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ABSTRACT

We study nonlinear sensory information processing in the peripheral vestibular

system. As the vestibular system is one of the oldest and most evolutionarily con-

served sensory systems in the animal kingdom, we explore the idea that the system

is optimized for the natural sensory environment to which an animal is exposed. We

record the natural head movements of free moving monkeys, as well as characterize

the linear-nonlinear transformations performed by vestibular afferents, with previ-

ously recorded afferent data. Using information theoretic techniques, we calculate

how well different classes of vestibular afferents are optimized for the statistics of nat-

ural stimuli. We also consider the constraints of energy consumption and functional

goals on the optimal coding strategy used. Additionally, we consider effects of non-

linear processing in the first stage within the brain, the vestibular nuclei (VN). Both

afferents and VN neurons are explicitly tested for nonlinear effects other than the

expected saturation and rectification, through the use of stimuli with combined fre-

quencies. A boosting nonlinearity was found in VN neurons but not afferents, which

was shown to explain the results for combined frequency stimulation. We adapt an

in vitro model of VN neurons, and find that they can produce linear rate coding due

to the high conductance state of neurons in vivo. Furthermore, it can also produce

a boosting nonlinearity for certain combinations of parameters. Finally, we simplify

the neuron model to a generalized quadratic integrate-and-fire model in order to find

an analytic equation for the input-output nonlinearity found both experimentally in

neurons, as well as theoretically in model VN neurons.
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ABRÉGÉ

Nous avons étudié le traitement des informations sensorielles nonlinaires au

niveau du système vestibulaire périphérique. Comme le système vestibulaire est l’un

des plus vieux systèmes et l’un des mieux conservé dans le royaume animal, nous ex-

plorons l’idée que ce système est optimisé pour l’environnement sensoriel dans lequel

l’animal évolue. Nous avons enregistré les mouvements naturels de la tête chez

un singe se déplaçant librement. Nous avons aussi caractérisé les transformations

linéaires et non linéaires effectuées par les afférents vestibulaires grâce aux données

enregistrées précédemment. Grâce aux techniques de la théorie de l’information, nous

avons calculé comment les différentes classes d’afférents vestibulaires sont optimisées

pour les statistiques des stimuli naturels. Nous avons aussi considéré les contraintes

de consommation d’énergie et le but fonctionnel des stratégies de codage. De plus,

nous avons considéré les effets des processus nonlinéaires au premier niveau central

et au niveau du noyau vestibulaire (VN). Les afférents et les neurones centraux sont

testés explicitement pour les effets nonlinéaires, autre que la saturation et la recti-

fication attendues, par l’utilisation de stimuli avec des fréquences combinées. Une

augmentation de la non linéarité a été trouvée pour les neurones centraux, mais pas

pour les afférents. Cette observation peut expliquer les résultats obtenus pendant les

stimulations avec des fréquences combinées. Pour les neurones centraux, nous avons

adapté un modèle in vitro et nous avons trouvé que nous pouvions produire un codage

par fréquence de décharge dû à l’état de haute conductance des neurones in vivo.

De plus, le modèle peut aussi produire une augmentation de la non linéarité pour
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certaines combinaisons de paramètres. Finalement, nous avons simplifié le modèle

de neurones pour un “integrate-and-fire” quadratique général dans le but d’etablir

une équation analytique pour l’entrée-sortie nonlinéaire trouvée expérimentalement

et théoriquement avec le modèle.
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CHAPTER 1
General Introduction: Background & Methods

1.1 Sensory-Motor Systems

For an organism to survive in a dynamic, competitive environment with limited

resources, it should have a sensory system to collect information about its environ-

ment, and a motor system to move within its environment. To this end, sensory infor-

mation must first be detected by the peripheral sensors, and subsequently processed

through the nervous system’s networks of neurons, before driving the appropriate

motor outputs. An important question is thus, what information is represented by

various populations of neural activity, and how? Furthermore, how are these repre-

sentations transformed from one brain region to the next? This is generally referred

to as “the neural code”, although it is of course thought to have emerged naturally

rather than by intelligent design.

1.1.1 Cracking the neural code

While it had been known since the 1700s that electricity could cause a frogs

legs to twitch, it was not until the works of Lord Adrian starting in 1926 [1–4] that

the foundations of the neural code would be laid [5]. The first and primary assump-

tion of the neural code is that neurons communicate primarily via action potentials,

or spikes in their membrane voltage, which are stereotyped all-or-none events. Al-

though different types of neurons can exhibit action potentials with different shapes,

within one type they generally do not. The second principle of the neural code
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is that increases/decreases in the strength of some static stimulus input results in

increases/decreases in the neurons rate of spiking output. This is a fundamental

concept of sensory information processing known as rate coding, in which only the

number of spikes occurring in a time window carries information about the stimulus.

A competing possibility is in turn the concept of temporal coding [6], in which it is

the precise timing of the spike patterns within the time window that carries infor-

mation. One difficulty in distinguishing rate and temporal codes lies in the size of

the windows used to count the spikes, a point we will come back to.

Understanding how stimulus information is represented by a neural responses

can further be separated into two components: encoding and decoding. First of all

sensory neurons at the periphery receive a stimulus input and generate a spiking

response, into which some stimulus information is encoded. However, even if infor-

mation has been encoded into a spike train, it is only useful if that information can be

decoded by downstream neurons. An experimenter can present a stimulus for many

seconds and count the number of resulting spikes over the entire time period, and

estimate the stimulus. However, a downstream neuron’s response is generally only

sensitive to shorter time windows on the order of tens to hundreds of milliseconds. As

a result, the output spike rate should be considered to change, on a similar timescale.

A continuous firing rate can then be defined by counting the spikes in a small window

that slides across the spike train in time, however a smoother estimate is generally

made by convolving the spike train with a Gaussian shaped window defined by its

width.
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For a neuron to transform a constant (i.e. in time) current input into an oscil-

lating membrane voltage, a nonlinear system of differential equations is needed (see

section 1.4). However, once the spiking membrane voltage is converted into a contin-

uous firing rate (i.e. threshold spikes and convolve with Gaussian filter; see section

1.3), it is often possible to find a linear filter that can be convolved with the stimulus

input time-series to produce the firing rate output time-series, known as a transfer

function (see section 1.3). In this case, a related linear filter can also be used to

estimate the stimulus input time-series from convolution with the output spike train

time-series, known as the optimal reconstruction filter (see section 1.3). If such linear

filters can predict well the stimulus from the spike train response (i.e. with minimal

squared difference between the stimulus and its estimate), as well as the firing rate

from the stimulus, a rate code is generally said to be in use. If there is additional

information in the spike trains that cannot be decoded by such linear filters, this

can be indicative of a temporal code that can be assessed using a stimulus-response

coherence technique that will be discussed in the section 1.3.

To further complicate things, neurons generally behave stochastically, respond-

ing differently to repeated presentations of the same stimulus, likely using a combina-

tion of both linear and nonlinear rate and temporal codes. Furthermore information

can be distributed over populations of neurons that can be difficult to record from

simultaneously. While this might seem to make things hopeless, we will review

some basic signal processing techniques that are commonly used in computational

neuroscience (and will be used in this thesis) in the Introductory Methods section.

Although these are useful in identifying and describing what type of code may be
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used, we also seek an underlying and unifying principle of neuroscience to explain

why different codes appear in different regions.

1.1.2 Optimal coding: A general principle of neuroscience?

After describing the way in which neurons transform their stimulus inputs into

response outputs, the big picture question is why do neurons behave in the way

that they do. This includes both the underlying cellular mechanisms that endow a

neuron with its particular behaviour, as well as the functional role these properties

play in the organisms ultimate goal of survival. A goal of neuroscience is therefore

to find a general principle that can universally explain why the types of codes found

across different sensory modalities are there. An analogy to Newton’s Laws could

be the observation of different types of planetary orbits, and explaining them as

different solutions to the same differential equation. Similarly, as the equations of

motion come from the principle of least action [7], one might expect the neuronal

dynamics of sensory systems to be the result of optimizing something, such as sensory

information.

To this end, information theory has recently been applied to quantify the precise

amount of information a neuron’s response contains about the stimulus by which

it was elicited, with the universal units of bits (or bits/sec) (described in detail

in the Intro Methods). The equation defining the information transmitted by a

neuron depends on both the properties of the neuronal transformation, as well as

the statistics of the stimulus being applied. This has lead to the proposal of the

principle of optimal (or efficient) coding [8], suggesting that the neuronal properties

have evolved to maximize the information transmitted about the natural sensory
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environment to which an organism is exposed. For single neurons this can amount

to having a neural transformation that ensures all available responses are being used

equally [9–11], or that successive action potentials contain independent information

from one another (i.e. reduce redundancy) [12]. At the population level, however,

redundancy reduction is achieved by each neuron encoding independent features

of a stimulus [13, 14]. More recently, however, a positive role for redundancy has

been considered [15], along with the role of behavioural constraints such as energy

consumption [16].

The action potentials by which neurons generally communicate, do in fact cost a

neuron some metabolic energy to generate [17]. This can result in a trade off, where

neurons can transmit more information, at the cost of using more spikes per second

and in turn more energy. This leads to the hypothesis that neurons maximize infor-

mation transmission while keeping the output firing rate at a fixed mean, or energy

consumption rate, for which there has been some evidence in cortex [18]. In general,

it has been observed that sensory neurons at the periphery tend to have higher fir-

ing rates and population redundancy, while through subsequent stages of processing

mean firing rates and population redundancy are reduced, as sensory information is

distributed and integrated more efficiently across populations in cortex.

While it is clear that the characteristics of the neural transforms are essential to

understanding the neural code, what is often overlooked is the statistical structure

of of the natural stimulus environment in which the organism has evolved. Rieke

et al. [12] give a nice summary of how temporal and spatial correlations in natu-

ral auditory and visual scenes exhibit power law scaling in their frequency content.
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While the origins of this statistical structure is very interesting, the optimal neural

transformations for processing them are perhaps more relevant. Rieke et al. [12] go

on to explain how a high-pass “whitening” filter maximizes information by decor-

relation, maximizing response entropy, while combination with a low pass filter can

additionally reduce noise entropy due to high frequencies where the noise variance

exceeds the signal variance. However, the stimulus is not uniquely characterized

by its power spectrum, also requiring a probability distribution of the values from

which it comes. In many cases such distributions can approach Gaussian, as might

be expected from some form of the central limit theorem. The contrast distributions

of natural images, however, were found to have heavy tails which can decay expo-

nentially [19]. Interestingly, natural images with whitened power spectra maintain

much of their perceived structure, compared to synthetic images with natural power

law spectra but pixels drawn from Gaussian contrast distributions. This suggests

that some stimulus statistics are more relevant to perception/behaviour than others.

While considerable support for the efficient coding of sensory information has

been found [5, 12, 20–22], it does not address what the information might be used

for, if at all. For example, the auditory environment in the jungle includes a mixture

of a variety of different animals with different vocalizations. Yet animals have been

found to be adapted to specific subsets of behaviourally relevant sounds, such as

predators or potential mates [23]. Furthermore, predator sounds may best trigger

an escape response requiring just enough information to identify the stimulus and

generate the required reflex. While a mating call, on the other hand, may need

to be analyzed in more detail to assess the quality of the mate, requiring more
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stimulus information. These examples illustrate how the behavioural and functional

constraints of the system can also be relevant to the sensory coding strategies in

use [24]. In this thesis we will consider all of these aspects of information processing

in one of the oldest (yet commonly unknown) sensory systems: The vestibular system.

1.2 The Vestibular System

The vestibular system is one of the oldest and most evolutionarily conserved

sensory systems, detecting head movements used to maintain stable gaze, posture

and spatial orientation [25]. It comprises three semicircular canals that sense angular

velocity, and two otolith organs that sense linear acceleration, via hair cells synapsed

onto afferent neurons. These afferent neurons (in the VIIIth nerve) project to the

vestibular nuclei (VN), located in the brainstem, the first central stage of vestibular

processing within the brain. The VN house a variety of cell types, project outputs

to a range of areas (see Figure 1.1A) including spinal cord (for postural reflexes),

cerebellum (for fine reflex calibration), and cortex (spatial orientation perception),

but it also receive massive amounts of feedback from these regions as well [26].

Different network connections (i.e. neural circuitry) serve different functional roles

driving different behavioural responses. In addition to network effects, each single

neuron is a complex nonlinear dynamical system of interacting ion channels, various

combinations of which can lead to very different response properties, potentially

serving a variety of functional roles [27]. In this thesis, we focus primarily on the

peripheral vestibular afferents and central vestibular nuclei neurons.
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Figure 1.1. Vestibular Anatomy. A) Schematic of basic vestibular periphery,
with connectivity relevant to this thesis. B) Detailed anatomy of vestibular sensors
with otolith and semicircular canals and hair cells. (Image from online
Encyclopedia Britannica)
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1.2.1 Peripheral Sensors: Hair cells & afferents

Anatomy

Head motion is detected by two types of sensory organs, the semicircular canals

and the otoliths. There are two types of otolith organs, the utricle and the saccule,

which sense linear acceleration in the horizontal and vertical planes, respectively [28].

Each organ consists of a layer of hair cells (see Figure 1.1B), the cilia of which

extend into a gelatinous layer containing small calcium carbonate crystals known

as otoconia [29]. During linear acceleration, the hair cells move before the crystals

due to their increased inertia. This results in a bending of the cilia which cause

K+ channels to open or close (depending on the direction of bending), leading to

either an increase (termed depolarization) or decrease (termed hyperpolarization) of

the membrane potential of the hair cell. The combination of the utricle and saccule

provide a 3-dimensional representation of linear acceleration, which, it should be

noted, includes the direction and magnitude of gravity [30, 31].

The semicircular canals, on the other hand, sense angular velocity [32]. There

are three canals oriented nearly orthogonally to one another, located in the inner

ear on both sides of the brain. One plane is oriented (very nearly) horizontally and

is sensitive to rotations in the yaw plane (i.e. about earth vertical when standing

upright). The other two canals are vertically oriented, but rotated by ±45◦ from

the fore/aft and inter-aural axes [33]. Each canal forms a circular tube filled with a

fluid called endolymph. At the widest part of the canal, known as the ampulla, an

impermeable but flexible membrane, called the cupula, blocks the continuous flow

of endolymph through the canal. During head rotations, the head and canals move
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while the endolymph lags, due to its inertia, causing a deflection of the cupula. The

cupula is embedded with hair cells which are also deflected along with it, resulting

in either depolarization or hyperpolarization of the hair cells membrane voltages

(similarly to otolith hair cells) [34]. Although it is truly the angular acceleration

which provides the force that drives fluid motion, due to the small diameter of the

canals and the high viscosity of the endolymph, the canals effectively encode angular

velocity, and by convention we henceforth refer to them in terms of their head velocity

inputs.

Spiking Activity

Vestibular afferents fire spontaneously, when there is no head motion, with a

baseline firing rate of about 80-100 spk/s [35]. The variability of spike times in this

spontaneous discharge is quantified by the coefficient of variation (CV) of the inter-

spike-intervals (ISIs), with values generally ranging from 0.01 to 1 [36]. Because

otolith afferents change their baseline firing rate with static changes in head tilt,

and we want CV to be an unchanging property of a neuron, an empirical formula is

used to generate CV∗ such that CV∗ does not change with spontaneous firing rate

across populations of cells [35]. Based on this CV∗ value, vestibular afferents are

generally divided into two classes (see Figure 1.2 A&B): regular afferents (CV∗ <

0.1) and irregular afferents (CV∗ > 0.1). While the exact cutoff value used varies

slightly across the literature, the distribution of CV∗ values has been shown to be

significantly bimodal [36]. This classification is further justified by the existence of

two morphologically distinct hair cell bodies know as type I and II [29]. In general,

regular afferents synapse onto type II hair cells, while irregular afferents synapse onto
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type I hair cells. Not only these differences in morphology, but also the distribution of

different ion channels have been found to contribute to the different levels of spiking

variability of the regular and irregular vestibular afferents [37].

In addition to their different baseline activity, vestibular afferents have also been

well characterized using sinusoidal stimuli and traditional linear techniques detailed

in the section 1.3 [36]. For both canal and otolith afferents, irregular afferents have

significantly higher gains that are high pass as a function of frequency, compared

to regular afferents which have relatively flat gain curves by comparison (see Figure

1.2C&D). While this might suggest that irregular afferents transmit more informa-

tion, this does not account for their differences in variability quantified by CV∗.

A more recent study used white noise stimuli to estimate the mutual information

density (see Introductory Methods), and indeed found regular afferents to exhibit

a higher signal-to-noise ratio than their irregular counterparts, across all frequen-

cies [38] (see Figure 1.2E). Another study also found the linearity in response to sine

waves at higher frequencies to break down, and a nonlinear phase locking to occur,

for irregular but not regular afferents [39].

It should also be noted that the type I hair cells (primarily irregular afferents)

is evolutionarily newer than the type II cells (primarily regular afferents), suggesting

that the irregular afferents are further developed and should exhibit an improved

performance than their regular counterparts [29]. The newer type I hair cells began

to appear as animals left the water to walk on land, where the low viscosity of

air allowed them to move much faster. The current hypothesis is therefore that the

dynamics of irregular afferents are more specialized for the detection of high frequency
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Figure 1.2. Peripheral vestibular neuron properties. Population averaged
A) spontaneous firing rate, B) CV ∗, C) Gain, and D) Phase, for regular and
irregular afferents, as well as VO cells. E) Mutual information lower and upper
bound for VO cells, with gap at low frequencies indicative of potential nonlinearity
other than saturation and rectification. (Figures adapted from Massot et al.
(2011) [35]).
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“features” [38], while the regular afferents precisely track the entire stimulus time

course. However, both types of afferents can converge onto the same downstream

cells in the vestibular nuclei, making it unclear how such downstream neurons could

somehow benefit from these two seemingly opposite afferent representations.

1.2.2 Central pathways: The vestibular nuclei

Anatomy

The first central stage of vestibular information processing occurs in the vestibu-

lar nuclei (VN) of the brainstem, the primary target of afferent projections (see Figure

1.1A). Although the VN then send output connections to other brain regions, they

also receive inputs from other brain regions as well. Over the past 40 years, several

anatomical and single unit studies have identified the various regions contributing

inputs driving VN activity: from several regions of cortex (parieto-insular vestibular

cortex, premotor cortex 6/6pa, anterior cingulate cortex, somatosensory cortex 3a,

intraparietal sulcus area 3v, superior temporal cortex; [40–43]), cerebellum (rostral

fastigial nuclei, nodulus/uvula, anterior vermis, flocculus; [44–53]), oculomotor re-

gions (nucleus of the optic tract, superior colliculus, nucleus prepositus; [54,55]), and

areas encoding proprioception (external cuneate, central cervical nuclei; [56–59]).

Although the inputs to the VN are surely related to their functional role, the

regions to which their outputs project are perhaps even more illustrative of their

function. In order to maintain stable gaze and posture, vestibulo-motor transforma-

tions must correctly drive both the vestibuloocular reflex (VOR) with projections to

oculomotor nuclei in the brainstem [60–64], as well as vestibulo-spinal reflexes with

13



projections to the spinal cord [65–72]. Additionally projections to the various cerebel-

lar regions (rostral fastigial nuclei, nodulus/uvula, anterior vermis, flocculus; [44–53])

are thought to ensure proper calibration of these motor reflexes. Finally, projections

to thalamus [73] and in turn cortex [43, 74] are thought to underly orientation and

self-motion perception.

With the anatomy reasonably well known, we briefly classify different VN cell

types with their neural response characteristics, which has been done under both in

vivo and in vitro conditions.

In vivo characterization: Behavioural functions

In order for the vestibular system to appropriately integrate all of its inputs and

generate the appropriate outputs and behavioural responses, the vestibular nuclei are

populated by multiple neuron types, each serving different functional roles [33]. In

vivo recordings performed in alert behaving primates allow cell types to be identified

by their responses to both head and eye movements. Two cell types found in VN

are known as ‘eye-head’ neurons, because they respond to eye and head velocity,

and ‘position-vestibular-pause’, because they respond to eye position, head velocity,

and pause during fast eye movements. These two neuron types project to the eye

motoneurons, contributing to pursuit eye movements as well as the vestibulooccular

reflex (VOR), in order to maintain stable gaze [39].

Another type of neuron in the VN is known as ‘vestibular-only’ (VO) because

they respond to head movements, but not eye movements. Rather than projecting to

the eye muscles, VO neurons are found to project to the spinal cord [75,76] and likely

mediate vestibulo-spinal reflexes to maintain stable posture. Furthermore, because
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vestibular neurons in cortex tend to show little to no response to eye movements [77,

78], VO neurons are also presumed to project to thalamus and cortex, contributing to

perception of self-motion and spatial orientation. Additionally there are two types of

VO neurons, termed type I and type II [33]. Considering yaw rotations as an example,

vestibular afferents on either side of the brain respond with increases in firing to

ipsilateral rotations (i.e. rotations towards the same side as the neurons location),

and decreased to contralateral rotations (i.e. rotations towards the opposite side as

the neurons location). For VO neurons the situation is slightly more complex: Type

I neurons respond with increases in firing rate to ipsilateral movements, while type

II neurons respond with increases in firing rate to contralateral movements. Both

type I and II VO neurons can be found on both sides of the brain. While type I VOs

respond in the same way as the afferents on the same side of the brain (from which

they get their input), type II VOs on one side of the brain receive their inputs from

type I VO neurons on the other side of the brain.

Once a neuron has been isolated in vivo and identified based on the presence of

eye movement related responses its baseline activity and linear response properties

are characterized and compared to others across the population studied (see Figure

1.2). In this thesis we will be primarily concerned with VO neurons, which have

been found to have slightly lower baseline firing rates ( 60-70 Hz) and higher CV

values than even irregular afferents [35]. Furthermore their gain curves have been

found to be even more high pass than irregular afferents. Studies have also used

noise stimuli to estimate their mutual information and again find a similar trend to

irregulars [35]. However, a difference between lower and upper bounds on information
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was observed at low frequencies (see Figure 1.2E), which is indicative of a nonlinearity

(see Introductory Methods), and is a primary topic explored in this thesis.

Finally, it should be noted that these response characteristics are only valid

for stimuli passively applied by the experimenter, while for natural self-generated

movement VO responses are attenuated by ∼ 70%. This effect is, however, not seen

in their afferent inputs. Although we will not study this phenomenon directly in this

thesis, it is an important issue studied in the lab, and is relevant to understanding

the functional goal of VO neurons, and in turn interpreting their information coding

properties.

In vitro characterization: Intrinsic membrane dynamics

Much work on the characterization of vestibular anatomy and function has also

been done using in vitro techniques, whereby a slice of (or whole) brain containing the

neurons of interest is removed from an animal and isolated in a dish. This technique

has the advantage of being able to visually identify neurons while recording, as well

as facilitating intracellular recordings which precisely measure the the membrane

voltage of a cell, rather than simply inferring spike times, as is done for extracellular

recordings in vivo (Note, intracellular recordings in vivo are possible, but significantly

more difficult). The main disadvantage of in vitro techniques is that the animal is no

longer alive and behaving during recordings, which in turn prevents the classification

of cell types based on their response to eye movements, or natural self-generated

head movements. For this reason, VN neurons recorded in vitro are classified based

on the precise time course of the membrane voltage during each action potential,

along with the usual linear systems techniques (see section 1.3). Additionally, more
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diagnostic step and ramp stimuli, along with pharmacological ion channel blockers

allows identification of the specific ion channels involved in shaping the neuronal

responses [27]. Such studies allow for building more detailed models than in vivo

data alone (discussed in the Neural Modelling section), however we will see that it is

somewhat of an art in deciding what levels of detail one wishes to include. In general

one includes as little detail as possible and as much as necessary to reproduce the

neural response properties, observed either in vitro or in vivo. Before discussing

neuron models, we will first discuss methods of characterizing their properties of

interest.

1.3 Methods of Analysis

Neurons are often thought of simply as input-output devices, in reality receiv-

ing thousands of synaptic inputs to their dendrites, which are transformed, via the

complex nonlinear dynamics of ion channels distributed throughout their cellular

membrane, to output a spiking membrane voltage (or firing rate) transmitted down

an axon to other neurons. To characterize this entire process by which a neuron

transforms a sensory signal from its input to its output, classical linear-nonlinear

signal processing techniques are typically used. Although some neurons, such as

the elusive “Jennifer Aniston” neuron which responds only to images of Jennifer

Aniston but no other television celebrities, have responses that are highly nonlinear

functions of the sensor inputs at the retina, while more peripheral sensory neurons

(such as those studied in this thesis) tend to fire spontaneous with a baseline firing

rate which can be modulated up and down by the sensor inputs to linearly encode
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stimulus changes. These are the type of neurons we will consider in the vestibular

system.

1.3.1 Firing rate estimation

If a constant stimulus is applied (perhaps of zero for spontaneously active neu-

rons), one can simply count the number of spikes in a time window to estimate the

average firing rate. If the stimulus instead slowly changes we can expect the firing

rate to slowly change as well, but it is then not as obvious how to estimate the time

dependent firing rate, r(t). Because repeated presentations of the same stimulus

result in different spike train responses each time, they can be averaged to generate

what is known as a post-stimulus time histogram (PSTH), that can be normalized to

give either the probability of spiking at different phases of the stimulus or the average

firing rate in spk/s. The PSTH works best when you can repeat a short stimulus

many times. To estimate the firing rate in a single trial, one can use a short sliding

window to count spikes, or analogously convolve with a Gaussian filter. However,

the width of the Gaussian filter is not always easily chosen. Imagine the firing rate

is 1 spk/s for 1 sec: a broad enough filter says that the firing rate is constant at 1

spk/s for 1 s, while a sufficiently narrow filter could say that the firing rate is 1000

spk/s for 1 ms and 0 spk/s the rest of the time. This is further complicated when

the firing rate is changing in time. An alternative measure of the firing rate that

uses only the spike times is to simply invert the inter-spike intervals (ISIs), 1/ISI,

however it is only defined at the spike times, and doesn’t give a continuous estimate.

Spiking variability is also quantified by CV = σISI/μISI , for spontaneous activity.
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1.3.2 Traditional linear-nonlinear systems identification

Consider a spontaneously active neuron whose firing rate can be modulated by

some stimulus input. A linear transformation, by definition, cannot change the

frequency of a signal. For this reason, linear modulations can most simply be

characterized by the application of sinusoidal stimuli, s(t) = As sin(2πft), over

a range of frequencies, the responses to which must also be sine waves, r(t) =

Ar(f) sin(2πft + φ(f)), shifted in time and scaled in amplitude. Such stimulus

and response data can then be used to generate a transfer function which combines

the “gain”, g(f) = Ar(f)/As, and phase shift, φ(f), into a complex function of fre-

quency, H(f) = g(f)eiφ(f). With a neuron’s linear transfer function, one can then in

principle predict the neurons response to other arbitrarily complex dynamic stimuli,

as long as the neuron remains linear. We can then take the inverse Fourier transform

to get the transfer function filter (or impulse response function) in the time domain,

h(t) = F−1{H(f)}, and the response can be estimated from the stimulus by the

convolution integral, r̂(t) =
∫
dτh(t− τ)s(τ). However, in the frequency domain this

can be simply written as R̂ = H ∗ S, where S,R(f) = F{s, r(t)}.
Although sine waves spanning a range of frequencies are perhaps the simplest

stimuli with which to measure a neuron’s transfer functions, one can also use Gaus-

sian noise stimuli over the desired frequency range, essentially combining all frequen-

cies into one stimulus. In this case, as long as the neuron remains linear, the entire

transfer function can be calculated via the stimulus-response cross-spectral density,
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according to

H(f) =
〈S(f)∗R(f)〉
〈S(f)∗S(f)〉

=
PSR(f)

PSS(f)
,

(1.1)

where 〈.〉 denotes averaging, and ∗ indicates the complex conjugate. The numerator

and denominator are also written explicitly as the stimulus-response cross spectrum,

and stimulus power spectrum, respectively. Similarly, the linear filter which provides

the best estimate of the stimulus, the optimal reconstruction filter is

K(f) =
〈R(f)∗S(f)〉
〈R(f)∗R(f)〉

=
PSR(−f)

PRR(f)
,

(1.2)

such that Ŝ = K ∗ R, where K is chosen to minimize (S − Ŝ)2. We will come back

to this filter later. A schematic summarizing these optimal linear filters is shown in

Figure 1.3.

Such linear transfer functions can also be derived analytically from the differ-

ential equations of simple systems, such as the torsion pendulum model of cupula

motion in the semicircular canals. In this simple model, the cupula motion is de-

scribed by a second order differential equation of the form mẍ + cẋ + kx = f(x, t),

where x represents the cupula position, m is a mass coefficient, c is a damping co-

efficient, k is a spring constant and f is a driving force that depends on x and time.

By applying a Laplace transform, the time variable changes to a frequency variable

s = i2πf , and derivatives in time result in multiplicative factors of s, resulting in

(ms2 + cs + k)X(s) = F (s) which can be solved algebraically to give the transfer
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function, H(s) ≡ X(s)/F (s) = 1/(ms2 + cs + k). This transfer function is in a

polynomial form, but can be factored into a more intuitive zero-pole notation as

H(s) = 1/(1 + T1s)(1 + T2s), where the coefficients have been redefined as time

constants, which can actually be measured.

Although spontaneously active neurons can modulate their firing rate linearly,

they are inherently nonlinear due to their spike generation mechanism (see Methods

of Modeling Neurons) and having a minimum possible firing rate of zero. Similarly

neurons must have a maximum possible firing rate, due to physical limitations on

the ion channels in the cellular membrane. Although neurons generally have a broad

linear range within which linear transfer functions are sufficient, increasingly large

amplitude stimuli will eventually drive them into nonlinear rectification (i.e. zero

firing rate) and saturation (i.e. maximum firing rate). In the absence of stimuli,

vetibular neurons return to their baseline firing rate in their linear response regime.

This is often be modeled by combining a linear transfer function with a subsequent

sigmoidal nonlinear function, known as a linear-nonlinear (LN) cascade model. To

estimate from a stimulus and response, whether a nonlinear function is needed, one

can use the neural data to estimate H(f), then plot the response estimate, r̂(t), versus

the actual response, r(t). If they lie on a line with slope of one the response estimate

is good, otherwise a nonlinear function, r̂nlin = T (r̂), can be fit to the data. Similarly,

the firing rate response can be plotted versus the stimulus directly, if the frequency

dependence is negligible.

Many other neurons commonly found in higher levels of cortex, however, exist

primarily at subthreshold voltages and only very specific stimulus features can cause
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them to fire spikes. Some of these neurons can still be characterized with white

noise, using reverse-correlation techniques, commonly referred to as spike-triggered

averaging. This results in linear temporal filters (or kernels) selective for the stimulus

features to which the neuron is sensitive, with a nonlinearity that says how strongly

it encodes each feature. This is essentially another form of LN model, in which the

response spends more time in the rectified state (i.e. zero firing rate), until its pre-

ferred stimulus drives it to spiking. The neurons that we will study in this thesis

are, however, of the spontaneously active type. In either case, the understanding

and modelling of neural systems requires a combination of their linear and nonlinear

properties. Although these LN models can explain the responses elicited from the

stimuli, we would like a more general measure of how well the stimulus is represented

by a neurons response, for which neuroscientists have turned to information theory.
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Figure 1.3. Schematic summarizing optimal linear filters for stimulus
and response estimation. This diagram illustrates that a neuron produces a
spiking response to a stimulus, which can be convolved with a Gaussian to produce
a continuous, but noisy, firing rate. Furthermore, it summarizes the filters that are
used to estimate the stimulus from the spike train, as well as estimate the firing
rate from the stimulus (but using the spike train). These two filters combine to give
the SR-coherence, which can be used to provide a lower bound on the mutual
information between stimulus and response.
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1.3.3 Information Theory

Information theory [79] was developed around the time telecommunication via

Morse code became widespread, in order to quantify the information content of each

message in a mathematically rigorous way. Although the inventor himself, Claude

Shannon, advised caution in its application to other fields, its use by neuroscientists

has brought progress in understanding the neural code [5].

Neurons respond differently to repeated presentations of the same stimulus,

making it is natural to think of them probabilistically: such as, the distributions of

responses that can be elicited from a particular stimulus value, or (perhaps more

relevant to behaviour) the distribution of stimuli which may have occurred given

the observation of a particular firing rate response. Information theory quantifies

the uncertainty (or variability) in these distributions by their entropy, a precise

measure proportional to the negative log-probability of their values occurring: the

more unlikely an event, the higher its entropy. The log is to ensure that the entropy

of two systems adds when they are combined, while their probability distributions

multiply. The mutual information between a stimulus and response distributions can

then be defined as the reduction of stimulus uncertainty given the observation of a

particular stimulus, averaged over all possible stimuli:

I(S,R) ≡ H(S)−H(S|R) = H(R)−H(R|S)

=

∫
s∈S,r∈R

ds dr p(r|s)p(s) log2
p(r|s)
p(r)

=

∫
s∈S,r∈R

ds dr p(s, r) log2
p(s, r)

p(s)p(r)

(1.3)
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where H(R) = − ∫ drp(r) log2 p(r) is the entropy of the response distribution,

H(R|S) =
∫
dsp(s)drp(r|s) log2 p(r|s) is called the “noise entropy”, and p(r|s) is

the conditional response probability. In the final line, p(s, r) is the joint probability

distribution, where p(s, r) = p(s|r)p(r) = p(r|s)p(s).
The Noisy Gaussian Channel

As an illustrative example, we assume that the stimulus comes from a Gaussian

distribution with zero mean and variance of σ2
s , and that the neuron performs a

linear transformation and adds some noise from a Gaussian distribution with zero

mean and variance of σ2
η. In this case the response is, r = g · s + η, where g is the

“gain”, and the conditional distribution can be written as [5]

p(r|s) = p(η = y − g · s)

=
1√
2πσ2

η

exp

[
− (y − g · s)2

2σ2
η

] (1.4)

Plugging this into equation 1.3 and doing some calculations, the mutual information

for the Gaussian channel can be reduced to

I =
1

2
log2

[
1 +

σ2
s

σ2
η,eff︸ ︷︷ ︸
SNR

]
bits, (1.5)

where σ2
s/σ

2
η,eff is the signal-to-noise ratio (SNR), in which the variance of the noise

has been scaled by the gain to give the “effective noise” variance σ2
η,eff = σ2

η/g, and

we have now expressed the units of mutual information as bits (due to the log of

base 2).
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To have a better intuition for the units of information, consider a coin toss of

two possible outcomes with equal probability, in this case the entropy of the coin toss

can be calculated to be 1 bit, which is needed to represent the events two possible

outcomes. Similarly, if the mutual information between stimulus and response is 1

bit, a response carries on average enough information to distinguish between two

possible stimuli, or divide the stimulus distribution in two and predict which side

the stimulus came from. Neurons, however, typically receive dynamic stimuli that

result in dynamic responses which must be considered in order to properly estimate

the information rate [5].

Dynamic Stimuli

In the case of coin flips, each is statistically independent from the next making

the entropy and information additive across flips (and time). For dynamic stimuli

and responses we must discretize time, but sequences of stimulus and response points

come from stationary probability distributions, they are not generally statistically

independent (unless they appear as white noise). An excellent derivation account-

ing for the entropy of spike trains and dynamic stimuli is presented here [5], and

reviewed by Borst and Theunissen [80]. Starting with our linear Gaussian channel,

the information rate can be shown to be

Rinfo =

∫ ∞

0

df log2

[
1 + SNR(f)

]
bits/sec. (1.6)
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Instead of integrating over frequency, we can consider the information rate density

as a function of frequency

I(f) = log2

[
1 + SNR(f)

]
, (1.7)

however we must now still calculate the frequency dependent SNR(f). Although

there are methods of calculating the mutual information directly without assuming

linearity or Gaussian distributions, they often require unreasonably large amounts of

experimental data. As such, we use a method to estimate lower and upper bounds.

Lower and Upper Bounds: SR- &
√
RR-coherence

To get a lower bound on the SNR, the optimal stimulus reconstruction filter is

used to get the stimulus estimate, then defining the “noise” as the signal reconstruc-

tion error, N = S − Ŝ. We can then define the lower bound of the SNR as

SNRLB(f) =
〈Ŝ∗Ŝ〉
〈N∗N〉

=
〈(KR)∗KR〉

〈(S∗ −R∗K∗)(S −KR)〉
=

CSR

1− CSR

,

(1.8)

where CSR is the stimulus-response coherence function

CSR =
〈S∗R〉〈R∗S〉
〈S∗S〉〈R∗R〉

=
|PSR|2
PSSPRR

.

(1.9)

Here we can see that the SR-coherence is really just the combination of the two

linear prediction filters, H(f) and K(f), as summarized in the bottom of Figure 1.3.

CSR is in fact a measure of the linear correlation between the stimulus and response,
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giving a value between 0 and 1. For a linear noiseless transformation, the coherence

would be 1. For Gaussian stimuli and noise, increasing noise intensity will reduce

the coherence, but a nonlinearity will also reduce the linear correlation and hence

SR-coherence, by altering the Gaussianity of the stimulus distribution and shifting

power into its higher moments. However, for repeated presentations of the same

stimulus the noise should be different each time, while the nonlinearity should do

the same thing each time. These two factors can be separated by calculating the

RR-coherence, which for 4 repetitions of the stimulus results in

CRR =

∣∣∣∣16 4∑
i=2

i−1∑
j=1

PRiRj

∣∣∣∣
PRR

, (1.10)

where PRiRj
is the cross-spectrum between the ith and jth responses. It has been

shown [81] that the square root of the RR-coherence is always greater than the

SR-coherence, yet less than one: 0 ≤ CSR ≤ √
CRR. A difference between these two

curves can therefore tell us if there may be any additional information that cannot be

decoded linearly, as well as its frequency content, potentially indicative of temporal

coding [80]. For sufficiently Gaussian stimulus, response and noise distributions, the
√
RR-coherence provides an upper bound on the MI:

IUB(f) = − log2(1−
√
CRR). (1.11)

Although nonlinearities will often result in temporally encoded information that

cannot be decoded linearly (resulting in differences between CSR and
√
CRR), they
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also tend to result in non-Gaussian response distributions which can invalidate their

use as an upper bound on mutual information, requiring caution in its use.

Once we have characterized a neurons behaviour, we would like to further un-

derstand it by reproducing it with a model.

1.4 Methods of Neuron Modelling

Over one hundred year ago, Lapicque proposed that a neuron generates an

action potential by integrating its sensory or synaptic inputs until a threshold value

is reached [82]. Although this does not explain the biophysical details of how a

neuron actually does this, the concept of ‘integrate-and-fire’ remains one of the most

influential models in neurobiology primarily due to its simple mechanistic nature.

However, this is of course far from explaining how neurons actually work, ignoring

the neurons dendritic morphology, distribution of synaptic inputs, as well as the

distribution and composition of the myriad ion channels that can interact to generate

action potentials. This illustrates the point that there are clearly various levels of

abstraction with which neurons can be described, such that choosing the level of

detail to include in a model somewhat of an art form. The achievements of models

with various levels of detail are summarized by Herz et al. [83], two broad classes of

which will be described below, followed by a summary of the various models used for

vestibular neurons.

1.4.1 Biophysically detailed models

While biophysically detailed models can include tremendous amounts of details

including the dendritic morphology with synapses and neurotransmitters, here we

will only consider the details necessary for spike generation. It had been long known
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that the electrical currents input to a neuron could cause it to generate action poten-

tials, but it was the work of Hodgkin and Huxley that identified the current-voltage

activation curves for the sodium and potassium channels involved [84]. A single

patch of neuron membrane will have thousands of channels of various types, but we

model current flowing through them as a function of time. At an instant in time,

the average current is generally defined as Iions = gions · xa(V ) · (V − Vrev), where

gions is the maximum conductance of the ion channel when it is completely open,

and xa(V ), is a voltage dependent gating variable (generally sigmoidal in voltage)

which can take values from 0 to 1, indicating the proportion of channels that are

open, with 1 indicating that the maximum conductance (and current) is achieved.

This gating variable represents an activation variable which must equal 1 for current

to flow, however inactivation variables are also possible in which a 0 indicates that

the channel is de-inactivated and that current can flow. Finally, a reversal potential,

Vrev, sets the direction of current flow (based on the electrochemical equilibrium) in

the last term in the current equation above. The Hodgkin-Huxley equations for a

spiking neuron involve a potassium current with an activation variable, n, as well as

a sodium current that has both activation and inactivation (i.e. must be lower for

current to flow) variables, m and h, respectively, resulting in the system of equations:

Cm
dV

dt
= gNam

3h(V − VNa)︸ ︷︷ ︸
INa

+ gKn
4(V − VK)︸ ︷︷ ︸

IK

+ gLeak(V − VLeak)︸ ︷︷ ︸
ILeak

+Iinput

dn

dt
= [n∞(V )− n]/τn(V ),

dm

dt
= [m∞(V )−m]/τm(V ),

dh

dt
= [h∞(V )− h]/τh(V ),

(1.12)
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where the gating variables have their own first order dynamical equations, in which

the gating variable x is driven towards the voltage dependent equilibrium point,

x∞(V ), with a timescale set by the time constant, τx(V ), for x ∈ {n,m, h}. Model

parameters include the membrane capacitance, Cm, the maximum conductance for

each channel type, gNa, gK , and gLeak, as well as their reversal potentials, VNa,

VK , and VLeak. The average resting potential of such neurons when not producing

action potentials is around −70 mV, which is generally close to VLeak. As such,

the reversal potential for sodium (which enters the cell) makes its current drive the

voltage upwards (termed depolarizing), while the potassium (which generally exits

the cell) makes its current drive the voltage downwards (termed hyperpolarizing).

The leak current represents the cells overall permeability to a mixture of ions, but

primarily to chloride.

These parameters describe the behavior of many ion channels together, however,

we do know more details about the microscopic structure of each individual ion

channel as well. A potassium channel, for example, is a protein through the cell

membrane, which has two possible states, open and closed. These proteins often

have multiple binding sites, each of which can be empty or full, and all of which

must be full for the channel to open. In this case, the n4 term would indicate

probability that all four binding sites are occupied and the channel is open, while n

indicates the probability that one binding site is occupied. Under this interpretation,

the individual binding variable dynamics are often defined as

dn

dt
= αn(V )(1− n)− βn(V )(n) (1.13)
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where α(V )n and β(V )n are voltage dependent transition rates from closed-to-open

and open-to-closed, respectively. The two pictures are translated according to n∞ =

αn/(αn+βn), and τn = 1/(αn+βn) (and similarly for the other activation variables).

One of the fabled triumphs of the Hodgkin-Huxley (HH) equations is the n4

term, which would suggest the potassium channel could require four activation gates

each with the probability n of being open, making n4 the probability of all four being

open simultaneously. Indeed it was found that the sodium channels do have four gates

which must be activated, it is in all likelihood a fluke that Hodgkin and Huxley only

tried to fit the model up to a power of four due to their lack of computational power!

Regardless of the interpretation with respect to further microscopic details, sim-

ulations of these equations with appropriately tuned parameters can reproduce the

spiking activity of several classes of neurons. However the four-dimensional dynami-

cal system is somewhat difficult to understand intuitively, as well as analyze its phase

space trajectories and bifurcations. In order to understand more clearly the mecha-

nism required to generate periodic spiking activity, the HH model can be simplified

by noticing that m is very fast allowing m ≈ m∞(V ), as well as that h ≈ 1−n. This

results in the simple two-dimensional spiking system:

Cm
dV

dt
= gNam

3
∞(1− n)(V − VNa) + gKn

4(V − VK) + gLeak(V − VLeak) + Iinput

dn

dt
= [n∞(V )− n]/τn(V )

(1.14)
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For this simplified two-variable model, some details in the shape of the action po-

tentials are lost, but there are now only two variables, the membrane voltage V , and

the “recovery variable”, n.

Fixed points and limit cycles

The simplified two-variable spiking model is significantly more tractable for a

phase space analysis of fixed points and bifurcations, as the two variables can be

plotted and visualized simultaneously in a 2D plane. The fixed points of a system

are found by setting the two differential equations to zero: V̇ = ṅ = 0. This gives two

equations for two curves called nullclines, the intersection points of which correspond

to fixed points of the system, where neither variable is changing [85]. Furthermore,

such fixed points can be either stable or unstable, as indicated by the eigenvalues of

the linear stability matrix at that fixed point. It is simple to see that the n-nullcline

is simply the sigmoidal curve corresponding to n∞(V ). The V-nullcline on the other

hand has been shown to have a cubic shape, like an ’s’ rotated clockwise, which is

shifted up and down by changes in the input bias current (see Figure 1.4). It is then

relatively easy to see that for lower bias currents, the curves will intersect in three

places (Figure 1.4A), and as the bias current is increased, two intersection points

will disappear leaving only one (Figure 1.4B). An analysis of the stability of such

fixed points has revealed two main bifurcation types that can lead to spontaneous

periodic spiking for some bias current value, Iinput > I∗.
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Figure 1.4. Fixed point bifurcation analysis of two-dimensional spiking
neuron model. Panels (A-B) show n-nullclines (black) and V-nullclines (red) of
the neuron model in Equation 1.14, for two bias current values. In (A) the bias
current is below threshold and the voltage is a constant at the resting potential
corresponding to the leftmost intersection point (blue dot). In (B) the only
intersection point is unstable, as the voltage oscillates around it in a stable limit
cycle (blue) (C) Bifurcation diagram of all fixed points, either stable (red dots) or
unstable (black dots). The green star indicates a saddle node bifurcation point
where the two fixed points annihilate and spiking begins. The blue line indicates
the maximum and minimum values of the spiking limit cycle as a function of bias
current. The dashed blue line indicates the voltage mean. (D) The firing rate, or
1/period of the limit cycle orbit.
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In both scenarios, at low bias current the lowest of the three voltage fixed points

will be stable, and the membrane voltage will be stable at rest, only firing a spike

if sufficiently perturbed. In the first scenario, as the bias current is increased, the

two fixed points with lowest voltage, one stable and one unstable, will come together

and annihilate in a saddle-node bifurcation leaving only the high voltage fixed point

which is unstable and oscillatory. This gives rise to a stable limit cycle encircling

the one remaining fixed point, and a neuron which spikes periodically for a constant

current input, a highly nonlinear phenomenon. This is the mechanism illustrated in

Figure 1.4C. In the second scenario, as the bias is increased, the stable fixed point

looses its stability and becomes oscillatory via a Hopf bifurcation, before annihilating

with the second lowest fixed point. Although these two bifurcation scenarios both

transition from non-spiking to spontaneously spiking states, they result in two classes

of excitability, class 1 and class 2, respectively. In class 1 excitable systems, the f-I

curve shows a continuous change from zero firing rate to non-zero firing rate, with

arbitrarily low rates possible for a precisely tuned bias currents. In class 2 excitable

systems, the f-I curve shows a discontinuous change from zero firing rate to non-

zero firing rate, where the onset firing rate is determined primarily by the model

parameters and imaginary eigenvalue components, insensitive to the precise input

current. Furthermore, these two classes of excitability have been found to give rise to

different information processing properties, providing a link between the underlying

ion channel dynamics of a neuron, and its ability to process sensory information [86].

