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Abstract

We study the behaviour of a simple cubic crystal interface through the analysis
and simulation of the lsing model in three dimensions: we use an algorithm which
permits local temperature variations by emulating thermal diffusion. We derive a
description of the interface based on the thermal fluctuation population at equilib-
rium and then use it to identify the equilibrium and dynamic roughening transitions
observed under a variety of circumstances including a planar interface at equilibrium,
a metastable bulk inclusion, an evaporating inclusion and a planar interface in the
presence of a driving force. We also study strongly driven interfaces which exhibit
an instability and pattern formation behaviour known as the Mullins-Sckerka insta-
bility. We use a special two-dimensional version of the simulation model to examine
the linear growth of unstable modes of a driven interface; we compare our simulation
data to theoretical predictions for the cases of an unstable flat interface and circular
disk interface. Returning to the fully three-dimensional code, we present simulation
data of late-time dendritic growth, including an analysis of the information available
in the thermal fields. We also show that, at low temperatures, the tips of dendrites
are facetted and demonstrate a response to the driving force which is consistent with

the dynamic roughening transition.



Résumé

Cette thése etudie la dynamique des interfaces d'un cristal cubique simple par
I'analyse et la simulation du modecle de Ising en trois dimensions. Un algorithme sim-
ulant la diffusion thermale et permettant des variations locales de temperature a été
utilisé, Une description analytique de I'interface en équilibre basée sur les fluctuations
thermales y est ¢galement dérivée. Celle-ci est ensuite utilisée pour 1'identification de
la transition rugueuse, tant pour des cas statiques que dynamiques, tels ceux d’une
surface plane en équilibre, d’une goutte metastable, d’une goutte en évaporation, et
d'une surface plane poussée par un force externe. Cette theése étudie également des
interfaces montrant la formation de motifs cohérents resultant d’une instabilite, alors
dites de Mullins-Sckerka. Une version modifiée et en deux dimensions de notre modéle
est utilisée pour examiner la croissance linéaire des modes instables d’interfaces 2 une
dimension. Les resultats obtenus sont comparés aux prévisions analytiques pour une
surface plane et un disque. Finalement, les résultats de simulations de l'instabilité
dendritique en trois dimensions sont présentés. Les résultats obtenus pour les champs
thermaux et les interfaces, et ce pour le régime non-lineaire aux temps avancés, sont
analysés. En outre, une partie de cette thése étudie les facettes trouvées sur les
extrémités des dendrites de méme que les relations entre la croissance et la transition

rugucuse cinétigue.
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1 Introduction

Crystals have forever captured the eye
and the imagination. Common quartz,
iron pyrite and amythest evoke as much
wonder and curiousity as precious gem-
stones, simply for their unearthly sym-
metry and geometric beauty. The in-
tricate growth forms of snowflakes and
hoarfrost are eternal sources of inspi-
ration for poets, philosophers and sa-
entists alike. But like so many of Na-
ture’s mysteries, the secrets of crystals

and crystal interfaces have been only re-

luctantly revealed through painstaking study.

AR

=

Figure 2: Toy 3D Ising model

Figure 1: A classic snowflake grown by Furukawa.
Reproduced from (Yokoyama and Kuroda 1990).

In this thesis, we endeavour to con-
tribute to the growing store of knowl-
edge by studying the behaviour of a
crystal interface using computer sim-
ulation. Our means will be the simu-
lation and analysis of the simple cubic
Ising model. This is a simple model
of spins with values of £1 (ie. a solid-
liquid or solid-vapour two-phase system)

regularly spaced on a three-dimensional

lattice as pictured in Figure 2; since its spatial structure is precisely that of a crystal,

a boundary separating bulk concentrations of each phase provides an excellent repre-



Figure 3: Cartoons of a) the equilibrium (or dynamic) roughening transition on a bulk inclusion, b)
the equilibrium {or dynamic) roughening transition on a planar interface, and ¢) the Mullins-Sekerka
instability on a planar interface.

sentation of a crystal interface. The interface, which is a two-dimensional object in a
three-dimensional system, can be planar and oriented in any specific direction relative
to the lattice’s axes, or encompass a bulk inclusion or droplet of one phase within a
background of the other and thus present surfaces of every possible orientation.

Our goal will be to examine several distinct yet related aspects of such an in-
terface, at, near and far from equilibrium, and thus to illustrate elementary aspects
typical of real crystal interfaces. In Figure 3, some of these aspects are depicted:
At equilibrium, a crystal surface demonstrates a structural phase transition, called
the equilibrium roughening transition, which affects both the equilibrium shape of
a droplet interface and the behaviour of thermal fluctuations on a planar interface.
Below a critical temperature, the plane will be flat and relatively featureless, while
the droplet is faceted, each reflecting the underlying lattice structure. At the critical
point and all temperatures above, the plane becomes rough and its width diverges
over long lengthscales; the droplet also shows roughening and its facets disappear.
Near equilibrium, when subjected to a small driving force, the interface moves (or
is static and exhibits enhanced curvature), modifying the equilibrium behaviour. As
well as transforming at a critical temperature, the surface may transit at a critical

applied force for a given temperature; this is the dynamic or kinetic roughening tran-
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sition. Far from equilibrium, the interface becomes unstable and begins to grow,
generating complex tree-like structures called dendrites. The growth is not arbitrary
but selects specific directions, lengthscales and rates of movement which depend on
the nature of the crystal lattice as well as the physical considerations (eg. the strength
of the driving force). This is known as the Mullins-Sekerka instability. Each of these
phenomena represent 2 basic problem in the physics of interfaces and each has re-
sisted a complete analytic description of the essentially simple processes governing
their dynamics. By studying the interface in a simple cubic Ising model under such
a variety of conditions, we hope to build a2 complete description of crystal interface
behaviour, from equilibrium to dynamics.

As mentioned above, the equilibrium roughening transition is marked
by two distinct modes of behaviour: A planar interface of 2 specific orientation (eg.
{100} in the simple cubic crystal) passes from a flat, highly correlated state to a
roughened wandering one. A droplet interface, which necessarily presents surfaces
of all possible orientations, passes from a faceted, geometric form (eg. like a cube)
to a rough, rounded one. While it will be shown in later Chapters that these two
behaviours are related, historically the former has acted as the basis for theoretical
analysis and the latter for experimental studies. The reason for this is tractability in
each of the two contexts; a flat interface has fewer complications to account for and
lends itself to being modeled more easily than a curved surface, hence it is simplest
for theorists to grapple with; equilibrium crystal surfaces are difficult to contrei and
so experimentalists have had the greatést success with small, approximately spherical
droplets.

Most natural crystals are formed away from equilibrium; they then only change
very slowly through surface diffusion and adsorption/desorption, strongly limited by

the low rate of mass transport of material. True equilibrium shapes are independent of



any dynamical or thermal history, defined only by the nature of the crystal lattice and
the current thermodynamic conditions, such as temperature and pressure. Producing
and maintaining true equilibrium has always been a challenge for experimentalists.
For this reason, the equilibrium roughening transition was theoretically predicted long
before it was actually observed. In a now landmark paper, Burton, Cabrera and Frank
(1951) suggested that there was a critical temperature at which the planar interface
. of 2 simple cubic Ising model would be transformed from a flat, correlated surface
to a roughened one. They believed that at sufficiently low temperatures there was
a barrier imposed by capillary forces which would inhibit the roughening normally
associated with thermal fluctuations. At the critical temperature, they believed that
the fluctuations would be just strong enough to delocalize the interface. However,
their analysis was based upon. a simplified model with fluctuations restricted to a
single layer and thus their results were viewed with some doubt. Chui and Weeks
(1976) eventually showed that their analysis was indeed correct. They also showed
that the transition was of a Kosterlitz-Thouless type (Kosterlitz and Thouless 1973)

(ie. of infinite order) and consequently very difficult to observe.

Figure 4: A small droplet {~ 50um) of tetrabrommethane as it passes from T =50 Cto T=92C
through its roughening temperature. Reproduced from reference (Paviovska and Nenow 1977).

At about this time, refinements in experimental techniques were finally making it
possible for experimentalists to observe true equilibrium crystal shapes. What they
saw was consistent with the idea of the roughening transition: The crystal surfaces
underwent a structural transition with temperature which changed their profile from

multi-faceted, geometric shapes at low temperature to rounded, roughened lumps at



high temperature. Early efforts by Pavlovska and Nenow (1977) with negative crystals
(vapour bubbles within a crystal lattice) in such substances as diphenyl, napthalene
and tetrabrommethane revealed a reproducible transition from a faceted to unfaceted
state within certain temperature ranges. Similar observations were made by Jackson
and Miller (1977) using hexachlorethane. Since then, Heyraud and Métois (1980;
1987; 1987; 1989) have produced many excellent results using simple metals and
ionic compounds like gold, indium, sodium chloride and lead. However, the most
impressive data has come from experiments with helium crystals, either “He (Wolf,
Balibar and Gallet 1983; Wolf et al. 1985; Gallet, Balibar and Rolley 1987) or *He
(Rolley, Balibar and Gallet 1986; Rolley et al. 1983); their work has been so well
controlled that they have been able to provide solid quantitative evidence on both
crystal droplet profiles and planar crystal interfaces. Moreover, the behaviour of ‘He
is particularly interesting in that it demonstrates three distinct roughening transitions

on three different faces due to its hexagonal close-packed structure (see Figure 5).

Figure 5: Equilibium *He crystals at various temperatures between the three roughening transi-
tions: 2) At T > Trs > Tre > Tr1 B} 8t TR > T > Tre, ) 8t TRe > T > Tma,and d) at Ty > T
Reproduced from reference (Balibar, Gallet and Rolley 1990).

Adding to the experimental evidence, simulation work has begun to play an in-

creasingly important role in identifying and quantifying the roughening transition. In



particular, the planar crystal interface has been studied ﬁsing the solid-on-solid {SOS)
model (Weeks and Gilmer 1979; Weeks 1380), a natural consequence of its use in the-
oretical work by Chui and Weeks. This model employs a two-dimensional regular grid
of columns, each with a height k; and an interaction energy defined by the difference
(hi-k;) between neighbouring sites; Figure 6 shows a toy version of it. At low tempera-
tures where surface fluctuations tend to be small and few, this model favourably emu-
lates a planar interface and successfully avoids the burden of a fully three-dimensional
simulation sytem. Thus, it is perfectly suited for the study of the equilibrium transi-
tion. Some groups have made attempts at simulating the Ising model in three dimen-
sions (Birkner and Stauffer 1983; Mon et al. 1988; Mon, Landau and Stauffer 1990);
however, results have been somewhat limited due to the restrictions of available com-
puter hardware. Although less simulation work has been done on droplets, analysis of
the Ising model has provided detailed descriptions of the equilibrium shapes of vari-
ous crystal lattices, above and below the roughening transition, in two (Rottman and
Wortis 1981; Holzer 1990a) and in three

dimensions (Rottman and Wortis 1984a;

Touzani and Wortis 1987; Holzer and Wor-
tis 1989; Murphy and Rottman 1990). In

the two-dimensional case, these analyses

has been confirmed by Ising model sim-

ulations (Saito and Ueta 1989). Reviews

of research on the equilibrium roughening

transition can be found in Weeks (1980),

Rottman and Wortis (1984b), and van Figure 6:  Toy SOS model

Beijeren and Nolden (1987).

In Nature, it is much more common to find crystal interfaces which



were formed while weakly driven away from equilibrium. As pointed out above, ex-
perimentally it is far more difficult to establish true equilibrium than to maintain a
non-equilibrium context. Morcover, industrial crystal growth techniques depend di-
rectly on the particulars of weak interface growth. Conscquently, there is considerable
interest in understanding how small forces affect the behaviour of an interface. Chui
and Wecks (1978) first proposed the existence of a dynamic roughening transition two
years after their initial equilibrium analysis. This was followed by 2 more rigorous
analysis by Nozieres and Gallet (1987) which has provided a clear understanding of
the problem: If the interface is only weakly coupled to the underlying lattice (ie.
below but near the equilibrium transition temperature), a sufficiently strong driv-
ing force will tend to decouple it completely, thermal fluctuations then causing it
to roughen; stronger driving forces can cause the interface to decouple and appear
rough at even lower temperatures. The driven interface thus appears to have a rough-
ening transition temperature below the equilibrium value; the dynamic transition is
typically characterized by this apparent depression of the roughening temperature.
The transition also exhibits a marked broadening of the critizal region wherein, for
a given driving force, the surface passes from a one structural phase to the other in
a finite range of temperature. Both of these effects have been observed in a variety
of experiments (Jackson and Miller 1977; Pavlovska and Nenow 1977), including on
the leading tips of growing dendrites (Maurer, Bouissou and Perrin 1989) (see Figure
61). However, the most precise measurements have once again been made with *He
(Wolf et al. 1985; Balibar, Gallet and Rolley 1990; Gallet, Balibar and Rolley 1987);
this is attributed to the relatively high rates of surface mass transport of material on
solid helium which reduce the typically long dynamical timesczales to an observable
level.

Significant contributions are beginning to be made through numerical analysis and



simulation; most notably, work has been done using the Kardar-Parist-Zhang equation
(Kardar, Parisi and Zhang 1986; Medina et al. 1989: Grossman, Guo and Grant
1991), a nonlinear differential equation modeling interface growth in the presence of
a influx of particles, and with the solid-on-solid model (Kim and Kosterlitz 1939;
Grossman, Guo and Grant 1991). However, due to the importance of the dynamics
required to simulate this phenomenon in three dimensions, there are still relatively few
results. Refinements to the analysis of a driven interface are already appearing (van
Saarloos and Gilmer 1986; Ben Amar and Pomeau 1988; Hwa, Kardar and Paczuski
1991), partially in response to these studies. However, this problem is far from being
completely understood as these results are often inconsistent with experiment or one
another.

‘When a crystal interface is strongly driven, it decouples completely from
the lattice and grows freely. In general, this leads to an instability in the interface
and eventually to a pattern-selection mechanism. The rich history of unstable inter-
faces encompasses many different phenomena (see Kessler et al. (1988) for a review)
which are, for the most part, intrinsically non-linear, dynamical problems involving
thermodynamically irreversible, dissipative processes that resist a coherent analytic
description. The Mullins-Sekerka instability is characteristic of these phenomena
and has proved a difficult problem to characterize completely. It is seen routinely
in many diffz:.:nt contexts such as the solid-vapour growth of snowflakes and the
solid-liquid growth of alloy solidification processes. However, it has only been closely
studied in the last decade or so; 2 summary of prior experimental work can be found
in either Glicksman (1984) or Laxmanan (1985). Water ice has been used to grow
snowflake-like crystals (Sekerka 1971; Langer, Sckerka and Fujioka 1978; Yokoyamna
and Kuroda 1990); rather impressive work has been done with succinonitrile {Glicks-

man 1984; Chou and Cummins 1988) and to a certain extent with NH,Br (Dougherty
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Figure 7: Dendritic growth patterns observed in a} a thin film of an initially uniform salt mixture,
CuCl and PbCl,, and b) Cu-Zn alloy (brass). From work by J. van Suchtelin, Philips Research,

Einthoven, Netherlands and J.P.A. Lofvander, Univ. of California, Santa Barbara respectively.
Reproduced from reference (Langer 1992).

and Gollub 1988; Maurer, Bouissou and Perrin 1989). Also, spontaneously occurring
dendrites are often studied in the context of industrial processes involving crystal and
alloy manufacture, underlining their importance to commercial concerns.

The Mullins-Sekerka instability was initially described (Mullins and Sekerka 1963)
in terms of a linearized diffusion equation which, while able to ‘capture the essential
physics at the early stages of the instability, was not able to predict the selected insta-
bility modes; the analysis suggests that there should be a mixture of lengthscales rep-
resented, however it is observed experimentally that only one dominates at late times.
The maximum velocity mechanism first proposed by Mullins and Sekerka to predict
this lengthscale was eventually discounted by the experimental work of Glicksmann
(1976). Langer and Muller-Krumbhaar (1978) then hypothesized a context wherein a
growing dendrite selects a speed and shape for which it is marginally stable. This az-
gument still stands although it has never been given a solid theoretical underpinning.

During the mid-80’s, an approach known as microscopic solvability theory was devel-

10



. oped which successfully incorporated the anisotropy of the crystal lattice and properly
predicted, for a dendrite of axjally-circular symmetry, the shape and velocity of the tip
(Kessler, Koplik and Levine 1986). However, even now, some doubt is being cast upon
it as a complete and accurate descrip-
tion of the fully three-dimensional den-
drite problem (Langer 1992); as Langer
suggests, a complete and physically rel-
evant description may require a multi-
disciplinary effort encompassing fluid dy-
namics, metallurgy, non-cquilibrium ther-
modynamics, ronlinear dynamics and pos-
sibly chaos theory. Reviews on unstable

interfaces in general and the Mullins-

Sekerka instability in particular can be

i Lo ) found in Langer (1980; 1987) and Kessler
Figure 8: A succinonitrile dendrite grown by
Glicksmann. Reproduced from (Langer 1992). et al. (1988).

Simulation work on the problem has been largely limited to two-dimensions, in-
cluding snowflake pattern formation models (Yokoyama and Kuroda 1990), Ising mod-
els (Guo and Jasnow 1986; Harris, Jorgenson and Grant 1992) and numerical simu-
lation of various interface growth models such as local interface approaches (short-
range, localized interaction) like the geometrical model (Browser et al. 1984) and
the boundary layer model (Bea-Jacob et al. 1984), the one-sided diffusion model
(Saito, Goldbeck-Wood and Miller-Krumbhaar 1988) and the cell-dynamical scheme
(Liu and Goldenfeld 1990). Although each has improved upon the understanding
of the instability, very few attempts have been made to expand them to the fully
three-dimensional problem. Indeed, none of the aforemention- J interface problems,

equilibrium or dynamic, have really been studied effectively in three dimensions us-
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ing simulation. The reason for this is simply that computer hardware has only very
recently been capable of the task.

Most computer models are discretized in some fashion (eg. the Ising model), the
smallest unit defining the lower limit of the system resolution. In order to usefully
model a physical context, it is traditionally estimated that the lengthscales of interest
should be at least one order of magnitude larger than the unit length and at least one
order less than the system size, preferably in each of the three dimensions. This sets
a minimum recommended limit for system size (in the Ising model) of ~ 100°® or one
million sites, assuming that there is only one important lengthscale and that it can
coerced to be ~ 10 units in length. From small workstations to CRAYs, this repre-
sents a significant investment in computer memory and, depending on the complexity
of the algorithm, may also represent a considerable amount of ¢cpu power. Until now,
only the largest and fastest machines were capable of running such a simulation. Tra-
ditional computer research has employed models based on some simplification, such as
the solid-on-solid model, which makes three dimensions manageable. However, they
also introduce compromises in behaviour which limit their usefulness and physical
relevance; for example, the SOS model cannot reproduce sidebranching or simulate
a droplet interface, two important aspects of the fully three-dimensional dendritic
growth problem.

Still, the importance of simulation research cannot be ignored, especially as tech-
nology grows to meet the challenge of ever more physically complete models. As
mentioned before, theoretical progress is often hampered by the abstruse nature of
interface problems while experimental studies are limited by the available materi-
als and the precision with which they can be manipulated. Simulation acts as the
ideal bridge between the two, providing an absolutely controllable environment for

the testing of theory and for reproducing simplified physical phenomena. Our work
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presented here underlines this fact as we confirm numerous theoretical predictions
and reproduce many physical observations by performing several original simulation
studies at the limit of our available computer hardware.

In this thesis we report original contributions to each of the afore-
mentioned subjects. In like style, we examine each context of the simple cubic
crystal interface in terms of simulation results using the simple cubic Ising model; the
equilibrium roughening transition on the planar interface, the dynamic roughening
transition on both a driven planar and metastable bulk inclusion interface, and the
Mullins-Sekerka instability in the presence of 2 thermal gradient on a pilanar interface.
In each case, we present results of simulations in three dimensions which, to the best
of our knowledge, have never been done before. Further, we provide original analyses
of several equilibrium and growth behaviours as well as confirmation and comparison
of many theoretical and experimental results.

In Chapter 2, we overview the equilibrium roughening transition. First, we
present a renormalization derivation of the equilibrium roughening transition on a
planar interface, based on a generalized solid-on-solid model. Included are the foun-
dations for the behaviour of the interface in a weak field. We also summarize many of
the basic characteristics of the equilibrium transition. Next, we demonstrate how the
equilibrium shape of a droplet interface is defined by the anisotropic surface energy
and subsequently, how it changes with the roughening transition. To do this, we in-
troduce the Wulff construction which exactly defines the crystal shape given a radial
description of the surface energy, offering a basic derivation based on the approach of
Landau and Lifshitz (1980).

In Chapter 3, we introduce the basic theory describing the Mullins-Sekerka
instability. Following the linear stability analysis attributed to Mullins and Sekerka,

we examine the initial stages of the instability on a planar interface in the presence of
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a thermal gradient. The result clearly identifies the unstable modes of the interface
urder a driving force. This analysis is then extended to a spherical interface; in this
case, we find a critical radius of stability which limits the onset of the unstable modes.
Finally, we examine the unpertubed steady-state solutions for a needle-like crystal.
These results then provide a basis for testing and analyzing the data presented in
later Chapters.

In Chapter 4, the simulation model is described. We first review the basic simple
cubic Ising model through meanfield analysis, demonstrating how a first-order phase
transition is introduced through 2 uniform external field and a degeneracy in the upper
energy spin state. We also describe the Monte Carlo method used, the Creutz (1984)
multi-demon algorithm, and show how it provides for local temperature variations; in
addition, we introduce a novel thermal diffusion mechanism with a simple, consistent
and controllable behaviour. We explain how the model was employed to simulate
various interface configurations and geometries.

In Chapter 5, we present the results from 2 variety of simulations at and near
equilibrium. In four Sections, we examine each of four different contexts significant
to the roughening transitions, both equilibrium and dynamic: We first establish a
unique basis for characterizing interfaces which we then use throughout this Chapter;
we analyse the fluctuation distribution on a planar interface at equilibrium, demon-
strating divergent aspects of its behaviour at the transition, and derive specific quan-
tities which can be measured on real and virtual interfaces. We then compare this
description with simulation data; we show that the equilibrium roughening transition
is more clearly identified using this approach than conventional measurements. Next,
we examine a metastable bulk inclusion, noting that a stabilizing force is required to
prevent the system from minimizing the interface energy and evaporating the droplet.

We then compare the theoretical predictions for how the roughening transition of a

14



static interface is modified by an external field to our simulation results. Asa compar-
ative exercise, we also study the behaviour of the inclusion when the stabilizing field
is removed; the dropiet appears to pass quickly through a roughening traunsition, even
though the temperature is not changing and there is no external force. We supply a
mechanism based on well-known growth/evaporation processes to explain this phe-
nomenon. Finally, we make a qualitative study of the planar interface weakly driven
by a thermal gradient for contrast with the equilibrium and inclusion behaviours. We
make contact with several aspects of current dynamic roughening transition theory,
highlighting the behaviour of the fluctuation distribution quantities defined in the
first Section.

In Chapter 6, we test the linear stability analysis presented in Chapter 3. Due
to the complex nature of dendritic growth at late times, this early-time behaviour
represents our best opportunity to directly test available instability theory. To our
knowledge, this has never been done before in either experiment or simulation due to
the brief timescale of the linear behaviour. We present two distinct contexts wherein
we are able to compare specific predictions with our simulation data. In order to
enhance the resolution in our measurements, we employ a two-dimensional version
of our code. There are no significant differences between unstable one-dimensional
and two-dimensional interfaces at the level of the linear stability presented in Chap-
ter 3; we re-derive any important analytic expressions. First, we study the growth
modes of an unstable planar interface, looking for the predicted dispersion relation
which describes the relative strengths of the unstable modes. We use the established
technique of long-range spin interactions (Heermann 1984; Grant et al. 1985) to ex-
tend the Linear growth regime. Taking advantage of the reduced cpu requirements
of a one-dimensional interface, we use the longest interface possible for maximum

resolution. Second, we study the behaviour of an unstable circular inclusion; it has
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an anticipated radius of stability at which the disk first begins to go unstable. We
estimate this lengthscale using two separate measurements and compare it with our
simulation results.

