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Abstract

In this thesis, a technique for implementing active noise control within an automotive vehi-

cle is presented utilizing the actuation of a piezoelectrically driven windshield to create the

anti-noise signal. The acoustic linearity of the power efficient speaker is also improved to

match that of a traditional, high-performance cone speaker. With direct measurement of

the corrupting noise signal impractical, a closed-loop feedback control system is designed to

achieve both objectives simultaneously. Modelling of the plant dynamics is carried out by

deterministic subspace identification on filtered empirical data of a laboratory apparatus

which is scaled to match vehicular installations. A noise estimator, based on internal mod-

els of the system dynamics, generates a stream of synthetic noise measurements on which

stochastic subspace identification is performed to produce periodically updated models of

the plant disturbance. The spectral density estimate of the output disturbance is incor-

porated directly into H∞ synthesis to identify an optimal feedback controller. Ambient

highway noise and the window buffeting phenomenon, experienced by the driver-side pas-

senger within the vehicle, are formulated and solved by independent optimization problems

to maximize improvement of the passenger’s acoustic experience.
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Résumé

Dans cette thèse, une technique pour réaliser le contrôle actif du bruit dans un véhicule

automobile est présentée en utilisant des actionneurs piézoélectriques qui font osciller

un pare-brise pour créer le signal d’anti-bruit. L’efficacité énergétique du haut-parleur

piézoélectrique est également améliorée avec la linéarité acoustique pour correspondre à

celle d’un haut-parleur conique traditionnel. La mesure directe du signal de bruit étant

impossible, un système de régulation par rétroaction est conçu pour atteindre les deux

objectifs simultanément. La modélisation de la dynamique du système est effectuée par

identification déterministe en sous-espaces sur des mesures empiriques filtrées d’un ap-

pareil de laboratoire calibré en fonction de linstallation dans un véhicule. Un estimateur

de bruit, basé sur des modèles internes de la dynamique du système, génère un flux de

mesures de bruit de synthèse sur lequel une identification stochastique en sous-espaces est

effectuée pour produire des modèles mis à jour de manière périodique de la perturbation.

L’estimation de la densité spectrale de la perturbation à la sortie est incorporée directement

dans la synthèse H∞ pour identifier un contrôleur rétroactif optimal. Le bruit ambiant de

l’autoroute et le phénomène de turbulence causé par une fenêtre ouverte (window buffet-

ing), subis par le passager du côté conducteur dans le véhicule, sont formulés et résolus par

des problèmes d’optimisation indépendants afin de maximiser l’amélioration de l’expérience

acoustique du passager.
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Chapter 1

Introduction

1.1 Background

Through the collaborative efforts of Academic Institutions across Canada and Magna In-

ternational, under the sponsorship of the AUTO21 Network of Centres of Excellence, a

project is initiated for the commercialization of an invention by Mats Gustavsson in the

field of vehicular acoustics. With the broad objective of bettering Canada’s position at

the forefront of high-technology innovation in automotive manufacturing, it is the intent of

this collaboration to improve the passenger experience in modern vehicles by introducing

an alternative means of high-fidelity acoustics. While traditional speaker systems utilize

the common speaker cone assembly to produce sound, a novel technique for acoustic exci-

tation was developed and patented by Gustavsson [1] whereby the windshield of the vehicle

is mounted to piezoelectric actuators and oscillated to generate an auditory response. The

significant reductions in power consumption and space requirements are added benefits to

the crisp sound produced by the invention.

Magna International, a supplier and innovator of automotive parts, sought to introduce

the invention into commercial automobiles to replace elements of existing audio systems,

specifically for emphasis in low-pitch audio frequency reproduction. The surface area of

the front and rear windshields - the most feasible surfaces for oscillation by Gustavsson’s

invention - tend to favour a response under 300 Hz making them a good candidate to re-

place subwoofers. The wavelength of low-frequency sound necessitates the incorporation of

large enclosure cavities for good amplification of sound pressure waves; this in conflict to

the many design constraints in automobiles in which space is a limiting factor. Utilizing

2013/08/12
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the surface of the windshield presents an opportunity for gaining significant competitive

advantage in automotive designs by eliminating the traditional subwoofer which typically

consumes space in the trunk or back seat of the passenger cabin. From a design and man-

ufacturing perspective, while the windshield specifications are typically consistent among

many vehicles in a particular series, the interiors vary widely and require redesigns to in-

corporate the subwoofer in varying cabin configurations. By exploiting the commonality

in windshields that vary little or not at all between models, the subwoofer system may be

designed once and replicated among the full range of vehicles to effectively reduce both

design and manufacturing costs.

1.2 System Description

The principle of operation behind the production of the acoustic response relies on the reac-

tion of select ceramics to an applied voltage [2]. The presence of an electric field induces a

net displacement in the crystal which is manifested as a tensile or compressive displacement

from the nominal dimensions. When the excitation signal is applied at frequencies within

the range audible to humans, between 20 Hz to 20 kHz, the rapid oscillation of the crystals

is perceived as sound. An inherent limitation to this process is the low stroke length of the

oscillation which, in itself, would fail to produce sufficient amplitudes for use as a speaker.

Utilizing the force created by the conversion from electrical to mechanical energy, Gus-

tavsson invented a mechanical amplification device to increase the amplitude to an order

capable of producing sound pressure level (SPL) comparable to that of a subwoofer.

The piezoelectric apparatus in [1] is affixed to a windshield using a sealant and pre-

tensioned using a series of springs to improve the acoustic response of the speaker in

a process developed at Magna. Through empirical testing, Magna determined that the

static compressive load experienced by the polycrystal in combination with a DC bias

of approximately +85V was deemed optimal for establishing good conditions for acoustic

playback. With detrimental effects caused by the application of a reversed voltage polarity,

the DC offset serves to safely enable a swing of +/-80V from the bias for music production

without risking damage.

With the installation of the windshield assembly in a prototype at Magna, the behaviour

of the piezoelectric could be evaluated to verify feasibility of the proposed project. Todd

Deaville led the design of the acoustic subsystem at Magna and constructed a full-scale
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model of the interior automotive front seat cabin complete with a windshield and four

actuators to oscillate in phase for consistent displacement across the entire surface area of

the glass.

Through empirical tests and a general mandate for passenger experience improvement,

several critical issues are stated. The issues relate to the novel subwoofer system itself and

to the objectives that the subwoofer is intended to solve and presented below.

1.2.1 Acoustic Non-Linearity

Through frequency sweeping and musical playback, it was noted that the response of the

acoustic windshield is inconsistent across frequencies with resonance discovered at 130 Hz

and subsequent harmonics. The lack of a flat response to all frequencies of excitation

yield undesirable audio distortion with some tones being attenuated and others peaking

significantly louder than neighbouring frequencies. Figure 1.1 below is the road test fre-

quency response of piezoelectric acoustic windshield installed in a vehicle demonstrating

the non-linear acoustic response. Speakers possessing the characteristic of equal magnitude

response across the frequency band of operation are preferable to those which exhibit a

frequency-dependent response such as that of the piezo-electric acoustic device. A digital

compensation mechanism is required to equalize the frequency response to match it with

high-fidelity subwoofer cones whose construction yield an inherently linear response.

1.2.2 Ambient Highway Noise

While much effort has been put forth to improve the passenger experience within a vehicle

by attenuating highway noise through means of passive dampening and noise source iso-

lation, the increased manufacturing cost of such vehicles limit their distribution to luxury

models. In economy-class vehicles, significant noise disturbance introduced by tire rotation,

engine throttle, and wind vibrations continue to reduce the quality of the driving experi-

ence. With the spectra of disturbance primarily in the low acoustic bands, it is desirable

to utilize the piezoelectric speaker to perform Active Noise Cancellation (ANC) using the

same digital compensation mechanism previously proposed for the acoustic linearization of

the speaker to reduce the audible noise interference within the vehicle cabin.
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Fig. 1.1 Empirical frequency response of automotive windshield demonstrat-
ing non-linear acoustic amplification

1.2.3 Window Buffeting

Window buffeting is a phenomenon that occurs within a vehicle at highway speed operation

when a single window is opened while the others remain sealed. The characteristic experi-

ence of buffeting is a high magnitude oscillatory hammering sound which results in severe

discomfort for passengers. The characteristics of this noise type differ significantly from

ambient noise and hence a specialized technique is sought to aid in attenuating window

buffeting with the piezoelectric subwoofer. A detailed analysis of the physical phenomenon

was carried out in [3] and is beyond the scope of this thesis.

1.3 Thesis Objective

The objective of this thesis is to develop a means for controlling the operation of a piezo-

electric actuator to improve its acoustic performance by utilizing feedback based frequency

equalization. In addition, a means for adaptive modification of the controller shall be

introduced to implement active noise cancellation periodically optimized on the type of

output disturbance experienced by the vehicle. A noise estimator is used to isolate the

disturbance from the desired audio response within the cabin; the resulting noise is remod-
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elled by stochastic subspace identification to update the controller. Using H∞ optimization

for disturbance rejection and loop-shaping with real-time subspace identification estimates

of the output disturbance, this technique may be useful for improving the general perfor-

mance of robust H∞ and µ-synthesis controllers by narrowing the magnitude of uncertainty

within a given system. Boulet and Duan demonstrated the necessity for controllers to trade-

off performance with robustness to plant uncertainty in [4]. The fundamental performance

limitation caused by unmodelled dynamics motivates a technique for narrowing the range

of uncertainty, which is demonstrated in this thesis.

1.4 Thesis Roadmap

In Chapter 2, a survey of existing efforts in active noise cancellation in vehicle cabins

shall be presented as well as a review of adaptive control used in H∞ optimized systems.

Alternative techniques for ANC will be examined which are currently being investigated

for use with piezoelectrically driven buffeting suppression. Chapter 3 will introduce the

experimental apparatus constructed for performing the test measurements used in this

thesis. In Chapter 4, the workings and mathematics of subspace identification will be

discussed and the algorithms’ applicability for use with H∞ synthesis is discussed. Models

of the subwoofer, amplifier, and other subsystems will also be derived here. Chapter 5 will

present a detailed analysis of the acoustic disturbance experienced by passengers within a

moving vehicle including ambient highway noise and the window buffeting phenomenon.

A noise estimator designed for performing real-time modelling of the noise characteristics

will also be introduced. In Chapter 6, the controller design is presented as well as a state-

machine algorithm for adaptive updates and performance optimization. Simulations of

the completed system are also presented in Chapter 6 where they will be scrutinized for

performance and feasibility. In Chapter 7, concluding remarks will be presented in addition

to acknowledged deficits and shortfalls of the proposed control technique; future work is

discussed in addition to recommendations for practical implementations.
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Chapter 2

Literature Review

In this section, we begin with a literature review related to noise cancellation using both

passive and active attenuation techniques. Feedforward algorithms for active noise control

are explored first before surveying literature related to the feedback based ANC methods

which relate to the techniques presented in this thesis. H∞ control is then introduced

before a review of system identification using subspace-based algorithms.

2.1 Passive Noise Cancellation

Passive noise attenuation relies on the use of the physical properties of materials to dampen

the reflection or radiation of sound. Unwanted noise is attenuated through the use of such

instruments as mufflers, absorbers, or diffusers. While absorbers serve to remove the sound

energy in the air through characteristics of their geometry and material, diffusers provide

a passive means to redirect noise energy so that it is more evenly distributed, which can

be designed to reduce certain types of noise [5]. Shock absorbers are an example of passive

diffusion employed in vehicles to reduce the transmission of vibrations which also quiets

shocks in road noise.

As frequency decreases, the effectiveness of passive noise attenuation also decreases

significantly below 500 Hz as the acoustic wavelength becomes large and the requisite

thickness of absorbers becomes too large [6]. The frequency band which we seek to target

resulting from highway noise and window buffeting is significantly below the range which

can be feasibly attenuated by passive control as cost and physical thickness limitations

constrain the problem.

2013/08/12
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2.2 Active Noise Cancellation

When passive noise attenuation alone is insufficient for achieving sufficient performance,

active noise cancellation may be utilized to improve the results. A detailed tutorial of

Active Noise Control is presented by Kuo and Morgan in [7] in which the benefits of active

over passive noise attenuation are explored in detail. In particular, passive noise control

fails to sufficiently attenuate low-frequency noise disturbances in addition to requiring large,

bulky dampening devices which may not be feasible for applications in moving vehicles.

In general, there exist two primary means for implementing ANC: feedforward, whereby a

microphone may be used to perform a direct measurement of the disturbance and feedback,

in which noise measurements may not be available. In the former scheme, the sampling

microphone is typically placed in a position where direct measurement of the noise enables

the production of an antiphase signal for destructive superposition. In the latter, the

advantage of being able to sample the noise disturbance before it corrupts the environment

is not available; subsequently, the microphone is placed where the noise attenuation is to

be realized and senses both the noise and desired signal. In feedback control, the measured

signal is then subtracted from the desired signal to achieve an error signal from which the

antinoise signal is derived. Hybrid feedforward-feeeback controllers are also the focus of

ongoing research.

The source of noise within a vehicular cabin is not unique and is, in fact, the sum result

of many point sources including tire noise, wind noise, and mechanical engine noise. While

each of these sources could, in theory, be sampled outside of the vehicle cabin to implement

a feedforward ANC strategy, the characteristics of each such disturbance are modified as

they propagate from their respective sources, external to passenger cabin where they are

measured, to within the cabin itself. The acoustic transfer function of their propagation

introduces uncertainty which complicates a direct actuation of the antinoise signal. Failure

to directly measure the disturbance reduces the performance of feedforward ANC, however,

their principle of operation will be reviewed below in addition to feedback ANC which is

the focus of the remainder of this thesis.

2.2.1 Feedforward: LMS and FxLMS Algorithms

Feedforward ANC use adaptive filters whose coefficients are updated at each time-step to

minimize an error signal. First introduced by Widrow and Hoff [8][9], this class of noise
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attenuation algorithms typically employ one microphone to measure the noise directly and

a second microphone to measure the residual error signal. With reference to Figure 2.1, the

disturbance signal do(n) enters the system at microphone A and propagates through the

acoustic environment of the observer where microphone B is located. The impulse response,

Fig. 2.1 Basic LMS Implementation.

h(n) is the acoustic path between the two microphones and consists of a non-invertible time

delay in addition to the characteristic dynamics of the specific environment. Letting W (z)

denote the Z-transform of the adaptive filter, the error signal E(z) is given in [10] as:

E(z) =[H(z)−W (z)]Do(z) (2.1)

To minimize the error, we seek to obtain a filter W (z) which closely matches the unknown

acoustic propagation function H(z), e.g.:

E(z)→ 0 as W (z)→ H(z)

Our objective then is to develop an adaptive W (z) which, upon each update, converges

on H(z). Following the derivation by Boroujeny in [11], the N-dimensional weighting filter

w(n), whose coefficients vary in time by index n, is defined as:

w(n) = [wo(n) w1(n) . . . wN−1(n)]T



2 Literature Review 9

The output, y(n) of the speaker is hence:

y(n) =w(n) ∗ x(n)

=
N−1∑
i=0

wi(n)x(n− i)

Taking the inverse Z-transform of (2.1) and squaring, we obtain the definition of our cost

function, C(n):

C(n) =e2(n)

=(h(n) ∗ do(n)− w(n) ∗ do(n))2
(2.2)

The basis of LMS is to use our estimate of Ĉ(n) to obtain an approximation of the gradient

which is applied to improve the filter coefficients of W (n) in the direction of steepest

descent:

∇C(n) =∇e2(n)

=
[

∂
∂w0

∂
∂w1

. . . ∂
∂wN−1

]T
e2(n)

(2.3)

The i-th element of (2.3) may be given by,

∂e2(n)

∂wi

=2e(n)
∂e(n)

∂wi (2.4)
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Substituting (2.2) into (2.4), we may deduce the update method for the i-th filter coefficient,

∂e2(n)

∂wi

=2e(n)
∂(h(n) ∗ do(n)− w(n) ∗ do(n))

∂wi

=− 2e(n)
∂(w(n) ∗ do(n))

∂wi

=− 2e(n)

∂(
N−1∑
i=0

wi(n)x(n− i))

∂wi

=− 2e(n)x(n− i)

(2.5)

We update each filter coefficient of the vector w(n) in the direction of steepest descent:

wi(n+ 1) =wi(n)− µ∇e2(n)

=wi(n) + µ2e(n)x(n)
(2.6)

where µ denotes the step-size parameter.

A practical limitation of the LMS algorithm is the secondary path of the actuated

signal which represents the transfer function from the output of the controller, through the

digital-to-analog conversion process, the speaker and finally the acoustic propagation to

the location where the cancellation takes effect depicted by S(z) in Figure 2.2.

