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Abstract

Line-of-sight networks were introduced by Frieze et al. [10] to model wireless communica-

tions in an urban setting. Their model is based on a two-dimensional grid of points in the

shape of a torus. Two grid points are said to be mutually visible if they lie in the same row

or column of the torus and if the distance between them is within a certain predetermined

range. Distance is measured using the `1 norm. A random graph is obtained by placing a

node at each grid point independently with the same placement probability and connecting

all mutually visible pairs of nodes. Among the results proven by Frieze et al. is a threshold

for the connectivity of the graph.

In this thesis we extend the model of Frieze et al. to higher dimensions and the general

`p norm. Specifically we consider an underlying d-dimensional grid in the shape of a torus

and we define two points to be mutually visible if they differ in at most k coordinates,

for some k < d, and the distance between them is within a certain range. We then prove

corresponding asymptotically tight connectivity thresholds for this generalized model.
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Abrégé

Les réseaux de lignes de visée ont été introduits par Frieze et al. [10] pour modéliser les com-

munications sans fil en milieu urbain. Leur modèle est basé sur une grille bidimensionnelle

de points en forme de tore. Deux points de la grille sont dits mutuellement visibles si ils

sont situés sur la même ligne ou la même colonne du tore et si la distance entre eux est dans

un certain intervalle prédéterminé. La distance est mesurée en utilisant le norme `1. Un

graphe aléatoire est obtenu en plaçant un noeud à chaque point de la grille indépendamment

avec la même probabilité de placement et en reliant toutes les paires de noeuds qui sont

mutuellement visible. En particulier, Frieze et. al déterminent le seuil de connectivité du

graphe.

Dans cette thèse, nous généralisons le modèle de Frieze et al. à dimensions supérieures.

Plus précisément, nous considérons comme un réseau sous-jacent une grille à d dimensions

et nous disons que deux points sont mutuellement visible si ils ont un maximum de k co-

ordonnées différentes, pour un certain k < d et si la distance entre eux est dans un certain

intervalle. Ensuite, nous prouvons un seuil pour la connectivité de ce modèle généralisé.
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Chapter 1

Introduction

1.1 Motivation

In recent years the area of complex networks has received extensive research from many

different scientific fields. Due to the ever-increasing computational power provided by com-

puters, researchers have been able to store and investigate data sets that are larger than

ever before. This has allowed them to study such large networks that occur in the real

world. Since these networks can occur almost anywhere, the approach has been highly in-

terdisciplinary. Some common examples of such networks include wireless communications,

electrical power grids, protein interactions, the World-Wide Web and social networks.

One of the main aims of the research in this field is to better understand the underlying

structural properties of these networks since these properties govern their behaviour. For

example the topology of social networks is the main governing force behind the spread

of information, and the topology of forests can determine the spread of fires and disease

[16]. A main requirement is to find models that accurately characterize these networks and

capture their main properties. Since many of these networks can be described by their local

behaviours, and since these behaviours are in fact probabilistic in nature [16], a natural

choice for their study are random network models.
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Figure 1.1: 2D network with no obstructions.

The subject of this thesis is line-of-sight networks, a random network model recently

introduced by Frieze et al. [10]. Frieze et al. proposed this model in order to accurately

capture the properties of wireless communications in a complex urban setting. Unlike in

large open environments where communication between two nodes is only subject to range

limitations, in an urban setting we have the added constraint of line-of-sight restrictions.

To better understand the motivation behind this model consider the example given in

[10] where we have a two-dimensional grid representing the downtown of a major city. The

rows of the grid represent the streets of the city while the columns represent the avenues.

Figure 1.1 shows an example of such a grid. The black circles represent the nodes of the

network. The shaded circles around each node denote the range of visibility of that node.

For two nodes to communicate in this setting they have to be mutually visible. If there

are no obstructions then two nodes can communicate as long as they lie inside each other’s

visibility range.
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Figure 1.2: 2D network with obstructions.

However a city landscape is almost always filled with tall buildings and complex obstacles

that act as obstructions to wireless communication. A more realistic depiction of this urban

case is given in figure 1.2 where the dark squares denote possible obstructions. In this case

visibility is no longer ensured by the nodes being in each other’s visibility range. There is

the additional requirement of the two nodes being on the same street or avenue.

Previous models such as random graphs [5] and random geometric graphs [15] are no

longer well suited for this scenario since they are not designed to capture the line-of-sight

constraints. Line-of-sight networks, on the other hand, provide a much better approximation

to the true constraints of this model. Figure 1.3 shows the line-of-sight model where the

shaded arms extending out of each node denote the locations on the torus that satisfy both

line-of-sight and range constraints for the given nodes. Therefore a node can communicate

with any other node that lies on one of its four arms denoted by the shaded regions.

In their paper [10] Frieze et al. prove several important results for two-dimensional line-of-
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Figure 1.3: 2D line-of-sight network.

sight networks. In particular they give asymptotically tight thresholds for the k-connectivity

of the graph. A graph is said to be k-connected if there does not exist a set of k− 1 vertices

whose removal, together with all incident edges, disconnects the graph. In other words, a

graph is k-connected if there are at least k independent paths between any two vertices.

For k > 1, this property becomes important for wireless networks since it makes them more

reliable. If a certain link fails, there are still k − 1 possible paths that can be used instead.

In addition to k-connectivity Frieze et al. also study the emergence of a giant component.

Furthermore they present an efficient algorithm for finding paths between nodes as well as

an approximation algorithm for the relay placement problem.

In this thesis we chose to focus on the connectivity of these graphs. A graph is connected

if there is a path between any two vertices of the graph. We chose to focus on connectivity

since we believe that this is the most crucial property in the case of communication networks,

especially mobile ad-hoc networks. These networks consist of a set of wireless devices that

communicate with each other without any centralized control. These devices agree to route

each other’s data packets which means that they must forward all traffic that goes through
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Figure 1.4: Connectivity range of a node when k = 1.

them even though it might be unrelated to their own use. Hence in order for this type of

network to be functional it is absolutely critical that there exists a path between any pair of

nodes in the network [12]. That is, the network must be connected.

Given a mathematical model for the network, it is of interest to determine the critical

value of a certain parameter at which the graph becomes connected. In the case of line-of-

sight networks the connectivity of the graph depends on a parameter called the placement

probability. The higher the value of this parameter the denser the graph becomes. Therefore

we want to determine the smallest value of this placement probability that will ensure that

the graph is connected with high probability. We say that a graph is connected with high

probability if the graph is asymptotically connected with probability one.

We are concerned with the connectivity of line-of-sight networks in higher dimensions.

The initial motivation for higher dimensions comes from the three-dimensional case that

occurs in scenarios where nodes can be placed both on the ground and also in space, for ex-

ample on different floors of a building, in airplanes or in satellites [13]. The four-dimensional

case can also be of interest in a situation where communication between nodes is dependent

on time.
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Figure 1.5: Example of a 3D line-of-sight network when k = 1.

