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Abstract

The method of sweep excitation is employed in the resonance testing of aircraft and other
structures. The method allows resonant frequencies and corresponding modal damping
parameters to be calculated from a limited amount of real time test data. The amount of
test time required to obtain the system's frequency response characteristics is reduced by
subjecting the structure to an entire range of frequencies within one test pattern, or
"sweep", instead of repeating individual tests at a number of different frequencies. The
"sweep-rate” is defined as the rate at which the frequency increases or decreases during
the frequency sweep. This thesis studies the effect of sweep-rate and sweep-direction on
the accuracy of estimated system parameters, as well as assessing two different methods
used to reduce discrete time histories to frequency transfer data. The impact of

introducing a structural nonlinearity into the aeroelastic system is also investigated.

Numerical simulations of a two-degree-of-freedom airfoil with a flap subject to two-
dimensional, incompressible, inviscid flow were performed. The airfoil was subjected to
a sweep excitation by applying a flap input at a known frequency and sweep-rate. Data
points obtained through numerical integration of the equations-of-motion were used to
calculate modal frequency and damping parameters using two techniques, identified as
the "time-domain" and Fourier transform methods, and the two methods were compared.
Results obtained at different sweep-rates, as well as for increasing and decreasing
frequency sweeps were compared for a number of different flow velocities up to the

linear flutter speed.

The effect of introducing a structural nonlinearity was investigated by modifiying the
linear system with a bilinear spring containing a freeplay region in the pitch degree-of-
freedom. The resulting system was subjected to sweep excitations at one of the sweep-
rates used on the linear system, and the nonlinear behaviour of the resulting frequency
response curves were investigated for a number of different spring configurations.
Nonlinear modal frequency and damping values are also compared to the corresponding
linear values, and the effect of the system nonlinear response on the Fourier transform

method of obtaining the frequency transfer function is investigated.



Sommaire
L'excitation sinusoidale a fréquence variable est une méthode couramment employée

dans le contexte des mises a I'essai et analyses de résonance des aéronefs et autres
structures. C'est une méthode qui permet le calcul des paramétres du systéme a partir
d'un minimum de données obtenues en vol. La quantité de donnés requises est réduite en
faisant un seul essai de vol comprenant plusieurs fréquences d'excitation au lieu
d'effectuer de nombreuses mancevres, chacune ayant une fréquence fixe. L'objectif de ce
travail est d'étudier des conséquences de I'emploi de la méthode de la fréquence variable
sur la précision de I'identification des paramétres du systéme. L'étude du systéme linéaire
comprend trois parties; I'effet de la vitesse a laquelle 1a fréquence de I'excitation est
variée, l'effet d'une variation croissante ou décroissante des fréquences ainsi qu'une
évaluation de deux méthodes appliquées pour obtenir les fréquences résonantes et les
valeurs d'amortissement des modes d'oscillation a partir des données obtenues en vol. Le
travail conclu avec une investigation sur ['impact de l'introduction d'une non-linéarité

structurelle sur la réponse dynamique du systéme aéroélastique.

Des simulations numériques ont été effectués dans le cas d'un profil a deux degrés de
liberté muni d'un volet et soumis a un écoulement non-visqueux, incompressible et bi-
dimensionel. Le profil a été soumis a une excitation périodique par le moyen
d'oscillations prédéterminées des volets et les équations de mouvement ont été résolues
avec une méthode numeérique. Ces données numériques, simulations des données
"réelles" d'un essai de vol, ont été utilisées afin de calculer les fréquences naturelles et les
valeurs d'amortissement des modes aéroélastiques du profil. Une comparaison des

résultats a été effectuée pour plusieurs vitesses d'écoulement différentes.

L'effet de la présence d'une non-linéarité structurelle a été étudié en introduisant un jeu
dans le moment de rotation au profil linéaire. Le profil non-linéaire a été soumis a une
excitation a fréquence variable et les comportements résultants ont été comparés pour
plusieurs paramétres de la non-linéarité. De plus, les valeurs obtenues pour les
fréquences naturelles et 'amortissement des modes ont été comparés aux valeurs

obtenues pour le systeme linéaire.
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Nomenclature

LE'Q
Ph Po Pg My, My My

L:(t)
La(7)

one half the sweep-rate in radians/(non-dimensional second)2
sine sweep starting frequency

non-dimensional distance measured from the airfoil mid-chord
to the elastic axis

airfoil semi-chord

Theodorsen's function

translational viscous damping coefficient in plunge

torsional viscous damping coefficient in pitch

torsional viscous damping coefficient in flap hinge
non-dimensional distance of the flap hinge from the airfoil
mid-chord

F[K,h

nonlinear structural restoring force

plunge displacement of the airfoil

mass moment of inertia of the combined airfoil/flap about the
elastic axis

mass moment of inertia of the flap about the flap hinge
reduced frequency or Strouhal number, wb. V

linear structural stiffness in plunge and pitch

linear structuralstiffness in flap rotation

bilinear spring central stiffness term, see Figure 2

aerodynamic lift force acting at the % chord

aerodynamic lift force acting at the elastic axis
Theodorsen's coefficients

aerodynamic lifting force due to plunge displacement

aerodynamic lifting force due to pitch displacement

vil



e

$a
¢

aerodynamic lifting force due to flap displacement
the combined aileron/flap mass per unit span

the flap mass per unit span

M/(K ,a)

noniinear structural restoring moment
restoring moment preload for bilinear spring

aerodynamic pitching moment about the % chord

aerodynamic pitching moment about the elstic axis
non-dimensional radius of gyration of the airfoil/flap
combination about the elastic axis

non-dimensional radius of gyration of the flap about the flap
hinge

combined airfoil/flap static moment about the elastic axis
flap static moment about the flap hinge

non-dimensional free stream velocity, V/ba ,
non-dimensional linear flutter velocity

free stream velocity

non-dimensional distance from the combined airfoil/flap centre

of mass to the elastic axis

non-dimensional distance from the flap centre of mass to the
flap hinge

pitch rotation of the airfoil, measured about the elastic axis
a at the start of the freeplay region, see Figure 2

angular rotation of flap about flap hinge

length of the bilinear stiffness freeplay region, see Figure 2

non-dimensional structural damping moment, C, / 2/mK,
non-dimensional structural damping force, C, / 2,fmk,,

airfoil-air mass ratio, m/7pb*
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& non-dimenional plunge displaceinent, nb
T non-dimensional time, ¢V /b
P air density
¢ Wagner's function
@ frequency of oscillation
I
O, Do uncoupled frequencies in plunge and pitch, (K, /m)2,
1
(Ko/10)?
@, D, uncoupled frequency ratio, @, /@,
Z system impedance
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1 Introduction

1.1 Aeroelasticity

Aeroelasticity is the study of the effect of aerodynamic forces on elastic structures. In the
context of aeroelasticity, the external forces and the deformation of the elastic body are
interdependent. This differs from classical elasticity where, in general, the deformation
of the body does not affect the force being applied to it. Aeroelastic analysis is
applicable to many problems in both civil and mechanical engineering: such as the flow
of fluids around bridges and tall structures, around the blades of turbomachinery and
within flexible pipes. One of the primary fields of application is in the area of aircraft
design, particularly lifting surfaces such as wings and tails, and control surfaces such as

flaps and ailerons.

The aerodynamic forces and moments acting on an airfoil are functions of the airfoil
shape, the angle of the airfoil relative to the airflow, and the velocity with which it
moves. These aerodynamic forces in turn influence the subsequent motion of the airfoil.
When the airfoil deforms elastically in response to an applied force, the external
aerodynamic forces acting on it change in response to the deformation. In this way, a sort
of feedback mechanism is created where a small deflection of the airfoil may cause a
change in the aerodynamic force that leads to a larger deflection of the airfoil. This
larger deflection may result in an increased aerodynamic force, until the initial
disturbance becomes very large. When this happens, the result is termed aeroelastic

instability.

Not all the forces acting within an aeroelastic system are aerodynamic. Collar's
aeroelastic triangle (Collar 1946), shown in the following, illustrates the three sets of

forces that may be present and their possible interactions.



In the above diagram, the vertices A, E and I represent the aerodynamic, elastic and

inertial forces, respectively, and the various combinations may be described as follows:

1. [nteractions between the elastic and inertial forces that give rise to mechanical
vibrations.

2. Interactions between the aerodynamic and elastic forces, and where the inertial forces
do not play a role, are a special case of aeroelastic problems termed "static
aeroelasticity”. Some examples of static acroelastic phenomena are wing divergence
and control reversal.

3. The interactions between the aerodynamics and the inertial forces of the solid body
form the class of problems known as aircraft stability and control.

4. Dynamic aeroelasticity deals with the interactions of all three aerodynamic, elastic
and inertial forces. Flutter and buffeting are both examples of dynamic aeroelastic

problems.

Dynamic aeroelastic response problems are those in which the oscillatory response of an
aeroelastic system to an externally applied load is to be found. The external load may be
caused by the forced deformation of the elastic body, such as is the case with the
displacement of an aircraft wing or tail control surface, or by a disturbance such as a gust
load or a turbulent airflow. In some cases the oscillations can become unstable and the
vibrations may obtain very large amplitudes. This is the case with the instability known

as "flutter".



1.2 Flutter
Classical flutter is a dynamic aeroelastic instability in which small disturbances in the

airflow around an elastic body may induce oscillations of large amplitude. Itisa
phenomenon involving the oscillation of aircraft wings and control surfaces that has been

observed since the very early days of flight.

If an aircraft wing at rest, and thus subject to no aerodynamic forces, were to be disturbed
from its equilibrium position, it would oscillate, or move in harmonic motion about its
equilibrium position. The oscillations would be damped by the structural damping in
such a way that the amplitude of the motion would become progressively smaller with
each oscillation, until the vibration would eventually die out. Thus the steady state
condition of the wing would have no motion, and the only soiution would be the
transitory one. This is a mechanical vibration problem and involves the interaction
between the system elastic and inertial forces. If the same wing is subject to aerodynamic
forces due to its movement through an airflow, and is again disturbed from its
equilibrium position, the interaction between the aerodynamic, inertial and elastic forces
will typically cause the damping of the induced oscillation to increase with increasing
airspeed. This increase in damping reaches a maximum at a specific airspeed and then
decreases rapidly. When the airspeed reaches the "cntical flutter speed”, the aeroelastic
system damping has decreased to the point where the induced oscillation will be self-
sustaining, or the total damping is zero. At airspeeds beyond this critical speed, the

induced oscillation will grow rapidly and may initiate violent oscillations, called flutter.

An oscillating body may be termed aerodynamically unstable if it gains energy from the
airstream during a cycle of oscillation. The energy exchange may be the result of an
external excitation or internal friction, both of which can affect the energy balance and
resulting motion. When there is no external exciting force or internal friction and the
airfoil extracts energy from the airstream, the resulting acrodynamic instability may be
defined uniquely as flutter. A fluttering wing usually has oscillatory motion components
in both the bending and the pitching degrees of freedom. The oscillation is harmonic,
and the bending motion is out of phase with the torsional motion. The phase shift and



amplitude ratios of the bending and torsional motions depend on the airspeed. Flutter
occurs when the fluid flow past the airfoil reaches a critical speed where the phase
difference between the motions allows the airfoil to gain energy from the surrounding

airstream.

An aircraft wing may have an infinite number of degrees-of-freedom, but, for large
aspect ratio wings, its deformation may generally be described by two quantities: the
deflection at a point of reference, and the angular rotation about that point. The
deformation of a control surface such as a flap or an aileron is generally described in
terms of the angular rotation about its hinge line. Classical flutter requires the coupling
of more than one degree-of-freedom. A flutter mode involving oscillations in all three of
the above degrees-of-freedom is termed ternary flutter, while motion in two of the three
degrees-of-freedom is termed binary flutter.

The many degrees-of-freedom of aircraft wings and tail surfaces, as well as the freedom
of the aircraft to move as a rigid body, result in many potential flutter modes. Each of
these modes will have a corresponding critical speed, and it is essential to the design of
safe aircraft that the lowest of these critical speeds be identified during the design
process. Both theoretical and experimental methods exist for the determination of critical

flutter speeds.

1.3 Historical Remarks

The earliest studies of flutter were made in 1916 (Lanchester, Bairstow and Fage) in
connection with the Handley Page bomber. Blasius (1925) attempted some calculations
in 1919 after an Albatross D3 biplane suffered a wing failure. Detailed theoretical
investigations of the flutter phenomenon required the use of nonstationary airfoil theory
developed by Kutta and Joukowsky between 1902 and 1906. In 1919, Ackerman applied
Prandtl's theory of bound vortices to a stationary airfoil, and Birnbaum extended it to
nonstationary airfoils. At the same time, Wagner developed a theory for airfoils that
change suddenly from a stationary configuration to a constant velocity or a sudden

change in angle of attack. In 1929 Glauert calculated the forces and moments on a



cylindrical object undergoing arbitrary motion. In 1934 Theodorsen's exact solution for a
two-dimensional wing with a flap performing harmonic oscillations in incompressible

flow was published.

Once the aerodynamic theory for oscillatory and unsteady airfoil motion had been
developed, the potential for theoretical flutter analysis was greatly increased. From 1934
to 1937 much research was conducted on flutter. The two-dimensional problem of airfoil
flutter with two degrees-of-freedom was solved, as was the two-dimensional problem
with three degrees-of-freedom (airfoil-flap combinations). Three-dimensional wings
were also treated using strip-theory aerodynamics and much of the theory was confirmed
with wind tunnel testing.

There has recently been a resurgence of interest in acroelasticity as exemplified by the
January 1999 issue of the A.L.A.A. Journal of Aircraft which was devoted entirely to
aeroelasticity (Friedman 1999, Livne 1999, Karpel 1999, Van and Baker 1999).

1.4 The Aerodynamics of Flutter Analysis

Developing the equations of motion for an aeroelastic system requires the use of an
adequate aerodynamic model to describe the lift force and moment as functions of the
airfoil motion. One such model is based on linearized, incompressible thin airfoil theory
(Glauert, 1924). The theory of thin airfoils is based on the assumptions of two-
dimensional steady flow, small thickness to chord ratio, and small camber and gives quite

accurate results for thin, slightly cambered airfoils.

The linearized theory is based on the assumption that the motion is of small amplitude
and flow separation does not occur. When the expression for the aerodynamics is linear,
the solution may be the superposition of several individual solutions. In the study of
oscillating airfoils, the solution for an airfoil of finite thickness and having finite camber
may be expressed as the superposition of the solution for an airfoil of zero thickness and
zero camber performing unsteady oscillatory motion, and an airfoil with finite thickness

and camber at a finite but steady angle of attack. Because we are interested quite



specifically in the properties (such as frequency and damping) of the oscillatory motion,
the steady portion of the solution is not considered in the analysis. The assumption of
small angles is thus applicable to the amplitude of the oscillatory motion rather than the
actual airfoil angle of attack. It is important to note, however, that the equations
formulated without considering finite thickness and camber do not yield representative
results for the true amplitudes of motion. In addition, the behaviour near the flutter speed
can result in large displacements that violate the small disturbance assumption of the

linearized theory.

The solution for the acrodynamic forces acting on a thin airfoil performing harmonic
motion in an incompressible flow is based on thin airfoil theory and was developed by
Theodorsen (Theodorsen, 1935). The aerodynamic response of an airfoil undergoing
unsteady motion may be derived from Theodorsen's equations by means of a Fourier
analysis and the Laplace transformation (Fung, 1955). The resulting equations are used

to represent the aerodynamic forces and moments in this study.

1.5 Model Experiments

In many cases, theoretical analysis is inadequate in determining critical flutter modes for
aircraft design due to the large number of degrees-of-freedom and the resuiting potential
for an equally large number of flutter modes. For this reason it is often necessary to
determine critical speeds experimentally. Model wind tunnel testing has been used
successfully to determine the critical speeds for a number of flutter modes, and many of

the theoretical developments in flutter analysis have been validated by such tests.

The difficulties involved in creating scale models with dimensional similarity in ail the
required degrees-of-freedom often makes even wind tunnel testing inadequate in
determining all the possible modes of an aircraft. In most cases, flight testing of full
sized aircraft is a necessary step in aircraft design in order to ensure that the critical
conditions for aeroelastic instability cannot be encountered within the design flight

envelope.



1.6 Aircraft Flight Flutter Testing

The main objective of flight flutter testing is to demonstrate that an aircraft will not
encounter flutter instabilities within its design envelope. During flight testing, a safety
margin from the critical speed must be maintained to ensure the aircraft does not enter a
potentially dangerous flight regime. In a typical flight test sequence, the aircraft is flown
at a given airspeed, is subjected to a disturbance in one degree-of-freedom and the
frequency and damping of the resulting free oscillation of the structure is measured.
Alternatively, the aircraft may be subjected to a forced excitation, and the amplitude of
the resulting oscillation measured for a number of different excitation frequencies. The
process is repeated at increasing airspeeds until the critical combination of airspeed and
frequency can be identified from a very large amplitude response. At each increment of
airspeed, potentially dangerous flight conditions are avoided by evaluating the stability of

the aircraft at the next increment.

The assessment of whether or not a mode will go unstable at the next increment of
airspeed is normally based on the "trend" of the measured modal damping. For a given
mode, the damping will increase with increasing airspeed, and then begin to decrease as
the airspeed approaches the flutter speed. The prediction of the critical airspeed can be
difficult due to a number of factors. Depending on the specific combination of
aeroelastic parameters, the decrease in damping can be quite sudden and at low values of
damping such as those associated with the onset of flutter, there is considerable
uncertainty in the experimental measurement and determination of the damping values.
In addition, it is not known in advance which mode will go unstable and damping

estimates must be made for a number of potentially unstable configurations.

The use of the "flutter-margin" (Zimmerman and Weissenburger, 1964) is an altemative
to relying on the modal damping trend to predict the onset of flutter. The flutter margin
is a quantity that may be calculated from the experimental values of frequency and

damping. The flutter margin decreases in an approximate linear manner with increasing

airspeed until it reaches zero at the flutter speed. The advantage of the flutter margin



over the modal damping lies in its almost linear variation with airspeed, making it
possible to predict the onset of flutter from velocities as low as 50% of the flutter speed.

1.7 Sine Sweep Testing

One method of obtaining the flight test data necessary to calculate modal frequency and
damping parameters involves applying a forced excitation of a specified frequency, and
measuring the subsequent system response. The resonant or unstable frequency is found
by increasing the frequency of the excitation in small increments and repeating the
measurements at each increment. The method referred to as "sine sweep testing” reduces
the amount of time required to obtain the required data by including a range of
frequencies in one test. This is accomplished by increasing or decreasing the frequency
in such a way that the peak response of the system is captured within the frequency range
of the sweep. The rate at which the frequency is increased or decreased, the so-called
"sweep-rate”, must be as fast as possible in order to limit the time involved in high speed,
low altitude flight testing. The sweep-rate should also be slow enough that the transient
effects due to the changing frequency have died out and the steady state parameters may
be measured with sufficient accuracy. It has been shown, for purely mechanical systems,
that the sweep-rate, as well as the choice of increasing or decreasing sweep can have an
effect on the measured modal frequency and damping values (Haslinger, 1986). Ewins
(1984) recommends a maximum sweep rate of 216 2£? Hz/min, where fis the modal
natural frequency in Hz and ¢ is the modal viscous damping factor. Analytical
investigations, or "simulations” of sine sweep response have been limited to linear, one
degree-of-freedom mechanical systems (Sanderson and Bartsch, 1958, Ewins, 1984,
Haslinger, 1986) and one- and two-degree-of-freedom, linear and nonlinear mechanical

(non aeroelastic) systems (Price, 1997).

1.8 Nonlinear Effects

Nonlinearities in aeroelastic systems can affect system frequency and damping
parameters and may result in limit cycle oscillations or in some cases, chaotic response.
Nonlinearities can initiate aeroelastic instabilities well below the flutter speed predicted

using linear theory (Brietbach, 1977). Nonlinearities in aircraft aeroelastic systems can



arise from both structural and aerodynamic sources. Aerodynamic nonlinearities are
generally associated with transonic flow regimes, dynamic stall and shock induced
effects, while structural nonlinearities may have a number of origins, including worn

control surface hinges, loose control linkages, and nonlinear material properties.

Structural nonlinearities may be classified as either distributed or concentrated.
Distributed nonlineanties are governed by elastodynamic deformations that affect the
entire structure, whereas concentrated nonlinearities act locally. Most concentrated
structural nonlinearities may be approximated as one of three main types: cubic, freeplay
and hysteresis (Lee et al., 1999).

Theoretical investigations into the effect of structural nonlinearities on airfoil behaviour
have, for the most part, been concentrated in the area of self-excited oscillatory motion
where the system is not subject to a forced input (Lee and Tron, 1989, Price et al., 1995,
Alighanbari and Price, 1996). Lee etal. (1997) and Gong et al. (1998) have studied the
forced oscillation of a two-dimensional airfoil for incompressible aerodynamics with
cubic nonlinear restoring forces in both degrees-of-freedom. Although complex and
chaotic behaviours have been observed in the case of free oscillations, the systems

subject to a forced oscillations appear to always respond harmonically.

1.9 Objectives of this Study

The objective of the current work is to study the effect of a sine sweep excitation on an
aeroelastic, two degree-of-freedom system. The system is represented by a two-
dimensional airfoil free to move in both bending and torsion and possessing a rigid flap.
The aerodynamic forces are represented as those due to unsteady, oscillatory motion in
incompressible flow, and the sine sweep excitation is applied to the system through a
forced oscillation of the flap. The time history solutions to the equations of motion are
obtained for a number of airspeeds up to the flutter boundary in order to simulate an
actual flight test. At each airspeed, the time histories are obtained for a variety of sweep-
rates, and for both increasing and decreasing sweeps. The results are used to calculate

the modal frequency and damping using methods similar to those used to evaluate flight



test time histories. The modal frequency and damping parameters thus obtained are
compared with each other and with the known "exact” values for different combinations

of sweep-rates and airspeeds.