While these are some of the simplest biophysically realistic models which can

explain the phenomenon of excitability and the generation of action potentials, they
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can be further complicated by the addition of various other conductance-based ion

channels uncovered by various experiments, all of which contribute to the type of

spiking activity models exhibit. One approach is then to accurately model neurons

by putting in all the various ion channels found and tuning parameters to see how

they all contribute to shaping the action potentials and spiking dynamics. While

this approach is likely to capture the rich and subtle differences in neural dynamics,

it has been shown that many different biophysically detailed models and parameter

combinations can give rise to qualitatively similar “types” of activity [87]. An alter-

nate approach is therefore to start with the simplest possible mathematical models

necessary (rather than simply sufficient) to reproduce the various types of spiking

activity.

1.4.2 Phenomenological models

On the other end of the modelling spectrum, instead of including the details

of each ionic current and fine tuning parameters to explain the different spiking

mechanisms, integrate-and-fire (IF) models completely remove the actual spikes, to

focus on their timing and the subthreshold dynamics responsible. As the name would

suggest, an IF model integrates its input current to drive the membrane dynamics

towards a threshold voltage, at which point a spike is said to occur and the voltage

is set to a reset voltage and held fixed for a refractory period. Although this model

cannot explain how a neuron generates an action potential, it does capture the basic

neural properties of of a sigmoidal saturating and rectifying nonlinearity, along with

a roughly linear spiking regime. Although, these models tend to fail at reproducing
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the subthreshold membrane potential time course between spikes, details can then

be added back systematically to recover the particular features of interest.

The simplicity of the IF model is that it has a single variable for the membrane

voltage, V, governed by the equation V̇ = F (V ). The simplest case is the perfect IF

model, which has only an input current, resulting in F (V ) = μ. The main problem

with this model is that if a stimulus brings the neuron close to threshold but is

removed, the voltage will remain close to threshold until any new stimulus causes

it to spike. This can be fixed by adding back the linear leak current, resulting in

F (V ) = μ+ gLeak(V −VLeak), a leaky IF (LIF) model. In this model the voltage now

decays back to a resting potential, set by VLeak. These models, however, can still

not reproduce the depolarizing upstroke in membrane potential prior to a spike. The

simplest possible remedy is to add a quadratic term that rises for both increasing and

decreasing V, resulting in a QIF model. While the quadratic term maintains as much

simplicity as possible, a much better fit (to data and detailed models) can generally

be achieved with an exponential IF model (EIF). While producing significantly more

realistic models, the additional exponential term also reduces the analytic tractability

of the model, highlighting the tradeoff in realism and simplicity.

Although these simplified IF-type models can explain a range of spiking ac-

tivities, there do remain neuronal properties which require a second variable to re-

produce, such as bursting, subthreshold membrane oscillations, and the Hopf bi-

furcation found in type II excitable neurons. In this case, IF-type models can be

further generalized to include any extra conductance-based currents of the form

I = g · xa(V ) · (V − Vrev), even if this requires additional dynamic equations for
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their own activation variables, such as dx/dt = [x∞(V )−x]/τx(V ). Although it may

seem counter productive to add back such complexities after simplifying the neuron

models in the first place, we will later see that this can in fact be necessary for

the analytic treatment and intuitive understanding of more complex spiking neuron

models.

1.4.3 Vestibular neuron models

Indeed models with various levels of detail have been used to represent various

neurons in the vestibular system, for various purposes which we will briefly review

here. In the 80s and 90s, as computational resources increased, and in vitro recording

techniques improved at identifying the cell morphology and ion channels, a trend in

detailed conductance-based models rose in hopes of putting every detail into the

model to simply simulate and see how it works. In vivo recordings on the other hand

can give access to the neural activity of the awake behaving animal. However, they

tend not to give access to the more cellular details or the actual membrane potential,

only the spike times, driving the development of more phenomenological models.

Afferent Models

The most common vestibular afferent models fit to spiking data are linear trans-

fer functions characterizing their different gain and phase profiles [88,89]. Parametrized

analytic forms for these models have also been related back to the material proper-

ties of the sensors, such as the torsion pendulum model of the cupula [90]. However

these linear transfer function models do not account for the increased variability of

irregular afferents. It was a model of Smith and Goldberg in 1986 [91] that first

adopted a conductance-based spiking model of an AHP due to particular potassium
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channels combined with synaptic shot noise that gave rise to their increased variabil-

ity. However, more recent afferent studies using white noise stimuli were modeled

using simple IF models, with an added first-order high-pass filter to account for

the dynamics, and an additive noise current to account for the variability [38]. Al-

though these models were not developed to explain the mechanistic origins of the

gain and variability, they were sufficient to explain the resulting information trans-

mission properties in the linear response regime. Although sigmoidal nonlinearities

have been fit to afferent data [36], and nonlinear phase-locking observed [92], these

nonlinear afferent properties have not yet been modeled explicitly.

Vestibular Nuclei Models

In Vitro studies of vestibular nuclei neurons identify and classify neurons as

type A or B based on the shape of their action potentials, as well as their transfer

functions, and responses to step current injections [27]. These studies have addi-

tionally found the ion channel distributions underlying these properties, and built

conductance-based models to reproduce them. In 1994, Quadroni and Knopfel devel-

oped detailed conductance-based models with extensive dendritic compartments [93],

however, in 1999, Av-Ron showed that these membrane properties could be repro-

duced by a single compartment model, with different ion channel combinations [94].

In particular, type B neurons have a high-pass gain profile, as well as an AHP in their

membrane potential giving rise to increase spiking variability. In vivo VN neurons

are again typically only modeled with linear transfer functions, with VO neurons

having a high-pass profile [35], making their in vitro corespondents most likely Type
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B. However, type B neurons exhibit some nonlinear effects (such as phase locking),

that have not yet been reported in vivo.

1.5 Research Goals and Thesis Outline

The overall goal of doctoral research was to explore the nature of the neural

code used in early vestibular pathways, and whether it is somehow optimized for the

natural conditions to which it is exposed. This is relevant to the field of vestibular re-

search as we are the first to have characterized the natural head movements of freely

moving monkeys, as well as an explicit nonlinearity in central vestibular neurons.

Furthermore my research is important for the field of computational neuroscience in

general, as we are the first to consider optimal coding in the vestibular system, shed-

ding light on such general theories of brain function. Finally my research provides

insights into the complementary roles of rate and temporal codes, and the underlying

molecular mechanisms that may regulate them. The organization of this thesis is as

follows.

In chapter 2, a paper is presented where we explore the statistics of the natural

stimuli to which the vestibular system is exposed in order to see whether afferent

neurons have evolved to process such stimuli in an optimal way. To this end, we

record and characterize the natural head movements of monkeys. We then fit LN

cascade models to spiking otolith and canal afferent data previously recorded for

other projects, in order to use information theoretic techniques to calculate the op-

timal stimulus distributions for each afferent class. Finally, we quantify whether the

optimal stimulus distribution of regular or irregular afferents are better matched to
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those of natural stimuli (for both canal and otolith afferents), showing that indeed

the irregular afferents are better optimized than the regular afferents.

In chapter 3, a paper is presented where we seek to bridge the gap between in

vitro and in vivo experiments by adapting a detailed conductance-based model of

type B in vitro neurons to model the behavior of VO data recorded in vivo. To this

end, we mimic the high conductance state of neurons in vivo with an increased leak

conductance and additive current noise. We find the effects of in vivo-like conditions

on the model neuron’s response properties allow it to linearly encode stimuli within

the experimentally tested range of stimulus frequencies and amplitudes, in its firing

rate modulations. This provides us with a detailed VO neuron model that can

next be used to further explore VO neurons nonlinear response properties to larger

amplitude stimuli.

In chapter 4, in a paper in preparation, we show that the interplay of calcium

and calcium activated-potassium channels can cause the f-I curve, of the VO model

from Chapter 3, to exhibit a similar nonlinearity to one recently found in VO data

(which is presented in Appendix E). I further reduce the model to a generalized QIF

model which is more analytically tractable, while preserving the desired features of

the original model, in order to reveal the mechanistic origins of f-I curve’s nonlinear

shape.

In the Conclusions section, the results of each chapter will be briefly summarized,

and the implications of the findings to the field of computational neuroscience in

the vestibular system will be considered, along with future possible directions in

which these projects could be continued. In summary, my research has applied novel
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methods of data analysis and neuron modelling in early vestibular pathways, to

provide new insights into the nature of the neural code being used.

Because the works presented in chapters 2&3 are published papers with multiple

authors, many written words and choices of analysis are the work of co-authors. For

this reason, some additional justification of analysis and clarification of opinions are

presented in their opening paragraphs.
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CHAPTER 2
The increased sensitivity of irregular peripheral canal and otolith

afferents optimizes their encoding of natural stimuli

The main goal of this chapter is to explore whether the vestibular system has

evolved neural coding properties that are somehow optimized to the statistical struc-

ture of the natural vestibular stimuli to which it has been exposed over evolutionary

time scales. To this end, we first record and characterize the natural head movements

of monkeys, which were found to be non-Gaussian due heavy tails quantified by a

high-kurtosis. It should be noted however that kurtosis can also be increased due

to a sharp central peak as well, so higher kurtosis values do not guarantee larger

tails of the distributions. We then develop linear-nonlinear (LN) cascade models of

vestibular afferents, the first neurons exposed to the natural stimuli (see Appendix

A for a comparison of the effects of different nonlinear function parameterizations).

A published paper [95] is presented, in which we use these afferent LN models to

estimate their optimal stimulus distributions (i.e. those which result in maximiz-

ing mutual information; see Appendix B for details of derivations) to assess which

afferents are better optimized to process the statistics of natural vestibular stim-

uli. Although this approach incorporates the afferent transfer function filtering, it

is based on maximizing the mutual information between the stimulus and response

probability distributions, assuming low levels of firing rate variability (see Appendix

C for additional effects of high variability levels). Irregulars are found to be more
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optimized than regulars due to their larger gain (even more so for otoliths than

canals).

In the first sentence of the second paragraph of section 2.3.4, author MJC wrote

“Theoretically, one potential optimal coding strategy is to devote the most neural

resources to code for stimuli that will occur most frequently in the natural envi-

ronment, which maximizes information transmission [9,11,97]”. Similarly, in Metzen

and Chacron [96], MJC writes, “optimal coding theory predicts that sensory neurons

should should be best tuned to stimuli that occur most frequently in the natural en-

vironment”, citing [9,11] to infer that “a one-to-one match between the gain... and

the power content of the natural [stimuli]...[is] consistent with optimal coding.” What

[9,11] actually says is that under noise-free conditions, the stimulus should be the

derivative of the tuning curve, such that it results in the uniform response distri-

bution. Accordingly if the distribution is broader the gain should be lower, and if

the distribution is narrower the gain should be higher, for this to happen. If we

consider the information rate for time dependent stimuli, Rieke et al. [5] explain that

the optimal transfer function will “whiten” the stimulus, by having a high pass filter

for low pass stimuli. This is to amplify most the stimuli which occur least often,

and amplify least the most commonly occurring stimuli. It is Appendix D that con-

tains additional analysis of the frequency content of natural stimuli, and presents

considerations of maximizing the information rate via “whitening”.

Finally, the following paper draws the conclusion that irregular afferents are

better optimized than regular afferents, but it does not consider the possibility that

energy constraints play as much of a role as information maximization. The author
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of this thesis considers this to be a more plausible hypothesis that is discussed in

further detail in Appendix B.
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2.1 Introduction

Efficient processing of sensory input is critical for an organism’s survival. Be-

cause some stimuli are more likely to be encountered than others, it is commonly

assumed that the statistics of the natural sensory environment influence the brain’s

coding strategies [9, 15, 97, 98]. However, this hypothesis remains untested for the

vestibular system, which processes head motion information and thus plays a vital

role in the stabilization of gaze and control of balance and posture, as well as percep-

tion of spatial orientation and self-motion. Notably, addressing whether the coding

strategies used by the vestibular system are optimized to process natural stimuli first

requires knowledge of the head motion experienced during natural behaviors. The

vestibular system is phylogenetically the oldest part of the inner ear and is highly

conserved throughout evolution [99]. Vestibular end organ sensors detect head mo-

tion across six dimensions (three axes of translation detected by the otoliths and

three axes of rotation detected by the semicircular canals; [25,100]. In the absence of

motion, afferents display a wide range of resting discharge variability and are char-

acterized as regular or irregular; a classification that correlates with differences in

morphological features and response dynamics [26, 27, 101, 102]. Afferent response

dynamics have been traditionally measured using artificial self-motion stimuli such

as sinusoids or noise with low intensity to ensure that neurons are constrained to

their linear ranges [26, 38, 103]. To date only a few studies have reported nonlinear

responses to high-intensity vestibular stimuli [30, 31, 36]. However, a recent study

performed in humans has revealed that vestibular stimuli can reach large intensities

during everyday activities that could elicit nonlinear responses from afferents [104].
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Thus, it currently remains unknown whether peripheral vestibular neural re-

sponses to natural input can be determined from those to artificial stimuli and

whether coding strategies are constrained by the statistics of the natural environ-

ment. Here we characterized for the first time the structure of self-motion signals

that are experienced by rhesus monkeys during typical natural behaviors. Existing

linear models of peripheral processing incorrectly predicted that such stimuli elicit

neural responses outside of the physiological range. Accordingly, we then recorded

from afferents and developed new models incorporating static nonlinearities that

accurately described responses to naturalistic stimuli. Finally, using these models,

we tested whether coding by peripheral afferents is constrained by natural stimulus

statistics. We found that irregular afferents, because of their higher sensitivities,

were more optimized to process natural stimuli than their regular counterparts. Our

results therefore have important implications for understanding the contributions of

different classes of peripheral sensory neurons to the encoding of natural stimuli, and

further provide evidence supporting the hypothesis that the neural coding strategies

used by the vestibular system are matched to the statistics of natural stimuli.

2.2 Materials & Methods

2.2.1 Experimental Preparation

All experimental protocols were approved by the McGill University Animal Care

Committee and were in compliance with the guidelines of the Canadian Council on

Animal Care. Two male macaque monkeys (Macaca fascicularis) were prepared

for chronic extracellular recording using aseptic surgical techniques. The surgical

preparation was similar to that previously described [105]. Briefly, using aseptic
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surgical techniques and under isoflurane anesthesia (0.8-1.5%), a stainless steel post

was secured to the animal’s skull with stainless steel screws and dental acrylic resin,

allowing complete immobilization of the head during the experiments. The implant

also held in place a recording chamber oriented stereotaxically toward the vestibular

nerve where it emerges from the internal auditory meatus. Finally, an 18-19 mm

diameter eye coil (three loops of Teflon-coated stainless steel wire) was implanted in

the right eye behind the conjunctiva. After the surgery, buprenorphine (0.01 mg/kg,

i.m.) was administered as postoperative analgesia every 12 h for 2-5 d depending on

the animal’s pain level, and Anafen (2 mg/kg, then 1 mg/kg subsequent days) was

used as an anti-inflammatory. In addition, cefazolin (25 mg/kg, i.m.) was injected

twice daily for 10 d. Animals were given at least 2 weeks to recuperate from the

surgery before any experiments began.

2.2.2 Head movement recording

Head movements were recorded using a microelectromechanical systems (MEMS)

module (iNEMO platform, STEVAL-MKI062V2; STMicroelectronics), as done re-

cently for humans [104]. The module combined three linear accelerometers (recording

linear accelerations along the fore-aft, lateral, and vertical axes) and three gyroscopes

(recording angular velocity about pitch, roll, and yaw). To extend the velocity range

to 2000deg/s, the MEMS module was augmented with a STEVAL-MKI107V2 three-

axis gyroscope. The MEMS module, a battery, and and microSD card were encased

in an extremely light (64 g) and small (35x35x15 mm) enclosure, which was firmly se-

cured to the head posts of two macaque monkeys. Specifically, the plane spanned by

the fore-aft and lateral axes of the MEMS module was set parallel to the horizontal
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stereotaxic plane (i.e., the plane passing through the inferior margin of the orbit to

the external auditory meatus; [104]). Data from each of the six sensors were sampled

at 100 Hz and recorded wirelessly on an microSD card. Since we were interested in

afferent responses to linear motion, we recorded the total gravito-inertial accelera-

tion (GIA; i.e., the sum of gravity and linear motion), which is henceforth referred

to as linear acceleration. Note that the data were reported in sensor coordinates in

Figures 2.1 and 2.2.

Each monkey was released separately into a large familiar play cage (9.5m3,

with a multilevel wooden platform) where it was able to freely move and interact

with another monkey from our colony for 160 min while a camera was recording its

behavior. We segregated activities into three groups: (1) behaviors associated with

low levels of activity that included monkey sitting observing its environment, holding

and playing with objects, or grooming; (2) behaviors associated with medium levels

of activity that included walking around and foraging; and (3) behaviors associated

with high levels of activity that included running, jumping, and climbing, as well as

rapid head shaking.

2.2.3 Single-unit recording

During the experiment, the head-restrained monkey was seated in a primate

chair mounted on top of a vestibular table in a dimly lit room. The vestibular nerve

was approached through the floccular lobe of the cerebellum, as identified by its

eye-movement related activity [36, 103, 106]; entry to the nerve was preceded by a

silence, indicating that the electrode had left the cerebellum. Extracellular single-

unit activity of semicircular canal and otolith afferents was recorded using glass
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microelectrodes (24-27 MΩ), the depth of which was controlled using a precision

hydraulic microdrive (Narishige). Rotational head velocity and linear acceleration

were measured using an angular velocity sensor (Watson) and a linear accelerometer

(ADXL330Z; Analog Devices) sensor firmly secured to the animal’s head post. Note

that vestibular afferents could not be recorded during natural movements due to

the technical difficulty of maintaining isolation from single eighth nerve afferents

using high-impedance glass micropipettes while the animal underwent such complex

and high-intensity dynamic stimuli. Therefore, we used naturalistic stimuli whose

time course mimicked that of the natural stimuli. These were generated as done

previously [28, 107]. As both naturalistic and natural stimuli tended to consist of

excursions whose time course was approximately bell shaped, we quantified them

using the following measures: intensity I (maximum value), the full width at half

maximum (FWHM), and area under the curve (AuC), which were all computed from

the absolute value of the stimulus.

Natural rotation stimuli displayed large heterogeneities as all three quantities

were distributed over large intervals (I: 100-1500 deg/s, FWHM: 84-582 ms, AuC: 13-

173 deg). The characteristics of our naturalistic rotation stimuli were all within these

ranges (I = 35±641deg/s, FWHM = 277±19ms, and AuC = 100±8deg). Natural

translation stimuli also displayed large heterogeneities (I: 0.8-8 G, FWHM: 24-228

ms, and AuC: 0.9-5.8 m/s). The characteristics of our naturalistic translational

stimuli were also all within these ranges (I = 0.87± 0.35G, FWHM = 146± 30ms,

and AuC = 1.2± 0.3m/s).
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These stimuli were applied manually since the required velocities and accelera-

tions were beyond the range of our controller. We focused our analysis on horizontal

canal afferents (N = 11 regular and N = 25 irregular) and utricle otolith afferents

(N = 26 regular and N = 27 irregular), since our motion platform was designed

to apply stimuli along these axes of motion. For each afferent, stimuli were applied

along the preferred axis of rotation (i.e., yaw) or translation (horizontal) as previ-

ously described [36, 103]. For otolith afferents, this was achieved by rotating the

monkey’s head such that the neuron’s preferred direction was aligned with the appa-

ratus’ axis of translation. During experimental sessions, unit activity, horizontal and

vertical eye positions, and head-velocity signals were recorded on digital audiotape

for later playback. During playback, action potentials from extracellular recordings

were discriminated using a windowing circuit (BAK Electronics). Eye position and

head-velocity signals were low-pass filtered at 250 Hz (eight-pole Bessel filter) and

sampled at 1 kHz.

We generated binary spike trains, with 1 kHz sampling rate for each afferent.

Periods of spontaneous activity (i.e., no head movement) were used to classify af-

ferents as regular or irregular according to the variability in their baseline spiking

activity as quantified by the coefficient of variation, CV = σISI/μISI , where μISI is

the mean inter-spike interval (ISI) and σISI is the SD of the ISIs. Because CV varies

with mean, the mean ISI, a normalized coefficient of variation (CV ∗), was computed

using the ISI distribution to quantify resting discharge variability as described pre-

viously [108]. Afferents with CV ∗ < 0.1 were classified as regular, while those with

CV ∗ ≥ 0.1 were classified as irregular as done previously [36, 103]. The firing rate
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r(t) was obtained by convolving the binary spike train with a Gaussian centred on

the spike time with 10 ms SD. For the purposes of illustration only, we computed

the cross-correlation function between the firing rate r(t) and the stimulus s(t) and

noted the lag at which it was maximal. This lag was then used to align the response

with the stimulus.

2.2.4 Statistical analysis of natural head movements

To test whether natural head movement signals were characterized by proba-

bility distributions that differed significantly from Normal, surrogate datasets of the

same length with the same mean and variance but drawn from a Gaussian distribu-

tion were generated. Probability distributions for both the data and the surrogate

datasets were generated with bin widths of 20 deg/s for angular velocities and 0.1

G for linear accelerations. The deviation from normality was quantified using the

kurtosis k = 〈(x(t) − μ)4〉/σ4, where x(t) is the signal, μ is the mean, and σ is the

SD. We note that k = 3 for a Gaussian distribution. The signals were divided into 20

segments each lasting 8 min and the kurtosis values were obtained for each segment.

The kurtosis values obtained from our dataset were then compared with kurtosis

values obtained from the Gaussian surrogates.

2.2.5 Linear models of vestibular afferent responses

We first used previously established linear models to predict afferent responses

to the experimentally recorded natural stimuli. Specifically, we assumed that the

output firing rate r(t) in response to stimulus s(t) is given by the following: r(t) =

H ∗s(t)+r0, where the asterisk denotes a convolution with a filter H(t) and r0 is the

baseline (i.e., in the absence of stimulation) firing rate. We used r0 = 104 Hz for canal
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afferents and 79 Hz for otolith afferents, which corresponds to average baseline firing

rates observed experimentally [38,103]. Before filtering with these transfer functions,

natural angular velocity recorded was projected onto the horizontal semicircular canal

plane as done previously [104] using an angle of 22 deg nose down [109]. For canal

afferents, the Fourier transform of H(t) (i.e., the transfer function) is given by the

following:

Hcanal(s) = k(s(s+ 1/T1))/((s+ 1/Tc)(s+ 1/T2)) (2.1)

with S = i2πf . For regular afferents, parameter values were as follows: k =

2.83(spk/s)/(deg/s), T1 = 0.0175s, T2 = 0.0027s, and Tc = 5.7s. For irregular af-

ferents, parameter values were as follows: k = 27.09(spk/s)/(deg/s), T1 = 0.03s,

T2 = 0.0006s, and Tc = 5.7s. Overall, these parameter values are similar to

those used previously [89] and were chosen to best match available experimental

data [38, 92]. For otoliths, we used the following transfer function [88]:

Hotolith(s) = k
sk1(1 + as)k2

(1 + bs)
(2.2)

with k = 59.0106(spk/s)/G; k1 = 0.0643, k2 = 2.208, a = 0.0138s, and b = 0.0255s

for regular afferents; and k = 112.7417(spk/s)/G, k1 = 0.3084, k2 = 2.6834,

a = 0.0136s, and b = 0.0318s for irregular afferents. As for canal afferents, pa-

rameter values were chosen to best match available experimental data [103]. These

expressions were used to generate the linear predictions of firing rate responses to

natural stimuli shown in Figure 2.3.
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2.2.6 Linear-nonlinear cascade models.

To characterize our experimentally observed nonlinear responses of vestibular

afferents to naturalistic stimuli, we used linear-nonlinear (LN) cascade models [110,

111] in which the firing rate response r(t) is given by the following:

r(t) = T ((H ∗ s)(t) + r0) (2.3)

where T is a nonlinear function. We note that, unlike previously used one-stage

nonlinear models in which the firing rate at a given time is a nonlinear function of

the current stimulus value [30, 38], LN models explicitly take into account neuronal

temporal filtering properties [110] that are known to be prevalent in vestibular affer-

ents (for review, see [26]). The LN model was fit to each individual recorded afferent

and was used in Figures 2.4 and 2.5. We first estimated the transfer function H(f)

using:

H(f) = Psr(f)/Pss(f), (2.4)

where Psr(f) is the cross-spectrum between the stimulus s(t) and binary spike train

response, and Pss(f) is the power spectrum of the stimulus s(t). Note that we

only used low-amplitude portions of the stimulus to ensure that the afferent was

constrained to its linear regime. The baseline firing rate was then added to this

to form the linear prediction rL(t), which was then plotted as a function of the

experimentally observed firing rate r(t) to reveal the shape of the nonlinear function

T as done previously [111]. We found that the experimental data could be well fit
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by a sigmoidal function:

Tsig(x) =
c3
2
[1 + erf

(
x− c2√

2c1

)
] (2.5)

in which c1, c2, and c3, are fit parameters, and erf(·) is the error function. Based on

published results [31,38] the parameter c3, which determines the maximum firing rate,

was always 70 spk/s. We also found that the variance of the firing rate distribution

could be well fit by a combination of error functions:

V (x) = c1[erf

(
x− c2
2c23

)
+ erf

(
x− c4
2c25

)
] (2.6)

In practice, the first half of the experimental data was used to obtain the transfer

function and the shape of the nonlinear function T. The LN model was then used

to generate a prediction of the response to the second half of the stimulus that was

compared with the experimental data. The model’s performance was quantified using

R2. The linear model was generated by assuming that T (x) = x instead and was

used to generate a linear prediction of the response that was then also compared

with the experimental data and its performance was also quantified using R2. Note

that the functions plotted in Figure 2.5 are population averages.

2.2.7 Optimal stimulus distribution that maximizes information

We used the LN model described above for which the response is given by the

following:

r(t) = Tsig((H ∗ s)(t) + r0) (2.7)

with Tsig as a nonlinear sigmoidal function. Assuming a stimulus with probabil-

ity distribution p(s) and a response with probability distribution p(r), the mutual
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information between stimulus and response is given as follows [5, 79]:

I(s, r) = H(r)−H(r|s)

=

∫
ds dr p(r|s)p(s) log2

p(r|s)
p(r)

(2.8)

where H(r) = − ∫ dr p(r) log2 p(r) is the response entropy,

H(r|s) = ∫ ds p(s) dr p(r|s) log2 p(r|s) is the noise entropy, and p(r|s) is the condi-

tional response probability. As deterministic linear transformations preserve informa-

tion, we have I(s, r) = I(rL, r). Thus, we will only consider the information between

the linear prediction rL(t) = (H ∗ s)(t) + r0 and the response r(t) = Tsig(rL(t)). In

the noise-free case, there is a deterministic relationship between the linear prediction

and the response and we have p(r|rL) = Tsig(rL)δ(r − rL). The mutual information

is then given by the following: I(rL, r) = H(r) and is maximum when [9, 11]:

p(rL) = popt = T ′
sig(rL)/

∫ +∞

−∞
dz T ′

sig(z), (2.9)

where T ′
sig is the derivative of Tsig. If we consider that there is noise, it is not

possible to find an analytical expression for the probability distribution popt(rL) for

which the mutual information is maximum. However, previous studies have found

an approximate solution if we assume that r = Tsig(rL) +
√

V (rL)ξ, where ξ is a

Normally distributed random variable with zero mean and variance unity. If the

variance V (rL) is sufficiently small, then the optimal distribution is given by the

following [112,113]:

popt =
T ′
sig(rL)√
V (rL)

/

∫ +∞

−∞
dz

T ′
sig(z)√
V (rL)

, (2.10)
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In comparing the expressions obtained with and without noise, it is interesting to

note that the noise only appears as a normalization factor. Thus, if the noise variance

is constant, then any noise intensity will not alter the shape of the optimal probability

distribution.

Finally, to compute the optimal stimulus distribution popt(s), we inverse filtered

a signal with probability distribution popt(rL) whose power spectrum was equal to

that of the filtered natural stimulus.

2.2.8 Quantifying the distance between probability distributions

To quantify the distance between two probability distributions p(x) and q(x),

we used the Jensen-Shannon (JS) divergence defined by the following: DJS(p||q) =
[DKL(p||m)+DKL(q||m)]/2, where m(x) = [p(x)+q(x)]/2 and DKL is the Kullback-

Leibler divergence defined by the following:

DKL(p||q) =
∫ ∞

∞
dx p(x) log2

p(x)

q(x)
(2.11)

2.3 Results

2.3.1 Statistics of natural vestibular stimuli

We recorded the vestibular input experienced by freely moving rhesus monkeys

during natural behaviors using a MEMS module that was attached to their heads

(Fig. 2.1A; see Materials and Methods). The MEMS module consisted of three linear

accelerometers measuring linear acceleration along the fore-aft, lateral, and vertical

axes and three gyroscopes measuring angular velocity of rotations along these axes

(i.e., pitch, roll, and yaw). We note that the linear acceleration signals that we

recorded correspond to the total GIA (i.e., the sum of gravity and linear motion).
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We found that natural vestibular stimuli reached large intensities in all six axes

of motion (Fig. 2.1B, left), and were described by probability densities that were

not Gaussian as they displayed characteristically long tails (Fig. 2.1B, right). This

was quantified by large kurtosis values that were all significantly greater than that

obtained for a Gaussian distribution (Fig. 2.1C, compare black and red bars), as

seen in other sensory modalities [98].
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Figure 2.1. Statistics of natural vestibular stimuli in nonhuman
primates. A, A MEMS module (gold box) was mounted to the monkey’s head.
This module recorded linear acceleration along three axes (fore/aft, lateral, and
vertical) as well as angular velocity about these three axes (yaw, pitch, and roll).
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Figure 2.1 (previous page). B, Example time series for linear acceleration (top)
and angular velocity (bottom) during natural motion. Natural signals displayed
probability distributions (black lines) that decayed more slowly than Normal
distributions (red lines). Insets show time-expanded example low-amplitude (left)
and high-amplitude (right) waveforms. C, Mean kurtosis values for natural stimuli
(black) and surrogate Gaussian datasets (red). Note that a Gaussian distribution
has a kurtosis equal to 3 by definition. *p = 0.01 level. This figure is copied from
Schneider et al. [95]

To test whether specific behaviors influence stimulus statistics, we next grouped

behaviors into three categories associated with low, medium, and high levels of ac-

tivity and quantified the statistics of the vestibular input corresponding to each

category (Fig. 2.2A; see Materials and Methods). Specifically, periods where the

monkey was sedentary and observing its environment, holding and playing with ob-

jects, or grooming behaviors were associated with low levels of activity, while those

where the monkey was walking around and/or foraging were associated with medium

levels of activity. Periods where the monkey was running, jumping, climbing, and

was rapidly shaking its head were associated with high levels of activity. Overall,

low, medium, and high levels accounted for 63, 28, and 9% of all activities, respec-

tively. We found that the vestibular input experienced during behaviors associated

with all three categories displayed probability densities that were for the most part

not Gaussian (Fig. 2.2B) as quantified by large kurtosis values (Fig. 2.2C). As ex-

pected, vestibular signals associated with low, medium, and high levels of activity

were distributed over progressively larger ranges across all six motion dimensions

(Fig. 2.2B). The mean, SD, and kurtosis values obtained across low, medium, and

high levels of activity for all six motion dimensions are given in Table 2.1.
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2.3.2 Traditional linear models of vestibular processing cannot accu-
rately predict responses to natural stimuli

We next tested whether previously published models of early vestibular pro-

cessing that have been shown to accurately reproduce the responses of peripheral

otolith and semicircular canal afferents to artificial stimuli [26,35,36,100,103,111,114]

could accurately predict responses to natural stimuli. Linear systems identification

techniques were used to find the optimal transfer function that best captures the

input-output relationship between head motion and firing rate and predict the firing

rate response, henceforth referred to as the linear prediction (Fig. 2.3A). We used

established expressions for the transfer functions of regular and irregular semicircu-

lar canal and otolith afferents [88, 111] and fitted these to available data [36, 103].

Specifically, prior studies have shown striking differences between the neural coding

strategies used by semicircular canal and otolith afferents [36, 103]. Most notably,

while the neural sensitivities for irregular afferents are larger than those of their

regular counterparts, this difference is much more pronounced for otolith than for

semicircular canal afferents (Fig. 2.3B).
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Figure 2.3. Traditional linear models cannot accurately predict
vestibular afferent responses to natural stimuli. A, Traditional linear models
assume, to obtain the output firing rate, the stimulus is filtered by a transfer
function to which a baseline value is added.
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Figure 2.2. Natural vestibular stimulus statistics during low-, medium-,
and high-activity behaviors. A, Example time series showing natural head
acceleration and velocity traces during low (blue), medium (green), and high (red)
levels of activity. B, Probability distributions of natural signals associated with
low, medium, and high levels of activity. C, Mean kurtosis values for natural
stimuli during low (blue), medium (green), and high (red) levels of activity. The
horizontal dashed line indicates the kurtosis value for a normal distribution.
Asterisk indicates that the kurtosis is significantly different than that of a normal
distribution using a Wilcoxon rank sum test at the p < 0.05 level. The kurtosis was
always significantly greater than that of a normal distribution except for
stimuli-encountered medium levels of activity in the fore-aft translation axis. This
figure is copied from Schneider et al. [95]
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Table 2.1. Averaged mean, SD, and kurtosis values of natural
movements during low, medium, high, and all levels of activity

Mean ± SE SD ± SE Kurtosis ± SE
Fore-aft
All 0.34 ± 0.05 0.44 ± 0.02 7.18 ± 0.72
Low 0.37 ± 0.06 0.31 ± 0.02 4.30 ± 0.56
Medium 0.36 ± 0.04 0.48 ± 0.02 2.81 ± 0.20
High 0.28 ± 0.05 0.68 ± 0.03 7.86 ± 1.13
Lateral
All 0.12 ± 0.03 0.25 ± 0.02 42.00 ± 10.84
Low 0.12 ± 0.03 0.17 ± 0.01 6.80 ± 0.71
Medium 0.07 ± 0.03 0.20 ± 0.01 7.69 ± 2.11
High 0.11 ± 0.03 0.41 ± 0.03 18.59 ± 3.03
Vertical
All -0.71 ± 0.05 0.27 ± 0.02 32.57 ± 10.73
Low -0.71 ± 0.06 0.22 ± 0.03 20.26 ± 10.24
Medium -0.72 ± 0.02 0.23 ± 0.01 8.36 ± 1.93
High -0.70 ± 0.02 0.36 ± 0.02 20.89 ± 3.45
Yaw
All -0.04 ± 0.02 42.07 ± 3.77 96.69 ± 25.77
Low -0.13 ± 0.07 25.45 ± 2.08 31.00 ± 6.07
Medium 0.23 ± 0.26 43.05 ± 2.43 17.71 ± 2.77
High -0.58 ± 0.93 74.08 ± 7.87 12.75 ± 1.49
Pitch
All 0.05 ± 0.01 31.34 ± 2.22 39.72 ± 4.66
Low 0.04 ± 0.04 17.94 ± 1.45 36.31 ± 6.82
Medium 0.18 ± 0.09 35.40 ± 1.91 24.16 ± 2.57
High -0.34 ± 0.45 65.02 ± 3.05 11.47 ± 0.96
Roll
All -0.04 ± 0.01 25.45 ± 2.09 233.11 ± 75.32
Low 0.05 ± 0.06 13.10 ± 0.97 27.35 ± 6.55
Medium -0.00 ± 0.19 24.35 ± 1.26 11.34 ± 0.93
High -0.65 ± 0.58 51.43 ± 5.39 15.64 ± 3.06
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Figure 2.3 (previous page). B, Sensitivity of regular (dotted) and irregular
(dashed) afferents as a function of frequency for canal (left) and otolith (right)
afferents. C, Top, Example time series showing natural stimuli associated with low
(blue),medium(green), and high (red) levels of activity, for yaw rotations (left) and
fore-aft translations (right). Middle, Predicted firing rate responses from the linear
model for regular canal (left) and otolith (right) afferents. In all cases, the model
incorrectly predicts negative firing rates (denoted by the shaded red region) during
large-amplitude stimulation associated with high levels of activity. Bottom,
Predicted firing rate responses from the linear model for irregular canal (left) and
otolith (right) afferents. In all cases, the model incorrectly predicts negative firing
rates (denoted by the shaded red region) during large-amplitude stimulation
associated with high levels of activity. D, Probability distributions of the linear
model predictions with the shaded red region showing negative firing rates (top)
and percentage of time that the firing rate signal is negative (bottom) for canal and
otolith afferents for periods of low, medium, and high levels of activity (i.e., blue,
green, and red curves, respectively). Data for regular and irregular afferents are
shown on the left and right, respectively. Note that, in C and D,we only show data
from yaw and fore-aft motion for simplicity. Similar results were observed for the
other four motion dimensions. This figure is copied from Schneider et al. [95]

To test whether these linear models could give rise to physiologically realistic

responses during natural behaviors, we used all stimulus waveforms measured during

low, medium, and high levels of activity for both rotations and translations. Example

stimulus waveforms used are shown in the top of Figure 2.3C for yaw rotations (left)

and fore-aft translations (right). We found negative linear firing rate predictions

for both otolith and semicircular canal afferents, which is of course outside of the

physiological range. The middle and bottom of Figure 2.3C show the responses of

regular and irregular semicircular canal (left) and otolith (right) afferents to the

example waveforms, respectively. Moreover, the models’ tendency to incorrectly

predict negative firing rates was greater for stimuli encountered during high levels
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of activity (e.g., 1500 deg/s and 8 G). For the same stimulation, linear models also

showed a greater tendency to incorrectly predict negative firing rates for irregular

afferents due to their larger sensitivities. Quantification of the percentage of time

during which the firing rate prediction is negative revealed low values (5%) across

all six motion dimensions for regular afferents. However, for irregular afferents,

these values exceeded 20% for high levels of activity (Fig. 2.3D). We conclude that

existing linear models of vestibular afferent responses (for review, see [26] cannot

reliably predict responses to natural stimuli, and that this is especially the case for

irregular afferents during the high-amplitude stimuli associated with high levels of

activity.

2.3.3 Building LN models of peripheral vestibular afferent responses to
naturalistic stimuli

It follows that if our conclusion above is correct, then natural stimuli will elicit

nonlinear responses from vestibular afferents. To explicitly test this, we recorded

afferent responses to high intensity naturalistic stimuli consisting of either rotation

or linear motion whose time course mimicked that seen during natural movements

(Fig. 2.1B, insets). We then used LN models [110] to characterize the nature of

the nonlinearity in the input-output relationship of vestibular afferents (Fig. 2.4A).

These models assume that the output firing rate is calculated by first linearly filter-

ing the input stimulus via a transfer function and then passing the resulting linear

prediction through a static nonlinear function (Fig. 2.4A, nonlinear prediction; see

Materials and Methods). In practise, for each canal and otolith afferent (Fig. 2.4B),

we estimated the transfer function from the response to the low-amplitude portions

of the stimulus (see Materials and Methods). We then estimated the shape of the
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nonlinearity by plotting the actual firing rate as a function of the linear prediction

from the whole dataset. Figure 2.4C compares the performance of both linear and

LN models when predicting the firing rate response of an example irregular otolith

afferent to naturalistic stimuli. We found that both models provided comparable

predictions for low-amplitude stimulus segments (Fig. 2.4C, left). In contrast, we

found that the LN model gave a better prediction of the response to high-amplitude

stimulus segments (Fig. 2.4C, right) as quantified by more than a twofold larger R2

value (Fig. 2.4D, inset). This is because the afferent displays cutoff (i.e., ceases to

fire action potentials) and saturation during the large negative and positive portions

of the stimulus, respectively, which cannot be predicted from the linear model alone

(Fig. 2.4C). Consequently, the firing rate response as a function of the linear predic-

tion showed strong deviations from the identity line that were well fit by a sigmoidal

function (Fig. 2.4D). Qualitatively similar results were seen for an example irregular

canal afferent (Fig. 2.4E,F). Thus, LN cascade models can accurately predict afferent

responses to high-amplitude naturalistic stimuli mimicking natural signals. Figure

2.5 shows the results of this same analysis for our populations of canal and otolith

afferents where the population-averaged actual firing rate is plotted as a function

of the linear prediction. On average, the goodness of fit of LN models was always

significantly larger than that of linear models for both regular (Fig. 2.5A,C) and

irregular (Fig. 2.5B,D) afferents. However, this difference was most striking for ir-

regular afferents (Fig. 2.5, compare A, B and C, D). Accordingly, consistent with our

original hypothesis, we conclude that vestibular afferents do indeed display nonlinear
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responses to high-amplitude naturalistic stimuli that can be accurately described by

LN models.
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Figure 2.4. LN models can correctly predict vestibular afferent
responses to naturalistic stimuli.
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Figure 2.4 (previous page). A, Schematic showing the LN model consisting of
first filtering the stimulus with a transfer function to get a linear prediction of firing
rate that is then passed through a static nonlinearity to obtain the nonlinear
prediction. B, We recorded the responses of both otolith and canal afferent
responses to naturalistic rotational and translational stimuli, respectively. VN,
Vestibular nuclei. C, Low-amplitude (upper left) and high amplitude (upper right)
segments of naturalistic linear acceleration stimuli (compare with insets in Fig.
2.1B). The bottom part shows the actual responses of an example otolith afferent
(red), the linear prediction (green), and the nonlinear prediction (blue) to the
low-amplitude segment (left) and to the high-amplitude segment (right). The
dashed line indicates a firing rate of zero and the shaded red region indicates
negative firing rates that are of course physiologically unrealistic. Also shown is the
actual spiking response of the afferent (black bars). D, Actual firing rate response
as a function of the linear prediction for this otolith afferent reveals that the
nonlinear function can be fitted by a sigmoid (black line) and deviates from the
unity line (dashed). Inset, Performance as quantified by R2 of the linear (black) and
nonlinear (blue) predictions. E, Low-amplitude (upper left) and high-amplitude
(upper right) segments of naturalistic head velocity stimuli (compare with insets in
Fig. 2.1B). Bottom, Shows the actual responses of an example canal afferent (red),
the linear prediction (green), and the nonlinear prediction (blue) to the
low-amplitude segment (left) and to the high-amplitude segment (right). The
dashed line indicates a firing rate of zero and the shaded red region indicates
negative firing rates that are of course physiologically unrealistic. Also shown is the
actual spiking response of the afferent (black bars). F, Actual firing rate response
as a function of the linear prediction for this canal afferent reveals that the
nonlinear function can be fitted by a sigmoid (black line) and deviates from the
unity line (dashed). Inset, Performance as quantified by R2 of the linear (green)
and nonlinear (blue) predictions. This figure is copied from Schneider et al. [95]
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Figure 2.5. Regular and irregular canal and otolith afferents are well
described by LN models. A-D, Population-averaged actual response as a
function of the linear prediction with best-fit sigmoid (black line) and unity line
(dashed) for regular canal (A; N = 11), irregular canal (B; N = 25), regular otolith
(C; N = 26), irregular otolith (D; N = 27) afferents. *p < 0.05 level using a
Wilcoxon rank sum test. This figure is copied from Schneider et al. [95]
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2.3.4 Neural heterogeneities in tuning and in trial-to-trial variability in-
fluence optimal coding

Our above analyses of canal and otolith afferents demonstrated that those with

more irregular resting discharges are likely to be driven into a nonlinear regime dur-

ing naturalistic stimulation. Thus, peripheral vestibular neural responses to natural

input cannot be predicted from those to low-intensity artificial stimuli. We next

asked whether, and if so, how the observed differences in coding between regular

and irregular afferents (i.e., likelihood of entering the nonlinear regime) as well as

those seen between canal and otolith afferents (i.e., differences in sensitivity) are

constrained by the statistics of natural sensory input to optimize information trans-

mission. Specifically, are differences in resting discharge variability optimized to code

for different features of natural input? Moreover, is such optimization different for

canal and otolith afferents?

Theoretically, one potential optimal coding strategy is to devote the most neural

resources to code for stimuli that will occur most frequently in the natural environ-

ment, which maximizes information transmission [9,11,98]. If we neglect trial-to-trial

variability in the neural response (i.e., deterministic), then information is maximized

when the firing rate response is uniformly distributed (see Materials and Methods).