In Chapter 7, we present simulation trials of late-time, non-linear dendritic
growth in three dimensions; these results are considered ground-breaking attempts
at reproducing the physically complete Mullins-Sekerka instability,. We study two
interface geometries, the fully three-dimensional block system and the pseudo-two-
dimensional slgb system, cach clearly demonstrating dendritic growth at specific
lengthscales. We characterize the interfaces in terms of their power spectra, interface
areas and dendrite tip speeds and relaie this to instability theory. We comment on
various inconsistencies between the simulations and experimental results and identify
possible shortcomings in the simulation model. Using the thermal field defined by
our model, we perform a test of our algorithm to reliably model diffusion processes
and then examine the thermal diffusion mechanism governing the instability through
imaging techniques. We demonstrate a variety of instability behaviours with their
corresponding thermal fields and then make a detailed analysis of the influence of
the system parameters on the growths. It is shown how thermal fluctuations and
diffusion rates control the shapes of the dendrites and their rates of growth. Finally,
we examine the influence of the dynamic roughening transition on growing dendrites;
we show how the tips are faceted at low temperatures and demonstrate that, similar
to experiment, we observe a transition in the tip growth response to changing driving

force.
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2 Two-Phase Interfaces in Equilibrium

At equilibrium, a crystal interface is defined by the nature of its underlying lattice
and by the strength of the ambient thermal fluctuations. For the moment, let’s
consider a planar solid-vapour interface with the lowest possible Miller index ({100}
for a simple cubic crystal; see Appendix A.1). At low temperatures, the interface
is highly correlated (ie. flat). Thermal fluctuations are manifested in the form of a
small number of islands or micro-facets raised one lattice unit above the reference
plane (for example, see Figure 18). These micro-facets are not stable but appear
spontaneously and then shrink until they disappear. Macroscopically, the interface is
fixed relative to the lattice and does not move or change. At higher temperatures, the
thermal fluctuations are larger and more numerous; they may even appear atop other
fluctuations. However, the interface remains fixed and flat on long length scales. At
some critical temperature Tg, fluctuations will be so numerous as to overwhelm the
reference plane and it will be lost; the interface will appear rough. It will no longer
be constrained and thus it will wander freely; macroscopically, the interface width
will diverge over long length scales. At all temperatures above Tg, the interface will
be rough, the amplitude of the roughening increasing with T. This phenomenon is
referred to as the roughening iransition or, less frequently, the facetting transition.
In Section 2.1, we shall reproduce a renormalization analysis of the transition and
summarize the thermodynamic characteristics of an infinite planar {100} interface
near Tg.

The planar interface described above has a fixed orientation relative to the crystal
lattice. However, when an interface defines an enclosed volume, all possible surface
orientations may be present. We might for example consider tLe context of a simple
bulk inclusion of one phase in a bath of another phase - prehaps a solid droplet or

small crystal in 2 liquid melt - but in the limit of infinite droplet volume to avoid
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finite-size effects. Since in the simple cubic crystal only {100} interfaces have a
finite Tg (all other orientations have Tg = 0}, a mixture of facetted and roughened
surfaces is observed on a droplet surface near T}{?zoo}; at the transition point, the
entire interface is then roughened. Thus the cquilibrium shape of a crystal droplet is
another manifestation of the underlying lattice structure and also exhibits a transition
behaviour. In Section 2.2, we review the Wulff construction and show how it exactly
defines the equilibrium shape of a bulk inclusion above and below Tg.

Within both sections, we review the physics of the roughening transition and

establish a foundation for the analysis of our simulation results presented in Chapter

5.

2.1 The Roughening Transition

In 1951, Burton, Cabrera and Frank (1951) proposed that an equilibrium crystal
interface may exhibit a structural phase transition, from a smooth, flat phase at
low temperatures to a rough, curved one at high temperatures. They carried out an
analysis of the {100} surface of a simple cubic crystal, restricting thermal fluctuations
to the first layer. They showed that the interface would remain flat only up to a critical
temperature Tgor which they referred to as the roughening temperature. However,
their single-layer assumption is of limited use near the transition when fluctunations
extend well beyond the first layer and, so, their insight into the transition could
not be validated. It was eventually shown by van Beijeren (1975) that Tgcr is
actually a lower limit for the roughening transition. In 1976, Chui and Weeks (1976)
provided the key, demonstrating the relationship between the discrete Gaussian (dG)
interface model (a solid-on-solid (SOS) model with quadratic interactions) and 2 2D
Coulomb lattice-gas through a duality transformation, the latter model already having

been shown to have a Kosterlitz-Thouless transition (Kosterlitz and Thouless 1973).
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Subsequently, the presence and nature of the roughening transition have been firmly
established, both experimentally and theoretically.

This phenomenon is restricted to planes with {100} orientation. This is a con-
sequence of the symmetry of the simple cubic ¢rystal structure which causes the
{100} interface to be strongly coupled to the lattice. Other orientations like the
{111} plane are much more weakly coupled due to the reduced spatial coherence of
the sites relative to the interface; at all T > 0, it is decoupled from the lattice by
thermal roughening. Crystal structures like hexagonal close-packed and face- and
body-centered cubic do exhibit facets with different orientations; consequently, they
also have multiple transition temperatures, one for each orientation. However, they
are also less accessible than the simple cubic structure to analytic techniques like the
SOE model.

Before 2 more detailed analysis of the roughening model, we shall review some
of the elementary aspects of transition theory. The behaviour of the height-height
correlation function G(r) introduced by Chui and Weeks (1976) for the SOS model
reflects the basic nature of the transition. The Solid-On-Solid model is a regular 2D
lattice of sites {#,7} each with a height k;;; it is a simplification of the planar 2D
interface In that it prohibits overhangs and bubbles in the bulk. This is particularly
appropriate for low temperature simulations where the inteisace width is small. The
interaction energy is typically defined by a Hamiltonian like H o ¥;;(1kij = hivr | +
lhi; — Rij+1l). The height-height correlation function is defined as

G(r) = ((hij = hu)) = 303 (ki = hu)® Plhij, hur) (1)

L9
where » =|| hi; — hu || and P(ki;, hu) is the probability of height hi; at (i,7) and

height kg at (k,1). It has been shown (Chui and Weeks 1976; Ohta and Kawasaki
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1978) to have an analytic form

G(r) x F(T)a*log (F‘f:}:ﬁ) ()

where £ is the correlation length between fluctuations, ¢ is the unit lattice constant in
a simple cubic crystal (ie. a is the same unit horizontally between adjacent columns
and vertically in height) and F(T') is an increasing function of temperature. Study of
the related XY model by Chui and Weeks (1976) has' shown that § of the SOS model
is the dual conjugate of the XY vortex-vortex correlation length; its form near Tg

then follows from the analysis by Kosterlitz (1974);

feBVTRT T Ty
£ = ®)
oo . T>Tr
where B is a non-universal constant. Thus, at T > Ty, G(r) diverges at large r Lke
log(r/a). Below Tg, G(r) saturates at r > ¢ like F(T)a’log(£/a). The prefactor
F(T) has a universal value at Tg of 2/x (Ohta and Kawasaki 1978); it approaches
this value from above like

F(T)=-§-+Cm.\/T—TR T--Tg (4)
where the constant is non-universal.

Also central to the ronghening transition is the free energy per unit length, E,(T),
required to form a step. As its name suggests, a step is a vertical dislocation of the
interface by one lattice unit. It is the dual conjugate of the spin-spin correlation
length in the XY model (Swendsen 1978). Below Ty, the step free energy is finite and
provides a barrier to the formation of steps. At Tx, E, goes to zero permitting steps
to proliferate without bound and thus resulting in the roughening of the interface.

From Kosterlitz’ results, near T the step free energy behaves like
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0 T > T
where B is the same non-universal constant in (3).

These results have been subsequently shown to be true for all SOS models (José
et al. 1977), regardless of lattice structure or details of the interaction. Further,
van Beijeren (1977) showed that the SOS model for the body-centered cubic crystal
could be mapped into the exactly solvable six-vertex model, subsequently recovering
all the same results. Thus the basic charactenistics of the roughening transition are

applicable to any interface model with a regular lattice.

2.1.1 Renormalization Analysis of a Roughening Model

In order to establish the physical basis for the roughening transition, we shall walk
through a more detailed renormalization analysis of a generalized SOS model based
upon the derivation of Weeks et al. (Chui and Weeks 1976; Weeks and Gilmer 1979).
We present a summary of important analytic expressions in Section 2.1.2.

We shall choose a2 Hamiltonian which is as general as possible, using a quadratic
height-height interaction for reasons of analytic simplicity (the transition behaviour
is independent of the specifics of the interaction); in this form, it is referred to as
the discrete Gaussian model (dG). As usual, it is written in terms of a regular lattice
with heights k;; with the interaction extending over some range § =|| {i,5} — {k, 1} ||
which can be greater than unity;

J
‘H=§

3 (hij = k) + JTH? S B — S Apijhi; — 20,0 3 cos(2xhy;)  (6)
{5.5}é {is} i3} {33}

where J is the interaction constant and is distinct from that of the Ising model

Hamiltonian used in later Sections. The first term is the site-site interaction energy
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over a range §; the second term i1s a weak centering field which holds the interface
at A = 0; the third term is an applied field (in general, it can be different for each
site) which will act as a chemical potential; the fourth term is a weighting function
which plays the part of the crystal lattice in the Z direction, favouring integer values
of h. Although most SOS models use a discretized height variable which restricts
h to integer values, this form is more general, illustrating the universality of the
roughening transition; it has been shown that any periodic weighting function will
result in the same equilibrium behaviour at the transition (Chui and Weeks 1576).

The dynaraics of the interface is controlled through the Langevin equation

ohi T oW _
3t = kgT Ok
= —%(Z{h‘-—-hm)-f-ﬂzh;—g—f—?rvosin%h;)+f,'.- (7)
&

where K~ = 2J/kpT. T will be identified later as the equilibrium evaporation rate

and 7; are stochastic fluctuations which satisfy

() = 0

(m(t)ma (7)) 2T6(t — )i (8)

Here, any quantity enclosed by () indicates an ensemble average.
For the limiting case of no driving force (A g = 0) and no discrete lattice (v, = 0),
(7) is exactly solvable using Fourler transform techniques; in terms of the Green’s

function G{k,w), it has a form in the long wavelength limit like

Glk,w) = ("2 ;,Hz -z-‘i,i)-z. (9)

For an infinitesimal centering field H? — 0%, (7) is a discretized diffusion equation
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and thus, G(k,w) is identically the Green’s function for 2D diffusion. Re-introducing

v, as a perturbation for an infinitesimal Ay, we can re-write (7) in integral form

00 o I tl () r
h(r,t) = f dr' f dtG(r—r',t—t") (A‘;:T )*:’7("1:” —2:]‘&"1vosin27rh(r',t'))

(10)

where 7 is 2 dimensionless 2D vector in units of lattice spacing with its point of origin
at the center of a lattice site. The equilibrium behaviour of the interface can then be
extracted from the limit Ap — 0.

First, expanding (10) in powers of Au/kpT,

h(r,2) = ho(ryt) + j_ : dr' Ea at’ hl(r’,t’)é%%ﬁ+0((é%%ﬂ) ) (11)

we suppose that the linear response function is the ensemble average over the noise

x(k,w) = {hi1(k,w)). Thus the unperturbed linear response function is

1
(T B/K ~ (1)’ (12)

xo(k,w) = G(k,w) =

Subsequently, the perturbed function x is expressed as

x"Mk,w) = x5t (k,w) + T(k,w); (13)

2 is a self-energy. By substituting {11) into (10), an exact solution for  is possible

4y, K 1 F{(cos(2mho(rt)hy(rt,7't")}}
(hltkvw)) ,

where 7{} indicates a Fourier transform in real space and time

B(k,w) = (14)

F{f(x,t)} = f dt [ dx e~ tkxHot) £y gy
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The limits of behaviour of £ as a function of temperature foreshadow the final
roughening transition results. At low T, the equilibrium variations in &y are very
small and the interface is strongly localized around Ao = 0 by the weighting term.
For small k;;, the sine term in (7) can be expanded to first order and consequently
the self-energy is shown to have a constant value even in the long wavelength and

zero frequency limit;

47y
i b)) py = —2 1
U.]im kw) = . (15)

At high T, the limiting behaviour is less apparent. However, it is a fair assumption
that the weighting term is less influential as the fluctuations in k; become very pro-
nounced. Thus the unperturbed solution, £ = 0, may be presumed to reflect the
perturbed self-energy for an interface at high T. This suggests a divergent behaviour
in the k,w — 0 limit, consistent with the observation that roughened interfaces di-
verge over long lengthscales.

Following the renormalization group approach of Kosterlitz (1974) and José et al.
(1977), we will formally analyze this behaviour. We expand hg, &, and E in powers
of v, using (10)-(14) and we recover the expression for x~*(k,w) in terms of v,. This
requires a certain amount of tedious algebra, shown in detail in de Gennes (1971),

and produces

X-l(kaw) = q: (K'l + K3 fw dr 1.3—2:'1{)
1

‘/;w dr ra""'K) + O(v*) (16)

xiy?
K -1

—w? (1 +

~ConutK is used for convenience; the constant Con,e = 72/2 is simply a

where v = v,e
consequence of Fourier transforming the cos() factor in (14). The integrals in (16)

are subsequently assessed by separating each of them into two parts, integrating from
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1 to b and from b to oo with the condition 0 < Ind < 1 or & — 1*. The small r
parts of the integration can be combined with the original constant term (either A1
or I'"?) to produce a new parameter value; the large r part of the integration can be
rescaled so that the limits of integration are again from 1 to co. The scaling factor is
absorbed in a redefined w and (16) can be rewritten with parameters A'(£), I'({) and
v(£) where £ = Inb. The equivalence between (16) and this new expression implies

the differential recursion equations

EEO _ o i
i - —=(¢) (17)
0 o ek -2 (18)
dnT(f) 7%
& - TR -1 (19)

with the limiting behaviours f(£ = 0) = f for f being K, I or v.

By comparing the expressions (17), (18) and (19) with Nelson et ol (1977) and
José et al. (1977) in their comparative analyses of the 2D Coulomb gas and the XY
model, we observe that the first two equations are basically identical to their recursion
relations. This implies the similarity in the nature of the static transition behaviour
of this model to theirs. By defining a new variable £({) = 7 K(£) — 2 and substituting

into (17), we obtain

1dz(8) 4 2
TR —n*z(L)v*(L). (20)

Comparing this equation to (18), we identify a conserved quantity

(8 — 7*0*(€) = 2 — 7% = Conue (21)

and, assuming z(£) > 0, we see that (19) drives v(£) to 0 as £ — oo; this indicates

that the influence of the periodic weighting function disappears and thus the interface
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roughens. The roughening transition can then be considered the low temperature
end point of a line of critical points with v{oc) = 0; at this end point, we must have
z(e0,Tr) = 0 or K(o0,Tgr) = 2/=. This value for K is universal (ie. independent of
any modifications to the basic Hamiltonian).

Another insight which can be derived from (20) when it is evaluated at { = oo for

T > Tris how K(c0,T) varies with T as T — T5. Since v(c0) = 0,

zi(c0) = 23 (€) ==V () T > Tr; (22)

the right hand side can be expanded about Tg in powers of T — Tg, noting that the

constant term disappears at Tx due to z(c0,Tr) = 0. Thus, to lowest order

2(00) = /Comee(T — Tr); (23)

this indicates that K(co) (and thus ['(co) as we shall see below) has an unusual
square-root cusp as T — Tq. Also, since z(co, Tr) = 0 and recall that v = v,e~" K/2,

we obtain

5 ‘
K(00,Tg) = = + wiupe™" K(e=Ta)/2 (24)

Setting v, = 1 as an approximation of a discrete lattice, (24) can be solved by
iteration, giving kgTr ~ 1.45 J. This is consistent with computer simulation results
for the dG model (Shugard, Weeks and Gilmer 1978).

The third recursion equation (19) contains information about the dynamical be-
haviour in I'. Combining (17) and (19) to climinate v and integrating £ = 0 to oo, we

arrive at

T'(c0,Tr) _ 7K (00,Tp) -1
r N mK -1

(25)
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Thus, I' scales with K whose behaviour was discussed above. The consequences for
the statics and dynamics of the interface are immediate; the average growth rate I of
the crystal is related to the response to a spatially and temporally uniform driving
force when the stabilizing field is removed, H* = 0. From the interface definition
(11), we obtain the growth rate I to first order in Ay and use (12) for the high-T

response function to define its high temperature limit;

. JAN
I = lm —wx(k=0,uw T‘“ (26)
= Ne)2t (72T (27)

This result is consistent with conventional theories of crystal growth (Wecks and
Gilmer 1979); for small driving forces at high temperatures, they predict to first order
in Ap a limiting form of I = E,,Ap/T where E,,;, is the equilibrium evaporation
rate. Since v(oco) = 0 above Tk, the response function y(k,w) has the same form as
Xo but with the scaled parameters. Also, since we expect the high T limiting form
of the unscaled x to also be xg, the scaled and bare parameters are identical in this
Emit for all £ (ie. I'(c0) >~ T for T — oo) and we then identify I' with the evaporation
rate Ey,p.

At T < Tpg, the behaviour of the response function is quite different. As T — Tp,

it can be shown to have a limiting form

1
x(ke) = FE T e T

with a finite correlation length £ and renormalized parameters K~ and I". This form

(28)

is not unexpected; since £ has been shown to be well-behaved (ie. equation (15)) at
low T, 2 functional form for x~! similar to xg' (ie. linear in w and quadratic in k)

is reasonable. Then (26) predicts a rate I = 0 for T < Tg to first order in Ap/T.
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This is consistent with the fact that. for a perfect lattice, the growth mechanism 1s
primarily via nucleation. Nucleation theory gives I & e~Conet/84 50 one would expect
that all terms in a power series expansion about Ap = 0 would vanish.

At equilibrium (ie. &g = 0), the spatial correlations between height fluctuations

can be calculated from the fluctuation-dissipation theorem

(| hok,) ) = 25 {x(k, )} (29)

where S{X} signifies the imaginary part of A'. Specifically, for large r and ¢ at
T 2 TR!

([ho(r,2) = ho(0, 0)}7) = -K—é;ﬁllog {ma.x (r=, %(%’)lz)} (30)

based on results of de Gennes’ (1971). By inspection, we can see that there are
space/time correlations which diverge logarithmically above Tg. The large » limit of
the equal time correlation function gives a measure of the interface width and (30)
shows that it is logarithmically divergent for all T > Tx. Similarly, this is true of the
large ¢ time-correlation function. Also, (30) suggests that the correlation functioun § is
co above Tg. Below Tg, we can see from (19) and (28) that the correlation function
approaches an asymptotic value exponentially fast. Thus the interface width and
the correlation function are finite below Tr. Exactly at the roughening temperature,
K(o0) = 2/r so the width is predicted to show an abrupt change from its finite value

below T to

{[Ro(r,t) — Ro(0,0))%) = %logr T=Tg (31)

This behaviour has been observed in simulation (Shugard, Weeks and Gilmer 1978)
and to some degree in experiments (Rolley, Balibar and Gallet 1986; Wolf, Balibar
and Gallet 1983; Wolf et al. 1985; Gallet, Balibar and Rolley 1987).

28



2.1.2 Summary of Roughening Transition Characteristics

A number of other results can also be extracted from the renormalization group
approach through careful analysis. We list below a summary of important transition
behaviours including some of those mentioned carlier; included are the transition
temperature, surface tension, step free energy, correlation length, interface width and
surface curvature. Additional details can be found in review articles (Weeks and

Gilmer 1979; van Beijeren and Nolden 1987; Ohta and Kawasaki 1978).

Roughening Transition Temperature The transition temperature can be deter-
mined with reasonable accuracy for the discrete Gaussian model (an SOS-type

model with quadratic interaction energy),

keTp =145 J (32)

which have been confirmed by simulations (Shugard, Weeks and Gilmer 1978).
It should be noted that this is not 2 universal quantity but can be extracted from

the flow equations for different models by an appropriate choice of parameters.

Surface Tension The surface tension (surface energy per unit arca) has a weak sin-
gularity at the roughening transition. From below Tg, it behaves like (Kosterlitz
1974)

v e ANV T T (33)

where 49 and A are non-universal. Note that all derivatives of ¥ are smooth
functions of T which vanish at Tg; this is typical of the Kosterlitz-Thouless

transition and make detection of the transition very difficult.
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Step Free Energy The step free energy is defined as the difference of free energy
between interfaces with and without a step (a vertical dislocation of one lattice

unit). It has the form near Ty

Eoe_aj“!n_ T — T};

E, = { . (3)
0 T>Tr

Again, Ey and B are non-universal. This expression is obtained from the analy-
sis of the XY model (Swendsen 1978); the step free energy is the dual conjugate

of the XY inverse spin-spin correlation function.

Correlation Length The correlation length is the characteristic distance between
thermal excitations on the crystal surface. Below but near to Ty, it behaves
like

_ EoeBVTR"T T-Tg
‘= { o T>Tr
where B is the same as in (34) and & is again non-universal. It is the dual

conjugate of the XY model vortex-vortex correlation (Ohta and Kawasaki 1978).

Interface Width The height-height correlation (30) of a single-valued interface (like
in an SOS model) provides a good approximation of interface width behaviour.
From the analysis of its behaviour (Chui and Weeks 1976; Ohta and Kawasaki

1978), the mean square width near Tg follows

] C+VTr-T" T —Tg
(w(T)) x " R (35)
Wo+ DVT=Tn T —T}

Here, C and D are not universal but W is the universal value 2/72.

Surface Curvature The radius of curvature of a {100} surface on a bulk inclusion

{droplet) is predicted to jump from infinite value at T < Tg to a universal finite
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value at T (Jayaprakash, Saam and Teitel 1983)

T RokgTr
274

R. = (36)

where Ry is the distance from tangent place at the surface to the center of the
droplet, 7 is the surface tension and a is the lattice unit length. The behaviour

of a finite volume is discussed in greater depth in Section 2.2.

Thus, the equilibrium roughening transition is characterized by the vanishing of
the step free energy, the divergence of the interface width, the divergence of the cor-
relation length and a jump in the surface curvature. In the real world, the transition
appears on 2 planar interface as the divergence of the width at long lengthscales
from a finite value at Tg; thermal fluctuations overwhelm it, changing its appcarance
from a flat, facetted plane to 2 rough, wandering surface. This behaviour will be

demonstrated in Section 5.1 using computer simulation methods.

2.2 Equilibrium Crystal Shapes

The previous section examined the behaviour of an infinite planar interface near its
transition temperature. In the context of a enclosed volume (ie. a crystal droplet
or bulk inclusion) ir the thermodynamic limit V' — oo, this is identical to studying
the faces of the inclusion which have the orientation {100}; surfaces with any other
orientation have T = 0 and are rough at all finite T. Since the roughened surface

is curved and the facetted regions flat for T < T,{t“m}

, the equilibrium crystal shape
(ECS) demonstrates a marked transition behaviour at T};m}; the facets disappear and
it becomes continuously curved. The Wulff construction provides an indispensable

tool for studying this change. The simple recipe proposed by Wulff (1901) exactly

defines the temperature-dependent ECS. It requires only an expression for the surface
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Figure 9: The Wulff construction for a simple cubic crystal. The plot pairs are the polar plot
of a hypothetical surface tension ¥(8,¢) and the corresponding equilibrium crystal shape. They
spproximately represent the cross-section of a simple cubic Ising crystal with nearest neighbourhood
interaction a) at a temperature T above the roughening temperature Tg, b) at a finite temperature
T < Tgr and ¢} at T = 0. The final pair d) is of a possible surface tension which would produce a
cusp in interface. Note that cusps in the surface tension produce facets in the equilibrium shape.
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tension ¥(n,T) as a function of temperature T and the unit orientation vector n
originating at the center of the crystal (see Figure 9).

Let us suppose a microscopically smooth surface S(R, %) where R is the radius
from the center of the inclusion to the surface in the direction of the vector #. Given
a fixed crystal volume V and the surface energy per unit area v(n), the ECS is the
surface which minimizes the free energy of the crystal. The solution for S(R,n) is

found graphically (in cross-section} by the following recipe:

1. Draw a polar plot of the surface energy per unit area y(72)
2. Draw a plane perpendicular to 1 at every point on the (%) plot

3. Extract the inner envelope of the family of plares

The inner envelope is the equilibrium crystal shape to an overall scale factor given by
the fixed crystal volume. Figure 9 shows the ECS defined by the Wulff construction
for a simple cubic crystal lattice in cross-section at its center for temperatures above
and below Tg and at T = 0. It is interesting to note that, as pointed out by Mark
Holzer (1990b), the ECS appears to be an intensive state variable of this system.
This would also suggest that the volume V is its corresponding extensive state vari-
able and that the free energy of the system is described by 6F = § dV (all other
state variables fixed). Thus the Wulff construction is really a recipe for a Legendre

transform between the intensive/extensive variable pairs, surface tension (vy)/surface
area (A) and equilibrium crystal shape (ECS)/volume (V).