We remark here that for dimensions greater than two there are multiple possibilities for

defining the line-of-sight constraints. Take for example the three-dimensional case where we

have an underlying grid of n3 points forming a torus. We have two options here. First we

can define two points to be mutually visible if they lie on the same one-dimensional line of

the torus and are within a certain range. In this case each node is connected to any other

nodes that lies on one of its one-dimensional arms denoted by the shaded regions in figure

1.4. Figure 1.5 shows an example of a line-of-sight network for this case.

Our second option is to define two points to be mutually visible if they lie on the same

two-dimensional plane of the torus and are within a certain range. Figure 1.6 shows a node

with its connectivity range denoted by the shaded regions. Figure 1.7 shows an example of

a line-of-sight network for this case.

As the dimension increases the number of ways in which we can define the line-of-sight

constraints also increases. Specifically for each integer k satisfying 1 ≤ k < d we can say

that two nodes satisfy the line-of-sight constraints if they agree in at least k coordinates.

Since the methods used for studying the connectivity of the three-dimensional model can

be easily extended to any higher dimension we chose to present our results in terms of the
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Figure 1.6: Connectivity range of a node when k = 2.

Figure 1.7: Example of a 3D line-of-sight network when k = 2.
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general d-dimensional case.

1.2 Organization and contributions

This thesis is organized as follows. In chapter 2 we introduce two widely studied random

graph models, specifically Erdős-Rényi random graphs and random geometric graphs. We

also present well known connectivity results for these two models. We then formally introduce

the line-of-sight model of Frieze et al. [10] and state the main connectivity result for this

model. In chapter 3 we describe our generalized model of line-of-sight networks and we

present our main connectivity result for this model. We also present connectivity thresholds

for two extensions resulting from removing the line-of-sight and range constraints one at a

time. In addition we demonstrate a correspondance between the model obtained by removing

the line-of-sight constraints and random geometric graphs. In chapter 4 we prove our main

theorem by considering each of the corresponding three cases: the lower bound, the upper

bound and finally the middle case. In chapter 5 we conclude the thesis with a summary and

suggestions for future work.
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Chapter 2

Background

2.1 Random graphs

The study of random graphs was initiated by P. Erdős and A. Rényi in the late 1950’s, see

[8] and [9]. The initial motivation for the study of random graphs was to use them as a tool

for proving the existence of graphs with certain properties. This method of proof is known

as the probabilistic method and it is the subject of a book by Alon and Spencer [1]. The

method can be easily described as follows: suppose that we want to prove the existence of

a combinatorial structure that has a certain property; to do this we construct a probability

space and prove that a randomly chosen object from this space has the desired property with

a positive probability. Since its introduction by Erdős, the probabilistic method has found

multiple uses in many branches of mathematics and theoretical computer science.

The Erdős-Rényi random graph model consists of a graph on n nodes, denoted by G(n, p),

where each potential edge is added independently with some probability p. In a famous paper

[9], Erdős and Rényi looked at random graphs as living organisms and studied their evolution

over time. This evolution can be described as follows. At the very beginning p = 0 and the

graph consists of a set of n isolated nodes with no edges between them. As time evolves, p

is increased continuously with time, and edges of the graph are born one by one. Finally at
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p = 1 all edges are present resulting in the complete graph Kn.

An essential question regarding the evolution of random graphs is at what point does

a specific property of the graph become likely to occur. In particular we are interested

in monotone properties, that is properties whose likelihood of occurrence increases with p.

Erdős and Rényi found that many important monotone properties of random graphs exhibit

a threshold phenomena. Specifically there is a certain critical probability at which the desired

property switches from being very unlikely to very likely.

For the case where the desired property of the graph is connectivity, a famous result of

Erdős-Rényi [9] states that if p = (lnn+ cn)/n then

lim
n→∞

Pr {graph is connected}


0 cn → −∞

e−c cn → c

1 cn →∞.

This means that if p = c lnn/n then for c < 1 the graph is non-connected with high

probability while for c > 1 the graph is connected with high probability. We note here that

this is also the threshold value for the existence of isolated nodes. To see this, let N be the

number of isolated nodes and Xi the indicator variable that node i is isolated. Node i is

isolated if there are no edges connecting it to any of the other n − 1 nodes in the graph.

Therefore

E {N} =
∑
i

E {Xi}

=
∑
i

Pr {node i is isolated}

= n(1− p)n−1 .
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If we let p = (lnn+ cn) /n then as n→∞

E {N} = n (1− (lnn+ cn) /n)n−1

∼ ne− lnn−cn

= e−cn .

Therefore

lim
n→∞

E {N} =


∞ cn → −∞

e−c cn → c

0 cn →∞.

Hence the smallest p for which there are no longer any isolated nodes is also the smallest

p at which the graph becomes connected with high probability. In the following section we

show that this behaviour is also encountered in random geometric graphs.

2.2 Random geometric graphs

A more suitable model for the study of wireless ad-hoc networks are random geometric

graphs, since they account for certain range limitations that might exist in wireless commu-

nications. A random geometric graph is formed by placing n nodes uniformly at random

in a d-dimensional space and connecting all pairs of nodes that are within a certain range

r. A detailed study of random geometric graphs can be found in a book by Penrose [15].

A major difference between random geometric graphs and the Erdős - Rényi model is that

for random geometric graphs the events corresponding to the existence of different edges are

no longer independent. This is because if a node x is close to a node y, and y is close to a

node z then x will have to be fairly close to z as well. It is exactly this triangle property

that makes random geometric graphs more suitable for modelling realistic scenarios such as

wireless networks.
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Similarly to the case of the Erdős-Rényi model, random geometric graphs also exhibit

a threshold phenomena in the occurrence of certain monotone properties, see [11]. For the

particular case of connectivity, Gupta and Kumar [12] showed that if the underlying space

is the two-dimensional unit disk in R2 and distance is measured using the Euclidean norm

then for πr2 = (lnn+ cn)/n the following holds

lim
n→∞

Pr {graph is connected}


0 cn → −∞

e−c cn → c

1 cn →∞.

The connectivity of random geometric graphs in higher dimensions using the `∞ norm has

also been extensively studied by Appel and Russo, see [2], [3], [4]. Penrose [15] generalized

connectivity results to all dimensions and any `p norm. For the case where the underlying

space is the d-dimensional torus [0, 1]d and θ is the volume of the unit ball in the norm of

choice, a result of Penrose [14] states that if θrd = (lnn+ cn)/n then

lim
n→∞

Pr {graph is connected}


0 cn → −∞

e−c cn → c

1 cn →∞.

We note that similarly to the case of the Erdős-Rényi model, the threshold for connec-

tivity is the same as the threshold for the existence of isolated nodes. Again let N be the

number of isolated nodes, and let Xi be the indicator variable that node i is isolated. Node

i is isolated if there are no other nodes in the `p ball of radius r centered at i. Since each
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node has a probability of θrd of falling into a specific `p ball of radius r, we obtain

E {N} =
∑
i

E {Xi}

=
∑
i

Pr {node i is isolated}

= n
(
1− θrd

)n−1
.

If we let θrd = (lnn+ cn)/n then as n→∞

E {N} = n

(
1− lnn+ cn

n

)n−1

∼ ne− lnn−cn

= e−cn .

