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Abstract

Matter under extreme conditions can enter the exotic phase known as quark gluon plasma,

where nuclear sub-constituents, quarks and gluons, are unbound. Accessing this state of

matter allows us then to study the interactions between these quarks and gluons, namely

Quantum Chromo-Dynamics (QCD). Experimentally, quark gluon plasma is created in

Heavy-Ion Collisions (HIC), where high energy beams are collided. In this thesis, we

simulate Pb-Pb collisions at
√
s = 2.76TeV utilizing Monte-Carlo techniques.

The initial combination of the gluon color gauge fields of both nuclei are required

for our simulations, and are a computational challenge which can be solved iteratively.

One can start this iteration with taking the continuous analytical solution, within the

discretized numerical equation. We propose a Neural network to generate a different

Ansatz, training on the solutions from the iteration.

One of the most notable results of HIC’s is the production of jets, aggregates of parti-

cles with a conic trajectory. While it is believed that no QGP is formed in proton-proton

collisions, QGP should be created with larger Nuclei, and interact with jets. As such, one

can study the QGP by using the jets as probes. We compare three different physical for-

malisms of jet evolution in a QGP medium, one of which is implemented using a neural

network.
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Abrégé

Exposée a de conditions extrêmes, la matière peut entrer dans un état de plasma de quarks

et de gluons, où les composants subatomiques sont déconfinés. Accéder à cet état de la

matière nous permet alors d’étudier les interactions entre ces quarks et gluons, autrement

dit la chromodynamique quantique. Expérimentalement, le plasma de quarks et de glu-

ons est créé dans des collisions d’ions lourds, ou des faisceaux de particules sont percutés.

Dans cette thèse, nous simulons des collisions d’ions de plomb à une énergie de
√
s =

2.76TeV en utilisant des techniques Monte-Carlo. La combinaison initiale de champs de

jauge de couleur des gluons des deux noyaux est nécessaire pour nos simulations, et est

un défi computationnel qui peut être resou iterativement. On peut commencer cette it-

eration en prenant la solution analytique continue, dans l’iteration numérique discrète.

Nous proposons un réseau de neurones pour générer un nouveau point de départ, en

utilisant de l’apprentissage automatiques sur des solutions de l’iteration. Un des résultats

des collisions d’ions lourds et la production de jets, des agrégats de particules à trajectoire

conique. On considère qu’il n’y a pas de création du plasma de quarks et de gluons lors de

collisions entre deux protons. Cependant, des collisions d’ions plus larges devraient créer

le plasma, et interagiraient avec les jets. De cette façon, étudier les jets permet d’étudier

le plasma de quarks et de gluons. Nous comparons trois formalismes de l’évolution de

jets dans le plasma de quarks et de gluons
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Chapter 1

Introduction

1.1 Historical View

Our current understanding of the interactions in nature classifies these in four funda-

mental forces, namely the gravitational force, the electromagnetic force, and the weak

and strong nuclear forces. While the gravitational and electromagnetic forces have been

studied for a few centuries, the strong and weak forces have only been known for about

a century. This is primarily due to our newfound capacity to probe the two latter forces.

In the late 1800’s and early 1900’s, Rutherford’s experiments led to a new atomic model

which separated a positively charged nucleus from negatively charged orbiting electrons.

A few decades later, the discovery of the neutron by Chadwick led to the discovery of

the strong force, since a novel force was needed to explain the attraction between the nu-

cleons, the protons and neutrons, within the nucleus. The explanation to the nucleon’s

interactions turned out to be the exchange of pions, the first predicted subatomic par-

ticle. Many others were then discovered and classified into a collection which was then

called a “particle zoo”. This “zoo” was greatly simplified when it was found that all those

particles were in fact composite, made-up of quarks and gluons. By this simplification,

understanding subatomic physics reduces to understanding the interactions of quarks

and gluons, namely Quantum Chromodynamics. Under standard temperature and pres-
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sure, quarks and gluons exist only as constituents of larger particles. However, they can

exist independently in extreme conditions such as the very early universe.

Today, QCD is studied experimentally in modern particle collider under heavy-ion

collisions (HIC). Particle colliders produce beams of particles at very high energies and

opposite directions, resulting in collisions. These collisions produce, for a brief moment,

deconfined nuclear matter, namely quark-gluon plasma (QGP). While QGP is not directly

observable, one can infer its properties by the final products of HIC’s, produced particles

in the colliders’s detectors. Some of those particles are part of particle aggregates named

jets, which interact with QGP. As such, changes in the jet properties can be used to quan-

tify QGP properties. The goal of this thesis is to refine the jet-medium interactions cur-

rently implemented in MARTINI (Modular Algorithm for Relativistic Treatment of heavy

IoN Interactions)

Theoretically, the computational tools available improved over the last decades allow

us to perform calculations otherwise impossible. Among those is the volume of compute

power available to research institutions. In this thesis, we perform millions of simulations

to predict the outcome of HIC’s. As such, we can compare which physical formalisms

best describe QCD dynamics in HIC’s, by reproducing experimental data. Another in-

creasingly available computational tool we use is machine learning. In this thesis, we

utilize machine learning in two cases to improve our simulations. The first case is to cal-

culate the initial color gauge fields resulting from the colliding nuclei, as a starting point

to an iterative calculation. In the second case, neural networks allows us to compute more

refined radiative rates from jets, as opposed to having to resort to cruder approximations.

The study of heavy-ion collisions, quark gluon plasma, and QCD gives us insight on

subatomic particles interactions. Ultimately, a better general understanding of QCD will

help define the phase transition between a hadron gas and QGP.
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1.2 Thesis structure

Chapter 1 lays out a broad introduction giving a historical view of this thesis.

Chapter 2 lays out the sufficient background knowledge, both in Heavy-Ion collisions

and Machine learning, to understand the research project of this thesis. It elaborates on

the theory behind Quantum Chromodynamics and introduces how Heavy Ion collisions

are modeled numerically. These simulations then lead us to computational challenges

and approximations taken, to which we propose solutions by the use of machine learning.

Chapter 3 dives into jet production and quenching. We present the AMY model as a

baseline, then a more generalized solution by Caron-Huot and Gale, then a first attempt

to emulate the CHG formalism. and finally detail into the methods we use to fully imple-

ment the CHG formalism.

Chapter 4 digs deeper into the theory of initial conditions, we then explore a numerical

solution to the problem, and finally we propose a novel improvement upon the numerical

approach and its implementation.

Chapter 5 lays out and discusses the results for both the initial conditions part and

the jet evolution parts of this thesis. The different jet evolution formalisms are compared

with experimental data.

Finally, the conclusion summarizes the outcomes of this thesis and lays out future

works.
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Chapter 2

Theoretical Background

2.1 Quantum Chromodynamics

The discovery of subatomic particles soon shed light upon a missing quantum number.

The ∆++ wave-function, composed of three up quarks appeared to be symmetric under

exchange, violating the Pauli exclusion principle as quarks are fermions. The solution

to this puzzle was the proposition of the color charge, independently proposed by Gell-

Mann and [16]. This gave rise to the SU(3) quark model, a non-abelian gauge theory.

Analogously to carrying a positive or negative electric charge, quarks and gluons carry a

color charge, which can be red, green, or blue, as well as their anti-particle counterparts.

These colors then dictate the strong forces between quarks. The SU(3) group, which de-

scribes the colors is generated by the eight Gell-Mann matrices, which in turn correspond

Figure 2.1: Classification of particles. Taken from [1]
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to the gluons. Quarks are also classified in three pairs of flavors with electric charges

(+2/3,−1/3). These pairs are the up and down quarks, the charm and strange quarks,

and the top and bottom quarks. These flavors are what dictate the weak force between

quarks.

2.1.1 Yang-Mills Lagrangian

Considering color and flavor, we can now write down the QCD lagrangian:

LQCD = ψ̄i(i /Dij −mδij)ψj −
1

4
F µν
a F a

µν (2.1)

where the quarks color indices are i, j in ψ , and the gluon color index is a. The quark

fields ψi then interact through the gauge covariant derivative

Dµ = ∂µ − igAµ = ∂µ − igAa
µta (2.2)

contained in /D = γµDµ, which in turn couple the quarks to the gluons through the gluon

fields Aµ. /D is the covariant derivative in Feynman notation, where a summation under

Einstein’s notation is understood, and the γµ terms are the Dirac gamma matrices. We

should note that the ta terms contains the generators of the SU(3) group, namely the Gell-

Mann Matrices.

The other interactions arise from the gluon field strength tensor:

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν (2.3)

Where the term fabc is the group structure constant [17]. The g term found in both the

stress tensor and the gauge covariant derivative is called the strong coupling constant. Its

presence in the gluon field strength tensor is the primary difference between the QED and

QCD lagrangians. At lower energies, where this strong coupling is large, there is what is

called confinement; quarks are so strongly bound together that they cannot be observed
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Figure 2.2: Strong coupling constant αs as a function of energy. αs is related to g as

αs = g2/4π. Taken from [2].

individually. Introducing enough energy to separate the two quarks will instead result

in the creation of another quark-antiquark pair. At high energies, however, the coupling

becomes small; this is known as asymptotic freedom and is a characteristic feature of

QCD, contrary to QED. Asymptotic freedom leads to deconfinement; quarks are now

free to exist on their own. The dynamical nature of the strong coupling as a function

of energy as depicted in fig. 2.2 is called running coupling. As a consequence of the

running coupling, different methods must be used to study QCD at different energies. At

high energies, where the coupling is small, perturbative methods are valid and we can

use perturbative QCD (pQCD). At low energies, where the coupling is large, lattice QCD

methods are used to evaluate Feynman path integrals.

2.1.2 Quark-Gluon Plasma in the QCD Phase Diagram

A consequence of deconfinement is the existence of Quark-Gluon Plasma; under high

temperature and/or chemical potential as illustrated in fig. 2.3, quarks and gluons will
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Figure 2.3: Schematic QCD phase diagram. Taken from [3].

behave independently and thus in large numbers can collectively be considered as a fluid.

Unless there is a highly dense medium such as neutron stars, the required temperature to

achieve deconfinement is in the order of 100 MeV, which in the Kelvin/Celcius scale is in

the order of 1012, or about a million times the temperature of the core of the sun.

Experimentally, QGP is produced in Heavy Ion Collisions (HIC), where high energy

beams of nuclei whose electrons have been removed are collided. A collision of two nuclei

can produce a droplet of QGP with a lifespan in the order of a few fm/c (∼ 10−23s) and a

transverse size of a few fm (∼ 10−14m). Regardless of QGP formation, HIC’s final product

is a distribution of particles scattered across the walls of the colliders. The QGP’s sheer

size and lifespan makes it difficult to observe empirically. However, other observables

can be used to infer properties of the QGP.

Besides forming QGP, heavy ion collisions can also produce collimated showers of

particles known as jets, which interact with the QGP formed from other hard scatterings.

By reconstructing their history, we can study the exchange of energy between the medium
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and the jets, probing the QGP. To study QGP, we then resort to modeling and simulating

HIC experiments, specifically jet’s evolutions.

2.2 Heavy Ion Collisions Modeling

As theorists, we are interested in predicting the resulting observables from HIC experi-

ments. Given the nondeterministic nature of the experiments, we must resort to matching

distributions of observables. We produce our predictions by simulating the experiments

several thousands of times using Monte-Carlo techniques, and break down the simula-

tions as follows.

2.2.1 Collision parameters

When performing a heavy-ion collision experiment, very little can be controlled in a spe-

cific collision. One of the tunable parameters is the invariant energy of the collision, con-

sidering the momentum and mass of both particles. It is denoted
√
s, in reference to the

Mandelstam variable [18].

The other remaining parameter is known as centrality. Consider two classical uniform

spheres of radii Ra and Rb. For a collision to happen between the spheres, they should

contact such that impact parameter, the distance b between their centers of mass should

be such that b < Ra + Rb. Collisions with smaller impact parameters are called more

central, while collisions with larger impact parameters are more peripheral.

We note that the impact parameter directly affects the size of the overlapping region

of the two bodies colliding. In the case where the colliding bodies are nuclei, the size of

the colliding region translates into the quantity of nucleons which will undergo at least

one inelastic nucleon-nucleon collision. Those nucleons are called participant nucleons,

while the rest of the nucleons are said to be spectators.

