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Abstract

Metric learning is an important area of machine learning, in which a similarity

measure between sets of objects is learned from data. In a modern context, this

data may come from crowd-sourcing problem instances to a set of users (or work-

ers), who are likely to have different abilities and levels of commitment to the task.

In this thesis, we first try to look over some of the main methods developed in this

field of machine learning. Finally, we present a mechanism design approach for

incentivizing workers to produce accurate data for a metric learning task. We show

how to incorporate the data provided using this mechanism into a metric learning

algorithm, and establish the theoretical properties of this approach. Results on

some simulated problems show the promise of the algorithm.
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résumé

L’apprentissage métrique est un domaine important de l’apprentissage automa-

tique, sur lequel une mesure de similarité entre des ensembles d’objets est apprise

à partir de données. Dans un contexte moderne, ces données peuvent provenir de

certains cas de problèmes d’externalisation ouverte à un ensemble d’utilisateurs

(ou de travailleurs), qui sont susceptibles d’avoir des capacités et des niveaux

d’engagement différents pour la tâche. Dans cette thèse, nous essayons d’abord

d’examiner quelques-unes des principales méthodes développées dans ce domaine

de l’apprentissage automatique. Enfin, nous présentons une approche de concep-

tion de mécanisme pour inciter les travailleurs à produire des données précises

pour la tâche d’apprentissage métrique. Nous présentons comment incorporer les

données révélées en utilisant ce mécanisme dans un algorithme d’apprentissage

métrique et établir les propriétés théoriques de cette approche. Les résultats sur

certains problèmes simulés révèlent la promesse de l’algorithme.
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1
Introduction

In many machine learning algorithms, such as k-means, nearest neighbor, out-

lier detection, etc., we need to assess the distance among instances. If the data

contains different types of attributes (or features), simple metrics such as Euclid-

ian distance might be insufficient. In such cases, it may be useful to learn a metric

from data, which weighs differently the different attributes.

The metric learning problem was first discussed in [42], who showed that

the results of algorithms such as k-means improve significantly if the metric is

defined using a set of parameters learned from data. They used as input data in

which pairs of instances are labeled as similar or dissimilar. Given this training

data, a convex optimization problem can be formulated to find a Mahalanobis

distance metric, defined as: dM(x1, x2) =
√

(x1 − x2)TM(x1 − x2), where M

is symmetric positive semi-definite matrix. The optimization requires that the

similar instances are closer in metric space than dis-similar instances. The original

work used a projected gradient optimization method to solve the optimization

problem.

Since this initial work, several other approaches have been proposed for es-

sentially the same metric learning problem. For example,[19] attempt to optimize

the expected leave-one-out error of a stochastic nearest neighbor classifier. Infor-

mation theoretic metric learning (ITML) work [16] uses the LogDet divergence to

formulate the optimization problem. They also give a new interpretation of metric

learning as minimizing the KL divergence of two multivariate Gaussian distribu-
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tions. More recently, the large margin nearest-neighbor (LMNN) algorithm [41]

extended the original metric learning approach, in the case in which labelled clas-

sification data is available, using the intuition that each instance in the training

data should be surrounded by at least k instances with the same label; the result-

ing optimization problem can be solved by semi-definite programming. The work

of Pseudo-metric online learning algorithm (POLA) [35] was the first metric

learning algorithm for online tasks. [9] and Nonlinear Neighbourhood component

analysis (NCA) [32] use nonlinear function approximators for metric learning.

For more information about different models used in metric learning see, e.g., [4],

[22], [43]. From now on, we will focus on learning Mahalanobis distances. In the

first part of this thesis, we are going to review some of these methods.

In recent years, crowd sourcing has become an interesting way to obtain data

for machine learning algorithms [17]. But, in such cases, participants may need

to be incentivized in order to ensure that the obtained data set is of sufficiently

good quality. Our goal in the second part of this thesis is to provide a mechanism

for incentivizing workers that will produce data useful for metric learning. Our

work builds directly on a mechanism designed for linear regression [8]. Their

mechanism (which we denote OSE) is similar in flavor to VCG auctions [38, 10,

20], in that it makes the payment for a worker dependent on the quality of the

data provided by the other workers. While other mechanisms for crowd sourcing

have been proposed, eg. [36] for community sensing data collection, the OSE

mechanism is most useful for us as a starting point, because its theoretical results

apply to a broad range of regression problems (linear and polynomial regression,

kernel regression, and some forms of regularization). In this thesis, we show

that the main ideas of this mechanism also apply to metric learning. Then, we

outline a metric learning algorithm using data provided by incentivized workers

and illustrate its favorable accuracy-effort trade-off on some simulated tasks.

Throughout this thesis, to avoid any notation confusion, we have used capital

P to denote the probability of variable and small p to denote its payment function.
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1.1 Outline

The thesis structure is as follows: In chapter 2, we give a brief overview of the

metric learning problem and explain some of the concepts used in this literature.

We, then, look over three famous distance metric learning algorithms developed

in this area: MMC [42], LMNN [41], ITML [16]. Finally, we compare these three

methods with each other and Euclidean metric to see their impact on some real

data sets.

In chapter 3, we give an introduction to the basic concepts of game theory and

mechanism design.

In chapter 4, we discuss two research works OSE [8] and Incentive compatible

regression learning (ICRL) [17] that have tried to combine mechanism design with

machine learning algorithm for the task of crowd-sourcing.

In chapter 5, we propose our mechanism design method which is specifically

designed for the task of crowd-sourcing in metric learning problems. At the end

of this chapter, we provide some experimental results of our mechanism on some

simulated environments.

Finally, in chapter 6, we provide a conclusion of the overall work in this thesis

and give some guidelines for possible future works.
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Distance Metric

In some problems, we need to calculate the distance between given inputs

in order to do some analysis. These kinds of problems arise mostly in pattern

recognition branches of machine learning such as k-NN, k-means [5],[14]. In k-

NN, for example, we are going to classify the input based on the most popular

label among its k nearest neighbors in the training set [14], [5], [34]. So, there

is a need to find a distance metric between examples. In this regard, for instance,

if our task is to classify images based on their quality and content, it does not

sound sensible to use the same metric for both tasks. This is because the attributes

that determine the quality of an image (like the number of pixels per index) might

be very different from the attributes (like the distribution color of pixels) used to

identify its content. The metric learning is a relatively new branch introduced in

machine learning to address these problems. It was first formally proposed by

[42]. Since then, it has received lots of attention and many different methods have

been developed.

To define a valid distance metric, we use the same definition used in [41], [42].

Consider a vector space X . A mapping D : X × X → R+
0 is called a metric if

it satisfies the following expressions for an arbitrary vectors ~xi, ~xj, ~xk ∈ X [41],

[42]:

• Triangular Inequality: D(~xi, ~xj) +D(~xj, ~xk) ≥ D(~xi, ~xk)

• Non-Negativity: D(~xi, ~xj) ≥ 0

9
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• Symmetry: D(~xi, ~xj) = D(~xj, ~xi)

• Distinguishablity: D(~xi, ~xj) = 0 ⇐⇒ ~xi = ~xj

If the metric does not satisfy Distinguishability but satisfies others, it is called

pseudo-metric [41]. In most of the metric learning methods developed so far, they

try to find a pseudo-metric. One well-known metric is the Euclidean Metric.

Definition: (Euclidean Metric): for a given vectors ~xi, ~xj the Euclidean Met-

ric is defined as follows:

DEuclidean(~xi, ~xj) =
√

(~xi − ~xj)T (~xi − ~xj) = ‖~xi − ~xj‖2 (2.1)

It is easy to check that the Euclidean Metric is a valid metric as it satisfies all the

four properties. Euclidean Metric is the `2-norm of the vector ~xi − ~xj .
The problem of using the Euclidean Metric for metric learning is that it assigns

equal weights to all elements and ignores some statistical features that might exist

in the data.

To better capture these features we may need to transform the original data

with a linear transformation matrix L and we have [4], [19]:

DL(~xi, ~xj) =
√

(L~xi − L~xj)T (L~xi − L~xj)

=
√

(~xi − ~xj)TLTL(~xi − ~xj)

= ‖L(~xi − ~xj)‖2 (2.2)

Note that DL might not necessarily satisfy the distinguishability of the metric

if the dimension of the kernel of a matrix is not equal to zero or dim(ker(L)) 6= 0.

In (2.2), if we substitute LTL with the matrix M we get:

DM(~xi, ~xj) =
√

(~xi − ~xj)TM(~xi − ~xj) (2.3)

where M is a positive semi-definite matrix (M � 0) sometimes called the metric

matrix. In (2.3), DM is called Mahalanobis distance [4]. If we set M to be the

identity matrix I we get back the Euclidean metric.
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The goal of the metric learning is to find the best metric that discovers the

underlying metric for a particular problem by using some initial information in

the form of some training data. This training data might be a collection of sets

containing similar or dis-similar pairs [42, 3, 16], it could be collections of triplets

{(~xi, ~xj, ~xk)}i,j,k∈Train such that ~xi is more similar to ~xj than ~xk [4], [33] or it

could be in any other general form.

Finally, in most papers of metric learning, there are two main paradigms. One

paradigm begins with DL in (2.2) as a metric and tries to find the best linear trans-

formation of input to compute distance. The other paradigm starts with DM in

(2.3) as a metric and seeks to find the best metric matrix M . If the latter paradigm

is used, usually an extra constraint of M � 0 is considered to make sure that the

final metric matrix is a valid metric. This is due to the fact that positive semi-

definite constraint M � 0 implicitly guarantees that the metric matrix has the

non-negativity property:

Definition. (Positive semi-definite matrix) A matrix M ∈ Rn×n is positive

semi-definite if and only if [39]:

~xTM~x ≥ 0 (2.4)

For all non-zero vectors ~x ∈ Rn. If the inequality (2.4) is strictly satisfied, the

matrix is called positive definite matrix.

Usually, the methods that take the latter paradigm has been shown to be more

successful like LMNN [4]. In the following sections, we are going to review some

of the primary methods developed in metric learning.