Fig. 2.2 LMS Implementation showing secondary path.

The criteria for minimal error is now:

E(z)→ 0 as W (z)→ H(z)/S(z)

The secondary path includes delays which prevent the direct inversion of S(z) resulting
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in a degradation of the stability of the algorithm. To avoid the inversion, an estimate of

the secondary delay is instead used to pre-filter the incoming signal before the application

of W (z). Known as FxLMS, this process was developed by Widrow in [12] and improves

the performance of standard LMS; a block diagram of the process is shown in 2.3.

Fig. 2.3 FxLMS Implementation showing pre-filtered input
x′(n) = ŝ(n) ∗ x(n)

Here, the application of the secondary path pre-filter to input signal x(n) yields a

modified filtered signal x′(n). The steepest descent filter update equation is then nearly

identical to that of basic LMS:

wi(n+ 1) =wi(n) + µe(n)x′(n) (2.7)

The model of the secondary path transfer function Ŝ(z) is typically estimated offline al-

though research began in [13] for real-time path modelling and continues, such as in [14].

FxLMS algorithms have been accepted for widespread implementation primarily for

their computational simplicity and generally praised performance. They have also been

extended into multi-channel application as demonstrated in [15]. Efron showed in [16] a

means for canceling multi-point noise sources through the weighted sum of many anti-noise

actuation speakers to reduce the noise in a targeted region by correctly accounting for the

superposition of all the cancelling signals. An integrated automotive ANC system using

the audio system within the vehicle was demonstrated by Holmes in [17] which implements

the FxLMS algorithms with good results.

Drawbacks of the FxLMS algorithm begin with the manner in which the weighting

coefficients are updated. The steepest descent algorithm utilizes the instantaneous esti-
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mate of the squared-error to measure the direction of the gradient. This is effectively an

approximation of the second moment [18]. That is:

E
{
e2(n)

}
≈ e2(n) (2.8)

For correct operation and convergence to optimal filter coefficients, in the mean-squared

sense, the second moment of the noise process must exist; as such, impulsive noise results

in a loss of stability. An additional disadvantage of FxLMS techniques is their intrinsically

feedforward requirement to measure the noise source through some isolation from region

of acoustic cancellation. Additionally, it has been shown that microphone and actuation

devices improve in ANC performance with increasing proximity to the noise source. This

is not always feasible especially when the noise sources are not all well known prior to the

implementation. Placing microphones near each noise source introduces increasing cost and

complexities - issues that detract from their primarily sought characteristic of simplicity.

Engine noise has been the primary focus of ANC applications which utilize the feedfor-

ward strategy but road noise has remained out of reach due to cost and implementation

limitations [19] as additional sensors are required for each noise source. In 1994, Sutton

et al. demonstrated in [20] that to reduce road noise within a vehicle using FxLMS, it

was necessary to incorporate six accelerators, two error microphones and two additional

loudspeakers to implement the multi-channel FxLMS algorithm effectively.

2.2.2 Feedback

The use of feedforward techniques has dominated the research of ANC in part for their

simplicity in computational implementation. With the advancement of high-performance,

low-cost digital signal processors, the problem of noise attenuation has become the focus

of much research in the frequency domain based feedback control systems. Recasting the

problem into traditional feedback control is straightforward since disturbance rejection is

a primary objective in the standard problem formulation. In Figure 2.4 below, a basic

zero-input feedback control scheme is shown. The noise signal, do, is not measured directly

as it was with feedforward control. However, its impact on the system is well-studied and

quantified by the sensitivity function of which indicates the effect of output disturbance at

each frequencies. The output of the system y(s) is the signal perceived by the passenger,
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while the reference signal r(s) denotes the desired system output which may be 0 to indicate

pure ANC or may contain a musical reference. The error signal e(s) is the difference

between the desired and measured system output. The plant, denoted by G(s), contains

the dynamics of the actuator (e.g. a speaker) in addition to the characteristics of the

vehicular cabin between the speaker and the sensing microphone. The controller, K(s) is

the compensation mechanism whose dynamics are the choice of the designer.

Fig. 2.4 Block diagram of feedback control implementation for disturbance
rejection.

In feedback control, most of the analysis takes place in the frequency domain where

insight into the characteristics and performance of the system’s signals are evaluated across

all frequencies.

The sensitivity function of a feedback controller describes the transfer function of many

different points within the system. For our purposes, the sensitivity function represents

the transfer function from the reference signal to the error, the output disturbance to the

error and from the output disturbance to the output of the system. That is:

S(s) =
1

1 +K(s)G(s)
= Tr→e = −Tdo→e = Tdo→y (2.9)

Closely related, the complementary sensitivity function is denoted by T (s) after its repre-

sentation of the system’s transmission of input to output:

T (s) =
K(s)G(s)

1 +K(s)G(s)
= Tr→y (2.10)
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The two equations are constrained by their strict sum to unity:

1 =S(s) + T (s) (2.11)

With the plant G(s) fixed, the controller K(s) may take on any causal form so as to

shape the sensitivity and complementary sensitivity respectively. Disturbance rejection, as

is the objective of ANC, is characterized by a small sensitivity function in the bandwidth of

operation while the acoustic linearity of the subwoofer is best analyzed from the perspective

of transmission function. With our objective to attenuate both engine and road noise within

the vehicular cabin while simultaneously improving the acoustic linearity of the piezoelectric

speaker, the tools of feedback control are readily applied.

It should be noted that the feedback employed in the aforementioned algorithms of

Section 2.2.1 differs significantly from that in feedback control. In the former, the error

signal is used to update the filter coefficients but is not used in the direct computation

of the actuator output; instead, it is the noise reference signal on which the output is

based. Feedback control, however, acts directly on the error signal to produce an anti-

noise output without having access to the noise signal itself. In subsequent chapters of this

thesis, a duality in the use of the error and noise signals will be demonstrated in their use in

feedforward algorithms contrasted with the proposed means of adaptive optimization. The

impact of true feedback in a feedforward ANC usually have a destabilizing effect should a

signal from the anti-noise speaker leak back to the microphone which measures the noise

[21].

An important factor to be considered in the design objective is discussed by Garcia-

Bonito and Elliott in [22] where it is shown that acoustic attenuation at frequencies greater

than 400 Hz is not practical since the acoustic wavelengths approach in size the targeted

zones of ANC; in such an implementation, the user would experience local areas of both

noise attenuation and undesirable amplification.

Hong et al. demonstrated in [23] an implementation of feedback control for noise at-

tenuation in an acoustic duct using precompensated linear quadratic Gaussian synthesis

which yielded a reduction in noise by 5 to 12 dB between 150 and 350 Hz. Also in the

context of acoustic duct systems, PID controllers were developed and simulated in [24].

Limitations of feedback control are most notably experienced in stability margins wherein

phase lag introduced by actuators in addition to sound and signal propagation delays result
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in a decreased bandwidth or total loss of stability. Boonen and Sas demonstrated in [25]

a technique for phase lag compensation using a Smith compensator to improve stability

margins.

Feedback control for use in active noise cancellation within a vehicle was first demon-

strated by Sano et al. in 2001 [26] wherein booming noise was successfully attenuated

in the front seats of the automotive. The buffeting phenomenon, sometimes described as

wind throb, was the target for attenuation in [27] which its control was demonstrated with

some success. In this thesis, we demonstrate a new approach for buffeting reduction using

a noise estimator to track the frequency of the buffeting more precisely thereby allowing

us to implement an H∞ controller matched specifically to an up-to-date noise model for

improved attenuation.

2.3 H∞ Control

H∞ feedback control offers an appealing framework for the task of noise reduction since the

objective for which the theory was derived was based on sensitivity minimization - the same

objective as ANC. George Zames, a primary inventor of the theory, noted in his seminal

paper [28] that a minimum phase system may have its sensitivity made arbitrarily small.

Actuator limitations which may prevent the physical realization of such dramatic mini-

mizations are readily incorporated into the design effort to guarantee optimal performance

given the physical constraints.

Horowitz, in [29], presents a secondary source of limitation which prevents unbounded

minimization of sensitivity: uncertainty. In addition to accommodating physical limitations

of the actuation hardware, H∞ methods are aptly capable of producing robust controllers

for systems which possess significant degrees of unmodelled dynamics. Allen Tannenbaum

presented in 1980, an algorithm for obtaining an optimal stabilizing controller for a SISO

plant containing gain uncertainty [30]. While advancements in research continued to im-

prove the performance of systems containing unmodelled dynamics, they relied on models

of uncertainty which characterized the plant uncertainties by norm bounded perturbations.

Information about the structure of the perturbation could not be exploited until the work

of Doyle in [31] which introduced the structured singular value as a tool to incorporate

such additional information to reduce the difficulty in identifying a stabilizing controller

and improve the resulting performance. H∞ treatment of time-varying uncertainties has
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since been considered in [32] and improved upon in [33].

The toolset in H∞ feedback control has been used with the objective of Active Noise

Cancellation before. From the perspective of improving the feedforward algorithms, optimal

filter coefficients were obtained in [34] in an alternative to FxLMS. Here, with the use of

H∞ optimization, an optimal filter is produced which limits the maximum energy gain of

external disturbances. Feedback has also been utilized with one such notable example in

1999 by Elliott and Rafaely whom demonstrated a robust ANC system within a vehicular

headrest in using techniques of H2 and H∞ control and multiplicative plant uncertainty

[35].

Despite the improving tools for handling unmodelled plant dynamics, the presence of

any uncertainty exists at the expense of performance in a fundamental tradeoff between per-

formance and robustness, demonstrated by Boulet and Duan in [4]. To guarantee stability,

performance is compromised with increasing plant uncertainties. In environments which

possess a wide range of noise sources, each with characteristic and unknown frequency

responses, a single, conservative H∞ controller to optimally reduce sensitivity across all

disturbances would be hence severely limited in its performance.

It is the objective of this thesis to utilize subspace identification to adaptively lessen

the uncertainty of the system thereby improving global performance.

2.4 Subspace Identification and H∞ Control

With the objective to narrow the band of uncertainty to achieve better performance in

noise attenuation, a means for online modelling is required. Subspace identification has

been growing in popularity in part for its robust numerical stability and rapid computation

to produce accurate models which do not require iterative minimization [36]. Additionally,

they are well suited for multiple-input multiple-output systems unlike many forms of tra-

ditional system identification which require empirical data from single variables at a time:

often undesirably in open-loop environments.

The equations below show the standard discrete state-space system containing internal

state variable, xk, input uk, output yk and input and output noise variables wk and vk

respectively:
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xk+1 =Axk +Buk + wk (2.12)

yk =Cxk +Duk + vk (2.13)

The task of subspace identification (SSI) is to obtain estimates of the state-space sys-

tem matrices A,B,C and D directly from input-output data. The presence of noise or

an excitation signal distinguish the primary classes of identification into deterministic

(wk = vk = 0, uk 6= 0), pure stochastic (wk 6= 0, vk 6= 0, uk = 0) and combined deterministic-

stochastic (wk 6= 0, vk 6= 0, uk 6= 0). The state sequence, x0, x1, . . . , xk, is first estimated

without any priori using an orthogonal or oblique projection of the row spaces of specif-

ically oriented Hankel matrices which contain only input-output data. The order is then

computed through inspection of the singular values before, finally, the system matrices are

extracted from a solution of a least squares problem. In the presence of stochastic elements,

a Kalman filter is utilized to make an optimal estimate of the state sequence before noise

covariance matrices are extracted in the final step [37]. The implementation of SSI will be

explained in Chapter 4, a more thorough analysis of the underlying theory can be found in

[37, 38, 39].

Subspace identification of plant uncertainties remains to be well explored in literature.

Stochastic identification is used to estimate system uncertainties to some extent such as

in [40], where noisy measurements are filtered and estimations of parameter variance is

simulated successfully. Uncertainty estimates are made in [41] using SSI in the context of

operational modal analysis. Confidence intervals, which extend an analogue to uncertainty

bounds in H∞ design, were established to merge data from multiple sensors of multiple

tests. SSI has also been used in direct combination with H∞ robust control to model and

control characteristically unstable active magnetic bearings in [42]; incorporating additive

uncertainty was demonstrated, however, the stochastic elements of the system were not

directly estimated with SSI.

For the purposes of this investigation, SSI will serve most significantly to develop an

adaptive disturbance weighting function in H∞ synthesis whereby an infinity norm-limited

disturbance signal is modelled by stochastic subspace identification to reduce uncertainty

thereby improving performance in active noise attenuation.
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Chapter 3

Experimental Apparatus and

Equipment Selection

Work on this thesis benefited from the generosity put forth by Auto21 and Magna In-

ternational for ensuring that a working experimental apparatus was available for the data

acquisition and plant analysis portions of this project. An experimental setup was designed

by Magna for characterizing and evaluating the performance of Gustavsson’s piezoelectric

actuation apparatus for use with windshield installations. The test rig was used to evalu-

ate the acoustic quality of the piezoelectric speaker under varying amounts of pre-loaded

weight; it was shown that volume was increased with increasing compressive load on the

crystals. This development led to the introduction of tensile springs on all subsequent de-

signs whose tension could be adjusted for testing. A full-scale test system was then created

of the inside front cabin of a vehicle where the actuators were mounted to a front windshield

and functionality demonstrated. A vehicular installation followed using the rear windshield

of a working automobile to demonstrate improving functionality; acoustic results from these

tests showed good results but the presence of non-linear acoustic response remained. When

work on this thesis began, automotive testing was already underway. A spare test apparatus

from earlier development was donated to McGill for controls investigation.

3.1 Piezoelectric Subwoofer

The test apparatus received from Magna is shown in Figure 3.1 below. Two plates are

joined into a corrugated steel assembly with one end affixed to a hinge and the other left

2013/08/12
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to rest on the piezoelectric actuator assembly. While the applied force from the hinged

plate on the piezo is already substantial, experimental setups in laboratories at Magna in-

corporated additional fixtures for adjusting the compressive load on the actuator to further

increase the force. A noted advantage of such high compressive pre-loads is that their force

is significantly greater than the relative difference in wind pressure between at-rest and

highway velocity conditions, this prevents drastic changes in response to vehicle speed. In

vehicle installations, this pre-load is induced by tensioned springs in vehicular assemblies.

Fig. 3.1 Piezoelectric subwoofer used in laboratory tests showing Alu-
minium plates pivoting on single piezoelectric actuator. Plate provides pre-
loaded compression to improve auditory response.

A close-up of mechanical amplification apparatus in Gustavsson’s invention [1] is shown

in Figure 3.2. The piezocrystal is oriented such that its oscillations occur perpendicular

to the vertical vibration of the plate. A periodic signal applied by an electric potential

across the piezoelectric crystal creates small, horizontal, oscillatory displacements. These

reciprocating motions are then amplified and translated to the vertical plane through the

pivoting motion of the rods in the invention apparatus. In this test fixture, the unhinged

end of the plate is actuated upwards by the force of the piezoelectric mechanism and

returned downward by its own weight. The rate at which this vertical oscillation occurs

is directly indicative of the audible frequency tone produced by the device. The vibrating

surface area of the plate produces compression and rarefaction pressure waves in the air

which are perceived as sound by the human ear.
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Fig. 3.2 Mechanical amplifier of piezoelectric actuator shown as described
by Gustavsson’s patent in [1]

3.2 Amplifier

For adequate excitation of the piezoelectric crystal, a large potential difference is necessary

to transfer the control or musical reference from an electrical signal to physical vibration.

To induce the smooth reciprocating motion of the windshield, characteristic of high perfor-

mance speakers, smooth sine curves are required in the excitation signal. This necessitates

the addition of a DC bias to adequately shape the electric field without subjecting the

crystal to a damaging negative voltage. The final requirement of the amplifier is to ensure

a small ripple within the bandwidth of human hearing, 15 Hz to 20,000 Hz, since any

fluctuations in the signal within would be perceived as audible noise. Magna outsourced

the design of the amplifier to Scienlab, a German engineering firm specializing in power

electronics and electronic test equipment. Scienlab produced an Audio Class D Amplifier

containing a single high-impedance, differential input channel and dual outputs capable of

driving, in phase, two independent piezoelectric actuators described previously. For the

purposes of this investigation, only one of the output channels was required to drive the

single actuator of the test apparatus. Figure 3.3 below shows the amplifier connected to

the power source and the piezoelectric amplifier.