The effect of introducing a simple structural nonlinearity in the pitch degree-of-freedom
is also investigated. A freeplay type nonlinearity is introduced in the restoring moment,

and the sine sweep simulations described above for the linear system are repeated.

1.10 Thesis Oultine

In Chapter 2, the general equations of motion are derived for the two-dimensional thin
airfoil with a rigid flap performing unsteady motion in an incompressible flow. Some

methods commonly used to solve the resulting equations are discussed.

[n Chapter 3, the method used to simulate the flight test practice of sine sweep resonance
testing is explained. The complete system of equations used to represent both the linear
and nonlinear system subject to a sine sweep is presented. The techniques used to obtain

frequency and damping parameters from the system response is explained.

The frequency and damping values obtained for the linear acroelastic system at a variety
of sweep-rates are presented in Chapter 4. The true values of modal frequency and
damping at a series of airspeeds are compared to results obtained for increasing and

decreasing frequency sweeps at four different sweep-rates.

In Chapter 5, a freeplay nonlinearity is introduced in the pitch degree-of-freedom.
Frequency and damping values obtained from sine sweep simulations are presented for
four different increasing and decreasing sweep-rates. Comparisons are made between
values obtained for the linear and nonlinear systems. The parameters, or geometry, of the
freeplay nonlinearity are varied, and the effects on the modal frequencies and damping

investigated.

10



2 The Equations of Motion

The typical section is a two-dimensional airfoil model commonly used in the study of
aeroelastic problems. It is particularly applicable to the study of binary flutter involving
coupling between the bending and torsional motions of an aircraft wing or tail surface.
When the aspect ratio of the lifting surface is large, the sweep is small, and the sectional
characteristics vary smoothly along the span, a two-dimensional section with the
properties of a typical section at 70-75% of the semi-span has been shown to yield
accurate aerodynamic equations. The two-dimensional model cannot, however, account
for three-dimensional flow effects or the rigid body degree-of-freedom in the aeroelastic

system.

Figure 1 reproduces the typical section that is used as the basis for the equations of
motion to be developed in this chapter. The airfoil is rigid and is mounted by a torsional
and translational spring attached at the elastic axis, or shear centre of the section. The
airfoil is free to move in both the bending and pitching directions, while the flap is
constrained to move only as a forced input (it has infinite stiffness). The flap moves
through an angle £ about the flap hinge and relative to the airfoil chord, where fis
positive for the flap trailing edge down. The bending deflection, 4 is measured positive

downward and the pitch angle about the elastic axis, a, is positive for the airfoil leading

edge up.

This chapter is divided into four sections. In Section 2.1 the equations of motion for the
two-dimensional airfoil model are derived from Lagrange's equations. In Section 2.2, the
right hand side of the equations from Section 2.1 are given in terms of unsteady, thin
airfoil aerodynamic theory. Some methods commonly employed to solve the resulting
system of equations are discussed in Section 2.3. In Section 2.4, a description is given of

the particular nonlinearity that is considered within the scope of this study.
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2.1 Obtaining the Equations of Motion

The equations of motion about the elastic axis for the aeroelastic, two-dimensional airfoil

with a flap may be obtained from Figure 1 and Lagrange's equations. The kinetic energy

of the system is
;. i(f;)(" ) Pus®+> (cl,:,)){” +ax +/’[ (cs ~a, ]} Posdx. (2.1)

[n Equation 2.1, the origin of the x-dimension is at the elastic axis, located at a distance
a,b aft of the mid-chord, with x negative from the elastic axis to the airfoil leading edge

and positive from the elastic axis to the airfoil/flap trailing edge. The airfoil leading edge

is a distance b +a,b forward of the elastic axis, and the trailing edge a distance b —a,b

aft of the elastic axis. The flap hinge is located at a distance c,b aft of the mid-chord, or
a distance bc; — ba, aft of the elastic axis. The density per unit span of the airfoil/flap
combination is given by p,, ., and the dot represents differentiation with respect to time.
Expanding the integrals in equation (2.1) yields
L)y o
=3 "b“m.)(h +2ahx +a’x )pa,fdr
+J~¢u ) {Iiz +é’x? +,f?"[x—b(c ~a )]- +2dhx + Zkﬁ[x ~b(c,-a )] +2dﬁr[x ~b(c, —a )]}p d
b(cy-ay) A h B h B h alf
Combining the first two terms of the second integral with the first integral, and changing
the variable in the second integral to y = x — b(c,, —a,,) yields
7= (# +2ddx +a*x)p,, e
b atf
<I c,) n:_ 2 " 7 .y 2
+f: [,B y +2hﬂy+2a,6'(y +b(c,, —a,.)y)}oa,,dy
| PSP I . iy .
= Emh' +§ ah+ L +51,,,3- +S,hB+1,6B+b(c, —a,)S,ap (2.2)
where

S, = rh P, xdx =mbx, the combined aileron/flap static moment about the elastic axis

Sy = J::’ " P rydy =m,bx , the flap static moment about the flap hinge

12



[, = .[: Pu ,xzdx the mass moment of inertia of the combined aileron/flap about

the elastic axis

Iy= J:_bc" Payy’dy the mass moment of inertia of the flap about the flap hinge.
m= J: P rdx the mass per unit span of the airfoil/flap.

m, = J:_bc‘ Py the mass per unit span of the flap.

Lagrange's equations for the combined airfoil/flap system of Figure | are

d(ar) ar I _g,

dt\ oh h on

() TV g @3)
di\da) 0a Ja

d (6’1] o v
dt\ ap 6,6 B

The elastic potential energy due to deformation of the structure, V, is a result of the
restoring force and moments, F(h,), M(a), and M ,(), which are possibly nonlinear
function of A, &, or #. Because the potential energies are not necessarily linear functions

of the system variables, the potential energy terms in equation (2.3) are set to zero and the

non-conservative generalized forces Opne, Oanc and Qg are defined as

Oue = P(t) = Cyh(t) ~ F(h) (2.4)
0. = R(t)-C, a(r) - M(a) (2.5)
Ope = S(t) = C,B(t) - M4(B) (2.6)

where Cy, C, and Cp are the translational and torsional damping coefficients,

respectively. /°(h), M(a) and M,(p) represent the structural restoring force and

moments in the pitch, plunge and flap angular displacement directions, respectively. If
the structure is linear then /(4), M(a) and M(p) are replaced by Kih, K.a and K4B.

Other externally applied forces and moments are represented by P(?), R(1) and S(2)

respectively, including the aerodynamic forces and other mechanical excitations.
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Combining equation (2.2) with (2.3) and using the expressions for the generalized forces
from equations (2.4), (2.5) and (2.6), the following equations of motion are obtained:

mh(t) + S,a(t) + S ;A1) + C,h(t) + F(h) = P(t) 2.7)
SH(t)+ 1,&(0) +[1, +b(cys ~a,)S, |A1) + Coa(e) + M(@) = R(1)  (28)
Sgi(t) +[15+b{cy ~a,) S, [a(t) + L,B(1) + C, (1) + M, (B) = S(1) (2.9
Equation (2.9) is the equation of motion for the flap, and may be omitted from the
solution because the flap is subject to a forced oscillation at a forced amplitude about its

hinge, rather than being free to respond to the aerodynamic and structural forces and

moments.

The natural frequencies for the linear, uncoupled system described by equations (2.7) and
(2.8) are

K
R

m

K.
w, =

!/

The nonlinear structural restoring force and moment, F(h) and M(a), may be

normalized with respect to their linear terms K/ and K, to give /(h) and M(«a),

Fo) _ Fn)

_ _ M(a) = M(a)
CKh moih

= —. 2.10
K,a [w,a 219)

I(h) and M(a)=

When the structural restoring force and moment are linear, M(a(r)) = a(z) and

F(h(1)) = A1) .

Equations (2.7) and (2.8) may be expressed in terms of equations (2.10) and the non-

dimensional quantities
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U= e the non-dimensional airspeed,
ma
v . . .
T="r= o _, dimensionless time,
h . . .
E= e the non-dimensional plunge displacement
I, . . . . c o
r,= ‘/ 57 the non-dimensional radius of gyration of the airfoil/flap,
m
1, . . . .
rg = ﬂbz the non-dimensional radius of gyration for the flap about the flap
m
hinge,
C, . . .
Ge= the non-dimensional structural damping force and
2ymK,
5. = v—CL— the non-dimensional structural damping moment
== 3 r——[a ra ping
to obtain

E"(z) + x,@"(r) + L x, (r) + 24, =2 £/(2)
m U

. @.11)
%] et - tra)
ig_ r "(r rﬁ: &xﬂ _ ’
() v )++L: - (cs ah)}ﬂ (7) .

12, -(}j—a’(t) + U' M(a(7)) = r(r.£.a)

where the prime symbol denotes differentiation with respect to non-dimensional time .

The uncoupled frequency ratio, @,, is defined as

_ .
w, =— (2.13)
)

[-4

and the non-dimensional aerodynamic forces and moments are defined as
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M and (2.14)

Andaf)=— g
M (z,¢,a,8)
Argaf)= et @.15)

2.2 The Aerodynamic Forces
The lifting characteristics of an airfoil below the stall speed are negligibly influenced by

viscosity. [n addition, when the ratio of maximum thickness to chord length is small, the
camber is small and the airfoil is operating at small angles of attack, the overall lifting
characteristics may be closely approximated by "thin airfoil" theory. The airfoil is
replaced by the curved line that is the mean of the upper and the lower surfaces, and this
curve is regarded as a small deviation from a straight line. The fluid flow pattern is
established by placing a bound vortex sheet on the curve and adjusting its strength to
accommodate the boundary condition of no-flow across the curve. The circulation about
the body is established by the Kutta-Joukowsky condition that the velocity must remain
finite and tangent to the airfoil at the trailing edge, and the overall airfoil lifting
characteristics are determined from the integral of the pressure forces. Glauert's proposed
vortex distribution (Glauert, 1924) may be used to obtain expressions for lift and moment

about the Y4 chord position where:

1. the lift coefficient for the two-dimensional section is directly proportional to the angle
of attack and is zero when the angle of attack is zero,
2. the slope of the lift curve is equal to 2r,

3. the centre of pressure is at the Y chord for all values of the lift coefficient.

A similar approach may be used to obtain expressions for lift and moment due to the

motion of a flap.
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2.2.1 Oscillatory Aerodynamic Forces

The expressions used for the aerodynamic forces and moments due to the combined
motion of the airfoil and the flap in the A, a and B directions are obtained from the theory
of oscillating airfoils (Fung, 1955). The theory is based on thin airfoils oscillating at
small amplitudes and may be applied to a fluttering airfoil. For an inviscid fluid the
boundary condition at the fluid-solid interface requires that the fluid velocity component
normal to the surface be equal to the normal velocity of the surface on the instantaneous
position of the surface. This requirement, when applied to an airfoil undergoing vertical
translation, such as the oscillating aeroelastic airfoil, leads to an aerodynamic lift force

due to what is termed the "downwash velocity".

At the flutter condition, it is assumed that

h
g = fe"’“, a=au e, p=pe'*" (2.16)

where A, ay, and 3, are real numbers, &, and 6, are the phase angles by which a and £
lead the wing bending displacement, and w is the flutter frequency in radians per second.
For a two-dimensional airfoil having these three degrees-of-freedom, in an
incompressible flow of airspeed V, the aerodynamic forces are a function of the reduced

frequency, or Strouhal number,

wb
k = 7 (2.17)
For subsonic flow the aerodynamic centre is located at the Y chord point aft of the
leading edge, and the equations are developed with respect to the following
displacements:
(A)., h- b( L, +a, )a o ,
= = bending displacement of the % chord point, (2.18)

h b
a = pitching displacement about the Y chord point and

= flap rotation about the flap hinge, located at the flap leading edge
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The bending displacement is measured positive downward, the pitch displacement is
positive for the airfoil leading edge nose up, and the flap rotation is positive for the
trailing edge down. When the flap hinge is at the flap leading edge, a combination of the

above three displacements completely describes any motion of the airfoil.

When A, a, and S all vary as given in equation (2.16), the aerodynamic lift per unit span
is a linear combination of the lift forces due to the bending, pitching and flap
displacements. The lift force acts at the % chord, is positive upward and may be written

as:
L, = 32| [ 2 P, +af + P 2.19
%—_”wa ;c/ w tab, + (2.19)
%

where P}, P, and Pgare dimensionless coefficients.

Similarly, the acrodynamic moment per unit span about the % chord, positive in the

clockwise direction, or the nose-up sense, can be written as

M, = npb-‘a)ll:(g) M, +aM, + ﬂwﬂ} (2.20)
A )
%

The above equations are valid when the aerodynamics are linear and the principle of
superposition is applicable. In the theoretical derivation of the coefficients, the fluid is
assumed to be inviscid, and for incompressible flow the coefficients are functions of the
Strouhal number, £. For compressibie flow, the same equations may be used, but the
coefficients are functions of the Mach number, ¢, as well as the Strouhal number, &. For
a real, viscous fluid, the coeficients are functions of the Strouhal number, the Mach

number and the Reynolds number.

The aerodynamic coefficients may be obtained from several different source references,
such as Theodorsen (1934), Kiissner and Schwarz (1941), Jones (1942), Scanlan and
Rosenbaum (1951), or Smilg and Wasserman (1942). For this project, the coefficients

used are from Theodorsen and are given in Appendix A.
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The elastic axis of the wing is located at a distance (% +a, )b aft of the % chord point.

The expression for the acrodynamic force may be expressed in terms of A, the bending

displacement at the elastic axis.
Ly =L = -npb’m’{g-a +a[Pa -(%5 +a,,)P,,]+ ﬂPp} 2.21)

Similarly, the aerodynamic moment about the elastic axis can be written as

4]0, (V5 +a)p) + |

M., =npb'a*] cz|iM,z - (%+a,,)(P,z + M,,)+(%+a,,)2 P,,]

‘+ﬂ[M,, -(%+a,,)Pﬂ] J

2.2.2 Unsteady Aerodynamic Forces

(2.22)

na

The equations for the aerodynamic forces and moments developed in Section 2.2.1 are
for atrfoils performing harmonic, oscillatory motion. If the aerodynamics are linear, the
equations for an airfoil undergoing arbitrary, unsteady motion may be obtained from the

above expressions by means of a Fourier analysis.

The airfoil displacements are considered as the forcing function, or input to the system

and the induced lifting forces and moments the response. The system admittance

/Z(ia)) is obtained from the theory of harmonically oscillating airfoils outlined above.
From the previous section and the theory of oscillating airfoils, the total lift force acting
on the airfoil is given by equation (2.21) and may be expressed in terms of Theodorsen'’s

coefficients (Appendix A), the Strouhal number and the non-dimensional time, ras
L,=L+L,+L,

where

L= —;rprzszo(l - %C(k)Je"“ (2.23)
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L, = -npbVk’a, r(}é -i-[l +2C(k)]- kizc(k)) A +a,,)(1 —%C(I:)):Iz‘k: (2.24)

2T

LofL ihy ic(k)]e*‘ (2.25)
T

< —apprp,| - LT OR

T kr kzr

The function C(k) is called Theodorsen's function, and is a complex function of reduced
frquency, k = wbfV . The exact expression for C(k) is

H (k) K\ (k)
C(k) H(z)(k)_HH(Z)( ) K (1k)+K (lk)

where H and K are Hankel and modified Bessel functions, respectively. In equations
(2.23), (2.24) and (2.25), the following substitutions have been made:

h e v
;=§:§0e1 =§°euk ’

a=aye™ =ae* and

B =P = Poe*.

Replacing ik by s, remembering that &,e**, a,e*" and S,e*" represent the forcing

functions and L, L, and Lgthe responses in the above equations, the admittances may be

obtained as
L zrprzsz(l +Z('(—-is)) (2.26)
Z.(s) 5 '
! = npbV s [(/4——[1 +2(,(—1s‘)]+£(, —IS) (/ +a )(l+ C(—ls)):l (2.27)
Z.(s) ' '
e B L UT 2L,
70 = npbV s [ P S L C(-is) + g ( ls)], (2.28)

Because the Laplace transform of the response is equal to the Laplace transform of the
forcing function multiplied by the admittance, equations (2.26), (2.27) and (2.28) may be

used to find the aerodynamic lift force due to a non-harmonic function &(r) through the

expression
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£{L(7)} = Jf;i:))} = rpb stlf{.f(r)}[l +%C(—is)]. (2.29)

Using the convolution theory and the following results from Laplace transform theory
(Le Page, 1961) where &(7) is the Dirac delta function;

£{1}=6(r)
£Hs}=8"(z)

[ s(co(a)do = (0)
J; 5o Moo =-/(0)
£Hs?£] y(r)}} = y"(¢)+ (0)5'(z) + y*(0)5(r),

and defining Wagner's function as
C(-is
¢( l’) = fl{ ( )},
s
the expression for the lifting force due to the bending displacement, equation (2.23) may

be rewritten as

L.(r)= mpbV 2L [szf{g(r)}(n%c(—zs))}

. p,,Vz[:"(r) +2[ "(0)(s - o)dor - §0)8'(1)- 2;(0)¢'(r)} 230
+(0)6(r) + 2£/(0)9(7)

The third and fifth terms of equation (2.30) do not form part of the long-term solution

because they involve the impulse function and hence are transient. In addition, the term

involving ¢'(z) may be excluded from the steady state solution because the time

derivatives of Wagner's function approaches zero asymptotically for large =
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The steady-state solution for the lift force due to the general motion & = &z), from

equation (2.30), becomes,
L= zprz(f"(r) +2£(0)f(x) +2[ £(0)h - a)da) 2.31)

The aerodynamic force due to the pitch and flap deflections may be obtained in a similar
fashion and the results are

-]

: Z,(s)

| 22000 120 0 -
B +2Lr[a'(a) + (}é ~a, )a"(a)]gé(r -o)do .
_ o) YA}
b= { Zy(s) }
L) -Lpe+ [[h o)+ 2o o) e - oo
(2.33)

e {0+ 2o pio) oo

Equations (2.31), (2.32) and (2.33) may be combined to yield an expression for the

aerodynamic lift force due to the combined wing bending, pitching and aileron motions,

(1) = mw[g"(r) ~aa(e) L pr(e) () - 2 (o) +zm4] 234)
where

XTM = C,¥(7) + J::zl(a)¢(r - o)do, (2.35)
with

C, = 1(0)+( Y4 -a,)a'(0) + a(0) + - p(0) + 2 A0)
and

H(0) = £(0)+(}f -ar)a"(0) +a(0)+ 1 "(0) + 2 (o).
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The same method was employed to derive the equations for the aerodynamic moment

about the elastic axis,

a,&"(r (/+a) "( [T cp— a,, ]ﬂ"(r) T
M, (z) = 0¥ (Y ~a,,)a'(r)—;|:7; T (e, - )T, _'}p( ) 2.36)

(1 + T +2( Y + ) YT

Finally, the complete equations of motion for the two degree-of-freedom system are
obtained by combining equations (2.11), (2.12), (2.14), (2.15), (2.34) and (2.36) to give

) raa(0)+ () 20, e 0) o 2 ] F&e)

(2.37)
Li g —a,a"(7)-L8"(r a’r—’—4 (7)) +
- 0 e () - L pr(e) v (0)- L pre) e 207m |
and
r: E'()+a” r)+l:-:i'z—+mﬂ :f (cﬂ—a,,):lﬂ"( )+2{a—a( )+ M(a(r))
a I «
a,&"(z) —( 18 +a,f)a"(r)+ ;1;[1?, +(c,, —a,,)T;]ﬂ"(r) 238)
- —l—aa’r—i"— —le, —a, )T, +2 (7
| (fa-a)a(e) ”[/. h=(es-a)T; 2]ﬁ()
_—%(7;+[m)ﬂ(r)+2(]2+ah))(7M |

2.3 Solving the Equations of Motion

When the equations are linear, aeroelastic techniques such as the p-k method and the u-g
method may used to evaluate the flutter speed for the system. These methods may also
be applied to an equivalent linearized system, obtained from the nonlinear system via a

describing function technique. These methods, however, do not seek time histories of the
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steady state motion of a forced system, but are methods for finding the flutter speed of an
unforced system.

Equations (2.37) and (2.38) contain integral terms on the right hand side, introduced by
the unsteady aerodynamic theory, and may not be solved using existing numerical
methods for ordinary differential equations. Time history solutions to the nonlinear,
integro-differential equations may be obtained using a finite difference method developed
by Houbolt (1950). The method has been used to obtain solutions for unforced
oscillations by Lee and Desrocher (1987) and by Price et al.(1994, 1995).

Equations (2.37) and (2.38) may also be reformulated to allow them to be integrated
numerically. A simpler set of equations than the above has been obtained by Lee et al.
(1997) and solved numerically to obtain time histories of the unsteady airfoil motion. In
this study, the equations are reformulated as ordinary differential equations using a
method developed by Alighanbari and Price (1996). This method is described, and the

resulting system of ordinary differential equations is given in Chapter 3.

2.4 The Freeplay Nonlinearity

The structural nonlinearity known as the bilinear nonlinearity is sometimes employed in
aeroelastic analysis to represent a worn or loose control surface hinge. Two such
nonlinearities exist on the CF-18 aircraft, one at the wing fold hinge, and another at the
outboard flap leading edge. A schematic of a typical bilinearity in the pitch direction is

shown in Figure 2. The restoring moment in the pitch direction, M{a), is given by

myta—a,, fora<a,
M(a)=1m, +Kc(a—a,) fora,<a<a,+& (2.39)
my+a-a,+5K,-1) fora, +5<a

In this study, the particular case of a bilinear nonlinearity with zero central stiffness, or

K. =0 is investigated. This type of nonlinearity is often called freeplay or backlash, and

the freeplay region may have preload (m, # 0 ) or no preload (m, =0).
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3 The Simulation of Sine Sweep Data

The simulation of a sine sweep test is achieved by subjecting the system to an input force

due to a flap displacement, where the motion of the flap is given by the equation

B = p,sin(Az* + Br). (3.1)
The input forcing frequency is given by
cu,,=§r-(Ar2+Br)=2Az—+B, (3.2)

where the starting frequency for the sweep is B and the sweep-rate is 24. Time histories
of the airfoil motion are obtained by substituting equation (3.1) into the equations of
motion and then integrating numerically. The numerical integration is repeated at each
increment of non-dimensional airspeed, U. Time histories are calculated for motion in
both the bending and pitch directions, as well as for the flap input. The time histories are
“simulations” of data acquired during a flight test frequency sweep, and are used to

calculate the system transfer functions, modal frequencies and damping values.