The geometric relationship between « and the ECS created by the Wulff construe-
tion can be simply derived from these plots. Using the ECS from Figure 9 a) as a
reference, we restrict the analysis to z and = although it obviously includes ¥; the
following refers to specifically to Figure 10. Choosing an arbitrary point (z,,z,) on
the ECS, its tangent is extended until it intersects the z axis at 2. The small angle
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Figure 10: A geometric analysis of the ECS defines the surface tension v as a function of angle for
a vector originating at the center.

between the tangent and = axds is #; its slepe is p = dz/dz = —tan(#). The normal
to the tangent which intersects the origin is thus 4. So far, we have just worked

backwards through the recipe for the Wulff construction. The length of 7 is simply

() = cos(8)z
= ¢cos(8)(zo + pzo)-

Generalizing and inserting p = - tan(d), we find the surface energy per unit area

from the ECS to be expressed by

~4(8) = cos(8)(= — tan(8)z). (37)

In order to provide a firmer foundation for the use of the Wulff construction, we
present a simple derivation of an analytic expression based on Landau and Lifshitz
(1980). It will not be ths most general analysis possible as it will rely on the piece-wise

differentiability of v(#). However, we hope to benefit from its simplicity and clarity.
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In this spirit, we begin by noting that the ECS produced by 2 Wulff construction is
always convex; this can be seen in Figure 9 d) where the tendency to loop results in
a cusp in the always-convex ECS. This is significant insofar as a convex shape can
always be separated into upper (+) and lower (=) parts, defined by being in line-of-
sight from z = +00 and —co respectively (see Figure 11). The choice Z is arbitrary

A

Figure 11: Any convex shape can be broken down into two unique components; half which is in
line-of-sight of a point at = = +¢o and half which is only secen from = = —o0. The choice of $ i
arbitrary but is usually chosen to take advantage of any symmetry in the shape,

but is usually chosen to take advantage of any symmetry in the shape; the origin is

assumed to be at its center.

Subsequently, the orientation on the surface of the crystal can be described as

. (ps,9+,1)
hy =t —Emdfr) (38)
vi+rk +¢

where we use +/— to indicate upper[lower, parametrizing the surface S(z,y,z) =

z+(z,y); we have used the partial derivatives p, g defined

_ Ozs _ Ozx
Pr= 5= g+ = By (39)
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The surface free energy per unit area of an infinitesimal surface element which has

been projected upon the 2D viewing plane (z,¥,0) is then

ex = 7(Rz)y/1+ p + ¢2. (40)

The subsequent minimization of the surface energy for fixed volume V can then be

done through the variational expression

5/ dz dy (€; + €. —2M(zs —2_)) =0 (41)
where 1 is a Lagrange multiplier. Using (39), we obtain

ex 06z:  Oex 08z - | =
Tfeu(faie im0

This in turn can be transformed using the method of partial integration, knowing

that éz; = 0 everywhere beyond the crystal surface;

336_4; aaéi -
;-[dx dy(a;a—;-!-é;aqﬁ:tl\)ﬁ-i—ﬂ.

At this point, the integrations can be separated since §z.(z,y) are independent vari-

ations and thus the integrand itself must be zero for each of + and —;

3ae= 33&

M= oty 255
T = 525 * By00s (42)
The solution to this is
3::.1. 32&
= EArs - =222
€z (= e x By y)
= A(zx — P2z — ¢1¥)- (43)

Looking back at our geometric expression (37), we can see that it is identical to {43),

except for the scaling factor A, where from (40} we get ¢ = -/ cos(#) and from (39)
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p is again the slope dz/dz = —tan(d). Taking the partial derivatives of (43) and

rearranging, the surfuce of the crystal shape is then described by

354.
= A_I—-:
z + P (49)
664.
= A-I——-
Y F a= (45)
- 3 + 3 -
* = £X7! (éﬁ - piE:: - %i:) (46)

Thus, given the surface free energy per unit area, the crystal shape S(z,y, ) can be
constructed from (44)-(46).

As an aside, we note that the Langrange multiplier A can be defined by thermo-
dynamical analysis (Wolf et al. 1985) as

= 1P Piep
2 pm

L1

R
where p, and p; are the solid and liquid (or vapour) densities and 8P is the excess
pressure of the liquid with respect to the equilibrium pressure on a flat interface. It
1s approximately related to the ratio of the surface tension to the surface radius of
curvature.

Using the simple cubic lattice to illustrate a more specific application, the equilib-
rium crystal shape exhibits a distinct behaviour at the roughening transition; Figures
9 a), b) and c) approximately represent this behaviour. Below Tr (ic. 9 b)), the sur-
face energy as a function of the orientation vector has cusps in the [100] dircctions.
In terms of the ECS, this results in a flat, macroscopic facet of {100} orientation on
each face, connected by smoothly curved regions. Since there are no cusps in any
other directions, no other onientations of the surface exhibit facets or the transition

behaviour. In the 7' = 0 limit, the facets are square and exactly bound each other

with no intervening curved surface. Above Tg, 7(#) is a smoothly differentiable func-
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tion of angle; similarly, the ECS is continuously curved with no macroscopic facets.
Thus, it is at Tg that the cusp in () disappears and, with it, the facets.

In Section 3.2, we study the behaviour of a finite crystal volume using computer
simulation. We examine the ECS of 2 simple cubic crystal, looking for indications of
a transition. In the process, we extrapolate the idea of the ECS to specific measurable

aspects of a physical crystal.
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3 Non-Equilibrium Interfaces

Driven away from equilibrium, a crystal interface may exhibit a pattern generating
instability; 2 common example is the formation of snowflakes. As we noted in the
introduction, the underlying physics of this phenomenon is largely, although not com-
pletely, contained in the Mullins-Sekerka instabilily description. Let’s consider a flat
solid-liquid phase boundary at coexistence, similar to that discussed in Chapter 2.
After relaxing to its cquilibrium state, it is completely stable. If the temperature
of the liquid phase is spontaneously lowered, the interface will become unstable and
begin to move into the liquid. As the phase changes from liquid to solid, latent heat is
released, warming the liquid along the interface and retarding its advance. This heat
is diffused away into the liquid bulk and the interface continues its progress. Even-
tually a steady state is reached, the interface moving forward at a constant velocity,
driven by a thermal gradient perpendicular to it. Perturbations of the interface will
start to grow, maximizing the surface area and thus the redistribution of the latent
heat. Finger-like growths will form as heat collects between the growing bumps, slow-
ing the advance of the depressions and accelerating the tips; these dendrites typically
sprout secondary branches along their sides as they grow. The dendrites are of a
characteristic length scale which depends on the state of the system and the mate-
rial involved. Despite the relative simplicity of the mechanism, it can produce very
complicated structures av commonly observed in frost or snowflakes.

We shall illustrate the basic physics of the process by carrying out a linear sta-
bility analysis, both for a planar interface and for a spherical droplet. As we have
mentioned before, the dendrite problem requires a much more complete treatment
in order to develop a fully physical description. However, we will be able to provide
ample foundation for our computer studies of the instability; our simulation model

inherently contains all of the necessary physics. Through the linear stability analysis,
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we will identify the characteristic instability length scale associated with each inter-
face geometry and show how they are related to the thermal diffusion and capillary
(surface tension) lengths. Finally, we shall look at a steady state solution for the
dendrite found at late times in the form of a parabolic needle crystal. The spherical

tip radius or curvature will be related to the constant tip velocity.

3.1 The Linear Stability Analysis of a Planar Interface

When a planar interface is unrestrained by lattice influences (ie. roughened) and ad-
vancing with velocity v, an instability can arise wherein certain modes of the bound-
ary are amplified and the interface exhibits a pattern selection behaviour. The ba-
sic mechanism behind this phenomenon was first described by Mullins and Sekerka
(1963; 1964) who performed a linear stability analysis to define the dynamics of the
process. Refinements to the description have subsequently been introduced (Langer
1987; Kessler, Koplik and Levine 1988) including the effects of the lattice anisotropy.
However, the lincar stability analysis is still the most effective way to present the
essential instability. We will discuss the Mullins-Sekerka instability in the context of
a thermal gradient produced by a latent heat of transition between the phases, one
of which is undercooled. It should be noted that the analogy in terms of a chemical
potential is equivalent and easily extracted from this analysis.

The growth rate of a pure substance is defined by the diffusion of the latent heat

L from the interface. We define 2 dimensionless thermal field

T—-Th
L/C

where C is C}, the heat capacity of the liguid phase. For analytic convenience, C,

u= (47)

of the solid phase can be assumed to be either approximately equal to C; or zero;

here, we avoid the question by assuming that the thermal conduction is restricted to
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the liquid phase, resulting in some asvmmetry in the results but not changing the
essential physies. We will re-introduce the influence of the solid phase through the
interface continuity condition.

The interface is initially planar with a normal in the Z direction; the average
interface position is defined to be at = = 0 (ie. the frame of reference moves with
the interface) with the solid bulk at = € 0. The problem is completely described by
one dynamical equation, two boundary conditions anc a continuity equation for the
interface. The dynamical part is handled by the continuum diffusion equation

or

where D is D, or Dy, the diffusion constants of the solid and liquid phases respectively.
It is re-written using (47),
20u

Viu + 13- = 0 (49)

where £ is the characteristic lengthscale of thermal diffusion, £ = 2D;/v. The Gibbs-
Thomson condition expresses the thermodynamic relationship between the interface

curvature x and the eflective coexistence temperature;

nen(-2)

which becomes with (47)

1InC
‘Cz

uy = - K= —d,x (50)

where v is the surface tension. Thus, u, represents a local undercooling at the
interface which increases with curvature. The parameter d, is the capillary length,

the characteristic lengthscale of the interface. The other boundary condition is
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u(oo) = -A (51)

where A is the strength of the undercooling at infinity; a meaningful solution for u(z)
will require A = 1. Finally, we include a continuity equation for the interface

vy = - [DVu- &) [T (52)

r

The entire problem is thus contained in (49}-(52).
Using (52), the solution to (49) is easily shown to be
e e/t~ 1 z 20 (liquid) ; (53)
0 = <0 (solid)

Note that the undercooling is necessarily A = 1; this is interpreted as the amount
of latent heat produced being exactly the amount required to heat the undercoole
liquid to 7,,. A planar interface cannot sustain an excess or deficiency of latent heat
and maintain a constant velocity. Further, note that the interface velocity vfor A =1
is undefined.

Figure 12 shows a schematic of this solution in terms of the imitially planar inter-
face. This leads to the first step of the linear instability analysis which, in its simplest
form, uses the guasi-stationary approximation; the timescale for interface dynamies
is assumed to be much longer than the timescale of thermal relaxation and subse-
quently the thermal field is always described by its stationary solution. The more
general analysis can be done without the approximation (Sekerka 1967a; Sekerka
1967b; Langer 1980) but the essential behaviour is more clearly presented through its
use.

A perturbation is now introduced at the interface of the form

h(x) = ho(x) + {(x) (54)
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Figure 12: A diagram of the solution to the thermal diffusion equation using the quasi-static assump-
tion; the dashed lines are isotherms. The interface is at the coexistence temperature T, as modified
by the local curvature (see equation (50}). The thermal gradient follows e~2*/¢ — 1 perpendicular to
the interface where the width has a characteristic size £.

where ho{x) = 0 is the initial condition; { has the form of a superposition of modes

consistent with linear theory

((x) = 30 ((R)ermmretiy, (55)

k
where k is the wavenumber vector perpendicular to the interface velocity and w(k) is
an amplification factor for that mode. Since the modes are independent, we choose
for the sake of simplicity w(k) = 0 for all k except one. The stationary solutions for

the thermal field in the liquid and solid must then be

w = e--?zjt -1 +ﬁl(k)e|k-x+w(k)t-q: (56)

u, = u,(k) ek x+u(k)tsps (57)
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respectively. The following expressions in p and ¢ result from inserting (56) and (57)

in (49);

2 s a 2 s 2
Ep-i—p‘—k':ﬂ , —Eq+q'—k'=0. (58)

The amplitudes of the thermal field perturbations #,(k) and #;(k} are small (on the
order of {(k)) and can be evaluated by substituting = = { into (56) and (57) and

Linearizing;

a,(k) = —d.k{(k) (59)

k) = (- k) ). (60)

Following a similar linearization for the continuity condition (52), we find

2v\ - " N
(w(k) + =) G0k) = D (qiulk) + api (R)). (61)
where we define o = D,C,/D,C; we will henceforth refer to D; as simply D. Substi-

tuting (59) into this expression and eliminating ¢ (k} then gives

w(k) =v(g - %—) — D(q + ap)d,¥? (62,

which, in the quasi-static limit of the perturbation wavelength much smaller than the

diffusion length, k£ > 1, has the form

w(k) = kv (i = Conyedotk?) (63)

where it has been assumed p = ¢ > k (ie. both phases have similar properties). The
constant is Conse = (1 + )/2 which is of order unity for most substances.
The behaviour of the Mullins-Sekerka instability is concisely described by (63); it

is composed of two opposing terms which reflect the essential physics in the problem.
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The positive part acts as a destabilizing growth term, causing the interface to grow
away from its initially planar position at a rate proportional to the interface velocity.
The negative part acts as a stabilizing, decay term; it is dependent on d,,, the capillary
length, which defines the lengthscale of the surface relaxation. In effect, the pattern of
the instability is a product of the competition between the thermal gradient increasing
interface area and the surface tension reducing it, both mediated by the diffusion of
the latent heat. Within the range of linear behaviour, the thermal gradient dominates
at small k and the surface relaxation at large k. Figure 13 shows the form of (63) as

a function of k.

Figure 13: A linearized analysis of the Mullins-Sekerka instability yields a dispersion relation w(k)
where the interface h{x) behaves like e~** at early times. The sign of w(k) corresponds to growth
(+ve) and decay (-ve). The mode of maximum instability kma- and critical mode k, (ie. w(k,) = 0)
are indicated.

Several important features of (63) should be noted. All the positive values of w(k)
indicate growth modes while the negative ones are the decay modes. The maxima of
w(k) at kmoz, is the mode of maximum instability; this mode will dominate at late

times. The zero of w(k) at ko is the critical mode at which w(k) crosses over from

growth to decay; this will be the upper k-imit of the instability. Using (63), the
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wavelength of maximum instability A.... and of critical instability Ao can be derived

in terms of the important physical lengths, £ and d,;

2
Ao EE 2 274/ Conneld, (64)
Amae :: 2 9x,/C....30d, (65)

X

where C,..,; is as before. The instability lengthscale is thus related to the square root
of the product of the two competing processes. In typical systems, d, is microscopic,
being of order of lattice constants in most materials of interest. In the modified Ising
model presented in Chapter 4, it has been measured via simulation (see Section 5.3)
to be about 1 lattice unit near the roughening temperature. On the other hand, the
diffusion length is usuvally macroscopic, being several orders of magnitude large than

d,.

3.2 The Linear Stability Analysis of a Spherical Interface

When the interface bounds a solid bulk inclusion in a liquid background, the insta-
bility is characterized somewhat differently. In fashion similar to the planar case, we
will first consider a perfectly spherical droplet of a pure material in an underccoled
melt. Then we will consider a perturbation on the surface of the sphere. Note that,
strictly speaking, there is no steady-state solution to this problem since the rate of
growth is radially dependent.

Let us assume an injtial radius » = R, on a perfect sphere centered on the origin
in a melt undercooled to A = —u(c0). Csce again using the quasi-stationary ap-
proximation, we see that the diffusion equation satisfies Laplace’s equation for all r;

applying (50) at the sphere’s boundary, we find
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A o Bofa _ 2ds -~
{—.\. L (A-%)  r>R, (65)

o % r< R

Then the continuity condition (52) is used to define the rate of growth at the interface

r= R,

el Dy %) -

This is the solution for the growth (or decay) of perfect sphere. Noise, imperfec-
tions or fluctuations on the surface or in the thermal field will introduce interface
perturbations.

Consider a perturbation on the spherical interface in terms of the radius in polar

coordinates;

R(8,8) = Ro + Z;p;¥me™" (68)

where p; is a small initial perturbation amplitude, YV;m are the spherical harmonics
and w; is the amplification factor. Once again, we will isolate a single mode 5. Then

it follows that the thermal field has the form

u(r, 6, @) = uo(7) + &;(7)Vjme™" (69)

with the solutions to the thermal diffusion perturbation amplitude in terms of un-
known coefficients ¢ and b
=g 9T TR (70)
b r<R
where the smallest j-mode is 7 = 2 (7 = 0 is simply a displacement and 7 = 1 is
discarded since the perturbation is around the equilibrium shape). Expanding the

surface curvature in terms of R™? to first order
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2 d
K(R,6,8) > £ + % +O(R™?) (71)

where @ is the angular part of the Laplacian with eigenstates Y;, and eigenvalues

3(j + 1), we can linearize (69) and apply the Gibbs-Thomson relation (50) using (71);

v,Rf,“ . . =1 .
o = (FE- G- U+ 00R) b (72)
. oy 9o -
b = ~(G-10+2)zmps (73)
We lincarize the continuity equation (52)
2v, i +1)D i
wip; = —pPi T (J—R{Tg)—as +aDjR'b;
and define the amplification factors
(7 —1)or - doDj(5 +2)
wi:T 1—(1+J +a)—T’.Ig——. (74)

Note that (74) is identical to the planar case (63) in the limits R,,7 — oo and with
finite k = j/R,.
It is now useful to re-express {74) in terms of R*, the critical radius from nucleation

theory (see Appendix A.2). As a function of the undercooling A, it is

. _ 2,
R = 1 (75)
and thus the interface velocity is
2d,D (1 1
w=7 (%) (6)

If we assume that R, is slightly larger than R*, the interface velocity will be small

and positive and the droplet will grow. By inspection, (74) will then be negative for
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all values of 7 and all perturbations on the surface will decay. This means that the
growing droplet will be spherically stable at B < R, < R;. To identify the radius
at which the sphere will become unstable for a given j, we consider (74) for w; = 0;

this requires

Inserting (76), we find

E; il +2) ! . —
_§=1+-—-2__ 1-r}+a (7 2 2). (77)
Thus, the lowest mode j = 2 becomes unstable at R =~ 11R" assuming that the two

phases have similar thermal characteristics (a ~ 1).

3.3 Steady State Solutions for a Needle Crystal

We are also interested in understanding the nature of an interface instability much
later in its development when it has become 2 long, tapered finger or dendrite. Fol-
lowing the lead of experimental evidence, we will presume the existence of a long,
narrow, axially-symmetric needle crystal which has grown from an initial instability

fike that described in Section 3.1. We recall that the excess latent heat

Tm-T
L

A=C (78)

must be exactly 1 for there to be a steady state planar solution with constant velocity
v, if A > 1, the interface will accelerate with no restraint mechanism and no steady-
state is possible. If A < 1, an excess of heat is generated and the interface will slow
until it finally stops, assuming that it remains planar. It can continue to move at
a constant velocity (albeit at one place) if it bends backwards on all sides of some

leading point; Figure 14 shows a steady state needle crystal with a tip with radius of
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Figure 14: A schematic disgram of a steady-state needle erystal with a spherical tip moving =zt
constant velocity. The dashed lines indicate the isotherms in the undercooled melt.

curvature p. The isotherms surrounding the tip diverge away from it as the heat is
diffused away to the sides. For comparison, Figure 59 in Section 7.4 shows a number
of simulation results for the thermal fields of growing instabilities. The only known
analytic solutions for this situation are in the limit of zero surface tension with the
interface exactly at the coexistence temperature 7,,,. In circular cross-section, these
are known as the Ivantsov solutions (Ivantsov 1947); there also exist solutions for an
elliptical cross-section (Horvay and Cahn 1961).

We will shall use equations (49)-(52) in parabolic coordinates p, » and 8 to find
solutions for the thermal field similar to (53). The coordinates are in an inertial frame

moving with the needle’s tip and are defined to be

p=(r-z)/¢ v={_r+z)/p

where p is the tip radius of curvature, r is the 1adial distance from the origin, = is
along the needle axis and @ is the angle around the 2. The diffusion equation (48) is

then written
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P (3:: 3u)+ 1 (3 du & Bu)' 1 a‘uzn (79)
B

fu +v) Yov " Fou + v 55”673?”5 -r:I,u—u%
where the dimensionless thermal field u is defined by (47} and we have again assumed
the quasi-stationary context. The needle crystal interface is then a surface vy (1,8, 7)

where 7 is the dimensionless time 2vt/p. The continuity equation (52) becomes

bS] al soltd
-SSR Lo Bt ) (80)
Ou or -T/p liquid

where p is the quantity known as the Péclet number

_ v _
=3p ple

and

Ju 8:.»_1_-6_3 vy +P~6VJ__3_E

Ty ~r s 3, ™ "4, 96 99

For simplicity, we will ignore the effect of the Gibbs-Thomson relation and assume
that u goes to zero at the interface (ie. as if it were flat). There is then a solution to

(79) with vy =1 for the thermal field

0 r<i
u= { AE (81)
-A+ ——d‘“—"ls‘(’) r>1

where E,(X) is the exponential integral
o0 e-x
Ey(X) = [x dz—.
Combined with (80), the solutions (81) require the condition

A = peP By (p)- (82)
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This expresses a key relationship between the tip radius p and the tip velocity »
through p; for 2 given undercooling and thermal properties (ie. heat capacity, diffusion
constant and latent heat), there exists a critical tip curvature p which is associated
with a specific velocity v. It has been shown to be roughly consistent with experiment
(Glicksman 1984).

Unfortunately, this only determines their product and not each quantity. A more
complete analysis is needed which also includes a finite surface tension and its inherent
anisotropy. This appears to be provided by the microscopic solvability theory (see
reviews (Langer 1987; Kessler, Koplik and Levine 1988)) which we will not need or
examine in this thesis. Of particular import.a.nce is the role of the anisotropy which
introduces a cusp in the solution for the needle interface, thereby stabilizing it and
defining a unique pair of values for p and v associated with the largest tip velocity.
These values of p and v depend directly on the strength of the anisotropy; reducing
the anisotropy to zero in the description then causes the steady-state solution to
disappear.

We will use results from each of these analyses, directly or indirectly, in compar-
isons with our simulation data presented in Chapters 6 and 7. In Section 6.1, we will
explicitly check the predictions for a planar interface in the linear regime; our goal
will be to reproduce the dispersion relation for the growth modes and identify the
special critical and maximum instability modes. For reasons related to computational
efficiency, we examine the behaviour in two dimensions; this does not affect the basic
physics. In Section 6.2, we continue in the two dimensions, looking for the stability
radius of a disk (as opposed to a sphere). Since the details of the prediction are
important in this case, we re-derive some aspects of the analysis presented in Section
3.2 although, once again, the basic physics remains the same. Finally, in Chapter

7, we go beyond the linear behaviour to non-linear growth. However, since late-time
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descriptions are complex and difficult to apply, we continue to rely on our under-
standing of the Mullins-Sekerka instability as developed here. Specifically, in Section
7.4 we study the thermal fields associated with these growths and interpret them
in terms of the anticipated linear behaviour. We validate this approach by directly
comparing the solutions for the thermal fields with data from a moving, steady-state

planar interface.
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4 The Simulation Model

Our simulation model has been used to model many different processes which involve 2
thermal diffusion mechanism. These include first- and second-order phase transitions
(Harris 1985), interface relaxation to an equilibrium roughened state (Jorgenson,
Harris and Grant 1989), thermal conductivity (Harris and Grant 1988), dendritic
growth (Harris, Jorgenson and Grant 1992) and numerous others. It has been shown
to model thermal processes consistently in all these applications. We review the basic
behaviour of the model and introduce an enhanced thermal diffusion algorithm for
improved control. We also discuss alternate lattice geometries and configurations

which have been used for various work presented in this thesis.