Therefore

lim
n→∞

E {N} =


∞ cn → −∞

e−c cn → c

0 cn →∞.

So the smallest value of the range parameter r for which there are no longer any isolated

nodes is also the smallest value at which the graph becomes connected with high probability.

2.3 Line-of-sight model of Frieze et al.

Line-of-Sight networks were introduced by Frieze et al. [10] to model wireless communications

in an urban setting. They have the added advantage over random graphs and random

geometric graphs of incorporating both range and line-of-sight constraints. The model is

based on an n×n two dimensional grid of points in the shape of a torus. The distance between

two points is measured using the `1 norm. For a chosen range parameter ω, two points on the

grid are said to be mutually visible if they agree in one coordinate and are a distance at most
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ω apart. A random graph is obtained by placing a node at each grid point independently

with some probability p∗ > 0 and connecting all mutually visible pairs of nodes. Among the

results proven by Frieze et al. [10] is a threshold for connectivity of the graph. Assuming

that ω = nδ, for some 0 < δ < 1 they show that if p∗ =
((

1− 1
2
δ
)

lnn+ 1
2

ln lnn+ cn
)
/2ω.

Then

lim
n→∞

Pr {G is connected} =


0 cn → −∞

e−λ cn → c

1 cn →∞,

where λ = 1
2

(
1− 1

2
δ
)
e−2c and cn = o(ln lnn).

We now show that similarly to the case of random graphs and random geometric graphs

the threshold for connectivity is the same as the threshold for the existence of isolated nodes.

A node in this two-dimensional line-of-sight network is isolated if there are no other nodes

in its visibility range. For a given point i in the torus there are exactly 4ω points that are

visible from i. Therefore we obtain

E {N} =
∑
i

E {Xi}

=
∑
i

Pr {node i is isolated}

= n2p∗ (1− p∗)4ω .

If we let p∗ =
((

1− 1
2
δ
)

lnn+ 1
2

ln lnn+ cn
)
/2ω then as n→∞

E {N} ∼ n2

(
1− 1

2
δ
)

lnn

2ω
e−(1− 1

2
δ) lnn− 1

2
ln lnn−cn

=

(
1− 1

2
δ
)
e−cn

2
.
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Therefore

lim
n→∞

E {N} =


∞ cn → −∞

(1− 1
2
δ)e−c
2

cn → c

0 cn →∞.

Hence the smallest value of the placement probability p∗ for which there are no longer any

isolated nodes is also the smallest value at which the graph becomes connected.
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Chapter 3

Main Result

3.1 Line-of-sight networks in higher dimensions

Given positive integers d and k such that d ≥ 2 and 1 ≤ k < d, we define an underlying

d−dimensional grid in the shape of a torus

T = {(x1, · · · , xd) : xi ∈ {1, 2, ..., n} , 1 ≤ i ≤ d} .

We say that two points are mutually visible if they differ in at most k coordinates and

are a distance at most ω apart. Distance is measured assuming that the points lie on a torus.

That is given two points x = (x1, · · · , xd) and y = (y1, · · · , yd) on the torus we measure the

distance between them as

d (x, y) =‖ min (|x1 − y1| , n− |x1 − y1|) , · · · ,min (|xd − yd| , n− |xd − yd|) ‖p .

The norm is the standard `p norm in Rd for 1 ≤ p ≤ ∞.

We obtain a random graph G by placing a node at each grid point independently with

some probability p∗ > 0 and connecting all mutually visible pairs of nodes. We use the same
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assumption as in [10] that ω = nδ, where 0 < δ < δ0 < 1 with

δ0 =


d

d+k
if d/2 < k < d

d

d+k(d dke−1)
if k ≤ d/2.

We define the constant ap as ap =
(
d
k

) ∫
Bkp (0,1)

dx where Bk
p (0, 1) :=

{
x ∈ Rk :‖ x ‖p≤ 1

}
and ‖ x ‖p is the standard `p norm in Rd for 1 ≤ p ≤ ∞. The exact expression for the

integral can be found in [17] and is given by

∫
Bkp (0,1)

dx =
2kΓ

(
1 + 1

p

)k
Γ
(

1 + k
p

) ,

where Γ denotes the gamma function.

3.2 Connectivity theorem for line-of-sight networks in

higher dimensions

We state here the main result of this thesis:

Theorem 1. Let G be a line-of-sight network defined as in section 3.1 and let p∗ = (d−kδ) lnn+ln lnn+cn
apωk

,

with cn = o(ln lnn). Then

lim
n→∞

Pr {G is connected} =


0 cn → −∞

e−λ cn → c

1 cn →∞,

where λ = (d−kδ)e−c
ap

.

We observe that p∗ is the threshold value for the existence of isolated nodes. This is

shown explicitly in section 4.1. We also note that the choice of ω = nδ is motivated by an
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observation of Frieze et al. [10] that if ω = o(lnn) then the threshold value for connectivity

is very close to one. Thus the requirement that w � lnn is needed for non-trivial results.

3.3 Extension 1: no range constraints

In these next two sections we look at what happens when either the range or line-of-sight

constraints are removed one at a time. We first consider the case where there are no range

constraints and connectivity between two points is subject only to line-of-sight constraints.

This happens when ω = ∞. To maintain the line-of-sight constraints we still require that

k < d. Thus two points in the torus are mutually visible as long as they differ in at most

k coordinates. Even though our bounds on δ exclude the case ω = ∞ we state here the

corresponding threshold for this case.

Theorem 2. Assume k < d and ω = ∞. Let G be a line-of-sight network defined as in

section 3.1. If p∗ = (d−k) lnn+ln lnn+cn

(dk)nk
, then

lim
n→∞

Pr {G is connected} =


0 cn → −∞

(d−k)
(dk)

e−c cn → c

1 cn →∞.

3.4 Extension 2: no line-of-sight constraints

We now consider the case where there are no line-of-sight constraints and connectivity be-

tween two points is subject only to range limitations. This happens when k = d. To maintain

the range limitations we assume as in the original definition of line-of-sight networks that

ω = nδ where δ satisfies the upper bound given in section 3.1. Then two nodes are mutually

visible as long as they are within a distance of ω apart. Even though our bounds on k

exclude the case k = d we state here the corresponding threshold for this case. We note that
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the proof of the lower bound given in section 4.2 applies to this special case as well.

Theorem 3. Assume k = d and ω = nδ with δ satisfiying the upper bound in section 3.1.

Let G be a line-of-sight network defined as in section 3.1. If p∗ = (d−dδ) lnn+ln lnn+cn
apωd

, then

lim
n→∞

Pr {G is connected} =


0 cn → −∞

(d−dδ)
ap

e−c cn → c

1 cn →∞.

In the following section we describe how this case corresponds to that of random geometric

graphs and we show that this correspondence also holds between the respective connectivity

thresholds.

3.5 Correspondence between line-of-sight networks and

random geometric graphs

In this section we describe a correspondence between line-of-sight networks where k = d and

a random geometric graph. For ease of notation we consider the two-dimensional case where

distance is measured using the Euclidean norm.