In this Chapter, the equations of motion developed in Chapter 2 are transformed from a
set of two coupled integro-differential equations into a set of eight ordinary differential
equations that may be solved using standard numerical techniques. The method used to
accomplish this reformulation was introduced by Alighanbari and Price (1996) and is
outlined in Section 3.1. Two different methods are used to obtain the transfer function
from the time history of the system response, and these methods are described in Section
3.2. The calculation of the system frequency and damping parameters is outlined in
Section 3.3. In Section 3.4, the choice of input function used to calculate the transfer
functions is presented, and Sections 3.4 and 3.5 describe the method used to introduce a
structural nonlinearity into the aeroelastic system. The calculation of the linear flutter
speed, U*, which is used as a basis for comparing the linear and nonlinear results, is

presented in Section 3.5.

25



3.1 Reformulating the Equations of Motion

In order to solve the equations of motion using standard numerical techniques, they must
be reformulated to eliminate the integrals contributed by the acrodynamic terms. The
equations of motion given in equations (2.37) and (2.38) may be rewritten as, in the

bending degree-of-freedom,

({2

L {%) 4(5)=-2{co(5)+ [ (s - o)aloNio} (32)

(7)

and in the pitch direction,

x " l a: 114
(ra wrl )5 () [ 8 f)a(
+%+[’—"if( }[ le, a,,T]]ﬂ

(Zga (Oj—ah) '
+\ v ]a (t)+,um:(T’ : ~[es —au ]t + 05T, )B1(7)
(7, + 7o) +M(a)_ 2 +a )+ [ Hr-o)A(o)do
unr? A(z) 2 r? (05 ")[C'q’() -[°¢( JA(o)d ] (33)

The integral terms in equations (3.2) and (3.3) are eliminated as follows: Equations (3.2)
and (3.3) are differentiated with respect to non-dimensional time, T, to obtain equations
(3.4) and (3.5), and then differentiated again to obtain equations (3.6) and (3.7).
Equations (3.2) and (3.3) are multiplied by 4d to obtain equations (3.8) and (3.9), and
equations (3.4) and (3.5) are multiplied by (5 +d) to obtain equations (3.10) and (3.11).
The full text of equations (3.4) through (3.11) are given in Appendix C, where Wagner's

function has been replaced by the approximation given by Jones (1940),

#(r) = 1-0165¢°%%" - 0.335¢77".
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Adding equations (3.6), (3.8) and (3.10) for the plunge direction, and equations (3.7),
(3.9) and (3.11) for the pitch direction, results in two equations free of integral terms. For

the plunge and pitch directions, respectively, the equations of motion become

m¢é (t)+ma () + mp () +m & () + ma™ () + mB(z) + m&"(x)

'*‘maa"(f) + ’”9ﬂ"(7) + ’”lo‘f'(r) + m“a’(z') + ’"lzﬂ'(f) + muf(r) + mua(r)

+mop(r) = %bd(O_S —a,)a'(0) (3.12)
and

né& (7)+ma” (z)+n, B (v) +n,&"(r) + nsa™ () + ng B () + n, &"(7)
+nya"(z) + 1 () + mod' (2) + my@’(7) + my B'(2) + myy (1) + ()

+n, A7) +Z;'2' M(a(r)) + %-f—) M’(a(r)) +—A{-"g:ﬂ)-
3 (05 +a,)05-a,)a’(0) 3.13)

a

The coefficients in equations (3.12) and (3.13) are independent of time and are functions
of the airfoil physical parameters and the airspeed only. Detailed equations for the
coefTicients are given in Appendix C.

Equations (3.12) and (3.13) may be reduced to a system of first order equations by
making the following substitutions

x(7) = ¢(7) xy(7) = a(7)
xy(7) = &'(7) xy(7)=a'(7)
xs(z) = §"(z) x¢(7)=a"(7)

x,(7) = ¢"(r) xy(7) = a™(7)

to yield

mx, (7)+myx;’ (2)+myx; (1) + mexg(t) + myxs(t) + myxy(7)

+myo x5 () + my x,(7) + myyx, (v) + myx, (7) = £ (3.14)

where
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Sy ==mf"(z)=mp"(z) = myB"(z) =y () - msB(z) (3.15)
and

nx; (7)+nyx, (1) +ngx, (2) + nsxg (7) + nyxg(7) + myxy(7)

+mox3(2) +myx, (1) + nuxy (7) + n 2o (1) = £, (3.16)

where

fi=-2 (a(f))-%f—)M’(a(f))-E;giz({)l , (3.17)

‘"3ﬂm(7) = ”6ﬂm(r) -nyp"(7) - ”lzﬂ'(t) - msf(r)

Equations (3.14) and (3.16) may be written in matrix form as
(Al x'}+ (Bl x} = {F) (3.16)
where [ 4] and [B] are given in Appendix C,

{X} = {5,200, 05,50, 5, X, X0, X ) (3.17)
and
[F}={000000,1,(2).£(2)} - (3.18)

Equations (3.16) to (3.18) form a system of ordinary differential equations, that may be
solved using a number of standard numerical techniques. In this study, they were solved
using the Numerical Recipes (Press, Flannery, Teukolsky and Vetterling, 1989)
subroutine rkdumb. This subroutine integrates the equations using a fourth-order Runge-
Kutta method with constant stepsize of .005 non-dimensional seconds per step. The size
of the timestep was determined by running the program at progressively smaller stepsizes
until the time histories produced did not change more than .01% with a .0025 second
decrease in stepsize. Each numerical solution provides a time history of the response

over a time period determined by the length of time the program is required to run.

The subroutine requires that the initial conditions up to the fourth derivative be input by

the user. The required values were obtained by substituting the initial conditions
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&0)=0,

&'(0)=0,
a(0)=0,
a'(0)=0,

B(0)=0

into the equations of motion, (3.2) and (3.3), and solving for £"(0} and a”(0). The
expressions obtained for £7(0) and "(0) are then substituted into the third order
equations (3.4) and (3.5) to obtain £(0) and "(0), respectively. Expressions for
B'(0), B"(0), and 8'(0) were obtained from successive differentiations of equation

(3.1).

3.2 The Aeroelastic Transfer Function

The aeroelastic transfer function is a measure of the frequency transfer between the force
input to the system and the system response. The response that is in phase with the
forcing function is represented by the magnitude of the transfer function, while the
response that is out of phase with the input is given by the phase difference. The transfer
function is calculated from the time histories of the system input and response, and may

be used to obtain values for the system natural frequencies and damping ratios.

Figure 3 shows a typical example of a simulated frequency sweep. Figure 3(a) shows the
time history of the input to the system, and Figure 3(b) the time history of the system
response in the pitch direction. The system responds at the same frequency as the input,
but not necessarily in phase with it. Figure 3(c) shows the frequency of both the input

and the response as a function of time.

Two different methods may be employed to obtain the transfer function from a response
signal consisting of a number of discrete data points. The numerical integration
procedure used in this study generates such a signal, as does "real life" test data

transmitted by motion transducers. The two techniques may be referred to as the time-
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domain and spectral, or Fourier-transform methods. Both methods result in a transfer
function magnitude and phase-lag that defines the frequency transfer between the force
input and the system response for each of the two degrees-of-freedom.

3.2.1 The Time-domain Method

Using this method, the transfer function for the system input and response shown in
Figure 4 is obtained by dividing the peak-to-peak magnitudes of the response curve by
the peak-to-peak magnitudes of the corresponding peaks from the input force curve.
Figure 4(a) illustrates this method for a portion of the curve from Figure 3. The
corresponding frequencies for each peak are obtained from equation (3.2). The
magnitudes and frequencies plotted against each other produce the transfer function

magnitude plot shown in Figure 4(b).

The phase difference between the excitation and the response is calculated by finding the
time delay between corresponding peaks of the forcing function and system response, and
dividing the result by the period, or time required to complete a cycie of oscillation. The
concept of phase lag is illustrated in Figure 4(a) and the results are plotted against their

corresponding frequencies in Figure 4(c).

The transfer function magnitude and phase difference may be used together in a Nyquist
plot. In the Nyquist plot, each point of the curve corresponds to a point in the transfer
function (response divided by input), and is represented as a complex number Ry - i/
The real and imaginary parts are

Ry=Xcos6,
and

[,~=Xsin6,
respectively, where X is the magnitude of the transfer function and 8is the phase lag
between the input and the response. Figure 5 is a typical example of a Nyquist diagram
and was obtained from the transfer function magnitudes and phase angles shown in

Figures 3(b) and (c).
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3.2.2 The Spectral Method

The transfer function may also be obtained via spectral methods using the Fast Fourier
Transform, or FFT. The method consists of converting the time histories of the system
input and response to their frequency domains via the Fourier transform. The transfer
function magnitude as a function of frequency is then obtained by dividing the frequency
domain of the response by that of the input. This method is more commonly used to
analyze flight test data where the signals are noisy and the time-domain approach is
impossible to apply.

The FFT method is strictly applicable to time histories that represent a stationary signal,
or a signal for which various statistical averages do not vary with time. Because the
frequency of the sine sweep varies with time, the response time history is a non-
stationary signal. In order to analyse the non-stationary signal a length of time, or
"window" is chosen during which it is assumed that the signal does not change
significantly. The FFT is taken, the window is moved along in time and the process
repeated. As the window is moved along, subsequent sections are overlapped. Due to
the choice of a finite window, the signal may not have zero value and slope at each end of
the window. This may cause the FFT method to find frequencies not actually present in
the signal. In order to avoid this "frequency leakage", the signal within the window is
multiplied by a weighting function having the necessary zero values and slope to
eliminate any possible discontinuity. Common weighting functions used for sinusoidal or
random data are the Hamming and Hanning windows. Once the entire signal has been
analysed, all the FFT's are averaged to obtain the transfer function magnitude and phase
angle. The results may be expressed as a transfer function magnitude versus frequency

plot or as a Nyquist diagram for the system.

The parameters used to obtain the transfer function via the spectral method were chosen
to provide the most accurate values of frequency and damping. 7, the period of time over

which the Fast Fourier Transform was calculated gives the fundamental frequency and

frequency resolution for the FFT process, f = Af = %. The sampling frequency is
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givenas f, = 7, where ¢, is the time interval between samples. The frequency

resolution may be expressed in terms of the block size or window length, nw and

sampling frequency as Af = %W L) The maximum frequency, f,_, that the FFT

can represent is given by f_. = /. % and is often referred to as the Nyquist frequency.

The type of weighting function and the overlap between successive windows can also be
important. The results presented in this study were obtained using the Hanning
windowing function with a 50% overlap. The window length was chosen between 3500
and 9500 samples and the sampling frequency used was either 4 or 8 samples per non-

dimensional time unit.

3.3 Frequency and Damping Calculations

The system natural frequencies and damping values may be obtained from either the
transfer function magnitude plot shown in Figure 4(b) or from the Nyquist plot of

Figure 5.

The system natural frequency, @,, is taken from the absolute peak-value, X ., of the
transfer function shown in Figure 4. The half power point frequencies, @, and @, , are
defined as the frequencies for which the magnitude of the transfer function is X"'%E .

The damping may then be found from

(3.19)

Alternatively, the frequency and damping may be found from the Nyquist plot of Figure

5. The exact location of the natural frequency, @,, is given by the point on the circle

where the spacing between equal frequency increments is at a maximum. [f two points,

@, and @, , are chosen either side of the natural frequency, it can be shown that

32



2 = (“’2 — (3.20)

2
ERE i)

If ¢, = ¢, =90°, then equation (3.20) reduces to equation (3.19).

3.4 Input Force Calculation

The input or forcing function required to calculate the transfer function is obtained from

the original equations of motion.

In the sine sweep excitation, the actual input to the system is a flap motion rather than a
direct force. For the purposes of calculating the transfer function, the input force is taken
as the aerodynamic forces generated by the motion input. The forced motion of the flap
generates both an aerodynamic lift force and a moment acting about the airfoil elastic
axis, and the resulting input force has both a lift and a moment component. The
equations used to describe this force and moment originate with equations (2.34) and
(2.36), or Theodorsen's equations for the linear aerodynamic lift force and moment due to
the flap motion. Once the equations are reformulated to eliminate the integral terms, the

required expressions may be obtained from equations (3.15) and (3.17) as

() =m,B" (z) + meB"(7) + my f"(z) + my, B'(7) + mys A7) (3.21)
my(7) = m B (z)+nef(z) + 1y f(2) + n, B (7) + ms K(7), (3.22)

where the constants are given in Appendix C and the f(7) terms, obtained by successive

differentiation of equation (3.1), are

B'(r) = Bo(2A7 + B)cos( Az’ + Br) (3.23)
B"(r) =248, cos( Az* + Br)- B,(2Ar+ B)” sin(4z* + Br)

B"(r) = -64B,(2 At + B)sin(Az* + Br)- B,(2A7 + B)’ cos(Ar* + Br)
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B (z) = -124° B, sin(A7* + Br) - 1248,(2Ar + B)’ cos(Az* + Br)

+p,(2A7+ B)* sin(47* + B).

Alternatively, the instantaneous angular velocity of the flap, described by equation (3.23)
may be used as an approximation for the forcing function common to both degrees-of-
freedom. In “real life" flight testing, this is the value that is usually used as the input
function because it is relatively easy to measure compared to the aecrodynamic forces and
moments. One of the objectives of this study is to compare transfer functions obtained
using both methods in order to verify the accuracy of the flight test method.

3.5 The Nonlinear Equations
A nonlinear structural element may be added to the system by choosing an appropriate
function to represent the restoring forces £(&(z)) or M(a(z)) in equation (2.11) and

(2.12). In this study, the effect of a bilinear structural restoring moment in the pitch

direction is investigated.

The typical bilinear curve introduced in Chapter 2 and shown in Figure 2 has
discontinuities at each end of the freeplay region. These discontinuities can cause
instabilities in numerical solutions, making the expression in equation (2.39) unsuitable
for numerical integration. The Runge-Kutta numerical integration scheme requires

continuous derivatives up to M "(a( t)) in order to produce reasonable time histories. In

this study, continuous 'radii’, or corners replace the discontinuous portions of the curve.

A schematic of the resulting curve for the non-linear restoring moment, M{a(r)) is

shown in Figure 6 and may be described mathematically as

M(a(t)) = My +a(r)+a, for a < gh -(l +i2_2—]§

Ma(z))= M, -r +\/rT— (a(z)-#)’ for gh —(l+3—/2—5-]5< ar)<-h

34



M(a(z)) = M, for ~-h<a(r)<h

M(d(f)) =M, +r- Jr’ _(a(r)— h)z for h < a(r) < (1 +i2i_:5__‘/2_5_h
M(d(f))-_-a(l')-af -0+ M, for a(r)z(u.{z_ja_%

The size of the radius and the size of the time step used in the numerical integration must
be calculated to allow a smooth transition between the linear and freeplay regions of the
restoring moment. In this study the combination of a .005 second time step and a radius

of .003 radians provided the required transition.

3.6 Finding the Linear Fiutter Speed

Nonlinearities can affect the airspeed at which the system becomes unstable, and may
also induce limit cycle flutter at airspeeds below the flutter margin. For this reason, when
comparing modal frequencies and damping values obtained from the nonlinear equations,

the results are often referred to the /inear flutter speed.

When the equations are linear, M(a(z)) = a(r) and an eigenvalue analysis of the

aeroelastic system under free vibration (without the forced flap oscillation) gives the
analytical values of natural frequency and damping. Equation (3.18), without the aileron

input and for a linear restoring moment, may be written as
{x}+[4]"[B:{x} = {0} (3.24)

where the matrices [4],{ X} and {X'} have already been defined and
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0 0 -t 0 0 0 0 0]
o 0 o0 -1 0 0 0 0
o 0 0 o -t 0 0 o0
[8,]- o o0 0 o o0 -t 0 O (3.25)
10 0o 0 o 0 o0 -1 0 '
o 0 0 o 0 0 o0 -l
my my my my mym, M
my My mg omyomong ngon i
with
ieneil
u
2 1
n, =n, +F(b +d) and
nl, =n, +%‘i— (3.26)

The characteristic equation for this problem gives eight eigenvalues, four with zero
imaginary parts and two sets of complex conjugate pairs. The real eigenvalues represent
potentially divergent or non-oscillatory modes of the system. These modes are
independent of time and will become divergent if the eigenvalue approaches zero. The
complex conjugate pairs with positive imaginary parts represent the natural frequency

and damping values for each of the aeroelastic system's two modes.

A complex eigenvlaue, 4, has the form

A=p+ig.
The real part of the eigenvalue, p, is the modal damping factor, {'. When p is negative,
the damping is positive, any oscillatory motions will die out with time, and the system is
stable. As the non-dimensional airspeed is increased, the real parts of the eigenvalues
become smaller. The flutter speed, or the airspeed at which the system will become

unstable, is that for which p =0. If the airspeed is increased beyond this point, the

damping becomes negative, the amplitude of any induced oscillatory motion will increase
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with increasing time, and the aeroelastic system is unstable. The imaginary part of the

eigenvalue, g, gives the frequency of the response in radians per non-dimensional second.

For an aeroelastic system, the aerodynamic terms contribute to the system stiffness and
the frequency of the dynamic response is not at the same frequency as the structural
natural frequency. Because the 4 and B; matrices are functions of the non-dimensional
airspeed, {/ and the airfoil physical parameters, there is a unique set of eigenvalues and
hence frequency and damping factor, for each different combination of parameters and
airspeed. In this study, the natural frequency and damping values obtained from the
eigenvalues are considered the "real” or true values for the system and are compared with

the values obtained "experimentally”, or from numerically simulated time histories.
The linear flutter speed, U*, was found by numerically solving for the system

eigenvalues at increments of { until the real part of the eigenvalue, p, became zero. The

corresponding value of airspeed, U is the linear flutter speed, U*.
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4 Linear Results

In this chapter, the results of simulated sine-sweeps are presented for a two degree-of-
freedom airfoil in incompressible flow. The equations of motion were numerically
integrated, and the modal frequencies and damping values were obtained using the
techniques described in Chapter 2. In all cases the airspeed, U is presented as a
percentage of the linear flutter speed, U®*. Results presented are for the following airfoil
parameters: 3, =2.0°, @ =06, u=100, a, =-05, r, =05, r; =0002, x, =025,

x, =0002, c; =06, ¢, =0001 and {, = 000!.

The linear flutter speed for the system described above was found using the method
described in Section 3.6. The complex eigenvalues were calculated numerically for
increasing values of non-dimensional airspeed, U, until the real part of the eigenvalue
became zero. For this case, the non-dimensional linear flutter speed, {/* was found to be
U*=404.

The aeroelastic system natural frequencies and damping values vary with non-
dimensional airspeed. Well below the instability boundary the mode shapes are
determined primarily by the system structural parameters, the two modes are well
separated, the natural frequencies are close to the structural natural frequencies, and both
modes are well defined by the transfer function. As the airspeed approaches the flutter
speed the aeroelastic terms become increasingly important, the two natural frequencies
move towards each other, the first mode damping decreases and the second mode

damping increases.

Transfer functions, Nyquist diagrams, frequency and damping estimates were obtained
for four different increasing and decreasing sweep-rates at values of non-dimensional
airspeed ranging from 59% to 98% of the system flutter speed. The four sweep-rates
used were .000003, 000006, .000012 and .000024 radians/(non-dimensional second)’.
These rates were chosen to represent a range of values from 1 to 600% of Ewing's

recommended sweep-rate, depending on the airspeed at which the sweep was carned out.
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Table 1 compares each of the four sweep-rates used with Ewing's recommended sweep-

rate for each of the two modes at each of the ten non-dimensional airspeeds.

The system modal frequencies and damping were calculated using various combinations
of forcing function, response signal, frequency sweep-rate and sweep direction, and
results are presented for several typical combinations. The effect of sweep-rate on the
accuracy of the estimated system parameters is investigated by comparing these results to

the "exact" values of frequency and damping obtained from the eigenvalue analysis.

The first three sections of this chapter compare some of the different transfer functions
that may be obtained at various combinations of airspeed and sweep-rate. The shape of
the transfer function can depend on the method used to convert the time history to the
frequency domain, the degree-of-freedom from which the time history is obtained, or the
definition of the forcing function used as input to the transfer function. I[n Section 4.1,
transfer functions obtained using the time-domain and Fourier transform methods are
compared. In Section 4.2, transfer functions calculated using different choices of input
function are compared at different sweep-rates, while in Section 4.3, transfer functions
calculated using bending, or plunge response are compared to those obtained using pitch

response.

Once the transfer function has been calculated, the frequency and damping values may be
obtained using the half power point or Nyquist plot methods. The effect of the sweep-
rate on the transfer function magnitude, the Nyquist diagram and the frequency and
damping values obtained are presented in Section 4.4. In Section 4.5, the impact of using
increasing and decreasing sweep-rates are compared. Finally, some conclusions are

made based on the results presented.
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4.1 Time-domain and Spectral Methods

Transfer functions may be obtained from the simulated time histories by either of two
methods previously described — the time-domain and the spectral, or Fourier-transform
methods. Figures 7 through 9 compare the transfer functions obtained at four different
sweep-rates and two non-dimensional airspeeds.

