A) also present similar behaviour.

On the other hand, PPO addresses this limitation by using a trust region for the policy
update. As seen in Fig. 6.4, the higher σe allows the agent to explore different alternatives,
obtaining a better performance without deviating abruptly from old policies.

Some implementations of RL models in continuous action spaces define the parameter
σe as one additional target for their networks. In other words, they use a neural network to
approximate the optimum value for σe. We also tried using this technique, but the results
were not as good as using a fixed σe.
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Figure 6.4: Out-of-the-sample results for the PPO algorithm under different hyperparameter
configurations.

According to the results presented in Figs. 6.3 and 6.4, we select the past 6 monthly
returns to compose the state st for both agents, σe = 0.5 for the PPO agent, and σe = 0.1 for
the REINFORCE agent.
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6.4 RRL
In this section, we give the final experimental details for the recurrent reinforcement

learning algorithms used in this thesis.

6.4.1 Exploration vs. Exploitation

In terms of “exploration vs. exploitation” behaviour, RRL works differently when compared
to PPO and REINFORCE, as it does not sample its action from a distribution. Nonetheless,
it is also possible to add an exploration component by incorporating a noise variable εt in the
decision function, which then becomes:

wt = f(θt;St; εt). (6.12)

The magnitude of the noise variance controls the trade-off between exploration of the strategy
space and exploitation of a learned policy, and it can be gradually reduced over time during
training.

However, according to Moody and Saffell [88], adding the noise term provides little
advantage for the real financial applications considered, as the data contain significant
intrinsic noise.

Different from the exploration vs exploitation trade-off, the number of time lags dynamics
is the same for RRL, PPO and REINFORCE. Since M = 6 appears the best configuration
for both PPO and REINFORCE, we also employ this setting for the RRL.

6.4.2 Other Baselines

As most of the papers in the literature do not include a comparison of their proposed model
and models from other authors, we decide to include two RRL baselines which we mentioned
in Chapter 4. More specifically, we evaluate the regime-switching recurrent reinforcement
learning introduced in [82] (RSRRL), and the “average elitist” update scheme for recurrent
reinforcement learning (RRL “elitist”) proposed by [125].

According to Zhang and Maringer, the “average elitist” scheme outperformed the “multiple
elitist” version. Moreover, it also has less computational cost. As suggested in the paper, we
ran each elitist 100 times and initialized the weights using a Gaussian distribution with a
mean of 0 and a standard deviation of 0.05. The updates were the same as those described
in (4.22) and (4.23).

For the RSRRL, we employed the smooth transition version (4.20). The authors found
no concrete evidence to suggest that either transition scheme is superior to the other, but
we opted for the smooth version as it allows a certain amount of overlap between the two
regimes. We followed the authors’ parameter recommendations, using slope parameter γ = 5,
threshold c = 1 and the volatity for the transition/indicator variable qt.

As for all the previous models, the number of time lags M is also set to 6.
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6.5 Results
In this section, we present the results for the models described in the previous chapter.

The agents were tested on real financial data described in Section 6.1.

6.5.1 Experimental Setting

In order to evaluate the models we designed the following experimental setting:
— Train each model over a duration of 180 months, test in the following 100 months.

Shift the training and testing periods 100 months forward.
— Train each for duration 180 months, test in the following 30 months. Shift the training

and testing periods 30 months forward.
The total testing duration is 300 months for both settings. The former setting is evaluated

over three periods while the latter is evaluated 10 times over the whole testing period. The
intuition of testing on different time windows is to present to each agent diverse market
conditions and behaviours, which are expected to be encountered in practice. The process
used for evaluating the models is illustrated in Fig 6.5

Figure 6.5: Evaluation scheme for time window of length 100.

The final performance is evaluated considering all the testing windows, which result in
300 months out-of-sample.

This is particularly important when we consider that the market is known to have different
tendencies depending on the global economic outlook and other variables. For example, in
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the investing world, the terms “bull” and “bear” are frequently used to describe opposing
market conditions 4, i.e., the overall direction of assets [76].

As a consequence, a good model for asset allocation should be able to make good decisions
for both bull and bear markets. Therefore, it is important that the agent experience diverse
conditions.