2.1 Mahalanobis metric learning with application for

clustering

The very first attempt to describe and solve the metric learning problems was

Mahalanobis metric learning with application for clustering (MMC) done by

[42]. In this section, we are going to take a look at their approach. They assume

that initially the training set is provided in the form of two sets D,S containing
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pairs of points from the input vector space X . The set S includes pairs of points

that are assumed to be similar and D contains pairs of points that are dissimilar.

Formally:

S ={(~xi, ~xj)|~xi ∈ X,~xj ∈ X,~xi similar to ~xj} (2.5)

D ={(~xi, ~xj)|~xi ∈ X,~xj ∈ X, (~xi, ~xj) /∈ S} (2.6)

MMC, then, tries to find a metric matrix M that is consistent with the data by

assigning small distance to similar pairs and large distance on dissimilar ones. A

trivial approach to satisfy these properties forM is to generate a kind of optimiza-

tion problem which reflects these qualities. Indeed, MMC forms an optimization

problem such that the sum of distances between the dissimilar pairs is maximized

with respect to a constraint which keeps similar pairs distance lower than some

threshold. The corresponding optimization problem is defined as follows:

g(M) = max
M

∑
~xi,~xj∈D

√
(~xi − ~xj)TM(~xi − ~xj) (2.7)

s.t.
∑

~xi,~xj∈S

(~xi − ~xj)TM(~xi − ~xj) ≤ 1 (2.8)

M � 0 (2.9)

The last constraint M � 0 is to make sure that the output metric matrix is

valid and satisfies the non-negativity property. As explained in [42], the choice

of a constant c on the RHS of (2.8) is not essential, as it just changes the final

M to c2M . The above optimization is convex as both the objective function and

the constraints are convex. As a result, it is not going to be susceptible to fall

in a locally optimum solution when trying to solve it. The optimization (2.7) is

solved through projective gradient descent where a gradient step is followed by

a projection onto the constraints (2.8), (2.9) respectively. Algorithm 1 is used in

[42] to find M :

In Algorithm 1, C1, C2 corresponds to all the matrix M which satisfies the

constraints (2.8), (2.9) respectively. To make sure the constraints of (2.7) are sat-
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Algorithm 1 MMC Algorithm
input: Arbitrary Matrix M, α as our step size

output: MMC metric Matrix

repeat:
. repeat:
. M = arg minM ′{‖M ′ −M‖F : M ′ ∈ C1}
. M = arg minM ′{‖M ′ −M‖F : M ′ ∈ C2}
. until convergence
. M= M+α(OMg(M))

until convergence

isfied, The gradient step is followed by a projection step to the space of solutions

that are defined by equations (2.8), (2.9).

2.2 Large margin nearest neighbor

In this section, we are going to review large margin nearest neighbor (LMNN),

one of the seminal works developed in metric learning by [41].

The MMC model tries to increase the distance between all the dissimilar pairs

and imposes a constraint on all the similar pairs. As a result, MMC is imposing an

a priori assumption that the clusters of points form a unimodal distribution [41].

Another problem with this approach is that the constraints are designed in a gen-

eral way instead of considering the local properties of points. In this regard, in

nonparametric tasks like k-NN where the labels of points are determined based

on their local neighbors, MMC is unable to capture and exploit the characteristics

of k-NN algorithm [41]. To solve this problem, LMNN [41, 40] takes a different

approach by trying to form an optimization formulation which can reflect the spe-

cific non-parametric attributes of k-NN. LMNN also avoids making any specific

assumptions on the distributions of clusters in order to provide a general solution.

In this regard, LMNN proposed a new model which is designed explicitly for met-

ric learning in k-NN classification tasks. They use a simple fact in k-NN which
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assigns the label of a data point based on its k nearest neighbors. We know that

if a data point’s k nearest neighbors share a correct label with it, k-NN correctly

classifies the data point.

Based on this simple observation, in the very beginning of their learning pro-

cess, they determine a set of target neighbors for each input data ~xi which remains

unchanged in the future:

Definition (Target Neighbors): In k-NN, the target neighbors of a data point

~xi are the k other points which are sought to become ~xi’s k nearest neighbor after

running LMNN [41, 40].

Target neighbors of a point ~xi should have the same class label with ~xi so that

k-NN correctly labels ~xi. Following the same notation used in [41], the notation

j  i is used to showing that ~xj is the target neighbor of ~xi. The target neighbors

of a point ~xi might be given apriori; otherwise, the k target neighbors of each

point is its closest k neighbors with the same class label in the `2-norm [41].

LMNN tries to push an input ~xi’s target neighbors close to it while keeping

other inputs with different class label away. The target neighbors can be seen as

creating a zone around ~xi that input with different class labels should not enter

[41]. In this model, to ensure that the learning process is robust against noisy

input, a margin between the zone created by target neighbors and other inputs

with different labels (”imposters”) is maintained.

Finally, after running LMNN, we can hope that the local neighbors of points

(inputs) have been filtered such that k local neighbors of a point share a similar

label with it.

2.2.1 Large margin nearest neighbor Loss Function

To fulfill the mentioned goals, LMNN defines a loss function with two terms

standing for the two qualities we want to see after running LMNN. One term

makes imposters leave the target neighbor’s zone with a margin. The other term

moves target neighbors of a point (input) close to it. By following the same nota-

tion of [41], for two input data ~xi, ~xl define yil such that if their label is the same

then yil = 1 and yil = 0 otherwise. Also, [a]+ = max(0, a) denotes the hinge
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loss.

LMNN defines the first term in the following way:

εpush(L) =
∑
i,j i

∑
l

(1− yil)[1 + (~xi−~xj)TM(~xi−~xj)− (~xi−~xl)TM(~xi−~xl)]+

(2.10)

(2.10) imposes a force on imposters to have the margin of 1 from the zone estab-

lished by each target neighbors. Note that due to the use of hinge loss in (2.10),

this term only affects those differently labeled inputs that are within the zone of

target neighbors plus the margin. This term is very efficiently designed in the

sense that it does not make the whole optimization to deal with unnecessary dif-

ferently labeled inputs when they are already outside the zone and margin. This

unique property also makes LMNN distinct from MMC which deals with all the

differently labeled input pairs at once.

LMNN’s second term of its loss function is:

εpull(L) =
∑
j i

(~xi − ~xj)TM(~xi − ~xj) (2.11)

Which pulls target neighbors of a point close to it. Again, this term only affects the

target neighbors but not the whole sets of similar inputs which we saw in MMC.

The loss function of LMNN is defined as a combination of (2.10) and (2.11)

with weight w ∈ [0, 1]:

ε(L) = wεpush(L) + (1− w)εpull(L) (2.12)

To solve (2.10), [41] first turns it into the form of a standard semidefinite pro-

gramming (SDP) [6]. In (2.10), it contains a hinge loss in its objective; however,

SDP problems should not have it. The trick used in LMNN is by introducing a

slack variable ε for the first term of the loss function. The whole optimization

model of LMNN is depicted below. Note that a slack variable is used in the loss
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function of optimization instead of the second term.

minM w
∑
j i

(~xi − ~xj)TM(~xi − ~xj) + (1− w)
∑
i,j i,l

∑
l

(1− yil)εijl (2.13)

s.t. (~xi − ~xl)TM(~xi − ~xl)− (~xi − ~xj)TM(~xi − ~xj) ≥ 1− εijl
εijl ≥ 0

M � 0

Finally, we should mention that although LMNN has some clear advantage

over MMC, it is especially designed for k-NN tasks.

2.3 Information-theoretic metric learning

We now discuss [16] method to find the metric matrixM . Information-theoretic

metric learning (ITML) provides a new interpretation of finding metric matrix by

viewing this problem as a problem of learning an optimal Gaussian distribution

with a relative entropic objective function. One advantage of this method com-

pared with others is that it does not need to compute eigenvalue decomposition

of a matrix which might be computationally expensive. To bypass eigenvalue

decomposition, ITML uses a special form of Bregman Divergence [7] (LogDet

Divergence) in its objective function. We first take a look at Bregman Divergence

and then discuss ITML.

Definition (Bregman Divergence): Let φ be a real-valued strictly convex

function with domain S = dom(φ) ∈ Rm where S is a convex set and φ is

differentiable on the relative interior of S. The Bregman divergence of φ for any

two vector ~x, ~y ∈ Rm is [23], [37]:

Dφ(~x, ~y) = φ(~x)− φ(~y)− (~x− ~y)T∇φ(~y) (2.14)

Note that in (2.14), if we use φ(~x) = ~xT~x, we get Dφ(~x, ~y) = ‖~x− ~y‖2
2. As

described in [23], The Bregman divergence can be extended to take matrices as

inputs. Assuming here a strictly convex function φ(X) over matrix space which is

also differentiable, we have:

Dφ(X,Y) = φ(X)− φ(Y)− trace((∇φ(Y)T (X− Y)) (2.15)
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where trace(X) =
∑

i xi,i, the sum of the diagonal elements of a given matrix.

The following example shows an important usage of Bregman divergence:

Example. Consider a matrix X ∈ Rn×n. Assume λi denotes the ith eigenvalue

of X. Defines φ(X) = −
∑

i log λi. The Bregman divergence with respect to this

φ is (λi, λ′i denotes eigenvalue X,Y respectively):

Dφ(X,Y) = trace(Y−1(X− Y))−
∑
i

log λi +
∑
i

log λ′i

= trace(XY−1)−
∑
i

log(
λi
λ′i

)− n

= trace(XY−1)− log

(∏
i

λi
λ′i

)
− n

= trace(XY−1)− log(det(XY−1))− n (2.16)

In the third line of (2.16) we have used the log a + log b = log ab property.

(2.16) is called LogDet divergence. Assuming that Y is a positive definite matrix,

the LogDet divergence is finite if and only if X is also positive definite [4]. So,

using LogDet divergence as a regularization term in the objective function of an

optimization automatically opens a path to bypass the positive definite constraint

in the optimization. In ITML, it is assumed that we are first given an initial metric

matrix M0 and a batch of training data consisting of similar and dissimilar pairs.

