
INFORMATION TO USERS

This manuscript has been reproduced trom the microfilm master. UMI films

the text directly trom the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face. while others may be trom any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print. colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins. and improper

alignment can adversely affect reproduction.

ln the unlikely avent that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had ta be removed, a note will indicate the deletion.

Oversize materials (e.g., maps. drawings. charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overtaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor. MI 48106-1346 USA

800-521-0600





•

•

•

Identification of Aeroelastic Parameters using Sweep
Excitation

by
Catharine Chauvin Marsden

Department of Mechanica( Engineering
McGiIf University

Montreal

May 2000

A thesis submitted to the Faculty of Graduate Studies and Researeh in partial fulfilment
of the requirements of the degree of Master of Engineering.

© C. Marsden 2000



1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 We!lington Street
Ottawa ON K1 A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A 0N4
canada

Your fie Vornt,.MrrInt;tI

The author has granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
pemusslOD.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conselVe la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70645-1

Canada



•

•

•

Abstract
The method ofsweep excitation is employed in the resonance testing ofaircraft and other

structures. The method allows resonant frequencies and corresponding modal damping

parameters to be calculated from a limited amount of real time test data The amount of

test time required to obtain the system's frequency response charaeteristics is reduced by

subjeeting the structure to an eotire range of frequencies within one test pattern, or

"sweep", instead of repeating individual tests al a number ofditTerent frequencies. The

"sweep-ratetl is defined as the rate at which the frequency increases or decreases during

the frequency sweep. This thesis studies the effect ofsweep-rate and sweep-direction on

the accuracy ofestimated system parameters, as weil as assessing two different methods

used to reduce discrete time histories to frequency transfer data. The impact of

introducing a structural nonlinearity into the aeroelastic system is also investigated.

Numerical simulations ofa two-degree-of-freedom airfoil with a flap subject to two­

dimensional, incompressible, inviscid flow were performed. The airfoil was subjected ta

a sweep excitation by applying a flap input at a known frequency and sweep-rate. Data

points obtained through numerical integration of the equations-of-motion were used ta

calculate modal frequency and damping parameters using two techniques, identified as

the "time-domain" and Fourier transfonn methods, and the two methods were compared.

Results obtained at different sweep-rates, as weil as for increasing and decreasing

frequency sweeps were compared for a number ofdifferent flow velocities up to the

linear flutter speed.

The effect of introducing a structural nonlinearity was investigated by modifiying the

linear system with a bilinear spring containing a freeplay region in the pitch degree-of­

freedom. The resulting system was subjected to sweep excitations at one of the sweep­

rates used on the linear syste~ and the nonlinear behaviour of the resulting frequency

response curves were investigated for a number ofdifferent spring configurations.

Nonlinear modal frequencyand damping values are also compared to the corresponding

linear values, and the effect of the system nonlinear response on the Fourier transfonn

method ofobtaining the frequency transfer function is investigated.
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Sommaire
L'excitation sinusoïdale à fréquence variable est une méthode couramment employée

dans le contexte des mises à l'essai et analyses de résonance des aéronefs et autres

structures. C'est une méthode qui permet le calcul des paramètres du système à panir

d'un minimum de données obtenues en vol. La quantité de donnés requises est réduite en

faisant un seul essai de vol comprenant plusieurs fréquences d'excitation au lieu

d'effectuer de nombreuses manœvres, chacune ayant une fréquence fixe. L'objectifde ce

travail est d'étudier des conséquences de l'emploi de la méthode de la fréquence variable

sur la précision de l'identification des paramètres du système. L'étude du système linéaire

comprend trois parties; l'effet de la vitesse à laquelle la fréquence de l'excitation est

variée, l'effet d'une variation croissante ou décroissante des fréquences ainsi qu'une

évaluation de deux méthodes appliquées pour obtenir les fréquences résonantes et les

valeurs d'amortissement des modes d'oscillation à partir des données obtenues en vol. Le

travail conclu avec une investigation sur l'impact de l'introduction d'une non-linéarité

structurelle sur la réponse dynamique du système aéroélastique.

Des simulations numériques ont été effectués dans le cas d'un profil à deux degrés de

liberté muni d'un volet et soumis à un écoulement non-visqueux, incompressible et bi­

dimensionel. Le profil a été soumis à une excitation périodique par le moyen

d'oscillations prédétenninées des volets et les équations de mouvement ont été résolues

avec une méthode numérique. Ces données numériques, simulations des données

"réelles" d'un essai de vol, ont été utilisées afin de calculer les fréquences naturelles et les

valeurs d'amortissement des modes aéroélastiques du profil. Une comparaison des

résultats a été effectuée pour plusieurs vitesses d'écoulement différentes.

L'effet de la présence d'une non-linéarité structurelle a été étudié en introduisant un jeu

dans le moment de rotation au profil linéaire. Le profil non-linéaire a été soumis a une

excitation à fréquence variable et les comportements résultants ont été comparés pour

plusieurs paramètres de la non-linéarité. De plus, les valeurs obtenues pour les

fréquences naturelles et l'amortissement des modes ont été comparés aux valeurs

obtenues pour le système linéaire.
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1 Introduction

1.1 Aeroe/asticity

Aeroelasticity is the study of the effect ofaerodynamic forces on elastic structures. In the

context ofaeroelasticity, the extemal forces and the defonnation ofthe elastic body are

interdependent. This differs from classicaI elasticity where, in generaJ, the defonnation

of the body does not affect the force being applied to il. Aeroelastic analysis is

applicable to many problems in both civil and mechanicaI engineering: such as the flow

of fluids around bridges and tall structures, around the blades of turbomachinery and

within flexible pipes. One of the primary fields ofapplication is in the area ofaircraft

design, particularly lifting surfaces such as wings and tails, and control surfaces such as

flaps and ailerons.

The aerodynamic forces and moments acting on an airfoil are functions of the airfoil

shape, the angle ofthe airfoil relative to the airflow, and the velocity with which it

moves. These aerodynamic forces in tum influence the subsequent motion ofthe airfoil.

When the airfoil defocms elastically in response to an applied force, the external

aerodynarnic forces acting on it change in response to the defonnation. In this way, a sort

of feedback mechanism is created where a smail detlection of the airfoil May cause a

change in the aerodynamic force that leads to a larger deflection of the airfoil. This

larger deflection May result in an increased aerodynamic force, until the initial

disturbance becomes very large. When this happens, the result is termed aeroelastic

instability.

Not ail the forces acting within an aeroelastic system are aerodynamic. Collar's

aeroelastic triangle (CoUar 1946), shown in the following, illustrates the three sets of

forces that May he present and their possible interactions.
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In the above diagram, the vertices A, E and 1represent the aerodynamic, elastic and

inertiaJ forces, respectively, and the various combinations rnay be described as follows:

1. Interactions between the elastic and inertial forces that give rise to mechanical

vibrations.

2. Interactions between the aerodynamic and elastic forces, and where the inertial forces

do not play a role, are a special case ofaeroelastic problems tenned "statie

aeroelasticity". Sorne exarnples ofstatic aeroelastic phenomena are wing divergence

and control reversaI.

3. The interactions between the aerodynamics and the inertial forces ofthe solid body

form the c1ass ofproblems known as aircrafi stability and control.

4. Dynamic aeroelasticity deals with the interactions ofall three aerodynamic, elastic

and inertial forces. Flutter and buffeting are both examples ofdynamic aeroelastic

problems.

Dynamic aeroelastic response problems are those in which the oscillatory response ofan

aeroelastic system to an extemally applied load is to he found. The external load may he

caused by the forced deformation of the elastic body, such as is the case with the

displacement ofan aircraft wing or tail control surface, or by a disturbance such as a gust

load or a turbulent airflow. In sorne cases the oscillations can become unstable and the

vibrations may obtain very large amplitudes. This is the case with the instability known

as "ftutter" .

2
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1.2 Flutter

Classical tlutter is adynamie aeroelastic instability in which small disturbances in the

airt10w around an elastic body may induce oscillations of large amplitude. It is a

phenomenon involving the oscillation ofaircraft wings and control surfaces that bas been

observed since the very early days of flight.

Ifan aircraft wing at rest, and thus subjeet to no aerodynamic forces, were to he disturbed

from its equilibrium position, it wouid oscillate, or move in harmonic motion about its

equilibrium position. The oscillations would be damped by the structural damping in

such a way that the amplitude ofthe motion wouid become progressively smaller with

each oscillation, uotil the vibration would eventually die out. Thus the steady state

condition ofthe wing would have no motion, and the only solution would be the

transitory one. This is a mechanical vibration problem and involves the interaction

between the system elastic and inertial forces. Ifthe same wing is subject to aerodynamic

forces due to its movement through an airflow, and is again disturbed from its

equilibrium position, the interaction between the aerodynamic, inertial and elastic forces

will typically cause ~e damping of the induced oscillation to increase with increasing

airspeed. This increase in damping reaches a maximum at a specifie airspeed and then

decreases rapidly. When the airspeed reaches the "critical flutter speed", the aeroelastic

system damping has decreased to the point where the induced oscillation will he self­

sustaining, or the total damping is zero. At airspeeds beyond this critical speed, the

induced oscillation will grow rapidly and may initiate violent oscillations, calied flutter.

An oscillating body may be termed aerodynamically unstable if it gains energy from the

airstream during a cyele ofoscillation. The energy exchange may be the result ofan

external excitation or internai friction, both ofwhich can affect the energy balance and

resulting motion. When there is no external exciting force or internai friction and the

airfoil extracts energy from the airstream, the resulting aerodynamic instability may be

defined uniquely as flutter. A fluttering wing usually has oscillatory motion components

in both the bending and the pitching degrees of freedom. The oscillation is hannonic,

and the bending motion is out of phase with the torsional motion. The phase shift and

3
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amplitude ratios of the bending and torsional motions depend on the airspeed Flutter

occurs when the fluid flow past the airfoiI reaches a critical speed wbere the phase

difference between the motions allows the airfoil to gain energy from the surrounding

airstream.

An aircraft wing May have an infinite number ofdegrees-of-freedom, but, for large

aspect ratio wings, its deformation May generally he described by two quantities: the

deflection at a point of reference, and the angular rotation about that point The

defonnation ofa control surface sucb as a flap or an aileron is generally described in

terms ofthe angular rotation about its hinge line. Classical flutter requires the coupling

ofmore than one degree-of-freedom. A flutter mode involving oscillations in ail three of

the above degrees--of-freedom is tenned ternary flutter, while motion in two ofthe three

degrees-of-freedom is termed binary flutter.

The Many degrees-of-freedom ofaircraft wings and tail surfaces, as weil as the freedom

of the aircraft to move as a rigid body, result in many potential tlutter modes. Each of

these modes will have a corresponding critical speed, and it is essential to the design of

safe aircraft that the lowest of these critical speeds be identified during the design

process. Both theoretical and experimental methods exist for the determination ofcritical

flutter speeds.

1.3 Historical Remarks

The earliest studies offlutter were made in 1916 (Lanchester, Bairstow and Fage) in

connection with the Handley Page bomber. Blasius (1925) attempted sorne calculations

in 1919 after an Albatross D3 biplane suffered a wing failure. Detailed theoretical

investigations of the flutter phenomenon required the use ofnonstationary airfoil theory

developed by Kutta and Joukowsky between 1902 and 1906. In 1919, Ackennan applied

Prandtl's theory ofbound vonices to a stationary airfoil, and Bimbaum extended it to

nonstationary airfoils. At the same time, Wagner developed a theory for airfoils that

change suddenly from a stationary configuration to a constant velocity or a sudden

change in angle ofattack. In 1929 Glauert calculated the forces and moments on a

4
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cylindrical object undergoing arbitrary motion. ln 1934 Theodorsen's exact solution for a

two-dimensional wing with a flap perfonning harmonie oscillations in incompressible

flow was published

Once the aerodYDamic theory for oscillatory and unsteady airfoil motion had been

develope<L the potential for theoretical tlutter analysis was greatly inereased. From 1934

to 1937 much research was condueted on flutter. The two-dimensional problem ofairfoil

Ouner with two degrees-of...freedom was solved, as was the two-dimensional problem

with three degrees-of-freedom (airfoïl...flap combinations). Three-dimensional wings

were also treated using strip-theory aerodYQamics and much ofthe theory was confinned

with wind tunnel testing.

There has recently been a resurgence of interest in aeroelasticity as exemplified by the

January 1999 issue of the A.I.A.A. Journal ofAircraft which was devoted entirely to

aeroelasticity (Friedman 1999, Livne 1999, Karpel 1999, Vari and Baker 1999).

1.4 The Aerodynamics ofFlutter Analysis

Developing the equations ofmotion for an aeroelastic system requires the use ofan

adequate aerodynamic model to deseribe the lift force and moment as functions of the

airfoil motion. One such model is based on linearized, incompressible thin airfoil theory

(Glauert, 1924). The theory ofthin airfoils is based on the assumptions oftwo­

dimensional steady flow, smal1 thickness to chord ratio, and small camber and gives quite

accurate results for thin, slightly cambered airfoils.

The linearized theory is based on the assumption that the motion is of small amplitude

and flow separation does not oceur. When the expression for the aerodynamics is linear,

the solution may be the superposition ofseveral individual solutions. In the studyof

oscillating airfoils~ the solution for an airfoil of finite thickness and having finite camber

may be expressed as the superposition of the solution for an airfoil ofzero thickness and

zero camber performing unsteady oscillatory motion, and an airfoil with finite thickness

and eamber at a finite but steady angle ofattack. Because we are interested quite

5
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specifically in the properties (such as ftequency and damping) of the oscillatory motion,

the steady portion ofthe solution is not considered in the analysis. The assumption of

small angles is thus applicable to the amplitude ofthe oscillatory motion rather than the

aetual airfoil angle ofattack. ft is important to note, however, that the equations

formulated without eonsidering finite thickness and camber do not yield representative

results for the true amplitudes ofmotion. In addition, the behaviour near the flotter speed

can result in large displacements that violate the small disturbance assumption of the

linearized theory.

The solution for the aerodynamic forces acting on a thin airfoil performing hannonie

motion in an incompressible flow is based on thin airfoil theory and was developed by

Theodorsen (Theodorsen, 1935). The aerodynamie response ofan airfoil undergoing

unsteady motion may he derived from Theodorsen's equations by means ofa Fourier

analysis and the Laplace transformation (Fung, 1955). The resulting equations are used

to represent the aerodynamie forces and moments in this study.

1.5 Model Experiments

In Many cases, theoretical analysis is inadequate in determining eritieal flutter modes for

aircraft design due ta the large number ofdegrees-of-freedom and the resulting potential

for an equally large number offlutter modes. For this reason it is often necessary ta

determine critical speeds experimentally. Madel wind tunnel testing has been used

suecessfully to determine the critical speeds for a number of flutter modes, and many of

the theoretical developments in flutter analysis have been validated by such tests.

The difficulties involved in creating scale models with dimensional similarity in ail the

required degrees-of-freedom often makes even wind tunnel testing inadequate in

determining aIl the possible modes ofan aircraft. In most cases, flight testing of full

sized aireraft is a neeessary step in aircraft design in order to ensure that the critical

conditions for aeroelastic instability cannot be eneountered within the design flight

envelope.

6
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1.6 Aireraft Flight Rutter Testing

The main objective offlight tlutter testing is to demonstrate that an aircraft will not

encounter flutter instabilities within its design envelope. During flight testing, a safety

margin ftom the critical speed must he maintained to eosure the aircraft does not enter a

potentially dangerous flight regime. In a typical flight test sequence, the aircraft is tlown

at a given airspeed, is subjected to a disturbance in one degree-of-freedom and the

ftequency and damping ofthe resulting free oscillation ofthe structure is measured.

A1tematively, the aircraft may he subjected to a forced excitation, and the amplitude of

the resulting oscillation measured for a number ofdifferent excitation frequencies. The

process is repeated at increasing airspeeds untiI the eritical eombination ofairspeed and

frequeney can be identified from a very large amplitude response. At each increment of

airspeed, potentially dangerous flight conditions are avoided by evaluating the stability of

the aircraft at the next increment.

The assessment ofwhether or not a mode will go unstable at the next increment of

airspeed is nonnally based on the "trend" of the measured modal damping. For a given

mode, the damping will inerease with increasing airspeed, and then begin to decrease as

the airspeed approaehes the flutter speed. The prediction ofthe critical airspeed cao be

difficult due to a number of factors. Depending on the specifie combination of

aeroelastie parameters, the decrease in damping can be quite sudden and at low values of

damping such as those associated with the onset of flutter, there is considerable

uncertainty in the experimentai measurement and detennination of the damping values.

In addition.. it is not known in advance which mode will go unstable and damping

estimates must be made for a number of potentially unstable configurations.

The use of the "flutter-margin't (Zimmerman and Weissenburger, 1964) is an alternative

to relying on the modal damping trend to predict the onset of flutter. The flutter margin

is a quantity that may be caleulated from the experimental values of frequeney and

damping. The flutter margin decreases in an approximate linear manner with increasing

airspeed until it reaches zero at the flutter speed. The advantage of the flutter margin

7
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over the modal damping lies in its almost linear variation with airspeed, making it

possible ta prediet the onset offlutter from velocities as lowas 50% ofthe flutter speed.

1.7 Sine Sweep Test/ng

One method ofobtaining the flight test data necessary to ealeulate modal frequeney and

damping parameters involves applying a foreed excitation ofa specified frequency, and

measuring the subsequent system respon5e. The resonant or unstable frequency is found

by increasing the frequency of the excitation in small inerements and repeating the

measurements at each increment. The method referred to as "sine sweep testing" reduces

the amount of time required to obtain the required data by ineluding a range of

frequencies in one test. This is aecomplished by increasing or decreasing the frequency

in 5uch a way that the peak response of the system is captured within the frequency range

of the sweep. The rate at which the frequency is increased or decreased, the so-called

"sweep-rate", must be as fast as possible in order to lintit the rime involved in high speed,

low altitude flight testing. The sweep-rate should aIso be slow enough that the transient

effects due to the changing frequency have died out and the steady state pararneters may

be measured with sufficient accuracy. It bas been shown, for purely meehanical systems,

that the sweep-rate, as weil as the choice of increasing or decreasing sweep can have an

effect on the measured modal frequency and damping values (Haslinger, 1986). Ewins

(1984) recommends a maximum sweep rate of 216[2Ç2 Hz/min, wherefis the modal

natural frequency in Hz and ç is the modal viscous damping factor. AnaIytieal

investigations, or "simulations" ofsine sweep response have been limited to linear, one

degree-of..freedom mechanical systems (Sanderson and Bartsch, 1958, Ewins, 1984,

Haslinger, 1986) and one- and two-degree-of-freedom~ linear and nonlinear mechanicaI

(non aeroelastic) systems (Priee, 1997).

1.8 Nonlinear Effects

Nonlinearities in aeroelastic systems can affect system frequency and damping

parameters and May result in limit cycle oscillations or in sorne cases, chaotic response.

Nonlinearities can initiate aeroelastic instabilities weil below the flutter speed predicted

using linear theory (Brietbach, 1977). Nonlinearities in aircraft aeroelastic systems can

8
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arise from both structural and aerodynamic sources. Aerodynamic non1inearities are

geneniIly associated with transonic tlow regimes, dynamic staIl and shock induced

effeets, while structural non1inearities May have a number oforigins, including wom

control surface hinges, loose control linkages, and non1inear matenal properties.

Structural nonlinearities MaY be classified as either distnbuted or concentrated.

Distnbuted nonlinearities are govemed by elastodynamic deformations tbat affect the

entire structure, whereas concentrated nonlinearities act locally. Most concentrated

structural nonlinearities May be approximated as one ofthree main types: cubic, freeplay

and hysteresis (Lee et al., 1999).

Theoretical investigations into the effect of structural nonlinearities on airfoiI behaviour

have, for the most part, been concentrated in the area ofself-excited oscillatory motion

where the system is not subject to a forced input (Lee and Troo, 1989, Priee et al., 1995,

Alighanbari and Priee, 1996). Lee et al. (1997) and Gong et al. (1998) have studied the

forced oscillation ofa two-dimensional airfoil for incompressible aerodynamics with

cubic nonlinear restoring forces in both degrees-of-freedom. Although complex and

chaotic behaviours have been observed in the case of free oscillations, the systems

subject to a forced oscillations appear to always respond hannonicaIly.

1.9 Objectives ofthis Study

The objective ofthe current work is to study the effect ofa sine sweep excitation on an

aeroelastic, two degree-of-freedom system. The system is represented by a two­

dimensional airfoiI free to move in both bending and torsion and possessing a rigid tlap.

The aerodynarnic forces are represented as those due to unsteady, oscillatory motion in

incompressible tlow, and the sine sweep excitation is applied to the system through a

forced oscillation of the tlap. The time history solutions to the equations of motion are

obtained for a number ofairspeeds up to the tlutter boundary in order to simulate an

actual flight test. At each airspeecL the time histories are obtained for a variety of sweep­

rates, and for both increasing and decreasing sweeps. The results are used to calculate

the modal frequencyand damping using methods similar to those used to evaluate flight

9
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test time histories. The modal frequency and damping parameters thus obtained are

compared with each other and with the known "exact" values for different combinations

ofsweep-rates and airspeeds.

The eiTect of introducing a simple structural nonlinearity in the pitch degree-of-fteedom

is also investigated. A freeplay type nonlioearity is iotroduced in the restoring moment,

and the sine sweep simulations described above for the linear system are repeated.

1.10 Thesis Ou/fine

In Chapter 2, the general equations ofmotion are derived for the two-dimensional thin

airfoil with a rigid f1ap perfonning unsteady motion in an incompressible flow. Sorne

methods commonly used to solve the resulting equations are discussed.

ln Chapter 3, the method used to simulate the flight test practice ofsine sweep resonance

testing is explained The complete system ofequations used to represent both the linear

and nonlinear system subject to a sine sweep is presented. The techniques used to obtain

frequency and damping parameters from the system response is explained.

The frequency and damping values obtained for the Iinear aeroelastic system at a variety

of sweep-rates are presented in Chapter 4. The true values of modal frequency and

damping at a series ofairspeeds are compared to results obtained for increasing and

decreasing frequency sweeps at four different sweep-rates.

In Chapter 5, a freeplay nonlinearity is introduced in the pitch degree-of-freedom.

Frequency and damping values obtained from sine sweep simulations are presented for

four different increasing and decreasing sweep-rates. Comparisons are made between

values obtained for the linear and nonlinear systems. The parameters, or geometry, of the

freeplay nonlinearity are varied, and the effects 00 the modal frequencies and dampiog

investigated.
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2 The Equations of Motion

The typica/ section is a two-dimensional airfoil model commonly used in the study of

aeroelastic problems. It is particularly applicable to the study ofbinary flutter involving

coupling between the bending and torsional motions ofan aircraft wing or tail surface.

When the aspect ratio of the lifting surface is large, the sweep is small, and the sectional

charaeteristics vary smoothly along the span, a two-dimensional section with the

properties ofa typical section at 70-75% ofthe semi-span has been shown to yield

accurate aerodynamic equations. The two-dimensional model cannot, however, account

for three-dimensional flow effects or the rigid body degree-of-freedom in the aeroelastic

system.