When using the FFT method, a large window combined with a high sampling frequency
results in a frequency resolution similar to that obtained using a shorter window and a
lower sampling frequency. The time history responses for slow sweep-rates contained
many more data points than those obtained at fast sweep-rates for sine sweep simulations
over the same frequency range. For this reason, the data obtained at the slowest sweep-
rate was analysed using a large window size and a sampling frequency of 8 points per
second. At the higher sweep-rates, a smaller window was used and the sampling
frequency was reduced to 4 points per second. In all cases, the frequency resolution was
maintained at approximately 0.0063 rad/sec, which was found to be the combination of
window size and sampling frequency that gave the most accurate results for frequency
and damping. The particular values used for each combination of airspeed and sweep-

rate was determined by trial and error to give the best definition for the first mode.

Figure 7(a) compares two transfer functions calculated using the spectral method, from
time histories obtained at 68% of the linear flutter speed and at sweep-rates of .000003
rads/s® and .000024 rads/s>. At this airspeed, the two sweep-rates represent 8% and 63%
of Ewing's recommended rate, respectively, for the first mode and 2% and 13%,
respectively for the second mode. Although the two time histories were analysed using
different window lengths and sampling rates, they have the same frequency resolution.
The sweep-rate does not have much impact on the transfer function obtained, provided

the right combination of window length and sampling frequency is found.

As the airspeed is increased toward the flutter speed, the damping of the first mode

decreases, and for the same frequency resolution the curve definition becomes
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increasingly poor. Figure 7(b) demonstrates the effect of decreased modal damping on
the FFT transfer function. The sweep-rate for both curves is the same at 0.000003
radians/sec’, which, for the first mode, represents 8% and 29% of the recommended rate
at 68% and 96% of the linear flutter speed, respectively. For the second mode, this
sweep-rate is equivalent to 1% and 2% of the recommended rate at 68% and 96% of U*,
respectively. The curve obtained at 96% of the flutter speed has a slightly higher

frequency resolution than the curve for % « =08 Even at the slowest sweep-rate the

number of points defining the maximum magnitudes of the first mode near the flutter

margin are very few.

Transfer functions obtained using the time-domain and spectral methods are compared in
Figures 8 and 9. Figure 8 compares curves obtained at the same airspeed and two
different increasing sweep-rates, while Figure 9 shows transfer functions obtained at the
same sweep-rate, .000003 radians/(non-dimensional second)?, but for two different
airspeeds. In general, the curves obtained using the spectral method do not contain
enough points to provide a well-defined peak value for lightly damped modes. In order
to calculate damping values for these modes, it was necessary to extrapolate the function
in order to locate an approximate maximum magnitude and phase angle, and then use
these values as the basis for the damping and natural frequency estimates. The time-
domain transfer function, on the other hand, always had enough points to provide a well-
defined maximum for both modes, and never required any extrapolation or curve fitting
to obtain frequency and damping values. The time-domain curves are shifted to the nght
with respect to the curves obtained using the spectral method. This is, at least partially,
due to the method used to match the peaks in the output with the input peaks when
calculating the transfer function in the time domain method. The method used,
particularly at the higher sweep rates and higher non-dimensional airspeeds, resuited in

an overestimate of the frequency for a given magnitude of the input/output ratio.

Values of natural frequency and damping for the two methods are compared in Tables 2
and 3. In general, both methods give reasonable approximations for the natural

frequency. The time-domain method increasingly overestimated the frequency with
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increasing sweep-rate (this is only true for increasing sweep-rates, and will be discussed
in Section 4.5). The spectral method often underestimated the frequency, even at the
higher sweep-rates but the error was inconsistent, and did not appear to be as a result of
the sweep-rate. When the frequency resolution was poor, the first mode peak in the
transfer function was obtained by a linear extrapolation of the two points each side of the
peak. It is likely that this method of finding an approximation to the peak value is the
cause of the inconsistent results. Damping values obtained using the time-domain
method overestimated the correct values and the error increased with increasing sweep
rate. Results obtained using the spectral method were again inconsistent, although values
obtained for the more highly damped second mode were more accurate than those
obtained for the first mode. Sometimes the half-power point and Nyquist damping values
were similar, and sometimes they were very different. In some cases the need to
extrapolate the curve to find the maximum magnitudes for the lightly damped first mode

resulted in very inaccurate values of damping.

When the spectral method was employed, the same time-history could provide a range of
possible frequency and damping values depending on which parameters were chosen
when the analysis was done. Table 4 lists some of the values obtained from one such time
history at three different combinations of frequency and window length. The first mode
is lightly damped and the mode shape was, in general, inadequately defined by the
transfer function curve and provided the most inconsistent results. The second mode is
more heavily damped and the spectral analysis allowed enough points to make a good
estimate of the modal damping, even at the higher sweep rates. It was found that a lower
sampling frequency combined with a smaller window gave better results for the second
mode than when the sampling frequency was doubled and the window contained more

points.
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4.2 Forcing Function Input

For each degree of freedom response, three separate transfer functions were calculated,
each for a different choice of forcing function. In the first case, the set of peak values of
angular velocity from each motion cycle of the flap was chosen as the input. In the
second case, the peak values of aerodynamic lift attributable to the flap motion, obtained
from terms in the linear aerodynamic equations, were used as the forcing function. In the
third case the peak values of aerodynamic moment were used. Figures 10 through 13
compare typical transfer functions obtained from the different input signals. The
comparison is made for airspeeds corresponding to 68% and 98% of the linear flutter
speed, increasing sweep-rates of .000003 and .000024 radians/(non-dimensional
second)’, and both plunge and pitch response signals.

Figures 10 and 11 show the plunge response transfer functions calculated from time
historie obtained at 68% and 98% of the flutter speed, respectively. The transfer function
was calculated using the time-domain method. The two curves obtained using
aerodynamic input and flap velocity are practically indistinguishable when plotted
together on scaled axes and yield identical values for modal frequency and damping. At
the slowest sweep-rate of .000003 radians/(non-dimensional second)?, natural frequency
and damping calculations obtained from the curve in Figure 10 (a) are:

w, =209, ¢, =0403, w, =369 and £, =.0583 using acrodynamic input, and

@, =209, &, =0403, w, =369 and ¢, =.0588 using flap velocity input.

The discrepancy between the respective values of frequency and damping is greatest for
the second mode at 0.14% for frequency and 0.84% for damping, but is never greater
than 1%.

At the fastest sweep-rate of 000024 radians/(non-dimensional second)?, the curve in
Figure 10 (b) yields:

o, =214, &, =0508, @, =371 and £, =.0609 using acrodynamic input, and

o, =215, §, =0509, w, =372 and ¢, =.0607 using flap velocity input.

At this sweep-rate, the values never differ by more than 0.4%.
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The transfer functions plotted in Figure 11 were obtained at 98% of the flutter speed. At
this airspeed the second mode had disappeared from the transfer function, and only the
first mode parameters could be calculated. At a sweep-rate of .000003 radians/(non-
dimensional second)?, the values of frequency and damping obtained were:

@, =176 and £, =.0201 using acrodynamic lift input and

@, =176 and 4, =.0202 using flap velocity input.

The differences between the results obtained using the two inputs are 0.06 and 0.45
percent, respectively.

At the same non-dimensional airspeed but with a sweep-rate of .000024 radians/(non-
dimensional second)?, the transfer functions yield:

®, =183 and {, =.0302 using aecrodynamic lift input and

®, =184 and ¢, =.0305 using flap velocity input

A comparison of these results yields discrepancies of 0.49% in the frequency values and
0.93% for damping.

The above examples are typical of the results that were obtained at all combinations of
sweep-rate and airspeed. The frequency and damping values calculated from the plunge
response did not depend on the choice of input signal to the transfer function.

When the pitch response transfer functions were calculated, the two forcing functions
produced noticeably different curves. Figures 12 and 13 show the transfer functions
obtained at non-dimensional airspeeds corresponding to 68% and 98% of the flutter
speed. At the lower airspeed, the maximum amplitude of the transfer function is less
using the aerodynamic input compared to the flap velocity input. However, as the

airspeed is increased toward the flutter limit the two curves become increasingly similar.

The natural frequency and damping values obtained from the curve in Figure 12 (a) at

68% of the flutter speed and a sweep-rate of .000003 radians/(non-dimensional se:cond)2

are:
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@, =208, ¢, =0423, w,=376,and {, =0442 using aerodynamic input and
o, =208, ¢, =0421, @, =375,and &, =.0447 using flap velocity input.

At a sweep-rate of .000024 radians/(non-dimensional second)’, the values are:
w, =214, ¢, =0538, w,=377,and {, =0488 using acrodynamic input and
o, =214, ¢, =0522, w,=379,and {, =.0482 using flap velocity input.

The above results for natural frequency are similar to those presented previously for the
plunge response in that the choice of input function does not significantly affect the
values obtained. The difference between the damping factors was slightly greater than
for the first mode, between 1% and 2.5% depending on the airspeed. In the above
example, the difference between damping factors calculated for the second mode are 0.9
and 1.2 percent for sweep-rates of .000003 and .000024 radians/(non-dimensional
second)’, respectively. Other combinations of sweep-rate and airspeed produced similar
results. In some cases, the results obtained from the aerodynamic input were closer to the
true values, and in others the more accurate values were produced from the flap velocity

function.

Although the second mode frequency and damping values were more sensitive to the
choice of forcing function than the first mode values, the difference between the transfer
functions obtained using the two input signals was never more than 2.5%. For this
reason, only the results calculated using the aerodynamic terms are presented in the

remainder of this report.
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4.3 Response Function

The two degree-of-freedom system responds to the simulated sine sweep excitation in
both the plunge and pitch directions, and transfer functions may be obtained from either
response time history. The impact of the choice of response function on the natural
frequency and damping values obtained for each mode was investigated over the entire

range of non-dimensional airspeeds, and at all four sweep-rates.

4.3.1 Transfer function
Figures 14 and 15 compare transfer functions obtained from each of the two degrees-of-

freedom. These examples were obtained at non-dimensional airspeeds corresponding to
68% and 98% of the linear flutter speed, and at increasing sweep-rates of .000003 and
.000024 radians/(non-dimensional second)’. It is evident from all four curves that the
first mode is well defined at all sweep-rates and airspeeds regardless of which degree-of-

freedom is represented.

The second mode is more hcavily damped than the first mode, and the shape of the
transfer function was more sensitive to the choice of response signal. The results
presented in Figure 14 demonstrate that even well below the flutter speed, the second
mode is difficult to identify in the plunge response curve. The second mode definition
becomes increasingly poor as flutter is approached, until it disappears altogether. A
comparison of the four transfer functions obtained at 98% of the flutter speed and
presented in Figure 15, reveals that the second mode is only present in one case — a

combination of pitch response signal and the slowest sweep-rate.

4.3.2 Frequency and Damping Values

Figures 16 through 19 compare first mode frequency and damping estimates obtained
using plunge and pitch transfer functions at increasing sweep-rates of .000003, .000006,
.000012 and .000024 radians/(non-dimensional second)?, respectively. The modal
frequencies were obtained from the peaks in the transfer function magnitude versus

frequency curves, and the damping values are from the Nyquist plot. In all cases, the
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values of frequency and damping are compared to the values obtained from an eigenvalue

analysis of the linear system.

Frequency estimates for the first mode were not sensitive to the response signal used to
calculate the transfer function. As an example, at 82% of the flutter speed, the frequency
estimates from Figures 16 through 19 (a) are 0.4%, 1.0%, 2.1% and 3.5% higher than the
analytical values at .000003, .000006, .000012 and .000024 radians/(non-dimensional
se:cond)2 respectively, while the second mode response values are 0.07%, 0.6%, 1.6% and
3.0% higher. Below 90% of the linear flutter speed the total error does not change
significantly with airspeed, while above this value there is a noticeable decrease in

precision with increasing airspeed.

The Nyquist damping values for this mode were more sensitive to the choice of response
signal than were the frequency estimates. From the examples in Figures 16 through 19,
at 82% of the flutter speed the plunge response gives damping estimates that are 4.7%,
7.5%, 15.4% and 35.1% higher at .000003, .000006, .000012 and .000024 radians/(non-
dimensional second)z, respectively, than the analytical values. The error was greater in
the values obtained from the pitch response at 8.3%, 15.1%, 19.4% and 37.5% above the
eigenvalues. Below 90% of the linear flutter speed, the total error remains reasonably
constant with airspeed, and above 90% there was a steady decrease in precision with

increasing airspeed.

Figures 20 through 23 compare second mode frequency and damping estimates obtained
from plunge and pitch responses to the four increasing sweep-rates. The second mode is
more highly damped than the first mode, and for some combinations of sweep-rate, input
and response, the transfer function did not contain an identifiable second mode shape. In
the examples presented below, the plunge time history did not contain an identifiable
second mode response above 77% of the flutter speed, and the pitch time history did not
respond in the pitch mode at the fastest sweep-rate of .000024 radians/(non-dimensional
second)’. Where the signal was inadequate, it was impossible to obtain second mode

frequency and damping estimates.
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When the mode peak was present in the transfer function, the second mode frequency
estimates were insensitive to the choice of response signal at all sweep-rates and
airspeeds. Even the plunge response gives reasonable values for the second mode natural
frequency up to 77% of the flutter speed, when the mode disappears from the signal. All
of the frequency estimates obtained were within 2.0% of the eigenvalues.

When the pitch response was used at airspeeds below 80% of the linear flutter speed, all
frequency sweeps gave good approximations for modal damping. At the fastest sweep-
rate of .000024 radians/(non-dimensional second)” (Figure 23) and 82% of flutter speed,
the error in the values obtained was only 3.7%. As the airspeed increased toward the
flutter speed, the gap between the estimated damping and the eigenvalues increased and
above 82% it was difficult to obtain accurate estimates of damping.

In summary, the plunge and the pitch response transter functions yielded practically
identical values of natural frequency for the first mode. For the second mode, it was
necessary to use the pitch response in order to obtain natural frequency estimates above
77% of the linear flutter speed, and below this value, the plunge response tended to
underestimate the modal frequency. First mode damping values obtained from the
plunge response transfer function were more accurate than those obtained from the pitch
response at the lowest sweep-rates. At higher sweep-rates, the pitch response transfer
function yielded the most precise values of damping above 80% of the flutter speed. For
the second mode, the plunge response transfer function was inadequate for calculating the

modal damping values, and only the pitch response transfer function could be used.

4.4 The Effect of Sweep-rate.

The impact of sweep-rate was investigated on both the plunge and pitch response signals
obtained at non-dimensional airspeeds ranging from 59% to 98% of the flutter speed.
The figures discussed below demonstrate the effect on the transfer function, Nyquist plot

and estimated system parameters for frequency sweeps carried out at 68% of the system
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flutter speed, and at increasing sweep-rates of .000003, .000006, .000012 and .000024
radians/(non-dimensional second)’. The remaining results, from other airspeeds and at
decreasing sweep-rates, are presented in Tables 5 through 20.

4.4.1 Transfer function

Figures 24 and 25 compare the first mode transfer functions obtained at the four sweep-
rates from the plunge and pitch time histories, respectively. The transfer function
obtained by evaluating the response at a series of input frequencies, without sweep, is
shown in all the figures for the purpose of comparison. Figures 26 and 27 make the same

comparison for the second mode transfer function.

[n all cases, the results from the slowest sweep-rate, at .000003 radians/(non-dimensional
second)’, most closely duplicated the curves obtained without sweep. As the sweep-rate
was increased, the maximum amplitude of the transfer functions decreased, the frequency
at which this amplitude peak occurs increased, and the number of points that could be
obtained and used to define the curve decreased. The shapes of the first mode curves
obtained from plunge and pitch time histories were similar, while the two second mode
transfer functions had distinctly different shapes. For the second mode, the plunge
response curves shown in Figure 26 have a much smaller and less well defined peak on
the low frequency side than do the pitch response cuives of Figure 27. The sweep-rate
has a less pronounced effect on this mode, and the curves representing the different

sweep-rates are closer together.

4.4.2 Nyquist Diagram

The Nyquist plots for the first mode, obtained from the plunge time history are plotted in
Figure 28. The curve obtained by evaluating the response at a series of input frequencies
without sweep is also plotted for the purpose of comparison. The Nyquist diagrams for
the same mode, but obtained from the pitch response history are plotted in Figure 29.
The Nyquist diagram obtained using the slowest sweep-rate, at . 000003 radians per non-

dimensional time unit, most closely duplicates the results obtained without sweep. As the
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sweep-rate was increased the number of points that could be obtained and used to define
the curve decreased, the curve moved and the circular shape of the plot became distorted
in the positive direction along the real axis. The shapes of the curves shown in the two
figures are similar — the shape and behaviour of the curve does not appear to depend on
which modal response is chosen as input to the transfer function.

The Nyquist diagrams for the second mode, obtained using the plunge response signal are
plotted in Figure 30, and those obtained from the pitch time history are shown in Figure
31. The Nyquist diagram obtained by evaluating the response at a series of input
frequencies without sweep is plotted for the purpose of comparison.

For the second mode, the Nyquist diagrams obtained at different sweep-rates did not
differ much in shape, and only the number of points available to define the curve
decreased with increasing sweep-rate. When the pitch response was used to calculate the
second mode Nyquist diagram (Figure 31), the magnitude and phase angle of the transfer
function obtained was defined over a larger range of frequencies than those obtained

using the plunge response signal.

4.4.3 Frequency and Damping Values

Figures 32 through 35 compare the values of natural frequency and damping factor
calculated using transfer functions obtained at four different sweep-rates. The modal
frequencies were obtained from the peaks in the transfer function magnitude curves, and
the damping values are from the Nyquist plot. Results are presented for plunge and pitch
response signals at increasing frequency sweeps. In all cases, the values of frequency and
damping are compared to the values obtained from an eigenvalue analysis of the linear

system.
Figure 32 compares frequency and damping estimates obtained using the plunge response

to an increasing sweep-rate, while Figure 33 compares the results obtained using the pitch

response. In all cases, the most accurate results were obtained at the slowest sweep-rate,
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and the calculated values of natural frequency and damping were higher than the
analytical values. The spread between the analytical and the calculated values increases
as the airspeed approaches the flutter speed. This effect was more pronounced at faster
sweep-rates, resulting in the greatest error at a combination of the highest airspeed and

the fastest sweep-rate.

Figure 34 compares second mode frequency and damping estimates obtained from the
plunge response to an increasing sweep-rate, while Figure 35 compares the results
obtained from the pitch response. In Figure 34, there are no results plotted for values of
airspeed above 77% of the system flutter speed, because at the higher airspeeds the
plunge response did not contain a well-defined second mode, and values of frequency and
damping were impossible to obtain. The pitch response signal used to obtain the values
shown in Figure 35 contained two well-defined modes, and values of frequency and
damping could be calculated over the full range of airspeed.

Although the most precise results were obtained at the slowest sweep-rate, the calculated
values of natural frequency for the second mode varied little with sweep-rate or non-
dimensional airspeed. At the lower values of airspeed the calculated values of damping
did not vary much with sweep-rate. As the airspeed increased, the damping was
increasingly underestimated and the sweep-rate became increasingly important. Near the
flutter speed, the damping could not be calculated using the half powerpoint method, and
the values obtained for the damping factor became dependent on which points of the

Nyquist plot were used.

It is evident from the results presented above that the sweep-rate is an important
parameter in the accuracy of the frequency and damping estimates, with the error
increasing significantly with increasing sweep-rate. This is particularly true for the first,
or most lightly damped mode, and the error increases as the modal damping decreases

near the flutter speed, for all sweep-rates.
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4.5 Increasing and Decreasing Sweep-rates

The effect of increasing and decreasing sweep-rates was investigated for transfer
functions calculated from both the plunge and pitch response signals, with the
aerodynamic lift and moment used as the input signal. Values of natural frequency and
damping factor were obtained at four different sweep-rates, and were compared to the
linear system eigenvalues. The modal frequencies were obtained from the peaks in the
transfer function magnitude versus frequency curves, and the damping values are from
the Nyquist plot.

4.5.1 Transfer function

The first mode transfer functions obtained at 2 sweep-rate of .000003 radians/(non-
dimensional second)’ are plotted in Figure 36 for both increasing and decreasing
frequency sweeps. The transfer function obtained without sweep is shown for
comparison. The maximum amplitude of the transfer function was smaller for the
increasing sweep, and larger for the decreasing sweep when compared to the curve
obtained without sweep. The frequency at which the amplitude peak occurs was higher
for the increasing sweep and lower for the decreasing sweep when compared to the

frequency at which the amplitude peak occurs without sweep.

The first mode transfer functions obtained at a sweep-rate of .000024 radians/(non-
dimensional second)’ are plotted in Figure 37 for both increasing and decreasing
frequency sweeps. The effect of increasing and decreasing sweeps on the frequency at
which the amplitude peaks was similar but more pronounced at the higher sweep-rate.
The effect on the magnitude of the peak in the transfer function is also amplified. Fora
decreasing frequency sweep at the higher sweep-rate, the peak magnitude was larger than
that obtained using an increasing frequency sweep at the same sweep-rate, but was

smaller than the value obtained without sweep.
The second mode transfer functions obtained at a sweep-rate of .000003 radians/(non-

dimensional second)” are plotted in Figure 38 for both increasing and decreasing

frequency sweeps. The transfer function obtained without sweep is shown for
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comparison. For this mode, and at the slowest sweep-rate, there is little difference
between the curves obtained for increasing and decreasing frequency sweeps. The
second mode transfer functions obtained at a sweep-rate of .000024 radians/(non-
dimensional second)’ are plotted in Figure 39 for both increasing and decreasing
frequency sweeps. The maximum amplitude of the transfer function is smaller for the
increasing sweep and larger for the decreasing sweep when compared to the curve
obtained without sweep. The frequency at which the amplitude peak occurs is higher for
the increasing sweep and lower for the decreasing sweep when compared to the

frequency at which the amplitude peak occurs without sweep.

4.5.2 Nyquist Diagram
The first mode Nyquist diagrams obtained at a sweep-rate of .000003 radians/(non-

dimensional second)’ are plotted in Figure 40 for both increasing and decreasing

frequency sweeps. The diagram obtained without sweep is shown for comparison. The
circular shape of the curves plotted for increasing and decreasing frequency sweeps are
shifted to either side of the curve obtained without sweep, but the shape of the curves is

not significantly distorted.