The goal of ITML method is to find a metric matrix M such that M stays close to

some initial given matrix M0, while keeping a distance lower than a parameter u

on similar training pairs and higher than a parameter v on dissimilar pairs.

ITML measures a distance between two matricesM andM0 implicitly through

exploiting KL-divergence [24] of information theory. Suppose we want to model

an unknown distribution P (x) with the distribution Q(x) in order to transmit data

x to some client. Then, the average additional information (bits) needed due to the

use of the distribution Q(x) can be shown to be equal to KL-divergence between

the distributions P (x) and Q(x) [5]:

Definition (KL Divergence): The KL-divergence between the distributions
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P (x) and Q(x) is an asymmetric relation defined by:

KL(P (x)||Q(x)) =

∫
P (x) log

P (x)

Q(x)
dx (2.17)

In addition to its information theoretic interpretation, (2.17) is defining a mea-

sure of closeness between two distributions P (x), Q(x) [5]. In this regard, con-

sider two Gaussian distributions N (C,M),N (C,M0) with equal mean C and

covariance matrix M,M0 respectively. As their mean is identical, their distance

should be dependant on their covariance matrices M,M0. As a result, we can

apply (2.17) to find the distance between M,M0 [16]. ITML uses the same idea

to measure distance for different metric matrix by defining their corresponding

Gaussian distributions. In fact, it uses the following KL-divergence function as its

loss function to keep M close to M0 subject to constraints on similar and dissim-

ilar pairs:

KL(N (µ,M0)||N (µ,M)) =

∫
N (µ,M0) log

N (µ,M0)

N (µ,M)
dx (2.18)

Though (2.18) might be a reaonable objective function, it might be very hard

to solve its corresponding optimization. In this regard, it is shown in [15] that

KL(N (µ,M0)||N (µ,M)) =
1

2
DLogDet(M,M0)

As a result, ITML minimizes the DLogDet(M,M0) subject to a similar constraint

on similar and dissimilar pairs. Note that in ITML there is no need to do the pro-

jection step with eigenvalue decomposition due to the use of Bregman divergence.



2.4. EMPIRICAL ILLUSTRATION OF METRIC LEARNING 19

2.4 Empirical illustration of metric learning

After explaining MMC, LMNN, ITML algorithms, it’s worth investigating

whether they make any improvement compared with using simple Euclidean met-

ric on real data sets. Here, we also want to compare the effectiveness of these

algorithms on real datasets.

We applied metric learning algorithms described in the previous section on

the k-NN tasks for wine quality, abalone mushroom, breast cancer and diabetic

patients datasets from UCI repository [25] (Figure 1.1). Here is a brief description

of these datasets (In all of these datasets we have assumed by reformatting the last

attribute is the target value):

• Wine quality: This dataset contains two files corresponding to white and

red wine. We use white wine file here. In both files, the dataset contained

12 attributes where the last attribute is the measure of the quality of the

corresponding wine. The measurement is done based on physicochemical

tests. For more information, please refer to [13].

• Abalone mushroom: This dataset contains 8 attributes where the last one

is the number of rings of the corresponding mushroom which gives infor-

mation about its age. For more information, please refer to [25].

• Breast cancer: This dataset contains 10 attributes where the last one is the

state of the corresponding breast cancer which can be malignant or benign.

For more information, please refer to [26].

• Diabetic patients: This dataset contains 20 attributes where the last one is

the signs of DR. For more information, please refer to [1]

In these experiments, we chose k = 5 for k-NN algorithms. The test set had the

size of 100 for all datasets which we separated it initially from the training data.

Figure 1.1 shows the results. The error bar on figure is for five times repetition

of each experiment. The x-line for the bars shows the size of the training set for

learning metric matrix by LMNN, ITML, MMC receptively. The y-line of Figure
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1.1 shows the number of mislabeled test data by k-NN algorithm after learning

the metric matrix. Formally:

Error =
∑
i∈T

1yi 6=ŷi

Where T denotes the test set, yi, ŷi denote the actual label and the output label of

k-NN for the ith test data and 1 is the indicator function which has value 1 if its

condition holds and zero otherwise.

As it can be seen, when the training size increases the error decreases in al-

most all cases. In Figure 1.1a for Breast cancer dataset, we can see that MMC

method had better performance compared with other methods. MMC also outper-

forms other methods in Figure 1.1c for Abalone mushroom though ITML also has

competitive results on this dataset. For Figure 1.1b, d for Diabetic patients and

Wine datasets, we see that ITML had better performance than others. In all the

figures, we can say that all methods outperformed Euclidean metric.

2.5 Discussion

So far, we have explored some of the distance metric learning problems and

concepts in machine learning area. We also discussed three of the well-known al-

gorithms developed to address these metric problems. In the previous section, we

compared the results of applying these algorithms to real data sets and found that

they, indeed, have enough capacity to improve learning accuracy compared with

using traditional Euclidean metric. In the next two chapters, we will explore game

theory concepts and mechanism design and review some of the efforts made to

combine mechanism design with machine learning algorithms in crowd-sourcing.
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(a) Breast cancer dataset (b) Diabetic patient dataset

(c) Abalone mushroom data set

(d) Wine data set

Figure 2.1: Summary of results of applying ITML, LMNN, MMC versus Eu-

clidean metric on data sets. The yellow bar in figures corresponds to the Euclidean

metric



3
Mechanism Design

Mechanism design is an attempt to develop a protocol such that the self-

interested participants (called rational agents) maximize (or minimizes) a general

objective. This area is a subfield of game theory study. In this section, we first re-

view some fundamental notions of game theory. Then we give a formal definition

of mechanism design.

3.1 Game Theory

Game theory is ”the study of mathematical models of conflict and cooperation

between intelligent, rational decision-makers”[28]. By using mathematical mod-

els, it provides insights into social situations and behaviors. This social condition

may involve two or many individuals such that their interactions affect their wel-

fare (utility) [28, 31]. Game theory has been widely used in economics, political

science, psychology, logic, and computer science [30, 11, 2, 28].

In this section, we are going to review some important basic notions of game

theory that we are going to use later:

Definition (Game): A game is an interaction between at least two players or

agents with non-identical objectives [29].

These players’ behaviors are the center of focus in the game theory. The primary

assumption used in the game theory context is that the players (agents) involved

in a game are rational decision makers [28].

22
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XXXXXXXXXXXXXXXX
Company 1

Company 2
A B

A (-1,-1) (10,3)

B (3,10) (6,6)

Table 1: showing the pay off company 1,2. (pi,pj) of the ith row and jth column

correponds to company 1 getting pay off pi and company 2 getting pay off pj

Definition (rational agent): An agent is called rational if and only if it consis-

tently chooses a decision that maximizes his objective/utility function [28, 29, 31].

In a game, it is assumed that a player has different strategies (options) S =

{s1, s2, ..., sk} to play and each of these strategy may lead to an outcome in a set

O = {o1, o2, ..., on} [28, 29, 31]. The agent usually has some sort of preference

over possible outcomes in a game. The sets O and S can be continuous or discrete

based on the nature of the given game. In order to be able to distinguish between

different strategies that an agent can use, a function is defined such that it assigns a

value to the strategy chosen by the agent and this value might be dependant on the

strategy chosen by other agents. This function is called utility function [29, 31].

To make these concepts more clear let’s consider the following example:

Example 1. Consider two companies 1, 2 that can invest either in project A

or B. Assume that project A is more profitable than project B if just one of the

companies invests and creates a captive market. In this case, the marginal profit

for the company investing in A is 10 versus 3 for the other company investing in

project B. If both companies invest in project A due to the high manufacturing

cost they will lose -1. Finally, if both companies invest in project B they will get

marginal profit 6. Table 1 depicts the different strategy with its corresponding pay

off for company 1 and 2. We can see that under this scheme, there is a sort of

competition between companies 1 and 2 in which they try to increase their profit.

Here, if both companies choose the strategy to invest in B, it would be an unstable

solution as both companies have motives to go for project A. This is because they

are going to get a higher pay off if they change their strategy. We can say a similar
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thing when both of them choose to invest in project A. On the other hand when

one of them choose to invest in A and the other one is investing in project B, we

have a stable solution. This is because if any of them changes its strategy, it gets

less pay off (lower utility function value) which is not a rational behavior.

A stable solution in Game Theory is called a Nash Equilibrium. We will give

a more formal definition about it later.

3.1.1 Mechanism

Unlike Example 1, in the real world, we may encounter situations where

agents do not have complete information about a game. Specifically, they do

not have enough information about other agent’s behavior. This behavior consists

of private information of agents about their utility function and their preferences

[29]. To model such games, we will follow the same model presented in the semi-

nal work [29] (a similar model is also shown in [31]). In such games, it is assumed

that no probabilistic information is provided to any agents about others.

Definition. A strict incomplete game with n agents consists of [29]:

• Each agent i has a set of actions Xi.

• Each agent i has a set of types Ti. it is regarded as its private information

• a utility function ui is defined for the agent i with type set Ti with formula-

tion ui : Ti×X1×X2× ...×Xn. X1, ..., Xn. (This definition reminds that

the utility function of an agent is dependent on the action of other agents.)

Based on the above definition, we can give a more formal definition of strategy.

The strategy of an agent is just a mapping from its type to his action set [29]. In

essence, we can see strategy as a value function in machine learning which assigns

numerical values to different options of an agent except in game theory a rational

agent always follow an option with the highest value.

Definition (Nash Equilibrium): if we have for all agents i with ti ∈ Ti and

all xi ∈ Xi:

ui(ti, si(ti), s−i(t−i)) ≥ ui(ti, xi, s−i(t−i)) (3.1)
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then we say the set of strategies s1, .., sn are in Nash Equilibrium [27, 29, 31].

The notation {•}−i in (3.1), refers to all other agents except i. The stable

solutions we showed in Example 1 are the examples of Nash Equilibrium. When

the game is in the Nash Equilibrium state, no rational agent has any incentive to

change its strategy as it is not going to improve its utility.

In general, we may have the case where under any circumstances, following

a specific strategy for an agent always leads to the maximum utility value. This

strategy is called a dominant strategy for the agent.

