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Abstract

\Ve studv the bchavlol1f of a s1:uol(" cubic en'stal interfacc.- throl1~h the.- ana.lv~is. . - '-.

and simulation of the lsing mode! in threc dimensions: Wc.- usc.- an aIgorithtl1 whil-h

permits local temperature variations by emulating th<'rmal diffusion. W.... d.... rin· a

description of the interface based on the thermal fluctuation population at equilib­

rium and then use it to identify the equilibrium and dynamic roughening transitions

observed under a ,...nety of circumstances including a planar interface at equilibrium.

a metastable bulk inclusion, an e,-aporating inclusion and a planar interface in the

presence of a driving force. \Ve also study strongly driven inter~"C<.'"s which exhibit

an instability and pattern formation behaviour known as the 1\Iullins-Sekerka insta­

billty. We use a special two-dimensional version of the simulation mode! to examine

the Iinear growth of unstable modes of a driven interface; we compare our simulation

data to theoretical predictions for the cases of an unstable flat interface and circular

disk interface. Returning to the fuliy three-dimensional code, wc present simulation

data of late-time dendritic growth, including an analysis of the information available

in the thermal fields. We also 3how that, at low temperatures, the tips of dendrites

are facetted and demonstrate a response to the driving force which is consistent with

the dynarnic roughening transition.
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Résumé

Cette thi"e etudie la dynamique des interfaces d'un cristal cubique simple par

l'analyse et la simulation du modèle de Ising en trois dimensions. Un algorithme sim­

ulant la diffusion thermale et permettant des variations locales de temperature a été

utilisé. Une description analytique de l'interface en équilibre basée sur les fluctuations

thermales y est également déri....ée. Celle-ci est ensuite utilisée pour l'identification de

la transition rugueuse, tant pour des cas statiques que dynamiques, tels ceux d'une

surface plane en équilibre, d'une goutte metastable, d'une goutte en é....aporation, et

d'une surface plane poussée par un force externe. Cette thèse étudie également des

interfaces montrant la formation de motifs cohérents resultant d'une instabilité, alors

dites de Mullins~Sekerka. Une ....ersion modifiée et en deux dimensions de notre modèle

est utilisée pour examiner la croissance linéaire des modes instables d'interfaces à une

dimension. Les résultats obtenus sont comparés aux pré....isions analytiques pour une

surface plane et un disque. Finalement, les résultats de simulations de l'instabilité

dendritique en trois dimensions sont présentés. Les résultats obtenus pour les champs

thermaux et les interfaces, et ee pour le régime non-lineaire aUX temps avancés, sont

analysés. En outre, une partie de eette thèse étudie les facettes trouvées sur les

extrémités des dendrites de même que les relations entre la croissance et la transition

rugueuse cinétique.

ü
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• 1 Introduction

Crystals have forever capturcd the eye

and the imagination. Common quartz,

iron pyrite and amythest evoke as much

wonder and curiousity as precious gem-

stones, simply for their unearthly sym­

metry and geometric beauty. The in­

tricate growth forros of snow11akes and

hoarfrost are eternal sources of inspi-

ration for poets, philosophers and sci-

entists alike. But like so many of Na-

ture's mysteries, the secrets of erystals Figure 1: A classie snowllake grown by Furul:aW&.
Reproduced !rom (Yokoyama and Kuroda 1990).

and crystal interfaces have been only re­

luctantly revealed through painstaking study.

a boundary separating bulk concentrations of each phase provides an excellent repre-

In this thesis, we endeavour to con-

tribute to the growing store of knowl­

edge by studying the behaviour of a

crystal interface using computer sim·

ulation. Our means will be the simu-

lation and analysis of the simple cubic

.:.:.:.:.:.:.;.:.;.;.

Toy 3D Ising mode!Figure 2:

Ising mode!. This is a simple mode!

of spins .....-ith values of ±l (ie. a solid­

liquid or solid-vapour two-phase system)

regularly spaced on a three-dimensional

lattice as pictured in Figure 2; since its spatial structure is precise!y that of a crystal,

•
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Figure 3: Cartoons of a) the equilibrium (or dynamicl roughcning transition on a bulle inclusion, bl
the equilibrium (or dynamicl roughening transition On a planar interface, and cl the Mullin...Seleerlca
instability on a planar interface.

sentation of a crystal interface. The interface, "'bich is a two-dimensional object in a

thr~dimensional system, can be planar and oriented in any specifie direction relative

to the lattice's axes, or encompass a bulk inclusion or droplet of one phase within a

background of the other and thus present surfaces of every possible orientation.

Our goal will he to examine several distinct yet related aspects of such an in­

terface, at, near and far from equilibrium, and thus to illustrate elementary aspects

typical of real crystal interfaces. In Figure 3, sorne of these aspects are depicted:

At equilibrium, a crystal surface demonstrates a structural phase transition, ca.lled

the equilibrium roughening transition, wbich a.ffects both the equilibrium shape of

a droplet interface and the behaviour of thermal fluctuations on a planar interface.

Bdow a critical temperature, the plane will be fiat and relatively featureless, while

the droplet is faceted, each reflecting the underlying lattice structure. At the critica\

point and a.ll temperatures above, the plane becomes rough and its width diverges

over long lengthscales; the droplet also shows roughening and its facets disappear.

Near equilibrium, when subjected to a small driving force, the interface moves (or

is static and exhibits enhanced curva.ture), modifying the equilibrium behaviour. As

weil as transforming at a critical temperature, the surface may transit at a critica\

applied force for a given temperature; tbis is the dynamic or l.:inetic roughening tran-

3
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sillon. Far from equilibrillm, the interface becomes unstable and begins to grow,

generating complex tree·like structures called dendrites. The growth is not arbitrary

but selects specifie directions, Iengthscales and rates of movement which depend on

the nature of the crystal Iattice as weil as the physical considerations (cg. the strength

of the driving force). This is known as the Mullins-Sekerka instability. Each of these

phenomena represent a basic problem in the physics of interfaces and each has re­

sisted a complete analytic description of the essentially simple proeesses governing

their dynamics. By studying the interface in a simple cubic Ising mode! under such

a variety of conditions, we hope to build a complete description of crystal interface

bchaviour, from equilibrium to dynamics.

As mentioned above, the equilibrium roughening transition is marked

by two distinct modes of beha\;our: A planar interface of a specific orientation (eg.

{IOO} in the simple cubic crystal) passes from a fiat, highly correlated state to a

roughened wandering one. A droplet interface, which necessarily presents surfaces

of alI possible orientations, pasSes from a faceted, geometric form (eg. Iike a cube)

to a rough, rounded one. While it will be shown in later Chapters that these two

behaviours are related. historically the former has acted as the basis for theoretical

analysis and the latter for experimental studies. The reason for this is tractability in

each of the two contexts; a fiat interface has fewer complications to account for and

lends itse!f to being modeled more easily than a curved surface, hence it is simplest

for theorists to grapple ,,;th; equilibrium crystal surfaces are difficult to contrci and

so experimentalists have had the greatèst success with small, approximately spherical

droplets.

Most natural crystals are formed away from equilibrium; they then only change

very slowly through surface diffusion and adsorption/desorption, strongly limited by

the low rate of mass transport of material. True equilibrium shapes are independent of

4
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anv dvnamical or thermal historv. den.ned onlv b,' the nature of the crvstallattice and. . - . - .. ..

the current thermodynamic conditions. such as tcmperature and pressure. Producing

and maintaining truc equilibrium has always been a challenge for experimentalists.

For this reason, the equilibrium roughening transition was theoretically prcdicted long

before it was actually observed. In a now landmark paper, Burton, Cabrera and Frank

(1951) suggested that there was a critical temperature at which the planar interface

of a simple cubic Ising mode! would be transforrned from a fiat, corre!ated surface

to a roughened one. They believed that at sufficiently low temperatures there was

a barrier imposed by capillary forces which would inhibit the roughening normally

associated ,,;th thermal fluctuations. At the critical temperature, they belie"ed that

the fluctuations would be just strong enough to delocalize the interface. However,

their analysis was based upon a simplified model ,,;th fluctuations restricted to a

single layer and thus their results were viewed with sorne doubt. Chui and Weeks

(19i6) eventually showed that their analysis was indeed correct. They also showed

that the transition was of a Kosterlitz-Thouless type (Kosterlitz and Thouless 19ï3)

(ie. of infinite order) and consequently very difficult to observe.

Figure 4: A small droplet (- 50,.m) of1etrabrommethane as it passes from T =50 C to T =92 C
through its roughening temperature. Reprodueed from referenee (Pavlovska and Nenow 1977).

At ahout this time, refinements in experimental techniques were finally making it

'possible for expe:-imentalists to observe true equilibrium crystal shapes. What they

saw was consistent ,,;th the idea of the roughening transition: The crystal surfaces

underwent a structura.! transition with temperature which changed their profile from

multi-faceted, geometric shapes Olt low temperature to rounded, roughened lumps Olt

5
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high temperature. E;ucly efforts by Pavlovska and :\enow (19ïï) with negatit'e crystals

(vapour bubbles within a crystallattice) in such substances as diphenyl, napthalene

and tetrabrommethane revealed a reproducible transition from a faceted to unfaceted

state within certain temperature ranges. Similar observations were made by Jackson

and Miller (19ïï) using hexachlorethane. Since then, Heyraud and Métois (1980;

198ï; 198ï; 1989) have produced many excellent results using simple metais and

ionic compounds like gold, indium, sodium chloride and lead. However, the most

impressive data has come from experiments with helium crystals, either <He (Wolf,

Balibar and Gallet 1983; Wolf et al. 1985; Gallet, Balibar and Rolley 198ï) or 3He

(Rolley, Balibar and Gallet 1986;. Rolley et al. 1983); their work has been so weil

controlled that they have been able to provide solid quantitative evidence on both

crystal droplet profiles and planar crystal interfaces. Moreover, the behaviour of <He

is particularly interesting in that it demonstrates three distinct roughening transitions

on three different faces due to its hexagonal cIose-packed structure (see Figure 5).

Figure 5: Equilibrium 'He erystals at varions temperaturcs bctwccn the thrcc roughening transi­
tions: a) at T > TR' > TR: > TRI. b) at TR3 > T > TR:. c) at TR: > T > TRI. and d) at TRI> T.
Reproduecd Ii:om reference (Balibar. Gallet and RoUey 1990).

Adding to the experimental evidence, simulation work has begun to play an in­

creasingly important role in identifying and quantifying the roughening transition. In

6



Beijeren and Nolden (1987).

In Nature, it is much more common to find crystal interfaces which

Toy SOS mode!Figure 6:

1

particular, the planar crystal interface has been studied using the solid-on-solid (505)

model (\Veeks and Gilmer 1979; \Veeks 1980), a natural consequence of its tise in the­

oretical work by Chili and Weeks. This mode! cmploys a two-dimensional rcgular grid

of columns, each with a height hi and an interaction energy defined by the difference

(h;-hj ) between neighbouring sites; Figure 6 shows a toy version of il. At low tempera­

tures where surface fluctuations tend to be small and few, tms mode! favourabl)" emu­

lates a planar interface and successfully avoids the burden of a fully three-dimensional

simulation sytem. Thus, it is perfectly suited for the study of the equilibrium transi­

tion. Some groups have made attempts at simulating the Ising mode! in threc dimen­

sions (Bürkner and Stauffer 1983; Mon et al. 1988; Mon, Landau and Stauffcr 1990);

however, results have been somewhat Iimited due to the restrictions of a\-a.ilable Com­

puter hardware. Although less simulation work has been done on droplets, analysis of

the Ising mode! has provided detailed descriptions of the equilibrium shapes of vari­

ous crystallattices, above and below the roughening transition, in two (Rottman and

Wortis 1981; Holzer 1990a) and in three

dimensions (Rottman and Wortis 1984a;

Touzani and Wortis 1987; Holzer and Wor­

tis 1989; Murphy and Rottman 1990). In

the two-dimensional case, these analyses

has been confirmed by Ising mode! sim­

ulations (Saito and Ueta 1989). Reviews

of research on the equilibrium roughening

transition can be found in Weeks (1980),

Rottman and Wortis (1984b), and van

•
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were formed while wealely driven away from equilibrium. As pointcd out above, ex­

perimentally it is far more difficult to establish true equilibrium than to maintain a

non·equilibrium context. Moreover, industrial crystal l;rowth techniques depend di­

rectlyon the particulars of weale interface growth. Consequently, there is considerable

interest in understanding how small forces affect the behaviour of an interface. Chui

and Weeks (19ï8) first proposed the existence of a dynarnic roughening transition two

years after their initial equilibrium analysis. This was followed by a more rigorous

analysis by Nozières and Gallet (198i) which has provided a clear understanding of

the problem: If the interface is only wealely coupied to the underl);ng lattice (ie.

below but near the equilibrium transition temperature), a sufficiently strong driv­

ing force ",;il tend to decouple it completely, thermal fluctuations then causing it

to roughen; stronger driving forces can cause the interface to decouple and appear

rough at even lower temperatures. The driven interface thus appears to have a rough­

ening transition temperature below the equilibrium value; the dynarnic transition is

typically characterized by this apparent depression of the roughening temperature.

The transition also exhibits a marked broadening of the crit::al region wherein, for

a given driving force, the surface passes from a one structural phase to the other in

a finite range of temperature. Both of these effects have been observed in a varlety

of experiments (Jackson and Miller 19ii; Pavlovska and Nenow 19ii), including on

the leading tips of gro",;ng dendrites (Maurer, Bouissou and Perrin 1989) (see Figure

61). However, the most precise measurements have once again been made ",;th 4He

(Wolf et al. 1985; Balibar, Gallet and Rolley 1990; Gallet, Balibar and Rolley 198i);

this is attributed to the relatively high rates of surface mass transport of material on

solid helium which reduce the typically long dynarnical timescales to an observable

level.

Significant contributions are beginning to be made through numerical analysis and

8
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simulation; most notably. v:ork has been donc using the Karda,.· Parisi.Zhang cquation

(Kardar, Parisi and Zhang 1986; Medina et al. 1989; Grossman. Guo and Grant

1991), a nonlinear differential equation modeling interface grov:th in the pr"s"nce of

a influx of partic1es, and ....;th the solid-on-solid modcl (Kim and Kosterlitz 1989;

Grossman, Guo and Grant 1991). Hov:eve,., due to the importance of 1he dynamics

required 10 simulate this phenomenon in three dimensions, th"re are still rclativcly fev:

results. Refinements to the analysis of a driven interface are already appearing (van

Sa.a.rloos and Gilmer 1986; Ben Amar and Pomeau 1988; Hv:a, Kardar and Paczuski

1991), partially in response to these studies. Hov:ever, this problem is far from being

complete1y understood as these results are often inconsistent v:ith experimcnt or one

another.

When a crystal interface is strongly driven, it decouples completely from

the lattice and grows free1y. In general, this leads to an instability in the interface

and eventually to a pattern-selection mechanism. The rich history of unstable inter­

faces encompasses many different phenomena (sec Kessler et al. (1988) for a review)

which are, for the most part, intrinsically non-Iinear, dynamical problems involving

thermodynamically irreversible, dissipative processes that resist a coherent analytic

description. The M~ns-Sekerka. instability is characteristic of these phenomena

and has proved a diflicult problem to characterize complete1y. It is secn routinely

in many diff~~nt contexts such as the solid.vapour grov:th of snowflakes and the

solid-Iiquid growth of alloy solidification processes. However, it has only been c1ose1y

studied in the last decade or so; a summary of prior experimental work can be found

in either Glicksman (1984) or Laxmanan (1985). Water ice has been used to grow

snowfiake-Iike crystals (Sekerka 1971; Langer, Sekerka and Fujioka 1978; Yokoyama

and Kuroda 1990); rather impressive work has been done with succinonitrile (Glicks­

man 1984; Chou and Cummins 1988) and to a certain extent with NB.Br (Dougherty
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Figure 7: Oendritie growth patterns observed in a) a thin film of an initially unifonn salt mixture,
CuCI and PbCl., and b) Cu-Zn alIoy (brass). From worlt by J. '"aD Suehtelin, Philips Researeh,
Einthoven, Nether1ands and J.P.A. Lofvander, Univ. of California, Santa Barbara respeetivdy.
Reproduced from reference (Langer 1992).

and Gollub 1988; Maurer, Bouissou and Perrin 1989). A1so, spontaneously occurring

dendrites are often studied in the context of industrial processes involving crystal and

alloy manufacture, underlining their importance to commercial concems.

The Mullins-Sekerka instability was initially described (Mullins and Sekerka1963)

in terms of a Iinearized diffusion equation which, while able to 'capture th~ essential

physics at the early stages of the instability, was not able to predict the seleeted insta­

bility modes; the analysis suggests that there should be a mixture of lengthscales rep-

resented, however it is observed experimentally that only one dominates at late times.

The maximum velocity mechanism first proposed by Mullins and Sekerka to predict

this lengthscale was eventually discounted by the experimental work of Glicksmann

(19i6). Langer and Mül1er-Krumbhaar (19i8) then hypothesized a context wherein a

grow'ng dendrite selects a speed and shape for which it is marginally stable. This ar­

gument still stands although it has never been given a solid theoretieal underpinning•

During the mid-80's, an approach known as microscopic solvability theory was devel-

10



• oped which successfully incorporated the anisotropy of the crystallatticc and properly

predicted, for a dendrite ofaxïally-circular symmelry, the shape and ve!ocity of the tip

(Kessler, Koplik and Lcvine 1986). Howcver, e\·en now, sorne doubt is bein" cast upon

• < ,-.'

~
...".;,

. . . - ..::St
. "'~}- ..

Figure 8: A suecinonitrile dendrite grown by
Glicksmann. Reproduced from (Langer 1992).

it as a complete and accurate deserip-

tion of the fully three-dimensional den-

drite problem (Langer 1992); as Langer

suggests, a complete and physieally re!-

e\-ant description may require a multi-

disciplinary effort encompassing f1uid dy-

namies, metallurgy, non-equilibrium ther-

modynarnics, nonlinear dynamics and pos-

sibly chaos theory. Reviews On unstable

interfaces in general and the Mullins­

Sekerka instability in particular ean be

found in Langer (1980; 1987) and Kessler

et al. (1988).

•

Simulation work on the problem has been largely limited to two-dimensions, in-

cluding snowflake pattern formation mode!s (Yokoyarna and Kuroda 1990), Ising mod­

els (Guo and Jasnow 1986; Harris, Jorgenson and Grant 1992) and numerical simu­

lation of various interface growth mode!s sucb as local interface approaehes (short­

range, localized interaction) like the geometrical model (Browser et al. 1984) and

the boundary layer mode! (Ben-Jacob et al. 1984), the one-sided diffusion mode!

(Saito, Goldbeck-Wood and Müller-Krumbhaar 1988) and the cell-dynarnical scheme

(Liu and Goldenfe!d 1990). Although each has improved upon the understanding

of the instability, very few attempts have been made to expand them to the fully

three-dimensional problem. Indeed, none of the aforemention·J interface problems,

equilibrium or dynamic, have really been studied effective!y in three dimensions us-
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ing simulation. The reason for this is simply that computer hardware has only very

recently been capable of the task.

Most computer mode1s are discretized in sorne fashion (eg. the Ising mode1), the

smallest unit defining the lower limit of the system resolution. In order to usefully

mode1 a physical context, it is traditionally estimated that the lengthscales of interest

sholl1d be at least one order of magnitude larger than the unit length and at least one

order less than the system size, preferably in each of the three dimensions. This sets

a minimum recommended limit for system size (in the Ising mode!) of - 1003 or one

million sites, assuming that there is only one important lengthscale and that it can

coerced to bc - 10 units in length. From small workstations to CRAYs, this repre­

sents a significant investment in computer memory and, depending on the complexity

of the algorithm, may also represent a considerable amount of cpu power. Until now,

only the largest and fastest machines were capable of running sucb a.simulation. Tra­

ditional computer research has employed mode!s based on some simplification, sucb as

the solid-on-solid mode!, whicb makes three dimensions manageable. However, they

also introduce compromises in behaviour whicb limit their usefulness and physical

rele,-ance; for example, the SOS mode! cannot reproduce sidebranching or simulate

a droplet interface, two important aspects of the fully three-dimensional dendritic

growth p!oblem.

Still, the importance of simulation research cannot be ignored, especially as tecb­

nology grows to meet the challenge of ever more physically complete models. As

mentioned before, theoretical progress is often hampered by the abstruse nature of

interface problems while experimental studies are limited by the available materi­

ais and the precision with whicb they can be manipulated. Simulation acts as the

ideal bridge between the two, providing an absolute!y controllable en,ironment for

the testing of theory and for reproducing simplified ph)'sical phenomena. Our wt)rk
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presented here underlines this fact as we confirm numerOtlS thcoretical predictions

and reproduce many physical observations by pcrforming several original simulation

studies at the limit of our available computer hardware.

In this thesis we report original contributions to each of the afore­

mentioned subjects. In like style, we examine each context of the simple cubic

crystal interface in terms of simulation results using the simple cubic Ising mode!; the

equilibrium roughening transition on the planar interface, the dynamic roughening

transition on both a driven planar and metastable bulk inclusion interface, and the

Mullins·Sekerka instability in the presence of a thermal gradient on a planar interface.

In each case, we present results of simulations in three dimensions which, to the best

of our knowledge, have never been done before. Further, we provide original analyses

of several equilibrium and growth behaviours as weIl as confirmation and comparison

of many theoretical and experimental results.

In Chapter 2, we overview the equilibrium roughening transition. First, we

present a renormalization derivation of the equilibrium roughening transition on a

planar interface, based on a generalized solid·on-solid mode!. Included are the foun·

dations for the behaviour of the interface in a weak field. We also summarize many of

the basic characteristics of the equilibrium transition. Next, we demonstrate how the

equilibrium shape of a droplet interface is defined by the anisotropie surface energy

and subsequently, how it changes .....ith the roughening transition. To do this, we in­

troduce the Wulff construction which exactly defines the crystal shape given a radial

description of the surface energy, offering a basic derivation based on the approach of

Landau and Lifshitz (1980).

In Chapter 3, we introduce the basic theory describing the Mullins·Sekerka

instability. Following the Iinear stability analysis attributed to Mullins and Sekerka,

we examine the initial stages of the instability on a planar interface in the presence of
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a thermal gradient. The result clearly identifies the uns table modes of the interface

under a driving force. This analysis is then extended to a spherical interface; in this

case, we find a critical radius of stability which limits the onset of the unstable modes.

Fina.lly, we examine the unpertubed steady-state solutions for a needle-like crystal.

These results then provide a basis for testing and analyzing the data presented in

later Chapters.

In Chapter 4, the simulation mode! is described. We first review the basic simple

cubic Ising mode! through meanfie!d analysis, demonstrating how a first-order phase

transition is introduced through a uniform external field and a degeneracy in the upper

energy spin state. We also describe the Monte Carlo method used, the Creutz (1984)

multi-demon algorithm, and show how it provides for local temperature variatiC'ns; in

addition, we introduce a nove! thermal diffusion mechanism with a simple, consistent

and controllable behaviour. We explain how the mode! was employed to simu1ate

various interface configurations and geometries.

In Chapter 5, we present the resu1ts from a variety of simulations at and near

equilibrium. In four Sections, we examine each of four different contexts significant

to the roughening transitions, both equilibrium and dynamic: We first establish a

unique basis for characterizing interfaces which we then use throughout this Chapter;

we analyse the fluctuation distribution on a planar interface at equilibrium, demon­

strating divergent aspects of its behaviour at the transition, and derive specific quan­

tities which can be measured on real and virtual interfaces. We then compare this

description \\;th simulation data; we show that the equilibrium roughening transition

is more clearl)' identified using this approach than conventional measurements. Next,

we examine a metastable bulk inclusion, noting that a stabilizing force is required to

prevent the system from minimizing the interface energy and evaporating the droplet.

We then compare the theoretical predictions for how the roughening transition of a
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static interface is modified by "n extemal field to Our simulation results. As a compar­

ative exereise, we also study the behaviour of the inclusion when the stabilizing field

is removed; the dropiet appcars tn pass quickly through a roughening transition, even

though the temperature is not changing and there is no extemal force. We supply a

mechanism based on well-known growthfe\<l.poration processes to explain this phe­

nomenon. Finally, we make a qualitative study of the planar interface weakly driven

by a thermal gradient for contrast with the equilibrium and inclusion behaviours. We

make contact with several aspects of current dyna.mic roughening transition theory,

highlighting the beha\"Ïour of the fluctuation distribution quantities defined in the

first Section.

In Chapter 6, we test the linear stability analysis presented in Chapter 3. Due

to the complex nature of dendritic growth at late times, this early-time behaviour

represents our best opportunity to directly test available instability theory. To our

knowledge, this has never been done before in either experiment or simulation due to

the brief timescale of the linear beha\'Îour. We present two distinct contexts wherein

we are able to compare specifie predictions with our simulation data. In order to

enhance the resolution in our measurements, we employa two-dimensional version

of our code. There are no significant differences between unstable one-dimensional

and two-dimensional interfaces at the level of the linear stability presented in Chap­

ter 3; we re·derive any important analytic expressions. First, we study the growth

modes of an unstable planar interface, looking for the predicted dispersion relation

whir.h describes the relative strengths of the unstable modes. We use the established

technique of long-range spin interactions (Heermann 1984; Grant et al. 1985) to ex­

tend the linear growth regime. Taking advantage of the reduced cpu requirements

of a one-dimensional interface, we use the longest interface possible for maximum

resolution. Second, we study the behaviour of an unstable circular inclusion; it has
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an antieipated radius of stability at whieh the disk first begins to go unstable. Wc

estimate this lengthseale using two separate measurements and compare it with our

simulation results.

In Chapter 7, we present simulation trials of late-time, non-linear dendritic

growth in three dimensions; these results are considered ground-breaking attempts

at reproducing the physically complete Mullins-Sekerka instability. We study two

interface geometries, the fully three-dimensional block system and the pseudo-two­

dimensional slab system, cach clearly demonstrating dendritic growth at specifie

lengthscales. We characterize the interfaces in terms of their power spectra, interface

areas and dendrite tip speeds and relate this to instability theory. We comment on

various inconsistencies between the simulations and experimental results and identify

possible shortcomings in the simulation model_ Using the thermal field defined by

our model, we perform a test of our a1gorithm to reliably model diffusion processes

and then examine the thermal diffusion mechanism governing the instability through

imaging techniques. We demonstrate a variety of instability behaviours with their

corresponding thermal fields iIJld then make a detailed analysis of the influence of

the system parameters on the growths. It is shown how thermal fluctuations and

diffusion rates control the shapes of the dendrites and their rates of growth. Finally,

we examine the influence of the dynamic roughening transition on growing dendrites;

we show how the tips are faceted at low temperatures and demonstrate that, similar

to experiment, we observe a transition in the tip growth response to changing driving

force.
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• 2 Two-Phase Interfaces in Equilibrium

•

At equilibrium. a crystal interface is defined by the nature of its underlying lattice

and by the strength of the ambient thermal fluctuations. For the moment, let's

eonsider a planar solid-vapour interface with the lowest possible Miller index ({ 100}

for a simple cubic crystal; sec Appendix A.l). At low temperatures, the interface

is highly correlated (ie. flat). Thermal fluctuations are manifested in the form of a

small number of islands or micro-facets raised one lattiee unit above the reference

plane (for example, sec Figure 18). These micro-facets are not stable but appear

spontaneously and then shrink until they disappear. Maeroscopieally, the interface is

fueed relative to the lattice and does not movc or change. At higher temperatures, the

thermal fluctuations are larger and more numerous; they may even appear atop other

fluctuations. However, the interface remains fueed and flat on long length scales. At

some critical temperature TR , fluctuations will be so numerous as to overwhelm the

reference plane and it will be lost; the interface will appear rough. It will no longer

be constrained and thus it will wander freely; macroscopically, the interface width

will diverge over long length scales. At all temperatures above TR , the interface will

be rough, the amplitude of the roughening increasing with T. This phenomenon is

referred to as the roughening transition or, less frequently, the facetting transition.