4.1 The Simple Cubic Ising Model With A First-Order

Transition

Our model is based upon a regular, cubic lattice of N Ising spins {¢ = £1)} of size
L. x L,x L.. The spin interaction is nearest neighbour and the spin energy is defined
by the Hamiltonian
H==J) oio;— A o J>0.
<i3> i

The first term is the spin-spin interaction and the second term represents 2 uniform
external field of strength A. As a lattice-gas model, the +1 spins are assodated
with an occupied site or atom and the —1 spins are vacant sites. With A = 0, this
model exhibits a second-order transition from an ordered to disordered state at the
critical temperature kgT. = 4.51151 J (Pawley et al. 1984); the Boltzmann constant
kg is subsequently defined to be unity and will be dropped from further use. For
convenience, all temperatures will be referred to in units of T, of the 3D Ising model

Since we are intezested in modeling thermal diffusion-limited processes at an inter-
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face, it is necessary and desirable to modify the basic model so that it has a first-order
phase transition and thus a latent heat. We do this by making A finite and introdue-
ing a degeneracy in the upper spin state ¢ = —1. To iHlustrate their effect, we shall
derive a simple mean-field description for this model with a degeneracy.

For a system with Boltzraann statistics, the number of states for a given energy
Eis

- N, v -
N1 gYe gh

Q(E) = .,\l’+! N_!—

where N = N, + N_ and the degeneracies of the spin states are §, and §_. The

entropy density can then be defined as

S _ 1
S=5 =¥ In(Q(EY)
= (n4In(é4) + n-In(é.) — niln(ny) - n_In(n_)) (83)
where we have introduced the number density » = n,.+n_ = 1 and the approximation

In(A!) >~ Aln(A)— A. We define the degeneracy to be the ratio § = §_/8,; then using
n,. =1 —n_, we can eliminate 8, and &_ except for a constant term In(é,) which is
unimportant. In general we will want to use non-integer values for §.

For convenience, we redefine the number densities in terms of the mean magneti-
zation;

N = ']'—iiﬁ = m=(n, —n_ (84)

The meanfield spin energy is then

_E_ 1 - 5
=g = (20:Jm + mA) (85)

where « is the number of nearest neighbours (eg. @ = 6 in 3D) and the prefactor of
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1/2 is for double-counting in the summation over the spins. This can be invertaed to

solve for 7 as a function of ¢

LA r2AaNt 2
m—‘;i—\/(aj) oJ (86)

The entropy density is

5= % (m (1 f‘sm) _mla (51—:—2)) (87)

We then apply Boltzmann’s principle, defining the temperature T,

?_{ Os (aé)_IET'z

3¢ ~ om \om
where

Js 1 l1+m

om —§h‘(61—ﬁz)

J¢ .

- —(A + aJmi)
aJm+ A

=T =2—-r 88

o (6122 (88)

Inverting (88), we get a recursive solution for m in terms of T';

aJm+A 1 ) (89)

T 20

By inserting (86) into (88), we find an expression for the temperature i3 terms of the

ﬁz:tanh(

average spin energy ¢

T = £2/4A% - 2aJ¢/In(I) (90)
aJ - A= /4A% - 2ad¢
where O=b—--—-="-—1-—c-u,
alJ + A F V4A2 - 2al¢

The solutions (89) and (90) are shown in Figures 15 and 16 respectively.
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Figure 15: The meanfield solution for the average spin magnetization m(T) for the Ising model
Although there are three branches to the solution, only two are physical. The first order transition
is represented by the dashed line where the m{T) passes from m ~ 1 below T,,, to m ~ —1 above.

The path of the first-order transition is also shown in the figures even though
it is not explicitly part of the solutions. Its existence can be shown by writing the
meanfield partition function for two equivelent systems, one with m = m, ~ 1 and

the other with m = m_ ~ —1;

. = -/T
S N
e(J’r&-&-A}/T +6 e-(Jﬁ-+A)/T (91)
where Z; is for site 7 and the partition function for the entire system of N spins can
be constructed from Zy = (Z;)¥ because in meanfield the spins are non-interacting
and localised. The two partition functions for the two systems will be designated
Z5 = Zn(ms). We know that at coexistence (T = T.,) the partition functions must
be equal. Assuming that m, = —m_ = m (which we will justify later), we then write

M+ I+8) T o go—(msd+0)/Tm (m-J40)[Tm | go=(m-J+0)/Tm

=€
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Figure 16: The meanficld solution to the average spin energy ¢(T) for the Ising model. Note that
the physical solution is represcnted by the solid Ine. The width of the tyansition region corresponds
to the latent heat £.

(48 Tm | o= (MIHAY Tm _ o=(mI=B)Tm | golmI=2)/Tm. (92)
This is only true if €2/~ = §e=2/T= or

In(6) = %. (93)

We can sce that, by raising § into the exponential in the second term of Z; (91) so that
it appears like e~ (JM+a-T(e)/T the degeneracy acts like a temperature dependent
field. At T,,, it exactly cancels A and the effective field is zero; we once again have
the basic Ising model which we already know satisfies our original assumption m, =
—m_ = m. The transition temperature has been established using the meanfield
description but it should be noted that it is an exact result.

The main advantage of this model in terms of simulation studies of interfaces
is its tunable coexistence temperature T,,. This makes it possible to study stable
interfaces ata range of temperatures in 2 manner which is similar to manipulating the

cooxistence temperature of a real substance by changing the pressute. For example,
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. Figure 17 shows the phase coexistence boundaries of a material in a standard P-
T (or pressure-temperature) phase diagram compared with a similar diagram for

the modified Ising model. The pressure is analogous to the spin degeneracy and/or

disordered
phase

T, =2An()

Figure 17: The pressure-temperature phase diagrams for a typical substance and for the Isirg model
with a first otder phase transition. Shown are the critical point and triple point on the rcal P-T
diagram and the critical point of the model P-T diagram. Note that § is assumed fixed and greater
than unity.

applied external field.

4.2 Spin Degeneracy and the Multi-Demon Creutz Algo-

rithm

The dynamics of the system are controlled by a variant of the Creutz multi-demon
algorithm (Creutz 1984; Creutz 1986). An L, x L, x L, lattice of non-interacting
demons has a one-to-one correspondence with the spins. Each demon carries a non-
negative amount of energy, ¢p. Spin sites are visited one-at-a-time at random. At
each, a spin-flip to the other phase is attempted. The potential change in energy
Ae, for the flip is calculated and compared with the energy available in the demon

which corresponds to the current site. The amcunt of energy: availzble from the
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demon decides the course of action; the following events occur under the respective

conditions:
Condition Action
De, <0 flip and demon absorbs energy
0< De, <¢p flip and demon gives up energy
ep < De, no flip and no change in demon energy

A Monte Carlo step (MCS) is defined to be when every spin site has been visited
once, whether it flipped or not.

The spin degeneracy can be implemented in several ways. We have chosen to
explicitly bias the upper spin state ¢ = —1 in our simulation engine. In lien of
flipping every spin of either phase to its opposite state (eg. § = 1), we visited =
sites attempting a flip regardless of sign, then visited z(8 — 1) more sites and only
attempted to flip them if they were ¢ = 1. This is algorithmically equivalent to
flipping any spin to any one of the § + 1 possible states, including its own state
and any degenerate states. The accuracy of any implementation is easily tested by
checking if (93) holds for a range of A and/or 6.

Typically, after several 100 MCS, the spin and demon systems will be in thermal
equilibrium. Tke distribution of demon enetgies will then conform to Boltzmann
statistics. This makes it possible to define a local spin temperature in terms of
the average energy (in time or space) of 2 group of demons; we follow the recipe
from thLe canonical ensemble description (Reichl 1984) for the average energy of the
system. The simplest derivatior is for the A = 0 and § = 1 case; it demonstrates
the relationship more concisely than the general derivation. We first construct the

partition relation for a single demon
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-y — [

«5=0

where the demon energy ranges from 0 to oc in increments of 2J; the increment 2J
is the smallest possible exchange of energy between a demon and spin. Again, since
the demons are non-interacting, the partition function for the entire system can be
constructed Zx = Z¥ and, thus, (Ep) = N (ep). From the canonical ensemible

analysis, we use the formula

a1
= —ZhZ
o) = 317
= f: epe~2/T} i e~o/T
=0 <p=0
2J/T
= A et g (94)
2J
= T= (95)

In(2J/{ep) + 1)’

This result is derived using the relation

ze™* + 2ze” + 3ze~3F 4 ... z

eT e T g3y T e

where z = 2J/T. For small z (high T or continuous spectrum of energies, J — 0),

we can expand e” to first order and (94) becomes

(ep) =T. (96)

The more general case of A > 0 and § > 1 can be done by separating the already
non-interacting demons into two groups, those associated with up spins {7 = +1)
and those associated with down spins () = —1). If we assume that the energy of a

demon associated with a down spin {the lowest energy spin state) at T = 0 is zero,
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it is easy to show that the possible energy states of ¢p, are nJ where n € [0,2,4,6...]

and of ¢p. are (n + 2}J — 2A. Their average energies are then

< Te™
(CDT) - s — 1

—2A. (97)

lep. ) =
VEUT e ]

As is obvious, the field A introduces a bias into the definition of temperature. This
makes it more awkward to accurately measure the temperature based on a simple
average. Precise measurements require careful attention to the system parameters
and the spin and demon configurations.

For general purposes however, the demon energy, averaged over space or time,
provides a reliable measurement of the local or global temperature. This assumes, of
course, that the average can be taken of an ~quilibrium or steady-state system on a

temporal or spatial timescale which is short compared to any dynamical processes.

4.3 Thermal Diffusion

The Creutz algorithm has an inherent thermal diffusion where thermal energy is
passed from demon to demon via the spin-flip mecharnism. This process has been
studied (Harris and Grant 1988) and it has been shown to give a good account of ther-
mal diffusion in a dynamic context. However, it has the drawback of being strongly
dependent on temperature since the rate of spin-flip is related to the strength of ther-
mal fluctuations. This makes controlling the diffusion process difficult and introduces
complications into the analysis. We have therefore introduced an enhanced diffusion
process which is independent of T and provides for ease-of-control. Thermal diffu-
sion is modeled by having the demons randomly exchange positions (or equivalently,
energies) via a Kawasaki-like exchange with no penaity. The demon exchanges are
between randomly chosen nearest-neighbours and thus the demons perform a random

walk in 3D. The walk is described in 1D by the probability of finding a specific demon
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(or its energy) a distance r away from its starting place at time t (Reich! 1984);

—-z3/2ntad

P(I,t) =

2xnia’
where n is the number of exchanges per unit time and c is the distance of the ex-
changes, the vnit lattice spacing. This is equivalent to the 1D diffusion equation
where the diffusion constant is D = na*/2. In terms of the algorithm, n = 1 is de-
fined to be when every demon site has been exchanged duting one Monte Carlo pass;
in general, n is the fraction of demons which have been cxchanged in a single MCS.
Extending this to higher dimensions, D is defined

D= (98)
where d is the dimensionality. We can therefore directly control D by changing the
number of demons which are exchanged in each MCS. This procedure has been tested
extensively and has been shown to be consistent for n as high as 10 (ie. 10N demon
exchanges occur per MCS). Normally, we use » ~ 1 or lower. in comparisor, the
intrinsic diffusion process is sufficiently weak at all values of T used in this study that
it can be safely ignored.

An added advaniage to this algorithm is that thermal field can be mapped out
graphically providing insight into the thermal diffusion mechanism and its effect on
interfaces. In Sectiorn 7.4, we will examine the thermal fields associated with the
Mullins-Sekerka instability driven by a thermal gradient. We will be able to fur-

ther define the thermal characteristics of the model and relate them to the critical

lengthscales of the instability.

4.4 Configuring the Simulations

The simulation systems can be configured in a variety of lattice sizes and shapes,

interface geometries and initial conditions, depending on the physical context which
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is being modeled. Here we shall review the basic configurations and make a special
note of lattice and interface geometries in the next Section.

All the simulation trials were on regular, cubic lattices of dimensions L. x L, x L..
For reasons of memory alignment, L was usually a power of 2. With currently available
hardware, the largest possible system sizes were approximately 10 million (= 107) spin
or sites. Due to time constraints, we generally limited ourselves to 2 million sites (eg.
128 lattice). The spins are contained in qu-ﬂca.n values, having only two values, but
the accompanying L, x Ly, x L. demon system can kave greater range of values and
usually requires the greatest amount of memory. Due to the fact that cpu speed was
usually the bottleneck, no real attempt was made to optimize memory usage; the
bulk of our efforts was spent on developing the speed of the algorithm.

A finite number of Monte Carlo steps are always required to allew the spin and
demon systems to relazinto an equilibrium state. In order to limit the effects of relax-
ation, the spin and demon systems were both initialized close to thermal equilibrium
with each other. For the spins, the meanfield expression (89) was used to introduce
random bulk fluctuations appropriate to the chosen temperature. The average de-
mon energy was extracted from (96) and the total energy was distributed randomly
in units of 2J. Relaxation times were limited to several hundred MCS. No attempt
was made to initialize the system with a thermal gradient; since thermal diffusion
is necessarily faster than the interface dynamics (in order to satisfy the quasi-static
approximation of Chapter 2), gradients are always in place before the initial relax-
ation has been completed. Systems pre-initialized with gradients were tested without
finding any noticeable advantage; it was found to be sufficient to ignore the early
times of each simulation trial.

The system’s boundaries were handled in two ways: First, periodic boundary

conditions were applied on the four sides perpendicular to the £ and # directions
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for both the spin and demon systems. Second, the two sides perpendicular to the 2
directions (top and bottom) were each pinned to the desired phase and maintained at
a constant temperature via a heat bath, using the Metropolis algorithm (Metropolis
et al. 1953). For certain simulations involving enclosed volumes (finite crystals in
Chapter 5), the four sides were periodic for the spin system but maintained ¢ constant
temperalure.

The bulk phase interfaces were initialized perfectly flat without thermal fluctua-
tions; at finite temperatures, equilibrium surfaces display their own thermal fluctu-
ations, either as small flat islands (micro-facets) on ar otherwise flat surface or as
random veriations in surface height (roughness). The planar interfaces were initially
perfect planes and the droplets were perfect cubes. As mentioned before, an initially
flat interface will relax to its equilibrium state very quickly (depending on the rate
of thermal diffusion and size of the latent heat). In non-equilibzium contexts, local

steady-state is usually reached just as quickly.

4.5 Lattice and Interface Geometries

While both the physical crystal structure and the simulation lattice are regular and
cubic, there are several different ways to approach the simulation of a crystal interface.
We shall look at several different applications of our model which we shall use in later
sections and comment on the importance of the geometry. In Appendix A.1, we have
included details for the definition of the crystal plane notation used below as well as
the implementation of the following geometries in the standard algorithm.
{100} Block Planar Interface

The simplest configuration is the L, = L, = L, system with a bulk phase interface
perpendicular to the 2 direction. When the nearest neighbours are defined to be the

nearest sites in the Z, ¥ and 2 direction, the system models a planar interface with
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{100} oricatation. As will be shown, this interface exhibits a structural transition at a
finite temperature Tr < T, which affects equilibrium and non-equilibrium behaviour.
Figure 65 in the Appendix depicts the (001) plane. Note that the term block is used
to distinguish it from the slab configuration described below.

{111} Block Planar Interface
Using the same regular cubic lattice, we can change the definition of the nearest
neighbours so that the system models a planar interface with {111} orientation. This
involves redefining the spatial representation of the lattice so that adjacent rows in an
% — 1 plane are staggered in 2 two-step cycle. Similarly, vertically adjacent £—3 planes
are staggered in a three-step cycle (see Figure 66 in the Appendix). Thus, each site
has three neighbours in the plane above (Z direction) and three in the plane below.
Aside from the redefinition of the nearest neighbours, the algorithm is identical to
the {100} system.

This re-orientation of the crystal interface is very important for studies of the
Mullins-Sekerka instability. As we noted in Section 2.1, the {111} interface in the
simple cubic lattice has a roughening temperature Tp = 0 and it is roughened at
all finite temperatures. Consequently, its behaviour is unmodified by the transition
throughout the range of finite teinperatures. This is particularly important at low T,
and for large undercooling when the interface may be far below Tf{;mo}. If facets form
perpendicular to the direction of the instability, its growth will be strongly inhibited.
As we observe in Section 5.4, the response of a faceted interface to a driving force is
weak and non-linear compared to a roughened interface.

It is worth noting that this nearest neighbour scheme provides access to several
other crystal lattices. Witl} some minimal changes, we can simulate the hexagonal
close-packed structure (HCP). With somewhat more extensive modifications, we can

produce the body-centered and face-centered cubic lattices as well. Time constraints
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kept us from exploring all of these possibilities.

{100} and {111} Slabs
Using either definition for the nearest neighbours, we can reduce the size of L, so
that L, <« L:. This configuration is referred to as a slab. It has three advantages
which are useful to us: First, we can run much larger sizes in L. and look at long
wavelength behaviour. Second, we can examine the behaviour of physical systems
which are studied experimentally; it is common that dendritic growth experiments in
succinonitrile are conducted using an undercooled melt held between plates of glass
(Chou and Cummins 1988; Qian and Cummins 1990).

Finally, we can examine the transition from 2D to 3D behaviour by varying L,
between 1 (2D) and L. (3D). This is helpful in extending results from 2D simula-
tions to 3D and understanding the importance of an additional degreec of freedom.
In Chapter 6, we employ a 2D system in order to examine the linear stability of
the Mullins-Sekerka instability at very large wavelengths on long timescales; this is
currently not possible in 3D systems due to hardware constraints.

Bulk Inclusions
Using an L, = L, = L, lattice and the normal nearest-neighbour scheme, the interface
is initialized as the boundary between a cubical inclusion of size £ x € X £ of one phase
(le. solid crystal) within a background of the other (ie. a liquid melt). Typically,
the initial size of the inclusion is £ = 0.75 L, the system size; this is just over half
of all the spin sites. This configuration is used to study a droplet interface while in
equilibrium (see Section 5.2) and also as it evaporates from an initially cubic shape
to nothing (see Section 5.3).

It is this system which employs boundary cooling/heating on all six sides; it is
important to properly simulate contact with a heat bath on all side of the droplet so

that no artificial asymmetries are introduced. Although periodic boundary conditions
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are still maintained on four of the six sides, the solid droplet never makes contact
with edges of the system.
Two-dimensional Systems

We also employ a two-dimensional version of this code for special use in the study
of linear siability analysis presented in Chapter 3. The essential details of the model
do not change significantly except for the case of the long-range interaction used in
Section 6.1. In this case an extended range for the site-site interaction is used. Details
are presented in that Section. The reasons for the 2D approzch are related to the

Lmit of resolution currently possible in three dimensions.
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5 Equilibrium and Near-Equilibrium Interfaces:
The Roughening Transition in Three Dimen-

sions

As a first step toward characterizing the simple cubic crystal interface, we shall ex-
amine its equilibrium behaviour. Of particular import is the roughening transition
behaviour as it was described in Chapter Z. By analysing the two structural phases,
faceted and roughened, of an interface, we will be able to better define the behaviour
of the transition both in terms of a planar interface and the surface of a bulk inclu-
sion. In Section 5.1, we explore the equilibrium behaviour on a planar {100} interface,
both near and away from the transition temperature Tr. Then, in Secction 5.2, we
extend the description to a bulk inclusion or droplet interface, noting how the tran-
sition behaviour is modified by a stabilizing external field. Removing the external
field so that the droplet interface is at coexistence, we study the phenomenon of a
slowly evaporating droplet in Section 5.3; this is viewed as a near-equilibrium state
which demonstrates a transition-like behaviour that is unrelated to the equilibrium or
dyramic roughening transition. In Section 5.4, we examine another near-equilibrium
state wherein a planar interface is subjected to a small driving force. We obsetve how

the external field again results in a dynamic roughening transition.

5.1 The Planar Interface at Equilibrium

From the basic theory presented in Section 2.1, we know that the roughening tran-
sition of the {100} interface of the 3D Ising model is an infinite-order Kosterlitz-
Thouless transition with a characteristic temperature dependence of the step free
energy, step-step correlation length and interface width. The behaviour of the inte:-

face above and below the transition is not as well-known. In this section, we introduce
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expressions {or several useful quantities based on the surface fluctuations of the simple
cubic crvstal interface; they will help us to define its behaviour at equilibrium and
subsequently to identify the transition. We then examine the results from our simu-
lations of a {100} planar interface to confirm their consistency with the well-known
transition behaviour and to compare them with our new expressions away from the
transition region. For reference, the transition temperature of the 3D Ising model has

been identified analytically (Adler 1987; Holzer and Wortis 1989) as

Tr/T. ~ 0.546 = 0.004

and by computer simulation (Mon, Landau and Stauffer 1990) as

Tr/T. ~ 0.542 + 0.002.

Theory

Equilibrium interfaces, both physical and virtual, reflect the presence of thermal
energy in the form of fluctuations in surface geometry which can be described in
terms of a fluctuation probability density Py. Analysis of this distribution provides
a2 more reliable measure of the roughening transition, with better statistics, than
other approaches in the literature. We define it in terms of a faceted reference plane,
upon which there is a collection of micro-facets which reflect the stochastic balance
between the available thermal energy and the free energy cost of forming a facet step.
A micro-facet is a small island on the intcrface which is one lattice constant higher
{or lower) than the reference plane and has a characteristic size £; it is equivalent
to a nucleation site in a 2D system. At a given temperature T, the distribution of

micro-facet sizes is Boltzmann-like
Py(¢,T)=Q e~ 5O/,
E4(£) is the free energy of a facet of size £ , given by
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E(€) = 4E,(T) — el AEY(T)

assuming the site is square to first approximation (ic. small and on a cubic lattice)
and far from any other site. Here, AE) is the bulk free energy difference and a is the
lattice constant. If the interface is assumed to be at coexistence (ie. AE, = 0), the
condition f5° Py({,T)df =1 defines the prefactor to be

_4E,

Q T

The distribution P¢(£{,T) then measures the relative probability of a given size of
micro-facet appearing on an interface of infinite extent in the continuum limit.

The mean micro-facet area {A) is then

Ay = [€ P

-

T.

= 243‘.

(99)

Thus as E, goes to zero at Tk (5), the mean facet area diverges strongly to infinity.
This behaviour was anticipated by Weeks and Gilmer (Weeks and Gilmer 1979) from
a visual inspection of Monte Carlo simulations of a flat interface.

Similarly, the variance ¢°, which measures the dispersion of the micro-facet area

around (A}, is

A1) = [T - (a7 Pt
= 2 (é‘)‘ —4 (42)3 T < Ta. (100)

In the same regime, the interface width is proportional to total number of micro-facets

which can be shown to be proportional to {A4);

71



@(T)) = (a(O)E)F

x (A). (101)

this can be shown to be consistent with (35) in the limit T — Tx. The uncovered
fraction A, of the reference plane, whick by definition, goes to zero as T — Tg,

becomes

A, = 1= Conue(4) (102)

where C is a constant which is model dependent.

As T — Tg, micro-facets begin to overlap, corrections to equations (99), (100)
and (102) for step-step interactions become important, and the simple micro-facet
description would seem to be less useful. However, it can be used quite close to T,
since the essential physics is captured by the abrupt manner in which E, goes to
zero. Indeed, near T, the description is consistent with the established relationship
between the thermal correlation length and E, as expressed by equations (3) and (5).
To see this, we identify the mean facet size (£) as a measure of the correlation length,

so that

T

fx{f) =1+ B (103)

note that in the thermodynamic limit of infinitesimal fluctuations (ie. using f°
instead of [;7), we recover the form of the Fisher relation for the square Ising lattice
(Fisher 1969), £ = T/v:p where the 2D surface energy corresponds to the step free
encrgy, ¥=p ~ E,. Since analytic results are available for the 3D Ising model (Holzer
and Wortis 1989), this expression also provides a useful description of § when T' < T.

Above Tr, the crystal surface is no longer faceted. However, the micro-facet

=]
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distribution can still be defined via a geometric analvsis, and the mean facet area {A}

can be related to the mean curvature . so that

(A x /R < T2 T > Tk. (104)

Details of this relation are given in Appendix A.3. We know {Grant 12538) that the

width varies as

In(L) T

(WL, T)) & =

T > Tk. (105)

The factor T in this expression does not appear in (35) because, compared to /T = Tk,

it is approximateiy constant near Tg.

Simulation

To examine the behaviour of an equilibrium planar interface of {100} orientation
at coexistence, the coexistence temperature was varied over T = T, € [0.2,0.8] T.
through the external field via (93); the spin degeneracy was maintained at § = 2 for
all runs. During the simulation, the interface was permitted to fully relax, requiring
approximately 1000 MCS. The statistics were based on the final state of one to six
runs, depending upon the proximity of T,, to Tg and upon lattice size L; larger
systems required only one run to provide useful statistics. Lattice sizes were varied,
L € [32,512], with the system height held at a constant L., = 24; this was sufficient
to permit the largest systems at the highest T to relax to a fully roughened state
without encountering the upper and lower boundaries. Figure 18 shows a series of
equilibrium planar interfaces at temperatures above and below Tg.

