
•

•

A CLASSICAL 1\:1OLECULAR DYNAl\UCS STUDY
OF THERMODYNAMIC VARIABLES

FOR FINITE NUCLEAR SYSTEMS

Ioulia KvasnikO'lra

Physies Department
McGill University

Montréal

September 18, 1996

A thesis submitted to the Faculty of Graduate Studies and Research
in partial ii!lfillment of the requirements

for the degree of Master of Science.

© Ioulia Kvasnikova, 1996



.+. National Llbrary
Of Canada

Bibliothèque nalionale
du Canada

AcquISitions and Olfection des aCCUISltlons et
BlbliographlC Services Branch des services bibl{::>graphiques

395 W~hnglon$trœl
Qnawa. OnTarlQ
K1AQN4

395. rue Wellington
Qr.awa (Ontaoo)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in hisjher thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
hisjher permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'alaieur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN Q-612-19826-X

Canada



•

•

Abstract

The classical molecular dynamics model is used for a study of the possible nuc!,'ar
phase transition in heavy ion collisions at intermediate energies. We implement"d this
model through Monte Carlo technique:;. Different kinds of initial configurations are
considered, as weil as different methods of particles propagation. In order to simulate
the canonical ensemble dynamic evolution we investigate two methods of keeping the
temperature constant.

We consider a system of 85 nucleons interacting through two-body lluC!eon­
nucleon potential. The calculations are first carried out ignoring Coulomb interaction
and then including it. Data on various thermodynamic quantities are obtained and
the question of the e:l:Ïstence of the phase transition is investigated.

To estimate the effect of a finite particle number on critical parameters we :;0 to
a system of 200 nucleons.
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Résumé

L'approche de la dynamique moléculaire classique est utilisée pour l"étude de
la transition de phase liquide-gaz éssentuelle, dans les collisions d'ions lourds au:\:
énergies intermédiaires, Des techniques :l.Ionte Carlo sont utilisées dans l"application
de ce modèle, Nous considérons plusieurs types de configurations initiales, ainsi que
plusieurs méthodes de propagation des particules, :\'ous a\'ons également comparé
deux méthodes destinées à maintenir la température constante, pour des simulations
numériques dans l'ensemble canonique,

l"ùs calculs concernent tout d'abord des systèmes de 85 nucléons en interaction
binaire, Nous étudions l'effet du potentiel de Coulomb, Nous obtenons des résultats
sur plusieurs variables thermodynamiques et nous traitons aussi de l'existence de la
transition de phase,

Finalement, nous jugeons de l'étendue des effets du nombre fini de particules en
allant à un système de 200 nucléons.
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Chapter 1

Introduction

The description of a nuclear reaction at high energies represents one of the very
interesting issues straddling nuclear physics and high energy physics. It has been
widely investigated e:,<perimentally in heavy-ion collisions at intermediate and high
energies. Nevertheless only a small subset of the reaction channels a"<ùlable can
be theoretically handled in even an approximate \\"ay. Considerable progress during
recent years in the e."<j)erimental research [1. 2, 3J causes further interest in theoretical
studies. One of the fundamental problems in studying heavy-ion reactions is ho\\"
the formed nuclear system will disassemble. E."<j)erimental evideuce for a universal
property of nuclear fragmentation, almost independent of the chosen targets, energies
of the bombarding particlt:s and e."<j)erimental techniques, offers us opportunity of
applying and inspecting various models proposed previously for the phenomenon.
We are concemed here with one of those approaches.

1.1 Foreword

A heavy ion collision forms a system of a few hundred nucleons. The number of
particles participating in a reaction is far from the thermodynamicallimit, but still
hopefully large enough that the signs of collective behaviour can be clearly observed.
On the other hand, a large part of the cross section at intermediate and high energies
involves multiple scattering among the many nucleons present in the reaction region.
The great number of particles also creates a great number of relevant degrees of
freedom. It offers the possibility that statistical effects will dominate.

At the same time, the heavy ion reaction is a highly dynamical process. Both
equilibrium and nonequilibrium properties of the matter can be studied. In statistical
equilibrium, the thermod~'Ilamicaiobservables of the system are described by an
equation of state. One of the interesting aspects of the equation of state of a "small"
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• dynamical system is the phase transition from cuminUe)US nucIl'ar liquid intel a nucIl'ar
vapor of fragments and nudeons. the so-called uudear liquid-gas phasl' transiti,)n. and
its connection to multifragmentation :-11· It is still wry much an opeu <lut! <lni\'<' tidd
of research of intermediate energy he<l\'y ion reactious.

