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Abstract 
 

Nature displays many examples of materials with exceptional mechanical properties. In 

particular, hard biological materials such as mollusk shells, bone, and tooth enamel boast 

remarkable combinations of stiffness, hardness and fracture toughness that stem from 

complex structures of organic (biological polymers) and inorganic (minerals). As a “universal 

rule” in these hard materials, minerals provide stiffness and hardness, while the organic 

polymer rich interfaces generate nonlinear deformations and channel cracks into powerful 

toughening configurations. This concept can also be extended to geometrically sutured 

interfaces, which are common in human skulls, cephalopods or turtle shell. These sutures can 

arrest cracks, absorb impact energy, and provide flexibility for respiration, locomotion or 

growth. This thesis explores the mechanical design, optimization, fabrication and testing of 

two dimensional sutures with complex interlocking geometries. The emphasis is on pullout 

response and the effect of interlocking, which was modelled based on non-Hertzian contact 

solutions and kinematics. Finite element models of these sutures were also developed, which 

produced results in close agreement with the analytical solutions. The accuracy of these 

models was verified using 3D printing and mechanical testing of jigsaw interlocking sutures. 

The models capture the effect of tuning geometrical and interfacial properties of suture 

interfaces to alter the mechanical response of the material. A limiting factor in the strength of 

the interlocking is the fracture of the solid parts of the suture, which must be avoided. The 

models show that the most severe stresses in the suture arise from frictional contact stresses. 

Therefore, the optimum design was achieved by using low friction coefficient and relatively 

high locking angle. The general problem of the design and optimization of complex 

interlocking sutures is also considered by capturing the geometry of sutured interfaces with 

“line descriptors”, in which thousands of sutures with different geometric properties were 

systematically generated and explored using analytical and finite element solutions. The 
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results show that for all families of suture, optimum designs are achieved with low friction 

coefficient and relatively high locking angle, and also that sutures with multiple locking sites 

distributed along the pulling direction provide the best combination of material properties 

overall. Finally, a laser engraving method is proposed to create trenches with controlled 

suture patterns and depth in thin plates of aluminium oxide. These trenches guided cracks 

into these interfaces to implement toughening mechanisms and unusual deformation. 

Different kinds of interfaces were engraved: straight, transverse, sinusoidal, and jigsaw 

interlocking (characterized by interlocking angle) interfaces. The results show how the shape 

of suture interfaces can be used to tune the mechanical behavior of the material, and also 

show that the jigsaw interlocking interface dissipated the most energy and produced the 

highest toughness. The combination of models and experiments presented in this thesis 

provide a new framework for the geometrical design and optimization of sutured lines, for 

applications where the propagation of cracks and/or local compliance must be controlled.  
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Résumé 
 
La nature présente de nombreux exemples de matériaux ayant d’exceptionnelles propriétés 

mécaniques. Plus particulièrement, les matériaux biologiques durs tels que les coquilles de 

mollusque, les os et l'émail dentaire qui sont composés de structures complexes de polymères 

organiques (biologiques) et inorganiques (minéraux), qui génèrent des combinaisons 

remarquables de rigidité, de dureté et de ténacité. La «règle universelle» pour ces matériaux 

durs est que les polymères doux représentent des interfaces faibles qui engendrent des 

déformations non linéaires et canalisent les fissures en de puissantes configurations de 

durcissement complexes. Ce concept puissant peut également être étendu aux interfaces 

suturées géométriquement que l’on retrouve dans le crâne humain, les céphalopodes ou la 

coquille de tortue. Ces sutures peuvent arrêter les fissures et fournir une flexibilité pour la 

respiration, la locomotion ou la croissance. La géométrie et la complexité des sutures varient 

selon les matériaux. Cependant  dans une famille de matériaux, les sutures varient d'une 

espèce à l'autre et évoluent. Cette thèse explore la conception, la mécanique, l'optimisation et 

la fabrication de sutures bidimensionnelles complexes. La modélisation de la conduite des 

sutures de verrouillage entrecroisées lors de l’extraction est basée sur des modèles de contact 

non-hertziens ainsi que la cinématique. Des modèles d'éléments finis de ces sutures ont 

également été développés, ce qui a produits des résultats en concordances avec les solutions 

analytiques. L'exactitude de ces modèles a été vérifiée en utilisant l'impression 3D et des 

essais mécaniques de sutures de verrouillage entrecroisées. Les modèles reflètent l'effet de 

réglage des propriétés géométriques et interfaciales des interfaces de suture afin d’altérer la 

réponse mécanique du matériau. Les modèles utilisés et les expériences effectuées, 

démontrent que la conception optimale est obtenue en utilisant un faible coefficient de 

frottement et un angle d'entrecroisement relativement élevé. La problématique de la 

conception et de l'optimisation est donc considérée en décrivant la géométrie des interfaces 
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suturées avec des «descripteurs de ligne», dans lesquels des milliers de sutures aux propriétés 

géométriques distinctes ont systématiquement été générées et explorées. Les résultats 

montrent que pour toutes les familles de sutures, le résultat optimal est atteint avec un faible 

coefficient de frottement et un angle de verrouillage relativement élevé. De plus, la suture 

avec verrouillage multiple le long du sens de traction a la meilleure combinaison de 

propriétés du matériau. Enfin, une méthode de gravure au laser est proposée pour créer des 

tranchées avec des motifs de sutures contrôlées et une profondeur dans des plaques minces 

d'oxyde d'aluminium. Ces tranchées ont guidé les fissures dans ces interfaces pour mettre en 

œuvre des mécanismes de durcissements et des déformations inhabituelles. Différents types 

d'interfaces ont été gravés: les interfaces droites, transversales, sinusoïdales et entrecroisées 

(caractérisées par un angle d'interverrouillage). Les résultats illustrent comment la forme des 

interfaces de suture peut être utilisée pour affiner le comportement mécanique du matériau; 

ils démontrent également que l'interface de verrouillage entrecroisé dissipe le plus d'énergie 

et produit la plus grande ténacité. La combinaison des modèles et des expériences présentés 

dans cette thèse fournit un nouveau cadre pour la conception géométrique et l'optimisation de 

lignes suturées, dans des instances où la propagation des fissures et / ou la conformité locale 

doit être contrôlée. 
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Chapter 1: Introduction 
 

Modern engineering systems and structures require materials with ever increasing sets of 

structural performance requirements. Some mechanical properties however remain mutually 

exclusive, for example, materials that are hard are usually brittle and materials that are 

tougher are in general softer [1]. This general trends applies for example to steel, which can 

be made harder by manipulating composition, microstructure or residual stresses, but at the 

expense of ductility  and toughness [2]. A powerful approach for overcoming this limitation 

is to combine two or more materials with complementary properties into ‘hybrid’ materials. 

Hybrid materials offer combinations of performance and functionality not possible to achieve 

in monolithic materials [3]. In hybrid materials, properties can be manipulated by tuning 

individual constituents, volumetric content, morphology, size and arrangement [1, 4]. Crack 

deflection along weak interfaces is key to the high fracture toughness of hybrid materials, as 

seen for example in layered ceramics [5]. Interestingly, while hybrid materials have only 

recently emerged in the engineering world, nature has been using this type of materials for 

millions of years. Natural materials such as bone, teeth or mollusc shells have remarkable 

combinations of mechanical properties including low weight, high stiffness, high strength and 

toughness. Researchers have now started to explain the microstructures and mechanisms that 

enhance these mechanical performances with the help of sophisticated experimental, 

computational and theoretical tools [4, 6]. Therefore, these biological materials can provide 

models and inspirations on how hard materials (inorganic minerals and ceramics) and soft 

materials (organic proteins and polymers) can be combined to make materials with 

outstanding structural performance. Nacre from mollusc shell for example, is composed of 

about 95% vol. of brittle aragonite (one of the crystalline forms of calcium carbonate), and of 

about 5% organic material including a compound of proteins and polysaccharides [7], 

forming a staggered arrangement of these mineral tablets which are separated by thin a layer 
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interface of organic materials. The tablets overlap each other in irregular stacked columns 

which can be described as stacks of coins randomly overlapping each other. Toughening 

mechanisms in nacre are due to one or combinations of two or more processes which includes 

creation of new surfaces due to delamination, energy dissipation at the interfaces which is a 

result of continuous tablet sliding, crack bridging and deflection, and plastic region [8-11]. 

The waviness of the tablets also leads to a locking mechanism which generates strain 

hardening and helps to distribute inelastic deformation, thus stabilizing the material up to 

relatively large strains [9].  Similar mechanisms can be found in other structural biological 

materials, such as bones and tooth enamel. In all of these natural materials, weak interfaces 

play a critical role in deflecting cracks, and in channelling deformation. Interfaces are also 

found as sutures in natural materials, which can take several shapes like sinusoidal [12], more 

complex geometries as in an adult skull [13, 14], or even hierarchical fractal-like structures as 

in ammonites [15, 16]. Experiments [17] and computational models [18] have been recently 

developed to evaluate the influence of hierarchical suture interface patterns on the mechanical 

behaviour of these sutures.  

The main objective of studying the structure and mechanical behaviour of these biological 

materials is bioinspiration, that is the duplication of these structures and mechanisms in 

engineering materials. Fabrication of these complex materials remains a challenge to this day. 

A variety of techniques have been used to fabricate bio-inspired materials including 

sputtering [19], freeze casting [20], layer by layer deposition [21], self-assembly [22], rapid 

prototyping [2], laser engraving [23, 24]. In spite of all these techniques, no synthetically 

produced material could so far duplicate the toughness of nacre (with the same organic layer 

contents) as compared to its mineral constituent. The well-controlled packing of tablets at 

small length scales has not been achieved and the continuous tablet sliding in natural nacre 

could only be duplicated in a few materials at larger scales [2, 25, 26].   
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1.1. Thesis objectives  
 

The overall aim of this thesis was to design, optimize and fabricate sutured materials inspired 

from nature. The specific objectives of this thesis were to:  

i. Capture the shape of complex 2D sutures using a shape descriptor approach. 

ii. Model the pullout response of these sutures using analytical solutions based on 

simple kinematics and contact mechanics 

iii. Model the pullout response of these sutures using finite elements 

iv. Use the modelling tool to explore the mechanical performance of simple jigsaw 

geometries, dovetail geometries, double and multiple locking site geometries. 

v. Build performance maps showing strength and energy absorption to compare and 

select optimum suture geometries. 

vi. Fabricate sutured materials from brittle materials like ceramics and Acrylonitrile 

butadiene styrene (ABS) using Laser engraving and 3D printing, and 

mechanically test these materials for validation.  

 

1.2. Thesis organization 
 

This is a manuscript based thesis with six chapters. In the current chapter, a brief introduction 

of biological materials, bioinspiration and thesis motivation and objectives was presented. 

Chapter 2 presents a general overview and literature reviews on natural materials, focusing on 

sutures and interface-driven materials such as nacre, cranial sutures, and woodpeckers’ beak. 

Fabrication methods for bioinspired materials are also reviewed and discussed in that chapter.  

Chapter 3 presents a jigsaw-like 2D suture, together with analytical and finite element models 

to predict pullout strength and energy absorption. An exhaustive search optimization method 

was then used to optimize the mechanical properties with combinations of design variables 
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(interlocking angle and friction coefficient). These models were validated experimentally 

using 3D printing and mechanical testing of Acrylonitrile butadiene styrene (ABS). In 

chapter 4, we extended these studies by systematically generating sutures with a larger 

number of geometrical parameters, using shape descriptors. Analytical and finite element 

models were developed to explore the effect of geometrical parameters on the pullout 

response and maximum stress in a suture, and optimization revealed that the best suture for 

each of the suture families is with lower friction coefficient and higher interlocking angle, 

and generally multilocking showed the best suture perfomance. In Chapter 5, the laser 

engraving method is used to fabricate sutures of intricate shapes in thin ceramic plates. In that 

chapter, we were able to show that the mechanical properties of sutures can be tuned by 

changing the geometry of the suture interfaces. These findings propel us to develop analytical 

and finite element models to further examine the effect of geometrical parameters on jigsaw-

like interlocking sutures. Finally, chapter 6 discussed the summary of the accomplishments 

and the main contribution of this research project. Some recommendations for future work 

and applications are also presented. 
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Chapter 2: Bioinspiration and biomimetics 
 

2.1 Background and motivation 

Biological materials possess remarkable combinations of mechanical properties including 

low weight, high stiffness, high strength and toughness. Recent research efforts have 

combined experimental, computational and theoretical tools to explain how the architecture 

of these materials and their associated mechanisms generate high mechanical performance. 

These findings serve as the basis for biomimetics and bioinspiration in material science, and 

to new engineering materials with high performance and new functionalities [1-4]. A 

common trait to all biological materials is the hierarchical structure that governs their 

mechanical properties, as seen in siliceous sponges and diatom cells which display 

simultaneous flexibility, toughness and mechanical protection [5, 6]. In engineering 

materials, these mechanical properties can be achieved by combining two or more materials 

with properties that complement each other to produce “hybrid materials”. Hybrid materials 

often surpass monolithic materials in terms of performance and functionalities [7]. 

Interestingly the properties of hybrid materials can be manipulated in many ways, by tuning 

individual constituents, volumetric content, morphology, size and arrangement [8, 9]. For 

example, the presence of weak interfaces, which aid crack deflection is key to the improved 

fracture resistance to engineering ceramics, provided that the interfaces are weak enough to 

deflect cracks [10]. The properties of these interfaces can be finely tuned with the addition of 

fibers or whiskers [11]. Figure 2.1 shows the mechanical performance of synthetic and 

natural materials in terms of stiffness (Young’s modulus) and toughness [12].  The toughness 

and the elastic modulus of synthetic materials such as metal alloys and ceramics are shown in 

Figure 2.1a, while Figure 2.1b shows the mechanical performance map for natural ceramics, 

biopolymer, and their composites [13]. The lower right corner of the map shows stiff but 

brittle materials, example includes calcite, while the upper left corner of the map shows soft 
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proteinaceous materials such as skin that possesses mechanical behaviour similar to 

elastomers. The upper right corner of the map shows how these materials achieve high 

stiffness by incorporating minerals while retaining exceptional toughness. Nature may 

therefore suggest pathways to resolving conflicts between toughness, stiffness and strength 

[9]. The yellow oval shape shows that the properties of these synthetic materials can be tuned 

through bioinspiration, which is the main objective of this research. 

 
 

Figure 2.1: The mechanical performance of engineered and biological materials in the stiffness–toughness 
domain. Figure 2.1a compares the toughness and stiffness properties for a number of biological materials [12]; 
Figure 2.1b shows toughness and stiffness for synthetic materials, such as metals, alloys and ceramics (yellow 
portion showing what researchers want to achieve with bioinspired materials) [14]. 
 
 
The remarkable mechanical performance of hard biological materials such as nacre, tooth 

enamel or bone has generated a significant interest in the past 30 years [15-17]. These 

materials are mostly made of brittle components, for example hydroxyapatite in bone and 

teeth, calcium carbonate in seashells and corals, amorphous silica in sponge spicules and 

diatoms [2].  Despite these brittle ingredients these materials exhibit outstanding strength, 

modulus, and toughness originating from the way the ingredients are combined into intricate 

architectures [15, 17]. The hard biological materials are basically products of 

biomineralization of composites of inorganic oxide phase with addition of biopolymer. Bones 

and teeth have fibrous architectures which are anisotropic in nature and which contribute to 
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the mechanical performance of the material [18], while nacre (a more simple structure) has 

also attracted great attention for biomimetic purposes because of its high mechanical 

performance [19-21]. Barthelat and Mirkhalaf, [22] examined the general problem of how to 

combine a soft, energy dissipating material with stiff and strong, but brittle material. A 

“Universal” solution in nature combines a soft phase to provide energy dissipation, 

toughness, ductility, and a hard phase to provide stiffness.  

2.2 Examples of hard biological Materials 

The stiffest biological materials serve as skeleton or protective systems. These materials 

contain high volume fraction of minerals (>90%), in order to achieve the stiffness and 

hardness required for these functions. Examples of these materials are mollusc shells, bones, 

and tooth enamel, which are briefly described below. 

2.2.1 Mollusc shells 

Mollusc represent a large phylum of invertebrate animals known as the Mollusca, with over 

60,000 known species up to date [23]. The vast majority of mollusc grow on or several hard 

ceramic shells for protection against natural and human factors. Mollusc shells exist in a 

variety of sizes ranging from micromolluscs approximately 1 mm and 25cm in abalone shells. 

The shell is grown by a mantle, a soft tissue that covers the inside of the shell, which gives 

rise to different varieties of shell structures [2]. Mollusc shells are made of either calcite or 

aragonite, with small amount of organic material which never exceeds 5% of the composition 

in weight [20, 27, 31]. Nacre is among the strongest and toughest materials found in mollusc 

shells.   
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Figure 2.2:  The hierarchical structure of red abalone nacre. Adapted from [24, 25] 
 
Nacre is composed of about 95% vol. of brittle aragonite (one of the crystalline forms of 

calcium carbonate), and of about 5% organic material including a compound of proteins and 

polysaccharides [26]. Nacre exhibits a lamellar structure resembling a brick-wall where 0.2–

0.9 mm thick aragonite tablets are cemented together with thin 30 nm organic layers serving 

as glue and maintaining the integrity of the whole structure. The tablets overlap each other in 

an irregularly stacked columns which are described as stack of coins randomly overlapping 

each other. Mineral tablets in nacre are arranged in a staggered manner which provides the 

structure with a unique mechanism of deformation and outstanding combinations of stiffness, 

strength and toughness [16, 27]. Experimental analysis and computational modelling has 

been used to describe the microstructural features that dictates this excellent performance. 

