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Abstract

Fluorescence microscopy is the most frequently used microscopy tool for studying live

cells. Furthermore, with the recent advent of super-resolution microscopy (SRM), one

can now circumvent the di�raction barrier imposed by traditional optical microscopes and

achieve resolutions of ∼ 10 nm. One class of SRM techniques, dubbed single-molecule

localization microscopy (SMLM), takes advantage of the photoblinking of �uorescent

probes. Photoblinking e�ectively switches probes between �uorescent �on�- and �o��-

states. Many di�erent SRM methods exist, but so far, they need to be adapted on a

case-by-case basis to be properly applied, for example, by choosing di�erent �uorescent

labels. It is, therefore, important to develop optimal probes and measurement conditions

to tune the photoblinking to achieve the highest spatial resolutions. Furthermore, most

SRM studies have so far focused on obtaining static information from biological systems

through extracting super-resolved images, but have not complemented those results with

measurements of the dynamics.

In this thesis, we present two image correlation methods we developed to address these

issues. Fluorescence and image correlation techniques are rapid to implement and widely

used for measuring dynamics and other parameters of interest in the �eld of biophysics.

We begin by introducing the basic concepts of �uorescence microscopy and then dis-

cuss various SRM methods, followed by a basic overview of �uorescence correlation spec-

troscopy (FCS) and image correlation spectroscopy (ICS). In Chapter 2, we present an

image correlation method capable of rapidly measuring photoblinking rates of �uores-

cent probes, including rates that are faster than the camera detector exposure time. We

further show that attempting to employ the standard single-molecule approach for mea-

suring these faster rates leads to aliasing. We con�rm this through analysis of simulations

and DNA-Cy5 duplexes immobilized on glass coverslips. The high-throughput nature of

our technique can allow for future optimal probe screening for SMLM application.

In Chapter 3, we introduce another image correlation technique for measuring di�usion

coe�cients, photoblinking rates and fraction of di�using particles. Unlike other image

correlation techniques, this method can be applied in regions of non-uniformly distributed

immobile particles in space that are subject to photoblinking. This can be especially

useful for measuring the dynamics in complex cellular structures that are studied by
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SMLM methods. We demonstrate our method on simulations and Dronpa-C12 labeled

beta-actin in live 3T3/NIH and HeLa cells. Our measured di�usion coe�cients were

consistent with previously reported values of G-actin in the cytoplasm. The measured

photoblinking rates also followed the expected trend with varying excitation power in the

HeLa cell data.
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Résumé

La microscopie à �uorescence est l'outil de microscopie le plus fréquemment utilisé pour

étudier les cellules vivantes. De plus, avec l'avènement récent de la microscopie à super-

résolution (SRM), il est désormais possible de contourner la barrière de di�raction imposée

par les microscopes optiques traditionnels et d'atteindre des résolutions de ∼ 10 nm. Une

classe de techniques SRM, appelée �single-molecule localization microscopy� (SMLM),

tire parti du photoclignotement des sondes �uorescentes, ce qui les fait basculer e�-

cacement entre les états �uorescents �actifs� et �inactifs�. De nombreuses méthodes

SRM di�érentes existent, mais jusqu'à présent, elles doivent être adaptées au cas par

cas pour être correctement appliquées, par exemple en choisissant di�érents marqueurs

�uorescents. Il est donc important de développer des sondes et des conditions de mesure

optimales pour régler le photoclignotement a�n d'atteindre les résolutions spatiales les

plus élevées. En outre, la plupart des études SRM se sont jusqu'à présent concentrées

sur l'obtention d'informations statiques à partir de systèmes biologiques en extrayant

des images super-résolues, mais n'ont pas complété ces résultats par des mesures de la

dynamique.

Dans cette thèse, nous présentons deux méthodes de corrélation d'images que nous

avons développées pour résoudre ces problèmes. Les techniques de �uorescence et de

corrélation d'images sont rapides à mettre en ÷uvre et largement utilisées pour mesurer

la dynamique et d'autres paramètres d'intérêt dans le domaine de la biophysique.

Nous commençons par introduire les concepts de base de la microscopie à �uorescence,

puis discutons de diverses méthodes SRM, suivies d'un aperçu de base de la spectroscopie

de corrélation de �uorescence (FCS) et de la spectroscopie de corrélation d'images (ICS).