Definition. (Dominant Strategy): We say a strategy si for agent i is a domi-

nant strategy if for all ti, all x−i and xi we have [27, 29, 31]:

ui(ti, si(ti), x−i) ≥ ui(ti, xi, x−i) (3.2)

Note that the main difference of Dominant Strategy with Nash Equilibrium is

that (3.2) holds for any strategy chosen by other agents, while (3.1) only holds for

a fixed set of strategy.

In most mechanisms, people try to give a solution which can hold in a Nash

equilibrium or a dominant strategy of players (agents).

When agents take actions, the action usually has some sort of costs for them

(e.g., paying an amount of money). While, in return for taking action, they will

get some value from this outcome o ∈ O (e.g., receiving payment). This value

should be clearly dependent on the type of the agent which reflects agent’s vote,

viewpoint, choice, etc. In this regard, two functions pi : X1×X2× ...×Xn → R
, vi : Ti×O → R are defined to account for the cost and value functions of agent

i respectively [29]. It is easy to check that the utility function of agent i is [29]:

ui(ti, xi, x−i) = vi(ti, o)− pi(x1, ..., xn) (3.3)

Now, under this scheme, the mechanism design is about specifying the rule of

a game such that when agents take their actions what is going to be the expected

outcome. A function f : T1 × T2 × ... × Tn → O is usually used to determine

the output. This function is sometimes called the social choice function or social

welfare function [29, 17]. In essence, social choice function reflects the aggregate
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type of agents participating in a game. As discussed in [17] we can define a notion

of efficiency for social choice function in the following way:

Assume the set T = T1×T2× ...×Tn, for a social choice function f : T → O

if for all Ti ∈ T :

α
n∑
i=1

vi(f(T ), Ti) ≥ maxo∈O
n∑
i=1

vi(o, Ti) (3.4)

then the social choice function is α efficient [17].



4
Mechanism Design In Machine Learning

After explaining the notions of mechanism design, in this section, we are going

to see some of the attempts to interweave mechanism design and machine learning

problems. The main thing addressed in these works is that they propose a way

to get probably a better training data for a class of machine learning function

approximations.

4.1 Optimum statistical estimation with strategic data

sources

One way to improve function approximation methods is to try to get more ac-

curate training data. In this regard, optimum statistical estimation with strategic

data sources (OSE) [8] solves this problem by compensating data sources (work-

ers) via monetary incentives. OSE assumes that a statistician wants to approximate

a function f through a set of training data < ~xi, yi >
n
i=1 provided by some work-

ers. Each worker i is given a vector ~xi, and would return the corresponding label

yi with some noise. As usual, under this scheme, when the amount of effort spent

by a worker increases, the accuracy of the label increases as well. A game is then

developed such that each worker tries to get a better utility function for himself

by exerting the optimal effort level. These workers are strategic in the sense that

they try to maximize their utility function.

27
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Formally, given a tuple ~xi, worker i will produce y(e) by exerting effort e such

that [8]:

y(e) = f(~x) + δ (4.1)

where f(~x) is a true value, and δ is a noise with mean equal to zero and variance

σ(e)2. The utility function of workers is dependent on the effort level they exert:

ui(e) = p(~x, y(e))− e (4.2)

Clearly, workers aim to use the effort level that maximizes their expected util-

ity. The payment function p : D×R → R (D is the domain of input vector space

~x) is determined by the mechanism.

OSE proposes the following objective for the statistician who wants to mini-

mize it:

Ex∗,~y(~e∗)

[(
f̂~y(x

∗)− f(x∗)
)2

+ γ
∑
i∈W

pi(~x, ~y)

]
(4.3)

In (4.3), γ is a regularizer factor, x∗ is the test data drawn from some dis-

tribution over a domain. f̂ is the approximation of the true function f which is

obtained via the training data < ~x, ~y >n
i=1.

(4.3) tries to combine the accuracy of the approximation function with the pay-

ment to make a trade-off between high accuracy and low commitment to workers.

(4.3) consists of two terms inside the expectation. In order to compute the min-

imum of (4.3) we need to be able to have some explicit formula for both terms.

The second term, pi, the payments are determined by mechanism and it should be

easy to compute. However, the first term of the expectation,
(
f̂~y(x

∗)− f(x∗)
)2

,

might be tricky to compute. It turns out that for some function approximation

method like linear regression, this term can be computed. These estimators are

called well-behaved by OSE.

Definition (Well-Behaved Approximator): ”Assume H is a family of func-

tions f . An approximation f̂ for H is well-behaved if and only if there exists

some function g such that, for all distributions F over D our input space, func-

tions f ∈ H, and vectors ~x drawn from the input space and ~σ ∈ R∗+:” [8]:
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Ex∗,~y( ~e∗)

[(
f̂~x,~y(x

∗)− f(x∗)
)2
]

= g(~x, F, ~σ) (4.4)

Here, x∗ is the test data drawn from the distribution F . As explained previ-

ously, each yi in (4.4) is deviated from its value by a Gaussian noise with mean

0 and the variance σ2
i . Note that the well-behaved requirement is necessary here

otherwise we are unable to compute the minimum of (4.3). As we are going to see

later, the condition of well behaved approximator in [8] is kind of restrictive as we

cannot in general use it in all cases. Later, we are going to mitigate this condition

in our method.

Now, assuming that the approximator is well behaved, OSE proposes a mech-

anism where the dominant strategy of workers is to apply the optimal effort e∗

which minimizes (4.3). If any of the workers applies less effort, he or she will

have lower utility gain. As a result, he or she cannot get the maximum utility

which is in contradiction with the definition of strategic worker. It is proven in [8]

that (4.3) can provide this dominant strategy framework if the payment is defined

in the following way:

pi(~x, ~y) = ci − di(yi − f̂(~x,~y)−i
(~xi))

2 (4.5)

where f̂(~x,~y)−i
is the approximation function we get by eliminating the data of

the ith worker from training data. ci, di are the constants defined in the following

way to assure the existence of dominant strategy:

di =
−1

2σi(e∗)σ′i(e
∗)

ci = di(σi(ei)
2 + g(~x−i, F, ~σ−i(~e−i))) + ei (4.6)

Where the σ′i(e
∗) is the derivative of σi function at the point e∗. The proof of

why this payment setting provide such dominant strategy is given in [8].
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4.2 Incentive compatible regression learning

Incentive compatible regression learning (ICRL) [17], uses incentive compat-

ible concept in its design of the mechanism for regression learning. In this setting,

workers are holding some private information about the label of input data. This

private information reflects the viewpoint of the worker over the input data. This

input data plus the labels of workers constitute the training set which is going

to be used later for regression learning to build a hypothesis function. The main

problem here is that these workers may have a conflicting viewpoint on the inputs

[17]. Thus, they might have the incentive to lie so as to make the final hypothe-

sis function incline toward their view. As described in ICRL, the main goal is to

construct a hypothesis function which reflects the common viewpoint of workers.

The following example provides a good motivation for the whole problem.

Example. Consider a company asks a group of experts to give a score for a

newly manufactured car. In the end, the company wants to build a score function

to evaluate its future products. Now, an expert who is interested in sports cars

may give a meager score for a car that has relatively moderate acceleration. The

score, however, might be very unfair if the car is a family car for having moderate

acceleration. As a result, we need to incentivize experts to tell the truth.

It is also possible that some subset of workers forms a coalition to deceive the

whole mechanism in favor of their viewpoints. The problem with the definition

of incentive compatible is that it does not cover the case where the workers may

form a coalition to deceive the mechanism. A new concept is needed to cover

these cases as well. This problem is also addressed in ICRL. In this framework,

[17], first, defines an extension of the incentive compatible concept and then tries

to build a mechanism that follows this expansion.

Definition (ε-group strategyproof): For an ε ≥ 0, suppose for any group

C ⊂ {1, 2, ..., n} of workers who want to form a coalition in order to jointly

deviate from their right type Ti to get a higher pay off. Now suppose a mechanism

that imposes the following condition:

All the members of C can get at least ε higher pay off only if all of them get

exactly ε higher pay off .
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This mechanism is called ε-group strategyproof in dominant strategy equilib-

rium [17]. Formally, for T̂ ∈ T if T̂j = Tj if j /∈ C. The mechanism is called

ε-group strategyproof if for all i ∈ C and all C ⊂ {1, 2, ..., n} the following

inequality hold:

vi(f(T̂ , Ti))− pi(T̂ ) ≥ vi(f(T, Ti))− pi(T ) + ε

then we have:

vi(f(T̂ , Ti))− pi(T̂ ) = vi(f(T, Ti))− pi(T ) + ε

for all i ∈ C and all C ⊂ {1, 2, ..., n} [17].

If the ε = 0 then the 0-(group) strategyproof and (group) strategyproof is used

interchangeably. In general, it might be even impossible to avoid any coalition

of agents in a mechanism. However, by introducing the ε factor, The ε-group

strategyproof provides a flexible extension to the notion of incentive compatibility

which also considers the coalition. Although this new concept might not avoid

coalition (when the ε > 0), it at least provides a safety margin εwhen it is satisfied.

Note that if a mechanism is an incentive compatible, it does not necessarily mean

that it is also group strategyproof. On the other hand, the reverse always holds.

Now, ICRL formulates the whole problem as follow: The general goal is to

formulate some real-valued function f : X → R with domain X which reflects

the average attitude of workers. As usual, f ⊂ F where F is a hypothesis space of

real-valued functions. Let the worker set N = {1, 2, ..., n}. Each worker i ∈ N
holds a private function oi : X → R which reflects its viewpoint on the input

data. Furthermore, each agent has some probability distribution ρi which reflects

the relative importance of the points in the input space X for the agent. The

accuracy of predicted function f can be its average loss over the whole domain.