Since the proposed extension to RRL has more parameters, it is also more prone to
overfitting the data, especially in an application with not much data available. Thus, in
order to evaluate the impact on the amount of data in the performance, we designed a simple
experimental setting described in the appendix C. This involved using different amounts
of training data; we observe that the performance of the proposed model RRLMD is more
sensitive to a reduction in data than RRL.

6.5.2 Experimental Results

In order to evaluate agents in a proper manner, we use seven different metrics defined in
Chapter 3. As the RL agents were trained during two different sliding windows of length 100
and 30, we average their performance to reduce the variability between runs of different time
windows, and make the comparison more fair. The results for the agents trained using log
return as reward function are presented in Table 6.3. In addition, we include the cumulative
return obtained over time by all tested agents in Appendix D.

Model Cumulative
Returns

Annualized
Volatility

Sharpe
Ratio

Max
Drawdown

Calmar
Ratio

Avg. Drawdown
Time (days)

Hit
Ratio

RRL Matrix Decoupled 18.045 0.136 0.940 -0.287 0.037 81 0.580
RRL Decoupled 9.187 0.163 0.655 -0.369 0.024 112 0.560
RRL Matrix 9.952 0.149 0.722 -0.246 0.036 111 0.537
RRL [88] 5.340 0.161 0.543 -0.344 0.021 121 0.537

RSRRL [82] 7.612 0.156 0.634 -0.333 0.025 106 0.54
RRL ’Elitist’ [125] 3.176 0.145 0.468 -0.333 0.017 122 0.516

PPO 5.108 0.096 0.809 -0.253 0.025 83 0.493
REINFORCE 4.802 0.075 0.985 -0.260 0.024 70 0.520

Balanced 5.484 0.068 1.138 -0.225 0.029 69 0.000
MV Unconstrained 5.736 0.080 1.003 -0.272 0.024 77 0.560
BL Unconstrained 5.922 0.081 1.001 -0.270 0.025 76 0.560

Table 6.3: Comparison of performance metrics of reinforcement learning algorithms trained
using log returns as the reward function, and classical portfolio techniques. The Sharpe ratios
were calculated over a period of one year.

The proposed RRL Matrix Decoupled (RRLMD) achieved the highest cumulative return,
Calmar Ratio and Hit Ratio among all the models evaluated. In general terms, it means
that it outperformed the benchmark (balanced portfolio) more often than the others, and the
excess return obtained was not overshadowed by the slightly higher maximum drawdown.

4. A bull market is a market that is on the rise and the economic outlook is usually optimistic. A bear
market exists in an economy that is receding, where most stocks are declining in value.

82



Moreover, there is also an improvement by considering the proposed extensions separately.
The RRL Matrix and RRL Vector Decoupled outperform the standard RRL in all metrics.

Finally, the PPO and REINFORCE algorithms did not achieve impressive performance.
In fact, they are outperformed by both the mean-variance and Black-Litterman portfolios.

Next, we present in Table 6.4 the results for the case when the DSR is used as the reward
function.

Model Cumulative
Returns

Annualized
Volatility

Sharpe
Ratio

Max
Drawdown

Calmar
Ratio

Avg. Drawdown
Time (days)

Hit
Ratio

RRL Matrix Decoupled 15.738 0.135 0.910 -0.208 0.049 84 0.570
RRL Decoupled 5.436 0.101 0.795 -0.248 0.027 80 0.510
RRL Matrix 10.900 0.154 0.723 -0.237 0.035 110 0.523
RRL [88] 6.421 0.090 0.941 -0.256 0.028 82 0.533

RSRRL [82] 7.689 0.083 1.088 -0.162 0.046 69 0.513
RRL ’Elitist’ [125] 5.171 0.102 0.764 -0.237 0.023 89 0.516

PPO 6.010 0.066 1.215 -0.113 0.059 65 0.493
REINFORCE 6.927 0.071 1.214 -0.207 0.035 64 0.550

Balanced 5.484 0.068 1.138 -0.225 0.029 69 0.000
MV Unconstrained 5.736 0.080 1.003 -0.272 0.024 77 0.560
BL Unconstrained 5.922 0.081 1.001 -0.270 0.025 76 0.560

Table 6.4: Comparison of performance metrics of reinforcement learning algorithms trained
using differential Sharpe ratio as the reward function, and classical portfolio techniques. The
Sharpe ratios were calculated over a period of one year.