Results from these studies show that tablet sliding and progressive pullout is a key 

deformation mechanism [27].  Cracks propagating across the nacreous layers activate an 

array of powerful mechanisms such as crack deflection, ligament bridging and effect of 

process zone [28]. The interfaces in nacre are actually relatively weak as measured by Rabiei 

et al [29] using interlaminar chevron notch fracture tests on nacre from red abalone, pearl 

oyster and top shell. The extrinsic toughening mechanisms contribute up to 97% of the 

toughness while the intrinsic toughness of the organic glue accounts for only 3% of the 
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overall toughness of nacre [28, 30]. The structure and mechanism of nacre are now the basis 

of inspiration in the design of next generation synthetic composites material, because it stands 

out as perfect example of a natural material that developed highly sophisticated 

microstructure for optimal performance [16, 28, 31, 32]. 

2.2.2 Bone and teeth 

Other examples of hard structural biological materials are bones and tooth enamel. Bone is a 

fibre-reinforced composite that makes up the skeletal systems of most animals. Bone is 

primarily made of partially mineralized collagen, a fibrillary structural protein with high 

tensile strength. The calcium phosphate provides a high compressive strength to the bone, 

and the organic proteins contribute to the mechanical response of bone like plastic 

deformation. The high fracture toughness of bone is associated with the crack deflection in 

the bone matrix and bone osteon for a cylindrical lamellar bone [33-36]. The unusual 

combination of mechanical properties observed in bone tissue has led to substantial interest in 

studying natural bone with an aim toward synthesizing bonelike materials, be it for forming 

replacement bones for medical use [37] or for nonmedical applications [38], figure 2.3(a) 

shows example of bone. Enamel is another example of a hard biological material. It is the 

most mineralized tissue in the human body (99% hydroxyapatite) and as a result it is the 

hardest. This acellular material is composed of long crystals of carbonated hydroxyl apatite. 

The rods are parallel and normal to the surface near the surface of the tooth, where their 

weaker interfaces channel surface cracks deeper into the enamel layer to prevent tooth 

chipping. Deeper in the enamel layer, the rods crisscross which prevents further propagation 

of cracks and pin cracks [39-41] example of crack propagation, channelling, and toughening 

mechanisms in tooth enamel is shown in figure 2.3(b).  
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Figure 2.3: (a) picture of right femur bone (adapted from [42]), (b) crack propagation, channelling, and 
toughening mechanisms in tooth enamel (adapted from [43]). 
 

2.3. Suture natural materials  
 

Suture interfaces are mechanical structures found in rigid natural materials, that provide 

flexibility for locomotion, growth, and respiration examples are found in ammonoids, human 

skull, turtle shell, rhamphotheca of woodpeckers’ beaks [44-51]. The suture interfaces are 

seams that connect stiffer components together. The geometry of suture ranges from nearly 

straight interfaces (infant skulls) [49, 50], to a more complicated fractal-like structures 

(ammonitic) [44, 47], and are said to have effect on the mechanical performance of the 

natural materials at different length scales. 

2.3.1. Woodpeckers’ beak as a material with suture 
 

Woodpeckers beaks and head can withstand repeated and violent shocks associated with 

pecking trees. The brain is enclosed and protected by a plate-like high strength cranial bone 

which contains sutures that helps in energy absorption [52]. Woodpeckers’ beaks are 

structural biocomposites which show unique hierarchical structure from macroscale to 

nanoscale [48]. They are made of an outer brittle mineral layer with rhamphotheca, a β-

keratin protein [2, 48, 53].  The ductile protein is sandwiched between the rhamphotheca and 

a bony core which also helps in providing the strength needed by the beak. The geometry, 
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area fractions and mechanical properties of woodpeckers’ beak changes along the length from 

the beak tip to the root, which makes it a functionally graded material (Figure 2.4a). The 

change in the mechanical properties along the length is associated with the modulus and area 

fraction of the constituents [48]. For example the total strength increases from the beak tip to 

the root, because the modulus of the bony region is greater than the rhamphotheca modulus 

and area fraction of the bony layer increase from tip to the root [48]. At the microscale level, 

the rhamphotheca comprises of overlapping keratin scales with diameter of approximately 

50µm and the core of the beak is a closed-cell trabecular like bone [48]. The arrangement of 

these overlapping keratin scales is such that energy can be dissipated by frictional sliding 

(Figure 2.4b). Effective crack deflection can also occur in a way similar to those observed in 

other structural biological materials, like nacre, bone and tooth enamel [16, 33, 41]. The 

nanostructure of the rhamphotheca show a wavy suture line (Figure 2.4c), with collagen 

fibres which provide extra strength and stiffness, have the capability to withstand 

compressive loading, and also provide frictional forces which helps is dissipation and 

transmission of loads [45, 49, 50]. The fibres are the strongest in the longitudinal direction 

which corresponds to the direction of loading [48]. 

 

Figure 2.4: (a) Schematic of cross sectional view of the woodpeckers’ beak; (b) scanning electron microscope 
image of the microstructure of rhamphotheca of woodpeckers’ beak showing the rough surface of keratin scales; 
(c) transmission electron microscope image of the rhamphotheca of woodpeckers’ beak showing the 
nanostructure of a cross sectional view that shows the wavy suture lines at the grain boundary [48] 
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2.3.2. Cranium 
 

 The brain is protected by a bony shell called the cranium. Interesting features of the cranium 

are the cranial sutures, which are lines containing bone edges and compliant collagen fibres 

that join the bony plates [54-56]. The morphology of cranial sutures evolve with human age 

and they are broadly classified into three types, depending on the overlapping and 

complexities [56, 57]. Butt suture joints is a type of suture joint where bones meet at a flat 

wall perpendicular to the outer surface, which are found in baby’s cranium. Scarf suture 

joints consist of overlapping bones and are found in adults and interdigitating suture joints 

with a complex geometry and interlocked outer seam, and can be characterized by the 

number of interdigitations, depth and orientation from the cranial surface [58, 59]. Cranial 

sutures fulfill various functions depending on the level of infant development. In postnatal 

stages where there is a possibility of dramatic increase in the brain size, the suture provides 

flexibility for growth. In adulthood, sutures serve as shock absorbers to dissipate stresses,  as 

well as have the capability to withstand compressive loads [49-51, 54-56, 58, 60, 61]. The 

skull is subjected to different kind of loadings from all directions in a lifetime: Tensile 

loadings due to the growth of internal organs during development, cyclic loading due to the 

nervous system, muscle contraction, mastication [62], and impact loadings due to falls or 

accidents. The geometry, complexity and fiber inclusion of the cranial sutures play important 

role in preventing the damage of the cranium. Experimental and computational studies have 

explored the stress distribution and biomechanics of cranial sutures under different loading 

conditions [49, 50]. These studies have shown that the wavy pattern of the suture lines 

increases the strain energy and therefore increases the energy absorption of the cranium. The 

wavy geometry also helps to delay strain localization, and collagen fibers improve frictional 

energy dissipation while providing additional strength. Bending strength of cranial sutures 

was found to increase with an increase in interdigitation [49, 50]. Figure 2.5 shows the 
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transition from a straight line suture found in newborn baby to an adult suture showing 

complex interdigitations. 

 

Figure 2.5: Development of skull suture interdigitation. (a) In the newborn human skull, the sagittal suture is 
straight; (b) In the adult human skull, the sagittal suture shows interdigitation [50]. 
 
Other examples of natural bony sutures are found in the carapace of turtle [45], cephalopods 

[44, 47], the linking girdle of diatoms [63], some species of fish including three-spine 

stickleback and boxfish [64, 65].  

2.4. Bioinspired sutured materials 
 
The design and fabrication of synthetic materials inspired from natural materials is a very 

active research area. An interesting reason for the study of the structures and mechanical 

properties of structural biological materials is to reproduce their exceptional mechanical 

properties like stiffness, hardness, and toughness amplification in synthetic materials [66]. 

Biological materials however display intricate structures and mechanisms which can be 

difficult to duplicate in synthetic materials. Bioinspired structural materials can be classified 

into eight groups:  Layered, overlapping, suture, tubular, cellular, gradient, helical, and 

fibrous [67]. Each of these groups has unique characteristics and advantages and they had 

been fabricated by one or more fabrication method(s): (i) freeze casting [68] (ii) layer-by-

layer deposition [69] (iii) recombinant technologies [70] (iv) magnetic manipulation [71], (v) 
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3D printing (additive manufacturing) [63], and (vi) laser engraving [43, 72]. A short 

discussion on two of these methods (3D printing and laser engraving) is discussed below. 

2.4.1. 3D printing (additive manufacturing) 
 

As opposed to subtractive manufacturing that chips away volume of materials until desired 

shape and size of sample is attained, 3D printing is an additive manufacturing process that 

build material in a layer-by-layer manner to form the desired model [73]. 3D printing is 

generally divided into four major methods: stereolithography (STL), fused deposition 

modeling (FDM), inkjet printing and selective laser sintering (SLS) [74]. Each of these 3D 

printing has its advantages and limitations which depend on the material type, build speed, 

cost, and curing/sintering materials [75]. For example STL uses an ultraviolet (UV) laser to 

trace the shape of 3D object by focusing on a bath of liquid photoresin, which cures when 

exposed to UV radiation. In fused deposition modeling, the part is produced by streams of 

material that harden immediately to form layers. During printing, these materials take the 

form of plastic threads or filaments, which are unwound from a coil and fed through an 

extrusion nozzle then heats up the material. The extrusion nozzle moves over the build 

platform horizontally and vertically making a cross-section of an object onto the platform. 

FDM can also be used to extrude ceramics and polymers. Inkjet printing and SLS sinter 

polymer powders together using different techniques. While inkjet printing uses toxic glue 

which makes it not useful for medical purposes, SLS uses high power laser to sinter polymer 

powders. All these methods require the 3D models which can be generated using any 

computer aided design (CAD) software or any other software that can create 3D images. 

These images are converted to STL input file which will be converted to a file recognized by 

the 3D printer. A number of researchers used the 3D printing technique to mimic the 

structures of some sutures and mechanical tested them to investigate the failure mechanism 

and deformation [63], and the pullout response of these sutures [76]. Figure 2.7 show 
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examples of fracture behaviour of bistable interlocked materials which were 3D printed by 

stereolithography printer with acrylonitrile butadiene styrene as the base material. 

 

Figure 2.6: Images of sample of bioinspired 3D printed suture interface prototypes [63]. 
 
2.4.2. Laser engraving 

Since their discovery, lasers have been used to alter the structure and shape of materials [43, 

72, 77, 78]. Laser machining is non-conventional subtractive machining technique which is 

very efficient for the machining of brittle materials with low conductivity. A laser beam 

focusses onto the surface of materials, and the heat energy of the laser is transferred to the 

surface to heat and melt or vaporize the material. The depth of the trench formed depends on 

the laser power, beam spot diameter, and cutting speed [76, 77, 78]. There are different kinds 

of lasers depending on the type of laser medium used - solid state, excimer, dye, gas, or 

semiconductor laser. Mirkhalaf et al [43] used a laser engraving technique to fabricate 

bioinspired glass inspired from nacre microstructure. Examples of laser engraved glasses are 

shown in figure 2.7. The heat absorbed at the focal point generates thousands of microdefects 

in form of radial microcavities and microcracks from hoop stresses associated with thermal 

expansion [79, 80], and the energy of the unfocused beam does not alter the glass structure.  
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Figure 2.7: (a) An example of architecture glass plane after impact [72] (b) image of actual bioinspired glass 
sample for tensile test (c) bioinspired glass infiltrated with polyurethane [43] 
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Link between chapter 2 and chapter 3  

 
In the previous chapter we discussed the structure and deformation mechanism of a selection 

of hard biological materials were discussed. It was discussed that when pushed to the 

extreme, the concept of using weak interfaces leads to sutured materials, which are now 

generating a growing interest in the materials research community.  Some of the methods 

used to fabricate the materials in order to mimic their exceptional mechanical performance on 

synthetic materials were highlighted. Two of the emphasized methods will be used in this 

thesis.  These techniques were chosen because of their high level of fidelity required to 

capture the complex geometries of sutures with sufficient accuracy. The next chapter is an 

article which was recently published in the Journal of mechanics and physics of solids, 

volume 102 (2017), 224-238. In this work we used analytical and finite element models to 

explore the mechanics of sutured materials with a relatively simple “jigsaw-like” geometry. 

These models, based on simple kinematics and contact mechanics, capture the effects of key 

design parameters (interlocking angle θ0, and friction coefficient f) on the pullout response of 

the suture. The analytical models used both linear elasticity and non-Hertzian contact 

mechanics while the finite element models were developed to validate the underlying 

assumptions used in the analytical models. These models serve as guidelines for jigsaw-like 

sutures which are under tensile loads and with no adhesive between the interfaces. 
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3.1 Abstract 
 

Structural biological materials such as bone, teeth or mollusk shells draw their remarkable 

performance from a sophisticated interplay of architectures and weak interfaces. Pushed to 

the extreme, this concept leads to sutured materials, which contain thin lines with complex 

geometries. Sutured materials are prominent in nature, and have recently served as 

bioinspiration for toughened ceramics and glasses. Sutures can generate large deformations, 

toughness and damping in otherwise all brittle systems and materials. In this study we 

examine the design and optimization of sutures with a jigsaw puzzle-like geometry, focusing 

on the non-linear traction behavior generated by the frictional pullout of the jigsaw tabs. We 

present analytical models which accurately predict the entire pullout response. Pullout 

strength and energy absorption increase with higher interlocking angles and for higher 

coefficients of friction, but the associated high stresses in the solid may fracture the tabs. 

Systematic optimization reveals a counter-intuitive result: the best pullout performance is 

achieved with interfaces with low coefficient of friction and high interlocking angle. We 

finally use 3D printing and mechanical testing to verify the accuracy of the models and of the 

optimization. The models and guidelines we present here can be extended to other types of 

geometries and sutured materials subjected to other loading/boundary conditions. The 
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nonlinear responses of sutures are particularly attractive to augment the properties and 

functionalities of inherently brittle materials such as ceramics and glasses.  

Keywords: Suture, analytical model, finite element simulation, optimization, 3D printing  

 

3.2  Introduction 
 

 Natural hard materials such as bone [1, 2], tooth enamel [3], sea shells [4], or  turtle carapace 

[5] display unique and attractive combinations of strength,  toughness, deformability and 

puncture resistance, properties that are difficult to combine in engineering materials [6]. This 

outstanding performance is possible by their internal architectures, which can be described as 

assemblies of stiff and strong building blocks (collagen or chitin fibers, mineral tablets) [7] 

bonded by weaker interfaces. These interfaces are as important as the building blocks and 

fulfill critical structural functions [8]: They deflect and channel cracks into toughening 

configurations [9, 10], they enable large deformations [11] and they provide deformation 

hardening to spread energy dissipative mechanisms throughout large volumes of the materials 

[7, 8, 12-15]. The mechanical behavior of these interfaces is typically nonlinear and governed 

by friction or by the deformation of nanometers-thick layers of organic materials. In addition 

the morphology of the interfaces plays a critical role in their mechanical response, and as 

seen in nacre from seashells it can act as a source of progressive locking and "geometric 

hardening" that delays strain localization and spreads non-elastic deformations over large 

volumes of materials [14].  In natural suture lines, the interfaces have complex geometries 

and re-entrant features, as observed in the beak of woodpeckers [16] (Figure 3.1a), the 

linking girdles of diatoms (Figure 3.1b) [17], the armor of threespine stickleback fishes [18] 

(Figure 3.1c), the cranial bone [19, 20] (Figure 3.1d), the ammonites shells [12] (Figure 3.1e) 

or turtle shells [12, 21] (Figure 3.1f). In these examples the suture lines can channel large 
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deformations, damp shocks and vibrations or absorb impact energy [22]. The suture lines 

vary in geometry and complexity across species [23-25], and include straight suture lines as 

observed in new born human skull [25], triangular or wavy sutures with re-entrant features as 

seen in woodpecker beak [16], interlocked shapes as seen in diatoms [26, 27] and ammonite 

shells [28] (Figure 3.1). The mechanical strength and toughness of the suture lines are largely 

governed by their morphology. For example, brittle sinusoidal sutures can be up to three 

times tougher than straight interfaces made of the same bonding material [29, 30]. In ductile 

materials, the positioning of second phase particles into a sinusoidal pattern can guide the 

cracks into “pre-engineered” paths that increase toughness by a factor of 2-3 compared with 

the same material with random distribution of particles [31]. Stress analysis also revealed that 

periodic triangular sutures homogenize the transfer of stress across the interface, which is 

beneficial to overall structural performance [17, 28]. Recent studies have also shown that 

increasing the number of hierarchies within the triangulated sutures, as seen in ammonites, 

can augment their mechanical properties [32, 33]. The concept of sutures with tailored 

geometries and locking features were recently demonstrated in glasses and ceramics, which 

resulted in large deformations, energy absorption and enhanced toughness in otherwise all-

brittle materials [34, 35]. While these materials demonstrated the potential of architecture and 

sutures as weaker interfaces to enhance the overall mechanical performance, models and 

optimization approaches are yet to be developed in order to get the most of this strategy. The 

stiffness, strength and toughness of sutured materials were  captured in models using either 

only elasticity and small deformations [21, 32, 33] or elastic-plastic models [30], but the 

mechanisms and stresses associated with large pulling displacements and nonlinear 

geometrical locking behaviors are not well understood. Here we propose a set of models and 

experiments to characterize the full pullout response of a jigsaw-like suture based on 

frictional contact and elasticity. We first present an analytical model based on linear elasticity 
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and frictional contact, which we compared with finite element models. A strategy to optimize 

the suture is then proposed based on the models. The modeling and optimization are finally 

verified using 3D printing and mechanical testing.  