In order to make contact with previous studies (Mon, Landau and Staufer 1990)
and the analytic predictions (35), (105) and (101}, the width of the interface (w(T)?)

was measured. This is defined as the mean square width of a single-valued surface
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Figure 18: A series of equilibrium planar interfaces at temperatures around the 3D Ising roughening
transition temperature Tr = 0.54 T ; the images shown are based on a 64 x 64 x 24 system at
T = 0.4,0.5,0.55 and 0.7 T.. The lLighter color indicates higher surface level. Systems up to
512 x 512 x 24 were used in this study.
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which is derived from the actual interface by eliminating all overhangs and bulk
fluctuations. At most temperatures of interest, this is a very good approximation.

Figure 19 shows {w"} for various L over a range of T: Away from Tr =~ 0.545 T, (Holzer
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Figure 19: The mean squared width of the equilibrium planar interface at T € [0.2, 0.8] T¢. for system
size L .= 32,128 and 512. The 3D lsing roughening transition is at Tr == 0.54 7. The solid lines are
fits to analytic expressions (101) and (105); note the finite size dependence of the data above Tk.
The inset shows the data near to Tg with fits for the critical expression (35).

and Wortis 1989), the data follows both (101) and (105) in a credible manner, and near
Tg is consistent with (35) (see inset) although too sparse to confirm them in detail.
The data is similar to that of a recent study by Mon, Landau and Stauffer (1999)
for systems of comparable size, in that finite size effects are not very pronounced.
From the position and sharpness of the cusp in the data, the roughening transition is
estimated to be Tr/T. ~ 0.54 £ 0.01; this can be improved by producing more data

points with better statistics near the critical region, using the ¢ntical expressions for

the width for analysis as did Mon et al
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However, the analysis of the facet-size distribution dispiays the transition much

more clearly using the samne data. Figures 20 and 21 show (A4) and ¢°.  Their
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Figure 20: The mean micro-facet area for the equilibrium planar interface at T € [0.3,0.8] T for
system size L = 32, 128 and 512. The dashe line is a fit to the analytic expression (99).
behaviour is divergent near Tg and shows a distinct finite size scaling at and above the
transition, with o® most clearly indicating the transition. Examining the divergence
in the data, the transition temperature is estimated to be Tr/T. ~ 0.542 £ 0.005.
Using the modified expressions for (99) and (100) (see Appendix A.4) whick have
been corrected for 2 minimum micro-facet size of unity, we find that they are in good
agreement with the data, using the temperature as the fitting parameter and the low-
T expansion for E,(T) of the 3D Ising model from Holzer et al (Holzer and Wortis
1989). Above Tk, (A(T)) is expected to follow T~% (104); our results are consistent

with this prediction although the power law is too weak to fit unambiguously to the

limited range of data.
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Figure 21: The variance in the mean micro-facet area for the equilibrium planar interface at T €
[0.3,0.8] T, for system size L = 32,128 and 512. The dashed linc is a fi: to the analytic expression

(100).

In Figure 22 we show the fractional area of the reference plane A,; note the finite-
size behaviour at T < Tx. Although, we have not been able tc provide a satisfactory
argument for a scaling ansatz, we point out that this behaviour is consistent with
the observation that E, scales like 1/L by Mon et al (1988). The data displays a
clear point of inflection near the anticipated Tgr; from this, we estimate Tx/T, ~
0.542 + 0.008. The data for the lazgest system (L = 512) agrees well with corrected
version of (102) (see Appendix A.4), again using the expansion exp:ession for E,(T)

and fitting the temperature and C as parameters.

Results

The characterization of a planar {100} crystal interface has been extended from the

critical behaviour at the rcughening transition temperature Tp to T &« Tgp. The
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Figure 22: The normalized area of the reference plane which is not obscured by micro-facets for an
equilibrium planar interface at T € [0.3,0.8] 7. for system size L = 32,128 and 512. The dashed
line is a fit to the analytic exptession (102).

micro-facet population on the interface can be described in terms of the mean micro-
facet area (A) znd its variance o?, both of which diverge at T. The mean square
width of a faceted interface has been shown to be proportional to {A)? below Tx. The
fraction of the exposed reference plane is related to (A); we expect these quantities to
show finite-size effects. All of these quantities, including the critical expressions, have
been shown to be in good agreement with simulation. As well, a relationship between
the step-step correlation function and the step free energy has been suggested, based
upon the micro-facet distribution. It is consistent with criticai theory.
Simulation results have been compared favourably with established expressions
for (:wz) near and above Tr. A geometric argument subsequently provides a measure

of (A} above Tx which is consistent with simulation.
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5.2 The Metastable Droplet at Equilibrium

When the solid-liquid interface bounds a finite droplet instead of an infinite plane, all
possible surface orientations are present. Below the roughening transition, the faceted
{100} reference plane manifests itself as six macro-facets with {100} orientation on a
roughly cubical form. The macro-facets are macroscopic, flat, circular regions on cach
of the faces, joined by curved, roughened surfaces. As described in Section 2.2, they
are an intrinsic part of the equilibrium crystal shape, decreasing in size and finally
disappearing as the temperature approaches Tg. However, equilibrium transition
behaviour is not strictly observable on a static, finite droplet. At coexistence a finite
droplet 1s not stable; the system tends to minimize the energy contribution of the
interface by reducing the surface area and evaporating the droplet away. A counter-
force is required to balance the surface tension and provide a metastable interface.
The equilibrium roughening transition is modified by the presence of this force. Using
the techniques outlined in the previous section, we demonstrate the effect of a force

on a static interface and compare the results with predictions made by Nozieres et al.

(1987).

Theory
Consider the free energy of a spherical droplet of radius R;
Ep = 4xR?y - ‘;‘WRJAEp,
wkere AE, is the bulk free energy difference and v is the surface energy. There is a

metastable point where dEr/dR = 0 at the critical radius

._ 27
R"AE{

When R > R°, the droplet will tend to grow; and when R < R°, the droplet will

tend to shrink. At‘-cocxistence, when AE, = 0, R* becomes infinite, and all sizes of
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droplet will shrink. In order to study the roughening transition of a finite droplet at
equilibrium, there must be a finite bulk free energy difference A E;. There will only
be a static interface in the presence of a driving force or over-pressure, F o AE,.
The effect of this force on the roughening transition is that the T3 of the finite droplet
interface is depressed below the transition temperature of the planar interface; as well,
the transition behaviour is spread over a greater range of T. Neither curvature ror
finite size effects can be suggested as the origin of this behaviour; they may influence
the scaling of the critical behaviour but rot the critical temperature itself.

For a static, faceted interface at temperature T, Noziéres and Gallet (1987) predict
that a characteristic force F* is required to shift the roughening transition te T < Tx

such that the interface appears to be rough;

F*(TR) = va/¢* = Ela*[+ (106)

where £(T') is the step correlation length and a is the lattice constant. This expression
can be compared to our data using values from analytic sources (Holzer and Wortis
1989) for E, and +.

Visual inspection of the equilibrium crystal shape (ECS) shows a distinct depen-
dence on T (see Figure 23). The droplet is exactly cubic at T = 0; the corners become
rounded as T increases; the faceted faces of the cube are circular and shrink as T ap-
proaches Tg; the macro-facets disappear completely at T, leaving only a roughened
surface. Finally, as T approaches T. and the surface tension becomes isotropic, the
cuboid becomes spherical. Ii has been noted that the surface of a finite crystal can be
mapped onto a two-phase system (Noziéres 1989), with the curved, roughened por-
tions of the surface representing one phase and the flat, faceted regions representing
the other. The cégcs of the macro-facets below Tg are then phase boundaries and

their size and shape correspond to the equilibrium crystal shape of a 2D droplet; this
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shape has been well-defined theoretically for the nearest-neighbour 2D Ising model
(Rottman and Wortis 1981; Holzer 19902). The radius of the approximately circu-
lar face has been analytically defined through perturbative expansion as a function
of T (Holzer 1990a); the inset in Figure 24 shows the analytic normalized facet ra-
dius r;(T) as a function of temperature for directions parallel and diagonal to the

Cartesian axes.

Simulation

To study the meta-stable droplets, we choose to luok at an L x L x L system with
a droplet of size £ x £ x £ where £ = 0.75L. The system parameters are chosen
to satisfy metastability (ie. R = R®}, and the over-pressure required to maintain
metastability, F*, is provided by a bulk frec energy difference resulting from setting
T, slightly higher than the ambient simulation temperature T'. No exact prediction
for F* is available for a non-spherical droplet; consequently, the parameters are chosen
empirically such that the droplet is metastable after quickly relaxing from a T = 0
cuoe to local equilibrium. If the droplet were not metastable, it would then begin
to decay or grow. Above Tg, the metastable parameters are unique to within the
amplitude of thermal fluctuations. Below T, the choice is complicated by exceedingly
long time scales for the evaporation of an unstable, faceted interface; this is discussed
in greater detail in Section 5.3. The consequence is that our results well below Tx
may be only near equilibrium. On the other hand, the results nearest to Tg are very
precise and the correct transition behaviour is preserved.

The droplet was initialized as a cube {(ECS for T = 0) and allowed (0 relax to
equilibrium for 5000 to 30000 Monte Carlo steps. The trial temperatures ranged
from T € [0.2,0.8] T. for system sizes i € [32,128]. The largest contiguous facet on

each of the six faces of the cube is identified with the anticipated macro-facet. The
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macro-facet radius r. is based on the average area of the six largest facets 4, and
the assumption that they are approxdmately circular (je. =75 = A,). In addition.,
the micro-facet size distribution for the entire surface is analysed In a manner stmilar
to the plarar interface. (To make an exact comparison to the planar case, it would
be necessary to isolate the micro-facets on the macro-facets only. We judge the
additional computational complexity not to be worthwhile.} Similarly, due to the
inherent difficulty in defining the local width of a non-planar surface, {w*) is not
measured. Figure 23 shows a series of metastable droplets above and below the
effective roughening temperature T5.

The macro-facet area was taken from the average of the largest contiguous facets
on each of the six faces of the droplet. Assuming the macro-facet shape to be circular,
Figure 24 shows the average macro-facet radius as a function of temperature; it has
been normalized to the droplet radius, defined to be fom the droplet center to the
{100} face. The transition point is less apparent than in the planar case; this is
consistent with the predicted blurzring of the roughening transition. If the inflection
point is taken to be the transition poiut, Tj would be well below the equilibrium Tp,
as expected. Alone this information is not very useful. However, it is more or less
consistent with the expected form of r4(T') (see inset of Figure 24).

The variance o? shows the transition much more clearly as seen in Figure 25;
(A), shown for L=128 as an inset, is not a useful quantity at least with the limited
statistics provided by our simulations. However ¢? indicates the transition distinctly
at Tp(L=128)/T. = 0.450 £ 0.008, well below the equilibrium transition temperature
Tr(oo) =~ 0.545 T.. A weak dependence on L is discernible in both the strength
of the divergence and the shift in T, c;)nsistent with the increase in the necessary
over-pressure with decreasing system size.

Ideally the over-pressure should be varied through a range of values for a single

83



1.4
2l
1.2
1.2+ i .
i:.i.: " o8
1.0F “TEao 04 -
TeI T a
“" ‘aq\\
0.8F "-..&'. \n. 0 02 04 08 B
- O
h‘ “‘:-c‘ ':,\ -‘
0.6 A 128 -3“-“.'.-‘;.‘ ]
= aTalt
it
0.4L & — 96 .‘.}:\.:\ |
O = ?2 h"v-.'.'%_“;. Q
o2 ° - 4 R
PR

0'8.20 0.30 0.40 0.50 0.60
T (T,)

Figure 24: The average macro-facet radius r; for the metastable droplet at T ¢ [0.3,0.6] T¢ for
system size L = 64,72,96 and 128; the cffective roughening temperature Ty is indicated, derived
from other quantities. The inset shows the analytic prediction for r; for an infinite droplet; the two
lines are for vy parallel and diagonal to the lattice axes.

trial temperature T in order to identify the critical F*(T) required to induce rough-
ening. Figure 26 shows the phase diagram of droplet interface; the solid and dashed
lines indicate the critical F*(T) and the droplet metastability respectively; the vertical
line of points indicates a hypothetical series of over-pressures that should be tested
to identify the crtical roughening force at a constant temperature T,.,.. However,
only one value of F*(T') is accessible for each system size L; specifically, for the set of
parameters for which the system is approximately at the modified roughening tran-
sition. For the L=128 system shown in Figure 23, this is at Tj ~ 0.450 T.. We can
now check the prediction by examining Figure 27: The data points are the empirically
chosen over-pressures (controlled by varying the undercooling of the liquid phase) for

two system sizes (L=128 and 64) required for metastability. The solid Line is the
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Figure 25: The variance in the mecan micro-facet area for the metastable droplet at T € [0.3,0.75] T,
for system size L = 64,72, 96 and 128. The inset shows the mean micro-facet area for L = 128; this
quantity was less reliable in the determination of the roughening transition. Note the shift in the

peak with system size.

analytic prediction for F*(T) according to (106); it is the over-pressure required to
roughen a static surface at temperature T < Tr. The point of intersection indicates
the trial temperature at which we expect to see the roughening transition in our data:

it is in good agreement. It also indicates a shift in F* related to system size which is

consistent with our observations.

Results

We have shown the system size depeadence of the balancing force required to satisfy
ractastability on a finite droplet. We have also shown the presence of a roughening
transition behaviour on the metastable crystal droplet both visually and in terms of

the quantities {A) and ¢*. The predicted temperature dependence of the macro-facet
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Figure 26: A rough representation of the droplet interface phase diagram at some range of temper-
atures below T,,; it shows the line of critical over-pressutes separating the faceted and roughened
states as well as the Bne of metastability for a droplet of a given size. The point of intersection
1s the overpressure where the metastable droplet becomes rough. The vertical line of points repre-
sents a desirable set of measured values needed to test for the presence of the critical over-pressure
boundary.

radii has been demonstrated albeit with some difficulty due to finite-size effects. Most
importantly, renormalization predictions for the depression of the transition temper-

ature are in good agreement with simulation; the expected system size dependence

of Ty is also weakly observed.

5.3 An Evaporating Droplet

Away from metastability, the droplet described in Section 5.2 will tend to grow ot
shrink due to the imbalance between the over-pressure and the surface tension. Since
a growing droplet may be morphologically unstable, we restrict our attention to the
context of shrinking droplets. For example, if the droplet is at coexistence, there is

no balancing force at all and the droplet shrinks due to the surface tension effects 1.

1The evaporation of a droplet at phase coexistence assumes that the system is maintained at
constant temperature via contact with a heat bath, Otherwise, a closed finite system undercools as

the evaporation takes place until it reachs a metastable state,
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Figure 27: A comparison of the empirically chosen over-pressures required to satisfy metastability
at T € [0.2,0.65] T, for system size L = €4 and 128 to the analytic prediction (solid line) made
by Nozieres and Gallet, (106). The point of intersection indicates where the effective roughening
transition should appear. This is consistent with our observations.

It might be expected that the interface would move via a nucleation-limited process
when it is at a temperature T < Tg; this is the case described in Section 5.4. How-
ever, we observe that the droplet is forced through a structural transition to permit
the droplet to evaporate more quickly via a diffusion-limited process; we propose a
description for this and a prediction for the time dependence of the macro-facet radii

and the droplet radius.

Theory

A droplet at coexistence, T < Tg such that it would be faceted in the metastable state,
is constituted of both faceted and roughened regions, each evaporating at disparate

rates. As the roughened portions quickly evaporate, the curvature along ihe edges
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of the faceted regions becomes more pronounced: in the language of a curved ‘planar
two-phase system, the phase boundary eneryy between the curved and planar phases

increases. Figure 28 schemalically represents this effect. Consequently, the system
) q ) 3

Figure 28: A rough disgram depicting the forced roughening transition on an unstable cube. The
corners are rounded due to thermodynamic considerations. The roughened cornets then evaporate
much faster than the faceted surfaces. The increased curvature at the rough/smooth boundary
reduces the size of the faceted region. Eventually, the faccts disappear completely and the roughened
cuboid continucs to evaporate cvenly.

will try to further minimize its surface energy by reducing the size of the macro-
facets. Far away from metastability, the faceted phase will be forced out of existence
and the surface will assume a completely roughened state, not due to the kinelic
effects of the moving planar interface but rather due to rapid evaporation of the
adjoining roughened regions. If the droplet is close to metastability, the facets will
only shrink slightly, reaching a nucleation-limited evaporation regime where the faces
remain faceted; for time-scales which are much shorter than the activation time of
the nuclcated evaporation, the droplet behaves like the static droplet described in
Section 5.2.

These two evaporation mechanisms have characteristic dynamical time depen-

dences. In the diffusion-limited regime, as the solid gives way to the liquid and latent
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heat of transition £ is absorbed to form the liquid, heat must be transported from
infinity to the interface. This is controlled by the diffusion constant D. Solving for
the diffusion equation in radial coordinates for a sphere of radius R {Langer 1980),
the growth rate is shown to be

IR D

FAY 2do 107
'&"{—E( “'E) ( 7)

where Au = (e —2)/uo is the dimensionless undercooling from infinity, u is defined

as
_T-T,
u= /e
and d, is the capillary length
dy = 4Tmey/ £2.

Note that this solution implies the quasi-static approzimation where the timescale for
thermal relaxation is much shorter than that for the interface dynamics; the diffusion
constant D was chosen to satisfy this constraint. The dR/dt = 0 limit defines the
critical droplet radius R, = 2d,/Au so that we can rearrange (107), and integrate it

in the limit of small undercooling (ie. the limit of R, — o0), to give

R(t) = (B - 6Dd,t)3. (108)

By contrast, the behaviour of the macro-facets is controlled by edge tension acting
on their boundaries with the adjoining roughened regions. This is analogous to the
decay of a 2D nucleation site which is smaller than the critical size, 7y < 7. Ifit
is assumed that the adjoining regions are near local equilibrium (ie. the time scale
for their evaporation is much shorter than for the macro-facet dynamics), then we
expect that the facets will shrink according to the Becker-Doring relation (Becker and

Déoring 1935); the volume of a droplet should decay at a rate proportional to its area,
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dV;dt x A. For a near-circular 2D facet. the rate of evaporation then goes as the
facet circumference, and we thus expect that »,(t) is linear in ¢.

We can also approximate the behaviour of the quantity R(¢) while r,{#) is still
large. Let’s assume that the curved {roughened) regions can be approximated to first
order by a surface of constant curvature and that they are restricted to the corners

of the evaporating cube (see Figure 29). We can then define the rate of change of

Figure 29: A schematic diagram depicting the evaporation of a cube; a partially faceted cube is shown
in cross-section, cut diagonally through one of the faces. Only the corners are assumed to evaporate,
maintaining a curved surface consistent with one quadrant of a sphere of radius R' = L - ry.

volume in terms of the macro-facet radius ry(t). If the initial cubic volume is L3, the

roughened surfaces are quadrants of spheres of radius R’ = L — r;. The volume of

the truncated cube is then
V(t) = L — (8 —4n/3)(L — ~4) .

The droplet radius R(t) shown in Figure 32 is defined in terms of the volume of a
pexrfect sphere. Thus, the rate of change of volume is dV/dt < dR®/dt; so if T4(t) is
Linear in t, we would expect dR/dt o dry/dt & Conge.
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To sum up, an evaporating, faceted droplet is expected to be limited by its facels,
which shrink at a constant rate, until it becomes completely roughened. It will
then be roughly spherical with a radius described by (108). It is expected that
current experimental techniques should be able to observe this behaviour on faceted
crystals away from metastability. Certainly, independent rmeasurements have been
made of nucleation- and diffusion-limited growth (Gallet, Balibar and Rolley 1987)
and evaporation on planar and droplet crystal interfaces (Dougherty and Gollub 1988;
Heyraud ard Métois 1980; Métois and Heyraud 1982). In particular, the growth of
crystals near equilibrium have been observed (Heyraud and Métois 1987); the crystals
became strongly faceted with sharp edges. In contrast to the evaporation case, this
appears as if the crystal is being forced into the completely faceted state. We present

some of these experimental and simulation results in Appendix A.5.

Simulation

We ran several trials at the largest system size possible (L=128) tc minimize finite
size effects on the transition. The droplet was initialized as a cube of size £ = 0.75L
at the ambient temperature, T = 0.3 T, with the liquid background also at T. The
coexistence temperature T,, was also set to 0.3 T, so that the droplet completely
evaporate (ie. R, = oo). Except for local cooling at the surface due to the absorption
of latent heat, the system was maintained at constant T via contact with a heat
bath at the boundaries. The latent heat and diffusion rate were chosen such that
the trial ended with the complete evaporation of the solid within 5000 - 50000 MCS.
The quantities ry, (A}, %, and 7 (average system magnetization) were recorded;
each gives a2 good indication of the transition of the cube surface from a faceted
to a roughened state. Figure 30 shows 2 time series of the evolution of a typical

evaporating droplet.
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1750 MCS 3750 MCS

7000 MCS 10000 MCS
Figure 30: A time series of an unstable droplet as it evaporates from its initial cubic shape; the
system is 128% with a 962 bulk inclusion at T = 0.3 T,. The transition from a faceted to completely

roughened state occurs at approximately ¢ = 5000 MCS. Note that even at ¢ = 10000 MCS there is
still & discernible facet on the cubes faces; this is inevitable as the Ising lattice is discrete and cannot

otherwise represent a continuous curvature (see Figure 67).
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Figure 31 shows the time-dependent facet radius, r¢(t), for several runs with
differing latent heat; the transition from the faceted to roughened state is marked

by a distinct change in slope. This is confirmed by a visval inspection of the cube
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Figure 31: The average macro-facet radius as a function of time for unstable, evaporating droplets
of system size L = 128 at T = 0.3 T for various latent heats. The radius is expected to decrease
linearly in ¢ until the droplet roughens; the solid line is to guide eye.
surface; the entire time series of cube images is observed in a2 continuous playback,
similar to a movie, and the point at which the the macro-facets disappear is selected
as the time of transition. Further, total surface energy FE:.(t) and the moments of
P4(t) have maxima at approximately the same transition point. Except for the first
several hundred Monte Carlo steps before reaching local equilibrium, ry is linear in ¢
up to the transition point.

Figure 32 shows the time dependent droplet radius R(t). The disappearance of

the macro-facets is marked by 2 change in the behaviour of dR/dt. At early times,

R(t) appears to be linear in ¢, with droplet evaporation limited by the decay of the
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Figure 32: The droplet radius as a function of time for an unstable, evaporating droplets of system
size L = 128 at T = 0.3 T; the dotted line indicates the transition from a faceted to a roughened
state. The dashed line is a fit to the analytic expression (76) for R(t) of the fully roughened droplet.
The radius appears to be linear in t while the droplet is faceted.

macro-facets. After the droplet is completely roughened, R(t) can be fitted by the
expression (108) and as a by-product the capillary length d, can be extracted for our

choice of system parameters. We find d, >~ 0.378 £ 0.002 in units of lattice spacing.

Results

Our simulation results are consistent with the proposed droplet evaporation mecha-
nism, both with regard to the relaxation to a roughened state and the evaporation
of the roughened droplet. We have used standard 2D and 3D nucleation language to
describe the decay of the macro-facets and the droplet, respectively; the rate of decay
of r4(t) and R(t) is in good agreement with predictions. We also found a value for the

capillary length from the fit for the diffusion-limited evaporation. It seems appropri-
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ate to describe the undriven evaporation of an initially faceted inclusion as the decay
of @ 2D nucleation site imbedded in a decaying 3D nucleation site, the 2D process
acting as a limiting factor for the 3D process. This behaviour should be observable

experimentally (see Appendix A.3).

5.4 The Weakly Driven Planar Interface

If a crystal interface is driven by an external force such that it has a steady-state
behaviour and a constant velocity, it may exhibit a dynemic or kinetic roughening
transition. We have chosen to examine a planar {100} interface with an undercooled
melt; the bulk free energy difference between the liguid and solid phases provides a
driving force which is limited by the diffusion of latent heat away from the interface.
This case is representative of many crystal growth problems but is of particular inter-
est to us because of the relevance to our studies of dendritic growth within the con-
text of the Mullins-Sekerka instability {Harris, Jorgenson and Grant 1992; Jorgenson
et al. 1993) (see Chapter 7). Theoretical predictions (Noziéres and Gallet 1987)
suggest that the dynamic roughening transition of the interface is broadened relative
to the equilibrium behaviour and that the effective T is depressed as a function of
the applied force. This is supported experimentally (Balibar, Gallet and Rolley 1990)
and by other simulation studies (Grossman, Guo and Grant 1991). The interface is
expected to have a highly non-linear response to a driving force while in a faceted
state, compared to a nearly linear response when it roughens. This is due to the very
different mechanisms responsible for the growth (Weeks and Gilmer 1979). Although
we will not be able to quantify the effect of the driving force, we will characterize it

in terms of the variables defined in previous sections.