Dans le chapitre 2, nous présentons une méthode de corrélation d'images capable de

mesurer rapidement les taux de photoclignotement des sondes �uorescentes, y compris

les taux qui sont plus rapides que le temps d'exposition du détecteur de la caméra. Nous

montrons en outre que tenter d'employer l'approche standard à molécule unique pour

mesurer ces taux plus rapides conduit au repliement de spectre, et l'avons con�rmé par

l'analyse de simulations et de duplex ADN-Cy5 immobilisés sur des lamelles de verre. La

nature à haut débit de notre technique peut permettre un futur criblage de sonde optimal

pour l'application SMLM.
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Dans le chapitre 3, nous introduisons une autre technique de corrélation d'images

pour mesurer les coe�cients de di�usion, les taux de photoclignotement et la fraction

de particules di�usantes. Contrairement à d'autres techniques de corrélation d'images,

cette méthode peut être appliquée dans des régions de particules immobiles réparties

de manière non uniforme dans l'espace qui sont sujettes au photoclignotement. Cela

peut être particulièrement utile pour mesurer la dynamique dans les structures cellulaires

complexes qui sont étudiées par les méthodes SMLM. Nous démontrons notre méthode

sur des simulations et la bêta-actine marquée par Dronpa-C12 dans des cellules vivantes

3T3/NIH et HeLa. Nos coe�cients de di�usion mesurés sont cohérents avec les valeurs

précédemment rapportées de la G-actine dans le cytoplasme. Nous montrons également

que les taux de photoclignotement mesurés suivent la tendance attendue avec une puis-

sance d'excitation variable dans les données de la cellule HeLa.
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Chapter 1

Introduction

Fluorescence microscopy is the most commonly used microscopy tool for studying live

cells. Optical super-resolution microscopy (SRM), the development of which was recently

awarded the 2014 Nobel prize in chemistry, has allowed researchers to study these systems

using �uorescence microscopy at spatial resolutions exceeding those imposed by the light

di�raction limit on traditional optical microscopes (see [4, 5]). This has led to many

advances in the study of cell biology, cellular biophysics, neuroscience and other �elds

(see [6�11]).

There is additional molecular information inherent in �uorescence microscopy images

and a plethora of analysis techniques have been developed to analyze such images. Fluo-

rescence �uctuation/correlation methods are one family of techniques that usually involve

computing the correlation function of �uorescence �uctuations to measure quantities of

interest using ensemble statistics. The �rst technique of its kind was �uorescence corre-

lation spectroscopy (FCS),[12�14] which measures the �uorescence �uctuations in time

excited within a laser beam focal volume of a femtoliter or smaller. FCS is well-known

for measuring particle densities, transport parameters, and chemical kinetics.

Assuming the system measured is ergodic, an analogous technique known as image

correlation spectroscopy (ICS)[15] was later developed that measured the �uorescence

�uctuations in space rather than time and computed particle density information from the

correlation of these spatial �uctuations. Other ICS techniques were later developed that

considered �uorescence �uctuations in both space and time, albeit with lower temporal

resolution than associated with FCS (see [16]).

Another group of techniques used for analyzing �uorescence microscopy data relies

on single-particle tracking (SPT). SPT usually consists of localizing single molecules and

then following them over time to determine parameters of interest, such as di�usion (see

[17, 18]). Since SPT methods analyze particles individually, it can be seen as being more

accurate than correlation techniques. However, SPT, being a single-molecule method,

is limited to measuring low densities of labeled molecules and can be hindered by other
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factors, such as photophysical e�ects, which can intermittently or permanently prevent a

�uorescent label from emitting photons.

In this chapter, we begin by introducing the basics of �uorescence microscopy, followed

by a discussion of SRM and �uorescence/image correlation microscopy methods.

1.1 Basics of �uorescence

Fluorescence is one form of a more general molecular emission called luminescence. Fluo-

rescent molecules have the property that their absorption and emission spectra are shifted

in wavelength. The physical reason for this shift is the Stokes shift. To illustrate this

phenomenon, we make reference to the Jablonski energy diagram depicted in Fig. 1.1.