In Section 2.1, we shall reproduce a renormaliza'.ion analysis of the transition and

summarize the thermodynamic characteristics of an infinite planar {100} interface

near TR •

The planar interface described above has a fueed orientation relative to the crystal

lattice. However, when an interface defines an enclosed volume, all possible surface

orientations may be present. We might for example consider tLe context of a simple

bulk inclusion of one phase in a bath of another phase - prehaps a solid droplet or

small crystal in a liquid melt - but in the limit of infinite droplet volume to avoid
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finite-size effects. Since in the simple cubic crystal only {100} interfaces have a

finite TR (ail other orientations have TR = 0), a mixture of facetted and roughened

surfaces is observed on a droplet sudace near T~'OO}; at the tra.I)sition point, the

entire interface is then roughened. Thus the equilibrium shape of a crystal droplet is

another manifestation of the underlying lattice structure and also exhibits a transition

behaviour. In Section 2.2, we re\;ew the Wulff construction and show how it exactly

defines the equilibrium shape of a bulk inclusion above and be!ow TR.

Within both sections, we review the physics of the roughening transition and

establish a foundation for the analysis of our simulation resuIt.s presented in Chapter

5.

2.1 The Roughening Transition

In 1951, Burton, Cabrera and Frank (1951) proposed that an equilibrium crystal

interface may exhibit a structural phase transition, from a smooth, fiat phase at

low temperatures to a rough, curved one at high temperatures. They carried out an

analysis of the {100} surface of a simple cubic crystal, restricting thermal fiuctuations

to the first layer. They showed that the interface would remain fiat only up to a critical

temperature T SCF which they referred to as the roughening temperature. However,

their single-layer assumption is of limited use near the transition when fiuctuations

extend weil beyond the fust layer and, so, their insight into the transition could

not be validated. It was eventually shown by van Beijeren (1975) that TSCF is

actually a lower limit for the roughening transition. In 1976, Chui and Weeks (1976)

provided the key, demonstrating the re!ationship between the discrete Gaussian (dG)

interface mode! (a solid-on-solid (SOS) mode! with quadratic interactions) and a 2D

Coulomb lattice-gas through a duality transformation, the latter mode! already having

been shown to have a Kosterlitz-Thouless transition (Kosterlitz and Thouless 1973)•
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• Subsequently, the presence and nature of the roughening transition have been firm!y

established, both experimentally and theoretically.

This phenomenon is restricted to planes ....;th {lOO} orientation. This is a con­

sequence of the symmetry of the simple eubic crystal structure which causes the

{100} interface to be strong!y coup!ed to the !attice. Other orientations Iike the

{1l1} plane are much more weakly coupled due to the reduced spatial coherence of

the sites relative to the interface; at ail T > 0, it is decoup!ed from the !attice by

thermal roughening. Crystal structures Iike hexagonal c1ose-packed and face- and

body-centered cubic do exhibit facets ,,;th different orientations; consequent!y, they

a1so have multiple transition temperatures, one for each orientation. However, they

are a1so less accessible than the simple cubic structure to analytic techniques like the

SOS model.

Before a more detailed analysis of the roughening model, we shall review some

of the elementary aspects of transition theory. The behaviour of the height-height

correlation function G(r) introduced by Chui and Weeks (1976) for the SOS model

refiects the basic nature of the transition. The Solid-On-Solid model is a regular 2D

lattice of sites {i,j} each with a height hij; it is a simplification of the planar 2D

interface in that it prohibits overhangs and bubbles in the bulk. This is particularly

appropriate for low temperature simulations where the inte~iace width is small. The

interaction energy is typically defined by a Hamiltonian Iike 1i oc Lij(\h;,j - hi+l,jl +

Ih;,j - h;,j+ll). The height.height correlation function is defined as

G(r) ;: «h;j - hkl )2) = LL(h;j - hkl )2 P(h;j,hld )

A., "••

(1)

•
where r =11 h;j - hld 11 and P(h;j, hld) is the probability of height hij at (i,j) and

height hld at (k,l). It has been shown (Chui and Weeks 1976; Ohta and Kawasaki
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• 19i8) to have an analytic form

(2)

where { is the correlation length between fluctuations, a is the unit lattice constant in

a simple cubic crystal (ie. a is the same unit horizontally between adjacent columns

and vertically in height) and F(T) is an increasing function of temperature. Study of

the related XV model by Chui and Weeks (19i6) has' shown that { of the SOS model

is the dual conjugate of the XV vortex-vortex correlation length; its form near Ta

then follows from the analysis by Kosterlitz (19i4);

{=

00

T-TR
(3)

where B is a non-universal constant. Thus, at T > Ta, G(r) diverges at large r like

log(r/a). Below Ta, G(r) saturates at r > elike F(T)a2 Iog(efa). The prefactor

F(T) has a universal value at Ta of 2/'Ir (Ohta and Kawasaki 19i8); it approaches

this value from above like

F(T) = ! +C"...,VT - Ta
'Ir

where the constant is non-universal.

T-· Ti (4)

•

Also central to the roughening transition is the free energy per unit length, E.(T),

required to form a step. As its name suggests, a step is a vertical dislocation of the

interface by one lattice unit. It is the dual conjugate of the spin-spin correlation

length in the XV model (Swendsen 19i8). Below Ta, the step free energy is finite and

provides a barrier to the formation of steps. At Ta, E. goes to zero permitting steps

to proliferate without bound and thus resulting in the roughening of the interface.

From Kosterlitz' results, near Ta the step free energy behaves like
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E. =

o
where B is the same non-universal constant in (3).

(5)

•

These results have been subsequently shown to be true for all SOS mode!s (José

et al. 19ii), regardless of lattice structure or details of the interaction. Further,

\-an Beijeren (1977) showed that the SOS model for the body-centered cubic crystal

could be mapped into the exactly soh-able six-vertex mode!, subseGuently recovering

all the same results. Thus the basic characteristics of the roughening transition are

applicable to any interface model \\;th a regular lattice.

2.1.1 Renormalization Analysis of a Roughening Model

In order to establish the physical basis for the roughening transition, we shall walk

through a more detailed renormalization analysis of a generalized SOS mode! based

upon the derivation ofWeeks et al. (Chui and Weeks 1976; Weeks and Gilmer 1979).

We present a summary of important analytic expressions in Section 2.1.2.

We shall choose a Harniltonian which is as general as possible, using a quadratic

height-height interaction for reasons of analytic simplicity (the transition behaviour

is independent of the specifies of the interaction); in this form, it is referred to as

the discrete Gaussian mode! (dG). As usual, it is written in terms of a regular lattice

with heights h;j with the interaction extending over sorne range 6 = Il {i, i} - {k, l} Il

which can be greater than unity;

1f. =; L: (h;j - hkz? +J H 2 L h~j - L b.JLijh;j - 2v.J L cos(21l"hij ) (6)
{i,J}.& {i,j} {i,j} {i,j}

where J is the interaction constant and is distinct from that of the Ising mode!

Hamiltonian used in later Sections. The first term is the site-site interaction energy
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• over a range é; the second term is a weale centering field which holds the interface

at ft = 0; the third term is an applicd field (in general, it can be different for each

site) which ",;ll aet as a ehemical potential; the fourth term is a weighting function

which plays the part of the crystallattice in the': direction, favouring integer values

of h. Although most SOS models use a discretized height \-a.riable whieh restricts

h to integer values, this forro is more general, illustrating the universality of the

roughening transition; it has been shown that any periodie weighting function ",;TI

result in the same equilibrium beha\;our at the transition (Chui and Weeks 1976).

The dj'naraies of the interface is eontrolled through the Lange\;n equation

ah; r art.
at = - ksT ah; + '7i

= - ~ (~(h; - h;+~) + H
2
h; - ~~ - 27l"v.sin 2'll"h;) + '7i (7)

where K-1
:; 2JjksT. r will be identified later as the equilibrium evaporation rate

and '7i are stoehastie fluctuations whieh satisfy

(1)i(t)} = 0

(17i(t)'7i.(t'») = 2rS(t - t')S,.•. (8)

Here, any quantity endosed by () indieates an ensemble average.

For the Iimiting case of no driving force (f::j.p. =0) and no discrete lattice (v. =0),

(7) is exactly solvable using Fourier transform techniques; in terms of the Green's

function G(k, w), it has a form in the long wavelength Iimit Iike

For an infinitesimal centering field,H% - 0+, (7) is a discretized diffusion equation•
(

k
2 + H

2 w)-'
G(k,w) = K - 'r (9)
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• and thus, G( k, w) is identically the Green's function for 2D diffusion. Re.introducing

v. as a perturbation for an infinitesimal 6Jl, we can re-write (i) in int~gral form

h( ) {"" d' ("" d G( , ') (6Jl(r"t') . 7](r',t') ., <,-\ • ., h(' '»)r,t = 1_"" r 1_"" t r-r,t-t ksT T r -_,,".n 1!.SIn_,," r,t

(10)

where ris a dimensionless 2D vector in units of lattice spacing with its point of origin

at the center of a lattice site. The equilibrium beha,;our of the interface can then be

extracted from the limit 6Jl ~ O.

First, expanding (10) in powers of 6JlJks T,

we suppose that the linear response funct;on is the ensemble average over the noise

X(k,w) = (h1(k,w»). Thus the unperturbed linear response function is

1
xo(k,w) = G(k,w) = (k2 +H2)JK -l(WJr)

Subsequently, the perturbed function X is expressed as

X- 1(k,w) =Xo 1(k,w) + E(k,w);

(12)

(13)

Il is a self-energy. By substituting (11) into (10), an exact solution for I: is possible

(14)

•
where .r{} indicates a Fourier transform in real space and time

.r{f(x,t)} = Jdt Jdx e-(,k,x+""l f(x,t) .
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• The limits of behaviour of ~ as a function of temperature foreshadow the final

roughening transition results. At low T, the equilibrium ,,,riations in ho are "ery

small and the interface is strongly localized around ho = 0 by the weighting term.

For small h", the sine term in (7) can be expanded to first order and consequently

the self·energy is shown to have a constant value even in the long wavelength and

zero frequeney limit;

,
4i'r'"'volim !:(k,w) ~ --.

w,k-.oo }(
(15)

•

At high T, the limiting behaviour is less apparent. However, it is a fair assumption

that the weighting term is less influential as the fluctuations in h; become very pro­

nounced. Thus the unperturbed solution, !: = 0, may be presumed to ref!ect the

perturbed self.energy for an interface at high T. This suggests a divergent behaviour

in the k, w --> 0 limit, consistent ~;th the observation that roughened interfaces di·

verge over long lengthscales.

Following the renormalization group approach of Kosterlitz (1974) and José et aL

(1977), we will formally analyze this behaviour. We expand ho, hl and !: in powers

of Vo using (10)-(14) and we recover the expression for X-l(k,w) in terms of V o' This

requires a certain amount of tedious algebra, shown in detail in de Gennes (1971),

and produces

where v = voe-C_ •• K is used for convenience; the constant Cono' "'" 1r2/2 is siroply a

consequence of Fourier transforming the cosO factor in (14). The integrals in (16)

are subsequently assessed by separating each of them into two parts, integrating from
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• 1 to b and from b to 00 with the condition 0 < ln b « 1 or b - 1+. The small T

parts of the integration can be combined with the original constant term (either K- 1

or r- 1
) to produce a new parameter value; the large T part of the integration can be

rescaled so that the limits of integration arc again from 1 to 00. The scaling factor is

absorbed in a redefined w and (16) ean be rewritten with parameters K(l), r(l) and

v(l) where l ;: ln b. The equh-alence betwecn (16) and this new expression implies

the differential recursion equations

dK(l)
_3 '(l) (li)

dl
- -.~ v

~dv'(l)
- -("'K(l) - 2)v'(l) (18)

2 dl
dln r(l)

=
".4v'( l)

(19)
dl ".K(l)-l

with the limiting behaviours f(l = 0) = f for f being K, r or v.

By comparing the expressions (li), (18) and (19) with Nelson et al. (197i) and

José et al. (1977) in their comparative analyses of the 2D Coulomb gas and the XY

model, we observe that the first two equations are basically identical to their recursion

relations. This implies the similarity in the nature of the static transition behaviour

of this mode! to theirs. By defining a new variable :z:(l) ;: ".K(l) - 2 and substituting

into (17), we obtain

(20)

•

Comparing this equation to (18), we identify a conserved quantity

(21)

and, assuming :z:(l) > 0, we see that (19) drives t.( l) to 0 as l - 00; this indicates

that the in:liuence of the periodic weighting funetion disappears and thus the interface
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• roughens. The roughening transition can then be considered the low temperature

end point of a line of critical points with v( 00) = 0; at this end point, we must ha\"e

Z(OO,TR) = 0 or K(oo,TR) = 2/":r. This \"alue for K is universal (ie. independent of

any modifications to the basic Hamiltonian).

Another insight which can be deri\"ed from (20) when it is e\"aluated at l = 00 for

T ~ TR is how K( 00, T) varies with T as T - Ti. Since v( 00) = 0,

z'( 00) =z'( i) - :r'v'( l) (22)

the right hand side can be expanded about TR in powers of T - TR, noting that the

constant tenn disappears at TR due to z(00, TR) = O. Thus, to lowest order

(23)

this indicates that K(oo) (and thus r(oo) as we shall Sec bdow) has an unusual

square-root cusp as T -> TR. Also, since z(oo,TR) =0 and recall that v == voe-.,>K/',

we obtain

(24)

Setting Vo = 1 as an approximation of a discrete lattice, (24) can be solved by

iteration, giving kBTR - 1.45 J. This is consistent with computer simulation results

for the dG modd (Shugard, Wecks and Gilmer 19i8).

The third recursion equatiol1 (19) contains information about the dynamical be­

haviour in r. Combining (li) and (19) to eliminate V and integrating l = 0 to 00, we

arrive at

•
r(OO,TR) _ 'll"K(oo,TR) -1

r - :rK-1
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(28)

•

•

Thus, r scales ,,;th K whose behaviour was discussed above. The consequences for

the statics and dynamics of the interface are immediate; the average growth rate l of

the crystal is rdated to the response to a sp..tially and temporally uniform driving

force when the stabilizing field is removed, H' = O. From the interface definition

(11), we obtain the growth rate 1 to first order in 61' and use (12) for the high.T

response function to define its high temperature limit;

1 = lim -.wx( k =0, w) 61' (26)
w-o T

= r(OO)i (T ~ TIl). (27)

Tlûs result is consistent with eonventional theories of crystal growth (Weeks and

Gilmer 1979); for small dri~;ng forees at high temperatures, they prediet to first order

in 61' a limiting form of 1 = E""p6p./T where E""p is the equilibrium evaporation

rate. Since v(oo) = 0 above TIl, the response function X(k,w) has the same form as

Xo but with the scaled parameters. Also, since we expect the high T limiting form

of the unscaled X to a1so be Xo, the scaled and bare parameters are identical in this

limit for ail!. (ie. r(00) ~ r for T - 00) and we then identify r with the evaporation

rate E""p.

At T < TIl, the behaviour of the response funetion is quite different. As T - Tii,

it can be shown to have a limiting form

1
X(k,w) = KO(P + ~-2) - =jf"

with a finite correlation length ~ and renormalized parameters KO and ro. This form

is not unexpeeted; since !: has been shown to be well·behaved (ie. equation (15» at

low T, a functional form for X-· similar to xCi' (ie. linear in w and quadratic in k)

is reasonable. Then (26) predicts a rate 1 = 0 for ~. < TIl to first order in !::.p./T.
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• This is consistent with the fact that. for a perfect lattic~. the growth mechanism is

primarily via nucleation. Nucleation theory gives l IX e-C_.d6~ so one would expect

that all terms in a power series expansion about 6Jl = a would vanish.

At equilibrium (ie. 6Jl = 0), the spatial correlations between height fluctuations

can be calculated from the fluctuation-dissipation theorem

(29)

where 9'{X} signifies the imaginary part of X. Specifically, for large r and t at

(30)

based on results of de Gennes' (19ïl). By inspection, we Can sce that there are

space/time correlations which diverge logarithmically above TR• The large r limit of

the equal time correlation function gives a measure of the interface width and (30)

shows that it is logarithmically divergent for all T :::: TR • Similarly, this is true of the

large t time-correlation function. Also, (30) suggests that the correlation functiou eis

co a.bove TR. Below TR, we can see from (19) and (28) tha.t the correla.tion functiou

a.pproa.ches an asymptotic value expouentially fast. Thus the interfa.ce width and

the correla.tion function are finite below TR. Exa.ctly a.t the roughening tempera.ture,

K(co) = 2/7r so the \\;dth is predicted to show an a.brupt change from its finite value

below TR to

([ho(r,t) - ho(O,OW) ~ 2210gr
7r

(31)

•
This beha.viour has bcen observed in simula.tion (Shugard, Wceks and Gilmer 1978)

and to some degrce in experiments (Rolley, Balibar and Gallet 1986; Wolf, Balibar

and Gallet 1983; Wolf et al. 1985; Gallet, Balibar and Rolley 1987).
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• 2.1.2 Summary of Roughening Transition Characteristics

A number of other results can also be extracted from the renormalization group

approach thrùugh careful analysis. We list below a summary of important transition

behayiours including sorne of those mentioned earlicr; included arc the transition

temperature, surface tension, step free energy, correlation length, interface width and

surface curyature. Additional details can be found in re,iew articles (Weeks and

Gilmer 19;9; yan Beijeren and Nolden 198;; Ohta and Kawasaki 19;8).

Roughening Transition Temperature The transition temperature can be deter­

mined \\;th reasonable accuracy for the discrete Gaussian mode! (an SOS-type

mode! \\;th quadratic interaction energy),

ksTR ~ 1.45 J . (32)

which have been confirmed by simulations (Shugard, Wecks and Gilmer 19;8).

It should be noted that this is not a universal quantity but can be extracted from

the How equations for different mode!s by an appropriate choice of parameters.

Surface Tension The surface tension (surface energy per unit area) has a weak sin­

gularity at the roughening transition. From be!ow TR, it behaves like (Kosterlitz

1974)

T-T; (33)

•
where -ro and A are non-universal. Note that al! derivatives of ., are smooth

functions of T which vanish at TR; this is typical of the Kosterlitz-Thouless

transition and make detection of the transition very difficult.
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• Step Pree Energy The step free energy is defined 'l.S the difierence of free energy

between interfaces with and without a step (a vertical dislocation of one lattice

unit). It has the form near TR

(34)

Again, Eo and B are non-universal. This expression is obtained from the analy­

sis of the XY modd (Swendsen 19i8); the step free energy is the dual conjugate

of the XY inverse spin-spin correlation function.

Correlation Length The correlation length is the characteristic distance between

thermal excitations on the crystal surface_ Below but near to TR, it behaves

Iike

where B is the SaIne as in (34) anè eo is again non-universal_ It is the dual

conjugate of the XY modd vortex-vortex correlation (Ohta and Kawasaki 19i8)_

Interface Width The height-height correlation (30) of a single-valued interface (like

in an SOS modd) provides a good approximation of interface width behaviour.

From the analysis of its behaviour (Chui and Weeks 19i6; Ohta and Kawasaki

19i8), the mean square width near TR fo11ows

(w~(T)) ex { C + ..;'TR - T 1

Wo + D..;'T-TR

T-Ti

T-TJt
(35)

•
Here, C and D are not universal but Wo is the universal value 2/1r2 •

Surface Curvature The radius of curvature of a {100} surface on a bulk inclusion

(droplet) is predicted to jump from infinite value at T < TR ta a universal finite
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(36)

•

•

,-a.lue at TR (Jayaprakash, Saam and Teitel 1983)

Re = "R"ks TR
2"]'a'

where R" is the distance from tangent place at the surface to the center of the

droplet, "]' is the surface tension and a is the lattice unit length. The behayiour

of a finite volume is discussed in greater depth in Section 2.2.

Thus, the equilibrium roughening transition is characterized by the yanishing of

the step free energy, the diyergence of the interface width, the diyergenee of the cor­

relation length and a jump in the surface curyature. In the real world, the transition

appears on a planar interface as the diyergence of the .....;dth at long lengthseales

from a finite Yalue at TR ; thermal fluctuations oyerwhelm it, changing its appearanee

from a fiat, faeetted plane to a rough, wandering surface. This beha11Ïour will be

demonstrated in Section 5.1 using computer simulation methods.

2.2 Equilibrium Crystal Shapes

The pre11Ïous section examined the beha11Ïour of an infinite planar interface near its

transition temperature. In the context of a enclosed yolume (ie. a crystal droplet

or bulle inclusion) in the thermodynamic limit V -+ 00, this is identical to studying

the faces of the inclusion which have the orientation {100}; surfaces with any other

orientation have Ta = 0 and are rough at ail finite T. Since the roughened surface

is curved and the facetted regions flat for T < TÂ'OO}, the equilibrium crystal shape

(ECS) demonstrates a marked transition beha11Ïour at TÂ'OO}; the facets disappear and

it becomes continuously curyed. The Wulff construction pro11Ïdes an indispensable

tool for studying this change. The simple recipe proposed by Wulff (1901) exaetly

defines the temperature-dependent ECS. It requires oo1y an expression for the surface
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cusps

a)
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•
Figure 9: The Wu1lr construction for a simple cubic crystal. The plot pai:s are the polar plot
of a hypothetical surface tension 7(8.9) and the corresponding equilibrium crystal shape. They
approximately represent the cross-section ofa simple eubic Ising crystal with nearest neighbourhood
interaction a) at a temperature T above the roughening temperature TR. b) at a finite temperature
T < TR and c) at T = O. The final pair d) is oi a possible surface tension which would produce a
cusp in interface. Note that cusps in the surface tension produce facets in the equilibrium shape.

32



•

•

ter.sion 1'(n, T) as a function of temperature T and the unit orientation vector n

originating at the center of the crystal (see Figure 9).

Let us suppose a microscopicaIly smooth surface S(R, n) where R is the radius

from the center of the inclusion to the surface in the direction of the vector n. Givcn

a fixed crystal volume V and the surface energy per unit area 1'(7Î), the ECS is the

surface which minimizes the free energy of the crystal. The solution for S(R, 7Î) is

found graphicaIly (in cross-section) by the follo,,;ng recipe:

1. Draw a polar plot of the surface energy per unit area 1'(n)

2. Draw a plane perpendicular to n at every point on the 1'(n) plot

3. Extract the inner envelope of the family of plaxes

The inner envelope is the equilibrium crystal shape to an overaIl scale factor given by

the fixed crystal volume. Figure 9 shows the ECS defined by the Wulff construction

for a simple cubic crystallattice in cross-section at its center for temperatures above

and below Ta and at T = O. It is interesting to note that, as pointed out by Mark

Holzer (1990b), the ECS appears to be an intensive state variable of this system.

This would also suggest that the volume V is its corresponding extensive state vari­

able and that the free energy of the system is described by 5F = S dV (aIl other

state variables fixed). Thus the Wulff construction is reaIly a recipe for a Legendre

transform between the intensive/extensive variable pairs, surface tension hl/surface

area (A) and equilibrium crystal shape (ECS)/volume (V).

The geometric relationship between l' and the ECS created by the Wulff construc·

tion can be simply derived from these plots. Using the ECS from Figure 9 a) as a

reference, we restrict the analysis to :1: and :: although it obviously includes y; the

following refers to specifical1y to Figure 10. Choosing an arbitrary point (:1:0, ::0) on

the ECS, its tangent is·extended until it intersects the:: axis at ::1- The smaIl angle
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x
Figure 10: A geometri. analysis of the ECS delines the surface tension "1 as & fun.tion of angle for
a vector originating at the centeI'.

between the tangent and :: axis is 6; its sl-::pe is p = d::/d:r: = - tan(6). The normal

to the tangent wlùch intersects the origin is thus -y. So far, we have just worked

backwards through the recipe for the Wulff construction. The length of -y is simply

-y(6) - cos(6)::1

- cos(6)(::o +poco).

Generalizing and inserting p = - tan(6), we find the surface energy per unit area

from the ECS to be expressed by

-y(6) =cos(6)(:: - tan(6)oc). (37)

•
In order to provide a firmer foundation for the use of the Wulff construction, we

present a simple derivation of an analytic expression based on Landau and Lifshitz

(1980). It will not be t~most general analysis possible as it will rdy on the piece-wise

düFerentiability of -y(il). However, we hope to benefit from its simplicity and cla.rity.
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• In this spirit, we begin by noting that the ECS produced by a Wulff construction is

always convex; this can be secn in Figure 9 d) where the tendency to loop results in

a cusp in the always-convex ECS. This is significant insofar as a eonvcx shape can

always be separated into upper (+) and lower (-) parts, defined by being in line-of­

sight from % = +oc and -oc respectivdy (sec Figure 11). The choice =is arbitrary

z

y

Figure 11: Any eonvex shape <an be broken down into two unique eomponents; half which is in
line-of-nght of a point at : =+00 and half which is only secn ûom : = -00. The choi<e or =is
arbitrary but is usually chosen to take adV&lltage or any symmetry in the shape.

but is usually chosen to take advantage of uy symmetry in the shape; the origin is

assumed to be at its center.

Subsequently, the orientation on the surface of the crystal can be described as

n± =± (P±,q±,I) (38)
JI +P;' +q;

where we use +/- to indicate upper/lower, parametrizing the surface S(:z:,y,z) =

%±(:z:, y); we have used the partial derivatives p, q defined

• (39)
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• The surface free energy per unit area of an infinitesimal surface clement which has

been projectcd upon the 2D ,;e,,;ng plane (x,y,O) is then

(40)

The subsequent minimization of the surface energy for fixed volume V can then be

done through the variational expression

(41)

where >. is a Lagrange multiplier. Using (39), we obtain

"/ L d (aE± a8:± aE± a8:± 2' c )L.. = Y ---+---=F AO:. =0.
± ap± ax aq± ay -

This in tum can be transformed using the method of partial integration, knowing

that 8:± =0 ever)'where beyond the crystal surface;

At this point, the integrations can be separated since 8::!:(x,y) are independent vari­

ations and thus the integrand itself must be zero for each of + and -;

Looking back at our geometric expression (37), we can see that it is identica1 to (43),

except for the scaling factor >., where from (40) we get E = 'YI cos(9) and from (39)•

The solution to this is

a:. 8::!:
E:!: = H(:± - a;x - 8y y)

= ±>.(::!: - p:!:x - q:!:y).