 
Figure 3.1: Examples of sutured interfaces in nature: (a) red-bellied woodpecker (Melanerpes carolinus) beak 
(adapted from [16]) , (b) Linking girdles of diatoms (adapted from [17]) , (c) marine threespine stickleback 
(Gasterosteus aculeatus) (adapted from [18]), (d) Pan troglodytes cranial sutures (adapted from [36]), (e) 
Ammonite shell  (Ceratitic ammonoid) with intricate suture lines [28] (f) osteoderms of a leatherback sea turtle 
shell (adapted from [5])  
 
 

3.3  Overview of the “jigsaw” suture 
 

 The sutured interfaces we considered in this work have re-entrant rounded features, forming 

interlocks similar to a jigsaw puzzle (Figure 3.2). The geometry was built from arcs of circles 

of radius R, and blended at locations defined by an interlocking angle . Rounded features 

were used to minimize stress concentrations in the solid. The patterns are periodic along the 

suture so that the geometry can be captured with the unit cell shown on Figure 3.2a. We only 

considered sutures which are symmetric about a vertical axis, and which also display a 180º 

rotational symmetry, so that upper and lower solid parts of the suture are identical (Figure 

3.2a). The geometry of the suture has therefore only two independent parameters R and . It 

is however useful to also write the length L and the width w of the tab (Figure 3.2a):  

0q

0q
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       (3.1) 

        (3.2) 

The interlocking angle  clearly governs the level of geometrical interlocking of the tabs 

(Figure 3.2b). Only the cases where > 0° generate geometrical interlocking. In addition, 

the contours of the tabs were not allowed to intersect, leading to the geometrical constraint 

< 60°. Figure 3.2b shows how the level of interlocking increases when  is increased up 

to   = 60° which corresponds to the extreme case where the re-entrant regions of the suture 

intersect tangentially.  

 
Figure 3.2: (a) An individual suture with jigsaw locking features, and a material containing multiple sutures in 
series. The geometry and mechanics of these systems can be captured by the unit cell shown; (b) The “strength” 
of the geometrical interlocking is governed by the interlocking angle θ0, where θ0 < 60° to prevent the re-entrant 
regions of the tabs to intersect (case highlighted in red).  
 
3.3  Analytical model of pullout response 

In this work we focused on the pullout behavior of the suture, where the suture is pulled 

along the axis of the tabs (along the vertical direction on Figure 3.2). The solid part of the 

suture was assumed to be isotropic and linear elastic (modulus E and Poisson’s ratio n). We 

( )0sin12 q+= RL

0cos4 qRw =

0q

0q

0q 0q

0q
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also only considered the cases where the cohesion of the suture is generated by geometric 

interlocking and friction, with no adhesive at the interfaces. The pullout mechanism 

associated with the suture can therefore be captured using linear elasticity and frictional 

contact mechanics. A representative volume element of a suture in a thin plate of thickness t 

is shown on Figure 3.3a with key dimensions: tab radius R, interlocking angle , length L 

and width of the tab w, height of the upper and lower solid domains h.  We assumed a thin 

plate, so plane stress conditions are used (the model can easily be transposed to plane strain). 

The suture was subjected to a uniform pull by imposing:   

     (3.3) 

 The left and right boundaries were subjected to the periodic boundary conditions: 

   (3.4) 

Where  is the average strain in the x (transverse) direction. The geometry and the loading 

conditions are symmetric about axis y (Figure 3.3a) and therefore the displacements must also 

satisfy: 

     (3.5) 

Combining equations (4) and (5) gives the periodic-symmetric boundary conditions:  

     (3.6) 

We now note that  would involve elastic deformations in the two solid domains above 

and below the suture, with uniform strains sufficiently far from the jigsaw tab. However if h 

is sufficiently large, the stiffness of the solid regions along the transverse direction is high 
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enough so that no deformation can occur in the transverse direction, . The boundary 

conditions then simply become:  

     (3.7) 

 
Figure 3.3: (a) Representative volume element of the initial geometry for the jigsaw tab; (b) The same model 
with symmetry and boundary conditions applied. (c) Free body diagram of the unit cell; (d) free body diagram 
of the lower tab only, exposing the normal and frictional forces transmitted at the contact between the tabs. 
 

Figure 3.3b shows the model after symmetry was applied, with the boundary conditions 

corresponding to equations (3.3) and (3.7). This simplified geometry was used to characterize 

the kinematics and equilibrium of the suture. Assuming that the elastic deformations are 

negligible compared to the displacement generated by sliding at the interfaces and pullout, 

the comparison of the initial and deformed configurations yields the kinematic relations:   

    
(3.8)   

      (3.9)  

In these expressions  is the angle of the line intersecting the centers of the two circular tabs 

and is the interference between the two tabs, which corresponds to the change of distance 

between the centers of the two tabs. Initially equal to 2R, that distance becomes 2R-d as the 
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tabs are pulled apart (Figure 3.3b). The interference d must be accommodated by local 

deformations of the tabs, which are governed by contact mechanics. In this context, d 

represents the relative “approach” between the two rounded features of the tabs. The 

kinematics of the system is then fully characterized by the angle . During pullout  

decreases monotonically from  (initial configuration) down to  (the tabs lose contact). 

The geometric interference d generates a contact force which results in the pullout force 

along the (vertical) axis of the tab, but also to (horizontal) compressive forces FC in the tabs 

region on both left and right sides of the model. These compressive forces are balanced by 

tensile forces FT on the left and right hand sides of the model, so that the sum of forces acting 

on the right hand side of the model is zero (FC = 2FT, Figure 3.3c). Figure 3.3d shows a free 

body diagram of the lower tab only, which exposes the contact forces decomposed as a 

normal force P and a frictional force fP acting against the direction of the pull. Balancing 

these forces along the vertical direction gives the pullout force F:  

    (3.10)  

The forces transmitted between the two tabs are determined from the solution for the contact 

between two identical disks. The solution of this non-Hertzian contact mechanics problem 

provides the approach d (corresponding to the interference defined above and shown on 

figure 3.3b) as [37]:  

     (3.11) 

Where a is the half width of the contact surface which in plane stress is given by:  

                                          (3.12) 

Where t is the thickness of the tab and E is the elastic modulus of the solid material. 

Equations (3.8) through (3.12) form a set of equations which can be solved to determine the 
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pullout force F as function of the pullout distance u, for different parameters R,  and E. The 

angle  is used as a kinematic parameter which evolves from  to  during pullout. The 

non-dimensional interference is first determined from equation (3.8):  

         (3.13) 

This expression is then combined with equation (3.9) to obtain the non-dimensional pullout 

distance: 

                (3.14) 

Here the opening u is normalized by the length of the tab L in order to get a measure of the 

global tensile strain in the tab generated by pullout. Meanwhile, the non-dimensional 

interference can be used in combination with the contact equations (3.11) and (3.12) to give:  

             (3.15) 

This equation can be solved numerically to provide a non-dimensional contact force , 

which can then be used to determine the non-dimensional pullout force, using equation 

(3.10): 

             (3.16) 

However, here we prefer to use , which provides a direct measure of the average tensile 

stress applied on the suture where w is the width of the tab (Equation (3.2) and Figure 3.2a) 

and t is the thickness of the tab (wt is therefore the cross-sectional area of the tab). Combining 

equations (3.2) and (3.16) gives:  

                              (3.17) 
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Figure 3.4 shows a set of typical pullout responses obtained from this model. The pullout 

force-displacement curve for the case with no friction (f =0) has a sinusoidal shape where the 

pullout force increases up to a maximum value, and then decreases again to zero at =0. At 

this particular point the interference  and the normal contact force P are maximum, but 

since P acts along the direction transverse to the pull, this force does not generate any axial 

pullout force. Beyond this point, the contact force P is acting along the direction of pullout, 

and the tabs “push” on one another. At this stage F therefore becomes compressive to 

maintain equilibrium. The pullout force F eventually completely vanishes when the tabs lose 

contact, at   , corresponding to . In the cases where f >0, the additional 

frictional contact force fP continuously resists pullout, which translates into a tensile pullout 

force even beyond q =0 (Figure 3.4). Equation (3.16) indicates that if , the pullout 

force F is positive throughout the entire pullout process.  

 
Figure 3.4: Typical traction separation curves obtained from the analytical pullout model using three different 
friction coefficients. The deformed shape of the system is also showed at five different stages, from initial 
configuration to complete pullout.  
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Figure 3.5a and 3.5b show the effects of the interlocking angle , and friction coefficient f on 

the pullout response of the suture. We first note that the pullout force is proportional to the 

modulus of the bulk material E, because the entire process is governed by elastic 

deformations in the contact region. Higher interlocking angles  increase the strength 

because of increased geometrical interlocking, and also increase the maximum pullout 

distance because the tabs stay in contact over a longer pullout distance (equation (3.14)). 

Higher coefficients of friction f increase the strength because of increased friction at the 

contact point, but do not change the maximum pullout distance, which is governed by 

geometry only. The friction coefficient f and interlocking angle  have therefore positive 

effects on the strength and energy absorption. These parameters cannot however be increased 

indefinitely because the high stresses in the solid parts may fracture the tab, prematurely 

ending the pullout process. This detrimental failure mode is considered in the next section of 

the analysis.  

 

0q

0q
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Figure 3.5: Effects of (a) interlocking angle and (b) friction f on the pullout response of the suture; effects of 
(c) interlocking angle  and (d) friction f on maximum tensile stress in the solid tabs. 
 
In this work we focus on the case where the tabs are made of a brittle material, so that failure 

of the solid tabs may be predicted by monitoring the maximum principal stress in the tabs. 

The maximum tensile stress in the tabs was estimated by combining two solutions: (i) a hole 

in an infinite plate loaded by a point force (figure 3.6i), and (ii) frictional contact mechanics 

(figure 3.6ii). In both cases, the maximum tensile stress occurs at the surface of the solid (in 

the direction tangential to the surface), and at the trailing edge of the contact between the 

sliding tabs. 

(i) Hole in an infinite plate loaded by a frictionless pin in the in-plane direction [38, 39]: in 

this configuration the inner side of a hole is loaded by a contact force acting along the radial 

direction (Figure 3.6i). The resulting maximum tensile stress is the tangential stress at the 

edge of the contact area. If the contact area is small (a << R) then the stress is given by [38, 

39]: 

                                      (3.18) 

Where v is the Poisson’s ratio of the solid material. The stress is simply proportional to the 

contact force P. We note that if  (which corresponds to the case of a point force 

applied in the normal direction on the surface of a half-space), one recovers . 

(ii) Sliding frictional contact: If f >0, the sliding of the tab generates frictional forces and 

shear tractions acting on the contact area. These surface tractions generate tensile stresses 

which are maximum at the trailing edge of the sliding contact. Assuming that the contact area 

is small (a<<R) the effect of surface curvature can be neglected and the maximum tangential 

stress is [37]:  

                                                       (3.19) 

Superposition of these two solutions gives the total stress at the trailing edge of the contact:  
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                           (3.20) 

Or, after normalization: 

                                          (3.21) 

Note that the stress is always highest at the edge of the contact region, even for f =0. The 

tensile stress at the root of the tab (at the smallest cross section) was always smaller than 

contact stresses. Figure 3.5c and 3.5d shows the maximum stress as function of normalized 

pullout distance. The maximum stress is always positive, even if the pullout force F becomes 

negative. This can be explained by equation (3.21), which shows that is proportional to 

the normal contact force P, which is always positive. As expected, the maximum stress 

increases with interlocking angle and friction (Figure 3.5c,d), and these stresses can be up to 

60 times higher than the pullout traction  . The solutions also show that frictional 

stresses (second term in equation 3.21) largely govern the maximum stresses in the tab. 

Frictional stresses are therefore the main limiting factor for the design of the tabs. Design and 

optimization are examined in more details in section V. 

 

Figure 3.6: The two configurations used to derive the maximum stress in the tabs: (i) Point force P applied 
radially on the inner edge of a hole in an infinite plate; (ii) Sliding disk on a half space (normal force =P, 
frictional force = fP). In both cases, the location of the maximum tensile stress is shown. These two solutions are 
superimposed to obtain the maximum stress in the solid part of the tabs.  
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3.4  Finite elements simulations 
 

 In this section, we present finite element simulations for the pullout of the tabs. The 

objectives were to assess the validity of key assumptions in the analytical model, and to 

develop a platform which may be used for more complex sutures where analytical solutions 

may not be possible. Matlab (R2016a, MA, US) was used to automatically generate APDL 

input files for ANSYS (version 15.0, PA, US) [40] from the parameters f and θ0 (R =1 for all 

simulations). The bulk of the material was meshed with quadratic, plane stress element 

(PLANE 183), and contact elements (CONTA 172, TARGE 169, symmetric contact) were 

used to simulate sliding and frictional contact at the interface. The mesh was refined to an 

element size of R/5000 near the interfaces to ensure converged, mesh independent results. 

Figure 3.7a shows a typical finite element mesh for the jigsaw geometry. The simulations 

were performed in about 400 time steps (checked for convergence) and the results were post-

processed automatically using ANSYS ADPL and Matlab. This procedure was used to 

automatically run models [41] for 80 combinations of  and f. Figure 3.7d and 3.7e are 

representative comparisons which show excellent agreement between the finite elements and 

analytical predictions in terms of pullout response and maximum tensile stress within the 

material. The maximum stress from the finite element model also always occurred at the edge 

of the contact region (Figure 3.7b, 3.7c), in accordance with the predictions form the 

analytical solution. Finite elements and analytical solutions are both subjected to 

approximations and therefore neither of these models are exact solutions that could be used 

for validation. However, the fact that both models agree to a large extent suggests that they 

can capture the response of the system with an acceptable level of accuracy. For the case of 

the simple jigsaw geometry considered here, the analytical solution is easier and faster to 

0q
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implement and use, and therefore it was used for the design optimization presented in the 

next section.  

 
Figure 3.7: (a) An example of a meshed finite element model of the jigsaw tabs (θ0 = 50); (b) and (c) contour 
plots of maximum principal stress for θ0 = 50 and f = 0.4 ; (d) and (e) traction and stresses as function of pullout 
distance showing a good agreement between the analytical and finite elements results.  
 
 

3.5  Design optimization 
 

The models developed for pullout showed that increasing either  or f improves the pullout 

response of jigsaw tab, but also gives rise to tensile stresses in the solid material which can 

fracture the tabs. This failure mode is considered detrimental since it prematurely interrupts 

the dissipative mechanisms at the interfaces. Here we performed an optimization approach 

based on exhaustive search of the design space to identify the best combination(s) of design 
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parameters for any given set of desired of normalized stiffness, strength, maximum extension, 

and energy absorption. The normalized stiffness of the suture is defined as: 

         (3.22) 

The strength is simply , the maximum elongation is and the energy absorbed is 

given by the area under the pullout force-displacement curve: 

     (3.23) 

Figure 3.8a-d show contour lines (the blue lines) for these four properties as function of f and 

. All properties increase with f and . The frictionless case f =0 can generate stiffness 

strength through purely geometric interlocking, but it does not absorb energy. The limiting 

factor for the design is the fracture of the solid tabs, which is governed by the strength of the 

material. The tabs will therefore fracture when , or  where is the 

maximum tensile stress predicted from the model (equation 3.21) and is the tensile 

strength of the solid material. For most engineering materials the ratio between the tensile 

strength and modulus is in the range of  to  [42]. The contour lines for 

and are therefore superimposed in red on figure 3.8a-d. These lines 

define the boundaries of gray areas in the upper right portion of the diagram, and any 

combination of f and  in the greyed areas of these diagrams leads to the brittle fracture of 

the tabs. The optimum designs in terms of f and  will make the most of the solid material 

and will lie one of the red lines corresponding to the  ratio for the material considered. 

These diagrams can therefore be used to identify the optimum suture properties that can be 

achieved by simply intersecting the contour lines of properties with the limiting lines for tab 
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fracture. For example, if the friction at the interface is f =0.15 and the material of the tabs is 

relatively strong ( ), the point where the horizontal line f =0.15 and the contour line 

 intersect gives the optimum interlocking angle of about θ0 =7°. On figure 3.8b that 

point corresponds to an optimum suture strength or about  = 0.2 10-3. The coordinates 

of these intercepts was collected for all values of f, with the results displayed on figure 3.9. 