95



Theory

AL T < Tg for a sufficiently small driving force, the interface moves via a nucleation
process. Paraphrasing Nozieres et al (Nozieres and Gallet 1987), nucleation-limited
growth is described in terms of micro-facets which spontancously appear as thermal
fluctuations on the faceted surface at a rate J &« ¢ %7/T. The energy of formation is

now
Es(p) = 27pE, — anp*AE,

for 2 circular micro-facet of radius p (p is expected to be larger than the lattice
constant a); E, and AE; are the step free energy and bulk free energy difference
respectively. The critical micro-facet radius (ie. for p > p., they grow; otherwise,
they decay) is p. = E,/AE,. This introduces a timescale for the creation of growing

micro-facets

/7 < e~ Er(p)T

After time t, there will be on the order of ¢/ micro-facets, each growing with a lateral
velocity v, which is approximately constant in time. Since the edges of the micro-
facets are always rough (in 2D), the velocity is linearly dependent on the driving force

(Weeks and Gilmer 1979). The separation between micro-facets is

L/ Pc\/'r_/t;

thus, they will join to form a new reference plane when p(=v,t} ~ 1. This defines the

forward velocity of the interface v = a/ft as

2y 2/3
v o (AEEB) e-—rEi}S&E;T (109)

where a is the lattice spacing. The kinetic roughening transition occurs when the
fluctuation correlation length is on the order of the critical micro-facet size, £ ~ p.;

this condition is equivalent to the expression (106).
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At T > T}, the interface is roughened and growth is diffusion-limited. The growth
velocity is expected to depend approximately linearly on the driving force F = AE, >~

AT and should vary only with T for constant F.

Simulation

Our data refers to a {100} planar interface in 2 system of size 256 x 256 x 48, initialized
at T = 0.5 T.. The driving force F is supplied through the bulk free energy differ-
ence AE, by varying the melting temperature T, and thus the liguid undercooling
AT =T, —T. The spin degeneracy is fixed at § = 2.0 and the ends of the system are
maintained at T. Under these conditions, AFE, varies linearly with AT. The solid
is also initialized at T to minimize heating at the interface by allowing it to absorb
some of the latent heat which is produced. The latent heat tends to heat both phases
slightly but temperatures are always maintained well below the equilibrium roughen-
ing transition temperature Tg. The undercooling is varied with AT € [0.01,0.12] T,
and the simulations are run for 2000 to 16000 MCS until steady-state is reached; each
data point is an average over one configuration (ie. no time-averaging). Figure 33
represents a series of driven planar interfaces at T < Tk.

Our first observation is that the experimental parameters such as 4,, (4) and
o? exhibit an oscillatory behaviour related to the activated growth mechanism; the
period is 7 = a/v, where a is the lattice unit and v is the interface velocity. For
example, Figure 342 shows A,, the surface area of the reference plane, as a function
of time for the slowest interface; A, has a2 minimum when the growing micro-facets
cover exactly half of the reference plane and a maximum when the current reference
plane has just finished forming. The quantities based on the micro-facet distribution
change in a similar manner; only a roughened plane will have a constant steady-state

distribution. As the velocity of the interface increases with increasing driving force



AT =0.01 T,

Figure 33: A series of driven planar interfaces at T = 0.5 T; the images shown are based on a
64 x 64 x 48 system with under-cooling of AT = 0.02,0.04 and 0.1 T,. Systems up to 256 x 256 x 48
wete used in this study. The lighter color indicates higher surface level. Note that the equilibrium

planar interface at T = 0.5 T in Figure 18 is the undriven equivalent of this interface.
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Figure 34: he normalized area of the reference plane which is not obscured by micro-facets for driven
equilibrium planar interfaces at T = 0.5 T, for under-coolings of AT = 0.02,0.04 and 0.10 T}, from
top to bottom; they are for interfaces which are below, at and above (respectively) the critical
driving forces r2quired to roughen the interface. Note that the time scales for each plot has been
stretched for easy comparison.
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AT, the period of the cycle decreases as shown in Figures 34b and 34c.
Figure 33 shows the velocity of the interfaces as a function of AT (closed trian-
gles); the data is non-linear and consistent with (109) up to AT = 0.04 T, where

it then becomes linear. Also shown is the reduced velocity v/v, (open circles). The
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Figure 35: The average interface velocity [closed triangles) in units of lattice spacings per 1006 MCS
for driven steady-state planar interfaces at T = 0.5 T.. The undercoolings are AT € [0.02,0.12] T...
Also shown is the reduced velocities v/v,.(AT) {open circles) where v, {AT) is the velocity of a
completely roughened interface under the same driving force. The dotted line is a best fit for the
analytic expression for v, (109); the dashed line is a straight line. The critical driving force is
estimated to be AT = 0.04 T,
reference velocity v, (AT) is measured at a temperature above the equilibrium rough-
ening temperature Tg where v, is only dependent on the value of AT. The reduced
velocity clearly indicates that the effective dynamic transition is near AT* ~ 0.04 T..
Further evidence for this value comes from the character of the oscillations shown

in Figure 34. As the dynamic roughening transition is approached, the smooth oscil-

lations begin to break up. However, due to the broadened nature of the transition,
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oscillatory behaviour is still observed at and above AT*. This is consistent with the
description of dynamical roughening near Ty offered by van Saarloos et al {van Saar-
loos and Gilmer 1986) wherein the interface is expected to be rough at long length
scales but nucleated growth is still pre-dominant at short length scales. Oaly near
AT =~ 0.12 T, does it appear that the interface has roughened at nearly all length
scales.

The interface width {w®) does not exhibit any cyclic behaviour except at the very
lowest undercooling. Despite the changing micro-facet distribution, {w®) is relatively
smooth and relaxes to an average value once the thermal gradient reaches a steady
state. Even in the case of AT = 0.01 T, the oscillatory behaviour eventually damps

out and {w?®) reaches a steady state value. Presumably this behaviour is a reflection of

0.7}F * _
| b
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Figure 36: The average squared width of driven steady-state planar interfaces at T = 0.5 T, for
under-coolings of AT € [0.02,0.12] T;; the inset shows the time dependent width of a typical driven
interface. The critical driving force is estimated to be AT == 0.04 T.. Note: The width for zero
driving force is from equilibrium simulations.
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the relatively large activation energy required {or growth; when thermal fluctuations
are smaller than the critical fluctuation size, the growth may hesitate between layers.
Figure 36 shows steady-state values of (w®} for various AT, showing a weak transition

near 0.04 T; the inset shows a typical time evolution of the width of an interface.

Results

We have qualified the behaviour of a driven steady-state interface in the presence
of a thermal gradient in terms of (4), A, and (w®). We have confirmed the fact
of distinct responses for faceted and roughened interfaces to changes in the driving
force; in both cases, simulation resulits are in good agreement with analytic expres-
sions. We have observed an oscillatory behaviour in the interface which is related
to nucleation-limited growth. We suggest that the presence of these oscillations be-
yond the measured kinetic transition point is consistent with the broadening of the

transition.
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6 Linear Stability: the Mullins-Sekerka Instabil-
ity in Two Dimensions

Before we begin to examine the non-Linear late-time non-equilibrium behaviour of the
Mullins-Sekerka instability, it is prudent to compare our algorithm’s behaviour to the
predictions of the linear stability analysis in Chapter 3. This will serve two purposes:
First, it will be the first direct confirmation of the theoretical analysis ever performed
in simulation or experiment. Second, a positive result will lend additional credence
to the supposition that our model is capable of reproducing the basic elements of the
instability dynamics; consequently, conclusions drawn on the non-linear behaviour
presented in Chapter 7 could be presumed to be applicable to the general Mullins-
Sekerka mechanism. In Chapter 3, we examined the case of a planar interface and of
a droplet interface in the presence of thermal gradient.

In the planar case, we have found the linear regime of the Mullins-Sekerka in-
stability to be short-lived in the Ising model, and subsequently difficult to observe.
Following the approach of other studies of linear behaviour (Heermann 1984; Grant
et al. 1985), we will extend the timescale for the linear growth by using a longer range
of spin interaction; the basic Hamiltonian is modified to include neighbours over 2
range p. In order to produce reasonable results, we will require a very large ensemble
of trials to reduce statistical noise and a very large system size to see a suffident
range of instability modes. The cpu-intensive nature of the interaction, coupled with
hardware and time constraints, suggest that we examine the linear stability regime
in two dimensions. There are no important differences in the basic instability be-
haviour between interfaces in two and three dimensions at temperatures above the
three dimensional roughening transition, so this creates no particular problems. In

Section 6.1, we summarize the reasoning behind the long-range interaction approach
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and outline the modifications to the standard code. We then present our results for
the dispersion relation of the growth modes.

Similar difficulties working with the droplet instability in three dimensions have
also led us to study an unstable disk in two dimensions. looking for the predicted
instability radius. This case is less sensitive to the problems of the lincar growth
regime since the timescale is set by the rate of growth of the interface. In Section
6.2, we re-derive the linear stability description for a disk (slightly different results
from 3D) and compare the predictions for the onset of instability with our simulations

using two distinct measurements.

6.1 The Planar Interface Instability at Early Times
Theory

Based on the analysis in Section 3.1, we expect an exponential time dependence of

the growing modes k on 2 planar interface in the linear regime

h(z) = ho(z) + 3 {(k)etk=teiir
k

We are interested in extracting the dispersion relation w(k) from the measured power
spectra of the interface. Recall that the linear stability analysis predicts the form of

equation (63),
w(k) = kv (1 - d,Lk?) .

To extend the regime of the linear stability on the planar interface, we first modify
the basic simulation model to include a longer range of interaction. This slows the
dynamics without changing the overall characteristics of the system and thus permits
us to measure the onset of the instability. Binder (1984a) originally showed that

an increased range of site-site interaction extends the linear behaviour of quenched
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systems during the early stages of coarsening; we can use this sane approach to access
the linear regime of the Mullins-Sekerka growth mechanism.

First, let’s look at the timescales of the linear regime in the instability. Examining
the expressions for the perturbed thermal field, (56) and (57), we see that, at the

interface = = 0, the field has a time dependence like

u(t) x e“** + O(k) (110)

where O(h) is an interface perturbation; from (54), we can see that it also has the
form A(x,t) ~ e***. The perturbation expansion of (110) is singular; this suggests
that the linear behaviour is likely very difficult to observe. This has been found to be
the case in other unstable systems such as alloys undergoing order-disorder transition
{Binder 1983; Binder 1984b). Assuming that g is the range of interaction we expect
to observe correlations of size g in the linear regime. Making some rough estimates,
we can say that the wavenumber k, ~ 1/p represents the critical k for this interaction.
To first order in w;, this mode should grow like e*¢* and the correction O(k) should
become important when it is of the order p in size. Therefore we expect the Linear

regime to exist up to length scales et*¢ ~ p or timescales up to

Tiin o ¢ In(p).

Thus, we conclude that extending the range of interaction increases the timescale of
the linear growth regime.

The modified algorithm is essentially identical to the model described in Chapter
4 except that the interaction is extended over neighbours within g of each spin. The
neighbourhood is a diemond shaped region containing 2¢(o + 1) sites around the
central site (see Figure 37); o is restricted to integer values and refers to the distance
in lattice spacings along one of the Cartesian axes. We have empirically chosen p = 3

as the best compromise between cpu time and the timescale for linear stability. With
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Figure 37: A diagram of the long-range interaction neighbour scheme. The range of interaction is
defined to be p. The coupling is equal between all neighbour spins.

this value, linear stability appears to last for approximately 1000 MCS, based on the

behaviour of growth modes.

Simulation

QOur data was from a planar interface of size 8196 x 28 at T, = 0.9 T, with an
undercooling in the liquid melt of T = 0.2 T, where T, >~ 2.269 J in two dimensions.

The spin degeneracy was § = 3 with a latent heat of transition £ = 1.22 J. The

Figure 38: A time series of the 2D planar instability with long-range interactions. The system size
is 8196 x 24 but only a section 550 x 24 is shown here.

interface was pre-initialized from the same interface in equilibrium at T,,.. The system
was allowed to go unstable for 1000 Monte Carlo steps during which time the Fourier

spectrum of modes was measured. Figure 38 shows a time series of a typical 1D planar
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interface during the lincar stages of the instability. An earlier study (Harris and
Grant 1990) examined the late-time behaviour of a similar interface using the same
model and comparable system parameters. They observed dendrite-like fingers with
a characteristic lengthscale, consistent with the conventional picture of the Mullins-
Sekerka instability.

As in previous studies (Jorgenson, Harris and Grant 1989; Harris and Grant 1990),
the most informative method for analysing the interface is via the power spectrum
of its fluctuations; the telltale roughening modes and the time dependence of the
instability are easily identifiable. The interface power spectrum P(k,t) was averaged

over 400 trials where

P(k) = |F{r(x)} (111)

and F{h(z)} is the spatial Fourier transform in one dimension

h(k) = F(h(x))
= / dx e h(x). (112)

Figure 39 shows a time series of the averaged spectra over the time of the run for
t = 100,500 and 1000 MCS. Note the modes at high k which are typical of interface
roughening. The modes which extend above the solid line representing the steady-
state roughening level are the growth modes; the area between the solid line and the
curve(s) is the excess power attributed to the instability.

We are looking for an exponential time dependence of k; Figure 40 shows some
typical growth modes as a function of . As we can see, the behaviour is more or
less consistent with our expectations. The higher k modes are rougher and tend to

saturate at late t. Also, the occasional k mode like that shown in Figure 40 ¢) appears
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Figure 39: The power spectra of the unstable planar interface at ¢ = 100, 500 and 1000 MCS as
shown in Figure 38. Note the static modes at high k which are characteristic of inter{sce roughening.
The solid line approximates the steady-state roughening modes.

to have been initialized with too much power; it exhibits an early-¢ tail as it quickly
relaxes to local equilibrium and begins to grow normally again.

We would like to extract the dispersion relation (63). Each k& mode was individu-
ally fitted via a least-squares algorithm with an expression Ae“** where A and w;, were
the fitting parameters. The very earliest and latest times were ignored to avoid the
influences of poor initialization and saturation, respectively. In Figure 41, we show
wyi for all of the k modes in the power spectrum up to £ = 2x/10 (higher k modes
were uninteresting); errors in the fits of w; are much smaller than the variations in
their value. Despite the large number of runs (n=400), the noise is still significant.

There are several features which are different from the theoretical curve shown
in Figure 13: First. the decay modes are not represented; this is because they are

overwhelmed by the equilibrium capillary modes, already present because of the initial
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Figure 40: Time series of some typical growth modes below the critical mode ko = 2%/, ~ 2x/17 a;
a) k~2x/74a, b) k ~2xf4l e, ¢) £ ~ 2x/26 a and d} & = 2x/2] c in semi-log plots. The growth
modes are predicted to evolve in time like e“»‘; the straight solid lines are the fits to this form,
disregarding the very earliest and very latest times. The fitted values for wy are indicated. Note
that the higher k values fall off as they approach saturation values. Also, ¢} shows a tail at ¢ = 0;
this appears to be due to an over-strong initial amplitude which quickly relaxed to local equilibrium.

conditions. Thus, we simply observe w; going to zero at the critical mode k,. Second,
the wavenumber of the dominant growth mode k... is near the limit of the system
size and consequently the lowest & modes beyond the dominant & mode are not all
present.

Due to the noise in the measurements, it is difficult to identify the lengthscale of
maximum growth A, and the critical lengthscale ), (64) as defined in Section 3.1.

From Figure 41, we estimate by eye

Amaz = 2% /kmaz ~5la£10
do =2x/k, ~16at4.
It is apparent that these results are not consistent with the relationship M./, =

/3. Further study would be required to determine if this is symptomatic of the noise

or intrinsic to the model.
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Figure 41: The linear stability dispersion function from fits of the planar interface modes to the
expected exponential behaviour. These results are based on 400 simulation trials of an 8196 x 24
system which employs a long-range interaction (¢ = 3). Error bars are much smaller than the noise.

In conclusion, we appear to have limited success in confirming the predictions of
the linear stability analysis. The data is not inconsistent with expectations, however
there are some questions which are not clearly answered due to the poor statistics.

In particular, there is some concern about the ratio Amaz/A,-

6.2 The Circular Interface Instability at Early Times
Theory

Another simple test of the linear stability analysis is provided by the case of the
circular droplet in an undercooled melt. If the initial radius of the droplet R = R, is
larger than the critical radius R*, it will start to grow. As described in Section 3.2 for

the case of a droplet in 3D, it will xemain circularly stable while R < R; ,wheremis
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the mode of the instability. At R®, it will become unstable and begin to grow fingers
typical of the Mullins-Sekerka instability {see Figure 42). Here, we shall briefly derive
solutions for the linear stability problem for a circular interface and then we compare
them with simulation results.

Re-capping the relevant equations for the thermal diffusion problem, we use two-

dimensional equivalents of (49)-(51);

DViu =0 steady state thermal diffusion
uy = —d,x Gibbs — Thomson relation
vy = D[a(Vu) | —(Vu) i) -0 interface continuity
u(o0) = —A boundary condition at infinity

Assuming a perfect circle of radius R,(t), we have unperturbed solutions for u(r)

(113)
~d,/R, r< R, (solid).

Using the continuity equation, we find the unperturbed interface velocity to be

(AR, - d,)/r - A >R, (liguid)
u,(r) = {

iR, . D(AR,-d,).
g = vR=-DVuri= Zo— (114)

this expression describes the rate of growth of the stable disk. We then introduce a

small perturbation at the disk interface

R(8) = R, + pmcos(m8)e“~; (115)

assuming the quasi-static condition, this gives 2 solution for the perturbed thermal

field

u(r) = uo(r) + um(r)cos(mf)e“" (116)
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where
Anpr 7 r> R, (liquid)
Um(P) = .
B,r™ r< R, (solid)
Following 2 linearizing procedure similar to that in Chapter 3, we evaluate the rates

of the growth modes to be

vg(m - 1) 1,. ,2Dd, ~
wm:R’—Ro—[l—é-(lva)vRRgm(m—l) (m>2) (117)

where the lower Limit of m for finite growih rates is 2 or greater. The instability

radius for a given mode m is then defined by the limit w,, — 0;

2Dd,

VR

(R.) = %(1 + a)m(m + 1) (118)

Using (114) and the 2D critical radius R* = d,/A (see Appendix A.2), this can be

re-written

i—:: =2m(m+1)+1 (m22) (119)
where it has been assumed that the thermal characteristics of both phases are similar
(le. « = (D,C,)/(D:Cl) ~ 1). If we assume that m = 2 will be the first unstable
mode, the droplet should then be stable up to R ~ 13 R".

The departure of the growing disk from a quasi-circular steady-state can be deter-
mined by two methods: First, the instability can be observed directly by the visual
inspection of the simulation system. The onset of finger-like instabilities is dramatic
and easy to identify. For greater precision, the onset can be related to the rate of
change of the droplet size, dN/dt, where N is the number of sites which define the
droplet. While the droplet remains stable and circular, we can use the expression

(114) to fit dR,/dt by assuming N = wR?. As it goes unstable, the droplet is no
longer compact and R(t) should no longer follow (114). In Appendix A.6, we offer
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a simple argument which suggests that R(t) should follow /% at carly times and be
linear in t at late times. It is unclear whether the cross-over should be apparent or

not and whether it should obscure the instability behaviour.

Simulation

Since the the instability of a circular disk is tied to its radius, the timescale for the
stable growth is directly defined by its radial growth rate. We can simply extend
the linear regime by reducing the undercooling and we do not need to use the time-
consuming long-range interaction algorithm. Subsequently, all of the results presented
in this section employ the standard nearest-neighbour algorithm although we remain
in two dimensions because of the same size constraints of the planar simulations.

Our simulation system size was 128 x 128 with an initial circular inclusion of
R, = 5 lattice units. The coexistence temperature was set to T, = 0.756 T. where
T, ~ 2.269 J in two dimensions. The undercooled temperature was T = 0.178 T.
with the spin degeneracy set to § = 3.21. These particular parameters were chosen by
trial and error to give a specific rate of growth without homogeneous nucleation while
producing an instability at a droplet radius within the system size. The statistics
were averaged over 500 trials of 2500 MCS each. The instability was observed to
occur, on average, at ¢t ~ 1200MCS.

Figure 42 shows a time series of a typical droplet growth; note that although fluc-
tuations appear before the indicated instability sets in, they are quickly damped out.
Visual inspection shows that the disk becomes unstable at around R ~ 20 a where
a is the unit lattice spacing. Figure 43 shows the reference radius R(t) = W
We find that R(t) grows like ~ #* (consistent with (114) for a large undercooling,
d,/R, <« A) up to t = 1250MCS whereat R(t) becomes linear in t. This corresponds

to R~ 21 a.
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t=0 t=300

t = 8500 t = 13200

Figure 42: A time series of the disk instability in 2D for a system of 256 x 256; images are for
t = 0, 300, 900, 2600, 8500 and 13200. The disk remains circular up to the stability radius R ~ 20 =
(t ~ 1000) where it then becomes unstable. Late times shows dendritic growth.
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Figure 43: The reference radius R(t) = /N(2)/x as a function of time for the disk instability.
While the disk is circular, R correspords to the actual disk radins. When it becomes unstable and
no longer compact, R grows linearly in time.

We can compare this result in two different ways using the expression (119). First
we will use the critical radius from nucleation theory (see Appendix A.2) to re-express

the expected instability radius as

* = ..l...-
R =5 (120)

We can estimate R* for a metastable disk at temperature T from values of the surface
energy v based on analytic results (Rottman and Wortis 1981) and AE, based on
meanfield results (see Section 4.1).

Since there is some ambiguity in identifying the local temperature at the inter-
face, we shall choose intermediate values for these parameters, using values at the

coexistence temperature and undercooled temperature at infinity as upper and lower
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Hmits. The surface energy is thus

¥{0.5T,) ~ 1.6 J

and the bulk free energy difference between the solid at T = 0.76 T, and the melt at
T=0I18T.is

AE5 ~0.73 J y
This gives 2 critical radius of
R ~23ea

Needless to say, this is too small to be confirmed via a metastability test on a discrete
lattice. Assuming that the lowest possible mode m = 2 dominates the growth, we

find a prediction for the stability radius of
Ri~25a

If we were instead to assume that m = 4 based on the square anisotropy of the lattice,
we find B ~ 93 a. Obviously this result supports the idea that the lowest growth
mode dominates the instability.

A more direct measurement of R, can be made by carrying out a scconda.;'y

simulation. Returning to the prediction for R;,, we can re-write (119)

R = \/r:(m + 1)2Dd° (121)

VR

Although wvg is not strictly constant, it changes slowly and we can assign it a value
for a given R. We then only need 4, and D to find a solution.
Since a droplet at B < R® is always circularly stable, we can observe the evap-

oration of the droplet from an initial radius R, at the coexistence temperature T),.
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There is no undercooling except near the interface where latent heat is absorbed
by the phase transition; the boundaries will add heat continuously to the system to
keep it at T,,. The droplet then evaporates at a rate defined by (114); for example,

A <« d,/R, gives an approximate expression

R(t) ~ */R3 - 3Dd,t. (122)

Figure 44 shows the reference radius of an evaporating droplet from a typical

simulation run for a 128 x 128 system with an initial droplet of size R, = 50. The

L
1 3 55 7 9
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Figure 44: The radius R(t) for an evaporating disk. Also shown is a fit via a Runga-Kutta integration
method to equation (114) with (d,D) as a fitting parameter.

ambient temperature was set to the coexistence temperature T, = 0.756 T.. From a
fit of R(t) using (114) via a Runga-Kutta integration method, we find (d,D) =~ 0.3 ;
the fit is expected be poor for small R due to finite size effects. From the growth

simulation data, we estimate the interface velocity to be vy ~ 0.009 lattice units per
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MCS. This gives an instability radius
Ry~20a.

It is apparent that both estimates of R are consistent with our simulation results.