While we cannot experimentally measure the impact parameter, counting the number

of spectator nucleons can be a good indicator to characterize the collision. In practice,
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Figure 2.4: Centrality bins in a Pb-Pb collision at
√
s = 2.76 TeV. The V0M quantity is

proportional to the energy of the particles hitting the collider detectors. Taken from [4]

however, centrality is used instead. Centrality is defined as the percentile of the cross

section corresponding to a particle multiplicity or to the total energy deposited above a

given threshold [4].

c ≈ 1

σAA

∫ ∞

NTHR
CH

dσ

dN ′
CH

dN ′
CH ≈ 1

σAA

∫ ETHR

0

dσ

dE ′dE
′ (2.4)

While this integral is the analytical formulation of centrality, the finite, discrete, non-

continuous nature of physical observables makes us resort to an approximation. The

collected particles in the detectors are sorted by their energy, and centrality is taken to be

the percentile of the energy histogram.
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2.2.2 Initial Conditions

Besides choosing the nuclei and the collision energies, no other parameter can be tuned

and has to be inferred. That is, we have no prior information regarding the position

and momentum distribution of the nucleons, let alone that of the quarks and gluons.

The first step of modeling the experiment is thus the modeling of the initial conditions.

Namely, we model the projectile, the target, and the combination of both such that bound-

ary conditions are respected and energy is conserved. As seen in section 3, the modeling

framework we use is called Color Glass condensates. In this thesis, we revisit an itera-

tive numerical solution for the initial conditions, and suggest a machine-learning based

improvement upon it. The numerical framework we use to evolve the colliding nuclei in

time is called IP-Glasma.

2.2.3 Pre-equilibrium

As explained in [19], the average momentum fraction x carried by a radiated particle is

given by

x =
< PT >√

s/2
(2.5)

which is in the order of x ∼ 10−4 − 10−3 for energies relevant in HIC experiments. As

depicted in fig. 2.5, the parton distribution functions favors gluons in this x regime, so we

have a largely gluon dominated system. While a large parton momentum Q will radiate

gluons, gluons can recombine as well. These two processes compete, and as a result the

gluon multiplicity per volume is bounded, and saturated at the saturation momentum

scale Qs [5]. Until τ ∼ 1/Qs, the gluon dominated system follows classical field equations

[20], at which point kinetic theory kicks in, and QCD interactions create quark anti-quark

pairs qq̄. This process continues until the system has reached a state of QGP in thermal

equilibrium, at τeq..
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Figure 2.5: Parton Distribution Function, probability to find a parton species as a function

of momentum fraction x = k/p at Q2 = 10GeV2. Taken from [5]

2.2.4 Hydrodynamic Stage

Now in thermal equilibrium, the QGP dynamics can be described by relativistic, viscous

hydrodynamics. the system evolves as a fluid and expands, cooling down until the tem-

perature reaches freeze-out, below deconfinement temperature. Conservation of energy

and momentum warrant the following condition

∂µT µν = 0 (2.6)

and the conservation of currents warrants the following

∂µJ µ = 0 (2.7)

which, when closed with the following equation of state describe the Stress Energy tensor

of QGP.

T µν = ϵuµuν − (gµν − uµuν)(P +Π) + πµν (2.8)
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as described in [21]. The software we use for the treatment of these equations is called

MUSIC [22], which picks up the initial conditions directly from IP-Glasma [23]. Once be-

low freeze-out temperature, the fluid undergoes hadronization, where QGP is converted

into hadrons by following the Cooper-Frye formalism as in [24], by integrating the mo-

mentum distributions of the T µν from MUSIC.

Once we have the full hydrodynamic evolution, we are ready to study jets, and spe-

cially their interactions with QGP. We take a distribution of partons from the Pythia soft-

ware [25], which we then evolve along the QGP evolution from MUSIC. The software

we use is called MARTINI (Modular Algorithm for Relativistic Treatment of heavy IoN

Interactions) [26], which utilizes a Monte-Carlo procedure in which the elastic and inelas-

tic scatterings are allowed, according to the formalism in use. In this thesis, one of the

challenges we tackle is to apply a new formalism with the use of machine learning. We

note that while we allow for the effects of the QGP on the jets, we do not consider the jet’s

effect on the medium, as it would alter the evolution which has prior been calculated.

2.2.5 Hadron gas

At this stage, color-charged particles have paired with each other to create color-neutral

hadrons, and have reached chemical freezeout. These new hadrons now behave as a gas.

As such, they are subject to collisions between hadrons, and thus rescatter. This evolu-

tion is modeled within the UrQMD [27] framework, which treats the hadrons under the

relativistic Boltzmann equation. This is carried until the hadrons no longer collide, and

have reached kinetic freezout. The particles are then free to travel and are collected by the

colliders detectors.

2.3 Artificial Intelligence

Artificial intelligence (AI) nowadays is ubiquitous in popular culture. In february 2023,

the popular chat-bot by open-AI chat-GPT broke the record for the fastest growing appli-
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cation in history, with 100 million active users within two months. Even unconsciously,

consumers use AI in their daily lives, such as following their GPS recommendations, or

selecting auto-complete options when writing on a phone or a computer. Outside of the

consumer world, AI increasingly gains popularity amongst different sectors in indus-

try. Drug discovery models are being used in medical research, machine learning (ML)

models are being used to predict the stock market, and self-driving cars will likely gain

presence in the foreseeable future. Besides drug discovery, scientific research at large also

benefits from ML with, for example, image classification models being used to find new

planets, amongst the astronomical data at hand.

However, AI as a concept has existed for a few centuries. For example, automatons

are mechanical creatures in greek mythology, or the hoax known as the mechanical turk

in the 1700’s, which was in fact a chess-master pretending to be a machine playing against

people. AI has formally been an academic field of study since 1956 in Darthmouth col-

lege [28]. The field has known waves of optimism and funding followed by waves of

scepticism known as AI winters. Until the 1980’s, machine learning research was biologi-

cally inspired, and mostly restricted by the use of small, synthetic data sets.

2.3.1 Machine Learning

In the past decades, the increasing presence of the internet in our lives has led to an in-

creased availability of data. Simultaneously, the increasing performance and availability

of computational resources, namely Graphics Processing Units, have increased the ca-

pacity to train machine learning models. Together, those factors have set the ground for

the unrivaled performance and popularity of machine learning. Machine learning can be

broadly categorized in supervised and unsupervised learning, where the latter searches

for information within data without a label or target output. In the scope of this thesis,

we will only consider supervised learning.

TSupervised machine learning encompasses different model types such as causal mod-

els, which attempt to derive a causal effect, for example, a physical law, and would satisfy
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E. Rutherford’s quote “If your experiment needs statistics, you ought to have done a bet-

ter experiment.”. While this approach has the merit of being elegant, it might lead to

overfitting, as a complex enough model will go through as many points as we want it to.

However, most successful machine learning models today are statistical. Instead of

looking for a definite cause-and-effect law, statistical models look for a mapping f be-

tween two vector spaces X & Y , assuming a probability distribution P over the product

space X × Y while aiming to minimize the empirical risk, defined as follows

If =

∫
X×Y

V (f(x), y)× P (x, y)dxdy (2.9)

where V is a distance metric between the target value y and the predicted value f(x),

which must be chosen and is often called the loss or cost function. Since the probability

distribution P is unknown, it is often assumed to be uniform and thus the integral be-

comes an average over all samples. This may lead to an biased model f in the case where

the data set is unbalanced, in which case a non-trivial P might be assumed. For example,

consider a binary classification task where there are 9 times more samples from class A

available than from class B. Unless you discard part of the data set for it to be balanced, or

re-weight the importance of the samples, the model might learn to be biased and always

predict an outcome of class A, as it leads to a 90 % accuracy.

2.3.2 Cost Functions

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E (Tom M. Mitchell, 1998).”

In the statistical, supervised machine learning context where the goal is to minimize

empirical risk, the following formulation is commonly used:

J(θ) = J(y, fθ(x)) (2.10)
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where the performance P is inversely related to the cost function J(θ), the task T is for the

function fθ to predict the output y given input x, and θ is the set of the f model’s learn-

able parameters. Equivalently to minimize empirical risk is to maximize the likelihood

function between the training data and the ML model distribution. Mathematically, that

is to find the set of parameters θML which maximize the likelihood function. That is, to

take the argmax in the following way:

θML = argmax
θ

pmodel(X; θ) = argmax
θ

∏
x∈X

pmodel(x; θ) (2.11)

Since θML is invariant to taking the log, and it helps us numerically to do so, we take

the log of the probability distribution to obtain a sum instead of a product. Note that eq.

2.12 is not taking the log of both sides of the equation, instead it is restating that θML is

unchanged when taking the log of the right hand side. Similarly, scaling the right hand

side by the number of samples does not change θML, and so we can rewrite eq. 2.11 as an

expectation value, E.

θML = argmax
θ

E[log pmodel(x; θ)] (2.12)

Conveniently, this form of writing θML matches the definition of the Shannon entropyH(x)

of a distribution P over x, H(x) = −Ex∼P [logP (x)]. We can now utilize a useful metric

known as the Kullback-Leibler (KL) divergence, which quantifies the difference of two

distributions [29] by the use of Shannon entropy. It has the properties of being zero for

identical distributions, and being positive otherwise. Equivalently to finding θML is to

minimize the KL divergence between the data distribution and the model distribution

over the input space x, written as follows:

DKL(p̂||pmodel) = Ex∼pdata [log p̂data(x)− log pmodel(x)] (2.13)

Since the first term does not depend on the model, to maximize maximum likelihood is

equivalent to minimizing the following negative log likelihood, which is the cost we will
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use

J(θ) = −Ex,y∼p̂data log pmodel(y|x) (2.14)

where the data space x has been decoupled into an input and target space x and y. The

exact form of J is both model and task dependent. For example, a classification task with

a discrete set of possible values has a different cost form than a regression model with a

continuous output. In the case where the probability distribution of the model is normally

distributed as in [29] with standard deviation σ and y has n dimensions,

pmodel(y|x) = (2πσ2)−n/2 exp

(
−1

2

(
f(x)− y

σ

)2
)

(2.15)

the resulting cost function is the mean squared error

J(θ) =
1

2
Ex,y∼p̂data||y − f(x, θ)||2 + const. (2.16)

Deriving this cost function from maximum likelihood has the advantage of being model

independent. That is, as long as the model pmodel(x|y) is Gaussian, our cost function holds

regardless of the function f(x; θ) used to predict the mean of the Gaussian.

2.3.3 Learning

Now assuming we have a well posed task T with quantified performance P, it remains

to determine how to improve P with experience E. In other words, how to iteratively

update the machine learning model such that P is improved. Several algorithms have

been proposed such as Monte-Carlo techniques, and even biologically inspired genetic

algorithms which replicate survival of the fittest. However, the most prevalent algorithm

and the one we will use in this thesis is gradient descent and its derivatives.

Let us reconsider the cost function from Eq. 2.16 . In this context, given a dataset of

inputs and targets (x, y), to learn would be to update the parameters θ such that the cost
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is minimized. The gradient descent approach is to update θ such that

θt+1 = θt − α∇J(θt) (2.17)

where the term α is called the learning rate, which scales the step at which θ is updated.

The gradient descent updating iteration is usually carried out until a determined number

of epochs, or times the whole dataset has been used to update the model, is reached, or

until the change in cost function becomes too small for any update ||J(θt+1) − J(θt)|| < ϵ

for a chosen ϵ.

2.3.4 Optimization

Several variations of gradient descent have been proposed, where the varying aspects

are usually the form of the learning rate, and the data samples taken in the computa-

tion. Stochastic Gradient Descent, for example, introduces randomness in the procedure

by randomly selecting a data point, instead of the whole training dataset. That allows

for cutting computing costs, at the expense of utilizing all available data for an accurate

gradient. A trade-off is possible when utilizing batches of data samples.

Generally, learning rates are scheduled, α = α(t) such that a larger learning rate is pre-

ferred if θ is randomly initialized, and it is gradually increased to fine tune the parameters

as an optimum is searched.

A commonly used optimizer and one we will use in this thesis is called Adam [30],

from Adaptive moment estimation. The Adam algorithm utilizes a fixed learning rate α,

but instead of using a scaled gradient, it defines and utilizes a first (m̂t) and second (v̂t)
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moment estimates as follows:

gt = ∇θft(θt−1)

mt = β1 ∗mt−1 + (1− β1) ∗ gt

vt = β2 ∗ vt−1 + (1− β2) ∗ gt2

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

(2.18)

Where βt
i is raised to the power t, and gt

2 is the component-wise square of the gradients.