One might consider the nudear multifragmentatiou !IS a multi-stl'p proCl'SS. lu
the first step. a highly excited thermalized nudear source with certain mass. l'lll'rgy
and other macroscopic parameters. dependent on the impact parameter b. is formed.
Then the so-called transition stage [11. 12] takes place. After this. th., system dl'l'aYS
into fragments observed as final products of the reaction. The second step is rell'\'ant
to our understanding of the equation of state at densities smaller than the normal
nudear density Po = 0.16 fm- 3 . Figure 1.1 illustrates how knowledge of statistical
properties of hot nudear matter could allow us to predict fragment production in
heavy ion collisions.

1 .. ~ ,
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•

Figure 1.1: illustration of nuclear multifragmentation. In left upper corner the highly
e:'Ccited nuclear system is formed, at the bottom of the picture the transition state is
drawn, and in the right upper corner - the nuclear fragmentation.

There are many models to describe the phenomenon of multifragmentation. Most
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common of those are the percolation model ~5. 61. the lattice gas model ii. 81. the. . . ~

quantum mo!ecular dynamics mode! :9). the thermodynamical model :10]. the sta­
tistical multifragmentation model :r1. 12. 13) and the dassical molecular dynamics
modcl [14!.

The theoretical studies of dassical molecular dynamics are interesting in their
own right. and we turn to them nOW,

1.2 General description of the molecular dynamics
model

We shall here formulate the model that allo\\"S a statistical simulation of nudear
multifragmentation and the extraction of associated thermodynamic quantities, such
as the equation of state using the methods of elassical molecular dynamics.

We can start considering our molecular dynamics model from the reference to the
microcanonical ensemble presentation. Work has been done [11, 12, 13] in the micro­
canonical simulation of nuelear multifragmentation. In that ensemble the macrostate
of the system was defined through a fi.'l:ed number of partides N, a fi.'l:ed volume V
and a fi.'l:ed energy E. However, in our study, since we look for a thermodynamic
phase transition and try to e.'l:traet the data on critical parameters, we rather would
like to search for an alternative approach to this ensemble theory, an ensemble where
the parameters are N, V and T. Such an ensemble is referred to as a canonical en­
semble. This choice allows us to calculate easily the value ofthe specific heat, that, as
will be shown in Section 2.2.2, can be used in the critical parameters determination.

We define the interpartiele interaction difFerently for neutron-proton interaction,
which is attractive for large separation distances, but has a hard repulsive core for
small ones, and for neutron-neutron and proton-proton interactions, which are chosen
to be identical and purely repulsive. We postpone a complete description of the
potential until page Î. Such a choice of interpartiele interaction helps us to obey
the basic requirements of nuelear matter structure, simulating partially the Pauli
e.'l:elusion principle. Coulomb interaction is then added separately, if desired.

The system is initially construeted using a cubic lattice distribution (see page 24)
for the particle positions in space and Maxwell-Boltzmann distribution to generate
partiele velocities. The ensemble is relaxed to tilermal equilibrium. Then the tem­
perature is reset to the desired value.

The particles are propagated in phase space satisfying Newton's equation of mo­
tion, slightly modified in order to keep the temperature constant (page 13).

Pressure data for canonical ensemble simulation'has been obtained by means of
a ,-irial expansion on page 16.

4
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Figure 1.2: Pressure against density for the "J'Stem of 13i nucleons at temperature
T = 0.3MeV with (circles) and without (triaugles) taken into account Coulomb
interaction.

•

Using the molecular dynamics approach we are trying to lind out whether the
liquid-gas phase transition takes place, and if 50, determine the critica1 parameters.
There are clear evidences of nuclear phase transition obtained in molecular dynamics
model. For e:'(ample for a system of 13i nucleons, 5i protons and 80 neutrons, as can
be seen in Figure 1.2, pressure is about constant for a varlety of densities for P - p
isotherm T = 0.3 MeV, this can he considered as an evidence ofmixed phase region.
The negative slope regions of this graph can not he interpreted literally: they are
due to linite-particle number effects [14]. The flattening happens a1so for the SJt'Stem
with the Coulomb interaction turned on. That is why it is important to consider
the question of the phase transition existence in presence of the Coulomb field and
without it. Going one step further it does look interesting to estimate the effect of
the linite number of particles o~ phase transition appearance.
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The thesis is organized according to the course of our calculations. First in Chap­
ter 2 we investigate the appearance of a phase transition in a system of 85 particles
interacting through a two-body nucleon-nucleon potential ignoring the Coulomb in­
teraction. Second in Chapter 3 we take into account the Coulomb field and search
for its effects on the critical parameters. And at last. we investigate the influence of
finite number of particles by comparing the results obtained with those for a system
of 200 nucleons.