Figure 1 reproduces the typical section that is used as the basis for the equations of

motion ta be developed in this chapter. The airfoil is rigid and is mounted by a torsional

and translational spring attached at the elastic axis, or shear centre of the section. The

airfoil is free ta move in both the bending and pitching directions, while the flap is

constrained to move ooly as a forced input (it has infinite stiffness). The flap moves

through an angle pabout the tlap hinge and relative to the airfoil chord, where pis

positive for the flap trailiog edge down. The bending deflection, h is measured positive

downward and the pitch angle about the elastic axis, a, is positive for the airfoilleading

edge up.

This chapter is divided into four sections. In Section 2.1 the equations of motion for the

t'No-dimensional airfoil model are derived trom Lagrange's equations. In Section 2.2, the

right hand side of the equations trom Section 2.1 are given in terms ofunsteady, thin

airfoil aerodynamic theory. Sorne methods commonly employed ta solve the resulting

system ofequations are discussed in Section 2.3. In Section 2.4, a description is given of

the particular nonlinearity that is considered within the scope ofthis study.

11
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2.1 Obtaining the Equations ofMotion

The equations ofmotion about the elastic axis for the aeroelastic, two-dimensional airfoil

with a flap MaY be obtained fram Figure 1 and Lagrange's equations. The kinetic energy

of the system is

, 1r(c,-a..,)( . .)2 1CI-a..,) {. . fi( ( h.]}:!
T=- h+ax Pa'fdx+- ( ) h+ax+ x- Cp -a,,? Palfdx. (2.1)2 -b(l+-a,,) 2 b Cra"

ln Equation 2.1, the ongin ofthe x-dimension is at the elastic axis, located at a distance

ahb aft orthe mid-chor~with;r negative from the elastic axis to the airfoilleading edge

and positive from the elastic axis to the airfoiVflap trailing edge. The airfoilleading edge

is a distance b +a"b forward ofthe elastic axis, and the trailing edge a distance b -ahb

aft ofthe elastic axis. The tlap hinge is located at a distance cph aft of the mid-chord, or

a distance hcp -hah aft ofthe elastic axis. The density pec unit span of the airfoiVf1ap

combination is given by Palf ' and the dot represents differentiation with respect to time.

Expanding the integraJs in equation (2. 1) yields

T =..!.. r(c,-a")(j,2 + 2aJÎx + â 2x2) dx
2 J-b(1 ~a.) Palf

+'~••~){h' + â'r' + p'[r-bh -ah))' + 2aJÎx+ 2hiJ[r -b(Cp-ah)] + 2âPr[r - b(cp- ah)Dp.,/d

Combining the first two terms of the second integral with the first integral, and changing

the variable in the second integral to y = ;r - h(cp - ah) yields

T= JbJh 2 +2ahx +a:!;r:!)Palfdx

+t(IC6)[,82y 2+ 2hpy + 2aiJ(y 2+ h(cp - Qh)Y)falfdy

= ~mh' +Saah + ~ laâ' + ~ IpP' +Si'p+ 1pâP +b(cp-a.)Spâp (2.2)

•
where

Sa ::: rhPa(fXdx =mhxa the combined aileronlflap statie moment about the elastic axis

l
b bep

Sp = () Palf ydy =mbhxfi the flap starie moment about the flap hinge

12
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("-bcll .,

1P = Jo Pa1fY-dy

m = lbPa'fdx

("-bcll
mp = Jo Palfdy

the mass moment of inertia ofthe combined aileron/flap about

the eIastic axis

the mass moment of inertia of the f1ap about the flap hinge.

the mass per unit span of the airfoillflap.

the mass per unit span of the flap.

The eIastic potential energy due to defonnation of the structure, V, is a result of the

restoring force and moments, F(h,), M(a), and Mp(P), which are possibly nonIinear

function ofh, a, or p. Because the potential energies are not necessarily linear functions

of the system variables, the potential energy terms in equation (2.3) are set to zero and the

non-conservative generalized forces Qhnc, Qanc and Q{j1c are defined as

•

Lagrange's equations for the combined airfoil/flap system ofFigure 1 are

d (iJ1') aT av
dt ah - ah + ah = Qhnc,

!!-.(a1') _aT + av = 0
dt aa aa aa _anc

d (a1') a1' av
dt ap - ap + ap = Qflnc

Qhnc = P(l) - Chh(l) - F(h)

Qanc = R(t) - C'aa(t) - M(a)

Q{ttc = S(t) - cpiJ(t) - M p(fJ)

(2.3)

(2.4)

(2.5)

(2.6)

•

where Ch, Ca and Cp are the translational and torsional damping coefficients,

respectively. 1;(hL M(a) and Mp(fJ) represent the structural restoring force and

moments in the pitch, plunge and flap angular displacement directions, respectively. [f

the structure is linear then P(h), M(a) and M(P) are replaced by KJ1. Kaa and KpP

Other extemally applied forces and moments are represented by P{t), R(t) and S(t)

respectively, including the aerodynamic forces and other mechanical excitations.
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Combining equation (2.2) with (2.3) and using the expressions for the generaIized forces

tram equations (2.4), (2.5) and (2.6), the following equations of motion are obtained:

mh(t) + Saà(t) + SpÏJ(t) + Clrh(t) + F(h) = P(/) (2.7)

Sah(t) + Iaa(t) +[1p+h(cp -ah)Sp]~/)+Caa(t) + M(a) =R(t) (2.8)

splÏ(t) +[1fi +h(cp-air)Sp ]a(t) + 1pÏ1(t) +Cp,8(t) + Mp(P) = S(t) (2.9)

Equation (2.9) is the equation of motion for the flap, and may be omitted from the

solution because the flap is subjeet to a forced oscillation at a forced amplitude about its

hinge, rather than being free ta respond to the aerodynamic and structural forces and

moments.

The oatural frequencies for the Iinear, uncoupled system described by equations (2.7) and

(2.8) are

The oonlinear structural restoring force and moment, F(h) and M(a) , may be

normalized with respect to their linear terms K"h and Kaa ta give F(h) and M(a),

When the structural restoring force and moment are linear, M(a( ,») = a( ,) and

F·(h(t ») = h(') .

Equations (2.7) and (2.8) may be expressed in terms ofequations (2.10) and the non­

dimensional quantities
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tV
r=-=tUOJh a'

h
~= b'

r = fl::
a V;;ï;ï

ç~ = 2.JmK
h

r Ca
'='a - 2 Ifï(

'" a 1\..a

to obtain

the non-dimensional airspeed,

dimensionless time,

the non-dimensional plunge displacement

the non-dimensional radius ofgyration ofthe airfoillflap,

the non-dimensional radius ofgyration for the flap about the flap

hinge,

the non-dimensional structural damping force and

the non-dimensionat structural damping moment

mp (jJ~

q"(T) + xaa"( ,) +-;;xpP"(,) + 2'~ cl q'(r)

+(~;JF(~T)) = p(T,ç,a)

[
r'1 m x ]

x~ q"(r)+a"(r)++ -?-+---L-?(c -ah) p"(r)
r- r- m r- p

a a a

1 1
+2'a il a'( ,) + U 2 M(a( r)) = r( ,,~,a)

(2.11 )

(2.12)

where the prime symbol denotes differentiation with respect to non-dimensional time t.

The uncoupled frequency ratio, (JJ ~, is defined as

• and the non-dimensional aerodynamic forces and moments are defined as

15
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• p( )
-L(r,ç,a.,p)

r,ç,a,p = 2 2 and
mbU OJ a

( )
Ma (r.,ç,a,p)

r T, ç, a,p = 2 2 ., ., .
mb r U-(J)-a a

(2.14)

(2.15)

•

•

2.2 The Aerodynamic Forces

The lifting characteristics ofan airfoil below the stail speed are negligibly influenced by

viscosity. [n addition, when the ratio ofmaximum thickness to chard length is small., the

camber is small and the airfoil is operating at small angles ofattac~ the overalliifting

characteristics may be closely approximated by "thin airfoil" theory. The airfoil is

replaced by the curved line that is the mean ofthe upper and the lower surfaces., and this

curve is regarded as a small deviation from a straight line. The fluid flow pattern is

established by placing a bound vortex sheet on the curve and adjusting its strength ta

accommodate the boundary condition ofno-tlow across the curve. The circulation about

the body is established by the Kutta-Joukowsky condition that the velocity must rernain

finite and tangent to the airfoil at the trailing edge, and the overal1airfoil lifting

characteristics are determined from the integral ofthe pressure forces. Glauert's proposed

vortex distribution (Glauert., (924) may be used to obtain expressions for lift and moment

about the ~ chord position where:

1. the lift coefficient for the two-dimensional section is directly proportional to the angle

ofattack and is zero when the angle ofattack is zero.,

2. the slope of the lift curve is equal to 2n,

3. the centre of pressure is at the ~ chord for aIl values of the lift coefficient.

A similar approach may be used to obtain expressions for lift and moment due to the

motion ofa tlap.
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2.2.1 Oscillatory Aerodynamic Forces

The expressions used for the aerodynamic forces and moments due to the combined

motion ofthe airfoil and the flap in the h, a and p directions are obtained from the theory

ofoscillating airfoils (Fung, 1955). The theory is based on thin airfoils oscillating at

small amplitudes and may be applied to a fluttering airfoil. For an inviscid tluid the

boundary condition at the fluid-solid interface requires that the fluid velocity component

normal to the surface be equal to the normal velocity of the surface on the instantaneous

position of the surface. This requiremen~ when applied to an airfoil undergoing vertical

translation, such as the oscillating aeroelastic airfoil, leads to an aerodyoamic lift force

due to what is termed the"downwash velocity".

At the flutter condition, it is assumed that

(2.16)

where hn. an, and Po are real numbers, BI and fh. are the phase angles by which a and p
lead the wing bending dispIacement, and ({) is the flutter frequency in radians per second.

For a two-dimensionaI airfoil having these three degrees-of-freedom, in an

incompressible flow of airspeed V, the aerodynamic forces are a function of the reduced

frequency, or StrouhaI number,

•

k=(i)h.
V

For subsonic flow the aerodynamic centre is located at the lA chord point aft of the

leading edge, and the equations are developed with respect to the fol1owing

displacements:

(hL· h-h(1/2 +ah)a
__-l = = bending displacement of the 1;4 chard point,

h h

a = pitching displacement about the 'h chord point and

fJ = flap rotation about the flap hinge, located at the flap leading edge

17
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• The bending displacement is measured positive downward, the pitch displacement is

positive for the airfoil leading edge nose up, and the flap rotation is positive for the

trailing edge down. When the flap hinge is at the flap leading edge, a combination ofthe

above three displacements completely describes any motion ofthe airfoil.

When h, lX, and pail vary as given in equation (2. 16), the aerodynamie lift per unit span

is a linear combination of the lift forces due to the bending, pitching and flap

displacements. The lift force acts at the ~ chord, is positive upward and may be written

as:

(2.19)

•

•

where Ph. Pa and Pp are dimensioniess coefficients.

Similarly, the aerodynamie moment per unit span about the ~ chord, positive in the

clockwise direction, or the nose-up sense, can be written as

Mr;/ = 1tph4(j)2[(h) M h + «Ma + p.,tp] (2.20)
.4 b %

The above equations are valid when the aerodynamics are linear and the principle of

superposition is applicable. [n the theoretical derivation of the coefficients, the fluid is

assumed to be inviscid, and for incompressible flow the coefficients are funetions of the

Strouhal number, k. For compressible flow, the same equations may be used, but the

coefficients are funetions ofthe Mach number, c, as weil as the Strouhal number, k. For

a real, viscous tluid, the coefficients are funetions of the Strouhal number, the Mach

number and the ReYnolds number.

The aerodynamic coefficients may be obtained from several different source references,

such as Theodorsen (1934), Küssner and Schwarz (1941), Jones (1942), Scanlan and

Rosenbaum (1951), or Smilg and Wasserman (1942). Forthis projeet, the coefficients

used are from Theodorsen and are given in Appendix A.
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• The e/astic axis ofthe wing is located at a distance (~+ah~ aft ofthe ~ chord point.

The expression for the aerodynamic force may be expressed in terms ofh., the bending

displacement at the elastic axis.

Lr~ =L,,,. =_1I"p'J3(j}2{: Ph +a[Pa -~+ah )p.]+ ,8P/I} (2.21 )

Similarly., the aerodynamic moment about the elastic axis cao be written as

:[Mh-(~+ah)Ph]+

M'D. =1I"p'J4(j}2 a[Ma -(~+ah)(P. + Mh)+~+a,,t p.]
+1{M p -(~+ah)pp ]

(2.22)

•
2.2.2 Unsteady Aerodynamic Forces

The equations for the aerodynamic forces and moments developed in Section 2.2.1 are

for airfoils performing harmonic., oscillatory motion. If the aerodynamics are linear., the

equations for an airfoil undergoing arbitrary., unsteady motion May he obtained from the

above expressions by means ofa Fourier analysis.

The airfoil displacements are considered as the forcing function., or input to the system

and the induced lifting forces and moments the response. The system admittance

)i(im) is obtained from the theory ofharmonically oscillating airfoils outlined above.

From the previous section and the theory ofoscillating airfoils, the total lift force acting

on the airfoil is given by equation (2.21) and May be expressed in terms ofTheodorsen's

coefficients (Appendix A)., the Strouhal nurnber and the non-dimensional rime, ras

Le.a. = L; + La + Lp

where

•
(2.23)
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(2.25)

•

•

La = -K~V2k2aO[(~ - ~[1+2C(k)]- :' C(k))-(~+«.)(1- ~C(k))}'" (2.24)

L == -KpbV 2k2p
O
[- 1; +.!-~ _.!- 1;. C(k)_2.1;o C(k)]elkr

P K k K k K k 2 K

The function C(k) is called Theodorsen's functio~ and is a complex funetion of reduced

frquency, k =wh/V. The exact expression for C(k) is

where H and K are Hankel and modified Bessel funetions, respectively. [n equations

(2.23), (2.24) and (2.25), the following substitutions have been made:

h == ): == ;: elld == j: eJkr
b ':7 ':70 ':70'

Replacing ik by s, remembering that çoe rkr
, aoeJkr and poe ilcr represent the forcing

funetions and L9 La and Lp the responses in the above equations, the admittances may he

obtained as

l ")'( 2 ( .))-(-) = lfpbV-S- 1+-C -IS
Zr: S S..

Za~S) = KpbV
2
S2[(X +~[I + 2C(-iS)] + :, C(-is))-(X+Q.)(1+;C(-iS))J

1 21[ 7; 1 1~ 1 7;1 C( .) 2 7;0 '( .)]--=lfpbV S -~---+-- -IS +---c -IS .
Zp(s) 1f S lf .ri lf S2 K

(2.26)

(2.27)

(2.28)

•
Because the Laplace transform ofthe response is equal to the Laplace transfonn of the

forcing function multiplied by the admittance, equations (2.26), (2.27) and (2.28) may be

used to find the aerodynamic lift force due to a non-harmonie function ç( r) through the

expression
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• (2.29)

•

Using the convolution theory and the following results from Laplace transfonn theory

(Le Page, 1961) where ô(r) is the Dirac delta function;

ri {I} =ô(r)

ri Cs} =ô'(r)

J:ô(a)y(u)du= y(O)

f: ô'(o-)y(o-)du =-y'(O)

ri {s2:t'{y(r)}} =y"(t} + y(O)ô'(r) +y'(O)ô(r),

and defining Wagner's function as

the expression for the lifting force due to the bending displacemen~ equation (2.23) May

be rewritten as

L,:(r) = 1l"pbV2,t-'[s2:l{ç(r)(I+ ~C(-iS))]

2[;"(r) + 2i r

ç"(o")~ t - u)du - ç(O)ô'( r) -2~O)~'( r)]
= ltpbV 0

+ç'(O)ô( r) + 2~'(0);( r)
(2.30)

•

The third and fifth tenns ofequation (2.30) do not fonn part of the long-term solution

because they involve the impulse function and hence are transient. In additio~ the term

involving (J'( r) May be excluded from the steady state solution because the time

derivatives ofWagner's function approaches zero asymptotically for large z:
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• The steady-state solution for the lift force due to the general motion ç =~ 'r), from

equation (2.30), becomes,

(2.31)

The aerodynamic force due to the pitch and tlap deflections may be obtained in a similar

fashion and the results are

•

_ l I{.i{a(r)}}
La - r ( )Za S

2[a'(r) -aha"(r) + 2a(0)(J( r) +(1- 2a,Ja'(O);(r)]
= 1fpbV +2f[a'(u) +(~ - ah )a"(u)]s6<T- u)du

L =~I {~{P( r)J}
ft Zp(S)

T. T r[T. 2T. ]---!-p"(r)--±-p'(r) +l _IIP"(u) +_10p'(a) (J(r-u)da-
= "phV 2 " HO" "

+(~ P'(O)+2;0 ,8(0»)s6<r)

(2.32)

(2.33)

Equations (2.3 1), (2.32) and (2.33) may be combined ta yield an expression for the

aerodynamic lift force due to the combined wing bending, pitching and aileron motions,

•

[
TT. ]L( r) =1fpbU~ q"( r) -aha"( ,) - ; P"( r) + a'( r) - ; P'( ,) +2XIM

where

with

C'! =ç'(O) +(~ -ah )a'(O) + a(O) + 1;1 P,(O) + 7;0 P(O)
2" 1f

and

T. r.
À(cr) = q"(u) +( 1/ -a,,)a"(a-) +a'(a-) +_11P"(u) + ~P'(a-).

/2 2""
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(2.37)

•

•

The same method was employed to derive the equations for the aerodynamic moment

about the elastic axis~

a.';"(')-CYs+ana"(,) + ~[1; + (cp -a.)r.Jp"(,)

M a ( r) = npb2V2 -(.75: -a. )a'(,) - ~[r. - Tg -(cp -a.)r. + ~I ]P'(,) (2.36)

-~(~ + 1;o)P(,) +2(.75: +ah )X7M
1r

Finally~ the complete equations ofmotion for the two degree-of-freedom system are

obtained by combining equations (2.11), (2.12)~ (2.14)~ (2.15), (2.34) and (2.36) to give

';"(r) +raa "(r)+ :: xpp"(r)+2Ç~7; ç'(')+(7;rF(Ç(,))

I[ ~ ~ ]= -- q"(,) - aha"(,) - _1P"( ,) + a'(,) -~p'(,) + 2X7M
f.J 1r li

and

x [r 2 mx ] 1 1-+q"(,)+a"(T)+ -!!-+~-?(c -ah) P"(,)+2Ça-a'(,)+-") M(a(T))
r- r 2 m r- P U U·

a p a

a.ç"(r) - (,Ys +ana "(r) + ~[ r, +(c... -a.)r. lP"(rl

= ;; -(~-a.)a'(,) - ~ [7; -1; -(cp - a.)r. + ~I ]p'( r)

-~(~ + l;o)P( r) +2(~ +ah )X7M
1l

2.3 Solving the Equations ofMotion

(2.38)

•
When the equations are linear, aeroelastic techniques such as the p-k method and the lI-g

method May used to evaluate the flutter speed for the system. These methods may also

be applied to an equivalent linearized syste~ obtained trom the nonlinear system via a

describing funetion technique. These methods., however, do not seek time histories of the
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•

•

steady state motion ofa forced system, but are methods for finding the tlutter speed ofan

unforced system.

Equations (2.37) and (2.38) contain integral terms on the right hand side, introduced by

the unsteady aerodynamic theory, and May not be solved using existing numerical

methods for ordinary differential equations. Time history solutions to the nonlinear,

integro-differential equations May be obtained using a finite difference method developed

by Houbolt (1950). The method bas been used ta obtain solutions for unforced

oscillations by Lee and Desrocher(1987) and by Priee et al.(1994, 1995).

Equations (2.37) and (2.38) May also be refonnulated to allow them ta he integrated

numericaIly. A simpler set ofequations than the above has been obtained by Lee et al.

(1997) and solved numerically ta obtain time histories of the unsteady airfoil motion. In

this study, the equations are refonnulated as ordinary differential equations using a

method developed by A1ighanbari and Priee (1996). This method is described, and the

resulting system ofordinary ditTerentiai equations is given in Chapter 3.

2.4 The Freeplay Nonlinearity

The structural nonlinearity known as the bi/inear nonlinearity is sometimes employed in

aeroelastic analysis to represent a wom or loose control surface hinge. Two such

nonlinearities exist on the Cf-t8 aircrafi, one at the wing fold hinge, and another at the

outboard flap leading edge. A schematic ofa typical bilinearity in the pitch direction is

shown in Figure 2. The restoring moment in the pitch direction, M(a), is given by

for a < a f

for a f ~ a ~ a f + t5

for a f +8 < a

(2.39)

•
In this study, the particuIar case ofa bilinear nonlinearity with zero central stiffiless, or

Kc =0 is investigated. This type ofnonlinearity is often called freeplay or backlas~and

the freeplay region may have preload (mû ;é 0 ) or no preload (ma =0 ).
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3 The Simulation of Sine Sweep Data

The simulation ofa sine sweep test is achieved by subjeeting the system to an input force

due to a flap displacement, where the motion of the flap is given by the equation

p=posin(Ar2 +Br). (3.1)

The input forcing frequency is given by

()) fJ =!!-.(A ,2 + BT) =2AT + B, (3.2)
dT

where the starting frequeoey for the sweep is B and the sweep-rate is 2A. Time histories

of the airfoil motion are obtained by substituting equation (3.1) ioto the equations of

motion and then integratiog numerically. The numerical integration is repeated at each

inerement ofnon-dimensional airspeed, U. Time histories are ealeulated for motion in

both the bendiog and pitch directions, as weil as for the flap input. The time histories are

"simulations" ofdata aequired during a flight test frequeney sweep, and are used to

calculate the system transfer funetions, modal frequeneies and damping values.

In this Chapter, the equations of motion developed in Chapter 2 are transformed from a

set oftwo coupled integro-differential equations into a set ofeight ordinary differential

equations that may be solved using standard numerical techniques. The method used to

aecomplish this reforrnulation was introduced by Alighanbari and Price (1996) and is

outlined in Section 3. 1. Two different metbods are used to obtain the transfer function

from the time history of the system response, and these methods are described in Section

3.2. The calculation of the system frequeney and damping parameters is outlined in

Section 3.3. In Section 3.4, the choice of input function used to calculate the transfer

functions is presented, and Sections 3.4 and 3.5 describe the method used to introduce a

structural nonlinearity into the aeroelastic system. The calculation of the linear flutter

speed, U·, which is used as a basis for comparing the Iinear and nonlinear results, is

presented in Section 3.5.
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• 3.1 Reformulating the Equations ofMotion

In order to solve the equations ofmotion using standard numerical techniques, they must

be refonnulated to eliminate the integrals contributed by the aerodynamic tenns. The

equations ofmotion given in equations (2.37) and (2.38) may be rewritten as, in the

bending degree-of-freedom,

( l+..!..)q"C'r)+(xa - ah )a"(r-)+(mp x -~)p"(r-)+..!-a'(t")+2(l: llJ~ Ç'(i)
J.l P m p pH J.L ., u

_!!..p,(T) +(llJ~)2 ~r) = -~{Cl;(T) +i~;(T- o').,ï(u)du} (3.2)
IJH U J.l 0

and in the pitch direction,

•
(3.3)

•

The integral terms in equations (3.2) and (3.3) are eliminated as follows: Equations (3.2)

and (3.3) are differentiated with respect to non-dimensional time, t, to obtain equations

(3.4) and (3.5), and then differentiated again to obtain equations (3.6) and (3.7).