The gradient gt, as well as the first and second moments are initialized to zero. The mo-

ments are interpreted to be exponential moving averages of the mean and non-centered

variance of the parameters, and are scaled by 1/(1 − βi) to make up for the bias towards

zero from the initialization. These moments are then used to update the model parame-

ters as follows:

θt = θt−1 − α · m̂t/(
√
v̂t + ϵ) (2.19)

Where the square root again is element wise, and epsilon is chosen for numerical stability.

While the vanilla gradient descent only relies on the current iteration’s gradient, the

Adam algorithm implicitly relies on all previous time steps. As pointed out in [31], Adam

fails to converge to an optimal solution in common settings. A solution [31] offers is

to equip the optimizer with “long-term memory”, by having an explicit dependence on

all previous iterations. Instead of taking the exponential moving average of the second

moment estimates, the element-wise maximum is taken at each time-step, and thus ulti-

mately the element-wise maximum across all time steps. The moments are defined as in

Eqs. 2.18, except that v̂t is defined by v̂t = max(v̂t−1, vt), and m̂t = mt, then the updating

rule Eq. 2.19 still holds. This modified version of Adam is called AMSGrad, and will be

used in this thesis.
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2.3.5 Common Practices

Goodhart’s law, often cited as ”When a measure becomes a target, it ceases to be a good

measure” arose in an economical context, as a critic of monetary policy in the United

Kingdom in 1975. It stated that once a economical feature is recognized as a good indica-

tor, it ceases to be so because people will then trick the metric. The principle is applicable

within our ML optimization context. Indeed, while applying gradient descent-based opti-

mization methods, well-behaved derivatives are preferred. In practice, however, discrete

target values are common, for example in a classification task. In those cases, there is a

need to define a second metric. The discrete prediction is often referred to as “hard”, and

the first metric which is prediction accuracy follows from it. Often, the “hard” prediction

is the category with the highest continuous value, which itself is the “soft” prediction.

The second metric then is associated with these continuous values, and has a second met-

ric associated with it, namely the “surrogate” metric, or “loss”, and is the one to which we

apply an iterative optimization. This principle of soft and hard predictions will be taken

into account when designing a loss function for our models.

When given a data set, it is considered good practice to split the set into a validation

and training set. At each learning iteration, the model is updated with the optimization

algorithm computed on the soft prediction of the training set, but the model is ultimately

chosen based on the performance on the hard prediction on the validation set, as it is a

better indicative of generalized performance.

Besides a model’s learnable parameters, there are parameters that are set outside of

the learning iteration. These can be related to the model structure, such as the number of

layers and dimensions, or to the optimization, such as the algorithm choice or the learning

rate. These contextual parameters are collectively referred to as hyper-parameters. When

training machine learning models, it is common to simultaneously train several different

models with varying hyper-parameters.
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2.3.6 Models

So far, all of the discussion has been model independent. Most of modern ML models are

derived from Neural Networks. Biologically inspired, neural networks are characterized

by layers of nodes and links which resemble neurons and synapses in a biological brain.

2.3.6.1 Multi-layer perceptrons

ML Neural networks are a broad class of mathematical models, of which the simplest

is called the multi-layer perceptron (MLP). MLP’s have at least three layers: An input

layer, a hidden-layer, and an output layer. The input layer is a vector, to which an affine

transformation is applied, then fed into the hidden layer. The hidden layer, with an ar-

birary number of nodes, or width, then applies an activation function to the incoming

vector. There have been several activation functions proposed, namely the sigmoid func-

tion 1/(1+e−x), the step function, the hyperbolic tangent function, and the Rectified linear

Unit (ReLU) [32], f(x) = max(0, x). While these are all mathematically different, they all

behave similarly as they are or approach zero for negative arguments, and are non-zero

for positive arguments. Often, these are chosen based on the task, although some are

more popular for computational reasons. The non-linearity introduced by the activation

functions is what allows MLP’s to behave highly non-linearly. Another affine transfor-

mation is then applied to the output of the activation function before being used as an

argument to either another hidden layer or an output layer. The chosen number of layers

is referred to as the depth of the network. Finally, the output of the last hidden layer is fed

to the output layer, which is a linear transformation mapping the output of the hidden

layer to a vector of the dimensions of the desired output. While conceptually simple in

design, MLP’s have proven to be extremely versatile. In fact, The Universal Approxima-

tion Theorem states that a neural network with a single hidden layer containing a finite

number of neurons can approximate any continuous function [33].
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Figure 2.6: An example of how a convolutional kernel is swept over an image array. The

dotted lines represent the padded pixels which are taken to be zero. Taken from [6]

2.3.6.2 Convolutional neural networks

One can take advantage of the structure of the data at hand to design more sophisticated

networks. For example, sequential, time-ordered data has inspired recurrent neural net-

works, of iterative nature. Convolutional neural networks (CNN’s) exploit the spatial

organization of the data points within images to achieve better performance with less

model parameters. Instead of a simple one-dimensional vector, CNN’s expect image-like

data, of at least two spatial coordinates x & y, with (Nx × Ny) pixels, and at least one

channel at each pixel. As such, instead of having an operation applied to all pixels, a con-

volutional kernel is defined then applied locally. A kernel is an array of kx×ky parameters

such that kx, ky < Nx, Ny, which is swept over the image as depicted in fig 2.6, where it

applies a Haddamard product operation, or element wise multiplication between the im-

age and the kernel elements. Under this formulation, the dimensions of the information
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image change as follows (Assuming kx = ky ≡ K):

(Nx, Ny) → (
Nx −K + 2P

S
+ 1,

Ny −K + 2P

S
+ 1) (2.20)

Where a stride S is defined as the step size the kernel takes between each operation, and

the input image can be padded with zeros of size P outside the edges, to ensure that

the edge pixels are utilized as much as the inner pixels. Known kernels are used in non-

machine learning settings, for example, in edge detection algorithms. However, allowing

the kernel parameters to be learned and iteratively applying convolution operations al-

lows for abstract local features to be utilized, and has proven to be successful in image

processing. Convolutional neural networks are the building blocks for the UNET model

we will use later on.
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Chapter 3

Initial Conditions

3.1 Theory

3.1.1 Color-Glass Condensates

The Color-Glass Condensate (CGC) is an effective field theory that governs the pre-collision

dynamics of heavy-ion collisions. It considers the color charges and color gauge fields of

the valence quarks of the colliding nuclei instead of their nucleons, and implicates color

charge as the central driver for the formation of Quark-Gluon Plasma (QGP). The term

“glass” in CGC refers to the boosted partons, which travel at highly relativistic veloci-

ties and act as sources for the color gauge fields, and exhibit properties of amorphous

solids that behave like a fluid on longer time scales but as a solid on the collision’s time

scales, due to strong time dilation. The term “condensate” refers to the coherent behav-

ior of gluons in CGC due to the very high phase space density of gluons at length scales

smaller than the saturation scale, Qs. Qs is the energy scale at which gluon density ceases

to increase, as gluon recombination processes compete with gluon production.

QCD equations of motions are very difficult to solve, even when using supercom-

puters. CGC’s, being an effective classical field theory, greatly reduces this problem. It

describes the quark-gluon system in effective degrees of freedom and the new Lagrangian

23



is as follows:

LCGC = JµaAa
µ −

1

4
F a
µνF

aµν (3.1)

When comparing 3.1 to the QCD lagrangian 2.1, the first notable difference is that the

fermion terms are gone, since they do not contribute to the effective field. Secondly, we

have the new term Jµa, which corresponds to a classical source term. Indeed, under the

CGC formalism, partons with a large portion of momentum of the hadron x = k/p act

as classical sources for the smaller x partons. The field term Aa
µ comes from the small x

partons.

3.1.2 Equations of Motion

Equipped with an effective Lagrangian, we can now apply the Euler-Lagrange equations

to describe the evolution of the system and obtain the Yang-Mills Equations [34]:

[Dµ, F
µν ]a = Jν

a (3.2)

Dµ = ∂µ + igAa
µt

a (3.3)

Where the gluon fields A do not commute, and the field strength F µν
a covariant derivative

Dµ is non-linear. This leads to the asymptotic freedom mentioned in the introduction, which

in turn led to the possibility of QGP. We will now return to the evolution resulting from

these equations.

First recall that the nuclei are traveling near the speed of light in opposite directions

near the speed of light. In a Minkowski diagram as in fig. 3.1, the nuclei are therefore the

light cone boundaries, crossing at t = 0, unscathed due to the eikonal approximation. For

t > 0, the gluon fields arising from the hard partons sources evolve inside this light cone,

inheriting boundary conditions from the nuclei along the cone. A gauge can be chosen

such that A+ = Ai = 0, reducing our gluon field strength tensor in the negative direction
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Figure 3.1: Minkowski Diagram, where the nuclei (in green) trajectories are approximated

to be the light-cone boundary. Taken from [7].

to

F i− = ∂iA−
C (3.4)

And inserting this in the yang-Mills Eqs. 3.2 3.3 yields the following Poisson equation.

A− =
−gρ(x+, xT )

∇2
⊥

(3.5)

The same argument can be made to obtain the converse in the positive direction:

A+ =
−gρ(x−, xT )

∇2
⊥

(3.6)

Now this result is in the light-cone gauge, and can be gauge transformed back to the

covariant gauge. Upon solving for the gauge fields in the covariant gauge, we obtain a

closed-form solution for our color gauge fields, in terms of two source terms, one for each

nucleus a & b.

A+
∣∣
τ=0

= x+
ig

2
[Ai

a(τ, x⊥), A
i
b] (3.7)
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A−∣∣
τ=0

= x−
ig

2
[Ai

a(τ, x⊥), A
i
b] (3.8)

Ai
∣∣
τ=0

= Ai
a + Ai

b (3.9)

Eq. 3.9 is the analytical solution encompassing the initial conditions of the system result-

ing from the two nuclei at τ = 0.

3.1.3 The Lattice

So far we have the continuous physical description of color glass condensates. How-

ever, to solve Eq. 3.9, we resort to numerical methods, which in turns requires the use

of discretized quantities, namely space. The space in which we consider the evolution of

CGC is a square lattice grid of N × N sites with spacing a = 0.044 fm ≈ 0.2 GeV−1 and

N = 500 [7]. The spatial resolution required to resolve these energies can be bound by the

saturation scale Qs, such that a ≤ Q−1
s ≈ 2 GeV−1.

We can now define operators Ux,y to parallel-transport from one site to another in

their respective directions, as well as their hermitian conjugates U †
x,y in their opposite

directions. Combining U operators we can define a wilson loop, utilizing four operators

consecutively such that we go around a plaquette as follows, as depicted in fig. 3.2.

Uµν = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν(x) (3.10)

Now we can expand an operator related to our continuous gauge field around x

Uµ = exp[igaAa
µ(x)t

a] ≈ 1 + igaAa
µ(x)t

a − 1

2
g2a2Aa

µt
aAb

µt
b +O(a3) (3.11)
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Figure 3.2: Discretized lattice and displacement operator U . On the right is depicted

a Wilson loop, which starts and ends at the same point after traveling through nearest

neighbors, encompassing a plaquette. Taken from [7]

and define a color gauge field Wilson loop.

Uµν ≈ 1 + iga(Aµ(x) + Aν(x+ aµ̂) + Aµ(x+ aν̂) + Aν(x))t
a

≈ 1 + iga2(∂µAν − ∂νAµ)
(3.12)

by only keeping linear terms in a and using a finite difference derivative. The terms

quadratic in a in turn yield −g2a2[Aµ, Aν ]. Combining both expressions, we obtain

Uµν = 1 + iga2(∂µAν − ∂νAµ)− g2a2[Aµ, Aν ] +O(a3) (3.13)

which we can rewrite in terms of Fµ,ν

Uµν = 1 + iga2Fµ,ν ≈ exp(iga2Fµ,ν)

U †
µν = 1− iga2Fµ,ν ≈ exp(−iga2Fµ,ν)

(3.14)

where the hermitian conjugate of the Wilson loop simply loops in the opposite direction.