In this configuration, the RRLMD still outperforms all the remaining agents in terms of
cumulative returns and hit ratio. It is interesting to notice that the maximum drawdown is
lower for all agents when compared to their result using the log return as reward function.
This is consequence of the penalization of the volatility that occurs when we employ the
Sharpe ratio as performance metric.

Despite the fact that penalizing volatility can also negatively affect returns, the deep
reinforcement learning algorithms achieve better performance in this setting. In fact, PPO
achieves the best performance for the 4 metrics related to risk and volatility, and the
REINFORCE performance is only marginally worse.

However, from an investor’s point-of-view, the RRLMD may still be more attractive as
an asset selector. The returns obtained are significantly higher and it still outperforms the
benchmark most of the times. The maximum drawdown is still comparable with REINFORCE
and not too much worse than that of PPO. The results for the cumulative return over time
are shown in Fig. 6.6.

One interesting aspect to notice is that using DSR as a reward function does not have a
significant impact on the achieved volatility and Sharpe ratio for the RRL Matrix algorithm.
In fact, the Sharpe ratio for the decoupled version using log returns is even higher than the
one using DSR. We present the allocations in each asset class for the two variants in Fig. 6.7.

Note that the log version of RRL has an average allocation on equities that is higher than
the Sharpe ratio variant. However, the overall distribution of asset classes throughout time
for both agents is very similar. In other words, their asset class timings (when they were
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more invested in a particular asset class) did not vary significantly. This implies that both
agents were equally exposed to exogenous financial shocks, such as the dot-com bubble, the
2008 financial crisis, commodities crashes and the 2015 European debt crisis.

Figure 6.6: Cumulative returns of all portfolio agents. The RL algorithms were trained using
the DSR. The last 12 months of all portfolios but the RRL matrix decoupled are zoomed in
to facilitate the comparison.

84



Figure 6.7: Allocations of RRL Matrix algorithm using DSR and log return as reward function.
The average percentage allocated in each asset class is shown in the label.

85



6.5.3 Constraints Results

An allocation strategy can outperform a benchmark such as the the balanced portfolio
via two different approaches. The first is to allocate more resources to riskier assets. For
example, instead of allocating to bonds, allocating to equities is riskier, but potentially more
rewarding, as equities tend to yield higher returns. However, this portfolio would be more
exposed to high volatility.

The other way a portfolio can beat a benchmark is by selecting better assets within the
same asset class. For instance, if the balanced portfolio allocates 40% in bonds equally, a
better strategy may decide to give more weight to some specific bonds, while reducing the
weight of the others. This approach aims to keep the percentage of each asset class equal
to the reference portfolio, but allocated differently. In other words, this strategy aims to
outperform the benchmark without being exposed to more risk.

In order to better understand the behaviour of the best performing RL agents in the
previous experiments, we present in Table 6.5 the results of these models with constraints
imposed on the amount allocated in each asset class.

Results for the moderate constraints: 45% allocated in equities, 40% in bonds and 15% in gold/commodities

Model Cumulative
Returns

Annualized
Volatility

Sharpe
Ratio

Max
Drawdown

Calmar
Ratio

Avg. Drawdown
Time (days)

Hit
Ratio

RRL Matrix Decoupled 8.668 0.080 1.178 -0.241 0.033 75 0.563
RSRRL [82] 6.829 0.073 1.179 -0.185 0.038 67 0.553

PPO 7.490 0.074 1.203 -0.192 0.038 66 0.580
REINFORCE 6.858 0.074 1.164 -0.203 0.035 66 0.583

Balanced Portfolio 5.204 0.071 1.075 -0.240 0.026 72 0

Results for the conservative constraints: 15% allocated in equities, 80% in bonds and 5% in gold/commodities