Suppose we have an underlying two-dimensional torus [0, 1]2. Consider a random geo-

metric graph obtained by placing N points uniformly at random in [0, 1]2 and connecting

all pairs of nodes that are a distance at most r apart. Let r =
√

c logN
πN

for some constant c.

As described in section 2.2 the random geometric graph is connected with high probability

if c > 1 and not connected with high probability if c < 1.

Now suppose that on the [0, 1]2 torus we also have an n by n equally spaced grid of n2

points. Let T denote the set of all grid points. We create a discretized version of the random

geometric graph by mapping all its nodes to grid points. This mapping is done as follows:

for each 1/n × 1/n grid square we map all the nodes that fall into this square to the grid
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point given by the upper right corner of this square. That is a node (v1, v2) is mapped to

the grid point f((v1, v2)) computed as follows:

f((v1, v2)) = argmin
(w1,w2)∈T :w1≥v1,w2≥v2

√
(w1 − v1)2 + (w2 − v2)2 .

Note that more than one node can be mapped to the same grid point. However if the grid

size is small enough then the number of grid points that have more than one node mapped

to them is negligible. The expected number of nodes that fall in a given square of area 1/n2

is N/n2. Therefore if we require that n >>
√
N then N/n2 << 1 and the discretization of

the random geometric graph described above is fine enough to ensure that the probability

of two nodes being mapped to the same grid point is negligible.

After performing this mapping we connect a pair of mapped nodes if and only if they

were connected in the non-discretized random geometric graph. Note that by requiring that

1/N << r this is roughly equivalent to connecting two nodes in the discretized version if

and only if they are within a distance r of each other.

We now set r = ω/n and p = N/n2. Consider the line-of-sight graph obtained by placing

a node at each grid point independently with probability p and connecting all pairs of nodes

that are a distance at most ω/n apart. We assume as before that the range parameter ω

for the line-of-sight graph is of the form ω = nδ for some 0 < δ < 1. Then this line-of-sight

graph and the discretized random geometric graph are equivalent models. We note that the

number of nodes in the two graphs is not necessarily the same. The line-of-sight graph has

an expected number of n2p nodes while the discretized random geometric graph has a total

of N nodes. However since we fixed the placement probability of the line-of-sight graph as

p = N/n2, the total number of nodes is roughly the same. Also since we fixed r = ω/n,

in both graphs two nodes are connected if and only if they are within a distance r of each

other.
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From r2 = c logN
πN

and r = ω/n we obtain

c logN

πN
=
ω2

n2
= n2δ−2.

Thus using the equation p = N/n2 and solving for p we obtain the following connectivity

threshold for the line-of-sight graph

p =
c ((2− 2δ) lnn+ ln lnn)

πn2δ
.

Therefore the line-of-sight graph is connected with high probability if c > 1 and not

connected with high probability if c < 1. We note that this corresponds to the connectivity

threshold for line-of-sight networks with k = d given in section 3.4.
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Chapter 4

Proof of main result

4.1 Preliminaries and notation

We say that a certain event or property holds with high probability if the probability that

the event, respectively property, holds converges to one as n → ∞. For an event E we let

E denote its complement. We write Bin(n, p) to denote a random variable with a binomial

distribution with parameters n and p, and Pois(λ) for a random variable with a Poisson

distribution with parameter λ. For a subset X of [0, n]d we write vol(X) to denote the

volume of X. Given two distinct points x = (x1, · · · , xd) and y = (y1, · · · , yd) we say that x

is lexicographically smaller than y if there exists j ∈ 1, · · · , d such that xj < yj and xi = yi

for all i < j.

For a fixed point i ∈ T let V (i) denote the set of all points in T that are visible from i.

Recall that these are all the points that differ in at most k coordinates from i and are within

a distance ω from i. Let S1, · · · , S(dk)
denote all the distinct subsets formed by choosing k

out of d coordinates. For each point i ∈ T and each Sj, define the section VSj(i) to be the

set of all points that are within a distance ω from i and that can differ from i only in the

k coordinates that are in Sj. Then ∪jVSj(i) = V (i). Recall that we defined the constant ap

as ap =
(
d
k

) ∫
Bkp (0,1)

dx where Bk
p (0, 1) :=

{
x ∈ Rk :‖ x ‖p≤ 1

}
and ‖ x ‖p is the standard `p

29



norm in Rd for 1 ≤ p ≤ ∞. Using this definition we have |V (i)| ∼ apω
k as ω →∞, ω < n/2.

We let N denote the number of isolated nodes in G. With each point i ∈ T we associate

an indicator random variable Xi which is equal to 1 if point i contains an isolated node and

is equal to 0 otherwise. Thus N =
∑

i∈T Xi. Letting n→∞ we obtain

E {N} =
∑
i

E {Xi}

= ndp∗(1− p∗)|V (i)|

∼ nd(d− kδ) lnn

apωk
e−p

∗apωk as n→∞

=
(d− kδ)e−cn

ap
.

Therefore

lim
n→∞

E {N} =


∞ cn → −∞,

(d−kδ)e−c
ap

= λ cn → c ∈ R,

0 cn →∞.

4.2 The lower bound

Suppose cn → −∞. We use the second moment method, [1], to show that with high

probability there are isolated nodes, which implies that the random graph G is not connected

with high probability. Using Chebyshev’s inequality, we have

Pr {N = 0} ≤ V {N}
E2 {N}

.
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Recall that N =
∑

i∈T Xi. For two points i, j ∈ T we write i ∼ j when Xi and Xj are not

independent. Then

V {N} =
∑
i

E
{

(Xi − EXi)
2
}

+
∑
i 6=j

E {(Xi − EXi)}E {(Xj − EXj)}

=
∑
i

V {Xi}+
∑
i∼j

(E {XiXj} − E {Xi}E {Xj})

≤
∑
i

E {Xi}+
∑
i∼j

E {XiXj}

= E {N}+
∑
i∼j

E {XiXj} .

Thus

Pr {N = 0} ≤ 1

E {N}
+

∑
i∼j E {XiXj}

E2 {N}
→ 0

if

lim
n→∞

E {N} =∞, and lim
n→∞

∑
i∼j E {XiXj}

E2 {N}
= 0.

The first condition holds since cn → −∞. To verify the second condition we first split the

sum
∑

i∼j E {XiXj} according to the number of coordinates that the points i, j ∈ T differ

in. For two distinct points i, j ∈ T the number of coordinates that they differ in is at least

one and can be at most d. Thus

∑
i∼j

E {XiXj} =
d∑
t=1

∑
i∼j:t

E {XiXj} ,

where the t under the sum denotes that i and j differ in exactly t coordinates.

Now for two point i, j ∈ T we have i ∼ j if and only if V (i)∩V (j) 6= ∅, and this happens if

and only if i and j are a distance at most 2ω apart and they differ in at most 2k coordinates.

Since E {XiXj} = 0 if i and j are neighbours, we are only interested in summing over pairs
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i and j that are not neighbours. For a fixed i ∈ T , as n → ∞ there are ∼ ωt points j ∈ T

such that j ∼ i and j differs from i in exactly t coordinates. Thus

∑
i∼j:t

E {XiXj} ≤ const. · ndωt max
i,j∈T

Pr { i, j isolated }

= const. · nd+tδp∗2(1− p∗)2|V (i)|−maxi,j∈T |V (i)∩V (j)|.