These definitions will be useful to address the numerical solution of Eq. 3.9.
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3.1.4 The Numerical Solution

Equipped with the discrete operators for the color gauge fields defined in the previous

section, the discrete analogous of Eq. 3.9, can be derived and yield Eq. 3.15.

Tr[ta((UA
i + UB

i )(1 + U †
i )− (UA

i + UB
i )(1 + U †

i )
†)] = 0 (3.15)

Eq. 3.15 is system of 8 non-linear equations, one for each gluon color charge, or SU(3)

generator. This is solved by Marius Cautun, Francois Fillion-Gourdeau, and Sangyong

Jeon in [35] in an iterative procedure as follows. First, we start by taking the Ansatz of

the lattice solution to be the same as the continuous solution, that is that the total field is

simply the sum of the target and projectile fields as in Eq. 3.9. In terms of operators, that

implies the following:

Ai
∣∣
τ=0

= Ai
a + Ai

b =⇒ Ui = UA+B
i ⇐⇒ U3 = U1U2 (3.16)

Which substitued into Eq. 3.15, yields the following

ReTr[ta(U1 + U2)(1 + U3†)] = fa (3.17)

If we let

U3
current = eiαxataU3

prev ≈ (1 + iαxata)U
3
prev (3.18)

as a recursive relation, with an appropriate α chosen for convergence, we obtain the fol-

lowing condition when substituting into Eq. 3.15:

αxbImTr[tbta(U1 + U2)[U3
prev]

†] = −fa (3.19)

Solving for xb, we can use the recursion in Eq. 3.18 again, which we substitute into Eq.

3.15 again and continue the iteration until |fa| has become small enough
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3.2 Methods

The method this thesis proposes is to build on the work in [35] to tackle Eq. 3.15 by train-

ing a neural network with solutions generated with their procedure. A naive approach

would be to take the outputs from the neural network for granted. Instead, we chose to

train our neural network to predict the initial-conditions gauge fields but to then use it as

an Ansatz before starting the iteration procedure described in the previous section. This

way, the physical validity of the solution is ensured, and we hope to cut the iterations

required to converge to a solution, as opposed to start with the continuous field Ansatz

in Eq. 3.16. The use of neural networks as trial wave functions has been tackled previ-

ously in [36]. As described in section 3.1.3, we need N ≥ 500. However, we explore the

possibility to train our model on a coarser grid size with N = 128. We also train and test

models on the energies relevant to our experiments, 193, 2760 and 5020 GeV.

3.2.1 Data generation

Both projectile and target nuclei gauge field can be written as N ×N ×8 arrays of floating

point numbers with the first two coordinates as spatial indices, and the last coordinate as

the color index. We can then treat the arrays as image files with 8 channels, analogous

to the usual 3 for Red, Green and Blue. We can then leverage the progress that has been

made in image processing machine learning in the past decade to our advantage.

3.2.2 Data processing

Before inputting the data into a model, we normalize it as a pre-processing step. Treating

each channel independently, we first group all training samples to compute the average

and standard deviation of each gauge field index. We save those metrics and scale the

inputs by subtracting the mean and dividing by the standard deviation of their corre-

sponding channel when executing model inference.
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Given that the analytical solution of the gauge fields combination is symmetric with

respect to the projectile and target fields 3.16, we would like our machine learning model

to be symmetric with respect to the inputs as well. One could in principle restrict the

model parameters such that the same operations would be applied to both inputs

While we do not explicitly enforce the model to be abelian, we take advantage of this

criterion to augment our data. For each pair of fields such such that (A,B) → C, we

simultaneously compute the loss for both (A,B) → C and (B,A) → C. The resulting

criterion that is minimized, then takes into account both possibilities simultaneously, and

results in a model that is on average abelian.

3.2.3 Models

We consider and implement two different machine learning models to generate new

Ansatzes.

The first model we consider is a Convolutional Neural Network, as described in sec.

2.3.6.2. We vary the number of convolutional layers, and between each convolutional

layer, we apply batch normalization as introduced in [37], which accelerates training by

normalizing the inputs of each convolutional layer. We also consider varying the kernel

size of the convolutions, and the number of hidden dimensions in each layer.

The second model we consider is adapted from a U-Net, which was first proposed

by [8] as a medical image classification model. The model works as following; an image of

dimensionsNx×Ny×C, whereNx andNy are the number of pixels in the x and y direction,

and C is the number of channels per pixel, goes through a sequence of encoder blocks

followed by a series of decoder blocks. Each encoder block is made of two convolution

layers followed by a 2x2 max pooling layer. After each of these steps, the convolution

layer doubles the number of feature channels while the max pooling halves the number

of spacial points.

The decoder blocks have the opposite effect, while still having two convolutional lay-

ers, the max pooling is replaced by an ”up-convolution” such that the number of feature
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Figure 3.3: Scheme of the UNET model, taken from [8]
.

channels is halved and the number of spatial points doubled. The decoder’s input is also

concatenated with the corresponding encoder’s final state as illustrated in 3.3. The final

step, the output segmentation map originally is a 1x1 convolution to the desired number

of classes, or in our case, colors.

3.2.4 Loss criterions

The hard evaluation metric which quantities the performance of our model is the num-

ber of iterations reduced when taking the prediction of our model as an Ansatz in the

algorithm 3.1.4, as opposed to taking the Ansatz in Eq. 3.16. That metric, however is not

differentiable and we must then resort to define a soft metric to minimize, as explained in

sec. 2.3.5. Let us recall that our target data has dimensions (batch size)×Nx×Ny×Nchannels.

Let i,j be the spatial indices, c be the channel index, y be the target value and ŷ be the pre-

dicted value. Taking the difference, or squared difference pixel-wise and then taking the

average does not work, as the range of the target’s values spans several orders of mag-

nitude, thus an average would overly favor high-value targets, yielding a poor average
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percent error overall. ∑
C,i,j

(y − ŷ)2 (3.20)

One could then attempt to scale each pixel value to its relative error as follows.

∑
C,i,j

((y − ŷ)/y)2 (3.21)

However, some target values are zero, which makes this loss criterion fail. One could then

consider scaling by a value representing the gauge field plane for each colour instead of

an individual pixel. Applying this approach we obtain the following metrics, and record

them across our experiments.

L1 =
∑

Channels

(
∑
i,j

(y − ŷ)2/
∑
i,j

y2) (3.22)

L2 =
∑

Channels

(
∑
i,j

|y − ŷ|/
∑
i,j

|y|) (3.23)

L3 =
∑

Channels

|
∑
i,j

(y − ŷ)/
∑
i,j

y| (3.24)

We chose to minimize L1, (Eq. 3.22) the squared error normalized by the sum of the

squares for the smoothness of the derivative. however, it is interesting to think of the

other metrics as physical quantities such as the ”total field”, as they do decrease indirectly

as the squared error is minimized.
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Chapter 4

Jet Quenching

4.1 Theory

Following the mass-energy equivalence principle, the colliding nuclei in heavy ion colli-

sions result in the creation of several partons, quarks and gluons. The partons which carry

the large fractions of momentum from the collision are said to be hard, and will continue to

dissipate energy by creating other particles through radiation breaking (Bremsstrahlung)

or scattering processes. These partons will in turn carry momentum and color charge,

and create particles as well, iteratively. The particles resulting from these chained reac-

tions have a trajectory similar to a cone spray, and are collectively called jets.

4.1.1 Jet Identification

Experimentally, the observables are the final particles in the detectors in a particle accel-

erator, and those might or might not be part of a jet. To quantify the presence of jets in

a collision, several algorithms have been proposed [38] to reconstruct the path the ob-

served particles have taken. The algorithm we will use in this thesis is the Anti − Kt

algorithm [39], and goes as follows.

Assuming we have a collection of particles distributed in a (η, ϕ) space, where ϕ is the

azimuthal angle, and η = 1
2
ln( |p|−pz

|p|+pz
) is known as pseudo rapidity and is associated with
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the angle with the beam axis, then the following distances between entities are computed:

dij = min(
1

k2ti
,
1

k2tj
)
∆2

R2
(4.1)

where

∆2 = (ηi − ηj)
2 + (ϕi + ϕj)

2 (4.2)

is the euclidean distance in (η, ϕ) space between particles i & j, kti is the transverse mo-

mentum of particle i, and R is a free parameter, usually in the order of 0.1. We also

compute the distances diB = 1/k2ti, which is the distance in momentum space between

entity i and the beam axis.

Once all dij’s and diB’s are computed, we proceed as with other sequential algorithms

mentioned in [39]. We find the smallest distance in all dij’s and diB. If the shortest distance

is a distance between entities, the entities are combined by four-vector addition. If the

shortest distance is between an entity and the beam axis, then that entity is called a jet

and it is removed from the list of entities. After either removing or combining an entity,

we recompute the distances and start over, until all entities are associated with a jet.

Since jet reconstruction algorithms can be applied to experimental as well as simulated

data, it is a good instrument to compare experiment and theory.

4.1.2 Observables

As jets travel through QGP, they interact with the medium, mostly by dissipating energy,

but will sometimes gain energy from the medium as well. In a proton-proton collision,

since there is only one possible binary collision, there can be no QGP from a different

binary collision, and thus we consider the jet yield of p-p collisions as a baseline. In

practice, however, due to having beams of particles colliding rather than single particles,

collisions can interfere. Experimental physicists then isolate these events post-facto.

Jet energy dissipation is HIC’s is commonly known as jet quenching, and is quanti-

tatively measured with the ratio of jet production with and without QGP. That ratio is
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referred to as

Rjet
AA =

1

Ncoll(c)

dNAA/dpT
dNpp/dpT

(4.3)

where the nominator is the yield in a Heavy-Ion/Heavy-Ion (A/A) collision, and the

denominator is the yield in a proton-proton collision. The prefactor Ncoll(c) is a normal-

ization factor such that the ratio is per binary collision. This normalization factor is a

function of centrality c since central collisions with a larger overlap will have more par-

ticipating nucleons.

While we are introducing the RAA metric in the context of jets, it can and will be used

with the yield of other products, namely charged hadrons as Rch
AA.

4.1.3 Jet Energy Loss

4.1.3.1 MARTINI

To simulate the interactions of jets with the QGP medium, we utilize a software called

MARTINI [26], which stands for Modular Algorithm for Relativistic Treatment of heavy

IoN Interactions. Utilizing a prior computed hydrodynamic evolution of QGP, MARTINI

evolves the jets resulting from PYTHIA [25]. MARTINI is a Monte-Carlo event generator,

which when performing statistically enough simulations, will provide a distributions of

observables which can then be compared with experimental results. In those simulations,

a chain of probabilistic events will make each event likely different from any other.

Amongst those probabilistic events are the inelastic processes resulting from the soft

interactions with the QGP medium. At each time step, the partons have a finite probabil-

ity of either emitting or absorbing a particle to or from the medium. MARTINI considers

these events as follows: At each time step, the total probability for any of the quantum me-

chanically allowed processes to happen is computed, according to one of the jet evolution

formalisms described in the next section. An event is then sampled with the computed

total probability.
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Figure 4.1: t-channel scattering by gauge boson exchange. Taken from [9].

If it is determined that a process will happen, another sampling is done. A probability

is attributed to each of the allowed processes, based on their relative rates. Finally, once

it is determined that a process is happening, and which process it is, another sampling

is done, to determine the magnitude of the process. This magnitude is the fraction of

the momentum carried by the daughter particle in the case of a radiation, or simply the

momentum of the absorbed particle in the case of an absorption.

4.1.3.2 Elastic Energy Loss

Elastic 2 → 2 collisions, such as t-channel boson exchange can occur with any charged

hard particle, whether it be fermions, or gauge bosons. An example of this would be a

coulomb-like interaction as in fig. 4.1, with scattering angle θ and momentum transfer q.