An additional design requirement of the amplifier was that it may derive its power from

standard voltage rails in vehicular installations. As such, the input may be a common



3 Experimental Apparatus and Equipment Selection 21

Fig. 3.3 Scienlab Hybrid audio class D amplifier and power supply connected
to piezoelectric subwoofer experimental setup

DC battery power or any similar supply capable of delivering between 10V to 16V and an

inrush current in excess of 7A.

An important characteristic of the amplifier from the perspective of the control design

process is that it is not a direct gain element as the gain and phase delay are frequency

dependent.

3.3 Microphone Apparatus

A microphone was selected as the feedback sensor used to obtain measurements of the

system output. In some instances of feedforward control, accelerometers are used in place

of microphones for obtaining a primary reference signal of the disturbance noise. Such

implementations are advantageous when the disturbance signal is highly correlated to some

underlying mechanical motion such as the RPM of the engine or tires as in [43]. With pure

feedback, no direct measurement of the noise source is possible hence the most applicable

sensor is a microphone.

3.3.1 Microphone

An omnidirectional measurement microphone was selected for its flat frequency response

which could be treated as pure gain. An electric condenser microphone, the Apex220 has
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a nearly flat response for frequencies between 20 Hz and 20 kHz with 20dB per decade

roll-off beyond the cut-off frequencies. Microphone sensitivity is expressed as a single gain

indicative of its output, in Volts, under the excitation of a 1 Pa sound pressure wave at

1000 Hz. Sensitivity definitions specified by US manufacturers, such as Apex, utilize a

deprecated definition in which:

Sensitivity ⇒ 0 dB = 1
V

µbar
@ 1000 Hz

For correct interpretation of experimental results and for accurate simulation of the

system, the device sensitivity of -63dB is expressed in units of V per Pa:

Sensitivity =− 63 dB
V

µbar
@ 1000 Hz

=0.708
mV

µbar

=7.08
mV

Pa

(3.1)

Additional specifications of the Apex220 can be found in [44].

The phase delay, although strictly non-zero, is assumed to be such for the purposes of

this investigation due to the cost limitations in the acquisition price of a phase calibration

apparatus which could have yielded a more accurate model of the sensor. The phase

uncertainty is also not considered in the controller design; for implementations in a vehicle,

standardized microphones with calibrated phase should be utilized.

3.3.2 Phantom Power

To power the condenser microphone, the manufacturer recommends that Apex APP2 Phan-

tom Power Supply which was acquired to ensure that the source rail would maintain the

signal integrity of the measurement microphone. Phantom power supplies are capable of

providing +48 VDC to and a signal return path from condenser microphones along an XLR

cable. The APP2 guarantees to preserve signal integrity from 10 Hz to 25 kHz, exceeding

the expected range of the ANC system. To power the phantom supply itself, an additional

Apex +18 VDC supply was required.



3 Experimental Apparatus and Equipment Selection 23

It should be noted that during road tests for buffeting and ambient highway noise

measurements, a device along the power supply path imparted a high-frequency switching

noise onto the signal. Given that this phenomenon was not noted in the laboratory tests,

it is hypothesized that the DC/AC inverter from the 12 V supply of the vehicle was the

culprit. In future investigations, it is advisable to incorporate additional filtering in the

power supply chain to improve signal integrity.

3.4 Selecting Digital Signal Processing Equipment

One of the foremost purported advantages of active noise cancellation over passive is the

significant cost reduction. The hardware to implement such a control scheme must therefore

be such that complexity does not drive the cost to such levels that the savings are lost.

A hardware development platform is required to serve the following purposes: perform

data acquisition, perform filtering of audio signals, implement a digital controller, allow for

the debugging of the system state.

Data acquisition

All of the elements in the intended control loop must be characterized so that an accurate

model of their input-output behavior may be obtained. It is necessary that the development

platform provide a means to record time-stamped measurements of the systems’ response

to excitation and a means to transfer the data to a PC for offline analysis.

Audio filtering

Some of the measurements made by the hardware module will be of signals whose magnitude

is small or is corrupted by noise. Additionally, direct feedforward filters for basic signal

conditioning and equalization will be of benefit to characterize the system in the testing

phase.

Debugging system state

A debugger of some form is required for careful review of the testing processes and subse-

quent operation of the state-machine and controller implementation. The ability to pause
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execution and watch variables is a good measure in best practices for ensuring deterministic

behaviour of the embedded system.

Implementation of digital controller

After the design process has completed, the hardware platform must provide a means to

execute a digital controller in real-time to carry out the objectives in noise attenuation and

acoustic linearization. For reliable sampling frequencies, a real-time operating system with

guaranteed service times or direct access to an embedded processor is ideal. Included in this

requirement is the presence of multiple input and output channels which may be driven by

onboard digital to analog converters (DACs) and some output filtering. The selection of a

digital signal processor (DSP) capable of performing a sufficient number of cycles between

samples to compute the update for the controller is a trade-off among factors such as cost,

power consumption and cooling requirements. For the purposes of this investigation, it is

necessary to select a processor whose capabilities exceed that which would theoretically be

installed in the field for implementation in a vehicle. Additional overhead for debugging

and data acquisition necessitates the selection of a development platform with a feature set

that would benefit from reduction upon project completion.

In a final implementation, a custom controller board would be designed to fulfill the

requirements without introducing any unused resources that may incur unnecessary cost.

In the design phase, a pre-built hardware platform is selected which meets all of the afore-

mentioned requirements in addition to providing some buffer for unforseen processing or

I/O requirements.

A detailed analysis was performed in [45] which explored the selection process further. A

summary of the results is shown in Table 3.1 wherein 8 potential platforms were scrutinized

for their viability.

While most controller development platforms require a significant upfront capital expense,

low-cost sound mixing platforms were explored as a useful alternative. Digital filtering of

musical signals has become sufficiently commonplace that market prices of DSPs optimized

for sound filtering have been driven down. While not typically used for data acquisition as

would in the laboratory setting, music DSPs containing high frequency analog to digital

converters in addition to digital to analog converters with the added benefit of built-in

codecs and sampling rates optimized for audio performance. The Symphony SoundBite
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Table 3.1 Potential DSP development platforms and parameters

Type # of
inputs

# of
outputs

MIPS Estimated
Price

Real-time MATLAB
Simulink via Opal RT
and QNX

PC/
Windows

16 2 PC Depen-
dent

$2,680.00+

Freescale Symphony
DSP Embedded System

Embedded 16 2 150-500 $1,000.00 -
$1,140.00

Symphony SoundBite -
Affordable Audio DSP
Development Kit

Embedded 8 8 180 $150.00

Multichannel Audio
Board for DA830 EVM
/ OMAP-L137 Starter
Kit

Embedded
+ UNIX
for devel-
opment

8 8 300 for
DSP + 300
for ARM9

$964.00
(option A)
$1,599.00
(option B)

DSP Starter Kit (DSK)
for the TMS320C6713

Embedded 3 2 1800
(1350
MFLOPS)

$450.00

TMS320C6424
Evaluation Module

Embedded 2 2 560 $515.00

TLV320AIC34
Evaluation Module
(EVM) with HPA 5-6K
Interface Evaluation
Module to arbitrary
DSP daughter card

Embedded 6 6 1800
(1350
MFLOPS)

$615.00

PCM3168A Evaluation
Module
DEM-DAI3168A EVM

Embedded 6 8
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platform best satisfied the criteria for implementation; included in the platform are multiple

AK4556 24bit 192 kHz audio CODECs for high performance digital audio sampling and

reproduction. Typically used for basic audio mixing and filtering between input channels,

it was noted the onboard Freescale DSP56371 could also serve as a digital controller with

a single-core clock-speed of 180MIPS.

3.5 Data Acquisition

The data acquisition was performed using a combination of a digital oscilloscope, the DSP

board and a USB link to the PC. A digital low-pass filter was implemented on the DSP to

perform all measurements that required the use of the microphone, which served to add gain

to the audio measurements and filter out high frequency noise. Input-output measurements

were taken from the respective ports of each subsystem used in the analysis to analyze their

gain and phase response subject a frequency sweep in the range of 15 Hz to 900 Hz. Higher

frequencies are ignored as the piezoelectric actuators are designed to operate in subwoofer

bandwidth frequencies only. In some instances, a single test incorporates several transfer

functions hence it is necessary to combine the results from several tests to determine the

behaviour of a single element. To characterize the subwoofer, for example, the transfer

function from input [V] to output [Pa] cannot be obtained in a single test. Instead, we

perform multiple tests from which the speaker’s transfer function may be deduced: first

by characterizing the microphone, then by characterizing the DSP implementation of a

LPF followed by a final test of the subwoofer cascaded with the microphone and DSP

LPF. The behaviour of the piezoelectric speaker is then extracted through appropriate

gain division/multiplication and phase addition/subtraction. The subsystems that were

tested include:

DSP - Unity gain test

Input: Output from PC auxiliary cable

Output: Output port of DSP direct feed-through
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DSP - LPF test

Input: Output from PC auxiliary cable

Output: Output port of DSP implementation after LPF to add microphone gain of x100

Amplifier

Input: Output from DSP into input of loaded AMP

Output: Output from amplifier into input of piezoelectric subwoofer

Subwoofer

Input: Output from amplifier into subwoofer

Output: Output of microphone after passing through DSP LPF with x100 gain

3.5.1 Oscilloscope

The DSP platform did not support the built in functionality of transferring large batches

of data directly to the PC. While such an operation may be coded, it was deemed more

efficient to utilize an available digital oscilloscope for the remainder of the data acquisition.

The oscilloscope, a Welec W2000A, possesses two input channels and a 100 MHz analog

bandwidth in addition to the sought characteristic of a USB interface to the PC. Figure

3.4 below shows experimental setup in operation as data acquired from a subwoofer test.

3.5.2 DSP Low-Pass Filter

In initial tests, it was found that the microphone measurements were near the noise floor

and hence were corrupted with substantial high frequency noise. The increased difficulty

in performing accurate measurements led to the incorporation of a digital filter to improve

the testing results. A digital filter is implemented on the Freescale DSP so as to reduce

the high-frequency noise and add a gain factor for 40dB to the microphone output. This

filtering DSP is accounted for in all subsequent models either through self-negation when

it is present in both the numerator and denominator of a transfer function data set, or,

through subsequent numerical removal of its gain/phase contribution. It is noted that the

former technique is preferred since it requires no additional operations which may introduce

errors as is in the case with the latter.
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Fig. 3.4 Data acquisition experimental setup utilizing a Welec W2012A digi-
tal oscilloscope interfaced to the Freescale Symphony SoundBite audio demon-
stration board and W500 ThinkPad.

3.5.3 USB-Link

Information from all tests is first imported into comma-separated value (CSV) on the

PC through device driver software included with the Welec oscilloscope. This process,

while convenient, is subject to the delays in timing inherent to any interaction with a non

real-time operating system. As a result, precisely timed measurements were not possible

and so the measurements were performed on a frequency by frequency basis as opposed to

impulse response or other such techniques. For accurate measurement of the zero-crossings,

explained in Chapter 4 for phase extraction, the signals were oversampled typically by a

factor of 50; however, the buffer size of the W200A allowed for only 3932 samples. The

limiting buffer size of the oscilloscope also meant that tests are necessarily performed in

small batches where it is not feasible to test more than one frequency at a time.

Subspace identification has the capacity to obtain an accurate model of a system if the

excitation is sufficiently rich. However, given the brevity of the buffer, such an excitation

signal may have to incorporate substantial frequency information in a compact number of

samples. The unknown resonant peaks of the subwoofer, which were said to exist by Magna,

made this technique of identification high-risk should a such a high-energy excitation cause

damage to the piezoelectric crystal.

The CSV data is then imported into MATLABTMwhere the remainder of the analysis
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takes place.
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Chapter 4

Modelling and Subspace

Identification

An accurate model of the plant is necessary for the implementation of feedback control in

ANC and hence a significant portion of this project is devoted to developing techniques for

obtaining a good model of the system dynamics and most importantly, for keeping that

model up to date.

The plant, consisting of the subwoofer and its driving amplifier, will be used to imple-

ment a noise estimator in subsequent sections of this thesis. For this reason, it was desired

that a model be obtained for these subsystems which demonstrated as little uncertainty

as possible. While the nature of H∞ design allows for uncertainty if it has been properly

incorporated in the synthesis, we would like to focus our uncertainty metrics on the noise

disturbance and not the plant itself. For this reason, we utilize deterministic subspace

identification to model the plant dynamics. To carry out pure deterministic identification,

we require the use of the assumption that the measurements contain no noise so that we

may deduce that the output is a direct result from the input subject to the internal dy-

namics of the system. The empirical data from the experiments in addition to the merging

procedures that were necessary to deduce the behaviour of single elements within larger,

cascaded systems, necessarily introduced more noise than could reasonably be assumed

zero. To account for this, we introduce pre-processing steps to filter the data before ap-

plying the tools of deterministic subspace identification. While subspace identification is

a discrete-time domain algorithm which directly allows for the computation of state-space

2013/08/12
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matrices from input-output data, we shall utilize some tools from the frequency domain to

simplify the synthesis of the final data set on which we may apply the SSI.

It should be noted that the techniques employed in this thesis vary in their domain of

implementation. The system identification algorithms utilize theory based in the discrete-

time, state space domain. The H∞ synthesis theory, on the contrary, utilizes continuous-

time state space models of the plant dynamics. Implementation of an H∞ controller is,

however, in the discrete-time domain on-board a digital signal processor. Analysis of the

systems studied in this investigation are, therefore, not carried out in strictly the continuous

or discrete domains since the models must be well-conditioned in both.

We assume that all elements in the plant are completely linear time-invariant (LTI)

and since each sample set contains only a single frequency of excitation, we may deduce

that the system’s response is constant for the duration of the measurement period. From

this deduction, it can then be concluded that despite all corruption effects of the stochastic

noise, our objective is to identify only two variables from each sample-set: gain and phase.

Our procedure is hence to develop an automated technique for accurately measuring the

gain and phase of each sample batch. From this information, we then synthesize new, noise

free, input-output channels on which deterministic SSI can be implemented.

To measure the two parameters, we utilize the method of zero-crossing detection to com-

pute the time-delay between the signals. During the experimental procedure, the sampling

rate of the oscilloscope is adjusted to guarantee at least ten complete waveforms in each

sample-set. We therefore can perform a sufficient number of zero-crossing measurements

in each set to estimate the mean zero-cross time delay.

As shown in Figure 4.1(a), a reliable means to automatically compute the phase delay

is difficult given the presence of the corrupting noise. The precise timing of the zero-

crossing event is not clear with the voltage spikes which speckle the data. Sources of

the high-frequency noise are many including the multiple ADC/DAC conversions in the

measurement procedures, the noise floor of the microphone, ambient noise in the laboratory,

and the numerical and quantization errors introduced by the finite precision machinery.

Additionally, most signals in the experimental results are biased above 0 V by some amount;

it is therefore not a zero-crossing event that we seek but rather a mean-crossing. Low

frequency noise also corrupts the signals which results in a time varying mean.

To reduce the impact of such noise, we employ a self-negating bandpass filter which was

first discussed in the previous chapter.
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Denoting the input measurements by xk with a frequency domain equivalent of X(z)

and the output by yk and Y (z) respectively. We define the transfer function, T (z) of the

subsystem by:

T (z) =
Y (z)

X(z)
(4.1)

With both X(z) and Y (z) corrupted with noise, we require a means to modify each data-

set to facilitate measurement of their relationship without introducing significant errors or

change to the relation. Suppose we create a high-order bandpass filter, Fbp(z) such that all

frequency content above and below the frequency of excitation is attenuated significantly:

X̂(z) :=Fbp(z)X(z)

Ŷ (z) :=Fbp(z)Y (z)

Any analysis performed on X̂ or Ŷ would require that we incorporate information about the

filter Fbp to deduce information about the original signal. However, since we only require

the magnitude and phase relating the signals, the application of the filter does not impact

the result:

Ŷ (z)

X̂(z)
=
Fbp(z)Y (z)

Fbp(z)X(z)

=
Y (z)

X(z)

=T (z)

The bandpass filter design is automated by first obtaining the fast Fourier transform of the

signals and obtaining the frequency of excitation by:

ωc = arg max
ω

|X(z)|z=ejω (4.2)

Next we construct the filter with resonant frequency precisely at the frequency of excitation,

ωc. It is not required that the precise characteristics of the filter be either known nor

controlled since it will be effectively negated, however, in this investigation the filter was

selected to have a gain of K = 27 and quality factor of Q = 1. Here, we utilize the well-
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known characteristics of a the second-order continuous time filter followed by the bilinear

transform to create the desired band-pass filter Fbp:

Fbp(s) =
K

Q
ωc
s2 + s+Qωc

=
27

1
ωc
s2 + s+ ωc

(4.3)

Transforming to the z-domain with the bilinear transform at the sampling frequency of the

oscilloscope, we obtain a difference equation which may be used to directly filter the input

and output measurements,

Fbp(z) =Fbp(s)|s= 2
T

z−1
z+1

,T= 1
fscope

(4.4)

It should be noted that although the presence of the filter is negated from impacting the

final gain and phase measurements; the filter’s effect is not lost since it does effectively

remove the noise from the measurement signals which greatly improves the accuracy in

measuring their relationship. The magnitude and phase of x̂ and ŷ are indeed altered

significantly by the filter but most importantly: they are altered in an identical way.
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Fig. 4.1 (a) Raw data measurements from experimental setup showing noise
corruption of input-output, (b) Filtered data after the application of Fbp to
input and output signals respectively.