(42)

(43)
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p is again the slope d=/dx = - tan(el. Taking the partial dcrivativcs of (43) and

rearranging, the surface of thc crystal shape is then dcscribcd by

x = ~À-I af± (44)
ap±

y = ~>. -1 af± (45)
aq±

1 ( af. af. ) (46)= = ±>.- f± - p±~ - q±--=-
ap± aq±

Thus, given the surface free energy per unit area, the crystal shape S(x,y,=) can be

constructed trom (44)-(46).

As an aside, we note that the Langrange multiplier>' can be dcfined by thermo-

dynamical analysis (Wolf et al. 1985) as

where p. and Pl are the solidand liquid (or vapour) densities and 6P is the excess

pressure of the liquid with respect to the equilibrium pressure on a fiat interface. It

is approximate1y re1ated to the ratio of the surface tension to the surface radius of

curvature.

Using the simple cubic lattice to illustrate a more specific application, the equilib­

riurn crystal shape exhibits a distinct behaviour at the roughening transition; Figures

9 a), b) and c) approximately represent this behaviour. Below TR (ie. 9 b)), the sur-

face energy as a function of the orientation vector has cusps in the [100J directions.

In terms of the ECS, this results in a fiat, macroscopic facet of {100} orientation on

each face, connected by smoothly curved regions. Since there are no cusps in any

other directions, no other orientations of the surface exhibit facds or the transition

behaviour. In the T = 0 limit, the facets are square and exactly bound each other

with no intervening curved surface. Above TR, -y(Ti) is a smoothly difi'erentiable func-
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•

tion of angle; similarly, the ECS is continuously eurved with no macroscopic facets.

Thus, it is at TR that the cusp in -y( 7Î) disappears and, v.;th it, the facets.

In Section 5.2, we study the behaviour of a finite crystal volume using computer

simulation. We examine the ECS of a simple cubic crystal, Iooking for indications of

a transition. In the process, we extrapolate the idea of the ECS to specifie measurabIe

aspects of a physical crystal.
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• 3 N on-Equilibrium Interfaces

•

Driven away from equilibrium, a crysta.! interface may exhibit a pattern generating

instability; a common example is the formation of snowflakes. As we noted in the

introduction, the underlying physics of this phenomenon is largdy, a.!though not com­

pletely, contained in the Mullins-Sekerka instability description. Let's consider a fiat

solid-liquid phase boundary at coexistence, similar to that discussed in Chapter 2.

After relaxing to its equilibrium state, it is completely stable. If the temperature

of the liquid phase is spontaneously lowered, the interface will become unstablc and

begin to move into the liquid. As the phase changes from liquid to solid, latent heat is

released, warming the liquid a.!ong the interface and retarding its advance. This heat

is diffused away into the liquid bulk and the interface continues its progress. Even­

tually a steady state is reached, the interface moving forward at a constant ve!ocity,

driven by a thermal gradient perpendicular to it. Perturbations of the interface will

start to grow, maximizing the surface area and thus the redistribution of the latent

heat. F:nger-Iike growths will form as heat collects between the growing bumps, slow­

ing the advance of the depressions and accelerating the tips; these dendrites typically

sprout secondary branches a.!ong their sides as they grow. The dendrites are of a

characteristic length sca.!e which depends on the state of the system and the mate­

rial involved. Despite the relative simplicity of the mechanism, it can produce very

complicated structures ~ commonly observed in frost or snowflakes.

We sha.!1 illustrate the basic physics of the process by carrying out a Iinear sta­

bility ana.!ysis, both for a planar interface and for a spherica.! droplet. As we have

mentioned before, the dendrite problem requires a much more complete treatment

in order to develop a fully physica.! description. However, we will be able to provide

ample foundation for our computer studies of the instability; our simulation mode!

inherently contains all of the necessary physics. Through the linear stability ana.!ysis,

39



• we will identify the characteristic instability Iength scale associated with each inter·

face geometry and show how they are reIated to the thermal diffusion and capillary

(surface tension) Iengths. Finally, we shall look at a steady state solution for the

dendrite found at late times in the form of a parabolic needle crystal. The spherical

tip radius or curvature v.-ill be reIated to the constant tip veIoeity.

3.1 The Linear Stability Analysis of a Planar Interface

When a planar interface is unrestrained by lattice influences (ie. roughened) and ad-

vancing v.-ith veIocity v, an instability can arise wherein certain modes of the bound-

ary are arnplified and the interface exhibits a pattern selection beha\-iour. The ba·

sic mechanism behind this phenomenon was first described by Mullins and Sekerka

(1963; 1964) who performed a linear stability analysis to define the dynamics of the

process. Refinements to the description have subsequently been introduced (Langer

198i; Kessler, Koplik and Levine 1988) including the effects of the lattice anisotropy.

However, the linear stability analysis is still the most effective way to present the

essential instability. We will discuss the Mullins-Sekerka instability in the context of

a thermal gradient produced by a latent heat of transition between the phases, one

of which is undercooled. It should be noted that the analogy in terms of a chemical

potential is equivalent and easily extracted from this analysis.

The growth rate of a pure substance is defined by the diffusion of the latent heat

I:. from the interface. We define a dimensionless thermal field

T-Tm

u = I:./C (4i)

•
where C is Ch the heat capaeity of the liquid phase. For analytic convenience, C.

of the solid phase Can be assumed to be either approxîmately equal to Cl or zero;

here, we avoid the question by assuming that the thermal conduction is restricted to
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• the liquid phase, resulting in sorne asymmetry in the resuIts but not changing the

essential physics. \Ve ",-ill re-introduce the influence of the solid phase through the

interface continuity condition.

The interface is initially planar with a normal in the =direction; the average

interface position is defined to be at ;; = 0 (ie. the frame af reference maves with

the interface) with the solid bulle at ;; ~ O. The problem is campletely described by

one dynamical equation, twa baundary conditions and a continuity equ~.tian for the

interface. The dynamieal part is handled by the continuum diffusion equation

aT = D \i=Tat (48)

where D is D. ar Dl> the diffusion constants of the solid and liquid phases rcspectiveIy.

It is re-written using (47),

..,' 2 auv'u+ -- = 0
la::

(49)

where l is the characteristic lengthscale of thermal diffusion, l = 2Ddv. The Gibbs-

Thomson condition expresses the thermodynamic reiationship between the interface

curvature ~ and the effective coexistence temperature;

which becomes with (47)

(50)

•
where -y is the surface tension. Thus, UJ. represents a local undercooling at the

interface which increases with curvature. The parameter d. is the capillary length,

the characteristic lengthscale of the interface. The other boundary condition is
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• u(oo)=-A (51)

·...here A is the strength of .he cndercooling at infinity; a mean:ngful solution for u( =)

will reqcire A =1. FinalIy, we include a continuity equation for the interface

rD""' • ] IIi.,.••
v.!. = - ~6 vu·n 40lid

The entire problem is thus contained in (49)·(52i.

Using (52), the solution to (49) is ea.<ily sl.own to he

(52)

=;:: 0 (liquid)

=~ 0 (solid)
(53)

Note tha.t the undercooling is necessarily A = 1; this is interpreted as the amount

of latent heat produced being exactly the amount required to heat the undercoob~

Iiquid to T~. A planar interface cannot sustain an exeess or deficiency of latent heat

and maintain a constant vdocity. Further, note that the interface velocity v for A = 1

is undefined.

Figure 12 shows a schematic of this solution b terms of the iaitially planar inter·

face. This leads to the first step of the Iinear instability analysis which, in its simplest

form, uses the quasi-stationary approximation; the timescale for interface dynamics

is assumed to he much longer than the timescale of thermal relaxation and subse-

quently the thermal field is always described by its stationary solution. The more

general analysis can be done without the approximation (Sekerka 196ïa; Sekerka

196ïb; Langer 1980) but the essentia! behaviour is more c1early presented through its

use.

•
A pe:turbation is now introduced at the interface of the form

h(x) = ho(x) + (x)
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Figure 12: A dîagram orthe solution to the thermal difi'usion cquation using the quasi-static assump­
tion; the dashcd lin.. arc isothcrms_ The interface is at the coexistencc temperature Tm as modificd
by the local curvature (sec cquation (50». Tbe thermal gradient rollows e-"" - 1 pcrpendicular to
the interface where the width has a characteristic me l.

where ho{x) = 0 is the initial condition; ( has the form of a superposition of modes

consistent with linear theory

(x) = L (k)e'lc·x+w(Io)'. (55)
10

where k is the wavenumbf'r veetor perpendicu1ar to the interface velocity and w(k) is

an amplification factor for that mode. Since the modes are independent, we choose

for the sake of simplicity w(k) = 0 for ail k except one. The stationary solutions for

the thermal field in the liquid and solid must then be

Ul - e- 2z!' -1 + ÏlI(k)e'IL'X+w(Io),-q, (56)

• u. - Ïl.(k )e.!l:·X+w(Io)l+p, (57)
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• respectively. The following expressions in p and q result from inserting (56) and (Si)

in (49);

?
~ 'k'iP + p. - • = 0 (58)

The amplitudes of the thermal field perturhations û.(k) and ii1(k) are small (on the

order of (k)) and can be evaluated by substituting == ( into (56) and (Si) and

linearizing;

ii.(k) = -dok=(k)

iiz(k) = G-dok=) (k).

Follo...;ng a similar Iinearization for the continuity condition (52), we find

(w(k) + 2;) (k) = D (qûz(k) + ctpù.(k)).

(59)

(60)

(61)

where we define ct == D.C./DzCz; we will henceforth refer to Dl as simply D. Substi­

tuting (59) into this expression and eliminating (k) then gives

2
w(k) = v(q - i) - D(q + ctp)dok= (62j

which, in the quasi-static Iimit of the perturbation wave1ength much smaller than the

diffusion length, kt ~ 1, has the form

(63)

•
where it has been 3.SSumed p = q := k (ie. both phases have similar properties). The

constant is C-... = (1 +ct)/2 which is of order unity for most substances.

The behaviour of the Mullins-Sekerka instability is concise1y described by (63); it

is composed of two opposing terms which refiect the essential physics in the problem.
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•

The positive part acts as a destabilizing growth term, causing the interface to grow

away from its initially planar position at a rate proportional to the interface velocity.

The negative part acts as a stabilizing, decay term; it is dependent on d., the capillary

length, which defines the lengthscale of the surface relaxation. In effect, the pattern of

the instability is a product of the competition between the thermal gradient increasing

interface area and the surface tension reducing it, both mediated by the diffusion of

the latent heat. Within the range oflinear behaviour, the thermal gradient dominates

at small k and the surface relaxation at large k. Figure 13 shows the form of (63) as

a function of k.

----------~--------

k

Figure 13: A linearized analysis of the Mullins-Sekerka instability yields a dispersion relation ...(k)
wh..e the interface h(x) behaves Iike eW

" at eariy times. The sign of ...(k) corresponds to growth
(+ve) and decay (-ve). The mode of maximum instability km.. and critical mode ko (ie. ...(ko) = 0)
are indieated.

Severa! important features of (63) should be noted. AlI the positive values of w(k)

indica.te growth modes while the negative ones are the decay modes. The maxima of

w(k) at km..", is the mode of maximum instability; this mode will dominate at 1ate

times. The zero of w(k) at ka is the critica! mode at which w(k) crosses over from

growth to decay; this will be the upper k-limit of the instability. Using (63), the
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wave!ength of maximum instability >'me, and of critical instability >'0 can be derived

in terms of the important physical Iengths, l and do;

>'0 - ~ ~ 2-:rJC"""ldo (64)

>'m= - 2-:r J (65)-- ~ 2-:r C"",,3ldo
k".,,%

where C""" is as before. The instability lengthscale is thus re1ated to the square root

of the product of the two competing processes. In typical systems, do is microscopie,

being of order of lattice constants in most materials of interest. In the modified Ising

mode! presented in Chapter 4, it has been measured via simulation (see Section 5.3)

to be about l lattice unit nea.r the roughening temperature. On the other h3.Od, the

diffusion length is usually macroscopic, being several orders of magnitude large th3.O

do.

3.2 The Linear Stability Analysis of a Spherical Interface

When the interface bounds a solid bulk inclusion in a liquid background, the inst3o­

bility is characterized somewhat different1y. In fashion similar to the pl3.Oar case, we

will first consider a perfect1y spherical droplet of a pure material in 3.0 undercc·oled

me1t. Then we will consider a perturbation on the surface of the sphere. Note th3ot,

strictly speaking, there is no steady·state solution to this problem since the rate of

growth is radially dependent.

Let us assume 3.0 initial radius r = R" on a perfect sp1:lere centered on the origin

in a me1t undercooled to A == -ut00). O..::e again using the quasi-stationary ap-

proximation, we sec that the diffusion equation satisfies Laplace's equation for all r;

applying (50) at th" sphere's boundary, we find
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• r> R"
(66)

Then the continuity condition (52) is used to dcfine the rate of growth at the interface

r = R.,

v = dR., = E.. (A _2do
) •

• dt R., R.,
(67)

This is the solution for the growth (or decay) of perfect sphere. Noise, imperfec-

tions or fluctuations on the surface or in the thermal field will introduce interface

perturbations.

Consider a perturbation on the spherical interface in terms of the radius in polar

coordinates;

(68)

where Pj is a small initial perturbation amplitude, Yj.~ are the spherical harmonies

and Wj is the amplification factor. Once again, we will isolate a single mode j. Then

it follows that the thermal field has the form

(69)

with the solutions to the thermal diffusion perturbation amplitude in terms of un­

known coefficients a and b

Üj(r) = {
r> R

r~ R
(70)

•
where the smallest j-mode is j = 2 (j = 0 is simply a. displacement and j = 1 is

discarded since the perturbation is around the equilibrium shape). Expanding the

surface curvature in terms of R-l to first order
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• (il)

where e is the angular part of the Laplacian ,,;th eigenstates Yj.= and eigenvalues

j(j + 1), we can Iinearize (69) and apply the Gibbs-Thomson relation (50) using (il);

aj = (v.~+1 _ (j _ 1)(j + 2)doR~-1) Pj

bj = -(j - l)(j .,. 2) ~:2Pj

We Iinearize the continuity equation (52)

.. _ 2v•. (j+l)D.. . j-1L.
wJPJ - - Ro PJ + R!.+2 aJ or o:D]Ro "J

and define the amplification factors

. _ (j - l)v. [1 _(1 + '-1 + ) d.DjU + 2)]
wJ - D ] cr R2 •

.ILo Vr 0

(72)

(73)

(74)

Note that (74) is identica.l to the planar case (63) in the Iimits Ro,j --+ 00 and with

finite k = j / Ro.

It is now useful to re·express (74) in terms of R", th~ critica.l radius from nuc1eation

theory (see Appendix A.2). As a fundion of the undercooling A, it is

and thus the interface velocity is

R" = 2d.
- A (75)

•
(76)

If we assume that Ro is slightly larger than R", the interface velocit:r will be smal1

and positive and the droplet will grow. By inspection, (74) will then be negative for
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• all values of j and all perturbations on the surface ,,;ll decay. This means that the

gro,,;ng droplet ,,;TI be spherically stable at R- ::; R" < Rj. To identify the radius

at wruch the sphere ,,;ll become unstable for a given j, we consider (i-l) for "'j = 0;

trus requires

Inserting (i6), we lind

R~ '( . -"- ')) ( 1 )
_J =1+]]' - 1+-:+0
R- 2 ]

(j ~ 2). (ii)

Thus, the lowest mode j = 2 becomes unstable at R; ::: llR- assuming that the two

phases have similar thermal characteristics (0 - 1).

3_3 Steady State Solutions for a Needle Crystal

We are also interested in understaTlding the nature of an interface instability much

later in its development when it has become a long, tapered linger or dendrite. Fol-

lowing the lead of experimental evidence, wewill presume the existence of a long,

narrow, axially-symmetric needle crystal wruch has grown from an initial instability

like t1:at described in Section 3.1. We recall that the excess latent heat

:\ = CT... - T. - c. (78)

•

must be exactly 1 for there to be a steady state planar solution with constant velocity

v. If A > l, the interface ",;TI accelerate with no restraint mechanism and no steady­

state is possible. If A < l, an excess of heat is generated and the interface will slow

until it finally stops, assuming that it remains pIanu. It can continue to move at

a constant velocity (albeit at one place) if it bends backwards on all sides of sorne

leading point; Figure 14 shows a steady state needle crystal with a tip with radius of
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Figure 14: A .d1ematic diagram of a steady-state necdlc crystal with a spherical tip moving nt
constant vdocity. The dashcd lines indicate the isotherms in the undercoolcd mdt.

curvature p. The isotherms surrounding the tip diverge away from it as the heat is

diffused away to the sides. For comparison, Figure 59 in Section ï.4 shows a number

of simulation results for the therma.l fields of growing instabilities. The only known

ana.lytic solutions for this situation are in the limit of zero surface tension with the

interface exactly at the coexistence temperature Tm. In circular cross-section, these

are known as the Ivantsov solutions (Ivantsov 194ï); there a.lso exist solutions for an

elliptica.l cross-section (Horvay and Cahn 1961).

We will shall use equations (49)-(52) in parabolic coordinates p., v and IJ to find

solutions for the therma.l field similar to (53). The coordinates are in an inertia.l frame

moving with the needle's tip and are defined to be

p=(r-=)/p v=(r+=)/p

•
where p is the tip radius of curvature, r is th" ;:adia.l distance from the origin, ;: is

a.long the needle axis and IJ is the angle around the :. The diffusion equation (48) is

then written
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•
p (au au) 1 (a au a au) 1 a:u

t(1l + v) vav - Il av + Il +v avvav + ail Il ail + 41lvJe: = 0 (79)

where the dimensionless thermal field u is defined by (47) and wc have again assumed

the quasi-stationary context. The nccdle crystal interface is then a surface V.dll, e, T)

where T is the dimensionless time 2vt1p. The continuity equation (52) becomes

solid

liquid
(SO)

where p is the quantity known as the Péclet number

p ==;; = pit

and

For simplicity, we will ignore the effect of the Gibbs-Thomson relation and assume

that u goes to zero at the interface (ie. as if it wcre fiat). There is then a solution to

(79) with V.l. = 1 for the thermal field

{

0
u-

- _ A+ AE.!,...)
E,ep)

where E1(X) is the e.'Cponential integral

v~1

Il>1
(81)

•
Combined with (80), the solutions (81) require the condition
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•

This expresses a key relationship between the tip radius p and the tip velocity v

through p; for a given undercooling and thermal properties (ie. heat capacity, diffusion

constant and latent heat), there exists a critical till curvature p which is associated

with a specifie velocity v. 1t has been shown to be roughly consistent with experiment

(Glicksman 1984).

Unfortunately, this onIy determines their product and not each quantity. A more

complete analysis is needed which also includes a finite surface tension and its inherent

anisotropy. This appears to be provided by the microscopie solvability theory (see

reviews (Langer 198i; Kessler, Koplik and Levine 1988)) which we will not need or

exa.mine in this thesis. Of particular importance is the role of the anisotropy which

introduces a cusp in the solution for the needle interface, thereby stabilizing it and

defining a unique pair of values for p and v associated with the largest tip velocity.

These values of p and v depend directly on the strength of the anisotropy; reducing

the anisotropy to zero in the description then causes the steady.state solution to

disappear.

We will use results from each of these analyses, direct1y or indirect1y, in compar­

isons with our simulation data presented in Chapters 6 and i. In Section 6.1, wc will

explicitly check the predictions for a pIanar interface in the linear regime; our goal

will be to reproduce the dispersion relation for the growth modes and identify the

special critical and maximum instability modes. For reasons related to computational

efficiency, we exa.mine the behaviour in two dimensions; this does not affect the basic

physics. In Section 6.2, we continue in the two dimensions, looking for the stability

radius of a disk (as opposed to a sphere). Since the details of the prediction are

important in this case, we re-derive some aspects of the analysis presented in Section

3.2 although, once again, the basic physics remains the same. Finally, in Chapter

i, we go beyond the linear behaviour to non·linear growth. However, since 1ate-time
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•

descriptions are complex and difficult to apply, we continue to rely on our under­

standing of the Mullins-Sekerka instability as developed here. Speeifica1ly, in Section

ïA we study the thermal fields associated ,,;th these growths and interpret them

in terms of the antieipated linear behaviour. We validate this approach by directly

comparing the solutions for the thermal fields ,,;th data from a moving, steady-state

planar interface.
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• 4 The Simulation Model

Our simulation mode! has been used to mode! many different processes which invo!ve a

thermal diffusion mechanism. These include first- and second-order phase transitions

(Harris 1985), interface re!axation to an equilibrium roughened state (Jorgenson,

Harris and Grant 1989), thermal conducti\;ty (Harris and Grant 1988), dendritic

growth (Harris, Jorgenson and Grant 1992) and numerous others. It has been shown

to mode! thermal processes consistently in ail these applications. We re\;ew the basic

behaviour of the mode! and introduce an enhanced thermal diffusion algorithm for

improved control. We also discuss alternate lattice geometries and configurations

which have been used for various work presented in this thesis.

4.1 The Simple Cubic Ising Model With A First-Order

Transition

Our mode! is based upon a regular, cubic lattice of N Ising spins (0' = ±1) of sizc

L", x L~ x L,. The spin interaction is nearest neighbour and the spin energy is defined

by the Hamiltonian

1i = -J I: O"O'j - t.. I: 0'.
<ij> i

J > O.

•

The first term is the spin-spin interaction and the second term represents a uniform

extemal fie!d of strength t... As a lattice-gas mode!, the +1 spins are associated

,,;th an occupied site or atom and the -1 spins are vacant sites. With t.. = 0, this

mode! exhibits a second-order transition from an ordered to disordered state at the

critical temperature kBT. = 4.51151 J (Pawley et al. 1984); the Boltzmann constant

kB is subsequently defined to be unity and will be dropped from further use. For

convenience, ail temperatures ,,;n be referred to in units of T. of the 3D Ising mode!.

Since we are inte:ested in modeling thermal diffusion-limited processes at an inter-
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• face, it is necessary and desirable to modify the basic mode! so that it ha.< a first-orda

phase transition and thus a latent heat. \Ve do this by making ~ finite and introduc-

ing a degeneracy in the upper spin state (J' = -1. To illustrate their effect, we shall

derive a simple mean-field description for this mode! with a degeneracy.

For a system ",;th Boltzmann statistics, the number of states for a given energy

E is

where N = N+ + N_ and the degeneracies of the spin <tates are 6+ "nd 6__ The

entropy density ean then he defined as

s = ~ _ ~ ln(!1(E))

- (n+ln(5+)+n_ln(cL)-n+ln(n+)-n_ln(n_)) (83)

where we have introduced the numher density n = n++n_ == 1 and the approximation

ln(A!) ::::: Aln(A) - A. We define the degeneracy to he the ratio 5 =5_/5+; then using

n+ = 1 - n_, we can eliminate 5+ and L except for a constant term In(5+) which is

unimportant. In general we will want to use non·integer values for 5.

For convenience, we redetine the numeer è.~llsities in terms of the mean magneti.

zation;

1±m
n... =--

- 2

The meanfield spin energy is then

(84)

where a is the number of nearest neighbours (eg. a = 6 in 3D) and the prefactor of•
E (1 -2 _

(== N =- 2aJm + ma) (85)
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• 1/2 is for double-counting in the summation over the spins. This can be invert~d to

solve for 711 as a function of <

2<
o.J

(86)

The entropy density is

3 = ~ (ln ( 4S_ .) _ min (SI + ~))
2 1- m- 1- m

\Ve then apply Boltzmann's prineiple, defining the temperature T,

a.< = ~ (~) -1 == T-1

a< am am

where

a3 -~In (SI + 711)=am 2 1-711
a<

-(~ +o.Jm)
am =

=- T=2o.Jin+~
ln (s~)1-'"

Invert'ng (88), we get a recursive solution for in in terms of T;

(8i)

(88)

(89)

By inserting (86) into (SS), we find an expression for the temperatut'· ;,; terms of the

average spin energy f

•
T = ±2V4~: - 2o.Jffln(n)

where

The solutions (89) and (90) are shown in Figures 15 and 16 respectivdy.
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Figure 15: The oeanfield solution for the ..verage spin magneti...tion mIT) for th. Ising modeL
Although there &le three branches to the solution, only two &le physical. The first order transition
is repres<nted by the dlOShed line where the mIT) pa.<ses from m - 1 below T_ to m - -1 ..bove.

The path of the first-order transition is also shown in the figures even though

it is not explicitly pa!"t of the solutions. Its existence can be shown by writing the

meanfield partition function for two equivclent systems, one with m = m+ - 1 and

the other v..ith m= m_ - -1;

Zi = L: e-'/(·/T
cr=:!:::l

= e(J....+~)/T + é e-(J....+~)/T (91)

•

where Zi is for site i and the partition function for the entire system of N spins can

be eonstructed from ZN = (Z;)'" because in meanfield the spins are non-interaeting

and loca.lised. The two partition funetions for the two systems will be designated

ZR = Z",(m:!:). We know that at coexistence (T = Tm) the partition functions must

be equa.!. Assuming that m+ = -m_ = m (which we will justify later), we then write
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•
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t

Figure 16: The mellDneld solution to the averase spin energy «Tl for the Ising mode!. Note that
the phy>ic~ solution is represented bi the solid line. The width of the h'llDsition region corresponds
to the latent heat C.

This is only true if e"'IT- = 8e-"'IT- or

In(8) = 2a.
Tm

We can see that, by raising 8 into the exponential in the second term of Zi (91) so that

.t appears like e-(J"'+"'-Tln(oll/T, the degeneracy acts like a temperature dependent

field. At Tm, it exactly cancels a and the effective fie!d is zero; we once again have

the basic Ising mode! whieh we already know satisfies our original assumption m+ =

-m_ = m. The transition temperature has been established using the meanfie!d

description but it should be noted that it is an exact result.

The main advantage of this mode! in terms of simulation studies of interfaces

is its tUIlable coexistence temperature Tm. This makes it possible to study stable

interfaces at a range of temperatures in a manner whieh is similar to manipulating the

c~sto:nce temperature of a real substance by ehanging the pressure. For example,
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• Figure li shows the phase coexistence boundarks of a material in a standard p.

T (or pressure·temperature) phase diagram compared with a similar diagram for

the modified Ising mode\. The pressure is analogous to the spin degeneracy and/or

T

disordered
phase

Tm =2AJ/n(S)

T

•

Figure 17': The pressure-temperature phase diagrams for a typica.! substance and for the Isirg model
with a first ordor phase transition. Shown are the criticaJ point anci triple point on the rea.! p.T
diagram and the critica.! point ofthe model poT diagram. Note tht 6 is assumed fUed and greater
than unity.

applied eJCtemai fidd.