The differential scattering in this case would be

dΓ ∼ g4T 3dq

q3
∼ g4T

dθ

θ3
(4.4)

Alternatively, the type of the particles involved in the interaction could change, as in the

qq̄ → gg case in fig 4.2. This 2 → 2 type of interaction with momentum transfer |q| ∼ gT

has a mean free path of order τ = (g4T )−1 [9], of the same order or magnitude as the

large angle elastic scattering. Similarly, crossed s-channel versions of figs. 4.2 & 4.1 also

have a mean free path of τ = (g4T )−1. As a result, all 2 → 2 must be considered. The

AMY formalism [9] proposes an effective kinetic theory which encompasses all elastic

and inelastic quarks and gluons’ scattering processes to leading order in gT , assuming
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Figure 4.2: t-channel scattering for the qq̄ → gg process. Taken from [9].

g ≪ 1 . The effective theory is assembled from an effective Boltzmann equation for each of

the relevant processes, with an effective Boltzmann transport equations of the following

form:

(∂t + v · ∇x)f = −C[f ] (4.5)

where f = f(x,p, t) represents the phase space density of particles at position x, time t,

and momentum associated with velocity v. The collision term C[f ] represents the rate

of processes at which particles are scattered out of momentum p minus the rate at which

they are scattered into this state. The required processes to consider to construct a leading

order theory are 2 → 2 and 1 ↔ 2 processes.

4.1.3.3 Radiative Energy Loss

While propagating through QGP, two physical formalisms are proposed to describe the

radiative rates of partons in QGP. The first formalism is known as the AMY formalism [9],

and is independent of the time since the birth of the parton. The second formalism, pro-

posed by Caron-Huot & Gale (CH-G) extends the AMY formalism to include the time

elapsed since the birth of the particles in their calculations [10]. We then explore an ap-

proximation of the CH-G formalism with bounds fitted on CH-G calculations, based on

brownian motion [11]. We complete this chapter with an attempt to closely follow the

CH-G with the use of neural networks.

Landau-Pomeranchuk-Migdal Effect Hard partons in QGP can undergo effective 1 →

2 splittings, which would not be possible in a vacuum due to energy-momentum conser-
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vation. For example, a hard quark could undergo a soft collision of momentum transfer

q ∼ gT with a thermal quark from the medium, and result in a hard quark and a hard

gluon radiation, both separated by a small angle of order g.

This formation time is of the same order as the mean free path from soft scatterings.

As such, soft scatterings could occur during the formation time, specially for high mo-

mentum partons where the formation time exceeds the mean free path of soft scatterings.

The consideration of these soft scatterings is known as the LPM effect. [40, 41]

Arnold-Moore-Yaffe The AMY formalism gives the radiative rates as follows in [9, 42]:

dΓ(p, k)

dk
=

Csg
2
s

16πp7
1

1± e−k/T

1

1± e(p−k)/T
× f(x)×

∫
d2h
(2π)2

2h ·ReF(h, p, k) (4.6)

where

f(x) =


1+(1−x)2

x3(1−x)2
for q → qg

Nf
x2+(1−x)2

x2(1−x)2
for g → qq

1+x4+(1−x)4

x3(1−x)3
for g → gg

 (4.7)

Where p is the parton’s initial energy, k is the daughter particle momentum energy, and

x = k/p. h is the two-dimensional vector perpendicular to the initial partons’s momen-

tum, and F is the solution to the following integral;

2h = iδE(h, p, k)F(h, p, k) + g2
∫

d2q⊥
(2π)2

m2
D

q2⊥(q
2
⊥ +m2

D)
×

{(Cs − CA/2)[F(h)− F(h − kq⊥)]+

(CA/2)[F(h)− F(h + pq⊥)]+

(CA/2)[F(h)− F(h − (p− k)q⊥)]}

(4.8)

m2
D =

1

6
(2Nc +Nf )g

2T 2 (4.9)
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δE =
|h|2

2pk(p− k)
+
m2

k

2k
+

m2
p−k

2(p− k)
−
m2

p

2p
(4.10)

where

m2 =


g2T 2

12
(2Nc +Nf ) for gluons

g2T 2

3
for quarks/antiquarks

(4.11)

4.1.3.3.1 Caron-Huot & Gale While the AMY formalism accurately describes the radi-

ation rate from a parton in an infinite, static medium. The Caron-Huot & Gale formal-

ism [10] suggests an extension upon it, which includes a more local treatment of the LPM

effect.

Starting off with the total probability for a parton a, produced at time t = 0 with

energy p, to emit a pair (b, c) of partons with energies (k, p− k) taken from Zakharov [43];

dP a
bc(t)

dk
=
P

a(0)
bc (x)

πp
× Re

∫ ∞

0

dt1

∫ ∞

t1

dt2
∂

∂x
· ∂
∂y

[K(t2,x; t1,y)− vac]x=y=0 (4.12)

Where K(t2,x; t1,y) is [p/(2k(p−k))]2 times the propagator associated with the following

light cone Hamiltonian:

H = δE − iC3 (4.13)

δE =
p|p|2

2k(p− k)
+
m2

k

2k
+

m2
p−k

2(p− k)
−
m2

p

2p
(4.14)

C3 =
Cb + Cc + Ca

2
v2(x) +

Ca + Cc − Cb

2
v2(

k

p
x) +

Ca + Cb − Cc

2
v2(

p− k

p
x) (4.15)

Where the m’s and C’s are the masses and Casimirs of the corresponding particles, the

v2(x) terms are the dipole cross-sections of a color singlet qq̄ pair [44], and the vac term in

the integral corresponds to the vacuum fluctuations. The following P
a(0)
bc (x) term cor-

responds to the DGLAP [45] splitting kernels for the corresponding processes, where
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x = k/p.

P
a(0)
bc (x) =


g2CA

1+(1−x)2

x
, q → gq

g2CF
1+x4+(1−x)4

x(1−x)
, g → gg

2g2NfTf
x2+(1−x)2

x2(1−x)2
, g → qq̄

(4.16)

We now take a Fourier transform of Eq. 4.12 with the goal of removing non-compact

time integrations, and obtain the following:

dP a
bc(t)

dk
=
P

a(0)
bc (x)

πp
× Re

∫ ∞

0

dt1

∫ ∞

t1

dt2q · p[K(t1,q; t2,p)− vac] (4.17)

Cψ(p) =
∫

q C(q){
Cb+Cc+Ca

2
[ψ(p)− ψ(p − q)]+

Ca+Cc−Cb

2
[ψ(p)− ψ(p + k

p
q)]+

Ca+Cb−Cc

2
[ψ(p)− ψ(p + p−k

p
q)]}

(4.18)

using v2 =
∫

q C(q)(1− eiq·x) and p is transverse to q. After integrating by parts, we arrive

at
dP a

bc(t)

dk
=
P

a(0)
bc (x)

πp
× Re

∫ ∞

0

dt

∫ t

0

dt1

∫
q,p

iq · p
δE(q)

C(t)K(t,q; t1,p) (4.19)

out of which we can take a time derivative and arrive at the final form:

dΓa
bc(t)

dk
=
P

a(0)
bc (x)

πp
× Re

∫ t

0

dt1

∫
q,p

iq · p
δE(q)

C(t)K(t,q; t1,p) (4.20)

Eq. 4.20 has the benefit of containing a single, finite, time integral, which we can solve

numerically in t, the time elapsed between the current time and the time since the last

emission. Moreover, taking the limit t → ∞ recovers the result from AMY in Eq. 4.6 as

it should. This is because the AMY radiative rates are calculated from Feynman diagram

integrals, which result in the average probability of a radiation over all time, taking the

birth of the parton at t1 = −∞ and the radiation to happen at t2 = ∞. The CH-G radiative

rate, however, takes t = t2 − t1 to be finite, and the interferences such as the LPM effect

are included in the propagator K.
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1

lmfp

≡
∫
d3kρ(k)

∫
dq2(1− cos(θpk))

dσel
dq2

(4.21)

dσel
dq2

∼ CR
2α2

s

(q2)2
(4.22)

m2
D = 3

2
g2T 2

1

lmfp

∼ k3
∫ ∞

m2
D

d2q
α2
s

(q2)2

∼ T 3 α
2
s

m2
D

∼ g2T

(4.23)

resulting in lmfp ∼ 1/g2T

l⊥ ≳ 1/q⊥ (4.24)

q⊥
q

∼ l⊥
lcoh

(4.25)

lcoh ∼ q

q⊥
l⊥ ∼ q

q2⊥
(4.26)

In fig. 4.3 the differential decay rates are compared for the same set of parameters with

the AMY and CHG formalisms. As expected, the AMY calculation is the long-time limit

of the CHG formalism, the latter being decreasingly suppressed as the time since birth is

increased.

In this thesis, we will tackle the computation of this formulation, Eq. 4.20, into our

simulations. However, a first approximation has been done in Chanwook Park’s PhD.

thesis to utilize an upper bound on these rates.

4.1.3.3.2 Random Walks The physical separation of a radiated particle is ambiguous

considering its formation time, and thus the mother and daughter particles do not interact

with the medium independently as discussed in sec. 4.1.3.3. To take this into consider-

ation, we utilize the AMY limit results as an upper bound for the radiative rates, and

41



Figure 4.3: Differential decay rate for a 3 GeV gluon from a 16 GeV parent quark as a

function of traveled length since the birth of the jet. The green dotted line is the AMY

formalism limit, while the solid red line is the CH-G formalism calculation. The medium

is a uniform brick of QGP at T = 0.2 GeV (panel (a)) and T = 0.4 GeV (panel (b)). Taken

from [10].

suppress those introducing a separation condition, using the quantum mechanical uncer-

tainty

∆r⊥∆p⊥ > C(k, T ) (4.27)

where the minimal uncertainty is parametrized as follows:

C(k, T ) = 0.25× (k/T )0.11 (4.28)

to imitate the results from Eq. 4.20 and obtain a finite-size effect. Since the radiative pro-

cesses in our simulations utilizing MARTINI are purely colinear, the transverse distance

∆r⊥ and momentum ∆p⊥ result from the random walk response to the soft scatterings

with the medium. One can make sense of Eq. 4.28 as a parton with a larger k should be

less sensitive to the medium and induce a looser condition. Inversely, a higher tempera-

ture medium should separate the partons faster, driving the condition to zero, and allow

radiation again right away. In fig. 4.4, the AMY formalism, the CH-G formalism, and the

RW approximations are contrasted. As expected, again the AMY formalism is the long-

time limit of the CH-G formalism, while the CH-G formalism is decreasingly suppressed
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Figure 4.4: In the left column we have the differential decay rates for a parent particle

with momentum of 50 GeV, radiating a gluon of 5 GeV as a function of travelled length

since the birth of the parton. In the right column we have the differential decay rates for

a parent particle with momentum of 200 GeV, radiating a gluon of 50 GeV. In the top row,

the parent particle is a quark, and in the bottom row the parent particle is a gluon. The

medium is a uniform brick of QGP at T = 0.4 GeV everywhere. The solid black line is

the AMY limit, the yellow dotted line is the CHG formalism calculation, and the green

dotted line is the fitting from the random walks labeled MARTINI. Taken from [11].

as the time since birth increases. In the green dotted line, the RW approximation bounds

the CH-G formalism from below as it should.
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4.1.3.4 Effective Kinetic Theory

Going back to our Boltzmann equations formulation in Eq. 4.5, we can aggregate the

collision terms visited in the previous section as follows:

(∂t + p · ∇x)fs(x,p, t) = −C2↔2
s [f ]−−C1↔2

s [f ] (4.29)

Where the 2 → 2 processes unfold as such:

C2↔2
a [f ] =

1

4|p|νa

∑
bcd

∫
k p’ k’

|Mab
cd (p,k;p’,k’)|2(2π)4δ4(P +K − P ′ −K ′)×

× {fa(p)fb(k)[1± fc(p’)][1± fd(k’)]− fc(p’)fd(k’)[1± fc(p)][1± fd(k)]}

(4.30)

where the latin letters correspond to the species index, νa corresponds to the of spin times

the number of color states for species a, capital letters correspond to four-vectors, f func-

tions correspond to the Fermi-Dirac or Bose-Einstein occupation functions, Mab
cd is the

effective matrix element of the processes ab ↔ cd, and the integrals are understood to be

Lorentz invariant momentum integrations
∫
p
=
∫

d3p
2|p|(2π)3 . We note that symmetry under

particle exchange and time reversal allows for the matrix element squared and energy-

momentum conservation delta function to be factored out, while the last two terms cor-

respond to the ab→ cd and cd→ ab processes respectively.