The first mode Nyquist diagrams obtained at a sweep-rate of .000024 radians/(non-
dimensional second)’ are plotted in Figure 41 for both increasing and decreasing
frequency sweeps. The effect of increasing and decreasing sweep on the shape of the plot
is much more apparent at the higher sweep-rate. In the case of the increasing sweep, the
upper part of the diagram is shifted, and the lower part of the diagram is distorted when
compared to the curve obtained without sweep. In the case of the decreasing sweep the
effect is reversed, and the upper part of the diagram is distorted while the lower part of

the diagram is shifted when compared to the curve obtained without sweep.

The second mode Nyquist diagrams, obtained at a sweep-rate of .000003 radians/(non-
dimensional second)’, are plotted in Figure 42 for both increasing and decreasing
frequency sweeps. In the case of this more highly damped mode, and at this sweep-rate,

the difference between increasing sweep, decreasing sweep and no sweep is insignificant.
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The second mode Nyquist diagrams obtained at a sweep-rate of .000024 radians/(non-
dimensional second)’ are plotted in Figure 43 for both increasing and decreasing
frequency sweeps. The effect of increasing and decreasing sweeps on the shape of the
plot is more apparent at the higher sweep-rate. In the case of the increasing sweep, the
diagram is shifted upward with respect to the imaginary axis when compared to the curve
obtained without sweep. In the case of the decreasing sweep the effect is reversed, and
the curve is shifted downward with respect to the imaginary axis when compared to the

curve obtained without sweep.

4.5.3 frequency and Damping Values

Figures 44 through 59 compare the values of natural frequency and damping factor
calculated using transfer functions from increasing and decreasing sweeps. Results were
obtained at four different sweep-rates, and using transfer functions obtained from both
plunge and pitch response signals. The modal frequencies were obtained from the peaks
in the transfer function magnitude versus frequency curves, and the damping values are
from the Nyquist plot. In all cases, the values of frequency and damping are compared to

the values obtained from an eigenvalue analysis of the linear system.

Figures 44, 46, 48 and 50 compare frequency and damping estimates obtained from the
plunge response to increasing and decreasing frequency sweeps at .000003, .000006,
.000012 and .000024 radians/(non-dimensional second)’, respectively. Figures 45, 47, 49
and 51 compare frequency and damping estimates obtained from the pitch response to the

same frequency sweeps.

First mode frequency estimates were not sensitive to the response signal used to calculate
the transfer function. For increasing sweep-rates, the frequency estimates are higher than
the analytical values, while for decreasing sweep-rates the frequency is underestimated
with respect to the eigenvalues. This effect increases with increasing airspeed and
sweep-rate. For example in Figure 44(a), the sweep-rate is .000003 radians/(non-
dimensional second)’, and at 59% of the flutter speed the frequency estimates are 0.4%

higher (increasing sweep) and 0.8% lower (decreasing sweep) than the analytical value,
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while at 98% of the flutter speed the estimates are 1.6% higher and 2.2% lower. Figure
50 (a) presents the values obtained at the fastest sweep-rate of .000024 radians/(non-
dimensional second)’, and at 59% of the flutter speed the estimated frequencies are 2.5%
higher and 4.0% lower than the analytical value, while at 98% of the flutter speed the
values are 5.9% greater and 7.2% smaller than the eigenvalues.

The effect of increasing versus decreasing frequency sweeps on the estimated damping
parameter for the first mode was more complex than the effect on frequency. The closest
approximations to the analytical values were always obtained at the slowest sweep, but
even at this rate the decreasing sweep gave more precise values than the increasing
sweep. The data shown in Figure 44 (b) was obtained using plunge response data at
.000003 radians/(non-dimensional second)’, and the error in the estimated values of
damping range from 2.9% at 59% of the flutter speed, to 32.1% at 98% for an increasing
sweep. Using a decreasing sweep at 59% and 98% of the flutter speed, the errors in the
damping values were 0.5% and 27.9%, respectively. Both increasing and decreasing
frequency sweeps overestimated the eigenvalue damping factor, but the decreasing sweep
gave more accurate values. The values in Figure 45(b) were obtained using pitch
response data at the same sweep-rate as the previous figure. In this case, the trend was
the same, with both sweeps overestimating the modal damping and the increasing sweep
being the least accurate of the two. At this sweep-rate the decreasing sweep gave quite
accurate estimates throughout the range of airspeeds. Figures 46(b) and 47(b)
demonstrate a similar reaction to sweep direction for a sweep-rate of .000006

radians/(non-dimensional second)’.

As the sweep-rate was increased, the overall accuracy of the values for the first mode
damping decreased, with a decreasing sweep and plunge response signal giving the best
approximations to the analytical values. At a sweep-rate of .000012 radians/(non-
dimensional second)’, (Figure 48(b)), the decreasing frequency sweep yields estimates of
damping within 10% of the eigenvalues for airspeeds up to 82% of the flutter speed.
Above this value, the most accurate values were obtained from an increasing frequency

sweep. For example, at 91% of flutter speed, the decreasing sweep resulted in a damping
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factor error of 20%, while the value obtained at an increasing sweep was within 6.0% of
the analytical value. The same behaviour was observed at a sweep-rate of .000024
radians/(non-dimensional second)’ (F igures 50 and 51).

Figures 52, 54, 56 and 58 compare second mode frequency and damping estimates
obtained using plunge response to increasing and decreasing frequency sweeps of
.000003, .000006, 000012 and 000024 radians/(non-dimensional second)?, respectively.
The plunge response signal does not contain a second mode response at values of
dynamic pressure above 77% of the flutter speed, and even below this airspeed, the
damping values obtained were scattered and gave inconsistent estimates for modal
damping. Figures 53, 55, 57 and 59 compare frequency and damping estimates obtained
using pitch response time histories to increasing and decreasing frequency sweeps of
.000003, .000006, 000012 and 000024 radians/(non-dimensional second)’, respectively.

Second mode frequency estimates were very accurate for all sweep-rates and all
airspeeds. There was no noticeable increase in error between .000003, .000006 and
.000012 radians/(non-dimensional second)?, with all estimates at both increasing and
decreasing sweeps within 1.5% of the eigenvalues. At the fastest sweep-rate used (Figure
59), there was no second mode peak in the transfer function for an increasing sweep
above 91% of the flutter speed, while the decreasing sweep yielded values for the whole
range of airspeeds. At this sweep-rate and airspeed, the calculated natural frequency was

within 0.3% of the true value.

For the second mode, only the transfer functions obtained using the pitch response data
yielded reasonable values for the modal damping factor. When the pitch response time
history was used at airspeeds below 80% of the linear flutter speed, all sweep-rates at
both increasing and decreasing sweeps gave reasonable approximations for modal
damping. Even at a sweep-rate of .000024 radians/(non-dimensional second) (Figure
57) and 82% of flutter speed, the error in the values obtained were only 3.7% and 3.4%

for increasing and decreasing sweeps, respectively. As the airspeed was increased toward
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the flutter speed, the gap between the estimated damping and the eigenvalues increased,

but the error is not significantly greater for faster sweep-rates.

In general, increasing frequency sweeps overestimated both the modal frequency and
damping values. Decreasing frequency sweeps underestimated frequency, overestimated
first mode damping values, and underestimated second mode damping values. The
decreasing sweeps gave significantly more precise estimates of damping than the
increasing sweeps. The amount by which the estimated values are in error increases with

increasing sweep-rate, and is greater for more lightly damped modes.

4.6 Summary

The three parameters having the greatest effect on the calculation of modal frequency and
damping values were found to be the choice of response time history, sweep-rate and
sweep direction. The choice of response time-history was very important if the more
heavily damped mode is of interest, and was less important for the lightly damped mode.
Sweep-rate was found to be the most important overall parameter, and the fastest sweep-
rates caused the largest errors in both frequency and damping estimates, particularly for
the more lightly damped of the two modes.

Although the slowest sweep-rate was always the most precise, the total error was a result
of the combination of all three parameters. For example, the pitch response transfer
function overestimated the first mode damping, as did the increasing frequency sweep.
For this reason, the combination of pitch response and increasing sweep results in larger
errors in damping values than does the combination of plunge response with the same
increasing sweep-rate. The best choice of parameters depends on which results are
important, in particular which mode is of interest, and at which airspeeds the sine sweep

is to be performed.
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5 Nonlinear Results

A nonlinear system was obtained by replacing the "linear spring” restoring moment in the
pitch direction, M(a)= a, by a nonlinear spring with a freeplay region as described in
Chapter 3, Section 3.5. The pitch response of the nonlinear system was compared to the

pitch response of the equivalent linear system.

In Section 5.1, the general behaviour of a one degree-of-freedom, mechanical system
with a nonlinear restoring force is discussed. The general properties of this system
provide a basis for comparison with the behaviour of the aeroelastic system and are taken
from the basic theory of nonlinear systems (Broch J.T., 1980). In Section 5.2, the pitch
response waveforms obtained for the nonlinear system are compared to those of the linear
system, and in Section 5.3 the linear and nonlinear frequency response curves are
compared. Section 5.4 describes the effect of the "size" or length of the nonlinear region,
as well as the amount of preload in the freeplay region. Section 5.6 compares modal
damping values obtained for the nonlinear system with the parameters previously
calculated for the linear system. The time-domain and frequency-domain methods of
obtaining the frequency transfer function are evaluated with respect to their application to

the nonlinear system.

5.1 One Degree-of-Freedom Nonlinear Systems

Consider first the example of a one degree-of-freedom mechanical system subject to a
nonlinear spring force. If such a system has no excitation force and no damping, then the
free oscillations of the disturbed system are not sinusoidal, as is the case for a linear
system. [n the linear case, the frequency and the shape of the oscillation are independent
of the amplitude. In the non-linear case both the frequency and the form of the response
vary with the amplitude. The relationship between amplitude and natural frequency for
the linear system, and a typical hardening spring with a freeplay nonlinearity are shown
in Figure 60. For this type of nonlinear spring, the frequency of the system increases
with amplitude and approaches the natural frequency of the equivalent linear system

asymptotically at large amplitudes.
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When light damping and periodic excitation are added to the system described above, the
steady-state response is generally periodic, and at the same frequency as the excitation.
For fixed amplitudes of the excitation force and light damping, the response curves have
the form shown in Figure 61. The nonlinear curves are similar to the corresponding
curve for the linear system, but the "backbone" of the resonant peaks is the nonlinear free
vibration amplitude-frequency curve from Figure 60(b).

Figure 62 illustrates the hysteresis effect that the nonlinearity may have on the steady
state response in the case of a frequency sweep. The segment between points 2 and 3 s
unstable, and if the excitation frequency is swept from zero at an increasing sweep-rate,
the quasi-steady response amplitude follows the curve from 1 to 2, and then jumps to
point 4. Under a decreasing frequency sweep, there will be a sudden jump in steady state
response from 3 to 1. This effect results in very different frequency response peaks for

increasing and decreasing sweep-rates.

Another property of nonlinear systems is that they distort the wave shape of the response
signal. Even if the forcing function is purely sinusoidal, the wave shape of the response
will not be sinusoidal. Normally, the response wave shape will contain a number of
frequency components harmonically related to the frequency of the driving force. These
ordinary, or "superharmonics" are present in almost all non-linear systems, and their
amplitude values are normally small compared to the dominant response frequency.
Under some circumstances, particularly low damping, the system may respond at a

subharmonic of the forcing frequency, although purely subharmonic response 1s rare.

The phenomenon of superharmonic and subharmonic frequencies can be important in
multi-degree-of-freedom systems such as aircraft wings and tail surfaces. If a frequency
sweep is being carried out to cover two specific vibration modes in a resonance test, a
nonlinearity in one of the degrees-of-freedom may result in an oscillatory response at one
or more frequencies other than the forcing frequency. If one of these harmonics by

chance coincides with the resonant frequency of some other mode of the system, a large
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amplitude response may be created at a frequency that is not within the range of the
frequency sweep. Although the simulated frequency sweep used in this study cannot
duplicate such an incident, it can be used to investigate the existence of superharmonic
and subharmonic oscillations in the response of the aeroelastic system to a sine sweep

input.

5.2 Frequency Response Curve

The response of the nonlinear aeroelastic system to a sine sweep excitation was
investigated for a nonlinear restoring moment in the pitch degree-of-freedom. The
waveform of the system response varied considerably across the range of the frequency
sweep. For each value of non-dimensional airspeed, the variation of response waveform
with input frequency was different. The results presented in this section are for a

maximum input flap angle of 8, = 2.0°, a nonlinear spring defined by
a, =025, § =025, my = 025° (see Figure 2), and a decreasing sweep-rate of

.000012 radians/second’. The remainder of the system parameters are the same as those
for the linear system described in Chapter 4.

The nonlinear restoring force in the pitch degree-of-freedom has a hysteresis effect on the
frequency response curve similar to that discussed in Section S.1. The first mode is
lightly damped, the magnitude of the response is well above the nonlinear pitch range,
and the nonlinearity has little effect on the shape of the frequency response. The second
mode is the more heavily damped of the two modes, and the nonlinear effect is more
pronounced. The second mode responds farther down the "backbone" of the free
vibration amplitude-frequency curve of Figure 61. Figure 63 compares the linear and
nonlinear frequency responses to increasing and decreasing sweep-rates, for an airspeed
equivalent to 55% of the linear flutter speed. At this airspeed, although the second mode
is lightly damped, it is much more heavily damped than the first mode, and the nonlinear
hysteresis effect is apparent. Figures 64 through 67 make similar comparisons at
airspeeds equivalent to 64, 73, 82 and 91% of the linear flutter speed, respectively. For
each figure, both the linear and the nonlinear "backbones" have been sketched in, and the

"jumps" in frequency response have been indicated. As the airspeed is increased, the
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second mode damping increases, and the peak in the second mode response curve moves
farther down the "backbone”. Also, for increasing airspeed, the nonlinear response lies
on the more horizontal portion of the backbone curve, and the hysteresis effect becomes
increasingly less evident at the high frequency side of the response curve. At the low
frequency side of the second mode response peak, with increasing airspeed, the hysteresis
effect is influenced by the increasing proximity of the first mode. At 82% of the linear
flutter speed, the two mode responses have begun to overlap, and the nonlinear hysteresis
effect is no longer evident. The high frequency side of the second mode contains a range
of nonlinear, subharmonic frequency response at airspeeds above 73% of the linear flutter
speed. On the frequency response plot, these regions are characterized by unstable, or
scattered, frequency response amplitudes at ranges of input frequency above the second
mode natural frequency. Figures 65, 66 and 67 illustrate this sort of nonlinear response,
and a comparison of the three figures shows how the airspeed affects the length of the

subharmonic, nonlinear region as well as the amplitude of the response.

5.3 Response Waveforms

For the system parameters described above, and at six different airspeeds between 55 and
91% of the linear flutter speed, several visually different response waveforms were
identified. Each waveform occurred over a distinct frequency range. Not all waveforms
were present at all airspeeds, and some were evident for more than one range of
frequencies within the same frequency sweep. Figures 68 through 78 illustrate some

typical examples of the response waveforms that were obtained.

A typical response with superharmonics at two, three and four times the forcing
frequency is shown in Figure 68. The corresponding power spectral density plot is
shown in Figure 68(b). This response occurred for only one short frequency range, at
low frequencies, and at only one of the airspeeds tested (a more complete discussion of
the different input frequency ranges over which the different nonlinear responses
occurred, is given at the end of this section, and is illustrated in Figures 79 through 83).
Figure 69 illustrates a more common response with harmonics at two and three times the

forcing frequency. This type of response occurred at the lower values of forcing
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frequency, typically between 50 and 65% of the first mode resonant frequency,
depending on the airspeed. The most common superhammonic in the aeroelastic response
was at twice the forcing frequency, and an example of this is shown in Figure 70. This
particular response waveform was found at some point in the frequency sweep at all
airspeeds, and always occurred at frequencies below the first mode resonant peak. The
length of the frequency range over which the second harmonic response was sustained

was longer than that for any other type of waveform.

The nonlinear responses at two, three, and four times the input frequency always
occurred below the first mode resonant frequency. The nonlinear behaviour was limited
to the low amplitude regions of the frequency response curve, and the particular type of
waveform appeared to be a function of the magnitude of the response. At the lower end
of the frequency range, lower airspeeds produce lower amplitude responses. The
amplitude of the response increases with increasing frequency and airspeed until it peaks
at the first mode resonant frequency. The fourth harmonic only occurs at the very
smallest amplitudes, and so is only found at very low airspeeds. As the amplitude of the
response increases, the waveform changes from the fourth to the third and the second
harmonics, successively. As the first mode peak in the frequency response curve is
approached, the amplitude of the response increases rapidly, and the system response

becomes similar to that of the linear system.

At input frequencies between the first and second mode peaks, the pitch response
waveform depended on the airspeed at which the frequency sweep was performed. At
lower airspeeds, the response amplitude in this region was smaller, and the response
waveforms are nonlinear. Typical examples of this sort of motion are shown in Figures
71 and 72, for airspeeds equivalent to 55% and 64% of the linear flutter speed. The
response is similar to the superharmonic waveforms described above for frequencies
below the first mode natural frequency, except that the response is at one and a half and
two times the input frequency, as well as at the input frequency. At airspeeds above 65%
of the linear flutter speed, the two modes begin to converge, and the region of small

amplitude response between the two disappears. At these airspeeds, and for the
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frequency range between the two modes, the system responds at the same frequency as
the input.

A third type of waveform appeared in the response at frequency ranges beginning just
above the second mode natural frequency. An example of this waveform is shown in
Figure 73. The harmonic in this case is a subharmonic and the frequency of the
oscillation is two thirds of the forcing frequency. At higher values of input frequency,
the frequency of the dominant subharmonic response changes from two-thirds of the
input to the first mode natural frequency. This second type of subharmonic is illustrated
in Figure 74, where the two-thirds harmonic is also present, but is of much smaller
magnitude. At the high end of the nonlinear response range, the response is actually
dominated by the first mode natural frequency, and not the forcing frequency, as
illustrated in Figure 75.

Figures 76, 77 and 78 are examples of the waveform response at an airspeed approaching
the linear flutter speed. The response at all frequencies is dominated by the first mode
natural frequency, and at higher frequencies (Figure 78), the magnitude of the response at
the input frequency becomes very small compared to the magnitude of the harmonic.
This type of motion was found at frequencies just above the second mode at all airspeeds
above 70% of the flutter speed. As the airspeed was increased, the frequency range of
nonlinear response became larger. The upper limit of the range remained reasonably
stable, at about 0.40 radians/second, but the lower limit of the nonlinear range decreased

with increasing airspeed, and as the second mode damping increased.

Figures 79 through 83 show the regions of the frequency response curves where each of
the above types of waveform occurred, for five values of non-dimensional airspeed
ranging from 55% to 91% of the linear flutter speed. The first nonlinear region is below
the first mode resonant peak, where the harmonics were at twice, three times and four
times the forcing frequency. The second nonlinear region occurred between the first and
second mode resonant peaks, where the superharmonic response was at one-and-a-half

and two times the input frequency. The third nonlinear region was characterized by two
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separate subharmonic responses at two thirds of the input frequency, and at the first mode
natural frequency. This response occurred at frequencies above the second mode
resonant peak, and was only found at higher airspeeds.

5.4 Length of Freeplay Region

The nonlinear behaviour of the frequency response curve was closely tied to J, the
length of the freeplay region. Figures 84 through 88 compare the linear frequency
response at a decreasing sweep rate of .000012 radians/second’, to the nonlinear response
for freeplay lengths of .25, .5 and .75 degrees. The five figures represent results
obtained at 55, 64, 73, 82 and 91% of the linear flutter speed, respectively. In all of the
figures, the curve that most closely resembles the linear curve is the smallest freeplay
length, or .25 degrees. As the length of the freeplay region is increased, the frequency of
the second mode peak decreases, the magnitude of the first mode peak increases, and the
nonlinear behaviour becomes more pronounced for input frequencies above the first

mode natural frequency.

As the airspeed at which the sweep rate is performed is increased, there is a more
dramatic increase in nonlinear subharmonic response with increasing freeplay length. in
Figures 84 and 85, at 55 and 64% of the linear flutter speed, the first and second mode
have distinct response peaks for all values of &, the hysteresis effect is evident in the
shape of the second mode response, and the regions of nonlinear harmonic response
above and below the first mode natural frequency are similar in appearance. In Figure 86,
at 73% of the linear flutter speed, regions of nonlinear subharmonic response appear in
the response curve at frequencies above the second mode peak for freeplay lengths of .5
and .75 degrees. The subharmonic region for the .75 degree freeplay is quite extensive,
and the second mode response for this curve is almost entirely nonlinear. At 82% of the
flutter speed, the response in the region of the second mode natural frequency is entirely
subharmonic and nonlinear for all values of & except §=0.25, and the magnitude of the
nonlinear response increases significantly with increasing §. At 91% of the flutter speed
(Figure 88), the response is nonlinear across the entire second mode frequency range, and

the magnitude of the nonlinear response is significant for the larger values of 6. The
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effect of freeplay region length on the first mode response does not change significantly
with airspeed. Although the second mode peak in the nonlinear response curves seems to
"disappear” at a lower airspeed than does the linear case, the flutter speed does not seem
to be affected by the length of the nonlinear region. The disappearance of the second
mode peak appears to be a result of subharmonic response rather than frequency

coalescence.

5.5 Effect of Preload Magnitude
The preload of the freeplay region of Figure 2, or the magnitude of my, also influences

the shape of the nonlinear frequency response curve. Frequency response curves were
obtained for six different values of mq ranging from 0.00 to 1.25 degrees, and at five
different airspeeds between 55% and 91% of the linear flutter speed. All the curves are
for a freeplay length of .25 degrees and a decreasing sweep rate of .000012 radians/(non-

dimensional second)’.