In this case, the stimulus distribution that maximizes information transmission (i.e.,

the optimal stimulus distribution; see Eq. 2.9) is simply the derivative of the neuron’s

input-output relationship (Fig. 2.6A). Figure 2.6B shows two different hypothetical

sigmoidal input-output relationships characterized by different levels of steepness.

It is thus expected that regular and irregular afferents will have different optimal

stimulus distributions due to their differences in sensitivity (Fig. 2.3B).
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Figure 2.6. Hypothetical effects of neural heterogeneities in tuning and
in trial-to-trial variability on optimal coding. A, Differentiating the neuron’s
input-output relationship (top) provides the optimal stimulus distribution (bottom)
that gives rise to a uniform response distribution (upper right), which maximizes
information.
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Figure 2.6 (previous page). B, Input-output relationships (top) and their
corresponding optimal stimulus distributions (bottom) assuming that variability is
negligible. Note that the optimal stimulus distribution becomes narrower as the
steepness of the input-output relationships increases (compare red and black
curves). C, Input-output relationships (top) and their corresponding optimal
stimulus distributions (bottom) when taking variability into account. If the firing
rate variance is uniformly distributed (dashed), the optimal stimulus distribution is
identical to that obtained when variability is neglected (black). In contrast, if firing
rate variance is normally distributed (gray), then the optimal stimulus distribution
is wider than that obtained in the deterministic case (compare gray and dashed
curves). This figure is copied from Schneider et al. [95]

Additionally, it is well known that regular and irregular afferents display different

amounts of trial-to-trial variability. It is thus important to consider the influence

of such variability on the optimal stimulus distribution. Theoretical studies have

derived an approximate expression for the optimal stimulus distribution taking into

account trial-to-trial variability in the form of variance in the firing rate response to

a given stimulus [112,113] (see Materials and Methods). Figure 2.6C shows different

distributions for the firing rate variance and how they influence the optimal stimulus

distribution for the input-output relationship shown in Figure 2.6A. In particular, if

the firing rate variance is normally distributed, then the optimal stimulus distribution

is wider than that obtained in the deterministic case (Fig. 2.6C, compare black and

gray curves). In contrast, a uniform firing rate variance distribution does not alter

the optimal stimulus distribution (Fig. 2.6C, compare black and dashed curves).

Thus, to compute the optimal stimulus distributions for different afferent classes,

it is first necessary to characterize, from experimentally recorded afferent responses,

the firing rate variance as a function of the stimulus to naturalistic motion. Figure
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2.7A shows the firing rate variance as a function of the stimulus for regular canal (top

left), irregular canal (bottom left), regular otolith (top right), and irregular otolith

(bottom right). Notably, as expected, irregular afferents displayed larger firing rate

variances than regular afferents. Importantly, however, the firing rate variance de-

creased sharply for stimulus intensities that elicit either rectification or saturation

(Fig. 2.5). This effect was most pronounced for irregular afferents. Figure 2.7B shows

the optimal stimulus distribution neglecting trial-to-trial variability (black curves)

and taking into account the variance distributions shown in Figure 2.7A (dashed

curves). While some differences are apparent in that the distributions taking into

account trial-to-trial variability had slightly larger extent than those obtained by ne-

glecting trial-to-trial variability, both distributions had the same shape and largely

overlapped for all afferent classes. To quantify the similarity between distributions,

we computed the JS divergence (see Materials and Methods). We found that the JS

divergence between regular and irregular afferents with variability was significantly

greater than that obtained for either regular or irregular afferents with and without

variability (p � 10−3 in all cases, Wilcoxon rank sum tests with Bonferroni correc-

tion; Fig. 2.7B, insets). Thus, we conclude that the different levels of trial-to-trial

variability displayed by both regular and irregular canal and otolith afferents have

minimal influence on the stimulus distributions that maximize information transmis-

sion.
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Figure 2.7. Effects of experimentally measured trial-to-trial variability
on information transmission. A, Firing rate variance as a function of stimulus
amplitude for canal (left) and otolith (right) afferents. Regular afferents (top)
displayed less firing rate variance than irregular afferents (bottom). The red lines
show the best fits (see Materials and Methods). B, Including the effects of the
measured firing rate variance only has minor effects on the shape of the optimal
stimulus distribution as can be seen by comparing the dashed (with variability) and
black (without variability) curves for regular (top) and irregular (bottom) canal
(left) and otolith (right) afferents. The insets show that the population-averaged JS
divergence values between regular afferents (with and without variability) and
irregular afferents (with and without variability) are significantly greater than those
computed between regular and irregular afferents (with variability). *p < 0.05 level
using a Wilcoxon rank sum test with Bonferroni correction. This figure is copied
from Schneider et al. [95]
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2.3.5 Irregular afferents are better optimized to code for natural stimuli
than regular afferents

We next explicitly tested whether and how the neural coding strategies used by

the peripheral vestibular system are constrained by the statistics of stimuli encoun-

tered in the natural environment by comparing the optimal stimulus distributions

obtained for each afferent class to the natural distributions. While differences in the

trial-to-trial variability do not have much impact on the shape of the optimal distribu-

tion (Fig. 2.7B), we hypothesized that the large differences in sensitivity observed for

regular and irregular afferents should strongly impact their optimal stimulus distri-

butions. Specifically, as illustrated above in Figure 2.6B, we expected that the larger

sensitivities of irregular afferents should lead to narrower optimal stimulus distri-

butions. Figure 2.8A shows the population-averaged optimal stimulus distributions

with variability for regular (red) and irregular canal afferents (green), as well as when

both populations are combined (cyan), with the natural stimulus distribution (black)

superimposed. To facilitate comparison with Figure 2.7, these distributions are also

plotted on a linear scale in the inset of Figure 2.8A. Consistent with our hypothesis,

the optimal stimulus distribution for irregular afferents was indeed narrower than

that obtained for regular afferents. Importantly, we further found that the optimal

stimulus distribution of irregular afferents was closer to natural stimulus distribution.

Overall, the JS divergence between the optimal stimulus distribution with variability

and the natural distribution was always significantly lower for irregular afferents than

regular afferents. This was true when we considered either the stimuli arising from

all levels of activity or the stimuli arising from either low, medium, or high levels of

activity alone (Fig. 2.8B). We performed a comparable analysis on our population

77



of otolith afferents and obtained qualitatively similar results. Notably, the optimal

stimulus distribution (with variability) of irregular otolith afferents was significantly

narrower and better matched to the natural distribution in the fore-aft direction

when compared with that obtained for regular afferents (Fig. 2.8C) as quantified by

significantly lower JS values (Fig. 2.8D). Qualitatively similar results were obtained

when comparing the optimal stimulus distributions of irregular and regular otolith

afferents to the natural distribution in the lateral direction (population-averaged JS

divergence values for irregular vs regular afferents; low: 0.39 ± 0.08 vs 0.73 ± 0.05,

medium: 0.33± 0.07 vs 0.70± 0.04, high: 0.15± 0.06 vs 0.56± 0.07, all: 0.30± 0.07

vs 0.67 ± 0.05, p < 0.05 in all cases). Further, the optimal stimulus distributions

obtained by pooling across all afferents (i.e., including both regular and irregular

subgroups) were not better matched to the natural stimulus distribution than those

obtained when only considering irregular afferents (Fig. 2.8A,C, compare green and

cyan curves). Finally, we note that irregular otolith afferents were more optimized

than irregular canal afferents (Fig. 2.8, compare A, C) as quantified by significantly

lower JS values (p � 10−3 in all cases, Wilcoxon rank sum tests).
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Figure 2.8. Irregular afferents are better optimized to code for natural
stimuli than regular afferents. A, Population-averaged optimal stimulus
distribution for regular (red) and irregular (green), as well as for both (cyan) canal
afferents. The natural stimulus distribution (solid black) is also shown. The bands
show ±1 SEM. The inset shows the same distributions plotted on a linear scale. B,
Population-averaged JS divergence values quantifying the distance between the
optimal stimulus distribution and the natural stimulus distribution for regular
(solid bar) and irregular (empty bar) canal afferents for low (blue), medium
(green), high (red), and all (black) activities. C, D, Same as A and B, but for
otolith afferents, respectively. *p < 0.05 level using a Wilcoxon rank sum test. This
figure is copied from Schneider et al. [95]
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2.4 Discussion

2.4.1 Summary of Results

Here we studied the statistics of natural vestibular signals experienced by mon-

keys to determine whether coding is optimized for such stimuli. We found that

natural vestibular inputs reached large intensities as evidenced by probability distri-

butions with long tails across all six motion dimensions, similar to those described

by [104] for humans. We further found that well established linear models of early

vestibular processing could not predict semicircular canal or otolith afferent responses

to natural vestibular stimuli. Instead they incorrectly predicted physiologically im-

possible negative firing rates in response to large-amplitude “off-direction” move-

ments. This was particularly true for the coding of high-intensity activities (e.g.,

running, jumping, climbing, etc.) by irregular afferents. Accordingly, to develop

accurate models, we recorded from afferents during naturalistic rotational and linear

motion. We found that linear-nonlinear cascade models could accurately describe

neural responses. Thus, we used these models to determine whether afferent coding

strategies are constrained by natural stimulus statistics by computing the optimal

stimulus distribution that maximizes information. We found that irregular otolith

and semicircular canal afferents, due to their higher sensitivities, were better opti-

mized to process natural stimuli. It is therefore likely that the neural coding strate-

gies used by the vestibular system have developed to match the statistics of natural

stimuli.
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2.4.2 Irregular afferents are better optimized to process natural stimuli

There is growing evidence that sensory systems have evolved coding strategies

that are adapted to optimally process natural sensory input [9], for review, see [11].

For example, in the fly visual system, [9] compared the experimentally measured neu-

ronal input-output relationship to that which maximizes information transmission

about the natural luminance distribution and found excellent agreement between

the two. Here we used a similar approach to compare the natural stimulus distri-

bution to that which maximizes information transmission given the experimentally

measured neuronal input-output relationship (Fig. 2.8) and found that irregular

afferents better optimized to code for natural stimuli.

Interestingly, the evolution from stem tetrapods to amniotes was accompanied

by the appearance of type I vestibular hair cells and a novel afferent terminal with

a calyceal ending (for review, see [29]). Previous studies have shown that affer-

ents supplied by type I hair cells tend to be more irregular in their resting dis-

charges [115–117]. It has been hypothesized that type I hair cells evolved in am-

niotes as an adaptation to changes in natural stimulus statistics resulting from (1)

the transition from water (i.e., characterized by resistive hydrodynamic forces) to

a land-based environment [29] and (2) neck elongation in amniotes [118]. While it

has been suggested these two factors lead to higher amplitude motion in amniotes,

at least some anamniote species experience vestibular stimuli with extremely large

intensities during natural self-motion (e.g., > 1000 deg/s in the spiny dogfish [119]

and 15 G in the swimming pike (for review, see [120]. Thus, it is possible that other

factors also contributed to the evolution of the vestibular periphery. For example,
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aquatic species might experience more constant vestibular stimulation due to water

currents. Further studies comparing the statistics of natural motion across amniotes

versus anamniotes are needed to address this important issue.

2.4.3 Nature of the neural code used by the vestibular system to transmit
information about natural stimuli

It is generally thought that neurons within early vestibular pathways transmit

information about head-motion stimuli in a linear fashion through their time-varying

firing rates (i.e., a rate code) rather than through precise timing of action potentials

(i.e., a temporal code) [26, 35, 36, 111]. However, previous studies have mostly fo-

cused on characterizing neuronal responses to low-amplitude artificial stimuli. As a

result modulations in the firing rate were largely constrained to the neuron’s linear

regime and did not elicit static nonlinearities such as saturation or rectification. In-

terestingly, our results show that this is also often applicable to the afferent coding

of natural vestibular stimuli because monkeys spend much of their time engaged in

activities characterized by relatively low-amplitude head motion (i.e., sitting, groom-

ing). However, we found that this was not true for the vestibular stimuli experienced

during intermittent high-activity behaviors, such as running, because of their large

amplitudes. For such behaviors, the likelihood of nonlinearities (e.g., rectification,

phase locking, saturation), open the interesting possibility that the neural code used

by the vestibular system to process high-amplitude stimuli is inherently different

than that used for low-amplitude stimuli. Further studies will also be needed to test

this interesting hypothesis.
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2.4.4 Role of variability in neural coding

Neural variability is seen ubiquitously in the CNS but its role in neural coding

is highly debated [121, 122]. The peripheral vestibular system is particularly well

suited for studying the effects of variability on neural coding because regular and

irregular afferents display low and high amounts of variability, respectively. While

previous studies have found that variability plays an important role in vestibular

coding [26, 35, 36, 103, 111], our results show that sensitivity largely determines the

corresponding optimal stimulus distribution (Figs. 2.7, 2.8). Thus, from this point

of view, the increased variability of irregular afferents might just be a consequence of

their increased gain: the detrimental effects of such increased variability on coding

and feature detection can then be reduced by averaging the activities of large afferent

populations [36, 103]. The fact that the increased variability and sensitivity are

strongly correlated in the vestibular system [103], as they most likely originate from

intrinsic properties [37,91], support this hypothesis. Alternatively, it is theoretically

possible that there is a source of sensory noise that is common to all afferents and that

is greater for irregular afferents because of their larger sensitivity. Further studies

will be needed to test these possibilities.

2.4.5 Coding natural stimuli by otolith versus semicircular canal afferent
populations

Previous results have shown that the coding strategies used by otolith afferents

to encode linear motion differ markedly from those used by semicircular canal af-

ferents to encode rotational motion [36, 103]. Notably, strong correlations between

trial-to-trial variability and sensitivity in otolith afferents are such that their ratio

remains constant. As a consequence, neural detection thresholds (i.e., the minimum
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stimulus intensity that elicits a detectable change in neural activity) are indepen-

dent of either resting discharge variability or frequency [103]. In contrast, although

a strong positive correlation between variability and sensitivity is also observed for

semicircular canal afferents [26], the increased sensitivity displayed by irregular semi-

circular canal afferents is not sufficient to compensate for their substantially higher

trial-to-trial variability. As a result, irregular semicircular canal afferents display

higher detection thresholds than regular ones [35,36]. Interestingly, supporting these

differences, we found that irregular otoliths are more optimized than irregular canal

afferents, which was primarily due to the fact that the differences in sensitivity are

far more pronounced in the otolith system. Nevertheless, despite these differences,

we further found that both irregular semicircular canal and otolith afferents are more

optimized to process natural stimuli when compared with regular afferents, thereby

suggesting that both the semicircular and otolith systems have adapted to natural

stimulus statistics through common principles.

2.4.6 Implications for higher order processing of natural vestibular stim-
uli

Our results have important implications for downstream processing and behav-

ior. We have recently shown that vestibular sensory information encoded by eighth

nerve afferents is nonlinearly integrated by postsynaptic neurons at the first central

stage of vestibular processing (i.e., in the vestibular nuclei [111]). Notably, this non-

linearity generates an intensity-dependent bias in the output firing rate, when low-

and high amplitude (or frequency) stimuli are presented concurrently. We speculate

that this nonlinear effect will be particularly significant for high-intensity natural

behaviors. Finally, we note that although irregular afferents are better optimized
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to encode natural stimuli, the combined activities of both regular and irregular af-

ferents most likely contribute to vestibular perception. Previous results obtained

using artificial stimuli have led to the hypothesis that regular afferents are better

suited to estimate the detailed time course of the stimulus while irregular afferents

are instead better suited to detect high frequency features [26, 35, 36]. Such parallel

processing of sensory information is a common strategy used across modalities in-

cluding auditory [123–125], visual [126–128], and electrosensory [129–131], to code

for different stimulus attributes. Further studies are needed to test the interesting

hypothesis that the vestibular system uses distinct channels of peripheral input to

encode different features of natural vestibular stimuli.
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CHAPTER 3
In vivo conditions induce faithful encoding of stimuli by reducing

nonlinear synchronization in vestibular sensory neurons

In the previous chapter we explored possible afferent responses to natural vestibu-

lar stimuli and the range of responses we can expect from them, which form the input

to the second stage of vestibular processing: the vestibular nuclei. In this chapter

I present a publication [132], in which a conductance-based vestibular nuclei (VN)

neuron model originally developed to capture spiking activity recorded in vitro, is

successfully modified to mimic in vivo conditions and shown to be able to reproduce

VN neuron activity recorded in vivo. This has reconciled a long standing discrep-

ancy in the behaviour of neurons recorded under different conditions, revealing that

they may in fact be consistent properties of the same neuron. This provides us with

a biophysically detailed model which can be used to potentially explain other VN

neuron properties observed in vivo (see Appendix E), in terms of their underlying

biophysical mechanisms.

Although we show that the increased variability of spiking in vivo disrupts the

nonlinear phase-locking, allowing the mean firing rate to better track the stimulus,

we do not mean to imply that adding noise increases total information about the

stimulus. It is possible that nonlinearly-induced phase locking may contain additional

stimulus information that can not be encoded in firing rate modulations, however a

specific decoding strategy would be necessary to access such information. If instead
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a simple rate code decoder is assumed then signal transmission is improved. However

as stimulus amplitude is further increased phase locking will eventually return, and it

is possible that the system is using this phase-locking as well as the mean firing rate in

a population code. Finally, it should be noted that we used a Gaussian white noise

low-pass filtered with a cutoff of 50 Hz, and simply increased the noise intensity

until the desired spiking CV values were achieved. Other cutoff frequencies were

explored and it was found that for lower cutoff frequencies larger noise intensities

were required (and vise versa) to achieve the same CV values. Although this could

be investigated more thoroughly, more experimental data will be necessary in order

to constrain more detailed models of the origin of VN neuron variability.

3.1 Introduction

The vestibular system provides information about head motion relative to space

that is necessary for maintaining posture, computing spatial orientation, and per-

ceiving self-motion. Peripheral vestibular afferents encode the detailed time course of

either horizontal rotations, vertical rotations, or linear acceleration through changes

in their firing rates and spike timing [26, 38, 101, 102]. These afferents project unto

neurons within the vestibular nuclei (VN) [133–135]. In vitro studies have established

that VN neurons in mammals are classified into two main subpopulations (type A

and type B) that differ in their responses to current input as well as action potential

shape [136–139]. In response to depolarizing current steps, type A neurons show a

sustained tonic response while the type B neurons display spike frequency adaptation.

Type B neurons moreover display a resonance at frequencies within the behaviorally
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relevant range that increases the tendency of small amplitude, high-frequency synap-

tic inputs to trigger non-linear firing behavior in the form of synchronization to the

peaks of the input [27, 140]. This synchronization severely limits the range of input

frequencies and amplitudes for which the activity of type B neurons accurately fol-

lows the input [94, 140, 141]. In contrast, type A neurons, despite also displaying a

resonance, tend to follow the time course of current injection accurately for a much

wider range of stimulus amplitudes [27, 140].

In contrast, the results of in vivo experiments have shown that the firing of

many VN neurons accurately follows the time course of sensory stimulation over

the behaviorally relevant frequency range (0-20 Hz) [35, 39]. While this result is

at odds with those of in vitro studies, it is consistent with the fact that eye move-

ment produced by the vestibuloocular reflex (VOR), which is largely driven by the

activities of VN neurons, has a very short latency and is accurate over this same

frequency range [92, 142]. How can the same neurons display nonlinear responses

such as synchronization in vitro and yet accurately follow the time course of sensory

input in vivo? The discrepancy can be dramatic. For example, Floccular target

neurons (FTNs) have been shown to correspond to a subpopulation of type B VN

neurons [143,144] that display the strongest tendency for nonlinear synchronization

in vitro, yet do not display such synchronization in response to sensory input in

vivo [39].

Here we test the hypothesis that the apparent discrepancy between VN response

dynamics in the in vitro and in vivo conditions can be explained by an increase in

trial-to-trial variability under in vivo vs. in vitro conditions. To do so, we used
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a simplified biophysical model that has been previously used to describe VN neu-

ron activity in vitro [94]. We show that this model displays membrane potential

oscillations that give rise to a resonance in the membrane potential response. This

resonance is transferred to the spiking response and causes nonlinear synchroniza-

tion to sinusoidal current injections over a wide range of frequencies (0-20 Hz). We

then mimicked the high-conductance state that is typical of in vivo conditions in our

model by increasing the membrane conductance. Moreover, we mimicked their large

resting discharge rates by increasing the bias current. Interestingly, both of these

changes in parameter values were not sufficient to remove this synchronization that

thus severely limits the range of inputs for which our model’s response follows the

input accurately. However, we show that adding noise to our model in order to mimic

the resting discharge variability displayed by VN neurons in vivo can be sufficient to

eliminate synchronization over the full range of behaviorally relevant frequencies.

3.2 Results

Our biophysical model is based on the Hodgkin-Huxley formalism and consists

of a single compartment endowed with several membrane conductances (see Methods

and Figure 3.1). Note that a full biophysical justification of the model can be found

elsewhere [27, 94]. Although previous studies have shown that this model could

display a resonance in its spiking response to sinusoidal current injections [94], they

have not systematically explored its dependence on different parameters as well as the

interactions between different membrane conductances that underlies its generation.
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Figure 3.1. Vestibular anatomy and model description. Schematic of
peripheral vestibular system, indicating projections from semi-circular canals to the
vestibular nuclei (VN). VN neurons were modeled using the Hodgkin-Huxley
formalism with several membrane conductances as shown. Sensory input was
mimicked by somatic current injection. This figure is copied from Schneider et
al. [132].

As it has been previously shown that resonances in the spiking response could

be caused by resonances in the membrane potential [145], we first investigated the

model’s capacity to display membrane potential oscillations in response to current

input. To do so, we first turned off the spiking sodium and rectifier potassium

conductances by setting their maximum conductances values to zero (i.e. ḡNa =

ḡK = 0 mS/cm2). We note that this approach is valid for the parameter values used

here (see Methods section 3.4).
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3.2.1 Intrinsic membrane conductances give rise to damped membrane
potential oscillations in the presence of perturbations

It is well known that damped or sustained membrane potential oscillations can

arise from the interplay between several membrane conductances including voltage

gated calcium channels [146]. The magnitude of these oscillations is furthermore

strongly dependent on the amount of depolarizing current bias [145]. As such, we

varied both the maximum calcium conductance ḡCa and the bias current Ibias in our

model. We first studied the membrane potential response to step current injections as

these have been previously used to demonstrate the presence of membrane potential

oscillations [146].

Our results show that the model can display damped membrane potential os-

cillations with different magnitudes and frequencies for a wide range of Ibias and

ḡCa values (Figures 3.2 A,B,C). We characterized this dependency by systematically

varying both Ibias and ḡCa over a wide range of values and quantified the ampli-

tude of these damped oscillations by computing an oscillation index (see Methods).

Further, we computed the oscillation frequency from the squared magnitude of the

Fourier transform of the response (see Methods section 3.4). Our results show that,

for a given value of the maximum calcium conductance ḡCa, the oscillation index

displays a maximum as a function of the bias current Ibias (Figure 3.2 D). The os-

cillation frequency displayed qualitatively similar behavior to that of the oscillation

index (Figure 3.2 E). We note that the oscillation frequency was mostly within the

behaviorally relevant range found in natural vestibular stimuli (0-20 Hz) [147]. This

indicates that the model can display calcium induced damped membrane potential

oscillations, the magnitude and frequency of which are highly dependent on the level
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of depolarizing bias current Ibias. We note that qualitatively similar results were

obtained when varying the persistent sodium conductance ḡNaP (Figure 3.S1). The

results agree with the known effects of persistent sodium, namely to depolarize the

membrane and amplify the resonant behavior [146].
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Figure 3.2. The model displays damped membrane potential oscillations
in response to step current input. The model’s membrane potential response
to step current input was characterized for a physiologically plausible range of bias
current and calcium conductance values. A-C) Example membrane voltage
responses and the normalized squared magnitude of their Fourier transforms.
These correspond to parameter values as follows: A) Ibias = −0.1 nA,
ḡCa = 0.05 mS/cm2, B) Ibias = 0 nA, ḡCa = 0.125 mS/cm2, and C) Ibias = 0.25 nA,
ḡCa = 0.25 mS/cm2. D) Oscillation index (see Methods) measuring the strength of
the oscillation in the subthreshold response as a function of Ibias and ḡCa. E) The
peak frequency component of the squared magnitude of the responses’ Fourier
transforms as a function of Ibias and ḡCa. The parameter values corresponding to
panels A,B,C are also shown. Other parameter values were: ḡNaP = 0.05 mS/cm2,
ḡKCa = 1 mS/cm2, and σ = 0 nA. This figure is copied from Schneider et al. [132].

It is well known that neurons receive massive synaptic bombardment under in

vivo conditions, which gives rise to a high-conductance state [148, 149]. Mathemat-

ically, the increased membrane conductance under such synaptic bombardment can
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be mimicked by increasing the leak conductance ḡleak and by adding an appropriate

amount of bias current [145, 150]. As such, we characterized the oscillation index

and frequency as a function of both the leak conductance ḡleak and the bias current

Ibias. Although increasing the leak conductance ḡleak decreased the oscillation ampli-

tude, it also decreased the oscillation frequency to values that were contained within

the behaviorally relevant frequency range (Figures 3.3 A,B,C). These changes were

furthermore seen for a wide range of bias current Ibias values. We observed that the

oscillation index decreased as a function of the leak conductance ḡleak for a given

value of Ibias (Figure 3.3 D). In contrast, the oscillation index displayed a maximum

as a function of Ibias for a given value of ḡleak (Figure 3.3 D). The oscillation fre-

quency again displayed qualitatively similar behavior to that of the oscillation index

as a function of both ḡleak and Ibias and remained within the behaviorally relevant

range (Figure 3.3 E). As such, we conclude that an increased leak conductance is

not sufficient to eliminate our model’s tendency to display membrane potential os-

cillations. These oscillations could potentially be detrimental to the model’s ability

to accurately encode the timecourse of current injections as their frequency is within

the behaviorally relevant range. In order to better understand the source of these

oscillations, we performed a standard perturbation analysis in our model around the

resting membrane potential (see Methods). Our results show that the linearized

model gave rise to oscillation indices and frequencies that were quantitatively similar

to those obtained with the full model (compare Figures 3.2,3.3 with Figure 3.S2).

Moreover, computing the eigenvalues of the Jacobian matrix of the linearized system

revealed that they all had a negative real part. As such, the membrane potential
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oscillations are stable as our model has a stable fixed point. This is consistent with

the damped oscillations that we observed in response to steps (Figure 3.2).

Figure 3.3. Effects of increased leak conductance on membrane potential
oscillations. The model’s membrane potential response to step current input was
characterized for physiologically plausible ranges of bias current and leak
conductance values. A-C) Example responses and the squared magnitude of their
Fourier transforms. These correspond to parameter values as follows: A)
Ibias = 0.5 nA, ḡleak = 0.3 mS/cm2, B) Ibias = 0.5 nA, ḡleak = 0.5 mS/cm2, and C)
Ibias = 0.1 nA, ḡleak = 0.6 mS/cm2. D) Oscillation index as a function of Ibias and
ḡleak. E) The peak frequency component of squared magnitude of the response’s
Fourier transform as a function of Ibias and ḡleak. The parameter values
corresponding to panels A,B,C are also shown. Other parameter values were
ḡNaP = 0.05 mS/cm2, ḡKCa = 1 mS/cm2, ḡCa = 0.25 mS/cm2, and σ = 0 nA. This
figure is copied from Schneider et al. [132].
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3.2.2 Membrane potential oscillations induce a resonance in the spiking
activity.

We next investigated whether the membrane potential oscillations induced a

resonance in the membrane potential response and whether this resonance causes a

resonance in the spiking activity. As such, we used a zap stimulus (i.e. a sinusoidal

waveform with a constant amplitude and a frequency that increases linearly as a

function of time; Figure 3.4A) as an input to our model. Such inputs are frequently

used to characterize resonant behavior [151, 152]. Our results show that the model

does display a resonance in the membrane potential in response to zap current in-

jection for different values of ḡleak and Ibias (Figures 3.4 B,C,D). We note that these

responses show asymmetries, which is to be expected since we are using a nonlinear

model. We characterized this resonance by an oscillation index that quantifies its

magnitude (see Methods) as well as its frequency (i.e. the zap frequency for which

the membrane potential oscillation is maximal). Our results show that both the

oscillation index and frequency computed from the model’s response to zap currents

had qualitatively similar dependencies on ḡleak and Ibias to those of the oscillation

index and frequency computed from the model’s response to step currents (compare

Figures 3.4E,F to Figures 3.3D,E, respectively).
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Figure 3.4. Membrane potential responses to zap current input are
greatest for a given frequency. The model’s membrane potential response to
zap currents is greatest for a given input frequency. The magnitude of the response
and the input frequency for which it occurs vary with both Ibias and ḡleak. A)
Instantaneous frequency of the zap stimulus frequency as a function of time. B-D)
Example membrane voltage responses as a function of time, corresponding to
parameter values as follows: B) Ibias = 0.05 nA, ḡleak = 0.3 mS/cm2, C)
Ibias = 0.35 nA, ḡleak = 0.3 mS/cm2, and D) Ibias = 0.35 nA, ḡleak = 0.6 mS/cm2.
The envelope of each response is fit with a black curve with an arrow marking the
peak in the response and the associated instantaneous frequency. E) Oscillation
index (see Methods) as a function of Ibias and ḡleak. F) Oscillation frequency as a
function of Ibias and ḡleak. The parameter values corresponding to panels B,C,D are
also shown. Other parameters values were ḡNaP = 0.05 mS/cm2 and
ḡNa = ḡK = 0 mS/cm2. This figure is copied from Schneider et al. [132].
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How does resonant behavior in the membrane potential relate to resonant be-

havior in the spiking activity? We investigated this by turning on the spiking con-

ductances (i.e. ḡNa = 10 mS/cm2, ḡK = 2 mS/cm2) and by studying the variations

in the instantaneous firing rate in response to zap current injection. Our model

displayed differential resonant behavior in its spiking activity in its response to zap

current injection as a function of the leak conductance ḡleak and the bias current

Ibias (Figures 3.5 A, B, C, D). We note that these responses also show asymmetries,

which is to be expected since we are using a nonlinear model. In general, parameter

values that gave rise to resonance in the membrane potential also gave rise to res-

onance in the spiking activity (compare Figures 3.4 B,C,D with Figures 3.5 B,C,D,

respectively). We further characterized the resonance in the spiking activity by an

oscillation index that quantifies its magnitude (see Methods) as well as its frequency

(i.e. the zap frequency for which the ensuing variation in the instantaneous firing rate

is maximal). Our results show that the oscillation index and frequency computed

from the spiking activity had dependencies on ḡleak and Ibias that followed qualita-

tively similar trends to those of the oscillation index and frequency computed from

the membrane potential (compare Figures 3.5 E,F to Figures 3.4 E,F, respectively).

Note, however, that the spiking resonance frequency varied over a wider range than

the membrane potential resonance. Importantly, the resonance in the spiking regime

persisted over a wide range of parameter values and its frequency overlapped with

the behaviorally relevant range.
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Figure 3.5. Spiking responses to zap current input display a resonance.
The model’s spiking response to zap current input also displays a resonance whose
intensity and frequency vary with both Ibias and ḡleak. A) Instantaneous stimulus
frequency as a function of time. B-D) Example instantaneous firing rates as a
function of time. These correspond to parameter values as follows: B)
Ibias = 0.05 nA, ḡleak = 0.3 mS/cm2, C) Ibias = 0.35 nA, ḡleak = 0.3 mS/cm2, and D)
Ibias = 0.35 nA, ḡleak = 0.6 mS/cm2. The envelope of the response is fit with a
black curve with an arrow marking the location of the maximum response
amplitude. E) Oscillation index as a function of Ibias and ḡleak. F) Oscillation
frequency as a function of Ibias and ḡleak. The parameter values corresponding to
panels B,C,D are also shown. All other parameters had the same values as
previously described except ḡNa = 10 mS/cm2 and ḡK = 2 mS/cm2. This figure is
copied from Schneider et al. [132].
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3.2.3 Increasing variability promotes faithful encoding of the stimulus
time course through changes in firing rate

It is expected that the resonance in the spiking activity will lead to nonlinear

synchronization of the response with the peaks of the input current that is expected to

be detrimental to the faithful encoding of the stimulus’ time course through changes

in firing rate. This synchronization occurs because of the tendency of excitable

systems to display n:m phase locking (i.e. fire n spikes per m cycles of forcing) in

response to sinusoidal stimuli [153–155]. We thus characterized the model’s response

to sinusoidal current injections that mimicked the waveforms of sinusoidal sensory

stimuli used experimentally in vivo [35,39,92,147,156–159] and systematically varied

the frequency of stimulation between 0 and 25 Hz. Our results show that the model

tends to display phase locking for high (> 12 Hz) frequencies (Figures 3.6A,B,C).

We therefore quantified the model’s accuracy at encoding the detailed time course of

sinusoidal current injections through changes in firing rate by computing the variance

accounted for (VAF, see Methods). Our results show that the VAF was high (≈ 1)

for a wide range of Ibias values and stimulus frequencies below 5 Hz indicating a

strong tendency for faithful encoding of the current stimulus’ time course (Figure

3.6D). Increasing the baseline firing rate by increasing the bias current widened

the range of stimulus frequencies for which our model displayed negligible phase

locking and could faithfully encode the detailed time course of sinusoidal input from

0-5 Hz to 0-10 Hz (Figure 3.6D). However, we observed low VAF values (< 0.1)

for stimulus frequencies above 10 Hz for a wide range of Ibias values. In order to

test whether these low VAF values corresponded to parameter regimes for which

our model displays phase locking, we computed a phase locking index (PLI) (see
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Methods). As expected, we observed that parameter regimes that gave rise to high

VAF also gave rise to low PLI values and vice-versa (compare Figures 3.6 D and 3.6

E). This strong negative correlation between PLI and VAF for a wide range of Ibias

and stimulus frequencies within the natural frequency range (0-20 Hz) shows that

the low VAF values correspond to a strong tendency for phase locking.
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Figure 3.6. Synchronization to sinusoidal input and its consequences on
faithful encoding of this input through changes in firing rate. We
characterized the model’s response to sinusoidal current injections with different
frequencies using the phase histogram. A-C) Three example raster plots (top) and
phase histograms (bottom) for different values of Ibias and fstim. These correspond
to parameter values as follows: A) Ibias = 0.2 nA, fstim = 3 Hz, B) Ibias = 0.1 nA,
fstim = 12 Hz, and C) Ibias = 0.3 nA, fstim = 15 Hz. Also shown are the best fit
sinusoidal curve to each phase histogram (red). D) Variance accounted for (VAF)
as a function of Ibias and fstim. E) Phase locking index (PLI) characterizing the
model’s tendency to synchronize to the sinusoidal current as a function of Ibias and
fstim. It is seen that the VAF is low for parameters for which the PLI is high and
vice-versa. The parameter values corresponding to panels A,B,C are also shown.
Additional parameters were the same as described previously except
ḡleak = 0.6 mS/cm2. This figure is copied from Schneider et al. [132].
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Our simulation results are largely contrary to recordings from VN neurons per-

formed in vivo. Indeed, many VN neurons accurately follow the time course of

vestibular stimuli through changes in firing rate and do not display synchronization

or phase locking for frequencies between 0 and 25 Hz [39]. As our modeling results

described above were obtained for high values of ḡleak and were robust to increases in

the bias current Ibias, it is unlikely that the discrepancy between our model results

and experimental recordings from VN neurons in vivo is due to a change in mem-

brane conductance or the fact that VN neurons might be in a depolarized state in

vivo. Thus, while our results show that increasing the bias current Ibias such that

the firing rate increases to values seen in vivo did increase the range of frequencies

for which our model could faithfully encode the time course of sinusoidal input, this

alone was not sufficient to eliminate nonlinear synchronization for the full range of

frequencies found in natural vestibular stimuli (Figures 3.6D,3.6E,3.7A).

Thus, we hypothesized that the increased trial-to-trial variability that is charac-

teristic of in vivo conditions [148,149] might explain this discrepancy. It is expected

that such variability will limit phase locking by inducing firing at all phases of the

input and thus promote the faithful encoding of the stimulus waveform by changes in

firing rate (see [121] for review). We thus addressed the specific question of whether

the levels of resting discharge variability displayed by VN neurons in vivo are suffi-

cient to account for the suppression of nonlinear phase locking, which is observed in

vitro, thereby allowing faithful encoding of the stimulus’ time course through changes

in firing rate.

103



In order to test this hypothesis, we systematically varied both the bias current

Ibias as well as the noise intensity within the experimentally observed ranges of base-

line firing rates (Figure 3.7A) and resting discharge variability as quantified by the

coefficient of variation (CV) (Figure 3.7B), respectively. We note that previous stud-

ies have shown that VN neurons displayed values of CV in their resting discharge

ranging from 0.05 to 0.7 [35,39] and resting discharge firing rates between 6 and 170

Hz [35, 39, 157]. Furthermore, we also explored the effects of such increased noise

intensities on the model’s firing rate resonance, via repeated presentation of the zap

stimulus for the same range of bias current values and noise intensities. For higher

bias currents (0.4 nA) corresponding to the baseline firing rates seen under in vivo

conditions (∼ 50 Hz), the addition of noise is seen to reduce the oscillation index

(Figure 3.7C). Addition of noise also decreased the oscillation frequency to values

near the behaviorally relevant range (Figure 3.7D). As an aside, we note that, for low

values of bias current (0.1 nA), we observed a sharp increase followed by a decrease

in the oscillation frequency (Figure 3.7D). This sharp increase at low noise intensi-

ties is consistent with previous studies showing that, for low noise, model neurons

have a resonance at the spontaneous firing rate, while for higher noise intensities,

the resonance frequency shifts to lower values [145]. We do not further explore this

regime since VN neurons typically have baseline firing rates under in vivo conditions

that are outside those for which this regime is observed.
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Figure 3.7. Effects of the bias current and noise intensity on resting
discharge rate and variability, and resonance strength and frequency.
The effects of the bias current Ibias and noise intensity σ on the resting discharge
rate and variability as quantified by the coefficient of variation (CV) were explored.
A) Resting discharge rate as a function of Ibias and σ. B) CV as a function of Ibias
and σ. Parameter values were the same as those previously described. C)
Oscillation index from zap stimuli as a function of Ibias and noise intensity σ. D)
Oscillation frequency as a function of Ibias and noise intensity σ. This figure is
copied from Schneider et al. [132].

We first recomputed phase histograms in response to sinusoidal current injec-

tion (Figures 3.8A,B,C) for the same range of Ibias and stimulation frequencies used

before but with the addition of noise with a low intensity that gave rise to low rest-

ing discharge CV values (0.04-0.24) and with bias currents giving rise to firing rates
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between 25-80 Hz in the absence of stimulation. We note that these overlap with the

experimentally observed ranges of values [39]. We observed that this noise increased

the range of stimulus phases that elicited spiking for higher stimulus frequencies,

which reduced phase locking (compare Figures 3.8B,C with Figures 3.6B,C, respec-

tively). However, this noise was not sufficient to completely eliminate phase locking

as can be seen from the low VAF and high PLI values observed for high (> 8 Hz)

stimulation frequencies for a wide range of Ibias values (Figures 8D,E respectively).
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Figure 3.8. Effects of low intensity noise on synchronization to sinusoidal
input and its consequences on faithful encoding of this input through
changes in firing rate. We characterized the model’s response to sinusoidal
current injections with different frequencies using the phase histogram as before.
A-C) Three example raster plots (top) and phase histograms (bottom) for the same
parameter values used in Figure 6 with the best sinusoidal fits (red). D) VAF as a
function of Ibias and fstim. E) PLI as a function of Ibias and fstim. It is seen that low
intensity noise somewhat disrupts phase locking but that there are still ranges of
parameter values for which the model displays significant phase locking. The
parameter values corresponding to panels A,B,C are also shown. Parameter values
were the same as those previously described except for σ = 0.0022 nA. This figure
is copied from Schneider et al. [132].
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We next performed simulations with a higher noise intensity giving rise to higher

resting discharge CV values (0.5-0.7) and bias current giving rise to firing rates from

35-85 Hz. Our results show that the phase histograms in response to sinusoidal cur-

rent injection were all sinusoidal in shape, even for parameters that gave rise to phase

locking in the absence of noise (compare Figures 3.9A,B,C with Figures 3.6A,B,C,

respectively). This indicates a lack of phase locking as every phase of the input can

now elicit spiking. We recomputed the VAF as a function of Ibias and stimulus fre-

quency and found large (> 0.7) values over the entire range explored (Figure 3.9D).

Consequently, the model displayed negligible phase locking as quantified by the PLI

(Figure 3.9E). Note that the range of values of VAF and PLI used in Figures 3.9D

and 3.9E, respectively, were the same as those used previously (compare Figures

3.9D,E with Figures 3.6D,E and Figures 3.8D,E, respectively). As such, this noise

intensity was sufficient to eliminate nonlinear phase locking and thereby give rise

to faithful encoding of the stimulus waveform through changes in firing rate for all

stimulus frequencies within the behaviourally relevant range.
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Figure 3.9. Effects of high intensity noise on synchronization to
sinusoidal input and its consequences on faithful encoding of this input
through changes in firing rate. We characterized the model’s response to
sinusoidal current injections with different frequencies using the phase histogram as
before. A-C) Three example raster plots (top) and phase histograms (bottom) for
the same parameter values used in Figure 3.8 with the best sinusoidal fits (red). D)
VAF as a function of Ibias and fstim. E) PLI as a function of Ibias and fstim. It is
seen that high intensity noise eliminates phase locking and promotes faithful
encoding of the input waveform by changes in firing rate as can be seen from the
sinusoidal phase histograms, high VAF values, and negligible PLI values. The
parameter values corresponding to panels A,B,C are also shown. Parameter values
were the same as those previously described except for σ = 0.0225 nA. This figure
is copied from Schneider et al. [132].
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In order to verify the robustness of our results, we also computed a second

measure of nonlinear synchronization, the nonlinearity index (NI, see Methods), that

is based on the ratio of the Fourier coefficient amplitude squared at the second

harmonic to that at the stimulus frequency. This measure had qualitatively similar

behavior to that of the PLI measure as a function of the bias current Ibias, stimulus

frequency, and noise intensity (compare Figure 3.S3 to Figures 3.6,3.8,3.9).

Finally, in order to test that these results were not an artifact of our using

current input, we used conductance input rather than current input stimuli in our

model. The effect of noise on phase locking in this model (Figure 3.S4) were in

qualitative agreement with those shown in Figures 3.6,3.8, and 3.9, illustrating the

robustness of our main result to the type of input used. We note that this outcome

was expected given that increasing the membrane conductance alone was not suffi-

cient to completely eliminate phase locking over the behaviourally relevant frequency

range.

The effects of noise intensity on our model’s ability to accurately encode the

time course of sinusoidal current injections through changes in firing rate are sum-

marized in Figure 3.10. While the PLI rapidly decreases as a function of increasing

noise intensity, the VAF rapidly increases (Figure 3.10A). For comparison, the re-

sulting firing rate and CV values in the absence of stimulation are also shown for the

same noise intensities (Figure 3.10B). Because high noise intensities were sufficient

to eliminate nonlinear phase locking from our model, we used linear systems analysis

to characterize the relationship between input and output in our model. Specifically,

we computed the gain (i.e. the coefficient relating input and output) as a function
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of Ibias and stimulus frequency. Our results show that the gain increases smoothly

as a function of stimulation frequency for a given value of Ibias in the presence of

high noise but not so when noise is not present (Figures 3.10C, D). This result is

important as previous studies conducted in vivo have shown that VN neurons gener-

ally display increasing gains as a function of stimulus frequency [35,39]. Our results

therefore suggest that the high-pass filtering characteristics seen in most VN neu-

rons in vivo which are due, at least in part, to an intrinsic resonance. This resonance

is attenuated by the high resting discharge variability that results from the intense

convergent synaptic input that the cell receives under in vivo conditions.
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Figure 3.10. Effects of varying noise intensity on the VAF and PLI. A)
Increasing noise intensity results in decreased PLI and consequently increased VAF
values for Ibias = 0.1 nA and fstim = 12 Hz. B) Increasing noise intensity also
results in increased resting (ie S(t) = 0) discharge rate as well as increased spiking
variability as quantified by CV. C) Gain obtained from our model with no noise
(σ = 0 nA) as a function of Ibias and fstim. D) Gain obtained from our model with
high noise intensity (σ = 0.0225 nA) as a function of Ibias and fstim. It is seen that
for a given value of Ibias the gain increases as a function of the input frequency fstim
until about 22 Hz. This figure is copied from Schneider et al. [132].

3.3 Discussion

3.3.1 Summary of results

The goal of this study was to resolve an apparent discrepancy between the

responses of VN neurons to current injection in vitro and to sensory input in vivo.
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VN neurons are prone to display nonlinear responses such as synchronization to

the peaks of sinusoidal current injection in vitro. In contrast, studies performed in

vivo have shown that VN neurons can respond to sensory input through changes

in firing rate that accurately follow variations in sensory stimulation over a wide

frequency range [39]. We investigated the cause for this discrepancy by subjecting a

mathematical model based on the Hodgkin-Huxley formalism of in vitro VN neuron

activity to in vivo conditions.