As for the 1 → 2 the collision term unfolds analogously:

C1↔2
a [f ] =

1

4|p|νa

∑
bc

∫
p’ k’

|Ma
cd(p;p’,k’)|2(2π)4δ4(P − P ′ −K ′)×

× {fa(p)[1± fb(p’)][1± fc(k’)]− fb(p’)fc(k’)[1± fa(p)][1± fd(k)]}+

+
1

2|p|νa

∑
bc

∫
k p’

|M c
ab(p’;p,k)|2(2π)4δ4(P +K − P ′)×

× {fa(p)fb(k)[1± fc(p’)]− fc(p’)[1± fa(p)][1± fb(k)]}

(4.31)
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in massless kinematics, resulting in strictly collinear radiations. For the nearly-collinear

case, one can integrate over the transverse momentum associated with the splitting.

4.2 Methods

Before comparing the different approaches of jet evolution in QGP, we first verify that,

without any medium, the simulation framework provides reliable results. We then simu-

late pp collisions at
√
s = 2.76 TeV and compile the distributions for the charged hadron

multiplicity and the jet cross section, as no QGP is believed to be formed in p-p collisions.

The PYTHIA tune parameter we use is 15, with the parton distribution function CTEQ6L1

from Les Houches Accord parton distribution function [46]. The pT ranges are separated

into 40 bins, with the following values: 4, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,

27, 29, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180,

190, 22, 225, 250 and 300 as range limits, in GeV. In our simulations, the strong coupling

αs is fixed at 0.3, as an upper bound to fig. 2.2. A more physical approach would be to

have a running strong coupling, matching fig. 2.2. However, we chose to fix the coupling

to better distinguish the differences resulting from the chosen jet decay approaches. The

pseudorapidity range for Jets used is |η| < 2, and |η| < 1 for charged hadrons.

We then simulate PbPb collisions at
√
s = 2.76 TeV at the centrality classes 0-5%, 5-

10% and 10-20%. To that effect, we take the parton distributions from PYTHIA, then

evolve the parton distribution with MARTINI, with the previously computed hydrody-

namic background from MUSIC. For the evolution within the medium, the time step size

taken is 0.002 fm, and take the nuclear parton distribution function EPS09LO [47]. For

both the pp and the PbPb simulations, we compute 1000 events for each of the 40 pT

bin, for 50 different hydrodynamic evolutions. In the PbPb simulations, we do so for

each of the three centrality classes, resulting in 8 million independent simulations. For

each centrality class, for each hydrodynamic evolution, the pT bins are weighted by their

corresponding cross section to span the full pT range in the figures in this section. The
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hydrodynamic runs are then averaged, to yield the total cross section for each centrality

bin.

4.2.0.1 Jet evolution

We now numerically implement the Caron-Huot & Gale [10] Jet decay formalism with

the MARTINI framework. For each time step in the simulation, for every parton, we first

utilize the total decay rate dΓ for each of the following processes:

q → gq

g → qq

g → gg

(4.32)

to determine whether a process will take place. Once it is established that one of the

processes takes place, another sampling is done to determine which of the processes takes

place.

Implementation wise, the main difference between the Caron-Huot & Gale formalism

and the AMY formalism is the dependence on the time since the birth of the particle t, and

the temperature of the medium in which the particle is T . In practice, the QGP medium is

discretized, and every QGP site can have a different temperature. This, in turn, causes the

time to be dilated differently in each of the fluid cells. This should be taken into account,

but would require us to know the the exact path of each parton, and the temperature of

each of the sites the parton was at the time the parton was there. With that information,

one could Lorentz-transform the time to properly correct the curve in 4.3 which assumes a

uniform brick. Unfortunately, we do not have that information, and as an approximation

we utilize the proper time of the jet in our calculations.
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4.2.1 Data Generation

In this section we implement the Caron-Huot & Gale formalism, where the rates are cal-

culated in a uniform brick of QGP. dΓ/dK here is a function of the time t elapsed, since the

last emission, of the temperature of the brick T , and of the mother and daughter particles’

momentum, P and K. Our first step is to compute the decay rates by implementing the

calculation numerically.

We systematically chose the ranges at which the aforementioned variables are calcu-

lated. The first range we chose is the time variable which we set between 0 and 30fm/c, as

it is the typical lifespan of QGP, as mentioned in the introduction 2.1.2. We now estimate

realistic values for the mother particle momentum P . Since we will limit our experiments

to the LHC experiments at
√
s = 2760 GeV, an upper bound estimate would be to divide

the center of mass energy between the two protons, and then by three because on average

each of the quarks in the protons have a third of the energy. This leads us to
√
s

2×3
≈ 1000

GeV. For each value of P , we generate K values in increments of 5% of P , from 5% to

90%, and we use increments of 1% between zero and 5%, and between 90 and 99% for

integration reasons. Finally, temperature is taken in increments of 50 MeV between 100

MeV and 1 GeV, as it is the range of temperature of QGP.

Once we have the previous parameters for dΓ/dK = dΓ/dK(P,K, t, T ), we integrate

those values over K between 0 and 100%, to obtain the total decay rate Γ. We proceed

to do so utilizing the Simpson’s integration routine, and obtain numerical values for Γ =

Γ(P, t, T ).

4.2.2 Modeling

We are now ready to train 8 different MLP’s, for each of the processes in 4.32, four for the

differential rate dΓ/dK and another for the total probability of the event Γ.

For each of the processes, we first hard-code a transformation function which takes in

the input vector (p, k, t, T ) or (p, k, t, T ) for the dΓ/dK and the Γ models respectively, that
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Figure 4.5: Distribution of the logarithm of differential decay rates (dΓ/dK) (dimension-

less) for the g → gg process, across all considered parameter sets described in sec. 4.2.1.

The counts have been normalized such that the integral of the distribution is one.

maps each of the values to a uniform distribution within (0, 1), utilizing a logarithmic

or linear transformation depending on how each the data for the corresponding variable

had been generated.

We then forward the normalized inputs in an MLP of 6 and 4 layers, for the dΓ/dK and

Γ respectively, utilizing the ReLU activation functions respectively. For the optimizing

algorithm, we chose to use AMSGrad as explained in section 2.3.4, with a learning rate

α = 10−3 for 100 training epochs.

Given that both Γ and dΓ/dK are decay rates and differential decay rates, they must

by their nature be strictly positive. A visualization of the distribution of the logarithm

of the differential decay rates, as in fig 4.5, show us that these rates span several orders

of magnitude. We utilize this prior knowledge about the target values for the choice of

our loss function. While the metric that we utilize to evaluate and choose our models is

the percent accuracy, the loss that we explicitly minimize in our training algorithm is the
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percent error of the logarithm of the decay and differential decay rates. This is equivalent

to have the model learn the exponent in base 10 rather than the rates explicitly.

Regarding the training, validation, and test data splits, we first consider the naive

approach to shuffle all data points dΓ/dK = dΓ/dK(P,K, T, t), and sample from that

distribution. However, doing so results in a training set with data points potentially from

every single PKT combination, which would be undesirable, since we want our models

to be able to generalize for different PKT combinations. Therefore, the approach we take

is to first split all PKT combinations, sample a training, validation, and test set from there,

and then recover the time steps for all of them. This way, the model chosen based on

validation performance is tested on PKT combinations it has never seen before. Similarly

for the Γ model, we sample from the Γ = Γ(P, T ) and recover the time steps afterwards.

Utilizing this sampling procedure, we take 70% of the data points for training, 20% for

validation and 10% for the test set.

A choice has to be made regarding how to train the integrating Γ model. Indeed,

the training data set could be either the result of integrating the dΓ/dK from the CH-G

calculations, or from the previous neural network which emulates the former. We chose

to train the Γ models on the integral of the dΓ/dK utilizing a Gaussian quadrature, with

50 evaluation points between 0.01 ≤ K/P ≤ 0.99.
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Chapter 5

Results & Discussions

The initial conditions of the color gauge fields are required to begin a hydrodynamic sim-

ulation of QGP. We show the results of training a machine learning model on an iterative

solution, to then be used as a starting Ansatz for the same iterative approach on different

samples and quantify the reduction in iterations. We consider two different models, and

two different spatial resolutions, to make a comparison on training in a coarser resolu-

tion and inferring on a finer resolution. This section then builds on the work by Marius

Cautun, Francois Fillion-Gourdeau, and Sangyong Jeon in [35].

Jets are aggregates of particles which can serve as a probe for QGP when studying

their energy exchange with the medium. In that regard, this thesis follows on the work

by C. Park [11], where a comparative study was done considering the radiation rates

from AMY independent of formation time, then emulated the formation time dependent

radiative rates from CH-G in a Brownian motion approach. We will compare both those

approaches, as well as modelling the CH-G formalism using a neural Network. We will

then compare all three approaches with the experimental data from CMS.
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5.1 Initial Conditions

We train a few machine learning models to generate a new ansatz for replacing Eq. 3.16

as explained in sec. 3. While we require N = 500 to have an appropriate grid size such

that the inter-lattice point spacing a resolves the energies required, we also consider a

coarser grained resolution to explore the possibility of training a network on coarse data

and then infer on finer resolution for computational efficiency. The two resolutions we

chose are then 128 × 128 and 512 × 512 pixels, each with their 8 channels for the gluon

color gauge fields. Models resulting from both those training resolutions are then tested

on both resolutions.

In figures 5.1 and 5.2 we have an example of a 4 layer CNN network with 32 hidden

dimensions and a kernel size of 5. In both figures, the image on the left is the prediction

from the model trained on 128× 128 data, the middle image is from the model trained on

512× 512 data, and the image on the right is the target image.

In both cases, we can see the presence of most spatial features and sign of the average

fields. However, there are some visible differences regarding the magnitude of the fields.

Both networks, as expected, seem to perform better on the resolution at which they were

trained. The model trained on 512 × 512 data seems to predict a lower intensity on the

128× 128 data. Conversely, the model trained on 128× 128 data seems to predict a higher

intensity on the 512 × 512 data. This is because the models are restricting themselves to

the target distribution on which they were trained. In a coarser grid, we would expect

a higher energy density per pixel, while on a finer grid we would expect a lower energy

density per pixel.

Nevertheless, while our attempt at having a model generalize across resolutions fails

to reproduce with precision the intensities, it still manages to reproduce the spatial fea-

tures. We can still utilize the model trained on 512× 512 data to infer 512× 512 data, and

obtain the desired results. Despite still having some intensity discrepancies, those are of

minor concern given how we use the inference from the model. Rather than ”believing“
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Figure 5.1: The image on the right is the average field strength across colors of the initial

color gauge fields in a resolution of 128×128 pixels. The image on the left is the prediction

of the same quantity in a 128× 128 pixel resolution from the model trained on data with a

resolution of 128×128 pixels, and the middle image is the prediction of the same quantity

in a 128×128 pixel resolution from the model trained on data with a resolution of 512×512

pixels. In all cases, the x-axis and y-axis quantities corresponds to the pixel index in either

dimension, and the strength of the fields is given by the color of the pixel, following the

scale on the right. The strength of the field is unit-less, as it has been scaled for a mean of

zero and a standard deviation of one.

the model and utilizing the prediction as physically valid, we are utilizing it as a starting

point to embark into the iteration described in section 3. We find that, on average, uti-

lizing the neural network’s prediction as a starting point results decreases the number of

iterations required to attain a solution by a factor of four.

5.2 Charged Hadrons & Jets

In this section, we perform simulations of pp and PbPb collisions at
√
s = 2.76 TeV. To

that end, we first describe the modeling that we performed on the CH-G calculations to

be used in our simulations. We refer to the AMY formalism, the random walk approach

to the CH-G, and the neural network approach to the CH-G as the three considered for-
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Figure 5.2: The image on the right is the average field strength across colors of the initial

color gauge fields in a resolution of 512×512 pixels. The image on the left is the prediction

of the same quantity in a 512× 512 pixel resolution from the model trained on data with a

resolution of 128×128 pixels, and the middle image is the prediction of the same quantity

in a 512×512 pixel resolution from the model trained on data with a resolution of 512×512

pixels. In all cases, the x-axis and y-axis quantities corresponds to the pixel index in either

dimension, and the strength of the fields is given by the color of the pixel, following the

scale on the right. The strength of the field is unit-less, as it has been scaled for a mean of

zero and a standard deviation of one.

malisms, although both the random walk and the neural network approach are approxi-

mations to the CH-G physical formalism.