Equations (3.2) and (3.3) are multiplied by bd to obtain equations (3.8) and (3.9), and

equations (3.4) and (3.5) are multiplied by (b+d) to obtain equations (3.10) and (3.11).

The full text ofequations (3.4) through (3.11) are given in Appendix C, where Wagner's

function has been replaced by the approximation given by Jones (1940),

t/J( i) =1- O.l65e~·045S~ - O.335e~J~ .
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• Adding equations (3.6), (3.8) and (3.10) for the plunge directio~ and equations (3.7),

(3.9) and (3.11) for the pitch direction, results in two equations free of integral terms. For

the plunge and piteh directions, respectively, the equations ofmotion become

ml~-(r)+~a- (r) + "'-JP- (r) + m4q'''(r) + msa"'(r) + m6P"'(r) + m,q"(r)

+"'sa"(r) +11IgP"(r) + m1oq'(r) +mlla'(r) + m12!3'( r) +~3~r) + m14a(r)

+"'tsP(r) =~bd(O.5 - ah )a'(O)
f.J

(3.12)

•

and

n1ç-(r) +n2a'-(r) +n3P""(r) +n4;"'(r) +nsa"'(T) +n6P"'(r) + n7ç"(r)

+nsa"(r) +n9P"( r) + nlOq'(r) + n11a'(r) + n12P'( r) +n13~ r) + nl4a( r)

+n
15
P(,) + b~ M(a(r») + (b+

2
d) M'(a(r») + M"(~(r»)

U U U
4bd=--2(0.5+QhX0.5-ah )a'(O) (3.13)
pra

The coefficients in equations (3.12) and (3.13) are independent oftime and are funetions

of the airfoil physical parameters and the airspeed only. Detailed equations for the

coefficients are given in Appendix C.

Equations (3.12) and (3.13) may be reduced to a system oftirst order equations by

making the following substitutions

x2(r) = a( r)

x4 (r)=a'(,)

x6 ( r) = a"( r)

x8 (r) =a'''(r)

•

Xl(r)=~r)

x3 ( r) = ç'( r)

xs(r) = ç"(r)

x7 ( r) =ç"'( r)

to yield

m1x/ (r) +~X8' (r) + m4x7( r) + msxs( r) +m,xs( r) + f1lgX6(T)

+mlOx 3 ( t) + mll x4 (,) + m13x1(r) + m1..x 2 (r) = ft

where
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li =-"'JP- (T) - m6P"'(T) - ~P"(T) - m12P'(T) - m1Sp(T)

and

n1x,' (T) +n2xg' (T) + n4x7(T) +nSxg ( T) + n7xS(T) + nSx6(T)

+nlOx3(T)+nllx4(r)+nI3xl(T)+nI4x2(r) = /2

where

12 =- t~ M(a(t"))- (b;2d) M'(a(t"))- M"~~(t"))

-n3P- (T) - n6P"'(T) - n9P"(T) - n12P'(T) - n1Sp(T)

Equations (3.14) and (3.16) may be written in matrix form as

[Al{ X'} + [B]{X} ={F}

where [A] and [B] are giveo in Appendix C,

and

(3.15)

(3.16)

(3.17)

(3.16)

(3.17)

(3.18)

•

Equations (3.16) to (3.18) form a system ofordinary differential equations, that may be

solved using a number ofstandard numerical techniques. In this study, they were solved

using the Numerica/ Recipes (Press, Flannery, Teukolsky and Vetterling, 1989)

subroutine rkdumb. This subroutine iotegrates the equations using a fourth-order Runge­

Kutta method with constant stepsize of .005 non-dimensional seconds per step. The size

of the timestep was detennined by running the program at progressively smaller stepsizes

until the time histories produced did oot change more than .01% with a .0025 second

decrease in stepsize. Each numerical solution provides a time history of the response

over a time period determined by the length of time the program is required to run.

The subroutine requires that the initial conditions up to the fourth derivative be input by

the user. The required vaIues were obtained by substituting the initial conditions

28



1.

•

•

ç<O) = 0,

~'(O) = 0,

a(O) =0,

a'(O)=O,

f3(O) = 0

into the equations ofmotion, (3.2) and (3.3), and solving for ;"(0) and a"(O). The

expressions obtained for ;"(0) and a"(O) are then substituted into the third order

equations (3.4) and (3.5) to obtain q'''(O) and a"'(O), respectively. Expressions for

P'(O), P"(O), and P"'(O) were obtained from successive differentiations ofequation

(3.1).

3.2 The Aeroe/astic Transfer Function

The aerœlastic transfer function is a measure of the frequency transfer between the force

input to the system and the system response. The response that is in phase with the

forcing function is represented by the magnitude of the transfer function, while the

response that is out of phase with the input is given by the phase difference. The transfer

function is calculated from the time histories of the system input and response, and May

be used to obtain values for the system natural frequencies and damping ratios.

Figure 3 shows a typical example ofa simulated frequency sweep. Figure 3(a) shows the

time history of the input to the system, and Figure 3(b) the time history of the system

response in the pitch direction. The system responds at the same frequency as the input,

but not necessarily in phase with il. Figure 3(c) shows the frequency ofboth the input

and the response as a function of time.

Two ditTerent methods may be employed to obtain the transfer function from a response

signal consisting ofa number ofdiscrete data points. The numerical integration

procedure used in this study generates such a signal, as does "reallife" test data

transmitted by motion transducers. The two techniques may be referred to as the time-
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domain and spectral" or Fourier-transform methods. Both methods result in a transfer

function magnitude and phase-Iag that defines the frequency transfer between the force

input and the system response for each of the two degrees-of-freedom.

3.2.1 The Time-domain Method

Using this metha<L the transfer function for the system input and response shown in

Figure 4 is obtained by dividing the peak-ta-peak magnitudes of the response curve by

the peak-to-peak magnitudes of the corresponding peaks from the input force curve.

Figure 4(a) illustrates this method for a portion of the curve from Figure 3. The

corresponding frequencies for each peak are obtained from equation (3.2). The

magnitudes and frequencies plotted against each other produce the transfer function

magnitude plot shown in Figure 4(b).

The phase difference between the excitation and the response is calculated by finding the

time delay between corresponding peaks of the forcing function and system response, and

dividing the result by the perio<L or time required to complete a cycle of oscillation. The

concept of phase lag is illustrated in Figure 4(a) and the results are plotted against their

corresponding frequencies in Figure 4(c).

The transfer function magnitude and phase ditference May be used together in a Nyquist

plot. In the Nyquist plot, each point of the curve corresponds to a point in the transfer

function (response divided by input), and is represented as a complex number Rtf - dt.f

The real and imaginary parts are

and

IrrXsinf),

respectively, where X is the magnitude of the transfer function and Ois the phase lag

between the input and the response. Figure 5 is a typical example ofa Nyquist diagram

and was obtained from the transfer function magnitudes and phase angles shown in

Figures 3(b) and (c).
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3.2.2 The Spectral Method

The transfer function May also he obtained via spectral methods using the Fast Fourier

Transform, or FFT. The method consists ofconverting the rime histories of the system

input and response to their frequency domains via the Fourier transform. The transfer

function magnitude as a function of frequency is then obtained by dividing the frequency

domain of the resPODse by that of the input. This method is more commonly used to

analyze flight test data where the signais are noisy and the time-domain approach is

impossible to apply.

The FFT method is strictly applicable to time histories that represent a stationary signal,

or a signal for which various statistical averages do not vary with time. Because the

frequency of the sine sweep varies with tïme, the response time history is a non­

stationary signal. In order to analyse the non-stationary signal a length of time, or

"window" is chosen during which it is assumed that the signal does not change

significantly. The FFT is taken, the window is moved along in time and the process

repeated. As the window is moved along, subsequent sections are overlapped. Due to

the choice ofa fmite window, the signal May not have zero value and sIope at each end of

the window. This may cause the FFT method to find frequencies not aetuaIly present in

the signal. In arder to avoid this "frequency leakage", the signal within the window is

multiplied by a weighting function having the necessary zero values and slope to

eliminate any possible discontinuity. Common weighting functions used for sinusoïdal or

random data are the Hamming and Hanning windows. Once the entire signal has been

analysed, ail the FFT's are averaged to obtain the transfer function magnitude and phase

angle. The results may be expressed as a transfer function magnitude versus frequency

plot or as a Nyquist diagram for the system.

The parameters used to obtain the transfer function via the spectral method were chosen

to provide the most accurate values of frequency and damping. T, the period of time over

which the Fast Fourier Transform was calculated gives the fundamental frequencyand

frequency resolution for the FFT process, f = tif = y;.. The sampling frequency is
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given as f s =X'where ts is the time interval between samples. The frequency

resolution may he expressed in tenns of the block size or window length, nw and

sampling frequency as 4f =Xnw* t s )' The maximum frequency, f max' that the FIT

can represent is given by f max =fi. and is ofteo referred to as the Nyquist frequency.

The type ofweighting function and the overlap between successive windows can aIso he

important. The results presented in this study were obtained using the Hanning

windowing function with a 50% overlap. The wiodow length was chosen between 3500

and 9500 samples and the sarnpling frequency used was either 4 or 8 samples per 000­

dimensional time unit.

3.3 Frequency and Damping Calculations

The system natural frequeocies and damping values may be obtained from either the

transfer function magnitude plot shown in Figure 4(b) or from the Nyquist plot of

Figure 5.

The system natural frequency, lU o, is taken from the absolute peak-value, X ma.'t' of the

transfer function shown in Figure 4. The halfpower point frequencies, lVl and lU 2 ' are

defined as the frequencies for which the magnitude ofthe transfer function is X~ .

The damping may then be round from

(3.19)

•

Altematively, the frequency and damping May he round from the Nyquist plot of Figure

5. The exact location of the natural frequency, lU o, is given by the point on the circle

where the spacing between equal frequency increments is at a maximum. Iftwo points,

lU 1 and lU 2 ' are chosen either side of the natural frequency, it can be shown that
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• (3.20)

•

If '1 ='2 =90° , then equation (3.20) reduces to equation (3.19).

3.4 Input Force Ca/culation

The input or forcing function required to calculate the transfer function is obtained from

the original equations ofmotion.

In the sine sweep excitation, the actual input to the system is a flap motion rather than a

direct force. For the purposes ofcalculating the transfer functio~ the input force is taken

as the aerodynarnic forces generated by the motion input. The forced motion of the flap

generates both an aerodynamic lift force and a moment acting about the airfoil elastic

axis, and the resulting input force has both a lift and a moment component The

equations used to describe this force and moment originate with equations (2.34) and

(2.36), or Theodorsen's equations for the linear aerodynamic lift force and moment due to

the f1ap motion. Once the equations are refonnulated to eliminate the integral terms, the

required expressions may be obtained from equations (3.15) and (3.17) as

l( r) = m3P"" (r) +m6P"'( r) +~P"( r) +mI2f3'( r) + m1Sp{r)

mp( r) = n3P- (r) + n6 /J"'( ,) + n9p"(T) + n12P'( r) + nlSf3( r),

(3.21)

(3.22)

where the constants are glven in Appendix C and the fi(r) tenns, obtained by successive

differentiation ofequation (3.1), are

•
13'(r) =Po(2A r + B)co~A ,2 + Br)

13"(r) = 2APo cos(Ar2 + Br) - Po(2A r + B)2 sin(A r2 + Br)

{J'"(,) = -6APo(2A r + B)sin(Ar2 + Br) - Po(2A r + B)3 co~Ar2 + Br)
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p-(r) =-12A2Po sin(Ar2+ Br)-12APo(2Ar+B)2 cos(Ar2 + Br)

+po(2Ar+ B)4 sin(Ar2 + B).

Alternatively, the instantaneous angular velocity of the flap, described by equation (3.23)

may be used as an approximation for the forcing function common to both degrees-of­

freedom. In "reallife" flight testing, this is the value that is usually used as the input

function because it is relatively easy ta measure compared ta the aerodYlUllJlic forces and

moments. One of the objectives of this study is to compare transfer functions obtained

using both methods in order to verify the accuracy of the flight test method.

3.5 The Nonlinear Equations

A nonlinear structural element May he added to the system by choosing an appropriate

function to represent the restoring forces F(~r)) or M(a(r)) in equation (2.11) and

(2.12). In this study, the effect ofa bilinear structural restoring moment in the pitch

direction is investigated.

The typical bilinear curve introduced in Chapter 2 and shown in Figure 2 has

discontinuities at each end ofthe freeplay region. These discontinuities can cause

instabilities in numerical solutions, making the expression in equation (2.39) unsuitable

for numerical integration. The Runge-Kutta numerical integration scheme requires

continuous derivatives up to M"(a(r)) in order to produce reasonable time histories. In

this study, continuous 'radii', or corners replace the discontinuous portions of the curve.

A schematic of the resulting curve for the non-linear restoring moment, M(a( r)) is

shown in Figure 6 and May be described mathematically as

•
M(a(r)) = Mo +a(r)+af.

M(a( r)) = Mo - r +~r 2
- (a( r) - h)2
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• M(a(r)) =Mo

M(a(r)) = Mo +r-~r2 -(a(r)-h)2

M(a(r)) =a(r) - af - 8 + Mo

for -h s a(r) S h

•

The size of the radius and the size of the time step used in the numerical integration must

he calculated to allow a smooth transition between the linear and freeplay regions of the

restoring moment. In this study the combination ofa .005 second time step and a radius

of .003 radians provided the required transition.

3..6 Finding the Unear Flutter Speed

Nonlinearities cao affect the airspeed at which the system becomes unstable, and May

also induce limit cycle flutter at airspeeds below the flutter margin. For this reason., when

comparing modal frequencies and damping values obtained from the nonlinear equations,

the resuIts are often referred to the Iinearflutter speed.

When the equations are linear, M(a(r)) =a( ,,) and an eigenvalue analysis of the

aeroelastic system under free vibration (without the forced flap oscillation) gives the

analytical values ofnatural frequency and damping. Equation (3.18), without the aileron

input and for a linear restoring moment, may be written as

•

{X'} + [A]-' [B2 ]{ X} ={o}

where the matrices [A], {X'} and {X} have already been defined and
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• 0 0 -} 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

[B2 ] =
0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0
(3.25)

0 0 0 0 0 0 0 -1

ml3 mI4 mlo mIl m., "'J m4 ms

n[J 2 nio
2 n 2 n4n14 nu n, 8 ns

with

2 1
na =ng +-2

U

n~I = nu +~(b+d) and
U

2 bd
(3.26)n i4 =n14 +-2

U

•

•

The charaeteristic equation for tbis problem gives eight eigenvalues, four with zero

imaginary parts and two sets ofcomplex conjugate pairs. The real eigenvalues represent

potentially divergent or non-oscillatory modes of the system. These modes are

independent of time and will become divergent if the eigenvalue approaches zero. The

complex conjugate pairs with positive imaginary parts represent the natural frequency

and damping values for each ofthe aeroelastic system's two modes.

A complex eigenvlaue, ~ has the fonn

Â. = p+iq.

The real part of the eigenvalue, p, is the modal damping factor, ç. When p is negative,

the damping is positive, any oscillatory motions will die out with time, and the system is

stable. As the non-dimensional airspeed is increased~ the real parts of the eigenvalues

become smaller. The flutter speed~ or the airspeed at which the system will become

unstable, is that for which p =O. If the airspeed is increased beyond this poin~ the

damping becomes negative, the amplitude ofany induced oscillatory motion will increase
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with increasing time, and the aeroelastic system is unstable. The imaginary part of the

eigeDvaIue, q, gives the frequency ofthe response in radians per non-dimensional second

For an aeroelastic system, the aerodynamic tenns cODtribute to the system stiffness and

the frequency ofthe dynamic response is not at the same frequency as the structural

natural frequency. Because the A and 8] matrices are functions ofthe non-dimensional

airspeed, U and the airfoil physicaI parameters, there is a unique set ofeigenvalues and

hence frequency and damping factor, for each different combination of parameters and

airspeed. In this study, the Datural frequencyand damping values obtained from the

eigenvalues are considered the "real" or true vaIues for the system and are compared with

the values obtained "experimentally", or from numerically simulated time histories.

The linear flutter speed, U*, was found by numerically solving for the system

eigenvalues at increments of U uotil the real part ofthe eigenvaIue, p, became zero. The

corresponding value ofairspee~U is the linear flutter spee~ U*.
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4 Linear Resulta

In this chapter, the results ofsimulated sine-sweeps are presented for a two degree-of­

freedom airfoil in incompressible flow. The equations ofmotion were numerically

integrate~ and the modal frequencies and damping values were obtained using the

techniques described in Chapter 2. In aU cases the airspee~ U is presented as a

percentage ofthe linear flutter speed, U*. Results presented are for the following airfoil

parameters: Po = 2.00
, (j) = 0.6, p = 100, ah = -0.5, ra = 05, rfJ = 0.002, X a = 025,

xfJ =0.002, cp =0.6, Ça =0.001 and Çi =0.001.

The linear flutter speed for the system described above was found using the method

described in Section 3.6. The complex eigenvalues were calculated numerically for

increasing values of non-dimensional airspeed, U, until the real part ofthe eigenvalue

became zero. For this case, the non..dimensional linear flutter speed, U*. was found ta be

U· =4.04 .

The aeroelastic system natural frequencies and damping values vary with non­

dimensional airspeed. Weil below the instability boundary the mode shapes are

determined primarily by the system structural parameters, the two modes are weil

separated, the natural frequencies are close to the structural natural frequencies, and bath

modes are weil defined by the transfer function. As the airspeed approaches the flutter

speed the aeroelastic tenns become increasingly important, the two natural frequencies

move towards each other, the first mode damping decreases and the second mode

damping increases.

Transfer functions, Nyquist diagrams, frequency and damping estimates were obtained

for fOUT different increasing and decreasing sweep-rates at values ofnon..dimensional

airspeed ranging from 59% to 98% of the system flutter speed. The four sweep-rates

used were .000003, .000006, .000012 and .000024 radiansl(non..dimensional second)2.

These rates were chosen to represent a range ofvalues from 1 to 600% ofEwing's

recollunended sweep-rate, depending on the airspeed at which the sweep was carried out.
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Table 1 compares each of the four sweep-rates used with Ewing's recommended sweep­

rate for each ofthe two modes at each of the ten non-dimensional airspeeds.

The system modal frequencies and damping were calculated using various combinatioos

offorcing function, response signal, frequency sweep-rate and sweep direction, and

resuIts are presented for several typical combinations. The effect ofsweep-rate 00 the

accuracy of the estimated system parameters is investigated by comparing these resuIts to

the "exact" values offrequency and damping obtained from the eigenvalue analysis.

The first three sections ofthis chapter compare sorne ofthe different transfer functions

that May he obtained at various combinations ofairspeed and sweep-rate. The shape of

the transfer function can depend on the method used to coovert the time history to the

frequency domain, the degree-of-freedom from which the time histol)' is obtainecL or the

definition of the forcing function used as input to the traosfer function. In Section 4.1,

transfer functions obtained using the time-domain and Fourier transfonn methods are

compared. In Section 4.2, transfer fuoctions caIcuIated using different choices of input

function are compared at different sweep-rates, while in Section 4.3, transfer functioos

caiculated using bending, or plunge resPOnse are compared to those obtained using pitch

resPOnse.

Once the transfer function has been calculated, the frequency and damping values may be

obtained using the half power point or Nyquist plot methods. The effect of the sweep­

rate on the transfer function magnitude, the Nyquist diagram and the frequency and

damping values obtained are presented in Section 4.4. In Section 4.5, the impact of using

increasing and decreasing sweep-rates are compared. Finally, sorne conclusions are

made based on the results presented.
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4.1 Time-domain and Spectral Methods

Transfer functions May he obtained from the simulated time histories by either oftwo

methods previously descnbed - the time-domain and the spectral, or Fourier-transform

metbods. Figures 7 through 9 compare the transfer functions obtained at four different

sweep-rates and two non-dimensional airspeeds.

When using the FFT method, a large window combined with a high sampling frequency

results in a frequency resolution similar to that obtained using a shorter window and a

lower sampling frequency. The time history responses for slow sweep-rates contained

Many more data points than those obtained at fast sweep-rates for sine sweep simulations

over the same frequency range. For this reason~ the data obtained at the slowest sweep­

rate was analysed using a large window size and a sampling frequency of 8 points per

second. At the higher sweep-rates~ a smaller window was used and the sampling

frequency was reduced to 4 points per second. [n ail cases~ the frequency resolution was

maintained at approximately 0.0063 rad/sec, which was found to be the combination of

window size and sampling frequency that gave the most accurate results for frequency

and damping. The particular values used for each combination ofairspeed and sweep­

rate was determined by trial and error to give the best definition for the first mode.

Figure 7(a) compares two transfer functions calculated using the spectral method~ from

time histories obtained at 68% of the linear flutter speed and al sweep-rates of .000003

rads/s2 and .000024 rads/s2
• At this airsPee~ the two sweep-rates represent 8% and 63%

of Ewing's recommended rate, respectively, for the first mode and 2% and 13%,

respectively for the second mode. Although the two time histories were analysed using

different window lengths and sampling rates~ they have the same frequency resolution.

The sweep-rate does Dot have much impact on the transfer function obtaine~ provided

the right combination of window length and sampling frequency is found.

As the airspeed is increased toward the flutter speed., the damping of the first mode

decreases, and for the same frequency resolution the curve definition becomes
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increasingly poor. Figure 7(b) demonstrates the etrect ofdecreased modal damping on

the FFT transfer function. The sweep-rate for both curves is the same al 0.000003

radianslsec2
, whic~ for the first mode, represents 8% and 29% ofthe recommended rate

at 68% and 96% ofthe linear flutter speed, respectively. For the second mode, this

sweep-rate is equivalent to 1% and 2% ofthe recommended rate at 68% and 96% ofU·,

respectively. The curve obtained al 96% ofthe tlutter sPeed bas a slightly higher

frequency resolution than the curve for %. =.68. Even at the slowest sweep-rate the

number ofpoints defining the maximum. magnitudes of the first mode near the ftutter

margin are very few.

Transfer fonctions obtained using the time-domain and spectral methods are compared in

Figures 8 and 9. Figure 8 compares curves obtained at the same airspeed and two

different increasing sweep-rates, while Figure 9 shows transfer fonctions obtained at the

same sweep-rate, .000003 radians/(non-dimensional second)2, but for two different

airspeeds. ln general, the curves obtained using the spectral method do not contain

enough points to provide a well-defined peak value for lightly damped modes. In order

to calculate damping values for these modes, it was necessary to extrapolate the function

in order to locate an approximate maximum magnitude and phase angle, and then use

these values as the basis for the damping and naturaI frequencyestimates. The time­

domain transfer function, on the other band, always had enough points to provide a well­

defined maximum for both modes, and oever required any extrapolation or curve fitting

to obtain frequency and damping values. The time-domain curves are shifted to the right

with respect to the curves obtained using the spectral method. This is, al least partially,

due to the method used to match the peaks in the output with the input peaks when

calculating the transfer function in the time domain method. The method used,

particularly at the higher sweep rates and higher non-dimensional airspeeds, resulted in

an overestimate of the frequency for a given magnitude of the input/output ratio.