6
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Chapter 2

Searching for signs of a nuclear
phase transition for a system of 85
nucleons

In this chapter we shaH investigate the appearance of a phase separation in a
canonical ensemble of 85 particles interacting through a two-body nucleon-nuc1eon
potential ignoring the Coulomb interaction. Our choice of a 85 particles system is
connected to experimental work [15] that has been done for the system earlier.

2.1 Description of the computer experiment

To simulate the behaviour of the system in time we use the Monte Carlo method
of computer simulation. This type of calculation provides what may be considered
as essentially exact resu1ts for a given interparticle force law, which in our case is
combinations of Yukawa interactions [16]:

Vnn(r < rc) - Vo [exp( -Ilor)/r - exp(-/-lorc)/rc] (2.1)

Vnp(r < rc) - v;. [exp( -p.,.r)/r - exp(-p.,.rc)/rc]

- v;, [exp( -Ilar)/r - exp(-Ilarc)/rc] (2.2)

where Vo =373.11SMeV· fm, Vr = 30SS.118MeV, fm, v;, = 2666.647 MeV· fm,
J.I.o =1.5 fm-l, p.,. =1.7468 fm-l, /la =1.6fm-l .

We use neutron-proton interaction Vnp(r) (Equation 2.2) that is attractive at large
rand repulsive at small r, while Vnn(r) (Equation 2.1) is purely repulsive. Figure 2.1

7



• represents our potentials as functions of distance. This choice allows us to construct
a system in such a way that nuclear matter is bound with the correct binding energy
per nucleon, while di-neutrons and di-protons can not forrn. This potential, therefore,
generates good nuclear phenomenology.

One may choose a cutoff radius Tc = 5.4 fm as a result of the practical assumption
that

(2.3)

•

In fact, for distances greater than the cutoff radius, Tc, the interaction between
nucleons is negligibly small and is ignored in order to simplify numerical calculations
(see Figure 2.1).
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Figure 2.1: Potential energies acting between neutron and proton and between two
identical nucleons as a function of distance. .
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• In these studies, the Coulomb interaction is first ignored and the potential ~:." is
taken to be equal to Vpp•

In the Monte Carlo technique it is necessary to define a starting configuration for
the first simulation, that then can be rela.'œd to the structure and velocity distribution
appropriate to the system. Tù assign the initial particle positions in space we used
a cubic lattice distribution. We shall postpone the discussion of the cubic lattice
distribution until page 24. Let us simply state for the moment that this way of
designing a starting configuration helps us to avoid overlaps and infinities in the
calculation of the potential since we control the initial distances between particles.

Particle velocities were generated according to the Ma.,..well-Boltzmann distribu­
tion for a specified temperature T:

(2.4)

•

where p(r) is defined as

p(r) = / fMS(r,p) dp

and m is the mass of a nucleon, ks is Boltzmann's constant and (3 = l/ksT with the
probability density normalization for N identical particles:

/ / fMS(r,p) drdp = N.

From here on, we set ks = 1 and therefore now we measure the temperature in
energy units.

In order to relax the initiallattice to an appropriate configuration of our system
one can propagate it in time, rescaling the velocities at each timestep by some fac­
tor, until system has come to the thermal equilibrium. From then an instantaneous
pressure, potential, kinetic and total energy will be oscillating about average values
independent of time, having reached their limiting behaviour. In the calculation, this
so-called "cooling" period was chosen to be 100 timesteps that corresponds to 5.10-13

sec.
Evolution of the parameters mentioned above during equilibration phase are

shown in Figure 2.2, 2.3. At the end of the time suflicient for equ:libration the
temperature is reset to the desired value.

Solution of the classical equations of motion for a system of N particles via com­
puter supposes using one of the finite-difFerence methods of particle propagation. Let

9



•
la -,---'-1-'-----~--I~i--..,.·-I--.,-,.....I

i !

1501209060sa

,
lit

,(

•• !),. Kinctic cnerg)" ï
-3- Potentinl energ,y !

,.... ...., -+- Total enerlO' ....i
~ 's. !

l' "'" 's. 1

,'" s.." s..." J
lié .... ",.., ..-.. ~-e-"''''''..J:

1

l
j

-1............................. ~

r. i

"
r. "0"" ""'.,," J

A "'0
"'0"

ti
A

~. A'
ott

" r.'.0. A -ô..J:1.