Our results show that this model displays membrane potential oscillations that

persisted for a wide range of parameter values. These oscillations give rise to a

resonance in the membrane potential which is transmitted to the spike train, causing

nonlinear behavior such as synchronization or phase locking over the natural stimulus

frequency range (0-20 Hz). It is well known that neural variability resulting from

the intense synaptic bombardment to which VN neurons are subjected to in vivo

will promote faithful encoding of the stimulus waveform through changes in firing

rate [121]. As such, we tested the hypothesis that the levels of resting discharge

variability seen under in vivo conditions could account for the fact that some VN

neuron classes do not display synchronization in vivo. To do so, we added noise

whose intensity was calibrated in order to match the resting discharge variability

experimentally observed in VN neurons under in vivo conditions. We found that low

noise intensities did not completely eliminate phase locking behavior. In contrast,

we found that high noise intensities almost completely eliminated phase locking and

that our model could now faithfully encode the time course of sinusoidal current

injections at frequencies contained within 0-20 Hz for a wide range of input bias
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currents. These results are consistent with experimental recordings from VN neurons

in vivo, suggesting that the addition of noise in the in vivo condition underlies the

discrepancy between the responses of VN neurons to current injection in vitro and

to sensory input in vivo. Furthermore, they suggest that the vestibular system uses

increases in variability to increase the fidelity of encoding by single neurons. This

strategy appears to be found across several sensory systems (reviewed in [121]).

3.3.2 Correspondence between anatomy and function in VN

In the present study, we focused on the type B neurons as observed in vitro.

This is because these neurons display the greatest tendency to respond to sinusoidal

current injection with synchronization as well as spike frequency adaptation. In con-

trast, type A neurons show a sustained tonic response and faithfully follow the time

course of sinusoidal current injections that are up to three times larger than those

followed by type B neurons [136–140]. The differences between type A and type B

neurons are thought to be mediated by differences in the levels of different membrane

conductances [27,94]. In particular, type B neurons display larger calcium-activated

conductances [140]. Such currents mediate spike frequency adaptation (see [160,161]

for review). Theoretical studies have shown that spike frequency adaptation leads

to high-pass filtering of time varying stimuli [162–164], which is consistent with our

modeling results showing an increased gain for higher frequencies. We note that one

could use the same model as was used here in order to mimic the activity of type A

VN neurons by changing membrane conductances as was done previously [94]. We

predict that a model of type A VN neuron activity would not display phase locking
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for the sinusoidal current injections considered here but would display phase locking

for larger amplitudes.

In vivo studies have found three major functional neuronal classes in MVN that

are based on the responses to voluntary eye movements and passive whole-body rota-

tion: 1) Vestibular-Only (VO) neurons, 2) Position-Vestibular-Pause (PVP) neurons,

3) Floccular Target neurons (FTN). VO neurons project to the spinal cord and are

thought to mediate vestibulo-spinal reflexes that control posture [66,165,166], as well

as cerebellum and thalamus [167,168], where they are thought to play a role in spatial

orientation computation. The vestibular system also generates the vestibulo-ocular

reflex (VOR) that functions to effectively stabilize gaze by moving the eye in the op-

posite direction to the on-going head motion. The three-neuron arcs mediating the

VOR are well characterized. The primary pathway consists of projections from affer-

ents to PVP neurons, which in turn project to extraocular motoneurons that control

the eye muscles. A secondary pathway is mediated via FTN neurons that receive

direct input from the Floccular lobe of the vestibular cerebellum and also project

to the extraocular motoneurons. The correspondence between type A and B MVN

neurons as observed in vitro and the different functional classes observed in vivo is

not well understood in general. The most direct link that has been made to date

is based on the findings of electrophysiological and anatomical studies that suggest

a subpopulation of type B neurons receive input from Floccular purkinje cells, such

that they most likely correspond to the FTN neurons which have been characterized

in vivo [143,144]. This correspondence between type B cells and FTN cells, however,
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is unexpected since in vivo experiments have shown that FTN neurons do not dis-

play robust phase locking and instead respond to sinusoidal head rotations through

changes in firing rate that scale with stimulus intensity for frequencies spanning the

behaviorally relevant range in vivo [39]. Thus, our results provide a potential ex-

planation of this discrepancy originating in the intense synaptic bombardment that

these neurons receive in vivo.

The correspondence between VO and PVP neurons in vivo and type A/B neu-

rons in vitro is not known. However, previous studies have shown that PVP neurons

display nonlinear phase locking behavior in response to high frequency (> 12 Hz)

sinusoidal rotations [39]. This is consistent with our modeling results showing that

phase locking is not abolished for low noise intensities (Figure 3.8). Our results

therefore predict that: i) PVP neurons should have type B like responses in vitro;

ii) PVP neurons with low resting discharge rates will display a greater tendency

for phase locking and, iii): this tendency is a consequence of their low resting dis-

charge variability. Previous studies have reported that VO neurons do not display

phase locking dynamics but have only explored frequencies between 0 and 4 Hz [169].

Further studies are needed to explore VO neuron responses to higher stimulus fre-

quencies and might help elucidate their correspondence with either type A or type

B neurons.
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In conclusion, while it is clear that the filtering properties of VN neurons as

observed in vivo are shaped by intrinsic mechanisms [140], our simulations are con-

sistent with a growing body of literature emphasizing the role of network mecha-

nisms [164, 170] such as synaptic bombardment that is present under in vivo condi-

tions affecting their responses to sensory input.

3.3.3 Sources of variability in VN

What are the sources of resting discharge variability in VN neurons? A unique

aspect of the vestibular system, compared to other sensory systems, is that informa-

tion processing is strongly multisensory and multimodal at the first stage of central

processing. This occurs because the vestibular nuclei receive inputs from a wide

range of cortical, cerebellar, and other brainstem structures in addition to direct

inputs from the vestibular afferents. First, there is complete overlap in the termi-

nal fields of regular and irregular afferents in each of the major subdivisions of the

vestibular nuclei [171], and the results of electrophysiological studies have shown that

about half of the VN neuron population receive significant input from both afferent

classes [133, 134]. Additionally, not only do neurons typically receive convergent in-

put from otolith as well as canals afferents, but there is an impressive convergence

of extra-vestibular information within the VN (reviewed in [25]). Notably, sensory

inputs encoding somatosensory, proprioceptive, and visual information as well as pre-

motor signals related to the generation of eye and head movements are sent directly

to the vestibular nuclei. In alert animals, these extra-vestibular signals strongly

modify the processing of vestibular information during our everyday activities, such

that this convergence plays an important role in shaping the ‘simple’ sensory-motor
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transformations that mediate vestibulo-ocular and vestibulo-spinal reflexes as well

as higher-order vestibular functions, such as self-motion perception and spatial ori-

entation. Thus, as a result of their cortical, cerebellar, and brainstem and afferent

input afferents, VN neurons are likely to receive substantial synaptic bombardment

in vivo. For example, extracellular recordings in the cerebellar flocculus reveal ir-

regularities in the spontaneous simple spikes firing rate of the output neurons (i.e.

Purkinje cell) [172]. This provides a clear source of variability to FTN neurons which

might explain their lack of synchronization to sensory stimulation as predicted from

our modeling results.

3.3.4 Differences between in vivo and in vitro conditions in VN neuronal
activity

Previous reports have found that the high conductance state of neurons in vivo

can have a significant influence on their processing of synaptic input through changes

in intrinsic dynamics [150, 173–175]. Specifically, these changes consist of: 1) in-

creased synaptic input that is dominated by excitation that acts as a net depo-

larizing bias; 2) increased membrane conductance and; 3) increased variability. In

general, bridging the gap between in vivo and in vitro conditions is not well under-

stood because it is not clear which combination of the three aforementioned effects

is responsible for the observed changes in dynamics. For example, both changes in

the depolarization bias as well as in variability can alter burst dynamics in thalam-

ocortical neurons [174,176].

Previous studies have investigated the effects of in vivo conditions on the activity

of VN neurons [94,177,178]. In particular, it has been proposed that heterogeneities

might allow for the VN neuron population to accurately encode the time course of
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vestibular stimuli while maintaining nonlinear synchronization at the single neuron

level [178]. This hypothesis is contrary to more recent experimental results showing

that many neurons in the VN, such as FTNs, do not display phase locking in vivo [39].

Our results instead predict that increased variability seen under in vivo conditions

can account for the fact that these neurons accurately follow the time course of

vestibular stimuli through changes in their firing rates and that nonlinear behavior

such as phase locking occurs because of intrinsic rather than network dynamics.

Moreover, it has been proposed that in vivo conditions could be mimicked in VN

neurons by increasing the bias current, thereby increasing the firing rate [94, 177].

Our results show that increases in both bias current and membrane conductance are

not sufficient to eliminate synchronization for the parameter values used in our model.

Instead, our results predict that variability in the form of noise is the main reason for

many VN neurons not displaying synchronization in vivo. The mechanism by which

this noise attenuates synchronization is not by increasing the baseline firing rate but

instead by enabling the firing of action potentials at all phases of the stimulus cycle.

This prediction can be tested experimentally in vitro by mimicking in vivo conditions

through the dynamic clamp technique [148]. Similar variability-related effects have

been observed experimentally in recordings from entorhinal cortical stellate cells in

vitro [150]. Indeed, these cells show a strong tendency to display subthreshold mem-

brane potential oscillations in the theta range in vitro [179] but no significant peak in

the theta range has been observed in their activities in awake behaving animals [180].

This suggests that these subthreshold membrane oscillations are strongly attenuated
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in vivo. The results of Fernandez and White [150] support this viewpoint as they ob-

served weaker oscillations when they increased conductance and variability through

dynamic clamp in vitro.

In particular, we note that our model did not include the inward rectifier current

Ih that is known to be present in VN neurons [144]. While this current has been pre-

viously shown to increase the magnitude of membrane potential oscillations [146], it

is unlikely to be activated in the depolarized state characteristic of in vivo conditions

in VN neurons [144]. Indeed, in order to activate Ih, the membrane potential must

be brought to about 15 mV below the spiking threshold for at least 300 ms [144].

Such a large hyperpolarization leads to a cessation of firing as observed in vitro that

lasts for at least 300 ms. However, VN neurons are spontaneously active with firing

rates of ∼ 50 Hz in vivo and do not respond to vestibular stimuli (for the intensi-

ties typically used in vivo studies) with a complete cessation of firing that lasts 300

ms [35]. Instead, VN neurons smoothly encode variations in head velocity through

changes in their firing rate but their firing rates does not reach zero. Thus, it seems

unlikely that the membrane potential would reach the values that are necessary to

activate Ih.

Finally, we note that there exist highly detailed compartmental models of VN

neurons that are more morphologically realistic than the model used here [93]. While

it would be more realistic to use a detailed compartmental model with an anatomi-

cally accurate dendritic tree, such a model would have a significantly greater number

of parameters than our current one. Justifying the values used for many of these

parameters (i.e. the precise location, strength, and dynamics of afferent synapses
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on the dendritic tree) would be non-trivial at best. Based on our results, we can

conclude that taking into account the shape of the dendritic tree of VN neurons is

not necessary to explain the discrepancy between in vitro and in vivo results. Nev-

ertheless, future experiments should focus on understanding the effects of dendritic

processing in VN neurons.

3.3.5 Stochastic resonance in VN neurons promotes linear coding: func-
tional consequences

Our results have demonstrated that noise can enhance signal transmission in

our model VN neuron. Such enhancement of signal transmission by noise is often

referred to as stochastic resonance [181–186], a phenomenon by which noise enhances

the transmission of a subthreshold signal (i.e. a signal whose intensity is not suf-

ficient to induce spiking activity on its own). We note that our result is, strictly

speaking, not stochastic resonance since we chose model parameter values within the

suprathreshold regime (i.e. the stimulus could induce action potential firing in the

absence of noise). However, in our model, one of the effects of the noise is to induce

firing for subthreshold stimulus values. Such effects have been widely discussed before

and are commonly referred to as the ‘linearization of systems by noise’ [121,187].

While this linearization by noise enables our model VN neuron to faithfully

encode the time course of input within the natural frequency range (0-20 Hz), such

encoding will only be seen for a finite range of stimulus amplitudes. Indeed, stimuli

with larger amplitudes are expected to elicit nonlinear synchronization in VN neurons

despite high trial-to-trial variability. In particular, such large amplitude stimuli

might lead to activation of Ih from the argument above. The putative function of

such nonlinear encoding remains a mystery and should be the focus of future studies.
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What is the functional role of suppressing synchronization in VN neurons in

vivo? It is clear that such synchronization in the form of phase locking is used

extensively in the auditory system [188–195]. Previous studies have shown that

the addition of noise leads to a linearization of the steady state current-response

relationship (i.e. the f-I curve) in model neurons [187]. Such linearization of the

f-I has also been shown to give rise to gain control mechanisms [196–198] which

will extend the dynamic range (i.e. the range of input values that can be coded

through a change in output) of a neuron. We propose that increased variability

serves to increase the dynamic range of VN neurons and therefore promote more

faithful encoding of the stimulus’ time course through changes in firing rate over

a wider range of vestibular stimulus intensities encountered by the organism in the

natural environment. This prediction can be tested in vitro using the aforementioned

dynamic clamp technique.

3.4 Methods

Model

We used a conductance based Hodgkin-Huxley-type model of VN neuron activity

in vitro [94,199,200]. The model includes spiking sodium, persistent sodium, delayed

rectifier potassium, calcium, and calcium-activated potassium currents. We note that

our model did not include the hyperpolarization activated inward rectifier current

Ih which is present in VN neurons [144] and that addition of this current did not

qualitatively affect the nature of our results (data not shown). The model is described

by the following system of stochastic differential equations:
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CmV̇ = Iinput − Iions

ṅ = [n∞(V )− n]/τn(V )

ẋ = [x∞(V )− x]/τx(V )

Ċ = Kp(−ICa)−Rc C

ṗ = [p∞(V )− p]/τp(V )

(3.1)

where Iions = INa + IK + IK[Ca] + ICa + INaP + IL are the ionic currents, which

are given by

INa = ḡNam
3
∞(V )(1− n)(V − VNa)

IK = ḡKn
4(V − VK)

IK[Ca] = ḡK[Ca]

(
C

Kd + C

)
(V − VK)

ICa = ḡCax
2

(
Kc

Kc + C

)
(V − VCa)

INaP = ḡNaP p (V − VNa)

IL = ḡL(V − VL).

(3.2)

The dynamical variables are the membrane voltage V , the calcium concentration

C, and the activation variables n, x, and p. Although synaptic inputs are most ac-

curately described by fluctuating conductances as described by Destexhe et al. [149],

an effective synaptic input [145] can be modeled as an additive current decomposed

into three components: a bias current, additive current fluctuations, and a stimulus

modulation current. As such, we had Iinput = Ibias + σξ(t) + S(t) where Ibias is the
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bias current and S(t) is the stimulus current injection. σ is the noise intensity and

ξ(t) is low pass filtered (4th-order Butterworth with 50 Hz cutoff) [201] Gaussian

white noise with mean zero and standard deviation unity. The activation variables

z ∈ {n, x, p} obey the following equation:

z∞(V ) =
1

1 + exp
[
−2 a(z)

(
V − V

(z)
1/2

)] . (3.3)

Furthermore, while the time constants τx(V ) and τp(V ) are taken to be independent

of the membrane voltage V, the voltage dependent time constant τn(V ) is given by

τn(V ) =
1

2λ cosh
[
a(z)
(
V − V

(z)
1/2

)] . (3.4)

Unless otherwise indicated, parameter values were taken as originally tuned [94],

and are listed as follows: ḡNa = 10 mS/cm2, VNa = 55 mV, V
(m)
1/2 = −33 mV, a(m) =

0.055, ḡK = 2 mS/cm2, VK = −80 mV, V
(n)
1/2 = −40 mV, a(n) = 0.055, λ = 0.2,

ḡCa = 0.25 mS/cm2, VCa = 124 mV, V
(x)
1/2 = −30 mV, a(x) = 0.08, τx = 10 ms,

ḡK[Ca] = 1 mS/cm2, Kp = 0.05, Kc = 1, Kd = 0.5, Rc = 0.05, ḡNaP = 0.05 mS/cm2,

VNaP = 55 mV, V
(p)
1/2 = −56 mV, a(p) = 0.075, τp = 5 ms, ḡL = 0.3 mS/cm2, VL =

−50 mV, and CM = 1 μF/cm2. The model equations were integrated numerically

using an Euler-Maruyama numerical integration technique [202] with an integration

time step of 0.02 ms.

If the time scale at which ḡNa and ḡK vary at is much smaller than all other

time scales in the model, then one can replace the sodium and potassium currents

in equation (1) by their average values during an action potential. This is the case

for the parameter values used here. Indeed, the time constant of ḡK is ∼ 0.1 ms
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while the minimum time constant of all other processes in our model is 5 ms (note

that ḡNa tracks the membrane potential instantaneously and thus has an effective

time constant of zero). We note that, for our parameter values, the average value of

summed sodium and potassium currents during an action potential is 0.12 nA, which

is an order of magnitude less than the range of bias currents used in this study. As

such, our approach of setting ḡNa = ḡK = 0 mS/cm2 is valid if one is interested in

looking at the dependence of these oscillations on parameter values.

Neurons are known to receive massive amounts of synaptic bombardment from

afferent inputs in vivo, which puts them into a high-conductance state. Such con-

ditions are characterized by a depolarized and fluctuating membrane potential with

a reduction in input resistance (or equivalently an increase in membrane conduc-

tance) [149]. Although each individual synaptic input can be accurately modeled by

including the presynaptic action potential sequence, the increased membrane con-

ductance and membrane potential fluctuations due to synaptic bombardment onto

a neuron can be accurately reproduced by increasing the leak conductance, adding

a depolarizing bias current, and adding a noisy current [145,201,203]. We note that

increasing the leak conductance in order to mimic the increased membrane conduc-

tance due to synaptic bombardment is used in dynamic clamp experiments [150].

In order to verify the robustness of our results to more biophysical conditions, we

also modeled our sinusoidal stimulus input using an excitatory conductance-based

input rather than a simple current input. In this case we used an input current

Iinput = Ibias+σξ(t)+ gex(t)(V −Vex), with the excitatory reversal potential Vex = 0.

The excitatory conductance was set to gex(t) = ḡex(1 + S(t)), where S(t) is now a
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sinusoid with amplitude of unity, ensuring that gex(t) > 0. The overall strength of

the sinusoidal input is then set by ḡex = 0.07 mS/cm2, the value of which was chosen

to achieve a comparable firing rate modulation as achieved for equivalent simulations

with current input.

3.4.1 Measures

For membrane potential responses to step current inputs, the oscillation index is

calculated from the response in the time domain V(t), from the following equation:

Iosc =
Vmax − Vmin

Vf − Vi

, (3.5)

where Vmax is the maximum voltage occurring after the input step onset, and Vmin is

the minimum voltage that occurs after the maximum. Vi and Vf denote the initial

and final values of the voltage, respectively.

In the case of zap current injection, the oscillation index was computed from the

envelope of the amplitude modulated membrane voltage response. The envelope was

computed by subdividing the membrane potential waveform into windows of length

100 ms and by taking the maximum value within each window. The resulting curve

was then low-pass filtered (50th-order low-pass FIR filter with 1.875 Hz cutoff). The

oscillation index is then given by the envelope maximum minus the value at t=0.

For the spiking activity, the oscillation index is computed in a manner similar to

that described above but using the instantaneous firing rate (i.e. the reciprocal of

the ISIs) waveform. In that case, each window was 400 ms long and the filter was a

50th-order low-pass FIR filter with 0.625 Hz cutoff.
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We also characterized the model’s response to sinusoidal current injections that

spanned the behaviorally relevant frequency range (0-20 Hz). As done before [94],

to convert current density to current, we assume that our model neuron is spherical

with a radius of 20 μm, so that 10 μA/cm2 is equivalent to ∼ 0.5 nA. This was done

in order to facilitate the comparison of our simulation with experimental data. We

used sinusoid amplitudes of A = 0.13 nA, as were previously used experimentally in

vitro [140]. Sinusoidal current injections of a given frequency lasting one cycle were

repeatedly presented with the model neuron’s initial conditions randomized before

each presentation, until 100 seconds of data had been generated for each combination

of 100 stimulus frequencies and 100 values of bias current. A cycle histogram was

then computed and normalized in order to give the firing rate R(t), as a function of

the stimulus phase. The firing rate was then fit to the optimal linear regression model

defined as R̂(t) = A sin(2πfstimt + φ) + B, as is done experimentally [92, 142, 204].

Although fitting the phase φ of R̂(t) is nonlinear, an optimal linear fit was made

for many possible phase values held constant, and the best linear fit taken. The

goodness of the fit is then quantified by the variance-accounted-for (VAF) given by

the following equation:

VAF = 1− 〈(R(t)− R̂(t))2〉
〈(R(t)− 〈R(t)〉)2〉 , (3.6)

where 〈...〉 = 1
N

∑N
i=1 ... with N the number of bins. In the case of a perfect fit, the

numerator is equal to zero and the VAF is equal to its maximum value of one. The

worst possible fit results in a the minimal VAF of zero. The gain and phase of the

response are then calculated as the amplitude of the fit sinusoid normalized by the
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amplitude of the stimulus and the phase shift of the fit with respect to that of the

stimulus, respectively [92,142,204].

The phase locking index (PLI) is computed using the entropy of the cycle his-

togram [205]. Unlike measures of vector strength [206], this measure can quantify

the degree of phase locking present in multi-peaked phase histograms, as present in

our case. It is given by:

PLI = 1− E0/Emax

E0 = −〈P (φ) log2 P (φ)〉

Emax = log2 N.

(3.7)

where P (φ) is the probability of firing a spike as a function of stimulus phase. E0

gives the entropy of the probability distribution and Emax is the maximum entropy

possible and is that of a uniform distribution. The PLI thus ranges between 0 and

1. As phase locking is a nonlinear phenomenon, we supplement this measure with

the use of an additional more intuitive measure we refer to as a nonlinearity index

(NI). This is done by taking the Fourier transform of the firing rate, R(t), in response

to sinusoidal stimulation. We then take the ratio of the magnitudes of the Fourier

coefficient squared (|FC|2) at three times the stimulus frequency divided by that at

the stimulus frequency. We thus define NI as:

NI = |FC|23fstim/|FC|2fstim . (3.8)

If the firing rate is a linear function of the sinusoidal stimulus, then it can only

contain power at the stimulus’ frequency. If there is phase locking, however, then
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the magnitude squared of the Fourier coefficients at higher harmonics of the stimulus

frequency will be non-zero.

3.4.2 Linearized Model

In the subthreshold regime with spiking sodium and rectifying potassium con-

ductances set to zero, our nonlinear neuron model reduces to the following:

V̇ = FV (V,C, x, p)

Ċ = FC(V,C, x)

ẋ = Fx(V, x)

ṗ = Fp(V, p),

(3.9)

where FV (V,C, x, p) = [Iinput − (ICa + IK[Ca] + INaP + ILeak)]/Cm, FC(V,C, x) =

Kp(−ICa) − RcC, and Fx(V, x) = [x∞(V ) − x]/τx(V ), and Fp(V, p) = [p∞(V ) −
p]/τp(V ). The steady state values of all dynamical variables, V ∗, C∗, x∗, and p∗, can

then be found numerically by solving the four equations Fi = 0, for i ∈ {V,C, x, p}.
The system can then be linearized in the neighbourhood of these fixed points by

Taylor expanding the four functions Fi and keeping only first order terms in the

expansions [85]. Redefining the four system variables in terms of their deviation

from steady state, δ�y = �y− �y∗ with the vector of dynamical variables defined as �y =

[V,C, x, p]′, �y∗ = [V ∗, C∗, x∗, p∗]′, and ‘′’ denotes vector transposition, the linearized

system can then be described by the system of equations:

δ�̇y = Mδ�y (3.10)
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where M is the Jacobian, which is given by:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂FV

∂V
∂FV

∂C
∂FV

∂x
∂FV

∂p

∂FC

∂V
∂FC

∂C
∂FC

∂x
0

∂Fx

∂V
0 ∂Fx

∂x
0

∂Fp

∂V
0 0 ∂Fp

∂p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�y=�y∗

(3.11)

Finally, the Matlab function eigs is used to find the four eigenvalues, Ei for

i ∈ {1, 2, 3, 4}, of the matrix M ordered by their magnitudes. All four eigenvalues

have a negative real part implying that the fixed point is stable. However, the last

two eigenvalues were complex conjugates of each other, which implies the existence

of oscillatory dynamics in the time course of the perturbations as they decay to zero.

The frequency of such oscillations is given by the imaginary part of the third or fourth

eigenvalues divided by 2π. In order to assess the strength of these oscillations, the

linearized model was simulated for step current inputs and the same oscillation index

previously used for step current responses was calculated.

3.5 Supporting Information
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Figure 3.S1. Effects of increased persistent sodium conductance on
membrane potential oscillations. The model’s membrane potential response to
step current input was characterized for physiologically plausible ranges of bias
current and persistent sodium conductance values. A-C) Example responses and
the normalized squared magnitude of their Fourier transforms. These correspond to
parameter values as follows: A) Ibias = −0.125 nA, ḡNaP = 0.02 mS/cm2, B)
Ibias = 0.3625 nA, ḡNaP = 0.098 mS/cm2, and C) Ibias = 0.8 nA,
ḡNaP = 0.168 mS/cm2. D) Oscillation index as a function of Ibias and ḡNaP. E)
Oscillation frequency as a function of Ibias and ḡNaP. The parameter values
corresponding to panels A,B,C are also shown. Other parameter values were
ḡCa = 0.25 mS/cm2, ḡKCa = 1 mS/cm2, ḡleak = 0.3 mS/cm2, and σ = 0 nA. This
figure is copied from Schneider et al. [132].
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Figure 3.S2. The linearized model’s response to step input agrees
quantitatively with that of the full model. A) (left) Oscillation index and
(right) oscillation frequency as a function of Ibias and ḡCa for the linearized model.
B) (left) Oscillation index and (right) oscillation frequency as a function of Ibias
and ḡleak for the linearized model. C) (left) Oscillation index and (right) oscillation
frequency as a function of Ibias and ḡNaP for the linearized model. In each case,
other parameter values were the same as those used for the full model shown in
Figures 3.2,3.3, and 3.S1, respectively. This figure is copied from Schneider et
al. [132].
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Figure 3.S3. A nonlinearity index (NI) gives qualitatively similar results
to those obtained with the PLI measure. A) NI as a function of the bias
current Ibias and stimulus frequency without noise. B) Example PSTH responses
corresponding to Ibias = 0.1 nA and fstim = 12 Hz. C) The squared magnitude of
the Fourier transform of the PSTH response. D) NI as a function of the bias
current Ibias and stimulus frequency with low intensity noise. E) Example PSTH
responses corresponding to Ibias = 0.1 nA and fstim = 12 Hz. F) The squared
magnitude of the Fourier transform of the PSTH response. G) NI as a function of
the bias current Ibias and stimulus frequency with high intensity noise. H) Example
PSTH responses corresponding to Ibias = 0.1 nA and fstim = 12 Hz. I) The squared
magnitude of the Fourier transform of the PSTH response. This figure is copied
from Schneider et al. [132].
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Figure 3.S4. Synchronization to sinusoidal conductance input and the
effects of noise. A) VAF as a function of the bias current Ibias and stimulus
frequency without noise. B) PLI as a function of the bias current Ibias and stimulus
frequency without noise. C) NI as a function of the bias current Ibias and stimulus
frequency without noise. D) VAF as a function of the bias current Ibias and
stimulus frequency with low intensity noise. E) PLI as a function of the bias
current Ibias and stimulus frequency with low intensity noise. F) NI as a function of
the bias current Ibias and stimulus frequency with low intensity noise. G) VAF as a
function of the bias current Ibias and stimulus frequency with high intensity noise.
H) PLI as a function of the bias current Ibias and stimulus frequency with high
noise. I) NI as a function of the bias current Ibias and stimulus frequency with high
intensity noise. All other parameters values were the same as those used in the
equivalent simulations shown in Figures 6, 8, and 9 for current input, with the
additional excitatory synaptic conductance ḡex = 0.075 mS/cm2. This figure is
copied from Schneider et al. [132].
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CHAPTER 4
Model vestibular nuclei neurons can exhibit a boosting nonlinearity due

to an adaptation current regulated by spike-triggered calcium and
calcium-activated potassium channels

In the previous chapter I showed that a conductance-based VN neuron model

based on in vitro data, could be adapted to reproduce the linear rate encoding of low

amplitude stimuli seen in vivo. However, In Appendix E, I present a publication [111]

showing that VO neurons also exhibit a static boosting nonlinearity in their input-

output tuning curves measured in vivo (see Figure E.4 in appendices). In this chapter

I show that the VN model can indeed produce a similar boosting nonlinearity as

found in Massot et al. [111]. I then proceed to find a reduced model that preserves

the effect and can reveal its mechanistic origins, by providing an analytic equation

for the gain across the boosting nonlinearity. This model will allow for the future

exploration of the effects of such a boosting nonlinearity on the encoding of natural

stimuli, and the possibility of temporal coding (see Appendix F for additional data

analysis linking the boosting nonlinearity to increased temporal precision in spike

timing assessed via SR- RR-coherence).
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4.1 Introduction

A primary goal of computational neuroscience is to understand the nature of

the “neural code” with which sensory information is represented and processed by

successive stages of neurons in the nervous system. Sensory neurons were first shown

to encode stimulus features such as intensity, in the rate at which they fire action

potentials. Accordingly, sensory neurons are often characterized by “tuning curves”,

which provide a map from a particular stimulus parameter (such as intensity) to

the neurons output firing rate [5]. Although linear transformations are known to

preserve information, nonlinear transformations are essential for the selective coding

of particular stimulus features, as well as using a neurons full information transmis-

sion capacity [9]. In the vestibular system, for example, semicircular canal afferents

have long been known to primarily encode angular head velocity through firing rate

modulations that vary linearly with increasing stimulus amplitude until saturation

or rectification occurs [36], whereupon the neuron has reached its maximum or min-

imum firing rate, respectively. More recently however, in vivo studies have shown

that neurons in the medial vestibular nuclei (VN) exhibit a boosting nonlinearity in

their input-output tuning curves (i.e. firing rate output, versus stimulus, afferent,

or bias current input; a.k.a. tuning or f-I curve) [111]. This boosting nonlinearity

is characterized by a linear region with a small positive slope for low afferent input

currents, and a linear region with higher positive slope for larger afferent inputs,

rather than the more common occurrence of a higher slope at low bias currents. In

vitro studies, on the other hand, measure the membrane potential time course and
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have developed a conductance based Hodgkin-Huxley-type VN model, with voltage-

activated calcium and calcium-activated potassium channels that produce a specific

bidirectional afterhyperpolarization (AHP) [94,132]. In this paper, a simpler version

of this model is shown to produce a boosting nonlinearity similar to that observed

experimentally in vivo [111], for increased calcium conductances, gCa, which acts as

a bifurcation parameter. In order to shed some light on the underlying mechanisms

responsible, a simplified integrate-and-fire (IF) type model is created that is more an-

alytically tractable but preserves the bifurcation structure and boosting nonlinearity

under investigation.

It requires a system with at least two variables with nonlinear dynamics to

produce action potentials with sodium and potassium currents; the simplicity of

IF models is that they replace these spike generating ion channels, with a simpler

boundary condition that takes the voltage from threshold back to a reset value [86].

Single variable (i.e. membrane voltage, V) IF models can then be made to have

more realistic subthreshold dynamics (which will be required to produce the AHP)

by adding back a voltage dependent function, ψ(V ). A linear “leak” term (giving

an LIF) allows the membrane to return to a given resting potential in the absence

of stimulation, and a quadratic term (giving a QIF) will also add a depolarizing up

stroke in the voltage preceding action potentials to better match their shape. A

combined linear and exponential function (giving an EIF), has been shown to better

fit experimental data [207–209], at a sacrifice to its analytic tractability. Such IF

models can be further generalized to include any extra currents, which may require

137



additional dynamic gating variables, such as spike-triggered adaptation currents (of-

ten denoted by W) which serve to decrease V. However, such additional variables also

require additional reset conditions, for the change in W upon spiking. The spiking

dynamics of such 2-variable (i.e. V,W) adaptive IF models have been extensively

studied [210–212], showing that they can produce a variety of spiking behaviors in-

cluding a similar boosting nonlinearity and a unidirectional AHP [213], for certain

parameter combinations.

In this paper, a Hodgkin Huxley (HH) type spiking VN neuron model is reduced

to a QIF model generalized to include the calcium and calcium-activated potassium

currents, which preserves the bifurcation structureand the boosting nonlinearity ob-

served in the original HH model. The spiking trajectories of the resulting 3-variable

adaptive QIF model are then projected into the 2D V-W phase space, revealing an

intuitive geometrical picture linking the AHP phase space trajectories with the low

gain region of the boosting nonlinearity. Simplifying the models reset conditions and

making some additional assumptions, allows for an analytic approximation for the

steady state firing rate and its gain (i.e. f-I curve slope) across a similar boosting

nonlinearity, as well as the bias current at which the gain is peaked, μ = μ∗. Although

this boosting nonlinearity in the f-I curve of VN neurons has not be experimentally

observed in vitro, the link with the AHP generation provides the testable prediction

that it should be found in the transition to increased bias currents where the AHP

no longer occurs.
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4.2 Results

4.2.1 HH model produces boosting nonlinearity with AHP and bifurca-
tion through bursting separating low and high gain regions.

Fig. 4.1A shows a schematic of the conductance-based Hodgkin-Huxley (HH)

type model (defined by Equations 4.4&4.5 in section 4.4), which was simulated with

different calcium conductance strengths, gCa, over a range of constant bias current

injections, μ. Although the full HH model has 4 dynamical variables, example traces

of the voltage, V , as well as the gating variable, x, and calcium concentration, C, are

shown for different bias currents, and a specific calcium conductance in Fig. 4.1B-D.

The dashed green lines indicate a voltage threshold, crossings of which are defined

to be spike times, which in turn define a sequence of inter-spike-intervals (ISIs). In

panels B&D, red circles indicate regions immediately after spiking that are shown

in insets, indicating that the specific AHP in which the voltage changes directions

twice, occurs at low bias but not high bias currents. At each bias current value, 1/ISI

can be used to give the firing rate, which can be averaged over possibly different ISIs

in the case of bursting solutions, such as shown in Fig. 4.1C. These average firing

rates are plotted as a function of bias current (known as an f-I curve) in Fig. 4.1E,

also with the individual 1/ISIs of the bursts as dots. A boosting nonlinearity (i.e.

an increase in gain with an increase in bias current) can be seen to occur for the two

highest gCa vales (cyan and magenta curves), while for the intermediate gCa value

(red curve) the effect is to linearize the f-I curve by reducing the gain at the onset

of spiking near μ = 0.
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Figure 4.1. Calium and calcium-activated potassium currents induce
boosting nonlinearity, AHP, and bifurcation through bursting.
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Figure 4.1 (previous page). (A) A schematic indicating that the neuron model
of a vestibular nuclei neuron with conductance-based ion channels as described in
Models and Methods Equation 4.5, as well as a constant current injection, which
drive the membrane voltage, the “recorded” model output, to generate action
potentials. (B-D) Example time series of the simulated membrane voltage, with
calcium gating variable, x, and calcium concentration, C, below. Insets show zoom
of region preceding spikes either with or without an AHP. Dashed green lines
indicate the voltage threshold at which spike times are said to occur. Examples
correspond to gCa = 0.6, for the bias current values indicated by the numbered
yellow circles in panel E. (E) The firing rate as a function of constant bias current
injection, or “f-I curve”. Colored lines correspond to the average 1/ISIs for the
calcium conductance values indicated, with the colored dots indicating each 1/ISI
value of the bursting solutions (i.e. panel C). (F) ISI return maps for four example
bias currents with gCa = 0.6, showing how the stable limit cycle (μ = 18)
destabilizes into stable 2-spk bursting (μ = 19), and then 3-spk bursting (μ = 22),
and back to a stable single spike limit cycle (μ = 22.5). Red dots indicate the mean
ISI.

It can also be seen that when the boosting nonlinearity occurs, stable limit

cycles of a single ISI are present for sufficiently low or high bias currents, while

stable bursting limit cycles (i.e. 2-spk burst, 3-spk burst) appear for intermediate bias

current values where the gain (i.e. f-I slope) changes across the boosting nonlinearity.

This bifurcation through bursting is characterized by plotting ISI return maps at

various bias currents across the bursting region, as are shown in Fig. 4.1F for gCa =

0.6. From the top right panel stable 2-spk bursting can be seen to transition to stable

3-spk bursting in the lower left panel, before returning to a stable 1-spk limit cycle

at higher biases. This appears to be a global “period adding” bifurcation through

bursting, however, analysis of the bursting mechanism is beyond the scope of this

paper which aims to understand the change in gain across the boosting nonlinearity.
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In order to simplify the model and isolate the mechanism underlying this boosting

nonlinearity, this HH model was reduced to an analytically tractable integrate-and-

fire (IF) type model, which preserves both the boosting nonlinearity and period

adding bifurcation.

4.2.2 QIF reduction of HH model can preserve subthreshold bifurcation
structure, boosting nonlinearity, and bifurcation through bursting.

To understand the mechanism underlying the HH model’s boosting nonlinear-

ity, a reduced integrate-and-fire (IF) type model is generated, that is analytically

tractable yet preserves the boosting nonlinearity and underlying bifurcation struc-

ture. This was done by replacing the gating variable, n, and related spike generating

currents by a nonlinear function, ψ(V ), with an additional voltage threshold and re-

set mechanism, as described in section 4.4. The model’s bifurcation structure can be

found by calculating the fixed points at each different bias current, which are defined

by the zeros of the function H1(V, n
∗, x∗, C∗) (see Equation 4.6). This function is

plotted in Fig. 4.2A for gCa = 0 and gCa = 0.6, at an example bias current μ = 5.

The green dashed line indicates the voltage threshold used in Fig. 4.1B-D to define

the spike times, and the red dashed line indicates the voltage reset value that will be

used, which roughly corresponds to the minimum voltage during the action potential

in the voltage time series in Fig. 4.1B-D. These curves are shifted up and down

with μ and the zero crossings correspond to the HH model’s fixed points, with their

stability calculated via Equation 4.7. For sufficiently low bias currents, there are

three fixed points and the system does not spike spontaneously. As μ is increased

the curve is shifted upwards and eventually the two lower fixed points annihilate,

generally resulting in the onset of spiking via a saddle-node bifurcation. However, it
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is possible for spiking to begin via a Hopf bifurcation, before the two subthreshold

fixed points have been annihilated. The fixed point bifurcation diagrams are plot-

ted as a function of bias current for each of the non-zero calcium conductances in

Fig. 4.2B, with red dots indicating stable fixed points, and black dots indicating

unstable fixed points. The blue lines indicate the maximum and minimum values of

the spiking limit cycles, and the onset bifurcation is indicated by a green star for

a saddle-node and a green x for an Hopf bifurcation. In the case of the Hopf, the

point at which the two remaining unstable subthreshold fixed points annihilate is

indicated by cyan stars, which can also be seen to roughly coincide with the region

of the bursting solutions. It would appear that the bursting and boosting nonlinear-

ity are closely related to the subthreshold fixed point bifurcation structure, which

should be preserved in a reduced IF model.
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Figure 4.2. Reduced QIF model captures subthreshold bifurcation
structure, boosting nonlinearity, and bursting bifurcation of HH model.
(A) H1(V, n

∗, x∗, C∗) is plotted for μ = 5, showing how there are either 0 or 2
subthreshold (between the green and red dashed lines) fixed points (i.e. zero
crossings), for the gCa = 0 and gCa = 0.6 cases, respectively.
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Figure 4.2 (previous page). (B) Bifurcation diagram for HH model at four
different values of gCa as indicated. Fixed points at each bias current value
correspond to zeros of H1(V, n

∗, x∗, C∗), with red indicating stable and black
indicating unstable. A green star indicates a saddle-node bifurcation, while a green
x indicates an Hopf bifurcation, and a cyan star indicates the annihilation point of
the two remaining unstable fixed points. Dashed blue lines indicate the mean
voltage, while solid blue lines indicate its maximum and minimum. (C) shows the
equivalent F1(V, x

∗, C∗) for the reduced QIF model, for the gCa = 0 and gCa = 0.6
cases, also indicating the two subthreshold fixed points. Green and red dashed lines
indicate the voltage threshold and reset, respectively, indicating that the two
functions have the same concave shape needed to generate the same subthreshold
bifurcation structure. (D) Bifurcation diagram for QIF model at four different
values of gCa as indicated, with fixed points now corresponding to the zeros of
F1(V, x

∗, C∗), and additional dashed green lines indicating the voltage threshold.
(E) The QIF model f-I curve, with coloured lines and dots as in Fig. 4.1E. Inset
shows artificial piecewise linear action potential used to simulate refractory period
(black), with an example HH model action potential superimposed (red) for
comparison. (F) ISI return maps for four example bias currents with gCa = 0.2,
showing how the stable limit cycle undergoes the same period adding bifurcations
through bursting as the HH model (see Fig. 4.1F), in the region which separates
the low and high gain regions of stable 1-spk firing.

Although and exponential-IF (EIF) model could provide a better fit to

H1(V, n
∗, x∗, C∗) in the subthreshold region indicated in Fig. 4.2A, a quadratic-IF

(QIF) captures the essential local minimum between threshold and reset necessary

to reproduce the two subthreshold fixed points, and has the advantage of being

analytically tractable. Although a cubic term could reproduce the entire ‘S’ shape

and high voltage FP, it lies above the voltage threshold and can be ignored for our

purposes. Furthermore, a linear function for ψ(V ) could not reproduce the two

subthreshold fixed points. The two QIF model parameters, g2 and V2, can be related

to the HH model parameters by linearizing the nonlinear functions in Equation 4.6
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and keeping only terms to second order in V, as in Equation 4.12. However, simply

choosing values of g2 = 0.1 and V2 = −50 provides a sufficiently good approximation

to reproduce the desired phenomena, as can be seen from the resulting function

F1(V, x
∗, C∗) (Equation 4.10) plotted in Fig. 4.2C, and bifurcation diagrams in Fig.

4.2D.

The QIF model, defined by Equations 8 in section 4.4, additionally requires

an artificial spike waveform to activate the calcium current gating variable, x, as

described by Equation 4.9. The resulting f-I curves for this QIF model are shown

in Fig. 4.2E, and can be seen to exhibit the desired boosting nonlinearities, as well

as the bursting, similarly to the HH model (although for slightly different values

of gCa). In addition, this QIF model exhibits the same period adding bifurcation

through bursting as the HH model, as shown by the QIF models ISI return maps

(compare Fig. 4.2F and 4.1F). Although the QIF model reproduces the boosting

nonlinearity, it also reproduces the same bursting patterns; does this mean that the

bursting is necessary to create a boosting nonlinearity?

4.2.3 Does boosting require bursting?

It would appear the the boosting nonlinearity and bursting, depend intimately

on the underlying subthreshold bifurcation which occurs near the onset of bursting

(see Fig. 4.3A, red Xs). However, these results actually depend significantly on the

artificial spike shape used, which defines the reset conditions but does not effect the

subthreshold bifurcation structure shown in Fig. 4.2D. The resulting reset condition

can be thought of as the amount by which the gating variables change, Δx and ΔC,

plotted in Fig. 4.3B, or the reset values themselves, xreset and Creset, plotted in Fig.
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4.3C. Are the changes in these reset values with bias current in fact necessary for

the model to produce the boosting nonlinearity or bursting? This question can be

answered by simplifying the QIF model in these two different ways, choosing fixed

values for Δx and ΔC, or for xreset and Creset. The resulting f-I curves for each case

are shown in Figs. 4.3D&E. In both cases some degree of the boosting nonlinearity

can be seen, with a similar bursting occurring in D, but not in E, confirming that

one can in fact achieve boosting without bursting.
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Figure 4.3. Boosting nonlinearity and bursting depend on reset
boundary conditions, not only subthreshold bifurcation structure.
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Figure 4.3 (previous page). (A) Firing rate versus μ for the QIF model used in
Fig. 4.2E, again with the inset indicating the piecewise linear spike waveform used
(black), superimposed with an actual HH model spike (red). Red Xs indicate the
bifurcation point of the two subthreshold fixed points which appear to correspond
with the onset of bursting. (B) The average Δx and ΔC values generated by the
spike shape in A, which change significantly with bias current, μ. (C) The average
xreset and Creset values generated by the spike shape in A, also change significantly
with bias current. (D) QIF model simulated f-I with fixed Δx and ΔC values for
all μ. (E) QIF model simulated f-I with fixed xreset and Creset values, indicates that
the boosting nonlinearity can still occur, without any bursting, seemingly
independently of the subthreshold bifurcation points, which are the same as in A.
Numbered yellow dots indicate examples of low and high gain regions of interest
due to boosting nonlinearity most similar in shape to purple f-I curve in panel A.

To understand what is going on, one can think of the QIF model’s 3D phase

space in V , x, and C. The voltage is bound by the reset and threshold, starting at

Vreset with particular xreset and Creset values, and evolving in time until it reaches

Vth. The possible trajectories through this 3D phase space cannot intersect, and

are all defined by the system of Equations 4.8, which also defines the subthreshold

bifurcation structure. It is how the gating variables are reset that regulates bursting;

if the gating variables are changed by a fixed amount at reset, then they must also

change by an equal and opposite amount during their phase space trajectory in order

to be reset back onto the same trajectory. Otherwise, if the gating variables change

by a different amount than the reset, a different trajectory through phase space will

be selected, resulting in a different ISI. For fixed gating variable resets, however, the

phase space trajectory doesn’t matter, the gating variables are always reset to the

same values, resulting in the same phase space trajectory and ISI, making bursting

impossible.
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Although neither of these simplified QIF models capture the physiological re-

alism of the QIF with the artificial spike, they do disentangle the relationship be-

tween the boosting nonlinearity, subthreshold bifurcation structure, and bifurcation

through bursting. Furthermore, the simplified model in Fig. 4.3E is analytically

tractable and will provide a basis for later understanding the model with spike gen-

erated reset conditions.