Values ofnatural frequencyand damping for the two methods are compared in Tables 2

and 3. In general, bath methods give reasonable approximations for the natural

frequency. The time-domain method increasingly overestimated the frequency with
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increasing sweep-rate (this is only true for increasing sweep-rates, and will he discussed

in Section 4.5). The spectral method often underestimated the frequency, even at the

higher sweep-rates but the error was inconsisten~ and did not appear to be as a result of

the sweep-rate. When the frequency resolution was poor, the first mode peak in the

transfer function was obtained by a linear extrapolation of the two points each side of the

peak. It is likely that this method offinding an approximation to the peak value is the

cause ofthe inconsistent results. Damping values obtained using the time.<fomain

method overestimated the correct values and the error increased with increasing sweep

rate. Results obtained using the spectral method were again inconsistent, aIthough values

obtained for the more highly damped second mode were more accurate than those

obtained for the first mode. Sometimes the half-power point and Nyquist damping values

were similar, and sometimes they were very different. In sorne cases the need to

extraPOlate the curve to find the maximum magnitudes for the lightly damped first mode

resulted in very inaccurate values ofdamping.

When the spectral method was employed, the same time-history could provide a range of

possible frequency and damping values depending on which parameters were chosen

when the analysis was done. Table 4 lists sorne of the values obtained from one such time

history at three different combinations of frequency and window length. The first mode

is lightly damped and the mode shape was, in general, inadequately defined by the

transfer function curve and provided the most inconsistent resuIts. The second mode is

more heavily damped and the spectral analysis allowed enough points to make a good

estimate of the modal damping, even at the higher sweep rates. [t was found that a lower

sampling frequency combined with a smaller window gave better results for the second

mode than when the sampling frequency was doubled and the window contained more

points.
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4.2 Forcing Function Input

For each degree offreedom response, three separate transfer functions were calculated,

each for a different choice offorcing funetion. In the first case, the set ofpeak values of

angular velocity from each motion cycle ofthe f1ap was chosen as the input. In the

second case, the peak values ofaerodynamic lift attributable to the f1ap motion, obtained

from tenns in the linear aerodynamic equations, were used as the forcing function. In the

third case the peak values ofaerodynamic moment were used. Figures 10 through 13

compare typical transfer functions obtained from the different input signaIs. The

cornparison is made for airspeeds corresponding to 68% and 98% of the linear flutter

speed, increasing sweep-rates of .000003 and .000024 radians/(non-dimensionaI

second)2, and bath plunge and pitch response signaIs.

Figures 10 and Il show the plunge resPOnse transfer functions calculated from time

historie obtained at 68% and 98% ofthe flutter sPeed, respectively. The transfer function

was caIculated using the time-domain method. The two curves obtained using

aerodynamic input and f1ap velocity are practically indistinguishable when plotted

together on scaled axes and yield identical values for modal frequency and damping. At

the slowest sweep-rate of .000003 radians/(non-dimensional second)2, naturaI frequency

and damping caIcuIations obtained from the curve in Figure 10 (a) are:

ml =209, (1 =.0403, m2 =.369 and (2 =.0583 using aerodynamic input, and

ml =209, (1 =.0403, m2 =.369 and ;2 =.0588 using flap velocity input.

The discrepancy between the respective values of frequency and damping is greatest for

the second mode at 0.14%) for frequency and 0.84°A. for damping, but is never greater

than 1%.

At the fastest sweep-rate of .000024 radians/(non-dimensionaI second)2, the curve in

Figure 10 Cb) yields:

âJ I =.214, (1 =.0508, âJ 2 =.371 and ;2 =.0609 using aerodynamic input, and

ml =.215, (1 =.0509, m2 =.372 and (2 =.0607 using flap veIocity input

At this sweep-rate, the values oever differ by more than 0.4%.
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The transfer functions plotted in Figure Il were obtained at 98% ofthe flutter speed. At

this airspeed the second mode had disappeared trom the transfer functio~ and only the

frrst mode parameters could be calculated. At a sweep-rate of .000003 radians/(non­

dimensional second)2, the values of frequency and damping obtained were:

Ct) 1=.176 and Çl =.0201 using aerodynamic lift input and

Ct)1=.176 and Çl =.0202 using flap velocity input.

The differences between the results obtained using the two inputs are 0.06 and 0.45

percen~ respectively.

At the same non-dimensional airspeed but with a sweep-rate of .000024 radians/(non­

dimensionai secondi, the transfer functions yield:

(J) l =.183 and Ç'l =.0302 using aerodynamic lift input and

Ct) 1=.184 and Ç'l =.0305 using flap velocity input

A comparison ofthese results yields discrepancies of0.49% in the frequency values and

0.93% fordamping.

The above examples are typical of the results that were obtained at ail combinations of

sweep-rate and airspeed. The frequency and damping values caIculated from the plunge

response did not depend on the choice of input signal to the transfer function.

When the pitch response transfer functions were caleulatecL the two forcing funetions

produced noticeably different curves. Figures 12 and 13 show the transfer functions

obtained at non-dimensionaI airspeeds corresponding to 68% and 98% of the flutter

speed. At the Iower airspeed, the maximum amplitude of the transfer function is less

using the aerodynamic input compared ta the flap veloeity input. However, as the

airspeed is increased toward the flutter limit the two curves become increasingly similar.

The naturaI frequeney and damping values obtained from the curve in Figure 12 (a) at

68% of the flutter speed and a sweep-rate of .000003 radians/(non-dimensional second)2

are:
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OJ I =208,

Çl =.0423,

Çl =.0421,

OJ2 =376, and Ç2 =.0442 using aerodynamic input and

OJ 2 =375, and (2 =.0447 using flap velocity input.

•

•

At a sweep-rate of .000024 radiansl(non-dimensional second)2, the values are:

OJ 1 =214, (1 =.0538, OJ 2 =.377 , and ç2 =.0488 using aerodynamic input and

OJ I =214, (1 =.0522, (i)2 =.379, and (2 =.0482 using tlap velocity input.

The above results for natural frequency are similar to those presented previously for the

plunge response in that the choice of input function does not significantly affect the

values obtained. The difference between the damping factors was slightly greater than

for the tirst mode, between 1% and 2.5% depending on the airspeed In the above

example, the difference between damping factors calculated for the second mode are 0.9

and 1.2 percent for sweep-rates of .000003 and .000024 radians/(non-dimensional

second)2, respectively. Other combinations of sweep-rate and airspeed produced similar

results. In sorne cases, the results obtained from the aerodynamic input were closer ta the

true values, and in others the more accurate values were produced from the flap velocity

function.

Although the second mode frequency and damping values were more sensitive to the

choice of forcing function than the first mode values, the difference between the transfer

functions obtained using the two input signais was never more than 2.5%. For this

reason, ooly the results calcuIated using the aerodynamic tenns are presented in the

remainder of this report.
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4.3 Response Function

The two degree-of-freedom system responds to the simulated sine sweep excitation in

both the plonge and pitch directions, and transfer functions May be obtained from either

response time history. The impact ofthe choice of response function on the natural

frequency and damping values obtained for each mode was investigated over the entire

range ofnon-dimensional airsPeeds, and at ail four sweep-rates.

4.3.1 Transfer function

Figures 14 and 15 compare transfer functions obtained from each ofthe two degrees-of­

freedom. These examples were obtained at non-dimensional airspeeds corresponding to

68% and 98% ofthe linear flutter speed, and at increasing sweep-rates of .000003 and

.000024 radians/(non-dimensional secondi. It is evident from ail four curves that the

fust mode is well defined at aIl sweep-rates and airspeeds regardless ofwhich degree-of­

freedom is represented.

The second mode is more hcavily damped tban the tirst mode~ and the shape of the

transfer function was more sensitive to the choice of response signal. The results

presented in Figure 14 demonstrate that even weIl below the flutter spee~ the second

mode is difficult to identify in the plunge response curve. The second mode definition

becornes increasingly poor as flutter is approached, until it disappears a1together. A

cornparison of the four transfer functions obtained at 98% of the ft utter speed and

presented in Figure 15~ reveals tbat the second mode is only present in one case - a

combination of pitch response signal and the slowest sweep-rate.

4.3.2 Frequencyand Damping Values

Figures 16 through 19 compare tirst mode frequency and damping estimates obtained

using plunge and pitch transfer functions at increasing sweep-rates of .000003, .000006,

.000012 and .000024 radians/(non-dimensional second)2, respectively. The modal

frequencies were obtained from the peaks in the transfer function magnitude versus

frequency curves~ and the damping values are from the Nyquist plot. In ail cases, the
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values of frequency and damping are compared to the values obtained from an eigenvalue

analysis of the linear system.

Frequency estimates for the first mode were not sensitive to the response signal used to

calculate the transfer fonction. As an example~at 82% ofthe Outter speed, the frequency

estimates from Figures 16 through 19 (a) are 0.4%~ 1.0%~ 2.1% and 3.5% higherthan the

analytical values at .000003, .000006, .000012 and .000024 radians/(non-dimensional

second)2 respectively, while the second mode response values are 0.07%,0.6%, 1.6% and

3.0% higher. Below 90% ofthe linear flutter speed the total error does not change

significantly with airspeed, while above this value there is a noticeable decrease in

precision with increasing airspeed

The Nyquist damping values for this mode were more sensitive ta the choice of response

signal than were the frequency estimates. From the examples in Figures 16 through 19,

at 82% of the flutter speed the plunge response gives damping estimates that are 4.7%~

7.5%, 15.4% and 35.1% higher at .000003, .000006, .000012 and .000024 radians/(non­

dimensional secondi, respectively, than the analytical values. The error was greater in

the values obtained from the pitch response at 8.3%, 15.1%~ 19.4% and 37.5% above the

eigenvalues. Below 90% of the linear flutter speed, the total error remains reasonably

constant with airspeed, and above 90% there was a steady decrease in precision with

increasing airspeed.

Figures 20 through 23 compare second mode frequency and damping estimates obtained

from plunge and pitch responses to the four increasing sweep-rates. The second mode is

more highly damped than the first mode, and for sorne combinations ofsweep-rate, input

and response, the transfer function did not contain an identifiable second mode shape. In

the examples presented below, the plunge time history did not contain an identifiable

second mode response above 77% of the flutter spee~ and the pitch time history did not

respond in the pitch mode at the fastest sweep-rate of .000024 radians/(non-dimensional

second)2. Where the signal was inadequate, it was impossible ta obtain second mode

frequency and damping estimates.
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When the mode peak was present in the transfer functio~ the second mode frequency

estimates were insensitive to the cboice ofresponse signal al all sweep-rates and

airspeeds. Even the plunge response gives reasonable values for the second mode natura!

ftequency up ta 77% ofthe flotter speed, when the mode disappears from the signal. Ali

of the frequency estimates obtained were within 2.0% ofthe eigenvalues.

When the pitch response was used at airspeeds below 80% of the linear tlutter spe~ ail

frequency sweeps gave good approximations for modal damping. At the fastest sweep­

rate of .000024 radians/(non-dimensional secondl (Figure 23) and 82% offlutter speed,

the error in the values obtained was only 3.7%. As the airspeed iocreased toward the

flutter speed, the gap between the estimated damping and the eigenvalues increased and

above 82% it was difficult to obtain accurate estimates ofdamping.

In summary, the plunge and the pitch response transter functions yielded practically

identical values of natura! frequency for the tirst mode. For the second mode, it was

necessary ta use the pitch response in order to obtain naturaI frequency estimates above

77% ofthe linear flutter speed, and below this value, the plunge response tended to

underestimate the modal frequency. First mode damping values obtained from the

plunge response transfer function were more accurate than those obtained from the pitch

response al the lowest sweep-rates. At higher sweep-rates, the pitch response transfer

function yielded the most precise values ofdamping above 80% ofthe flutter speed. For

the second mode, the plunge response transfer function was inadequate for ca1cuIating the

modal damping values, and only the pitch response transfer funetion could he used.

4.4 The Effect ofSweep-rate.

The impact ofswee(rrate was investigated on both the pIunge and pitch resPOose signaIs

obtained at non-dimensional airspeeds rangjng from 59% to 98% ofthe flutter speed.

The figures discussed below demonstrate the effect on the transfer funetion, Nyquist plot

and estimated system parameters for frequency sweeps carried out at 68% ofthe system
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flutter speed, and at increasing sweep-rates of .000003, .000006, .000012 and .000024

radiansl(non-dimensional secondi. The remaining resuIts, from other airspeeds and at

decreasing sweep-rates, are presented in Tables 5 through 20.

4.4.1 Transfer function

Figures 24 and 25 compare the frrst mode transfer funetions obtained at the four sweep­

rates from the plunge and pitch time histories, respectively. The transfer function

obtained by evaluating the response at a series of input frequencies, without sweep, is

shown in aIl the figures for the purpose ofcomparison. Figures 26 and 27 malee the same

comparison for the second mode transfer function.

ln ail cases, the results from the slowest sweep-rate, at .000003 radians/(non-dimensional

second)2, most closely duplicated the curves obtained without sweep. As the sweep-rate

was increased, the maximum amplitude of the transfer funetions decreased, the frequency

at which this amplitude peak occurs increased, and the number of points that could be

obtained and used to define the curve decreased. The shapes of the first mode curves

obtained from plunge and pitch rime histories were similar, while the two second mode

transfer functions had distinctly different shapes. For the second mode, the plunge

response curves shown in Figure 26 have a much smaller and less weIl defined peak on

the low frequency side than do the pitch response Clives of Figure 27. The sweep-rate

has a less pronounced effect on this mode, and the curves representing the different

sweep-rates are closer together.

4.4.2 Nyquist Diagram

The Nyquist plots for the first mode, obtained from the plunge time history are plotted in

Figure 28. The curve obtained by evaluating the response at a series ofinput frequencies

without sweep is also plotted for the purpose ofcomparison. The Nyquist diagrams for

the same mode, but obtained from the pitch response history are plotted in Figure 29.

The Nyquist diagram obtained using the slowest sweep-rate~at .000003 radians per non­

dimensional time unit, most closely duplicates the results obtained without sweep. As the
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sweep-rate was increased the oumber ofpoints that could be obtained and used to define

the curve decrease<L the curve moved and the circular shape ofthe plot became distorted

in the positive direction aloog the real axis. The shapes of the curves shown in the two

figures are similar - the shape and behaviour of the curve does oot appear to depend on

which modal response is chosen as input to the transfer funCtiOD.

The Nyquist diagrams for the second mode, obtained using the plunge response signal are

plotted in Figure 30, and those obtained from the pitch time history are shown in Figure

31. The Nyquist diagram obtained by evaluating the response at a series of input

frequencies without sweep is plotted for the purpose ofcomparison.

For the second mode, the Nyquist diagrams obtained at different sweep-rates did not

differ much in shape, and only the number ofpoints available to define the curve

decreased with increasing sweep-rate. When the pitch response was used ta calcuIate the

second mode Nyquist diagram (Figure 31), the magnitude and phase angle of the transfer

function obtained was defined over a larger range of frequencies than those obtained

using the plunge response signal.

4.4.3 Frequency and Damping Values

Figures 32 through 35 compare the values ofnatural frequency and damping factor

calculated using transfer functions obtained at four ditTerent sweep-rates. The modal

frequencies were obtained from the peaks in the transfer function magnitude curves, and

the damping values are from the Nyquist plot. Results are presented for plunge and pitch

response signais at increasing frequency sweeps. In ail cases, the values of frequency and

damping are compared to the values obtained from an eigenvalue analysis of the linear

system.

Figure 32 compares frequency and damping estimates obtained using the plunge response

to an increasing sweep-rate, while Figure 33 compares the results obtained using the pitch

response. In aIl cases, the most accurate results were obtained at the slowest swee~rate,
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and the calculated values ofnatural frequency and damping were higher than the

analytical values. The spread between the analytical and the calculated values increases

as the airspeed approaches the flutter speed. This effect was more pronounced at faster

sweep-rates, resulting in the greatest error at a combination ofthe highest airspeed and

the fastest sweep-rate.

Figure 34 compares second mode frequency and damping estimates obtained from the

plunge response to an increasing sweep-rate, while Figure 35 compares the results

obtained from the pitch response. In Figure 34, there are no results plotted for values of

airspeed above 77% ofthe system tlutter speed, because at the higher airspeeds the

plunge response did not contain a well·defined second mode, and values of frequency and

damping were impossible to obtain. The pitch response signal used to obtain the values

shown in Figure 35 contained two welI·defined modes, and values of frequency and

damping could be calculated over the full range ofairspeed.

Although the most precise results were obtained at the slowest sweep-rate, the calcuIated

values of natural frequency for the second mode varied little with sweep-rate or noo­

dimensional airspeed. At the lower values ofairspeed the calculated values ofdamping

did oot vary much with sweep-rate. As the airspeed iocreased, the dampiog was

increasingly underestimated and the sweep-rate became iocreasingly important Near the

flutter speed, the damping could oot he calculated using the half powerpoint method, and

the values obtained for the damping factor became dependent 00 which points of the

Nyquist plot were used.

It is evident from the results presented above that the sweep-rate is an important

parameter in the accuracy of the frequency and damping estimates, with the error

increasing significantly with increasing sweep-rate. This is particularly true for the first,

or most Iightly damped mode, and the error increases as the modal damping decreases

ncar the ftutter speed, for aIl sweep-rates.
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4.5 Increasing and Decreasing Sweep-rafes

The effect of increasing and decreasing sweep-rates was investigated for transfer

functions calculated from both the plunge and pitch response signaIs, with the

aerodynamic lift and moment used as the input signal. Values ofnatural frequency and

damping factor were obtained at four different sweep-rates, and were compared to the

linear system eigenvalues. The modal frequencies were obtained from the peaks in the

transfer function magnitude versus frequency curves, and the damping values are from

the Nyquist plot.

4.5.1 Transfer fundion

The first mode transfer functions obtained at a sweep-rate of .000003 radians/{non­

dimensional second)2 are plotted in Figure 36 for both increasing and decreasing

frequeney sweeps. The transfer function obtained without sweep is shawn for

comparison. The maximum amplitude of the transfer function was smaller for the

inereasing sweep, and larger for the decreasing sweep when compared to the curve

obtained without sweep. The frequency at which the amplitude peak oceurs was higher

for the increasing sweep and lower for the decreasing sweep when compared to the

frequency at which the amplitude peak occurs without sweep.

The first mode transfer functions obtained at a sweep-rate of.000024 radians!{oon­

dimensional second)2 are plotted in Figure 37 for both increasing and decreasing

frequency sweeps. The effect of increasing and decreasing sweeps on the frequency at

which the amplitude peaks was similar but more pronounced at the higher sweep-rate.

The effect on the magnitude of the peak in the transfer function is also amplified. For a

decreasing frequency sweep at the higher sweep-rate~ the peak: magnitude was larger than

that obtained using an inereasing frequency sweep at the same sweep-rate, but was

smaller than the value obtained without sweep.

The second mode transfer functions obtained at a sweep-rate of .000003 radians/{non­

dimensional second)2 are ploned in Figure 38 for both increasing and decreasing

frequency sweeps. The transfer function obtained without sweep is shown for
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comparison. For this mode, and at the slowest sweep-rate, there is little difference

between the curves obtained for increasing and decreasing frequency sweeps. The

second mode transfer fonctions obtained at a sweep-rate of .000024 radians/(non­

dimensional second)2 are plotted in Figure 39 for both increasing and decreasing

frequency sweeps. The maximum amplitude ofthe transfer fonction is smaller for the

increasing sweep and larger for the decreasing sweep when compared to the curve

obtained without sweep. The frequency at which the amplitude peak occurs is higher for

the increasing sweep and lower for the decreasing sweep when compared to the

frequency at which the amplitude peak occurs without sweep.

4.5.2 Nyquist Diagram

The tirst mode Nyquist diagrams obtained at a sweep-rate of .000003 radians/(non­

dimensional second)2 are plotted in Figure 40 for both increasing and decreasing

frequency sweeps. The diagram obtained without sweep is shown for comparison. The

circular shape of the corves plotted for increasing and decreasing frequency sweeps are

shifted to either side of the curve obtained without sweep, but the shape ofthe curves is

not significantly distorted.

The first mode Nyquist diagrams obtained at a sweep-rate of .000024 radians/(non­

dimensional secondi are plotted in Figure 41 for both increasing and decreasing

frequency sweeps. The effect of increasing and decreasing sweep on the shape of the plot

is much more apparent at the higher sweep-rate. In the case of the increasing sweep, the

upper part of the diagram is shifted, and the lower part ofthe diagram is distorted when

compared to the eurve obtained without sweep. In the case of the deereasing sweep the

effeet is reversed, and the upper part of the diagram is distorted while the lower part of

the diagram is shifted when compared to the eurve obtained without sweep.

The second mode Nyquist diagrams, obtained at a sweep-rate of .000003 radians/(non­

dimensional second)2, are plotted in Figure 42 for both increasing and decreasing

frequency sweeps. In the case of this more highIy damped mode, and at this sweep-rate,

the difference between increasing sweep, deereasing sweep and no sweep is insignificant.
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The second mode Nyquist diagrams obtained at a sweep-rate of .000024 radians/(non­

dimensional secondi are plotted in Figure 43 for both increasing and decreasing

frequency sweeps. The effect of increasing and decreasing sweeps on the shape of the

plot is more apparent at the higher sweep-rate. In the case of the increasing sweep, the

diagram is shifted upward with respect to the imaginary axis when compared to the curve

obtained without sweep. In the case of the decreasing sweep the effect is reverse~ and

the curve is shifted downward with respect to the imaginary axis when compared to the

curve obtained without sweep.

4.5.3 Frequency and Camping Values

Figures 44 through 59 compare the values ofnaturaI frequency and damping factor

caicuIated using transfer functions from increasing and decreasing sweeps. Results were

obtained at four different sweep-rates, and using transfer functions obtained from both

plunge and pitch response signaIs. The modal frequencies were obtained from the peaks

in the transfer function magnitude versus frequency curves, and the damping values are

from the Nyquist plot. ln aH cases, the values offrequency and damping are compared to

the values obtained from an eigenvalue analysis ofthe Iinear system.

Figures 44,46,48 and 50 compare frequency and damping estimates obtained from the

plunge response to increasing and decreasing frequency sweeps at .000003, .000006,

.000012 and .000024 radians/(non-dimensional second)2, respectively. Figures 45, 47, 49

and 51 compare frequency and damping estimates obtained from the pitch response ta the

same frequency sweeps.

First mode frequency estimates were not sensitive to the response signal used to calculate

the transfer functioo. For increasing sweep-rates, the frequency estimates are higher than

the analytical values. while for decreasing sweep-rates the frequency is underestimated

with respect ta the eigenvalues. This effeet iocreases with increasing airspeed and

sweep-rate. For example in Figure 44(a), the sweep-rate is .000003 radians/(noo­

dimensional second)2, and at 59% ofthe flutter speed the frequency estimates are 0.4%

higher (increasing sweep) and 0.8% Iower (decreasing sweep) than the analytical value,
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white at 98% ofthe flutter speed the estimates are 1.6% higher and 2.2% lower. Figure

50 (a) presents the values obtained at the fastest sweep-rate of .000024 radians/(non­

dimensional second)2, and at 59% ofthe flutter speed the estimated frequencies are 2.5%

higher and 4.0% lower than the analytical value, while al 98% ofthe flutter speed the

values are 5.9% greater and 7.2% smaller than the eigenvalues.