4.2 Spin Degeneracy and the Multi-Demon Creutz AIgo­

rithm

The dynamies of the system are eontrolled by a variant of the Creutz multi-demon

algorithm (Creutz 1984; Creutz 1986). An Lz x L~ x L. lattice of non-interacting

demons has a one-to-one correspondence with the spins. Each demon carries a non-

negative amount of energy. ED' Spin sites are visited one-at-a-time at random. At

each, a spin-flip to the other phase is attempted. The potential change ;n energy

6E" for the f1ip is calculated and compared with the energy ava.ilable in the demon

which corresponds to the current site. Tile am"unt of energy ava.il::.ble from the
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• dcmon dcc;d"s thc coursc of action; the follo";ng events occu: under the respective

conditions;

Condition

6.(~ < 0

o< 6.l~ < (D

fD < 6.f~

Action

fiip and demon absorbs energy

fiip and demon gives up energy

no fiip and no change in demon energy

•

A Monte Carlo step (MCS) is defined to be when every spin site h'lS been \;sited

once, whether it fiipped or not.

The spin degeneracy can be implemented in several wa)·s. We have chosen to

explicitly bias the upper spin state U' = -1 in our simulation engine. In lieu of

fiipping every spin .:lf either phase to its opposite state (eg. 5 = 1), we visited :1:

sites attempting a fiip regardless of sign, then visited :1:(5 - 1) more sites and only

attempted to fiip them if they were U' = 1. This is algorithmica1ly equivaIent to

fiipping any spin to any one of the 5 + 1 possible states, including its own state

and any degenerate states. The accuracy of any implementation is easily tested by

checking if (93) holds for a range of.c. and/or 5.

Typica1ly, after several 100 MCS, the spin and d"mon systems will be in thermal

equilibrium. The distribution of demon energies will then conform to Boltzmann

sta.t.istics. This makes it possible to define a local spin temperature in terms of

the average energy (in time or space) of a group of demons; we follow the recipe

from t1e ::anonical ensemble description (Reichl 1984) for the average energy of the

system. The. simplest deri''lltioI: is for the .c. = 0 and 5 = 1 case; it demonstrates

the relationship more concisely than the general deri\'ation. We first construct the

partition relation for a single demon
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"here the demon energy ranges from 0 to oc in increments of 2J: the incrcment 2J

is the smailest possibie exchange of energ)" between a demon and spin. Again, since

the demons are non-interacting, the partition function for the entire system can be

constructed ZN = Zf and, thus, (ED) = IV (ED). From the canonical ensemble

anal)"sis, we use the formula

(ED)
a 1

= al T lnZi
T

00 00

= L EDe-'DITf L e-cD1T

CD=O <D=O

=
T 2JfT

(94)eUIT -1

==> T= 2J (95)
In(2Jf(ED) + 1)

This result is derived using the relation

:ce-: + 2:ce-:l: + 3:ce-3: + ...
;:--

e-: + e-:l: + e-3: + ... e= - 1

where :c ;: 2JfT. For smail :c (high T or continuous spectrum of energies, J - 0),

we can expand e: to first order and (94) becomes

(96)

•
The more general case of t. > 0 and 0 > 1 can be done by separating the already

non-interacting demons into two groups, those associated with up spins (<TT = +1)

and those associated with down spins (0' j = -1). If we assume that the energy of a

demon associated with a down spin (the lowest ~nergy spin state) at T = 0 is zero,
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• it is easy to show that the possible energy states of CD, are nJ where n E [0,2,4,6...]

and of CD. arc (n -+- 2)J - 2~. Their average energies arc then

z
{CD \ == ---:­, ,/ e=-1

xe=
(CD.) == -- - 2~.

e= - 1
(9ï)

•

As is obvious, the field ~ introduces a bias into the definition of t~mperature. This

makcs it more awkward to accurately measure the temperature based on a simple

average. Precise measurements require carcful attention to the system parameters

and the spin and demon configurations.

For general purposes however, the demon energy, averaged over spaee or time,

providcs a reliable measuremel't of the local or global temperature. This assumes, of

course, that the average can be taken of an equilibrium or steady-state systl:IIl on a

temporal or spatial timescale which is short eompared to any dynamieal processes.

4.3 Thermal Diffusion

The Creutz algorithm has an inherent thermal diffusion where thermal energy is

passed from demon to demon via the spin-flip meehanism. This process has been

studied (Harris and Grant 1985) and it has been "hown to give a good account of ther­

mal diffusion in a dynarnic eontext. However, it has the drawback of being strongly

dependent on temperature since the rate of spin-flip is related to the strength of ther­

mal fluetuations. This makes controlling the diffusion proeess diflicult and introduces

complications into the analysis. We have therefore introduced an enha.nced diffusion

proccss which is independent oi T and provides for ease-of-control. Thermal diffu­

sion is modeled by having the demons randomly exehange positions (or equivalently,

energies) via a Kawasaki-like exchange with no penalt)·. The demon exehanges are

between randomly ehosen nearest-neighbours and thus the demons perfor:n a random

walk in 3D. The walk is described in ID b)· the probability of finding a specific demon
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• (or its cncrgy) a distance x away from its starting place at lime t (Reich: 1984);

where n is the number of exehanges per unit time and " is the distance of the ex-

changes, the unit lat'ice spacing. This is eqllÏvalent to the ID diffusion equation

where the diffusion constant is D = na' /2. In terms of the a1gorithm, n = 1 is de­

fined to be when every demon site has been exchanged during one Monte Carlo pass;

in general, n is the fraction of demons whi<:h have been cxchanged in a single MCS.

Extending this to higher dimensions, D is defined

na:!
D=­

2d
(98)

•

where d is the dimensionality. We can therefore directly control D by changing the

number of demons which are exchanged in each MCS. This procedure has been tested

extensively and has been shown to be consistent for n as high as Hl (ie. ION demon

exchanges occur per MeS). Normally, we use T, - 1 or lower. ln comparison, the

intrinsic diffusion process is sufficiently wcale at ail values of T used in this study that

it can be sarely ignored_

An added adv-...n.age to this algorithm is that thermal field can be mapped out

graphically providing insight into the thermal diffusion mechanism and its effect on

interfaces. In Section 7.4, we will examine the thermal fields associated with the

Mullins-Sekerka. instability driven by a thermal gradient. W<: v.-ill be able to fur­

ther define the thermal characteristics of the model and relate them to the critical

lengthscales of the instability.

4.4 Configuring the Simulations

The simulation systems cao he configured in a variety of lattice sizes and shapes,

interface geometries and initial conditions, depending on the physical context which
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is being modded. Here we shall review the basic configurations and make a special

note of lattice and interface geometries in the next Section.

Ali the simulation trials were on regular, cubic lattices of dimensions L: x L, x L~.

For reasons of memory alignment, L was usually a power of 2. \Vith currently available

hardware, the largest possible system sizes were approximately 10 million (::::: 10') spin

or sites. Due to time constra.ints, we generally limited ourselves to 2 million sites (eg.

1283 Iattice). The spins are conta.ined in B~olean values, having ooly two values, but

the aecompanying L: x L, x L~ demon system ean have greater range of values and

usually requires the greatest a.mount of memory. Due to the fact that cpu speed was

usually the bottleneck, no real attempt was made to optimize memory usage; the

bulk of our efforts was spent on developing the specd of the algorithm.

A finite number of Monte Carlo steps are always required to aIlow the spin and

demon systems to relax into a'l equilibrium state. In order to limit the effects of relax­

ation, the spin and demon systems were both initialized close to thermal equilibrium

with each other. For the spins, the meanfield expression (89) was used to introduce

random bulk fluctuations appropriate to the chosen temperature. The average de­

mon energy was extracte<Î from (96) and the total energy ,,'as distributed randomly

in units of 2J. Relaxation times were limited to several hundred MCS. No attempt

was made to initialize the system with a thermal gradient; since thermal diffusion

is necessarily faster than the interface dynamics (in order to satisfy the quasi-static

approximation of Chapter 2), gradients are always in place before the initial relax­

ation has becn completed. Systems pre-initialized with gradients were tested without

finding any noticeable advantage; it was found to bc suflicient to ignore the carly

times of each simulation trial.

The system's boundaries were handled in two ways: First, periodic boundary

conditions were applied on the four sides perpendicular to the i and y directions

64



•

•

for both the spin and demon systems. Second. the two sides perpendicular to the ::

directions (top and cottom) were each pinned to the desired phase and maÎntained at

a constant temperature ,;a a heat bath, using the Metropolis algorithm (:\Ietropolis

et al. 1953). For certain simulations invoh;ng enc10sed volumes (finite crystals in

Chapter 5), the four sides were periodic for the spin system but maintained •.• consta.nt

te:nperature.

The bulk phase interfaces were initialized perfectly fla.t without thermal fluctua­

tions; at finite temperatures, ~quilibrium surfaces display their own thermal fluctu­

ations, either as smalI flat islands (micro-facets) on an other",;se flat surface or as

random variations in surface height (roughness). The planar interfaces wcre initially

perfect planes and the droplets were perfect cubes. As mentioned b<'"fore, an initially

fiat interface will rdax to its equilibrium state very quickly (depending on the rate

of thermal diffusion and size of the latent heat). In non-equilibrium contexts, local

steady-state is usually reached just as quickly.

4.5 Lattice and Interface Geometries

While both the physical crystal structure and the simulation lattice are regular and

eubic, there are several different ways to approach the simulation of a erystal interface.

We shall look at several different applications of our modd which we shall use in later

seetions and comment on the importance oi the geometry. In Appendix A.1, we have

ineluded details for the definition of the crystal plane notation used beIow as well as

the implementation of the following geometries in the standard algorithm.

{lOO} Block Planar Interface

The simplest configuration is the L,. = L~ = L. system with a bulk phase interface

perpendicular to the:: direction. When the nearest neighbours are defined to be the

nearest sites in the %, y and z direction, the system models a planar interface with

65



•

•

{100} orientation. As will be shown, this interface exhibits a structura.! transition at a

finite tcmperature TR < Tc which affects equilibrium and non-equilibrium behaviour.

Figure 65 in the Appendix depicts the (001) plane. Note that the term block is used

to distingcish it from the slab configuration described below.

{111} Block Planar Interface

Using the same regular cubic lattice, we can change the definition of the nearest

neighbours so that the system models a planar interface with {111} orientation. This

involves redefining the spatia.! representation of the lattice so that adjacent rows in an

z-y plane are staggered in a two-step cycle. Similarly, vertica.11y adjacent x-y planes

are staggered in a three-step cycle (see Figure 66 in the Appendix). Thus, each site

has three neighbours in the plane above (': direction) and three in the plane below.

Aside from the redefinition of the nearest neighbours, the a.!gorithm is identica.! to

the {lOO} system.

This re-orientation of the crysta.! interface is very important for studies of the

Mullins-Sekerka instability. As we noted in Section 2.1, the {Ill} interface in the

simple eubic lattice has a roughening temperature Ta = 0 and it is roughened. at

a.11 finite temperat'ues. Consequently, its behaviour is unmodified by the transition

throughout the range of finite temperatures. This is particularly important at low Tm

and for large undercooling when the interface may be far below T~lOO}. If facets form

perpendicular to the direction of the instability, its growth will be strongly inhibited.

As we observe in Section 5.4, the response of a faceted interface to a driving force is

weak and non-linear compared to a roughened interface.

It is worth noting that this :<earest neighbour scheme provides access to severa.!

other crysta.! lattices. Wit~ sorne minima.! changes, we can simulate the hexagona.!

close-packed structure (HCP). With somewhat more extensive modifications, we can

produce the body-centered and face-centered cubic lattices as well. Time constraints
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kept us from exploring all of these possibilities.

{lOO} and {Ill} Slabs

Using either definition for the nearest neighbours, we can reduce the size of Lv so

that Lv « L",. This configuration is referred to as a slab. lt has three ad\"antages

which are useful to us: First, we can run much larger sizes in L", and look at long

wavelength behaviour. Second, we can examine the behaviour of phys:cal systems

which are studied experimentally; it is common that dendritic growth e:<.periments in

succinonitrile are conducted using an undercooled melt held between plates of glass

(Chou and Cummins 1988; Qian and CumffiÏns 1990).

Finally, we can examine the transition from 2D to 3D behaviour by varying Lv

between 1 (2D) and L", (3D). This is helpful in extending results from 2D simula­

tions to 3D and understanding the importance of an additional degree of frecdom.

In Chapter 6, we employ a 2D system in order to examine the \inear stability of

the Mullins-Sekerka instability at very large wavelengths on long timescales; this is

currently not possible in 3D systems due to hardware eonstraints.

Bulk Inclusions

Using an L", = Ly = L= lattice and the normal nearest-neighbour scheme, the interface

is initialized as the boundary between a cubical inclusion of size l x l x l. of one ;>hase

(ie. so\id crystal) within a background of the other (ie. a \iquid melt). Ty;>ically,

the initial size of the inclusion is e= 0.75 L, the system size; this is just over half

of all the spin sites. This configuration is used to study a droplet interface while in

equilibrium (sec Section 5.2) and also as it evaporates from an initially cubic shape

to nothing (see Section 5.3).

It is this system which employs boundary coo\ingfheating on all six sides; it is

important to properly simulate contact with a heat bath on all side of the droplet so

that no artificial asymmetries are introduced. Although periodic boundary conditions
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are still maintained on four of the six sides, the solid droplet never makes contact

with edges of the system.

Two-dimensional Systems

We also employa two-dimensional version of this code for special use in the study

of linear si.ability analysis presented in Chapter 3. The essential details of the model

do not change significantly except for the ease of the long-range interaction used in

Section 6.1. In this case an ext~nded range for the site-site interaction is used. Details

are presented in that Section. The reasons for the 2D approi'eh are related to the

limit of resolution currently possible in three dimensions.

68



• 5 Equilibrium and Near-Equilibrium Interfaces:

The Roughening Transition in Three Dimen-
.Slons

•

As a first step toward characterizing the simple cubic crystal interface, we shall ex-

amine its equilibrium beha\;our. Of particular import is the roughening transition

beha\;our as it was described in Chapter 2. By analysing the two structural pha.<es,

fa<:eted and roughened, of an interface, we will be able to better define the beha\;our

of the transition both in terms of a planar interfaee and the surface of a bulk inc1u·

sion. In Section 5.1, we explore the equilibrium beha\;our on a planar {lOO} interface,

both near and away from the transition temperature TR. Then, in Section 5.2, we

extend the description to a bulk inclusion or droplet interface, noting how the tran­

sition behaviour is modified by a stabilizing externa! field. Removing the external

field so that the droplet interface is at coexistence, we study the phenomenon of a

slowly evaporating droplet in Section 5.3; this is viewed as a near-equilibrium state

which demonstrates a transition-like behaviour that is unrelated to the equilibrium or

dynamic roughening transition. In Section 5.4, we examine another near-equilibrium

state wherein a planar interface is subjected to a sma.ll driving force. We observe how

the externa.1 field again results in adynamie roughening transition.

5.1 The Planar Interface at Equilibrium

From the basic theory presented in Section 2.1, we know that the roughening tran-

sition of the {100} interface of the 3D Ising model is an infinite·order Kosterlitz·

Thouless transition ,,;th a characteristic temperature dependence of the step free

energy, step-step correlation length and interface width. The behaviour of the inter­

face above and below the transition is not as well-known. In this section, we introduce

69



•

•

expressions for severa! usefuI quantities based on the surface fluctuations of the simple

cubic crystal interface; they will help us to define its behaviour at equilibrium and

subsequently to identify the transition. Wc then examine the resuIts from Our simu·

lations of a {ICO} planar interface to confirm their consistency ..:ith the well-known

transition behaviour and to compare t:'em ,,;th Our new expressions away from the

transition region. For reference, the transition temperature of the 3D Ising modeI has

been identified analytically (Adler 198i; HoIzer aI!d Wortis 1989) as

TR/Tc ::: 0.546 ± 0.004

and by computer simulation (Mon, Landau and Stauffer 1990) as

TR/Tc ::: 0.542 ± 0.002.

Theory

Equilibrium interfaces, both physical and \;rtual, refiect the presence of thermal

energy in the form of fiuctuations in surface geometry which can be described in

terms of a fluctuation probability density Pt. Analysis of this distribution pro\;des

a more reliable measute of the roughening transition, \\;th bette.r statistics, than

other approaches in the literature. We define it in terms of a faceted reference plane,

upon which there is a collection of micro-facets which refiect the stochastic balance

between the availabIe thermal energy and the free energy cost of forming a facet step.

A micro-facet is a small island on the int"rface which is one Iattice constant higher

(or lower) than the reference plane and has a characteristic size l; it is equivalent

to a nucleation site in a 2D system. At a given temperature T, the distribution of

micro-facet sizes is Boltzmann·like

Et(t) is the free energy of a facet of size l , given by
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•
Et(l) = 4iE,(T) - ai:.6E;(T)

assuming the site is square to first approximation (ie. .mall and on a cuhi, lattice)

and far from any other site. Here, .6E; is the bulk free energy difference and a is the

lattice constant. If the interface is assumed to be at coexistence (ie. t~Eb = 0), the

condition J;o Pf(l, T)d!. =1 defines the prefactor to be

Po = 4E,.
T

The distribution Pt ( i, T) then measures the relative probability of a given size of

micro-facet appearing on an interface of infinite extent in the continuum limit.

The mean micro-facet area (A) is then

(A(T» = f' l: Pf(l, T)d!.

T :
= 2 4E•. (99)

Thus as E. got:S to zero at TR (5), the mean facet area diverges strongly to infinity.

This behaviour was anticipated by Weeks and Gilmer (Weeks and Gilmer 1979) from

a visual inspection of Monte Carlo simulations of a fiat interface.

Similarly, the variance q:, which measures the dispersion of the micro-facet area

around (A), is

In the same regime, the interface width is proportional to total number of micro-facets

which ean be shown to be proportional to (A);•
(100)
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this can be shown to be consistent ,,;th (35) in the limit T ~ Tii.. The uncovered

fraction Ao of the reference plane, which by definition, goes to zero as T ~ Tii.,

becornes

.4'0 = 1 - C"",,(.4)

where C is a constant which is mode! dependent.

(102)

As T - Tii., rnicro-facets begin to overlap, corrections to equations (99), (100)

and (102) for step-step interactions become important, and the simple rnicro-facet

description would seern to be less useful. However, it can be used quite close to Ta,

since the essential physics is captured by the abrupt manner in whieh E. goes to

zero. Indeed, near Ta, the description is consistent with the established re!ationship

between the them.al correlation length and E. as expressed byequations (3) and (5).

To see this, we identify the mean facet size {i} as a measure of the correlation length,

so that

T
~ ex (i) = 1 + 4E. ; (103)

•

note that in the thermodynamic lirnit oi infinitc:~imal f1uctuatio!ls (ie. using io"

instead of J,OO), we recover the form of the Fisher relation for the square Ising lattice

(Fisher 1969), ~ = Th,D where the 2D surface energy corresponds to the step free

energy, "'(:D - E•. 5ince analytic results are available for the 3D Ising model (HoIzer

and Wortis 1989), this expression also provides a usefu! description of ~ when T < Ta.

Above Ta, the crystal surface is no longer faceted. However, the rnicro-facet



• distribution can still be defined via a gcomctric an<Ùysis. and the mcan facd arca (.4.)

can be related to the mean curvaturc i<, 50 that

(104)

Details of this relation arc given in Appen:!bc A.3. Wc know (Grant 1:):;8) thal the

( '(L T)' ln (L) T
w , 1 oc tT)

/, . T>Tn. (105)

•

The factor Tin this expression does not appear in (35) because, ~ompared to .;t - Tn,

it is appNximateiy constant near Tn.

Simulation

To examine the behaviour of an equilibrium planar interface of {100} orientation

at coexistence, the coexistence temperature was varied over T == Tm E [0.2,0.8} Te

through the external field via (93); the spin degeneracy was maintained at Et = 2 for

ail runs. During the simulation, the interface was permitted to fully relax, requiring

approximately 1000 MeS. The statistics were based on the final state of one to six

runs, depending upon the proximity of Tm to Tn and upon lattice size L; larger

systems required ooly one run to provide useful statistics. Lattice sizes were varied,

L E [32,512], with the system height held at a constant L. =24; this was suflicient

to permit the largest systems at the highest T to relax to a fully roughened state

without encountering the upper and lower boundaries. Figure 18 shows a series of

equilibrium planar interfaces at temperatures above and below Tn.

In order to make contact with previous studies (Mon, Landau and Stauffer 1990)

and the analytic predictions (35), (105) and (101), the width of the interface (w(T)2)

was measured. This is defined as the mean square width of a single-valued surface
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T=OA Tc
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T=O.7Tc .", . ./
." 1.
~.

Figure 18: A series ofequilibrium planar interfaces at temperatures around tbe 3D Ising rougbenin~

tr&DSÏtion temperature TR :::: 0.54 Tc; tbe images shown are b&sed on a 64 x 64 x 24 system at
T = 0.4,0.5,0.55 and 0.7 Tc. Tbe Iigbter eolor indieates bigber surface leve\. Systems up to
512 x 512 x 24 were used in tbis study.
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• which is den"ed from the actual interface by eliminating aU ov<"rhangs and bulk

fluctuations. At most temperat:lres of interest, this is a "cry good approximation.

Figure 19 shows (w') for vanous Lover a range of T: Away fron. TR :oe 0.5·15 T, (Holzer

2.8 r---..---.------,.---r--~
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" 1.6
ro

li:
v 1.2
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0 - 128

• - 32

•

o. 'll6:.3~-=:=0!:::.4~--:::O.l.:.5=----:::O.l.:.6:-----:::0-':. 7::-----=-'0.8

T (Tc}

Figure 19: Tbe mean squared widtb ortbe equilibrium planar interface at T E [0.2,0.8] T, for system
we L ,: 32,128 and 512. Tbe 3D Ising roughening transition is at TR =:: 0.54 2~. Tbe 50lid lines are
fits t... ~a1ytic expression.. (101) and (105); note tbe finite size depcndence of tbe data above TR'
Tbe insct sbows tbe dat.. near to TR witb fits for tbe critkal expression (35).

and Wortis 1989), the data follows both (101) and (105) in a credible manner, and near

TH is consistent with (35) (see inset) although too sparse to confirm them in detail.

The data is similar to that of a recent study by Mon, Landau and Stauffer (1990)

for systems of comparable size, in that finite size effects are not very pronounced.

From the position and sharpness of the cusp in the dat a, the roughening transition is

estimated to be TH/Te ~ 0.54 ± 0.01; this can be improved by producing more data

points with better statistics near the critical region, using the critical expressions for

the width for analysis as did Mon et aL
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However, the analysis of the facet-size distribution dispiays the transition much• more clearly using the sa,ne data. Figures 20 and 21 show (A) and cr'.
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Figure 20: Tbe me"" micro-fac:et area for the equilibrium planar interface at T E [0.3,0.8) Tc for
system sùe L =32,128 and 512. Tbe dasb.~ lin. is a fit to tb. analytic expression (99).

behaviour is divergent near TR and shows a distinct finite sizc scaling at and above the

transition, ....;th CT' most clearly indicating the transition. Examining the divergence

in the data, the transition temperature is estimated to be TR/Tc ::::: 0.542 ± 0.005.

Using the modified expressions for (99) and (100) (see Appendix A.4) which have

been corrected for a minimum micro-facet 9ze of unity, we find that they are in good

agreement ....;th the data, using the temperature as the fitting parameter and the low­

T expansion for E.(T) of the 3D Ising mode! from Holzer et al (Holzer and Wortis

1989). Above TR , (.4(T») is expected to follow T-~ (104); our results are collSÎStent

....;th this prediction although the power law is too weak to fit unambiguously to the

limited range of data.
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Figur~ 21: The variance in the Mean m.icr~facct arca. for the equilibrium pla:uu interface at T E
[0.3,0.8] Tc for system sUe L = 32,128 and 512. The dashcd line is a fi~ to the analytic expre>sion
(100).

In Figure 22 we show the fractional area of the reference plane Ao; note the finite-

size behaviour at T < Ta. Although, we have not been able te provide a satisfactory

argument for a scaling ansatz, we point out that this h"h:.viour is consistent with

the observation that E. scales like 1/L by Mon et aL (1988). The data displays a

clear point of inflection near the anticipated TR; from this, we estimate TR/Tc -::::

0.542 ± 0.008. The data for the largest system (L = 512) agrees weil with corrected

version of (102) (see Appendix A.4), again using the expansion exp:ession for E.(T)

and fitting the teroi'erature and C as parameters.

•
Results

The characterization of a planar {100} crystal interface has been extended from the

critical behaviour at the rGughening transition temperature Ta to T « Ta. The

77



• 1.0 - - -- -'-c .... - ...
a ,

a
, ,• • ,

0.8 - • \ -
• 512 ,

•,
••

0.6 f- •,
a - 128 •0 a< •

~.

0.4 f- • -
••

• - 32 • •
1b.

le 0 cP 1
0.2 f- • d'. -• •,0

~.... a.0 • •
(j·~.3

, , '••• a q a a
~

0.4 0.5 0.6 0.7 0.8
T (Tc)

Figure 22: Tbe normalizcd arc" of the reference plane wbich is nat obscurcd by micro-facets for an
cquilihrium planar interface "t T E [0.3,0.8] Tc for system me L =32,128 and S12. Tbe dashcd
line ;. " fit to the analytic expression (102).

micro-facet poptJation on the interface can be described in terms of the mean micro­

facet area (A) ad its variance .,.2, both of which diverge at TR • The mean square

width of a faceted interface has been shown to be p:oportional to (A)2 below TR' The

fraction of the exposed reference plane is related to (A); we expect these quantities to

show finite·size effects. Ali of these quantities, including the critical expressions, have

been sh<>wn to be in good agreement v.-:ith simul~tion. As well, a relationship between

the "~ep-step correlation function and the step free energy has been suggested, based

upon the micro-facet distribution. It is consistent with criticai theory.

Simulation results have been compared favourably v.-:ith established expressions

•
-

for (W2) near and above TR. A geometric argument subseqllently provides a measure

of (A) above TR whic!t is consistent with simulation.
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5.2 The Metastable Droplet at Equilibrium

When the soIid-Iiquid interface bounds a finite droplet instead of an infinite plane, ail

possible surface orientations are present. Below the roughening transition, the faceted

{100} reference plane manifests itself as six macro-facets \\;th {lùO} orientation on a

roughly cubical form. The macro-facets are macroscopic, fiat, circular regions on each

of the faces, joined by curved, roughened surfaces. As described in Section 2.2, they

are an intrinsic part of the equilibrium crystal shape, decreasing in size and finally

disappearing as the temperature approaches TR• Howe"er, equilibrium transition

behaviour is not strictly obsen...ble on a static, finite droplet. At coexistence a finite

droplet is not stable; the system tends to minimize the energy contribution of the

interface by reducing the surface area and e'...porating the droplet away. A counter­

force is required to balance the surface tension and provide a metastable interface.