5.2.1 Modeling

We first train the neural networks to emulate the CH-G formalism, for each of the pro-

cesses described in Eq. 4.32 to obtain the differential decay rates dΓ/dK. In all cases, we

utilize a neural network of 6 layers and 64 hidden dimensions. In table 5.1, we report the

accuracy obtained on the training, validation and test data sets. We recall that while we

do report the training accuracy, the actual loss that is minimized is the percent error of the

logarithm of the rates dΓ/dK, which amounts to learning the exponent of the rate in base

10. These high accuracy scores were expected, since the functions our neural network
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Process Training Validation Test
q → qg 97.64 % 97.66 % 97.63 %
g → qq 96.13 % 95.03 % 95.98 %
g → gg 97.43 % 97.85 % 97.86 %

Table 5.1: Best accuracy during training, and on the validation and test sets for the

differential decay rate MLPs. These accuracies were computed utilizing a trainer class

from [15], utilizing the training parameters and data sets described in sections 4.2.2 and

4.2.1 .

are learning are simple, and can be approximate by a somewhat linear rise followed by

a plateau. In that respect, the model’s main challenge is to learn the scale of the rise and

the plateau, for each varying parameter. We attribute the overall lower performance on

the g → qq process across all data sets to the fact that there is more variance in the scale of

the rates of this process.

In figure 5.3, we show an example of the prediction of the neural network for the

differential decay rate of a g → gg process as a function of time elapsed since the birth of

the parton. As we can see, the neural network overall seems to approximate the CH-G

calculation accurately, with an average error of 2.11 %. The region where it seems to be

less accurate is right before reaching the plateau, where it does not capture a slight rise

before stabilizing. This might be attributed to the fact that the model is simple, with only

6 layers. A more complex model might have captured this rise before stabilizing, with a

higher risk of over-fitting.

In figure 5.4, we have the same model as in fig. 5.3 with the rate dΓ/dK as a function

of k/p instead of a function of time since birth. While this is only another visualisation of

the same neural network predictions along a different dimension, this curve is of interest

as its integral represents the total radiation rate of a particle at a given time, regardless of

the daughter particle’s energy. We thus we compute the dΓ =
∫ k=p

k=0
dΓ
dk
dk integrals utilizing

the Gaussian quadrature routine [48], on the dΓ/dk values from our model.

We then proceed to train a new batch of neural networks for the dΓ = dΓ(p, T, t) func-

tions for each of the radiative processes, with the integrals from the dΓ/dk data. We must
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Figure 5.3: The neural network approximation for the CH-G formalism in the orange

line, and the CH-G calculations as the blue dots, for the g → gg process as a function of

time, with a 2.11 % average relative error across the time steps shown in the figure. The

parent particle energy is p = 70.7 GeV, the daughter’s energy is k = 14.14 GeV, and the

temperature is taken to T = 0.367 GeV.

now make a choice to either train the total rate dΓ models on either the integrals from

the CH-G calculations, or from the NN emulating the CH-G calculations. For consistency,

we chose to train the model on the NN predictions. In table 5.2 we report the training,

validation and test accuracies for the networks used in the rate integrating. Again, we

note that the very high accuracies are due to a simple function, with a rise followed by a

plateau. The model’s main challenge then again is to capture the magnitude of the rates,

as well as the transition from the rise to the plateau, across varying parameters. In fig.

5.5 we have an example of the total decay rate as a function of the time since the birth

of the parton. At each time point in blue, the differential decay rate from the previous

neural network is integrated over 0 < k < p. The orange curve shows the prediction of

the total decay rate from the dΓ neural network. Again, we notice that the network does
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Figure 5.4: The neural network approximation for the CH-G formalism in the orange line,

and the CH-G calculations as the blue dots, for the g → gg process as a function of k/p,

with a 1.59% error across 0 < k/p < 1. The parent particle energy is p = 70.7 GeV, the

time since birth of the parent parton is set to τ = 20 fm, and the temperature is taken to

T = 0.367 GeV.

Process Training Validation Test
q → qg 98.01 % 98.06 % 97.69 %
g → qq 98.31 % 97.91 % 97.56 %
g → gg 98.56 % 98.45 % 97.65 %

Table 5.2: Best accuracy during training, and on the validation and test sets for the total

decay rate MLPs. These accuracies were computed utilizing a trainer class from [15],

utilizing the training parameters and data sets described in sections 4.2.2 and 4.2.1 .
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Figure 5.5: The neural network model for the total decay rate of the g → gg process in

orange, trained on the differential decay rate neural network integrals as blue points. The

parent particle energy is p = 70.7 GeV and the temperature is taken to be T = 0.367 GeV.

not capture all details of the data, but we prefer to keep a simpler model to avoid a risk

of over-fitting.

We recall that the CH-G formalism is a generalization of the AMY formalism, with

suppressive corrections at early times. Implementing the corrections, we would then

expect less radiations in early time steps, while allowing for more radiations at larger

times. While this is not directly observable, it is something we can measure and compare

within our simulations, and expect it to then translate to the experimental observables

Rjet
AA and Rjet

AA.

The first row of figures 5.6, 5.7 & 5.8 depict the distribution of the times elapsed since

the birth of the parent parton for all radiations, while the columns separate the radiative

processes. The second row of the figures 5.6, 5.7 & 5.8 are the ratio of the distributions in

the above row, with the AMY formalism as the denominator, and the Random Walk and

Neural Network approaches as the numerator. We chose to call this metric Lifetime RAA

(Rlt
AA). The integral of the first row distributions represent the total radiations per process
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Figure 5.6: In the first row, there is the distribution of the time between radiations for each

radiative process, for the AMY formalism (in blue), the random walks approach (in red),

and the Neural Network approach (in green). In the second row, we have the ratio of the

above distributions with the AMY formalism as a denominator. In red, the Random walk

approach as the numerator, and in green, the neural network approach. The experiment

is a Pb-Pb collision at 2760 GeV, with the centrality bin 0− 5%, and the jet pT in [4, 7] GeV.

per event for a parent particle within the pT range of the respective figure, so we compute

those integrals from t = 0 fm to t = 30 fm, which is the time range of the full evolution

simulation. The ratio of those integrals are written in the legends of the bottom row, as

they represent the reduction of the energy loss as a product of utilizing the suppressed

decay rates. These integrals will allow us to see if the reduction of radiations in early time

steps are counterbalanced in later time steps.

Within fig. 5.6, the first notable feature is the appearance of a peak at the emission

times for all three radiative processes with the NN approach. While the AMY formalism
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radiated the most particles at the very early time steps of the evolution, the distribution

decreases monotonously, or at least the peak cannot be resolved by our histogram bins

of width τ = 0.25 fm. The RW approach’s radiations also decreases monotonously, while

exhibiting less radiations than AMY at the very early time steps, yet surpassing AMY at

later time steps, as more clearly illustrated in the bottom row curves. This is expected,

as the radiative rates at early times are suppressed by both the random walks and the

Neural Network approaches.

Regarding the integral ratios, the NN/AMY ratio is less than the RW/AMY ratio,

as expected since the RW bounds the NN radiative rates from below. However, what

was not necessarily expected was that the RW/AMY ratio remains below 1 for all three

radiative processes. It would have been possible for the increased number of radiations at

later time steps to compensate for the suppression at earlier time steps, but we find here

that it is not the case. In fact, this suggests that coherence time does decrease the total

energy loss.

As we increase the energy of the jets in figs. 5.7 & 5.8, we can readily see changes for

each radiative process. For the q → qg process, the Rlt
AA stabilizes for both approaches.

In the g → qq process, both Rlt
AA seem to stabilize as well, although the statistical error

is much larger, which is consistent with the fact that the quantity of emissions is much

smaller, as most of jet energy loss is from gluon radiation. Regarding the g → gg process,

there is a clear peak at early time steps, while the plateau does not seem to be reached

at later times. In all processes, we would expect a plateau in the Rlt
AA, since the radiative

rate corrections are at early times, and in the long term limit CH-G can be approximated

by the AMY decay rates.

In 5.6 we can already observe that for all three processes, the total emissions per event

ratios are reduced with the RW and NN approaches. While the ratio of the integrals is

significantly smaller for the NN approach, the ratios are not as damped for the RW, as

the q → gq is as high as 0.97. The ratios of both the RW and NN approaches decrease

while increasing the jet energy for the q → gq and g → qq processes. Regarding the
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Figure 5.7: In the first row, there is the distribution of the time between radiations for each

radiative process, for the AMY formalism (in blue), the random walks approach (in red),

and the Neural Network approach (in green). In the second row, we have the ratio of the

above distributions with the AMY formalism as a denominator. In red, the Random walk

approach as the numerator, and in green, the neural network approach. The experiment

is a Pb-Pb collision at 2760 GeV, with the centrality bin 0 − 5%, and the jet pT in [65, 70]

GeV.
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Figure 5.8: In the first row, there is the distribution of the time between radiations for each

radiative process, for the AMY formalism (in blue), the random walks approach (in red),

and the Neural Network approach (in green). In the second row, we have the ratio of the

above distributions with the AMY formalism as a denominator. In red, the Random walk

approach as the numerator, and in green, the neural network approach. The experiment

is a Pb-Pb collision at 2760 GeV, with the centrality bin 0− 5%, and the jet pT > 300 GeV.

g → gg process, a qualitative difference appears at the highest chosen jet pT values in fig.

5.8. While the Rlt
AA for the RW approach remains above that of the NN Rlt

AA for most of

the evolution, the NN surpasses it before they intersect around 2 fm. As most radiations

happen in the early time steps, this small time segment carries most of the weight and

results in a larger number of radiations for the NN approach.

Finally, it is worth noting that besides the relative changes in radiations between en-

ergy loss approaches, the magnitude of total radiations per event increase with jet energy

increase, spanning two orders of magnitude from the lowest to highest considered jet
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Figure 5.9: Charged Hadron and Jet cross sections from a simulated pp collision using

Pythia. Proton-Proton collisions are taken as calibration as no QGP is believed to be

formed. The experimental data for the charged hadrons is from [12], and the data for

the jet cross section is from [13].

momenta. Overall, the absolute number of radiations and the ratio of total radiations

for different jet evolution approaches imply a significant impact on energy loss by the

radiative rates corrections.

Although the difference in radiations are larger with the differential rates’ corrections

for larger PT , the inelastic cross sections decrease as PT is decreased. To obtain the full

picture of radiative energy loss, the jet RAA must be constructed by combining all these

PT bins, and weighting them by the inelastic cross section corresponding to that pT bin.

5.2.2 Observables

We first simulated pp collisions at
√
s = 2.76 TeV and compare the experimental results

for the charged hadron multiplicity with [13], and [12] in fig. 5.9. With the validity of the
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Figure 5.10: Charged hadron spectrum for the three considered formalisms, for centrality

classes 0 − 5%, 5 − 10% and 10 − 20% from bottom to top, with the latter two multiplied

by a factor of 10 and 102 respectively, to distinguish the curves. The columns separate the

jet evolution approaches, with the AMY approach on the left, the Random walks in the

middle and the Neural Network on the right.

initial data from pythia calibrated to experimental results, we are now ready to add the

impact of the medium evolution to the hadron spectrum simulation. We then simulated

PbPb collisions at
√
s = 2.76 TeV at the centrality classes 0-5%, 5-10% and 10-20%, and

compare our results with the experimental data from [14] and [49].

In this section we present the spectra and nuclear modification factors for charged

hadrons and jet production. we utilize centrality classes 0 − 5%, 5 − 10% and 10 − 20%,

and the jet radii R utilized in the dij calculations in the Anti −Kt algorithm described in

sec. 4.1.1 are R = 0.2, 0.3 and 0.4. This part of the thesis builds on the work in [11], as the

Random Walk approach is compared to our neural network approach, as an alternative

method to emulate the CH-G formalism [10].

5.2.2.1 Charged Hadron multiplicity

In fig. 5.10, we see the raw yield spectrum utilizing the different proposed evolution

formalisms. While some differences are visible, we utilize the nuclear modification factor

to better contrast the difference in observables from the formalisms.

In fig. 5.11 are the nuclear modification factors for charged hadron multiplicity, with

the centrality bins increasing from left to right. In the centrality classes 0−5% and 5−10%,
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Figure 5.11: Nuclear modification factor for the charged hadrons, for the three considered

formalisms, for centrality classes 0−5%, 5−10% and 10−20% from left to right. The AMY

formalism is shown in blue, the Random Walk approach is shown in red, and the neural

network approach is shown in green. The experimental data from CMS [13] is shown in

black triangles. For the three considered formalisms, the shaded regions correspond to

the statistical error. For the experimental data, the error bars correspond to the statistical

and systematic uncertainties added quadratically.

the CMS experimental data is shown as black triangles. Across centrality bins, and over

all of the pT range covered by experimental data, the neural networkRAA lies between the

RAA from the AMY formalism and the Random walk approach. This is expected, as the

decay rates of the NN approach should be between that of the AMY formalism and the

Random Walk approach. We also note that below about pT < 20 GeV, all three considered

formalisms lie outside of the statistical error range from the experimental data. This is

also expected, as both the AMY and the CHG formalisms are not a good approximation

at low pT .