-
1

;-

a

~

6 f-

~
2 1

-6

-2

-la

t (0.5 10-14 sec)

Figure 2.2: Kinetic, Total and Potential energies. Particle propagation is calculated
in the "leapfrog" algorithm•
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Figure 2.3: Instantaneous Pressure. The value of the pressure in the equilibium limit
is small but nonzero. The cooling period, cliscused on page 9, corresponrls here to
t < 60 timesteps (3· 10-13 sec).

us consider as an example one of the last point approximations, Euler's method, where
positions are propagated in time with a step ot as

and ve10cities as

r(t + ot) = r(t) + v(t) ot + a(t) (ot)2

v(t + ot) = v(t) + a(t) ot

~_ (2.5)

(2.6)

•
As a measure of accuracy of the numerical method it is necessary to pay attention

to the deviation of numerically calculated energy from its original value. For Euler's
algorithm the error in energy is proportional to ot. Results obtained for the system of

11



• 85 nucleons interacting through potential in Equations 2.1. 2.2 using Euler's method
of timc propagation are represented in Figure 2.4.
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Figure 2.4: Total energy ca1culated using Euler's method of time propagation against
time.

As can be seen the total energy significantly fluctuates over some average value.
A better way to propagate the system in time is a haIf-step approximation, the

so-ca1led "leapfrog" scheme [17, 18]. Current positions and mid-step velocities are
ca1culated as

1
r(t + ot) = r(t) +v(t + 2ot) ot

1 1
v(t + it) = v(t - it) + a(t) ot

(2.7)

(2.8)

•
The current velocities may then be evaluated

1 [1 1 ]v(t) = 2 v(t + it) + v(t - it)

12
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• In such an algorithm. errors in the total energy are proportional to (01f. Tht'rt'­
fore it has sorne considerable advantages concerning energy conservation. As can lw
seen in Figure 2.2 the graph for total energy is essentially a straight lint,.

Other benefits of the method deri"e also from the faet that. using "leapfrog"
scheme. it is much easier to develop and apply a numerical method keeping tem­
perature constant. Ir is convenient to define an instantaneous "kinetic" temperature
function

1 s
r = 2K/3N = 3N~ 1Pi I~ /m (2.10)

whose average is equal to e. K here is a kinetic energy. Then a simple method of
fi.'l:Ïng the kinetic temperature of a system is to rescale the velocities at each timestep
by a factor of (T/e)l/~where e is the current kinetic temperature and T is the desired
thermodynamic temperature. We shall cali it - "rescaling method". It turos out to be
a crude method of solving the equations of motion that differs from Ne\\1:onian ones.
A better way is a constraint method, where constant kinetic temperature dynamics is
generated by the equations of motion [19. 20] for individual position and momentum

r - p/m

p - f-çp

where f is a force acting on particle.
The quantity ç

N N

ç = L Pi' fdL !Pi1
2

i=l i=l

(2.11)

(2.12)

(2.13)

is a "friction coefficient" which varies in time 50 as to keep e constant and, hence,
has to be recalculated at each timestep.

In Figure 2.5 both methods of keeping the temperature constant are compared.
As one cao 5ee constraint method c01":esponds to a straight line, while temperature
defined using rescaling method significaotly fluctuates and leads away from the re­
quired value.

For the leap-frog algorithm Equation 2.11 takes the form of a modified velocity
equation

• r(t + ~ot) = r(t - ~ot) -;- [f/m - çr(t)) ot

13

(2.14)



• and implementeà in [14].
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Figure 2.5: Temperature versus time calculated using rescaling and constraint meth­
ods of temperature fixing.

This technique gives us a chance to perform constant temperature dynamics calcu­
lations by defining the constrained Newtonian trajectories that generate the canonical
ensemble.
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• 2.2 Dynamic Evolution
Quantities

and Thermodynamic

It is instructive to discuss the dynamic evolution of a canonical en~cmblc of .v
particles in terms of thermodynamic quantities. ~uch ~ temperature T. pr~urc P
and density p. Our task is tO estimate thosc quantities that would characterize the
statistical equilibriurr. of the system. The problem can be stated as follows: one h~
to e:<tract definite but unknown \-alues of thermodynamic quantities from knowledge
of position and velocity configuration of the particles propagating in time. In thi~

section we describe how to achieve this and the results obtained.

2.2.1 Pressure

Before proceeding to colleet pressure data one had better discuss the way we define
density. For purposes of the initial configuration simplicity we define our volume V as
a volume of the cubic bo.'\: of a fixed size. The mean density then follows as p = N / V.
We can always choose the size of the box so as to obtain the desired value of density.