However, this global definition cannot be computed, as it is defined over the whole

domain. Instead, ICRL works with an empirical estimate of the global risk R̂N(f)

as follows. For each worker i, it samples m points and asks the corresponding

labels from i to form the training set Si = {(xi,j, yi,j)}mj=1. The global training

set is S = ∪ni=1Si. Then, ICRL defines the empirical estimate of the global risk
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R̂N(f):

R̂(f, S) =
1

|S|
∑

(x,y)∈S

l(f(x), y) (4.7)

(4.7) can be seen as the social welfare where we want to minimize it to reflect

the common viewpoint of workers better. Finally, for the training set S, a learning

method can return the hypothesis function which minimizes the empirical risk.

This method is called ERM (Empirical Risk Minimization) [17]. As discussed in

ICRL, note that under this scheme workers still have the incentive to lie about the

true label of a given training input x when reporting y in order to minimize their

own risk function:

Ri(f) = Ex∼ρi [l(f(x), oi(x))]

ICRL has proved some interesting results on the ways to design the group

strategyproof mechanism. We are going to explain the main result here.

The main result applies to the case where the ρi for all i consists of only one

point which means each worker is just interested in only one point in the domain

of its inputs. Furthermore, assume the loss function is the `1-norm:

l(a, b) = |a− b| (4.8)

Under these circumstances, if we apply Algorithm 2 we have:

Algorithm 2 ERM with Tie Breaking Algorithm
input: set S, convex hypothesis space F

output: function f̃

. r = minf∈F R̂(f, S)

. f̃ = arg min
f∈F,R̂(f,S)=r

∫
f 2(x)dx (This integral is over training data)

The mechanism using Algorithm 2 is group strategyproof [17].

Here, we will not go over the whole proof of the above claim, as it might

be beyond the scope of this thesis. However, we provide some highlights over

the approach taken by the author of ICRL to prove their claim. First, given two

training set S, S ′ on the same set of points, ICRL applies Algorithm 2 on each
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of them to get real-valued functions f , f ′. They show that if f 6= f ′, then there

exists some input xi ∈ S, S ′ such that y′i 6= yi where y′i is the label of this input in

S ′ and yi is its label in S. Also, the loss function with respect to y label for this

input using f function is less than the same loss function using f ′. On the next

step, they use this fact to show that any coalition of agents to lie about their true

type is doomed to decrease their final value function. As a result, Algorithm 2 is

group strategy proof.

In this chapter, we tried to provide a review of some of the effort done to use

game theory on machine learning algorithm. In the next chapter, we will take ad-

vantage of OSE method to develop a mechanism for metric learning algorithms.



5
Metric Learning with Strategic Workers

5.1 Introduction

In the previous chapter, we saw how game theory is being used in machine

learning problems. The main trend here is how to elevate the accuracy of training

data by making workers to tell the truth or put more effort on their task. [8], [17],

[18], [36]

Our mission here is to use the similar idea in metric learning problems specif-

ically. We want to see in metric learning whether we can use better training data

by incentivizing workers. It turns out that due to the complexity of metric learning

problems, we need to relax some of the notions we have explained before. In this

regard, we found that the model used in OSE is a suitable model as a baseline and

we are going to extend this model to metric learning problems.

Following the model used in OSE, we consider a set of strategic workersW ,

who are going to provide the training data, by exerting different levels of effort. In

order to be consistent with this model, we assume that given a pair of instances, a

worker will provide a real-valued measure of their similarity, instead of a discrete

“similar” or “dis-similar” label. While this is different from standard metric learn-

ing approaches, many datasets (e.g. opinion surveys, psychometric data) contain

this type of information; we further discuss how this assumption may be lifted in

conclusion.

Upon being presented with a pair of instances ~xi,1, ~xi,2 whose true distance is

34
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y∗i , a worker wi will produce a label yi such that

yi = y∗i + εi, (5.1)

where εi is a random variable drawn iid from a known distribution. For the fol-

lowing developments, we assume (as usual in regression) that this distribution is

Gaussian with zero mean and standard deviation σi(ei), where ei is the effort ex-

erted by the worker. As in OSE, σi(ei) is a convex, monotonically decreasing

function of ei: as a worker increases her effort level, the result should be closer

to the true value of the metric. Moreover, {σi(·)}i∈W is known to the mechanism

designer.

Each worker i has a utility function dependent on ei, which she attempts to

maximize:

ui = pi − ei (5.2)

where pi(·) denotes the payment commitment for the i-th worker. This payment

could depend on all workers’ instances and labels. As in OSE, workers are ra-

tional, so they will participate only if ui ≥ 0. From now on, for simplicity we

will use xi to denote the difference ~xi,1− ~xi,2 between a pair of instances ~xi,1, ~xi,2
that is assigned to worker i, so: dM(~xi,1, ~xi,2) =

√
(~xi,1 − ~xi,2)TM(~xi,1 − ~xi,2) =√

xTi Mxi.

The payment commitments need to incentivize workers to produce distance

estimates that allow matrix M to be sufficiently accurate, while also keeping the

total cost reasonable. The following definition formally formulates our problem.

Definition 1 (Metric Learning with Strategic Workers (MLSW)). Suppose that we

are given:

• access to a set W of strategic workers for some unknown metric, where

each worker i ∈ W has a known function σi mapping effort to accuracy;

we also assume that all workers’ estimations are independent;

• a pool of data points T ⊆ Rd;

• a distribution F over Rd (the distribution of the difference between the test

pair x̄ = x̄1 − x̄2).
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Our goal is to:

1. choose how to assign data points to workers; if we assign worker i the

difference between two data points xi,1 and xi,2 from T , worker i should

return an estimated distance between xi,1 and xi,2; if we assign worker i a

null input⊥, it means that we exclude worker i from the task 1 and s/he does

not need to return anything;

2. commit to a payment function pi to each i ∈ W , where pi is a (potentially)

randomized mapping pi : (xi, yi)i∈W 7→ R, which may depend not only

on the estimate produced by worker i but also the estimates produced by the

other workers.

Given labelled data points (xi, yi)i∈W , we apply an ERM algorithm to compute

a metric. In particular, let M̂ be the solution 2 of the following mathematical

program.

min
M�0

h(M) = min
M�0

∑
i∈W

(yi − xTi Mxi)
2 (5.3)

Subject to our decisions in 1 and 2, we are looking to minimize a weighted

average of the mean-square error of our estimation and the expected payments

made to the workers, namely:

Ex̄,y(e)

[(
x̄TM∗x̄− x̄TM̂x̄

)2

+ α
∑
i∈W

pi
(
(xi, yi(ei))i∈W

)]
(5.4)

for some α > 0, where the expectation is taken with respect to all the random-

ness in the setting: the randomness in x̄ ∼ F , the randomness in the outputs

y(e) , {yi(ei)}i∈W produced by the workers, and the randomness in the pay-

ment functions. For (5.4) to be a well-defined objective, we need to be able to

predict the efforts {ei}i∈W that the workers will exert given our decisions for 1

1More specifically, whenever we write i ∈ W , we only consider the workers whose inputs are

not ⊥.
2We first assume that we can solve this problem exactly. We will later discuss the case where

only an approximate solution can be obtained.
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and 2. We discuss how this can be achieved in Section 5.2.1 below. At the very

least, our prediction needs to satisfy the individual rationality constraint of Defi-

nition 3, i.e. that the expected payment to each worker i is at least as large as ei,

otherwise the worker would not participate.

5.2 Our Mechanism

In this section, we show how to design a mechanism for the MLSW problem.

We demonstrate in Section 5.2.2 that for any effort levels {ei}i∈W , we can design

an individually rational mechanism such that there is a unique dominant strategy

equilibrium where every worker i exerts effort ei. In Section 5.2.2, we provide

guidance on how to assign data points to workers with access to any exact or

approximate algorithm for solving the mathematical program (5.3). First, let us

formally define these game theoretic solution concepts.

5.2.1 Incentives

Definition 2 (Unique Dominant Strategy Equilibrium). A solution to MLSW —

comprising queries {xi}i∈W , and payment commitments {pi}i∈W—induces a unique

dominant strategy equilibrium (UDSE) {e∗i }i∈W iff, for all i ∈ W and all {ej}j∈W:

E
[
pi
(
(xi, yi(e

∗
i )), (xj, yj(ej))j∈W\{i}

)]
− e∗i ≥ E

[
pi

(
(xj, yj(ej))j∈W

)]
− ei,

where the expectation is with respect to everything that is random, with equal-

ity only if ei = e∗i . In words, no matter what effort levels the other workers choose,

the unique optimal effort level of every worker i is e∗i .

If a game has a UDSE, then it is fairly straightforward for the players to decide

their strategies. All mechanisms considered in this paper have a UDSE. Notice

that it is rather rare in game theory for a game to have such an outcome, which

poses a significant constraint on our design. Furthermore, since the workers are

assumed strategic and their participation is voluntary, they should not be making

a loss when participating. This is captured by the following definition, adding an

additional requirement to our solutions to MLSW.
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Definition 3 (Individual Rationality). Given a solution to MLSW—comprising

queries {xi}i∈W , and payment commitments {pi}i∈W , a collection of efforts {e∗i }i∈W
satisfies individual rationality (IR) iff, for all workers i ∈ W ,

E
[
pi

((
xj, yj(e

∗
j)
)
j∈W

)]
− e∗i ≥ 0.

5.2.2 Design of Our Mechanism

In this section, we show how to design our mechanism. We first argue that for

any collection of efforts {êi}i∈W , there is a payment commitment such that every

worker exerting effort level êi is an individually rational and unique dominant

strategy equilibrium. Then we provide some guidance on how to assign the tasks

to workers so that our mechanism has high overall performance.

Our Payment Commitments

In this section, we show how to design the payment commitments in our mech-

anism. Indeed, our approach is applicable to a much broader setting. We prove

that for any learning task as long as there exists a well-behaved estimator, for any

effort level {êi}i∈W , one can set up a payment commitment scheme so that (i) ev-

ery worker exerting effort level êi is an individually rational and unique dominant

strategy equilibrium, and (ii) extracts optimal worker surplus – the expected utility

of every worker is 0. First, we formally define what is a well-behaved estimator.