4.2.4 Analytic firing rate and gain curves for the QIF model, with fixed
gating variable reset.

To get an analytic expression for the f-I curve and its gain across the boosting

nonlinearity, the simplified QIF model with fixed gating variable reset conditions

shown in Fig. 4.3E was first considered. As the QIF model is still nonlinear with

three dynamic variables, some additional assumptions are needed. Since the original

spike generating sodium and potassium channels’ gating variable, n, has an average

time scale much faster than the additional calcium-related gating variables, x and

C, (τn ≈ 1.5ms < τx = 10ms, τC = 20ms) it can be assumed that the additional

gating variables, x and C, are slow compared to the membrane voltage, V . From

this they can be set to their mean values which must equal their reset values: x =

〈x〉 = xreset, and C = 〈C〉 = Creset, with ẋ = Ċ = 0. Although this cannot be true

during an AHP in which the voltage changes directions and V̇ = 0 momentarily,

it does provide a useful starting place: it reduces the model to a single differential

equation in V that can be solved analytically (Equation 4.14), where the additional

calcium and calcium-activated potassium currents have been redefined as a single

mean adaptation current, W̄ (V ), defined by Equation 4.13.
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For this slow gating variable assumption to hold requires that V̇ > ẋ = Ċ ≈ 0,

which is true as long as the depolarizing “spike generating” current, ψ(V ) is greater

than the hyperpolarizing adaptation current, W̄ (V ) (i.e. μ + ψ(V ) > W̄ (V ), which

must be true for sufficiently large μ). This results in a 2D VW phase space, in which

the depolarizing current, μ+ ψ(V ) is parabolic, and the hyperpolarizing adaptation

current, W̄ (V ) is linear. As such, μ∗ can be defined (Equation 4.15) so that if

μ < μ∗ then ψ and W̄ intersect, while if μ > μ∗ they do not (see Fig. 4.4A&B).

The simulated trajectories through phase space are superimposed in blue, with blue

arrows indicating the direction of the flow from reset to threshold. As long as μ > μ∗

the slow gating variable approximation holds and Equation 4.14 can be integrated

from Vr to Vth, resulting in the time interval I0 (Eqn. 4.17). The approximate

trajectory from Vr to Vth is superimposed (red curve, W̄ (V )) in Fig. 4.4B.

151



Figure 4.4. WV phase space projection of trajectories at low and high
gain μ values, for QIF with Xr = 0.1 and Cr = C∞(Vr, Xr)(see Fig. 4.3E) (A)
Example phase space trajectory at bias current, μ < μ∗, for gCa = 0.2. Simulated
trajectory projected into VW phase space (blue) has blue arrows indicating
direction of motion in time. The theoretically predicted trajectory starts at the
reset voltage, Vreset (red dot), and travels along W̄ (V ) (red line) until it intersects
μ+ ψ(V ∗) (black line) at V ∗ (cyan dot). The grey band indicates the region of
|V̇ | < ε. At this point, the x and C variable are free to decay (cyan curve) until W
reaches V2. Then x and C are again fixed and give rise to a new mean adaptation
current W̄ ∗(V ) (see Eqn. 4.26, green line) connecting the point V2 (green dot) and
the threshold voltage (yellow dot). Furthermore, the change in W between V ∗ and
V2 is assumed to be ΔW = W̄ (V ∗)− (μ− ε) as indicated (and assumed by Eqn.
4.23). Insets show V(t) and W(t) as time series.
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Figure 4.4 (previous page). (B) Example trajectory at bias current, μ > μ∗, for
gCa = 0.2. Now W̄ (V ) (red line) does not intersect μ+ ψ(V ), and directly connects
Vr (red dot) and Vth (yellow dot). (C) The time intervals for the different trajectory
components are plotted as a function of bias current (for gCa = 0.2), using colours
that match the trajectory components colour in (A) and (B). The vertical dashed
line indicates μ∗. (D) The sum of all the predicted intervals shown in (C) results in
the predicted ISI (black), and the average ISI of the simulated data (blue) show
how the total interval is dominated by I∗ when μ < μ∗.

For μ < μ∗, on the other hand, the linear trajectory starting at Vr can be seen

to intersect the parabola at a point denoted V ∗, defined by Equation 4.18. The ε

ensures that F (V ) > 0 between Vr and V ∗ and can be integrated to give I1 (Eqn.

4.19). At V ∗, then F (V ) → 0 and the voltage would come to rest at a fixed point if

the slow gating variable assumption was not violated; instead the trajectory is now

driven by the gating variable dynamics defined by Equation 4.8B&C. If the trajectory

were to cross above the parabola, μ + ψ(V ), then F (V ) < 0 and the voltage would

have to decrease until it crosses back; so the only way for the voltage to increase up

to threshold, is ultimately by following along under the parabola until it reaches the

bottom (located at V = V2, W = μ− ε) where it is free to increase to threshold. The

time interval, I∗, for the voltage to travel from V ∗ to V2, is calculated in Models and

Methods by allowing the gating variables to change and estimating the time for W ∗

to decay down to μ+ ψ(V ) (see Eqns. 4.20-25). In the final segment from V2 to Vth

the gating variables are again fixed to their new values, which result in a new W̄2

value and the green linear trajectory shown in Fig. 4.4A, resulting in the interval I2

(Eqn. 4.27).
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Each of these times is calculated for all values of μ and are plotted in Fig. 4.4C.

The summed times then give the total ISI, which was compared to the simulated ISIs

in Fig. 4.4D. It is clear that at low bias current values the intervals are dominated by

I∗ which also has the most significantly nonzero slope. When inverted, the combined

intervals defined by Equations 4.17, 4.19, 4.25, and 4.27, give an approximation to

the steady state firing rate as a function of bias current:

R(μ) =
1

I1 + I∗ + I2 + τr
, for μ < μ∗

1

I0 + τr
, for μ > μ∗

(4.1)

Equation 4.1 is plotted in Fig. 4.5, for both τr = 3 ms (solid green and red) as well

as τr = 0 ms (dashed green and red), superimposed with the firing rate calculated

by numerically simulating model Equations 4.8 directly (black). The solid red dots

indicate μ∗ which can be seen to clearly match the region where the slope of the f-I

curves are greatest. For μ > μ∗ the solid red curves are in very good agreement with

the black curve, and the saturation (or reduction in slope) can be seen to be due

primarily to the refractory period, τr (compare solid and dashed red). μ < μ∗ the

solid green curves are in reasonable agreement with the black curves (considering

the additional approximations needed) at least exhibiting the boosting nonlinearity

effect, which does not change significantly with τr.
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Figure 4.5. Steady state firing rate, simulations and theory: QIF with
Xreset = 0.1 and Creset = C∞(Vreset, Xreset). The firing rate is plotted for the
numerical simulations in black, with analytic Eqn. 1 in green and red, with solid
for τr = 3 ms, and dashed for τr = 0 ms.

The gain, or slope of the f-I curves, can next be calculated by simply differenti-

ating Equation 4.1 with respect to bias current, G(μ) = ∂R(μ)/∂μ, which is plotted

in Figure 4.6 (green and red solid and dashed curves) for comparison with that cal-

culated from the simulated f-I curves (blue). To derive a more intuitive approximate
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equation for the gain, the refractory period can be set to zero, τr = 0:

G−(μ) ≈ −1

( I1︸︷︷︸
≈0

+I∗ + I2︸︷︷︸
≈2π

)2
∂I∗

∂μ

≈ |B|
[μ− (2πB − A)]2

≈ |B|
(μ− μ∗)2

, for μ < μ∗

(4.2)

G+(μ) =
−1

I2
0

∂I0

∂μ

≈ 1

2π

√
g2
μ̄

=

√
g2/4π2

[μ− (W0 +Wm(V2 −Wm))]1/2
, for μ > μ∗.

(4.3)

For μ < μ∗, the change in ISI is dominated by the change in I∗ (the segment from

V ∗ to V2), and I1 and I2 are roughly constant by comparison (see Fig. 4.4C). This

allows G− to be reduced to Eqn. 4.2b, which diverges as μ → 2πB − A. Although

A and B depend on μ, plugging in numerical values reveals that 2πB − A → μ∗ as

μ → μ∗. For μ > μ∗ the gain depends only on I0 and is found to scale as 1/
√
μ̄ from

above, similarly to results for the simple QIF model [213], with a rescaled μ̄. In this

case the gain diverges when μ̄ → 0 which occurs when μ = W0+Wm(V2−Wm) � μ∗,

which is also very close to μ∗. This shows that the gain scales as 1/(μ − μ∗)2 from

below and as 1/(μ − μ∗)1/2 from above, and explains why the peak gain should be

near μ = μ∗.

Equations 4.2 & 4.3 are also superimposed in Fig. 4.6, where the dashed yellow

and cyan curves are approximations to the dashed green and red curves, and the

solid green and red curves are approximations to the blue curve. The dashed yellow
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Figure 4.6. f-I curve gain, simulations and theory: QIF with Xreset = 0.1
and Creset = C∞(Vreset, Xreset). The gain (or f-I curve slope) is plotted for the
numerically simulated model in blue, with the derivative of Eqn. 4.1 in green and
red (solid and dashed). Additionally the approximate gain Eqns. 4.2&3 are
superimposed in yellow and cyan dashed lines. The peak of the blue gain curve
occurs at μ∗ (vertical black line) where the theoretical predictions all diverge.
Panels A-D correspond to increasing values of gCa.

and green curves are in reasonable close agreement, and the solid green does capture

the main effect of the boosting nonlinearity (i.e. increase in gain with increasing μ),

however ignoring the initial spike in gain at the onset of spiking (blue curves). The

solid red curves match the blue curves even better than the green curves (as there

were fewer approximations needed). Although the dashed red and cyan curves do

differ significantly, it is a roughly constant amount and the cyan curve still captures
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the essential scaling features. To quantify the quality of these approximations, the

absolute differences of each pair, normalized by the target curve, is plotted in Fig.

4.7. Red and green compare Equation 4.1 with the simulations, and yellow and cyan

compare Equations 4.2 & 4.3 with the derivative of Equation 4.1.

Figure 4.7. Comparison between results from the full theoretical and
approximate gain equations. The quality of the full theoretical model is
assessed by plotting the absolute difference between the derivative of Eqn. 4.1 and
the numerical simulations, normalized by the simulated gain, plotted in green and
red for μ < μ∗ and μ > μ∗ respectively. Additionally, the approximate gain Eqns.
4.2 and 4.3 are compared to the derivative of Eqn. 4.1 with τr = 0, plotted in
yellow and cyan dashed curves.
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4.2.5 Theoretical firing rate for the QIF model with spike generated
resets: convergent iterative predictions

Coming back to the more physiological QIF model with spike generated reset

conditions, which reproduces closely the HH model’s boosting nonlinearity as well

as its bifurcations through bursting, the reset values, xreset and Creset, are no longer

given. These reset values may be estimated via an iterative algorithm (see Models

and Methods), which may converge to a stable sequence of reset values. In the high

bias region where the slow gating variable approximation is valid, a self-consistency

condition can be used to generate successive gating variable reset values (and in turn

ISIs) similarly to that of Richardson [214]. As described in Models and Methods,

because F (V ) > 0 in this regime, a result of the Fokker-Plank equation can be

used to give the probability distribution of the voltage, p(V), which can be used to

calculate xreset = 〈x〉 and Creset = 〈C〉 [214] according to Equations 4.28-4.30. For

low bias values where the slow gating variable approximation is not valid, however,

Equation 4.30 no longer holds and the artificial action potential must be used to

calculate new reset values.

Letting the algorithm iterate, it may converge to a sequence of identical ISIs

(i.e. stable 1-spk limit cycle), a sequence of 2 or more ISIs which repeats (i.e. stable

2- or 3-spk limit cycle; bursting), or even a sequence of ISIs that has no repeating

patterns. After 20 iterations of transient ISIs, convergence has generally been reached

and the mean and standard deviation of the subsequent sequences of 1/ISIs was used

to estimates the f-I curves, as plotted in Fig. 4.8A. The iterative theory can be seen

to converge to stable 1-spk limit cycles in the limits of low and high bias current,

as well as produce variable ISI sequences (red dashed) near the bursting in the QIF
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model (black dashed). The best agreement is actually achieved for the highest value

of gCa = 0.2 in the bottom right panel of Fig. 4.8A, where two example bias currents

are indicated by yellow dots, which will be considered in the VW phase space below.

160



Figure 4.8. WV phase space projection for QIF model with spike
waveform, and convergent iterative theoretical predictions for μ > μ∗ and
μ → 0.
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Figure 4.8 (previous page). (A) Firing rate for QIF with spike waveform, as in
Fig. 4.3A, in solid black lines for gCa > 0 (as indicated), and blue curves for
gCa = 0. Iteratively estimated theoretical predictions (see Models and Methods for
details) are superimposed in red, with solid lines indicating the mean 1/ISI, and
dashed lines indicating standard deviation (SD) of 1/ISIs (the bursting patterns
will be considered in the next figure). Theory shows excellent agreement above the
bursting region where F (V ) > 0, and reasonable agreement at very low bias
currents. Two example bias currents are indicated by numbered yellow circles in
the bottom right panel. (B) Low bias example trajectory in VW phase space.
Simulated trajectory in blue (with direction of flow indicated by blue arrows), with
theoretical trajectory connecting Vreset to V ∗ (red line), then V ∗ to V2 (cyan line),
and finally V2 to Vth (green line). Inset shows the cyan trajectory in terms of
decaying variables x∗(t) and C∗(t), and how Eqn. 4.22 captures the initial increase
and then decrease in the calcium concentration, while Eqn. 4.21 does not. Below,
the corresponding voltage probability density for the simulated trajectory (blue),
and each of the red, cyan, and green segments (independently normalized), as well
as their weighted combination (black, see Models and Methods). (C) Same as panel
B, but for the high bias example point.

For the stable 1-spike limit cycles in reasonable agreement with the QIF sim-

ulations, the low and high bias example trajectories are plotted in the VW phase

space in Figs. 4.8B&C. These two trajectories can be seen to have the same fun-

damental geometry of those in Fig. 4.4: in the high bias region the trajectories do

not encounter the parabola, μ + ψ, while for low bias currents, they do. However,

in Fig. 4.8B the simulated QIF trajectory (blue curve) crosses the black parabola

and changes direction in V, before crossing the parabola again and crossing back

over itself (which is only possible since this is really a 3D phase space projected into

2D) before increasing to threshold. It is this trajectory that result in the specific

AHP shape in which the voltage changes directions twice. In this case Equation 4.22

must be used to estimate the calcium decay from V ∗ to V2, which is compared to
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that calculated analytically via Equation 4.21 in the Fig. 4.8B inset (see Models

and Methods for details). Once the time interval for each separate component is

calculated as described in Models and Methods, the voltage distribution during each

segment can be estimated and in the bottom of 8B can be seen to provide a not

very accurate match to the simulation (compare black and blue curves), but it does

have the marked features of the combined red and cyan peaks. These distributions

in 4.8B, however, are not used in the iterative algorithm. For example 2 in the high

bias regime (Fig. 4.8C), both V and W can be seen to increase monotonically from

reset to threshold, and the resulting voltage distribution is in much better agreement

with the simulations.

Although the iterative theory captures the essential phase space geometry to

explain the boosting nonlinearity, the results in the regions of bursting are considered

next. In Fig. 4.9 (left) the FI curves of the QIF with spike are again plotted, but

now with each 1/ISI in the sequences (black dots). Clearly these do not follow the

ordered period adding bifurcations see in Figs. 4.1E&4.2E. Although there does

appear to be a window of order with a stable 3-spike burst (see Fig. 4.9 right), this

3-spike sequence does not have the same structure as the bursts in Fig. 4.1 and 4.2

(i.e. short-short-long ISI sequences) and may instead be considered an alternation

of 1-spk and 2-spk bursts. While the iterative theoretical predictions do capture the

low to high gain transition across the boosting nonlinearity, they do fail entirely at

capturing the period adding bifurcations through bursting.
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Figure 4.9. Iterative theoretical predictions for QIF model with spike
waveform: stable and unstable 1-spike limit cycles.
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Figure 4.9 (previous page). (A) f-I curves for QIF model with spike waveform,
each panel comparing gCa = 0 (blue) with gCa > 0 as indicated (color), as well as
the theoretical predictions (black). The iterative theory produces a sequence of
ISIs, the final 20 are plotted as 1/ISI at each bias (black dots), and their average
value versus bias is superimposed (solid black). (B) For the highest gCa value, ISI
return maps are shown for six illustrative bias current values starting with a low
bias stable 1-spk limit cycle (top left panel), through bifurcations to aperiodic
spiking, with windows of repeating sequences, and back to stable 1-spk limit cycles
at high biases (bottom right panel). The same 20 ISIs from A are also plotted in B.
It can be seen that at μ = 20.5, a stable sequence of 3 intervals repeats. Similarly,
the bottom left panel shows similar sequence of 3 ISIs almost repeats, but 2+
slightly different versions of it repeat, illustrating how regions with stable N-spike
ISI sequences transition to other regions with stable M-spike ISI sequences.

4.3 Conclusions

To summarize, in this paper it was shown that a conductance-based Hodgkin-

Huxley type vestibular neuron model with high voltage-activated calcium and calcium-

activated potassium currents, can exhibit a boosting nonlinearity for increased cal-

cium conductance, gCa. In addition, the model exhibits a period adding bifurcation

through bursting for intermediate bias currents separating the low and high gain

regions of the boosting nonlinearity, with an AHP in the low gain region. In or-

der to isolate the mechanism underlying the boosting nonlinearity, the HH model

was reduced to a generalized QIF model that preserves the subthreshold bifurcation

structure. With an artificial action potential to activate the gating variables, the QIF

model reproduces the boosting nonlinearity and the bifurcation through bursting and

AHP. To further simplify the model and tease apart the necessary ingredients for a

boosting nonlinearity, QIF models were created that use fixed values for, Δx and

ΔC, and finally for, xreset and Creset. For this simplified QIF a slow gating variable
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approximation was used as a starting point to derive an analytic equation for the f-I

curves, and approximate expressions for the gain (i.e. its slope), showing the gain

to be peaked at μ = μ∗. An intuitive geometrical picture of how the trajectories

through VW phase space shows that they differ qualitatively in the low and high

bias regions of the boosting nonlinearity, and that these two types of trajectories

provide the basis for understanding the boosting nonlinearity and deriving an ex-

pression for μ∗. Finally, in the case of spike generated reset conditions, it is shown

that an iterative algorithm can find stable 1-spk limit cycles that provide reasonable

agreement in the limit that μ → 0, and excellent agreement in the high bias regime.

4.3.1 Comparison to other two- and three-variable adaptive models.

Previously a two-variable adaptive QIF model was studied and found to exhibit

a similar boosting nonlinearity [213]. This model used a fixed reset value for its

adaptation current, W, such that it would be reset above the parabolic function

μ+ψ(V ) for low bias, causing the voltage to initially move in the negative direction

until it can cross below ψ and begin moving positively, towards threshold. Once μ

is increased such that it is greater than Wreset, the trajectories are then reset below

ψ and increase monotonically towards threshold. This is a very similar mechanism

of boosting, whereby spiking trajectories in the low gain region must cross (or come

very close to) the V-nullcline, W ∗ = ψ(V ∗), while trajectories in the high gain region

do not. This mechanism also results in an AHP in the low gain region, where the

voltage initially decreases through a slow minimum, but only changing directions

once. However, because phase space trajectories can not cross over themselves, the

low gain region only emerges when the reset conditions start the trajectory above
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ψ. In the three-variable adaptive QIF model considered here, the projections in the

VW plane can cross themselves only because they have an extra dimension due to

the x and C variables, and W(x,C). This allows trajectories in the QIF model to

start below the V-nullcline, cross up above it, loop back below, cross themselves and

off towards threshold. This is what gives my 3-variable QIF model’s spikes their

signature AHP shape which initially increases before decreasing, unlike two-variable

models.

Although the two-variable QIF model of Shlizerman and Holmes does not burst

[213], its close relative the adaptive exponential-IF (aEIF, also two-variable) can

produce bursting [210, 211], when the adaptation variable reset condition is instead

Wreset = W (tspk) + ΔW . This produces bursting in a similar way as the adaptive

QIF model: multiple short ISIs occur (which do not intersect ψ) with W increasing

each time, until W has accumulated enough that the trajectory does intersect ψ

and a long ISI occurs, terminating the burst. Although the exponential function in

the aEIF model changes the shape of ψ, it does not change the basic concave-up

geometry captured by the QIF. As such, it may be expected that the regions of

such aEIF models that produce bursts might also indicate the presence of a boosting

nonlinearity, however this has not been reported [210, 211]. In addition, although

the aEIF model generally uses a simpler linear equation for the dynamics of the

adaptation variable such as Ẇ = [a(V − Vw) − W ]/τw, it still requires the further

simplification that a=0, to compute that 〈W 〉 = ΔW a priori and apply a slow gating

variable assumption for an analytic solution [209,215].
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Finally, Richardson analyzes a three-variable adaptive model very similar to ours

[214], with spike-triggered calcium and calcium activated potassium, however he uses

an artificial action potential with Vmax = 0, that decays linearly to the reset Vreset.

He also avoids the problem of not knowing the value of 〈W 〉 by using the slow gating

variable assumption and self-consistency criterion to find it iteratively. He does not

report a boosting nonlinearity or bursting, but remains in a region of parameter space

where F (V ) > 0 and no AHP [214]. In addition, different spike shapes with the QIF

did have a significant effect on whether or not the adaptation currents were strong

enough to produce either boosting or bursting, which is one possible explanation for

our differing results. However, different values for the conductances gCa and gKCa

are used as well. Although the goal of this study was to understand the mechanisms

that produce boosting in the HH model, the ultimate goal is to relate it back to

experimental data from the vestibular system, and how it might be functionally

relevant.

4.3.2 Correspondence to vestibular nuclei neuron data.

The HH model used in this paper is already a simplified version of the original

vestibular nuclei neuron model developed by Av-Ron et al. [94], where only the

ion channels necessary to generate the boosting nonlinearity were included. These

channels were originally tuned to produce the characteristic bi-directional AHP that

goes up and then down before rising to threshold (switching direction twice). This

very AHP appears to be a signature that the model would likely produce a boosting

nonlinearity (and bursting) if driven to sufficiently high bias currents that the AHP no

longer occurs. However, this model was originally developed for in vitro preparations
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where the average baseline firing rate is much lower (i.e. ∼ 30 − 50spk/s) than in

alert behaving animals (i.e. ∼ 60−80skp/s) [132]. This may be why such a boosting

nonlinearity has not yet been observed in vitro. One would expect that if the in vitro

recordings used current injections large enough that the AHP could no longer occur,

that this would also be sufficiently large to reveal a boosting nonlinearity as well, an

experimentally testable prediction of this manuscript.

It is also important that neurons are considerably more variable in vivo, requiring

an additive noise term in the model [132]. Including such increased noise, simulations

of the HH model still show the boosting nonlinearity, while the noise is sufficient

to disrupt the bursting (not shown). Furthermore, analysis of the data in Massot

et al. [111] has shown no evidence of bursting in vivo. To further improve the

correspondence between the HH model and VN neurons, additive noise could be

added to provide the appropriate coefficient-of-variation of the spontaneous spiking

activity [111]. However, it is known that different noise intensities may be needed

during spontaneous and driven stimulation conditions, as was found for vestibular

afferent models [38]. Experimental efforts should therefor be made to measure both

the mean firing rate and its variance as functions of bias current, using different

stimuli, to further constrain accurate VN neuron models.

4.3.3 Implications for sensory information processing in the vestibular
system.

The boosting nonlinearity was originally found in vestibular-only (VO) neurons

in VN using narrow band noise stimuli with low (0-5 Hz) and/or high (15-20 Hz)

frequency content, and it was found that when presented together the high frequency

stimuli masked the response to low frequency stimuli [111]. A linear-nonlinear (LN)
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cascade model of the data could explain this masking effect and predict the % atten-

uation for additional stimuli. The statistics of naturally occurring head movements

in primates have since been recorded [95] and indeed been found to have significantly

higher power over the low frequency range than the high frequency range, making

it unclear whether such masking would occur under natural conditions. This could

be explored in a model using stimuli with naturalistic frequency content combined

with afferent filters. Additionally, natural stimuli have combinations of angular and

linear movements, which could also lead to masking between different axes of motion,

rather than different frequency bands within one axis of motion.

It is well known that when neurons are driven across a common rectifying non-

linearity, it can result in increased spiking precision, with information lost about

the stimuli in the zero gain region of the nonlinearity which also has a firing rate

of zero. It is therefore possible that the boosting nonlinearity could allow the same

increased spiking precision, potentially indicative of temporal encoding, to coexist

with a standard rate coding since the low gain region still has non-zero gain and fir-

ing rate. Further studies with this model could therefore investigate the possibility

of simultaneous rate and temporal coding, under natural stimulus conditions.

Finally, it should be pointed out that VO neurons are known to respond ro-

bustly to passively applied stimuli (i.e. head movements externally generated by the

experimenter), but to show ∼ 70% to the self-generated stimuli studied [114], and

that the large majority of natural stimuli recorded by Schneider et al. was indeed

self-generated [95]. This suggests a potential role for the boosting nonlinearity: if

self-generated stimuli elicit responses that are not sufficiently attenuated and cross
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the boosting nonlinearity, an increased level of spiking precision (or population syn-

chrony) could signal a potential problem, without entirely disrupting the linearly

decodable information remaining about the stimulus in the firing rate.

4.4 Models and Methods

4.4.1 Full HH model

The Hodgkin-Huxley (HH) type model of a VN neuron developed by Av-Ron et

al. [94] and adapted by Schneider et al. [132] is studied in this paper. Specifically,

the model includes spiking sodium and potassium currents governed by the single

activation variable, n (as in the Morris-Lecar model), as well as a voltage-activated

calcium current and calcium-activated potassium current, each governed by the acti-

vation variables, x and C, respectively. The additional calcium current, is activated

by high voltages that occur during an action potential, and serves primarily to let

calcium into the cell with only a small effect on membrane voltage. The additional

potassium current, however, is only activated by the calcium that enters the cell

when it spikes, and serves to reduce the voltage and prevent spiking. The additional

persistent sodium and hyperpolarization-activated currents present in [94, 132] have

been removed, as they are not necessary for the model to generate the boosting non-

linearity being investigated. This results in a 4-dimensional spiking neuron model
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governed by the following differential equations:

Cm
dV

dt
= H1(V, n, x, C) = μ− Iions(V, n, x, C)

dn

dt
= H2(V, n) = [n∞(V )− n]/τn

dx

dt
= H3(V, x) = [x∞(V )− x]/τx

dC

dt
= H4(V, x, C) = [C∞(V, x)− C]/τC .

(4.4)

Iions = INa + IK + Ileak + ICa + IKCa, with C∞ = −K
R
ICa, and the currents are given

by the following additional equations:

INa(V, n) = gNam
3
∞(1− n)(V − VNa)

IK(V, n) = gKn
4(V − VK)

Ileak(V ) = gL(V − VL)

ICa(V, x) = gCax
2(V − VCa)

IKCa(V,C) = gKCa
C

C +Kd

(V − VK),

(4.5)

where the steady state activation variables obey the following equation: z∞(V ) =

1/[1+exp[−2a(z)(V −V
(z)
1/2)]], for z ∈ {n, x}. All parameters are as used by Schneider

et al. [132], unless otherwise stated. The calcium current equation ICa has also been

modified from Schneider et al. to remove the calcium saturation term, Kr

C+Kr
, to

further simplify the model while preserving the boosting nonlinearity.

The fixed points (FPs) of the HH model can be found by setting the equations

H1 = H2 = H3 = H4 = 0, then solving for, n∗ = n∞(V ∗), x∗ = x∞(V ∗), C∗ =

C∞(V ∗), while V ∗ must be found by plugging these into H1, and numerically finding
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the zeros of

H1(V, n
∗, x∗, C∗) = μ− gNam

3
∞(V )(1− n∗(V ))(V − VNa)− gKn

∗4(V )(V − VK)

− gCax
∗2(V )(V − VCa)− gKCa

C∗(V )

Kd + C∗(V )
(V − VK)− gL(V − VL),

(4.6)

for a range of bias current values, μ. The stability of the fixed points can then be

found by looking at the eigenvalues of the following matrix

LHH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂H1/∂V ∂H1/∂n ∂H1/∂x ∂H1/∂C

∂H2/∂V ∂H2/∂n 0 0

∂H3/∂V 0 ∂H3/∂x 0

∂H4/∂V 0 ∂H4/∂x ∂H4/∂C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)

where the FP is stable if all its eigenvalues have negative real parts.

Setting gCa = 0 (and in turn C = 0), it is well known that H1(V ) has a cubic

form, with a local minimum at a lower voltage and a local maximum at higher

voltage. This shape does not change, but is translated vertically with changes in the

bias current, μ. For sufficiently low values of μ there are three fixed points, only

that with the lowest voltage is stable, and corresponds to the steady state resting

potential. As μ is increased, the two fixed points at lower voltages annihilate in a

saddle-node bifurcation at which point there is no stable fixed point, and the model

generates action potentials via a stable limit cycle. It is also possible (when gCa > 0)

for the lowest voltage fixed point to lose stability via a Hopf bifurcation. In this case

the spiking limit cycle can coexist with all three unstable fixed points, with the two

lower voltage fixed points annihilating at yet higher values of μ.
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4.4.2 Simplified QIF model

In order to find an analytic equation explaining the change in gain of the boosting

nonlinearity, a reduced integrate-and-fire (IF) type model is used, that preserves the

FP bifurcation structure of the HH model. This is done by removing the gating

variable, n, and replacing the currents, IL(V ) + INa(V ) + IK(V ), with a nonlinear

function ψ(V ), and a voltage threshold and reset. Although simple constant or linear

functions can be used for ψ(V ), a concave up function is needed to reproduce the

second bifurcation of two subthreshold fixed points in the case of the Hopf bifurcation

at spiking onset. The simplest of these functions is the quadratic, ψ(V ) = g2(V−V2)
2,

resulting in the generalized QIF model, governed by 3 differential equations:

Cm
dV

dt
= F1(V, x, C) = μ+ ψ(V )− ICa(V, x)− IKCa(V,C)

dx

dt
= F2(V, x) = [x∞(V )− x]/τx

dC

dt
= F3(V, x, C) = [C∞(V, x)− C]/τC ,

(4.8)

where the only new parameters to define are g2 and V2.

In addition, the QIF model requires a boundary condition such that when the

voltage reaches a threshold, Vth, a spike is said to have occurred, and the voltage

is returned to a reset value, Vreset, for an absolute refractory period, τr. However,

because the high voltages occurring during the action potential are needed to drive

the voltage-activated calcium currents, a simple piece-wise linear function, Vspk(t),

is used during the refractory period tspk < t < τr (similar to Richardson [214]). The

spike shape rises linearly to a maximum, and then decays linearly to the reset voltage
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according to

Vspk(t) =Vth +
Vmax − Vth

t1
t, . . . . . . for 0 ≤ t < t1

Vmax +
Vr − Vmax

τr − t1
(t− t1), . .for t1 ≤ t < τr

(4.9)

where t = 0 corresponds to the spike times. In this paper, the spike shape parameters,

Vmax = 30 mV, t1 = 0.4 ms, and τr = 3 ms are used. This results in the x and C

gating variables changing according to x(tspk) → x(τr) = x(tspk)+Δx, and C(tspk) →
C(τr) = C(tspk) + ΔC, where Δx and ΔC are calculated by plugging Equation 4.9

into Equations 4.8b&c and numerically integrating x(t) and C(t) from tspk to τref .

The QIF model can be further simplified by removing Vspk(t) and using either

fixed Δx and ΔC, or fixed xreset and Creset, resulting in x(tspk + τr) = xreset and

C(tspk + τr) = Creset. This results in two more parameters, either xreset and Creset,

or Δx and ΔC, which must be defined, instead of Vmax and t1.

The fixed points (FPs) of this simplified QIF model do not depend on the artificial

spike shape or reset boundary conditions, and can be found by setting the equations

F1 = F2 = F3 = 0, and solving for, x∗ = x∞(V ∗), C∗ = C∞(V ∗), as before, with V ∗

now being found by plugging these into F1, and numerically finding the zeros of

F1(V, x
∗, C∗) = μ− g2(V − V2)− gCax

∗2(V )(V − VCa)

− gKCa
C∗(V )

Kd + C∗(V )
(V − VK) = 0.

(4.10)
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The stability of the fixed points can then be found by looking at the eigenvalues of

the following matrix

LQIF =

⎛
⎜⎜⎜⎜⎝
∂F1/∂V ∂F1/∂x ∂F1/∂C

∂F2/∂V ∂F2/∂x 0

∂F3/∂V ∂F3/∂x ∂F3/∂C

⎞
⎟⎟⎟⎟⎠ . (4.11)

Although the subthreshold fixed points and their stability depend only on the system

of equations 8, the reset values, xreset and Creset, behave as additional bifurcation

parameters, similarly to the reset parameters in the adaptive two-variable models

studied by Naud et al. [211].

To estimate the QIF model parameters g2 and V2 from the HH model, gCa can

be set to zero, and the nonlinear functions in H1(V, n
∗) expanded to second order in

V , around its approximate minimum (≈ −50 mV, seen by plotting),

H1(V ) = μ− gL(V − VL)− gNa m3
∞(V )︸ ︷︷ ︸

≈a1+b1(V+50)

(1− n∞(V )︸ ︷︷ ︸
≈a2+b2(V+50)

)(V − VNa)

− gK n4
∞(V )︸ ︷︷ ︸

≈a3+b3(V+50)

(V − VK),

≈ μ+ k + a(V − h)2,

(4.12)

with a1 = m3
∞(V = −50), a2 = n∞(V = −50), a3 = n4

∞(V = −50), b1 =

∂m3
∞/∂V (V = −50), a2 = ∂n∞/∂V (V = −50), and a3 = ∂n4

∞/∂V (V = −50).

Solving for a and h can then be used to estimate g2 and V2, however, the values

g2 = 0.1 and V2 = −50 mV do a sufficient job to reproduce the HH model’s features

of interest.
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A complete solution of this model would result in V (t), x(t), and C(t), and

can result in tonic firing of a single repeated interspike-interval (ISI), or bursts of

two or more ISIs in a sequence which repeats, as well as possibly aperiodic spiking

with sequences of ISIs which never repeat. In the entire 3D phase space, there is

a single trajectory deterministically connecting Vr to Vth, for each possible combi-

nation of xreset and Creset values which occur at the voltage reset. The trajectories

cannot intersect and the entire phase space of trajectories is defined by the system of

Equations 8, but the particular trajectory for each ISI is determined by the values of

Vreset, xreset, and Creset. The x and C values occurring at the voltage threshold may

of course be different, and not necessarily result in the same reset values, and may

therefore be reset onto a different nearby trajectory in phase space. In my simplified

QIF with fixed xreset and Creset reset values, together with Vreset, the voltage is reset

onto the same trajectory after each spike, resulting in only tonic spiking of a single

repeated ISI. In this case the ISI can be estimated analytically, with the values of

xreset and Creset defined as model parameters.

4.4.3 Slow gating variable approximation for fixed reset conditions.

The additional gating variables, x and C, have time constants of 10 and 20

ms, compared to the average membrane time constant of ≈ 2 ms, and can thus

be assumed to vary slowly by comparison (i.e. ẋ ≈ Ċ � V̇ ). Although the gating

variables may be reset instantaneously during the refractory period following spiking,

this approximation only needs hold from the end of the refractory period until the

next spike. Additionally subthreshold regions in which this approximation breaks

down, such as during an AHP, will be identified and dealt with separately. This
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assumption allows the gating variables to be approximated by their initial values,

x ≈ xreset and C ≈ Creset. As a result, the additional calcium related currents depend

only on V , and can be defined in the adaptation current, W̄ (V ), as

W̄ (V ) = ICa(V, xr) + IKCa(V,Cr)

W̄ (V ) = (gCax
2
r + gKCa

Cr

Cr +Kd

)︸ ︷︷ ︸
≡Wm

V −(gCax
2
rVCa + gKCa

Cr

Cr +Kd

VK)︸ ︷︷ ︸
≡W0

W̄ (V ) = W0 +WmV.

(4.13)

W̄ (V ) is simply linear in V, always having a positive slope (except when gCa = 0,

causing W0 = Wm = 0). This results in the system of Equations in 8, reducing to a

single differential equation

dV

dt
= F (V ) = μ+ ψ(V )− W̄ (V ), (4.14)

where ψ(V ) > 0 represents the spike-generating currents which always drive the

membrane voltage towards threshold, and W̄ (V ) > 0 represents the calcium and

calcium-activated potassium currents which always act to drive the voltage away

from threshold. It is because VK < Vr ≤ V ≤ Vth < VCa, that although the calcium

current always serves to depolarize the membrane, the stronger calcium-activated

potassium current always serves to hyperpolarize the cell.

In the approximate 1D system defined by Equation 4.14, μ+ψ(V ) is a parabola

with its minimum at μ, and W̄ (V ) is a line with positive slope, independent of μ.

This gives two possible scenarios: for low enough μ the parabola and line intersect,

while for high enough μ the parabola and the line do not intersect. If there is an
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intersection, then F (V ) = 0 at that voltage, and the approximate 1D system should

have a fixed point, but since the system is really a 3D system, it only indicates that

the slow gating variable approximation breaks down. Although the initial conditions

at voltage reset could correspond to a region where W̄ > ψ, as in [211,213], this does

not occur for the model parameters considered in this paper.

Since the parabola is translated linearly with μ, there must always exist a bias

current, μ∗, such that F (V ) > ε for μ > μ∗, where the parabola, μ + ψ − ε and the

line, W̄ intersect at a single point. The value of ε is chosen to be 0.5, small but

non-zero, to avoid divergent calculations involving 1/F (V ). For gCa > 0, the bias

current μ∗, can be defined by F (μ∗, V ) = ε:

μ∗ =
(2g2V2 +Wm)

2

4g2
− g2V

2
2 +W0 + ε. (4.15)

For μ > μ∗, F (V ) > ε and it is straightforward to integrate Equation 4.14 from

reset to threshold to calculate the ISI (consider this case 1). But for μ < μ∗, V̇ < ε

for a range of V in which the slow gating variable assumption cannot be made and

Equation 4.14 cannot be used (consider this case 2). It should be noted that in the

limit that gCa → 0, μ∗ → μ, as expected.

Case 1: μ > μ∗ and |V̇ | > ε. With μ > μ∗ and |V̇ | > ε, the voltage moves

monotonically from reset to threshold, and Equation 4.14 can be integrated to get

the time interval

I0(μ) =

∫ Vth

Vr

dV

F (V )
. (4.16)
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Plugging Equation 4.14 into 4.16 results in

I0 =

∫ Vth

Vr

dV

μ̄+ g2(V − V̄2)2

=
1√
g2μ̄

tan−1

[ √
g2μ̄(Vth − Vr)

μ̄+ g2(Vth − V̄2)(Vr − V̄2)

]
,

(4.17)

where the new variables: μ̄ = μ−W0 −Wm(V2 −Wm), V̄2 = V2 +Wm/2g2 have been

defined. In the limit that gCa → 0, μ̄ → μ and V̄2 → V2, and the solution to the to

the simple QIF model is recovered [213]. Further letting g2 → 0, the well known IF

model ISI, IIF = (Vth − Vr)/μ, results.

Case 2: μ < μ∗.

Case 2a: Vr ≤ V ≤ V ∗, with V̇ > ε. For low bias currents, μ < μ∗,

there are two voltages at which the depolarizing current, μ + ψ(V ) is balanced by

the hyperpolarizing adaptation current, W̄ (V ), corresponding to fixed points where

F (V ) = 0. However, at the reset point, (Vr,Wr), F(V) is positive and remains so

until the voltage reaches the ε-neighbourhood of the lower intersection point, V ∗,

defined by

V ∗ =
2g2V2 +Wm −√(2g2V2 +Wm)2 − 4g2(μ− ε+ g2V 2

2 −W0)

2g2
, (4.18)

where F (V ∗) = ε. In this case, the voltage evolves according to Equation 4.14 from

Vr up to V ∗, with μ̄ < 0 in this region, resulting in

I1 =

∫ V ∗
−

Vr

dV

−|μ̄|+ g2(V − V̄2)2

=
−1

2
√
g2|μ̄|

ln

∣∣∣∣ [1 +
√
g2/|μ̄|(V ∗

− − V̄2)][1−
√
g2/|μ̄|(Vr − V̄2)]

[1−√g2/|μ̄|(V ∗− − V̄2)][1 +
√

g2/|μ̄|(Vr − V̄2)]

∣∣∣∣,
(4.19)
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with μ̄ and V̄2 defined as in Equation 4.17.

Case 2b: V ∗ ≤ V ≤ V2, with |V̇ | < ε. Once the membrane voltage has

reached V ∗, F (V ) ≤ ε and the slow gating variable approximation can no longer be

made, and x and C must be allowed to evolve in time. It is assumed that at V ∗

the gating variables result in an adaptation current W ∗ > μ, and that they can now

decay until the adaptation current, W ∗(t), reaches the bottom of the parabola at

μ − ε. In this region, V̇ ≈ 0 and V ≈ (V ∗ + V2)/2 ≡ V̄ ∗, so that one can solve F2

and F3 for x∗(t) and C∗(t). Assuming x∗
∞ ≡ x∞(V̄ ∗), Equation 4.8b gives

x∗(t) = x∗
∞ − (x∗

∞ − xr)e
−t/τx , (4.20)

by requiring x∗(t = 0) = xr. Now to solve Equation 4.8c, one should plug in x∗(t), as

calculated above, however to get an analytic solution, it is assumed that x∗(t) ≈ x∗
∞,

and C∗
∞ ≡ C∞(V ∗, x∗

∞) is defined, resulting in

C∗(t) = C∗
∞ − (C∗

∞ − Cr)e
−t/τC . (4.21)

To get a more accurate prediction, Equation 4.8c can be numerically integrated

according to

C∗
2(ti) = C∗

2(ti−1) + Δt[C∞(V ∗, x∗(ti−1))− C∗
2(ti−1)]/τC , (4.22)

with C∗(t0) = Cr, in either case.

The gating variable dynamics in turn cause changes in W ∗(t). It is then assumed

that W ∗(t) decays until it reaches the bottom of the parabola μ + ψ(V ) − ε, at V2.
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This time can then be solved for, W ∗(t∗) = μ− ε,

W ∗(t∗) = gCa x
∗(t∗)2︸ ︷︷ ︸

≈a1+b1t∗

(V ∗ − VCa) + gKCa
C∗(t∗)

C∗(t∗) +Kd︸ ︷︷ ︸
≈a2+b2t∗

(V ∗ − VK) = μ− ε
(4.23)

by expanding to first order in time. The resulting coefficients are: a1 = x2
r, a2 =

Cr/(Kd + Cr), and

b1 =
∂x∗(t)2

∂t

∣∣∣∣
t=τx

=
2x∗(τx)(x∗

∞ − xr)

τx
e−1

b2 =
∂

∂t

[
C∗(t)

Kd + C∗(t)

]∣∣∣∣
t=τC

=
Kd(C

∗
∞ − Cr)

(Kd + C∗(τC))2τC
e−1.

(4.24)

This allows t∗ to be found,

I∗ = t∗ − 0 =
μ− ε− [gCaa1(V

∗ − VCa) + gKCaa2(V
∗ − VK)]

gCab1(V ∗ − VCa) + gKCab2(V ∗ − VK)

=
μ− ε− A

B
,

(4.25)

where A ≡ [gCaa1(V
∗ − VCa) + gKCaa2(V

∗ − VK)] and B ≡ gCab1(V
∗ − VCa) +

gKCab2(V
∗ − VK). This shows that A represents the amount of adaptation current,

W, when the voltage enters the V̇ < ε region at V ∗, while B represents rate of change

of adaptation current, due to the decay of the gating variables x and C. This gives the

simple geometric interpretation that the time interval I∗ is equal to the “distance”

that W must travel, divided by the “velocity” at which W travels.

At this point in time, the adaptation current W has decayed to W (t∗) = μ− ε,

and V (t∗) = V2, and the voltage is once again free to increase monotonically until

threshold.
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Case 2c: V2 ≤ V ≤ Vth, with V̇ > ε. For the remaining trajectory, I require

a new adaptation current, W̄ ∗, using the decayed gating variables instead of their

initial reset values. However, I also require that W̄ ∗(V2) = μ− ε to have the desired

initial conditions, resulting in

W̄ ∗(V ) = W ∗
0 +W ∗

mV

W ∗
m = gCax

∗(t∗)2 + gKCa
C∗(t∗)

Kd + C∗(t∗)

W ∗
0 = μ− ε−W ∗

mV2.

(4.26)

Equation 4.14 can then be integrated from V2 to Vth, resulting in

I2 =

∫ Vth

V2

dV

μ̄∗ + g2(V − V̄ ∗
2 )

2

=
1√
g2μ̄∗ tan

−1

[ √
g2μ̄∗(Vth − V2)

μ̄∗ + g2(Vth − V̄ ∗
2 )(V2 − V̄ ∗

2 )

]
,

(4.27)

where the new variables: μ̄∗ = μ − W ∗
0 − W ∗

m(V2 − W ∗
m), V̄

∗
2 = V2 + W ∗

m/2g2 are

again defined. Once the voltage has reached threshold, in this case the x and C

variables have decayed from their reset values to new values at the occurrence of

the new spike, x(tspk) = x∗(t∗) and C(tspk) = C∗(t∗). In this case, the fixed gating

variable reset conditions are independent of these threshold values, but in the case

of the spike generated resets, they will depend strongly on these threshold values.