A simple method of obtaining the value of the pressure is to calculate the mo­
mentum transfer caused by elastic refiections of the particles off the walls and then to
take an average over time. Then pressure on a cubic box can be expressed in terms
of the acting force per unit area. If ot is a time intervai where the change of velocity
2Vi takes place, then the force is

2mv·
F;=ma;=--'ot (2.15)

Since the total area of the box contains sL'\: areas S of the box sides finally we Lave

( N"') (N )P. L: .ci L: mVi
change = i=1 6 S = i=1 3 S ot (2.16)

where the sum includes N identical particles of mass m.
Another way to get the pressure in the case of a two-body interaction comes from

the use of the virial theorem. Pressure in the system of N particles at density p is
calculated as follows [21]

•
Pvirial 1 ( OV;. ) p [ av--=1--- L: L:rij----!l. - - r-g(r)or

pT 6NT i j>i ory 6T r... or
~

(2.17)



• where g( r) is the pair distribution function defined as

(2.i8)

The first term in Equation 2.lï corresponds to the ideal gas term. The second one
is the time average ofthe virial. where -oV;]/orij is the force acting between particles
i and j. The last term is the correction that takes into account the contribution of
the tail of the potential V. The size of thil: tail term in final results can be estimated
by considering the cutoff tail as a weak long-range perturbation. In [22] it is shown
that the effeet on the main term is quite small for our kind of potentials, it is even
smaller than the statistical error and can be neglected.

As can be seen in Figure 2.6 the results for the pressure as a function of density at
temperature 1.0 MeV obtained using those two methods are identical. up to statistical
errors.

To check the consistency of our numerical approach it would be appropriate to
compare the results obtained with the results of an approved mode! of thermody­
namics. As a test we can turn off the interaction between particles creating in such
a way the system of identical point-like particles that may be treated as an ideal
monoatomic gas. In that mode! we e:q>ect the pressure to satisfy the equation of
state of N particles at temperature T [21]

PV=NT (2.19)

•

We see that, at constant temperature, pressure P is proportional to l/V, that is,
P is proportional to the density.

The pressure data obtained in such simplification for 85 particles and T =
2.0 MeV are drawn on the Figure 2.7. It complete!y coincides with the theoreti­
cal curve of Equation 2.19 for an ideal monoatomic gas.

As a result of the Monte-Carlo calcu1ation carried out for different densities and
temperatures we obtained some data for canonical ensemble averages over certain
period of time. Pressure versus density for different given temperatures 0.5 MeV,
0.7 MeV and 0.9 MeV are represented in Figure 2.8.

As one can see from the Figure 2.8 for the isotherms T be!ow 0.9 MeV and densi­
ties within the range 0.02 and 0.06 fm-3 there is a plateau in the pressure that may be
considered as a mixed phase region [21] where the nuclear matter liquid is converted
into vapour of nuclear fragments as one goes to the lower densities. Analyzing data
of pressure dependences on density for a variety of temperatures, we can estimate the
critical parameters for a given system. We e.xpect the critical temperature to be be!ow
0.9 MeV, since for this isotherm there is already no apparent infIection point in the

16
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pressure curve, and higher than 0.7 MeV, since for the isotherrns below 0.7 MeV
there is a wide plateau there. Critica1 density lays between 0.03 and 0.04 fm-3•

That region corresponds to the flattening of pressure over a variation of density. To
help us in our estimates, we need some additional information as, for example, data
on the specific heat or isothermal compressibility, on potential and total energy.
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• 2.2.2 Specifie heat

In order to obtain an e.'i:pression for specifie heat at constant volume characterizing
the canonical ensem1:>le we recall that specifie heat is defined thermodynamically as
a derivative of energy with respect to temperature

where 13 = liT.
Taking into account the faet that

"E -I3E'(E ) = "'-i i e •
N Li e-13E;

Equation 2.20 can be transformed to

Cv = 1 LiE; e-13E, _ 1 (LiE; e-13E;)2

T2 LiEi e-13E; T2 (LiEi e-PE,)2

(2.20)

(2.21)

(2.22)

that is related to mean-square deviation of the total energy from its average value:

(2.23)

The total energy can be separated into kinetic and potential terms EN = K N +VN

which are uncorrelated (i.e. (OKN OVN) = 0). The kinetic part is calculated easily in
the case of a system of N particles at constant temperature T. Taking into account
the faet that (KN ? = 0, the answer is

(2.24)

yielding the ideal part of the heat capacity Gif = (3f2)N.
Then equation 2.23 transforms to

•
(2.25)
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Results for specific heat capacity (heat capacity per particle) versus density cal­
culated using formula 2.25 are shown in Figure 2.9.