Results

The form of the dispersion relation of the lincar regime of the planar instability has
been found to be in good agreement with the prediction of theory. However, the ratio
of the wavelength of maximum instability with the critical wavelength is somewhat
larger than the expected value. The instability radius of a disk interface is in good
agreement with predictions, using two distinct techniques for measuring it. Overall,
this is viewed as a confirmation of the feasibility of our model for use in the study of

dynamical processes.
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7 Non-Linear Growth: the Mullins-Sekerka In-
stability in Three Dimensions

After passing through the brief linear stability regime, described in Chapter 3 and
examined in Chapter 6, an unstable interface enters a ron-linear regime of growth.
Certain wavelengths begin to dominate the instability; fingers appear and advance
ahead of the initial interface. These fingers or dendrites compete for space until only
a few reach their steady state. The others slow and stop as the undercooled melt
in front of them is heated by the excess latent heat released by their neighbours.
The growing dendrites reach a terminal tip velocity which remains constant. As they
grow, perturbations along their sides begin to appear. These grow to form secondary
dendrites or side-branches. Tertiary growths may also appear as space allows. This

cascading dendritic growth eventually forms highly intricate and structured patterns.

Figure 45: Dendritic growth in two distinct geometries: In a), a succinonitrile dendrite growing
between flat glass plates (reproduced from (Qian and Cummins 1990)) and in b), dendrites observed
in a crack in single-crystal alloy PWA-1480 at the Oak Ridge National Laboratory; reproduced from
{Langer 1992).

Their symmetries reflect the underlying crystal anisotropy of the solid; Figure 45

shows some typical examples of physical crystal growths in a quasi-two-dimensional
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and a three-dimensional context. In some cases, like the snowflake shown in Figure
1 of the introduction, the faceting normally associated with roughening transition
is observed on the leading tip of the dendrite; this is a special case of the interface
instability in close proximity to the dynamic roughening transition, as discussed in
Section 5.4.

Although the challenge of simulating the Mullins-Sekerka instability in three di-
mensions is not unsurmountable, it does create certain (currently) insoluble problems.
For example, in order to apply the linear stability analysis, we must satisfy the quasi-
stationary assumption; since the interface grows to first order like w;,, ~ kv and the
thermal field relaxes like wy;sy ~ Dk*, we need waiss fwine ~ k€ >> 1. This implies that
there exists a reasonably large separation in the two important quantities, the capil-
lary length d, and the thermal diffusion length £. In the modified Ising model used in
work presented here, d, is usually of order of the lattice spacing. A reasonable sepa-
ration of two orders of magnitude (recall that the instability wavelength k ~ \/d,{)
suggests a system size that is, at minimum, 100® sites and preferably closer to 1000°
since we don’t want £ to be near the limit of the system size. This upper estimateis a
billion lattice sites and somewhat beyond the upper edge of the technology available
to us; moreover, a Monte Carlo step over so many sites requires several (real) seconds
on the machines available to us. Two avenues were chosen to deal with this: We
greatly reduced one dimension of the simulation system and subsequently increased
the other two. This approaches the two dimensional system examined in previous
studies (Harris, Jorgenson and Grant 1992). Alternately, we Limited the vertical size
of the system and examined only the early non-linear growth in three dimensions.
We refer to these two approaches as the slab and block geometries respectively (see

Section 4.4 and Appendix A.1).
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7.1 TUnstable Slab Interfaces

The original motivation for using the slab geometry was to be able to extend the
length scales of the simulation well beyond any characteristic lengthscales. As we
will observe in Section 7.2, the fully three dimensional system leaves very little room
for growth; multiple dendrites are rare and sidebranching is nearly non-existent. The
much larger slab interface permits many dendrites to grow for longer times. Further,
we are supported in this choice by physical experiments on succinonitrile (Chou and
Cummins 1988; Qian and Cummins 1990) and NH;Br (Maurer, Bouissou and Perrin
1989) carried out with apparatus of similar proportions. Our simulations also provide
some insight into the cross-over from the 2D to 3D regimes; we will see how the
additional degree of freedom influences the growth.

A typical simulation system size is 8 x 1024 x 192. A run begins from a flat interface
with the solid bulk phase initialized at 7},, the melting temperature, and the liquid
bulk phase at an undercooled temperature, T, < Tn. Finger-like instabilities form
immediately and quickly reach the asymptotic regime (typically within 400 Monte
Carlo steps) where tip velocities ate constant. The dendrites continue to grow until
the end of the run when they reach the far side of the system. Figure 46 shows a time
series of cross-sectional slices from a slab system; the section shown is only a selected
portion of the entire interface.

Tip velocity is measured by identifying the maximum height of the interface as a
function of time; while not strictly exact, this technigue is highly effective and quite
accurate for measuring the primary instability. Using a 8 x 1024 x 96 slab system
with T, = 04T, T,, = 0.87, and § = 2.8, the tip velodity v is measured to be 3.1
x 1072 in units of lattice spacings per MCS, for 400 > ¢ > 1000MCS. This result,
shown in Figure 47, is based on 29 trials of 2400 MCS each.

As seen in Figure 47, the surface area increases with a t? power law; this is
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Figure 46: Time series of cross-sectional views of a slab system of dimension 8 x 128 x 92. This is
a sub-section of the larger 8 x 1024 x 92 system used to generate data. The images shown are for
t=1000, 4000, 10000, 26000 MCS. The corresponding thermal field for t=25000 MCS is shown in
Figure 59.
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Figure 47: Maximum height (tip position) (o) and the (square root of the) total surface area (A
plotted against time ¢ for a 8 x 1024 x 96 slab system. The surface area is shown as /A(t) — A(200)

to highlight the t3 growth, with A(200) being 28249 units. Data is averaged over 29 runs.

appropriate to fingers growing at a constant velocity v early in the non-linear growth.
regardless of dimensionality (see Appendix A.6). The tip radii of curvature p are
of order of the unit lattice spacing (~ 3) and tend to fluctuate strongly due to the
influence of roughening. This value is needed to check the relationship between p and
v {82) derived in Section 3.3. However, we have found that measurements of p are
insufficiently accurate for use. This is unfortunate as the p/v relation is one of the
most important ways of characterizing the instability (Langer and Miller-Krumbhaar
1978); in general, its complex nature makes it difficult to quantify its behaviour.
Thus we return once again to the most direct way to exhibit the unstable modes,
via the power spectrum P(k,t) of the interface. However, we find that the mea-
surement of P(k,t) is also difficult; typical interfaces have overhangs, bubbles and
pockets. These are presumed to be unimportant since they occur on length scales
which are much shorter than the lengths of interest, They are therefore masked out
by projecting the multi-valued interface onto the X-Y plane such that the interface

is approximated by an iso-valued surface. This surface is then collapsed to a 1D
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function A(z) by averaging along the shortest axis and treated by Fourier transform
to produce the power spectrum P(k) as in (112).

In Figure 48, k*P(k) is shown; the scaling removes the expected k% roughening
contribution. Only the unstable modes below the ronghening continuum are shown;
they indicate a wavelength of maximum instability of A; = 50 lattice units with a
secondary peak A; =~ 36 units. The entire spectrum is shown as an unscaled log-

log plot in the inset. This is consistent with a visual inspection (Figure 46) which
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Figure 48: The power spectra for a slab system scaled by k2. The large-k end of the spectrum,
showing the expected k? roughening modes, is excluded to display the unstable modes more clearly.
The insct shows the entire unscaled spectra in log-log plot. Speetra for t=2400 MCS and 1600 MCS
are shown.

shows a typical separation between the instabilities of about 30-40 units. The same
spectra are shown in Figure 49, scaled with the square of time, t?; the fact that

they are now independent of time is consistent with the surface area growing like t2.

The coarsening, as indicated by the lateral shift in the A, peak, can be ignored as
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Figure 49: The power spectra from Figure 48 are shown scaled by t%. Spectra ate shown for 1=2400,
2200, 2000, 1800 and 1600 MCS. The primary and secondary modes of the instability are shown as
Arae

insignificant; in this respect, the data is very similar to that previously obtained for
two dimensional systems {Harris, Jorgenson and Grant 1992). The features to the left
of the maximum are subharmonics of the primary and secondary instability peaks;

they are located at A =~ 66, 83, 100 and 153 units.

7.2 Unstable Block Interfaces

Figure 50 shows 3D representations of block simulations at late time; note that den-
drite growth is limited by the low ceiling on the system. In the block system of
128 x 128 x 96 with T, = 0.3T,, T\n = 0.77, and & = 2.8, the tip velocity is measured
to be 2.9 x 107%; note that this is comparable to the slab value.

Similar to the slab systems, the surface area grows with a ¢t power law; this is
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Figure 50: Two representations of 72 x 72 x 144 block system surfaces at late times. The image in a)
corresponds to the thermal field in Figure 60 g) (right half) ; b} corresponds to Figure 60 h) {right
half). Note that the boundary conditions are periodic on the sides.
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shown in Figure 51. This is not suprising as no dimensionality is associated with this
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Figure 51: Point of maximum height (tip position) (¢) and the total surface area (A) for a typical
block system as a function of time. The surface area is shown as /A(2) — A(700) to highlight the
t? growth, with A(700) being 42693. The tip position saturates at late times as the tallest dendrite
reaches the top of the system. Data is averaged over 4 runs. The straight dotted lines provided as
references.

behaviour (see Appendix A.6). The tip radii, p, are again of order of the unit lattice
spacing and are still too roughened to be measured reliably.

Measuring the power spectrum is slightly more complicated than in the slab sys-
tem. Similar to the slab systems, the block interface is reduced to a single-valued
surface, eliminating overhangs and bubbles. It is then treated by a 2D spatial Fourier

transform

h(k) = F{h(x)} = j / dy dz &%= h(x);

the power spactrum P(k) is then averaged over all orientations of the vector k. Figure

52 shows the spectra k*P(k); it clearly shows the mode of maximum instability,
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kmaz- The expected A® roughening contribution at large k is apparent as is the time
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Figure 52: The power spectra for a block system scaled by k2 is shown in a log-log plot. Spectra
for t=3000, 2600, 2200, and 1800 MCS are shown. Note the k? region at large k, indicative of
roughening fluctuations, and the lateral shift of the mode of maximum instability.

dependent relaxation of the roughening.

The block power spectra, shown in Figure 52, have better statistics than those of
the slab in Figure 48; however, it is clear that A is near the size of the system. In
our experience, 128 x 128 x N, is the minimum useful system size for the instabilities
that we have been able to observe; results from systems of 64 x 64 x N. clearly show
the effects of finite size and are inappropriate for analysis. Consequently, this limits
the height of the system permitted by hardware constraints to N, ~ 100.

The kmaz value is distinctly shifted in time by coarsening of the dendrites; this has
been established by analysing the perpendicular cross-section of the interface profile
at a fixed height. Figure 53 shows a times series of a typical cross-section. It starts

from ¢, = 1000 M CS when the interface first intersects the plane at the height where
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the lateral cross-sections are viewed. Figure 54 is the measured structure factor which
is growing as a £'/2. This is consistent with the geometric picture of the cross-section
of a parabola moving through a plane with constant velocity: Consider a parabola
defined z(z,y) = at—d(z*+3*) so that its apex is moving in the 2 direction at constant
speed. At a fixed height z, the intersection with the z — y plane is a circle defined by
22 + y? = R¥(t) where R*(t) = (at — z)/b and the radius goes like £!/2. The structure
factor corresponds to the average radius of the growing dendrite cross-sections.

The coarsening of the dendrites requires that a more sophisticated scaling of the

power spectra be done. The scaling ansatz is of the form
P(k,t) = t¥+ P(kt*)

where @ = 0.5 is due to the coarsening. The scaling of &k accounts for the shifting of
the spectra’s features due to the widening of the dendrite structures and the power
of a on the prefactor ¢ scales P(k,t) for the enhanced rate of increase of the surface
area.

To illustrate this, we show in Figure 55 a plot of k*P against kt°.

7.3 Side Branching

The features which are missing from these simulations, both in the slab and block
configurations, is the secondary instabilities along the sides of the growing dendrites;
this phenomenon is generally referred to as side-branching. It is observed in many
laboratory experiments (Dougherty and Gollub 1988; Qian and Cummins 1990) and
has been reproduced in some simulation work in two dimensions using lattice-gas
models (Saito and Ueta 1989) and numerical simulation of analytic dendrite mod-
els (Saito, Goldbeck-Wood and Miller-Krumbhaar 1988; Kessler, Koplik and Levine
1988). The origin and characteristics of the branches are of central concern in the-

ories of the Mullins-Sekerka instability. Their conspicuous absence in this work is
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Figure 53: A time series showing lateral cuts at fixed height across the growing dendrites in a block
system. The dark areas are the solid dendrite(s).
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Figure 54: The radial structure factor from a block system. The time is rescaled as (t — 2,)*/2 to
show the 11/2 growth. The initial time, 2, = 1000M CS, is the time at which dendrites first intersect
the cutting planc at N, = 72.

disappointing but not wholly unexpected.

The simulation geometries are not ideal for reproducing secondary instabilities.
Due to the anisotropy of the crystal lattice, there are preferred directions of growth.
In general, we find that {111} iﬁterfa.ces become unstable more easily than {100}
interfaces. This is attributed to the finite roughening temperature on the {100}
interface (Tp =~ 0.54 T.) which inhibits growth; as noted in Section 5.4, a faceted
interface has a highly non-linear response to a driven force which is much weaker than
a roughened interface. In most cases, the undercooled melt is set to a temperature T <
Tr and the moving intérfacc experiences temperatures well below T,,. Consequently,
the [111] direction is favoured over the [100] direction.

In the slab system, only one of the {111} directions is coplanar with the slab

itself. The others pass obliquely through the narrowest dimension (see Figure 56).
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Figure 55: The power spectra from Figure 52 scaled by the ansatz P(k,t) = £+ P(kt®). The figurc
shows a plot of k? P against k. Spectra are shown for t=3000, 280¢, 2600, 2400, 2200, 2000, 1800
and 1600 MCS,

Consequently, with the primary instability growing along the coplanar {111} axs,
secondary instabilities are driven by the thermal gradient in the less favourable [110]
and [110] directions. Although there is no finite roughening transition temperature
for the {110} planes, the orientation is closer to the {100} planes and faceting effects
become more pronounced. Perturbations observed on the sides of the dendrites are
strongly damped and never become side-branches. On the other hand, tip-splitting
has often been observed. This is curious since tip-splitting is usually associated with
systems with no lattice anisotropy (Langer 1980). It may be that growth in other
directions is so inhibited that it is easier to coarsen and split into two parallel fingers
than to form side-branches. However, experimental results are not consistent with
these results. Cummins et ol (1988; 1990) use a similarly slab-like geometry on

succinonitrile which also has a cubic lattice structure. They have had no difficulty
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[111]

Figure 56: A rough diagram of the slab geometry with a {111} interface demonstrating the arrange-
ment of the preferred directions of growth; secondary growth is inhibited by the sides. A similar but
less severe problem is created in the block geometry due to the fact that the preferred directions are
not perpendicular to the primary instability’s sides.

producing side-branches in abundance. In fact, many of the most spectacular dendrite
images with side-branches come from studies using succinonitrile (Glicksman 1984}.

In the block geometry, there is another set of obstacles to side-branching. Al-
though fully three dimensional, the [111] direction of the primary instability still cre-
ates problems; the two other preferred vectors [111] and [111] are not at right angles
to it. A secondary instability growing along one of these directions would be oblique
relative to its parent dendrite, either back towards the original interface or forwards
along the parent (see Figure 56). This does not completely rule out side-branching
as in the slab case; in fact, evidence suggests that secondary growths do appear but
soon after they have extended away from the primary dendrite, they change direction
and begin to grow along the same direction. In Figure 57, we show one of the clearest
examples of this kind of behaviour; this system was the largest ever run at a size of
128 x 128 x 144. We believe that besides having insufficient space and time to grow

the secondary instabilities, this model may not behave in 2 manner typical of the
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Figure S7: A cross-section from a block simulation of size 128 x 128 x 144 at steps ¢t =
10060, 11500, 15000, 20000 and 25000 MCS. Note how the side-branch has grown sideways only far
enough to free itsell from the parent and then turned upwards. Arguably, this might be considered
tip-splitting.

134



now-classic succinonitrile system (Figure 1) but rather in a less structured form like
the salt mixture shown in Figure 7 2}. What is certain is that an order of magnitude

increase in computer speed and memory will be required to test this belief.

7.4 Thermal Fields

Since the attempts to reproduce full dendritic growth by simulation were only partially
successful, we spend the remaining part of this final chapter describing our preliminary
investigations of other lines of approach. First of these is the investigation of the
thermal fields near the interfaces of our model, with the hope that we be able to
confirm that the thermal diffusion process is being effectively simulated and possibly
to shed additional light on the problem of the side-branching inhibition.

As described in Chapter 4, the local temperatures can be derived from the energy
distribution of the demons by an appropriate averaging scheme. An analysis of the
thermal fields associated with the instabilities will give us some additional insight
into the processes at work. However, before attempting an analysis of the more
complex geometry of late time dendritic growth, we shall check a simpler prediction
from the linear stability analysis in Section 3.1. By choosing specific parameters for
the simulation, the interface can be stabilized so that it moves forward but does not
demonstrate any growth modes. This is done by reducing the latent heat, increasing
the diffusion constant or decreasing the system size: Recall from (47) and (51) that
the wavelength of maximum instability (64) is defined by Anar & Vid,; if Apez
is increased so that it exceeds the size of the system, the instability is effectively
inhibited. The undercooling is then chosen so that the latent heat produced exactly
heats the liquid phase to T,,. The resulting interface remains planar as it moves
forward at a constant velocity. The planar symmetry of the interface then simplifies

measurement of the temperature gradient and makes possible a comparison with the

135



solutions for the thermal field (53).

Figure 58 shows the thermal gradient in the 2 direction from a system of size
T2 x T2 x 144 with T, = 0.7 T, and T, = 0.3 T; each layer of demons parallel
to the interface was averaged to find the demon cnergy and subsequently the local

temperature T(z). The thermal gradient is obviously in good agreement with its
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Figure 58: The thermal gradient of a stabilized, moving planar interface is shown in the upper plot:
The solid line is the temperature based upon the average demon cnergy in the slice at height =
perpendicular to the interface. The dotted line is based on the mean spin value in each slice and

is the best measure of the interface position. The points in the lower plot are the logarithm of the
temperature less the undercooling at infinity; the straight line is provided to aid the cye.

analytic counterpart shown in Figure 12; the temperature falls from almost T, at
the interface to T, at = — oo like e~*° where A ~ 2/ as demonstrated in the lower
plot. The only discrepancy is the slight dip in temperature in the solid side of the
interface = < 0.22; this is likely due to the finite curvature at the roughened interface
(see Figure 12). Measuring the slope of In(T — 7.}, we obtain a value for the diffusion
length of £ ~ 45 a. When { is then plugged back into its definition, £ = 2D /vy, with
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the measured interface velocity v ~ 0.030 ¢/MCS, we find D ~ 0.65 = 0.07; for 2
single simulation trial, this is reasonably consistent with D = 0.83 which was set as
a system paramecter (sec discussion leading to (98)).

Satisfied that the thermal diffusion field is consistent with its analytic description,
we shall now examine the results from some typical dendrite simulations. Due to
the arbitrary surface geometry of a dendrite, the simple planar averaging used above
cannot be employed. Instead, thermal imaging is done by isolating a cross-section
of the thermal field and applying 2 simple 3D Gaussian spatial-averaging scheme to

cach site;

n

Edg k)= X e Ve(i+di,j+ djk + dk)

e el

di djdk=-n
where di,dj, dk are integers varying over the site’s neighbours, s* = di* + dj° + dk*
is the distance between sites and A is the weighting factor. The range of averaging is
n = 2 and thus the average is over the nearest 124 neighbours (ie. a2 cube of 5x 3% 5
centered on each site) with no time averaging. This is adequate to identify thermal
gradients on length scales beyond three lattice spacings. The resulting image shows
the averaged temperatures using a pseudo-color scheme, representing from cold to
hot by blue to red (or by a grey scale from black to white).

Figure 59 shows a collection of thermal fields: Each demonstrates some typical
growth behaviour based upon a specific choice of system parameters (latent heat,
undercooling, melting temperature). Fluctuations in the temperature on short length
scales are due to the discrete nature of demon energy levels (spin flips are of order
A¢ >~ 2J) and the limited statistics of the demon lattice. The solid-liquid interface
(derived from the spin lattice) is drawn over the thermal field for reference.

Visual inspection identifies the presence of thermal gradients near the interfaces.
As expected, the gradient between the liquid and bulk phases is strongest near the

growing dendrite tips where the velocity is greatest. It is weaker along the nearly-
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Figure 59: Representative thermal fields derived from an analysis of cross-sectional slices of demon
lattices. Figures a) and b) are from block systems while ¢), d) and ¢) are from slab systems. The
dark outline is the interface derived from the spin lattice. The lighter regions (on the bottom) are
associated with the solid; above is the liquid. Temperature is shown as dark for cold and light for
hot. The graininess of the temperature is related to the limited statistics of the demon distribution.
Note that d) is from the same simulation trial as shown in Figure 46.
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stationary initial interface. It is also evident that much of the liquid phase around the
base of the dendrites has reached or exceeded the coexistence temperature. Indeed,
where multiple dendrites appear, the region between them tends to fill with the excess

latent heat produced by the moving interface. Recall that this excess is described by
A=C(T.-T.)/L

where A = 1 when the amount of latent heat released is identical to that required to
heat the supercouled liquid phase to T,.. In general, A is much smaller than unity.
As one of the dendrites begins to pull ahead of the others, it retards their growth by
leaving its excess latent heat in their path, providing a natural seleciion mechanism
(see Figure 46).

To explore more carefully the role of various system parameters in the instability,
we examine a collection of more-closely related systems. Figure 60 shows a 72 x 72 x
144 system at differing levels of undercooling AT, melting temperature T, latent
heat £, and diffusion constant D; Table 7.4 gives the specific values. The first system
a) is considered representative with T,, = 0.7 T, AT = 04 T, £ = 5.23 J and
D = 0.3, showing moderate surface roughening, 2 rounded tip and a typical growth
rate. Both b) and c¢) have a higher T,n which results in greater roughening, faster
growth and coarsening; in addition, c) has a slightly greater undercooling and thus
is fastest. System d) has a greatcr undercooling than a) and is growing faster as a
result; lowering T, in ¢) slows the growth and reduces the roughness. Subsequently
lowering the diffusion rate in f} slows the growth even more. If the latent heat is
increased very slightly as in g), the growth rate jumps dramatically; this suggests
that the ratio A in f) was near some critical imit. Increasing £ significantly (neazly
dO!:lb]C) in h) slows growth again as there is then an over-abundance of released heat.
The result is that the growth is much narrower and tapered; common to many low

T, trials, the tip of h) shows distinct faceting due to the roughening transition (see
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Figure 60: The thermal fields from closely related systems of size 72 x 72 x 144: Each field demon-
strates the consequence of varying a system parameter; see Table 7.4 for the specific values, Field a)
represents the typical growth behaviour. See the text for an analysis. Temperature s shown as dark
for cold and light for hot. The split images in g) and h) show early and late times for comparison.
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Section 7.3).

In general, results are entirely consistent with the description of the Mullins-
Sekerka instability in terms of the thermal diffusion, as presented in Chapter 3, and
the role of interface fluctuations. Specifically, we can see that the thermal diffusion
field is directly coupled to the growth of the dendrites; the lack and over-abundance
of latent heat tends to inhibit growth; higher melting temperatures roughen and ac-
celerate the interface and lower melting temperatures slow it, introducing faceting at
the tip attributed to the dynamic roughening transition; reduced diffusion rates limit
growth. Also apparent, although not predicted by linear stability, is the relationship
between the scaled undercooling A and the coarsening of the dendrite; larger A corre-
sponds to enhanced coarsening even though the thermal gradients near the interface

appear to be comparable. This suggests an area for further study.