Figure 4.1(b) shows the effect of the band-pass filter on improving the signal integrity.

Information in all frequency bands is modified, however the relative magnitude and delay

between the input and output at a single frequency is preserved. A zero-crossing detection

algorithm can now be implemented.
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Zero Crossing

With any DC bias removed by the band-pass filter, zero-cross detection is performed by

iterating through the data and keeping track of the sign until a change has been experienced.

A debounce of 30 samples is used as a final measure to filter out noise to ensure that a

true zero-cross has been detected. Once the critical value is found, linear interpolation

is performed to compute the best estimate of the true zero cross time. The resulting

zero-cross times are then vectorized and subtracted output from input to achieve the time

delays from which the mean is computed and finally multiplied by ωc, to obtain the phase

angle. Matching input and output frequencies, strengthened our assumption of the system

being LTI, this was noted during the process of filter design wherein the I/O signals were

transferred to the Z-domain to gauge the band-pass filter performance.

Magnitude

To determine the gain, the signals are isolated between their first and last zero-crossings

to remove any bias added by non-zero incomplete periods. The root mean square is then

computed for each signal and the results divided.

Figure 4.2 shows the resulting partial waveforms after processing with the bandpass

filter; the zero-crossings are highlighted on the curves. Unpaired crossings, as would be

indicated by the right-most ′x′ in the figure if the complete waveform were shown, are

ignored. Here, only rising edge zero-crossings are marked.

4.0.4 Input-Output synthesis

The dynamics of system given the experimental results are now contained in vectors of mag-

nitude and phase information. The aforementioned procedure is performed in an attempt to

remove as much noise as possible to effectively apply deterministic subspace identification.

In a final step, it is necessary to synthesize input-output signals of pure sine waves subject

to the collected data. While it seems redundant to have compressed the I/O information

into two parameters of magnitude and phase only to re-expand the data into synthetic I/O

streams, the process ensured that high-frequency corruptive noise would not be present for

the deterministic subspace identification in a subsequent step.

Depending on the subsystem under analysis, it may be necessary to perform an addi-

tional operation on the magnitude and phase arrays before we may produce an I/O stream
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Fig. 4.2 Automated phase measurement using averaged zero crossing time
delays. 245 Hz wave form shown with measured phase of -71 degrees and gain
of 50 dB.

that represents the frequency response of a particular element. Let us return to the previ-

ous example of the piezoelectric actuator in which it was stated that the transfer function

from input voltage [V] to output sound pressure waves [Pa] cannot be computed directly.

Instead, the DSP was utilized with a high gain low pass filter so as to improve the signal

integrity. Let us define the array of gain measurements of a test k such that Mk
A→B denotes

the gain from measurement point A to B. Then the following tests were performed:

MT1
subwoofer→DSPout

:=MmicMDSPMsubwoofer

MT2
DSPin→DSPout

:=MDSP

MT3
micin[Pa]→micout[V ]

:=− 63 dB

To obtain frequency response indicative of the piezoelectric speaker from input (Volts) to

output, in (Pascals), we use data from each of the three tests as follows:

Msubwoofer =
MmicMDSPMsubwoofer

MmicMDSP

=
MT1

subwoofer→DSPout

MT2
DSPin→DSPout

MT3
micin[Pa]→micout[V ]
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where vector division and multiplication is performed element by element.

A similar procedure is used to compute the phase with the exception that time delays

are additive in cascaded systems hence the phase is computed as a sum rather than a

product.

The subsystems are now ready for decompression through the process of I/O synthesis.

Each magnitude and phase pairing is allotted a minimum of 800 samples such that the next

occurring zero-cross after 800 samples marks the beginning of the subsequent frequency;

this prevents discontinuities which would introduce high frequency noise. Figure 4.3(a)

shows the magnitude and phase points of the piezoelectric subwoofer from the laboratory

experiments prior to the synthesis of the noise-free data. In (b) the output of the system is

shown given unity gain input. After the completion of data-collection from the oscilloscope,
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Fig. 4.3 (a) Frequency response of piezoelectric subwoofer in laboratory
setup after magnitude and phase extraction, (b) Synthesized I/O data used
for deterministic subspace identification of piezoelectric subwoofer.

all of the algorithms discussed above are performed automatically so as to increase the

efficiency with which experiments can be carried out and decrease the likelihood of human

error. It should be noted that this procedure was repeated for all subsystems used in the

experimental analysis.

We are now ready to perform deterministic subspace identification on the plant to obtain

our state-space model.
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4.0.5 Subspace Identification: Deterministic

Subspace identification, introduced in the previous section, is a method in which the system

state is first derived directly from input-output data before, in a final step, the system

matrices are computed. The derivation of the mathematical foundations, however briefly

presented here, are largely thanks to the detailed analysis of the algorithms presented in

[37, 38, 39].

We begin by first restating the general discrete representation of an LTI process:

xk+1 =Axk +Buk + wk

yk =Cxk +Duk + vk

Since we may now assume that the process contains zero noise, we may proceed by

simplifying the model to omit wk and vk:

xk+1 =Axk +Buk

yk =Cxk +Duk
(4.5)

With knowledge of only uk and yk we seek to determine the order and the system

matrices A,B,C and D.

In presenting the subspace identification algorithms, we follow the notation of Van Over-

schee and De Moor in [38] upon which most of the derivation is based.

We begin by defining two projections which are crucial in understanding the derivation

of SSI: the orthogonal projection and the oblique projection.

(a)
(b)

Fig. 4.4 (a) Orthogonal projection (b) Oblique projection

The rowspace of a matrix A is projected onto the rowspace of a matrix B through the
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following operation:

A/B =ABT (BBT ) -1©B

This operation is called the orthogonal projection and is shown geometrically for a two-

dimensial system in Figure 4.4(a). The orthogonal projection utilizes the Moore-Penrose

pseudoinverse [46], with shorthand (·) -1©.

We can use the orthogonal projection as a means for decomposing the row space the

matrix, A, into the sum of two orthogonal row spaces such as:

A :=A/B + A/B⊥

We can also decompose A into the sum of two non-orthogonal row spaces by introducing

the oblique projection. Suppose that:

A ∈ Rm×n, B ∈ Rr×n, C ∈ Rs×n

the oblique projection of the row space of A along the rowspace of B on the rowspace of C

is defined as:

A/CB :=A
(
CT BT

)
·

[(
CCT CBT

BCT BBT

) -1©]
s columns

We can then decompose A as follows:

A :=A/CB + A/BC + A/C⊥,B⊥

(
B

C

)⊥

It is worth noting that B/BC = 0 and C/BC = C.

Before the main theorem of deterministic subspace identification can be stated, we

require the augmentation of (4.5) into a form that encompasses all of the measurement

data rather than only a single sample. Let us define the state sequence matrix by a vector
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which contains the progression of states sequenced horizontally as in:

Xi :=
(
xi xi+1 . . . xi+j−2 xi+j−1

)
∈ Rn×j, x ∈ Rn×1

The input-output data is placed into block Hankel matrices by dividing the data into past

and future data sets relative to some arbitrary point within the data. The output block

Hankel matrix is shown below:

Y0|2i−1 :=



y0 y1 y2 y3 . . . yj−2 yj−1

y1 y2 y3 y4 . . . yj−1 yj

y2 y3 y4 y5 . . . yj yj+1

. . . . . . . . . . . . . . . . . . . . .

yi−1 yi yi+1 yi+2 . . . yi+j−1 yi+j−2

yi yi+1 yi+2 yi+3 . . . yi+j yi+j−1

yi+1 yi+2 yi+3 yi+4 . . . yi+j−1 yi+j

yi+2 yi+3 yi+4 yi+5 . . . yi+j yi+j+1

. . . . . . . . . . . . . . . . . . . . .

y2i−1 y2i y2i+1 y2i+2 . . . y2i+j−1 y2i+j−2



∈ R2i×j

The element yi is referred to as the present and hence when it occurs in the first column, we

use its corresponding row position to divide the Hankel matrix into two block matrices where

the upper block is defined as the past since the first column begins with y0 and increased

to yi. The lower block is defined as the future since it possesses all of the outputs from the

present i to the final measurement. This concept is expressed in shorthand notation by:

Y0|2i−1 :=

(
Yp

Yf

)
=

(
Y0|i−1

Yi|2i−1

)

We can shift the division point a below the present element which results in the advance-

ment:

Y0|2i−1 :=

(
Y +
p

Y −f

)
=

(
Y0|i

Yi+1|2i−1

)

The size of the block Hankel matrix Y0|2i−1 is R2i×j; the lengths i and j are arbitrary but
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are typically adjusted so as to ensure that every data sample is incorporated in each row

and there are at least as many rows as the maximum order of the system. An identically

structured block Hankel matrix U0|2i−1 is created which incorporates all of the input mea-

surements. Similarly, we augment further the I/O data by placing it into a matrix W0|i−1

(after Willems [47]):

Wp :=W0|2i−1

=

(
Up

Yp

)

We may introduce a single process equation to define our state space that includes all

of the system data:

Xf =AiXp + ∆iUp

Yp =ΓiXp +HiUp

Yf =ΓiXf +HiUf

where Γi is analogous to the extended controllability matrix, ∆i to the extended observ-

ability matrix and Hi is a block triangular Toeplitz matrix. Letting l denote the number

of outputs, the matrices are shown below:

Γi =


C

CA

CA2

. . .

CAi−1

 ∈ Rli×n

Hi =


D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

. . . . . . . . . . . . . . .

CAi−2B CAi−3B CAi−4B . . . D

 ∈ Rli×mi

∆i =
(
Ai−1 Ai−2B . . . AB B

)
∈ Rn×mi
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The deterministic subspace identification begins by first performing an oblique projection of

the rowspace of Yf along the rowspace of Wp on the rowspace of Uf . Under the assumption

that intersecting rowspaces between Uf and Xp is null, it can be shown that the result from

this projection is in fact, equivalent to the product of the extended observability matrix

and the state sequence:

ΓiXf =Yf/Uf
Wp (4.6)

The proof has been omitted from this thesis but can be found in [38]. Two user defined

weighting matrices W1 ∈ Rli×li and W2 ∈ Rj×j subject to the requirement that W1 is full

rank and rank(Wp) = rank(WpW2), are defined which control the state space basis of the

final model. Let us assume that W1 = I and W2 = U⊥Tf (U⊥f U
⊥T
f ) -1©U⊥f . We now perform

a singular value decomposition on the result from (4.6):

W1(ΓiXf )W2 =
(
U1 U2

)(S1 0

0 0

)(
V T
1

V T
2

)
=U1S1V

T
1

(4.7)

We may infer the order n of the system by inspecting the number of eigenvalues in S1

different from zero. The extended observability matrix may now be computed directly

from the results in (4.7):

Γi =W−1
1 U1S

1/2
1

=U1S
1/2
1

(4.8)

For simplicity, a similarity transform was omitted from (4.8) but may be included to improve

the efficiency with which part of the state-sequence is extracted. With knowledge of the

extended observability matrix, we may now obtain the state-sequence from (4.6):

Xf =(Γi)
-1©ΓiXf

=Xf

(4.9)

Proof of (4.9) is non-trivial given that (Γi)
-1© is not a general inverse, verification of this

result can be found in [38].
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Recalling that the state space model utilizes the system matrices to relate the previous

(or past) state and input to the next (or future) state, the reason for structuring the block

Hankel matrices as we did is now clear. We have computed the state sequence Xi as

Xf , hence we still need to determine the state sequence one step into the future before

the system matrices are readily available. To this end, we modify the oblique projection

performed in (4.6) as follows:

Γi−1Xi+1 =Y −1f /U−1
f
W (+)

p (4.10)

Our computation of Γi−1 is simplified from the previous method since it has a direct rela-

tionship to Γi, that is:

Γi−1 =Γi[with the last l rows removed] (4.11)

As before, we compute Xi+1 by applying the right-inverse of Γi−1 to the oblique projection

in (4.10):

Xi+1 =(Γi−1)
-1©Γi−1Xi+1

=Xi+1

(4.12)

We have now obtained the full state sequence from our data-set of input-output mea-

surements. We determine the system matrices A, B, C, and D by framing the problem as

follows: (
Xi+1

Yi|i

)
=

(
A B

C D

)(
Xi

Ui|i

)
(4.13)

This linear equation can be solved directly since, in theory, having contained no noise, the

states are defined completely and the system is consistent.

4.1 Implementation of deterministic subspace identification

With the empirical measurements of the I/O behaviour of the subsystems obtained through

the aforementioned techniques in noise filtering, we now proceed to implement the algo-
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rithms behind the deterministic subspace identification. Implementation of the subspace

identification algorithms is carried out using the N4SID algorithms published by Van Over-

schee and De Moor in the release of [38]. Given that the models of the plant will be in-

corporated in H∞ synthesis to design our controller, the resulting discrete-time state space

models are transferred to the continuous time domain using the Bilinear transform. The

results are shown in Figure 4.5 which demonstrates the performance of the algorithm in

modelling the piezoelectric subwoofer.
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Fig. 4.5 Performance of deterministic subspace identification on empirical
data synthesized by intensive filtering using frequency-by-frequency band pass
filters preparing for use in continuous-time H∞ synthesis, (a) magnitude, (b)
phase.

It is clear that while the identification method performs well in obtaining a state model

which matches the empirical data, there are many limitations in using a strictly determin-

istic algorithm. Despite that we employed the filters and techniques to remove the noise

from the system, it is clear that we would benefit from more reliable method of phase mea-

surement. Amplitude measurements progress with frequency in a relatively smooth manner

but the phase measurements are discontinuous. These errors introduce sharp jumps in the

phase which are likely artefacts in the zero crossing method and not indicative of the be-

haviour of the true system. The cascading effect of such phase errors on a deterministic

modelling algorithm is that the SSI will force the model to include all phase discontinuities

resulting unnecessary complexity. Models derived from first principles can be advantageous

since they allow for a direct physical interpretation of each pole and zero in the system. On

the contrary, with fully automated modelling, we may lose sight of how to physically inter-
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pret the model. Figure 4.6 shows the pole-zero map depicting the deterministic subwoofer

model. Through the insight of Dr. Benoit Boulet, McGill, it is believed that most of the

ORHP pole-zero pairs are likely a direct consequence of the deterministic SSI algorithm

attempting to match phase discontinuities.
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Fig. 4.6 Pole-Zero map of subwoofer system, prior to performing pole-zero
cancellation of erroneous non-minimum phase zeros and unstable poles.

The techniques of H∞ control are capable of handling both non-minimum phase zeros

and unstable poles, however, there exist many fundamental limitations associated with the

presence of either. This is especially true if we are constrained to a physical implementations

where actuators have saturation limits. In initial attempts of H∞ synthesis, the models

developed above were used directly without any further conditioning. Artefacts introduced

by the modelling techniques prevented convergence of the controller synthesis to the extent

that feasible results could not be generated. It will be reasoned below that these artefacts

are not actually present in the physical system and hence with discretion, we seek to

minimize their impact thereby enabling the synthesis of H∞ controllers. We now proceed

to remove these elements in such a way that trades off the integrity of the model with

simplification of controller design.

Since the models of both the amplifier and the piezoelectric speakers are known to be

stable through qualitative observation, we can reasonably assume that the cancellation of

erroneous phase matching NMP zeros with unstable poles can be carried out safely. The
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close proximity of the poles-zero pairs in the ORHP in Figure 4.6 suggests that their removal

will have only a minor impact on the phase. This was indeed found to be the case. No

additional unstable poles were erroneously introduced into the system besides those that

resulted from the phase artefacts.

In general, high frequency unstable poles and low frequency non-minimum phase ze-

ros are most detrimental to the system behaviour. After experimentation with different

techniques, it was found the best case model was obtained by dealing with low and high

frequency non-minimum phase zeros differently. We acknowledge that our objective to re-

move their presence results in a less realistic model given that any acoustic cavity contains

non-minimum phase zeros which are governed by the speed of sound.