For a density near the critical density, it is known from mean field theory that the
specific heat capacity as a function of temperature is expected to have a maximum
for T = Tc. In our case, since we have an exact model, we can easily go beyond the
mean field estimate and obtain the results to all orders ofcorreJations. In Figure 2.8
we have seen that the coexistence region Jays below temperature T = 0.9 MeV. From
our calculation of specific heat shown in Figure 2.10 we confirm that the upper bound
of the critical temperature is T = 1.0 MeV. Comparing this fact with our previous
result on Jower and upper bounds ofcritical temperature represented in Figure 2.8, we
finally estimate critical temperature to be within the range 0.7 MeV:$; Tc :$; 0.9 MeV
and critical density as Pc = 0.04fm-3•
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Chapter 3

Role of Coulomb forces
two-phase separation

•ln

To construct a mode! describing any physical process as close to reality as possible
it is necessary to include in a consideration all significant forces acting in system. This
chapter is dedicated to the influence of the Coulomb interaction between charged
protons interacting through two-body nucleon-nucleon potential on the appearance
of the phase transition.

3.1 Implementing Coulomb interaction

To take into account the contribution of Coulomb forces into the interaction
between nucleons first we have to introduce the technique to distinguish between
protons and neutrons. It is easily achieved by assigning an isotopie spin to each
nucleon. Then for each pair of interacting particles, we cao definitely determine
either this is a proton-proton pair or not. In the case of proton-proton interaction
the Coulomb contribution [24]

e
Vcoulomb(r) = k­

r
(3.1)

•
is added to the repulsive potential Vnn = VPl' (Eq. 2.1) acting between two identical
nucleons. Here e is an e!ementary charge and k is a proportionality constant. In SI
units k is
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•

and e has value

e = 1.602 x 10-19 C

We have used the asymptotic form of the electrostatic interaction potential, since
interacting particles rarely overlap in realistic situations, due to the high incompress­
ability of nuclear matter reflected in the nuclear interaction potential.

.': :.~.~.~.•~~ :.:.:.
.. -:-.. ,': ,,'

: 1 :
: 1 :. , :..

........•....~ .· ,· ,· ,· ,
~~-t----,~~c----"~

···················r···
: ":.•...

Figure 3.1: Unit cell of the cubic lattice structure. Grey and white spheres are protons
and neutrons respectingly.

On the other hand we have to take care about s'"..arting configuration of the sys­
tem. The simplest method of constructing a liquid structure is to place particles ran­
domly inside the tested box. A problem arises from the fact that the configuration
constructed in such a way may contain substantial overlaps. For hard-core system,
as in our case, it would be totally unphysical, as stated above. Having turned on

. the Coulomb interaction, increased interparticle potentials and correspondingly large
forces cau cause difli.culties in the solution of the differential equations of motion. Us­
ing cubic lattice distribution [14], as we have done, is much more appropriate for our
system. Each proton bas been placed following the simple rule: nearest neighbours of
a proton are to be neutrons and vice versa. The method gives us the opporttm!-ty to
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• construct initial configurations homogeneously keeping protons apart of each other.
In Figure 3.1 one can see a sample of a suggested configuration. During t.he course
of the simulation, namely, the cooling time. the lattice structure disappears. replaced
by a structure typical of liquids.

To solve the equations of motion taking into account Coulomb interaction we
have to add a Coulomb force contribution [24]

(3.2)

•

to the corresponding nuclear force for each two protons.

3.2 Influence of the Coulomb interaction on Ther­
modynamic Quantities

As it is e."qlected the Coulomb interaction plays a remarkable role in behaviour of
thermodynamic quantities in a system of 85 nucleon where 41 of those are protons.
To understand better the reasons of its significant influence it makes sense in the first
place to look how much values of the energies change having tumed on the Coulomb
interaction.

3.2.1 Energy

The core of the Coulomb potential is similar to the nucleon-nucleon one. The Coulomb
potential also plays a considerable role at long distances. In our case of fixed density
and, therefore, of volume, since there is no particles outside of it we are always able
to limit the range of Coulomb interaction by the size of the box. That is why it is still
possible to calculate the Coulomb force contribution for the system of finite number
of particles.

In Figure 3.2 wc can see that the shortest distance, where potential energy between
two charged protons significantly difl'ers from nucleon-nucleon potential, is about
2.5 fm. Then for distances between two protons greater than 2.5 fm the Coulomb
interaction taken into account will significantly increase repulsion and, therefore, ve­
locities of the particles and, therefore, pressure.
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Figure 3.2: Nucleon-nucleon potential energy (triangles) and potential energy includ­
ing Coulomb repulsion between two protons (circles).