The effect of increasing versus decreasing frequency sweeps on the estimated damping

parameter for the tirst mode was more complex than the effect on frequency. The closest

approximations to the analytical values were always obtained at the slowest sweep, but

even at this rate the decreasing sweep gave more precise values than the increasing

sweep. The data shown in Figure 44 (b) was obtained using plunge response data at

.000003 radians/(non-dimensional second)2, and the error in the estimated values of

damping range from 2.9% at 59% of the flutter speed, to 32.1% at 98% for an increasing

sweep. Using a decreasing sweep at 59% and 98% ofthe flutter speed, the errors in the

damping values were 0.5% and 27.9%, respectively. Both increasing and decreasing

frequency sweeps overestimated the eigenvalue damping factor, but the decreasing sweep

gave more accurate values. The values in Figure 45(b) were obtained using pitch

response data at the same sweep-rate as the previous figure. In this case, the trend was

the same, with both sweeps overestimating the modal damping and the increasing sweep

being the least accurate of the two. At this sweep-rate the decreasing sweep gave quite

accurate estimates throughout the range ofairsPeeds. Figures 46(b) and 47(b)

demonstrate a similar reaction to sweep direction for a sweep-rate of .000006

radians/(non-dimensional secondi.

As the sweep-rate was increased, the overall accuraey ofthe values for the first mode

damping decreased, with a decreasing sweep and plunge resPQnse signal giving the best

approximations to the analytical values. At a sweep-rate of .0000 12 radians/(non­

dimensional second)2, (Figure 48(b»), the decreasing frequency sweep yields estimates of

damping within 10% ofthe eigenvalues for airspeeds up to 82% ofthe flutter speed.

Above this value, the most aceurate values were obtained from an increasing frequency

sweep. For example, at 91 % of flutter speed~ the decreasing sweep resulted in a damping
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factor error of20°A», while the value obtained at an increasing sweep was within 6.0% of

the analytical value. The same bebaviour was observed at a sweep-rate of .000024

radians/(non-dimensional second)2 (Figures 50 and 51).

Figures 52, 54, 56 and 58 compare second mode frequency and damping estimates

obtained using plunge response to increasing and decreasing frequency sweeps of

.000003, .000006, 000012 and 000024 radiansl(non-dimensional second)2, respectively.

The plunge response signal does not contain a second mode response at values of

dynamic pressure above 77% ofthe flutter speed, and even below this airspeed, the

damping values obtained were scattered and gave inconsistent estimates for modal

damping. Figures 53, 55,57 and 59 compare frequencyand damping estimates obtained

using pitch response time histories to increasing and decreasing frequency sweeps of

.000003, .000006,000012 and 000024 radians/(non-dimensional second)l. respectively.

Second mode frequency estimates were very accurate for ail sweep-rates and ail

airspeeds. There was no noticeable increase in error between .000003, .000006 and

.000012 radians/(non-dimensional seeond)2, with aIl estimates at both increasing and

deereasing sweeps withio 1.5% ofthe eigenvalues. At the fastest sweep-rate used (Figure

59), there was no second mode peak in the transfer function for an inereasing sweep

above 91% of the flutter speed, while the decreasing sweep yielded values for the whole

range ofairspeeds. At this sweep-rate and airspeed, the calculated natural frequency was

within 0.3% of the true value.

For the second mode, ooly the transfer funetions obtained using the pitch response data

yielded reasonable values for the modal damping factor. When the pitch response time

history was used at airspeeds below 80% ofthe linear flutter speecL aIl sweep-rates at

both inereasing and deereasing sweeps gave reasonable approximations for modal

damping. Even at a sweep-rate of .000024 radians/(non-dimensional second)2 (Figure

57) and 82% offlutter speed, the error in the values obtained were only 3.7% and 3.4%

for increasiog and decreasing sweeps, respeetively. As the airspeed was increased toward
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the flutter speed~ the gap between the estimated damping and the eigenvalues increase<L

but the error is not significantly greater for faster sweep-rates.

In general, increasing frequency sweeps overestimated both the modal frequency and

damping values. Decreasing frequency sweeps underestimated frequency, overestimated

tirst mode damping values~ and underestimated second mode damping values. The

decreasing sweeps gave significantly more precise estimates ofdamping than the

increasing sweeps. The amount by which the estimated values are in error increases with

increasing sweep-rate~ and is greater for more lightly damped modes.

4..6 Summary

The three parameters having the greatest etfect on the calcuIation ofmodal frequency and

damping values were found to he the choice of response time history, sweep-rate and

sweep direction. The choice of response time-history was very important if the more

heavily damped mode is of interest, and was less important for the lightly damped mode.

Sweep-rate was found to he the most important overall parameter, and the fastest sweep­

rates caused the largest errors in both frequencyand damping estimates, particularly for

the more lightly damped ofthe two modes.

Although the slowest sweep-rate was always the most precise, the total error was a result

of the combination ofall three parameters. For example, the pitch response transfer

fonction overestimated the first mode damping, as did the increasing frequency sweep.

For this reason, the combination ofpitch response and increasing sweep results in larger

errors in damping values than does the combination ofplunge response with the same

increasing sweep-rate. The best choice of parameters depends on which results are

important, in particular which mode is of interest, and at which airspeeds the sine sweep

is to be perfonned.
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5 Nonlinear Results

A nonlinear system was obtained by replacing the "linear spring" restoring moment in the

pitch directio~ M(a) =a , by a nonlinear spring with a freeplay region as described in

Chapter 3, Section 3.5. The pitch response ofthe nonlinear system was compared to the

pitch response of the equivalent linear system.

In Section 5.1, the general behaviour ofa one degree.of.freedom, mechanical system

with a nonlinear restoring force is discussed. The general properties of this system

provide a basis for comparison with the behaviour of the aeroelastic system and are taken

ftom the basic theory ofnonlinear systems (Broch J.T., 1980). In Section 5.2, the pitch

response waveforms obtained for the nonlinear system are compared to those of the linear

system, and in Section 5.3 the Iinear and nonlinear frequency response curves are

compared Section 5.4 describes the effect ofthe "size" or length of the nonlinear regjo~

as weU as the amount ofpreload in the freeplay region. Section 5.6 compares modal

damping values obtained for the nonlinear system with the parameters previously

calculated for the linear system. The time-domain and frequency-domain methods of

obtaining the frequency transfer function are evaluated with respect ta their application to

the non1inear system.

5. 1 One Degree-of.Freedom Nonlinear Systems

Consider first the example ofa one degree-of-freedom mechanical system subject to a

nonlinear spring force. If such a system has no excitation force and no damping, then the

free oscillations of the disturbed system are not sinusoidal, as is the case for a linear

system. In the linear case, the frequency and the shape of the oscillation are independent

ofthe amplitude. ln the non-linear case both the frequency and the form ofthe response

vary with the amplitude. The relationship between amplitude and natural frequency for

the linear system, and a typical hardening spring with a freeplay nonlinearity are shown

in Figure 60. For this type ofnonlinear spring, the frequencyofthe system increases

with amplitude and approaches the natural frequency of the equivalent linear system

asymptotically at large amplitudes.
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When light damping and periodic excitation are added to the system described above, the

steady-state response is generally periodic, and at the same frequency as the excitation.

For fixed amplitudes of the excitation force and light damping, the response curves have

the fonn shown in Figure 61. The nonlinear curves are similar to the corresponding

corve for the linear system, but the ''backbone'' of the resonant peaks is the nonlinear free

vibration amplitude-frequency curve from Figure 60(b).

Figure 62 illustrates the hysteresis effect that the nonlinearity may have on the steady

state response in the case ofa frequency sweep. The segment between points 2 and 3 is

unstable, and if the excitation frequency is swept from zero at an increasing sweep-rate,

the quasi-steady response amplitude follows the curve from 1 to 2, and thenjumps to

point 4. Under a decreasing frequeney sweep, there will be a sudden jump in steady state

response from 3 to 1. This effeet results in very different frequency response peaks for

increasing and decreasing sweep-rates.

Another property of nonlinear systems is that they distort the wave shape of the response

signaI. Even if the forcing function is purely sinusoidal, the wave shape of the response

will not he sinusoidal. Nonnally, the response wave shape will contain a number of

frequency components harmonically related to the frequency of the driving force. These

ordinary, or "superharmonics" are present in aL~ost aIl non-linear systems, and their

amplitude values are nonnally small compared to the dominant response frequency.

Under sorne circumstances, particularly low damping, the system may respond at a

subharmonic of the forcing frequeney, although purely subhannonic response is rare.

The phenomenon of superhannonie and subhannonic frequencies ean he important in

multi-degree-of-freedom systems sueh as aireraft wings and tail surfaces. Ifa frequency

sweep is being carried out to cover two specifie vibration modes in a resonance test, a

nonlinearity in one of the degrees-of-freedom May result in an oseillatory response at one

or more frequencies other than the forcing frequency. Ifone of these harmonies by

chance coincides with the resonant frequency of sorne other mode of the system., a large
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amplitude response May he created at a frequency that is not within the range ofthe

frequency sweep. Although the simulated frequency sweep used in this study cannot

duplicate such an incident, it can he used to investigate the existence of superhannonic

and subhannonic oscillations in the response ofthe aeroelastic system to a sine sweep

input

5.2 Frequency Response Curve

The response of the nonlinear aeroelastic system to a sine sweep excitation was

investigated for a nonlinear restoring moment in the pitch degree-of-freedom. The

wavefonn of the system response varied considerably across the range of the frequency

sweep. For each value ofnon-dimensional airspeed, the variation of response waveform

with input frequency was different. The results presented in this section are for a

maximum input flap angle of Po =2.00
, a nonlinear spring defined by

a f = 0.250
, ô = 0250

, ma = 0250 (see Figure 2), and a decreasing sweep-rate of

.000012 radians/second2
• The remainder of the system parameters are the same as those

for the Iinear system described in Chapter 4.

The nonlinear restoring force in the pitch degree.of-freedom has a hysteresis effect on the

frequency response curve similar to that discussed in Section 5. 1. The first mode is

Iightly damped, the magnitude of the response is weil above the nonlinear pitch range,

and the nonlinearity has linle effect on the shape of the frequency response. The second

mode is the more heavily damped of the two modes, and the nonlinear effeet is more

pronounced. The second mode responds farther down the "backbone" ofthe free

vibration amplitude-frequency curve of Figure 61. Figure 63 compares the linear and

nonlinear frequency responses to increasing and decreasing sweep-rates, for an airspeed

equivalent to 55% ofthe linear flutter speed At this airspeed, although the second mode

is lightly damped, it is much more heavily damped than the first mode, and the nonlinear

hysteresis effect is apparent. Figures 64 through 67 make similar comparisons at

airspeeds equivalent to 64, 73, 82 and 91% of the linear flutter speed, respeetively. For

each figure, both the linear and the nonlinear "backbones" have been sketched i~ and the

"jumps" in frequency response have been indicated. As the airspeed is increased, the
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second mode damping increases, and the peak in the second mode response curve moves

farther down the ''backbone". Also, for increasing airspee~ the nonlinear response lies

on the more horizontal portion ofthe backbone curve, and the hysteresis effect becomes

increasingly less evident at the high frequency side ofthe response curve. At the low

frequency side ofthe second mode response~ with increasing airspeed, the hysteresis

effect is influenced by the increasing proximity of the tirst mode. At 82% ofthe linear

flutter speed, the two mode responses have begun to overlap, and the nonlinear hysteresis

effect is no longer evident. The high frequency side ofthe second mode contains a range

ofnonlinear, subhannonic frequency response al airspeeds above 73% of the linear flutter

speed On the frequency response plot, these regions are characterized by unstable, or

scattered, frequency response amplitudes al ranges of input frequency above the second

mode natural frequency. Figures 65, 66 and 67 illustrate this sort ofnonIinear response,

and a comparison ofthe three figures shows how the airspeed affects the length of the

subharmonic, nonlinear region as weil as the amplitude of the resPQnse.

5.3 Response Waveforms

For the system parameters described above, and at six different airspeeds between 55 and

91% of the linear tlutter speed, severa! visua11y different response waveforms were

identified. Each wavefonn occurred over a distinct frequency range. Not aIl wavefonns

were present at aIl airspeeds, and sorne were evident for more than one range of

frequencies within the same frequency sweep. Figures 68 through 78 illustrate sorne

typical examples ofthe response waveforms that were obtained.

A typical response with superhannonics at two, three and four rimes the forcing

frequency is shown in Figure 68. The corresponding power spectral density plot is

shown in Figure 68(b). This response occurred for ooly one short frequency range, at

low frequencies, and at ooly one of the airspeeds tested (a more complete discussion of

the different input frequency ranges over which the different nonlinear responses

occurred, is gjven al the end ofthis sectio~ and is illustrated in Figures 79 through 83).

Figure 69 illustrates a more comman response with harmonics at two and three times the

forcing frequency. This type of response occurred at the lower vaJues of forcing
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frequency, typically between 50 and 65% ofthe first mode resonant frequency,

depending on the airspeed. The most common superhannonic in the aeroelastic response

was at twice the forcing frequency, and an example ofthis is shown in Figure 70. This

particular response waveform was found at sorne point in the frequency sweep at all

airspeeds, and always occurred at frequencies below the tirst mode resonant peak. The

length of the frequency range over which the second harmonie response was sustained

was longer than that for any other type ofwavefonn.

The non1inear responses at two, three, and four times the input frequency always

occurred below the first mode resonant frequency. The nonlinear behaviour was limited

ta the lowamplitude regions ofthe frequency response curve, and the particular type of

waveform appeared to be a funetion ofthe magnitude of the response. At the lower end

ofthe frequency range, lower airspeeds produce lower amplitude responses. The

amplitude ofthe response increases with increasing frequency and airspeed until it peaks

al the first mode resonant frequency. The fourth hannonic only occurs at the very

smallest amplitudes, and so is only found at very low airspeeds. As the amplitude ofthe

response increases, the wavefonn changes from the fourth to the third and the second

harmonics, successively. As the first mode peak in the frequency response curve is

approached, the amplitude ofthe response increases rapidly, and the system response

becomes similar to that of the linear system.

At input frequencies between the first and second mode peaks, the pitch response

wavefonn depended on the airspeed at which the frequency sweep was perfonned. At

lower airspeeds, the response amplitude in this region was smaller, and the response

wavefonns are nonlinear. Typical examples of this sort ofmotion are shown in Figures

71 and 72, for airspeeds equivalent to 55% and 64% ofthe linear flutter speed. The

response is similar to the superharmonic wavefonns described above for frequencies

below the first mode natural frequency~ except that the response is at one and a halfand

two times the input frequency~ as weil as at the input frequency. At airspeeds above 65%

of the linear flutter speed~ the two modes begin to converge, and the region ofsmaIl

amplitude response between the two disappears. At these airspeeds~ and for the
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frequeney range between the two modes, the system responds at the same frequency as

the input.

A third type ofwaveform appeared in the response at frequency ranges beginning just

above the second mode natural frequency. An example of this waveform is shown in

Figure 73. The harmonie in this case is a subharmonic and the frequency ofthe

oscillation is two thirds ofthe forcing frequeney. At higher values of input frequency,

the frequency ofthe dominant subharmonic response changes from two-thirds ofthe

input to the first mode natural frequency. This second type ofsubharmonic is illustrated

in Figure 74, where the two-thirds harmonie is a1so present, but is ofmuch smaller

magnitude. At the high end of the nonlinear response range, the response is actually

dominated by the first mode natura} frequency, and not the forcing frequency, as

illustrated in Figure 75.

Figures 76, 77 and 78 are examples of the wavefonn response at an airspeed approaching

the linear tlutter speed. The response at aIl frequencies is dominated by the first mode

naturai frequency, and at higher frequencies (Figure 78), the magnitude of the response al

the input frequency becomes very small compared to the magnitude ofthe harmonic.

This type of motion was found at frequencies just above the second mode at aIl airspeeds

above 70% of the flutter speed. As the airspeed was increased, the frequency range of

nonlinear response became Iarger. The upper Iimit ofthe range remained reasonably

stable, at about 0.40 radians/second, but the lower limit of the nonlinear range decreased

with inereasing airspeed, and as the second mode damping increased.

Figures 79 through 83 show the regions of the frequency response curves where each of

the above types of waveform occurred, for five values ofnon-dimensional airspeed

ranging from 55% to 91% of the Iinear flutter speed. The tirst nonlinear region is below

the tirst mode resonant peak, where the harmonies were at twice, three rimes and four

times the forcing frequency. The second nonlinear region occurred between the first and

second mode resonant peaks, where the superhannonie response was at one-and-a-half

and two times the input frequency. The third nonlinear region was characterized by two
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separate subharmonic responses at two thinls ofthe input frequency, and at the first mode

natura! frequency. This response occurred at frequencies above the second mode

resonant peak, and was only found at higher airspeeds.

5.4 Length ofFreeplay Region

The nonlinear behaviour ofthe frequency response curve was closely tied to 8, the

length ofthe freeplay region. Figures 84 through 88 compare the linear frequency

response at a decreasing sweep rate of .000012 radianslsecond2
, to the nonlinear response

for freeplay lengths of .25, .5 and .75 degrees. The five figures represent results

obtained at 55,64, 73, 82 and 91% ofthe linear flutter speed, respectively. In ail of the

figures, the curve that most closely resembles the linear curve is the smallest freeplay

length, or .25 degrees. As the length of the freeplay region is increased, the frequency of

the second mode Peak decreases, the magnitude ofthe first mode peak increases, and the

nonlinear behaviour becomes more pronounced for input frequencies above the first

mode natural frequency.

As the airspeed at which the sweep rate is perfonned is increasecL there is a more

dramatic increase in nonlinear subharmonic response with increasing freeplay length. In

Figures 84 and 85, at 55 and 64% of the linear flutter speed, the first and second mode

have distinct response peaks for ail values of t5, the hysteresis effect is evident in the

shape of the second mode response, and the regions of nonlinear harmonic response

above and below the first mode natural frequencyare similar in appearance. In Figure 86,

at 73% of the linear flutter speed, regions of nonlinear subharmonic response appear in

the response curve at frequencies above the second mode peak for freeplay Iengilig of .5

and .75 degrees. The subharmonic region for the.75 degree freeplay is quite extensive,

and the second mode response for this curve is almost entirely nonlinear. At 82% of the

flutter speed, the resPOnse in the region of the second mode natural frequency is entirely

subharmonic and nonlinear for aIl values of 8 except 8=0.25, and the magnitude of the

nonlinear response increases significantly with increasing 8. At 91 % of the fl utter speed

(Figure 88), the response is nonlinear across the entire second mode frequency range~ and

the magnitude of the nonlinear response is significant for the Iarger values of 8. The

64



•

•

•

effect offreeplay region length on the first mode response does not change significantly

with airspeed. Although the second mode peak in the nonlinear response curves seems ta

"disappear" at a lower airspeed than does the Iinear case, the flutter speed does not seem

to he affected by the length of the nonlinear region. The disappearance ofthe second

mode peak appears to be a result ofsubhannonic response mther than frequency

coalescence.

5.5 Effect ofPre/oad Magnitude

The preload ofthe freeplay region of Figure 2, or the magnitude of IIlo, also influences

the shape of the nonlinear frequency response curve. Frequency response curves were

obtained for six different values ofma ranging from 0.00 to 1.25 degrees, and at five

different airspeeds between 55% and 91% ofthe linear flutter speed. AIl the curves are

for a freeplay length of .25 degrees and a decreasing sweep rate of .000012 radians/(non­

dimensional secondi.

The value ofmo bas a significant effeet on the nonlinear behaviour of the response curve,

particularly in the region 0.00<rno<0.5°. For example, at 55°,4 of the linear flutter speed,

and for a value Ofma=O.Oo, the second mode response peak disappears entirely, as shown

in Figure 89(a). Figure 89(b) shows an increase in ma to 1110=0.125°, which causes the

second mode response peak to reappear, and introduces a significant region of nonlinear,

subharmonic behaviour at input frequencies between 0.46 and 0.60 radians/second.

Figure 90 shows that a further increase in the preload to 1110=0.25° causes the

subharmonic rcgion to disappear, and subsequent increases of the preload up to

mo=1.25°, (Figures 90 and 91 ), do not produce any subhannonic responses for this range

of input frequency. The shape of the second mode frequency response peak also changes

\Vith mo, with the "jump" across the nonlinear region occurring at higher frequencies for

increasing values of mo.

The nonlinear region below the first mode natural frequency is affected by the value of

ma. As ma is increased from 0° to 0.5° (Figures 89 and 90), the magnitude of the

superharmonic, nonlinear response in this region increases, and the input frequency range
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for the nonlinear response extends closer to the tirst mode naturai frequency (Figure

90(a». Figure 90(b) shows the response at mo=O.5°, where the input frequency range

over which the response is nonIinear suddenly decreases, and continues to decrease with

increasing tno up ta 1110=1.25°, where it disappears (Figure 91).

The tirst mode response peak was aIso affected by variations in freeplay preload. The

magnitude of the response was larger than the linear response for all values of Dlo except

for 1110=1.25°, as shown in Figure 91(b). The width ofthe first mode response peak an

indicator ofmodal damping, is larger at smaller values of Ino, as can be seen in Figures

89 (a) and Cb). As Illo is increased, the amplitude of the respoose peak remains the same,

but the width decreases. In Figure 90, the change in width ofthe response peak from Ca)

to (b) is evident, for an increase in Mo from 0.25 to 0.5 degrees.

The results discussed above are aU for 55°;'0 of the linear flutter speed. Similar results

obtained for airspeeds equivalent to 64, 73, 82 and 91% ofthe linear flutter are presented

in Figures 92 throughl03. The general behaviour of the system with increasing freeplay

preload is the same as described above for U/U*=O.55. As the airspeed is increased, the

nonlinear, subhannonic behaviour al the high end ofthe frequency sweep appears at

increasingly lower values of Illo, and disappears again at higher values mo. The

nonlinear, subhannonic region found at frequencies below the first mode naturaI

frequency occupies less of the response peak for higher airspeeds, probably because the

magnitude of the pitch response in this area is larger. The width of the response peak is

less affected by tno at the higher airspeeds, and U/U*=O.55 is the only airspeed where the

second mode response peak disappears entirely for rno=O.O°.

5.6 Effect on Modal Damping

Damping values are less easily obtained for the nonlinear system investigated in this

chapter than for the [inear system presented earlier. The nonlinear hysteresis results in a

second mode frequency response curve that is asymmetricaI and has frequency jumps'

across the points that are required for a reasonable calculation of second mode damping

using either the half power point or Nyquist methods discussed in Chapter 3. In addition,

66



•

•

•

the second mode response peak disappears at a much lower airspeed than it does with a

Iinear system, due to the existence ofa strong subharmonic response in the range of the

second mode natural frequency, especially at higher airspeeds. In this study, no attempt

was made to calculate second mode damping values.

The first mode response ofthe nonlinear system was similar to the linear response, but

only over a small frequency range each side of the first mode natura! frequency.

Damping values for this mode were obtained using both the Fourier transform and the

time domain methods. In the first method, the frequency transfer function was obtained

using the Fourier transfonn approach described in Chapter 3. The Nyquist method was

theo used to calculate the modal damping using the first point 00 either side of the first

mode peak value. A second damping value was then calculated using the second point 00

either side ofthe peak. The time domain method was applied by seleeting only the range

of points from the ftequency response curve where no harmonic response was present. A

'segment' of the transfer function was then obtained by applying the time domain method

described in Chapter 3 to selected response range. Modal damping was calculated using

the Nyquist metho~ with the points chosen as close as possible to the same input

frequeocyas the points from the Fourier transform method described above. An example

ofthe transfer functions obtained using the two methods, at UIU*=O.77, is presented in

Figure 104.