4.4.4 Iterative Theoretical Predictions: Stable and Unstable Limit Cy-
cles

For the QIF model with spike generated reset conditions, the values of xreset

and Creset are not known. However, with the theory described above, for fixed resets,

there are two general types of ISI trajectories: Case 1, μ∗(xreset, Creset) < μ in which
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V̇ > ε and the slow variable approximation holds, and case 2, μ∗(xreset, Creset) > μ

in which the slow variable approximation is violated and the gating variables are

allowed to decay.

For case 1, μ > μ∗, the slow gating variable assumption is that x ≈ 〈x〉 = xreset

and C ≈ 〈C〉 = Creset are constant. In this case, the ISI is easily computed by

Equation 4.17, and a simple result of the Fokker-Plank equation corresponding to

Equation 4.14, gives the steady state voltage distribution

p0(V ) =
1

F (V )
/

∫ Vth

Vr

dV

F (V )
, for Vr < V < Vth, (4.28)

where the normalization constant is in fact the ISI, I0. However, this is only the sub-

threshold voltage distribution, and does not include the voltage distribution of the

action potential, pspk(V ), during the refractory period. To get the full voltage dis-

tribution these two distributions are combined, weighted according to their fraction

of the total ISI:

p(V ) = A

[ I0

I0 + τr
p0(V ) +

τr
I0 + τr

pspk(V )

]
, (4.29)

where A is a new normalization coefficient. This leads to the same gating variable

self-consistency equations from Equations 4.5b&c as in [214]:

〈x〉 ≈
∫

x∞(V )p(V ) dV

〈C〉 ≈
∫

C∞(V, x∞(V ))p(V ) dV.

(4.30)

In this case the iterative algorithm outputs a voltage distribution, p(V), which is

used to estimate the mean gating variables which will be used in the next iteration.
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If they again result in μ > μ∗, the same procedure repeats, and may converge to a

stable sequence of a single ISI. If not, the algorithm will proceed to case 2.

If the reset conditions result in case 2, μ < μ∗, the gating variables will get a

chance to decay, as estimated in Models and Methods. Therefore, because the slow

gating variable approximation is violated, Equation 4.30 can no longer be used as

the self-consistency criterion. Now the artificial action potential must be used to

numerically reset the gating variables, and if the amount they decay is stabilized by

the amount they are reset, a single trajectory and ISI will repeat. However, if they

do not match, a new trajectory will be selected, which may again result in case 2, or

take the algorithm back to case 1.

The algorithm may converge to a single repeated ISI, estimated either via case 1

in the high bias regime, or case 2 in the low bias regime, however, the algorithm may

also result in a sequence of 2 or more ISIs which repeat periodically (i.e. bursting),

or even an aperiodic sequence of ISIs which do not contain any repeating pattern.

The sequences of ISIs and gating variable reset values, can be analyzed via the ISI

return map, φ : ISIk → ISIk+1, to quantify their stability.
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CHAPTER 5
Conclusions

5.1 Summary of Results

In this chapter I will first summarize the main results of chapters two through

four, and then discuss the big picture conclusions we can draw from considering the

vestibular system in the context of optimal coding. I will then consider possible

implications of the boosting nonlinearity found in VO neurons and the nature of

rate and temporal coding in effect. Finally I will discuss some future directions in

which I would continue this line of work.

5.1.1 Irregular afferents are more optimized for the statistics of natural
vestibular stimuli than regular afferents

In chapter 2 we first explore the statistics of the naturalistic stimuli to which

the vestibular system is exposed, by recording and characterizing the natural head

movements of monkeys. Like other naturalistic stimuli, they were found to have non-

Gaussian distributions, with heavy tails characterized by high kurtosis. Furthermore

natural stimuli reached velocities and accelerations much greater than those used in

the lab. Secondly, we characterize vestibular afferents by fitting them to LN cascade

models which predicted that the larger head movements of the distribution tails will

result in considerable rectification and saturation. Furthermore, I use information

theoretic techniques to show that optimal stimulus distribution for irregular afferents

is closer to the natural distribution than that of regular afferents, despite leading to
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more rectification. This challenges the traditional view that the vestibular system

is linear, suggesting that although it behaves primarily linearly, natural stimuli will

regularly elicit nonlinearities.

5.1.2 High conductance state of neurons in vivo explains differences in
behaviour observed in vitro

In chapter 3 we showed that a neuron model developed for type B vestibular

nuclei neurons in vitro exhibited strong subthreshold oscillations in response to step

current stimuli, which translated from a subthreshold resonance to a spiking reso-

nance. These intrinsic cellular dynamics result in the neurons tendency to fire spikes

nonlinearly phase-locked to sinusoidal stimuli in vitro, over a range of stimulus am-

plitudes and frequencies which result in linear rate modulations in vivo. We show

that mimicking the high conductance state of neurons in vivo with an increased leak

conductance and additive current noise, is sufficient to linearize the neuron model

over the required stimulus amplitude and frequency range, allowing it to reproduce

the linear rate modulations of VO neurons measured in vivo. Although neurons are

inherently nonlinear, due to the spike generation mechanism, as well as rectification

and saturation, they can still behave linearly for sufficiently small amplitude stimuli.

However, it does not make sense to say that a neuron either is or is not linear, as

it depends on the stimulus with which it is driven. For sufficiently large amplitude

stimuli, the nonlinear phase locking behavior is expected to re-emerge, despite the

noisy high conductance state in vivo.

187



5.1.3 VO model neuron exhibits boosting nonlinearity due to spike-
triggered adaptation current governed by calcium and calcium-
activated potassium channels

In chapter 4, I characterize the effects of the interplay of calcium and calcium

activated-potassium channels on the underlying bifurcation structure and resulting

f-I curve of the VO neuron model from Chapter 3, showing that increased calcium

conductances can result in a boosting nonlinearity in the f-I curve. I reduce the full

model to a generalized QIF model, which preserves the boosting nonlinearity and

bifurcation structure, with the use of an artificial piecewise linear action potential to

mimic the reset conditions of the calcium and calcium-activated potassium currents.

By further simplifying the reset conditions I show that a boosting nonlinearity is

possible, without resulting in bursting, and derive an analytic equation for the gain,

revealing the mechanistic origins of the boosting nonlinearity. By projecting the

3-variable QIF model into the two dimensions of the membrane voltage, V, and

spike-triggered adaptation current, W, I show that the phase space trajectories in

the low and high bias regions differ qualitatively: at low biases, the trajectories cross

the V-nullcline resulting in a bi-directional AHP and low gain, while at high biases,

the trajectories are free to increase monotonically to threshold. While the analytic

calculations are only possible when the gating variable resets are known, when the

artificial action potential is used, an iterative algorithm was shown to converge close

to the correct firing rate in the limit of vanishing bias current, and very large bias

currents, showing that the original VO model’s boosting nonlinearity can still be

explained by our simplified theory.
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5.2 Optimal Coding in the Vestibular System

5.2.1 Statistical Structure of Natural Stimuli

Similarly to natural stimuli in other sensory systems [5], we found that the

probability distributions of natural head movement velocities and accelerations are

non-Gaussian as quantified by the increased kurtosis of the distributions. Indeed

this was also found for natural head movements in humans [104]. In addition to

stimulus probability distributions, such dynamic stimuli are also characterized by

their temporal autocorrelation function, or its Fourier transform in the frequency

domain. Interestingly, we found linear accelerations to obey a power law (as in

many other sensory modalities [5]), while angular rotations do not (see Appendix

D). This is also particularly surprising, as a recent publication showed that the

natural head movements in humans do not obey a power law (for either linear or

angular movements), due to low-pass filtering by the biomechanics of the body [104].

This highlights the fact that there are significant differences in the natural head (and

likely body) movements of humans and monkeys. For example, humans tend to sit,

stand, and walk upright [104], while monkeys spend much more of their time on all

fours, resulting in significantly different head movements during locomotion.

5.2.2 Maximizing Mutual Information or Minimizing Energy Consump-
tion

Although we have shown that the optimal stimulus distribution for irregular

afferents are better matched to the natural stimulus distributions than regular affer-

ents, it is really due to their resulting response distributions being closer to uniform

(i.e. maximizing entropy). However, their response distributions actually differ sig-

nificantly from uniform, primarily due to afferents spontaneous firing rates, R0, being
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significantly less than the mean of the uniform distribution, Rmax/2. In Appendix B I

show that the natural vestibular response distributions for both regular and irregular

afferents are most consistent with a fixed mean and variance constraint, that results

in the response distribution being peaked at R0 with a Gaussian shape. Assuming

that the mean firing rate is close to R0, these mean and variance constraints corre-

spond to a constraint on the metabolic energy consumption [17]. Similarly, evidence

has been found that neurons in visual cortex exhibit exponential response distribu-

tions when stimulated with natural visual scenes [18], corresponding to a mean firing

rate constraint on energy consumption.

Constraints on firing rate and energy consumption illustrate a trade-off between

increasing information and reducing energy consumption. Furthermore, the data

processing inequality states that information in a signal cannot be increased simply

by subsequent stages of processing. This paints a natural picture where neurons at

the sensory periphery use higher firing rates to ensure as much sensory information

as possible enters the brain, with subsequent stages transforming the information

into a more efficient representation, that costs less energy (i.e. uses lower firing

rates). Indeed, VO neurons do have lower spontaneous firing rates than their afferent

inputs (R0,Aff ≈ 100 spk/s, versus R0,V O ≈ 70 spk/s). Although this suggests VO

cell response distributions would have less mutual information about the stimulus

distributions, it has generally been their information rates that are measured using

dynamic noise stimuli.
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5.2.3 Dynamic Stimuli and the Mutual Information Rate

Vestibular neurons are known to have a finite integration time, with their prob-

ability of spiking influenced only by the stimulus values over the previous ∼ 100ms

[111]. As such, it is their information rates that have been experimentally estimated

using broadband stimuli with variance low enough to not elicit significant rectifica-

tion or saturation. Although VOs were found to transmit less bits per spike [35], the

study used broadband noise stimuli with a flat power spectrum from 0-20 Hz, not

naturalistic stimuli which many other studies have found to result in greater informa-

tion rates [5,12]. It is well known that for dynamic time-dependent stimuli, that the

information maximizing transformation is a “whitening” filter [5]. In appendix D I

show that the evolutionarily newer irregular afferents have more high-pass gain pro-

files, and do therefore produce whiter responses than regulars. However neither canal

or otolith transfer functions result in perfect whitening. Interestingly, canal afferent

transfer functions are well described by a simple low-pass filter with two character-

istic time constants, while otolith transfer functions require fractional-order transfer

functions which have been shown to be equivalent to a weighted linear combination

of many filters with different time constants [216]. This different fundamental trans-

fer function structure, may therefore be a reflection of the difference in linear and

angular stimulus power spectra, where power law indicates that the otolith stimuli

do not have a single characteristic time scale either.

Although irregular afferents clearly perform more whitening than regular affer-

ents, downstream VO neurons receive input from both afferents, with a ratio assumed
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to be roughly 50% of each. It is of course possible that VO neurons perform fur-

ther whitening, as suggested by the masking results and discussion in Appendix

E. While some different combinations of “signal” and “masker” amplitude and fre-

quency combinations were explored in Figure E.5, it is also possible for the “masker”

to be attenuated by the “signal”. This was of course not the case for the data pre-

sented in that study, but is possible for naturally occurring stimuli in which power

can drop by up to 5 orders of magnitude from 0-20 Hz (see Figure D.1). Further-

more, for natural stimulus power spectra, it is unclear how it should be split into

“signal” and “masker” components. Additionally, VO neurons receive convergent

afferent inputs from canals and otoliths, so it is also possible that the functional role

of the VO nonlinearity could be masking between multimodal inputs. Indeed VO

responses to combined linear and rotational movements were recently found to be

“sub-additive” [217], which may be a consequence of the boosting nonlinearity.

5.2.4 Functional Constraints: Active versus Passive stimuli

An important functional role of VO neurons is that they respond differently to

“active” (i.e. self-generated) and “passive” (i.e. externally generate) head move-

ments, with passive stimuli used to characterize their gains and showing ∼ 70%

attenuated gains in response to active movements. They are in fact the first stage of

processing in the brain to distinguish the two types of movements, and it is consid-

ered an essential part of their function in vestibular processing [100]. Interestingly,

almost all natural head movements recorded in monkeys were active self generated

movements (except a few instances of the monkey jumping for a ledge and missing

it). When truly in the wild, however, it is possible they could be carried by another
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monkey, swing from a vine, float on a log or raft, hunt prey, escape predators, and

of course fight with other monkeys. The amplitude and frequency content of such

“passive” head movements is not likely drastically different than those character-

ized here, but they surely make up a much smaller percentage of the animals total

head movements than active movements. It is therefore unlikely that VO neuron re-

sponses will form a uniform distribution, if the majority of responses are attenuated.

It is however still possible for VO neurons to “whiten” natural stimuli, reducing the

correlation time of the spiking response and distributing information more efficiently

between fewer spikes. Finally, even if we imagine an optimal response distribution for

VO neurons, they receive convergent inputs from canal and otolith afferents making

the corresponding optimal stimulus distribution impossible to uniquely define.

Furthermore, with ∼ 70% gain attenuation for all self-generated movements in

VO neurons, they will likely not often elicit the boosting nonlinearity, remaining pri-

marily in the linear response range. However, when passive head movements occur,

they could be of lower amplitude (i.e. being carried by another monkey) or much

larger amplitudes (i.e. fighting, escaping predators, falling from a tree). These larger

amplitude passive stimuli, which are surely most relevant to an animals survival,

likely do elicit the boosting nonlinearity. Thus during truly natural conditions, VO

neurons are likely operating primarily in their linear response regime, with less com-

mon large amplitude passive stimuli driving them nonlinearly across the boosting

nonlinearity, potentially resulting in temporal coding (as discussed in Appendix F).

One question about reafference cancellation in VO cells is why 70-80%? A recent

study showed that the cancellation is adaptive to changing conditions [218]; could
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the boosting nonlinearity be sending an additional signal to drive the learning until

things are attenuated enough to make things linear?

5.3 Coexistence of Rate and Temporal Coding in the Vestibular system

5.3.1 Advantage of a Boosting Nonlinearity

It is well known that when a spontaneously active neuron is driven into rec-

tification, it can lead to a difference in the SR- and
√
RR-coherences, possibly at

lower or higher harmonic frequencies to those in the stimulus, indicative of a tem-

poral code [219]. However, such rectification leads to all stimulus values below a

certain threshold being mapped onto the same firing rate, 0 spk/s, no longer be

distinguishable via a rate code. With a boosting nonlinearity, however, a range of

stimulus values that would have lead to rectification can now still be encoded in

the firing rate with a lower gain (i.e. gain control; see Appendix E.3.3). We have

also shown that such stimuli which elicit the boosting nonlinearity can also generate

higher harmonics in their
√
RR-coherence, due to increased spiking precision also

potentially resulting in temporal coding (see Appendix F). Thus, unlike normal rec-

tification, a boosting nonlinearity could start to produce increased temporal spiking

precision, without completely sacrificing its ability to encode information in its firing

rate simultaneously.

5.3.2 Role of Variability

Although variability is generally though of as detrimental to information pro-

cessing, in chapter 3 we showed that in fact the increased variability of VO model

neurons prevented them from nonlinearly phase-locking to the stimulus due to their

combination of ion channels. These same channels are those that give rise to the
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boosting nonlinearity in its f-I curve, and its ability to burst, as shown in Chapter

4. The increased noise, however, disrupts the bursting in the model neuron, and is

known to have a similar effect in vivo [170]. It is therefore possible that the high

degree of variability is necessary for the VO neurons with a boosting nonlinearity to

not burst and still primarily employ a rate code for low amplitude stimuli. Further-

more, if populations of neurons have independent variability, then it can often be

averaged out in a population code.

5.3.3 Single Neuron versus Population Coding

The increased variability of VO may indeed serve to prevent them from phase-

locking or bursting, allowing them to encode stimuli in their firing rate modulations,

however it has also been shown to result in single VO cells transmitting significantly

less information per second, and per spike, than either afferents [35]. However, as long

as this variability is independent across a population of VO cells, it can be averaged

out, which appears to be the case for low amplitude stimuli. For larger amplitude

stimuli which elicit the boosting nonlinearity, VOs were shown to produce higher

harmonics in the
√
RR-coherence due to higher spiking alignment across responses

to repeated presentations of the same stimulus (see Appendix F). One can however,

easily imagine this was a population of neurons all responding to one presentation of

the stimulus, and infer that this translates into a population synchrony, or increased

coincident spiking. But a real population of VO cells will have a distribution of

properties, from baseline firing rate, gain, and CV, to ion channel concentrations and

shapes of boosting nonlinearities [36]. Such heterogeneities across populations can

also act as variability, reducing the degree of population synchronization. However,
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the vestibular nuclei is also known to contain gap [27] junctions which can couple

cells electrically (rather than via slow chemical synapses) which can serve to either

promote synchrony or anti-synchrony in different conditions [220].

5.4 Future Directions

The vestibular system has been extensively studied and is well known for its

linearity in encoding dynamic stimuli with a rate code. Many people in fact claim the

vestibular system is linear, and we can see now that for the small amplitude stimuli

generally used for its characterization it will indeed behave linearly. However, we

have shown that natural head movements are often large enough to drive vestibular

afferents out of their linear range, causing it to behave nonlinearly. And in fact central

VO neurons in VN, appear to have and additional nonlinearity (beyond rectification

or saturation) which has likely evolved for a particular purpose. Furthermore, using a

stimulus to show which neurons transmit the most information, is really dependent

on which stimuli is used and should be estimated using as natural a stimulus as

possible.

One possible future direction would be to stimulate vestibular afferents and

VO cells with the naturalistic stimuli that we have recorded in freely moving mon-

keys, to see if the natural correlation structure and amplitude distributions result

in different amounts of information. However, these natural stimuli were almost all

self-generated, so applying them passively to the animal in the lab would not be

exactly the same. This should not be a problem for afferents, as they are known to

respond the same way to passive and active stimuli, and also each respond to a sin-

gle dimension of motion (i.e. rotations or translations, but not both). However VO
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neurons are known to respond differently to active and passive stimuli, and to truly

record them in natural conditions the animal would need to be freely moving while

recording from the neurons, which poses a huge technical challenge. Furthermore,

VO cells receive convergent input from both canal and otolith afferents, and natural

movements tend to involve combinations which will activate both afferent classes

simultaneously. Generally, experiments showing the attenuated response to active

movements, also show the responses to passive application of the same (or as simi-

lar as experimentally possible) stimulus profile, which would be virtually impossible

(with current lab equiptment) for freely moving monkeys.

An alternative approach would be to continue using artificial stimuli in the

lab, but systematically varying stimulus attributes, such as amplitude and frequency

content, to map out the neural transformations and see how they may depend on

the stimulus applied. In VO cells for example it has been shown that yaw rotations

elicit the boosting nonlinearity. However, our analysis would suggest the same result

should occur with linear acceleration stimuli as well. Our results from Appendix

E consider the possibility of high frequency stimulus masking low frequency stimuli

within the same yaw stimulus dimension. Under natural conditions, however, perhaps

this nonlinear combination of stimuli would occur for combined stimuli from different

movement axes. A recent study in fact found combined rotations and translations

of low amplitudes, result in sub-additivity [217]. However, if these combined stimuli

had sufficiently large amplitudes to elicit the boosting nonlinearity when combined

but not separately, this may be explained by the boosting nonlinearity. Further

studies are needed to explore this interesting possibility.
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Finally, our VO neuron model which exhibits a boosting nonlinearity similar

to that recorded from neurons in vivo, was actually developed to model vestibular

neurons in vitro. However, the in vitro studies found no evidence for the actual

boosting nonlinearity (unpublished observations). Although the model behaviour

and in vivo neuron behaviour is quite similar, we have not proven that this is in fact

the actual mechanism at play in vivo. One way to test this would be to measure

the boosting nonlinearity in vivo, and then apply a pharmaceutical to block the

calcium channels, see that the boosting nonlinearity disappears. This again poses

an extreme technical challenge. An alternative would be for the in vitro studies to

explore a wider range of stimulation protocols in search of the boosting nonlinearity,

or alternatively providing concrete evidence that it is not present in vitro.

Additionally, further work with the VO neuron model could be done to char-

acterize how it is altered by the effects of the high conductance state of neurons in

vivo. For example, it is known that such conditions disrupt bursting in neurons in

vivo [170], simply resulting in increased spiking variability. It is possible however

for some signature of bursting to remain, such as negative ISI correlations, or a de-

pendence of firing rate variability with stimulus. Further characterization of the VO

models behaviour under noisy in vivo conditions could possibly provide a signature

which could be experimentally verified. Furthermore, such a model could be used

to test the LN model representation of the boosting nonlinearity for increasingly

larger amplitude stimuli, as well as some of the predictions about its possible role in

temporal coding and population synchronization.
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APPENDIX A
Sigmoidal and exponential f-I curve fitting.

In the publication presented in Chapter 2, we used afferent LN models were fit

with sigmoidal nonlinearities. However, many neurons exhibit a more asymmetric

nonlinearity captured by an exponential function. Additionally, instead of separating

linear and nonlinear components into LN models, we can directly plot the firing rate

frequency versus the stimulus or current input (a.k.a. f-I curves) generating a map

directly from head velocity stimulus to firing rate response. Such f-I curves are there

for dependent on the frequency content of the stimulus used to generate them, with

the average frequency-dependent gain captured by the slope of the f-I curve at zero

stimulus. In Figure A.1, we show and example neuron fit to a sigmoid and exponential

function in panels A and B, as well as the population of regular canal afferent fits to

sigmoid, and the population of irregular canal afferent fits to exponentials in panels

C and D. Sigmoids were parametrized as in the methods section above, Equation

2.5, which exponential f-I curves were parametrized as,

Texp(x) = max
{
c3[1− exp−c1(x−c2)], 0

}
, (A.1)

where the max{, } operation is to ensure the resulting firing rate is always positive.

In addition, however, to smooth out the f-I curve near the rectification point, captur-

ing the effects of noisy spiking, convolution with a Gaussian function with an extra

parameter for its width, was also used. Panel E shows the fits adjusted-R2 values,
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and that all fits were very good, but for irregular afferents only, exponentials were

significantly better than sigmoids. To compare the basic afferent properties, panel F

shows the average gain (top) of each population, with irregulars being significantly

greater than regulars, the average firing rate at 0 deg/s (i.e. baseline firing rate,

middle), and maximum firing rate (bottom) with no significant differences. There

parameters are in reasonable agreement with the estimates of these parameters di-

rectly from the neural response data, given the frequency content of the stimuli used

to generate them, shown in panel G. Although the irregular afferent f-I curves were

better fit by exponentials, this was not the case for the LN model nonlinearities

which were constrained to have a max slope of ∼ 1, due to the separation of the the

linear filtering from the nonlinear function.
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Figure A.1. Sigmoidal versus exponential f-I curve fitting.
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Figure A.1 (previous page). (A) For an example canal afferent neuron, the
angular velocity (black) and filtered firing rate response (red) are superimposed, as
functions of time. (B) The mean firing rate with SE bars, is plotted as a function of
head velocity stimulus, using the same method as in Figure 2.4, but without the
linear prediction. Superimposed are the best fit sigmoid and exponential functions,
parametrized according to Equation 2.5 and Equation 2.12, respectively. (C)
Population of regular afferents fit with sigmoidal functions (red), with mean
sigmoid (black) with SE (grey shading). (D) Population of irregular afferents fit
with exponential functions (green), with mean sigmoid (black) with SE (grey
shading). (E) Population average R2 values of sigmoidal and exponential fits,
showing no significant different for regular afferents, but a significant difference for
irregulars (p < 0.05). (F) The 3 main parameters of the nonlinearities are
compared for regular and irregular fits, with a significant difference for their gains
(i.e. max slope (top), p < 0.05 ), and no significant difference for their spontaneous
firing rates (i.e. R0, middle), and no significant difference in Rmax (bottom). (G)
The average frequency content of the stimuli used to generate the f-I curves.
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APPENDIX B
Derivation of the optimal stimulus distribution, with and without

constraints, in the low noise limit.

The results of the following derivations are outlined in [112], but I include the

details of the calculations here for reference.

B.1 The Cramer-Rao Bound

Consider a neuron which transforms a stimulus x into a response y, which is

then used to estimate x, x̂(y). If the estimator is unbiased then its mean value is

equal to the true mean, ∫
dy x̂(y)p(y|x) = 〈x̂(y)〉p(y|x) = x. (B.1)

If the estimator is unbiased , then its variance,

σ2
x = 〈(x̂− x)2〉p(y|x), (B.2)

is bounded from below,

σ2
x ≥ 1

J(x)
, (B.3)

where J(x) = −〈 ∂2

∂x2 ln p(x|y)〉 = 〈( ∂
∂x

ln p(x|y))2〉. If the estimator is efficient then

it saturates the bound. Maximum-likelihood estimators are known to be efficient in

the limit of large N observations, where p(�y|x) is the probability of observing the

set of responses �y (i.e. N independent neurons). In further derivations here, we will

need to assume that we are in such a limit.
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B.2 Relationship between Fisher and Mutual Information

The mutual information between a stimulus and response is given by

I(y, x) =

∫
dy dx p(y|x)p(x) log2 p(y|x)

p(y)
. (B.4)

Let us assume that there is a unbiased efficient estimator x̂(y), with μx̂ = x and

σ2
x̂ = 1/J(x). Since x → y → x̂, rather than consider the mutual information

between x and y, we can start by considering the mutual information between the

estimator x̂ and its its mean x:

I(x, x̂) = H(x̂)−
∫

dx p(x)H(x̂|x), (B.5)

where H(x̂) = − ∫ dx̂ p(x̂) log2 p(x̂) is the entropy of the estimator. Since Gaussians

maximize entropy for a fixed mean and variance, and conditioning reduces entropy,

we have

H(N (μx̂, σ
2
x̂)) ≥ H(x̂) ≥ H(x̂|x), (B.6)

where H(N (μx̂, σ
2
x̂)) = 1

2
log(2πeσ2

x̂) = 1
2
log( 2πe

J(x)
). We can then rewrite Equation

B.5 as,

I(x̂, x) ≥ H(x̂)−
∫

dx p(x)
1

2
log

(
2πe

J(x)

)
︸ ︷︷ ︸

≥H(x̂|x)

. (B.7)

Now by the data processing inequality, I(y, x) ≥ I(x̂, x), which gives

I(y, x) ≥ H(x̂)−
∫

dx p(x)
1

2
log

(
2πe

J(x)

)
. (B.8)
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Finally, if x̂ is sharply peaked at its mean (i.e. J(x) � 1, or σ2
x � 1) then H(x̂) =

H(x), and we can write

I(y, x) ≥ H(x)−
∫

dx p(x)
1

2
log

(
2πe

J(x)

)
= Ifisher.

(B.9)

If J(x) is non-Gaussian, then I > Ifisher, however MLEs are known to be Gaussian in

the limit of large N. For a single neuron, this is equivalent to a large integration time

or small σ limit. We will assume that we are in the small noise limit, and consider

effects of high noise intensity separately.

B.3 Calculating Fisher Information

For a neuron with noisy response given by y = T (x) +
√

V (x)η, where P (η) is

a normal distribution with zero mean and unit variance, the conditional probability

is given by

p(y|x) = N (T (x), V (x))

=
1√

2πV (x)
e−

(y−T (x))2

2V (x) ,
(B.10)

where V (x) = σ2g(x). This gives rise to:

ln p(y|x) = −1

2
ln(2πV (x))− 1

2

(y − T (x))2

V (x)
(B.11)
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∂

∂x
ln p(x|y) = ∂T (x)

∂x

(
y − T (x)

V (x)

)
+

1

2

∂V (x)

∂x

[(
y − T (x)

V

)2

− 1

V (x)

]

=
∂T (x)

∂x

(√
V (x)η

V (x)

)
+

1

2

∂V (x)

∂x

[(√
V (x)η

V

)2

− 1

V (x)

]

=
∂T (x)

∂x

(
η√
V (x)

)
+

1

2

∂V (x)

∂x

(
η2 − 1

V (x)

)

= T ′(x)
(

η

σ
√

g(x)

)
+

1

2
σ2g′(x)

(
η2 − 1

σ2g(x)

)

=
1

σ

[
ηT ′(x)√
g(x)

+ σ(η2 − 1)
g′(x)
2g(x)

]

(B.12)

The term on the left is O(1), while the term on the right is O(σ), and thus in the

limit of small σ the first term dominates and the second can be neglected. Letting

y∗ = (y−T )/V , and (y−T )/
√
2V = z, we have dy =

√
2V dz, which gives y∗ =

√
2
V
z,

and

〈( ∂

∂x
ln p(y|x))2〉 = 1√

π

∫
dz
[
T ′2
(
2

V

)
z2
]
e−z2 , (B.13)

which results in

J(x) =
T ′2

V
. (B.14)

B.4 Information Maximization: The Optimal Stimulus Distribution

In the limit that Equation B.9 is an equality, we have

I(y, x) = −
∫

dx p(x) log p(x)−
∫

dx p(x) log

√
2πe

J(x)
. (B.15)
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Now if we want to know the stimulus distribution that maximizes I(x, y), then we

must solve ∂I(x,y)
∂p(x)

|p(x)=p∗(x) = 0, which results in

∂I(x, y)

∂p(x)
|p(x)=p∗(x) = − ln p∗(x)− ln e1 − ln

√
2πe

J(x)
= 0. (B.16)

Exponentiating to solve for p∗ gives

p∗(x) =

√
J(x)

2πe
, (B.17)

which when normalized results in

pJ(x) =

√
J(x)∫

dz
√

J(z)
, (B.18)

which is known as Jeffrey’s prior. Then plugging in the equation for J(x), and taking

the limit of vanishing noise, the optimal stimulus distribution is reduced to

popt(x) = cT ′(x), (B.19)

where c is simply the normalization coefficient. In this vanishing noise limit, we find

the optimal stimulus distribution to be that which the deterministic transformation

y=T(x), results in a uniform response distribution. This is the response distribution

which maximizes response entropy, which is equivalent to maximizing information in

the vanishing noise limit.

A similar derivation is presented in Bialek’s Biophysics: Searching for Principles

[221] in section IV-C. Although this derivation appears somewhat simpler, it also

makes the assumption that the noise intensity is in the vanishingly small limit, for

essentially the same reason of replacing the conditional noise entropy, with that of
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a Gaussian. The derivation presented here in fact gives more details underlying this

assumption of low noise intensity.

B.5 Entropy Maximization with Constraints

In the limit that of vanishing noise, maximizing information becomes equivalent

to maximizing the entropy of the response distribution (see Equation 1.3), H(y) =

− ∫ dyp(y) log p(y). It is easily shown that the response distribution which maximizes

entropy is the uniform distribution from 0 to Rmax To impose a constraint that the

response distribution have a fixed mean and/or variance, we must maximize the

following equation,

H∗(y) = H(y)−λ0

(∫
dyp(y)−1

)
−λ1

(∫
dyyp(y)−μy

)
−λ2

(∫
dy(y−μy)

2p(y)−σy

)
,

(B.20)

It is well known that with only a constraint on the response mean, the optimal

distribution becomes exponential [5], instead of uniform, with its peak at a firing rate

of zero. This is perhaps reasonable for cortical neurons that do not fire spontaneously,

and with very low mean firing rates (∼ 1−5spk/s). However, vestibular afferents have

a spontaneous firing rate of R0 ∼ 100spk/s, and the natural stimulus distributions

show that the most common stimulus is generally to be at rest (i.e. 0 deg/s head

velocity). It is therefore most likely that under natural conditions, vestibular afferents

most common firing rate is their spontaneous resting rate R0. Here we see that with

both mean and variance constrained to be less than that of the uniform distribution,

the optimal response distribution is Gaussian form (possibly with clipped tails)

p∗(y) = Ae−(y−M)2/2V , (B.21)
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with normalization constant given by

A =
2√

2πV [erf( M√
2V

) + erf(Rmax−M√
2V

)]
, (B.22)

due to saturation and rectification of neurons at y = 0 and y = Rmax. Thus, with the

usual parametrization of M and V , the response distribution is being constrained to

have the following mean and variance:

μy = M + AV [e−M2/2V − e−(Rmax−M)2/2V ]

σ2
y = V [1− AMe−M2/2V + A(M −Rmax)e

−(Rmax−M)2/2V ]− (μy −M)2.

(B.23)

In the limit where the variance constraint is sufficiently that there is no saturation

or rectification, the response distribution has μr = M , and σ2
r = V . Although a

variance constraint on its own does not effect the mean, and results in a Gaussian

response distributions with mean of Rmax/2, the additional mean constraint is needed

to lower mean of the Gaussian, without turning it into an exponential peaked at zero.

In Figure B.1 panel A shows three sets of constraints, with only a variance constraint

and response distributions peaked at Rmax/2 (left), and additional mean constraint

resulting in a peak at R0 ≈ 100, and an lowered mean constraint resulting in a peak

at 0 (right). In the case of only an increasing variance constraint, the mean does not

change. However, for the lowered mean constraints there is more rectification (i.e.

probability of R = 0 spk/s) than saturation (i.e. probability of R = Rmax spk/s), so

as the variance constraint is lowered, the distribution mean also lowers, even when

the peak response probability is constrained to remain fixed. In this way, a variance
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constraint combined with a mean constraint can still serve the purpose of lowering

the mean firing rate and rate of energy consumption.

Once we have chosen a constrained-optimal response distribution, we can then

use the nonlinear f-I transformation y = T(x) (defined in Appendix A, and Sec-

tion 2.2.5), to transform the optimal response distribution into an optimal stimulus

distribution, according to

p∗(x) = p∗(T (x) = y)T ′(x)︸ ︷︷ ︸
p0(x)

, (B.24)

where p0(x) is unconstrained optimal stimulus distribution before normalization. In

this Appendix, we use nonlinear transformations from stimulus to response and visa

versa, with the ‘gain’ accounted for by the slope. If we were using an LN model

with transfer function filtering, we would also have to use the inverse filters to get

from the optimal linear prediction to the optimal stimulus distribution, as done in

Section 2.1 above. In Figure B.1 panel B, we show simplified example f-I curves

for idealized regular (sigmoidal f-I) and irregular (exponential f-I) afferents, both

with Rmax = 400 spk/s, and their firing rate response at zero stimulus aligned to

R0 = 100 spk/s, indicated by dashed red lines. The bottom panels then show the

optimal stimulus distributions on both linear and logarithmic scales to emphasize the

central peak and the tails, respectively. For the unconstrained case, the sigmoidal

f-I curve results in a Gaussian optimal stimulus distribution, which has its peak 0

deg/sec, because the uniform response distribution has a mean of Rmax/2 > R0. On

the other hand, the exponential irregular afferent f-I curve results in an asymmetric

stimulus distribution which is peaked closer to 0 deg/s, with a longer tail to the
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right than the left, due to the asymmetric curvature in the saturating and rectifying

regions of the f-I curve. To compare the shape of the optimal distribution tails, on

the log scale (bottom right panel) we see that the exponential f-I results in a tail

that decays linearly to the right, much more similar to the natural distributions tails.

However, the left tail is still parabolic on the left side (as for the sigmoidal f-I) due

to the Gaussian smoothing of the f-I. If we now compare the constrained-optimal

stimulus distributions, on the linear scale we can see the distributions peaks shift

toward the natural distribution peak at the dashed red line, due the the constrained

response distributions becoming more peaked at R0. On the log scale, we can see

that the left tails of the optimal stimulus distributions do not change, while the right

tails are reduced in length, with some change in shape, reflecting that higher firing

rate responses near saturation occur with a reduced probability than the uniform

distribution.

Although we have seen that the natural response distribution is more consistent

with mean and variance constrained-optimal response distributions, in doing so we

have assumed the low or vanishing noise limit, which is poor assumption for the

more variable irregular afferents. We next investigate how the optimal stimulus

distributions should me adjusted in the high noise limit.
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Figure B.1. Vestibular afferents and natural stimulus statistics are more
consistent with constrained optimal coding.
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Figure B.1 (previous page). (A) Response distributions are plotted for various
combination of constraints on μy and σ2

y , with the unconstrained uniform
distribution in black. In the left panel, μy is not constrained and all distributions
have the same mean as the uniform distribution, μy = Rmax/2 = 200 spk/s, and
various variance constraints with σ2

y < σ2
uni. The middle panel is the same, but now

with μy chosen such that the resulting in distributions peaked at the afferents
spontaneous firing rate, R0. The right-most panel is again the same, but with μy

constrained such that the response distributions are peaked at 0. (B) The top left
and middle panels show the average f-I curves for regular afferents (sigmoid fit) and
irregular afferents (exponential fit), from Figure A.1, with Rmax parameters
adjusted to be equal to 400 spk/sec. The right-most panel show the family of
constrained optimal response distributions which result in the distributions peaked
at R0, indicated by a dashed red line. In the bottom two panels, the corresponding
optimal stimulus distributions are plotted with linear and logarithmic y-axes for
comparison. Superimposed are the natural stimulus distributions for the yaw axis
in blue. The vertical dashed red line indicates that a head velocity stimulus of zero
results in a firing rate of R0.
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APPENDIX C
Optimal stimulus distribution in the high noise limit: Blahut-Arimoto

algorithm

In Chapter 2 and the derivation in Appendix B, the assumption of vanishing

noise (i.e. low firing rate variability) is used to calculate the optimal stimulus dis-

tribution. However, irregular afferents are known to have high variability relative to

regular afferents, and so we now use the Blahut-Arimoto (BA) algorithm to compute

the optimal stimulus distribution for increasing levels of variability to quantify the

effect on the optimal stimulus distribution.

The mutual information between stimulus and response distributions can be

written as

I(X, Y ) = −
∫
y∈Y

dy p(y) log2 p(y)︸ ︷︷ ︸
H(y)

+

∫
dx p(x)

∫
dy p(y|x) log2 p(y|x)︸ ︷︷ ︸
H(y|x)

, (C.1)

where the first term is the response distribution entropy, and the second term is the

“noise entropy”, which can be neglected when only a deterministic transformation

y = T (x) is used. When this transformation is in fact stochastic, such as y =

T (x) + σ2
yN (0, 1), where N (0, 1) is a Gaussian distribution with zero mean and unit

variance. In this case, p(y|x) is the probability of a response y, given a stimulus value
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x, defined as

p(y|x) = A(x)e(y−T (x))2/2σ2
y , for 0 ≤ y ≤ Rmax

= 0 . . . . . . . . . . otherwise,

(C.2)

where the additional criterion that p(y|x) = 0 for y > Rmax or y < 0, is required

when the noise variance is not sufficiently small compared to T(x). In this region,

the noise distribution is no longer Gaussian and has a slightly reduced variance. In

the limit that σ2
y → 0, p(y|x) is reduced to a delta function in y, peaked at T(x),

and H(y|x) → 0 and our problem reduces to maximizing the response entropy. How-

ever, for large σy, maximizing mutual information requires a balance of maximizing

H(y), while minimizing H(y|x). Although this problem cannot be solved analyti-

cally, an iterative scheme known as the Blahut-Arimoto (BA) algorithm has been

used to estimate the optimal stimulus distribution [20, 79, 222]. In this case, an

initial guess of the uniform stimulus distribution is used, and the algorithm itera-

tively increases/decreases stimulus probability in to increase the overall information

transmission, according to

qn+1(xi) =
1

Z
qn(xi)e

∑
k q(yk|xi) log2

q(yk|xi)
qn(yk) , (C.3)

where qn(yk) =
∑

i q(yk|xi)qn(xi), and Z is a normalization constant to ensure that∑
i qn+1(xi) = 1. As done by Machens et al. [20], because the resulting stimulus

distribution is not unique and often results in discontinuous spikiness, the resulting

distribution is low-pass-filtered as much as possible, while preserving 99% information

transmission.
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In Figure C.1, panel A shows the matrix of the conditional probability distri-

bution p(y|x), a simplified sigmoidal nonlinearity centred at x=0, with Rmax = 400

spk/s, and a constant σy = 30 spk/s, however, we consider cases with a range of

values for σy, as indicated by the inset in panel C. Panels B and C show the result-

ing optimal stimulus and resulting response distributions, with those in bold green

representing those calculated for the zero noise case, without the BA algorithm.

Comparing to the rest of the distributions for increased noise, it is clear what the

strategy is: reduce the probability in regions where T ′(x) is lower, and increase the

stimulus probability in regions where the noise entropy contribution is lowest, due

to the rectification and saturation. In panel D, we can see the results on the mutual

information, where the BA optimal mutual information (black) can be seen to always

be higher than that assuming zero noise, and the difference becomes larger at higher

noise levels, although by a very small amount. The amount of mutual information

resulting from the use of the natural stimulus distribution is also plotted in cyan

for comparison and is considerably lower than both. In the bottom of panel D, we

can see the response entropy and noise entropy plotted separately, showing how the

response entropy is reduced with increasing noise std for the BA algorithm, which

allows its noise entropy (dashed black) to increase by less than the dashed red and

cyan curves.

Although the optimal stimulus distribution has a significantly different shape

for Nsd=30, the resulting change in the predicted information capacity is negligible

compared to how much lower the mutual information is for the natural stimulus dis-

tribution. This suggests that in high noise conditions, there is a larger family of near
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optimal distributions than for the Nsd=0 case, and they consist of distributions with

increased probability in the tails. However, because stimulus values that are small or

large enough all contribute equally to the response and noise entropy, the algorithm

cannot distinguish them, and will spread the stimulus probability distribution as far

out into the range of x, as the defining matrix p(y|x) allows. An additional issue

with the BA algorithm, is that it uses a projection of the mutual information as a

function of stimulus value, I(x), in order to dictate how the probability is altered,

however, it is known that this information projection is not unique and that multiple

representations result in the same total mutual information I =
∑

x I(x). Finally,

considering the conditional response distributions and Equation 2.16 for the mutual

information, we can see that it is a weighted average of the KL distance between each

different conditional distribution p(y|x), and the entire response distribution p(y),

which knows precisely how often each stimulus value occurs in time. However, we

have only been considering the mutual information in bits between two static prob-

ability distributions. Because vestibular stimuli are highly dynamic in time, it is the

mutual information rate that has been experimentally estimated in for vestibular

neurons, however, for artificial Gaussian filtered-noise stimuli of a particular inten-

sity [35, 38]. In the next Appendix, we briefly consider the optimal coding of time

dependent stimuli.
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Figure C.1. Optimal stimulus distribution in the high noise limit:
Blahut-Arimoto algorithm. (A) The matrix representing the noisy neuronal
transformation, p(r|s), for a simplified sigmoid centred at zero, with Rmax = 400
spk/sec, and a constant noise standard deviation (std) of 30 spk/sec. The noise
distribution is Gaussian except in regions near rectification and saturation of the
mean sigmoidal f-I. (B-C) The optimal stimulus, and corresponding response
distributions are plotted for various increased noise std’s, computed via the
Blahut-Arimoto (BA) algorithm. For comparison, the optimal stimulus distribution
with no noise is superimposed in bold green. (D) The information is plotted (top
panel) for the optimal distributions computed via the BA algorithm (black), as well
as with no noise (red), and the natural yaw stimulus distribution (cyan). The
contributing response and ‘noise’ entropies are plotted (bottom panel) showing how
in high noise conditions, the noise entropy is comparable to the response entropy
and should not be neglected. Due to the reduced noise entropy at stimuli which
result in saturation and rectification, the BA algorithm moves increasing amounts
of probability into these regions, where T’(s)=0, which results in reduced response
entropy as well as reduced noise entropy.
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APPENDIX D
Frequency Content of Natural Stimuli and Whitening

In the previous two appendices and Chapter 2, we have considered the mutual

information between the stimulus distribution and resulting response distribution.

However, we know that vestibular afferents receive dynamic time varying stimuli and

produce time varying responses. In this appendix I consider optimal coding applied

to such dynamic stimuli, or maximization of the information rate (i.e. “whitening”).

Because the mutual information between two time varying signals is known to

increase with the length of the signals, in such cases one generally estimates the

information rate, given by Equation 1.6, or the information rate density, Equation

1.7. Although these time series are characterized by their probability distributions,

at each point in time that a new values is drawn, it is not necessarily statistically

independent from the previous point in time. This correlation time is captured by

the Fourier transform, or power spectrum of the signal. So for two time series drawn

from the same probability distribution, that with the shorter correlation time, will

have the higher entropy rate. In fact, for a given response distribution, the power

spectrum which maximizes its entropy rate is a flat, or white power spectrum, for

which the signals autocorrelation function is a delta-function, and all point in time

are statistically independent. This means that for the optimal neuronal transforma-

tion, the response with the greatest information rate, will appear as white noise (as

described in detail in Spikes [5]). Of course simply measuring a white noise response

219



from a neuron does not tell you it is behaving optimally, one must use a natural-

istic stimulus and still quantify the mutual information between the stimulus and

response in some way. And furthermore one must know what naturalistic stimuli

look like. More specifically, the power spectrum of the natural stimuli quantify their

characteristic time scale and temporal correlation structure, and an optimal tempo-

ral filter will have evolved a gain curve that is precisely tuned to the stimulus power

spectrum to result in white noise, known as a “whitening” filter [5].