The equiIibrium roughening transition is modified by the presence of this force. Using

the techniques outlined in the previous section, 'Wc demonstrate the etrect of a force

on a static interface and compare the results with predictions made by Nozières et al.

(1987).

Theory

Consider the free energy of a spherical droplet of radius R;

where l::.Eb is the bulk free energy difference and 'Y is the surface energy. There is a

metastable point where dEF/dR =0 at the critical radius

When R > RO, the droplet will tend to grow; and when R < RO, the droplet will

tend to shrink. At coexistence, when l::.Eb == 0, RO becomes infinite, and ail sizes of
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• droplet will shrink. In order to study the roughening transitiov. of a finite droplet at

equilibrium, there must be a finite bulk free energy difference LE•. There will onIy

be a static interface in the presence of a driving force or over-pressure, F ex: l:::.E•.

The effect of this force on the roughening transition is that the Til of the finite droplet

interface is depresseè bdow the transition temperature of!1:Ie planar interface; as wel!,

Ùe transition behaviour is spread over a greater range of T. Neither curvature Ilor

finite size effects can be suggested as the origin of this behaviour; they may infiuence

the scaling of the critical behaviour but not the critical temperature itself.

For a static, faceted interface at temperature T, Nozières and Gallet (198i) predict

that a characteristic force FO is required to shift the roughening transition to Til < TR

such that the interface appears to be rougit;

(106)

•

where ~(T) is the step corrdation length and a is the lattice constant. This expression

can be compared to our data using values from analytic sources (HoIzer and Wortis

1989) for E. and '"'/.

Visual inspection of the equilibrium crystal shape (ECS) shows a distinct depen­

dence on T (sce Figure 23). The droplet is "'Jtactly cubic at T = 0; the corners become

rounded as T increases; the faceted faces of the cube are circular and shrink as T ap­

proaches TR; the macro-facets disappear completdy at TR, leaving onIy a roughened

surface. Finally, as T approaches Tc and the surface tension becomes isotropic, the

cuboid becomes spherîcal. Ii has been noted that the surface of a finite crystal can be

mapped onto a two-l'~ase system (Nozières 1989), with the curved, roughel',ed por­

tions of the surface representing one phase and the fiat, faceted regions representing

the other. The edges of the macro-facets b~ow TR are then phase boundaries and

their size and shape correspond to the equilibrium crystal shape of a 2D droplet; this
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shape has becn well-defincd theoretically for the nearest.neighbour 2D Ising rnodel

(Rottman and Wortis 1981; Holzer 1990a). The radius of the approximately circu·

lar face has been analytically defined through perturbative expa.nsion as a function

of T (Holzer 1990a); the inset in Figure 24 shows the analytic normalized facet ra­

dius Tf(T) as a function of temperature for directions parallel and diagonal to the

Cartesian axes.

Simulation

To study the meta-stable droplets, we choose to look at an L x L x L system with

a droplet of size ( x ( x ( where ( = O. ï5L. The system para.meters are chosen

ta satisfy metastability (ie. R::::: R'), and the over-pressure required ta rnaintain

metastability, F', is provided by a bulk free energy difference resulting from setting

Tm slightly higher than the a.mbient simulation ternperature T. No exact prediction

for F' is available ior a non-spherical droplet; consequently, the para.meters are chosen

empirica1ly sucb that the droplet is metastable arter quickly relaxing from a T = 0

c\4~e ta local equilibrium. li the droplet were not metastable, it would then begin

ta decay or grow. Above TIl, the metastable parameters are unique ta within the

amplitude of thermal fluctuations. Below TR, the cboice is complicated byexceedingly

long time scales for the evaporation of an unstable, faceted interface; this is discussed

in greater detail in Section 5.3. The consequence is that our results weil be10w TR

may be only ncaT equilibrium. On the other hand, the results nearest ta TR are very

precise and the correct transition behaviour is preserved.

The droplet was initialized as il. cube (ECS for T = 0) and allowed La relax ta

equilibrium for 5000 to 30000 Monte Carlo steps. The trial temperatures ranged

from T E [0.2,0.8] Tc for system siz..... -i E [32,128]. The largest contiguous facet on

each of the six faces of the cube is identified with the anticipated macro-facet. The
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T=O.4 Tc
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T=O.55 Tc

./

~,.
"'igure 23: A series ofequilibrium droplet interfaces at temperatures around the modified roughening
transition temperature 1R ::::: 0,46 Tc; the images are based on 1283 system with a 963 bulk inclusion
at T =0.3,0.4,0.45 and 0.55 Tc. Note that th... droplets are only metastable and in the presenee
of a stabilizing ov.....pre••ure.
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macro-facet radius r, is based on the average area of the six largest facets A f and

the assumption that they are approximatdy circular (ie. ;rrj := .4f ). In addition.

the micro-facet size distribution for the entire surface is analysed in a manner similar

to the planar interface. (To make an exact comparison to the planar case. it would

be necessary to isolate the micro-facets on the macro-facets only. \Ve judge the

additional computational complexity not to be worthwhile.) Similarly. duc to the

inherent difficulty in defining the local ",;dth of a non-planar surface, (W2) is not

measured. Figure 23 shows a series of metastable droplets above and bdow the

effective roughening temperature Til.

The maero-facet area was taken from the average of the largest contiguous faeets

on each of the six faces of the droplet. Assuming the macro-facet shape to be circular,

Figure 24 .hows the average macro-facet radius as a function of temperature; it has

been normalized to the droplet radius, defined to be [:om the droplet center to the

{100} face. The transition point is less apparent than in the planar case; this is

consistent with the predicted blurring of the roughening transition. If the infleetion

point is taken to be the transition poi~t, Til would be well bdow the equilibrium TR ,

as expected. Alone this information is not very useful. However, it is more or less

consistent with the expected form of rAT) (see inset of Figure 24).

The variance cr2 shows the transition much more clearly as seen in Figure 25;

(A), shown for L=128 as an inset, is not a useful quantity at least with the limited

statistics provided by our simulations. However cr2 indicates the transition distinctly

at Ta(L=128)/Tc = 0.450 ± 0.008, weil bdow the equilibrium transition temperature

T]l( (0) ~ 0.545 Tc. A weak dependence on L is discernible in both the strength

of the divergence and the shift in T]l, consistent with the increase in the necessary

over-pressure with decreasing system size.

Ideally the over-pressure should be varied through a range of values for a single
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Figure 24: The average macro-facet radius r, for the metastable droplet at T E [0.3,O.6J Tc for
system me L = 64,72,96 and 1'28; the effective roughening temperature TR is indicated. derived
from other quantities. The inset shows the analytic prediction for rI for an infinite droplct; the two
Iines are for rI po.ra11el and diagonal to the laUÏte axes.

trial temperature T in order to identify the critical F·(T) rcquired to induce rough.

ening. Figure 26 shows the phase diagram of droplet interface; the solid and dashed

lines indicate the critical F·(T) and the droplet metastability respcctively; thc vertical

line of points indicates a hypothetical series of over-pressures that should be tested

to identify the critical roughening force at a constant temperature T,.... However,

only one value of F·(T) is accessible for each system size L; specifica1ly, for the set of

parameters for which the system is approximately at the modified roughening tran­

sition. For the L=128 system shown in Figure 23, this is at Til ~ 0.450 Tc. We can

now check the prediction by exarnining Figure 27: The data points are the empirica1ly

chosen over-pressures (controlled by varying the undercooling of the \iquid phase) for

two system sizes (L=128 and 64) required for metastability. The so\id \ine is the
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Figure 25: The variance in the mean micro-facet area for the metastable droplet at T e [0.3, 0.75J T,
for system sac L = 64~ 72, 96 and 128. The inset shows the mean micro-f'acet arca for L = 128; this
quantity was les..c;. reliable in the dctermination of the roughening transition. Note the shüt in the
peak with system size.

analytic prediction for FO(T) according t~ (106); it is the over-pressure required to

roughen a static surface at temperature T < TR • The point of intersection indicates

the trial temperature at which we expect to see the roughening transition in our data:

it is in good agreement. It also indicates a shift in FO related to system size which is

consistent with our observations.

Results

We have shown the system size depcildence of the balancing force required to satisfy

•
metastability on a finite droplet. We have also shown the presence of a roughening

transition behaviour on the metastable crystal droplet both visually and in terms of

the quantities (.4) and q~. The predicted temperature dependence of the macro-facet
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ROUGHENED
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GROWTH

Figure 26: A rough representation oC the droplel interface pha."'C diagram al ~m(" range of tempc=r­
atures bdow T_; it shows the line of criticn.1 over·pres..~ures ~pa.rating the fac('ted and roughened
states as well as the line of metastability for a. droplet of a given sue. The point of inters«tion
is the o""erpressure where the mctasta.ble droplet becorncs rough. The vertical line of points repre-­
scnts a desirable set of measured. values needed to test for the presence of the criticnl over-pres.~urC'

boundary.

radii has been demonstrated albeit ....;th sorne difficulty due to finite-size effects. Most

importantly, renormalization predictions for the depression of the transition temper­

ature are in good agreement with simulation; the expected system size dependence

of TB. is also weakly observed.

5.3 An Evaporating Droplet

Away from metastability, the droplet described in Section 5.2 will tend to grow or

shrink due to the imbalance between the over-pressure and the surface tension. Since

a growing droplet may be morphologically unstable, we restrict our attention to the

context of shrinking droplets. For example, if the droplet is at coexistence, there is

no balancing force at aIl and the droplet shrinks due to the surface tension effects 1.

IThe evaporation of li. droplet al phase coexistence assumes that the system is maintI.LÏned at

constant temperature via contact with li. beat bath. Otherwise, a c10sed finite system undercools as

the evaporation tùes place until it rcachs a metastable state.
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Figure 27: A comparison of the empirically choson over·pressures rcquired to satisfy metastability
at T e [0.2,0.65] Tc for system me L = 64 and 128 to the analytic prediction (so!id line) made
by Nozières and Gallet, (106). The point of intersection indicatC'> where the effective roughening
transition should appear. This is consistent with our observations.

It might be expected that the interface would moVe via a nucleation·limited process

when it is l!.t a temperature T < TH; this is the case described in Section 5.4. How­

ever, we observe that the droplet is forced through a structural transition to permit

the droplet to evaporate more quickly via a diffusion-limited process; we propose a

description for this and a prediction for the time dependence of the macro-facet radii

and the droplet radius.

Theory

•
A droplet at coexistence, T < TH such that it would be faceted in the metastable state,

is constituted of both faceted and roughened regions, each e\-aporating at disparate

rates. As the roughened portions quickly e\-aporate, the cun-ature along the edges
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of the facetcd rCg10ns bccornc$ morc pron\.')un('<.~d: in the languag<.~ of a ...un·l~d plana.r

two-phase system. the phase boundary ('ncrgy bC'twcen the curv('d and planar pha.....C"s

mcrease~. Figure 28 schema:ically .epresents this cffect. COUSt·qul·ntly. th" syskl1l

- ,,
1,

- .,,,
1,

- -- ..... ..
•,

\U
Figure 28: A rough wagram depicting the force<! roughening transition on an unstable cube. The
corners are rounded due to thermodynamic considerations. The roughcned corners then cvaporate
much faster than the faceted surfaces. The inereased eurvature at the roughf.mooth boundary
reduces the me orthe faccted region. Eventually, the racets di.<appear completdy and thc roughened
cuboid continues to c\"aporate cvenly.

will try to further minimize its surface energy by reducing the size of the macro-

facets. Far away from metastability, the faceted phase will be forced out of existence

and the surface will assume a completely roughened state, not due to the /.:inetic

effects of the moving planar interface but rather due to rapid evaporation of the

adjoining roughened regions. If the droplet is close to metastability, the facets will

only shrink slightly, reaching a nucleation-limited evaporation regime where the faces

remain faceted; for time-scales which are much shorter than the activation time of

the nucl~3.ted evaporation, the droplet behaves like the static droplet described in

Section 5.2.

These two evaporation mechanisms have characteristic dynamical time depen-

dences. In the diffusion·limited regime, as the solid gives way to the liquid and latent
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• he...t of tr ...n,ition C. is absorbed to form the liquid, heat must be transported from

infinity to the interface. This is controlled by the diffusion constant D. Soh-ing for

the diffusion equation in radial coordinates for a sphere of radius R (Langer 1980),

the growth rate is shown to be

(107)

where l:!.u:= (uoo -u)juoo is the dimensionless undercooling from infinity, u is defined

as
T-T",

u:= L./c"

and do is the capillary length

Note that this solution implies the quasi-static approximation wnere the timescale for

thermal relaxation is much shorter than that for the interface dynarnics; the diffusion

constant D was chosen to satisfy this constraint. The dRjdt = a Iimit defines the

critical droplet radius Re = 2do/ l:!.u so that we can rearrange (107), ud integrate it

in the Iimit of smaII undercooling (ie. the Iimit of Re - 00), to give

R(t) = (~- 6Dd.t)~. (108)

•

By contrast, the behaviour of the macro-facets is controlled by edge tension acting

on their boundaries with the adjoining roughened regions. This is analogous to the

decay of a 2D nudeation site which is smalIer than the critical size, rJ < rj. If it

is assumed that the adjoining regions are neu local equilibrium (ie. the time scale

for their evaporation is much shorter than for the macro-facet dynarnics), then we

expect that the facets will shrink according to the Becker.Doring relation (Becker and

Donng 1935); the volume of a droplet should decay at a rate proportional to its area,
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• d'V;,' dt :..: A... For a ncar·circular 2D fa,cct. the ra.te of evaporation then gûcs as the

facet circumference, and we thus expect that TI(t) is linear in t.

We can aIso approximate the beha"iour of the quantity R(t) whilc T:(t) is still

large. Let's assume that the curved (roughened) regions can be approximated to first

order by a surface of constant curvature and that they are rcstricted to the corners

of the evaporating cube (see Figure 29). \Ve can then define the rate of change of

.... .......
.....

....

•

. ..................................................................................
Figure 29: A schematic diagram depieting the evaporation ofa cube; a partially faceted cube is shown
in cross-sectioD, cut diagonally through one of the faces. Only the corners are assumed to evaporate,
maintaining a eurved surface consistent with one quadrant of a sphere of radius R' =L - rJ'

volume in tenus of the macro-facet radius TJ(t). If the initial cubic volume is L3, the

roughened surfaces are quadrants of spheres of radius R! == L - TJ. The volume of

the truncated cube is then

The droplet radius R(t) shown in Figure 32 is defined in terms of the volume of a

perfect sphere. Thus, the rate of change of volume is dV/ dt IX dR' / dt; so if TJ(t) is

linear in t, we would expect dR/dt IX dTJ/dt IX C.,...,•
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Ta sum up, an evaporating, faccted droplet is expccted ta be limited by its facets,

which shrink at a constant rate, unti] it becomes completely roughened. It will

then be roughly spherical with a radius described by (lOS). It is expected that

current experimental techniques should be able to observe this beh..,-iour on faceted

crystals away from metastability. Certainly, independent neasurements have been

made of nucleation- and diffusion-Iimited growth (Gallet, Balibar and Rolley 1987)

and evaporation on planar and droplet crystal interfaees (Dougherty and Gollub 1988;

Heyraud ~d Métois 1980; Métois and Heyraud 1982). In partieular, the growth of

crystals near equilibrium have been observed (Heyraud and Métois 1987); the crystals

became strongly faceted ",-ith sharp edges. In contrast to the evaporation case, this

appears as if the crystal is being forced into the complete1y faceted state. We present

sorne of these experimental and simulation results in Appendix A.5.

Simulation

We ran several trials at the largest system size possible (L=128) to minimize finite

size effects on the transition. The droplet was initialized as a eube of size l = 0.75L

at the ambient temperature, T = 0.3 Tc, with the liquid background also at T. The

eoexistence temperature T~ was also set to 0.3 Tc so that the droplet complete1y

evaporate (ie. Re = 00). Except for loeal cooling Olt the surface due to the absorption

of latent heat, the system was maintained Olt constant T via contact with a heat

bath Olt the boundaries. The latent heat and diffusion rate were cbosen sucb that

the trial ended with the complete evaporation of the solid within 5000 - 50000 MeS.

The quantities rI, (A), (f'%, and m (average system magnetization) were recorded;

each gives a good indication of the transition of the cube surface from a faceted

to a roughened state. Figure 30 shows a time series of the evolution of a typical

evaporating droplet.
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•

Figure 30: A time series of an unstable droplet as it evaporates !rom its initial cubic shape; the
system is l:lS" with a 96" bull: inclusiou at T =0.3 Tc. The transition from a faccted to completely
roughened state occurs at approximately t = SOOO MCS. Note that even at t = 10000 MCS there is
still a discernible facet on the eubes faces; tbis is inevitable as the Ising lattice is discrete and cannot
otherwise represent a eontinuous curvature (sec Figure 67).
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• Figure 31 shows the time-dependent facet radius, rf(t), for several runs v.-ith

differing latent heat; the transition from the faceted to roughened state is marked

by a distinct change in slope. This is confirmed by a vis"al inspection of the cube

24
= 0.94 J

20 = 1.5 J

= 1.9 J

16 1
1,- ,..

12 1,
'- . ' .. ...., '., .'.,

8 ~ ,\'\ , -- , --,
\

4

~.O 0.2 0.4 0.6 O.~ 1.0 1.2
l (MeS) (10 )

Figure 31: The average macro--fa.cet radius as a function of time for unstablel evaporating droplets
of system size L =128 at T =0.3 Tc for various latent heats. The radius is expected to decrease
Iinearly in t until the droplet roughens; the solid line is to guide eye.

•

surface; the entire time series of cube images is observed in a continuous playback,

similar to a movie, and the point at which the the macro-facets disappear is se1ected

as the time of transition. Further, total surface energy E,.,(t) and the moments of

PJ(t) have maxima at approximate1y the same transition point. Except for the fust

several hundred Monte Carlo steps before reaching local equilibrium, r J is linear in t

up to the transition point.

Figure 32 shows the time dependent droplet radius R(t). The disappearance of

the macro-facets is marked by a change in the behaviour of dR/dt. At early times,

R(t) appears to be linear in t, with droplet evaporation limited by the decay of the
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Figure 32: The droplet radius as a {unction oC time for an unstablc, cvaporating droplcts of system
me L = 128 at T = 0.3 Tc; the dotted line indic:ates the tran..';tion from a faceted to a roughened
state. The dashed line is a fit to the analytic expression (i6) for R(t) of the fully roughened droplet.
The radius appears to be linear in t while the droplet is faceted.

macro-facets. After the droplet is completely roughened, R( t) can be fitted by the

expression (108) and as a by.product the capillary length do can be extracted for our

choice of system parameters. We find do :::: 0.378 ± 0.002 in units of lattice spacing.

Results

Our simulation results are consistent with the proposed droplet evaporation mecha·

nism, both with regard to the relaxation to a roughened state and the evaporation

of the roughened droplet. We have used standard 2D and 3D nueleation language to

deseribe the decay ofthe macro-facets and the droplet, respectively; the rate of decay

of rf(t) and R(t) is in good agreement with predictiuns. We also found a value for the

capillary length from the fit for the diffusion-limited evaporation. It seems appropri-
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ate to describe the undriven evaporation of an initially faceted inclusion as the decay

of a 2D nucleation site imbedded in a decaying JD nucieation site, the 2D process

acting as a limiting factor for the 3D process. This behaviour should be observable

cxpcrimentally (sec Appcndix A.5).

5.4 The Weakly Driven Planar Interface

If a crystal interface is driven by an external force such that it has a steady-state

behaviour and a constant vcIocity, it may exhibit a dynamic or À:inetic roughening

transition. We have chosen to examine a planar {100} interface with an undercooled

melt; the bulk free energy difference between the liquid and solid phases provides a

driving force which is Iimited by the diffusion of latent heat away from the interface.

This case is representative of many crystal growth problems but is of particular inter­

est to us because of the relevance to our studies of dendritic growth within the con­

text of the Mullins-Sekerka instability (Harris, Jorgenson and Grant 1992; Jorgenson

et al. 1993) (see Chapter il. Theoretical predictions (Nozières and Gallet 198i)

suggest that the dynamic roughening transition of the interface is broadened relative

to the equiIibrium behaviour and that the effective Til is depressed as a function of

the applied force. This is supported experimentally (Balibar, Gallet and Rolley 1990)

and by other simulation studies (Grossman, Guo and Grant 1991). The interfaee is

expected to have a highly non-Iinear response to a driving force while in a faeeted

state, compared to a nearly Iinear response when it roughens. This is due to the very

different mechanisms responsible for the growth (Weeks and Gilmer 1979). Although

we will not be able to quantify the effect of the driving force, we will characterize it

in terms of the variables defined in previous sections.
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Theory

AL T < TR for a sufficiently small driving force, the interface mO\'es via a nllc!t'ation

process. Paraphrasing Nozières ct al (Nozières and Gallet 1987), nlldeation-limited

growth is described in terms of micro·facets which spontaneollsly appear as thermal

fluctuations on the faceted surface at a rate 1 C( e-J::,/T. The energy of formation is

now

for a circular micro-facet of radius P (p is expected to be larger than the lattice

constant a); E. and 6Eb are the step free energy and bulk free energy difference

respectively. The critical micro·facet radius (ie. for p > Pc> they grow; otherwise,

they deeay) is Pc = E./6Eb• This introduces a timescale for the creation of growing

micro·facets

Arter time t, there will be on the order of tlT micro-facets, each growing with a. lateral

velocity V p which is approximately constant in time. Since the edges of the micro·

facets are always rough (in 2D), the velocity is linearly dependent on the driving force

(Weeks and Gilmer 1979). The separation between micro·fa.cets is

thus, they will join to form a new reference plane when p(=vpt) - '1' This defines the

forward velocity of the interface v == ait as

V oc: (~~) 2/3 e-7E;/36E.T (109)

where a is the lattice spacing. The kinetic roughening transition occurs when the

fluetuation correlation length is on the order of the critical micro-facet size, e- Pc;

this condition is equivalent to the expression (106).
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At T > TH., the interface is roughened and growth is difiusion·limited. The growth

velocity is expected to depend approximately linearly on the dri"ing force F == .6E. :::::

.6T and should vary only with T for constant F.

Simulation

Our data refers to a {1DO} planar interface in a system of size 256 x 256 x 48, initialized

at T = 0.5 Tc. The dri,,;ng force F is supplied through the bulk free energy differ­

enee .6E. by varying the melting temperature Tm, and thus the liquid undercooling

.6T == Tm - T. The spin degeneracy is fuced at 8 =2.0 and the ends of the system are

maintained at T. Under these conditions, .6E. varies Iinearly ....;th .6T. The solid

is also initialized at T to minimize heating at the interface by aIlo....;ng it to absorb

sorne of the latent heat which is produced. The latent heat tends to heat both phases

slightly but temperatures are a1ways maintainecl weil below the equilibrium roughen­

ing transition temperature TR • The undercooling is varied with .6T E [0.01,0.12] Tc

and the simulations are run for 2000 to 10000 MeS until steady-state is reached; each

data point is an average over one configuration (ie. no time-averaging). Figure 33

represents a series of driven planar interfaces at T < TR'

Our first observation is that the experimental parameters such as A." (A) and

".2 exhibit an oscillatory behaviour related to the activated growth mechanism; the

period is T = a/v, where a is the lattice unit and v is the interface velocity. For

example, Figure 34a shows A." the surface area of the reference plane, as a function

of time for the slowest interface; Ao has a minimum when the gro....;ng micro-facets

cover exactl)' hill of the reference plane and a maximum when the current reference

plane has just finished forming. The quantities based on the micro-facet distribution

change in a similar manner; only a roughened plane will have a constant steady-state

distribution. As the velocity of the interface increases with increasing driving force
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~T =0.01 Tc

ôT = 0.04 Tc

6.T =0.10 Tc

, /
·1·............v.

Figure 33: A series of driven p1an&r interfaces at T = 0.5 Tc; the images shOWII are based 011 a
64 x 64 x 48 system with UIlder-cooling of t:.T = 0.02,0.04 and 0.1 Tc. Systems up to 256 x 256 x 48
were usee! in this study. The lighter eolor indicates higher surface level. Note that the equilibrium
planar interface at T = 0.5 Tc in Figure 18 is the ulldrivell equivaiellt oHhis interface.
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Figure 34: he normalize<! area orthe reference plane whieh is not obscure<! by miero-f&eets for driven
equilibrium pIanar interfaces at T = 0.5 Tc for under-eoolings of D.T = 0.02,0.04 and 0.10 Tc> from
top to boUom; they are for interfaces whieh are beIow, at and above (respectively) the critical
driving forces '''luire<! to roughen the inten&ee. Note that the time scaIes for eaeh plot has been
stretehe<! for easy comparison.
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• .6.T, the period of the cyclc decreases as shawn in Figurcs 34b and 34c.

Figure 35 shows the vclocity of the interfaces as a function of ~T (dosed tria.n-

gles); the data is non-linear and consistent with (109) up ta .6.T :::: 0.04 Tc where

it then becomes linear. Aiso shawn is the rcduced vclocity t'ft'. (open circles). The
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Figure 35: The average interface velacity (c1ase<! triangles) in units aClattice spacings per 1000 MeS
far driven steady-state pianu interfaces at T =0.5 Tc. The undercaolings Ue ôT E [0.02,0.12) Tc.
Also shown is the ",duced velocities v/v,(ÔT) (open circles) where v.(ÔT) is the velocity of a
completely roughened interface under the same driving force. The dotted line is a best fit for the
analytic expression for v, (109); the dashed line is a straight line. The critical driving force is
estimated ta be ôT::::: 0.04 Tc.

reference vdocity v,(.6.T) is measured Olt a temperature above the equilibrium rough­

ening temperature TR where v, is only dependent on the value of .6.T. The reduced

vdocity clearly indicates that the effective dynarnic transition is near .6.T" ~ 0.04 Te.

•
Further evidence for this value comes from the character of the oscillations shown

in Figure 34. As the dynarnic roughening transition is approached, the smooth oscil-

1ations begin to break up. However, due to the broad.ned nature of the transition,

100



•

•

oscillatory behavioul is still obscrved at and above l::. To. This is consistent with the

description of dynamical roughcning near TRoffered by van Saa.rloos et al (van Saa.r-

loos and Gilmer 1986) wherein the interface is expected to be rough at long length

scales but nucleated growth is still pre.dominant at short length scales. Only near

l::.T ~ 0.12 T< does it appear that the interface has roughened at nearly all length

scales.

The interface width (wZ) does not exhibit any cyclic beha...-iour except at the very

lowest undercooling. Despite the changing micro-facet distribution, (wZ) is rdativdy

smooth and relaxes to an average value once the thermal gradient reaches a steady

state. Even in the case of l::.T = 0.01 T" the oscillatory beha...-iour eventually damps

out and (wZ) reaches a steady state value. Presumably this behaviour is a refleetion of

0.8

0.7 t
0.6

t
t

t tC\I~ 0.5
t

0.4

0.3

°-a.OO 0.04 0.08 0.12
tJ.T

Figure 36: The average square<! width of driven steady-state planar interfaces at T = 0.5 T< for
under-eoolings of DoT e [0.02,0.12) T,; the inset shows the time dependent width of a typieal driven
interface. The critieal driving foree is estimate<! to be DoT '" 0.04 T<. Note: The width for zero
driving foree is from equilibrium simulations.
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the relatively large activation energy rcquircd for growth; when thermal fluctuations

are smaller than the critical fluctuation size, the growth may hcsitatc betwccn layers.