Modal damping values for the first mode are presented in Figure 105 for one case only - a

decreasing frequency sweep at 0.000012 radians/(non-dimensional secondi, with a

freeplay preload of1110=0.25 degrees and a freeplay length of 8=0.25 degrees. The

Fourier transfonn results were calculated using the first point each side of the peak

magnitude, and the time domain results were calcuIated using points chosen to he at

approximately the same input frequency as the corresponding Fourier transform result.

The time domain results overestimate the modal damping by a smail amount compared to

the linear system, but the Fourier transfonn results overestimate the damping value by up

to one and halftimes, at ail airspeeds except 96% ofthe linear flutter speed. The Fourier

transform results obtained using the second point on either side ofthe frequency peak are

67



•

•

•

not presented because they are less uniform, appear to he more random~ and overestimate

the damping by an even greater amount

The Fourier transfonn method ofobtaining the frequency transfer fonction for the

nonlinear system results in much larger damping values than the time damain method for

the same system. This is probably because the nonlinear system responds al hannonics

ofthe input frequency for a significant range of frequencies within the range of the

frequency sweep~ and this hannonic response affects the Fourier transform results. The

Fourier transfonn method assumes that the system responds at the same ftequency as the

input:.. or forcing function~ and calculates the transfer function as the relative magnitudes

of the input and response at each frequency. The nonlinear system does not always

respond at the same frequency as the inpu~ and so this assumption is not always true.

The nonlinear~subharmonic response of the nonlinear system is often close to, or at the

same, frequency as the first mode natural frequency. This distorts the transfer function

curve in the area of the first mode peak, because the Fourier transfonn method calculates

the subharmonic as a response to input at the subharmonic frequency.

5.7 Summary

The introduction ofa structural nonlinearity in the fonn ofbilinear spring with a freeplay

regio~ had a significant impact on the response of the aeroelastic system to a frequency

sweep input. UnIike the linear system~ the nonlinear model did not always respond at the

same frequency as the input force, and contained regions of both superharmonic and

subharmonic response. The nonlinearity had a hysteresis effect on the second mode

response curve, and the resulting peak in the frequency response amplitude was at very

different frequencies for the increasing and decreasing frequency sweeps. Changes in

nonlinear region length and preload magnitude had significant impact on the system

response, particuIarly in the input frequency range containing the secon~ or more heavily

damped mode natural frequency.

The second mode response curve was distorted by the nonlinearity, and reasonable values

of modal natural frequency and damping could not be obtained using the methods
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employed for the linear system. The first mode was much more lightly damped than the

second, and the response curve was less atTeeted by the nonlinearity. Natural frequency

and damping values for this mode could be calculated using both the time-domain and the

spectral methods, although the time-domain method was limited those portions of the

frequency response where the response was at the same frequency as the input. Natural

frequencies obtained for the first mode were in close agreement with those obtained for

the (inear system. Damping values obtained using the time-domain method were slightly

greater than the linear values, and damping values obtained using the spectral method

were much larger - up to one and a halftimes the corresponding linear values.
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6 Summary and Conclusions

The sine sweep is a method commonly employed to perfonn resonance tests on aircraft

wings and tail surfaces. Finding natural aeroelastic ftequencies by repeated testing at

increments of forcing frequency is not practicable when the testing must be performed on

fulI-scaIe aircraft under actual flight conditions. Sine sweep tests, or frequency sweeps,

permit the analysis ofa range offrequencies within the time span ofone test flight. The

rate at which the ftequency is varied during the sine sweep can affect the test resuJts, and

it is ofpractical interest to perfonn the test at the fastest sweep-rate that can produce

accurate data In this study, the effect ofsweep-rate on the accuracy ofanaJytically

generated data describing the aeroelastic motion ofa two-dimensionaJ airfoil was studied.

Two different methods were employed to convert the data to the fcequency domain, as

weIl as to calculate frequency and damping parameters for the aeroelastic system. The

methods were compared and the accuracy ofthe different methods, combined with the

different sweep-rates, was investigated. Finally, the effect of introducing a simple

nonlinearity into the aeroelastic system was investigated.

6.1 Summary

A numerical model of the equations of motion for a two-dimensionaJ, three-degree-of­

freedom airfoil performing unsteady motions ofsmall amplitude in incompressible,

inviscid flow was produced. The model was used to apply a ftequency sweep by means

ofconstraining the third degree of freedom, the flap motion, to oscillate at a variable

frequency and thus provide a defined input to the system. Exact solutions to the

equations of motion for the linear system were obtained from an eigenvalue analysis.

Numerical solutions to the equations of motion were obtained for a number ofdifferent

combinations ofairspeed, sweep-rate and forcing function input, and a number of

different comparisons were made.

The impact of introducing a structural nonlinearity into the aeroelastic system was

investigated for the case ofa nonlinear restoring force with a freeplay region in the pitch

degree offreedom. The behaviour of the frequency response curve and the response

wavefonn were compared to that of the linear system, as weil as to the generaJ behaviour
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ofa purely mechanical system subjeet to a sunHar nonlinearity. Ifthe nonlinear system

response is presented in the form ofa transfer functio~ much ofthe infonnation about

the nonlinear behaviour is lost. For this reason, the nonlinear cbaraeteristics ofthe

aeroelastic system were studied in terms ofthe frequency response curve rather than the

transfer function.

6.2 Conclusions

6.2.1 Linear Aeroelastic System

• When resonance testing is carried out using the sine sweep metho~ the choice of

frequency sweep-rate can significantly affect the accuracy of the resulting modal

frequency and damping calculations.

• Parameters calculated using the time-domain method are, in general, more precise

than those obtained using the spectral, or Fourler transfonn method.

• The Nyquist plot yields more accurate damping values than the transfer function

magnitude plot and the half power point method, but the sweep-rate has an important

effect on the shape of the plot, and points must be carefully selected to provide

aceurate results at higher sweep-rates.

• The ideal sweep-rate is a function of modal naturai frequency, modal damping, and

airspeed.

• The accuracy ofthe calculated system parameters is dependent on the modal

damping. If the mode is highly dampe~ a faster sweep-rate is still quite accurate.

For lightly damped modes, a slow sweep-rate is essential for accurate results. For the

aeroelastic system, modal damping is a function ofairspeed, and as the airspeed is

increase<L the sweep-rate must be decreased to maintain the same accuracy.

• For the same sweep-rate, a decreasing sweep yields more accurate damping values

than an increasing sweep.

6.2.2 Nonlinear Aeroelastic System

• The frequency response of the nonlinear aeroelastic system is much more complex

than that of the linear system, even for small nonlinearities.

71



•

•

•

• The type ofnonlinearity, as weil as the geometric parameters ofthe specifie

nonlinearity, can have an important effect on the response behaviour of the nonlinear

system.

• The most significant difference between the Iinear and the nonlinear systems is that

the nonlinear system respoDSe is not at the same frequency as the forcing function

across the entire range of the frequency sweep.

• The Fourier transfonn method ofobtaining the transfer function assumes that the

system responds at the same frequency as the input, or forcing fonction. This

assumption is not true for the nonlinear system studied, and the applicability of the

FFT method for calculating modal damping values is questionable.

• The introduction ofa nonlinear restoring force in one ofthe two degrees of freedom

caused the Fourier transfonn method to overestimate the first mode damping values

by as mueh as 150%.

6.3 Recommendations for Future Research

In this study, the Iinear, two-degree-of-freedom aeroelastic system subject to a sine sweep

excitation bas been studied in some detail, but only one simple case ofan equivalent,

structurally nonlinear aeroelastic system was studied. The results obtained for the

nonlinear system suggest a number ofpotentially interesting extensions ofthe current

work:

• An investigation into the effect ofsweep-rate on the nonIinear system response, as

weIl as a comparison of the nonlinear responses to increasing and decreasing

frequency sweeps at a constant sweep-rate.

• An investigation into possible modifications ta the time-domain and spectral methods

ofobtaining the system transfer fonction that would accommodate the hannonic

frequencies present in the nonlinear response.

• A more detailed investigation of the nonlinear harmonie response with the objective

ofdetermining the factors (apart from response amplitude) responsible for the

appearance and disappearance of the harmonie waveforms in the frequency response

eurve.
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• The addition ofa third degree of freedom with a natural frequency outside the range

ofthe frequency sweep, but close to one ofthe nonlinear hannonic responses, could

he used to investigate other possible implications ofthe nonlinear response.

• The addition ofa nonlinearity in the plonge degree offreedom, and a comparison of

the resulting system response to the results ofthis study.

• The combination ofstructural nonlinearities in both degrees offreedom.

• The introduction ofaerodynamic nonlinearities associated with transonic or separated

flow.

• A comparison ofthe respoose ofan aeroelastic system subject to a freeplay

nonlinearity to the response ofan aeroelastic system subject to other types of

structural nonlinearities.
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Appendix A - Aerodynamic coefficients (trom Theodorsen)

where

1 r;-::2(2 2 ) -1~ =-"3 'V' 1- c,8 +cp + cp cos c,8

~ =-cos- I cp + cp~l- c;

T., = -(i.+c; )cos-' cp +iCp~I-c;(7 +2c;)

~o =~l-c; +cos- I cp

1;1 =cos-Ic,8(1-2cp)+~1-c~(2-cp)
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Appendix B • Fourier analysis and the Laplace transform in

theory of vibrations

From the theory ofVIbrations, if the equation ofmotion ofa system is

rnx"(t) + cx'(t) + Kx(t) = Foe/d

It cao be shown that the steady state solution may he written as

F:efd

x(t) = (. ).Z liiJ

Z(i(j)) is called the impedance of the system where,

Z(im) =m(im)2 + c(im) + K.

The admittance of the system is the inverse ofthe impedance, or

1

Z(im)

Because the ditTerential equation (B.l) is linear, the principle ofsuperposition is

applicable. [f the right band side ofequation (B.l) is

then the solution will be

More generally, if the right hand side, or forcing function is

then the solution will he

B.. i

(B.l)



• [fthe forcing function is represented by a Fourier integral

1 J«IF(t) = {;;= G((IJ )e/œI dœ
",2" -<G

where

G({IJ) = ~JaD F(I)e-tddt
",2N -<G

then the solution will he

1 JaD G({j)) .x(t) =-- e'œl d(J) .
-.l21r -CIl Z(i{j))

(B.2)

(B.3)

The above procedure May also he expressed through the Laplace transform. If i{j) is

replaced by sin equations (B.2) and (B.3) and it is assumed that F(I) =0 for 1<0; then

equation (B.2) becomes

• and equation (B.3) becomes

.J2trG(-is) =IotC

F(t)e-s1dt

( )
_ 1 JtCI JfKG(-is) Sid

xf-- () e 'S.2m -qoj Z s

(B.4)

(B.5)

•

From equation (B.4) it can be seen that .J21CG(-is) is the Laplace transfonn ofF(l) and

from equation (B.5) thatx(t) is the inverse Laplace transfonn of L{~(s)' i.e.,

X(/) = ri {.f{FJ}
Z(s)

or

. { ( )} = .:e{F(t)}
;f, x 1 Z(s)

To summarize, the Laplace transform of the response is equal to the Laplace transform of

the forcing function multiplied by ~(s)'
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Appendix C - Full Text Equations for Chapter 3

Equation 3.4

(
1) (a ) (mp T. ) 1 t1J ~ T.1+- ç"'(r)+ xa --!.. a'''(r)- -x __1 p"'(r)+-a"(r)+2Ç~-~ç"(r) __4 p"(r)
p p m P pK P ., U pt!

{jrç'(r) = - 2~1 (abe-b<+cde-J<)

-~ rr (ahe -brebCT +cde-dredu )À.(0')dO' - 3..(1- a - C )À.(r)
pJo p

Equation 3.5

Equation 3.6

(l+~)ç""(r)+(Xa - alr)a""(r)+(mp x -.!L)p-(r)+..!..a"'(r)+2ç~ (j); ç"'(r)-.!:-.p"'(r)
p J.l m p f.JK J.l .. U J.lK

+(OJ, yç"(r) = 2e, (ab2e-b<+cd2e-J<)
U) f.J

+3.. rr (ab 2e-breba +cd 2e-dreda)À.(u)du - ~(l- a - c)À.'( r) - 2 (ab +cd)À.(r)
f.J Jo Ji li

c- i
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Equation 3.7

( X~ -~)';-(r)+(1+_1_2+ a;2)a-(r)+(=~ --1-2 [1; + {Cp -ah}I;])p-(r)
ra JP'a SJP'a fJ1'a ra J,J1Ua

{ 2Z/ + (05 -2ah ))a"'(r) +_1_
2

(T, - r. - (cp -ah}r. +05T" )p'"(T) + (T. + ~o) P,,(T)
~ J,J~ J,J~

M"(a) 2C 2
+ 2 =---}(0.5+ah)(ab2e-br +ed2e-dr

) +-2(05+ah)(ab+cd)À.(r)
U fJ1'a JP'a

- ~(05+ ah )1:(abe-breba + cde-dreth )À.(u)du+.~(05+ ah )(1- a - c).,1.,( r)
pra fJ1'a

Equation 3.8

(
1) (a ) (mp T. ) bd (J) r:bd 1+- ';"(r)+bd xa _i a"(r)-bd -x --' p"(r)+-a'(r)+ 2bdÇr:-' ';'(r)

f.J p m ft J,J1C f.J ' U

_bd~ P'(T) +bd(t»; )2 ç( T) = 2bdC, + 2C, (abde-6r +bcde-Jr)
~ U P f.J

_~ rr (bd -abde-breba -bcde-dreda)À(a'}dCT
f.J Jo

Equation 3..9

bd( a ) (1 a
2

)- xa -~ ç"(r)+bd 1+ __+_h_ a"(,)r; f.J 8pr; f.JT;

(bd= bd [ J) (2r (05 -a ))+ __fJ T7 +{c -ah}~ p"(r)+bd _~_a+ h a'(r)
r 2 1J1tT2 ft U 111'2
a r a '-a

bd ( [ ] ~'f'() bd(r.. + ~o) Rf) bdM(a)+--2 7; - 1',. - efJ - ah r.. +- r + 2 P\ r + .,
plira 2 f.Jlira U k

2bd C (05 )(1 -br -dr)=-2' +a/. -ae -ce
pra

+~(O.5 +ah )r
f

(ab - abde-hrebcr - bede-dredcr)À(u)du
pra Jo
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Equation 3.10

(b+dfl+..!.-)çm(r)+(b+d)(Xa - ah)a"'(r)+(b+d(m
p

x _lL)p"'(r-) + (b+d) a"(r)Jl J.l J.l m p J.ll! P

OJ $ (b +d)~ ( OJ $ )2
+2(b+d)Çr:-~ ç"(r)- 4 p"(r)+(b+d) -~ ç'(r)

~ U pl! U

=_ 2Cl (ab 2
e-

br +abde-br +cd2e-dr ++bcde-dr )-3..(b+d)(l-a-c)Â.(r)
J.l p

-~Ir(ab 2e-brebu +abde-brebu + cd2e-dredu +bcde-dreda)Â.(o-)do­
J,L 0

Equation 3.11

(h+d'( x; _ ah2)~"'(T)+(b+d)(1+_1_2+ a;2)a lll(T)
" ra JUa 8JUa JUa

+(h+d)(=~ __1_
2

[1; + {cp -ah}~])p"'(T)+(b+d)(2Ça + (0.5-
2
ah))all(T)

ra J,LllTa U JUa

(b+d)( [ ] ) Il (~+ ~o) , M'(a)+ 2 ~ - Tg - Cp -Q/, Tt +0.57;1 P (T) + 2 (h +d)P (T) +(b +d) 2
J,L~ p~ U

2C=-~(0.5+ah)(ab2e-br +abde-br +bcde-dr +cd2e-dr
)

JUa
2

+·-2(O.5+ah )(b +d)(l-a-C)Â.(T)
J,Ll'a

+~(O.5 +ah ) rr(ab 2e-brebu +abde-hrebu +bcde-ar
eau + cd2e-dreda)Â.(u)da-

f./T
a

Jo

Coefficients of Equations (3.12) and (3.13)

1
ml =1+-

Ji
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~"'-J=x --
fJ J.lK

~ç {I) 2m4 =2Ç -+(b+d 1+- +-(I-a-c)
~u J.l f.L

ms =-.!.-+(b+d)(Xa - ah)+~(O.5-ahXl-a-c)
J.l f.l p

( ( li) 1'.. 1;. ( )m6 = b+d x -- --+- l-a-c
P f.lK pK f.LX

(
_ )2 () _m~ 1 m~ 2

m., = -~ +bd 1+- +2(b+d)Ç~-~--(ad+cb-b-d)
U f.l yu f.l

(
ah) (b +d) 2 2

f1lg =bd xa -- + +-(l-a-c)--(O.s-ah)(ad+bc-b-d)
p f.l p f.l

( li) ( )r.. 21io ( ) Ti 1 ( )m9 =bd x -- - b+d -+- l-a-c -- ad+bc-b-d
fJ pK f.lX f.lX pl!

m~ {{j) ~)2 2
mlo =2bdÇ~-"+(b +d -y +-bd

.. U U f.l

bd 2 2
mIl = -- -(ad +cb -b -d)+-bd(O.s-ah )

p p f.J

m
l2

= hdTrI _ hd~ _ 27;0 (ad +bc-b -d)
pl! pl! px

m13=~;)'
2bd

m'4=-
f.l

2bdT.o
m(s=-~

pK

n=_1(x - ah J
1 2 a

ra f.l

1 ( 2 1 2)n2 =-2 pra +-+ah
J1Ta 8

C-iv



•

•

•

21; (05-ah) (b+d)( 2 1 2) 2ns =_a+ 2 + 2 pra +-+ah --2(05+ahXI-a-cX0.5-ah)
U JiTa JiTa 8 pra

n6 = =~ (b+d)+_l-z[(b+dX7; + (Cp -ah)T;)+~ - Tg -(Cp -ah)~]
Ta J.l1tTa

+.u~; [~l -(05 +QhXI-Q -C)1;,]

hd.xa hdah 2 (X )n, =-2---2---Z 05+ah b+d-ad-bc
ra pra pra

bd ( 2 1 2) 2 (b + d)ns =--2 pra +-+ah +-(b+d)Ça + 2 (05-ah)
pra 8 J.l pra

2 2
--2(0.5+ohX0.5-ahXb+d-ad-be)--2(05+ah)(l-a-c)

pra pra

n. =.u~; [(b +d{1; + Tg - (cp - Qh)r.. + ~' ) +bd(=p.uH) -7; -(Cp - Qh)1; ]

+_1_2 [~+~o - ~l(05+ah)(b+d-ad-bc)-2~o(05+ahXl-a-c)]
ptrra

2hd bd 2bd 2
n" =-ça +-2(0.5-ah)--2(0.5+ah)(0.5-ah)--2(05+a"Xb+d-ad-bc)

U pra pra /lTa

n12 =.u~; [bd(1; - Tg - (Cp - ah)r.. + ~I ) +(b +dXr.. + 1;o)-bdT" (05+ah)]

1
---2[2~o(05+ah)(b+d -ad -be}]

ptrra
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Matrices in Equation (3.15)

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

[A]=O
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 ml "'-l
0 0 0 0 0 0 ni n2

0 0 -1 0 0 0 0 0

• 0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

[B]=
0 0 0 0 0 -} 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

m13 m'4 m,o ml( m., "'s m4 ms

n13 n l4 niD nll n7 ng n4 ns

•
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First Mode

Recommended SW&eP rate Actual rate (in # of times recommended rate)
'J'U· ro , C. Hz/min rad/52 0.000003 0.000006 0.000012 0.000024
59 0.233 0.0371 0.0357 0.000379 0.000040 0.08 0.15 0.30 0.61
64 0.219 0.0349 0.0375 0.000369 0.000039 0.08 0.16 0.31 0.62
68 0.208 0.0331 0.0391 0.000362 0.000038 0.08 0.16 0.32 0.63
73 0.198 0.0315 0.0402 0.000347 0.000036 0.08 0.17 0.33 0.66
77 0.19 0.0302 0.0407 0.000327 0.000034 0.09 0.18 0.35 0.70
82 0.184 0.0293 0.0404 0.000302 0.000032 0.09 0.19 0.38 0.76
86 0.179 0.0285 0.0386 0.000261 0.000027 0.11 0.22 0.44 0.88
91 0.177 0.0282 0.0343 0.000202 0.000021 0.14 0.28 0.57 1.14
96 0.173 0.0275 0.0244 0.000097 0.000010 0.29 0.59 1.18 2.35
98 0.173 0.0275 0.0152 0.000038 0.000004 0.76 1.51 3.03 6.06

Second Mode
Recommended sweep rate Actual rate (in # of limes recommended rate)

'J'U· ro f C. Hz/min rad/s2 0.000003 0.000006 0.000012 0.000024
59 0.442 0.0703 0.038 0.001543 0.000162 0.02 0.04 0.07 0.15
64 0.406 0.0646 0.0429 0.001660 0.000174 0.02 0.03 0.07 0.14
68 0.374 0.0595 0.0483 0.001785 0.000187 0.02 0.03 0.06 0.13
73 0.346 0.0551 0.0543 0.001931 0.000202 0.01 0.03 0.06 0.12
77 0.32 0.0509 0.0611 0.002092 0.000219 0.01 0.03 0.05 0.11
82 0.296 0.0471 0.0691 0.002289 0.000240 0.01 0.03 0.05 0.10
86 0.274 0.0436 0.0787 0.002544 0.000266 0.01 0.02 0.05 0.09
91 0.252 0.0401 0.0911 0.002884 0.000302 0.01 0.02 0.04 0.08
96 0.232 0.0369 0.1094 0.003525 0.000369 0.01 0.02 0.03 0.07
98 0.221 0.0352 0.1231 0.004049 0.000424 0.01 0.01 0.03 0.06

•

Table 1. Comparison of the four sweep rates used in this study, .000003, .000006, .000012 and .000024 radians/(non-dimensional
second)2, with Ewin's recommended sweep rate, 216f2Ç2 , at ten different values ofnon-dimensiona) airspeed. U· is the Hnear flutter
speed in non-dimensional units, (JJ is frequency in radians peT non-dimensiona) second, Çis damping factor, andfis frequency in Hz.
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Sweep rate in radiansl(non-dimensional second)2

Parameter Theory .000003 .0000006 .000012 .000024

Ume
Spectral Ume Spectral

Time
Spectral Ume SpectralDomain Domain Domain Domain

COI .208 .208 .207 .209 .206 .211 .201 .214 .207

l;IHPP .0430 .0505 .0453 .0507 .0503 .0589 .0598 .0360
.0391

l.;l Nyquist .0423 .0524 .0438 .0505 .0474 .0371 .0538 .0307

0)1 .374 .376 .374 .375 .374 .376 .375 .377 .370

~HPP .0472 .0492 .0483 .0512 .0487 .0401 .0494 .0349
.0483

~Nyquist .0442 .0480 .0480 .0518 .0483 .0522 .0488 .0291

Table 2. Comparison oftirst and second mode frequency and damping values obtained
at 68% offlutter speed using time-domain and spectral methods. roI and 002 are the first
and second mode natural frequencies in radians/non-dimensional second, l;1HPP and l;2
HPP are the tirst and second mode half-power point damping values and <;1 Nyquist and'2 Nyquist are the first and second mode Nyquist damping estimates.