It is also discussed in Spikes, how natural stimuli tend to follow a power law

distribution, which is characterized by a linear power spectrum when plotted on log-

log axes [5]. Such natural stimulus power law distributions have been found almost

ubiquitously in recorded statistics of natural stimuli, making it particularly striking

to learn that natural head movement stimuli in humans, are in fact non-power law

and exhibit a characteristic time scale [104]. Furthermore, this study showed that

the power spectra of motion stimuli recorded at the subjects feet during running, or

fixed to a seat during a metro ride, are in fact power laws as expected, and it is in fact

low-pass filtering due to body mechanics which destroy the power-law and result in

a characteristic time scale of natural head movement stimuli. To further investigate

this result, we here consider the frequency content of natural head movements in

monkeys, the power spectra of which are plotted in Figure D.1, on a log-log scale in

panel A and a linear scale in panel B. He we find the surprising result that unlike in

humans, natural head movement stimuli in monkey do obey a power law for linear

accelerations, but not for angular rotations. A dashed black line with slope -4/3 is

plotted for the linear accelerations in the top panel, as well as in for the angular

220



rotations in the bottom of panel A. Although lines could be fit through different

regions of the angular motion spectra suggesting it could be piecewise linear, it is

quite clear that linear accelerations obey a power law while angular rotations do not.

As the previous study in humans found the power law behaviour in the foot motion

to be low-pass filtered before causing the head to move, we also compare the power

spectra of natural movements for behaviours classified into different activity groups,

low, medium, and high (as described in detail in the Methods 2.2 above). Here we

see in panel C, that the linear accelerations obey a power law with the same slope,

independent of the particular activities being performed. In fact, during the low

activity behaviours, the animal is often seated, such that the power law head motion

could not possibly originate in the foot (or hand) movements during locomotion, nor

the vibrations of the platform on which the monkey was seated (i.e. the monkey

did not ride the metro). This suggests that there is a fundamental difference in

the head movements of humans and monkeys, as well as the linear and rotational

movements. For one thing, humans generally walk upright with gravity pointing in

the z-direction, most of the time. Monkeys, on the other hand, tend to walk on all

fours, with clearly visual differences in head movement and orientation with respect

to gravity. As such, the gravity can simply be subtracted from the z-axis for human

data, while for monkeys the gravity vector moves from axis to axis as the head

orientation changes, and can not be simply subtracted to give a zero-mean signal.

Although we could speculate further as to the bio-mechanical differences between

humans and monkeys that cause these differences, we are primarily concerned with
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whether or not canal and otolith afferents have been differentially evolved to process

these natural stimuli somehow optimally.

Since we already have equations for the well known canal and otolith transfer

functions, as defined in the Methods section above, we simply filter the natural

stimuli through the transfer functions to predict the afferent firing rate responses

(If we wanted to use the angular acceleration stimulus instead of angular velocity,

we would simply have to modify the transfer function to take an acceleration input,

and the predicted response would be the same). We then plot the resulting response

power spectral on log-log scales, with the same power law lines with slope -4/3,

for otolith afferents in Figure D.2 panel C, and for canal afferents in panel F. Here

we can see that the irregular afferents certainly result in responses that are whiter

than regular afferents, however they are still far from completely white. So in both

cases irregular afferents are more optimal due to their more high-pass gain profiles

as compared to the much flatter regular afferent gain profiles (compare panels B

and E). However, the fact that linear motion is power-law and angular motion is not,

should also be reflected in the shapes of these irregular afferent high-pass gain curves.

The canal afferent transfer functions (Equation 2.1) are comprised of two zeros and

two poles, with three time constants, to give the canal afferent transfer functions a

gain curves up and down at the characteristic frequencies set by the time constants,

which are based on the mechanics of the semi-circular canals and inverted pendulum

model of the cupula. It is therefore possible that the cupula in different animals

have evolved to have different sizes, resulting in different characteristic time scales,

that are in some way matched to the characteristic time scales of the angular head
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movement. Because the linear acceleration movements obey a power law, they cannot

be said to have a single characteristic time scale, and are often referred to as scale-

invariant or fractal, exhibiting the same power law structure at different sampling

resolutions. Is this fundamental difference in linear accelerations reflected in the

otolith transfer function? In fact, otolith transfer functions often require fractional

exponents on their zeros, as is the case for our otolith transfer function used in

Equation 2.2. Although such fractional-order transfer functions are consistent with

fractal calculus (a subject intuitively understood by very few), it has been shown that

the linear combination of many filters with a distribution of time-scales can result

in fractional-order transfer functions, causing them to have no single characteristic

time scale. This lack of characteristic time-scale is precisely what differs between

linear head movements and angular head movements, and so it is perhaps not a

coincidence that the canal and otolith transfer functions differ in the same way.

Although irregular afferent transfer functions clearly do whiten the stimulus more

than regular afferents, it is unclear whether this is truly their goal or not. If so,

it is possible that subsequent stages of processing by VO neurons in the vestibular

nuclei serve to further whiten the signals carrying such head movement stimulus

information.
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Figure D.1. Linear head accelerations obey a power law, while angular
head velocity does not. (A) Frequency content of natural linear head
accelerations (top) and angular head velocities (bottom) for all three axes, shown
on a log-log scale. Dashed black line has a slope of ∼ −4/3, indicating a clear
power law distribution for linear accelerations, but not for angular rotations. (B)
Same frequency spectra as in A, but on a linear scale, to facilitate comparison. (C)
Power spectra for linear accelerations on a log-log scale, separated into low (top),
medium (middle), and high (bottom) behavioural activities. (D) Same as C, but
for angular rotations. Axis scales, and dashed black lines are the same as A to
facilitate comparison. 224



Figure D.2. Irregular afferent transfer functions whiten frequency
spectra more than regular, consistent with their being more optimal.
(A) Power spectra for natural linear head accelerations (as in Figure D.1A), with
dashed black line of slope ∼ −4/3. (B) Head acceleration stimuli are filtered
through the regular and irregular otolith transfer functions defined in section 2.1.
(C) Power spectra of regular (top) and irregular (bottom) otolith afferent response
predictions, with the same dashed black line for comparison. (D-F) Same as A-C,
but for natural head rotations and canal afferent transfer functions (also defined in
section 2.1).
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APPENDIX E
The Vestibular System Implements a Linear-Nonlinear Transformation

In Order to Encode Self-Motion

In Chapter 3 we showed that in vivo conditions linearized our VO neuron model,

explaining VO cells generally linear behaviour observed in vivo. However in Figure

1.2E we saw evidence for some nonlinear behaviour in vivo as well. In this Appendix,

we explicitly test VO cells for nonlinear behaviour, not due to rectification or satu-

ration. To this end, vestibular afferents and VO cells were stimulated with low and

high frequency stimuli presented separately, as well as together in combination. As

a linear system must respond the same to a stimulus whether presented alone or in

combination with another, changes in the gain and stimulus-response (SR) coherence

were assessed as a test of linearity. Additionally, we generated input-output curves

from the stimulus and response data, and compared its linearity to that of the gain

and SR-coherence. Finally, we present a theoretical model to explain how an input-

output nonlinearity can result in a nonlinear “masking” of the gain and SR-coherence

at low frequencies, when a high frequency stimulus is presented concurrently. This

is presented in the form of a published paper in which I am 2nd author, my specific

contributions to which are detailed in the Author Contributions section.
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E.1 Introduction

Multiple representations of the sensory environment are found across the hier-

archical stages of sensory systems [223]. Each of these representations is defined by

the activities of a population of neurons in response to their afferent inputs. How

neurons decode and then encode sensory information, and the ways in which neural

strategies for coding change across successive brain areas, remains a central problem

in neuroscience. Studies across sensory systems have shown that representations in

higher order brain areas are more efficient because individual neurons detect specific

features of sensory input [13, 224–226]. Although theoretical studies predict that

more efficient representations are achieved by nonlinear transformations of afferent

input [225,227,228], to date the nature of these transformations is largely unknown.

If nonlinear transformations mediate a more efficient representation of the sensory

environment across hierarchical stages of processing, then they should be revealed by

experimental approaches specifically designed to probe nonlinear processing. Here,

we used the vestibular system as a model to address whether central neurons nonlin-

early integrate their afferent inputs in order to give rise to enhanced feature detection.

An advantage of the vestibular system, which is essential for providing information

about our self-motion and spatial orientation relative to the world, is that the sensory

stimulus is relatively easy to describe.

Conventional wisdom is that early vestibular processing is inherently linear.

This is supported by numerous studies showing that both afferents and central neu-

rons accurately encode the detailed time course of horizontal rotational head mo-

tion through linear changes in firing rate over a wide range of frequencies (reviewed
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in [26, 114]; [35]). Further support for this proposal has come from the fact that

central vestibular neurons linearly transduce synaptic inputs into changes in firing

rate output [229]. Indeed, to date, prior studies have demonstrated remarkable

linearity of vestibular behaviours such as the vestibulo-ocular reflex [142, 230–232].

However, all these results are at odds with the expectation that central vestibular

neurons achieve more efficient representations of sensory space through nonlinear

transformations of their afferent input. Such nonlinear transformations could be

advantageous as they would enable vestibular neurons to detect specific features of

natural vestibular stimuli. For instance, it would be theoretically beneficial that

the central vestibular neurons which mediate vestibulo-spinal reflexes preferentially

respond to unexpected transient stimuli, such as those experienced when slipping

on ice, in order to optimize compensatory postural responses. A comprehensive re-

thinking of the neural code used by the vestibular system is thus necessary to reveal

whether more efficient representations of the sensory environment emerge in central

vestibular pathways through nonlinear transformations of their afferent input. No-

tably, prior experiments have characterized early vestibular processing mostly using

stimuli that were not designed to systematically probe nonlinear behaviour (e.g.,

single sinusoids and trapezoids) [26, 35, 114]. In order to test for the existence of

such nonlinear transformations, it is necessary to compare neural response to a given

stimulus “A” when presented in isolation to that obtained when the same stimulus

was presented concurrently with another stimulus “B”. If, as suggested by previous

studies, central vestibular neurons respond linearly, then we would expect that the

response to stimulus “A” should not depend on whether stimulus “B” is present
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or not (i.e., the principle of superposition is valid because, by definition, a linear

system must be additive). If, instead, central vestibular neurons nonlinearly inte-

grate afferent input, we might expect that the response to stimulus “A” would be

altered contingent on the presence of stimulus “B”. We explicitly investigated how

the neural strategy for coding self-motion changes across the afferent-central neuron

synapses by testing whether central vestibular neurons nonlinearly integrate their

afferent inputs. We found that, unlike afferents, central vestibular neurons do not

obey the principle of superposition because they displayed strong nonlinear responses

when sums of low and high frequency stimuli were used. Indeed, the response to low

frequency stimuli was strongly attenuated when these were presented concurrently

with high frequency stimuli. Through a combination of mathematical modelling and

analysis, we show how a static boosting nonlinearity in the input-output relationship

can lead to this effect. Our results force a rethinking of the processing of self-motion

stimuli in early vestibular pathways. We suggest that nonlinear processing by central

vestibular neurons could serve to enhance their coding range and selectivity to high

frequency transient self-motion.

E.2 Results

E.2.1 Central Vestibular Neurons Respond Nonlinearly to Self-Motion

We tested response nonlinearity in both central vestibular neurons and afferents

by recording their activities in response to a stimulus when presented in isolation

and when presented concurrently with another stimulus (Figure E.1A). During ex-

periments, the animal was comfortably seated on a motion platform (Figure E.1B).

We first recorded central vestibular neuron responses to random noise stimuli with
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frequency content spanning the range of natural head rotations (0-20 Hz) [142].

Specifically, we applied stimuli that spanned two different frequency ranges: low (0-5

Hz) (Figure E.1C, black traces) and high (15-20 Hz) (Figure E.1D, black traces).

Both noise stimuli were applied either individually (Figure E.1C,D) or simultane-

ously (Figure E.1E). The neuronal responses from an example cell to each of these

three stimuli are shown by the red traces in Figure E.1C,D,E. We found that, when

both stimuli were applied simultaneously, the response was not equal to the sum of

the responses to each individual stimulus as would be expected for a linear system.

This is because the firing rate modulation in response to the low frequency stimulus

when presented alone was much larger than that observed when the high frequency

stimulus was presented simultaneously (compare red traces in Figure E.1C,E). In

contrast, the firing rate modulation in response to the high frequency stimulus was

comparable regardless of whether the stimulus was presented alone or in combina-

tion with the low frequency input (compare red traces in Figure E.1D,E). This was

reflected in the response power spectrum (compare red traces in the insets of Figure

E.1C,E and Figure E.1D,E).

To quantify this effect, we computed the response gain in each condition for

our population of central vestibular neurons (see Materials and Methods). Consis-

tent with previous results [35], the neuronal gains of central vestibular neurons were

higher for high frequency stimuli (Figure E.1F, compare blue and red traces). How-

ever, we found that the population-averaged response gains at low frequencies were

significantly attenuated (∼50%) (p < 10−6, paired t test, n = 15) when both stimuli

are applied simultaneously (Figure E.1F,G). The population-averaged response gains
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at high frequencies were, however, unaffected (p= 0.4, paired t test, n = 15) (Figure

E.1F,G). Thus, contrary to the common assumption that early vestibular process-

ing is essentially linear, the results above establish that central vestibular neurons

respond nonlinearly to sums of low and high frequency head rotations since the prin-

ciple of superposition is violated. Notably, responses to low frequency self-motion are

suppressed in the presence of high frequency self-motion. In contrast, responses to

high frequency self-motion are relatively unaffected by the presence of low frequency

self-motion. We next asked whether the response nonlinearity that we observed us-

ing gain measures would also be evident when using information theoretic measures

such as the coherence. Unlike gain measures, coherence measures are computed using

the signal-to-noise ratio and thus take variability into account. This is important

because previous studies have shown that a given neuron can display qualitatively

different frequency tuning depending on whether gain or coherence measures are

used [36,121,233]. Again, we found that the principle of superposition was violated.

Indeed, population-averaged coherence values at low frequencies were significantly

lower (∼ 50%) (p < 0.001, paired t test, n = 20) when both noise stimuli were

presented simultaneously. In contrast, population-averaged coherence values at high

(15-20 Hz) frequencies were not significantly different (p =0.87, paired t test, n = 15)

(Figure E.S1A, E.S1B, E.S1C). As expected given that there is a one-to-one relation-

ship between coherence and mutual information measures, comparable results were

obtained when computing the latter (unpublished data). Thus, taken together, our

results using both gain and coherence measures confirm our hypothesis that central

vestibular neurons respond nonlinearly to sums of low and high frequency stimuli.
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Figure E.1. Central vestibular neurons respond nonlinearly to sums of
noise stimuli.
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Figure E.1 (previous page). (A) Vestibular information is transmitted from the
sensory end organs through two types of afferents (regular and irregular) that
converge on first order central neurons within the vestibular nuclei. (B) During the
experiment the monkey was comfortably seated in a chair placed on a motion
platform. (C-E) The firing rate (red traces) of an example central vestibular neuron
in response to noise stimuli (black traces) whose frequency content spanned 0-5 Hz
(C), 15-20 Hz (D), and 0-5 Hz+15-20 Hz (E). The upper insets show the power
spectrum of each stimulus, while the lower insets show the power spectrum of the
firing rates (red). (F) Population-averaged normalized gains curves for central
neurons. Note the attenuated response at low frequency (0-5 Hz, arrow). (G)
Population averaged normalized gains for central neurons. Here and in all
subsequent figures, the bands (F) and error bars (G) show 1 SEM. The firing rate
estimates were obtained by convolving the spike trains with a Kaiser filter (see
Materials and Methods). This figure was copied from Massot et al. [111].

We also tested that these nonlinear responses were not specific to the noise

stimuli used. Indeed, we found that central vestibular neurons also responded non-

linearly to sums of low and high frequency sinusoidal stimuli. Indeed, when 3 and 17

Hz sinusoidal stimuli were applied simultaneously, the response was not equal to the

linear sum of the responses to each individual stimulus (Figure E.S2). We note that

this is not due to our filtering the spike trains to obtain the time-dependent firing

rate since this effect was also evident in the power spectra from the unfiltered spike

trains (Figure E.S3). Further, the observed nonlinear responses of central vestibular

neurons were not due to trivial nonlinearities such as rectification (i.e., cessation of

firing) or saturation (i.e., the firing rate reaching a plateau at a finite value) since

these were not elicited by the stimuli used in this study (Figure E.S4A).
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E.2.2 Peripheral Vestibular Afferents Respond Linearly to Sums of Low
and High Frequency Motion

Perhaps the simplest explanation for the nonlinear responses of central vestibular

neurons shown in Figure E.1 is that they are inherited from their afferent input. Pe-

ripheral vestibular afferents display marked heterogeneities in their baseline activity

and response to stimulation. Most notably, regularly discharging afferents are char-

acterized by low coefficients of variation (CV) and encode the detailed time course of

self-motion as they are broadly tuned to the behaviourally relevant frequency range

(0-20 Hz). In contrast, irregularly discharging afferents are characterized by higher

CVs and detect fast transient changes in self-motion as they respond preferentially

to high frequencies [26, 32, 36, 38]. To address whether the nonlinear responses of

central vestibular neurons are inherited from their afferent inputs, we recorded from

single regular and irregular afferents using the same random noise stimuli. In con-

trast to their target central vestibular neurons, neither regular (Figure E.2A) nor

irregular afferents (Figure E.2A) displayed significant nonlinearities. Indeed, the

population-averaged gain values at low frequencies were not significantly altered by

the presence of the high frequency stimulus (regular: p= 0.9, paired t test, n = 5;

Figure E.2C; irregular: p= 0.23, paired t test, n = 10; Figure E.2D). Similarly, the

population-averaged gain values at high frequencies were not significantly altered by

the presence of the low frequency stimulus (regular: p= 0.84, paired t test, n=5;

irregular: p =0.19, paired t test, n = 10). We note that the applied stimuli also

did not elicit “trivial” nonlinearities in afferents such as rectification or saturation

(Figure E.S4B,C) and that similar results were obtained when we instead used the

coherence measure (regular: Figure E.S1D,E,F; irregular: Figure E.S1G,H,I). We
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note that similar results were observed when using sums of low and high frequency

sinusoidal stimuli (unpublished data). Accordingly, unlike central neurons, individ-

ual afferents do not respond nonlinearly to sums of low and high frequency stimuli.

We quantified the gain attenuation at low frequencies in the presence of the high

frequency stimulus for both central vestibular neurons and afferents. While central

vestibular neurons displayed strong and significant attenuation (∼ 50%, p < 0.001,

signrank test, n = 15), both regular and irregular afferents instead displayed weak

attenuation (∼ 10%) that was not significantly different from zero (regular: p =0.25,

signrank test, n = 5; irregular: p= 0.13, signrank test, n =10) (Figure E.2E). These

findings imply that the origin of the response nonlinearity seen in central neurons is

due to nonlinear integration of afferent synaptic input.

E.2.3 Central Vestibular Neurons Display Nonlinear Responses to High
Frequency But Not Low Frequency Head Rotations When These
Are Applied in Isolation

In order to understand how central vestibular neurons nonlinearly integrate their

afferent input, we next characterized the relationship between head velocity input

and output firing rate for both afferents and central neurons by plotting one as a

function of the other. The schematic of the approach used is illustrated in Fig-

ure E.3A. If the relationship between input head velocity and output firing rate is

linear, then the curve relating the two should be well fit by a straight line. We

found that the relationships between head velocity stimuli and peripheral afferent

responses were well fit by straight lines. The population-averaged relationships for

low and high frequency self-motion obtained for afferents are shown in Figure E.3B

and E.3C, respectively. It can further be seen that these relationships are comparable
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Figure E.2. Afferents respond linearly to sums of noise stimuli. (A, B)
Population-averaged normalized gain curves as a function of frequency for regular
(A) and irregular (B) afferents. (C, D) Population-averaged normalized gains for
regular (C) and irregular (D) afferents. (E) Population averaged attenuation
indices for central neurons, regular afferents, and irregular afferents. This figure
was copied from Massot et al. [111].
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when a given stimulus is applied alone and when it is applied concurrently with the

other stimulus (Figure E.3B, E.3C) (low frequency: p =0.93, pairwise t test, n =15;

high-frequency: p= 0.89, pairwise t test, n= 15), demonstrating that the principle of

superposition applies. This was also seen for single neurons (insets of Figure E.S5).

Further, these results were observed for both regular (low frequency: p= 0.59; high

frequency: p= 0.58, pairwise t tests, n =5) and irregular (low frequency: p= 0.77;

high frequency: p= 0.35, pairwise t tests, n = 10) afferents when considered sepa-

rately (Figure E.S5). Notably, comparison of Figure E.3B and E.3C further revealed

that the afferent gain (i.e., the slope of the input-output relationship) was higher in

response to the high as compared to the low frequency stimulus. This observation is

consistent with previous studies showing that high frequency head rotations give rise

to greater afferent firing rate modulations (reviewed in [26]). We next computed the

population-averaged relationships for central vestibular neurons and found that they

were well fit by straight lines when the low frequency stimulus was presented alone

(Figure E.3D, solid blue curves). We note that this was also true for single neurons

(Figure E.S6A, solid blue curve). The head velocity neuronal response relationship

(solid black curve) was also linear when low frequency stimulation was applied con-

currently with high frequency stimulation (population average: Figure E.3D; single

neuron: Figure E.S6A, solid black curves). However, in the combined condition, the

slope of the curve (i.e., the gain) was lower (compare solid black and blue traces in

Figures E.3D and E.S6A). These results are consistent with our previous analysis of

response gain (Figure E.1G), thus confirming our earlier findings.
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Figure E.3. Central vestibular neurons but not afferents display a
nonlinear relationship between output firing rate and input head
velocity.
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Figure E.3 (previous page). (A) Output firing rate as a function of head
velocity. The inset shows the instantaneous firing rate and the head velocity
stimulus as a function of time and the various symbols correspond to different
values of the head velocity and the corresponding firing rates. If the firing rate is
related linearly to the head velocity stimulus, then the curve relating the two
should be well fit by a straight line. The slope of this line is then the response gain.
(B) Population-averaged firing rate response as a function of head velocity for
afferents when stimulated with 0-5 Hz noise alone (solid blue) and concurrently
with 15-20 Hz noise (solid black). In both cases, the curves were well fit by straight
lines (dashed lines) and largely overlapped (0-5 Hz alone: R2 = 0.99, slope = 0.70
(spk/s)/(deg/s), y-intercept = 98 spk/s; 0-5 Hz with 15-20 Hz: R2 = 0.99, slope =
0.72 (spk/s)/(deg/s), y-intercept = 98 spk/s). (C) Population-averaged firing rate
response as a function of head velocity for afferents when stimulated with 15-20 Hz
noise alone (solid red) and concurrently with 0-5 Hz noise (long dashed black).
Both curves were again well fit by straight lines (short dashed lines) and largely
overlapped (15-20 Hz alone: R2 = 0.99, slope = 1.97 (spk/s)/(deg/s), y-intercept =
102 spk/s; 15-20 Hz with 0-5 Hz: R2 = 0.99, slope = 2.06 (spk/ s)/(deg/s),
y-intercept = 102 spk/s). Note, however, the increased slope with respect to panel
B. (D) Population-averaged firing rate response as a function of head velocity for
central neurons when stimulated with 0-5 Hz noise alone (solid blue) and
concurrently with 15-20 Hz noise (solid black). In both cases, the curves were well
fit by straight lines (dashed lines) although the solid black curve had a lower slope
(i.e. gain) than the solid blue curve (0-5 Hz: R2 = 0.98, slope = 1.56
(spk/s)/(deg/s), y-intercept = 67 spk/s; 0-5 Hz with 15-20 Hz: R2 = 0.87, slope =
0.83 (spk/s)/(deg/s), y-intercept = 81 spk/s). (E) Population-averaged firing rate
response as a function of head velocity for central neurons when stimulated with
15-20 Hz noise alone (solid red) and concurrently with 0-5 Hz noise (long dashed
black). While both curves were similar and largely overlapped, they were not well
fit by straight lines (short dashed lines) that underestimated the firing rate for head
velocities <210 deg/s (15-20 Hz: R2 = 0.64, slope = 2.32 (spk/ s)/(deg/s),
y-intercept = 79 spk/s; 15-20 Hz with 0-5 Hz: R2 = 0.27, slope = 2.78
(spk/s)/(deg/s), y-intercept = 79 spk/s). We note that central neurons did not
display rectification since the firing rate was always above zero. This figure was
copied from Massot et al. [111].
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In contrast, qualitatively different results were observed for high frequency head

rotations. Notably, we found that the relationships between head velocity stimuli

and central neuron responses were nonlinear as they were characterized by signifi-

cantly lower gains (i.e., the slope of the curve) for head velocities less than 210 deg/s

as compared to those for head velocities greater than 210 deg/s (p= 0.01, pairwise t

test, n= 20). This was seen for both the population averages (Figure E.3E) and sin-

gle neurons (Figure E.S6B). We will henceforth refer to the shape of these curves as a

boosting nonlinearity [234]. Moreover, the relationships obtained for high frequency

head rotations were comparable when the stimulus was presented alone or concur-

rently with low frequency head rotations (p= 0.43, pairwise t test, n = 20) (Figures

E.3E and E.S6B, compare red and black-dashed traces). Thus, again consistent with

our results using gain measures, central vestibular neuron responses were comparable

when high frequency stimuli were applied alone or concurrently with low frequency

stimuli. Notably, unlike afferents, central vestibular neurons respond nonlinearly to

sums of low and high frequency stimuli. Moreover, our analysis of their stimulus

input-firing rate output relationships further revealed a boosting nonlinearity char-

acterized by lower slopes for head velocities less than 210 deg/s as compared to those

obtained for head velocities greater than 210 deg/s. This nonlinearity was only seen

when high frequency stimuli were applied (Figures E.3E and E.S6B).

E.2.4 The Greater Afferent Firing Rate Modulations Elicited by High
Frequency Stimuli Elicit Nonlinear Responses in Central Vestibu-
lar Neurons

Thus far, we have looked at the relationship between head velocity stimuli and

output firing rates for both central neurons and afferents. We found that afferents
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responded linearly to both low and high frequency stimuli. In contrast, central

neurons responded linearly to low frequency stimuli but nonlinearly to high frequency

stimuli. A priori, this effect could be mediated by a dynamic non-linearity that

would be activated exclusively under high frequency stimulation (e.g., a network-

based mechanism such as feedback input from higher centers). Alternatively, the

nonlinearity might be static in nature (e.g., due to intrinsic mechanisms such as

voltage-gated conductances) and be preferentially elicited by the afferent input due

to high frequency stimulation. Figure E.4A illustrates the sequential processing

of low (top) and high (bottom) frequency stimuli when applied in isolation. It is

important to note that, for high frequency stimulation, the afferent input to central

vestibular neurons will span a greater range (Figure E.4A, compare green traces)

because afferents display greater sensitivities (compare Figure E.3B,C). As a result,

at the next stage of processing, these larger afferent firing rate modulations should

evoke greater central neuron firing rate modulations as compared to those evoked

by low frequency head rotations (Figure E.4A, compare purple traces). Thus, if the

nonlinearity is static, we predict that (1) the smaller range of afferent firing rates

evoked by low frequency stimulation are contained in a region for which the central

vestibular neuron input-output relationship is approximately linear, (2) the greater

range of afferent firing rates evoked by high frequency stimulation extend into a

region of the input-output relationship that elicits the boosting nonlinearity (Figure

E.4A, VO neuron box), and as a result, (3) central vestibular neuron output firing

rate is then a fixed function of the afferent input firing rate, regardless of whether

low or high frequency head rotations are applied in isolation.

241



To test whether the nonlinearity is static or dynamic, we next experimentally

characterized the input-output relationship of central neurons by plotting their out-

put firing rates as a function of their afferent input rather than head velocity. Given

that central neurons receive input from many afferents that display significant het-

erogeneities (see [26] for review), we obtained an estimate of this activity by fitting a

linear model to previous data (see Materials and Methods). The input-output rela-

tionship obtained for low frequency stimuli was approximately linear (Figure E.4B,

blue curve), confirming our first prediction. In addition, the input-output relation-

ship obtained for high frequency stimuli displayed a boosting nonlinearity (Figure

E.4B, red curve), such that the slope for afferent inputs less than 90 spk/s was much

lower than that for afferent inputs greater than 90 spk/s (Figure E.4B, compare solid

and dashed red curves). Thus, the afferent input-central neuron output relationship

can be approximated by the piecewise linear function illustrated in Figure E.4A,

confirming our second prediction. Moreover, we found that both curves overlapped

when only the smaller range of afferent firing rates evoked by low frequency stimuli

was considered (Figure E.4B, compare red and blue curves). Accordingly, this find-

ing confirmed our third prediction that central vestibular neuron firing rate is a fixed

function of the afferent input firing rate when either low or high frequency head ro-

tations are applied in isolation. Accordingly, there is a striking contrast between the

results of this analysis and that of our previous analysis of the relationship between

head velocity input and afferent output. Notably, the head velocity input-afferent

output relationships obtained for low and high frequency stimulation did not overlap

consistently with the known frequency- dependent sensitivities of afferents (Figure
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E.4B, inset). Thus, taken together, our results show that central vestibular neuron

responses are characterized by a static nonlinearity that is primarily elicited by the

greater afferent firing rate modulations caused by high frequency stimuli. We suggest

that the intrinsic properties of central vestibular neurons and/or network interactions

within this vestibular pathway underlie this boosting nonlinearity (see Discussion).

We next plotted the afferent input-firing rate output relationships obtained when

low frequency stimulation was applied alone or concurrently with high frequency

stimulation for central vestibular neurons. We found significantly different slopes in

both conditions (Figure E.4C, compare black and blue curves and inset). Specifically,

central vestibular neuron firing rates in response to afferent firing rates below 110

spk/s were higher when the low frequency stimulus was applied concurrently with

the high frequency stimulus than when it was applied alone (Figure E.4C, arrow).

We also note that, as can be expected from Figure E.3E, the central vestibular

neuron input-output relationships obtained when high frequency stimulation was

applied alone or concurrently with low frequency stimulation overlapped (Figure

E.4C, red and dashed black curves) and did not differ significantly in their slopes

(Figure E.4C, inset), which confirms that central vestibular neurons display a static

boosting nonlinearity in response to these stimuli.
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Figure E.4. Central neurons display a static nonlinear relationship
between their output firing rate and their afferent input. (A) Low (top)
and high (bottom) frequency head velocity stimuli (gray) cause smaller and larger
changes in afferent firing rate (green), respectively. These differential changes in
afferent firing rate in turn cause differential changes in central neuron firing rate
(purple), respectively. Notably, the changes in afferent firing rate caused by high
frequency head velocity stimuli are distributed over a greater range and thus elicit
nonlinear responses from VO neurons, whereas this is not the case for those caused
by low frequency head velocity stimuli. Note that the same scales were used for
corresponding panels in the bottom and upper rows.
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Figure E.4 (previous page). (B) Population-averaged firing rates of central VO
neurons as a function of afferent firing rate for low (blue) and high (red) frequency
noise stimuli presented in isolation. Note that the curve obtained for the low
frequency stimulus (blue) extends over a smaller range than that obtained for high
frequency (red) stimuli. Further, both curves are linear over the range for which
they overlap. Also shown are best linear fits to the portion of the curve below and
above 90 Hz (dashed red lines). As such, the curve can be approximated by a
piecewise linear function. Inset: population-averaged firing rates of afferents as a
function of the head velocity stimulus for low (blue) and high (red) frequency noise
stimuli presented alone. (C) Population-averaged firing rates of central VO neurons
as a function of afferent input firing rates: (1) for the low frequency stimulus when
presented alone (blue) and concurrently with the high frequency stimulus (solid
black); (2) for the high frequency stimulus when presented alone (red) and
concurrently with the low frequency stimulus (dashed black). Note that the curves
obtained in response to the high frequency stimulus when presented alone (red) and
when presented concurrently with the low frequency stimulus (dashed black)
overlapped before (Figure E.3E) and thus, not surprisingly, also overlap. Note also
that only the curve obtained when the low frequency stimulus was presented
concurrently with the high frequency stimulus (solid black) does not overlap with
the others. This is because the central VO neuron firing rate is higher than that
obtained for the low frequency stimulus when applied alone for values lesser than
110 Hz. Inset: population-averaged normalized slopes under all four conditions.
The afferent activity was estimated by fitting a linear model to previous
experimental recordings from a large population of afferents (see Materials and
Methods). This figure was copied from Massot et al. [111].
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E.2.5 Modeling and Predicting Central Vestibular Neuron Responses to
Sums of Arbitrary Stimuli

Does the static boosting nonlinearity in the input-output relationship of central

vestibular neurons account for their nonlinear responses to sums of low and high

frequency stimuli? To address this question, we fit the experimentally recorded cen-

tral vestibular neuron input-output relationship in response to afferent input when a

given stimulus was presented in isolation. Since individual central vestibular neurons

receive input from a large heterogeneous population of afferents [26], we estimated

their average activity by fitting a linear model to existing data (see Materials and

Methods). The input-output relationship in response to this stimulus when another

stimulus is presented concurrently can then be obtained by averaging (see Materials

and Methods). Accordingly, it becomes possible, using this model, to predict the

change in the central vestibular neuron input-output relationship to a given stim-

ulus when another stimulus is applied concurrently. Our results show that, when

compared to experimental data, this relatively simple model is surprisingly accurate

at predicting the change in afferent to central neuron input-output relationship to

the low frequency stimulus when the high frequency stimulus is applied concurrently

(Figure E.5A, compare solid and dashed curves). The same model also predicts little

change in the input-output relationship to the high frequency stimulus when the low

frequency stimulus is applied concurrently, consistent with our experimental results

(Figure E.5B, compare solid and dashed curves).

Importantly, using this model, we were further able to predict the relative gain

attenuation in response to sums of stimuli with given intensities and frequencies

within the behaviourally relevant range. It then becomes important to introduce
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new terminology to distinguish both stimuli by other means than just their frequency

content, as was done until now. Thus, we will henceforth refer to one stimulus as the

“signal” and to the other as the “masker”. Note that, while the terms “signal” versus

“masker” are arbitrary, this division allows us to focus on the coding of one input (i.e.,

the input designated as the signal). Our model shows stronger attenuation of the

response gain to a low frequency signal by maskers with higher frequency content

(Figure E.5C). This is because vestibular afferents display gains that increase as

a function of frequency. Moreover, our model shows stronger attenuation of the

response gain to a given signal by maskers with higher intensity (Figure E.5D).

This is because maskers of greater intensities are more effective at eliciting nonlinear

responses from central vestibular neurons. Thus, although it is not experimentally

feasible to test all combinations of maskers and signals, our model allows us to make

testable predictions of how a static nonlinear input-output relationship attenuates

central vestibular neuron responses to a given signal in the presence of a masker over

the physiologically relevant range of frequencies and intensities. For example, our

model makes the prediction that a masker with a given frequency content is equally

effective at attenuating the sensitivity to signals with either low or high frequency

content (Figure E.5C).
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Figure E.5. A simple model accurately predicts nonlinear central VO
neuron responses to sums of low and high frequency stimuli. (A) Model
(solid) and data (dashed) relationships between afferent firing rate and central VO
neuron firing rate when the low frequency stimulus was presented alone (blue) and
concurrently with the high frequency stimulus (black). Note that the model
accurately reproduces the decrease in slope seen experimentally as evidenced by the
large overlap between the model and data curves (R2 = 0.92).
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Figure E.5 (previous page). (B) Model (solid) and data (dashed) relationships
between afferent firing rate and VO neuronal firing rate when the high frequency
stimulus was presented alone (red) and concurrently with the low frequency
stimulus (black). Note that the model also accurately reproduces the lack of change
seen experimentally as the model curves largely overlap with the experimental ones
(R2 = 0.99). (C) % gain attenuation plotted as a function of signal and masker
frequency. The stimulus for which the response is computed is referred to as the
signal, while the other stimulus is referred to as the masker. Maskers with higher
frequency content lead to greater gain attenuation. (D) % gain attenuation as a
function of masker amplitude and frequency. Maskers of greater amplitude and
frequency lead to greater gain attenuation. This figure was copied from Massot et
al. [111].
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E.2.6 A Linear-Nonlinear Cascade Model Verifies That Central Vestibu-
lar Neurons Display a Static Boosting Nonlinearity

So far, our data and modelling results show that a static boosting nonlinear-

ity can explain why central neurons display reduced gain to low frequency motion

when applied concurrently with high frequency motion. If this is true, then central

vestibular neurons should respond nonlinearly to any stimulus that contains high

frequencies. Moreover, the form of nonlinearity should be stimulus independent. To

test this prediction experimentally, we recorded from afferents and central vestibu-

lar neurons during broadband noise stimulation and used a more general approach

to characterize their responses. Specifically, we used a linear-nonlinear (LN) cas-

cade model [110] that is illustrated in Figure E.6A (see Materials and Methods).

This model assumes that a neuron’s firing rate at any instant is a function f of the

convolution between the stimulus and an optimal linear filter (i.e., the linear predic-

tion) [110]. The form of the function f can then be estimated by plotting the actual

firing rate as a function of the linear prediction (Figure E.6A).

We first applied this model to our afferent data and found that their output

firing rates were well predicted by the optimal linear filter alone as all data points

were located close to the identity line (R2 =0.99860.001, n = 15) (Figure E.6B). This

was seen for both regular (Figure E.S7A,B) and irregular (Figure E.S7C,D) afferents.

Notably, the slope of best straight line fit to the curve (Figure E.6B, red line) was

not significantly different from unity (p =0.966, n = 15, pairwise t test).

Qualitatively different results were obtained for central vestibular neurons. In-

deed, we found that their output firing rates were not well predicted by the optimal
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linear filter alone (Figure E.6C) as evidenced by significant deviations from the iden-

tity line (Figure E.S7E,F). Notably, the slope of the best straight line fit to the curve

over the range (0-80 Hz) was significantly lower than the slope of the best straight

line fit to the curve over the range (80-160 Hz) (p= 0.0014, n = 13, pairwise t test)

(Figure E.6C, compare red lines). Additionally, the curve relating the actual firing

rate to the linear prediction in response to broadband noise stimuli closely resem-

bled the nonlinear input-output relationship obtained in response to high frequency

narrowband noise stimuli (compare Figures E.6C and E.3E), which suggests that

the frequency filtering properties of central vestibular neurons are mostly inherited

from afferents. The actual responses were well predicted by the full LN model (R2

= 0.9460.07, n = 13). We also note that the firing rate values extrapolated from the

best straight line fit to the curve over the range (80-160 Hz) are negative over the

range (0-20 Hz), while the actual firing rate values are of course positive. We shall

return to this point in the discussion.

Finally, we compared the curves relating the actual firing rate to the linear

prediction for afferents and central vestibular neurons for different stimuli (i.e., low

frequency, high frequency, low+high frequency, and broadband noise stimuli). The

afferent curves overlapped and were all located close to the identity line (Figure

E.S8A), confirming that the responses were well fit by linear models. The curves for

central vestibular neurons also overlapped, but exhibited significant deviations from

linearity only for stimuli that contained high frequencies (Figure E.S8B). As such, our

results using LN models provide additional strong evidence that central vestibular

neurons indeed display a static boosting nonlinearity that is preferentially elicited
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by the greater afferent firing rate modulations caused by high frequency motion and

that their frequency filtering properties are largely inherited from those of afferents.

E.2.7 How Does a Static Boosting Nonlinearity Give Rise to Suppressed
Response to Low Frequency Stimuli in the Presence of High Fre-
quency Stimuli?

Our results above have shown that a static boosting nonlinearity can indeed ac-

count for the nonlinear responses of central vestibular neurons. Here, we provide an

intuitive explanation of how a static boosting nonlinearity leads to the experimentally

observed response attenuation to low frequency stimuli when presented concurrently

with high frequency stimuli. First, consider a piecewise linear input-output relation-

ship between afferent firing rate and central neuron firing rate such as that illustrated

in Figure E.7A. If the afferent input is normally distributed with low intensity such

that it is constrained to the right side of the vertex (i.e., the point at which the slope

suddenly changes), then the corresponding output firing rate will be linearly related

to the afferent input and thus will also be normally distributed (Figure E.7A, distri-

bution and mean plotted in light purple). This is the situation when low frequency

stimuli are applied in isolation. In contrast, if a normally distributed afferent input

has a greater intensity and thus spans a greater range of values extending past the

vertex (e.g., when high frequency stimuli are applied), then the output firing rate will

be a nonlinear function of the input and thus will not be normally distributed any

longer. This is because the output firing rate distribution has become skewed, thus

shifting its mean to higher values than what would be predicted if the input-output

relationship were linear (Figure E.7A, distribution and mean plotted in dark purple).

Notably, the skew in the input-output distribution will increase as a function of the
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input distribution intensity (compare the three distributions in Figure E.7B), which

in turn will increase the bias in the mean with respect to what is expected if the

distribution was linear (Figure E.7B, inset). We note that, under experimental con-

ditions, the input intensity will increase when the head velocity stimulus increases

in either intensity or frequency content.

Why then does a skewed output distribution result in higher sensitivity to the

low frequency stimulus when applied in isolation than when applied concurrently

with the high frequency stimulus? To answer this question, note that the output

firing rate in response to a given value of the afferent input firing rate caused by the

low frequency stimulus must be averaged over the normal distribution of values of the

high frequency stimulus. This is because both stimuli are not correlated. For a high

value of the low frequency stimulus (point 1, Figure E.7C), the distribution of the

high frequency stimulus spans the linear range of the piecewise linear input-output

relationship. As such, the average output firing rate in response to this value of the

low frequency stimulus when presented concurrently with the high frequency stimulus

is equal to that obtained when the low frequency stimulus is presented in isolation.

However, this is not the case for lower values of the low frequency stimulus (points

2 and 3, Figure E.7C). Indeed, in these cases, the distribution of the high frequency

input extends past the vertex. As a consequence, the distribution of output firing

rates is skewed as explained above. The average central vestibular neuron output in

response to low values of the low frequency stimulus is thus greater than what would

be expected if the input-output relationship were linear. Moreover, the skewness

becomes greater for lower values of the low frequency stimulus (compare the purple
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output distributions corresponding to points 2 and 3, Figure E.7C), resulting in

a greater bias in the output firing rate. This bias, in turn, reduces the slope of

the input-output relationship between output and input firing rates when the low

frequency stimulus is presented concurrently with the high frequency stimulus, as

compared to that obtained when the low frequency stimulus is presented in isolation.

Finally, the above argument leads to the crucial question of why central vestibu-

lar neurons display similar sensitivities to high frequency stimuli when applied in

isolation or concurrently with low frequency stimuli. As illustrated in Figure E.7D,

low frequency stimuli will tend to give rise to narrower distributions of afferent in-

put firing rates and thus smaller biases than high frequency stimuli because of the

high-pass filtering characteristics of afferents (compare distributions in Figure E.7D

and E.7C, respectively), thereby leading to smaller attenuations in sensitivity.
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Figure E.6. A linear-nonlinear (LN) cascade model reveals that central
vestibular neurons respond nonlinearly to broadband noise stimulation.
(A) Schematic showing the LN model’s assumptions. The stimulus (left) is
convolved with a filter H(t) that is given by the inverse Fourier transform of the
transfer function (f) in order to generate the linear predicted firing rate (middle).
This linear prediction is then passed through a static function f (which can be
linear or nonlinear) to give rise to the predicted output firing rate (right). (B)
Population-averaged function f for afferents. Also shown is the best-fit line
(R2 = 0.9986± 0.001, n = 15) (red) whose slope did not significantly differ from
unity (p = 0.99, n = 15, pairwise t test). Inset: population-averaged filter H(t) for
afferents. (C) Population-averaged function f for central VO neurons. Also shown
are the best-fit straight lines for the intervals (0-80 Hz) and (80-160 Hz) (red)
whose slopes were significantly different from one another (p = 0.0014, n = 13,
pairwise t test). Inset: population-averaged filter H(t) for central VO neurons. This
figure was copied from Massot et al. [111].
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Figure E.7. Schematic showing how a nonlinear static relationship
between input and output can lead to attenuated sensitivity to sums of
low and high frequency stimuli. (A) Input-output relationship showing a
vertex (i.e. a sudden change in slope) (black curve). If we assume that the input is
normally distributed with low intensity (i.e. standard deviation) such that all the
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Figure E.7 (previous page). input values are to the right of the vertex (light
green distribution on x-axis), then the corresponding output distribution will also
be normally distributed (light purple distribution on y-axis). The mean output
(light purple circle on y-axis) corresponds to the image of the mean input (dashed
purple circle on y-axis; note that the light purple and dashed purple circles were
offset for clarity) as both input and output are linearly related. In contrast, for a
higher intensity input that extends significantly past the vertex (dark green
distribution on x-axis), the corresponding output distribution (dark purple on
y-axis) is skewed with respect to the linear prediction (dashed purple on y-axis).
The mean output (dark purple circle on y-axis) is thus greater than the linear
prediction (dashed purple circle on y-axis). (Note that here and below, we
represented the distributions to have the same maximum value in order to
emphasize the fact that we are changing the standard deviation.) (B) Increasing
the input distribution intensity for a given mean (compare red, yellow, and blue
distributions) causes a greater skew in the corresponding output distribution
(unpublished data) and thus an increased bias in their means (red, yellow, and blue
dots on the y-axis and inset) as compared to the linear prediction (dashed yellow
and blue dots on the y-axis). (C) Shifting the mean of the high intensity input
distribution to the left (compare points 1, 2, and 3 on the x-axis and the inset)
makes it extend to the left of the vertex more and more (compare the green curves
on the x-axis), causing greater skewness in the corresponding output distributions
(purple curves on the y-axis), which creates a greater bias in the mean (dark purple
points on y-axis) with respect to the linear prediction (light purple points on
y-axis). As a result, the mean output in response to a given value of the low
intensity input (points 1, 2, and 3 on the x-axis) when the high intensity signal is
present (dark purple line) has a lower slope (i.e. gain) than when the high intensity
signal is absent (light purple line). (D) Shifting the mean of the high intensity
input distribution to the left (compare points 1, 2, and 3 on the x-axis and the
inset) makes the corresponding distributions of the low intensity input extend to
the left of the vertex more and more (green curves on the x-axis), causing greater
skewness in the output distribution (purple curves on the y-axis), which creates a
greater bias in the mean (dark purple points on y-axis) with respect to the linear
prediction (light purple points on y-axis). Note, however, that the bias in the mean
will be lower than in (C) since the input distributions now have a lower intensity as
explained in (B). Thus, the input-output relationship when the low intensity signal
is present (dark purple line) will have a lower slope (i.e. gain) than when the low
intensity signal is absent (light purple line) but the effect will be weaker than in
(C). This figure was copied from Massot et al. [111].
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E.3 Discussion

E.3.1 Summary of Results

What is the neural code used by the brain to represent self-motion (i.e., vestibu-

lar) information? We showed that neurons at the first central stage of vestibular

processing respond nonlinearly to sums of low and high frequency stimuli. This is

because, when stimuli contained low and high frequency motion components, re-

sponses to the low frequency component were strongly attenuated. Given that such

responses were not observed in afferents, we hypothesized that this occurs because

central vestibular neurons nonlinearly integrate their afferent inputs. Computing

input-output relationships revealed that afferent firing rates were related linearly to

head velocity in all stimulation paradigms. In contrast, the relationship between

head velocity and central neuron firing rate was characterized by a significant boost-

ing nonlinearity for high frequency stimulation. Prior studies have shown that higher

frequency stimuli elicit greater changes in afferent firing rate than do low frequency

stimuli (reviewed in [26]). We hypothesized that this frequency-dependent afferent

response plays a vital role in establishing the conditions for which central vestibular

neurons will preferentially display nonlinear responses. We confirmed this hypothesis

by plotting the central vestibular neuron firing rate output as a function of the affer-

ent firing rate input, and then formulated a model to explain our findings. We then

demonstrated the generality of this model by predicting neuronal responses to sums

of arbitrary stimuli and conclude that high-pass filtering characteristics displayed by

afferents combined with the nonlinear input-output relationship of central vestibular

neurons underlie their attenuated responses to low frequency motion when presented
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concurrently with high frequency motion. To test that this boosting nonlinearity

was indeed static and preferentially elicited by high frequency stimulation, we used

LN cascade models to predict responses to broadband noise stimulation. We found

that central vestibular neuron responses were well fitted by these models and that

the form of the nonlinearity closely matched that obtained for high frequency nar-

rowband noise stimulation with our previous analysis, suggesting that the frequency

filtering properties of central vestibular neurons are mostly inherited from that of

afferents. Finally, we provided an intuitive explanation as to why a static boosting

nonlinearity can lead to the attenuation of the response to low frequency motion

in the presence of high frequency motion. Specifically, the nonlinear response of

central neurons to high frequency motion creates a skew in the output firing rate

distribution, which increases its mean with respect to what would be expected if the

input-output relationship was linear. This bias in turn decreases the input-output

relationship slope when low frequency motion is presented concurrently with high

frequency motion.