If t ≤ k, then there must be a coordinate in which j differs by more than ω from i, since

otherwise i and j would be neighbours. Thus |V (i) ∩ V (j)| ≤ 1
2
|V (i)| for all such pairs

i, j ∈ T . Hence maxi,j∈T |V (i) ∩ V (j)| ≤ 1
2
|V (i)| and:

k∑
t=1

∑
i∼j:t

E {XiXj} ≤
k∑
t=1

const. · nd+tδp∗2(1− p∗)
3
2
|V (i)|

∼
k∑
t=1

nd+(t−2k)δe−
3
2
(d−kδ) lnn as n→∞

=
k∑
t=1

n−
d
2
+(t− k2 )δ → 0 for δ < 1.

Next if k < t ≤ min {2k, d} then maxi,j∈T |V (i) ∩ V (j)| ≤ const. · ω2k−t. Hence we obtain

min{2k,d}∑
t=k+1

∑
i∼j:t

E {XiXj} ≤
min{2k,d}∑

t=1

nd+tδp∗
2

(1− p∗)2|V (i)|−const.·ω2k−t

≤
min{2k,d}∑

t=1

nd+tδp∗
2

ep
∗(2|V (i)|−const.·ω2k−t)

Using the fact that 2k − t < k we note that

ep
∗(const.·ω2k−t) ≤ ep

∗(const.·ωk−1) ∼ e
lnn

nδ → 1
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Therefore

min{2k,d}∑
t=k+1

∑
i∼j:t

E {XiXj} ∼
min{2k,d}∑

t=1

nd+tδp∗
2

ep
∗2|V (i)|

∼
min{2k,d}∑

t=1

nd+(t−2k)δe−2(d−kδ) lnn as n→∞

=

min{2k,d}∑
t=1

n−d+tδ → 0 for δ < 1.

Finally if 2k < d and t > 2k then |V (i) ∩ V (j)| = ∅. Therefore we have shown that∑
i∼j E {XiXj} → 0 and thus

lim
n→∞

∑
i∼j E {XiXj}

E2 {N}
= 0.

4.3 The upper bound

Consider now the case where cn →∞. We note that our proof for the upper bound follows

the general structure of the one in [10].

In section 4.1 we have shown that if cn →∞ then limn→∞ E {N} = 0. This implies that

Pr {N > 0} → 0 so with high probability we do not have any isolated nodes. Using the same

construction as in Frieze et al. [10], we add nodes according to a two stage process. In the

first stage we place a node at each point in T independently with probability

p1 := p∗ − 1

apωk lnn
.

In the second stage we place a node at each point in T independently with probability p2.

We pick p2 so that the two stage process is equivalent to the original process with probability

p∗. That is

(1− p1)(1− p2) = 1− p∗,
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thus

p2 ∼
1

apωk lnn
as n→∞.

We refer to the nodes placed in the first stage as red nodes, and nodes placed in the

second stage as blue nodes. We let H denote the subgraph of G consisting of only red nodes.

Recall that for a point i ∈ T and a set of k coordinates Sj, the section VSj(i) is the set

of all points that are within a distance ω from i and that can differ from i only in the k

coordinates that are in Sj. Hence each VSj(i) section is in the form of a k-dimensional `p

ball of radius ω centered at i. For the purpose of our proof we want to work with sections

that are in the form of a cube. In the case of the `∞ norm each VSj(i) section is already in

the shape of a k-dimensional cube centered at i with side length 2ω. For 1 ≤ p <∞ we note

that each VSj(i) section contains a subsection in the shape of a k-dimensional cube with side

length 2ω/k
1
p .

We define bp as follows:

bp =


b2ωc if p =∞⌊
2ω/k

1
p

⌋
if 1 ≤ p <∞.

Then each section VSj(i) contains a subsection that is a k-dimensional cube of side length

bp centered at i. We take the floor in order to ensure that bp is an integer. Figure 4.1 shows

an example for the `2 norm and k = 2. The outer circle is an `2 ball of radius ω centered at

the origin, the center point is the orgin and the four other points denote the corners of the

inner square.

We now let m ≥ 2 be a positive even integer. Without loss of generality we assume that bp

is a multiple of m. For each point i ∈ T and each section VSj(i), we partition the inner cubical
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Figure 4.1: Square with side length 2ω/
√

2 inside `2 ball of radius ω.

section of VSj(i) into mk equal size subsections. That is we tile the inner cube contained in

each section into mk smaller cubes. Each of these subsections is a k-dimensional cube with

side length bp/m. We let n′ = (bp/m)k. Then the number of red nodes in a subsection is

Bin(n′, p1) with mean

n′p1 =

(
bp
m

)k
p1.

As n→∞ we have n′p1 ∼ γ lnn where

γ :=


(

2
m

)k (d−kδ)
ap

if p =∞(
2

k
1
pm

)k
(d−kδ)
ap

if 1 ≤ p <∞.

Since ap =
(
d
k

) ∫
Bkp (0,1)

dx ≥ 1, m ≥ 2 and k
k
p ≥ 1 we have:

γ ≤ d− kδ

< d since k ≤ d and δ < 1.
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Still following the same argument and terminology of Frize et al. [10] we say that a

section VSj(i) is mighty if all the subsections in its inner cube have at least γ lnn/10 red

nodes.

Let β := bd/γc. We note that since γ < d we have β > 0. Given two nodes v, u ∈ H

and two sets Sj and S` we say that the section VS`(u) is orthogonal to the section VSj(v) if

Sj ∩ S` = ∅. Still following the proof method in [10], we now define several events and show

that they hold with high probability.

Lemma 4. If k ≤ d
2
, let ε1 denote the event that there does not exist a red node v that has a

section VSj(v) on which we can find β red nodes each having a non-mighty section orthogonal

to VSj(v).

If d
2
< k < d, let ε1 denote the event that there does not exist a red node v that has a

section VSj(v) on which we can find β red nodes {u1, · · · , uβ} such that for some set S` the

sections VS`(ui) are all non-mighty and pairwise non-intersecting.

Then ε1 holds with high probability.

Proof. For a fixed point i and section VSj(i) we have

Pr
{
VSj(i) not mighty

}
≤ mkPr {Bin (n′, p1) ≤ (γ lnn)/10}

∼ mke
γ
10

lnn−γ lnn− γ
10

lnn ln(0.1) as n→∞

≤ mke−γ lnn,

where we used the following Chernoff tail bound Pr {Bin (n, p) ≤ t} ≤ et−np−t ln(t/np) found

in [6] and [1].

Note that γ is a strictly positive constant. For both k ≤ d
2

and k > d
2

we can use the
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following upper bound:

Pr {ε1} ≤ ndp1

(
d

k

)2(∣∣VSj(i)∣∣
β

)
pβ1
(
mke−γ lnn

)β
∼ const. · nd−kδn−γβ(lnn)β as n→∞.