Sweep rate in radians/(non-dimensional second)2

Parameter Theory .000003 .0000006 .000012 .000024

Time
Spectral Time Spectral

Time
Spectral Time SpectralDomain Domain Domain Domain

0)1 .173 .175 .172 .177 .173 .179 .165 .182 .176

çlHPP .0298 .0347 .0348 .0413 .0189 .0288 .0588 .0634
.0244

l;l Nyquist .0281 .0342 .0312 .0348 .0259 .0281 .0331 .0207

COz .232 .233 .233 .233 .233 .235 .233 .229 .235

l;2 HPP .0929 .0977 .0862 .0988 nia .0567 nia .0892
.1094

l.;2 Nyquist .0866 .0867 .0916 .0919 .0872 .1276 .0907 .0899

Table 3. Comparison of first and second mode frequency and damping values obtained
at 96% of flutter speed using time-domain and spectral methods. Q) 1 and Oh are the first
and second mode natural frequencies in radianslnon-dimensional seconcL c;l HPP and l;2
HPP are the first and second mode half-power point damping values and Çl Nyquist and
l;2 Nyquist are the first and second mode Nyquist damping estimates. nia indicates
applicable calculation not possible.
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f=8s-1
t fmax=4 Hz f= 4s·1 f. =2 Hzt max

Parameter Theoretica1 Value nw=9500, nw=3500 nw=4000
M=O.OOO8Hz M=O.0012Hz âf=O.OO10Hz

0)1 .173 .165 .170 .175

c;lHPP .0288 .0611 .0468
.0244

l;1 Nyquist .0281 .0462 .0229

0)2 .232 .233 .233 .233

c;2 HPP .0567 .0972 .0939
.1094

l;2 Nyquist .1276 .0929 .0874

Table 4. Comparison of first and second mode frequency and damping values obtained
at 960/0 offlutter speed. fis the sampling frequency in S-I; nw is the lengili of the window
in number ofsamples. ro 1 and 0)2 are the tirst and second mode natural frequencies, l;l

HPP and l;2 HPP are the tirst and second mode half~power point damping values and l;}
Nyquist and l;2 Nyquist are the tirst and second mode Nyquist damping estimates. In ail
cases, a Hanning window was used with 50% overlap.
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(a)

Transfer function, pitch with moment input
Transfer function, pitch with flap velocity

Percent of input
flutter

Haff- Half-
speed Maximum Natural Nyquist Maximum Natural Nyquist

value frequency paNer
damping value frequency

paNer
damping

darnDina damDina
59 677 0.233 0.039 0.038 4.3 0.233 0.038 0.038
64 815 0.219 0.041 0.041 5.1 0.220 0.040 0.040
68 968 0.208 0.043 0.042 5.9 0.208 0.042 0.042
73 1139 0.198 0.044 0.044 6.9 0.199 0.044 0.043
77 1334 0.190 0.045 0.044 8.0 0.191 0.045 0.044
82 1567 0.184 0.045 0.044 9.3 0.184 0.045 0.044
86 1869 0.179 0.044 0.042 11.0 0.179 0.043 0.042
91 2343 0.176 0.039 0.038 13.8 0.176 0.039 0.038
96 3477 0.175 0.030 0.028 20.4 0.175 0.029 0.028
98 5317 0.176 0.022 0.020 31.2 0.176 0.022 0.020

(b)

Transfer function. plunge with lift input
Transfer function, plunge with f1ap velocity

Percent of input
flutter

Half- Half-
speed Maximum Natural

power Nyquist Maximum Natural power Nyquist
value frequency dampina damping value frequency

damoina
damping

59 2427 0.234 0.037 0.037 7.5 0.234 0.037 0.037
64 2765 0.220 0.039 0.039 8.5 0.220 0.039 0.039
68 3098 0.209 0.041 0.040 8.5 0.209 0.041 0.040
73 3422 0.199 0.042 0.042 10.5 0.199 0.042 0.042
n 3739 0.191 0.043 0.042 11.4 0.191 0.042 0.042
82 4059 0.185 0.042 0.042 12.4 0.185 0.042 0.042
86 4423 0.180 0.041 0.040 13.5 0.180 0.041 0.040
91 4970 0.176 0.037 0.036 15.2 0.176 0.037 0.036
96 6394 0.175 0.028 0.027 19.5 0.175 0.028 0.027
98 8871 0.176 0.021 0.020 27.1 0.176 0.021 0.020

Table 5. Estimated tirst mode frequency and damping values obtained using the time­
domain approach at an increasing sweep-rate of .000003 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter 4.



• (a)

Transfer function. pitch with moment input Transfer function. pitch with flap velocity
Percent of input

tlutter
Half- Half-speed Maximum Naturaf Nyquist Maximum Natural Nyquist

value frequency
power

damping value frequency
power

dampingdarnDina damDina
59 183.1 0.442 0.038 0.038 1.66 0.443 0.038 0.038
64 217.7 0.406 0.043 0.042 1.84 0.406 0.043 0.043
68 254.0 0.376 0.047 0.044 2.03 0.375 0.048 0.048
73 289.4 0.345 0.053 0.053 2.22 0.346 0.053 0.053
77 328.4 0.320 0.055 0.059 2.41 0.320 0.057 O.œo
82 368.3 0.296 0.055 0.066 2.59 0.297 0.057 0.067
86 408.7 0.274 0.074 0.072 2.77 0.275 0.074 0.073
91 445.3 0.253 0.082 0.079 2.92 0.254 0.083 0.081
96 475.1 0.233 0.093 0.087 3.02 0.235 0.095 0.088
98 483.4 0.224 0.101 0.088 3.03 0.225 0.105 0.090

b

Transfer funetion. plunge with lift input
Transfer function, plunge with flap velocity

Percent of input
fJutter

Half- Halt-
speed Maximum Natural

power
Nyquist Maximum Natural

power Nyquist
value frequency

dam i
damping value frequency

dam in
damping

• 59 136.5 0.439 0.051 0.051 0.49 0.439 0.048 0.048
64 157.0 0.400 0.069 0.070 0.54 0.402 0.069 0.069
68 172.5 0.369 0.058 0.071 0.58 0.369 0.059 0.068
73 190.6 0.338 0.079 0.117 0.63 0.339 0.080 0.112
77 210.2 0.310 0.043 0.079 0.68 0.310 0.044 0.076
82
86
91
96
98

Table 6. Estimated second mode frequency and damping values obtained using the time­
domain approach at an increasing sweep-rate of .000003 radians/(non-dimensional
secondi. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.

•



•

•

•

(a)

Transfer function, pitch with moment input Transferfunction, pitch with flap velocity
Percentot input

flutler
Half- Half-speed Maximum Natural Nyquist Maximum NaturaJ Nyquist

value frequency
power

damping value frequency
power

dampingdamping dampina
59 696.5 0.230 0.037 0.036 4.4 0.231 0.036 0.036
64 839.8 0.217 0.038 0.038 5.2 0.217 0.038 0.038
68 999.2 0.205 0.040 0.040 6.1 0.205 0.040 0.040
73 1178.1 0.195 0.041 0.041 7.1 0.195 0.041 0.041
n 1383.5 0.187 0.042 0.041 8.3 0.187 0.042 0.041
82 1630.2 0.181 0.041 0.041 9.6 0.181 0.041 0.041
86 1955.5 0.176 0.040 0.040 11.5 0.176 0.039 0.039
91 2473.5 0.172 0.035 0.034 14.5 0.172 0.035 0.034
96 3746.8 0.170 0.026 0.025 21.9 0.170 0.026 0.025
98 5859.2 0.169 0.020 0.018 34.2 0.169 0.020 0.018

(b)

Transfer function, plunge with lift input
Transfer function, ptunge with flap veJocity

Percent of input
flutter

Half- Half-speed Maximum Natural power Nyquist Maximum Natural power Nyquist
value frequency

damDina
damping value frequency

dampino damping

. 59 2464.8 0.231 0.036 0.036 7.6 0.231 0.036 0.036
64 2810.5 0.217 0.038 0.038 8.7 0.217 0.038 0.038
68 3151.3 0.206 0.040 0.039 9.7 0.206 0.040 0.039
73 3484.0 0.196 0.041 0.041 10.7 0.196 0.041 0.041
77 3810.2 0.188 0.041 0.041 11.7 0.188 0.041 0.041
82 4142.7 0.182 0.042 0.041 12.7 0.181 0.041 0.041
86 4524.7 0.176 0.039 0.039 13.8 0.176 0.039 0.039
91 5105.4 0.173 0.035 0.035 15.6 0.173 0.035 0.035
96 6643.8 0.170 0.027 0.026 20.3 0.170 0.027 0.026
98 9360.7 0.170 0.020 0.019 28.6 0.170 0.020 0.020

Table 7. Estimated tirst mode frequencyand damping values obtained using the time­
domain approach at a decreasing sweep-rate of .000003 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter 4.
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Transfer function, pitch with moment input Transfer function, pitch with flap vefocity
Percentot input

flutter
Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist

value frequency
power damping value frequency power damping

damDÏna dampina
59 183.8 0.441 0.038 0.038 1.66 0.441 0.038 0.038
64 217.4 0.405 0.043 0.043 1.85 0.405 0.043 0.043
68 253.0 0.373 0.048 0.048 2.03 0.373 0.048 0.048
73 290.4 0.344 0.054 0.053 2.22 0.345 0.053 0.053
n 329.2 0.318 0.060 0.059 2.41 0.319 0.060 0.060
82 368.9 0.295 0.067 O.cee 2.60 0.295 0.067 0.066
se 408.3 0.273 0.074 0.073 2.77 0.273 0.074 0.074
91 445.0 0.252 0.083 0.080 2.92 0.253 0.084 0.082
96 473.5 0.233 0.095 0.085 3.01 0.233 0.097 0.090
98 480.9 0.224 0.078 3.02 0.224 0.083

b)

Transfer function, pJunge with lift input

-
Percent of

flutter
speed

59
64
68
73
n
82
86
91
96
98

Maximum Natural
value frequency

Nyquist
damping

0.049
0.063
0.059
0.075

Maximum Natural
value frequency

Nyquist
damping

0.046
0.064
0.057
0.071
0.098

-

Table 8. Estimated second mode frequency and damping values obtained using the time­
domain approach at a decreasing sweep-rate of .000003 radians/(non-dimensional
secondl. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.



•

•

•

(a)

Transfer function, pitch with moment input Transferfunction, pitch with f1ap velocity
Percent of input

flutter
Half- Haff-speed Maximum Naturaf power Nyquist Maximum Natural power Nyquist

value frequency
damoina

damping value frequency
damDina damping

59 664.5 0.234 0.041 0.040 4.2 0.235 0.040 0.039
64 799.3 0.220 0.043 0.040 5.0 0.221 0.042 0.039
68 947.4 0.209 0.045 0.044 5.8 0.209 0.044 0.044
73 1113.4 0.200 0.047 0.045 6.7 0.200 0.046 0.045
77 1302.1 0.191 0.048 0.046 7.8 0.192 0.047 0.046
82 1525.6 0.185 0.048 0.047 9.1 0.185 0.047 0.046
86 1813.9 0.181 0.043 0.042 10.7 0.181 0.043 0.042
91 2255.8 0.177 0.043 0.040 13.3 0.178 0.043 0.041
96 3263.6 0.177 0.035 0.031 19.2 0.177 0.034 0.031
98 4759.9 0.178 0.028 0.023 28.0 0.178 0.028 0.023

(b)

Transfer function. plunge with lift input
Transfer function. plunge with f1ap velocity

Percent of input
ffutter

Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist
value frequency

power
damping value frequency

power
dampingdarnDina damDina

59 2393.0 0.235 0.038 0.037 7.4 0.235 0.038 0.038
64 2724.8 0.221 0.040 0.042 8.4 0.222 0.040 0.042
68 3050.6 0.210 0.042 0.041 9.4 0.210 0.042 0.041
73 3366.8 0.200 0.043 0.043 10.3 0.201 0.043 0.043
77 3674.0 0.192 0.044 0.044 11.2 0.192 0.044 0.044
82 3982.2 0.186 0.044 0.043 12.2 0.186 0.044 0.044
86 4326.5 0.180 0.047 0.045 13.2 0.181 0.046 0.045
91 4829.3 0.178 0.040 0.039 14.7 0.178 0.039 0.039
96 6069.8 0.177 0.032 0.031 18.5 0.177 0.032 0.031
98 8039.1 0.178 0.026 0.024 24.5 0.178 0.026 0.024

Table 9. Estimated tirst mode frequencyand damping values obtained using the time­
domain approach at an increasing sweep-rate of .000006 radians/(non-dimensional
secondi. Linear system with airfoil parameters from Chapter 4.



• {a}

Transfer function, pitch with moment input Transfer function, pitch with flap velocity
Percent of input

flutter
Half-speed Maximum NaturaJ Haff-power Nyquist Maximum Natural Nyquist

value frequency damping damping value frequency
power

damping
damOina

59 182.7 0.443 0.039 0.038 1.66 0.443 0.038 0.038
64 216.1 0.407 0.043 0.043 1.84 0.407 0.043 0.043
68 251.5 0.375 0.048 0.048 2.03 0.375 0.048 0.048
73 288.9 0.346 0.054 0.053 2.22 0.347 0.053 0.053
77 327.9 0.320 0.060 0.059 2.41 0.321 0.059 0.059
82 367.8 0.296 0.067 0.066 2.59 0.297 0.066 D.ose
86 407.7 0.274 0.074 0.072 2.77 0.275 0.074 0.073
91 445.3 0.254 0.082 0.079 2.92 0.255 0.083 0.081
96 475.6 0.233 0.086 0.092 3.03 0.235 0.090 0.093
98 484.5 0.225 0.071 0.108 3.04 0.225 0.076 0.111

b

Transfer function, plunge with lift input

•
Percent of

tlutter
speed

59
64
68
73
77
82
86
91
96
98

Maximum Natural
value frequency

0.440
0.402
0.369

Hait-power
damping

0.047
0.042
0.056

Nyquist
damping

0.049
0.052

Maximum Natural
value frequency

0.440
0.403
0.370

Nyquist
damping

•

Table 10. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000006 radians/(non-dimensionaI
second)2. Linear system with airfoiI parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.



•

•

•

(a)

Transfer function, pitch with moment input
Transfer function, pitch with flap velocity

Percent of input
flutter

Half- Half-speed Maximum Natural power
Nyquist Maximum Natural power Nyquist

value frequency
damDina

damping value frequency
damDina

damping

59 2464.3 0.230 0.037 0.036 7.6 0.230 0.037 0.036
64 2810.3 0.216 0.039 0.039 8.7 0.216 0.039 0.038
68 3151.4 0.204 0.040 0.039 9.7 0.204 0.040 0.040
73 3483.8 0.195 0.042 0.041 10.7 0.195 0.042 0.041
77 3809.1 0.187 0.042 0.041 11.7 0.186 0.042 0.041
82 4138.7 0.180 0.042 0.041 12.7 0.180 0.042 0.041
86 4513.3 0.175 0.041 0.040 13.8 0.175 0.041 0.040
91 5070.2 0.171 0.037 0.037 15.5 0.171 0.037 0.037
96 6476.9 0.169 0.031 0.029 19.8 0.168 0.031 0.029
98 8745.3 0.168 0.026 0.023 26.7 0.167 0.026 0.024

(b)

Transfer function, plunge with lift input
Transfer function, plunge with flap velocity

Percent of input
flutter

Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist
value frequency

power
damping value frequency

power
dampingdamping damDina

59 700.9 0.229 0.036 0.036 4.4 0.229 0.036 0.036
64 845.6 0.215 0.038 0.038 5.2 0.215 0.038 0.037
68 1006.6 0.204 0.040 0.039 6.1 0.204 0.040 0.039
73 1187.4 0.094 0.041 0.040 7.1 0.194 0.041 0.040
77 1394.8 0.186 0.042 0.041 8.3 0.186 0.042 0.041
82 1643.8 0.179 0.041 0.040 9.7 0.179 0.041 0.040
86 1970.4 0.174 0.040 0.038 11.6 0.174 0.040 0.038
91 2488.3 0.170 0.036 0.035 14.6 0.170 0.036 0.035
96 3704.9 0.168 0.029 0.027 21.6 0.168 0.029 0.028
98 5547.8 0.167 0.025 0.022 32.3 0.167 0.025 0.022

Table Il. Estimated first mode frequency and damping values obtained using the time­
domain approach at a decreasing sweep-rate of .000006 radians/(non-dimensional
secondi. Linear system with airfoil parameters from Chapter 4.



• (a)

Transferfunction, pitch with moment input
Transfer funetion, pitch with flap vefocity

Percent of input
flutter

Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist
value frequency

power
damping value frequency power

damping
damDina damDina

59 185.6 0.442 0.037 0.036 1.66 0.441 0.038 0.038
64 217.7 0.404 0.043 0.043 1.85 0.404 0.043 0.043
68 253.3 0.372 0.048 0.048 2.04 0.373 0.048 0.048
73 290.8 0.344 0.054 0.053 2.22 0.344 0.054 0.054
77 329.7 0.318 o.œo 0.059 2.41 0.318 0.060 o.œo
82 369.3 0.294 0.067 0.066 2.60 0.295 0.067 0.067
86 408.6 0.272 0.074 0.073 2.77 0.273 0.075 0.074
91 445.4 0.252 0.083 0.080 2.92 0.252 0.084 0.083
96 473.4 0.232 0.096 0.085 3.01 0.233 0.097 0.090
98 480.4 0.223 0.092 3.01 0.224 0.096

b

Transter function, plunge with lift input
Transfer function, plunge with flap velocity

input

•
Percent of

flutter
speed

59
64
68
73
77
82
86
91
96
98

Maximum Natural
value frequency

0.437
0.400
0.367
0.337

Nyquist
damping

0.048
0.049
0.059
0.074

Maximum Natural
value frequency

0.437

Half­
power

dam in
0.046

Nyquist
damping

0.045
0.046
0.055
0.070
0.095

•

Table 12. Estimated second mode frequency and damping values obtained using the
time-domain approach at a decreasing sweep-rate of .000006 radiansl(non-dimensionaI
secondi. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate pararneters.



•

•

•

(a)

Transfer function, pitch with moment input Transfer function, pitch with flap velocity
Percent of input

flutter
Half- Half-speed Maximum Natural Nyquist Maximum NaturaJ Nyquistpower powervalue frequency

damDina
damping value frequency

damDëna
damping

59 639.6 0.236 0.045 0.042 4.1 0.237 0.044 0.042
64 768.2 0.222 0.048 0.045 4.8 0.223 0.047 0.044
68 910.1 0.211 0.050 0.047 5.6 0.212 0.049 0.047
73 1067.4 0.201 0.052 0.049 6.5 0.202 0.051 0.049
77 1245.0 0.193 0.054 0.051 7.5 0.194 0.053 0.050
82 1453.1 0.187 0.044 0.048 8.6 0.187 0.046 0.049
86 1716.5 0.182 0.032 0.043 10.1 0.183 0.033 0.044
91 2107.8 0.179 0.022 0.034 12.4 0.180 0.024 0.037
96 2939.9 0.179 0.019 0.026 17.3 0.180 0.020 0.027
98 4050.7 0.180 0.021 0.022 23.9 0.181 0.022 0.024

(b)

Transfer fundion, plunge with lift input
Transfer fundion, plunge with f1ap velocity

Percent of input
flutter

HaIf- HaIf-speed Maximum Natural power Nyquist Maximum Natural power Nyquist
value frequency damDing

damping value frequency dampina damping

59 2322.9 0.237 0.041 0.040 7.2 0.237 0.041 0.040
64 2642.7 0.223 0.044 0.042 8.1 0.224 0.043 0.043
68 2955.2 0.212 0.046 0.044 9.1 0.212 0.046 0.044
73 3257.5 0.202 0.048 0.046 10.0 0.202 0.047 0.046
77 3547.4 0.194 0.049 0.047 10.8 0.195 0.048 0.047
82 3833.9 0.188 0.046 0.047 11.7 0.188 0.047 0.047
86 4144.1 0.183 0.033 0.043 12.6 0.183 0.034 0.043
91 4576.4 0.180 0.023 0.036 13.9 0.180 0.024 0.037
96 5563.1 0.179 0.019 0.030 17.0 0.179 0.020 0.031
98 6968.9 0.180 0.019 0.024 21.2 0.180 0.020 0.025

Table 13. Estimated first mode frequency and damping values obtained using the time­
domain approach at an increasing sweep-rate of.000012 radiansl(non-dimensional
second/. Linear system with airfoil parameters from Chapter 4.



Nyquist
damping

Half­
power

dam 'n

a

Transfer function, pitch with f1ap velOCity
input

Maximum NaturaJ
value frequency

Nyquist
damping

Half­
power

dam 'n

Percent of Transfer function, pitch with moment input

tlutter
speed Maximum Natural

value frequency

•
59 181.6 0.444 0.039 0.038 1.65 0.445 0.038 0.038
64 214.9 0.408 0.044 0.043 1.83 0.409 0.043 0.043
68 250.3 0.376 0.049 0.048 2.02 0.376 0.048 0.048
73
n

287.7 0.347
326.7 0.321

0.054
0.060

0.054
0.059

2.21 0.348
2.40 0.322

0.053
0.060

0.053
0.059

82 366.8 0.297 0.067 0.065 2.60 0.298 0.066 0.066
86 407.0 0.275 0.074 0.072 2.77 0.276 0.073 0.072
91 445.4 0.255 0.082 0.078 2.92 0.255 0.082 0.080
96 476.8 0.235 0.093 0.082 3.03 0.236 0.095 0.086
98

b

Transfer function, plunge with lift input
Transfer function. plunge with f1ap velocity

input

•
Percent of

f1utter
speed

59
64
68
73
77
82
86
91
96
98

Maximum NaturaJ
value frequency

0.440
0.403
0.369
0.340

Nyquist
damping

0.054
0.054
0.066
0.074

Maximum Natural
value frequency

0.441

Half­
power

dam in
0.050

Nyquist
damping

0.050
0.053
0.064
0.081
0.127

Table 14. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000012 radians/(non.dimensional
secondi. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.
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•

•

•

(a)

Transfer function. pitch with moment input
Transfer function, pitch with flap vefocity

Percent of input
f1utter

Half- Halt-speed Maximum Natural power Nyquist Maximum Natural power Nyquist
value frequency

damDina
damping value frequency

damPina
damping

59 704.8 0.226 0.038 0.037 4.4 0.226 0.038 0.037
64 851.3 0.212 0.041 0.038 5.2 0.213 0.040 0.039
68 1014.3 0.201 0.042 0.039 6.2 0.201 0.042 0.041
73 1197.4 0.191 0.043 0.041 7.2 0.191 0.045 0.042
n 1407.0 0.183 0.044 0.042 8.3 0.183 0.045 0.042
82 1657.4 0.176 0.044 0.042 9.7 0.176 0.045 0.042
86 1982.8 0.171 0.043 0.041 11.6 0.171 0.044 0.041
91 2483.4 0.167 0.041 0.038 14.5 0.167 0.041 0.038
96 3595.7 0.164 0.036 0.031 20.9 0.164 0.036 0.032
98 5110.4 0.163 0.032 0.027 29.6 0.163 0.033 0.027

(b)

Transfer tunetion, plunge with lift input
Transfer function, plunge with f1ap velocity

Percent of input
tlutter

Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist
value frequency power

damping value frequency
power

damping
damoina damPina

59 2451.2 0.227 0.039 0.038 7.6 0.227 0.039 0.038
64 2796.2 0.214 0.041 0.040 8.6 0.213 0.042 0.041
68 3136.0 0.202 0.043 0.042 9.6 0.202 0.043 0.043
73 3466.5 0.192 0.044 0.043 10.6 0.192 0.045 0.044
n 3n9.5 0.184 0.046 0.044 11.5 0.184 0.046 0.044
82 4100.0 0.178 0.046 0.044 12.5 0.1n 0.046 0.045
86 4456.5 0.172 0.046 0.044 13.6 0.172 0.046 0.044
91 4966.4 0.168 0.043 0.041 15.2 0.168 0.043 0.042
96 6160.8 0.166 0.038 0.035 18.8 0.165 0.038 0.036
98 7910.9 0.164 0.034 0.029 24.2 0.164 0.034 0.029

Table 15. Estimated first mode frequency and damping values obtained using the time­
domain approach at a decreasing sweep-rate of .000012 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter 4.