5.2.2.2 Jets

Having regarded charged hadrons as independent entities, we now consider them under

the jet agglomerations. In Fig. 5.12 we have the spectra of jet yield with the radius fixed

at R = 0.2. Again, we note that few differences are visible with the naked eye, and resort
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Figure 5.12: Jet Yield spectrum for the three considered formalisms, for centrality classes

0 − 5%, 5 − 10% and 10 − 20% from bottom to top, with the latter two multiplied by a

factor of 10 and 102 respectively.

to studying the nuclear modification factor to better contrast the formalisms. We consider

jet radii of R = 0.2, 0.3 & 0.4 when looking at the nuclear modification factor.

In Fig. 5.13, we have the jet RAA for the three considered centrality classes, contrasting

the considered formalisms, at a jet radius R = 0.2. A first remark is that neither of the

considered formalisms contain the experimental data within their statistical error. Nev-

ertheless, we can learn from the difference between the predictions. A common feature

of the considered RAA’s is that they seem uncorrelated of the jet energy. This could be be-

cause a static strong coupling constant αs was used. A running coupling constant would

have allowed for more variations across pT values. However, this does not persist for a

larger jet radius as we will discuss. In all three formalisms, there is also a small peak at

very low pT , but should not be considered as that is out of the scope of our evolution

formalisms. What is unexpected about the relationship between the RAA of the differ-

ent formalisms, is that the green curve, which is from the neural network approach, lies

below both the AMY and the Random Walk RAA’s.

Regarding the variations related to centrality bins, we note small RAA variations as

more peripheral centrality bins are taken. We would expect nuclear modification factors

to increase as more peripheral bins are taken since less QGP is produced, thus the jet

production should be quenched less as well, as it approaches a more p-p like collision.
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Figure 5.13: Jet nuclear modification factor for the three considered formalisms, for cen-

trality classes 0 − 5%, 5 − 10% and 10 − 20% from left to right. The jet radius is fixed at

R = 0.2. The experimental data from CMS [14] is shown in black triangles. For the three

considered formalisms, the shaded regions correspond to the statistical error. For the ex-

perimental data, the error bars correspond to the statistical and systematic uncertainties

added quadratically.

Figure 5.14: Jet nuclear modification factor for the three considered formalisms, for cen-

trality classes 0 − 5%, 5 − 10% and 10 − 20% from left to right. The jet radius is fixed at

R = 0.3. The experimental data from CMS [14] is shown in black triangles. For the three

considered formalisms, the shaded regions correspond to the statistical error. For the ex-

perimental data, the error bars correspond to the statistical and systematic uncertainties

added quadratically.
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Figure 5.15: Jet nuclear modification factor for the three considered formalisms, for cen-

trality classes 0 − 5%, 5 − 10% and 10 − 20% from left to right. The jet radius is fixed at

R = 0.4. The experimental data from CMS [14] is shown in black triangles. For the three

considered formalisms, the shaded regions correspond to the statistical error. For the ex-

perimental data, the error bars correspond to the statistical and systematic uncertainties

added quadratically.

We note from figures 5.14 and 5.15 that as we increase the jet radius, both the AMY

and the Random walk’s RAA increase, mostly for lower jet energy. As the jet radius is

increased, the tolerance to declare an agglomerate as a jet is lower, and thus more jets

should be found, as we observe with the AMY and the Random walk’s RAA. However,

the RAA from the neural network remains somewhat stable with larger jet radii.

This suggests that the jets from the neural network approach are more narrowly dis-

tributed in the η/ϕ space, since the yield is insensitive to radius change. On the other

hand, the jets from the AMY and Random walk approaches are more broadly distributed,

and thus the RAA is sensitive to radius increase, as more jets are resolvable.

The reason for this lies within the implementation of the coherence time consideration.

When utilizing the AMY or the neural network approaches, there is no coherence time.

Whenever a radiation happens in the simulation, both resulting partons are considered

separate entities. The coherence time is taken into consideration by damping the radiative

rates.

When utilizing the random walk formalism, the radiative rates used are the same as

AMY. However, when a radiation happens in the simulations, both partons remain co-

herent, until the process explained in 4.27 determines that they are no longer coherent.
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During the coherence time, both partons are not free to radiate further, effectively de-

creasing the radiative rates.

During the coherence time, while the two partons are not free to radiate, they are free

to undergo elastic scatterings, resulting in a difference in relative momentum between

the radiating partons. As a result, the jets are more broadly distributed, as observed

with the change in jet RAA of the random walk approach. It also makes sense that the

AMY jet distribution would be more narrow than that of the Random walk, since no

coherence time implies there is no period where the radiating partons are in the same

vicinity, and thus no period where they can gain relative transverse momentum by elastic

scatterings. Finally, if there is no coherence time, and there are less overall radiations, then

there will be less available partons to undergo elastic scatterings and thus gain transverse

momentum, resulting in thinner jet cones.

One could argue that the Random Walk model is more physical, as the partons should

be able to undergo elastic scatterings while in coherence. However, the random walk

approach is a rougher estimate of the CH-G rates than that of the neural network.

While the coherence time consideration would explain why the Rjet
AA of the random

walk would be above that of AMY, it does not explain why the neural network remains

below both other approaches. We attribute this to the fact that the CH-G model does

not include absorption processes from the medium, which would increase the jet energy.

These absorption processes are allowed within the AMY formalism, and thus of the Ran-

dom Walks as well.

While the lack of absorption processes yields a higher jet quenching across all con-

sidered pT regions, the Neural Network Rjet
AA with R = 0.4 is closer to the observed Rjet

AA

at low pT in fig. 5.15. However, the other approaches better describe the data in other

regions and for other choices of jet radius, and so it remains inconclusive as to which is a

better description.
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Chapter 6

Conclusion

We have suggested two parts of Heavy-Ion collisions simulations where machine learn-

ing can be used to accelerate computations, to the point where less approximations are

required, making the simulations more physically sound. We have then simulated PbPb

collisions, using MARTINI, a Monte-Carlo event generator to which we have added our

neural networks for radiative rate calculations. We were then able to compare three

jet evolution approaches, with the nuclear modification factors for both jet and charged

hadron yield.

Regarding Initial Conditions, we have shown a proof of concept that neural networks

can be used to generate ansatzes as an initial point in iterative calculations, resulting

in four times less calculation steps, without compromising any physical validity of the

solution.

Regarding Jet evolution, we have shown that the CH-G [10] jet evolution formalism

dampens the number of radiations in QGP, when compared to AMY, as expect by their

damped decay rates at early times since birth of the parent particle. This in turn translates

to a charged hadron RAA between that of AMY and the Random Walk approach [11], as

expected since the random walk decay rates bound the CH-G from below. We have also

shown that while the charged hadron yield lies between that of AMY and the Random

Walks, the jet yield is more quenched, relatively to both other approaches across all con-
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sidered pT regions. We attribute this to the fact that the CH-G formalism does not include

absorption from the medium.

In conclusion, we have shown that machine learning can be used to accelerate phys-

ically sound calculations, despite the black-box nature of neural networks. Regarding

initial conditions color gauge fields, we have shown that taking a neural network as an

ansatz for an numerical iterative procedure outperforms taking the continuous, analytical

solution as an ansatz by a factor of four. Regarding Jets, the newly possible calculations

allow us to take a more refined physical physical model. For future work, in the jet evo-

lution implementation, one could implement the time dilation of the partons by taking

into consideration the cell velocity of the hydrodynamic simulation in which the partons

are situated in each time step. One could also utilize a running coupling constant, which

would allow for a more dynamic jet RAA as a function of pT , and be more physically

sound.
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Appendix A

Code changes to MARTINI

First we add the option to load the neural networks, as opposed to reading from a table

as with the other formalisms.

void Import::init(int rateSelector){

if (rateSelector < 5)

{

read_table( &dat, &Gam, rateSelector);

}

else if (rateSelector == 5)

{

load_models();

}

readElasticRate();

readElasticRateOmegaQ();

}

We define the loading function we just called, utilizing the c++ Pytorch [50] extension,

libtorch. The models themselves have been written and trained utilizing Pytorch before-

hand.
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void Import::load_models()

{

string path = "";

const char* MARTINIPATH = "MARTINIPATH";

char* envPath = getenv(MARTINIPATH);

if (envPath != 0 && *envPath != ’\0’)

{

int i = 0;

while (*(envPath+i) != ’\0’) path += *(envPath+(i++));

path += "/main/data/";

}

else path = "./data/";

cout << "Loading Rate Models." << endl;

rate_mod_0 =

torch::jit::load(path+"compiled_models/rate_modelling/Method_0.pt");

rate_mod_1 =

torch::jit::load(path+"compiled_models/rate_modelling/Method_1.pt");

rate_mod_2 =

torch::jit::load(path+"compiled_models/rate_modelling/Method_2.pt");

rate_mod_3 =

torch::jit::load(path+"compiled_models/rate_modelling/Method_3.pt");

cout << "Rate Models Loaded." << endl;

}

We can now use the option of calling the neural network instead of the tables

double Import::getRate(double p, double k, double T, double t, int

rateSelector){

double rate = 0;

if ( rateSelector < 5) rate = use_table ( p , k , Gam.dGamma , 0);

if ( rateSelector == 5) rate = use_model(p, k, T, t, 0);
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return rate;

}

which calls the model as follows to obtain the differential decay rates

double Import::use_model( double p , double k , double T , double t,

int process ){

double output;

std::vector<torch::jit::IValue> inputs;

inputs.push_back(torch::tensor({{p, k, T, t}}));

if ( process + 1 == 1 ) output =

rate_mod_0.forward(inputs).toTensor().item<double>();

if ( process + 1 == 2 ) output =

rate_mod_1.forward(inputs).toTensor().item<double>();

if ( process + 1 == 3 ) output =

rate_mod_2.forward(inputs).toTensor().item<double>();

if ( process + 1 == 4 ) output =

rate_mod_3.forward(inputs).toTensor().item<double>();

return output;

}

Which completes the back-end changes of the rates routines inside the MARTINI pro-

gram.

As for the main interface, the time used to compute the decay rates is the difference

between the current time-step and the time of the last emission from the parton, in fm,

which we call t_rel.

To compute t_rel, we need to record for each parton the time of the last emission, so

we add that time as an attribute of the parton class. This attribute gets updated for both

the parent and daughter at each emission.

class Parton

{
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private:

...

double itsCreationt;

public:

...

double tAtEmission() const {return itsCreationt;}

void tAtEmission(double value) { itsCreationt=value;}

}

Now in the main evolve MARTINI function which loops over all partons and all time

steps, we compute t_rel. It is then used when calling the decay and differential decay

rate for any of the four radiation processes as follows, and the time of last emission is

updated whenever there is one.

// evolve every parton by one time step. This is the core of MARTINI.

int MARTINI::evolve(vector<Parton> *plist, vector<Source> *slist, int

counter, int it)

{

double t_rel;

...

for ( int i=0; i<imax; i++){ // loop over all partons

...

t_rel = t - plist->at(i).tAtEmission();

...

if( radiate == 1 ) // see if emission happens

{

if(pRest/T>AMYpCut) // do not evolve partons with momenta

below this scale

{
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// do process 1, q->qg

f = rates->findValuesRejection(pRest/T, T, t_rel,

alpha_s_rad, Nf, random, import, 1);

...

if (delp > pCut) // if new parton is kept (f.y*T >

threshold [in GeV])

{

...

plist->at(i).tAtEmission(t);

plist->push_back(newOne); // add the gluon to the list of

partons if (f.y>AMYpCut)

LT_list_0->push_back(t_rel); //Store the time difference

in the lifetimes histogram

LT_list_0 in the last line of code is a vector which is being used to store the lifetimes

of the particles between emissions, for each process. Those lifetimes are then used to

produce figures 5.6, 5.7 & 5.8.
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