→ 0 as n→∞.

Lemma 5. Let ε2 denote the event that there does not exists a red node v with deg(v) < ln lnn

that has a red neighbour w such that w has a non-mighty section. Then ε2 holds with high

probability.

Proof. We obtain:

Pr {ε2} ≤ ndp1

ln lnn∑
t=1

(
|V (i)|
t

)
pt1(1− p1)

|V (i)|−t
(
d

k

)
mke−γ lnn

∼ const. · n−γ(lnn)ln lnn ln lnn as n→∞.

→ 0 as n→∞.

Lemma 6. Let ε3 denote the event that every red vertex has at least one red neighbour. Then

ε3 holds with high probability.

Proof. We obtain:

Pr {ε3} ≤ ndp1(1− p1)
|V (i)|

∼ ndp∗(1− p∗)|V (i)| as n→∞.

→ 0 as n→∞.
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Lemma 7. Let ε4 denote the event that every blue vertex has at least one red neighbour.

Then ε4 holds with high probability.

Proof. We obtain:

Pr {ε4} ≤ ndp2(1− p1)
|V (i)|

≤ ndp1(1− p1)
|V (i)| for n large enough

→ 0 as n→∞.

Let s := bp/m. We define the box B(s) := {y ∈ T :‖ yi ‖≤ s , ∀1 ≤ i ≤ d}. For a point

x ∈ T we let B(x, s) := x + B(s), where we use addition within the torus. We now state a

lemma that is the counterpart of lemma 2.5 in [10].

Lemma 8. Assume that the high probability events ε1, ε2, ε3, ε4 all hold and that G does not

have any isolated nodes. Then for each point x ∈ T and each node v ∈ H there exists a node

φ(x, v) that is in the same component of H as v and lies in the box B(x, s).

Proof. All the nodes mentioned in this proof are assumed to be red nodes. We note here

that the proof of this lemma differs in style from the proof of lemma 2.5 in [10]. Fix a point

x ∈ T and a node v ∈ H. We let φ(x, v) be the node returned by Algorithm 1.

We define some terms used in the algorithm. For a given point u ∈ T , ui denotes its ith

coordinate. The distance between a subsection and a point x ∈ T is given by

max
u: u ∈ subsection

‖ u− x ‖`p ,

where the maximum is taken over all points u in the subsection and the distance is measured
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assuming that the points lie on a torus. By the closest subsection to the origin, we mean

the subsection that minimizes this distance.

The algorithm starts at node v and moves from neighbouring node to neighbouring node

until it reaches a node inside B(x, s). At the start of the algorithm all coordinates are

declared unfixed. Each time the algorithm moves to a new node it calls Algorithm 2 which

checks whether each of the coordinates of the current node are within a distance s of the

corresponding coordinate of the point x and declares them as fixed if they are. Once all

coordinates become fixed the algorithm has reached a node inside B(x, s).

We now prove that Algorithm 1 works correctly. The algorithm first checks if v lies in

B(x, s) in which case it just returns the node v. Otherwise, it moves to a neighbour of v. If

deg(v) < ln lnn, then it selects any neighbour w of v and picks a set of k coordinates such

that the number of unfixed coordinates in this set is maximized. We know that with high

probability there is at least one neighbour w from ε3. Furthermore ε2 guarantees us that all

sections of w are mighty. In particular the section corresponding to the chosen set is mighty.

If instead deg(v) ≥ ln lnn, the way the algorithm picks a neighbour w of v depends on

whether k ≤ d/2 or k > d/2. In the first case it picks a w such that the sections of w

which are orthogonal to the section of v containing w are mighty. There is always a choice

of at least one orthogonal section since k ≤ d/2. It follows from ε1 that there always is

a choice of ln lnn −
(
d
k

)
β neighbours of v with mighty orthogonal sections. The algorithm

then selects a set of k coordinates such that the number of unfixed coordinates in this set is

maximized and the section of w corresponding to this set is mighty. In the second case the

algorithm first selects a set that has the maximum number of unfixed coordinates among all

sets S` for which there exists a section of v that contains more than β nodes with pairwise

non-intersecting VS` sections. To see that such a choice of set always exists note that since

deg(v) ≥ ln lnn and the maximum number of nodes in a section must be greater than the

average, there must be a section of v that has at least ln lnn/
(
d
k

)
nodes. Let this section be

VSj(v). Then there must be a coordinate i such that there are at least (ln lnn/
(
d
k

)
)1/k nodes
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Algorithm 1 Compute φ(x, v)

Input: node v ∈ H, point x ∈ T
Output: node φ(x, v) ∈ B(x, s) that is in same component of H as v
1: for i = 1 to d do
2: coordinatei ← unfixed
3: end for
4: update(v)
5: if v ∈ B(x, s) then
6: return v
7: end if
8: if deg(v) < ln lnn then
9: currNode ← any neighbour of v

10: currSet ← set S` with max number of unfixed coordinates
11: else
12: if k ≤ d/2 then
13: currNode ← neighbour of v with mighty orthogonal sections
14: currSet ← set S` with max number of unfixed coordinates such that VS`(currNode)

is mighty
15: else
16: currSet ← set S` with max number of unfixed coordinates such that there exists a

section of currNode that contains more than β nodes with pairwise non-intersecting
VS` sections

17: currNode ← neighbour w such that the section VcurrSet(w) is mighty
18: end if
19: end if
20: update(currNode)
21: while ∃ i such that coordinatei = unfixed do
22: currSection ← VcurrSet(currNode)
23: currSubsection ← subsection in currSection that is closest to x
24: if k ≤ d/2 then
25: currNode ← node in currSubsection with mighty orthogonal sections
26: currSet ← set S` with max number of unfixed coordinates such that VS`(currNode)

is mighty
27: else
28: currSet← set S` with max number of unfixed coordinates such that currSubsection

contains more than β nodes with pairwise non-intersecting VS` sections
29: currNode ← neighbour w such that the section VcurrSet(w) is mighty
30: end if
31: update(currNode)
32: end while
33: return currNode
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Algorithm 2 Update(w)

1: for i = 1 to d do
2: if |wi − xi| ≤ s then
3: coordinatei ← fixed
4: end if
5: end for

Figure 4.2: Fixing of coordinates in the xy-plane.

41



in VSj(v) with distinct ith coordinates. Choose S` such that ` 6= j and i /∈ S`. The number

of choices for such an S` is least one since k ≤ d − 1. Then any two nodes that differ in

the ith coordinate have non-intersecting VS` sections. The algorithm then picks w to be a

neighbour of v with a mighty VS` section. Note that it follows from ε1 that there is always

a node w ∈ VSj(v) with a mighty VS`(w) section.

At the start of every while loop the variable currNode holds the current position of the al-

gorithm and currSet refers to a chosen set of k coordinates. Each iteration of the loop consists

of three steps. First the algorithm makes the assignment currSection ← VcurrSet(currNode).

Note that currSection will always be mighty. Second, it chooses the subsection in currSection

that is closest to the point x. Note that this subsection will always have at least γ lnn/10

nodes. And third, it moves to a node in this subsection and chooses a new set of k coordi-

nates. This is done again according to whether k ≤ d/2 or k > d/2. In the first case a node

is picked such that the sections of this node which are orthogonal to currSection are mighty.