Model Cumulative
Returns

Annualized
Volatility

Sharpe
Ratio

Max
Drawdown

Calmar
Ratio

Avg. Drawdown
Time (days)

Hit
Ratio

RRL Matrix Decoupled 6.005 0.051 1.556 -0.067 0.099 60 0.560
RSRRL [82] 4.798 0.047 1.538 -0.071 0.084 60 0.503

PPO 5.410 0.043 1.750 -0.056 0.113 55 0.573
REINFORCE 4.446 0.039 1.775 -0.047 0.121 56 0.580

Balanced Portfolio 4.526 0.040 1.745 -0.045 0.129 55 0

Results for the aggressive constraints: 65% allocated in equities, 10% in bonds and 25% in gold/commodities

Model Cumulative
Returns

Annualized
Volatility

Sharpe
Ratio

Max
Drawdown

Calmar
Ratio

Avg. Drawdown
Time (days)

Hit
Ratio

RRL Matrix Decoupled 10.240 0.115 0.907 -0.342 0.036 89 0.583
RSRRL [82] 8.306 0.106 0.901 -0.287 0.028 83 0.547

PPO 8.740 0.109 0.892 -0.304 0.027 77 0.540
REINFORCE 8.614 0.111 0.874 -0.328 0.025 87 0.463

Balanced Portfolio 5.285 0.105 0.754 -0.381 0.017 93 0

Table 6.5: Comparison of performance metrics of different agents with constrained allocations

The RRLMD still achieves the highest cumulative return among all the algorithms
evaluated. This implies that the agent is also capable of outperforming other models by
selecting better assets within each class.
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Moreover, this ability was particularly valuable in the aggressive constraints setting as the
model achieved almost two times the cumulative return of the benchmark, while maintaining
a higher Sharpe ratio and lower maximum drawdown.

Finally, the proposed RRLMD seems not only to be able to rotate between asset classes
better than the other baselines but also to select superior assets within each class.
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Chapter 7

Conclusions

This thesis focused on the application of reinforcement learning techniques in the portfolio
allocation problem. In order to accomplish this task, different ideas and concepts from
finance and machine learning were combined. We conclude this thesis by summarizing the
contributions and providing some suggestions for future work.

7.1 Conclusions
In this thesis, we model financial markets as discrete-time stochastic dynamical systems

in order to apply the reinforcement learning framework to train asset allocation agents.
We provided an overview of the foundations of reinforcement learning theory and defined

three algorithms that are used as baselines: the Monte-Carlo Policy Gradient, the Proximal
Policy Optimization and Recurrent Reinforcement Learning (RRL). We also included other
two methods from the literature: the regime-switching RRL, and the “average elitist” scheme
for RRL.

Moreover, we propose a novel extension for the RRL algorithm, called RRL Matrix
Decoupled (RRLMD), which can account for each asset’s particularities by defining a matrix
of parameters instead of the conventional vector of weights. Furthermore, the assets are
separated into different categories by employing a decoupled methodology, which allows
flexibility with respect to two characteristics: the individual dynamics and risk exposure of
each asset class.

In addition, we also defined and evaluated two methods of portfolio optimization, discussing
their limitations and possible improvements.

The proposed RRLMD achieved the highest cumulative return among all tested models for
all settings evaluated. Also, our algorithm achieved competitive results for other considered
metrics.

More importantly, the model’s parameters can be interpreted, which adds an extra benefit
to its implementation in real applications as the lack of interpretability can make financial
models infeasible. Furthermore, due to its simple architecture, hyperparameter tuning can be
performed without significant computational overhead.
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7.2 Future work
There are several research directions that can be further explored to improve the work

presented in this thesis.
First, it would be interesting to include more indicators as input for the model. Interest

rates, business confidence, unemployment and Gross domestic product (GDP) estimates are
a few examples of the numerous indicators that affect financial markets.

A second possibility is evaluating the model on different assets. In particular, further
insight could be acquired by considering individual stocks instead of the country-level indexes
we utilized. The decoupling methodology could be employed to divide the equities by different
sectors, and some sector-specific inputs could also be used to improve the model.