The value of mg has a significant effect on the nonlinear behaviour of the response curve,
particularly in the region 0.0°<m<0.5°. For example, at 55% of the linear flutter speed,
and for a value of m¢=0.0°, the second mode response peak disappears entirely, as shown
in Figure 89(a). Figure 89(b) shows an increase in mg to mo=0.125°, which causes the
second mode response peak to reappear, and introduces a significant region of nonlinear,
subharmonic behaviour at input frequencies between 0.46 and 0.60 radians/second.
Figure 90 shows that a further increase in the preload to m=0.25° causes the
subharmonic region to disappear, and subsequent increases of the preload up to
mg=1.25°, (Figures 90 and 91), do not produce any subharmonic responses for this range
of input frequency. The shape of the second mode frequency response peak also changes
with my, with the "jump" across the nonlinear region occurring at higher frequencies for

increasing values of my.
The nonlinear region below the first mode natural frequency is affected by the value of

mo. As my is increased from 0° to 0.5° (Figures 89 and 90), the magnitude of the

superharmonic, nonlinear response in this region increases, and the input frequency range
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for the nonlinear response extends closer to the first mode natural frequency (Figure
90(a)). Figure 90(b) shows the response at my=0.5°, where the input frequency range
over which the response is nonlinear suddenly decreases, and continues to decrease with

increasing my up to mg=1.25°, where it disappears (Figure 91).

The first mode response peak was also affected by vaniations in freeplay preload. The
magnitude of the response was larger than the linear response for all values of mg except
for mg=1.25°, as shown in Figure 91(b). The width of the first mode response peak, an
indicator of modal damping, is larger at smaller values of my, as can be seen in Figures
89 (a) and (b). As my is increased, the amplitude of the response peak remains the same,
but the width decreases. In Figure 90, the change in width of the response peak from (a)

to (b) is evident, for an increase in mo from 0.25 to 0.5 degrees.

The results discussed above are all for 55% of the linear flutter speed. Similar results
obtained for airspeeds equivalent to 64, 73, 82 and 91% of the linear flutter are presented
in Figures 92 through103. The general behaviour of the system with increasing freeplay
preload is the same as described above for U/U*=0.55. As the airspeed is increased, the
nonlinear, subharmonic behaviour at the high end of the frequency sweep appears at
increasingly lower values of my, and disappears again at higher values mg. The
nonlinear, subharmonic region found at frequencies below the first mode natural
frequency occupies less of the response peak for higher airspeeds, probably because the
magnitude of the pitch response in this area is larger. The width of the response peak is
less affected by my at the higher airspeeds, and U/U*=0.55 is the only airspeed where the
second mode response peak disappears entirely for m=0.0°.

5.6 Effect on Modal Damping

Damping values are less easily obtained for the nonlinear system investigated in this
chapter than for the linear system presented earlier. The nonlinear hysteresis results in a
second mode frequency response curve that is asymmetrical and has frequency 'jumps'’
across the points that are required for a reasonable calculation of second mode damping

using either the half power point or Nyquist methods discussed in Chapter 3. In addition,
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the second mode response peak disappears at a much lower airspeed than it does with a
linear system, due to the existence of a strong subharmonic response in the range of the
second mode natural frequency, especially at higher airspeeds. In this study, no attempt
was made to calculate second mode damping values.

The first mode response of the nonlinear system was similar to the linear response, but
only over a small frequency range each side of the first mode natural frequency.

Damping values for this mode were obtained using both the Fourier transform and the
time domain methods. In the first method, the frequency transfer function was obtained
using the Fourier transform approach described in Chapter 3. The Nyquist method was
then used to calculate the modal damping using the first point on either side of the first
mode peak value. A second damping value was then calculated using the second point on
either side of the peak. The time domain method was applied by selecting only the range
of points from the frequency response curve where no harmonic response was present. A
'segment’ of the transfer function was then obtained by applying the time domain method
described in Chapter 3 to selected response range. Modal damping was calculated using
the Nyquist method, with the points chosen as close as possible to the same input
frequency as the points from the Fourier transform method described above. An example
of the transfer functions obtained using the two methods, at U/U*=0.77, is presented in
Figure 104.

Modal damping values for the first mode are presented in Figure 105 for one case only - a
decreasing frequency sweep at 0.000012 radians/(non-dimensional second)’, with a
freeplay preload of my=0.25 degrees and a freeplay length of 8=0.25 degrees. The
Fourier transform results were calculated using the first point each side of the peak
magnitude, and the time domain results were calculated using points chosen to be at
approximately the same input frequency as the corresponding Fourier transform result.
The time domain results overestimate the modal damping by a small amount compared to
the linear system, but the Fourier transform results overestimate the damping value by up
to one and half times, at all airspeeds except 96% of the linear flutter speed. The Fourier

transform results obtained using the second point on either side of the frequency peak are
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not presented because they are less uniform, appear to be more random, and overestimate

the damping by an even greater amount.

The Fourier transform method of obtaining the frequency transfer function for the
nonlinear system results in much larger damping values than the time domain method for
the same system. This is probably because the nonlinear system responds at harmonics
of the input frequency for a significant range of frequencies within the range of the
frequency sweep, and this harmonic response affects the Fourier transform results. The
Fourier transform method assumes that the system responds at the same frequency as the
input, or forcing function, and calculates the transfer function as the relative magnitudes
of the input and response at each frequency. The nonlinear system does not always
respond at the same frequency as the input, and so this assumption is not always true.
The nonlinear, subharmonic response of the nonlinear system is often close to, or at the
same, frequency as the first mode natural frequency. This distorts the transfer function
curve in the area of the first mode peak, because the Fourier transform method calculates

the subharmonic as a response to input at the subharmonic frequency.

§.7 Summary

The introduction of a structural nonlinearity in the form of bilinear spring with a freeplay
region, had a significant impact on the response of the aeroelastic system to a frequency
sweep input. Unlike the linear system, the nonlinear model did not always respond at the
same frequency as the input force, and contained regions of both superharmonic and
subharmonic response. The nonlinearity had a hysteresis effect on the second mode
response curve, and the resulting peak in the frequency response amplitude was at very
different frequencies for the increasing and decreasing frequency sweeps. Changes in
nonlinear region length and preload magnitude had significant impact on the system
response, particularly in the input frequency range containing the second, or more heavily

damped mode natural frequency.

The second mode response curve was distorted by the nonlinearity, and reasonable values

of modal natural frequency and damping could not be obtained using the methods
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employed for the linear system. The first mode was much more lightly damped than the
second, and the response curve was less affected by the nonlinearity. Natural frequency
and damping values for this mode could be calculated using both the time-domain and the
spectral methods, although the time-domain method was limited those portions of the
frequency response where the response was at the same frequency as the input. Natural
frequencies obtained for the first mode were in close agreement with those obtained for
the linear system. Damping values obtained using the time-domain method were slightly
greater than the linear values, and damping values obtained using the spectral method

were much larger — up to one and a half times the corresponding linear values.
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6 Summary and Conclusions

The sine sweep is a method commonly employed to perform resonance tests on aircraft
wings and tail surfaces. Finding natural aeroelastic frequencies by repeated testing at
increments of forcing frequency is not practicable when the testing must be performed on
full-scale aircraft under actual flight conditions. Sine sweep tests, or frequency sweeps,
permit the analysis of a range of frequencies within the time span of one test flight. The
rate at which the frequency is varied during the sine sweep can affect the test results, and
it is of practical interest to perform the test at the fastest sweep-rate that can produce
accurate data. In this study, the effect of sweep-rate on the accuracy of analytically
generated data describing the aeroelastic motion of a two-dimensional airfoil was studied.
Two different methods were employed to convert the data to the frequency domain, as
well as to calculate frequency and damping parameters for the aeroelastic system. The
methods were compared and the accuracy of the different methods, combined with the
different sweep-rates, was investigated. Finally, the effect of introducing a simple

nonlinearity into the aeroelastic system was investigated.

6.1 Summary

A numerical model of the equations of motion for a two-dimensional, three-degree-of-
freedom airfoil performing unsteady motions of small amplitude in incompressible,
inviscid flow was produced. The model was used to apply a frequency sweep by means
of constraining the third degree of freedom, the flap motion, to oscillate at a variable
frequency and thus provide a defined input to the system. Exact solutions to the
equations of motion for the linear system were obtained from an eigenvalue analysis.
Numerical solutions to the equations of motion were obtained for a number of different
combinations of airspeed, sweep-rate and forcing function input, and a number of

different comparisons were made.

The impact of introducing a structural nonlinearity into the aeroelastic system was
investigated for the case of a nonlinear restoring force with a freeplay region in the pitch
degree of freedom. The behaviour of the frequency response curve and the response

waveform were compared to that of the linear system, as well as to the general behaviour
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of a purely mechanical system subject to a similar nonlinearity. If the nonlinear system

response is presented in the form of a transfer function, much of the information about

the nonlinear behaviour is lost. For this reason, the nonlinear characteristics of the

aeroelastic system were studied in terms of the frequency response curve rather than the

transfer function.

6.2 Conclusions

6.2.1 Linear Aeroelastic System

When resonance testing is carried out using the sine sweep method, the choice of
frequency sweep-rate can significantly affect the accuracy of the resulting modal
frequency and damping calculations.

Parameters calculated using the time-domain method are, in general, more precise
than those obtained using the spectral, or Fourier transform method.

The Nyquist plot yields more accurate damping values than the transfer function
magnitude plot and the half power point method, but the sweep-rate has an important
effect on the shape of the plot, and points must be carefully selected to provide
accurate results at higher sweep-rates.

The ideal sweep-rate is a function of modal natural frequency, modal damping, and
airspeed.

The accuracy of the calculated system parameters is dependent on the modal
damping. If the mode is highly damped, a faster sweep-rate is still quite accurate.
For lightly damped modes, a slow sweep-rate is essential for accurate results. For the
aeroelastic system, modal damping is a function of airspeed, and as the airspeed is
increased, the sweep-rate must be decreased to maintain the same accuracy.

For the same sweep-rate, a decreasing sweep yields more accurate damping values

than an increasing sweep.

6.2.2 Nonlinear Aeroelastic System

The frequency response of the nonlinear aeroelastic system is much more complex

than that of the linear system, even for small nonlinearities.
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e The type of nonlinearity, as well as the geometric parameters of the specific
nonlinearity, can have an important effect on the response behaviour of the nonlinear
system.

e The most significant difference between the linear and the nonlinear systems is that
the nonlinear system response is not at the same frequency as the forcing function
across the entire range of the frequency sweep.

¢ The Fourier transform method of obtaining the transfer function assumes that the
system responds at the same frequency as the input, or forcing function. This
assumption is not true for the nonlinear system studied, and the applicability of the
FFT method for calculating modal damping values is questionable.

o The introduction of a nonlinear restoring force in one of the two degrees of freedom
caused the Fourier transform method to overestimate the first mode damping values

by as much as 150%.

6.3 Recommendations for Future Research

[n this study, the linear, two-degree-of-freedom aeroelastic system subject to a sine sweep
excitation has been studied in some detail, but only one simple case of an equivalent,
structuraily nonlinear aeroelastic system was studied. The results obtained for the
nonlinear system suggest a number of potentially interesting extensions of the current
work:

¢ An investigation into the effect of sweep-rate on the nonlinear system response, as
well as a comparison of the nonlinear responses to increasing and decreasing
frequency sweeps at a constant sweep-rate.

e An investigation into possible modifications to the time-domain and spectral methods
of obtaining the system transfer function that would accommodate the harmonic
frequencies present in the nonlinear response.

® A more detailed investigation of the nonlinear harmonic response with the objective
of determining the factors (apart from response amplitude) responsible for the
appearance and disappearance of the harmonic waveforms in the frequency response

curve.
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The addition of a third degree of freedom with a natural frequency outside the range
of the frequency sweep, but close to one of the nonlinear harmonic responses, could
be used to investigate other possible implications of the nonlinear response.

The addition of a nonlinearity in the plunge degree of freedom, and a comparison of
the resulting system response to the results of this study.

The combination of structural nonlinearities in both degrees of freedom.

The introduction of aecrodynamic nonlinearities associated with transonic or separated
flow.

A comparison of the response of an aeroelastic system subject to a freeplay
nonlinearity to the response of an aeroelastic system subject to other types of
structural nonlinearities.
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Appendix A - Aerodynamic coefficients (from Theodorsen)
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Appendix B - Fourier analysis and the Laplace transform in
theory of vibrations

From the theory of vibrations, if the equation of motion of a system is
mx"(t)+cex"(t) + Kx(t) = Fye'™
It can be shown that the steady state solution may be written as
Fe™
x(t) = Z_O(ia_))— .
Z(iw) is called the impedance of the system where,
Z(io) = mio)’ + (io) + K .
The admittance of the system is the inverse of the impedance, or
1

Z(iw)
Because the differential equation (B.1) is linear, the principle of superposition is
applicable. If the right hand side of equation (B.1) is

F(e)+ Fy(t) = Fige™ + Fye™
then the solution will be

A
)= S0} Zi2a)

More generally, if the right hand side, or forcing function is

F(r)= ic"e"""

=0

then the solution will be

x(t) = i __Sn__gmax

(B.1)



If the forcing function is represented by a Fourier integral
1
F()=—=| G(w)e™dw
) 2 E (@)
where

G(w)= F()e " ™dt (B.2)

L
then the solution will be

G(w)

()= J_ 'L’ Z(iw)

e“dw . (B.3)

The above procedure may also be expressed through the Laplace transform. If iwis
replaced by s in equations (B.2) and (B.3) and it is assumed that F(?) =0 for ¢<0; then

equation (B.2) becomes

V27G(is) = [ F(e)e ™t (B.4)
and equation (B.3) becomes
i EG(—I'S)

e“ds. (B.5)

()= 2m -va Z(s)

From equation (B.4) it can be seen that JZﬂG(—is) is the Laplace transform of /() and

from equation (B.5) that x(?) is the inverse Laplace transform of £ {F%( 5)’ Le

()= f.{f{F}}

Z(s)

or

£{x0)} -

To summarize, the Laplace transform of the response is equal to the Laplace transform of

the forcing function muitiplied by /Z(s)



Appendix C - Full Text Equations for Chapter 3
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Equation 3.10
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Coefficients of Equations (3.12) and (3.13)
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First Mode
Recommended sweep rate Actual rate (in # of times recommended rate)
%U* © f C Hz/min rad/s® 0.000003 0.000006 0.000012 0.000024
59 0.233 | 0.0371 | 0.0357 0.000379 0.000040 0.08 0.16 0.30 0.61
64 0.219 | 0.0349 | 0.0375 0,000369 0.000039 0.08 0.16 0.31 0.62
68 0.208 | 0.0331 | 0.0391 0.000362 0.000038 0.08 0.16 0.32 0.63
73 0.198 | 0.0315 | 0.0402 0.000347 0.000036 0.08 0,17 0.33 0.66
77 0.19 | 0.0302 | 0.0407 0.000327 0.000034 0.09 0.18 0.35 0.70
82 0.184 | 0.0293 | 0.0404 0.000302 0.000032 0.09 0.19 0.38 0.76
86 0.179 | 0.0285 | 0.0386 0.000261 0.000027 0.1 0.22 0.44 0.88
N 0.177 | 0.0282 | 0.0343 0.000202 0.000021 0.14 0.28 0.57 1.14
96 0.173 | 0.0275 | 0.0244 0.000097 0.000010 0.29 0.59 1.18 235
98 0.173 | 0.0275 | 0.0152 0.000038 0.000004 0.76 1.51 3.03 6.06
Second Mode
Recommended sweep rate Actual rate (in # of times recommended rate)
%U* [ f C Hz/min rad/s” 0.000003 0.000006 0.000012 0.000024
59 0.442 | 0.0703 ] 0.038 0.001543 0.000162 0.02 0.04 0.07 0.15
64 0.406 | 0.0646 | 0.0429 0.001660 0.000174 0.02 0.03 0.07 0.14
68 0.374 | 0.0595 | 0.0483 0.001785 0.000187 0.02 0.03 0.06 0.13
73 0.346 | 0.0551 | 0.0543 0.001931 0.000202 0.01 0.03 0.06 0.12
77 0.32 | 0.0509 | 0.0611 0.002092 0.000219 0.01 0.03 0.05 0.11
82 0.296 | 0.0471 | 0.0691 0.002289 0.000240 0.01 0.03 0.05 0.10
86 0.274 | 0.0436 | 0.0787 0.002544 0.000266 0.01 0.02 0.05 0.09
91 0.252 | 0.0401 | 0.0911 0.002884 0.000302 0.01 0.02 0.04 0.08
96 0.232 | 0.0369 | 0.1094 0.003525 0,000369 0.01 0.02 0.03 0.07
98 0.221 | 0.0352 | 0.1231 0.004049 0.000424 0.01 0.01 0.03 0.06

Table 1. Comparison of the four sweep rates used in this study, .000003, .000006, .000012 and .000024 radians/(non-dimensional
second)’, with Ewin's recommended sweep rate, 216 £2¢7 , at ten different values of non-dimensional airspeed. {/* is the linear flutter
speed in non-dimensional units, @ is frequency in radians per non-dimensional second, £ is damping factor, and fis frequency in Hz,



Sweep rate in radians/(non-dimensional second)?

Parameter | Theory .000003 .0000006 .000012 .000024
D?rr:;n Spectral DE::in Spectral D'zit!:;n Spectral D-lt;ix::n Spectral
o 208 208 207 209 206 211 201 214 207
G HPP 0391 .0430 | .0505 | .0453 | .0507 | .0503 ) .0589 | .0598 | .0360
Ci Nyquist 0423 | 0524 | .0438 | 0505 | .0474 | 0371 | .0538 | .0307
2 374 376 374 375 374 376 375 377 .370
C;HPP 0483 0472 | 0492 | .0483 | .0512 | .0487 | .0401 | .0494 | .0349
&3 Nyquist 0442 | 0480 | .0480 | .0518 | .0483 | .0522 | .0488 | .0291

Table 2. Comparison of first and second mode frequency and damping values obtained
at 68% of flutter speed using time-domain and spectral methods. ®, and o, are the first

and second mode natural frequencies in radians/non-dimensional second, &; HPP and &,
HPP are the first and second mode half-power point damping values and &, Nyquist and
€2 Nyquist are the first and second mode Nyquist damping estimates.

Sweep rate in radians/(non-dimensional second)’

Parameter | Theory .000003 .0000006 .000012 .000024

omain | S8 | Domain | P! | pomain | Spectrl | poc, | Spesan

oy 173 175 172 A77 173 179 165 182 176
¢, HPP 0044 0298 | .0347 | .0348 | .0413 | 0189 | .0288 | .0588 { .0634
i Nyquist 0281 | 0342 | 0312 | .0348 | .0259 | .0281 | .0331 | .0207

Oy 232 1 233 233 233 233 235 233 229 235
G HPP 1094 0929 | .0977 | .0862 | .0988 n/a 0567 n/a .0892
G2 Nyquist .0866 | .0867 | .0916 | .0919 | .0872 | .1276 | .0907 | .0899

Table 3. Comparison of first and second mode frequency and damping values obtained
at 96% of flutter speed using time-domain and spectral methods. ©, and w, are the first

and second mode natural frequencies in radians/non-dimensional second, £, HPP and &;
HPP are the first and second mode half-power point damping values and &, Nyquist and

€2 Nyquist are the first and second mode Nyquist damping estimates. n/a indicates
applicable calculation not possible.




£=85", fnax=4 Hz f=4s", foa=2 Hz
Parameter | Theoretical Value | 4y~9500, nw=3500 nw=4000
Af=0.0008 Hz | AF=0.0012Hz | AF=0.0010 Hz

o1 173 165 170 175

¢\ HPP 0288 0611 0468
0244

€1 Nyquist 0281 0462 0229

®; 232 233 233 233

&2 HPP 0567 0972 0939
1094

&2 Nyquist 1276 0929 0874

Table 4. Comparison of first and second mode frequency and damping values obtained
at 96% of flutter speed. f is the sampling frequency in s™'; nw is the length of the window
in number of samples. ®; and o, are the first and second mode natural frequencies, &,
HPP and &, HPP are the first and second mode half-power point damping values and &;
Nyquist and &; Nyquist are the first and second mode Nyquist damping estimates. In all

cases, a Hanning window was used with 50% overlap.