E.3.2 Origins of the Nonlinear Processing in Early Vestibular Pathways

While our findings confirm that vestibular afferents display linear responses over

a wide frequency range, they further show the novel result that central vestibular

neurons respond nonlinearly to sums of low and high frequency stimuli, since they

violate the principle of superposition. This is surprising given that previous reports

have found that the high conductance state of neurons in vivo can have a significant

influence on their processing of synaptic input through linearization in their input-

output relations [132, 187, 235, 236], which is thought to extend the neuronal coding
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range [11]. Our results further show that the nonlinear responses of central vestibular

neurons to sums of low and high frequency self-motion are caused by a static boosting

nonlinearity in their input-output relationships. This nonlinearity differs from those

(directional asymmetry, soft saturation) described in prior studies examining the

responses of these same neurons [237, 238]. We note that our stimuli were designed

as to not elicit “trivial” nonlinearities such as rectification and saturation from both

afferents and central vestibular neurons but that these will indeed be elicited by high

intensity stimuli [109].

What causes the observed boosting nonlinearity in central vestibular neurons?

Our results show that this nonlinearity is static, and thus support the hypothesis

that it is caused by intrinsic mechanisms such as short-term synaptic plasticity [239],

voltage-dependent conductances [140], or the diversity in the innervations patterns

of regular versus irregular afferent inputs onto central vestibular neurons [240] rather

than network mechanisms such as nonlinear inhibitory connections within the known

recurrent feedback loops of the vestibular nuclei/cerebellum [241,242]. It is, however,

difficult to determine the exact nature of these mechanisms for several reasons. (1)

Intrinsic mechanisms such as synaptic conductance, passive membrane properties,

and voltage-gated currents of neurons in the vestibular nuclei have been primarily

been studied in mouse and guinea pig (reviewed in [27]) and not in primates. This

is important because previous studies have shown significant differences in the ac-

tivities of rodent and monkey vestibular nuclei neurons in vivo [152]. (2) Most prior

characterizations of intrinsic mechanisms were performed under in vitro conditions,

whereas the integration properties of vestibular neurons differ significantly in vivo
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and in vitro [132]. Thus, further studies involving in vivo intracellular recordings

from single primate central vestibular neurons are needed to uncover the mecha-

nisms that mediate the observed nonlinearity.

E.3.3 Consequences of Nonlinear Central Vestibular Processing
for Higher Vestibular Pathways and Perception

During everyday activities, such as walking or running, the predominant frequen-

cies of head rotation and translation are within 0.6-10 Hz in both humans [243–245]

and monkeys [142,246]. While significant harmonics up to 15-20 Hz can be present,

their magnitude is generally < 5% of the power found in the predominant frequency

range. Taken together, these findings indicate that while active head movements

cover a wide range of frequencies, most stimulation occurs at relatively low frequen-

cies. This then leads to the question: What is the functional significance of nonlinear

integration of afferent input by central vestibular neurons leading to attenuated re-

sponses to the low frequency components of self-motion?

One possibility is that the relative enhancement of high frequency power serves

to effectively “whiten” (i.e., flatten) the output power spectrum of sensory neurons

during everyday activities. For example, in vision, natural scenes are typically de-

scribed by a spatial frequency amplitude spectrum that decreases as 1/frequency–

or equivalently as a power spectrum that decreases as 1/frequency2 [247, 248]. A

widespread view is that early visual neurons are tuned in such a way as to compen-

sate for this decrease. Indeed, whitening would serve to equalize the neural responses

across frequencies as originally proposed by Field [247]. Specifically, a neuron tuned

to high frequencies would require an increased response gain to produce the same
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response as a neuron tuned to low frequencies (reviewed in [249, 250]). This mecha-

nism bears a striking resemblance to preferential encoding of high frequency stimuli

by central vestibular neurons demonstrated in the present study. Another possible

mechanism that has been proposed to underlie whitening in the visual system is

decorrelation [251], which includes neurons with bandpass tuning curves for which a

portion of the curve rises with frequency. This latter model is not a likely candidate

strategy for early vestibular processing since vestibular afferents and central neurons

are characterized by high-pass rather than band-pass tuning.

Another possibility, which relates to the argument above, is that neuronal re-

sponses optimize our ability to reflexively respond to transient unexpected events.

In particular, central vestibular neurons make descending projections to the spinal

cord and mediate the vestibulo-spinal reflexes that ensure stable posture [114]. We

note that, to date, the vestibular stimuli experienced during voluntary activities such

as walking and running have primarily been quantified while subjects locomoted “in

place” [243]. However, these studies might have underestimated the frequency con-

tent of natural vestibular stimuli. Indeed, higher frequency stimuli are experienced

during natural locomotion since heel strikes can produce vibrations with frequencies

as high as 75 Hz [252]. It is likely that these high frequency components are fil-

tered out as the vibration passes up through the body. Thus, the enhanced neural

responses to high frequency motion could be an effective coding strategy for counter-

ing the biomechanical filtering properties of the body segments during unexpected

postural perturbations. Indeed, recent studies have demonstrated such frequency-

specific filtering of vestibular-evoked postural responses in humans [253]. It is also
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noteworthy that central vestibular neurons are also much less responsive to active

than passive motion [147,156]. Accordingly, their response selectivity is likely to op-

timize our ability to reflexively respond to unexpected transient events. For example,

if standing while riding the metro, or walking/running, one is likely to experience

sudden stops or unexpected motion for which it is vital to generate compensatory

postural reflexes.

Yet another possibility is that the nonlinear responses of central vestibular neu-

rons constitute an adaptation mechanism that preserves the coding of both low and

high frequency components of self-motion by preventing rectification (i.e., a complete

cessation of firing). Specifically, such adaptation would serve to enhance the cod-

ing range by allowing responses to higher stimulus intensities through gain control.

Gain control has been widely observed across systems and can be caused by multiple

mechanisms [10, 11, 196, 254]. Further studies that focus on how central vestibular

neurons adapt to changes in natural self-motion stimuli are needed to investigate this

possibility.

Finally, the central vestibular neurons that were the focus of the present study

make contributions to higher-order vestibular processing including the computation

of self-motion perception, spatial orientation (reviewed in [25]). However, to date,

prior studies of self-motion perception [255] have focused on responses to motion

containing frequencies < 5 Hz and thus have only probed the lower portion of the

physiologically relevant frequency range (i.e., 0-20 Hz) [142]. Accordingly, it is un-

likely that the nonlinearities observed in the present study would have been sig-

nificantly evoked in these studies. Interestingly, several studies have reported that
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perceptual responses to low frequency vestibular input are enhanced by a network

property, termed velocity storage, which functions to lengthen the time constant of

the vestibuloocular reflex [256–258]. This mechanism is mediated via reciprocal con-

nections between the vestibular cerebellum and nuclei, and its dynamics are encoded

in the responses of single central neurons. Our results predict that central neurons

would exhibit dynamics consistent with velocity storage but that the amplitude of

this effect should be reduced when low and high frequency stimuli are applied concur-

rently. Future experiments will be needed to investigate how the response selectivity

of central vestibular neurons shapes postural responses as well as the perception of

self-motion and spatial orientation.

E.3.4 The Emergence of Feature Extraction: Function and General Prin-
ciples Across Systems

As an alternative to the whitening hypothesis mentioned above, theoretical stud-

ies suggest that a common underlying principle of sensory processing is that the

representation of information becomes more efficient in higher brain centers because

neurons in these areas respond more selectively to specific features of natural sen-

sory stimuli. This principle, commonly referred to as “sparse coding”, has been

investigated in different sensory systems (see [259] for a review). Some of the most

compelling evidence for a sparse code comes from experiments using stimuli resem-

bling those which would be encountered during natural vision in primary visual

cortex [260] and area V4 [261]. Parallel findings in the auditory [262], somatosen-

sory [263], and olfactory [264] systems have provided further evidence that sensory

processing is generally characterized by an increase in sparseness at higher levels.

Here we focused on understanding the mechanisms underlying integration of afferent
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input by central vestibular neurons. While the linear filtering properties of central

vestibular neurons and afferents were similar, confirming our previous results [35],

we have shown here that a static nonlinearity causes a decreased response to low

frequency stimuli in the presence of high frequency stimuli in central vestibular neu-

rons but not afferents. We propose that this decreased response to the low frequency

components of self-motion corresponds to feature detection in that it enables central

vestibular neurons to respond selectively to the high frequency components. This is

consistent with our previous results showing that individual central vestibular neu-

rons transmit less information about the detailed time course of the stimulus than

individual afferents [35]. We suggest that this enhanced feature selectivity displayed

by central vestibular neurons could constitute a signature of sparse coding and that

further sparsening occurs at subsequent levels of processing.

Our findings also suggest the intriguing possibility that central vestibular neu-

rons implement gain control through divisive normalization, similar to that previ-

ously shown to occur in the visual [265], auditory [266], and olfactory [267]systems

(see [268] for a review). In sensory systems for which neurons are tuned to differ-

ent features of complex natural stimuli, divisive normalization provides an efficient

nonlinear coding strategy that can reduce dependencies between stimulus features.

Specifically, when multiple features are present in a given stimulus, the activity of a

neuron tuned to a given feature is obtained by normalizing the response to that fea-

ture presented in isolation by the summed activity of neighbouring neurons tuned to

the other features. As a result, an advantage is that divisive normalization effectively

implements sensory gain control such that the neural response to a given feature is
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adaptively attenuated when other features are present. The attenuated response to

low frequency head rotations that we observed in central vestibular neurons when

these are presented concurrently with high frequency head rotations could be a signa-

ture of divisive normalization. Further studies are, however, needed to fully test this

hypothesis and to understand the functional implications of the relatively negligible

attenuation that was seen for high frequency stimulation. Finally, our results provide

evidence for a nonlinear mechanism that enables the preferential attenuation of the

response to a given stimulus when multiple stimuli are presented at the same time.

Such responses to stimuli consisting of sums of low and high frequency components

are also seen in other systems and may thus be a general feature of sensory process-

ing. For example, simultaneous masking presents some similarities with the effect

described here as the presence of a high frequency sound can significantly degrade the

perception of a low frequency sound [125, 269, 270]. Further, non-classical receptive

field stimulation can strongly attenuate the responses to low but not high frequency

input [260, 271]. We hypothesize that mechanisms similar to those described here

might mediate these effects in other systems.

E.4 Materials & Methods

Three macaque monkeys (two Macaca mulatta and one Macaca fascicularis)

were prepared for chronic extracellular recording using aseptic surgical techniques

[35, 272, 273]. All procedures were approved by the McGill University Animal Care

Committee and were in compliance with the guidelines of the Canadian Council on

Animal Care.
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E.4.1 Data Acquisition

The experimental setup and methods of data acquisition have been previously

described for both vestibular afferents [36, 38, 274] and vestibular nuclei neurons

[35, 147]. We used standard techniques to perform single unit recordings from 18

vestibular afferents [35, 106, 274] that innervate the horizontal semicircular canals

and 21 vestibular-only (VO) neurons [35, 147, 272] in the medial vestibular nuclei

that were sensitive to horizontal rotations. Resting discharge regularity in afferents

was quantified by the normalized coefficient of variation (CV ∗) [35, 108]. Vestibular

afferents with a CV ∗ < 0.15 were classified as regular, whereas those with a CV ∗ ≥
0.15 were classified as irregular as done previously [36, 38, 275]. As such, 5 afferents

were classified as regular and the remaining 13 were classified as irregular. VO

neurons were classified as either type I or type II depending on whether they are

excited or inhibited by rotations towards the ipsilateral side, respectively [276]. 9

VO neurons were type I and 12 were type II. Data from both groups were pooled as

no notable difference was observed when quantifying their responses to the stimuli

used here (unpublished data).

E.4.2 Experimental Design

We used two classes of head velocity stimuli to characterize the responses of

vestibular afferents and central neurons to horizontal rotations. The first class of

stimuli consisted of noise stimuli characterized by a Gaussian distribution of angular

velocities with zero mean and standard deviation (SD) of 20 deg/s each lasting

80 s. We used four different noise stimuli whose frequency content spanned the

frequency range of natural vestibular stimuli (0-20 Hz) [142]: (1) low-pass filtered
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Gaussian white noise (8th order Butterworth, 5 Hz cutoff frequency), henceforth

referred to as the low frequency noise stimulus; (2) band-pass filtered Gaussian white

noise (4th order Butterworth, 15-20 Hz band), henceforth referred to as the high

frequency noise stimulus; (3) the linear sum of the low and high frequency noise

stimuli; and (4) low-pass filtered Gaussian white noise (8th order Butterworth, 20

Hz cutoff frequency), henceforth referred to as the broadband noise stimulus. Our

noise stimulation protocol consisted of the low frequency stimulus by itself, then the

high frequency stimulus by itself, then the linear sum of the two, and finally the

broadband noise stimulus. The second class of stimuli consisted of single frequency

sinusoidal rotations each lasting 80 s, of amplitude 15 deg/s and frequencies 3 Hz

and 17 Hz, henceforth referred to as the low and high frequency sinusoidal stimuli,

respectively. These frequencies were chosen because they span the frequency range

of natural vestibular stimuli (0-20 Hz) [142]. Our stimulation protocol consisted of

delivering the low frequency sinusoidal stimulus, then the high frequency sinusoidal

stimulus, and then the linear sum of the two.

E.4.3 Traditional Linear System Analysis

For the analysis of responses to sinusoidal stimuli s(t), the spike train from each

neuron was converted into a binary sequence r(t) with a bin width of 1 ms. The value

of any given bin was set to 1 if it contained an action potential and 0 otherwise, as

done previously [38]. This binary sequence was then convolved with a Kaiser window

with cutoff frequency 0.1 Hz above the stimulus frequency to obtain an estimate of

the time dependent firing rate fmeasured(t) [277, 278]. The response gain was then

computed by fitting a first order model ffit(t) = b+ g ∗ s(t− td) to the data. Here b
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is the bias, g is the gain, and td is the latency, respectively. We used a least squares

regression to find the best fit parameter values that provide the maximum variance

accounted for (VAF) given by 1− [var[ffit(t)− fmeasured(t)]/var(fmeasured(t))]. Here

var is the variance and fmeasured(t) represents the actual firing rate [156, 272]. For

noise stimuli, the stimulus waveform s(t) was also sampled with timesteps of 1 ms.

The response sensitivity was computed from the gain G(f) = |Psr(f)/Pss(f)|, where
Psr(f) is the cross-spectrum between the stimulus s(t) and binary sequence r(t),

and Pss(f) is the power spectrum of the stimulus s(t). All spectral quantities (i.e.,

power-spectra and cross-spectra) were estimated using multitaper techniques with

8 Slepian functions [279]. Estimates of gain for low (0-5 Hz) and high (15-20 Hz)

frequencies were obtained by averaging the gain curves G(f) between 0 and 5 Hz and

between 15 and 20 Hz, respectively.

E.4.4 Coherence Measures

We also used the coherence function to measure the neural response to the noise

stimuli used in this study. The coherence is defined by:

C(f) =
|Psr(f)|2

Pss(f)Prr(f)
(E.1)

Here Prr(f) is the power spectrum of the response r(t). Based on the number of trials

and tapers used in this study, the confidence limit for the magnitude of the coherence

being significantly different from zero at the p= 0.05 level is 0.097 [197, 279] and

all neurons in our dataset displayed maximum coherence values that were greater

than 0.097 for at least one of the stimulation protocols. It is important to note

that, unlike the sensitivity G(f), the coherence is based on the signal-to-noise ratio
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SNR(f) = C(f)/[1−C(f)] and thus takes neural variability into account [121]. As

such, measuring the response using gain and coherence measures can sometimes give

qualitatively different results [38, 233, 280]. The coherence is also related to a lower

bound on the mutual information [80] that measures the amount of information that

can be decoded linearly [81].

E.4.5 Stationarity

We tested that the neural responses to both sinusoidal and noise stimuli were

stationary in the following way. We divided each recorded neural response r(t) into

4 epochs of length 20 s and computed the mean firing rate, gain, and coherence in

each epoch. We found that these did not differ significantly from one another for all

neurons in our dataset and all stimuli (p < 0.05, oneway ANOVAs).

E.4.6 Normalization

All gain and coherence measures were normalized in the following way. The

curves in response to the high frequency stimuli (noise or sinusoidal) were normalized

by their values at 17 Hz. The curves in response to low frequency stimuli were also

normalized by these values. The curves obtained in response to the sum of the low

and high frequency stimuli were normalized by their values at 17 Hz.

E.4.7 Attenuation

We quantified response gain attenuation by:

%attenuation = 100 · Gstim,alone −Gstim,together

Gstim,alone

(E.2)

270



where Gstim,alone is the gain in response to stimulus “stim” when it is presented by

itself and Gstim,together is the gain in response to stimulus “stim” when it is pre-

sented concurrently with another stimulus. We also quantified coherence response

attenuation by:

%attenuation = 100
Cstim,alone − Cstim,together

Cstim,alone

(E.3)

where Cstim,alone is the coherence in response to stimulus “stim” averaged over the

stimulus’s frequency range when it is presented by itself and Cstim,together is the

coherence in response to stimulus “stim” averaged over the stimulus’s frequency

range when it is presented concurrently with another stimulus.

E.4.8 Input-Output Relationships

We quantified the output as the time varying firing rate, which was obtained by

filtering the response r(t) using a Kaiser filter with cutoff frequency 5 Hz above the

highest frequency contained in the stimulus input [277]. We then computed the cross-

correlation function between the filtered response and the horizontal head velocity

stimulus s(t) and noted the lag at which it was maximal. This lag was then used

to align the response r(t) with the stimulus s(t). We then plotted r(t) as a function

of s(t) and took the average of values in bins of 1 deg/s. To quantify whether these

curves were well-fit by a straight line, we performed a linear least-squares fit over the

range 10 to 20 deg/s and computed R2 over the range 230 to 220 deg/s.

E.4.9 Rescaled Input-Output Relationships

We rescaled input-output relationships in order to plot the output firing rate of

VO neurons as a function of the input afferent firing rate. Because central vestibular
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neurons receive input from a heterogeneous population of afferents, we estimate

the afferent input firing rate in the following manner. First, we took the average

gain curves of regular and irregular afferents as a function of frequency obtained by

Sadeghi et al. [36] since this corresponds, to the best of our knowledge, to the largest

dataset on primate vestibular afferents. We then fit these curves using the following

expression [32,89, 281]:

Gest(f) =
AuTc(1 + uT1)

(1 + uTc)(1 + uT2)
(E.4)

where u = 2πf . Here Tc and T2 are the long and short time constants of the

torsion-pendulum model of canal biomechanics and T1 is proportional to the ratio of

acceleration to velocity sensitivity of the afferent response. Similar models have more

recently been shown to provide an accurate description of canal afferent responses in

monkeys [275,282] up to 20 Hz [92], in chinchillas [89,90] and mice [283]. We used A

=0.428 (spk/s)/ (deg/s), T1 = 0.015 s, T2= 0.003 s, and Tc = 5.7 s to fit the average

gain curve for regular vestibular afferents [32]. A was adjusted to match the data of

Sadeghi et al. [36] under control conditions. To fit the average gain curve of irregular

afferents, we used A= 0.765 (spk/s)/(deg/s), T1= 0.0085 s, T2= 0.003 s, and Tc =5.7

s. A and T1 were adjusted to match the average gain curve for C and D-irregulars

from Sadeghi et al.’s [36] data under control conditions since C and D-irregulars

were encountered with roughly equal probability [36]. The input afferent firing rate

is then given by:

raff (s) = Gaffs+ bias (E.5)

Gaff =
Greg +Girreg

2
(E.6)
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where Greg and Girreg are the gains of regular and irregular afferents averaged over

the stimulus’s frequency content, respectively, and Gaff is the average between the

two values. We took the average since about 50% of afferents encountered were

regular and the other 50% were irregular in Sadeghi et al.’s [36] dataset. We used

a bias of 104.30 spk/s, which corresponds to the average baseline firing rate of the

afferent population observed experimentally [36].

E.4.10 Model

Our model assumes that VO neurons display a static input-output relationship

with respect to their afferent input. We estimated this relationship by fitting a 6th

order polynomial to the input-output relationship obtained experimentally with the

high frequency noise stimulus. As a result, the output firing rate of the VO neuron

is given by:

rV O(raff ) = F [raff ] (E.7)

where rV O is the VO neuron’s firing rate, raff is the afferent firing rate, and F is

the estimate of the static input-output relationship. We now consider the input s to

consist of two stimuli. We will refer to one stimulus as the “signal” and to the other

as the “masker”. Note that, while the terms “signal” versus “masker” are arbitrary,

this division allows us to focus on the coding of one input (i.e. the input designated

as the signal). The VO neuron’s response to the signal and masker stimuli is then

given by:

rV O(signal + masker) = F [raff (signal + masker)]

= F (Gaff,signalsignal +Gaff,maskermasker + bias)

(E.8)
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where Gaff,signal and Gaff,masker are the afferent gains to the signal and masker,

respectively. These are obtained by averaging the afferent gains over the signal and

masker’s frequency contents, respectively. In order to obtain the VO neuron’s firing

rate as a function of the signal alone, it is necessary to average over the distribution

of values that can be taken by the masker. As signal and masker are not correlated,

this distribution is equal to the probability distribution of the masker, which is taken

to be normal with mean 0 and standard deviation σmasker, thus:

P (masker) =
1

σmasker

√
2π

e
− masker2

2σmasker (E.9)

The VO neuron’s firing rate is then given by:

rV O(signal) = 〈rV O(signal +masker)〉masker (E.10)

=

∫ ∞

−∞
dxrV O(signal + x)P (x) (E.11)

where x is the masker. The integral was evaluated numerically using a Riemann sum

approximation with binwidth 1 deg/s. This model can then be used to predict the

VO neuron’s input-output relationship when arbitrary signal and masker stimuli are

used. In order to get some intuition, we expanded F into a Taylor series in equation

(12) to obtain:

r(signal) =〈F (Gsignalsignal + bias)〉masker +GmaskerF
′

(Gsignalsignal + bias)〈masker〉masker +
G2

masker

2
F ′′

(Gsignalsignal + bias)〈masker2〉masker + . . .

(E.12)
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where F ′ and F ′′ are the first and second derivatives of F, respectively. The first term

simply corresponds to the firing rate when no masker is present (i.e., σ2
masker = 0)

and the term 〈maskern〉masker is equal to the nth order moment of the Gaussian

distribution P(masker). In particular, all moments for n odd are equal to zero (this

comes from the fact that the distribution is symmetric with respect to its mean)

while the second moment is simply equal to the variance σ2
masker. Neglecting all

higher order moments gives:

rV O(signal) = rV O,0(signal) +
σ2
maskerG

2
aff,masker

2
F ′′(Gsignalsignal + bias) (E.13)

where rV O(signal) is the VO neuron’s firing rate for a given value of the signal in

the presence of the masker and rV O,0(signal) is the firing rate for the same value

of the signal when the masker is absent (i.e., σ2
masker = 0). Inspection of Equation

E.14 shows that the masker has no effect on the output firing rate rV O(signal) if F

is a linear function, as we then have F ′′(x) = 0 for any x. Further, the sign of the

correction depends solely on the sign of the second derivative since all other terms

are positive. As such, the masker will increase the average firing rate in response to

the signal in regions where F is convex and decrease it in regions where F is concave.

The amount by which the firing rate increases/decreases grows in magnitude with the

masker variance σ2
masker but also depends on the gain of the afferents to the masker

Gaff,masker. Since the afferents display gains that increase as a function of frequency,

maskers with higher frequency content will lead to a greater correction in firing rate

than maskers with lower frequency content for a given variance σ2
masker. Equation

E.14 then allows us to evaluate the percentage attenuation in gain by taking its
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derivative and evaluating it at signal = 0 and substituting the result into Equation

E.2:

%attenuation = −100×
σ2
maskerG

2
masker

2
F ′′′(bias)

F ′(bias)
(E.14)

where F”’ is the third derivative of F.

E.4.11 Linear Nonlinear Cascade Model

We used a linear-nonlinear (LN) cascade model [110] to characterize the response

properties of both afferents and VO neurons to noise stimuli. This model predicts

that a neuron’s firing rate predicted at any instant is a function f of the linear firing

rate rlinear plus the baseline firing rate rbias. The linear firing rate is obtained by

convolving the stimulus with the optimal linear filter H(t). Thus, we have:

rpredicted(t) = f(rlinear(t)) (E.15)

rlinear(t) = rbias + (H � s)(t) (E.16)

where “*” denotes the convolution operation and H(t) is the inverse Fourier transform

of the transfer function H̃(f) = Psr(f)/Pss(f). We estimated f by plotting the actual

firing rate r(t), which was computed as described above, as a function of the linear

prediction rlinear [110]. To quantify whether these curves were well-fit by a straight

line, we performed a linear least-squares fit over the ranges 80-120 and 100-140

spk/s for central VO neurons and afferents, respectively. We then computed the

R2 over the ranges -17-120 and 20-140 spk/s for central VO neurons and afferents,

respectively. In practice, H(t), rbias, and f were all computed using the first half

of the recorded activity for a given neuron. We then compared the predicted firing

rate rpredicted(t) computed using Equation E.16 against the actual firing rate r(t) for
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the second half of the recorded activity and quantified the goodness-of-fit of the LN

model by computing R2.

E.4.12 Statistics

Values are reported as mean 6 STD in the text. Error bars or gray bands

represent 1 SEM. Throughout, “**” and “*” indicate statistical significance using a

paired t test at the p =0.01 and p =0.05 levels, respectively. “NS” indicates that

the p value was above 0.05.

E.5 Supporting Information
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Figure E.S1. Central VO neurons but not afferents respond nonlinearly
to sums of low and high frequency noise stimuli as quantified by
coherence measures. (A, B) Coherence curves as a function of frequency for an
example VO neuron (A) and averaged over the population (B). (C)
Population-averaged average normalized coherence values for central VO neurons.
(D, E) Coherence curves as a function of frequency for an example regular afferent
(D) and averaged over the population (E). (F) Population-averaged average
normalized coherence values for regular afferents. (G, H) Coherence curves as a
function of frequency for an example irregular afferent (G) and averaged over the
population (H). (I) Population-averaged average normalized coherence values for
irregular afferents. This figure was copied from Massot et al. [111].
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Figure E.S2. Central vestibular neurons respond nonlinearly to sums of
sinusoidal stimuli.
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Figure E.S2 (previous page). (A+C) Example central vestibular neuron
responses to 3 Hz (A), 17 Hz (B), and 3+17 Hz (C) sinusoidal rotations. The insets
show the power spectra of the input stimuli (black) and output firing rate (red and
blue). (D, E) Comparison between the actual response and that predicted from a
linear system for the same example neuron for the 3 Hz (D) and 17 Hz (E)
components of 3+17 Hz stimulation. (F) Population-averaged normalized gains for
central VO neurons. Note the gain for 3 Hz is strongly attenuated in the presence
of 17 Hz (p=1023, paired t test, n = 11). In contrast, the gain at 17 Hz was not
significantly altered by simultaneously presenting the 3 Hz stimulus (p = 0.97,
paired t test, n = 8). (G) Population-averaged percentage attenuation at low (3
Hz) and high (17 Hz) for central neurons. The firing rate estimates were obtained
by convolving the spike trains with a Kaiser filter (see Materials and Methods).
This figure was copied from Massot et al. [111].
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Figure E.S3. Analysis of unfiltered spike trains confirms that central
vestibular neurons respond nonlinearly to sums of sinusoidal stimuli.
(A-C) Spike train power spectra for the same example central VO neuron shown in
Figure E.S2 to 3 Hz (A), 17 Hz (B), and 3+17 Hz (C) sinusoidal rotations. Note
that the power at 3 Hz was lower for 3+17 Hz than for 3 Hz stimulation and that
the power at 17 Hz for 17 Hz stimulation was similar to that for 3+17 Hz
stimulation. This figure was copied from Massot et al. [111].
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Figure E.S4. Central VO neurons as well as afferents do not show
rectification and/or saturation when stimulated by the low and high
frequency head rotations used in this study.
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Figure E.S4 (previous page). (A-C) Phase histograms for an example VO
neuron (A), regular afferent (B), and irregular afferent (C). The solid curves show
the best sinusoidal fits. The dashed lines indicate the mean firing rates. Note that
in no case do the histograms display either saturation or rectification. The
population-averaged percentage of bins in the phase histograms corresponding to
values less than 5% of the mean was 0 in more than 98% of cases, indicating no
significant rectification. This was also true for 3 Hz and 3+17 Hz sinusoidal
rotation (unpublished data) and for all neurons in the population. The
population-averaged Variance-Accounted-For (VAF) of the sinusoidal fit for all
three types of neurons was not significantly different between the different
sinusoidal stimuli (p=0.15, t tests). This was also true for the noise stimuli
(unpublished data). This figure was copied from Massot et al. [111].
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Figure E.S5. Afferents display a linear relationship between output
firing rate and input head velocity. (A) Population-averaged firing rate as a
function of head velocity for regular afferents when the low frequency (0-5 Hz)
noise stimulus was applied in isolation (blue) and concurrently with the high
frequency (15-20 Hz) noise stimulus (black). Inset: firing rate as a function of head
velocity for an example regular afferent.
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Figure E.S5 (previous page). (B) Population-averaged firing rate as a function
of head velocity for regular afferents when the high frequency (15-20 Hz) noise
stimulus was applied in isolation (red) and concurrently with the low frequency
(0-5 Hz) noise stimulus (dashed black). Inset: firing rate as a function of head
velocity for the same regular afferent. (C) Population-averaged firing rate as a
function of head velocity for irregular afferents when the low frequency (0-5 Hz)
noise stimulus was applied in isolation (blue) and concurrently with the high
frequency (15-20 Hz) noise stimulus (black). Inset: firing rate as a function of head
velocity for an example irregular afferent. (C) Population-averaged firing rate as a
function of head velocity for irregular afferents when the high-frequency (15-20 Hz)
noise stimulus was applied in isolation (red) and concurrently with the low
frequency (0-5 Hz) noise stimulus (dashed black). Inset: firing rate response as a
function of head velocity for the same irregular afferent. This figure was copied
from Massot et al. [111].
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Figure E.S6. Individual central neurons display nonlinear responses. (A)
Firing rate as a function of head velocity for an example central VO neuron when
the low frequency (0-5 Hz) noise stimulus was applied in isolation (blue) and
concurrently with the high frequency (15-20 Hz) noise stimulus (black). Both
curves were well fit by straight lines (dashed lines). (B) Firing rate as a function of
head velocity for the same example central VO neuron when the high frequency
(15-20 Hz) noise stimulus was applied in isolation (red) and concurrently with the
low frequency (0-5 Hz) noise stimulus (long dashed black). Note that both curves
were not well fit by straight lines (short dashed lines). This figure was copied from
Massot et al. [111].
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Figure E.S7. Characterization of central VO neurons and afferents by
LN cascade models. (A) Actual firing rate as a function of the linear prediction
for an example regular afferent. Inset: the filter H(t) for this same afferent.
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Figure E.S7 (previous page). (B) Population-averaged actual firing rate as a
function of the linear prediction for regular afferents. Inset: population-averaged
filter H(t) for regular afferents. (C) Actual firing rate as a function of the linear
prediction for an example irregular afferent. Inset: the filter H(t) for this same
afferent. (D) Population-averaged actual firing rate as a function of the linear
prediction for irregular afferents. Inset: population averaged filter H(t) for irregular
afferents. (E) Actual firing rate as a function of the linear prediction for an
example central VO neuron. Inset: the filter H(t) for this same VO neuron. (F)
Population-averaged actual firing rate as a function of the linear prediction for
central VO neurons. Inset: population-averaged filter H(t) for central VO neurons.
Throughout, the identity line is shown in green. This figure was copied from
Massot et al. [111].
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Figure E.S8. LN analysis reveals that central vestibular neurons but not
afferents display a static nonlinearity in response to different self-motion
stimuli. (A) Population-averaged actual firing rate as a function of the linear
prediction for afferents in response to 0-20 Hz noise (green), 0-5 Hz noise (blue),
15-20 Hz noise (red), and 0-5 Hz+15-20 Hz noise (black). Note that all the curves
are linear and overlap but that the blue curve extends over a narrower range than
all the others. All the curves were further well fit by straight lines (R2 = 0.99 in all
cases). (B) Population-averaged actual firing rate as a function of the linear
prediction for central VO neurons in response to 0-20 Hz noise (green), 0-5 Hz noise
(blue), 15-20 Hz noise (red), and 0-5 Hz+15-20 Hz noise (black). Note that all the
curves overlap but that the blue curve extends over a narrower range than all the
others. As such, the blue curve is relatively better fit by a straight line (0-5 Hz: R2

= 0.91; 15-20 Hz: R2 = 0.58; 0-5 Hz+15-20 Hz: R2 = 0.37; 0-20 Hz: R2 = 0.62).
This figure was copied from Massot et al. [111].
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In the appendix of this chapter, I present additional analysis on some of the data

presented in the publication, whereby I compute the RR-coherence as well as the SR-

coherence, which can be used to assess whether neural responses contain additional

information that cannot be decoded linearly. This is a signature of potential temporal

coding, which is investigated by performing a spike timing jitter analysis. These

additional analysis explicitly test whether and how VO neurons might use a temporal

code when driven nonlinearly by large amplitude or high frequency stimuli.
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APPENDIX F
Coherence and spike timing jitter analysis reveal potential for

temporally encoded information that cannot be decoded linearly.

In this appendix, I perform additional analysis on the low (0-5 Hz) and high

(15-20 Hz) frequency noise stimuli (and elicited responses) used in the publication

presented in this chapter. As the stimuli consisted of four repeated identical seg-

ments, we compare the SR-coherence (Equation 1.9), with the RR-coherence (Equa-

tion 1.10). It has previously been shown that Crr has a value between zero and one,

and quantifies the strength to which the responses elicited by repeated presentations

of the same stimulus are correlated with each other [81]. It was also shown that
√
Crr

measure the maximum possible fraction of the response that can be reproduced by an

optimal encoding filter, which is in general nonlinear. This results in the inequality,

0 ≤ Csr ≤
√
Crr ≤ 1, which reflects the fact that Csr says how well the optimal linear

model can recover the stimulus from the response, while the difference
√
Crr − Csr

captures whether there is additional information in the responses that cannot be

decoded linearly. As such, Csr and
√
Crr, are related to lower and upper bounds on

the signal-to-noise ratio (SNR), via SNR(f) = C(f)/(1−C(f)), which can then be

used to give lower and upper bounds on the mutual information rate density, via

I(f) = − log2
[
1− C(f)

]
, (F.1)
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where use of Csr results in Ilower(f), and use of
√
Crr results in Iupper(f) [80,284–287].

However, because this is in fact an indirect estimate of the mutual information with

several caveats, we simply present and consider the SR- and
√
RR-coherences, to

asses whether the neural responses contain additional information about the stimulus,

which cannot be decoded with the optimal linear filter.

To further asses the nature of this additional information and how it may be

contained in the spike timing of neural responses, we use a spike-timing jitter anal-

ysis [38, 288]. Jitter randomly drawn from a Gaussian distribution with zero mean

and standard deviation, σJ , was added to each spike time. Because stimuli used

have a maximum frequency content of 20 Hz, the stimulus and firing rate response

from 0-20Hz, vary on a timescale of 50 ms or slower. One might therefore expect

jitter with σJ < 10 ms to have no effect on stimulus encoding, however unpub-

lished observations have found that σJ = 5 ms is sufficient to reduce the neurons

‘gain’, G(f) = |Psr(f)|/Pss(f), implying that jitter can effect coding at time scales

significantly greater than the jitter itself [35, 38].

To investigate the nature of the neural code, and how it changes when vestibular

neurons are driven out of their linear range, by large amplitude stimuli, we consider

both the Csr(f) as well as
√
Crr, in combination with the f-I curves (calculated as in

the publication presented above). It has previously been shown that when a stimulus

results in rectification of varying degrees, this can produce additional peaks in
√
Crr

which are outside of the stimulus frequency range (and therefore not contained in

Csr(f)), at both lower frequencies as well as higher harmonic frequencies [219]. In

Figure F.1 we show that when regular afferents, irregular afferents, and VO cells,
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subject to the same low and high frequency noise stimuli (as defined in the publication

above), it is only VOs that show
√
Crr peaks above and below the stimulus frequency

range, however none of the stimuli result in rectification. By also plotting the f-I

curves, we can see that although none show any rectification, it is in fact the VOs

in response to only the high frequency stimulus which appears nonlinear. In panel

D, we quantify the difference
√
Crr − Csr, averaged across frequency, and across

cell populations, separately for each stimulus and cell type. The dashed black line

indicates the difference which is significantly different from zero with a confidence of

95%, which is clearly only for the VOs and high frequency stimulus. To quantify the

nonlinearity in the f-I curves, for each cell in the populations, a line was fit separately

to the left and right sides (i.e. for positive stimuli and negative stimuli), and the

difference in slope, m2 −m1 is averaged across the populations of different cell types

and two stimulus types, which are plotted in panel E. Here we can see that again it is

only the VOs which are significantly nonlinear, for the high frequency stimulus. The

rectifying nonlinearity considered by Savard et al. is comparable having a region of

zero slope, and a region of positive slope, however for the boosting nonlinearity the

low slope region need not have a slope of 0, nor correspond to rectified responses of

0 spk/s. Now the FI curves are calculated using the filtered spike trains (i.e. R(t))

and therefore quantifies whether the transformation from continuous stimulus S(t)

to continuous firing rate, R(t), are linear or nonlinear, but do not tell us anything

about potential temporal coding: A rate code can be linear or nonlinear. A temporal

code, on the other hand, requires a nonlinear transformation to reliably position spike

times at a smaller timescale than that contained in the stimulus. The coherences,
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however, are computed using the binary sequences of spike times, and can therefore

capture information possibly contained within spike timing patterns.

To identify any temporally encoded information, due to the boosting nonlinear-

ity, we investigate how Csr and
√
Crr are affected by the addition of spike time jitter.

It has already been shown that jitter with σJ = 2 ms is enough to reduce Csr [35,38],

however we also consider how it reduces
√
Crr as well. In Figure F.2 panel A, I show

how both Csr and
√
Crr are reduced by jitter with σJ = 2.4 ms. We can see that it

clearly the coherence for regular afferents with is reduced most significantly, which

has lead some to conclude that regulars are more likely using a temporal code than

irregulars [38]. Another study further showed that regular afferents do in fact lose

SR-coherence faster than regular afferents, as jitter is added from distributions of

increasing σJ . However, they also showed that if the jitter SD is normalized by the

afferents spontaneous spike timing SD, σ0, the Csr decay curves then overlap. In

panel B, we therefore plot the Csr as a functions of both σJ (left panels) as well as

σJ/σ0. Here we do indeed see that the coherence is lost from the regular afferents

faster than the irregulars which in turn decay faster than irregulars, for both stim-

ulus types. However, we know that regulars also have lower spontaneous spiking

variability than irregulars, with irregulars having less than VOs. When the jitter

is normalized by this spontaneous spiking variability, we do find that the curves all

overlap much better for the low frequency stimuli, however, we in fact find the oppo-

site, with VOs loosing coherence sooner than irregulars, which are soon than regulars,

when the high frequency stimulus is used. This in fact would suggest that it is really

VOs that are using a temporal code. However, any information captured by the Csr
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can be decoded linearly. We next consider how the difference
√
Crr−Csr are affected

by jitter. In panel C, we plot this difference, averaged over different frequency bands,

capturing the frequencies lower and higher than those contained by the stimulus. As

one would expect, these differences are destroyed with less jitter for higher frequency

bands, requiring more jitter for lower bands. However, these differences appear rea-

sonably constant for very low σJ (i.e. from 10−1 < σJ < 100), compared to Csr alone

over this range. This suggests that for such very small jittering, both Csr and
√
Crr

decay by similar amounts.
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Figure F.1. Stimuli which elicit nonlinear range of FI curve of VO
neurons, results in information which can not be linearly decoded.
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Figure F.1 (previous page). For regular afferents (A), irregular afferents (B),
and VO neurons (C), we plot the population averaged SR-coherence (black) and√
RR-coherence (red) for low frequency (0-5 Hz) noise stimuli (top), and high

frequency (15-20 Hz) noise stimuli (middle), and the resulting FI curves using each
superimposed in red and blue, respectively (bottom). Population standard error
(SE) is indicated by light bands around the means. Horizontal dashed black lines
at 0.1 indicate that the coherence is nonzero with 95% confidence. In the bottom
panels, the black star indicates the spontaneous firing rate of the neuron with a
stimulus of zero. In (D) we plot the difference

√
Crr − Csr averaged over frequency,

for both the low and the high frequency stimuli, and all three cell types. The
dashed black line now indicates a significant difference at 0.1/

√
2, and clearly only

the difference for VOs and high frequency stimuli is significantly different from zero.
Error bars indicate SE. (E) For the FI curves of each cell in the population averages
shown, a line is fit to both the left and right sides of the star, and the population
averaged differences in their slopes, m1 −m2, is plotted for both stimulus types,
and all three cell types. Error bars indicated SE. Again it is only the for the high
frequency stimuli and the VOs that the difference is significant from zero.
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Figure F.2. Spike timing jitter analysis reveals nature of temporally
encoded information.
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Figure F.2 (previous page). (A) For all three cell types, we again plot the
population averaged SR-coherence (black) and

√
RR-coherence (red) for low

frequency (0-5 Hz) noise stimuli (top), and high frequency (15-20 Hz) noise stimuli
(bottom), with no jitter added (solid lines) and with spike timing jitter added from
a Gaussian distribution with σJ = 2.4 ms (dashed lines). Vertical coloured bands
indicate either the frequency band of the stimulus, or equally spaced higher (and
one lower) frequency bands, intended to capture the peaks in the

√
RR-coherence

for high frequency stimuli and VOs. (B) The difference 〈√Crr − Csr〉 averaged over
the different frequency bands, versus increasing σJ , using a log scale for the x-axis.
(C) In the left panels we plot the normalized SR-coherence as a function of σJ for
all three cell types, in response to both the low frequency stimulus (top) and the
high frequency stimulus (bottom). It can be seen that the Csr of regular afferents
begin to drop sooner than irregulars, and both drop off sooner than VO cells, for
both stimulus types. In the right panels, the SR-coherences are again plotted, but
as a function of jitter std normalized by the by the ISI std during spontaneous
firing, σJ/σ0. After normalization, for low frequency stimulus (top) the curves
almost overlap for all cell types, while for the high frequency stimulus (bottom) it
is now the VO cells which start to drop soonest, and regular afferents last.
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