3.2.2 Pressure

We calculate pressure using the vicial theorem [21] in complete accordance with
our previous calculation (section 2.2.1):

p ( ov.,)PviricI = pT - - :E:E ri;---!l
6N i ;>i ori;

(3.3)

•
where Vi; is a potential energy of the particles i and j. In the case of two protons
now we have to take into account Coulomb contribution of Equation 3.1.

k; can be seen from the Figure 3.3 the results for the pressure as a function
of density at temperature 1.5MeV with Coulomb interaction are considerably dif-
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Figure 3.3: Pressure as a function of density obtained with and without taking into
account Coulomb interaction at temperature 1.5 MeV

•

ferent from those obtained without it. As it has been expected, Coulomb repuIsion
increases velocities of the nucleons forcing pressure to grow. The effect is not that
strong as temperature goes down. In Figure 3.4 at temperature 0.3MeV one can
not see such great influence of the Coulomb field as in Figure 3.3 at temperature
1.5 MeV especially at low densities. We understand that by general consideration of
energetic balance. As temperature decreases, the kinetic energy decreases also and
the contribution of potential energy grows. But we have seen in Figure 3.2 that for
the large value of potential energy the Coulomb contribution is less significant.

The pressure curves below the temperature 0.9 MeV are shown in Figure 3.5.
One can see that there is still a plateau region for the isotherms below 0.9 MeV and
densities within the range 0.02 and 0.06 fm-3•

Due to the statistical erraIS the problem of the critical parameters determining
turns out to be diflicult to resolve. However the calculation of specifie heat shows that
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Figure 3.5: Data of the pressure obtained taking into account Coulomb repulsion
between two protons.

the critical temperature is around 0.9 MeV and that the critical density is still around
0.04jm-3• Taking into account Coulomb force has to cause critical parameters to
decrease. But in our mode! the accuracy of the method turns out not to be high
enough to detect the difference between critical parameters for phase transition of the
system of 85 particles interacting through two-body nuclear and Coulomb potentials
and for a system of 85 nucleons interacting just through nuclear potential. However,
we believe the accuracy to be adequate to our purposes.
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Chapter 4

Finite size effects on the critical
phenomena

In the chapter we investigate the influence of finite number of particles N on
thermodynamical properties. As in Monte-Carlo calculations the goal is to determine
the canonical ensemble averages, it has certain limitations drawn from the fact that
on a macroscopic scale the size of a sample is e:'Ctreme1y small. Typically, N is
order of 0.5 . 103 or less. The time used to evaluate forces and potential energy is
proportional to N2. In order to rnjnjrnjze surface effects and thereby to simulate more
closely the behaviour of an infinite system, it is customary to increase the number
of particles as much as we cano A co=on method to do this is to use periodic
boundary conditions [14]. However there are certain disadvantages in the utilization
of periodic boundaries. Applied to our system it makes very diflicult to take into
account long-ranged interactions such as the Coulomb interaction [14]. Since in our
study we are interested in the determination of the phase transition as well as in the
Coulomb influence on it, we use the other way of approaching the thermodynamical
limit.

4.1 200 nucleons interacting through the nuclear
potential

The problem of finite size effects or, name1y, of surface effects cao be addressed
by increasing the number of participating nucleons as close to the thermodynamical

- limit as we cano Our ability to consider an infinite system is always limited by the
fact that in a Monte-Carlo computer simulation the number of particles is connected
directly to the CPU time spent. At the same time, let us remember that the problem

30



•

•

we investigate is a heavy ion collision that forms a finite system of a few hundrl'd
nucleons. The number of particles in reality participating in a reaction is far from
the the':'lIlodynarnical limit. We therefore feel that a couple of hundred of nucleons
will take us one step tO\\'ards the thermodynarnical limit. while still representing a
practical number with some connection with the physical problem at hand.
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Figure 4.1: Pressure versus density for 200 nucleons system

We consider the system of 200 nucleons with equal numbers of neutrons and
protons. Again, the choice of 200 particles represents a reasonable compromise. For
an Alpha workstation, the simulation of SOOO events requires approximately one hour
ofCPU time.

The Coulomb interaction initially is turned off.
The thermodynamic data accumulation was carried out in the same way as in

previous chapters. Namely, we used the leapfrog algorithm of particle propagation
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• from Equations 2.ï. 2.8 for a given interparticle potentiallaw from Equations 2.1, 2.2.
Cooling time was chosen to be 100 timesteps that corresponds to 0.5 . 10- 13

•

Pressure data were obtained making use of the virial theorem (Equation 2.1ï)
for a two-body nucleon-nucleon interaction ignoring the Coulomb repulsion between
protons. In Figure 4.1 one can see the results obtained.
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•

As one compares Figure 4.1 and Figure 4.2, representing the data on pressure for
85 nucleons system (obtained earlier and shawn in Figure 2.8 in different scale), one
will see that the pressure behaviour does not differ significantly for systems of 85 and
200 nucleons. Qualitatively it remains the same: we still can see the same plateau in
the pressure graph for the same temperatures in about the same range of densities.