Definition 4 (Well-behaved Estimator). Let H be a family of functions f : D 7→
R, where D ⊆ Rn. An estimator for H takes as input a collection (xi, yi)

k
i=1 of

examples (xi, yi) ∈ D×R and produces an estimated function f̂(xi,yi)ki=1
mapping

from D to R. An estimator f̂ for H is well-behaved iff there exists some function

g 3 such that, for all distributions F overD, functions f ∈ H, and vectors x ∈ D∗

3Intuitively, an estimator f̂ is well-behaved iff its expected mean square error does not depend

on f .
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and σ ∈ R∗+ (of the same dimension as x):4

Ey,x∗

[(
f̂(x,y)(x

∗)− f(x∗)
)2
]

= g(x, F,σ),

where for the purposes of the expectation on the left hand side x∗ ∼ F and,

independently for all i, yi = f(xi)+εi, where each εi is sampled from an arbitrary

distribution of mean 0 and variance σ2
i , (and when x is such that f̂(x,y) is well-

defined).

Note that several common estimators, such as linear regression, polynomial

regression, finite-dimensional kernel estimation, are well-behaved. Our definition

is a relaxation of the definition used by [8], as we do not restrict the estimator

to only produce functions from H. This relaxation is crucial for us to apply our

result to metric learning.

Theorem 1. Suppose the underlying truth is generated by some function f from

some hypothesis classH. Given any query x, a worker i with effort ei can produce

a label y = f(x) + εi, where εi is a random variable with zero mean and variance

σi(ei)
2. If f̂ is a well-behaved estimator for H, for any queries {xi}i∈W and any

collection of efforts {êi}i∈W , there exists a collection of real numbers (ai, bi)i∈[n]

such that if the payment commitment is ai − bi

(
yi(ei)− f̂(x,y(e))−i

(xi)
)2

for

worker i,

1. every worker exerting effort level êi is an individually rational and unique

dominant strategy equilibrium, and

2. the expected utility for each worker is 0 at this equilibrium.

In particular, we can choose bi to be −1
2σi(êi)σ′i(êi)

and ai to be bi · (σi(êi)
2 +

g(x−i,1xi ,σ−i(ê−i))) + êi, where the function g is defined in Definition 4.

Proof. First, we prove that this is a UDSE. From worker i’s perspective, she wants

to find an effort level ei that maximizes her expected payment minus her effort:

max
ei

Eyi(ei)
[
ai − bi(yi(ei)− f̂(x,y(e))−i

(xi))
2
]
− ei.

4We use the shorthand D∗ ,
⋃∞

i=1Di, and similarly for R∗+.
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Since ai is independent of our choice ei, so we can ignore this term. On the other

hand

Eyi(ei)
[
bi

(
yi(ei)− f̂(x,y(e))−i

(xi)
)2
]

=bi · Eyi(ei)
[
((yi(ei)− y∗i ) + (y∗i − f̂(x,y(e))−i

(xi)))
2
]

=bi · σi(ei)2 + bi · g(x−i,1xi ,σ−i(ê−i))

Notice that the second term does not depend on ei, so we can ignore this term

when finding the utility maximizing effort level for i. After the simplification,

to maximize the expected utility, worker i needs to choose an effort level that

maximizes −bi · σi(ei)2 − ei. As σi(·) is a convex decreasing function, it is not

hard to see that −bi · σi(ei)2 − ei is a concave function and thus has a unique

optimal solution. Suppose e∗i is the optimum, then taking derivative over ei and

setting it to 0 gives the following condition for e∗i : 2σ′i(e
∗
i ) · σi(e∗i ) = −1/bi. Due

to the aforementioned properties of σi(·), e∗i = êi is the unique solution of this

equation.

Next, we argue that {êi}i∈W is individually rational under our payment com-

mitments. By our choice of ai, it is not hard to see that the expected utility for

bidder i is 0. Thus, {êi}i∈W is individually rational and extracts full surplus from

all workers.

This theorem was implicitly stated and proved in Theorem 9 of [8]. Their

result only showed that for the optimal effort levels {e∗i }i∈W , such a payment

commitment scheme induces {e∗i }i∈W as a UDSE. We extend their result to arbi-

trary effort levels and also allow the estimator f̂ to produce functions outside H.

Next, we apply Theorem 1 to metric learning.

Corollary 1.1. Let H =
{
f(x) = xTMx

∣∣M is a PSD matrix in Rd×d}. The

quadratic regression estimator f̂ is a well-behaved estimator forH, and for every

collection of efforts {êi}i∈W , we can use f̂ to design payment commitments as

described in Theorem 1 so that (i) every worker exerting effort level êi is an indi-

vidually rational and unique dominant strategy equilibrium, and (ii) the expected

utility for each worker is 0 at this equilibrium.
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Proof. As any function inH can be represented as a quadratic function over x, the

quadratic regression estimator f̂ is clearly a well-behaved estimator for H. Then

the claim follows from Theorem 1.

One major challenge for solving the MLSW problem is that we cannot directly

control how much effort each worker exerts, but can only affect their effort lev-

els through payments. In general, it is difficult to characterize how the workers

react to different payment commitments. Surprisingly, Corollary 1.1 shows that

through a particular format of payment commitments, we can indeed incentivize

the workers to exert any levels of effort we want and we extract full surplus from

the workers meaning the payment for any worker equals the amount of effort ex-

erted by that worker. Equipped with Corollary 1.1, we can reduce the MLSW

problem into a pure optimization problem, that is, how do we assign data points

to workers and how do we choose the effort levels for the workers so that the

following expression is minimized:

Ex̄∼F,y(e)

[
(x̄TM∗x̄− x̄TM̂x̄)2 + α

∑
i∈W

ei

]
(5.5)

Note that in expression (5.5) we have replaced the sum of payments in ex-

pression (5.4) with the sum of the workers’ effort levels. It is not hard to see

that expression (5.5) is a lower bound of expression (5.4) for any IR mechanism.

Also, for any assignment of the data points and any collection of effort levels,

if we adopt the payment scheme provided by Corollary 1.1, expression (5.4) has

the same value as expression (5.5). Therefore, minimizing expression (5.5) is

equivalent to minimizing expression (5.4). In the next section, we provide some

guidance on how to minimize expression (5.5).

Choosing the Task Assignment and Effort Levels

In this section, we discuss how to choose the task assignment and effort levels

to minimize expression (5.5). An astute reader might have already realized that

we may not even have all the necessary information to optimize expression (5.5).

If the metric induced by M̂ is well-behaved, Ex̄,y(e∗)

[
(x̄TM∗x̄− x̄TM̂x̄)2

]
only
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depends on the task assignment and the effort levels. However, to the best of our

knowledge, we are not aware of any algorithm that produces a M̂ whose induced

metric is well-behaved 5. As a consequence, Ex̄,y(e∗)

[
(x̄TM∗x̄− x̄TM̂x̄)2

]
may

depend on the true underlying metric, which we do not have any information

about. To proceed, we take a different approach. Instead of directly optimizing

expression (5.5), we provide a relaxation of expression (5.5) that is independent

of the underlying metric. Then we choose the task assignment and effort levels to

optimize this relaxation.

First, let us fix some notations. We use Xi ∈ Rd×d to denote xi · xTi , VC ∈ Rd2

to denote the vectorization6 of a d× d matrix C, and V to denote
∑k

i=1 VXi
· V T
Xi

.

The following Lemma provides an upper bound for ||M̂ −M∗||2.

Lemma 1. If V has rank d(d+1)
2

,

||M̂ −M∗||22 ≤ 4||Q+||22 ·

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

2

,

where Q is a d2 × d2 PSD matrix such that QTQ = V with Q+ being the pseu-

doinverse of Q, and δi = yi − y∗i . Also, for any {ei}i∈W , Ey(e)

[
||M∗ − M̂ ||22

]
≤

4||Q+||22 ·
∑

i∈W σi(ei)
2 · ||V T

Xi
·Q+||22.

Proof. As defined in Definition 1, M̂ is the optimal solution of the following op-

timization problem minM<0 h(M) where h(M) =
∑

i∈W
(
yi − V T

M · VXi

)2. Our

goal is to bound ||M̂ − M∗||22, which is the same as bounding ||VM̂ − VM∗ ||2.

Next, we will use the condition that h(M̂) ≤ h(M∗) to derive an upper bound of

5In Corollary 1.1, we used the quadratic regression as a well-behaved estimator, but we cannot

use the quadratic regression here, as it is not guaranteed to produce a metric.
6By appending the column vectors of C into a column vector with d2 entries.
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||VM̂ − VM∗ ||22.

0 ≥h(M̂)− h(M∗)

=
∑
i∈W

(
yi − VM̂

T · VXi

)2 −
∑
i∈W

(
yi − VM∗T · VXi

)2

=2

(∑
i∈W

yi · V T
Xi

)
· (VM∗ − VM̂) + V T

M̂
· V · VM̂ − V

T
M∗ · V · VM∗

=2

(∑
i∈W

yi · V T
Xi
− V T

M∗ · V

)
· (VM∗ − VM̂) + (VM∗ − VM̂)T · V · (VM∗ − VM̂)

(5.6)

Notice that:

V T
M∗ · V =

∑
i∈W

V T
M∗ · VXi

· V T
Xi

=
∑
i∈W

(
xTi ·M∗ · xi

)
· V T
Xi

=
∑
i∈W

y∗i · V T
Xi

Hence the above inequality can be simplified to

2

(∑
i∈W

−δi · V T
Xi

)
· (VM∗ − VM̂) ≥ (VM∗ − VM̂)T · V · (VM∗ − VM̂) (5.7)

Observe that V is a PSD matrix, so there exists another PSD matrixQ such that

QTQ = V , and the RHS of the inequality can be rewritten as ||Q·(VM∗−VM̂)||22. If

V is full rank, then so isQ, and we can rewrite the LHS as 2
(∑

i∈W −δi · V T
Xi

)
Q−1·

Q · (VM∗ − VM̂). Now both sides have Q · (VM∗ − VM̂) and we can cancel it out.