Figure 36 shows steady-statc values of (w') for various b.T, shov.;ng a wcale transition

near 0.04 Te; the inset shows a typical time evolution of the width of an interface.

Results

We have qualified the beha,;our of a driven steady-statc interface in the presence

of a thermal gradient in terms of (A.), -40 and (w'). We ha"e confirmcd the fact

of distinct responses for faceted and roughened interfaces to changes in the driving

force; in both cases, simulation results are in good agreement with analytic expres­

sions. We have observed an oscillatory behaviour in the interface which is related

to nucleation-limited growth. We suggest that the presence of these oscillations be­

yond the measured kinetic transition point is consistent v.;th the broadening of the

transition.
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• 6 Linear Stability: the Mullins-Sekerka Instabil­

ity in Two Dimensions

•

Before wc begin to examine the non-Iinear late-time non-equilibrium beha\;our of the

Mullins-Sekerka instabilit)", it is prudent to compare our a.1gorithm's beha\;our to the

predictions of the Iinear stabilit)" a.na.1ysis in Chapter 3. This will serve two purposes:

First, it will be the first direct confirmation of the theoretica.1 a.na.1)"sis ever performed

in simulation or experiment. Second, a positive result will lend additiona.! credence

to the supposition that our model is capable of reproducing the basic elements of the

instability dynamics; consequentl)", conclusions drawn on the non-Iinear beha\;our

presented in Chapter i could be presumed to be applicable to the genera.! Mullins­

Sekerka mechanism. In Chapter 3, we examined the case of a planar interface and of

a droplet interface in the presence of therma.1 gradient_

In the planar case, we have found the Iinear regime of the Mullins-Sekerka in­

stability to be short-lived in the Ising model, and subsequently difficult to observe.

Following the approach of other studies of Iinear behaviour (Heermann 1984; Grant

et a.!. 1985), we will extend the timesca.1e for the linear growth by using a longer range

of spin interaction; the basic HamiItonian is modified to include neighbours over a

range f!. ln order to produce reasonable results, we will require a very large ensemble

of tria.1s to reduce statistica.1 noise and a very large system size to see a sufficient

range of instability modes. The cpu-intensive nature of the interaction, coupled with

hardware and time constraints, suggest that we examine the linear stability regime

in two dimensions. There are no important differenc~ in the basic instability be­

haviour between interfaces in two and three dimensions at temperatures above the

three dimensiona.! roughening transition, so this creates no particular problems. In

Section 6.1, we summarize the reasoning behind the long-range interaction approach
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and outline the modifications to the standard code. \\".. th..n pr..s..nt our r.-sults for

the dispersion rdation of the growth modes.

Similar difficulties working with th.. drop!et instability in thr.... dimensions ha,"e

also led us to study an unstable disk in two dimensions. looking for the predicted

instability radius. This Case is less sensiti,"e to the problems of the linear growth

regime since the timescale is set by the rate of growth of the interface. ln Section

6.2, we re-deri,"e the linear stability description for a disk (slightly different results

from 3D) and compare the predictions for the onset of instabilit)" \\;th our simulations

using two distinct measurements.

6.1 The Planar Interface Instability at Early Times

Theory

Based on the anal)"sis in Section 3.1, we expect an exponential time dependence of

the gro\\;ng modes k on a planar interface in the linear regime

h(x) = ho(x) + L (k)e"'*'(Io)'.
10

We are interested in extracting the dispersion relation w(k) from the measured power

spectra of the interface. Recall that the linear stability analysis predicts the forro of

equation (63),

w(k) ~ kv (1- a.,fk2).

To extend the regime of the linear stability on the planar interface, we first modify

the basic simulation model to include a longer range of interaction. This slows the

dynamics \\;thout changing the overall characteristics of the system and thus permits

us to measure the onset of the instability. Binder (1984a) originally showed that

an increased range of site-site interaction extends the linear behaviour of quenched
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• systems during the early stages of coarsening; we Can use this same approach to access

the linear regime of the :\1ullins-Sekerka growth mechanism.

First, let's look at the timescales of the linear regime in the instability. Examining

the expressions for the perturbed thermal field, (56) and (5i), we sec that, at the

interface == 0, the field has a time dependence like

(110)

•

where O(h) is an interface perturbation; from (54), we can sec that it also has the

form h(x,t) - eW
". The perturbation expansion of (110) is singular; this suggests

that the linear beha,;our is likely very difficult to observe_ This has becn found to be

the case in other unstable systems such as alloys undergoing order-disorder transition

(Binder 1983; Binder 1984b). Assuming that e is the range of interaction we expect

to observe correlations of size e in the linear regime. Making some rough estimates,

we can say that the wavenumber kg - 1/e represents the critical k for this interaction.

To first order in "'k, this mode should grow Iike ek
.' and the correction O(h) should

become important when it is of the order e in size. Therefore we expect the Iinear

regime to exist up to length scales e'k. - eor timescales up to

T/in oc e ln(e).

Thus, we conclude that extending the range of interaction ;ncreases the timescale of

the Iinear growth regime.

The modified algorithm is essentially identical to the model described in Chapter

4 except that the interaction is extended over neighbours within e of each spin. The

neighbourhood is a diamond shaped region eontaining 2e(e + 1) sites around the

eentral site \sec Figure 37); e is restricted to integer values and refers to the distance

in lattice spacings along one of the Cartesian axes. We have empirical1y chosen e= 3

as the best compromise between cpu time and the timescale for linear stability. With
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Figure 37: A diagram of the long-range interaction neighbour schemc. The range of interaction is
deline<! to he I}. The eoupling is cqual betwccn ail ncighbour spins.

this value, linear stability appears to Jast for approximately 1000 MCS, based on the

behaviour of growth modes.

Simulation

Our data was from a planar interface of size 8196 x 28 at Tm = 0.9 Tc with an

undercooling in the liquid melt of T = 0.2 Tc where Tc ~ 2.269 J in two dimensions.

Th.e spin degeneracy was 6 = 3 with a latent heat of transition L. = 1.22 J. The

F 2 7

•

Figure 38: A time series of the 2D pIanu instability with long-range interactions. The system sizc
is 8196 x 24 but only a section SSO x 24 is shown here.

interface was pre-initialized from the same interface in equilibrium at Tm. The system

wa.s a.llowed to go unstable for 1000 Monte Carlo steps during which time the Fourier

spectrum ofmodes was measured. Figure 38 shows a time series of a typicallD planar

106



• interface during the linear stages of the instability. An earlier study (Harris and

Grant 1990) examined the late-time behaviour of a similar interface using the same

mode! and comparable system parameters. They observed dendrite-like fingers with

a characteristic lengthscale, consistent ",';th the conventional picture of the Mullins­

Sekerka instability.

As in previous studies (Jorgenson, Harris and Grant 1989; Harris and Grant 1990),

the most informative method for analysing the interface is \';a the power spectrum

of its fluctuations; the teIltale roughening modes and the time dependence of the

instability are easily identifiable. The interface power spectrum P(k, t) was averaged

over 400 trials where

P(k) == IF{h(x)W

and F{h(z)} is the spatial Fourier transform in one dimension

h(k) _ F(h(x))

= J !lx e,k.x h(x).

(lll)

(112)

•

Figure 39 shows a time series of the averaged spectra over the time of the run for

t = 100,500 and 1000 MeS. Note the modes at high k whieh are typica! of interface

roughening. The modes whieh extend above the solid line representing the steady­

state roughening level are the growth modes; the area between the solid line and the

curve(s) is the excess power attributed to the instability.

We are looking for an exponentia! time dependence of k; Figure 40 shows some

typica! growth modes as a function of t. As we can sec, the behaviour is more or

less consistent with our expectations. The higher k modes are rougher and tend to

saturate at late t. Also, the occasiona! k mode like that shown in Figure 40 c) appears
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Figure 39: The power speetra of the unstable planar interface al t = 100, 500 and 1000 MeS as
shown in Figure 38. Note the static modes at high k which are characteristic of intcrf&.ce roughcning.
The solid line approximates the steady-state roughening ",odes.

to have been initialized with too much power; it exhibits an early-t tail as it quickly

relaxes to local equilibrium and begins to grow normally again.

We would like to extract the dispersion relation (63). Each k mode was individu-

ally fitted via a least-squares algorithm with an expression Aew
,' where A and Wk were

the fitting parameters. The very earliest and latest times were ignored to avoid the

in:fl.uences of poor initialization and saturation, respective1y. In Figure 41, we show

Wk for all of the k modes in the power spectrum up to k = 21rj10 (higher k modes

were uninteresting); errors in the fits of Wk are much smaller than the variations in

their value. Despite the large number of runs (n=400), the noise is still significant.

There are several features which are dilferent from the theoretical curve shown

in Figure 13: First. the decay modes are not represented; this is because they are

overwhe1med by the equilibrium capillary modes, already present because of the hùtial
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Figure 40: Time series ofsome typieal growth modes below the critical mode k. == 271:/).. - 271:/1i a;
al k - 271:/i4 a, bl k - 271:/41 a, cl k - 271:/26 a and dl k = 271:/21 a in semi-log plots. The growth
modes are predicted to evolve in lime like eW

"; the straight solid Iines are the fits to this form,
disregarding the very earliest and very latest limes. The fitted values for "" are indicated. Note
that the higher k values fall oft" as they approach saturation values. A1so, cl shows a tail at t :: 0;
this appears to be due to an over-strong initial amplitude which quickly re1axed to loeal equilibrium.

conditions. Thus, we simply observe w. going to zero at the critical mode ko • Second,

the wavenumber of the dominant growth mode k,...." is near the limit of the system

size and consequently the lowest k modes beyond the dominant k mode are not all

present.

Due to the noise in the measurements, it is difficult to identify the lengthscale of

maximum growth Àmaz and the criticallengthscale Ào (64) as defined in Section 3.1.

From Figure 41, we estimate byeye

Àm = == 27': /k,...." - 510. ± 10

It is apparent that these results are not consistent with the re!ationship Àm=/Ào =
'-"3. Further study would he required to determine if this is symptomatic of the noise

or intrinsic to the mode!.
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Figure 41: The linear stability dispersion funetion from fits of the planar interface modes to the
expeeted exponential behaviour. These results are based on 400 simulation trials of an 8196 x 24
system whieh employs a long-range interaction (/1 =3). Error bars are much smaller than the noise.

In conclusion, we appear to have Iimited success in confirming the predictions of

the Iinear stability analysis. The data is not inconsistent with expectations, however

there are some questions which are not clearly answered due to the poor statistics.

In particular, there is some concern about the ratio >'maz/ >'••

6.2 The Circular Interface Instability at Early Times

Theory

•
Another simple test of the Iinear stability analysis is provided by the case of the

circular droplet in an undercooled melt. If the initial radius of the droplet R =R. is

larger than the critical radius R", it will start to grow. As described in Section 3.2 for

the ease of a droplet in 3D, it will remain circularly stable while R < R;.., where m is
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• the mode of the instability. At R', it will become unstable and begin to grow fingers

typical orthe ~tullir.s-Sekerkainstability (see Figure 42). Here, we shall briefly derive

solutions for the lincar stability problem for a circular interface and then we compare

thcm with simulation results.

Rc-capping the relevant equations for the thermal diffusion problem, we use two,

dimensional equivalents of (49)-(51);

D'i1'u = 0

VJ. = D[o:('i1u) 1.01 -('i1u) il..]·n

u(oo) = -A

steady state thermal diffusion

Gibbs - Thomson relation

interface continuity

boundary condition at infinity

Assuming a perfect circle of radius R.,(t), we have unperturbed solutions for uer)

{

(AR., - do)lr - A
uo(r) =

-dolR.,

r ;:: R., (liquid)

r ::; R., (solid).
(113)

Using the continuity equation, we find the unperturbed interface velocity to be

dR., • D(AR., - do)-- = Vo = -D'i1u·r = .dt - "" R' ,
o

(114)

this expression describes the rate of growth of the stable disk. We then introduce a

small perturbation at the disk interface

R(8) = R., +p",cos(m8)e"'-'; (115)

assurning the quasi-static condition, this gives a solution for the perturbed thermal

•
field

uer) =uo(r) + u",(r)cos(m8)e"'-'

111
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• where

r > El. (Iiquid)

r ~ R. (sa/id)

Fo11o\\';ng a linearizing procedure similar to that in Chapter 3, wc evaluate the ratcs

of the growth modes to be

(m;::: 2); (lli)

where the lower limit of m for finite growi.h rates is 2 or greater. The instability

radius for a given mode m is then defined by the limit "'m - 0;

, 1 2Dd.
(R;,.)" = :;(1 + a)m(m +1)--

- VR
(118)

Using (114) and the 2D critical radius R· = d.fA (sec Appendix A.2), this can be

re-written

R·
R": = 2m(m + 1) + 1 (m;::: 2) (119)

•

where it has been assumed that the thermal characteristics of both phascs are similar

(ie. a =(D.C.)f(D1C1) - 1). If wc assume that m = 2 \\,;11 be the first unstable

mode, the droplet should then be stable up to R - 13 R·.

The departure of the gro...;ng disk from a quasi-circular steady-state can be deter-

mined by two methods: First, the instability can be observed directly by the visual

inspection of the simulation system. The onset of finger-like instabilities is dramatic

and easy to identify. For greater precision, the onset cau be re1ated to the rate of

change of the droplet size, dNfdt, where N is the number of sites which define the

droplet. While the droplet remains stable and circular, wc can use the expression

(114) to fit dR./dt by assuming N == 'IrR2. As it goes unstable, the droplet is no

longer compact and R(t) should no longer follow (114). In Appendix A.6, wc offer
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a simple argument which sllggests that R(t) shollld follow .,fi at early times and be

linear in t at late times. Tt is llnclear whether the cross·over should be apparent or

not and whether it should obscure the instability behaviour.

Simulation

Since the the instability of a cireular disk is tied to its radius, the timescale for the

stable growth is directly defined by its radial growth rate. We can simply extend

the \inear regime by reducing the undercoo\ing and we do not need to use the time·

consuming long-range interaction algorithm. Subsequently, ail ofthe results presented

in this section employ the standard nearest·neighbour algorithm although we remain

in two dimensions because of the same size constraints of the planar simulations.

Our simulation system size was 128 x 128 "';th an initial circular inclusion of

Ro = 5 lattice units. The coexistence temperature was set to Tm = 0.756 Tc where

Tc ~ 2.269 J in two dimensions. The undercooled temperature was T = 0.178 Tc

with the spin degeneracy set to 5 = 3.21. These particular parameters were chosen by

trial and error to give a specifie rate of growth without homogeneous nucleation while

producing an instabi\ity at a droplet radius within the system size. The statistics

were averaged over 500 trials of 2500 MeS each. The instability was observed to

occur, on average, at t - 120011(C5.

Figure 42 shows a time series of a typical droplet growth; note that although flue­

t uations appear before the indicated instability sets in, they are quickly damped out.

Visual inspection shows that the disk beeomes unstable at around R - 20 4 where

a is the unit lattiee spacing. Figure 43 shows the reference radius R(t) == VN(t)/'Ir.

We find that R(t) grows \ike - t 2 (consistent with (114) for a large undercoo\ing,

dol Ro <C A) up to t ~ 1250MC5 whereat R(t) becomes \inear in t. This corresponds

to R - 21 4 •
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Figure 42: A time series of the disk instability in 2D for a system of 256 x 256; images are for
t = 0,300,900,2600,8500 and 13200. The disk remains circular up to the stability radius R - 20 %

(t - 1000) where it then becomes unstable. Late times shows dendritic growth.
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•

•
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Figure 43: The reference radius R(t) =.JN(t)fr as a function of time for the dis\: instability.
While the dis\: is circular, R corresponds to the actua! dis\: radius. When it becomes unstable and
no longer compact, R grows linearly in time.

We can compare this result in two different ways using the expression (119). First

we will use the critical radius from nuc1eation theory (see Appendix A.2) to re·express

the expected instability radius as

(120)R
o _ ï

= f:.E
b

;

We can estimate RO for a metastable disk at temperature T from values of the surface

•

energy ï based on analytic results (Rottman and Wortis 1981) and f:.Eb based on

meanfie1d results (sec Section 4.1).

Since there is some arnbiguity in identifying the local temperature at the inter­

face, we shall choose intermediate values for these pararneters, using values at the

coexistence temperature and undercooled temperature at infinity as upper and lower
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• limits. The surface energy is thus

and the bulk free energy difference between the solid at T = o. i6 Tc and the melt at

T = 0.18 Tc is

[:'Eb - 0.i3 J;

This gives a critical radius of

R" - 2.3 a

Needless to say, this is too small to be confirmed via a metastability test on a discrete

lattice. Assuming that the lowest possible mode m =2 dominates the growth, we

find a prediction for the stability radius of

R;-25a

If we were instead to assume that m = 4 based on the square anisotropy of the lattice,

we find R; - 93 a. Obviously this result supports the idea that the lowest growth

mode dominates the instability.

A more direct measurement of R;,. can be made by carrying out a secondary

simulation. Returning to the prediction for R;,., we can re-write (119)

R;,.=
2Ddom(m+ 1)--

VR
(121)

•
Although VR is not strictly constant, it changes slowly and we can assign it a value

for a given R. We then only need do and D to find a solution.

Since a droplet at R < R" is always circularly stable, we can observe the evap­

oration of the droplet from an initial radius Ro at the coexistence temperature Tm.
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• There is no undercooling except near the interface where latent heat is absorbed

by the phase transition; the boundaries will add heat continuously to the system to

keep it at T~. The droplet then evaporates at a rate defined by (114); for example,

A « d.1R" gives an approximate expression

R(t):::: \1R~ - 3Dd.t. (122)

Figure 44 shows the reference radius of an evaporating droplet from a typical

simulation run for a 128 x 128 system v.;th ').Il initial droplet of size R" = 50. The

10
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•

Figure 44: The radius R(t) for an evaporating disk. AIso shown is a fit via a Runga-Kutta integration
method to equation (114) with (d.D) as a fitting parameter.

ambient temperature Was set to the coexistence temperature T~ = 0.756 Te. From a

fit of R(t) using (114) via a Runga.Kutta integration method, we find (d.D) :::: 0.3 ;

the fit is expected be poor for small R due to finite size effects. From the growth

simulation data, we estimate the interface velocity to be Va :::: 0.009 lattice units per
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Mes. This gives an instability radius

R; ~ 20 a.

It is apparent that both estimates of R; are consistent with our simulation results.

Results

The form of the dispersion relation of the lincar rcgime of the planar instability has

been found to be in good agreement ,,;th the prediction of theory. Howcver, the ratio

of the wave!ength of maximum instability with the critical wavelcngth is somcwhat

larger than the expected ....alue. The instability radius of a disk interface is in good

agreement with predictions, using two distinct techniques for measuring it. Overall,

this is viewed as a confirmation of the feasibility of our mode! for use in the study of

dynamical processes.
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• 7 Non-Linear Growth: the Mullins-Sekerka In-

stability in Three Dimensions

After passing through the brief !inear stability regime, described in Chapter 3 and

examined in Chapter 6, an unstable interface enters a non-!inear regime of growth.

Certain wave1engths begin to dominate the instability; lingers appear and ad""aD.ce

ahead of the initial interface. These lingers or dendrites compete for space until only

a few reach their steady state. The others slow and stop as the undercooled me1t

in front of them is heated by the excess latent heat released by their neighbours.

The grov.;ng dendrites reach a terminal tip ve10city which remains constant. As they

grow, perturbations along their sides begin to appear. These grow to form secondary

dendrites or side-branches. Tertiary growths may also appear as space allows. This

cascading dendritic growth eventually forms highly intricate and structured patterns.

•

Figure 45: Dendritic growth in two distinct geometries: In a), a succinonitrile dendrite growing
between lIat glass plates (reproduced ûom (Qian and Cummins 1990)) and in b), dendrites observed
in a crack in single-crystal aUoy PWA-1480 at the Oak Ridge Na~iona1 Laboratory; reproduced ûom
(Langer 1992).

Their symmetries ref!ect the underlying crystal anisotropy of the so!id; Figure 45

shows some typical examples of physical crystal growths in a quasi-two-dimensional
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and a three-dimensional context. In sorne cases, like the snowflake shown in Figure

1 of the introduction, the faceting normally associated with roughening transition

is observed on the leading tip of the dendrite; this is a special case of the interface

instability in close proximity to the dynamic roughening transition, as discussed in

Section 5.4.

Although the challenge of simulating the Mullins-Sekerka instability in three di­

mensions is not unsurmountable, it does create certain (currently) insoluble problems.

For example, in order to apply the linear stability analysis, we must satisfy the quasi­

stationary assumption; since the interface grows to first order like Win' - J,:v and the

thermal field relaxes like Wcilf - DP, we need Wcilf IWin' - kt :s> 1. This implies that

there exists a reasonably large separation in the two important quantities, the capil­

lary length d" and the thermal diffusion length t. In the modified Ising model used in

work presented here, do is usually of order of the lattice spacing. A reasonable sepa­

ration of two orders of magnitude (recall that the instability wavelength k - "fdol)

suggests a system size that is, at minimum, 1003 sites and preferably closer to 10003

since we don't want t to be near the limit of the system size. This upper estimate is a

billion lattice sites and somewhat beyond the upper edge of the technology available

to us; moreover, a Monte Carlo step over so many sites requires several (real) seconds

on the machines available to us. Two avenues were chosen to deal with this: We

great1y reduced one dimension of the simulation system and subsequently increased

the other two. This approaches the two dimensional system exa.mined in previous

studies (Harris, Jorgenson and Grant 1992). Alternately, we limited the vertical size

of the system and examined only the early non-linear growth in three dimensions.

We refer to these two approaches as the slab and block geometries respectively (see

Section 4.4 and Appendix A.1)•
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7.1 Unstable Slab Interfaces

The original motivation for using the slab geometry was to be able to extend the

length scales of the simulation well beyond any characteristic lengthseales. As we

will observe in Section ï .2, the fully three dimensional system leaves very little room

for growth; multiple dendrites are rare and sidebranching is nearly non-existent. The

much larger slab interface permits many dendrites to grow for longer times. Further,

we are supported in this choice by physical experiments on succinonitrile (Chou and

Cummins 1988; Qian and Cummins 1990) and NH.Br (Maurer, Bouissou and Perrin

1989) carried out with apparatus of similar proportions. Our simulations also provide

sorne insight into the cross-over from the 2D to 3D regimes; we will see how the

additional degree of freedom infiuences the growth.

A typical simulation system size is 8 x 1024 x 192. A run begins from a fiat interface

with the solid bulk phase initiaIized at Tm, the mdting temperature, and the liquid

bulk phase at an undercooled temperature, Tu < Tm. Finger-like instabilities form

immediately and quickly reach the asymptotic regime (typica1Iy within 400 Monte

Carlo steps) where tip vdocities aIe constant. The dendrites continue to grow until

the end of the run when they reach the far side of the system. Figure 46 shows a time

series of cross-sectional slices from a slab system; the section shown is only a sdected

portion of the entire interface.

Tip vdocity is measured by identifying the maximum height of the interface as a

function of time; while not strictly exact, this technique is highly effective and quite

accurate for measuring the primary instability. Using a 8 x 1024 x 96 slab system

....-ith Tu = 0.4Te, Tm = 0.8Te and S = 2.8, the tip vdocity v is measured to be 3.1

x 10-2 in units of lattice spacings per MCS, for 400 =:: t =:: 1000MCS. This result,

shown in Figure 47, is based on 29 triais of 2400 MCS each.

As seen in Figure 47, the surface area increases with a t2 power law; this is
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Figure 46: Time series of eross-sectional views of a .Id system of dimension 8 x 128 x 92. This is
a sub-section of the large: 8 x 1024 x 92 system used to gene:ate data. The images shown are for
t=1000, 4000, 10000, 26000 MCS. The corresponding thermal field for t=25000 MCS is shown in
Figure 59.
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Figure 47: Maximum height (tip position) (0) and the (square root of the) total surface area t::,.
plotted against time t for a 8 x 1024 x 96 s1ab system. The surface area is shown as A(t) - A(200)
to highlight the t' growth, with A(200) being 28249 unîts. Data is averaged over 29 runs.

appropriate to lingers growing at a constant velocity v early in the non-lïnear growth.

regardIess of dimensionality (see Appendix A.6). The tip radii of curvature p are

of order of the unit lattice spacing (~ 3) and tend to fiuctuate strongly due to the

infiuence of roughening. This value is needed to check the relationship between p and

v (82) derived in Section 3.3. However, we have found that measurements of p are

insufficient1y accurate for use. Tres is unfortunate as the plv relation is one of the

•

most important ways of characterizing the instability (Langer and Müller-Krumbhaar

19i8); in general, its complex nature makes it difficult to quantify its behaviour.

Thus we return once again to the most direct way to exhibit the unstable modes,

via the power spectrum P(k, t) of the interface. Howe"er, we find that the mea­

surement of P(k, t) is also difficult; typical interfaces have overhangs, bubbles and

pockets. These are presumed to be unimportant since they occur on length scales

which are much shorter than the lengths of interest. They are therefore masked out

by projecting the multi·valued interface onto the X.y plane such that the interface

is approximated by an iso-valued surface. This surface is then collapsed to a ID
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• function h(x) by averaging along the shortest a:cis and treated by Fourier transform

to produce the power spectrum P(k) as in (112).

In Figure 48, k' P(k) is shown; the scaling removes the expected k' roughening

contribution. Only the unstable modes bdow the rO\1ghening continuum are shown;

they indieate a wavelength of maximum instability of Àl ::= 50 lattice units with il

secondary peak À, ::= 36 units. The entire speetrum is shown as an unscaled log­

log plot in the inset. This is consistent with a \'Îsual inspection (Figure 46) which
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Figure 48: The power speetra for a slab system scaled by 1:'. The l&rge-k end of the spectrum,
showing the expeeted 1:' roughening modes, is exc1uded to display the unstable modes more c\early.
The insct shows the entire unsealed speetra in log-log plot. Spectra for t=2400 MCS and 1600 MCS
are shown.

•
shows a typical separation between the instabilities of about 30·40 units. The same

spectra are shown in Figure 49, scaled with the square of time, t'; the fact that

they are now independent of time is consistent with the surface area growing like t'.

The coarsening, as indicated by the lateral shift in the À""", peak, can be ignored as
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Figure 49:: The power spectra ûom Figure 48 are shawn scaled by t:. Spectra are shown for t=2400,
2200, 2000, 1800 llIld 1600 MeS. Th. primary llIld seeondary modes orthe instability are shoWll as
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insignificant; in this respect, the data is very similar to that previously obtained for

two dimensional systems (Harris, Jorgenson and Grant 1992). The features to the left

of the maximum are subharmonics of the primary and secondary instability peaks;

they are located at >. :::: 66, 83, 100 and 153 units.