These plots can serve as guidelines for optimization: with a given friction coefficient f, the 

optimum stiffness, strength, elongation and energy absorption can be easily identified, along 

with the interlocking angle θ0 that will achieve this optimized property. For example, for 

relatively weak and stiff materials such as ceramics and glasses (σs/E=1/1000), the value of 

interlocking angles and friction coefficients that will prevent tab fracture are small and cover 

a narrow range (θ0=2° to 40 and f = 0 to 0.05). For stronger and/or more compliant materials 

such as metals and polymers (σs/E=1/100), the range of interlocking angles and friction 

coefficients that will prevent tab fracture is much wider (θ0=2° to 120 and f = 0 to 0.5). The 

optimization results also reveals a counterintuitive but important guideline. Parametric 

studies show that higher coefficient of friction can promote strength, stiffness and energy 

absorption. However, the high frictional stresses at the interface also generate large tensile 

stresses in the contact areas, which can precipitate the fracture of the tabs. In contrast, low 

friction coefficients minimize the tensile stresses in the contact regions, making it possible to 

use higher interlocking angles without fracturing the tabs, which in turn generate high 

stiffness and strength. Interestingly, the optimization results show that the maximum stiffness 

(Fig. 3.9a), strength (Fig. 3.9b) and extension (Fig. 3.9c) are actually achieved for f =0 and 

high interlocking angle (θ0 ~13° for σs/E=1/100). This result does not however apply to 

energy dissipation because friction at the interfaces is the only dissipative mechanism in the 

system. Zero friction f =0 leads to U=0, which is undesirable for the toughness of the suture. 
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The trend in terms of energy is more complex and displays an optimum coefficient of friction 

which is function of the ratio σs/E only. The models give an optimum friction coefficient for 

energy absorption of  f = 0.080 for σs/E=1/100 and f = 0.018 for σs/E=1/1000. These friction 

coefficients are relatively small, but again for these optimized cases the frictional energy 

dissipated at the interface can be magnified by high locking angles.  

 

Figure 3.8: Mechanical properties of the jigsaw suture as function of interlocking angle θ0 and friction 
coefficient f. The properties are plotted as blue contour lines on each of the diagrams. (a) stiffness; (b) strength; 
(c) maximum extension and (d) energy absorbed. In each case the red lines show limit designs for which the 
tensile strength of the material is reached (σs/E=1/100 and σs/E=1/1000).  
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Figure 3.9: Optimum parameters and mechanical properties for the limiting tensile strength of the bulk material 
for σs/E=1/100 and σs/E=1/1000: (a) optimum stiffness; (b) optimum strength; (c) optimum maximum extension 
and (d) optimum energy absorbed. 
 
 

3.6  3D printing and mechanical testing 
 

In order to validate the pullout models and to explore the optimum designs suggested above, 

we fabricated and tested jigsaw like interlocked sutures using 3D printing and miniaturized 

mechanical testing. The solid material was Acrylonitrile Butadiene Styrene (ABS) 

(EnvisionTech Perfactory, MI, US). A high resolution 3D printer (Micro HiRes Machine, 

EnvisionTech) based on the digital light processing (DLP) technology [43, 44] was used for 

fabrication. This particular 3D printer produces fully dense, isotropic solid components with a 

high level of geometrical fidelity and very smooth surfaces. We measured the mechanical 

properties of the as-printed ABS material using a three-point bending configuration (N=3), 
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and found a modulus E= 1.7±0.2 GPa, and a strength =118±12 MPa (failure was brittle). 

We verified that the material is isotropic by performing the same measurement along three 

different orientations with respect to the direction of printing. We also measured the kinetic 

coefficient of friction of ABS on ABS using ASTM D1894 [45], revealing a coefficient of 

friction  f = 0.35 ± 0.04 (N=3) for this material.  Jigsaw-like sutures consisting of a single tab 

with different interlocking angles θ0 = 5°, 10°, 15°, 20°, with R =1 mm and thickness t =2 

mm (Figure 3.10a) were 3D printed. The printing direction was along the out-of-plane 

direction for the tabs (axis z on Figure 3.10a) and the layer thickness was 50 µm. In order to 

prevent any gaps at the interface of the suture, the two solid parts of the sample were printed 

individually, and then assembled by sliding along the out-of-plane direction (Figure 3.10b, c). 

Two holes were made in the samples to apply the pull-out force (Figure 3.10a) through 

loading pins. Each sample contained a single interlocking tab, and in order to prevent lateral 

bending and transverse strains during pullout (which would not be representative of a 

periodic suture), the total width of the sample was set to about five times the width of the tab. 

Pictures of actual samples with three different interlocking angles are shown on Figure 3.10c. 

The tests were performed at a pulling rate of 0.05 mm/s and with optical imaging to measure 

displacements. The pullout force F was divided by the cross section wt to obtain the average 

stress applied onto the interlocking tab, and the pullout displacement u was normalized by the 

length of the locking tab L. Three samples were tested for each geometry (N=3) for 

repeatability. Figure 3.11a shows the representative pullout behavior of the suture for each of 

the four interlocking angles. The bell shape of the curves is similar to the theoretical 

predictions and has the characteristics of a progressive failure [41]. The stiffness, strength, 

maximum elongation and energy absorption all increased with interlocking angle as predicted 

by the models.  Sutures with interlocking angle of 20° fractured prematurely, with cracks 

emanating from the edges of the contact region (Figure 3.11a), also in agreement with the 

Ss
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stress analysis presented above.  We compared the experimental pullout response for 

interlocking angles θ0 = 5°, 10°, 15°, 20° with the prediction of the models using the values E 

=1.72 GPa and f =0.35 measured experimentally for ABS. Experiments and models agreed 

well, figure 3.11b showing a representative comparison obtained for the case θ0 =10°. Figures 

3.11c-e summarize the experimental properties of the suture and show how the stiffness, 

strength and energy absorption increase with θ0, up to θ0 =15°. The model could capture the 

experimental values for each property over one order of magnitude. On a logarithmic scales 

with a reference of 0.001 for the lower bound, the difference between model and experiment 

was only 0.3-7% (Figure. 3.11c-e). On a linear scale the difference is larger and in the 5-25% 

range. The model could therefore capture the experimental values relatively well for all 

properties. The tabs fractured at an interlocking angle of 20°, which can also be compared 

with our models using E =1.72 GPa, f =0.35, Poisson’s ratio n =0.4 (typical value for rigid 

polymers [46]), and ss =118 MPa corresponding to . Using these values, our 

model predicted that the tab would fracture for locking angles θ0 > 14.66°.   In the 

experiments the tabs were intact for θ0 =15° but fractured for θ0 =20° the model therefore 

only slightly underestimated the strength of the tab. We did not observe permanent, plastic 

deformations in the tabs, which is consistent with a yielding model based Johnson and 

Jefferiss [37] for frictional contact problems. Using Von-Mises yield criteria, the model 

predicts an onset of yielding at a maximum contact pressure of  for a 

friction coefficient of f =0.35. With a 0.2% offset yield strength of ABS of =109.8±8.7 

MPa measured experimentally, the model predicts an onset of yielding at 152.2 MPa. 

The maximum contact pressure for the two identical disks is given by [37]: 

                                                               (3.24)   
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The maximum force P occurs at the maximum interference between the tabs given by:  

                                                                                                      (3.25) 

By solving equations 3.11, 3.12, 3.24 and 3.25 numerically, we determined that the tabs start 

to yield at interlocking angle = 16.6° which is more than the interlocking angle = 14.7° 

at which the tabs fracture in a brittle fashion. The implication is that the state of the stresses 

within the tabs is such that the tabs break before they yield. This prediction agrees with the 

experiments: the tabs fail catastrophically with little or no plastic deformation.  

 

Figure 3.10: 3D printed suture samples: Diagrams showing (a) the shape and dimensions of the two parts of the 
samples and (b) the assembled sample; (c) Pictures of Samples with different interlocking angles, before 
assembly.  
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Figure 3.11: Experiments on the jigsaw interlocked tabs. (a) Representative pullout curves with different 
interlocking angles (θ0 = 5°, 10°, 15°, 20°), with representative pictures showing two different failure modes: 
tab pullout and fracture. (b) Comparison between simulation and experimental pullout curves for sutures with θ0 
= 10°. (c) Stiffness, (d) strength, and (e) energy absorption of the suture as a function of interlocking angle, with 
comparisons from models (the error bars represent ± one standard deviation of the variable).  
 

The models and optimization presented in the previous sections suggest that lower coefficient 

of friction at the interface would increase the overall properties of the optimized tab, a 

seemingly counter intuitive result we wanted to verify experimentally. We reduced the 

coefficient of friction by using paraffin as lubricant [47] and measured f = 0.142 ± 0.021 

using a standard friction test [45]. This value of friction coefficient is about 2.5 times lower 

than the dry case. We fabricated a new batch of sutured materials with locking angles of θ0 = 

10°, 20°, 30°, 35°, and 40°. Prior to assembly of the samples, a thin coating of paraffin was 

applied on the inner surfaces of the tabs. A set of representative experimental pullout curves 

are shown on Figure 3.12a. With a reduced friction, the interlocking angle could be increased 

to θ0 = 35° without breaking the tabs, as predicted by the model. However the model could 
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not match the experimental curves, which we attributed to the extensive plastic deformations 

in the tabs (these limitations of our models would not apply when designing sutures in 

ceramics or glasses). Nevertheless, the experimental results (Figure 3.12b,c,d) confirmed that 

significantly higher stiffness, strength and energy absorption can be achieved at higher 

interlocking angles with a lower coefficient of friction. The stiffness, strength and energy 

absorption of the lubricated suture with the optimum interlocking angle of θ0 = 35°, were 2.5, 

2 and 2.7 times higher than the highest stiffness, strength and energy absorption achieved 

with the non-lubricated samples (at θ0 = 15°).  

 

 

 

Figure 3.12: Experimental results from sutures with reduced friction coefficient: (a) Representative pullout 
behavior of the lubricated tab with different interlocking angles (θ0 = 10°, 20°, 30°, 35°, 40°) with pictures 
showing two different failure modes. (b) Stiffness, (c) strength, and (d) energy absorption of the lubricated 
suture as functions of interlocking angle. Comparison between dry and lubricated cases is also shown (the error 
bars represent ±one standard deviation of the variable). 
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A potential application of the jigsaw-like suture is to exploit its energy absorption and 

toughness, as seen in recent examples of all-brittle architectured materials that combine 

surface hardness with deformability, energy absorption and impact resistance [34, 35, 48]. 

Here we calculated the effective toughness of the sutured interface with the toughness of 

ABS. The fracture toughness of plain ABS was measured using a 3-point-bending fracture 

test configuration [49] and was found to be JS =300±28.6 J.m-2. By interpreting the pullout 

data as a traction separation law which would govern the mode I fracture of the suture, the 

effective toughness of the suture is simply the area under the experimental traction (F/wt) 

separation (u) curve. Using this method we measured a toughness J=13.76±1.7 kJ.m-2 for the 

optimum suture (θ0 = 35°, lubricated), which is about 45 higher than plain ABS. 

Incorporating sutures is therefore a powerful method to increase the effective toughness of 

materials and structures.  

 

3.7  Summary  
 

Sutured materials are prominent in natural materials and they are now attracting an increasing 

amount of attention in the context of bio-inspired engineering applications. The strength and 

fracture mechanics of these sutures were characterized in the past for sinusoidal 

morphologies [29, 30], or more complex interlocking morphologies but only at small strains 

[21, 32, 33]. In this work we proposed, for the first time, a model that captures the complete 

pullout of jigsaw-like features over long distances, with progressive interlocking and 

frictional interactions at the interfaces. The model also provides the maximum tensile stress 

in the solid parts of the tabs, which can be used to predict and prevent the brittle fracture of 

the tabs. The main conclusions from the models are as follow: 
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• The resistance to pull-out of the suture increases with angle θ0 and friction coefficient 

f. 

• The highest tensile stresses in the solid are generated by frictional tractions at the 

contact between the tabs, and occur at the edge of the contact area. These stresses are 

always significantly larger than the tensile stresses occurring in the smallest cross 

section of the tabs.  

• The design guidelines we present here are useful for non-adhesive contact of jigsaw-

like sutures in any brittle material subjected to tensile loading. 

• Optimization revealed that to maximize stiffness, strength and energy absorption it is 

preferable to use low coefficients of friction to minimize the stresses near the 

frictional contact, combined with high interlocking angles to generate high structural 

properties for the suture.   

We validated the models and these observations by 3D printing and testing actual jigsaw 

interlocked tabs made of ABS, a relatively brittle polymer. Good agreements between the 

predicted and actual pullout curves were obtained for different interlocking angles. The 

models also predicted the failure of tabs with a good accuracy, in terms of both the 

interlocking angle at which the tabs start to break and the location of the failure (trailing edge 

of the contact). We finally verified experimentally by lubricating the interfaces that designs 

with low coefficients of friction and high interlocking angles lead to higher properties overall, 

including higher energy dissipation. The suture interface is particularly remarkable for its 

toughness: we found that it is 45 times tougher than plain ABS (in J-terms). These models 

and optimization results therefore provide a robust platform for the design and optimization 

of jigsaw-like sutures, which can be exploited in compliant interfaces [12, 21], in 

morphologically enhanced bond lines [25], and in damping and shock absorbing applications 

[22]. Dense network of sutures in materials can lead to unusual and attractive homogenized 
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performance that can surpass monolithic materials: enhanced toughness, deformation and 

energy absorption in otherwise fragile materials [34, 35]. Finally, the models presented here 

are restricted to simple jigsaw geometries with only two geometrical parameters (curvature 

and interlocking angle). Enriching the shape of the suture is likely to generate a wider range 

of properties, for example by generating “double locking” upon pullout  [50]. The models 

developed here can serve as a starting point for the exploration and optimization of these 

more complex suture morphologies.   
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Link between chapter 3 and chapter 4  
 
In the previous chapter, we developed analytical and finite element models using linear 

elasticity and non-Hertzian contact mechanics, which we then used to explore the effect of 

interlocking angle θ0 and friction coefficient f on the pullout response and maximum stress in 

jigsaw-like interlocking sutures. We reported good agreement between the analytical and 

finite element models, and then we performed an exhaustive search optimization. The 

optimization results show that the best mechanical properties are achieved with low friction 

coefficient f and high interlocking angle θ0. This result was validated by fabricating and 

testing a set of 3D printed interlocking sutures with ABS as the base material. The model is a 

guideline for the design, optimization and fabrication of jigsaw-like sutures pulled in tension 

with no adhesive at the interface. In addition the models show that the mechanical properties 

of sutures can be tuned with the geometrical parameters, and we therefore extended the 

model to incorporate other geometrical parameters in order to have a broader view of effect 

of geometry on mechanical properties. In the next chapter, we used the same underlying 

assumptions to develop analytical and finite element models. In this case, the sutures were 

systematically created using some geometrical parameters called shape descriptors. The 

selected shape descriptors we used are local suture angle(s) ϕ, (interlocking angle θ0 and 

transition angle(s) θ1), radius of curvature R0/R1, and plateau length d/R0. The results show 

that all the geometrical parameters have positive effect on the pullout response and maximum 

stress. We then perform an exhaustive search optimization which shows that: (i) for each of 

the suture families, the geometry that gives optimum performance is the one with low friction 

coefficient f, and high interlocking angle θ0, and (ii) multilocking geometry with locking 

along the pulling direction is the most potent design. This chapter was accepted for 

publication in the International Journal of solids and structures. 
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4.1 Abstract 

Hard structural elements in nature are often joined with sutures lines, as seen in human skull, 

cephalopods or turtle shell. These sutures can arrest cracks, and can provide flexibility for 

respiration, locomotion or growth. In this paper we introduce a morphometric method to 

capture the complex shape of sutured interfaces using only a few parameters. The method is 

simple, and can capture relatively complex suture geometries with re-entrants interlocking 

features. The study starts with a simple jigsaw-like model which is enriched with additional 

features (plateau regions in dovetail-like sutures, multiple locking sites). For each case, 

closed form and finite elements solutions are developed to capture the full nonlinear pullout 

response and to predict the maximum stress (and potential fracture) in the solid material. 

These models were then used to identify the geometries and interface properties (friction) that 

lead to optimum combinations of strength and energy absorption. Suture designs that reduced 

frictional stress with low coefficient of friction or with multiple contact points were the most 

efficient. The results can serve as guidelines to design and optimization of non-adhesive 

sutures with arbitrary shapes made of arc of circles and lines. We found that the best designs 

involve low coefficient of friction, which raises an interesting hypothesis on the function of 

the protein layer in natural sutured lines: This soft layer could act as “lubricant” to prevent 

the fracture of the solid structures.  
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Keywords: Sutured lines, shape descriptors, analytical models, finite element models, 

optimization 

4.2 Introduction  
 

Components made of hard materials can be joined by suture lines, a structural feature found 

in multiple examples in nature: shells of cephalopods [1], human skull [2-4], carapace of 

turtle [5-7], wood peckers beak [8] (Figure 4.1), and in many other hard biological materials 

where weak interfaces govern deformation and fracture mechanisms [9, 10]. In these 

examples, stiff skeletal material (mineralized proteinaceous matrices, keratin) are joined by a 

thin lines of interfacial material which are much softer. The geometrical complexity of the 

suture lines ranges from nearly straight sutured interfaces in new born baby skull [2, 4], to 

more complex ceratitic and ammonitic sutures with fractals geometries [1, 11, 12]. In 

cephalopods such as ammonoid, which produce angular or dendritic sutures, the complexity 

of the suture lines varies across species [1], or with growth as seen in the interdigitating 

suture lines in human skull which become more complicated from infant to adult [4, 13]. 

Some of these interfaces form anti-trapezoidal sutures which are interlocked as seen in 

linking the girdles of diatoms [14, 15], while others display sinusoidal interfaces which 

increases resistance to crack propagation [16]. 

 
Figure 4.1: Examples of sutured interfaces in nature: (a) Ammonite shell  (Ceratitic ammonoid) with intricate 
suture lines [12], (b) Pan troglodytes cranial sutures (adapted from [28]),  (c) Osteoderms of a leatherback sea 
turtle shell (adapted from [6]), (d) red-bellied woodpecker (Melanerpes carolinus) beak (adapted from [8]). 
 