The high frequency non-minimum phase zeros are removed from the ORHP by trans-

lating them into poles in the OLHP. This has the effect of preserving their phase perfectly

while introducing error to the gain. Low frequency non-minimum phase zeros are translated

into the OLHP by direct reflection; this preserves their magnitude perfectly but introduces

phase error.

We attempt to recover some of the realism, lost as a result of our artefact removal,

by utilizing lead-lag compensation to make up for the phase and gain errors that have

been introduced. Again, we are faced with a trade-off by adding the compensation filters

which increase the system order. The design process used to create the lead-lag filter was

that of iteration by varying the filter parameters until a satisfactory trade-off between

model accuracy and controller synthesis feasibility is obtained. Depending on the artefact

removal technique of either translating ORHP zeros into OLHP poles, which preserved

phase, or reflection of low-frequency ORHP zeros into OLHP zeros, which preserved gain;

the requirements of the lead-lag filter differed. Varying the location of the pole and zero

in the filter had the effect of improving either the accuracy of the magnitude or the phase

while reducing the accuracy of the other, hence a trade-off between the conflicting effects

was required. It was found that the lead-lag compensator in (4.14), performed best in

yielding a model for the subwoofer which showed a good balance between gain and phase

error relative to the uncompensated model. A lead-lag compensator of similar form is found

for the amplifier.

Q(s) =
2.0408× 10−7(s+ 4444)2(s+ 1000)(s+ 70)2

(s+ 400)2(s+ 90)
(4.14)



4 Modelling and Subspace Identification 46

Figure 4.7 shows the effect of each modification step on the model. The original model
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Fig. 4.7 Deterministic subspace identification introduces NMP zero and un-
stable pole artefacts; performance improved by cancellation improved by can-
cellation, reflection and inversion. Compensated with lead-lag. (a)Amplifier
model (b) Piezoelectric speaker model

yielded from the subspace identification most accurately reflects the empirical data, notwith-

standing errors introduced by the zero cross error, hence all subsequent compensations

strive to approach the original model. Magnitude is most detrimentally impacted by the

NMP zero transformations while phase remains intact. The lead-lag compensation im-

proves the magnitude of the models to more closely match the originals at the expense of

causing phase skew. The lead-lag compensators were designed to try to ensure that most

phase skew was outside of the system bandwidth at frequencies greater than 200 Hz.

4.2 Model Scaling

The last step in establishing our models is to ensure that they are adequately scaled rela-

tive the noise dynamics. It was hypothesized that the resonant peaks in the piezoelectric

apparatus setup in the lab would differ significantly from the model in the car. While the

piezoelectric mechanism itself has characteristic modes, it is expected that most modes

in the response are caused by the dynamics of the metallic plate which produces the ac-

tual pressure waves in the air through excitation by the piezo. Similarly in a vehicular



4 Modelling and Subspace Identification 47

installation, the physical properties of the windshield and the fact that it is driven by two

piezoelectric actuators (rather than only one as in the laboratory apparatus) are expected

to result is significantly different response curve from tests in the lab. Without access to

detailed vehicular test measurements, we have access to only a few test results from decom-

missioned prototypes; we cannot perform direct measurements on the system and hence we

opt not to base our simulations on the road tests but rather to use their results to guide

our approach in scaling.

Figure 4.8 shows the output of the piezoelectric speaker with excitation by a sine wave
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Fig. 4.8 Vehicular installation of piezoelectric speaker (a) system output
given sine sweep of excitation, (b) frequency response speaker output

frequency sweep in (a) and the corresponding frequency response in (b). Compared to the

response of the speaker in Figure 4.5 which has most of the spectral energy concentrated

above 200 Hz, empirical tests indicate that a vehicular installation of the piezoelectric sys-

tem contains most of its spectral energy around 100 Hz. This discrepancy will have an

impact on our controller’s ability to perform noise attenuation given that it will be mod-

elled on the laboratory response curves in Figure 4.5. The buffeting harmonics contain

a fundamental mode at approximately 17 Hz, hence the system whose spectral energy is

focused closer to that range (e.g. the vehicular installation) will perform better in active

noise control. Our simulations then will be less indicative of real-world performance given

that the spectral energy of the noise is outside that of the laboratory speaker’s range.

To compensate for this discrepancy, we employ frequency scaling on the noise to shift
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it into the same position in the spectra of the laboratory as the empirical noise is to the

vehicular. For accurate scaling we must incorporate a model of the amplifier that was used

in the vehicle. Without access to the device itself, we deduce its dynamics by dividing two

frequency response curves of speaker results in the same manner that was carried out in our

laboratory tests. The two tests that were combined for the amplifier behaviour deduction

differed in their measured variables and their frequency sweep range. In the first test,
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Fig. 4.9 Computed frequency response of automobile acoustic amplifier for
0 to 50 Hz showing fixed gain and phase in frequency band of interest.

measurements are present which contain data of the excitation signal streaming from the

PC and of the microphone output. In the second test, measurements are present from the

output of the amplifier and the microphone output. The lack of identical test conditions in

the frequency sweep range complicate our ability to make an accurate inference about the

amplifier’s behaviour but the projected frequency response division is shown in Figure 4.9.

While a more direct test method would necessarily be required to synthesize a controller

to use in the vehicle, the results from our deduction are sufficient to enable an estimation

of how the frequencies should be scaled.

The noise which we seek to attenuate was measured in empirical tests by the method

discussed later in Section 5.1. While the techniques of stochastic system identification,

presented in Section 5.2 were still being developed, the noise was quickly modelled as a
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cascade of second order systems using the method presented by Marie-Pierre Jolicoeur in

[48]. Once the noise was modelled, we approximate the central frequency by frequency

weighting the spectral energy over the range of the sampling frequency as shown in (4.15).

The result, is an estimate on central frequency of the spectrum; its value is not crucial

since we are more concerned on the relative difference of ωav between the noise signals and

their respective piezoelectric speaker:

ωav ≈
1

P

ωs/2∑
ω=0

|X(jω)|2ω (4.15)

where P is the spectral energy of the response.

Table 4.1 Scaling of lab model to vehicular model

Model ≈ Spectral
E (P )

ωav [Hz]

Piezo speaker (car) 0.32 119
Ambient noise (car) 0.007 65
Buffeting noise (car) 5.58 113
Piezo speaker (lab) 1.09 382
Ambient noise (lab) 0.02 208
Buffeting noise (lab) 13.8 375

Our aim is to create a shifted model of the noise whose relative position of ωav compared to

that of the laboratory apparatus matches that of the vehicular installation of the speaker.

The results of this process are summarized by Table 4.1. By adjusting the fundamental fre-

quency of the synthetic noise models to be used in the lab, we shift their average frequency

so that they are scaled appropriately to the laboratory speaker. We adjust their spectral

power in a similar way. Figure 4.10 shows the resulting magnitude response of vehicular

models and those used for the laboratory system. It is clear that synthesized noise model

resembles its relative position in the frequency band compared to that of the speaker. We

use this model to obtain synthetic noise measurements on which we can perform stochastic

subspace identification discussed section 5.2.
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Chapter 5

Noise Estimation

5.1 Acquisition of empirical noise data

In the implementation of feedback control, direct measurement of the noise source is not

performed and rather we employ knowledge of the closed-loop sensitivity function to achieve

broadband noise attenuation. However, it remains a crucial point in the design stage to

obtain a good model of the noise disturbance so that it may be analyzed to optimize the

controller.

A 2004 Toyota Matrix is used as the test vehicle to measure the noise disturbances

which we week to attenuate. The vehicle is fitted with the Apex220 microphone with its

phantom power driven by an alternator connected to the standard +12 V supply within the

automotive. The microphone is affixed to the approximate location of the front passenger’s

head. The output of the microphone is connected to a laptop to record the data. Road tests

are performed in 5 km/h increments at 80 km/h and above. First, the ambient highway

noise is measured by ensuring that all windows are sealed and performing measurements of

the environment within the cabin without the addition of any musical reference signal. The

ambient highway noise is the result of a superposition of many independent noise sources

such as the tire noise, wind noise, engine noise and external traffic noise.

In subsequent tests, the buffeting phenomenon is measured by opening a single window

by a sufficient amount to induce the characteristic hammering noise. The test is repeated

for each window at increasing speeds to a maximum of 100 km/h. Figure 5.1 (a) shows the

buffeting phenomenon recorded at a driving speed of 100 km/h; we can see the presence of

the hammering tone at around 17.1 Hz its harmonics with decreasing magnitude. Figure

2013/08/12
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Fig. 5.1 Noise measurements performed within the passenger cabin of a
2004 Toyota Matrix (a) Window buffeting recorded at 100 km/h with rear
right window open, (b) Ambient highway noise recorded at 100 km/h with all
windows closed.

5.1 (b) shows the noise measurements within the vehicle with all windows closed driving at

100 km/h, this is referred to at the ambient highway noise. Both tests show results plotted

in units of sound pressure level (SPL) which relate the noise in Pascals as a gain from the

minimum threshold of human hearing.

5.2 Subspace Identification: Stochastic

In purely stochastic subspace identification, the process input is said to be zero and the

source of excitation is strictly from an external, unmeasured noise source. In H∞ synthesis,

we incorporate the output disturbance by directly augmenting the plant with a weighting

function which we then use to enforce a physical bound on the particular H∞-norm. This

norm directly reflects the impact of the noise disturbance on the system output (or equiv-

alently, on the error). This process will be explained in detail in the next chapter, suffice

it to say that an accurate model of the stochastic noise disturbance is the objective of this

chapter. Using the tools of stochastic subspace identification, we seek to incorporate an

adaptive identification mechanism for characterizing the noise in the vehicular cabin.

We begin by restating the system process in its entirety before we proceed to identify
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which special case we employ for this modelling method:

xk+1 =Axk +Buk + wk

yk =Cxk +Duk + vk

Previously, we made the assumption that the system was operating completely determinis-

tically; we utilized input measurements uk and the output measurements yk to completely

characterize the dynamics of the system model. In the stochastic model, we now assume

the input noise wk and output noise vk to be strictly non-zero but set the input uk to zero:

xk+1 =Axk + wk

yk =Cxk + vk

Contrary to the previous method, we now have access to only a single measurement vector

yk. Our task is similar to that which was carried out previously: we seek first to identify the

order of the system. Unlike the deterministic case where we could deduce exact state values,

in stochastic identification we obtain optimal estimates of the state sequence instead. We

then obtain the system matrices A and C from the state sequence estimate before finally

making estimates of several noise statistics of the system.

To obtain estimates of the state sequence, we begin by first computing orthogonal pro-

jections on augmented block Hankel matrices of the output measurements yk. To maintain

a grasp in the physical domain, the signal yk can be interpreted as either our direct mea-

surement of the noise in the case of experimentation, or, as an estimate of the noise during

real-time operation. As before, we acknowledge that the notation and procedure of the

subspace identification algorithms is based on the work by Van Overschee and De Moor

in [38]. Let us perform the orthogonal projection in an alternative method to that which

relied on the use of the Moore-Penrose inverse used previously. Here, we perform an LQ

decomposition of Y0|2i−1 from which we can partition to extract the appropriate projections

as shown in [37]:  Y0|i−1

Yi|i

Yi+1|2i−1

 =

 L11 0 0

L21 L22 0

L
(l(i−1)×li)
31 L32 L33


Q

T
1

QT
2

QT
3


=LQ

(5.1)
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L =

 li× li 0 0

l × li l × l 0

l(i− 1)× li l(i− 1)× l l(i− 1)× l(i− 1)

 ∈ R2li×2li

Q =

 li× j
l × j

l(i− 1)× j

 ∈ R2li×j

(5.2)

First we project the rowspace of Yf onto the rowspace of Yp as follows:

Yf/Yp =

(
L21

L31

)
QT

1 (5.3)

It can be shown that the projection in (5.3) is equivalent to the product of the observability

matrix Γi and the matrix X̂i which contains estimate of the state sequence. Next, we

perform the weighted singular value decomposition as in [37]. Again, we select arbitrary

W1 ∈ Rli×li and W2 ∈ Rj×j subject to the conditions that W1 is full rank and W2 satisfies

rank(YpW2) = rank(Yp):

W1(Yf/Yp)W2 =W1(ΓiX̂i)W2

=
(
U1 U2

)(S1 0

0 0

)(
V T
1

V T
2

)
=U1S1V

T
1

(5.4)

We may extract the system order from the number of non-zero eigenvalues in (5.4). We

repeat the orthogonal projection, this time with Y −1f projected onto the rowspace of Y +
p to

obtain the product of the observability matrix Γi−1 and state sequence estimate advanced

one-step forward in time:

Γi−1 ˆXi+1 =Y −1f /Y +
p (5.5)

We determine Γi from the results in (5.4) as follows:

Γi =W−1
1 U1S

1/2
1 , letting W1 be the Identity matrix, we have

=U1S
1/2
1
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Repeating the singular value decomposition for Γi−1 is not necessary since it is related to

Γi by removal of l rows. The state estimates may now be isolated using the right-inverse

as before:

X̂i = Γ
-1©
i Yf/Yp, X̂i+1 = Γ

-1©
i−1Y

−1
f /Y +

p

We now perform a least squares minimization to identify the plant matrices A and C

according to the problem: (
X̂i+1

Yi|i

)
=

(
A

C

)(
X̂i

)
+

(
ρw

ρv

)
(5.6)

by omission of ρw and ρv which are the forward innovations and the remaining Kalman

filter residuals [38]. They are also orthogonal to X̂i. We use the residuals next to identify

the covariance and process noise:(
Q S

ST R

)
= Ej[

(
ρw

ρv

)(
ρw ρv

)
] (5.7)

A Riccati equation is then solved which yields the Kalman filter gain (refer [38] for complete

algorithm implementation); this leaves us with the forward innovation model:

xk+1 =Âxk +Kek

yk =Ĉxk + ek

E[ek(ek)T ] =R

(5.8)

Since we have modelled the system as a purely stochastic process for which uk = 0, we do

not have an B or a D as are typically found in state space models but are left with an

analogous system wherein the noise signal ek takes the job of exciting the system in place

of uk. We seek now to express (5.8) in a form more consistent with a state space system

that is readily applicable for use as a weighting function in H∞ control. We require the

weighting function to be SISO which will be driven by a normalized excitation variable.
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Let us define a noise variable:

eb :=
ek√
R

(5.9)

The covariance of our new noise signal is hence:

E[eb(eb)
T ] =E[

ek√
R

(
ek√
R

)T ]

=
1

R
E[ek(ek)T ]

=1

(5.10)

Substituting eb into (5.8) we have:

xk+1 =Axk +K
√
Reb

yk =Cxk +
√
Reb

E[ek(ek)T ] =1

(5.11)

The I/O behaviour of (5.11) is identical to that of (5.8) subject to a modified excitation

signal which has a unit covariance. We denote this system by Wo(s) which serves as our

model of the noise disturbance within the vehicular cabin. In performing our controller

design, we can think of the noise signal eb as an exogenous input signal which drives a

standard state space model Wo(s) for which we may readily incorporate in H∞ synthesis

to minimize the system norm and thereby minimize the impact that eb has on the system

error. For the purpose of simulation, it is necessary that we complete the analogy to think

of the forward innovation model as a fixed state space system:

xk+1 =Âxk + B̂uk

yk =Ĉxk + D̂uk
(5.12)

where we define, B̂ = K
√
R, D̂ =

√
R and uk = eb.

When this system is driven by a zero mean excitation signal uk which has a unit covari-

ance, it will produce an approximation of our noise disturbance which we have modelled.

In the case of buffeting noise, for example, the low-frequency hammering sound which is

characteristic of this noise type, is captured completely by the model in (5.12).
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Implementation of the subspace identification algorithms was carried out using the

N4SID algorithms published by Van Overschee and De Moor in the release of [38].

5.3 Decimation Factor Selection

In practice, using the fixed sampling frequency governed by the Freescale hardware platform

of 44100 Hz, it was found that stochastic identification algorithms did not perform well.

In analyzing the empirical buffeting data, the identification technique failed to capture the

dynamics of the noise source to any degree. It was postulated that since most of the spectral

energy contained in the noise models, such as buffeting, exists at low-frequencies with

first harmonics at around 17 Hz; they fail to be detected by the identification algorithms

which are operating at 44.1 kHz. Most of the dynamics of the system that we seek to

capture are concentrated within a very low and narrow band of frequencies compared to

the Nyquist (Fs

2
) rate. The sampling frequency, fixed by a hardware configuration on the

Freescale development board, is excessively high relative to the bands which we target for

attenuation.