However, it turns out V is never full rank, as all VXj
are vectorization of symmetric

matrices. Indeed, it is not hard to argue that rank(V) is at most d(d+ 1)/2, as the

space of d × d symmetric matrices has dimension d(d + 1)/2. We will proceed

with the pseudoinverse Q+ of Q, but we first argue that Q+ ·Q ·VM = VM for any

symmetric matrix M . Before we proceed, let’s prove the following lemma:

Lemma 2. Let Q be a PSD matrix such that QTQ = V and Q+ be the pseu-

doinverse of Q, then as long as rank(V) = d(d+1)
2

, Q+ · Q · VM = VM for any

symmetric matrix M .

Proof. Let UAUT be the eigendecomposition of V , where U = [u1, . . . , ud2 ] and

A is a diagonal matrix. Moreover, uj is the j-th eigenvector of V and Ajj = λj
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is the corresponding eigenvalue. Since rank(V) = d(d+1)
2

, WLOG we assume

λj > 0 if and only if j ≤ d(d+1)
2

. Since λjuj = V · uj =
∑

k∈W
(
V T
Xk
· uj
)
·

VXk
, uj is also the vectorization of some symmetric matrix for all j ≤ d(d+1)

2
.

As the space of d × d symmetric matrices has dimension d(d + 1)/2, the top

d(d + 1)/2 eigenvectors of Vi form a basis for the space of the vectorization of

all d × d symmetric matrices. In other words, for any symmetric matrix M , VM
is in the linear span of {u1, . . . , ud(d+1)/2}. Notice that Q = UA1/2UT and Q+ =

UB1/2UT where B is a diagonal matrix with [1/λ1, . . . , 1/λd(d+1)/2, 0, . . . , 0] on

the diagonal. Since VM lies in the span of the top d(d + 1)/2 eigenvectors so

Q+Q · VM = VM .

Now, we can rewrite the LHS of Inequality (5.7) as

2

(∑
i∈W

−δi · V T
Xi

)
Q+ ·Q · (VM∗ − VM̂)

and RHS of Inequality (5.7) as

||Q · (VM∗ − VM̂)||22

Next, we apply the Cauchy-Schwarz inequality to relax the LHS to obtain the

following inequality:

2

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

· ||Q · (VM∗ − VM̂)||2 ≥ ||Q · (VM∗ − VM̂)||22

Dividing ||Q · (VM∗ − VM̂)||2 on both sides gives us

2

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

≥ ||Q · (VM∗ − VM̂)||2

Finally, we multiply ||Q+
i ||2 on both sides and apply the Cauchy-Schwarz inequal-

ity to relax the RHS.

2||Q+||2 ·

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

≥||Q+||2 · ||Q · (VM∗ − VM̂)||2

≥||Q+Q · (VM∗ − VM̂)||2
=||VM∗ − VM̂ ||2 (5.8)
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Hence, ||VM∗ − VM̂ ||22 ≤ 4||Q+||22 ·
∣∣∣∣(∑

i∈W δi · V T
Xi

)
Q+
∣∣∣∣2

2
.

If we let yi = yi(ei), we have:

Ey(e)

[
||VM∗ − VM̂ ||

2
2

]
≤Ey(e)

4||Q+||22 ·

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

2

 (5.9)

=4||Q+||22 ·
∑
i∈W

σi(ei)
2 · ||V T

Xi
·Q+||22

We have obtained an upper bound of ||M̂−M∗||2 when M̂ is the exact solution

of (5.3). What if we only have access to an approximate algorithm? Suppose

our algorithm outputs a solution M̃ such that ||∇h(M̃)||2 ≤ γ 7, where γ is a

parameter of the algorithm. In the next Lemma, we show how to obtain an upper

bound for ||M̃ −M∗||2.

Lemma 3. Suppose M̂ is a minimizer for function h(·) and M̃ is a d × d matrix

such that ||∇h(M̃)||2 ≤ γ. If V has rank d(d+1)
2

,

||M̃ −M∗||22 ≤ 8||Q+||22 ·

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 8γ2||Q+||42

where δi, Q and Q+ are defined in Lemma 1. Also, for any {ei}i∈W ,

Ey(e)

[
||M∗ − M̃ ||22

]
≤ 8||Q+||22 ·

∑
i∈W

σi(ei)
2
∣∣∣∣V T
Xi
·Q+

∣∣∣∣2
2

+ 2γ2||Q+||42

.

Proof. First observe that

||M̃ −M∗||22 ≤ 2||M̂ −M∗||22 + 2||M̃ − M̂ ||22

. Hence, we only need to upper bound ||M̃ − M̂ ||22. Similar to Inequality (5.6),

we can show that

2

(∑
i∈W

yi · V T
Xi
− V T

M̃
· V

)
· (VM̂ − VM̃) ≥ (VM̂ − VM̃)T · V · (VM̂ − VM̃)

7Note that h(M) =
∑

i∈W(yi − xT
i Mxi)

2.
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Notice that −2
(∑

i∈W yi · V T
Xi
− V T

M̃
· V
)

= ∇h(M̃). By Lemma 2, we can

rewrite the inequality above as

−∇h(M̃)Q+Q · (VM̂ − VM̃) ≥ ||Q · (VM̂ − VM̃) ||22

After relaxing the LHS with the Cauchy-Schwarz inequality, we have

||∇h(M̃)||2||Q+||2||Q · (VM̂ − VM̃) ||2 ≥ ||Q · (VM̂ − VM̃) ||22

Multiply ||Q+||2
||Q·(VM̂−VM̃)||2

on both sides and apply Cauchy-Schwarz Inequality to

relax the RHS, we have

||∇fi(VM̃)||2||Q+
i ||22 ≥ |VM̂ − VM̃ ||2

Hence,

|VM̂ − VM̃ ||
2
2 ≤ γ2||Q+

i ||42

Putting everything together, we can prove our claims:

||M̃ −M∗||22 ≤ 8||Q+||22 ·

∣∣∣∣∣
∣∣∣∣∣
(∑
i∈W

δi · V T
Xi

)
Q+

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 8γ2||Q+||42

Theorem 2. For any MLSW problem, any task assignment {xi}i∈W , and any effort

levels {ei}i∈W , there exists a payment commitment such that:

1. every worker exerting effort level ei is an individually rational and unique

dominant strategy equilibrium, and

2. the expected utility for each worker is 0 at this equilibrium.

Moreover, if V =
∑

i∈W VXi
V T
Xi

has rank (d+1)d
2

, expression (5.4) is upper

bounded by

4Ex̄[||x̄||42] · ||Q+||22 ·
∑
i∈W

σi(ei)
2 · ||V T

Xi
·Q+||22 + α

∑
i∈W

ei

when M̂ is an exact solution of the mathematical program (5.3), and is upper

bounded by
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Ex̄[||x̄||42] ·

(
8||Q+||22 ·

∑
i∈W

σi(ei)
2 · ||V T

Xi
·Q+||22 + 2γ2||Q+||42

)
+ α

∑
i∈W

ei

(5.10)

when M̂ is an approximate solution of the mathematical program (5.3) and ||∇h(M̂)||2 ≤
γ.

Proof. The first two properties follow from Corollar 1.1. Since every worker has

utility 0, expression (5.4) equals to expression (5.5). Notice that

Ex̄∼F,y(e)

[(
x̄TM∗x̄− x̄TM̂x̄

)2
]
≤ Ex̄∼F,y(e)

[
||x̄||42 · ||M∗ − M̂ ||22

]
= Ex̄∼F

[
||x̄||42

]
· Ey(e)

[
||M∗ − M̂ ||22

]
.

(5.11)

Our claim follows from the upper bounds for Ey(e)

[
||M∗ − M̂ ||22

]
in Lemma 1

and 3.

Theorem 2 provides an upper bound of the weighted average of the mean-

square error of our estimation and the expected payments made to the workers.

Notice that this upper bound is independent of the underlying true metric and only

depends on the task assignment and the effort levels of the workers. Hence, we can

choose the task assignment and effort levels that minimize this upper bound, and

design our payment commitments accordingly. For Theorem 2 to hold, rank(V)

needs to be d(d+1)
2

. The following Theorem shows that a natural requirement on

the task assignment is sufficient to guarantee this condition.

Theorem 3. If there exists d + 1 data points in T that do not lie in any subspace

with dimension lower than d, and all d(d+ 1)/2 pairwise distance between these

d+ 1 points are assigned to some worker inW , then rank(V) = d(d+1)
2

.

we argue that rank(V) = d(d+1)
2

as long as the task assignment satisfies the

condition in Theorem 3. First, we provide an alternative way to view this condi-

tion.
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Lemma 4. rank(V) = d(d+1)
2

if and only if there are d(d+1)
2

linear independent

vectors in {VXi
}i∈W .

Proof. Let ` = d(d + 1)/2. We first prove that if there are ` linear independent

vectors in {VXi
}i∈W , then V has rank `. Let S = {VXj1

, . . . , VXj`
} contain these `

linear independent vectors. We call a vector VM symmetric if M is a symmetric

matrix and VM is the vectorization of M . As the space of symmetric vectors has

dimension `, any symmetric VM can be written as a linear combination of vectors

in S: VM =
∑`

k=1 αk · VXjk
. If 0 = V T

M · V · VM =
∑

j∈W V
T
M · VXj

· VXj
· VM ,

then V T
MVXjk

= 0 for all k ∈ [`], which implies that ||VM ||22 = 0. Therefore, all

symmetric vectors are orthogonal to the null space of V , the null space has rank

at most d2 − ` = d(d − 1)/2. On the other hand, it is easy to argue that the null

space has rank at least d(d− 1)/2 as the vectorization of any d× d skew matrix is

in the null space of V . To sum up, rank(V) = `.

Next, we show that if rank(V) = `, then there are ` linear independent vec-

tors in {VXj
}j∈W . As V is a PSD matrix, it has ` linear independent eigenvec-

tors {u1, . . . , u`} that have positive eigenvalues {λ1, . . . , λ`}. We have λk · uk =

V · uk =
∑

j∈W

(
V T
Xj
uk

)
· VXj

. Hence, for all k ∈ [`], uk lies in the span of

{VXj
}j∈W . Because {u1, . . . , u`} are linear independent, there must also exist `

linear independent vectors in {VXj
}j∈W .