The softer interface materials at the sutures enable the relative displacement and/or relative 

rotation of harder structural components, which facilitates locomotion, respiration or growth 
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[12, 16]. Sutured interfaces can also absorb impact energy [8], channel the propagation of 

cracks into toughening configurations, or act as a source of local deformation that can spread 

energy dissipative mechanisms throughout large volumes [17-19]. The geometry of sutured 

lines largely governs their mechanical response [11, 12, 21-23]. In particular, interlocking 

geometrical features can increase strength and energy dissipation [24-27]. We recently 

developed analytical and finite element models that capture the complete nonlinear pullout 

response of sutures with simple interlocking jigsaw-like geometries, based on frictional 

contact and linear elasticity [20]. These models demonstrated how geometry and local 

friction coefficient govern stiffness, strength and energy absorption, and how geometry and 

friction can be tuned to optimize the mechanical response. In this article we present new 

extensions to these models, where we consider sutures with more complex morphologies: 

dovetail-like sutures and sutures with two or more pairs of locking sites. For each type of 

suture we performed an exhaustive search to determine the design parameters which 

maximize strength and energy absorption. A comparative study of the different suture 

morphologies is provided at the end of the discussion.   

4.3 Overview of the suture geometry 
 

Capturing the two-dimensional geometry of a curved suture line requires robust, high fidelity 

yet relatively simple mathematical models. Methods used in the past include descriptive 

methods, pattern-matching using geographic information systems, complexity indices, and 

morphometric methods [1, 15, 29]. In this work, we used a simple 2D shape descriptor 

approach similar to the morphometric method. Shape descriptors are mathematical objects 

which can capture geometrical features in a simplified and condensed fashion, for example 

the radius of a circle, the surface of an area, or geometrical eccentricity [35, 36]. The shape 

descriptor we used in this study is based on a cumulative angular function of the contour of 

the suture f as function of the curvilinear position s along the contour (Figure 4.2). The 
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approach is versatile and more importantly, it enables the modelling of suture lines with re-

entrant, interlocking features. For this study we only considered f (s) functions that are 

multilinear (Figure 4.2a). The 2D profile of the suture can be reconstructed from the f (s) 

function in the x-y coordinate system using: 

        

 (4.1) 

Where the point x=0 and y=0 coincides with s=0. This process generates a periodic unit cell 

of the suture (figure 2b).  

 
Figure 4.2: (a) A parametric (ϕ-s) curve showing the cumulative angular function as function of curvilinear 
position; (b) Suture profile in (x,y) reconstructed from the (ϕ-s) function.  
 

For this study we required the contour (x-y) of the suture to be periodic and continuous. We 

also required contours with no sharp corner or kinks which would generate stress 

concentrations and lead to sub-optimal designs. The function f (s) therefore had to be 

continuous. In addition, for a suture line whose general orientation is aligned with the axis x, 
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the local tangential angle  must take a zero value at least once within the periodic unit cell. 

For simplicity we chose =0. In this work we also only considered sutures with a 

symmetry about line x = w/2, where w is the width of the unit cell in the x-y space. This 

symmetry implies that the function  is antisymmetric about the line s=2s0 (figure 4.2a). 

Finally, we sought optimum geometries for the suture and therefore we focused on 

geometries that produce identical stresses on either side of the suture line, because 

asymmetric suture lines would be sub-optimal with one side inevitably being “better” than 

the other. Therefore we only considered suture lines with a 1800 rotational symmetry, which 

implies that the function  is symmetric about the line s=s0 (figure 4.2a). Considering 

these symmetries, the functions  only need to be defined over a quarter of the curvilinear 

length of the contour in the periodic cell ( , Figure 4.2). The first quarter of the (x-y) 

contour was reconstructed using equation (4.1) up to , and a 1800 rotational symmetry 

was then applied about points , in order to produce a half unit cell which was used 

for the analysis of kinematics, forces and stresses. For display purposes, the full unit cell may 

be reconstructed with a simple symmetry (figure 4.2b). The full unit cell has width w, and 

height L+2h where L is the projected length of the suture on the y axis, and h is the height of 

two regions included in the model on either sides of the suture. The width, w and the height, 

L of the suture are given by: 

          (4.2)  

This “shape generating algorithm” has a few properties that are useful to outline here. The 

local radius of curvature R on the (x-y) profile of the suture is related to the local suture angle 

by , so that the local slope of  is:   
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      (4.3) 

An important implication is that horizontal segments in the function (f’(s) =0) 

correspond to straight segments on the (x-y) profile ( ). This shape descriptor approach 

was used to generate a wide array of suture geometries, and the pullout mechanics of each of 

these geometries was captured with the model described below.  

4.4 Pullout models 

In terms of mechanics, this study focused on the full pullout response of the suture along the 

y direction (figure 4.3). We only considered sutures with no adhesive at the interfaces, so that 

the pullout response was governed only by contact mechanics, friction and geometric 

interlocking. The solid part of the suture was assumed to be isotropic and linear elastic 

(modulus E and Poisson’s ratio n), and 2D plane stress conditions were used. Figure 4.3a 

shows a representative volume element (RVE) of the suture geometry. The pullout was 

simulated using a displacement controlled boundary conditions: 

     (4.4) 

Where h is the height of the upper and lower portion from the suture interface (figure 4.2c). 

The sides of the model were subjected to the periodic boundary conditions: 

   (4.5) 

Where is the average strain in the x (transverse) direction. The geometry and loading 

conditions are symmetric about the y-axis so that: 

     (4.6) 
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Combining equations (4.5) and (4.6), the periodic boundary conditions are written: 

      (4.7) 

In cases where h is sufficiently large, the stiffness of the solid regions in the transverse 

direction is high enough to neglect any deformation in the transverse direction, i.e. . 

Equations (4.7) then become (Figure 4.3a):  

     (4.8) 

 
Figure 4.3: (a) Half-unit cell for the suture with symmetry and boundary conditions applied. (b) Free body 
diagram of the half-unit cell; (c) free body diagram of the lower tab only, exposing the normal and frictional 
forces transmitted at the contact between the tabs. 

 

When the upper suture is pulled along the y axis, the interlocking at the suture generates a 

pullout force F along the y axis (F/2 on the half unit cell, figure 4.3b).  The contact forces at 

the interfaces also generate a horizontal component, giving rise to a compressive forces Fc 
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along the x axis. Because the net horizontal force on the unit cell is zero, the compressive 

forces in the suture region must be balanced by tensile forces FT transmitted on either sides of 

the suture line (Figure 4.3b). Figure 4.3c shows a free body diagram of the lower section of 

the suture, which exposes the contact forces transmitted at the interfaces. These forces can be 

decomposed into normal force(s) Pi and frictional force(s) fPi (only one contact force is 

showed on figure 4.3c, but there might be more sets of contact forces depending on the 

design of the suture). These contact forces will translate into a pullout force through the 

equation:  

     (4.9) 

The set of forces shown in figure 4.3 also generate stresses in the solid parts of the suture 

which must be monitored because fracturing the material would abort the pullout mechanisms 

and cancel their potential benefits. Experiments and stress analysis have shown that for brittle 

material in sliding dry contact, the highest tensile stresses occur at the surface of the suture, at 

the edge of the contact area [20]. For each of the geometries presented below, the maximum 

tensile stress in the solid part was calculated for the entire pullout sequence.  

We also used numerical methods for the models, with a combination of finite element 

simulations (ANSYS parametric design language) interfaced with Matlab (R2016a, MA, US). 

ϕ(s) curves were generated and automatically transformed into suture geometries into x-y 

profiles using a Matlab. The same code was used to automatically generate APDL input files 

for ANSYS. The models were meshed with quadratic, plane stress element (PLANE 183), 

and contact elements (CONTA 172, TARGE 169, symmetric contact) were used to simulate 

sliding and frictional contact at the interface. To appropriately mesh the model we used an 

adaptive meshing approach for each geometry. A first model was run with a uniform mesh, 

and the mesh was automatically refined at the regions of highest stresses. The procedure was 
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repeated automatically until the results for pullout response and maximum tensile stress in the 

solid converged, ensuring mesh independent results. Typically the size of the elements in the 

converged mesh was about R/5000 in the contact region, where R is the radius of curvature. 

The number of time steps in simulation was also adapted automatically to ensure converged 

results, typically about 500. The results were automatically post-processed using ANSYS 

ADPL and Matlab. This fully automated exploration procedure enabled the evaluation of 

thousands of models with different suture geometries and coefficients of friction.  

4.5 Exploration of suture geometries 
 

In this section we explore the effect of several suture geometries on pullout behavior. We 

organized the exploration by starting with a simple design (single jigsaw sutures) based on a 

single geometrical parameter. We then progressively enriched the geometry of the suture by 

adding more geometrical features through additional parameters: dovetail-like sutures, double 

locking sutures, N-locking sutures. Within each type of geometry we sought the geometrical 

parameters and materials properties that lead to optimum combinations of high strength and 

high energy absorption, while preventing the brittle fracture of the solid part of the suture.  

4.5.1 Single jigsaw sutures 
 

The single jigsaw sutures are the simplest form of geometric parameters, with a radius of 

curvature R0, and a locking angle θ0 ([20], Figure 4.4). Since the mechanisms captured here 

have no specific length scale, all results are normalized by the size of the model, leaving θ0 

the only geometrical parameter. The other geometric parameters can be found using 

equations (4.2) and (4.4): 

      (4.10) 
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The length of the 1/4 contour of the suture is and the  function is simply 

(Figure 4.4a): 

     

 

       

 

Figure 4.4: (a) (ϕ-s) curve for a one-parameter suture; (b) Corresponding profile; (c) model with symmetry and 
boundary conditions; (d) The “strength” of the geometrical interlocking is governed by the interlocking angle θ0, 
where θ0 < 60° to prevent the re-entrant regions of the tabs to intersect (case highlighted in red).  

 

Figure 4.4b shows the reconstructed profile of the suture, which consists of four appended 

arcs of circle. The level of interlocking increases when  increases as shown on figure 4.4c, 

up to the extreme case   = 60° where the suture line intersects which corresponds to the 

maximum geometrically allowed locking angle. Sutures with  60° were therefore 

excluded from the exploration as physically inacceptable. An analytical solution for the 
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pullout response based on simple kinematics and contact mechanics was presented in a 

previous article [20], with the main results are summarized below. Figure 4.3b and 4.3c, 

gives the kinematics relations for [20]: 

     (4.11) 

    (4.12) 

Using contact mechanics, the non-dimensional interference is given as: 

    (4.13) 

Where t is the thickness of the tab. This equation is solved numerically to determine the non-

dimensional contact force  and the non-dimensional pullout force from equation (4.10) 

is given as: 

              (4.14) 

The effect of Poisson’s effects are neglected in this solution, but finite elements confirm that 

Poisson’s ratio has little effects on the solutions.  
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Figure 4.5: Effects of (a) friction f and (b) interlocking angle on the pullout response of the suture; effects of 
(c) friction f and (d) interlocking angle on maximum tensile stress in the solid tabs. 
 

Figure 4.5a and 4.5b show the effects of the friction coefficient f, and interlocking angle θ0 on 

the pullout response of the suture. High coefficients of friction f lead to relatively high 

strength because of increased friction at the contact point, but do not change the maximum 

pullout distance which is governed by geometric parameters. Higher interlocking angles  

increase the strength because of increased geometrical interlocking (figure 4.5b), and also 

increase the maximum pullout distance because the tabs stay in contact over a longer pullout 

distance. The friction f and interlocking angle  have therefore positive effects on strength 

and energy absorption. However increasing these two parameters also increase frictional 

stresses, which can lead to the fracture of the tabs. The maximum tensile stress in the suture 

is divided into frictionless and frictional contact stresses [20], which can be evaluated from 
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contact solutions.  These frictional stresses produce the maximum tensile stresses in the solid 

tabs, which are plotted as function of pullout distance for different coefficient of friction 

(figure 4.5c) and different locking angles (figure 4.5d). The contact stresses can also be 

illustrated with finite element results, with the lowest principal stress (i.e. maximum 

pressure, figure 4.6a,b) and the highest tensile stress (figure 4.6c). The contact pressure 

is distributed over the contact following the expected parabolic profile. The tensile stress is 

maximum at the edge of the contact surface which is “behind” the direction of sliding. Figure 

4.6d and 4.6e show the pullout (force-displacement) curve and the maximum local stress as 

function of pullout distance. The analytical solution and finite element models are in good 

agreement.  

 

Figure 4.6: (a) and (b) contour plots of maximum pressure (minimum principal stress) for θ0 = 50 and f = 0.4 ; 
(c) contour plot of maximum principal stress (maximum tensile stress in the tabs); (d) and (e) traction and 
maximum tensile stresses as function of pullout distance showing a good agreement between the analytical and 
finite elements results.  
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The interlocking angle θ0, and friction coefficient f, increase the maximum pulling force and 

total energy absorbed during pullout. However the associated local stresses in the solid may 

cause a premature fracture of the tab, therefore there is need for optimization. Here we 

performed an exhaustive search of the design space to identify the best combination(s) of 

design parameters for any given set of desired of normalized stiffness, strength, maximum 

extension, and energy absorption. The limiting factor for the design is the fracture of the solid 

tabs, which is governed by the strength of the material. The tabs will therefore fracture when 

smax /E = ss /E, where smax is the maximum tensile stress predicted from the model and ss is 

the tensile strength of the solid material. Here we present results for ss /E=1/100, which is a 

common ratio for engineering materials [37]. For a given value of friction coefficient, it is 

therefore possible to identify the optimum locking angle that will be the largest while 

preventing fracture of the tabs. The strength is simply , the maximum elongation is 

and the energy absorbed is given by the area under the pullout force-displacement curve, 

. Figure 4.7a shows the allowable combinations of θ0 and f that will 

prevent tab fracture and ensure the complete pullout the suture. Since strength and energy 

absorption both increase with θ0 and f , the optimum combinations of θ0 and f lie on the line 

defined by  smax /E = ss /E = 1/100. As expected, if f is increased then θ0 must be decreased to 

prevent the fracture of the tabs.  Figure 4.7b shows the corresponding optimal energy 

absorption and the optimal strength . The maximum pullout strength is 

achieved with a locking angle θ0 = 12.750 and a friction coefficient f = 0, and at a value 

Fmax/wtE ~ 0.5 x10-3. However, this design does not dissipate any energy upon pullout, 

because the frictional dissipative mechanise is absent (f=0). To reach the highest energy 
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dissipation possible f must be increased, and θ0 must be decreased. The bell-shape of this 

curve shows there is an optimum point where the energy dissipation is maximum, which is 

achieved with a locking angle θ0 = 9.250 and friction coefficient f = 0.06. This exhaustive 

search can therefore be used to identify the suture geometry and local friction that will 

optimize strength and/or toughness. The results also highlight the main limitation of this 

design: the maximum strength of the suture is only about 5% of the tensile strength of the 

solid material. In the upcoming sections we explore enriched geometries that aim at reducing 

the frictional contact stresses by distributing the contact over larger areas.   

 
Figure 4.7:  (a) Possible combinations of the parameters θ0 and f for optimum designs; (b) Optimum energy 
absorbed and optimum pullout strength calculated using  the constraint σs/E=1/100.   
 
  
4.5.1 Dovetail-like sutures 

 

As a first extension to the simple jigsaw geometry, we increased the contact area in order to 

better distribute and to decrease the contact stresses, and in particular those associated with 

friction. Reducing the contact stresses can delay the fracture of the solid materials, which can 

enable more extreme locking geometries and more efficient designs. A straight region of 

length d was added on the suture contour, which produced a “dovetail like” geometry (figure 

4.8a,b). This dovetail suture can be described with three independent parameters: interlocking 

angle θ0, radius of curvature R0 and length of straight segment d, which were reduced to two 

parameters (θ0 and d/R0 ) after normalization. Other geometrical parameters are given by: 
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       (4.15) 

The  function (figure 4.8a) was defined as: 

      (4.16) 

 

Figure 4.8: (a) (ϕ-s) curve for a two-parameter suture; (b) Corresponding profile; (c) The “strength” of the 
geometrical interlocking is governed by the interlocking angle θ0 and the plateau length d/R0. The geometries 
highlighted in red are not physically acceptable.  
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Figure 4.8c shows a set of dovetail suture profiles obtained for different combinations of θ0 

and d/R0. For d/R0 = 0 the single jigsaw geometry is recovered. With d/R0 > 0 a wide range 

of geometries can be obtained, but some combinations of parameters lead to the contour 

intersecting itself. The condition for the contours not to intersect is , which can be 

written: 

    (4.17) 

On figure 4.8c, equation (4.17) defines the boundary between admissible geometries and 

inadmissible geometries.  As the plateau length d/R0, increases from zero (single locking) to 

higher values, the range of allowable locking angles θ0 becomes narrower. To predict the 

pullout response of the dovetail suture we used the same procedure as for the single jigsaw 

model. An analytical solution was first developed by using a 2D flat punch with rounded 

edge as base solution for the contact interaction [38-41]. The kinematics of two disks in 

contact is the same as that described above using equation 4.11, and the normalized contact 

radius a/R0 can be determined from non-Hertzian contact solution for two similar disks in 

contact (equation 4.18) [42]: 

    (4.18) 

The normalized contact surface a/R0 can be obtained by solving equation (4.18) numerically. 