We opt to introduce a means to downsample the noise prior to introducing it to the

stochastic identification block to ensure that the spectral energy is more evenly spread out

among the sampling band. The effectiveness of downsampling in stochastic identification

has been shown in [49].

We use a heuristic for selecting the optimal decimation factor that gives strongest weight

to the peak energy in the frequency response. Our knowledge of the noise characteristics

provides some insight into the expected shape of the of the frequency response which

enables us to tailor our decimation factor selection. We begin by performing an FFT on

the noise sample-set and selecting the frequency which contains the highest energy. If we

are detecting buffeting, we know this fundamental tone will represent the first harmonic of

the hammering sound:

ωc = arg max
ω

|N̂(z)|z=ejω (5.13)

Our objective is to find an optimal Nyquist frequency which is some multiple of wc so as to

ensure that most of the spectral contents of the noise are included. Once the new Nyquist

frequency is found, we select the nearest decimation factor which divides evenly into Fs.
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Figure 5.2 shows the effect of varying the decimation factor on the performance of the

stochastic subspace identification algorithm. In performing the analysis, we begin with a

demonstrative transfer function which is in the spectral range of the buffeting noise to serve

as an example. We define a transfer function which is two cascaded second order systems

with critical frequencies of 10 Hz and 100 Hz respectively in addition to several single order

filters to balance the response. We use the same sampling rate as in the hardware platform,

Fs = 44.1 kHz and iterate on the decimation factor subject to the criteria above.
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Fig. 5.2 Effect of decimation of on subspace identification performance in
capturing sample plant model dynamics with varying decimation factor (a) No
anti-aliasing filter used, (b) Approximation of ideal low-pass filter performing
anti-aliasing before decimation.

Prior to performing the decimation, we pass an FIR low-pass filter over the data to

remove the spectral components at frequencies greater than the decimation in a technique

demonstrated by Boulet in [50]. An approximation of the sinc function is used here to

pre-filter the data with a cut-off at Fs

2M
, where M is the decimation factor.

As is evident in Figure 5.2, when the decimation factor is too small (e.g. Dec. fct=1),

we see that the stochastic SSI totally fails to capture any significant characteristics of the

system. The effectiveness of the anti-aliasing filter is also demonstrated in Figure 5.2;

without the use of the pre-processing filter, aliasing occurs as the high frequency peaks

are folded into the main spectra, as shown in (a). By introducing the anti-aliasing filter,

as in (b), all aliasing artefacts are prevented. If the decimation factor is too large (e.g

the Nyquist frequency shifted too low), the second peak at 100 Hz is lost completely as

a result of anti-aliasing filter. The location of the Nyquist frequency which best captures
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the system dynamics is found to occur, for this example, at x40 times the peak energy

level. The corresponding decimation factor is chosen to be the next closest, even multiple

of Fs subject to a downward search. We search downward, decreasing the decimation

factor, to lessen the risk of losing information to anti-aliasing. For the purposes of this

analysis, this heuristic makes sense from the perspective of buffeting since it will ensure

that we downsample such that the Nyquist frequency is around twenty times greater than

the fundamental tone which is typically around 17 Hz.

5.4 Effect of sampling window size

An additional parameter under analysis in the stochastic subspace identification algorithms

is the window size used in collecting data. In the derivation of the stochastic SSI, one of

the assumptions stated in [38] is that the number of sample points increase to infinity to

ensure convergence of the model. Hence we ideally wish to perform our identification on

a infinitely long sample-set. We are faced therefore, with a trade-off in which we wish to

incorporate as many samples as possible to improve the model of the noise but are limited

by the memory available within the DSP and additionally, the computation time associated

with performing the identification for systems with increasing size. Figure 5.3 below shows

the effect of the window size on the convergence of the stochastic model. To quantify the

window size, we indicate the number of samples as a multiple of the sampling rate; for

example, a window of size 4Fs, where Fs = 44100Hz, contains 176,400 samples.

Here, we are performing the estimation on empirical test data of the buffeting at 100

km/h. The test is carried out by increasing the multiples of the sampling frequency Fs,

which are used to set the sample window size, followed by the stochastic subspace identi-

fication operation. It should be noted that the units of this test are not in [SPL] as they

were in Figure 5.1 but rather are the direct FFT of the samples. A sample size, N , that

incorporates one sampling frequency Fs (or 44100 samples) yields a noise model which cap-

tures the dynamics of the frequency response loosely but it clearly too conservative given

its magnitude exceeds that of all subsequent tests. We see that with increasing multiples

of the sampling frequency, there is convergence such that N = 5Fs is almost indiscernible

from N = 4Fs. With the biggest change from N = Fs to N = 2Fs, we select N = 2Fs as

a good compromise in window size against computational complexity. It should be noted

that given the downsampling procedure outlined previously, a window size of 2Fs will ac-
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Fig. 5.3 Convergence of subspace identification model to true noise charac-
teristics with increasing data windows by multiples of sampling rate, buffeting
noise with increasing N sample points, Fs = 44100 Hz

tually contain substantially fewer than 88200 samples depending on the locale of the power

density in the spectra. An in depth analysis of performing subspace identification on-board

a DSP is detailed in [51].

5.5 Noise Estimator

In feedforward control, it was shown that measurements of the system’s error, which rep-

resent noise which has not been attenuated, can be used to optimize the coefficients of a

filter to improve the noise attenuation in the subsequent step. The error signal itself played

no role in directly driving the actuator, instead, the noise signal itself was used filtered an

served to drive the anti-noise actuator. In the method presented in this thesis, we perform

the converse: the error signal is used to directly drive the actuator in a closed-loop feed-

back configuration, an estimation of the noise is used to improve the performance of the

noise attenuation in the next step by reducing uncertainty. We therefore require a means

to estimate the corrupting noise source. Let us consider the a model of the plant which

includes the output disturbance:

The microphone is omitted from the model since we negate its presence on the DSP
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Fig. 5.4 Feedback control block diagram containing disturbance

by applying a virtual microphone inversion. This means that all units of the plant are in

Pascals except for the voltage channels between the control, amplifier and speaker. Let us

differentiate the true model of a plant from an internal estimate of the plant by invoking

the tilde notation where, for example, G̃speaker is our subspace identification model of the

true plant, Gspeaker. To isolate the noise, we begin with an internal model of the plant in

Figure 5.4 which relies on our estimates of the plant parameters:

Y (z) =
G̃speaker(z)G̃amp(z)K(z)

1 + G̃speaker(z)G̃amp(z)K(z)
R(z) +

1

1 + G̃speaker(z)G̃amp(z)K(z)
Do(z) (5.14)

Our noise estimator is obtained by solving (5.14) for Do(z):

D̂o(z) =Y (z)− (R(z)− Y (z))G̃speaker(z)G̃amp(z)K(z) (5.15)

We may equivalently give (5.15) in the time domain. A particular noise sample is computed

by:

d̂ok =yk − (rk − yk) ∗ b

where b =Z−1{G̃speaker(z)G̃amp(z)K(z)}
(5.16)

Our noise estimator, creates a stream of samples derived from the difference between the

system output, measured by the microphone, and the error signal weighted by convolution

with the plant and controller dynamics. This estimation of the noise is useful because it

removes the effect of any noise cancellation which may have made other noise measurement

techniques difficult. It should be noted however, that it is crucial that the open-loop plant

and controller model be stable hence by extension, it is only applicable to systems in which

the poles of G̃speaker(z), G̃amp(z) and K̃(z) are contained within the unit circle. For most
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open-loop acoustic systems, this requirement is satisfied. Another point worth mentioning

is our reliance on the accuracy of the plant estimates.

The interconnection of G̃speaker(z)G̃amp(z)K(z) is referred to in literature as the ex-

tended plant model. It is used extensively in internal model control (IMC) [52] which may

theoretically achieve perfect attenuation barring omission of physical limitations [53]. In

fact, the use of the IM has been used for disturbance rejection which was first demonstrated

rigourously in [54] for cancellation of a deterministic noise source.

Implementation of our noise estimator is carried out in SimulinkTMas shown in Figure

5.5 which also approximates how such a process is executed onboard a DSP. The signal

from the microphone, which measures the audio levels in the cabin, is sampled onto the

DSP where it is converted into a quantized digital signal. We invert the gain of the sensor

by applying a virtual microphone inversion so that our units are consistent in Pascals.

Similarly, the reference signal containing either a musical sample or pure silence are also

fed into the estimation block and subject to virtual microphone inversion.

Fig. 5.5 Block diagram of noise estimator internal to DSP for extracting
noise characteristics from output measurements.

Our internal model then processes the error signal to advance forward by one time-

step; its output is subtracted from the sound measured in the cabin and the result is

an approximation of the noise. The stream of noise samples constitute the input to the

stochastic subspace identification block which, as explained, creates a model of the plant

disturbance.

It will be demonstrated in Section 6.1.1 how the noise model is incorporated into the

control design as a weighting function, however, let us state now that the phase of such

functions can be ignored [53]. But we do require however, that the weighting functions

be stable and some biproper. The phase invariance is beneficial since it allows for simple

post-processing of the model to quickly reflect all non-minimum phase zeros and unstable

poles into the OLHP which does not impact magnitude characteristics.



5 Noise Estimation 63

5.6 Noise Simulation

To verify the performance of the controller which is computed in the next section, we

require a means to subject the feedback control system to varying disturbance conditions.

In the real-world, these simulations represent changes in the environment such as opening or

closing a window, increasing speed, decreasing speed or changes to the RPM of the engine.

It is our objective to confirm that the controller behaves expectedly in these scenarios by

adapting as required.

For reasons that could not be determined throughout the course of this investigation,

a unit discrepancy was introduced by the stochastic noise models which caused the ampli-

tudes of their respective outputs (when excited by a zero-mean, unit covariance input) to

be less than the noise measured in the vehicle. While the shape of the frequency response

was indeed very accurate indicating the harmonics were present in the right proportion, the

magnitude was significantly smaller. While the decimation may be partially attributed to

gain offset, the source of the energy loss could not be accounted for entirely. Through trial

and error, a correction factor of 874 was deemed ideal to adjust the units to match those

which were recorded in the tests. With this constant factor, all models produced through

the stochastic SSI algorithms yielded simulation outputs which matched the empirical data

very well. Figure 5.6 shows the simulation block which is used for synthesizing vehicular

cabin noise representative of ambient highway driving at 100 km/h and the buffeting phe-

nomenon at 100 km/h when the front passenger window was opened. The noise models

were excited by a zero mean Gaussian noise with covariance equal to 1, consistent with

(5.12). For completeness, the system is also simulated direct noise samples collected from

empirical tests.

Programmable noise source selection is performed by the multiport switch shown in

Figure 5.7. Simulations using varying sequences of noise transitions are used to demonstrate

the effectiveness of the feedback control loop in adapting to changes in output disturbance.
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Fig. 5.6 Simulation setup for noise creation; white noise is generated and
its variance adjusted to adjust the output units. Passing through the transfer
function models of the empirical noise, the specific characteristics for highway
driving window and buffeting noise respectively are added.

Fig. 5.7 Noise selection block for simulating transitions between buffeting,
highway ambient and zero-noise output disturbance.
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Chapter 6

Controller Design & Simulation

We now proceed to perform the control design to perform the task of active noise control

which we have been building towards. Once the controller has been created, we will design

a state machine to update the controller with up-to-date models of the disturbance. Finally,

we simulate the system and discuss the results

6.1 H∞ synthesis

6.1.1 Principle of H∞ Control

H∞ synthesis is a control strategy which minimizes the maximum gain of a closed-loop

system with a stabilizing LTI controller. Prior to stating the theorems of the theory, we

briefly review the concept of a norm. A norm an operation performed on bounded functions

which assigns a non-negative number to the manner in which the function transforms input

to output. The most familiar norm is the Euclidian, or L2 which represents the length of a

vector in a given space. We may produce a norm using an exponent other than 2, however,

in fact the general norm is referred to as the p-norm and is given by:∥∥∥f∥∥∥
p

:= (

∫
D

|f |p dµ)1/p (6.1)

or equivalently in the discrete domain by:

∥∥∥X∥∥∥
p

:= (
n∑

i=0

|xi|p)1/p (6.2)

2013/08/12
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The most oft used norms consist of p = 1 which is the sum of the element magnitudes,

p = 2 which is the Euclidian norm, and p =∞ which is equivalent to:∥∥∥X∥∥∥
∞

:= max {|x1|, |x2|, . . . , |xn|} (6.3)

In the context of LTI systems, norms provide us with a measure of the system’s gain. The

H2-norm can be interpreted as quantitative metric of the energy in the impulse response

and analogous to the RMS; this norm can be defined by:∥∥∥H∥∥∥
2

:= (
1

2π

∫ ∞
−∞

trace{H(jω)∗H(jω)} dω)1/2 (6.4)

Our interest, however, is on the H∞-norm which is interpreted as the maximum gain of the

system. To properly understand the infinity norm of a linear system, let us first introduce

the spectral norm which is defined as the maximum singular value σ̄:∥∥∥H∥∥∥ = σ̄(H) = [λmax(H∗H)]
1
2 (6.5)

where (∗) denotes the complex conjugate and λmax is the largest eigenvalue. Here, the

spectral norm represents the maximum input-output gain of the 2-norms of the respective

input and output vectors [53]. The H∞-norm is then given by:∥∥∥H∥∥∥
∞

= sup
ω∈R
{σ̄(H(jω))}

= sup
ω∈R

∥∥∥H(jω)
∥∥∥ (6.6)

Hence the H∞-norm of a system H, is the maximum gain between an input-output

pair of L2 bounded signals across all frequencies; it can be found by identifying the peak

amplitude of the system’s Bode plot. This norm is especially useful for noise attenuation

because it allows us to control the limit by which a signal is amplified from an input to

the output. If we recast our system to consider the noise disturbance as an input, we can

utilize the tools of H∞ synthesis to limit the impact of the noise on the system output.

Let us formulate our system as linear fractional transformation (LFT) where all known

systems are included into an augmented plant P and our controller is removed and isolated

outside of the plant as in Figure 6.1(a). We introduce now a new notation for vectors
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using the horizontal arrow; this notation represents a vector of input/output signals which,

themselves, contain vectors indexed in time. In addition to the I/O connections from the

external controller, our augmented plant has an input vector ~w and output vector ~z. The

infinity norm which we shall control is that of the transfer function Tw 7→z and hence we

create interconnections between ~w and ~z according to norms that we set out to minimize.

For our purposes, we achieve our objective by including in the input vector ~w the signals

do(s), di(s), and yr(s) to represent output disturbance, input disturbance and reference

signal respectively. Included in the output vector ~z are signals ũ(s) and ẽ(s) to represent

weighted control and error signals respectively. A description of the weighting functions

Wo(s), Wi(s), Wu(s) and We(s) is postponed until after the general H∞ problem has been

formulated.

(a) (b)

Fig. 6.1 (a) Piezoelectric speaker system recast into linear fractional trans-
formation, (b) Standard LFT form for H∞ problem.

The system is now in LFT form as in Figure 6.1(b), where P (s) is referred to as the

generalized plant which contains the transfer matrix entries:

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
(6.7)

This relates to the following sets of equations:

z(s) = P11(s)~w(s) + P12(s)~u(s)

y(s) = P21(s)~w(s) + P22(s)~u(s)
(6.8)
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where the transfer matrices are given by:

P11(s) =

[
0 Wi(s)Gamp(s)Wu(s) 0

−Wo(s)We(s) −Wi(s)Gamp(s)Gspkr(s)We(s) We(s)

]

P12(s) =

[
Gamp(s)Wu(s)

−Gamp(s)Gspkr(s)Wes

]
P21(s) =

[
−Wu(s) −Wi(s)Gamp(s)Gspkr(s) 1

]
P22(s) =

[
−Gamp(s)Gspkr(s)

]
(6.9)

Given P (s), we seek to synthesize a controller K(s) which minimizes the H∞-norm of

the closed loop transfer function from the exogenous input vector ~w(s) to output vector

~z(s). The closed loop transfer function is given by the lower LFT. The objective can be

summarized as follows:

min
K

∥∥∥Tzw∥∥∥
∞

(6.10)

where:

Tzw =FL[P (s), K(s)]

=P11(s) + P12(s)K(s)[I − P22(s)K(s)]−1P21(s)
(6.11)

H∞ synthesis finds a suboptimal solution to this problem since optimizing (6.10) is not

typically feasible given computational limitations. The solution takes the form of selecting

a γ > 0 and attempting to find an admissible controller such that
∥∥∥Tzw∥∥∥

∞
< γ. This

inequality can be solved closed-form and requires only the solution to two algebraic Riccati

equations [55]. If a suitable controller is found, we identify the smallest permissible γ using

the bisect method until the suboptimal controller is found. The conditions and assumptions

required to find an admissible controller can be found in [53, 55].