Another alternative is incorporating aspects already presented in the literature in the
model. For instance, we could add some sort of regime-switching to the model, or employ
stop losses and other risk management techniques.

There is also room for improving the reward function by considering other metrics, such
as the maximum drawdown. It would be illuminting to embed the proposed model in a larger
trading system, similar to the work proposed by [29].

Finally, incorporating Bayesian methods would be very useful, as the Bayesian framework
provides a principled approach to deal with uncertainty, which is extremely valuable in
financial markets. It also facilitates the incorporation of prior knowledge into the algorithms
[42].
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Appendix A

Experiment setting - hyperparameters
PPO and REINFORCE

Figure A.1: Out-of-the-sample results for the REINFORCE algorithm for different combina-
tions of σ and time lags
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Figure A.2: Out-of-the-sample results for the PPO algorithm for different combinations of σ
and time lags
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Appendix B

Experiment setting - gold and
commodities

The results are derived from the experiment that consisted in comparing the standard
version of the RRL algorithm [88], with our proposed matrix extension.

We ran both algorithms for the same training and testing periods. The train/test split
was set to 80%/20%, so both agents were trained using data from 1980 to 2012, and later
tested on data from 2012 to 2019. We also restricted the asset universe to only gold and
commodities. The reason is since those assets usually have quite different dynamic (gold
does well in a stressed market while commodities have the opposite behaviour), it would be
interesting to analyze the difference in performance.

The number of lagsM to create the state St was set to 5. The balanced portfolio consisted
in a portfolio with 50% allocated in gold and 50% in commodities.
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Appendix C

Overfitting experiments

The standard RRL proposed by Moody [89] approximates the policy as a vector of weights.
Our proposed model extends this approach by considering a more complex policy. In order
to understand how this affects the out-of-the-sample performance, we trained the standard
recurrent reinforcement learning (RRL) agent and the proposed RRL matrix decoupled
(RRLMD) using three different training lengths.

All agents are evaluated in the same testing period, therefore the difference in performance
is due to different training sizes. The results are shown in Fig. C.1.

As expected, having more training data resulted in a model that is able to generalize
better. Also, it is important to note that the impact of reducing the available data to train
affects more the RRLMD when compared to the standard RRL.

Figure C.1: Results for standard RRL and proposed RRL for different training lengths.
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This implies that approximating the policy as a matrix in the RRL framework requires
more data to be effective. The performances of both RRL and RRLMD are very similar
using only 60 months for training.
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Appendix D

Results of Experiments

We present here the figures with results of the experimental setting. Each model was
evaluated on the testing window of 100 months and 30 months.

Figure D.1: Testing results for REINFORCE.

For the REINFORCE algorithm, it is clear that the Sharpe ratio agents outperformed
the ones that used log return as reward function. As this algorithm is known for its variance,
a risk-adjusted return metric might help the agent to be more consistent in its allocations.
Moreover, the agents that were evaluated on testing windows of length = 100 achieved a
better performance. As the REINFORCE suffers from high variance, there is a significant
probability that the agent’s performance gets worse during retraining.
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Figure D.2: Testing results for PPO.

On the other hand, the PPO agent did best with more frequent retraining. In terms of
reward function, the Sharpe ratio agents also outperformed the log-returns.

Figure D.3: Testing results for RRL on vector form.
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For the standard RRL, the Sharpe ratio also appear to improve the overall performance.
However, the volatility is way higher when compared to the previous algorithms.

Figure D.4: Testing results for RRL on matrix form.

The proposed matrix extension outperforms the vector version of RRL in all runs. More-
over, the testing window seems to have greater influence than the reward function.
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Figure D.5: Testing results for RRL on vector form using the decoupled framework.

There is a slightly improving by decoupling the RRL vector. However, the volatility is
significantly higher than other models.

Figure D.6: Testing results for RRL on matrix form using the decoupled framework.

109



The decoupled RRL matrix is the best performing algorithm. The testing window appears
to have more influence than the reward function.

Figure D.7: Testing results for Regime Switching RRL for different reward functions

Figure D.8: Testing results for RRL ’Elitist’ for different reward functions.
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