From a/R0 one can compute the normal force for a flat punch with rounded ends for plane 

stress condition is given as [39]: 

 (4.19) 

      (4.20) 
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The pullout is divided into three stages as shown in figure 4.9. The first stage involves the 

sliding of the flat portion and the interlocking angle remains unchanged while the contact 

length reduces from d to zero. The pullout distance in the first stage is given as: 

       (4.21) 

Where  is the difference in the sliding length as the pullout progresses from zero to d. At 

the second and third stage the pullout distance is given by: 

   (4.22) 

where δ is the interference between two disks pressed against each other and θ is used to 

track the evolution of the interlocking angle. 

 

Figure 4.9: Stages of the pullout for a dovetail suture; (a) Initial stage (no force applied), (b) first pullout 
stage where the flat faces are in contact, (c) second stage where only the rounded sections are in contact.  
 
Resolving the force components vertically and normalizing by the suture width provides the 

average pullout force: 

00   cos qdu D=

dD

( ) qdq sin2sin2 0001 --= RRu



99 
 

     (4.23) 

The angle θ is used to track the progressive pullout of the suture, and it remains constant 

along the flat portion of the suture, but later evolves from +θ0 to –θ0 at the rounded ends of 

the suture. Figures 4.10a-c show the effect of friction coefficient f, interlocking angle θ0, and 

plateau length d/R0, on the average pullout force. Friction (Figure 4.10a) and interlocking 

angle (Figure 4.10b) have the same effect as we observed for the single jigsaw design- they 

both increase maximum pullout force and energy absorption. Increasing the length d of the 

plateau increases the area of contact, which increases the pullout force (Figure 4.10c).  

 

Figure 4.10: Effects of (a) friction f (b) interlocking angle , and (c) plateau length d/R0, on the pullout 
response of the suture; effects of (d) friction f  (e) interlocking angle , and (f) plateau length d/R0, on 
maximum tensile stress in the solid tabs. 
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The maximum tensile stress in the suture is divided into frictional contact stress and 

frictionless (hole in an infinite plate loaded by a frictionless pin in the in-plane direction) 

maximum tensile stress. The frictionless maximum stress is given as [43]: 

     (4.24) 

The sliding frictional contact stress is given as [39]: 

     (4.25) 

Where p is the contact pressure given as  and k is a geometrical factor that defines the 

effect of contact length ratio, d/2b on the pressure distribution of flat punch with rounded 
edges. If d = 0, then k = 1 which reduces to a cylinder-on-cylinder contact [39].  

 

  (4.26) 

 

Superposition of these two solutions gives the total stress at the trailing edge of the contact:  

                 (4.27)           

Normalizing this equation gives: 

   (4.28) 

The maximum stress increases with interlocking angle, plateau length, and friction (Figure 

4.10d, e, f). Figure 4.11 shows the minimum principal stress, maximum stress contour plots 

and the comparison between the pullout response and maximum stress. The result shows that 

both the analytical and finite element models are in good agreement. For the rest of this 

section we used the analytical model because of its simplicity. 
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Figure 4.11: (a) and (b): contour plots of maximum pressure for θ0 = 50 , d = 0.8, and f = 0.4 ; (c) contour plot 
of maximum principal stress (d) and (e) traction and stresses as function of pullout distance showing a good 
agreement between the analytical and finite elements results.  
 
  
To identify optimum sets of design parameters, we followed the same procedure as for the 

single jigsaw, by performing an exhaustive parametric study on f,  and d/R0. In particular, 

we identified optimum sets of parameters that prevent fracture of the tabs, using σs/E=1/100   

for the tensile strength of the solid material. Figure 4.12(a) shows different combinations of f 

and that achieve this condition, and for four different values of d/R0. As expected, 

increasing the plateau d/R0 must be accompanied by a reduction of f and/or  to prevent the 

fracture of the tab. Figure 4.12b shows the corresponding optimum energy absorption and 

strength. Compared to the single jigsaw tab design adding straight regions produced narrower 

bell-shape curves, because as mentioned above the range of  permissible f and is more 
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restricted. The dovetail design however produced higher increases energy absorption, up to 

2.5 times higher than what can be obtained from the single jigsaw design. The maximum 

pullout strength possible is however the same, at Fmax/wtE ~ 0.5x10-3 for all designs. 

Interestingly, the optimum design achieves the highest possible strength and energy 

absorption simultaneously. This optimum design has a friction coefficient of 0.12, a long 

dovetail d/Ro =0.6 and a vanishingly small locking angle ( =0.125º). A further increase in 

the plateau length (d/R0 > 0.6) did not generate any further improvements.  

 

Figure 4.12: (a) Possible combination of the parameters θ0,  f, and d/R0 for optimum designs; (b) material 
property map showing the optimum energy absorbed and the optimum pullout strength for different d/R0 and for 
a design constraint σs/E=1/100. 
 
4.5.3  Double locking sutures 
 

The dovetail design demonstrated how distributing the contact stresses over a larger area 

could delay fracture of the tabs and lead to higher performance. We now examine another 

approach, where the pullout force is transferred over more than one contact area. "Double 

locking" suture geometries were obtained by enriching the ϕ(s) with a second segment with a 

nonzero slope (Figure 4.13a). The most interesting cases are produced when this second slope 

is negative, which then produces a second locking site of radius R1 (Figure 4.13b). The slope 

of that segment is therefore -1/R1 on the ϕ(s). This enriched design has therefore three 
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independent non-dimensional geometrical parameters: (i) interlocking angle θ0, (ii) radii ratio 

R0/R1, (iii) cumulative angular function ϕ0 /ϕ1. The suture angle function is written: 

    (4.29) 

Other geometrical parameters are written: 

                 (4.30) 
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Figure 4.13: (a) (ϕ-s) curve for a two-parameter suture; (b) Corresponding profile; (c) The “strength” of the 
geometrical interlocking is governed by the interlocking angle θ0 and by R0/R1. The geometries highlighted in 
red are not physically acceptable.  
 
There are geometric constraints on and θ0 which restrict the range of possible designs 

for this suture. The transition angle θ1 can be written: 

   

 (4.31) 

However equation (4.31) has a solution only if:    

                (4.32)   
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In addition the contour of the suture cannot intersect, therefore a physical condition is given 

as:  

    (4.33) 

Equations (4.32) and (4.33) define the boundaries of admissible geometries for this type of 

sutures (figure 4.13c). The pullout response can be decomposed into two stages. In the first 

stage, the two pairs of locking sites are in contact (figure 4.14a). As the pullout progresses the 

system may reach a second stable locking configuration, which can occur if . 

Further pullout from that position only involves one contact pair. Using figure 4.3a-c, and 

figure 4.13b above, we can derive the kinematics relations for stage 1: 

     (4.34) 

   (4.35) 

    (4.36) 

At the second stage:    (4.37) 

    (4.38) 

 

These equations are combined to compute the pullout response of the suture. We found that f 

and θ0 have the expected effect: they both increase the strength and energy absorption of the 

suture, but they also increase the maximum stress in the tabs. Figure 4.14b shows the effect 
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of R0/R1 on the pullout response. The case R0/R1 =1 produces two force peaks, the first peak 

corresponding to the force generated by two contact pairs, the second peak being generate by 

only one contact pair. As a result, the second peak is half of the first one. Interestingly 

increasing R0/R1 increases the second peak, because the second pullout stage is generated by 

a larger geometric interference between the tabs. This effect is very sensitive to the value of 

R0/R1. For R0/R1=1.02 the two peaks are equal, and for R0/R1=1.03 the second peak becomes 

higher than the first. This “geometric hardening” can generate some attractive mechanisms at 

large length scales [26].  

 

 

Figure 4.14:  (a) Progressive pullout showing the two locking stages; effects of radii ratio R0/R1 on (b) pullout 
response and (c) maximum tensile stress in the solid tabs. 
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The maximum tensile stresses can be divided into a contribution from normal forces, and a 

contribution from the frictional forces.   

(i)  Hole in an infinite plate loaded by a frictionless pin in the in-plane direction [43, 44]: in 

this configuration the inner side of a hole is loaded by a contact force acting along the radial 

direction. The resulting maximum tensile stress is the tangential stress at the edge of the 

contact area.  

       (4.39) 

 (ii)  Periodic frictional contact: With a sliding frictional contact, the maximum tensile stress 

is close to the trailing edge of contact. A solution was derived using Kolosov-Muskhelishvili 

general formula and the theory of automorphic functions [45-47]. A sinusoidal periodic 

contact problem is considered and the sinusoidal equation with amplitude Δ and wavelength l 

is given as: 

    (4.40) 

Where x is the coordinate of the interface, δ is the interference between two contacting tabs. 

Assume that the contact area and the amplitude is small (a<<R and Δ<<R), the maximum 

pressure is given as: 

             (4.41) 

Where R0 is the radius of curvature, b is the half-width of contact area and it is given as 

, E, v are the elastic modulus and Poisson’s ratio for the solid material. The 

maximum tangential stress in frictional contact is given as  [42], and the 

superposition of both frictionless and periodic frictional contact stresses gives the maximum 

tensile stress in the suture. Figure 4.14c shows the dependence of maximum tensile stress on 
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radii ratio R0/R1. The maximum pressure and maximum stress from the finite element model 

are shown in figure 4.15a-c below. The maximum stress occurred at the edge of the contact 

region (Figure 4.15c) which agrees with the analytical solution. Figure 4.15d and 4.15e 

shows excellent agreement between the finite elements and analytical predictions in terms of 

pullout response and maximum tensile stress within the material.  

 

Figure 4.15:  (a) and (b) contour plots of maximum pressure for θ0 = 100 and f = 0.4 ; (c) contour plot of 
maximum principal stress (d) and (e) traction and stresses as function of pullout distance showing a good 
agreement between the analytical and finite elements results.  
 
 

A design optimization was performed on the geometry of the double locking design, with the 

maximum stress in the tab as design constraint. The material fractures when  and 

figure 4.16a shows for any given radii ratio R0/R1, the possible combination(s) of friction 
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coefficient f and interlocking angle θ0 from the optimization method by setting the strength-

modulus ratio to  . The results show that R0/R1 has little effect on the failure map 

within the range explored. Figure 4.16b shows the optimum energy absorption and strength 

of material distribution for different designs. Compared to the single locking design, the 

double locking design increases the optimum strength by a factor of two, and the optimum 

energy absorption by a factor of about three. When R0/R1 is increased the possible range of 

angles and friction becomes narrower, and relatively high values of R0/R1 (R0/R1 =1.02) 

become sub-optimal in terms of energy absorption. For all designs, the optimum material 

properties are achieved with a low friction coefficient f, and relatively high interlocking angle 

θ0. 

 

Figure 4.16: (a) Possible combination of the parameters θ0,  f and R0/R1 for optimum designs; (b) material 
property map showing the optimum energy absorbed and the optimum pullout strength, for R0/R1=1, 1.01, 1.02  
and with the design constraint σs/E=1/100. 
  
 

4.5.4  Multi-locking (N >2) suture geometries 
 

With the same objective to decrease the frictional stress by creating more contact points, we 

finally explore locking geometries with N (N >2) pairs of locking sites. Figure 4.17a shows a 

f(s) function for a N=3 design. There are seven independent, normalized geometric 
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parameters for N=3: θ0, R0/R1, R0/R2, R1/R2, ϕ0/ϕ1, ϕ0/ϕ2, and ϕ1/ϕ2. More generally, multi-

locking sutures with N contact pairs have  independent, normalized geometric 

parameters: θ0,  R0/R1,  …,  R0/RN-1, ϕ0/ϕ1,  …,  ϕ0/ϕN-1. The previous section showed that in 

terms of strength and energy absorption R0/R1 = 1 is the best design for double locking 

sutures. Therefore in this section we only consider cases where R0=R1=…=RN-1=1.  

 

Figure 4.17: (a) (ϕ-s) curve for a two-parameter suture; (b) Corresponding profile; (c) Here the “strength” of the 
geometrical interlocking is governed by the interlocking angle θ0 and by the number of clocking sites.  The 
cases highlighted in red is not physically acceptable.  

 

A closed form for the pullout response can be obtained by extending the N=2 solution. There 

are N stages of pullout, and the pullout force for the first stage is given as: 
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    (4.42) 

The equations for stress are similar to the double locking and the major difference is the half-

width of contact b and length l, which is given as , for all sutures with N > 1. 

Figure 4.18b and 4.18c show the effect of N on the pullout force and maximum tensile stress. 

For each design there is a total of N local peaks of force corresponding to N stages of pullout. 

The first peak is the maximum pullout force, and it increases proportionally with N because 

of the addition of locking sites of equal strength. The peaks then decrease linearly until 

complete pullout. For comparison we also performed finite element simulations, with some 

representative results shown in Figures 4.19. The progressive pullout was captured in the 

models (Figure 4.19a) and we obtained good agreement with the closed form solution in 

terms of pullout behaviour (Figure 4.19b) and maximum stress (Figure 4.19c).  
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Figure 4.18: (a) Progressive pullout showing the three locking stages for suture with N = 3; effect of number of 
locking on (b) average pullout force of the suture, and (c) maximum tensile stress in the solid tabs. 
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Figure 4.19:  (a) and (b) contour plots of maximum pressure for θ0 = 100, N = 3, and f = 0.4 ; (c) contour plot of 
maximum principal stress (d) and (e) traction and stresses as function of pullout distance showing a good 
agreement between the analytical and finite elements results.  
 
 

The failure transition map (Figure 4.20a) is not affected by a significant by N.  The material 

property map for N=1 to N=7 (Figure 4.20b) reveal that the optimum strength increases up to 

N=4-5, but then decreases thereafter. The optimum energy absorption increases by a 

significant margin up to N=4-5, after which the gain is marginal for N =6 and 7, and above N 

= 7, the optimum energy absorption continuously decreases.  
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Figure 4.20: (a) Possible combinations of the parameters θ0, f and N for optimum designs; (b) Material property 
map showing the optimum energy absorbed and the optimum pullout strength, for design constraints 
σs/E=1/100. 
 

4.6 Summary  
 

Sutured interfaces and geometric interlocking are common in natural materials. In this study 

we used a morphometric method to capture the contour of sutures by using the cumulative 

angular function ϕ(s) as a function of curvilinear position s. The two dimensional profile (x-y) 

of the suture is then easily reconstructed from ϕ(s). While the method is simple, relatively 

complex profiles can be captured using only a few geometrical parameters. Importantly, the 

method allows for re-entrant features, an essential characteristic of interlocking sutures. The 

study starts with a simple jigsaw-like model which is enriched with additional features 

(plateau regions in dovetail-like sutures, multiple locking sites). For each case, closed form 

solutions are developed to capture the full nonlinear pullout response and to predict the 

maximum stress (and potential fracture) in the solid material. These closed form solution are 

in close agreement with finite elements. A “brute force” optimization approach was used on 

each type of design, where every combination of geometrical parameters is examined. We 

could then identify the optimum parameters for pullout strength and/or energy absorption. 
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Figure 4.21 summarizes our finding by showing the best design and their performance. The 

single locking material is largely outclassed by all the other designs, and we found that the 

best geometry is the multi-locking tab with N=5 (using a limit strength for the solid of 

 , which is typical of engineering materials). For comparison, the pullout of a 

perfectly straight cylindrical rod or fiber would require an initial compressive stress across 

the interface to generate any pullout force. In fiber reinforced ceramic-ceramic composites, 

this initial compression can be generated, for example, by thermal expansion mismatch 

between fiber and matrix [48]. In contrast, our sutures start in a stress-free state, and 

compression across the interfaces is generated by geometric interference as the suture is 

pullout out. Overall the limiting factor for optimization is the frictional stress, and the results 

show that it is very advantageous to add more contact points to decrease that stress. For the 

same reason it is also preferable to use very low coefficients of frictions. This result raises an 

interesting hypothesis on the function of the protein layer in natural sutured lines. These soft 

proteins are often described as essential to provide compliance and toughness at the interface. 

Our result suggest that their function could also be to “lubricate” the suture line to prevent the 

fracture of the solid structures. These models can serve as guidelines to design and 

optimization of non-adhesive sutures with arbitrary shapes from multilinear signatures or 

sutures made of arc of circles and lines. 
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Figure 4.21: Material property map showing the optimum energy absorbed and the optimum pullout strength 
for all the designed explored in this study (σs/E=1/100). 
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Link between chapter 4 and chapter 5  
 
In the previous chapter, we developed analytical and finite element models using linear 

elasticity and non-Hertzian contact mechanics, which were used to explore the effect of 

geometry and friction coefficient f, on the pullout response and maximum stress in 

interlocking sutures. The geometrical parameters explore are interlocking angle θ0, radius of 

curvature R0/R1, and plateau length d/R0. The results from the models show that the 

mechanical properties of interlocking sutures can be tuned with these geometrical parameters. 