Incorporation of the weighting functions Wo(s), Wi(s), Wu(s) and We(s) , which were

introduced into our FLT plant, is crucial in exploiting the power of H∞ synthesis as it

enables direct loop-shape control of the infinity norm. Suppose that we have identified a

γ > 0 for which an admissible controller K(s) has been produced, this results in stable
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closed-loop transfer function with
∥∥∥Tzw∥∥∥

∞
< γ. This result can also be expressed as:

∥∥∥∥∥∥∥
dodi
yr

 7→ [
ũ

ẽ

]∥∥∥∥∥∥∥
∞

< γ ⇒
∥∥∥do 7→ ẽ

∥∥∥
∞
< γ (6.12)

∴ |Tdo 7→ẽ(jω)| < γ, ∀ω (6.13)

From our block diagram in Figure 6.1(a), we compute Tdo 7→ẽ(jω) as:

Tdo 7→ẽ(jω) =
1

1 +Gspkr(jω)Gamp(jω)K(jω)
We(jω)Wo(jω) (6.14)

So given the result in (6.13) we have:∣∣∣ 1
1+Gspkr(jω)Gamp(jω)K(jω)

We(jω)Wo(jω)
∣∣∣ < γ (6.15)

∣∣∣ 1
1+Gspkr(jω)Gamp(jω)K(jω)

∣∣∣ < ∣∣∣γW−1
e (jω)W−1

o (jω)
∣∣∣ (6.16)

The presence of γ in (6.16), provides insight into whether or not we have achieved our

objective. A γ > 1 indicates that the closed-loop infinity norm has exceeded that which

we intended; or in other words, our sensitivity has violated a constraint at some point its

Bode plot. Ideally, we seek to find an admissible controller K(s) which yields a γ < 1. To

demonstrate this, suppose that we let γ = 1 in (6.16), we then have:∣∣∣ 1
1+Gspkr(jω)Gamp(jω)K(jω)

∣∣∣ < ∣∣∣W−1
e (jω)W−1

o (jω)
∣∣∣ (6.17)

which implies that the system sensitivity is less than W−1
e (jω)W−1

o (jω) at all frequencies.

In contrast, if γ > 1 then we must scale the sensitivity by a factor γ to ensure that it

remain less than W−1
e (jω)W−1

o (jω).

By selecting an appropriate frequency response for the weighting functions, we can limit

the maximum closed-loop gain of the sensitivity (and related constraints) on a frequency

by frequency basis. Without the use of weighting functions, a minimum H∞-norm is still

achieved, however the norm is the same for all frequencies and does not afford us any

control in tailoring the specific H∞-norm at a specific frequency.
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The result in (6.16) shows that we can directly control the impact that the output

disturbance do will have on the interior of the vehicular cabin. The noise disturbance,

whose dynamics are captured by Wo(s), is computed directly from the stochastic subspace

identification algorithm which derives its excitation signal from our noise estimator. The

result is that we have a decreased uncertainty in the disturbance that our system faces

which allows to more precisely optimize our controller and achieve improved performance.

By selecting an appropriate W−1
e (s) and given that W−1

o (s) is stable and minimum phase

(through the reflection of any ORHP poles and zeros to the OLHP to preserve magnitude-

only), we may theoretically achieve perfect noise attenuation. In reality, we are limited

by many factors including saturation limits of the control hardware and the piezoelectric

subwoofer actuator; further, the model approximations that were made by removing the

NMP zeros in section 4.1, effectively negated the propagation delay of sound. While we

attempted to improve this approximation with lead-lag compensation, it is acknowledged

that the true system would contain such NMP components. We shall now proceed to

discuss the process of selecting appropriate weighting functions.

6.1.2 Weighting function: output disturbance

The output disturbance weighting function Wo(s) describes the spectral contents of the

output disturbance [53]. We derive its transfer function directly from the stochastic sub-

space identification algorithm after the noise estimator processes the measurements of the

microphone. Unstable modes and non-minimum phase zeros are reflected into the ORHP

without consequence since it is only the magnitude of the weighting functions which affect

the H∞ synthesis and the feasibility of identifying an admissible controller.

6.1.3 Weighting function: error

As stated, we are provided with direct control over the impact of the disturbance output

has on our system through the product of W−1
e (s)W−1

o (s). The weighting function Wo(s)

is beyond our control since it represents a real disturbance bombards the cabin of the

vehicle. The error weighting function We(s) however, is completely user-defined and must

be selected carefully to achieve the desired closed-loop behaviour. An admissible controller

may not be achievable, for example, without some scaling of Wo(s) to limit its impact on

the sensitivity that H∞ synthesis attempts to achieve. We now describe the technique for
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selecting We(s) adaptively, depending on the disturbance which the system faces.

First let us consider which H∞-norms are affected by the selection of We(s):

Tdo 7→e =
1

1 +Gspkr(s)Gamp(s)K(s)
We(s)Wo(s) (6.18)

Tyr 7→e =
−1

1 +Gspkr(s)Gamp(s)K(s)
We(s) (6.19)

Tdi 7→e =
Gspkr(s)Gamp

1 +Gspkr(s)Gamp(s)K(s)
We(s)Wi(s) (6.20)

We may omit (6.20) since Wi(s) serves primarily to aide in numerical stability when

solving for K(s) and so the influence of di(s) can be safely ignored. Hence We(s) impacts

both our disturbance rejection and our referencing tracking. Conveniently, the transfer

functions for both of these objectives are represented by the closed-loop sensitivity so our

objective to attenuate disturbance can be carried out with our objective in flattening the

acoustic response of the subwoofer simultaneously.

However, to consider a single sensitivity function objective for all environmental con-

ditions requires that we minimize the H∞-norm of our system when the ambient noise is

small and when it faces aggressive noise disturbance from window buffeting simultaneously

in the same way. This objective implies that we seek to obtain the same high-fidelity mu-

sical reproduction both when the windows are closed, at which time the passengers’ can

pay close attention to the acoustic response, and when the window is open at which time

the buffeting phenomenon severely detracts from the passengers’ ability to hear the music

at all. Further, it implies that there is wide uncertainty contained in the model for Wo(s)

since it must cover the worst case of all possible noise disturbances.

When the window buffeting is engaged, the average noise level within the vehicular cabin

increases drastically such that our interest in high-fidelity audio becomes less important

compared to the more pertinent noise disturbance which fills the cabin. In some instances,

it was found that performance could be improved by identifying the harmonics alone within

the noise and tailoring a notch filter directly into We(s), however, for the purpose of this

investigation we will not discuss those results further.

When there is only ambient highway noise, broadband noise attenuation and high-

fidelity music reproduction can be achieved simultaneously. But in the presence of buffeting,

we opt to shift the control objective to more aggressively target the buffeting phenomenon.
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While applying broadband noise attenuation to target buffeting will effectively reduce its

volume, the controller’s ability to have a significant impact on the cancellation of the

harmonics is limited due to the so-called waterbed effect imposed by Bode’s sensitivity

integral [56] which states that: ∫ ∞
0

ln |S(jω)|dω = 0 (6.21)

Given that the sensitivity integral must be equivalent to unity, broadband attenuation

reduces our ability to apply more aggressive attenuation to a single frequency. A decreased

sensitivity at one frequency results in increased sensitivity at another. With a finite quan-

tity of attenuation possible, subject to the constraint’s of Bode’s sensitivity integral, it can

be interpreted as wasteful for us to attenuate frequencies which are not as detrimentally

impacting our system while critical harmonics in buffeting are more directly causing pas-

senger discomfort. Through simulation, it is found that the harm done by trying to severely

attenuate buffeting harmonics whilst simultaneously providing broadband disturbance re-

jection results in increased sensitivity at (typically) higher frequencies. This is perceived

by the passenger as high frequency static noise. Hence in the presence of buffeting, our

approach is to reduce broadband noise cancellation and increase the notch attenuation

whereby independent frequencies are attenuated more drastically.

Conversely, to incorporate good frequency notching into the sensitivity function that

we use for the high-fidelity musical playback results in undesirable auditory effects since

the acoustic response is no longer flat.

Our periodic re-modelling of the noise disturbance through implementation of the

stochastic subspace identification algorithm provides us with insight into how and when

this trade-off needs to be re-optimized.

We control the disturbance’s maximum impact on our error by using W−1
e to control

our broadband attenuation and W−1
o to directly incorporate the stochastic model of our

noise into the optimization. When buffeting noise is detected, we proceed to increase W−1
e

(lessen the system’s requirement to achieve broadband attenuation) and W−1
o is scaled to

achieve as much buffeting rejection as possible. Direct use of Wo(s) was found to yield

some success.

In times of ambient highway disturbance, Wo(s) becomes so small that we may ef-

fectively omit and instead, use We(s) alone to implement ANC. We flatten the acoustic



6 Controller Design & Simulation 73

response of the piezoelectric subwoofer by controlling its transmission function, which is

given by the complementary sensitivity:

T (s) =
Gspkr(s)GampK(s)

1 +Gspkr(s)Gamp(s)K(s)
(6.22)

The complementary sensitivity describes transfer function of the input reference music

signal to the output, as in Tyr 7→yo . Transmission is the specification most often cited for

the auditory characteristics of a speaker since it describes how frequencies are amplified in

the bandwidth of operation. Competing subwoofer installations were researched and their

transmission functions used to establish a reasonable transmission function. The specific

competitors are not indicated here, but the nature of this control design process is that the

transmission characteristics may be modified or tuned to the taste of the end-user. With

the transmission function described, we may deduce the desired sensitivity through the use

of the identity:

T (s) = I − S(s) (6.23)

where S(s) is the sensitivity. Hence from the transmission, we may directly deduce the

targeted sensitivity. We formulate the transmission specification in the context of H∞
design as: ∥∥∥Tyr 7→e

∥∥∥
∞
< γ∥∥∥ −1

1+Gspkr(s)Gamp(s)K(s)
We(s)

∥∥∥
∞
< γ∥∥∥S(s)

∥∥∥
∞
< γ

∥∥∥W−1
e (s)

∥∥∥
∞

|S(jω)| < γ|W−1
e (jω)|, ∀ω

(6.24)

Therefore by setting:

W−1
e (s) = I − T (s) (6.25)

we achieve the desired result. Some additional modifications toWe(s) is required to ensuring

that the H∞ problem is well posed.
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6.1.4 Weighting function: actuator constraint

One of the limitations mentioned in section 6.1.1 is the physical realization of the control

system hardware which contains amplifiers and speakers that experience saturation if they

are overdriven. We can account for the saturation limit of the amplifier using the Wu(s)

weighting function. The closed-loop path which represents the transfer function from the

input reference signal yr and output disturbance do to the amplifier output are denoted by

Tdo 7→u and Tyr 7→u respectively are given by:

Tdo 7→u =
Gamp(s)K(s)

1 +Gspkr(s)Gamp(s)K(s)
Wo(s)Wu(s) (6.26)

Tyr 7→u =
Gamp(s)K(s)

1 +Gspkr(s)Gamp(s)K(s)
Wu(s) (6.27)

We can therefore utilize W−1
u (s) to place a limit on the actuator constraint. The am-

plifier in the laboratory setup has a DC bias of approximately +90 V and allows for the

peak-to-peak output of around +180 V, hence we set Wu(s) = 1/90 to impose a reasonable

constraint on the amplifier output.

6.1.5 Synthesis

Synthesis of the H∞ controller is performed in MATLABTMusing the algorithms associated

with the Robust Control ToolboxTM. It is expected that γ values would not approach

the desirable value of 1 however, initially tests showed failure in the identification of an

admissible controller. Transfer function selection is non-trivial for a good controller design

and hence the system’s ability to converge immediately is not expected. Once admissible

controllers are identified, values of γ larger than 1 indicate that violations in the H∞-norm

subject to the constrains of the weighting functions are present. To visually comprehend

the nature of the violation, it is useful to create Bode plots to identify the precise location

of the norm violation since the infinity norm is given by the peak magnitude of the plot.

Consider for example, the result in (6.16) restated below, and suppose that the violation

has occurred in this constraint:∣∣∣ 1
1+Gspkr(jω)Gamp(jω)K(jω)

∣∣∣ < ∣∣∣γW−1
e (jω)W−1

o (jω)
∣∣∣
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When the bisection method converges, the magnitude of the sensitivity on the left of (6.16)

touches that of the constraint on the right at the point which prevents a further decrease in

γ. By setting γ = 1 and plotting (6.16), the full extent of the limiting constraint is shown

by any section in the Bode plot where the magnitude of the sensitivity exceeds that of the

constraint.

Through this method, the limiting components are identified by amplifier saturation

and speaker gain. Given that the laboratory apparatus contains only a single piezoelectric

mechanism while vehicular installations have on order of 2 or 4 actuators, the constraint

was relaxed by allowing the speaker to operate louder than it was found possible in the

lab. The assumption is made that with the addition of the multiple actuators and improve-

ments in the amplifier driver, we can obtain a speaker which is capable of producing a 20

dB of sound. The second limiting constraint is that of the amplifier saturation. Amplifiers

used in the modern implementations of the piezoelectric speaker have significantly higher

voltage gain than that which was used in the lab, with the limiting factor being the di-

electric properties of piezoelectric actuator and stroke length permissible by sealants. Our

assumption then is to allow for a 400 V peak-to-peak signal. We believe this assumption

is reasonable, however, we also acknowledge that these assumptions impact the feasibility

for direct physical implementation.

The results of the modified tests are shown in the subsequent figures. Two optimizations

are performed to present results indicative of the expected behaviour of the controller under

buffeting conditions where notched disturbance rejection of the buffeting tones is the control

objective, and under ambient highway noise conditions where high-fidelity acoustic linearity

is the control objective.

Figures 6.2, 6.3, and 6.4 show optimization constraints plotted against the closed-loop

infinity norm attained by the controller for the indicated transfer function. The constraint

for broadband noise attenuation and associated reference tracking is relaxed to achieve

better filtering of the noise harmonics without too significantly deteriorating the sensitivity

at higher frequencies. Still, the waterbed effect is present as demonstrated by Figures

6.3(b) and 6.3(a) where the sensitivity exceeds 1 for some frequencies over 200 Hz. The γ

value was greater than zero which is made obvious by the violations in Figure 6.3(b) which

represents the transfer function from the output disturbance to the error. Here, we see that

the first harmonic of the buffeting peak violated the capacity of the system. Despite the

violation, all eigenvalues of the closed-loop system exist in the OLHP hence the system is
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stable.
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Fig. 6.2 H∞ optimization for buffeting disturbance, constraints for do 7→ u
and yd 7→ u

Figures 6.5, 6.6, and 6.7 show the same constraint-sensitivity plots for the second syn-

thesis which demonstrates the system’s behaviour when the windows are closed. Experienc-

ing only ambient highway noise, the control objective is switched to improve the acoustic

linearity of the piezoelectric speaker and simultaneously perform broadband noise atten-

uation. We see again that a γ value less than one could not be achieved with reference

to the controller saturation in Figure 6.5(b) at frequencies below 10 Hz. Since this plot

represents the closed-loop transfer function of the reference signal to the controller output,

we do not expect to excite the system in this band hence this violation is reasonable. We

also see a violation in Figure 6.7(a) suggesting that the controller cannot fully achieve the

closed-loop transmission that we sought, however, the desirable flat acoustic response is

achieved. Evidence of the waterbed effect is also present here as the sensitivity exceeded

0 dB at frequencies outside of the bandwidth under study. Increasing the magnitude of

W−1
e (s) to level of the sensitivity shown in Figure 6.7(a) resulted in an unexpected increase

in the closed-loop sensitivity: it seems to obtain the flat acoustic response, we require the

constraining We(s) to exceed the capacity of the system. This behaviour is not well under-

stood. All eigenvalues of the closed-loop polls are OLHP stable as was the case with for

the buffeting disturbance.
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Fig. 6.5 H∞ optimization for ambient highway disturbance, constraints for
do 7→ u and yd 7→ u

10
−1

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

200

Frequency [Hz]

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

|G
amp

/(1+KG
amp

G
subwoofer

)|

|W
u

−1
W

i

−1
|

(a) di 7→ u⇒
| Gamp

1+KGampGsubwoofer
|∞ < |W−1u W−1i |

10
−1

10
0

10
1

10
2

10
3

10
4

−40

−20

0

20

40

60

80

100

Frequency [Hz]

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

|−1/(1+KG
amp

G
subwoofer

)|

|W
e

−1
W

noise

−1
|

(b) do 7→ e⇒
| −1
1+KGampGsubwoofer

|∞ < |W−1e W−1noise|

Fig. 6.6 H∞ optimization for ambient highway disturbance, constraints for
di 7→ u and do 7→ e



6 Controller Design & Simulation 79

10
−1

10
0

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

40

50

Frequency [Hz]

M
a

g
n

it
u
d

e
 [

d
B

]

 

 

|1/(1+KG
amp

G
subwoofer

)|

|W
e

−1
|

(a) yd 7→ e⇒
| 1
1+KGampGsubwoofer

|∞ < |W−1e |

10
−1

10
0

10
1

10
2

10
3

10
4

−100

−50

0

50

100

150

200

Frequency [Hz]

M
a

g
n

it
u
d

e
 [

d
B

]

 

 

|−G
amp

G
subwoofer

/(1+KG
amp

G
subwoofer

)|

|W
i

−1
W

e

−1
|

(b) di 7→ e⇒
| −GampGsubwoofer

1+KGampGsubwoofer
|∞ < |W−1i W−1e |

Fig. 6.7 H∞ optimization for ambient highway disturbance, constraints for
yd 7→ e and di 7→ e

6.2 State machine

We utilize a state machine to implement our control strategy since it enables the determin-

istic operation that can be easier to debug. Figure 6.8 below shows the state machine used

to determine when to appropriately perform stochastic SSI and to update the controller.