• (a)

Transferfunction, pitch with moment input Transfer function. pitch with flap velocity
Percent of input

flutter
Half- HaIf-speed Maximum NaturaJ
power

Nyquist Maximum NaturaJ power Nyquist
value frequency

damDing
damping value frequency

damDina
damping

59 184.6 0.439 0.038 0.038 1.66 0.439 0.038 0.038
64 218.3 0.402 0.043 0.043 1.85 0.403 0.043 0.043
68 254.1 0.371 0.048 0.048 2.04 0.371 0.048 0.048
73 291.7 0.342 0.054 0.053 2.23 0.343 0.054 0.054
77 330.6 0.316 0.060 0.059 2.41 0.317 0.060 0.060
82 370.3 0.293 0.067 0.066 2.60 0.293 0.068 0.067
86 409.5 0.271 0.075 0.073 2.77 0.271 0.076 0.075
91 445.6 0.251 0.084 0.081 2.91 0.251 0.085 0.083
96 472.6 0.231 0.097 0.086 3.00 0.232 0.098 0.091
98 478.7 0.222 0.105 3.00 0.222 0.110

b

Transfer fundion, plunge with lift input

•
Percent of

flutter
speed

59
64
68
73
n
82
86
91
96
98

Maximum Natural
value frequency

0.436
0.399
0.366
0.335

Nyquist
damping

0.046
0.046
0.055
0.067

Transfer fundion, plunge with flap velocity
input

Half-
Maximum Natural Nyquist

power
value frequency dam in damping

0.045 ;-~0.-.044~-t
0.045
0.054
0.066
0.083

•

Table 16. Estimated second mode frequency and damping values obtained using the
time-domain approach at a decreasing sweep-rate of .0000 12 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.



•

•

•

(a)

Transfer function, pitch with moment input
Transfer function, pitch with f1ap vefocity

Percent of input
fIutter

Hait- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist
value frequency

power
damping value frequency power

damping
damoina damPina

59 599.9 0.239 0.053 0.048 3.8 0.240 0.051 0.048
64 719.2 0.225 0.056 0.051 4.5 0.226 0.055 0.051
68 850.4 0.213 0.060 0.054 5.2 0.214 0.058 0.052
73 994.7 0.203 0.063 0.056 6.0 0.205 0.060 0.054
n 1156.1 0.196 0.065 0.057 6.9 0.197 0.063 0.055
82 1342.0 0.190 0.066 0.056 8.0 0.190 0.064 0.056
86 1571.1 0.185 0.066 0.056 9.3 0.186 0.064 0.056
91 1894.3 0.181 0.065 0.050 11.2 0.183 0.062 0.051
96 2522.5 0.182 0.059 0.033 14.8 0.183 0.057 0.036
98 3268.7 0.184 0.054 0.020 19.3 0.185 0.053 0.020

(b)

Transfer funetion, plunge with lift input
Transfer funetion, plunge with flap velocity

Percent of input
flutter

Half- Half-speed Maximum Naturai Nyquist Maximum Natural Nyquist
value frequency

power
damping value frequency power

damping
damoina damoina

59 2202.0 0.239 0.048 0.045 6.8 0.240 0.047 0.046
64 2502.7 0.226 0.051 0.048 7.7 0.227 0.050 0.048
68 2794.8 0.214 0.053 0.051 8.6 0.215 0.053 0.051
73 3075.1 0.205 0.055 0.052 9.4 0.206 0.055 0.053
77 3347.3 0.197 0.057 0.052 10.2 0.197 0.057 0.054
82 3594.7 0.190 0.058 0.055 10.9 0.191 0.057 0.055
86 3858.0 0.186 0.058 0.053 11.7 0.186 0.057 0.053
91 4197.0 0.183 0.055 0.050 12.8 0.184 0.055 0.051
96 4898.2 0.182 0.050 0.041 14.9 0.183 0.050 0.415
98 5783.6 0.183 0.046 0.030 17.6 0.184 0.04ô 0.030

Table 17. Estimated first mode frequency and damping values obtained using the time­
domain approach at an increasing sweep-rate of .000024 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter 4.



a

Nyquist
damping

Half­
power

dam ·n

Natural
frequency

Maximum
value

Nyquist
damping

Half­
power

dam ·n

Maximum Natural
value frequency

Percent of Transfer function, pitch with moment input Transfer funetion. pitch with flap velocity input

fluUer
speed

•
59 179.4 0.446 0.040 0.039 1.63 0.447 0.039 0.038
64 212.6 0.410 0.045 0.044 1.87 0.411 0.044 0.043
68 248.0 0.377 0.049 0.049 2.01 0.379 0.049 0.048
73 285.5 0.349 0.041 0.053 2.20 0.350 0.042 0.053
77 324.7 0.323 0.034 0.056 2.39 0.324 0.036 0.057
82
86

365.3 0.299
385.8 0.277

0.062
0.044

0.067
0.072

2.58
2.76

0.300
0.278

0.064
0.047

0.066
0.072

91
96
98

446.4 0.256 0.044 0.079 2.93 0.257 0.047 0.081

b

Transfer function, plunge with lift input
Transfer function, plunge with tlap velocity

input

•
Percent of

flutter
speed

59
64
68
73
77
82
86
91
96
98

Maximum Natural
value frequency

0.437
0.404
0.371
0.340

Nyquist
damping

0.051
0.063
0.061

Maximum Natural
value frequency

Nyquist
damping

0.054
0.062
0.061
0.060

Table 18. Estimated second mode frequency and damping values obtained using the
time-domain approach at an increasing sweep-rate of .000024 radians/(non-dimensional
secondl. Linear system with airfoil parameters from Chapter 4. Shaded areas indicate
areas of the transfer function with mode definition too POor to calculate parameters.

•



•

•

•

(a)

Percent of
Transfer function. pitch with moment input Transfer function. pitch with flap vetocity input

flutter
speed Maximum Natural Half- Nyquist Maximum Natural Halt-power Nyquist

value frequency power damping value frequency damping damping
damDina

59 703.2 0.222 0.044 0.041 4.4 0.222 0.044 0.042
64 850.5 0.208 0.046 0.043 5.2 0.208 0.047 0.045
68 1014.5 0.197 0.048 0.046 6.1 0.196 0.049 0.046
73 1198.7 0.186 0.050 0.046 7.1 0.186 0.051 0.047
77 1408.5 0.178 0.052 0.048 8.3 0.178 0.053 0.049
82 1656.7 0.171 0.046 0.049 9.7 0.172 0.048 0.052
B6 1974.7 0.166 0.053 0.046 11.5 0.166 0.053 0.050
91 2449.7 0.162 0.038 0.046 14.2 0.162 0.405 0.047
96 3425.7 0.159 0.045 0.040 19.8 0.159 0.048 0.041
98 4603.4 0.157 0.045 0.034 26.5 0.157 0.045 0.035

(b)

Transfer funetion, plunge with lift input Transfer function, plunge with flap velocity
Percent of input

flutter
Half-speed Maximum Natural Nyquist Maximum Natural Half-power Nyquist

value frequency power damping value frequency damping damping
damoina

59 2397.0 0.224 0.045 0.043 7.4 0.223 0.046 0.044
64 2735.0 0.210 0.048 0.046 8.4 0.209 0.049 0.046
68 3066.1 0.198 0.051 0.047 9.4 0.197 0.051 0.048
73 3386.7 0.189 0.053 0.049 10.9 0.188 0.053 0.050
77 3695.8 0.180 0.054 0.051 11.3 0.180 0.055 0.053
82 3999.8 0.174 0.042 0.052 12.3 0.173 0.045 0.053
86 4325.0 0.168 0.055 0.051 13.3 0.167 0.056 0.052
91 4758.9 0.165 0.031 0.042 14.6 0.163 0.035 0.047
96 5679.7 0.162 0.044 0.043 17.4 0.161 0.047 0.044
98 6897.8 0.161 0.045 0.036 21.2 0.160 0.047 0.037

Table 19. Estimated tirst mode frequency and damping values obtained using the time­
domain approach at a decreasing sweep-rate of .000024 radians/(non-dimensional
second)!. Linear system with airfoil parameters from Chapter 4.



• (a)

Percent of
Transfer function, pitch with moment input Transfer function, pitch with flap velocity input

flutter
Half- Half-speed Maximum Natural Nyquist Maximum Natural Nyquist

value frequency
power

damping value frequency power damping
damDina damPina

59 184.8 0.436 0.039 0.038 1.66 0.436 0.039 0.039
64 218.7 0.400 0.043 0.043 1.84 0.400 0.044 0.043
68 254.6 0.368 0.049 0.048 2.03 0.369 0.049 0.049
73 292.4 0.340 0.055 0.053 2.22 0.340 0.055 0.055
77 331.4 0.314 0.cJ61 0.060 2.41 0.314 0.cJ62 0.061
82 371.1 0.291 0.068 0.067 2.59 0.291 0.069 0.068
86 410.0 0.269 0.076 0.074 2.76 0.269 0.077 0.076
91 445.2 0.248 0.086 0.082 2.90 0.249 0.088 0.085
96 470.4 0.229 0.099 0.088 2.98 0.230 0.101 0.092
98 475.0 0.220 0.078 2.97 0.221 0.085

b

Transfer function, plunge with lift input Transfer fundion, plunge with flap velocity
input

•
Percent of

flutter
speed

59
64
68
73
77
82
86
91
96
98

Maximum Natural
value frequency

Nyquist
damping

0.044
0.064
0.055
0.068

Maximum Natural
value frequency

0.433
0.396
0.363
0.333
0.306

Nyquist
damping

0.041
0.054
0.054
0.065
0.085

•

Table 20. Estimated second mode frequency and damping values obtained using the
rime-domain approach at a decreasing sweep-rate of .000024 radians/(non-dimensional
second)2. Linear system with airfoil parameters from Chapter4. Shaded areas indicate
areas of the transfer function with mode definition too poor to calculate parameters.
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Figure 3. Simulated sine sweep ofone mode of the two-degree-of-freedom linear system
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Figure 7. Comparison oftransfer functions obtained using Fourier transfonn (spectral)
methods. (a) Data obtained at 68% oflinear flutter speed and sweep rates of .000003 and
.000024 radians/{non-dimensionaI second)2, (b) Data obtained at .000003 radiansl(non­
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Figure 8. Comparison oftransfer functions obtained using time domain and Fourier
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Figure 10. Comparison ofplunge response transfer funetions obtained using
aerodynamic lift input and aileron velocity input't at 68% oftlutter speed. (a) sweep-rate
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dimensional second)2.
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Figure 1t. Comparison ofplunge response transfer funetions obtained using
aerodynamic lift input and aileron velocity input, at 98% of flutter speed. (a) sweep-rate
.000003 radiansl(non-dimensional second)2, (b) sweep-rate .000024 radiansl(non­
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Figure 12. Comparison ofpitch response transfer functions obtained using aerodynamic
moment input and aileron velocity input, al 68% offlutter speed. (a) sweep-rate .000003
radians/(non-dimensional second)2, (b) sweep-rate .000024 radians/{non-dimensional
second)2.
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Figure 13. Comparison of pitch response transfer functions obtained using aerodynamic
moment input and aileron velocity input~ at 98% oftlutter speed. (a) sweep-rate .000003
radians/(non-dimensional second)2~ (b) sweep-rate .000024 radians/(non-dimensional
second)2.
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Figure 14. Comparison ofplunge response and pitch response transfer functions
obtained at 68% of flutter speed.. (a) sweep-rate .000003 radians/(non-dimensional
second)2, (b) sweep-rate .000024 radians/(non-dimensional second)2.
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Figure IS. Comparison ofplunge response and pitch response transfer functions
obtained at 98% of flutter speed, (a) sweep-rate .000003 radiansl(non-dimensional
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Figure 25. First mode frequency transfer functions obtained fram aerodynamic moment
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sweep-rates and without sweep.
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Figure 26. Second mode frequency transfer funetions obtained from aerodynamic lift
input and plunge response at 68% of the linear flutter speed, at four ditTerent increasing
sweep-rates and without sweep.
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Figure 29. First mode Nyquist diagram obtained from aerodynamic moment input and
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without sweep.
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Figure 30. Second mode Nyquist diagram obtained from aerodynamic lift input and
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Figure 35. Effect of sweep rate on the second mode damping and frequency estimates
obtained using pitch response to an increasing frequency sweep, (a) frequency,(b)
damping.
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Figure 36. First mode frequency transfer functions for increasing and decreasing sweep­
rates. Aerodynamic lift input and plunge response at 68% of the linear tlutter speed and a
sweep-rate of .000003 radiansl(non-dimensional second)2.
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Figure 37. First mode frequency transfer functions for increasing and decreasing sweep
rates. Aerodynamic lift input and plunge response at 68% ofthe linear flutter speed and a
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Figure 38. Second mode frequency transfer funetions at increasing and decreasing
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Figure 39. Second mode frequency transfer functions at increasing and decreasing
sweep rates. Aerodynamic lift input and plunge response at 68% ofthe linear flutter
speed and a sweep-rate of .000024 radiansl(non-dimensional second)2.
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Figure 40. First mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% ofthe linear flutter speed and a
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Figure 41. First mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the linear flutter speed and a
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Figure 42. Second mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% ofthe linear flutter speed and a
sweep-rate of .000003 radians/(non-dimensionaJ second)2.



•
o sweep up A sweep down --nosweep

180150120906030

60

30 ..

-120
o

c:
0

'0
0c:

~-~
~
en
c:
jg

-30-0 a
t= a
tUa.• ~
tU
c: -60 A0
aJ 6
E 6

6

A

-90 A
'4

Real part of transfer function

Figure 43. Second mode Nyquist diagrams for increasing and decreasing sweep-rates.
Aerodynamic lift input and plunge response at 68% of the (inear flutter speed and a
sweep-rate of .000024 radians/(non-dimensional second)2.

•



• o Eigenvalues o increasing sweep o decreasing sweep

0.24 -r--------------------------,
(a)-"l:Jc:

8
5l 0.22
Ci
c:

~ogëi5
CD c:
g. Ë0.20
~=ëILe:

o
c:

~0.18
ca:
:a
~-

100%90%80%70%60%

0.16 +-------r------..------,.---------~

50%

Pe~ntofflutterspeed

• o Eigenvalues o increasing sweep odecreasing sweep

0.05
(b)

0.04
ij ~ ~ le) 8 8

'- ii 80
ü
as-~ 0.03
.5.

~E
ca
Cl

0.02 fQ
0

0.01
50% 60% 70% 80% 90% 100%

Peroentofflutterspeed

•
Figure 44. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000003 radiansl(non­
dimensional second)2. (a) frequency~ (b) damping.
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Figure 45. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000003 radiansl(non­
dimensional second)2~ (a) frequency~ (b) damping.
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Figure 46. First mode damping and frequency estimates obtained using plunge response
ta increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000006 radians/(non­
dimensional second)2. (a) frequency, (b) damping.
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Figure 47. First mode damping and frequeney estimates obtained using piteh response to
inereasing and decreasing frequency sweeps. Transfer funetions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000006 radians/(non­
dimensional second)2, (a) frequency, (b) damping.
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Figure 48. First mode damping and frequency estimates obtained using plunge response
to increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000012 radians/(non­
dimensional second)2. (a) frequency, (b) damping.
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Figure 49. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweeps. Transfer functions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .0000 12 radians/(non­
dimensional second)2, (a) frequency, (b) damping.
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Figure 50. First mode damping and frequency estimates obtained using plunge response
ta increasing and decreasing frequency sweeps. Transfer funetions obtained using
aerodynamic lift input and plunge response at a sweep-rate of .000024 radians/(non­
dimensional second)2, (a) frequency, (h) damping.
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Figure 5t. First mode damping and frequency estimates obtained using pitch response to
increasing and decreasing frequency sweep. Transfer functions obtained from
aerodynamic lift input and plunge response al a sweep-rate of .000024 radians/(non­
dimensional second)2, (a) frequency, (h) damping.
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Figure 52. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000003 radians/(non­
dimensional second)2, (a) frequency~ (h) damping.
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Figure 53. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000003
radians/(non-dimensional second)2, (a) frequency, (h) damt'ing.
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Figure 54. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer funetions obtained
trom aerodYnamic lift input and plunge response at a sweep-rate of .000006 radians/(non­
dimensional second)2, (a) frequency, (h) damping.
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Figure 55. Second mode damping and frequeney estimates obtained using piteh
response to inereasing and decreasing frequency sweeps. Transfer funetions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000006
radians/(non-dimensional second)2. (a) frequeney. (b) damping.
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Figure 56. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000012 radians/(non­
dimensional second)2, (a) frequency, (b) damping.



• o Eigenvalues o increasing sweep o decreasing sweep

0.46 -r-------------------------......
(a)

100%60% 70% 80% 90%

Peroentofflutterspeed

6 0
0.21 -.~----r___---__,...----~-----------

50%

s
~

g 0.41
CI)
fi)

ai
~

~ ~ 0.36
c ~
CI) ID

5-E
e:s
LL ê: 0.31

o

~
~

~O.26 -

~

• o Eigenvalues o increasing sweep odecreasing sweep

0.13
(b) 0

0.11 0
0

"-
0

0U 0.09
J!! BC)

0 ~c:
C.

~~ 0.07 80
~

0.05 a cri
D

0
0.03

50% 60% 70% 80% 90% 100%
Peroentofflutterspeed

•
Figure 57. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic moment input and pitch response at a sweep-rate of .000012
radiansl(non-dimensional second)2, (a) frequency, (h) damping.
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Figure 58. Second mode damping and frequency estimates obtained using plunge
response to increasing and decreasing frequency sweeps. Transfer functions obtained
from aerodynamic lift input and plunge response at a sweep-rate of .000024 radians/(non­
dimensional second)2, (a) frequency, (b) damping.
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Figure 59. Second mode damping and frequency estimates obtained using pitch
response to increasing and decreasing frequeney sweep. Transfer funetions obtained
trom aerodynamic moment input and pitch response at a sweep-rate of .000024
radiansl(non-dimensional second)2, (a) frequency, (h) damping.
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Figure 60. Amplitude vs. frequency for undamped !Tee vibrations ofone degree of
freedom mechanical system (a) linear, (h) with a nonlinear hardening spring with
freeplay.

frequency frequency
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Figure 61. Typical response curves at resonance for various levels ofexcitation for the
systems of Figure 60, (a) nonlinear spring (h) linear system.



•

•

•

frequency

Figure 62. Theoretical frequency response curve for nonlinear hardening spring showing
regions of instability.
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Figure 68. (a) Typical superhannonic waveform response at four times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non­
dimensional second)2 at UIU*=73%. (b) Power spectral density plot of frequency
response shown in (a). Vertical lines indicate input frequency range.
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Figure 69. (a) Typical superharmonic waveform response at three times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non­
dimensional second)2 at UIU*=73%. (b) Power spectral density plot of frequency
response shown in (a). Vertical fines indicate input frequency range.
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Figure 70. (a) Typical superharmonic waveform response at two times the forcing
frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non­
dimensional second)2 at UIU*=73°~. (b) Power spectral density plot of frequency
response shown in (a). Verticallines indicate input frequency range.
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Figure 71. (a) Typical harmonie waveform response at one-and-a-half and two times the
input frequency. Pitch response to a decreasing sweep-rate of .000012 radians/(non­
dimensional second)2 at UIU*=55%. (h) Power spectral density plot offrequeney
response shawn in (a). Verticallines indieate input frequeney range.
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Figure 76. (a) Superharmonic waveform response at two and a halftimes the input
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Figure 91. Linear and nonIinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)2~ and a non-dimensional
airspeed equivalent to U/U*=0.55. NonIinear curves obtained for a nonIinear region
length of0.25 degrees and a preload of(a} 0.75 degrees~ and (h) 1.25 degrees.
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Figure 92. Linear and nonIinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*=0.64. NonIinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.0 degrees, and (b) 0.125 degrees.
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Figure 93. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of.000012 radians/(non-dimensional second)2, and a non-dimensional
airspeed equivalent to UIU*=O.64. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.25 degrees, and (b) 0.50 degrees.
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Figure 94. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radiansl(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*=O.64. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.75 degrees, and (h) 1.25 degrees.
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Figure 95. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radiansl(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*=0.73. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.0 degrees, and (b) 0.125 degrees.
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Figure 96. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radians/(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*=0.73. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.25 degrees, and (b) 0.50 degrees.
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Figure 97. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radiansl(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*==0.73. Nonlinear curves obtained for a nonlinear region
[ength of0.25 degrees and a preload of{a) 0.75 degrees, and (b) 1.25 degrees.
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Figure 98. Linear and nonlinear frequency responses to a decreasing frequency sweep al
a sweep-rate of .000012 radians/(non-dimensional second)2~ and a non-dimensional
airspeed equivalent to UIU*=0.82. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.0 degrees~ and (h) 0.125 degrees.
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Figure 99. Linear and nonlinear frequency responses to a decreasing frequency sweep at
a sweep-rate of .000012 radiansl(non-dimensional second)2~ and a non-dimensional
airspeed equivalent to U/U*=O.82. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.25 degrees, and (b) 0.50 degrees.
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Figure t00. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .0000 12 radians/(non-dimensional second)2~ and a non-dimensional
airspeed equivalent ta U/U*=0.82. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.75 degrees~ and (h) 1.25 degrees.
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Figure lOt. Linear and nonIinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .0000 12 radians/(non-dimensional second)2, and a non-dimensional
airspeed equivalent to UIU*=O.91. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of (a) 0.0 degrees, and (h) 0.125 degrees.
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Figure 102. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)2~ and a non-dimensional
airspeed equivalent to U/U*=O.91. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.25 degrees~ and (b) 0.50 degrees.
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Figure t03. Linear and nonlinear frequency responses to a decreasing frequency sweep
at a sweep-rate of .000012 radians/(non-dimensional second)2, and a non-dimensional
airspeed equivalent to U/U*=0.91. Nonlinear curves obtained for a nonlinear region
length of0.25 degrees and a preload of(a) 0.75 degrees, and (h) 1.25 degrees.
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