The maximum stress in the sutures increases with increase in any of the design variables 

which might lead to premature fracture of the tabs, therefore we performed an exhaustive 

search optimization. The optimization results show that the best mechanical properties are 

achieved with low friction coefficient f, and high interlocking angle θ0 and the most potent 

suture geometry is the multilocking sutures where locking is along the pulling direction. This 

model provides guidelines for the design, optimization and fabrication of interlocking sutures 

pulled in tension with no adhesive at the interface. The next chapter is an article which was 

recently published in the International Journal of Solids and Structures 97–98 p389–399 

(2016). In this chapter, we used laser engraving technique to explore the effect of geometry 

on mechanical performance of aluminium oxide. We engraved surface trenches on thin plate 

of aluminium oxide in order to guide cracks into different suture configurations. The 

experiments show that the fracture toughness of the aluminium oxide can be improved if the 

cracks are deflected into transverse or sinusoidal interfaces but with no stable crack 

propagation. In addition we engraved jigsaw-like interlocking interfaces that showed better 

mechanical response when tested in fracture. The mechanical response can be modified by 

tuning the interlocking angle θ0, for the jigsaw-like sutures, the amplitude-wavelength ratio 
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A/λ, for the sinusoidal sutures. It was concluded that the jigsaw-like interfaces dissipate the 

most energy which depends on the interlocking angle θ0, and friction at the interface. 
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5.1. Abstract 

High-performance natural materials such as bone, teeth or mollusk shells contain a large 

volume fraction of minerals to generate stiffness and hardness. They are also packed with 

weak interfaces, which generate nonlinear deformations and channel cracks into powerful 

toughening configurations. As a result, these natural materials achieve simultaneous stiffness, 

hardness and toughness, which are properties which are mutually exclusive in engineering 

materials. Following these concepts, we have engraved trenches with controlled patterns and 

depth in thin plates of aluminum oxide. The trenches can guide propagating cracks, which we 

use to implement toughening mechanisms and unusual deformation mechanisms. We present 

fracture results on samples with transverse interfaces and sinusoidal interfaces. We also 

explore interlocking-jigsaw like interfaces, which dissipate the most energy and produce the 

highest toughness. These interfaces also profoundly change the way the material deform in 

tension, by introducing controlled non-linear deformations accompanied with geometric 

hardening and frictional pullout, in an otherwise all-brittle material.   
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5.2.  Introduction 

Improving the properties of traditional engineering materials is an ongoing challenge. An 

interesting and promising source of inspiration is nature, which provides many examples of 

materials with unusual and attractive properties. For example bone, teeth or mollusk shells 

are hard biological materials which must prevent catastrophic fracture from fatigue, 

overloading or impacts. While these materials are weaker than our best engineering 

composite materials, they are much stronger and tougher than their base components, 

boasting amplifications of properties which are unmatched in manmade materials. In these 

materials, relatively high contents of minerals generate the stiffness, strength and hardness 

which are required for their function. Considering the high content of brittle minerals of these 

materials, they are also remarkably tough and they can therefore combine high stiffness, 

strength and toughness, properties which are mutually exclusive in traditional engineering 

materials [1]. As a universal strategy in these materials, the propagation of cracks is managed 

and prevented by the many weak interfaces they contain [2-5]. For example, cracks are 

deflected and twisted by the weak cement lines in cortical bone, which is a major toughening 

mechanism in this material [6, 7].  In teeth, cracks propagating along the proteinaceous 

sheaths between the mineral enamel rods are channeled towards region where propagation is 

more difficult (Figure 5.1a, [8]). In nacre, the massive inelastic deformations of interfaces in 

a process zone around cracks dissipate large amounts of energy, which is the main 

toughening mechanisms in this material (Figure 5.1b, [9]). Mechanisms of crack deflection or 

deformation at the interfaces are governed by friction, unfolding of proteins, hydrogen bonds 

or electrostatic interactions at the molecular scale [5]. In turn, the architectures of the 

interfaces amplify their local response to generate inelastic deformation and fracture 
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mechanisms at larger length scales, ultimately leading to unusual and attractive combinations 

of stiffness, strength and toughness. The morphology of the interfaces has a strong influence 

on their mechanical response. For example cement lines in bone, sheaths in tooth enamel and 

interfaces in nacre are wavy, which increases the resistance to sliding and pullout [10]. More 

extreme cases are also found in nature in the form of interlocked suture lines [11] as seen in 

ammonites [12] (Figure 5.1c), osteoderms of turtle shells [3, 13] (Figure 5.1d), or the linking 

girdles of diatoms [14].  

 
Figure 5.1: Overview of mammalian tooth and micro-architecture of enamel (adapted from [15]); (b) overview 
of nacre and the toughening mechanisms (adapted from [15]); Other natural system showing sutures: (c) 
Ceratitic ammonoid with intricate suture lines [12], (d) Linking girdles of diatoms (adapted from [14]), and (e) 
Suture between osteoderms of a leather back sea turtle shell (adapted from[13]). 
 

 

Hard biological materials may also be interpreted as architectured materials [4], where stiff 

blocks with precise shapes and arrangement are bonded by weaker and more deformable 

interfaces [16, 17]. The general concepts associated with this particular type of material are 

shown in figure 5.2. On a generic force-deformation plot, brittle materials deform linearly 

and fail at very small deformations (Figure 5.2a). The addition of weak interfaces that can 

open (in mode I) or slide (in mode II) decreases the strength but increase overall deformation 
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and energy absorption. Nonlinear deformations can spread over large volumes of material, 

from geometric hardening [10], from strain hardening or from strain rate hardening at the 

interfaces [18, 19]. In terms of fracture, a monolithic brittle material has a relatively low 

toughness which remains constant with crack extension (Figure 5.2b). A material with weak 

interfaces will channel cracks along these interfaces which require these interfaces to be 

sufficiently weak compared to the bulk [20-22], with the implication that the initiation 

toughness is lower than the bulk material. However, with an adequate architecture, the cracks 

can be channeled into configurations that eventually impede crack propagation, increasing the 

toughness to levels which are higher than the monolithic material (Figure 5.2b).  In this 

general description, the stiff but brittle material occupies 95-99% of the volume of the 

material as seen in nacre [10], tooth enamel [23] and other synthetic architectured materials 

[24].  

 
Figure 5.2: General concepts in architectured materials for (a) large deformation and energy absorption, and (b) 
toughness (adapted from [15]). 
 

The concept of weak interfaces carefully interspersed within materials is already used in 

engineering materials such as fiber reinforced composites [25] and layered ceramics [26-28]. 

However, the nature and morphology of the interfaces in these materials are far less 

sophisticated than what is observed in nature. Recently, we have implemented the idea of 
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carving weak interfaces within the bulk of transparent glass to increase some of its 

mechanical properties, with emphasis on toughness and resistance to impacts [15].  Here we 

use a laser engraving technique to carve a variety of well-controlled patterns of trenches on 

the surface of thin ceramic plates, providing weak interfaces that interact with incoming 

cracks, modify overall fracture toughness and in some cases completely transform the way 

this initially brittle material deforms and fails in tension.   

5.3.  Sample preparation 

 The base materials used in this study were 0.63 mm thick plates of nonporous, high-purity 

alumina (McMaster-Carr, IL, USA). Trenches with controlled patterns and depth were carved 

on the surface of the alumina using a laser engraver (Vitrolux, Vitro Laser solutions UG, 

Minden, Germany) to serve as guides for propagating cracks. The system uses a pulsed UV 

laser (355nm, 500mW cw pumped, 4 kHz repetition rate, 4-5 ns pulse duration) which is 

focused at a series of predefined points (Figure 5.3a), ablating material from the surface of 

the ceramic plate to form a continuous trench. The pattern of the trench was created by the 

computer-controlled tilting of the laser beam with a set of mirrors, and the removal rate for 

the ceramic was adjusted by tuning the power of the laser and the spacing between the pulsed 

energy delivered by the laser [29, 30]. The depth of the trench was controlled by the tuning of 

the removal rate and by the numbers of times the laser engraving was repeated on the same 

pattern.  
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Figure 5.3: (a) A 3D laser engraving set-up (b) a trench engraved ahead of a crack, in the shape of jigsaw line. 
(c) SEM images of a sample of the engraved alumina, showing the width of the trench 
 

Figure 5.3b and 5.3c show an example of a pattern for the trench, in this case in the shape of 

an interlocking jigsaw-like suture. The spatial resolution of the pattern is high, the pattern of 

the trench on the ceramic perfectly matching the geometry of the desired pattern, with a 

uniform width of about 30 microns (Figure 5.3c). The effects of the trenches on fracture 

toughness were evaluated using compact tension samples with the dimensions shown in 

figure 5.4a. The contours of the samples were cut from the plates. A 400-micron deep trench 

following the contour of the sample was first laser engraved, and a high-powered 

ultrasonicator with a flat ended probe (Sonics vibra cell, Sonics & Materials Inc., 53 Church 

Hill, Newtown CT USA) was then pressed directly onto the engraved trench. The probe 

transmitted high-frequency cyclic stress waves onto the sample, which propagated cracks 

from the engraved lines where the stresses were higher. This method of controlled fatigue 
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crack propagation using ultrasonic stress waves is similar to experimental methods developed 

for the accelerated fatigue testing of materials [31]. With our setup the cyclic stress waves 

applied to the material propagated fatigue cracks through the thickness, completely cutting 

the plate in about four minutes. The same method was used to prepare pin holes and the 

initial notch of the fracture samples.  

5.4.  Mechanical tests 

The compact tension fracture samples and the tensile samples were tested using a miniature 

loading machine (Ernest F. Fullam Inc., Latham NY USA) at a displacement rate of 2 µms-1.   

5.4.1  Tests on the bulk ceramic 

 The first series of tests was used to measure the toughness of the ceramic plate with no 

engraved trench. The force-deflection curve for the compact tension test sample was linear up 

to fracture which, as expected, was brittle. The maximum tensile force was used to compute 

the toughness of the ceramic using standard methods from linear elastic fracture mechanics 

with a compact tension configuration [32]. A toughness of = 5.04±0.06 MPa.m1/2 (N=3 

samples) was found for the bulk ceramic, which is consistent with usual values for the 

toughness of aluminum oxide [33]. This value served as a reference to assess the effect of 

various engraving patterns on overall toughness. We also measured the modulus and strength 

of the ceramic using a three-point bending configuration on small beams. We measured a 

modulus of about 355 GPa and a tensile strength of 365-395 MPa (N=2 samples). The range 

of strength is approximate and we did not attempt a full characterization of the Weibull 

statistic for this material.  

5.4.2.  Fracture toughness of a straight engraved trench  

The next series of tests was used to measure the apparent toughness of the engraved trench, 

and to assess the effect of its depth. We prepared and tested compact tension fracture samples 

which had exactly the same dimensions as the samples used to measure the toughness of the 

)(b
ICK
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bulk ceramic, with the exception that these samples contained a straight engraved trench of 

controlled depth s ahead of the notch (Figure 5.4a). Here and for the rest of this study, we 

were concerned with the apparent changes in toughness in reference to the bulk material, and 

we used the same standard methods to compute the fracture toughness of the engraved 

sample. All the samples discussed in section 5.4.2, 5.4.3 and 5.4.4 of this article failed in a 

brittle fashion, and possible local changes of stiffness or inelastic processes due to the 

engraved patterns were not considered when calculating toughness. We therefore assumed 

small scale yielding, where the state of stress at the crack tip is governed by a stress intensity 

factor KI (the samples presented in section 5.4.5 were analyzed differently). Figure 5.4b 

shows the fracture toughness KIC(i) of the interface formed by the engraved trench normalized 

by the fracture toughness of the intact plate KIC(b), and as a function of the normalized depth 

of the trench s/t. The data shows how the effective toughness of the interface can be tuned to 

any value between the toughness of the bulk (i.e. KIC(i) / KIC(b) =1 , no trench), to zero (i.e 

KIC(i) / KIC(b) =0, through cut) by adjusting the relative depth of the trench s/t. The laser 

engraving method therefore grants the ability to decrease the toughness of pre-defined lines 

that can deflect and guide propagating cracks within the plate. While the cracks can initially 

easily propagate along the weakened lines, carefully designed patterns can make crack 

propagation increasingly difficult. The cracks can therefore become progressively "trapped" 

as they propagate, which can effectively increase overall toughness by a significant margin. 
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Figure 5.4: (a) Schematic of the compact fracture sample with dimensions. In this case the sample contains a 
straight engraved trench ahead of the initial crack; (b) Effect of trench depth s (normalized by the plate thickness 
t) on the fracture toughness of the interface defined by the trench KIC(i), normalized by the fracture toughness of 
the bulk ceramic KIC(b). 
 

5.4.3.  Transverse interfaces 

Crack deflection along weak interfaces is a well-known and powerful toughening mechanism 

for engineering and natural materials, including for ceramics and ceramic-ceramic 

composites [26-28]. This strategy consists of creating weak interfaces across the expected 

crack path (which must be known a priori from the loading configuration of the component). 

The weak interfaces deflect propagating cracks transversely and away from the direction of 

the main driving force, which result in an overall increase of toughness [20, 26]. In this study, 

we fabricated compact tension ceramic samples with a series of five straight trenches spaced 

by a distance d=10 mm and oriented at 90º from the initial notch (Figure 5.5a). The length of 

the trenches was varied using =12 mm, 18 mm and 22 mm. Preliminary tests showed that 

shallow trenches could not deflect the main crack. The crack could only be deflected for

, corresponding to a relative interface toughness of from our 

experimental calibration (Figure 5.4b). A condition for crack deflection into a weak interface 
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at 90 degree from crack propagation is , where and are the critical 

strain energy release rates for the interface and the bulk of the material, respectively [21]. 

Setting aside the effects of fracture mode mixity as a coarse approximation, the condition can 

be written in terms of fracture toughness as . Our experimental observations 

on crack deflection are therefore in good agreement with theoretical predictions. In all cases, 

fracture of the samples was brittle, with no sign of stable crack propagation (upon fracture the 

force decreased sharply to zero). The crack followed the entire length of the engraved 

interface, after which the crack followed a horizontal trajectory parallel to the initial notch 

(Figure 5.5b). Engraving transverse lines spanning the entire sample resulted in the sample 

completely splitting in the across direction. The apparent sample toughness was computed 

from the maximum force and reported on figure 5.5c. This toughness was about 45% higher 

than the bulk. The length of the engraved lines had no effect on this improvement, suggesting 

that the toughness improvement occurred upon crack initiation. A likely mechanism is the 

blunting of the initial crack by the engraved trench, a well-known mechanism described by 

Cook and Gordon [20]. 
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Figure 5.5: Samples showing transverse trenches (a) initial sample (b) sample after testing. (c) Fracture 
toughness for bulk ceramic and ceramic with transverse interfaces. Data for the transverse interface is 
independent of d and Li.  
 
5.4.4. Wavy interfaces 

The laser engraving method enables a large variety of patterns which are not necessarily 

based on straight lines. For example, recent models and experiments have shown that bond 

lines with a wavy profile can increase toughness [34, 35]. In this study, we investigated 

sinusoidal interfaces in an all-ceramic system. A trench with a sinusoidal pattern of amplitude 

A and wavelength l was engraved ahead of the notch, following the equation [35]: 

                                              (5.1) 

where x is the distance from the crack tip along the axis of the notch. Figure 5.6a shows the 

geometry of the sinusoidal interface and its orientation with respect to the notch. The tip of 

the notch was positioned so the overall width of the suture (defined by the position of 

amplitude peaks) was centered on the line of the notch. This configuration was tested using a 

compact tension configuration, with a relative trench depth of s/t =0.75. We examined the 

effect of A/l by keeping l at a constant value (l =4mm) and by varying A (A=0.5, 1, 2, 4, 8 

and 12 mm). The engraved interface was weak enough to guide crack propagation along its 
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entire length for all the values of A /l that we tested here. The fracture was brittle, with no 

evidence of stable crack propagation or even short sequences of stable crack growth as 

previously reported for sinusoidal bond lines [36]. However, the fracture toughness of the 

sinusoidal trench increased with increasing amplitude, as shown in figure 5.6c. For A/l >1 

the toughness of the interface became even greater than that of the bulk ceramic. When A/l  

was increased further the data appeared to converge toward , which matches 

the improvement of toughness for transverse interfaces reported in the previous section 

(figure 5.5c). When A/l  , the section of the pattern encountered first by the 

propagating crack becomes close to a transverse line. As for the transverse interfaces, the 

mechanism of toughening for the sinusoidal line is also probably governed by crack blunting 

at the tip. Only the initial angle of the engraved line probably affected the initial fracture 

toughness measured experimentally. There was no evidence that the sinusoidal interface 

improved the stability of the crack, the force increasing linearly to a maximum value and then 

sharply dropping to zero upon crack propagation.  Previous studies showed that a small 

amount of stable crack propagation is possible along wavy interfaces [34, 35]. However crack 

stability is, in general, function of both the material and the loading configuration (which 

includes sample geometry). It is likely that the configurations used in these previous studies 

(larger models, double cantilever beams) were more favorable to crack stability.  
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Figure 5.6: Sinusoidal trench: (a) initial geometry showing amplitude and wavelength; (b) fractured sample; (c) 
Apparent fracture toughness of the interface as a function of the normalized amplitude of the pattern.  
 

5.4.5. Jigsaw-like interlocking features 

While the transverse and sinusoidal trenches could improve the fracture toughness of the bulk 

ceramic to some extent, crack stability was not improved. Here we explore the effect of re-

entrant features on the trench line, designed to add stability and to dissipate frictional energy 

upon pullout (figure 5.7a). This geometry, reminiscent from natural sutures in biological 

organisms [12], was previously implemented in thin glass slides where interlocking and 

frictional pullout significantly increased toughness [15]. The geometry was constructed based 

on arcs of circles with radius R , joined to form a jigsaw-like feature with a locking angle θ0 

(figure 5.7b). Rounded features were used for the geometry in order to minimize stress 

concentrations in the ceramic. The radius was kept a constant value R = 0.5 mm, and different 

values of the locking angle were explored. Here we engraved jigsaw-like trenches of relative 

depth s/t =0.75, and we then sonicated the engraved line in order to ensure that the pullout 

mechanisms prevailed over fracture of the ceramic. Figure 5.7c show typical pictures of the 

engraved samples before and after testing. Opening the crack was a progressive and stable 

process which involved the pullout of the jigsaw-like tabs, with associated interlocking 

stresses and frictional dissipation. With the proper range of interlocking angles the pullout 
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mechanism was successful, the system was stable and the force progressively decreased with 

crack opening. Figure 5.7d shows representative force-displacement curves from the 

experiments. For angles θ0 = 8.5° and θ0 = 9°, the force-deflection curves had a bell shape 

which is characteristic of tough, energy dissipating materials with stable crack growth. 