(a)

P of Transfer function, pitch with moment input Transfer function, iﬁgi? with flap velocity
flutter ) Haif- ) ) Half- :
speed |Maximum] Natural power Nyquist |Maximum| Natural nower Nyquist

value |frequency dampi damping value |frequency dampin damping
59 877 0.233 0.039 0.038 4.3 0.233 0.038 0.038
64 815 0.219 0.041 0.041 5.1 0.220 0.040 0.040
68 968 0.208 0.043 0.042 5.9 0.208 0.042 0.042
73 1139 0.198 0.044 0.044 6.9 0.199 0.044 0.043
77 1334 0.190 0.045 0.044 8.0 0.191 0.045 0.044
82 1567 0.184 0.045 0.044 9.3 0.184 0.045 0.044
86 1869 0.179 0.044 0.042 11.0 0.179 0.043 0.042 |
91 2343 0.176 0.039 0.038 13.8 0.176 0.039 0.038
96 3477 0.175 0.030 0.028 20.4 0.175 0.029 0.028
98 5317 0.176 0.022 0.020 31.2 0.176 0.022 0.020
b

Percent of Transfer function, plunge with lift input Transfer function, ?;L;r:ge with flap velocity
flutter
speed |Maximum| Natural ::’:f;r Nyquist |Maximum! Natural ;i,'fe'r Nyquist

value |frequency dampi damping value |frequency dampin damping
59 2427 0.234 0.037 0.037 7.5 0.234 0.037 0.037
64 2765 0.220 0.039 0.039 8.5 0.220 0.039 0.039
68 3098 0.209 0.041 0.040 8.5 _0.209 0.041 0.040
73 3422 0.189 0.042 0.042 10.5 0.199 0.042 0.042
77 3739 0.191 0.043 0.042 11.4 0.191 0.042 0.042
82 4059 0.185 0.042 0.042 12.4 0.185 0.042 0.042
86 4423 0.180 0.041 0.040 13.5 0.180 0.041 0.040
91 4970 0.176 0.037 0.036 156.2 0.176 0.037 0.036
96 6394 0.175 0.028 0.027 19.5 0.175 0.028 0.027
98 8871 0.176 0.021 0.020 27.1 0.176 0.021 0.020

Table 5. Estimated first mode frequency and damping values obtained using the time-
domain approach at an increasing sweep-rate of .000003 radians/(non-dimensional
second)®. Linear system with airfoil parameters from Chapter 4.



a

Percent of Transfer function, pitch with moment input Transfer function, lf‘gﬁ? with flap velocity
flutter Haff- Haff-
speed |[Maximum| Natural Nyquist [Maximum| Natural Nyquist
value |[frequency d:l:ner damping value |frequency dap;wgr damping
58 183.1 0.442 0.038 0.038 1.66 0.443 0.038 0.038
64 217.7 0.406 0.043 0.042 1.84 0.406 0.043 0.043
68 254.0 0.376 0.047 0.044 2.03 0.375 0.048 0.048
73 2894 0.345 0.053 0.053 2.22 0.346 0.053 0.053
77 328.4 0.320 0.055 0.059 2.41 0.320 0.057 0.060
82 368.3 0.296 0.0585 0.066 2.59 0.297 0.057 0.067
86 408.7 0.274 0.074 0.072 2.77 0.275 0.074 0.073
91 445.3 0.253 0.082 0.079 2.92 0.254 0.083 0.081
96 475.1 0.233 0.093 0.087 3.02 0.235 0.095 0.088
98 483.4 0.224 0.101 0.088 3.03 0.225 0.105 0.090
(b
Percent of Transfer function, plunge with Iift input Transfer function, ;?rl:;r:ge with flap velocity
fiutter
. Half- 3 . Half- .
speed |Maximum| Natural power Nyqu]st Maximum| Natural power Nyquist
value |frequency damping damping value |[frequency dampin damping
59 136.5 0.439 0.051 0.051 0.49 0.439 0.048 0.048
64 157.0 0.400 0.069 0.070 0.54 0.402 0.068 0.069
68 172.5 0.369 0.058 0.071 0.58 0.369 0.059 0.068
73 190.6 0.338 0.079 0.117 0.63 0.339 0.080 0.112
77 210.2 0.310 0.043 0.079 0.68 0.310 0.044 0.076
82
86
N
96
98

Table 6. Estimated second mode frequency and damping values obtained using the time-

domain approach at an increasing sweep-rate of .000003 radians/(non-dimensional

second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




(a

Percent of Transfer function, pitch with moment input Transfer function, lﬁg&h with flap velocity
flutter
. Half- . " Half- .
speed |Maximum| Natural power Nyquist [Maximum| Natural power Nyquist
value |frequency damping damping | value |frequency dampin damping
£9 696.5 0.230 0.037 0.036 4.4 0.231 0.036 0.036
64 839.8 0.217 0.038 0.038 5.2 0.217 0.038 0.038
68 999.2 0.205 0.040 0.040 6.1 0.205 0.040 0.040
73 1178.1 0.195 0.041 0.041 7.1 0.195 0.041 0.041
77 1383.5 0.187 0.042 0.041 8.3 0.187 0.042 0.041
82 1630.2 0.181 0.041 0.041 9.6 0.181 0.041 0.041
86 1955.5 0.176 0.040 0.040 11.5 0.176 0.039 0.039
91 24735 0.172 0.035 0.034 14.5 0.172 0.035 0.034
96 3746.8 0.170 0.026 0.025 219 0.170 0.026 0.025
98 5859.2 0.169 0.020 0.018 342 0.169 0.020 0.018
(b)
Percent of Transfer function, plunge with lift input Transfer function, ?::;tge with flap velocity
flutter Haff- Raif-
speed |Maximum| Natural power Nyquist |Maximum| Natural power Nyquist
value |frequency dampin damping { value |frequency damping damping
. 59 2464.8 0.231 0.036 0.036 7.6 0.231 0.036 0.036
64 2810.5 0.217_ | 0.038 0.038 8.7 0.217 0.038 0.038
68 3151.3 0.206 0.040 0.039 8.7 0.206 0.040 0.038
73 3484.0 0.196 0.041 0.041 10.7 0.196 0.041 0.041
77 3810.2 0.188 0.041 0.041 11.7 0.188 0.041 0.041
82 4142.7 0.182 0.042 0.041 12.7 0.181 0.041 0.041
86 4524.7 0.176 0.039 0.039 13.8 0.176 0.039 0.039
91 5105.4 0.173 0.035 0.035 15.6 0.173 0.035 0.035
96 6643.8 0.170 0.027 0.026 20.3 0.170 0.027 0.026
98 9360.7 0.170 0.020 0.019 28.6 0.170 0.020 0.020

Table 7. Estimated first mode frequency and damping values obtained using the time-
domain approach at a decreasing sweep-rate of .000003 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



(a)

P tof Transfer function, pitch with moment input Transfer funct:on,iggzth with flap velocity
flutter Half Half
speed |Maximum| Natural po‘:’e‘r Nyquist |Maximum{ Natural po‘:’”;r Nyquist
vaiue [frequency dampin damping { value |frequency damping damping
59 183.8 0.441 0.038 0.038 1.66 0.441 0.038 0.038
64 217.4 0.405 0.043 0.043 1.85 0.405 0.043 0.043
68 253.0 0.373 0.048 0.048 2.03 0.373 0.048 0.048
73 290.4 0.344 0.054 0.053 222 0.345 0.053 0.053
77 329.2 0.318 0.060 0.059 2.41 0.319 0.060 0.060
82 368.9 0.295 0.067 0.066 2.60 0.295 0.067 0.066
86 408.3 0.273 0.074 0.073 2.77 0.273 0.074 0.074
91 445.0 0.252 0.083 0.080 2.92 0.253 0.084 0.082
96 473.5 0.233 0.095 0.085 3.01 0.233 0.097 0.090
98 480.9 0.224 0.078 3.02 0.224 0.083
(b
Percent of Transfer function, plunge with lift input Transfer function, ?rl‘t:)r:nge with flap velocity
flutter Half. Half.
speed |Maximum{ Natural po?v e.r Nyquist {Maximum| Natural posv e- . Nyquist
value |frequency dampin damping | value [frequency damping damping
59 137.9 0.438 0.049 0.049 0.50 0.438 0.047 0.046
64 159.0 0.400 0.065 0.063 0.54 0.401 0.065 0.064
68 174.3 0.368 0.059 0.59 0.368 0.057
73 192.6 0.337 0.075 0.64 0.338 0.071
77 2123 0.309 0.103 0.69 0.310 0.098
82
86
a1
96
98

Table 8. Estimated second mode frequency and damping values obtained using the time-
domain approach at a decreasing sweep-rate of .000003 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




Percent of Transfer function, pitch with moment input Transfer function, .ﬁﬁ&h with flap velocity
flutter
. Half- . . Half- .
speed |Maximum| Natural Nyquist | Maximum| Natural Nyquist
value |frequency dapmn W iE nl damping | value |[frequency dapmn " s.n' damping
59 664.5 0.234 0.041 0.040 4.2 0.235 0.040 0.039
64 799.3 0.220 0.043 0.040 5.0 0.221 0.042 0.039
68 947 .4 0.209 0.045 0.044 5.8 0.209 0.044 0.044
73 1113.4 0.200 0.047 0.045 6.7 0.200 0.046 0.045
77 1302.1 | 0.191 0.048 0.046 7.8 0.192 0.047 0.046
82 1525.6 0.185 0.048 0.047 9.1 0.185 0.047 0.046
86 1813.9 0.181 0.043 0.042 10.7 0.181 0.043 0.042
91 2255.8 0.177 0.043 0.040 13.3 0.178 0.043 0.041
96 3263.6 0.177 0.035 0.031 19.2 0.177 0.034 0.031
98 4759.9 0.178 0.028 0.023 28.0 0.178 0.028 0.023
b
Percent of Transfer function, plunge with lift input Transfer function, ?::ﬁe with flap velocity
flutter Half Half-
speed |Maximum| Natural -r Nyquist |Maximum| Natural wer | Nyauist
value |frequency dggw?n damping | value |frequency dap; \pin damping
59 2393.0 0.235 0.038 0.037 7.4 0.235 0.038 0.038
64 27248 0.221 0.040 0.042 8.4 0.222 0.040 0.042
68 3050.6 0.210 0.042 0.041 9.4 0.210 0.042 0.041
73 3366.8 0.200 0.043 0.043 10.3 0.201 0.043 0.043
77 3674.0 0.192 0.044 0.044 112 0.192 0.044 0.044
_82 3982.2 0.186 0.044 0043 | 122 0.186 0.044 0.044
86 4326.5 0.180 0.047 0.045 132 | 0.181 0.046 0.045
91 4829.3 0.178 0.040 0.039 14.7 0.178 0.039 0.039
96 6069.8 0.177 0.032 0.031 18.5 0.177 0.032 0.031
98 8039.1 0.178 0.026 0.024 24.5 0.178 0.026 0.024

Table 9. Estimated first mode frequency and damping values obtained using the time-
domain approach at an increasing sweep-rate of .000006 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.




(@

Percent of Transfer function, pitch with moment input Transfer function, lzg&h with flap velocity
flutter alf
speed |Maximum| Natural | Half-power | Nyquist |Maximum| Natural att- Nyquist
value |frequency| damping | damping | value |frequency dapr%?r: damping
59 182.7 0.443 0.039 0.038 1.66 0.443 0.038 0.038
64 216.1 0.407 0.043 0.043 1.84 0.407 0.043 0.043
68 251.5 0.375 0.048 0.048 2.03 0.375 0.048 0.048
73 288.9 0.346 0.054 0.053 2.22 0.347 0.053 0.053
77 327.9 0.320 0.060 0.059 241 0.321 0.059 0.059
82 367.8 0.296 0.067 0.066 2.59 0.297 0.066 0.066
86 407.7 0.274 0.074 0.072_ 2.77 0.275 0.074 0.073
91 4453 | 0254 0.082 0.079 2.92 0.255 0.083 0.081
96 4756 | 0.233 0.086 0.092 3.03 0.235 0.080 0.093
98 484.5 0.225 0.071 0.108 3.04 0.225 0.076 0.111
(b)
Percent of Transfer function, plunge with lift input Transfer function, ;Iar!:.;nuge with flap velocity
flutter Haif
speed |Maximum| Natural | Half-power | Nyquist |Maximum| Natural posv e-r Nyquist
value |[frequency; damping | damping| value |frequency dampin damping
59 135.8 0.440 0.047 0.049 0.49 0.440 0.047 0.048
64 153.7 0.402_ 0.042 0.052 0.54 0.403 0.043 0.051
68 171.5 0.369 0.056 0.069 0.58 0.370 0.056 0.067
73 189.6 0.338 0.070 0.63 0.339 0.068
77
82
86
91
96
98

Table 10. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000006 radians/(non-dimensional
second)®. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate

areas of the transfer function with mode definition too poor to calculate parameters.




_{a)

Percent of Transfer function, pitch with moment input Transfer function, .ﬂgﬁ:h with flap velocity
flutter Calf Tl
speed |Maximum| Natural po:/e.r Nyquist |Maximum| Natural a1 Nyquist
value |frequency dampin damping | value |frequency d;’nv::r: damping
59 2484.3 0.230 0.037 0.036 76 0.230 0.037 0.036
64 2810.3 0.216 0.039 0.039 8.7 _0.216 0.039 0.038
68 3151.4 0.204 0.040 0.039 9.7 0.204 0.040 0.040
73 3483.8 0.195 0.042 0.041 10.7 0.195 0.042 0.041
77 3809.1 0.187 0.042 0.041 11.7 0.186 0.042 0.041
82 4138.7 0.180 0.042 0.041 12.7 0.180 0.042 0.041
86 4513.3 0.175 0.041 0.040 13.8 0.175 0.041 0.040
91 5070.2 0.171 0.037 0.037 15.5 0.171 0.037 0.037
96 6476.9 0.169 0.031 0.029 19.8 0.168 0.031 0.029
98 8745.3 0.168 0.026 0.023 267 0.167 0.026 0.024
(b)
Percent of Transfer function, piunge with lift input Transfer function, ?rl‘tgge with flap velocity
flutter Raif- Hafr-
speed |Maximum| Natural power Nyquist |Maximum| Natural power Nyquist
value |frequency damping damping | value |frequency damping damping
59 700.9 0.229 0.036 0.036 4.4 0.229 0.036 0.036
64 845.6 0.215 0.038 0.038 5.2 0.215 0.038 0.037
68 1006.6 0.204 0.040 0.039 6.1 0.204 0.040 0.039
73 1187.4 0.094 0.041 0.040 7.1 0.194 0.041 0.040
77 1394.8 0.186 0.042 0.041 8.3 0.186 0.042 0.041
82 1643.8 0.179 0.041 0.040 9.7 0.179 0.041 0.040
86 1970.4 0.174 0.040 0.038 11.6 0.174 0.040 0.038
91 2488.3 0.170 0.036 0.035 146 0.170 0.036 0.035
96 3704.9 0.168 0.029 0.027 216 0.168 0.029 0.028
98 5547.8 0.167 0.025 0.022 32.3 0.167 0.025 0.022

Table 11. Estimated first mode frequency and damping values obtained using the time-
domain approach at a decreasing sweep-rate of .000006 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



Percent of Transfer function, pitch with moment input Transfer function, Iﬁgﬁ? with flap velocity
flutter
. Halif- . . Half- .
speed |Maximum| Natural power Nyquist |Maximum| Natural power Nyquist
value |frequency damping damping | value |frequency dampin damping
59 185.6 0.442 0.037 0.036 1.66 0.441 0.038 0.038
64 217.7 0.404 0.043 0.043 1.85 0.404 0.043 0.043
68 253.3 0.372 0.048 0.048 2.04 0.373 0.048 0.048
73 290.8 0.344 0.054 0.053 2.22 0.344 0.054 0.054
77 329.7 0.318 0.060 0.059 2.41 0.318 0.060 0.060
82 369.3 0.294 0066 | 260 0.295 0.067 0.067
86 408.6 0.272 0.073 277 0.273 0.075 0.074
91 445.4 0.252 0.080 2.92 0.252 0.084 0.083
96 473.4 0.232 0.085 3.01 0.233 0.097 0.090
98 480.4 0.223 0.092 3.01 0.224 0.096
b
Percent of Transfer function, plunge with lift input Transfer function, ?:‘me with flap velocity
fAutter Half Rai-
speed |Maximum| Natural powe-r Nyquist |Maximum| Natural power Nyquist
value |frequency damping damping value |frequency dampin damping
59 138.6 0.437 0.048 0.048 0.50 0.437 0.046 0.045
64 157.0 0.400 0.049 0.55 0.400 0.046
68 175.3 0.367 0.059 0.58 0.368 0.055
73 193.7 0.337 0.074 0.64 0.337 0.070
77 213.4 0.309 0.103 0.69 0.309 0.095
82
86
91
96
98

Table 12. Estimated second mode frequency and damping values obtained using the
time-domain approach at a decreasing sweep-rate of .000006 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




(a)

Percent of Transfer function, pitch with moment input Transfer function, :ﬁgzth with flap velocity
flutter
. Half- " Half- .
speed | Maximum | Natural r Nyquist | Maximum| Natural Nyquist
value |frequency dame 2_9“ |En damping | value |frequency d: m° v p" 'anlg damping
59 £639.6 0.236 0.045 0.042 4.1 0.237 0.044 0.042
64 768.2 0.222 0.048 0.045 4.8 0.223 0.047 0.044
88 910.1 0.211 0.050 0.047 5.6 0.212 0.049 0.047
73 1067.4 0.201 0.052 0.049 6.5 0.202 0.051 0.049
7 1245.0 0.193 0.054 0.051 7.5 0.194 0.053 0.050
82 1453.1 0.187 0.044 0.048 8.6 0.187 0.046 0.049
86 1716.5 0.182 0.032 0.043 10.1 0.183 0.033 0.044
91 2107.8 0.179 0.022 0.034 12.4 0.180 0.024 0.037
96 2939.9 0.179 0.019 0.026 17.3 0.180 0.020 0.027
98 4050.7 0.180 0.021 0.022 23.9 0.181 0.022 0.024
b
Percent of Transfer function, plunge with lift input Transfer function, ?,[1:'38 with flap velocity
flutter Half. Haff.
speed | Maximum | Natural po?v e-r Nyquist |Maximum| Natural pc:ve- . | Nyquist
value |frequency damping damping | value |frequency damping damping
59 2322.9 0.237 0.041 0.040 7.2 0.237 0.041 0.040
64 2642.7 0.223 0.044 0.042 8.1 0.224 0.043 0.043
68 2955.2 0.212 0.046 0.044 9.1 0.212 0.046 0.044
73 3257.5 0.202 0.048 0.046 10.0 0.202 0.047 0.046
77 3547.4 0.194 0.049 0.047 10.8 0.195 0.048 0.047
82 3833.9 0.188 0.046 0.047 11.7 0.188 0.047 0.047
86 4144.1 0.183 0.033 0.043 12.6 0.183 0.034 0.043
91 4576.4 0.180 0.023 0.036 13.9 0.180 0.024 0.037
96 5563.1 0.179 0.019 0.030 17.0 0.179 0.020 0.031
98 6968.9 0.180 0.019 0.024 21.2 0.180 0.020 0.025 |

Table 13. Estimated first mode frequency and damping values obtained using the time-
domain approach at an increasing sweep-rate of .000012 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



(a

Percent of| TFENSTer function, pitch with moment input | oo '”"°"°"'if‘gfn“ with flap velocity
flutter Fialf alf
speed | Maximum| Natural @% | Nyquist {Maximum| Natural 8l 1 Nyquist
value |frequency dap mn v p". En' damping value |frequency dapmo “plu .En' damping
58 181.6 0.444 0.039 0.038 1.65 0.445 0.038 0.038
64 214.9 0.408 0.044 0.043 1.83 0.408 0.043 0.043
68 250.3 0.376 0.049 0.048 202 0.376 0.048 0.048
73 287.7 0.347 0.054 0.054 2.21 0.348 0.053 0.053
77 326.7 0.321 0.060 0.059 2.40 0.322 0.060 0.059
82 366.8 0.297 0.067 0.065 2.60 0.298 0.066 0.066
86 407.0 0.275 0.074 0.072 277 0.276 0.073 0.072
91 445.4 0.255 0.082 0.078 2.92 0.255 0.082 0.080
96 476.8 0.235 0.093 0.082 3.03 0.236 0.095 0.086
98
(b)
Sercert of Transfer function, plunge with [ift input Transfer function. ?:‘t;nugte with flap velocity
flutter Haf- Half-
speed | Maximum| Natural Nyquist |Maximum| Natural power Nyquist
value |frequency dal mping damping { value |frequency dampin damping
59 134.3 0.440 0.054 0.054 0.49 0.441 0.050 0.050
64 152.1 0.403 0.054 0.83 0.404 0.053
68 169.8 0.369 0.066 0.58 0.370 0.064
73 188.1 0.340 0.074 0.62 0.340 0.081
77 207.4 0.308 0.152 0.67 0.310 0.127
82
86
91
96
98

Table 14. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000012 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




_(a

Transfer function, pitch with moment input

Transfer function, pitch with flap velocity

Percent of input
flutter
. Half- . . Half- .
speed | Maximum | Natural Nyquist | Maximum| Natural power Nyquist
value |frequency d: m° W E,n' damping | value |[frequency damping damping
59 704.8 0.226 0.038 0.037 44 0.226 0.038 0.037
64 851.3 0.212 0.041 0.038 5.2 0.213 | 0.040 0.039
68 1014.3 0.201 0.042 0.039 6.2 0.201 0.042 0.041
73 1197.4 0.191 0.043 0.041 7.2 0.191 0.045 0.042
77 1407.0 0.183 0.044 0042 | 83 0.183 0.045 0.042 |
82 1657.4 0.176 0.044 0.042 9.7 0.176 0.045 0.042
88 1982.8 0.171 0.043 0.041 11.6 0.171 0.044 0.041
91 2483.4 0.167 0.041 0.038 14.5 0.167 0.041 0.038
96 3595.7 0.164 0.036 0.031 20.9 0.164 0.036 0.032
98 5110.4 0.163 0.032_ 0.027 29.6 0.163 0.033 0.027
{b
Percent of Transfer function, plunge with lift input Transfer function, ;:rl‘t;’rge with flap velocity
flutter
speed | Maximum | Natural Half-r Nyquist {Maximum| Natural ;ﬂ; Nyquist
value |frequency d;v:aien damping [ vaiue [frequency damping damping
59 2451.2 0.227 0.039 0.038 7.6 0.227 | 0.039 0.038
64 2796.2 0.214 0.041 0.040 8.6 0.213 0.042 0.041
68 3136.0 0.202 0.043 0.042 9.6 0.202 0.043 0.043
73 3466.5 0.192 0.044 0.043 10.6 0.182 0.045 0.044
77 3779.5 0.184 0.046 0.044 11.5 0.184 0.046 0.044
82 4100.0 0.178 0.046 0.044 12.5 0.177 0.046 0.045
86 4456.5 0.172 0.046 0.044 13.6 0.172 0.046 0.044
91 4966.4 0.168 0.043 0.041 15.2 0.168 0.043 0.042
96 6160.8 0.166 0.038 0.035 18.8 0.165 0.038 0.036
98 7910.9 0.164 0.034 0.029 242 | 0.164 0.034 0.029

Table 15. Estimated first mode frequency and damping values obtained using the time-
domain approach at a decreasing sweep-rate of .000012 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



(a)