Again from ε1 we know there is always a choice of γ lnn/10− β such nodes. The algorithm

then selects a set of k coordinates such that the number of unfixed coordinates in this set

is maximized and the section of the new node corresponding to this set is mighty. In the

second case where k > d/2 the algorithm first selects a set that has the maximum number of

unfixed coordinates among all sets S` for which there are more than β nodes in the chosen

subsection with pairwise non-intersecting VS` sections. Note that there exists a coordinate

i such that there are at least (γ lnn/10)1/k nodes in the current subsection with distinct ith

coordinates so choosing S` such that i /∈ S` gives us such a set. Finally it picks a node in the

chosen subsection that has a mighty section corresponding to this choice of set. It follows

from ε1 that there always at least one such node.

It remains to show that each time the algorithm moves to a new neighbour in a while

loop iteration the distance to x is decreased for all the unfixed coordinates that are in the

current set, and stays within a range of s for all the fixed coordinates in the current set.

Suppose that the current set contains the first k coordinates and let u denote the current
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node. Assume without loss of generality that m = 4, ui > xi for all i, and ui − xi > s for

all 1 ≤ i ≤ j, while ui − xi < s for all j + 1 ≤ i ≤ k. That is the first j coordinates are

not within a range s of x while the last k− j are. Then the algorithm selects the subsection

[u1−s, u1−2s]×· · ·× [uj−s, uj−2s]× [uj+1, uj+1−s]×· · ·× [uk, uk−s]. Thus for 1 ≤ i ≤ j

the distance between the ith coordinate of any point in this subsection and xi is smaller than

ui − xi, and for j + 1 ≤ i ≤ k the distance between the ith coordinate of any point in this

subsection and xi is at most s.

This implies that after a sufficient number of iterations the algorithm fixes all the coor-

dinates, and once a coordinate is fixed it remains within a range s of the corresponding x

coordinate. Therefore when the algorithm terminates it returns the node φ(x, v) that lies

in B(x, s). Since we always move from neighbour to neighbour, this node is in the same

component of H as the starting node v.

Figure 4.2 shows an example of how the algorithm works. In this example k = 2, d ≥ 4

and m = 4. The plane depicted in the figure is the xy plane and we are interested in seeing

how the x and y coordinates become fixed. We note that the algorithm is not able to move

in the same plane in two consecutive steps. For the purposes of this example we assume that

in between any two moves in the xy plane the algorithm moves in an orthogonal plane to

the xy plane so that the x and y coordinates remain unchanged.

Suppose now that the algorithm starts at node A and wants to reach a node that is inside

the box of side length 2s centered at the origin. Since the x and y coordinates of node A

are not within a distance s of zero they both start off as unfixed. The algorithm selects the

subsection of node A that is closest to the origin. This is given by the shaded subsection in

the bottom left corner. The algorithm then selects a node in the chosen subsection whose

orthogonal planes are mighty. Note that the algorithm has no control over where in the

chosen subsection this node is located, it just knows that such a node exists. In this example

we assume that the selected node is node B. Since the coordinates of node B are not within

a distance s of zero they remain unfixed. Again the subsection of node B that is closest to
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the origin is in the bottom left corner. The algorithm moves to node C in this subsection.

Now the x coordinate of node C is exactly zero therefore it becomes fixed. Since the y

coordinate is not within a distance s of zero it remains unfixed. There are now two subsections

of node C that achieve the minimum distance to the origin. These are the shaded subsection

containing node D and the subsection immediately to its right. The algorithm can chose

either one of these two subsections. Suppose that it chooses the shaded one and moves to

node D. Node D happens to be at the left most edge of the chosen subsection. Hence by

moving from node C to node D the algorithm actually increases the distance to the origin

in the x coordinate. However the x coordinate of node D cannot be further than a distance

s from the zero, hence it remains fixed. Since the y coordinate is still unfixed the algorithm

performs another iteration and moves to node E. Now the y coordinate becomes fixed and

node E is inside the box of side length 2s centered at the origin. If the algorithm were to

perform additional iterations in the xy-plane after both the x and y coordinates have been

fixed the x and y coordinates of the new nodes will still each remain within a distance s of

zero.

We now show how placing the blue nodes in the second stage can guarantee that the final

graph is connected with high probability, following the proof method in [10]. Let L be the

set of points in T whose coordinates are multiples of 3ω. For each component K of H let vK

be the lexicographically smallest node in K. Given two distinct points x = (x1, · · · , xd) and

y = (y1, · · · , yd) we say that x is lexicographically smaller than y if there exists j ∈ {1, · · · , d}

such that xj < yj and xi = yi for all i < j. Now suppose we have two distinct components

K and J of H. For each x ∈ L let φ(x, vK) and φ(x, vJ) be the unique nodes returned by

algorithm 1 or 2 depending on each case. Note that by the assumption that K and J are

distinct components it follows that the nodes φ(x, vK) and φ(x, vJ) are also distinct for all

x ∈ L.

For d/2 < k < d let z(J,K, x) be the unique point in B(x, s) that agrees with φ(x, vK)

in the first d − k coordinates and with φ(x, vJ) in the last k coordinates. Then z(J,K, x)
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is visible from both φ(x, vK) and φ(x, vJ). Therefore if we were to place a blue node at

z(J,K, x) then φ(x, vK) and φ(x, vJ) would become linked up.

For k ≤ d/2 let p(J,K, x) be the unique path whose points all lie in B(x, s) that is

picked as follows. We let the first point of the path agree with φ(x, vK) in the first d − k

coordinates and with φ(x, vJ) in the last k coordinates. Hence the first point of the path

is mutually visible with φ(x, vK). We let the second point agree with φ(x, vK) in the first

d−2k coordinates and with φ(x, vJ) in the last 2k coordinates. This ensures that the second

point of the path is mutualy visible with the first point of the path. We continue in this way

until the last point is mutually visible with φ(x, vJ). Then this path has at most dd/ke − 1

points. The first point of the path is visible from φ(x, vK) and the last point of the path is

visible from φ(x, vJ). Therefore if we were to place a blue node at each point of the path

then φ(x, vK) and φ(x, vJ) would become linked up.

Lemma 9. For distinct points x and y in L the points z(J,K, x) and z(J,K, y) are distinct

and the paths p(J,K, x) and p(J,K, y) do not have any points in common.

Proof. This follows since z(J,K, x) and p(J,K, x) lie inB(x, s), while z(J,K, y) and p(J,K, y)

lies in B(y, s). These boxes are disjoint since they each have side length 2s <≤ 2ω and x

and y are at least 3ω apart.