. |aT|c | Dl al a |¢

a)|| 0.7 | 0.4 |4.7/03 (035 0.18 | 26
b} | 08 ] 0.4 |33]03] 061! 0.51 |19
ol os |05 (330307 049 |13
d)f 0.7 | 0.5 {4.6|0.3 || 0.47 | 0.22 | 18
e) [ 0.65]0.45 | 3.8 0.3 | 0.35) 0.18 | 42
£) 1 0.65 0453801} 035 0.18 | 37
g) 06504541 [0I) 03] 0.15 |12
h) [ 0.65 [ 0.45 | 5.8 | 9.1 |/ 0.29 | 0.096 | 19

Table 1: The tabie entries correspond to the thermal fields in Figure 60; changes in cach of the
parameters, coexistence temperature Tp,, undercooling AT, latent heat £ and diffusion constant
D, produce behavioural changes in the instability as described in the text. The units of 7). and
AT are in T, of the unmodified Ising model; £ is in units of J; D is in square lattice spacings per
Monte Carlo step. The other parameters, the scaled undercooling A, the czpillary length d, and the
thermal diffusion length £, are calculated from expressions derived in Chapter 3; A is dimensionless;
d, and ¢ arc in lattice spacings. Note that £ depends on the tip velocity which is measured but not
shown here.
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7.5 Faceted Dendrites

The second direction in which we began preliminary investigations is the special case
of dendritic growth with faceted tips. “Often, crystalline forms characteristic of real
dendritic growth (such as the snowflake in Figure 1) correspond to growth taking
place below the roughening transition. We might hope that the model interfaces
below Tj{imo} will show behaviour resembling that of real, faceted crystals. Due the
nature of dynamic roughening, there are difficulties in exploring this behaviour; recall
that faceted interfaces have a very weak response to driving forces and move quite
slowly (see Section 5.4). Moreover, lower temperatures involve reduced rates of spin
dynamics, further slowing the interface. Subsequently very long runs are required for
small undercooling and low temperatures. However we will be able to convincingly
demonstrate this behaviour in our simulations.

As mentioned, the dynamic roughening transition plays a subtle role in the for-
mation of dendrites. For example, it inhibits instabilities on certain planes where the
local interface temperature is below the roughening temperature Tr (eg. the {100}
faces) resulting in the phenomenon of preferred directions of growth. A casein point,
the growth of the arms of a snowflake radially out from the hexagonal unit cell is much
faster than perpendicularly out from the basal plane; this is why the classic snowflake
shape is flat. In our simple cubic crystal simulation lattice, it has been observed that
this effect is at least partly responsible for the atypical side-branching (see Section
7.3).

In Section 5.4, it was observed that the faceted interface phase continued to exist
despite the presence of a driving force, at least, up to a critical limit. When the
phase coexistence temperature is very low, the interface can be exposed to relatively
large driving forces, exhibit instability behaviour and still be faceted. This has been

observed experimentally (Maurer, Bouisson and Perrin 1989) in the growth of NHBr
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crystals from a supersaturated solution; Figure 61 shows several of these growths at

different velocities. Note that the faceting is restricted to the tip of the dendrite

Figure 61: Experimental growth shapes of NH,Br crystals at different velocities, a) v = 0.43um/s;
b) v = 0.042um/s; ¢) v = 0.015m/s; and d) very close to equilibrium. These images are from work
by J. Maurer et al. (1989).

where the thermal gradient, and subsequently interface undercooling, is greatest.
Similar to the observations made of the stable planar interface, a dynamic roughening
transition is observed such that the faceting at the dendrite tip gradually disappears
with increasing velocity (and thus with increasing driving force).

Comparable results have been observed in some of our simulation trials. Using a
coexistence temperature set to the equilibrium roughening temperature T, ~ T =
0.54 T, and a relatively strong undercooling, AT = 0.40 T., single dendritic growths
with faceted tips have been produced; Figure 62 shows a typical result. The tip
velocity in this case is measured to be constant at v = 6.4 lattice units per 1000 MCS.
By varying the undercooled temperature, the driving force at the tip can be changed.
For the same system, we varied the undercooling T, € [0.0,0.2] T, and observed the
steady-state velocity of the tip as shown in Figure 63. Although the data is based

on only one trial per point, there is a clear transition in the growth response near
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Figure 62; Two views of a simulation of a faceted dendrite; the lower image shows an gerial view of

the tip, highlighting the cubic facets.
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Figure 63: The growth response of a dendrite at temperatures below the equilibrium roughening
temperature T for a given undercooling. Visual inspection of the dendrite tip at AT < 0.48 T,
shows that it is faceted. Figure 62 shows the dendrite for AT = 0.40 T...

AT ~ 048 T,; error bars are estimated at 10-15%. Due to the strongly non-linear
response of the faceted tip, the velocites for the smallest undercooling are particularly
low and difficuit to measure accuratel:. However, the trend is unmistakable and
completely consistent with our expectations. We fully expect to be able 1o perform
a complete study of this behaviour in the future, making direct contact with existing
results (Maurer, Bouissou and Perrin 1989) and analytic descriptions (Ben Amar and

Pomeau 1988).
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8 Conclusions

We have examined the behaviour of crystal interfaces using Monte Carlo simulation
on a simple cubic Ising model of spins. The interfaces were simulated under a variety
of conditions, highlighting several distinct surface phenomena. In particular, the
roughening transition of equilibrium and dynamic interfaces and the Mullins-Sekerka
instability at early times (linear regime) and late times (non-linear regime) were
studied. In almost all cases, the results represented the first reported attempts at
simulating these processes in three dimensions.

A planar {100} interface at equilibrium was first shown to demonstrate the well-
known equilibrium roughening transition with changing temperature. The results of
our simulations were compared favourably to previous studies and to current the-
oretical descriptions. An alternate approach to analyzing a faceted interface was
presented; it was established as a greatly improved method of identifying the transi-
tion. This technique was then applied to the surface of a metastable bulk inclusion
(or droplet) to measure its roughening transition behaviour. It was noted that the
droplet required an external driving force to enforce metastability and subsequently
that the roughening behaviour was modified. The modifications, a depression of the
roughening temperature and a broadening of the transition region, were found to be
in good agreement with theoretical predictions for the dyramic roughening lransi-
tion. Comparisons with predictions based on the droplet shape were also found to be
consistent although less clear.

Dynamic studies of these interfaces were then carried out. First, the balancing
force on the metastable droplet was removed and it was observed to demonstrate be-
haviour resembling a roughening transition, passing quickly from a faceted to rough-
ened state, although neither temperature nor driving force was changed. This was

found to be a natural consequence of two distinct evaporation processes reducing the
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surface energy of the droplet at disparate rates. Next, the planar interface was ob-
served in the presence of a weak thermal gradient. Again using our analytic technique,
we showed the presence of a dynamic roughening transition as a function of under-
cooling (driving force). Although we were unable to compare the data directly with
theoretical predictions, we did observe behaviour which was consistent with analytic
descriptions.

Turning to the Mullins-Sekerka instability, we first undertook 2 test of the pre-
dictions of linear stability analysis, which are considered fundamental to this phe-
nomenon at early times. In the light of technological limitations, we chose to use a
two-dimensional version of our code. The linear analysis makes several very specific
predictions for the linear regime growth of planar and circular interfaces which have
never before been directly confirmed in either simulation or experiment. In the pla-
rar case, a special long-range interaction was used to extend the linear regime; the
dispersion relation defining the growth modes of the interface was then measured and
found to be consistent with the predictions. Despite the large ensemble of data used,
noise was still significant, underlining the difficulty in extracting useful information.
In the circular case, the stability radius of the growing disk was measured and shown
to be in good agreement with theory, using two independent techniques. In concert,
these results are very convincing validation of the linear stability analysis. They also
support the use of our model for the simulation of dynamic processes.

Finally, we examined the Mullins-Sekerka instability at late times when the growth
~ is non-linear and geometrically complex. Based on experience and on the limitations
of computer hardware, we chose to examine two specific configurations of the {111}
interface: First, we studied the quasi-two dimensional slab system which has one of
the interfacial dimensions very small compared to the other; this permits relatively

large, flat dendritic growths. Second, we studied the block system which is fully three

147



dimensional but limits the size of the growths which are possible.

Both types of growth were characterized by tip velocity, surface area and power
spectra and shown to be consistent with experimental observations and analytic re-
sults. The two systems were distinguished by the absence of coarsening in the slabd
growths, similar to previous simulation studies performed on true 2D systems. In
neither case did we observe side-branching, the production of secondary instabilities
on the. sides of the growing dendrites; this feature is routinely observed in experi-
ments. Noting the appearance of proto-branching in certain cases, we surmised that
complications related to the crystal structure inhibit the formation of side-branches.

Turning to the analysis of the growths- in terms of the associated thermal fields,
we demonstrated the physically correct behaviour of the thermal diffusion mechanism
again using predictions from the linear stability analysis. We then directly examined
the appearance of a variety of growth shapes and commented on the eflect of var-
ious system parameters on the instability. Lastly, we presented _t.hc results from a
preliminary study on a special class of dendrite which has a facctt;d tip. Making di-
rect comparison with existing experimental studies, we showed a comparable growth
shape in low temperature simulations and demonstrated a transition behaviour in the
growth response to changing driving force. This behaviour is consistent with the dy-
namic roughening transition observed and discussed in an earlier Section. Indeed, this
appears to be the unique cross-over case where both the Mullins-Seketka instability
and the roughening transition are observable simultaneously.

The work presented here has established the viability of studying crystal interfaces
with simulation in both equilibrium and dynamic contexts in three dimensions. We
have reproduced a.cceptéd behaviour as well as produced unique results and provided
a basis for interpreting them. We have laid the foundations for further studies of crys-

tal interface problems, in greater detail and in new contexts. We envision the use of
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other crystal structures such as face-centered cubic, body-centred cubic and hexago-
nal close-packed to study their multiple roughening transitions and uniqu: instability
patterns as observed experimentally; simple cubic crystals are relatively rare in nature
and most experimental results available for direct comparison involve materials with
other structures. We also hope that they might provide the key to the side-branching
phenomenon in the Mullins-Sekerka instability. In addition, more work needs to be
done on the instability in the linear regime, both in terms of improving the statis-
tics in two dimensions and extending the study to three dimensions. Several other
results were left relatively unexplored including details of the dynamic roughening
transition in our model, growth and evaporation processes in crystal droplets and the
roughening behaviour of facetted dendrites. With constant and ongoing advances in
computer hardware, we expect many new and beneficial results to be derived from

future simulation studies of crystal interfaces.
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Appendices

A.1 Crystal Plane Notation and Lattice Geomeiries

The simple cubic (SC) crystal structure is the simplest crystal in terms of its unit
cell and indexing. The position and orientation of a crystal plane is denoted by an
orthogonal set of three vectors which are, by convention, defined by the unit ceil of
the crystal. The cubic unit cell is a cube defined by the Cartesian vectors z, § and 2

of unit length (see Figure 64). Crystallographic planes are then referred to in terms

Figure 64: A schematic diagram of the simple cubic unit cell.

of (hkl) where k, 7 and Il are found by the following recipe:

1) Starting from an arbitrary origin on a crystal lattice site, find the integer

intercepts a, b and ¢ along Z, ¥ and = of the plane

2) Take the reciprocals of a, b and ¢ and find the smallest integers k, j and ! which
preserve their relative ratios.
Ie. for (a,b,c) = (3,2,4), change to (1/a,1/,1/¢c) = (},1,1) and find (kkl) = (463).

Negative numbers are denoted —h — k. This is the Miller index.
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The primary faces of a cube are thus (100), (010) and (001) with the opposing faces
denoted (100}, (010) and (001). Since they are symmetric with respect to rotation,
they are referred to as a set as {100}, the curly brackets implying the equivalence.
The three planes which each cut diagonally through three adjacent cube faces are
the {111} planes. The directions [hkl] are perpendicular to the planes (hkl); note
that this is true for the simple cubic crystal but not necessarily so for other
structures. For more details on crystal indexing, see Nicholas (1965).

The cubic Ising lattice is identical to the simple cubic crystal lattice and is usually
implemented in 2 manner such that the sites are accessed according to the (a,,¢)
convention. However, to reduce the complications of plane orientation issues such as
the shape of the simulation system, the simple cubic crystal was mapped onto the
simulation lattice such that the crystal interface always corresponds to the lattice
(001) interface, no matter the crystal orientation. This was done by uniquely coding
the definition of the lattice nearest neighbours for each crystal orientation.

In all cases, the algorithm uses a virtual lattice which is regular and cubic with

N. x N, x N, sites; the choice of nearest neighbours and spin bond strengths
determines which physical crystal structure the algorithm emulates. The initial
interface is always parallel to the X-Y plane of the virtual lattice. The sides of the
system are always periodic; the ends are pinned.

In the case where the nearest neighbours of a site at a,b, ¢ are defined as the
adjacent sites along the Cartesian axes (ie. a £ 1,6+ 1,c¢ £ 1} and bond strengths
are equal and identical to J of the Hamiltonian, the system represents tha SC
structure and the interface corresponds to the {100} plane. Figure 65 demonstrates
the basic lattice definition.

If the nearest neighbours are specially chosen triplets in the X-Y planes above and

below the site (ie. ay,by,¢ = 1; az, ba,c — 15 @a,ba, ¢ — 1; ag, by, ¢+ 15 ag, b5, ¢ + 1;
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Simplc Cubic !
{100} Interface

Figure 65; A schematic diagram of the {100} interface. The bonds to the neighbours of one interface
site are highlighted.

ae,be, ¢ + 1) and bond strengths are equal, the lattice represents the SC structure
oriented with the {111} plane parallel to the X-Y plane. Each X-Y plane ¢ defines
the triplet neighbours for a site differently according to its designation as one of the
three distinct laterally displaced SC {111} planes; the SC {111} structure is
constructed by stacking these X-Y planes cyclically (ie. 1,2,3,1,2,3,1,...ctc.). Figure
66 shows how the neighbours are defined on the cubic lattics,

Other crystal structures are immediately accessible using this approach such as
hexgonal close-packed (HCP) and face-centered cubic (FCC). As well, the bond

strengths can be varied to produce other non-rotationally symmetric variations.
A.2 Critical Droplet Radius
Consider the free energy of a spherical droplet of radius R;
Er = 4xR%~ — %wR:‘AEg,
where AE, is the bulk free energy difference and v is the surface tension. The first
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Simple Cubic
{111} Intcrface

Figure 66: A schematic dingtam of the {111} interface. The bonds to the ncighbours of one interface
site arc highlighted.

term is the capillary contribution and scales with < as the surface area. The second
term is the bulk term and scales as the volume; it is assumed negative (ie. the solid
has a lower bulk energy than the liguid melt) as there is no finite critical radius

otherwise.
At the metastable point where dEr/dR = 0, the droplet does not feel any force and

thus does not grow or decay. The critical radius is thus defined to be

2y

R = DE

At R > R", the droplet will tend to grow; at R < R", the droplet will tend to shrink.
When AE, = 0 (ie. at coexistence), R* = co and all sizes of droplets will shrink.

In two dimensions, the analysis is almost identical. The free energy of a disk is
Er = 2= Ry — =R*AE,.

Here of course, v is surface energy per unit length and the capillary term scales as

the circumference; AE, is the bulk free energy difference per unit area and the bulk
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term scales as the area. This leads to critical radius which ouly ditfers from the 3D
R* by a factor of 2;

R = AE

Some analyses are performed with slightly different forms of the free energies. The
capillary length is length scale which assigned to the surface free energy; it is defined
to be

+T.C
£

d, =

where T, is the coexistence temperature of the systemr {(which has a first-order
transition) and £ is the requisite latent heat. The bulk free energy of each phase

m. ~ xl1is
Ey(mz) = e(mz) — s(my)T

where ¢ and s are the meanfield average spin energy and entropy density, equations
(85) and (87) respectively. To first order m, 2x —m_ ~ 1 near coexistence and thus
the bulk free energy is AE, ~ In(é)(T — T.n) and we can express the cntical radius

as

- é - 2d\"
A

2D = anz_A

A.3 Curvature of a Discrete Lattice

Here we derive an expression for the mean curvature & of a discrete interface, and
relate this to the mean facet area (A) for T > Tx. If the interface is at

thermodynamic equilibrium and is single-valued h(x), then the Fourier spectrum cf

modes has the form (Grant 1988)

T

(@) = (IFRENF =~
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where + is the surface tension and F signifies a Fourier transform
h) = Flh(x)) = [ dx &9 h(x).

When the local curvature x is small (V*2 <« 1) then

o () = (VIR = F({leh(q)))

o
Il

-

2rja - -
[, daa{h@i(a))
T 2=
3

a

i

¥ (L> e) (123)
so that
ik« VT. (124)

To relate & to the area of the local microfacet 4, we show in Figure 67 the

relationship of the interface to the underlying lattice with unit vector a. We choose

Figure 67: The discrete Ising lattice reptesents a curved interface with a stepped planar surface of
comparable variation in height. Consequently, even a fully roughened surface can be described in
terms of its micro-facet distribution. It can be shown that an interface of constant curvature < will
have a facet of size I = /8a/x where a is the unit lattice spacing.

a micro-facet whose center is approximately contingent with the apex of the curved

interface, and define its size £ to be the solution of the expression
1 .
Ak = h(x) — h(xo) = 55:“ =a
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The distance from edge to edge is therefore

where Ak is assumed to be one lattice constant 2. The micro-facet area is then

A(x) = £(x)* = 8a/x. (125)

so that, using (124), the mean micro-facet area behaves like

ATy TTV? T > Tr

A.4 Corrected Micro-Facet Quantities

The micro-facet population on a reference plane below the roughening temperature

Tk is described by the Boltzmann-like probability function
1(6,T) = Qe™B/keT

where E({) is the energy required to create a micro-facet of size £. Units are defined
such that the Boltzmann constant kg is unity and it is subsequently dropped from

use. The prefactor { is defined so that

S P, T)=1 (128}
¢
where the sum is over all sizes of £ in units of the lattice spacing a. Consistent with

a cubic lattice at low temperatures, the typical micro-facet is assumed to be a

square of thickness a and sides £ x £. The micro-facet energy is thea
Ey(8) = 4LE,(T) — e AEL(T);

where the first term is the contribution from the step free energy E, and the second

is from the balk free energy difference AE;.
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Going to the continuum himit, P/(¢,T) then becomes a probability density function.
Since the quantities measured on the interface are averages over the fluctuation
population, we will use a lower limit £.,;, = 1; this reflects the fact that the lattice
cannot support a micro-facet of size smaller than unity. At bulk phase coexistence

AE, = 0 and in the continuum limit, (126) is then

[ s =
1

— Q= :1?1-_:4645./2'_

Now, several useful expectation values will be derived using P¢(£,T). Note that we

make repeated use of the integral identity

z"e® n

fd:r: z" et = f dz ™"t e%,

a G

The mean micro-facet width:

@ = [”aeamr)

- ® ~4tE,/T
Ql dlle

T
4E,

1+

The mean micro-facet area:

() = [ ate PeT)

T T
= 1T2E, (1+—)

The micro-facet area variance:



(2]

o = _/Imdf(f‘—(.-!.):) Py(£.T)

T \* T? Tyt
- _— & 9
o(15) ~1(55) »(E)

Finally, the fraction of the reference plane which is covered by micro-facets can be

approximated using the following argument: It is assumed that the thermal energy
density &(T') ~ T is distributed equally amongst all sizes of micro-facet; in other

words,
s(T):f Gl <(6,T) Py(4,T) = T.

Thus, the energy density distribution function ¢(£,T) is equal to T. This leads to a

definition of the number density of micro-facets of size ¢£;

6Ty T
MO> T o = uE

The expectation of the aree density of micro-facets is then

(Awe) = (n(8A(D)
- '[1 ® 4 —L_¢ pe,T)

ALE,
T T T
= &=z (1 + 43,) .

Note that {A,,.) is not directly applicable to the interface area; there is a prafactor
A which depends on the details of the lattice, the model Hamiltoniar and the
geometry of the micro-facets. Thus, the expression for the fraction of the interface

plane which is not covered by micro-facets is

(Ao)

1- CmtAo:
T

= 1 Conu [5:2,— (1 + ZF)] (127)
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For this model, the preiactor has been measured to be Con,e ~ 1/16.

A.5 Growth and Evaporation Crystal Shapes

Some experimental measurements have been made of nucleation- and
diffusion-limited growth {Gallet, Balibar and Roliey 1987) and evaporation on
planar and droplet crystal interfaces (Dougherty and Gollub 1988; Heyraud and
Métois 1980; Métois and Heyraud 1982; Heyraud and Métois 1987). Although not
quantitatively comparable to the results presented here, the qualitative similarity
between their photographic images and our surface representations is worth noting.
Figure 68 shows a pair of images from a crystal evaporation experiment and the
related simulaiion. The real crystal on the top is a gold (Au) droplet several pm in
diameter from a study done by Heyraud and Métois (1980); note that the Au
crystal is face-centered cubic (FCC) instead of simple cubic like our model and thus
shows {111} facets as well as {100}. The simulation droplet on the bottom is from a
128 x 128 x 128 system with both the solid and melt at the coexistence temperature
T = 0.4 T,; the droplet is rapidly evaporating from its initial state as a perfect
cube. Both systems are at a temperature below their respective equilibrium
roughening temperatures. The Au crystal exhibits a series of concentric terraces
which have been identified as diffusing step fronts. Although the resolution is
somewhat low on the simulatior model, the presence of similar steps around the
main facets is detectable. A mechanism for surface self-diffusion has been proposed
by Heyraud and Métois {1982).

Figure 69 shows a similar set of images from crystal growth studies. The physical
crystals are again gold (Au) and lead (Pb) which is also FCC in structure; the Pb
crystals are from another study by Heyraud and Métois (1987). The simulation

image is from work which is not presented in this thesis. The main feature is the
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Figure 68: A pair of images comparing the appearance of evaporating crystals as observed in cxperi-
ment (Heyraud and Métois 1980) and simulation {sec Section 5.3). The physical erystal is gold (Au)
on a graphite substrate; it has an FCC lattice structure and thus shows {100} and {111} facets.
Note the similar concentric step patterns related to surface diffusion.
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Figure 69: Three images comparing the appezrance of growing crystals as observed in experiment
{Heyraud and Métois 1980; Heyraud and Mctois 1987) and simulation (not presented in this work).
The physical crystals are a) gold (Au) and b) lead (Pb); they both have an FCC Iattice structure
and thus show {111} facets. Note the absence of curved and roughened regions.
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absence of roughened regions between the facets. In the case of the Au crystals,
several different stages of growth are observed. One crystal shape is presumed to be
the state at late times (indicated by the arrow) where only the {111} facets appear;
similar to the case of the evaporating droplet described in Section 5.3, it is believed
that the fastest growing rerions (ic. the roughened interface) dominate the growth.
The simulation image is the same system described above except that the

coexistence temperature is T, = 0.5 T, (ie. the melt is undercooled).

A.6 Surface Area of Unstable Interfaces

The surface length (area) of unstable 1D (2D) interfaces is expected to increase like

carly t
s(t) (128)
t late t

To demonstrate this, we make the following argument: We suppose an infinite 1D

planar interface with a perturbation which has the form

h(z,t) = ko + 3 ax(t)(1 + sin(kz)).
*

For simplicity, we shall isolate a single growth mode &’ so that ¢, = 0 for k # &',
This form for the interface implies the case where there is no coarsening or
side-branching of the needle crystals. The requirement that the tips move with
constant velocity (typical of dendritic growth) sets the amplitude to ap = Con,et.

The total surface area (or, in 2D, the interface length) is described by

> dh?
s(z)=j; dzy(1+ 2=

where the integral is over the wavelength of the sine wave A = 2« /kz. This integral
doesn’t have a simple solution; instead we can look at it’s early and late time
behaviours. For small a(t) (ie. eatly times), we approximate the square root with a

Taylor expansion to first order;
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s(t) =~ j: dz (1 + ‘:];(a;,(t)kcos(k:z:)):)

"
== x [

For a{t} 3> 1 at late times, the 1 can be ignored and the square root approximated

by

s(t) =~ f: dzax(t)k cos(kz)

= L.

This is consistent with the view that the needles are columns of constant
cross-section (no coarsening) whose surface length increases solely along their sides.

In 3D, tke interface can be similarly defined as

h(z,y,t) = ho(z,y) + 3 ax, ik, ()1 + sin(kz))(1 + sin(kyy))
ke

and the total surface area becores
8h* Bk
S(t)..f dy / dz\Jl-i-—- +50 -

In applying the same limits of a(t), we find the same time dependencies.

On a circular interface (ie. a disk in 2D), we can make 2 similar argument with
regard to the total area of the droplet: Let’s suppose a perfect disk of radius R,.

We can then perturb the interface

R(8) = Ro+ Y pm(l + cosmb)

where p is a function of ¢. Simplifying so that p, = 0 except for one value of m, the

area of the disk 1s
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=
Il

2+ AR(S)
f f » dr d6
0 0

- /:'ﬂ(?de

. 3,
=(R; + 2Rop + p7).

In the thermodynamic limit of R, — oo, the disk interface becomes the planar

interface. We can assume for large R, that p & ¢t and thus to first order A(t) ~ ¢ for

small £. At late times, A(t) =~ %
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