However, for θ0 = 9.5° and higher, a large number of jigsaw-like tabs broke during the 

pullout process, and failure was more sudden and brittle-like.  

 

 

Figure 5.7: Jigsaw-like trench: (a) configuration of the trench with respect to the initial crack; (b) individual 
jigsaw feature with geometrical parameters; (c) initial and fractured sample; (d) representative force-
displacement curves for four locking angles.  
 

The force-displacement curves were analyzed using two approaches. In the first approach, the 

maximum force was used to compute an apparent fracture toughness KIC, using the same  
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approach as in the previous sections. For the second approach, we computed JIC as the area 

under the curve divided by the area of the fracture surface (obtained by multiplying the length 

of the ligament by the thickness of the sample). This second method is valid only when 

failure is progressive so that the energy given by the areas under the force-deflection curve 

corresponds to energy dissipated by the fracture process only. In the cases where failure was 

brittle, the area under the force-displacement curve includes dynamic effects which do not 

reflect the toughness of the material [37]. Figure 5.8 gives an overview of the results obtained 

for different locking angles. For small locking angle θ0 ≤ 9.00 the samples failed entirely by 

the pullout of the tabs, and no damage of the tabs was observed (Figure 5.8a,b). At higher 

locking angles some of the tabs broke in a brittle fashion, and in increasing numbers as the 

locking angle increased from 9.50 to higher values (Figure 5.8a,b). Figure 5.8c shows the 

fracture toughness  and toughness  as function of locking angle.  was computed 

from the maximum force as described above.  was computed from the area under the 

force-deflection curve when the failure progressive. For the brittle cases, we used the 

standard relation  where is the fracture toughness computed from the 

maximum force on the compact tension specimen and E is the Young’s modulus for 

aluminum oxide (E = 355 GPa measured from experiments). With a Poisson’s ratio of n = 0.2 

typical of ceramics, the plane stress and plane strain version of this relation gave estimates for 

which were only a few percents apart. As the locking angle was increased, the fracture 

toughness increased to a maximum of =5.18±0.08 MPa.m1/2 at a locking angle θ0 = 9.50. 

At larger locking angles the toughness decreased, probably due to excessive damage in the 

tabs. Compared to the fracture toughness of the bulk ceramic ( = 5.04±0.06 MPa.m1/2), 

the gain in fracture toughness from the jigsaw-like pattern is therefore minimal. On the other 

hand, the gain in toughness in energy terms was significant.  progressively increased with 
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locking angle up to θ0 = 9 0, at which =3.18 kJ/m2 which is about 45 times higher than the 

toughness of the bulk ceramic ( =0.071 kJ/m2, computed from and E). Samples with 

θ0 = 9.5 0 and higher failed catastrophically, with a sharp decrease in  (Figure 5.8). The 

improvement in toughness generated by the jigsaw-like interfaces is the result of a fine tuning 

of the locking angle, as shown in figure 5.8. For small locking angles, the interlocking is 

minimal, frictional resistance is low, and as a result strength and toughness are also low. As 

the locking angle was increased interlocking increased, which translated in higher cohesive 

strength and higher toughness. However when the interlocking angle was too high the pullout 

process was prematurely interrupted by the fracture of the tabs, which resulted in decreased 

toughness. The optimum mechanical performance of the interface must therefore be finely 

tuned with the morphology of the suture, which is only possible with a fabrication method 

with very high spatial fidelity such as laser engraving.  

 

Figure 5.8: (a) Pictures of fractured samples with increasing locking angle θ0 (scale bar: 4mm), (b) fraction of 
tabs broken during the test (c) maximum traction and toughness. For the cases θ0 =9.5° and θ0 =10° the fracture 
of the tab was extensive and JIC was extremely small.  
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We also evaluated the response of this material under uniaxial tensile loading. Tensile test 

samples were prepared in a similar fashion as those of the fracture samples, but with three 

jigsaw-like interfaces (R = 0.5mm, θ0 = 50) spaced by a distance of 3 mm. Figure 5.9b shows 

the corresponding tensile stress-strain curves. The curves show a low initial modulus 

characteristic of contact. The system then stiffens, and then progressively soften again as the 

jigsaw tabs completely pull apart. Remarkably, the geometric hardening associated with 

progressive interlocking is strong enough to spread non-linear deformations in all three 

engraved interfaces, although in some instances the edge of the sample broke off because of 

flexural stress from the pullout mechanism (Figure 5.9a). The tabs of one of the three 

interfaces eventually completely pulled out and the sample fractured, which was marked by a 

sharp drop in the force. The strain at failure was in the order of 0.05, which is larger than the 

strain at failure of the monolithic ceramic by several orders of magnitude. Figure 5.9b also 

shows that the stiffness and strength of the material increase as the locking angle is increased. 

Figure 5.9c and 5.9d shows a summary of how these properties vary with locking angle. The 

modulus increase with locking angle in the range θ0 = 50-9.50. The tensile strength increased 

up to about 40 MPa for θ0 = 9.00, and then decreased for θ0 = 9.50 because of extensive 

damage to the tabs (Figure 5.9c) resulting in prematurely interrupted pullout. Interestingly the 

variation of tensile strength measured across the samples we tested (N=3 samples for each 

angle) was smaller than what is expected from a monolithic ceramic. This observation 

suggests that because of the failure mode of the architectured ceramic is very different from 

monolithic ceramics, their strength may not follow the traditional Weibull statistics. The 

engraving imparted the ceramic with completely different properties. It modulus was in the 2 

GPa range (150 times less than the bulk ceramic), it strength in the 20-40 MPa range 

(depending on locking angle), which is about 10 times lower than the bulk ceramic. However 

its strain at failure was about 0.05, which is 50 times the strain at failure of bulk ceramic. The 
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energy stored or absorbed in the material up to failure is also about four times higher in the 

architectured ceramic compared to the bulk ceramic.  

 
Figure 5.9: (a) samples of tensile sample, before and during the test (b) stress-strain curve from the force-
displacement curve of the tensile sample. Bar charts showing the (c) the maximum strength and (d) modulus of 
the engraved material with respect to the locking angle. 
 

5.5.  Summary 

High-performance biological materials such as bone, teeth or mollusk shells draw their high 

stiffness and hardness from high mineral content, and their toughness from their architecture 

[4, 9]. In particular, these materials contain weak interfaces with specific properties and 

arrangements which can deflect cracks and channel them into powerful toughening 

configurations [3-5]. Here we implemented these concepts in thin aluminum oxide plates. We 

engraved narrow trenches on thin plates of aluminum oxide, in order to guide cracks and to 
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transform the way the material deforms and fracture. Our experiments show that crack 

deflection along transverse or sinusoidal interfaces can improve fracture toughness, but 

without any apparent added crack stability. A more potent geometry was a jigsaw-like suture 

with interlocking features, which can be adjusted through an interlocking angle. By finely 

tuning this angle we could make ceramics with high energy absorption capability and large 

deformability, but at the expense of modulus and strength. Figure 5.10 shows a summary 

figure of the fracture toughness  and toughness  normalized by the properties of the 

bulk ceramic. The materials with the highest fracture toughness  are not necessarily the 

materials with the highest toughness , and vice-versa.  and  are two measures of 

resistance to crack propagation that have different meanings.  characterizes the resistance 

to crack propagation in terms of applied force, while  characterizes the resistance to crack 

propagation in energy terms. In terms of applications and design, a material with a high  

will be able to resist crack propagation under a static load, while a material with a high  

will be able to resist crack propagation when subject to high amount of mechanical energy, as 

in the case of impact. 
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Figure 5.10: Summary of the fracture toughness  and toughness  normalized by the properties of the 
bulk ceramic for transverse interfaces, sinusoidal interfaces and jigsaw-like interfaces.  
 

This work demonstrates that carefully introduced trenches can completely transform the 

mechanics and properties of thin ceramic plates. To maximize these properties and 

mechanisms a tight control over the morphology of the trenches is required, and we show that 

engraving with a focused laser beam is an ideal tool for this purpose. As opposed to glass 

where the focused laser is used to carve interfaces within the bulk of the materials [15, 24], 

the ceramic we present here is opaque so only the surface was engraved. This approach is 

therefore the most effective on thin ceramic components, which could still have interesting 

and useful application in coatings for example. It is likely that the laser engraving process has 

little impact on the hardness, wear resistance and resistance to high temperatures of the base 

ceramic material we used (although we have not measured these properties in this work). 

Therefore potential applications include wear resistant or thermal barrier coatings, where 
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some in-plane deformability of the hard coating could delay debonding from property 

mismatch with the substrate. In thicker ceramic, components failure often starts from the 

surface, because of the state of stress (bending, contact) and/or because of surface flaws. A 

possible extension of the method could examine the effect of engraving trenches on the 

surface of thick components such as flexural beams on their mechanical properties. The 

materials we present here show remarkable improvements in toughness, but at the expense of 

significant decreases in strength. Through further optimization and tuning it may however be 

possible to achieve higher strength. For example, the interactions between the tabs rely on 

frictional contact, which generate high stresses locally. The addition of a softer phase at the 

interface can redistribute stresses across the interfaces in order to prevent the fracture of the 

solid parts of the material. In turn, this improvement can open access to more extreme 

designs (for example, higher locking angles), which will translate into more favorable 

combinations of strength and toughness. Interfaces in hard biological materials are filled with 

proteins and/or polysaccharides, and some of these soft materials display unique and 

attractive molecular mechanisms of deformation with translate into added performance at the 

macroscale [5]. Filling the engraved trench of our ceramics with a second type of softer 

material could therefore provide additional dissipative mechanisms.  
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Chapter 6: Conclusions 
 

6.1 Summary of accomplishments 
 

Hard structural biological materials such as mollusk shells, teeth, and bone possess 

remarkable properties such as high strength and stiffness as well as toughness, drawn from 

sophisticated interplay of architectures and weak interfaces comprising of soft organic layers. 

Suture lines found in cephalopods, human skull or turtle shells provide specific examples of 

how deformable interfaces can generate toughness and damping in otherwise all brittle 

systems. In these systems the interplay between interface geometry, interface properties and 

bulk material stiffness and strength is not fully understood. The results reported in this thesis 

provide some insight into structure-property relationships in sutured materials. The specific 

contributions of this thesis are listed below: 

• In this work we developed, for the first time, a model that captures the complete 

pullout of jigsaw-like features over long distances, with progressive interlocking and 

frictional interactions at the interfaces. The model also provides the maximum tensile 

stress in the solid parts of the tabs, which can be used to predict and prevent the brittle 

fracture of the tabs. The pullout resistance increases as the interlocking angle and the 

friction coefficient increase. The maximum tensile stress also increases with 

interlocking angle and they are generated by frictional tractions at the contact between 

the tabs, and occur at the edge of the contact area. These stresses are always 

significantly larger than the tensile stresses occurring in the smallest cross section of 

the tabs.  

• The exploration of different designs revealed that the frictional stresses near the 

contact area are the most likely to fracture the solid tabs of the suture. To minimize 

these stresses the friction coefficient should be reduced. This leads to an unexpected 
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and useful guideline: to maximize the strength and energy absorption of the suture, its 

coefficient of friction should be kept to a minimum.    

• The pullout models were validated using 3D printed Acrylonitrile Butadiene Styrene 

(ABS), and miniaturized mechanical testing. We found good agreements between the 

predicted curves and experimental pullout curves for different interlocking angles. 

The models also predicted the failure of tabs with good accuracy, in terms of both the 

interlocking angle at which the tabs start to break and the location of the failure 

(trailing edge of the contact). In other to validate the effect of low friction and high 

interlocking angle as predicted by the models, we lubricating the interfaces which 

reduced the friction coefficient and then increased interlocking angles, which led to 

higher overall properties. These models and optimization results therefore provide a 

robust platform for the design and optimization of jigsaw-like sutures, which can be 

exploited in compliant interfaces, in morphologically enhanced bond lines, and in 

damping and shock absorbing applications.  

• Sutures in nature are more complicated than a single locking site suture. In this work 

we used a morphometric method to capture the contour of sutures by using the 

cumulative angular function ϕ(s) as a function of curvilinear position s. This method 

can capture simple and relatively complex profiles using only a few geometrical 

parameters. The method was used to capture single jigsaw-like sutures and later 

enriched with additional geometrical features to capture more complex geometries 

like dovetail, double and multiple locking sites geometries. For each case, closed form 

solutions are developed to capture the full nonlinear pullout response and to predict 

the maximum stress (and potential fracture) in the solid material, which are in close 

agreement with the finite element models. 
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• The pullout force and the maximum stress have positive correlation with the 

geometrical parameters which could be detrimental to the suture tabs, therefore an 

exhaustive search optimization was carried out on each type of design, where every 

combination of geometrical parameters is examined. We could then identify the 

optimum parameters for pullout strength and/or energy absorption. The best geometry 

proved to be the multi-locking tab with N=5 (using a limit strength for the solid of 

 , which is typical of engineering materials). Overall the limiting factor for 

optimization is the maximum frictional stress, and the results show that it is very 

advantageous to add more contact points to decrease that stress. For the same reason, 

it is also preferable to use very low coefficients of friction.  These models can serve as 

guidelines to design and optimization of non-adhesive sutures with arbitrary shapes 

from multilinear signatures. 

• We demonstrated that sutures can be fabricated in thin aluminum oxide plates using a 

laser engraving technique. We engraved narrow trenches on thin plates of aluminum 

oxide with controlled patterns and depth, which we show can guide cracks and 

transform the way the material deforms and fracture. The experiments were 

performed for three different geometry of interfaces and the results show that crack 

deflection along transverse or sinusoidal interfaces can improve fracture toughness, 

but with no added crack stability. 

• A better geometry was the jigsaw-like suture with interlocking features, which can be 

adjusted through the interlocking angle. High energy absorption and large 

deformability can be gotten by finely tuning this interlocking angle but at the expense 

of modulus and strength. We engraved sutures of different interlocking angle and they 

were all tested and the results were compared to a bulk ceramic with trench. The gain 

in toughness in energy terms was significant. To maximize these properties and 
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mechanisms a tight control over the morphology of the trenches is required, and we 

show that engraving with a focused laser beam is an ideal tool for this purpose. 

Interfaces in hard biological materials are filled with proteins and/or polysaccharides, 

and some of these soft materials display unique and attractive molecular mechanisms 

of deformation with translate into added performance at the macroscale. As a result, 

filling the engraved trench of our ceramics with a second type of softer material could 

therefore provide additional dissipative mechanisms.  

6.2 Thesis contribution 
 

The following list summarizes the main findings achieved in this study: 

- Using a morphometric method to capture the shape of suture based on some defined 

shape descriptors like cumulative angular function ϕ0, plateau length d/R0, and radii 

ratio R0/R1. 

- Analytical models based on simple kinematics, elasticity, and contact mechanics were 

developed to accurately predict the entire pullout response and the stresses of the 

sutured materials. 

- Finite element models were also developed to validate the necessary assumptions 

made in the analytical models. A good agreement was found between the analytical 

and finite element models for all the suture studied. 

- Brute force optimization was used to explore the mechanical performance of single 

locking, dovetail geometries, double and multiple site geometries. 

- Sutured materials from brittle materials like Alumina ceramics and Acrylonitrile 

butadiene styrene (ABS) were fabricated using laser engraving and 3D printing and 

the materials were mechanically tested to show the pullout response of sutured 

materials. 
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6.3 Future work 

During the course of this study, the main structural features of sutured materials were 

identified, explored and implemented into ceramics and ABS, through laser engraving and 

3D printing. Analytical and finite element models were developed which accurately predict 

the pullout response and stress in the sutured materials. The analytical solution was then used 

to exhaustively search for optimum geometries and interfacial properties in order to 

optimized the mechanical response. The search produced useful combinations of mechanical 

properties and therefore the need for fabrication of actual sutured materials to validate the 

accuracy of the models. These methods provide guidelines to properly explore the 

optimization of sutured materials through combined experimental, analytical, and numerical 

studies. The following guidelines are therefore proposed as a continuation to this work: 

• The morphometric method described in this study, we only focused on multilinear 

cumulative angular function and produced sutures which are made up of arcs of 

circles and lines. This technique can be extended to include different types of 

signatures, for example curvilinear using shape descriptor approach such as 

descriptors based on spectral analysis. 

• The analytical and finite element models can be extended to include the effect of soft 

adhesive layers in order to fully mimic some types of sutures in nature, also it can be 

extended for viscoelastic applications.  

• Since suture interfaces in nature can have varying thicknesses, exploring the effect of 

fine tuning the geometry of a three-dimensional suture material on the mechanical 

behavior might open way to an interesting result.  

• The fabrication methods described here possess high level of geometrical fidelity, 

therefore these fabrication methods can be used to fabricate thicker ceramic, and the 

effect of thickness on the mechanical response of sutured materials can be examined. 
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• Potential application would include wear resistant or thermal barrier coatings where 

in-plane deformability of hard coatings could delay debonding from property 

mismatch with the substrate, touch screen applications, and in material that needs 

tailored mechanical response like strength and energy absorption through geometric 

effect.  
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