The states may be summarized as follows:

State 0

Initialize the system and set the controller K(s) to utilize the results from the optimiza-

tion which yielded the high-fidelity acoustic response and broadband noise attenuation.

Transition to state 1.

State 1

Once the system is activated, we begin our noise estimator functional block which uses

the internal model of the plant to generate an estimate of the noise in the system n̂(k).

The noise level in the vehicular cabin is monitored with an approximation of a windowed

moving average N̂avg of length L. At each noise sample, we perform the following update
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to our estimate of the average noise:

N̂avg(k + 1) = N̂avg(k)− N̂avg(k)

L
+
|n̂(k)|
L

(6.28)

When the noise accumulates a N̂avg(k) which exceeds some threshold (in simulations,

this threshold is 10), we proceed to state 2.

State 2

Without changing the controller, we now begin buffering the noise samples. When we

have collected a sufficient number of noise samples subject to the results in section 5.4,

we perform stochastic subspace identification. During the computation of the SSI iden-

tification, we may continue to collect samples in case our controller does not successfully

update. Once we have obtained our new noise model Wo(s) we perform H∞ synthesis by

relaxing the broadband attenuation constraint to better attenuate the buffeting harmonics;

as before, samples of the noise are still collected. If we obtain an admissible controller with

γ < γmax (user-defined) and the resulting closed-loop plant in OLHP stable, we update the

controller and proceed to state 3. If any of these conditions fail, restart state 2.

State 3

We now update the system to utilize our newly optimized controller. We restart our noise

buffer and continue to collect noise samples until again we have collected the number re-

quired by section 5.4. Once we have a sufficient number of samples, we proceed to improve

our model of Wo(s) with a more recent version. Analysis of emprical noise tests of the

buffeting showed a frequency drift of approximately 1 Hz. By consistently updating our

model of the noise, we can maintain good active noise control. We stay in state 3 while N̂avg

remains above the threshold continuously remodelling the stochastic noise and updating

our controller if an admissible result is found.

If at any time, the N̂avg falls below our threshold, we return to state 1.
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Fig. 6.8 State machine used to update controller

6.3 Simulations

6.3.1 Setup

We now proceed to setup the simulations to test the implementation of the state machine

in combination with all stochastic subspace identification, noise estimator and controller

optimization. Figure 6.9 shows the block diagram interconnecting all of the functional

blocks. First, the system is tested with excitation from a musical reference, then we proceed

to demonstrate the performance of pure active noise control. Issues with the amplifier are

occasionally present and hence the saturation instruments in the block diagram are not

always employed; the impact that this action has on simulation accuracy is acknowledged.

Increasing the saturation limits to 700 V result in consistent behaviour; while this voltage

level is likely too high for safe operation in a vehicle, an identical effect can be derived by

improving the gain of the speaker which may be more feasible.

6.3.2 Simulation: music reference

The system is excited by a musical reference signal and the results shown in Figures 6.10a

and 6.10b. In this test, the effectiveness of the algorithm is difficult to interpret in the time-

domain since all signals contain both a reference signal and noise corruption; it is difficult

to distinguish the components in the waveforms and hence we present the results in the
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Fig. 6.9 Simulink model block diagram of control system with noise estima-
tor and updating controller

frequency domain. Figure 6.10a shows the results of two simulations plotted on the same

axes, both tests experience a low-amplitude ambient highway driving noise disturbance and

an FFT of error signal shown. The signal denoted by bctrlasim in represents the result of

optimizing the controller for a buffeting disturbance but simulating it with only ambient

noise. Conversely, actrlasim was optimized for ambient noise and high-fidelity acoustics

and is simulated with ambient noise. This plot exemplifies why change our optimization

criteria depending on the disturbance. A controller which has been incorrectly optimized for

the wrong disturbance type, (e.g. bctrlasim) contains troughs in the error signal indicative

of the harmonics of the buffeting used in its synthesis. Curve actrlasim was correctly

optimized for low output disturbance and shows a flatter acoustic response.

In Figure 6.10b, we subject the system to an output disturbance containing high am-

plitude buffeting harmonics. Here, the same two controllers are plotted but their relative

performance inverted. Now, the signal which was optimized for high quality musical ref-

erence tracking denoted by actrlbsim shows a large error in the peaks associated with

the modes in the output disturbance. The controller which was specifically tailored for

this output disturbance, shown in the figure as bctrlbsim successfully attenuates the har-
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monics of the buffeting. Notably, in higher frequencies, it is shown that the error in the

buffeting-optimized controller exceeds that which was musically-optimized. This is an ex-

pected consequence of the waterbed effect. Compared to attenuation of the buffeting, this

increase in high frequency noise is an acceptable trade-off.
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Fig. 6.10 Error frequency response demonstrating controller performance
under varying conditions of actual noise measurements in response to music
reference. Signals prefixed with bctrl are optimized for buffeting disturbance
while actrl indicates high-fidelity optimization. (a) Simulated with ambient
noise disturbance, (b) simulated with buffeting disturbance.

Simulation: pure ANC

Now we demonstrate the performance of the system in a pure noise cancellation environ-

ment. The system is given a zero-reference signal and begins with no output disturbance.

At around 0.5s, we bombard the system with a low-amplitude disturbance before increasing

the disturbance to simulate the full buffeting phenomenon at 2.3s. The buffeting remains

present until the 11s mark, at which time we revert to a low noise level to simulate the

closing of a window.

We begin by analyzing the results of the state machine progression to understand how

the controller was updated as a function of time. For demonstrative purposes, stochastic

subspace identification was carried out after only 1 second of buffeting and the controller

synthesis attempted. Figure 6.11 shows the noise response which resulted from the stochas-

tic SSI and was used in the H∞ synthesis. As shown, the noise model at t=3.22, which
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utilised only Fs = 44100 samples in the stochastic identification, caused the synthesis to

fail; an admissible controller could not be found. The noise curve associated with this

model is significantly higher in magnitude than that of the remaining curve which pre-

vented convergence. The remaining controllers pass the test for an acceptable γ (typically

100) and allow for the update.
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Fig. 6.11 Noise response used in controller optimization

The test is carried out using the empirical noise measurements from earlier experi-

ments; here we see the performance of the control system in reaction to actual buffeting

measurements from road tests. It is useful to examine more closely a section of the system’s

closed-loop sensitivity after the controller is updated, as shown in Figure 6.12. Measures of

sensitivity at the various controller update times subject to the state machine operation are

shown. The first and last curve indicate when the high-fidelity music controller was used;

we see that there is a decrease in sensitivity which is associated with better broadband

noise attenuation. When high volume noise is detected, we optimize the system with the

disturbance model generated by the stochastic SSI which results in the less flat acoustic re-

sponse. In Figure 6.12, we see from experimental data collected in the 2004 Toyota Matrix

that there is a tendency for the harmonic peaks in the buffeting to drift with time. The

dynamics of the time-varying noise signal are captured by each successive Wo(s) model and

incorporated directly into the noise cancelling scheme.
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Fig. 6.12 A close-up of the evolving system sensitivity over time in reaction
to actual buffeting noise from road tests, the resonant frequency of the buffet-
ing changes over time with the controller adapting to the dynamic harmonic

We now present the time domain results from the pure acoustic noise attenuation.

The full scale of the simulation is shown in Figure 6.13 where we see the system’s output

superimposed over the output disturbance. Green vertical bars indicate successful updates

to the controller while blue vertical bars indicate a failed update. At 3.1s, the attempted

update to the controller fails to identify an admissible controller which results in a stable

closed-loop plant, hence there is no change to the controller in operation. At 4.1s, the

optimization is re-attempted using a longer sample length in the stochastic identification.

This optimization is successful and the controller is updated. Every two seconds subsequent

to this, a new controller is synthesized that better matches the harmonics in the disturbance.

At around 11.5s, shortly after the window has closed, the noise level measured by N̂avg falls

below the threshold and the system reverts to high-fidelity controller.

A close-up of the controller transitions is shown in Figures 6.14 and 6.15. In Figures 6.14,

we see that buffeting harmonics continue to be significant in the system output until 4.22s

at which time the controller is updated. A discontinuity is introduced at the transition, this

is perceived by a user as an undesirable “popping” sound; additional work is required to

ease the transitionary period. Since the states of the updated controller are uninitialized,
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Fig. 6.13 Performance of adaptive controller in vehicle noise cancellation,
100 km/h simulation, 0-input reference signal

the controller fails to stay in phase with the existing pulse. However, once the transients of

the transition diminish, the rejection of the output disturbance is achieved. The addition

of some high frequency noise is also observed.

A close-up of a second transition is shown at 10.22s in Figure 6.14 which represents a

controller re-optimization with a new model of Wo(s). Again, after the transients diminish,

we see an improvement in the rejection of the harmonics.

Simultaneously implementation of all of the algorithms discussed in this thesis was

not attempted on the Freescale hardware platform. It is not known whether the added

computational complexity will exceed the limitations of what can be achieved in real-

time. However, this thesis seeks to demonstrate a technique for incorporating noise models

directly into the H∞ optimization to improve disturbance rejection.
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Fig. 6.14 Time response of adaptive control taking effect, disturbance
change from ambient highway noise to buffeting at 2.3s with updated con-
troller engaging at 4.22s
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Fig. 6.15 Adaptive controller updating after detecting a shift in noise char-
acteristics, buffeting harmonic drift compensated.
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Chapter 7

Conclusions and Future Work

In this thesis, we have presented a technique for controlling the operation of a piezoelectri-

cally oscillated windshield which aims to replace traditional low-frequency speakers within

automotive vehicles.

Deterministic subspace identification, which is typically used strictly for theoretical

demonstration due to its requirement from completely noise-free measurements, is used to

model the laboratory apparatus. After sine wave sweeping our laboratory apparatus in a

series of tests and configurations, we perform a frequency by frequency high-order bandpass

on the I/O signals to isolate specifically the frequency of oscillation. Applying the filter

to both waveforms negated its impact on the magnitude and phase relation between the

signals. With most interference removed, we are then able to perform zero-cross detection

on the signals to compute their phase while the gain is determined from the change their

respective RMS. Synthetic I/O signals are then generated from the magnitude-phase pairs

which are intended to be noise free. The deterministic subspace algorithm works well in

yielding a model which closely matches the empirical results post-filtering. However, large

phase discontinuities resulted from errors in the zero-cross detection introduced undesirable

artefacts into the system models. Combined deterministic-stochastic subspace identification

is a technique which allows for the identification of plant matrices without requiring purely

noise-free data. In future work, an exploration of these algorithms, such as those presented

by Van Overschee and De Moor in [38], may result in more accurate plants that do not

require the special processing to remove undesirable NMP zeros and unstable poles. This

will result in a more realistic plant model and better control system. By removing all

2013/08/12
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NMP zeros which must be present in acoustic cavities, the realism of the plant was reduced

drastically- even despite our attempt to compensate with lead-lag filters.

Stochastic subspace identification performed on empirical noise measurements produced

models which could be incorporated directly into the H∞ synthesis serving as estimates of

the spectral densities associated with the output disturbance. An insufficiently thorough

use of the stochastic subspace identification techniques results in the necessity to incor-

porate a gain value to match the units of the noise models. It is believed that this gain

value, and its apparent arbitrary value, may have unforeseen consequences in the subse-

quent modelling and controller design. It is believed that better use of the covariance of the

forward innovation model in [38] will improve the unit accuracy. It would be beneficial to

obtain disturbance models which did not require such scaling before attempting to perform

controller synthesis.

Our noise estimator, which streamed the data required by the stochastic identification

block, uses only fixed estimates of the plant matrices. No uncertainty is incorporated in

their value in this analysis nor is any filtering performed on the estimate. The use of a

Kalman filter or other algorithms may improve the accuracy of the noise estimates.

Weighting functions derived from models of ideal transmission behaviour of speakers

are used to create constraints on the infinity norm of the system’s sensitivity to effectively

flatten the acoustic response of the speaker. Constraints in the amplifier saturation limits

and volume of the speaker resulted in difficulty performing the H∞ synthesis of an admissi-

ble controller. These constraints were relaxed by assumptions that are deemed reasonable

but the overall accuracy of simulations would benefit from identifying more closely realistic

parameters.

The error weighting function is shaped selectively based on the particular control ob-

jective that we seek to accomplish. When the ambient noise within the vehicle is low,

we insist on broadband noise attenuation to improve the acoustic linearity of the speaker.

Window buffeting is introduced when a single window is opened by some amount. In the

face of this phenomenon, we sacrifice broadband attenuation in place of more aggressive

attenuation of the characteristic harmonics in the buffeting signal to more effectively cancel

the hammering tone. Model order and controller order reduction are not performed in this

thesis. To this end, the feasibility to implement the algorithms used in this thesis onboard

a DSP is only briefly discussed. In future work, a detailed analysis on computation times

may suggest that a real-time operating system is required on the DSP to thread the ex-
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ecution of the controller, controller synthesis and modelling. An FPGA implementation

might allow for a low-cost means to tailor soft processors to execute the operational tasks

in parallel.

Limitations caused by Bode’s sensitivity integral introduce the waterbed effect which

cause noise in frequency bands outside that which we control. Typically pushed to higher

frequencies by the waterbed effect, an increased sensitivity manifests as undesirable static

noise. A more aptly tuned error weighting function might be able to shift the “bump”

associated with the necessary increase in sensitivity to below the audible spectrum of human

hearing. Oscillations in this band would be perceivable by touch to human observers but

could not be heard.

Audible human speech within the vehicle generally exists outside of this band. While

the fundamental mode in adult males is 130 Hz and 210 Hz in adult females on average

[57], the majority of their vocal harmonics exists in the frequency range above this band.

The presence of these and other internal disturbances reinforces the strict requirement to

limit the control actuation to frequencies in the band below this level. In future work, it is

postulated how one may incorporate a high order filter into the feedback sensor to sharply

attenuate frequencies above 200 Hz to prevent them from entering the control loop. While

the incorporation of such a filter in the H∞ synthesis would significantly increase the order

of the system, it would be desirable to study the effect on stability and performance by

adding such a filter after the synthesis has completed.

Stability theorems for adaptive controllers are not included in this thesis. A detailed

stability analysis on the algorithms which we presented would provide a more complete

understanding of the system’s behaviour and is crucial before implementation in a vehicle.

A robust control theory treatment of the problem tackled in this thesis would allow

for a more quantitative estimate on the impact of narrowing the uncertainty of the output

disturbance. Uncertainties in the plant model should also be incorporated to ensure both

robust stability and performance.

While the intent of this thesis is to develop a system for implementation on-board a digi-

tal signal processor, experimental verification of the thesis results is not demonstrated here.

The roadmap to such an implementation is explained in detail including the state-machine

model and simulation demonstration; however, the feasibility of such computationally heavy

system identification and controller synthesis could not be determined. For additional in-

formation to aid the reader in implementation, the author recommends a review of the
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techniques employed by Pourboghrat in [51] where the use of real-time, recursive subspace

identification carried out on a digital signal processor. It is the intent of future work to

incorporate such recursive subspace identification algorithms, first demonstrated in [58] to

better demonstrate the practicality of the algorithms presented in this thesis.
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