Let us note though that the critical temperature for 200 nucleons system will be
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T = 0.7 MeV. Circles correspond to the 200 nucleon system and triangles - to 85
nucleons.

slightly lower than for the 85 nucleons system. Figure 4.3 represents the pressure
against density at temperature T = 0.7 MeV for those systems. One can see that for
the 85 nucleons system the temperature T =0.7 MeV is still in phase coexistence
region while for the system of 200 nucleons the temperature T =0.7 MeV is much
nearer to the critical temperature.

The heat capacity graph for the 200 nucleons system does not exhibit any signif­
icant peak within the investigated regions of temperatures and densities.
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• 4.2 Coulomb effects on the 200 nucleon system

Let us inc1ude into consideration now the Coulomb interaction between charged pro­
tons. In such a way we get the most realistic picture of the heavy ion collisions process
that is possible to get in the c1assical molecular dynamics mode!.
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Figure 4.4: Pressure versus density, obtained taking into account the Coulomb repul­
sion between two protons for the system of 200 nuc1eons.

•

As can be seen from the Figure 4.4 the resuIts for the pressure as a function of
density for the system of200 nuc1eons with Coulomb interaction turned on are roughly
the same as those obtained for the 85 nuc1eons system andrepresented in Figure 4.5,
except perhaps at higher densities. We note although that the value of critical density
graws slightly. As one could expect taking into account the simi!arities obtained in
previons section, the number of participating nuc1eons, interacting through nuc1ear
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and Coulomb potential, does not affect the critical parameters of the nuclear phase
transition significantly.
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Conclusion

In conclusion it makes sense to summarize the results obtained.
We have shown that the classical molecular dynamics mode!, applied to the de­

scription of nuclear multifragmentation, gives us opportunity to study nuclear matter
fragmentation as a nuclear liquid-gas phase transition.

We used the Monte Carlo technique for a computer simulation of the transition
stage in heavy ion collisions. 5ince the molecular dynamics computer simulation
allows us to study the properties of the system starting far away from equilibrium,
it is important to define the initial configuration properly. Different kinds of starting
configuration have been considered. In order to satisfy the energy conservation law,
different methods of particles propagation have been studied. Finally the "leap-frog"
finite difference method was found to be the best. To simulate the dynamics of
canonical ensemble evolution we have investigated two ways of keeping the kinetic
temperature constant. One of them, based on the ve!ocities rescaling, turns out to be
a crude method of solving the equations of motion. Another one, constraint method,
has been proven to give results of high precision.

We studied the system of 85 identical nucleons interacting through two-body
nucleon-nucleon potential. The calculations of thermodynamic quantities show the
presence of naclear liquid-gas phase transition. Data of thermodynamic quantities
gives the values of critical parameters: the critical density about Pc = 0.04 fm-3 and
the critical temperature near Te = 0.9 MeV.

The computer simulation was carried out for the case of distingaishable pro­
tons and neutrons. The Coulomb interaction between charged protons was included.
The data on various thermodynamic quantities also have been obtained. The phase
transition in the presence of Coulomb fie!d has been detected. The specific heat data
shows that the critical temperature is about 0.9 MeV and the critical density is about
0.04fm-3•

To estimate the infiuence of the finite number of particles, or surface efi'ects, on
the critical behaviour of the system, we considered a system of 200 nucleons and
compared the thermodynamical quantities obtained with those for the a 85 nucleons
system. Calculations have been carried out initially ignoring the Coulomb interaction
and then taking it into account, in complete accordance with our previous scenario for
the 85 nucleons. Remarkable similarities have been observed leading us to conclude
that number ofparticles taken in consideration, as well as the Coulomb interaction, in
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• our model does not affect significantly the accumulating thermodynamical quantities.
only slightly pull them down, at least for the case of the transition from 85 to 200
nuc1eons. In Figure 4.6 the results for differently sized system are represented with
and without the Coulomb interaction.
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Figure 4.6: Pressure against density isotherms T = 0.7 MeV for systems of 85 and
200 nucleons with and without Coulomb contribution.

•

As one can see the molecular dynamîcs mode! works weIl in sense of detecting the
phase transition existence, but the critical parameters are quite hard to ·determine
accurate!y. Ifwe could have l1nljmited computer time and a number of partic1es close
to the thermodynamîcallimit, the problem of statistical errors would be solved. Let
us not forget also that we described a quantum system by means of a classical mode!,
partially neglecting quantum effects such as Pauli repulsion principle and 50 on. It
would be interesting to perform a similar work taking care of quantum effects in the
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heavy ion system as it was done in ferrnionic molecular dynarnics [25, 26, 27]. Only
then can statements with potentiai impact on experimentai measurements be made.
Work aIong those !ines is in progress.
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