Therefore for a fixed pair of components J and K there are (n/3ω)d such points (or

paths) that could link them up. The probability of not placing a blue node at a fixed point

is 1 − p2, while the probability of not placing a blue node at every point in a fixed path of

length ` is 1− p`2. The total number of components of H is upper bounded by (2s)d ≤ (2ω)d

since for any fixed point x ∈ L each component has a point in the box B(x, s) and this box

has a total of (2s)d points.
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For d/2 < k < d we have

Pr {H is not connected} ≤ Pr {∃ components J and K that are not linked up}

= (2ω)d(1− p2)
nd/(3ω)d

≤ (2ω)de
−n

d−(d+k)δ

ap3d lnn

→ 0 if δ <
d

d+ k
.

And similarly for k ≤ d/2

Pr {H is not connected} ≤ Pr {∃ components J and K that are not linked up}

≤ (2ω)d(1− pdd/ke−1
2 )n

d/(3ω)d

≤ (2ω)de
−n

d−(d+k(d dke−1))δ
3d(ap lnn)dd/ke−1

→ 0 if δ <
d

d+ k
(⌈

d
k

⌉
− 1
) .

Thus assuming the high probability events ε1, ε2, ε3, ε4 hold and G has no isolated nodes, H

is connected with high probability. From ε4 we know that every blue node has at least one

red neighbour, and therefore it follows that G must be connected with high probability.

4.4 The middle case

We finally consider the case cn → c. The proof in this section also follows the general

structure of the one in [10]. In Section 4.1 we have shown that if cn → c then limn→∞ E {N} =

λ, where N is the number of isolated nodes. Let S0 be the set of isolated nodes. Let N ′′

denote the number of pairs of nodes i, j ∈ S0 such that i ∼ j, that is Xi and Xj are not

independent. Recall that Xi and Xj are not independent if and only if V (i)∩ V (j) 6= ∅. Let
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N ′ denote the number of nodes i ∈ S0 such that Xi and Xj are independent for all j ∈ S0.

Then

N ′ ≤ N ≤ N ′ +N ′′.

We have

E {N ′′} =
∑
i∼j

E {XiXj} → 0,

as shown in Section 4.2.

Therefore N = N ′ with high probability and

lim
n→∞

E {N ′} = lim
n→∞

E {N} = λ. (4.1)

Let t be a positive integer. For a random variable X we define (X)t = t!
(
X
t

)
. We obtain

the following upper and lower bounds on E {(N ′)t}

E {(N ′)t} ≤ t!

(
nd

t

)(
p∗(1− p∗)|V (i)|)t

∼
(
ndp∗(1− p∗)|V (i)|)t

= (E {N})t → λt as n→∞

E {(N ′)t} ≥
((
nd − t (|V (i)|)2) p∗(1− p∗)|V (i)|)t

∼
(
ndp∗(1− p∗)|V (i)|)t

= (E {N})t → λt as n→∞.

Therefore

lim
n→∞

E {(N ′)t} = λt. (4.2)

We state here a lemma which is Theorem 8.3.1 in the book by Alon and Spencer [1]. Let

X = X1 + · · ·+Xm where X1, · · · , Xm are indicator variables for random events.
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Lemma 10. (Alon and Spencer) Suppose that E {X} → µ for some constant µ and for

every fixed r we have E
{

(X)t
t!

}
→ µt

t!
. Then

Pr {X = 0} → e−µ,

and

Pr {X = t} → µt

t!
e−µ.

Using equations 4.1 and 4.2 and applying Lemma 10 we obtain that N ′ is asymptotically

Poisson with mean λ. This implies that

lim
n→∞

Pr {G has an isolated vertex} = 1− Pr {Pois(λ)=0} = 1− e−λ.

Finally, conditioning on the event that G has no isolated nodes we can use the proof in

Section 4.3 to show that G is connected with high probability. Therefore

lim
n→∞

Pr {G is connected} = e−λ.
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Chapter 5

Conclusion

In this thesis we introduced a generalized model of line-of-sight networks and we proved

connectivity results for this model. We showed that the threshold value for connectivity is

given by p∗ = ((d− kδ) lnn+ ln lnn+ cn) /apω
k, where n is the side length of the underlying

grid, d is the dimension of the grid, k is the maximum number of coordinates that two

grid points can differ in in order to be mutually visible, ω = nδ is the range parameter,

cn = o(ln lnn) and ap is a constant dependent on the choice of norm.

We proved this result in three stages. In section 4.2 we first proved that if cn → −∞

then the graph is non-connected with high probability. We used a proof method known as

the second moment method, a detailed description of which can be found in [1].

In section 4.3 we proved that if cn →∞ then the graph is connected with high probability.

To show this we first showed that with high probability the graph does not have any isolated

nodes. We then extended a proof found in the original paper by Frieze et al. [10]. This

method consists in first creating an equivalent line-of-sight network using a two stage process

for placing the nodes. We then showed that if there are any two disconnected components

after the first stage then they will be linked up with high probability by the nodes placed in

the second stage.

In section 4.4 we showed that if cn → c then the probability that the graph is connected
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is asymptotically e−λ. We proved this by showing that the number of isolated nodes is

asymptotically Poisson with mean λ.

Our results for connectivity of line-of-sight networks in higher dimensions parallel those of

the two-dimensional model introduced by Frieze et al. as well as random graphs and random

geometric graphs. Specifically if we start with single nodes and increase the placement

probability p∗ (respectively edge probability p for random graphs and range parameter r for

random geometric graphs) continuously, the resulting graph becomes connected with high

probability at the exact instant when there are no more isolated nodes.

Opportunities for future work include the study of other structural properties of the

generalized model such as the existence of a giant component as well as algorithms for

passing messages between nodes. It could also be of interest to explore modifications of this

model to better capture the specific properties of certain wireless networks such as networks

where nodes or links can fail, networks were nodes become active at certain time intervals

or networks with different geometric configurations.

In all these cases the connectivity of the network is of fundamental importance but there

are also other interesting properties to be studied such as the capacity of the network, efficient

algorithms for information propagation as well as routing and broadcasting protocols.
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[9] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci, 5(1):17–60, 1960.

51



[10] A. Frieze, J. Kleinberg, R. Ravi, and W. Debany. Line-of-sight networks. Combinatorics,

Probability and Computing, 18(1-2):145–163, 2008.

[11] A. Goel, S. Rai, and B. Krishnamachari. Sharp thresholds for monotone properties in

random geometric graphs. In Proceedings of the Thirty-Sixth Annual ACM Symposium

on Theory of Computing, page 586. ACM, 2004.

[12] P. Gupta and P.R. Kumar. Critical power for asymptotic connectivity in wireless net-

works. Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor

of WH Fleming, 3(20):547–566, 1998.

[13] P. Gupta and P.R. Kumar. Internets in the sky: The capacity of three dimensional

wireless networks. Communications in Information and Systems, 1(1):33–49, 2001.

[14] M. Penrose. On k-connectivity for a geometric random graph. Random Structures and

Algorithms, 15(2):145–164, 1999.

[15] M. Penrose. Random Geometric Graphs. Oxford University Press, USA, 2003.

[16] R. Van Der Hofstad. Random graphs and complex networks. preparation, see

http://www. win. tue. nl/ ˜ rhofstad/NotesRGCN. pdf, 2009.

[17] X. Wang. Volumes of generalized unit balls. Mathematics Magazine, 78(5):390–395,

2005.

52