In the next Lemma, we show that under a natural condition {VXj
}j∈W has

rank d(d+ 1)/2. In particular, we show that if there exists d+ 1 data points in Rd

that do not lie in any subspace with dimension lower than d, and all (d + 1)d/2

pairwise distance between these d + 1 points are assigned to some worker inW ,

then {VXj
}j∈W has rank d(d+ 1)/2.

Lemma 5. Let z1, . . . , zd+1 ∈ Rd be d + 1 different points that do not lie in any

lower dimensional subspace. LetZij = (zi−zj)·(zi−zj)T ∈ Rd×d and VZij
∈ Rd2

be the vectorization of Zij for all i < j. Then these d(d + 1)/2 different VZij
are

linear independent.

Proof. WLOG, we assume zd+1 to be 0. As z1, . . . , zd+1 do not lie in any lower

dimensional subspace, (z1−zd+1), . . . , (zd−zd+1) are linear independent. In other
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words, z1, . . . , zd are linear independent. Suppose there exists a linear combina-

tion of VZij
,
∑

i<j αij ·VZij
= 0, then

∑
i<j αij ·Zij = 0. For notational simplicity,

we let αji = αij for all i, j ∈ [d]. Therefore for any x ∈ Rd, xT ·
∑

i<j αij ·Zij = 0.

We first expand the LHS of this equation

xT ·
∑
i<j

αij · Zij =
∑
i∈[d]

xT ·

 ∑
j∈[d+1]−{i}

αij · zi −
∑

j∈[d]−{i}

αij · zj

 · zTi .
(5.12)

The RHS is a linear combination of z1, . . . , zd, so it is 0 if and only if xT ·(∑
j∈[d+1]−{i} αij · zi −

∑
j∈[d]−{i} αij · zj

)
= 0 for all i ∈ [d]. As x can be a

arbitrary vector,
∑

j∈[d+1]−{i} αij · zi−
∑

j∈[d]−{i} αij · zj must be 0 for all i ∈ [d].

Notice that this is again a linear combination of z1, . . . , zd, so it is 0 iff all the

coefficients are all 0. Therefore, αij = 0 for all i ∈ [d] and j ∈ [d]. As the

coefficient for zi should be 0 as well, so αi(d+1) = 0 as well. Thus,
∑

i<j αij ·
VZij

= 0 iff αij = 0 for all i < j, so VZij
are linear independent.

5.3 Metric Learning Algorithm

The optimization problem (5.3) could be tackled in various ways. Algorithm 3

is a heuristic algorithm that can be used to tackle it by projection-based gradient

descent, similarly to [42]. In every iteration, they first run gradient descent for

one step, followed by projecting the current solution to the cone of positive semi-

definite matrices. We first run gradient descent until we reach some solution M

whose norm of the gradient is smaller than a parameter γ, then project the solution

to the positive semi-definite cone. If the projected solution is within β (another

parameter) of M in L2 distance, we output the projected solution. Otherwise, we

go back to the gradient descent phase and repeat. The output of this algorithm can

be used with any method that requires a metric.
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Algorithm 3 Modified Metric Learning
Input: {(xi, yi)}ni=1: vector of training data

h(M) :=
∑n

i=1(yi − xTi Mxi)
2

M0: initial n× n matrix

α: step size of gradient descent

γ: hyper parameter

β: hyper parameter

Output: a PSD matrix.

1. M ←M0 (M0 is a symmetric matrix)

2. repeat:
3. repeat:

Gradient Step M ←M + α
∑n

i=1(yi − xTi Mxi)(xix
T
i )

4. until ‖∇h(M)‖2 < γ

5. Projection Step M̂ ← projection of M to Sn+ (positive semi-definite cone)

6. until
∥∥∥M̂ −M∥∥∥

2
< β

7. output M̂
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5.4 Empirical illustration

To illustrate the behavior of our payment strategy, we used synthetic problems

constructed from UCI datasets (breast cancer, bank, and balance) [25]. Here is a

brief description of these datasets (in all of these datasets we have reformatted the

last attribute as the target value):

• Breast cancer: This dataset contains 10 attributes where the last one is the

state of the corresponding breast cancer which can be malignant or benign.

For more information, please refer to [26].

• Balance: This dataset contains 8 attributes where the last one is the state

of the balance (right, left, balanced). For more information, please refer to

[25].

• Bank: This dataset contains 5 attributes where the last one is the class of

corresponding bank. For more information, please refer to [25]

To simulate the behavior of the workers, we added Gaussian noise to the label

of each data tuple. In the first task on the balance dataset, we used the standard

deviation function proportional to the inverse of the effort for the Gaussian noise.

σ(e) =
1

e

We used 200 training data points and 190 test data points to measure the accu-

racy of the computed metric matrix using Algorithm 3. We used Theorem 1 to

compute the payments. All experiments are repeated 5 times and the average re-

sult with error bar is depicted in the figures. In this experiment, the parameter α

in (5.4) was set to 1 and in the algorithm 3 we chose β = 10−4 and the step size

0.00005. The effort level that minimizes (5.10) was 5.16362 (it is highlighted with

yellow diamonds in the figures). Figure 4.1 shows the results. As it was expected,

when we increase the effort, the accuracy and payment increases. Also, the av-

erage payment is close to the effort exerted by workers (figure 4.1c). Although

equation (5.10) might not be able to give us the real optimal effort, by choosing

good combinations of parameters, we are able to find a relatively good suboptimal
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(a) (b) (c)

Figure 5.1: Summary of results of proposed payment scheme on balance dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 200.

effort level. Based on experiments, we found that the minimum of the objective

function (5.4) cannot be less than 1.1, which is still close to the objective value of

the effort level 5.16362. We also performed similar experiments on other datasets.

In the next couple of pages (Figures 4.1 - 4.12) we have included all the results

for both 100 and 200 number of workers plus two different standard deviation

function σ(e) = 1
e
, σ(e) = 1√

e
for all the three datasets. It can be seen that as we

change the number of workers, this has a minor effect on the upper bound effort

we find from (5.10). On the other hand the deviation function has more notable

impacts. Moreover, the mechanism has relatively similar behavior on different

datasets with similar deviation function and number of workers which shows the

consistency of the mechanism we have developed here.
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(a) (b) (c)

Figure 5.2: Summary of results of proposed payment scheme on balance dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 200.

(a) (b) (c)

Figure 5.3: Summary of results of proposed payment scheme on balance dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 100.
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(a) (b) (c)

Figure 5.4: Summary of results of proposed payment scheme on balance dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 100.

(a) (b) (c)

Figure 5.5: Summary of results of proposed payment scheme on bank dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 200.
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(a) (b) (c)

Figure 5.6: Summary of results of proposed payment scheme on bank dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 200.

(a) (b) (c)

Figure 5.7: Summary of results of proposed payment scheme on bank dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 100.
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(a) (b) (c)

Figure 5.8: Summary of results of proposed payment scheme on bank dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 100.

(a) (b) (c)

Figure 5.9: Summary of results of proposed payment scheme on breast dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 200.



5.4. EMPIRICAL ILLUSTRATION 57

(a) (b) (c)

Figure 5.10: Summary of results of proposed payment scheme on breast dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 200.

(a) (b) (c)

Figure 5.11: Summary of results of proposed payment scheme on breast dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments. The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1
e

and

the number of workers is 100.
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(a) (b) (c)

Figure 5.12: Summary of results of proposed payment scheme on breast dataset.

Figure a shows payment and accuracy. Figure b shows the the value of objective

(5.4). Figure c shows the distribution of individual payments.The yellow diamond

denotes the effort computed by (5.10). Standard deviation function here is 1√
e
.

Number of workers is 100.



6
Conclusion

In this thesis, we provided a mechanism to incentivize workers to provide high

quality data for metric learning. Previous works have designed mechanisms for

regression problems [8, 17]. Metric learning is a more challenging task, so we

relaxed some of the criteria used in previous works and developed a few new tools

(see chapter 5). To summarize, we provided an extension of OSE method [8]

which was primarily designed for regression learning. In regression, the mech-

anism designed in [8] incentivizes the workers to exert the optimal effort levels.

We showed that for any effort levels, there is always a mechanism that incentivizes

the workers to choose those effort levels. However, unlike in the regression set-

ting, finding the optimal effort level is difficult and may require information that

is not available to the designer. Our approach is to first provide a relaxation of the

problem and use the optimal solution of the relaxed problem to guide the choice

of the effort levels. Although this may not give us the optimal effort level, we

believe this heuristic achieves a reasonably good performance. Finally, we should

mention that unlike [17] which provides some guarantees to avoid any coalition

by workers, the mechanism we have designed here is incentive-compatible but not

group-strategy-proof.

59
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6.1 Future Directions

Our formulation assumes that the similarity between instances is given in real-

valued, rather than binary form. We suspect that the results we obtained can be

generalized to the latter case by using a formulation based on cross-entropy opti-

mization instead of least-squares. This development is left for future work. More

experimentation in a realistic setting (with human workers on Mechanical Turk,

instead of simulation) would also be useful. It is interesting to consider other

heuristics for choosing the effort levels, and we leave it for future work. It is

also possible that by changing the whole mechanism, we can get better guarantees

on the performance. As discussed earlier, we assume the workers cannot form

any coalition. Although this assumption might be reasonable in many scenarios

like crowd-sourcing via the internet, an interesting question is how to elevate this

mechanism to avoid any coalition. Here, we tried to build a mechanism on top

of a relatively sophisticated algorithm by relaxing the previous definitions and

theorems already developed. In this regard, it is interesting to see to what ex-

tent this relaxation can help us in designing a mechanism for machine learning

tasks. Specifically, the top-notch, highly complex, and non-linear tasks like neu-

ral network which needs massive amount of training data is an interesting area

for research to see if any reasonable mechanism can be developed to gather the

training data through crowd-sourcing. There are also some emerging works to do

crowd-sourcing through a multiplayer online game like [12, 21] where people are

involved in prediction problem while playing a game. It is also interesting to see

how mechanism design can be added to these kinds of models.
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