7.2 Unstable Black Interfaces

Figure 50 shows 3D representations of block simulations at late time; note that den-

•

drite growth is lirnited by the low ceiling on the system. In the block system of

128 x 128 x 96 \\;th T~ =0.3T., Tm =O.iT. and li =2.8, the tip velocity is measured

to be 2.9 x 10-'; note that this is comparable to the slab value.

Similar to the slab systems, the surface area grows with a t' power law; this is
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•

• Figure 50: Two representations ofi2 x i2 x 144 black system surfaces at late times. The image in al
corresponds to the thermal fidd in Figure 60 g) (right half) ; b) corresponds to Figure 60 h) (right
half). Note that the boundary conditions are periodic on the sides.
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• shown in Figure 51. This is not suprising as no dimensionality is associated with this
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Figure SI: Point of maximum height (tip position) (0) and the total surface area (~) for a typical
block system as a funetion of time. The surface area is shown as JA(t) - A(700) to highlight the
t' growth, with A(700) being 42693. The tip position saturates at late times as the tallest dendrite
reaches the top of the system. Data is averaged over 4 runs. The straight dotted linos provided as
rcfercnces.

behaviour (sec Appendix A.6). The tip radii, p, are again of order of the unit lattice

spacing and are still too roughened to be measured reIiably.

Measuring the power spectrum is slightly more complicated than in the slab sys·

tem. Similar to the slab systems, the block interface is reduced to a single-valued

surface, eliminating overhangs and bubbles. It is then treated by a 2D spatial Fourier

transform

•
h(k) == F{h(x)} = JJdy dz e.k·x h(x);

the power spectrum P(k) is then averaged over a.ll orientations of the vector k. Figure

52 shows the spectra P P(k); it clearly shows the mode of maximum instability,
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• k~o:' The expected k' roughening contribution at large k ;$ apparent as is the time
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Figure 52: The power speetra for a blod: system sc:aled by k' is shown in a log-log plot. Speetra
for t=3000, 2600, 2200, and 1800 MeS are shown. Note the k' region at large k, indicative of
roughening lIuctuations, and the lateral shiet of the mode of maximum instability.

dependent rciaxation of the roughening.

The block power spectra, shown in Figure 52, have better statistics tha.n those of

the slab in Figure 48; however, it is cleu that >'mcz is near the size of the system. In

our experience, 128 x 128 x N. is the minimum usefu1 system size for the instabilities

that we have been able to observe; resu1ts from systems of 64 x 64 x N. clearly show

•

the effects of finite size and are inappropriate for ana.lysis. Consequently, this limits

the height of the system permitted by hardware constraints to N. - 100.

The km= value is distinctly shifted in time by coarsening of the dendrites; this has

been established by ana.lysing the perpendicu1ar cross-section of the interface profile

at a fixed height. Figure 53 shows a times series of a typica.l cross-section. It sta.rts

from to =1000MCS when the interface first intersects the plane at the height where
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the lateral cross-sections are viewed. Figure 54 is the measured structure factor which

is growing as a t l /'. This is consistent with the geometric picture of the cross-section

of a parabola moving through a plane with constant velocity: Consider a parabola

defined .:(:z:, y) = at - b(:z:'+y') so that its apex is mo';ng in the =direction at constant

speed. At a fixed height .:, the intersection ,,;th the :z: - y plane is a circle defined by

:z:' + y' = R'(t) where R'(t) = (at - .:)/b and the radius goes like t l
/'. The structure

factor corresponds to the average radius of the growing dendrite cross-sections.

The coarsening of the dendrites requires that a more sophisticated scaling of the

power spectra be done. The scaling ansatz is of the form

where oc = 0.5 is due to the coarsening. The scaling of k accounts for the shifting of

the spectra's features due to the ,,;dening of the dendrite structures and the power

of oc on the prefactor t scales P(k, t) for the enhanced rate of increase of the surface

area.

To illustrate this, we show in Figure 55 a plot of P ft against ktQ
•

7.3 Side Branching

The features which are missing from these simulations, both in the slab and block

configurations, is the secondary instabilities along the sides of the growing dendrites;

this phenomenon is generally referred to as side-branching. It is observed in many

laboratory experiments (Dougherty and Gollub 1988; Qian and Cllmmins 1990) and

has been reproduced in sorne simulation work in two dimensions using lattice-gas

models (Saito and Ueta 1989) and numerical simulation of analytic dendrite mod­

els (Saito, Goldbeck-Wood and Müller-Krumbhaar 1988; Kessler, Koplik and Levine

1988). The origin and characteristics of the branches are of central concern in the­

ories of the Mullins-Sekerka instability. Their conspicuous absence in this work is
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Figure 54: The radial strueture faetor !rom a bloek system. The time is resealed as (t - t.)'/> to
show the t'/> growth. The initial time, t. = lOOOMCS, is the time at whieh dendrites first interseet
the eutting plane at N, = 72.

disappointing but not wholly unexpected.

The simulation geometries are not ideal for reproducing secondary instabilities.

Due to the anisotropy of the crystal lattice, there are preferred directions of growth.

In general, we find that {Ill} interfaces become unstable more easily than {100}

interfaces. This is attributed to the finite roughening temperature on the {100}

interface (TR ~ 0.54 Te) which inhibits growth; as noted in Section 5.4, a faceted

interface has a highly non-Iinear response to a driven force which is much weaker than

a roughened interface. In most cases, the undercooled melt is set to a temperature T <

TR and the moving interface experiences temperatures well below Tm' Consequently,

the [111) direction is favoured over the [100) direction.

In the slab system, only one of the [111) directions is coplanar with the slab

itself. The others pass obliquely through the narrowest dimension (see Figure 56).
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Figure 55: The power speetra !rom Figure 52 saled by the ansat. P(l:, t) = t>+a P(l:ta ). The ligure
shows a plot of 10'P against Iota. Spectra are shown for t=3000, 2800, 2600, 2400, 2200, 2000, 1800
and 1600 MeS. .

Consequently, with the primary instability growing along the coplanar [111J axis,

secondary instabilities are driven by the thermal gradient in the less favourable [110]

and [lÏO] directions. Although there is no finite roughening transition temperature

for the {110} planes, the orientation is doser to the {100} planes and faceting efi"ects

become more pronounced. Perturbations observed on the sides of the dendrites are

strongly darnped and never become side-branches. On the other hand, tip-splitting

has often been observed. This is curious since tip-splitting is usually associated with

systems with no lattice anisotropy (Langer 1980). It may be that growth in other

directions is so inhibited that it is easier to coarsen and split into two parallel fingers

than to form side-branches. However, experimental results are not consistent with

these results. Curnrnins et al. (1988; 1990) use a sirnilarly slab-like geometry on

succinonitrile which also has a cubic lattice structure. They have had no difficulty
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Figure 56: A rough diagram orthe s1ab gcomctry with a {Ul} interface demonstrating the arrange­
ment of the preferrcd directions ofgrowth; sceondary growth is inhibitcd by the sidcs. A similar but
less sc'ere problem is creatcd in the block gcometry duc to the fact that the preferrcd directions are
not perpendicular to the primary instability's sidcs.

producing side-branches in abundance. In fact, many of the most spectacular dendrite

images with side-branches come from studies using succinonitrile (Glicksman 1984).

In the block geometry, there is another set of obstacles to side-branching. Al­

though fully three dimensional, the [Hl] direction of the primary instability still cre­

ates problems; the two other preferred vectors [ïH] and [Hl] are not at right angles

to it. A secondary instability growing along one of these directions would be oblique

relative to its parent dendrite, either back towards the original interface or forwards

along the parent (see Figure 56). This does not completely rule out side-branching

as in the slab case; in fact, evidence suggests that secondary growths do appear but

soon after they have extended away from the primary dendrite, they change direction

and begin to grow along the same direction. In Figure 5i, we show one of the clearest

examples of this kind of behaviour; this system was the largest ever run at a size of

128 x 128 x 144. We be1ieve that besides having insufficient space and time to grow

the secondary instabilities, this mode1 may not behave in a manner typical of the
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Figure 57: A cross-section from a block simulation of me 128 x 128 x 144 at steps t =
10000, 11500, 15000, 20000 and 25000 Mes. Note how the side-braneh has grown sideways only far
enough to free itse1f frOID the parent and then turned upwards. Arguably, this might be eonsidered
tip-."litting.
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now-classic succinonitrile system (Figure 1) but rather in a less structured form like

the salt mixture shown in Figure i a). What is certain is that an order of magnitude

increase in computer speed and memory will be required to test this belief.

7.4 Thermal Fields

Since the attempts to reproduce full dendritic growth by simulation were only partially

successful, we spend the remaining part of this final chapter describing our preliminary

investigations of other lines of approach. First of these is the investigation of the

thermal fields near the interfaces of our model, with the hope that we be able to

confirm that the thermal diffusion process is being effectively simulated and possibly

to shed additional light on the problem of the side·branching inhibition.

As described in Chapter 4, the local temperatures can be derived from the energy

distribution of the demons by an appropriate averaging scheme. An analysis of the

thermal fields associated with the instabilities will give us sorne additional insight

into the processes at work. However, before attempting an analysis of the more

complex geometry of late time dendritic growth, we shall check a simpler prediction

from the linear stability analysis in Section 3.1. By choosing specific parameters f')r

the simulation, the interface can be stabilized so that it moves forward but does not

demonstrate any growth modes. This is done by reducing the latent heat, increasing

the diffusion constant or decreasing the system size: Recall from (4i) and (51) that

the wavelength of maximum instability (64) is defined by .Àm= oc ../ld,,; if .Àm=

is increased so that it exceeds the size of the system, the instability is effectively

inhibited. The undercooling is then chosen so that the latent heat produced exactly

heats the liquid phase to Tm. The resulting interface remains planar as it moves

forward at a constant velocity. The planar symmetry of the interface then simplifies

measurement of the temperature gradient and makes possible a comparison with the
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• solutions for the thermal field (53).

Figure 58 shows the thermal gradient 10 the .: direction from a system of size

ï2 X ï2 x 144 with Tm = O.ï Te and Tu = 0.3 Te; each layer of demons parallel

to the interface was averaged to find the demon energy and subsequently the local

temperature T(=). The thermal gradient is obviously in good agreement \\;th its

1.0 ,---'-:--~---'---~---,

0.8

0.2

o" •.' .... .....' : ".. '. . ........ : ::: : ..

•
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Figure 58: The thermal gradient ofa stabilized, moving planar interface is shown in the upper plot:
The solid line is the temperature based upon the average demon energy in the slice at height =
perpendieular to the interface. The dotted line is based on the mean spin value in each slice and
is the best measure of the interface position. The points in the lower plot are the logarithm of the
temperature 1055 the undercooling at infinity; the straight line is provided to aid the eye.

analytic counterpart shown in Figure 12; the temperature falls from almost Tm at

the interface to Tu at =-+ 00 like e-A= where A :::" 2/l as demonstrated in the lower

plot. The only discrepancy is the slight dip in temperature in the solid side of the

interface =:5 0.22; this is likely due to the finite curvature at the roughened interface

(sec Figure 12). Measuring the slope ofln(T - Tu), we obtain a value for the diffusion

length of l :::" 45 4. When l is then plugged back into its definition, l == 2DIv, with
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th.: me;"ured interface velocity v - 0.030 a/.HGS, we find D - 0.65 :: O.Oï; for a

single simulation trial, this is reasonably consistent with D = 0.83 whieh was set as

a system parameter (sec discussion leading to (98».

Satisfied that the thermal diffusion field is consistent v.-ith its analytic description,

we shall now examine the results from some typical dendrite simulations. Due to

the arbitrary surface geometry of a dendrite, the simple planar averaging used above

cannot be employed. Instead, thermal imaging is done by isolating a cross-section

of the thermal field and applj-ing a simple 3D Gaussian spatial-averaging scheme to

each site;

ft

&(i,j,k) = L e-':/~'e(i + di,j + dj,k + dk)
di,dj,dk= -n

where di, dj, dk are integers varying over the site's neighbours, S2 = di 2 + dp + dP

is the distance between sites and À is the weighting factor. The range of averaging is

n =2 and thus the average is over the nearest 124 neighbours (ie. a cube of 5 x 5 x 5

centered on each site) with no time averag:ng. This is adequate to identify thermal

gradients on length scales beyond three lattice spacings. The resulting image shows

the averaged temperatures using a pseudo-color scheme, representing from cold to

hot by blue to red (or by a grey scale from black to white).

Figure 59 shows a collection of thermal fields: Each demonstrates some typical

growth beha~-iour based upon a specific choice of system parameters (latent heat,

undercooling, melting temperature). Fluctuations in the temperature on short length

scales are due to the discrete nature of demon energy levels (spin fiips are of order

~{ ~ 2J) and the limited statistics of the demon lattice. The solid-liquid interface

(derived from the spin lattice) is drawn over the thermal field for reference.

Visual inspection identifies the presence of thermal gradients near the interfaces.

As expected, the gradient between the liquid and bulk phases is strongest near the

growing dendrite tips where the velocity is greatest. It is weaker along the nearly-
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Figure 59: Representative thermal fields derived from an analysis of eross-seetional sliees of demon
!attiees. Figures al and bl arc from b/ock systems while cl, dl and el arc from s/ab systems. The
dark outline is the interface derived !rom the spin lattiee. The Iighter regions (on the bottoml are
associated with the solid; above is the liquid. Temperature is shown as dark for eold and Iight for
hot. The graininess orthe temperature is related to the limited statisti.. orthe demon distribution.
Note that dl is !rom the same simulation trial as shown in Figure 46.
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st..tion ..rl' initial interf..ce. It is also evident that much of the liquid phase around the

base of the dendrites has reached or exceeded the coexistence temperature. Indeed,

where multiple dendrites appear, the region between them tends to fill with the excess

latent heat produced bl' the mo,';ng interface. Reca.ll that this exeess is described bl'

",·here A == 1 when the amount of latent heat released is identical to that req1Ùred to

heat the superc:>vlcd liquid phase to Tm. In general, A is much sma.ller than unity.

As one of the dendrites begins to pull ahead of the others, it retards thcir growth by

leaving its eAcess latent heat in their path, pro,';ding a natural selection mechanism

(sec Figure 46).

To explore more carefully the role of various system parameters in the instability,

we examine a collection of more-c1osely related systems. Figure 60 shows a i2 x i2 x

144 system at differing le"els of undercooling l::.T, melting teI!lperature Tm, latent

heat 1:., and diffusion constant D; Table i.4 gives the specific values. The first system

a) is considered representative with T", = O.i Tc, l::.T = 0.4 Tc, 1:. = 5.23 J and

D =0.3, sho\\';ng moderate surface roughening, a rounded tip and a typical growth

rate. Both b) and c) have a higher Tm which results in greater roughening, faster

growth and coarsening; in addition, c) has a slightly greater undercooling and thus

is fastest. System d) has a greatcr undercooling than a) and is g:o\\';ng faster as a

result; lowering Tm in e) slows the growth and reduces the roughness. Subsequently

lowering the diffusion rate in f) slows the growth even more. If the latent heat is

increased very slightly as in g), the growth rate jumps dramatically; this suggests

that the ratio A in f) was near sorne critical limit. Increasing 1:. significantly (nearly

double) in h) slows growth again as there is then an over-abundance of released heat.

The result is that the growth is much narrower and tapered; common to many low

T", trials, the tip of h) shows distinct faceting due to the roughening transition (sec
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Figure 60: The thermal fidds uom dosely relate<! systems ohize i2 x 72 x 144: Each field demon­
strates the consequence ofvarying a system parameter; sec Table 7.4 for the specific values. Fidd al
rcpresents the typica1 growth behaviour. Sec the text for NI analysis. Temperature is shown as dark
for cold and light for hot. The split images in gl and hl show eariy and late times for comparison•
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Section 7.5).

1n genera.I, results arc entirdy consistent with the description of the ~rullins-

Sekerka instability in terms of the the..ma.I diffusion, as presented in Chapter 3, and

the role of interface fluctuations. Specifical1y, we can see that the therma.I diffusion

field is directly coupied to the growth of the dendrites; the lack and over-abundance

of latent heat tends to inhibit growth; higher melting temperatures roughen and ac-

celerate the interface and lower melting temperatures slow it, introducing faceting at

the tip attributed to the dynamic roughening transition; reduced diffusion rates limit

growth. Also apparent, a.Ithough not predicted by linear stability, is the relationship

between the sca.Ied undercooling A and the coarsening of the dendrite; larger A corre­

sponds to enhanced coarsening even though the thermal gradients near the interface

appear to be compa<able. This suggests an area for further study.

al 0.7 0.4 4.7 0.3 0.35 0.18 26

bl 0.8 0.4 3.3 0.3 0.61 0.51 19

c) 1 0.8 0.5 3.3 0.3 0.76 0.49 13
-
d) 0.7 0.5 4.0 0.3 0.47 0.22 18

e) 0.65 0.45 3.8 0.3 0.35 0.18 42

f) 0.65 0.45 3.8 o.ï 0.35 0.18 37

g) 0.65 0.45 4.1 o.ï 0.3 0.15 12

h) 0.65 0.45 5.8 o.ï 0.29 0.096 19

Table 1: The tabie entries corre:;pond to the thermal fields in Figure 60; changes in cach of the
par&meters, coexistence temperature T"" underc:ooling 6T, ln.tent heat ;; and diffusion constant
D, produce behavioural changes in the instability as described in the text. The units of Tm and
ôT are in T. of the unmodified Ising model; C. is in units of J; D is in square 1&ttice sP"Cings per
Monte Carlo step. The other pararneters, the scaled undercooling 11., the c~pillary length d. and the
thermal diffusion length l, are calculated from expressions derived in Chapter 3; A is dimensionless;
d. and l are in lattice spacings. Note that l depends on the tip vdocity which is measured but Dot
shown here.
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7.5 Faceted Dendrites

The second direction in which we began preliminary investigations is the special case

of dendritic growth with faceted tips. 'Oft,~n, crystalline forms characteristic of real

dendritic growth (such as the snowflake in Figure 1) correspond to growth taking

place bdow the roughening transition. We might hope that the mode! interfaces

below T~'OO} will show behaviour resembling that of real, faceted crystals. Due the

nature of dynamic roughening, there are difficulties in exploring this behaviour; recall

that faceted interfaces have a very weak response to dri"ing forces and move quite

slowly (see Section 5.4). Moreover,lower temperatures involve reduced rates of spin

dynamics, further slov.;ng the interface. Subsequently very long runs arc required for

small undercooling and low temperatures. However we v.;U be able to convincingly

demonstrate this behaviour in our simulations.

As mentioned, the dynamic roughening transition plays a subtle role in the for­

mation of dendrites. For example, it inhibits instabilities on certain planes where the

local interface temperature is below the roughening temperature TR (eg. the {100}

faces) resulting in the phenomenon of preferred directions of growth. A case in point,

the growth of the arms of a snowflake radially out from the hexagonal unit ceU is much

faster than perpendicularly out from the basal plane; this is why the c1assic snowflake

shape is fiat. In our simple cubic crystal simulation lattice, it has been observed that

this effect is at least partly responsible for the atypical side-branching (see Section

7.3).

In Section 5.4, it was observed that the faceted" interface phase continued to exist

despite the presence of a driving force, at least, up to a critical limit. When the

phase coexistence temperature is very low, the interface can be exposed to relatively

large driving forces, exhibit instability behaviour and still be faceted. This has been

observed experimentally (Maurer, Bouissou and Perrin 1989) in the growth of NH.Br
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crystals from a supersaturated solution; Figure 61 shows several of these growths at

different velocities. Note that the faceting is restricted to the tip of the dendrite

Figure 61: Experimental growth shapes of NB,Br erystals at difl'erent velocities. a) v = O.43/lm/.;
b) v = O.042I'm/.; e) v = O.OI5I'm/.; and d) very dose to equilibrium. These images are from worl:
by J. Maurer et al. (1989).

where the thermal gradient, and subsequently interface undercooling, is greatest.

Similar to the observations made of the stable planar interface, adynamie roughening

transition is observed such that the faceting at the dendrite tip gradually disappears

with increasing velocity (and thus with increasing driving force).

Comparable results have been observed in sorne of our simulation trials. Using a

coexistence temperature set to the equilibrium roughening temperature Tm - Ta =

0.54 T. and a relatively strong undercooling, 6T::::: 0.40 T., single dendritic growths

with faceted tips have been produced; Figure 62 shows a typical result. The tip

velocity in this case is measured to be constant at'l' = 6.4 lattice units per 1000 MCS.

By varying the undercooled temperature, the driving force at the tip Can be changed.

For the same system, we varied the undercooling Tu E [0.0,0.2] T. and observed the

steady-state velocity of the tip as shown in Figure 63. Although the data is based

on only one trial per point, there is a clear transition in the growth response near
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• Figure 62: Two views oC a simulation oC a Caeeted dendrite; the 10"'er im..ge shows an cericl view oC
the tip, highlighting the eubie Cacets. .,.

144



•
Il •• • •
10 • • •

009 •
u

~8 •
•al •... •-l: 7

;:l
•~

c:':l 6
1 •
0

5-
>

4 •

3
0.36 0.40 0.44 0.48 0.52

t;"T (Tc)

Figure 63: The growth respon.. of a dendrite at temperatures below the equilibrium roughening
temperature TR for a given undercooling. Visual inspection of the dendrite tip at DoT < 0.48 Tc
shows that it is f..<eted. Figure 62 shows the dendrite for DoT = 0.40 Tc.

l::>T - 0.48 Tc; error bars are estimated at 10-15%. Due to the strongly non-linear

response of the faceted tip, th.: velocites for the sma.llest undercooling are particularly

low and difficult to measure accuratel;;·. However, the trend is unmista.ka.ble and

completely consistent with our expectations. We fully expect to be able to perform

a complete study of this behaviour in the future, making direct contact wit1 existing

results (Maurer, Bouissou and Perrin 1989) and analytic descriptions (Ben Amar and

Pomeau 1988).

•
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We have examined the behaviour of crvstal interfaces using; ~Ionte Carlo simulation. ,

on a simple cubic Ising mode! of spins. The interfaces were simulated under a variety

of conditions, highlighting several distinct surface phenomena. In particular. the

roughening transition of equilibrium and dynamic interfaces and the 1\1ullins-Sekerka

instability at early times (linear regime) and late times (non-linear regime) were

studied. In almost ail cases, the results represented the first reportcd attempts at

simulating these proccsses in three dimensions.

A planar {lOO} interface at equilibrium was first shown to demonstrate the weil-

known equilibrium roughening transition with changing temperature. The results of

our simulations were compared favourab!y to previous studies and to current the-

oretical de,criptions. An alternate approach to analyzing a faceted interface was

presented; it was established as a greatly improved method of identifying the transi-

tion. This technique was then applied to the surface of a metastab!e bu!k inclusion

(or drop!et) to measure its roughening transition beha\;our. It was noted that the

drop!et required an external driving force to enforce metastability and subsequent!y

that the roughening behaviour was modified. The modifications, a depression of the

roughening temperature and a broadening of the transition region, were found to be

in good agreement with theoretical predictions for the dynamic roughening transi.

tion. Comparisons \\;th predictions based on the drop!et shape were also found to be

consistent a!though Jess clear.

Dynamic studies of these interfaces were then carried out. First, the balancing

force on the metastab!e drop!et was removed and it was observed to demonstrate he­

haviour resembling a roughening transition, passing quickly from a faceted to rough-

ened state, a!though neither teml'erature nor driving force was changed. This wa:;

found to be a natura! consequence of two distinct evaporation processes reducing the
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surface encrgy of the droplet at disparate rates. Next, the planar interface was ob­

sen'ed in the presence of a weak thermal gradient. Again using our analytic technique,

we showed the presence of adynamie roughcning transition as a function of under­

cooling (driving force). AIthough we were unabIe to compare the data directIy .....;th

theoretieal predictions, we did observe behaviour whieh was consistent with analytic

descriptions.

Turning to the Mullins-Sekerka instability, we fust undertook a test of the pre­

dictions of linear stability analysis, ......hich are considered fundamental to this phe­

nomenon at earIy times. In the light of technoIogical limitations, we chose to use a

two-dimensional version of our code. The linear analysis makes several very specifie

predictions for the linear regime growth of pIanar and circular interfaces which have

never before been directIy confirmed in either simulation or experiment. In the pIa­

I:ar case, a special long-range interaction was used to extend the linear regime; the

dispersion relation defining the growth modes of the interface was then measured and

found to be consistent with the predictions. Despite the large ensemble of data used,

noise was still significant, underlining the difliculty in extracting useful information.

In the circular case, the stability radius of the growing disk was measured and shown

to be in good agreement .....;th theory, using two independent techniques. In concert,

these results are very convincing validation of the linear stability analysis. They also

support the use of our model for the simulatio:l of dynamic processes.

Fina.lly, we exarnined the Mullins-Sekerka instabilityat late times when the growth

is non-linear and geometrica.lly complex. Based on experience and on the limitations

of computer hardware, we chose to examine two specifie configurations of the {Ill}

interface: First, we studied the quasi-two dimensional slab system which has one of

the interfacial dimensions very sma.ll compared to the other; this permits relatively

large, fiat dendritic growths. Second, we studied the block system which is fully three
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dimensional but limits the size of the growths which are possible.

Both types of growth were characterized by tip "docity, surface area and power

spectra and shown to be consistent with experimental observations and analytic re­

sults. The two systems were distinguished by the absence of coarsening in the ..Iab

growths, similar to pre,;ous simulation studies performed on true 2D systems. In

neither case did we observe side-branching, the production of secondary instabilities

on the sides of the growing dendrites; this feature is rou\inely observed in cxpcri­

ments. Noting the appearance of proto-branching in certain cases, We surmised that

complications related to the crystal structure inhibit the formation of side-branches.

Turning to the analysis of the growths in terms of the associated thermal fields,

we demonstrated the physica.1ly correct behaYiour of the thermal diffusion mechanism

again using predictions from the Iinear stability analysis. We then directly examined

the appearance of a variety of growth shapes and commented on the effcct of var­

ious system parameters on the instability. Lastly, we prcsented .the results from a

preliminary study on a special c1ass of dendrite which has a faceted tip. Making di­

rect comparison with existing experimental studies, we showed a comparable growth

shape in low temperature simulations and demonstr...tecl a transition behaYiour in the

growth response to changing driYing force. This behaYiour is consistent with the dy­

namic roughening transition observed and discussed in an earlier Section. Indeed, this

appears to be the unique cross-oVer case where both the Mullins-Sekerka instability

and the roughening transition are observable simultaneously.