Percent of Transfer function, pitch with moment input Transfer function, lag&h with flap velocity
flutter Half Half
speed |Maximum| Natural pof'"e . | Nyquist | Maximum| Natural pm‘;,er Nyquist
value |frequency dampi damping | value |frequency dampin damping
59 184.6 0.439 0.038 0.038 1.66 0.439 0.038 0.038
64 218.3 0.402 0.043 0.043 1.85 0.403 0.043 0.043
68 254.1 0.371 0.048 0.048 2.04 0.371 0.048 0.048
73 201.7 0.342 0.054 0.053 2.23 0.343 0.054 0.054
77 3306 0.316 0.060 0.059 2.41 0.317 0.060 0.060
82 370.3 0.293 0.067 0.066 260 0.293 0.068 0.067
86 4095 | 0.271 0.075 0073 | 277 0.271 0.076 0.075
91 4456 0.251 0.084 0.081 2.91 0.251 0.085 0.083
96 472.6 0.231 0.097 0.086 3.00 0.232 0.098 0.091
98 478.7 0.222 0.105 3.00 0.222 0.110
(b
bercent of Transfer function, plunge with lift input Transfer function, plarl‘:r:ge with flap velocity
futter Haif- Hafr-
speed |Maximum| Natural power Nyquist | Maximum| Natural power Nyquist
value |frequency damping damping | value |frequency damping damping
59 139.9 0.436 0.047 0.046 0.50 0.436 0.045 0.044
64 158.6 0.399 0.046 0.55 0.399 0.045
68 177.2 0.366 0.055 0.60 0.366 0.054
73 196.0 0.335 0.067 0.65 0.336 0.066
77 2158 0.308 0.093 0.70 0.309 0.083
82
86
91
96
98

Table 16. Estimated second mode frequency and damping values obtained using the
time-domain approach at a decreasing sweep-rate of .000012 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




(a)

Percent of Transfer function, pitch with moment input Transfer function, ;gﬁth with flap veiocity
flutter
speed |Maximum| Natural | 1T | nyquist |Maximum| Naturat | T | Nyquist
value |frequency dap::,w?; damping | value |frequency dam damping
59 599.9 0.239 0.053 0.048 3.8 0.240 0.051 0.048
64 719.2 0.225 0.056 0.051 4.5 0.226 0.055 0.051
68 8504 | 0213 | 0060 | 0.054 52 0214 | 0058 | 0.052 |
73 994.7 0.203 0.063 0.056 6.0 0.205 0.060 0.054
77 1156.1 0.196 0.065 0.057 6.9 0.197 0.063 0.055
82 1342.0 0.190 0.066 0.056 8.0 0.190 0.064 0.056
86 1571.1 0.185 0.066 0.056 9.3 0.186 0.064 0.056
91 1894.3 0.181 0.065 0.050 11.2 0.183 0.062 0.051
96 2522.5 0.182 0.059 0.033 14.8 0.183 0.057 0.036
88 3268.7 0.184 0.054 0.020 19.3 0.185 0.053 0.020
(b)
Percant ofl  TFaNSTer function, plunge with lit input Transfer function, ‘i":"‘)’;tge with fiap velocity
flutter Half- Haff-
speed [Maximum| Natural power Nyquist |Maximum| Natural power Nyquist
value |frequency dampin damping | value [frequency dampin damping
59 2202.0 0.239 0.048 0.045 6.8 0.240 0.047 0.046
64 2502.7 0.226 0.051 0.048 7.7 0.227 0.050 0.048
68 27948 0.214 0.053 0.051 8.6 0.215 0.053 0.051
73 3075.1 0.205 0.055 0.052 94 0.206 0.055 0.053
77 3347.3 0.197 0.057 0.052 10.2 0.197 0.057 0.054
82 3594.7 0.190 0.058 0.055 10.9 0.191 0.057 0.055
86 3858.0 0.186 0.058 0.053 11.7 0.186 0.057 0.053
91 4197.0 0.183 0.055 0.050 12.8 0.184 0.065 0.051
96 4898.2 0.182 0.050 0.041 14.9 0.183 0.050 0.415
98 5783.6 0.183 0.046 0.030 17.6 0.184 0.046 0.030

Table 17. Estimated first mode frequency and damping values obtained using the time-
domain approach at an increasing sweep-rate of .000024 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



(a)

Percent of Transfer function, pitch with moment input | Transfer function, pitch with flap velacity input
flutter
. Half- . . Half- .
speed |Maximum| Natural power Nyquist |Maximum| Natural power Nyquist
value |frequency damoin damping | value frequency dampin damping
59 179.4 0.446 0.040 0.039 1.63 0.447 0.039 0.038
64 2126 0.410 0.045 0.044 1.87 0.411 0.044 0.043
68 248.0 0.377 0.049 0.049 2.01 0.379 0.049 0.048
73 _2855 0.349 0.041 0.053 2.20 0.350 0.042 0.053
77 324.7 0.323 0.034 0.056 2.39 0.324 0.036 0.057
82 | 3663 0.299 0.062 0.067 2.58 0.300 0.064 0.066
86 385.8 0.277 0.044 0.072 2.76 0.278 0.047 0.072
91 446.4 0.256 0.044 0.079 2.93 0.257 0.047 0.081
96
98
(o)
. s Transfer function, plunge with flap velocity
Percent of Transfer function, plunge with lift input input
flutter Half Haif
speed |Maximum{ Natural pow e.r Nyquist [Maximum| Naturai powe-r Nyquist
value |frequency dampin damping | value frequency dampin damping
59 132.3 0.437 0.058 0.051 0.48 0.443 0.054 0.054
64 149.2 0.404 0.056 0.063 0.52 0.405 0.056 0.062
68 166.6 0.371 0.043 0.061 0.57 0.372 0.044 0.061
73 184.6 0.340 0.032 0.060 0.61 0.342 0.033 0.060
77
82
86
91
96
98

Table 18. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000024 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.




(a

Percent of Transfer function, pitch with moment input | Transfer function, pitch with flap velocity input
flutter v
speed |Maximum| Natural aif- Nyquist |Maximum| Natural | Haif-power | Nyquist
value |frequency dpowgr damping | value |frequency| damping | damping
amping
59 703.2 0.222 0.044 0.041 4.4 0.222 0.044 0.042
64 8505 | 0.208 0.046 0.043 5.2 _0.208 0.047 0.045
68 1014.5 0.197 0.048 0.046 6.1 0.196 0.049 0.046
73 1198.7 0.186 0.050 0.046 7.1 0.186 0.051 0.047
77 1408.5 0.178 0.052 0.048 8.3 0.178 0.053 0.049
82 1656.7 0.171 0.046 0.049 97 0.172 0.048 0.052
86 1974.7 0.166 0.053 0.046 11.5 0.166 0.053 0.050
91 2449.7 0.162 0.038 0.046 14.2 0.162 0.405 0.047
96 3425.7 0.159 0.045 0.040 19.8 0.159 0.048 0.041
98 4603.4 0.157 0.045 0.034 26.5 0.157 0.045 0.035
(b)
Percert of Transfer function, plunge with lift input Transfer function, ?;nﬁe with flap velocity
flutter Tl
speed |Maximum| Natural af- Nyquist |Maximum| Natural | Half-power | Nyquist
value |frequency dzr.inw?r: damping | vaiue |frequency| damping | damping
59 2397.0 0.224 0.045 0.043 7.4 0.223 0.046 0.044
64 2735.0 0.210 0.048 0.046 8.4 0.209 0.049 0.046
68 3066.1 0.198 0.051 0.047 9.4 0.197 0.051 0.048
73 3386.7 0.189 0.053 0.049 10.9 0.188 0.053 0.050
77 3695.8 0.180 0.054 0.051 11.3 0.180 0.055 0.053
82 3999.8 0.174 0.042 0.052 12.3 0.173 0.045 0.053
86 4325.0 0.168 0.055 0.051 13.3 0.167 0.056 0.052
91 4758.9 0.165 0.031 0.042 14.6 0.163 0.035 0.047
96 5679.7 0.162 0.044 0.043 17.4 0.161 0.047 0.044
98 6897.8 0.161 0.045 0.036 21.2 0.160 0.047 0.037

Table 19. Estimated first mode frequency and damping values obtained using the time-
domain approach at a decreasing sweep-rate of .000024 radians/(non-dimensional
second)’. Linear system with airfoil parameters from Chapter 4.



(a)

Percent of Transfer function, pitch with moment input | Transfer function, pitch with flap velocity input
flutter "
speed |Maximum| Natural aif- Nyquist |Maximum| Natural H::; Nyquist
value |frequency dap m° “p" ai ngl damping value frequency dap; nping damping
59 184.8 0.436 0.039 0.038 1.66 0.436 0.039 0.039
64 218.7 0.400 0.043 0.043 1.84 0.400 0.044 0.043
68 _2546 0.368 0.049 0.048 2.03 0.369 0.049 0.049
73 202.4 0.340 0.055 0.053 2.22 0.340 0.055 0.055
77 3314 0.314 0.061 0.060 2.41 0.314 0.062 0.061
82 3711 | 0291 0.068 0.067 | 259 _0.291 0.069 0.068
86 410.0 0.269 0.076 0.074 2.76 0.269 0.077 0.076
91 4452 0.248 0.086 0.082 2.90 0.249 0.088 0.085
96 470.4 0229 | 0099 | 0.088 298 | 0230 0.101 0.092
98 475.0 0.220 0.078 2.97 0.221 0.085
(b
Percent of Transfer function, piunge with fift input Transfer function, ;?:;rge with flap velocity
Alutter Half- Half-
speed |Maximum| Natural power Nyquist | Maximum| Natural power Nyquist
value |frequency dampin damping | value | frequency damping damping
59 141.6 0.433 0.058 0.044 0.51 0.433 0.044 0.041
64 160.9 0.396 0.056 0.064 0.56 0.396 0.058 0.054
68 180.2 0.364 0.055 0.61 0.363 0.054
73 199.7 0.334 0.068 0.66 0.333 0.065
77 220.5 0.306 0.091 0.71 0.306 0.085
82
86
91
96
98

Table 20. Estimated second mode frequency and damping values obtained using the
time-domain approach at a decreasing sweep-rate of .000024 radians/(non-dimensional
second)®. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate

areas of the transfer function with mode definition too poor to calculate parameters.
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Figure 1. Two-dimensional, three degree of freedom airfoil section with flap
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Figure 2. Schematic of a typical freeplay nonlinearity. My is the preload, o ris the
beginning of the freeplay region, and & is the length of the freeplay region.
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Figure 3. Simulated sine sweep of one mode of the two-degree-of-freedom linear system
subject to an increasing frequency sweep at 68% of linear flutter speed and a sweep-rate
of .000006 radians/(non-dimensional second)®. (a) aerodynamic moment or input
function. (b) pitch response, (c) frequency of input and response.
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Figure 4. (a) Method used to obtain magnitude and phase lag for transfer function.

(b)&(c) Frequency transfer function, obtained from the time domain approach, for the
frequency sweep presented in Figure 3. (b) magnitude, (c) phase.
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Figure 7. Comparison of transfer functions obtained using Fourier transform (spectral)

methods. (a) Data obtained at 68% of linear flutter speed and sweep rates of .000003 and

.000024 radians/(non-dimensional second)?, (b) Data obtained at .000003 radians/(non-
. dimensional second)® and 68% and 96% of linear flutter speed.
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Figure 11. Comparison of plunge response transfer functions obtained using
aerodynamic lift input and aileron velocity input, at 98% of flutter speed. (a) sweep-rate
.000003 radians/(non-dimensional second)’, (b) sweep-rate .000024 radians/(non-
dimensional second).
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Figure 12. Comparison of pitch response transfer functions obtained using aerodynamic
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Figure 13. Comparison of pitch response transfer functions obtained using aerodynamic
moment input and atleron velocity input, at 98% of flutter speed. (a) sweep-rate .000003
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Figure 16. Comparison of the first mode damping and frequency estimates obtained
. using plunge and pitch response data at an increasing sweep-rate of .000003
radians/(non-dimensional second)®. (a) frequency, (b) damping.
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Figure 17. Comparison of the first mode damping and frequency estimates obtained
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. radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 18. Comparison of the first mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000012
. radians/(non-dimensional second)’, (a) frequency, (b) damping.



O Eigenvalues 0O plunge response © pitch response
0.24 ']
'®) (a)
E <)
=0.22 | @)
]
2 g
2]
¥ ° g
é_ 5 0.20 '®) @
-
w g o © 3
S0.18 O o g 2ls.
& 00
0.16 , . _ ‘
50% 60% 70% 80% 90% 100%
Percent of flutter speed
. O Eigenvalues O plunge response O pitch response
0.06 ;
0 % g o ®
S oo O |
0.05 o U o) !
g o
g 0 o
E o © o
a o !
E 0.03 a
o :
o
0.02 o |
o !
0.01 ‘ K : —
50% 60% 70% 80% 90% 100%
Percent of flutter speed

Figure 19. Comparison of the first mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000024
’ radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 20. Comparison of the second mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000003
. radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 21. Comparison of the second mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000006
. radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 22. Comparison of the second mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000012
. radians/(non-dimensional second)’, (a) frequency, (b) damping.
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Figure 23. Comparison of the second mode damping and frequency estimates obtained
using plunge and pitch response data at an increasing sweep-rate of .000024
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Figure 24. First mode transfer functions obtained from aerodynamic lift input and
. plunge response at 68% of the linear flutter speed, at four different sweep-rates and
without sweep.
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Figure 25. First mode frequency transfer functions obtained from aerodynamic moment
input and pitch response at 68% of the linear flutter speed, at four different increasing

sweep-rates and without sweep.
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Figure 26. Second mode frequency transfer functions obtained from aerodynamic lift
input and plunge response at 68% of the linear flutter speed, at four different increasing
sweep-rates and without sweep.
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Figure 27. Second mode frequency transfer functions obtained from aerodynamic
moment input and pitch response at 68% of the linear flutter speed, at four different

increasing sweep-rates and without sweep.
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Figure 28. First mode Nyquist diagram obtained from aerodynamic lift input and plunge
response at 68% of the linear flutter speed, at four different increasing sweep-rates and
without sweep.
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Figure 29. First mode Nyquist diagram obtained from aerodynamic moment input and
pitch response at 68% of the linear flutter speed, at four increasing sweep-rates and
without sweep.
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Figure 30. Second mode Nyquist diagram obtained from aerodynamic lift input and
plunge response at 68% of the linear flutter speed, at four increasing sweep-rates and

. without sweep.
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Figure 31. Second mode Nyquist diagram obtained from aerodynamic moment input
and pitch response at 68% of the linear flutter speed, at four increasing sweep-rates and
without sweep.



. Sweep rate in radians/(non-dimensionai second)?

OEigenvalues [1.000003 ¢©.000006 A.000012 X.000024
0.250 1

é @ |
8

- ey

o
N
X
=]

Frequency
(radians/non-dimensionat second)

0.170
0.150 , . , |
50% 60% 70% 80% 90% 100%
Percent of flutter speed
Sweep rate in radians/(non-dimensional second)?
. OEigenvalues (.000003 ©.000006 A.000012 X.000024
0.0600 T
(b)
X
0.0500 x X X X X
X A A D A
: o4 888
3 0.0400 é g @ é @ X
o
£
Q
£ 0.0300 gx
a
Od
0.0200 a |
O
0.0100 .
50% 60% 70% 80% 90% 100%
Percent of flutter speed

Figure 32. Effect of sweep-rate on the first mode damping and frequency estimates
. obtained using plunge response to an increasing frequency sweep, (a) frequency, (b)
damping.
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Figure 33. Effect of sweep rate on the first mode damping and frequency estimates
. obtained using pitch response to an increasing frequency sweep. (a) frequency, (b)
damping.
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Figure 34. Effect of sweep rate on the second mode damping and frequency estimates

obtained using plunge response to an increasing frequency sweep, (a) frequency, (b)

damping.
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Figure 35. Effect of sweep rate on the second mode damping and frequency estimates

obtained using pitch response to an increasing frequency sweep, (a) frequency,(b)

damping.
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Figure 36. First mode frequency transfer functions for increasing and decreasing sweep-
rates. Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
sweep-rate of .000003 radians/(non-dimensional second)’.
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Figure 37. First mode frequency transfer functions for increasing and decreasing sweep
rates. Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
. sweep-rate of .000024 radians/(non-dimensional second)’.
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Figure 38. Second mode frequency transfer functions at increasing and decreasing
sweep rates. Aerodynamic lift input and plunge response at 68% of the linear flutter
. speed and a sweep-rate of .000003 radians/(non-dimensional second)’.



o sweep up a sweep down ——no sweep

200

150

100

Transfer function magnitude

50

0.32 0.34 0.36 0.38 0.40 0.42
Frequency (radians/non-dimensional second)

Figure 39. Second mode frequency transfer functions at increasing and decreasing
sweep rates. Aerodynamic lift input and plunge response at 68% of the linear flutter
speed and a sweep-rate of .000024 radians/(non-dimensional second)’.
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Figure 40. First mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
sweep-rate of .000003 radians/(non-dimensional second)’.
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Figure 41. First mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
sweep-rate of .000024 radians/(non-dimensional second)’.
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Figure 42. Second mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
sweep-rate of .000003 radians/(non-dimensional second)’.
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Figure 43. Second mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
sweep-rate of .000024 radians/(non-dimensional second)’.
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Figure 44. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000003 radians/(non-

dimensional second)’. (a) frequency, (b) damping.
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Figure 45. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweeps. Transfer functions obtained using

. aerodynamic lift input and plunge response at a sweep-rate of .000003 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 46. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000006 radians/(non-
dimensional second)?. (a) frequency, (b) damping.
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Figure 47. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000006 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 48. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000012 radians/(non-
dimensional second)®. (a) frequency, (b) damping.
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Figure 49. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000012 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 50. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000024 radians/(non-

dimensional second)?, (a) frequency, (b) damping,.
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Figure 51. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweep. Transfer functions obtained from
aerodynamic lift input and plunge response at a sweep-rate of .000024 radians/(non-
dimensional second)z, (a) frequency, (b) damping.
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Figure 52. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000003 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 53. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000003
radians/(non-dimensional second)?, (a) frequency, (b) Hdamping.
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Figure 54. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000006 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 55. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000006
radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 56. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000012 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 57. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000012
radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 58. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000024 radians/(non-
dimensional second)?, (a) frequency, (b) damping.
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Figure 59. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweep. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000024
radians/(non-dimensional second)?, (a) frequency, (b) damping.
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Figure 60. Amplitude vs. frequency for undamped free vibrations of one degree of
freedom mechanical system (a) linear, (b) with a nonlinear hardening spring with
freeplay.
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Figure 61. Typical response curves at resonance for various levels of excitation for the
systems of Figure 60, (a) nonlinear spring (b) linear system.
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Figure 62. Theoretical frequency response curve for nonlinear hardening spring showing
regions of instability.
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Figure 68. (a) Typical superharmonic waveform response at four times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-
dimensional second)’ at U/U*=73%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 69. (a) Typical superharmonic waveform response at three times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-
dimensional second)’ at U/U*=73%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 70. (a) Typical superharmonic waveform response at two times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-
dimensional second)’ at U/U*=73%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 71. (a) Typical harmonic waveform response at one-and-a-half and two times the
input frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-
dimensional second)’ at U/U*=55%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 72. (a) Typical harmonic waveform response at one and a half times the input
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-
dimensional second)” at U/U*=64%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 73. (a) Typical subharmonic waveform response at two thirds of the input
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non-

dimensional second)” at U/U*=82%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 74. (a) Subharmonic waveform response at first mode natural frequency. Pitch
response to a decreasing sweep-rate of .000012 radians/(non-dimensional second)” at
U/U*=82%. (b) Power spectral density plot of frequency response shown in (a). Vertical
lines indicate input frequency range.
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Figure 77. (a) Subharmonic waveform response at first mode natural frequency. Pitch
response to a decreasing sweep-rate of .000012 radians/(non-dimensional second)” at
U/U*=91%. (b) Power spectral density plot of frequency response shown in (a). Vertical
lines indicate input frequency range.
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(a) .25 degrees, (b) .5 degrees and (c) .75 degrees.
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‘ airspeed equivalent to U/U*=0.82. Nonlinear curves obtained for nonlinear region
lengths of (a) .25 degrees, (b) .5 degrees and (c) .75 degrees.
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length of 0.25 degrees and a preload of (a) 0.75 degrees, and (b) 1.25 degrees.
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length of 0.25 degrees and a preload of (a) 0.0 degrees, and (b) 0.125 degrees.
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length of 0.25 degrees and a preload of (a) 0.25 degrees, and (b) 0.50 degrees.
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length of 0.25 degrees and a preload of (a) 0.75 degrees, and (b) 1.25 degrees.
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Figure 95. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)’, and a non-dimensional

. airspeed equivalent to U/U*=0.73. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.0 degrees, and (b) 0.125 degrees.
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Figure 96. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)’, and a non-dimensional

. airspeed equivalent to U/U*=0.73. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.25 degrees, and (b) 0.50 degrees.
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Figure 97. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional

. airspeed equivalent to U/U*=0.73. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.75 degrees, and (b) 1.25 degrees.
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Figure 98. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional

. airspeed equivalent to U/U*=0.82. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.0 degrees, and (b) 0.125 degrees.
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Figure 99. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional
airspeed equivalent to U/U*=0.82. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.25 degrees, and (b) 0.50 degrees.
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Figure 100. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional
airspeed equivalent to U/U*=0.82. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.75 degrees, and (b) 1.25 degrees.
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Figure 101. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional

‘ airspeed equivalent to U/U*=0.91. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.0 degrees, and (b) 0.125 degrees.
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Figure 102. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional

. airspeed equivalent to U/U*=0.91. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.25 degrees, and (b) 0.50 degrees.
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Figure 103. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)?, and a non-dimensional
airspeed equivalent to U/U*=0.91. Nonlinear curves obtained for a nonlinear region
length of 0.25 degrees and a preload of (a) 0.75 degrees, and (b) 1.25 degrees.
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Figure 104. Transfer functions obtained using Fourier tranform and time domain methods. Results from the pitch response to a
decreasing frequency sweep with flap velocity input at U/U*=0.77. Sweep-rate .000012 radians/(non-dimensoinal second)®.