The work presented here has established the Yiability of studying crystal interfaces

with simulation in both equilibrium and dynamic contexts in three dimensions. We

have reproduced accepted behaYiour as weil as produced unique results and provided

a basis for interpreting them. We have laid the foundations for further studies of crys­

tal interface problems, in greater detail and in new contexts. We envision the use of
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other crystal structures such as face-centered cubic, body-centred cubic and hexago­

nal close-packed to study their multiple roughening transitions and uniqu'; instabi!ity

patterns as observed experimentaIly; simple cubic crystals are relative!y rare in nature

and most experimental results available for direct comparison involve materials ",;th

other structures. We also hope that they might provide the key to the side-branching

phenomenon in the Mullins-Sekerka instability. In addition, more work needs to be

done on the instabi!ity in the !inear regime, both in terms of impro~;ng the statis­

tics in two dimensions and extending the study to three dimensions. Several other

results were left relative!y unexplored including details of the dynarnic roughening

transition in Our mode!, growth and evaporation processes in crystal droplets and the

roughening behaviour of facetted dendrites. With constant and ongoing advances in

computer hardware, we expeet many new and beneficial results to be derived from

future simulation studies of crystal interfaces.
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Appendices

A.l Crystal Plane Notation and Lattice Geometries

The simple cubic (SC) crystal structure is the simplest crystal in terms of its unit

eell and indexing. The position and orientation of a crystal plane is denoted by an

orthogonal set of three veetors which are, by convention, defined by the unit ceil of

the crystal. The cubic unit cell is a cube defined by the Cartesian vectors i, fi and =
of unit length (see Figure 64). Crystallographic planes are then rderred to in terms

Figure 64: A schematic diagram of the .imple cubic unit cell.

of (hkl) where h, i and 1 are found by the following recipe:

1) Starting from an arbitrary origin on a crystallattice site, find the integer

intercepts a, b and c along i, fi and =of the plane

2) Take the reciprocals of a, b and c and find the smallest integers h, i and 1 which

preserve their relative ratios.

le. for (a, b, e) = (3,2,4), change to (l/a., l/b, lIe) = (h~, ~) and find (hkl) = (463).

Negative numbers are denoted -h - h. This is the Miller index.
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The primary faces of a cube are thus (100), (010) and (001) with the opposing faces

denoted (100), (OiO) and (OOi). Since they are symmetric with respect to rotation,

they are referred to as a set as {100}, the curly brackets imp!ying the equivalence.

The three planes which ea~h cut diagonally through three adjacent cube faces are

the {Ill} planes. The directions [hkl] are perpendicular to the planes (hkl); note

that this is true for the simple cubic crystal but not necessarily so for other

structures. For more details on crystal indexing, see Nicholas (1965).

The cubic Ising lattice is identical to the simple cubic crystallattice and is usually

implemented in a manner such that the sites are accessed according to the (a,b,c)

convention. However, to reduce the complications of plane orientation issues such as

the shape of the simulation system, the simple cubic crystal was mapped onto the

simulation lattice such that the crystal interface always corresponds to the lattice

(001) interface, no m~.tter the crystal orientatIon. This was done by uniquely coding

the definition of the lattice nearest neighbours for each crystal orientation.

In all cases, the algorithm uses a virtual lattice which is regular and cubic v;ith

Nz x Ny x N~ sites; the choice of nearest neighbours and spin bond strengths

determines which physical crystal structure the algorithm emulates. The initial

interface is always parallel to the X-Y plane of the virtual lattice. The sides of the

system are always periodic; the ends are pinned.

In the case where the nearest neighbours of a site at a, b, c are defined as the

adjacent sites along the Cartesian axes (ie. a ± l, b ± l, c ± 1) and bond strengths

are equal and identical to J of the Hamiltonian, the sys"em represents th~ SC

structure and the interface corresponds to the {100} plane. Figure 65 demonstrates

the basic lattice definition.

H the nearest neighbours are specially chosen triplets in the X-Y planes above and

below the site (ie. ah bh C - 1; a2, 1>:, c - 1; a3,~, c - 1; a.., b., c + 1; as, bs, c +1;
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Slmpll:Cubk
{IOO} Intcrf..,.

Figure 65: A schematie diagram orthe {IOO} interface. The bonds to the neighbours ofone interface
site are highlighted.

a6, b6 , c + 1) and bond strengths are equal, the lattice represents the SC structure

oriented with the {lll} plane parallel to the X-Y plane. Each X-Y plane c defines

the triplet neighbours for a site differently according to its d.,signation as one of the

three distinct laterally displaced SC {lll} planes; the SC {Ill} structure is

construded by stacking these X-Y planes cyclic<illy (ie. 1,2,3,1,2,3,1,...etc.). Figure

66 shows how the neighbours are defined on the cubic lattic~.

Other crystal structures are immediately accessible using this approach such as

hexgonal close-packed (HCP) and face-centered cubic (FCC). As weil, the bond

strengths can be varied to produce other non-rotationally symmetric variations.

A.2 Critical Droplet Radius

Consider the free energy of a spherical droplet of radius R;

where 6.Eb is the bulle free energy difference and ., is the surface tension. The first
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Simple Cuhic

{III} 1nterface

....... .;- ..

Figure 66: A ~hcmatic diasram of the {Ill} interface. The bond$ to the nc:ighbours of one: interface
sit< &r~ highlight.d.

term is the capillary contribution and scales ....;th ..., as the surface area. The second

term is the bulk term and scales as the volume; it is assumed negative (ie. the solid

has a lower bulk energ)' than the liquid melt) as there is no finite critical radius

otherwise.

At the metastable point where dEF/dR = 0, the droplet does not feel any force and

thus does not grow or decay. The critical radius is thus defined to be

• 2...,
R = l::.E,;

At R > R', the droplet will tend to grow; at R < R' , the droplet will tend to shrink.

When l::.Eb == 0 (ie. at coexistence), R' =00 and ail sizes of droplets ....-il\ shrink.

In two dimensions, the a.:lalysis is almost identical. The free energy of a disk is

Here of course, ..., is surface energy per unit length and the capillary term scales as

the circumference; l::.Eb is the bulk free energ)' difference per unit area and the bulk
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• tcr;n scalcs as the arca. This lcads to cr1tica.1 radius whi("h \"1111y ditft"rs from the 3D

R- b.y a factor of 2;

. '}

R = 0.E
b

-

Sorne analyses are performed with >lightly different forms of t h<- f;cc cn<-'l;ies_ The

capillary Iength is length scale which assigned ta the surface free energy; it is defin"d

ta be

d _ ,TmC
<1 - Coz

where Tm is the coexistence temperature of the systeI!' (which has a first-orèer

transition) and J:. is the requisite latent heat_ The bulk free energy of each phase

m:!: - ±l is

where € and s are the meanfield average spin energy and entropy density, equaiions

(85) and (Si) respectively_ To first arder m+ :-: -m_ - 1 near coexistence and thus

the bulk free energy is 6.Eb ~ In(S)(T - Tm) and we can express the critical radius

as

R
• do
2D =-A

R
• _ 2ci..
3D - A

•

A.3 Curvature of a Discrete Lattice

Here we denve an expression for the mean curvature K of a discrete interface, and

relate this ta the mean facet area (A) for T > TR- If the interface is at

thermodynamic equilibrium and is single-valued h(x), then th" Fourier speetr"ln ..f

modes has the form (Grant 1988)

- 2 T
(Jh(q)1

2
) = (1.r(h(x))1 ) IX ,(T)q2

154



• whcr'~ '"'1 is the ~urf..1.cc tension and :F sigrlifies a Fourier transform

h(q) == F(h(x)) = Jdx e,qx h(x).

When the local cur-;ature 1< is small (V'h « 1) then

,,' = (I<') == ((v'hf\ = F-1«(Iq'h(q)I'})

= r'~/. dq q4(h(q)h(qt}
J::!"/L
T ?-

:::: _(=:::')3 (L » a)
3 a

so that

,,0: ..fT.

To relate" to the area of the local microfacet A, we show in Figure 6ï the

(123)

(124)

•

relation~hip of tlIe interface to the underlying lattice with unit vector a. We choose

-4...----1-----I..~

......... -, ... '"" •~~ 1
~,. a...

l ,"... . "...
1 1 ! ~t~ R -1 l'... ! <xl(

l
1 1

11 - 1, , ,

Figure 6;: The discrcte Ising lattice represents a curved interface ",ith a stepped planar surface of
comparable variation in height. Consequently. even a fully roughened surface can be d=ribed in
terms of its micro-faut distribution. It can he shown that an interface of consta.nt curvature le will
havc a facd of me 1=VSa./1< ",here C1 is the unit lattice spacing.

a micro-facet whose center is approximately contingent with the apex of the curved

interface, a....ld def1ne its size (, to be the solution of the expression

b.h = h(x) - h{Xo) = ~I<:l:' == a
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• The distance from edge to edge is ther,-fore

f = 2!!x -- xoll = 2/ia/ '"

where 6.h is assumed to be one lattie<' constant a. The micro-fal-et art-a is then

so that, using (124), the mean micro-facet area behaves like

(125)

(12ô)

•

A.4 Corrected Micro-Facet Quantities

The micro-facet population on a reference plane below the roughening temperature

TP. is described by the Bo1tzmann-like probability function

I-j(l, T) = fl.e-E(l)/kBT

where E(l) is the energy required to create a micro-facet of size l. Units are defined

such that the Boltzmann constant ka is unitY and it is subs..quently dropped from

use. The prefactor fi. is defined so that

L Pf(l,T) = 1
l

where the sum is over all sizes of l in units of the lattice spacing a. Consistent with

a cubic lattice at 10w temperatures, the typical micro-facet is assumed to be a

square of thickness a and sides l X l. The micro-facet energy is th"'l

where the first term is the contriùution from the step free energy E. and the second

is from the b;llk free energy difference 6.Eb•
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• Coing to the continuum limit, P, {l, T) then becomes a probability density function.

Since the quantities measured On the interface are averages over the fluctuation

population, wc will use a Iower limit lmm = 1; this reflects the fact that the lattice

cannot support a micro-facet of siz.. smaller than unity. At buIk phase coexistence

6Eb = 0 and in the continuum limit, (126) is then

/,"" dl i'le-E(l)/T = 1

= n _ ~e'E./T,,- T .

•

Now, several uscfuI expectation values will be derived using Pf(l,T). Note that we

make repeated use of the integral identity

The mean micro-facet width:

(i) _ /,"" dl l Pf ( i, T)

= n/,"" dl l e-.tE.IT

T
= 1+-

4E.

The mean micro-facet area:

(A) _ /,"" dl i 2 Pf(l, T)

T ( T)= 1+- 1+-
2E. 4E.

The micro-facet area variance:
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•
Finally, the fraction of the reference plane which is covered by mÎcro-faccts can be

approximated using the follo,,;ng argument: It is assumcd that th... thermal ...ncrgy

density ê(T) - T is distributed equally amongst all sizes of micro-facct; in other

words,

ê(T) =Jdl ,(l, T) PJ(l, T) ~ T.

Thus, the energy density distribution funetion ,(l,T) is equal to T. This leads to a

definition of the number density of rnicro-faeets of size l;

,(l, T) T
n(l) ~ EJ(l) =4lE.'

Th" expeetation of the area density of miero-facets is then

(At.,) = (n( l)A( il)

/,

00 T
- 1 dl 4lE. l% PJ(l, T)

= .I-(li = .I- (1 + 2..) .
4E. 4E. 4E.

Note that (A.,) is not directly applicable to the interface area; there is a pr~factor

A which depends on the details of the lattice, the model Hamiltonian and the

geometry of the micro-facets. Thus, the expression for the fraction of the interface

plane which is not covered by rnicro-facets is

•
(Ao) - 1 - C....tA..t

= 1- Con• t [2~. (1+ 4~J]
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For this model, the preïaetor has been measured to be C""., - 1/16.

A.S Growth and Evaporation Crystal Shapes

Sorne experimental measurements have been made of nucleation- and

diffusion-limited growth (Gallet, Balillar and Roliey 198i) and evaporation on

pla."lar and droplet crystal interfaces (Dougherty and Gollub 1988; Heyraud and

Métois 1980; Métois and Heyraud 1982; Heyraud and Métois 198i). Althoug!l not

quantitatively comparable to the results presented here, the qualitative similarity

bctween their photographie images and our surface representations is worth noting.

Figure 68 shows a pair of images from a crystal evaporation experiment and the

related simulation. The real crystal on the top is a gold (Au) droplet several JLm in

diameter from a study done by Heyraud and Métois (1980); note that the Au

crystal is face-centered cubic (FCC) instead of simple cubie like our mode! and thus

shows {Ill} facets as wel! as {100}. The simulation droplet on the bottom is from a

128 x 128 x 128 system with both the solid and me!t at the coexistenee temperature

Tm = 0.4 T.; the droplet is rapidly evaporating from its initial state as a perfeet

cube. Both systems are at a tcmperature be!ow their respective equilibrium

roughening temperatures. The Au erystal exhibits a series of concentric terraces

wbich have been identified as diffusing step fronts. Although the rcsolution is

somewhat low on the simulation model, the presence of similar steps around the

main facets is detectable. A meehanism for surface self-diffusion has bcen proposed

by Heyraud and Métois (1982).

Figure 69 shows a similar set of images from crystal growth studies. The physical

crystals are again gold (Au) and lead (Pb) wbich is also FCC in stracture; the Pb

crystals are from another study by Heyraud and Mêtois (198i). The simulation

image is from wvrk wbich is not presented in tbis thesis. The main feature is the
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b)
128 x 128 x 128

•
Figure 68: A pair ofimages compariDg the appearance ofevaporating crystals as observcd in experi­
ment (Heyraud and Mélois 1980) and simulation (sec Section 5.3). The physîcai crystal is gold (Au)
on a graphite substrate; it has an Fee lattice structure and thus shows {IOO} and {Ill} racels.
Note the simi1ar concentric step patterns rdatcd to surface dilFusion.
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c)

Figure 69: Three images comparing the appeo.rance of growing crystals as observed in experiment
(Heyraud and Métois 1980; Heyraud and Mérois 1987) and simulation (not pres<:nted in this worle).
The physica1 crysta1s are a) gold (Au) and b) lead (Pb); they both have an Fee lattice structure
and thus show {Ill} facets. Note the absence of curved and roughened regiollS.
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• absence of roughened regions between the facets. In the case of the Au crystals.

several different stages of growth are observed. One crystal shape is prt·suIllt·d to be

the state at late times (indicated by the arrow) where only the {Ill} facets appear;

similar to the case of tàe evaporating droplet described in Section 5.3. it is believed

that the fastest gro,,;ng re,jons (ie. the roughened interface) dominate the growth.

The simulation image is the same system described above except that the

coexistence temperature is Tm = 0.5 Te (ie. the melt is llndercooled).

A.6 Surface Area of Unstable Interfaces

The surface length (area) of unstable ID (2D) interfaces is expected to increase like

s(t) OC {
t

carly t

late t
(128)

•

To demonstrate this, we make the following argument: We suppose an infinite ID

planar interface ,,;th a perturbation which has the form

h(x,t) = ho +L a.(t)(1 + sin(kx».

•
For simplicity, we shall isolate a single growth mode k' so that a. =0 for k # k'.

This form for the interface implies the case where there is no coarsening or

side-branching of the needle crystals. The requirement that the tips move with

constant velocity (typical of dendritic growth) sets the amplitude to a.' = Con.,t.

The total surface area (or, in 2D, the interface length) is described by

where the integral is over the wavelength of the sine wave .À = 2"./kx. This integral

doesn't have a simple solution; instead we can look at it's early and late time

behaviours. For small a(t) (ie. early times), we approximate the square root with a

Taylor expansion to first order;
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s(t) fa" dx (1 -;- ~(a,,(t)kcos(kx)f)

For a( t) » 1 at late times, the 1 can be ignored and the square root approximated

by

- ro~s(t) .- Jo dxa,,(t)kcos(kx)

= 0: t.

This is consistent with the view that the needles are columns of constant

cross·section (no coarsening) whose surface length increases solely along their sides.

In 3D, the interface can be similarly defined as

h(x,y,t) = h.(:z:,y) + L a..... (t)(1 + sin(k~:z:))(1 + sin(kvy))
k. ...

and the total surface area becomes

S(t) =f dy 1~ d:z:

•

In applying the same limits of a(t), we find the same time dependencies.

On a circular interface (ie. a disk in 20), we ca.n make a similar argument with

regard to the total area of the droplet: Let's suppose a perfect disk of radius R..

We ca.n then perturb the interface

R(9) = R. +LPm(l + cosm9)
m

where P is a function of t. Simplifying so that pm = 0 except for one value of m, the

area of the disk is
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In the thermodynamic limit of R" - .:>c, the disk interface becomes the planar

interface. We can assume for large R" that p ex: t and thus to first order .-1( t) ::: t for

small t. At late times, .4(t) ::: t' .

164



•

•

References

Adler, J. 198ï. Phys. Rev. B, 36, 24ï3.

Balibar, 5., Gallet, F., and Rolley, E. 1990. J. Crys. Growth, 99, 46.

Becker, R. and Doring, W. 1935. Ann. Phys., 24, il9.

Ben Amar, M. and Pomeau, Y. 1988. Euro. Lett., 6, 609.

Ben-Jacob, E., Goldenfeld, N., Langer, J., and 5chon, G. 1984. Phys. Rev. A, 29,

330.

Binder, K. 1983. J. Chem. Phys., 79, 638ï.

Binder, K. 198430. Phys. Rev. B, 29, 341.

Binder, k. 1984b. Phys. Rev. A, 29, 341.

Browser, R., Kessler, D., Koplik, J., and Levine, H. 1984. Phys. Rev. A, 29, 1335.

Bürkner, E. and 5tauffer, D. 1983. Z. Phys. B, 53, 241.

Burton, W., Caï6, N., and Frank, F. 1951. Phil. Trans. Roy. Soc. London A, 243,

299.

Chou, H. and Cummins, H. 1988. Phys. Rev. Lett., 61, ï3.

Chui, 5. and Weeks, J. 1976. Phys. Rev. B, 14, 49ï8.

Chui, 5. and Weeks, J. 1978. Phys. Rev. Lett., 40, 733.

Creutz, M. 1984. Phys. Rev. Lett., 50, 1411.

Creutz, M. 1986. Ann. Phys., 167, 62.

de Gennes, P. 19i1. In Faraday Symposium #5 on Liquid Crystals, page 16.

165



•

•

Dougherty. A. and Gollub. J. 1988. Phys. Rct". .-l. 38. 3043.

Fisher, ~1. 1969. J. Phys. Soc. Jap., 26. 87.

Gallet, F., Bal:bar, 5., and Rolley, E. 1987. J. Physiquc Paris, 48, 369.

Glicksman, M. 1984. Afatls.Sci. and Eng., 65, 5.

Glicksman, M., Shaefer, R., and Ayers, J. 1976. Metall. Trans . .'1,7, 17·17.

Grant, M. 1988. Phys. Rev. B, 37, 5705.

Grant, M., San Miguel, M., ViÏials, J., and Gunton, J. 1985. Phys. Rev. .4,31,3027.

Grossman, B., Guo, B., and Grant, M. 1991. Phys. Rev. A, 43, 1727.

Guo, B. and Jasnow, D. 1986. Phys. Rev. 04,34,5027.

Barris, R. 1985. Phys Lett., HIA, 299.

Harris, R. and Grant, M. 1988. Phys. Rev. B, 38, 9323.

Barris, R. and Grant, M. 1990. J.Phys. A, 23, L567.

Harris, R., Jèirgenson, L., and Grant, M. 1992. Phys. Rev. A, 45, 1024.

Heermann, D. 1984. Phys. Rev. Lett., 52, 1126.

Beyraud, J. and Métois, J. 1980. J. Crys. Growth, 50, 571.

Heyraud, J. and Métois, J. 1987. J. Crys. Growth, 82, 269.

Heyra.ud, J., Métois, J., and Bermond, J. 1989. J. Crys. Growth, 98, 355.

Holzer, M. 1990a.. Phys. Rev. Lett., 64, 653.

166



•

•

Holzer, ~L 1990b. Exact Equilibrium Crystal Shapes In T,,:o Dimensions and

Pa'!uibalzon

E;;;panslOns for the Facet Shape and Stcp Fra Enagy of a Thra-Dimcnsional

Equ:l:bnum CrystaL PhD thesis, Simon Fraser Cniversity. sec page 7 and 15

for comment on EC5 as intensive state variable.

Holzer, M. and Wortis, M. 1989. Phys. Rev. B, 40, 11044.

Horvay, G. and Cahn, J. 1961. Acta Metall., 9, 695.

Hwa, T., Kardar, M., and Paczuski, M. 1991. Phys. Rev. Let/., 66, 441.

1vantsov, G. 1947. Dokl. Akad. Nauk. SSSR, 58, 567.

Jackson, K. and Miller, C. 1977. J. Crys. Growth, 40, 169.

Jayaprakash, C., 5aam, W., and Teitel, 5. 1983. Phys. Rev. Lett., 50, 2017.

Jorgenson, 1., Harris, R., and Grant, M. 1989. Phys. Rev. Lett., 63, 1693.

Jorgenson, L., Harris, R., Grant, M., and Guo, H. 1993. In publication.

José, J., Kadanoff, L., Kirkpatrick, 5., and D.R. Nelson, D. 1977. Phys. Rev. B, 16,

1217.

Kardar, M., Pa.risi, G., and Zhang, Y. 1986. Phys. Rev. Leti., 56, 889.

Kessler, D., Koplik, J., and Le\;ne, H. 1986. Phys. Rev. 04,33,3352.

Kessler, D., Koplik, J., and Levine, H. 1988. In Advances in Physics, volume 37,

page 255.

Kim, J. and Kosterlitz. J. 1989. Phys. Rev. Lett., 62, 2289.

Kosterlitz, J. 1974. J. Phys. C, 7, 1046.

167



•

•

Kosterlitz. J. and Thou!ess. D. 1973. J. Phys. C. 6. lIS!.

Landau, 1. and Lifshitz. E. 1980. In S1.;t:..'tic.;i Phys:cs. volume 1. page 155.

Pergamon, Oxford.

Langer, J. 1980. Rev..\fod. Phys., ::02. 1.

Langer, J. 1987. In J. Souletie, J. V. and Stora, R., editors. Lee/ures m the Theory

of Pattern Form"tion, Chance and Jfatter, Amsterdam. Les Houches Summer

Sehool Session 4b July 1986, North·Holland.

Langer, J. 1992. Physics Today, 45( 10). 24.

Langer, J. and Müller-Krumbhaar, H. 1978. Acta Metail., 26, 1681.

Langer, J., Sekerka, R., and Fujioka, T. 1978. J. Crys. Growth, 44, 414.

Laxmanan, V. 1985. Acta Metail., 33, 1023.

Liu, F. and Goldenfeld, N. 1990. Phys. Rev. A, 42, 895.

Maarer, J., Bouissoll, P., and Perrin, B.and Tabeling, P. 1989. Euro. Lett., 8, 67.

Medina, E., Hwa, T., Kardar, M., and Zhang, Y. 1989. Phys. Rev. A, 39, 3053.

Métois, J. and Heyraud, J. 1982. J. Crys. Growth, 57, 487.

Métois, J. and Heyraud, J. 1987. Surf. Sei., 180,647.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller. A., and Teller, E. 1953. J.

Chem. Phys., 21, 1087.

Mon, K., Landau, D., and Stauffer, D. 1990. Phys. Rev. B, 42, 545.

Mon, K., Wansleben, S., Landau, D., and Binder, K. 1988. Phys. Rev. Lett., 60, 708.

168



•

•

~lullins, W. and Sckerb., R. 1963. J. App/. Phys., 34. 323.

~lullins, W. and Sckerka, R. 1964. J. App/. Phys., Z5, 4~4.

~lurphy, L. and Rottman, C. 1990. Phys. Rev. B, 42, 6~0.

~elson, D. and Ko~tcrlitz, J. 19ïï. Phys. Rev .Leli., 39, 1201.

Nicholas, J. 1965. An Atlas of ModeIs of Crystal Surfaces. Gordon and Breach.

Nozières, P. 1989. J. Physique Paris, 50, 2541.

Nozières, P. and Gallet, F. 198ï. J. Physique Paris, 48, 353.

Ohta, T. and Kawasdki, K. 19ï8. Prog. Theor. Phys., 60, 365.

Pavlovska, A. and Nenow, D. 19ïï. J. Crys. Growth, 39, 340.

Pawley, G., Swendsen, R., Wallace, D., and Wilson, K. 1984. Phys. Rev. B, 29,

4030.

Qian, X. and Cummins, H. 1990. Phys. Rev. Lett., 64, 3038.

Reichl, L. 1984. A Modem Course in Statistical Physics. University of Texas,

Austin.

Rolley, E., Ba.1ibar, 5., and Gallet, F. 1986. Euro. Lett., 2, 24ï.

Rolley, E., Ba.1ibar, 5., Gallet, F., Graner, F., and Guthmann, C. 1983. Phys. Rev.

Lett, 51, 1366.

Rottman, C. and Wortis, M. 1981. Phys. Rev. B, 24, 62ï4.

Rottman, C. and Wortis, M. 198430. Phys. Rev. B, 29, 328.

Rottm3o'" C. and Wortis, M. 1984b. Phys. Rep., 103, 59.

169



•

•

Saito, Y., Goldbeck·Wood, G., and :\Iüller-Krumbhaar. II. 1988. Phys. Rn'. 04.38.

2148.

Saito, Y. and l'eta. T. 1989. Phys. Rf!'. A. 40. 3-\08.

Sekerka, R. 1967a. J. Phys. Chem. Solzds, 28. 983.

Sekerka, R. 1967b. Pergamon Press, Oxford.

Sekerka., R. 1971. In Physical Chemist:-y in Metal/urgy, page 133. Proceediags of the

Darken Conference, U.S. Steel Research Laboratones.

Shugard, W., Weeks, J., and Gilmer, G. 1978. P~ys. Rev. Lett., 41, 1399.

Swendsen, R. 1978. Phys. Rev. B, 17,3710.

TC'uzani, M. and Wortis, M. 1987. Phys. Rev. B, 36, 3598.

van Beijeren, H. 1975. Commun. Math. Phys., 40, 1.

van Beijeren, H. 19ii. Phys. Rev. Lett., 38, 993.

van Beijeren, H. and Nolden, I. 1987. ln Schommers, W. and von Blanckenhagen,

P., editors, Topies in Current Physi,;s, volume 43, page 259. Springer. Verlag,

Berlin.

van Saarloos, W. and Gilmer, G. 1986. Phys. Rev. B, 33,4927.

Weeks, J. 1980. ln Riste, T., editor, Ordering in Strongly Flucluating Condensed

Matter Systems. Plenum, New York.

Weeks, J. and Gilmer, G. 1979. In Prigogine, I. and Riee, 5., editors, Advo"ees in

Chemieal Physies, volume 40, page 157. Wiley, New York.

Wolf, P., BaIibar, S., and Gallet, F. 1983. Phys. R~v. L~tt, 51, 1366.

liO



•

•

Wolf, P., Gallet, F., Balibar, 5., Rolley, E., anâ ?'ozières, P. 1985. J. Physique

Paris, 46, 198ï.

Wulff, G. 1901. Z. Krist. Mineral, 34, 449.

Yokoyama, E. and Kuroda, T. 1990. Phys. Rev. .4,41,2038.

IiI