To understand this diagram, consider a �uorophore in its ground singlet electronic state,

S0 (i.e. all electrons are paired so that they have antiparallel intrinsic spins). A photon

with a suitable wavelength can be absorbed by the �uorophore, which is then usually

excited to a higher vibrational level of an excited singlet state. This absorption occurs in

around a femtosecond.[19] Before the molecule can relax back down to the ground excited

singlet state, it typically undergoes a radiationless energy loss process known as internal

conversion, which occurs on the picosecond timescale.[19, 20] Through this process, the

excited electron relaxes to the lowest vibrational level of the �rst excited singlet state, S1.

Conversely, the absorption-�uorescence emission cycle for the excited electron typically

occurs on a timescale on the order of 1�10 nanoseconds.[19] Therefore, internal conversion

accounts for the typical higher frequency of the absorbed photon, when compared to the

emitted one (see Figure 1.1). The red-shifted wavelength of the �uorescence emission is

known as the Stokes shift. In practice, larger Stokes shifts are desirable properties of

�uorescent labels, so that the incident light on a sample can be easily �ltered without

a�ecting the output �uorescence. Fluorescence emission occurs when a photon is emitted

in the process of returning to the ground state, which often occurs from the lowest vibra-

tional level of S1 (Kasha's law).[19] Note that non-radiative processes, such as collisions,

can also relax a �uorophore back to S0 through non-emissive pathways.

A �uorophore in the excited S1 state can also enter the energetically lower �rst excited

triplet state, T1, through a spin-�ip of the excited electron. This transition is known as

an intersystem crossing. Photon emission due to relaxation from T1 to S0 is known

as phosphorescence. The time taken to decay back to S0 from T1 is relatively long

(milliseconds to seconds)[19] because the transition is spin-forbidden by selection rules.[21]

This e�ectively causes the �uorophore to stochastically enter a non-emissive �dark-state�.

Fluorophore switching between on and o� emissive states gives rise to a phenomenon
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known as photoblinking, which is one of the central topics we examine in this work. Other

mechanisms that cause �uorophore blinking also exist and depend on the �uorophore.[22]

The energy levels and transitions discussed above are summarized in Figure 1.1.

𝑆0

E
ne
rg
y

𝑆1

𝑆2

𝑇1

internal
conversion

intersystem
crossing

phosphorescence
emission

absorption fluorescence
emission

Figure 1.1: Simpli�ed Jablonski diagram of a typical �uorophore. Singlet states
(thick lines) and their excited vibrational states (thin lines) are shown. Solid arrows
represent transitions that involve a photon, while dashed arrows represent non-radiative
relaxations. A �uorophore �rst absorbs a photon of appropriate energy from S0, which
typically causes it to enter a higher vibrational state of an excited singlet state. The
excited electron then quickly relaxes to S1 via internal conversion. A photon can then
be emitted from S1 → S0, resulting in �uorescence emission. An excited �uorophore in
S1 can also enter T1 through intersystem crossing. Relaxation back to S0 is long due
to the spin-forbidden nature of the transition, causing the �uorophore to remain in a
non-emissive state. Photon emission from T1 → S0 results in phosphorescence.

Fluorophores may also cease to emit via a photochemical conversion to a non�uo-

rescent molecular form known as photobleaching, which is generally considered to be

permanent. There are many mechanisms responsible for photobleaching, which usually

depend on the �uorophore being used. One principal mechanism involves interactions

between a �uorophore in the triplet state and singlet oxygen.[22, 23] Singlet oxygen can

be formed when an energy transfer occurs between oxygen and the �uorophore, both oc-

cupying the triplet state, resulting in the quenching of the �uorophore (i.e. radiationless

de-excitation) and excitation of the oxygen to the excited singlet state.[22, 24] Fluo-

rophores are susceptible to such reactions in the triplet state due to its higher energy and

longer lifetime. Removing oxygen from a sample can mitigate this e�ect, but results in

longer lived triplet states. This happens because oxygen also quenches �uorophores in
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the triplet state.[22] Other triplet quenchers are, however, available for reducing triplet

dwell times and, consequently, photobleaching.[22] Photobleaching is also increased when

higher excitation intensities are used. This can happen through two-step photolysis,

whereby an excited �uorophore in either the singlet or triplet state absorbs a photon

to enter a corresponding excited state of a higher order (i.e. Sn or Tn for n > 1) and

then photobleaches.[25] Higher excitation intensities also increase the rate at which a

�uorophore enters the triplet state, which can accelerate photobleaching due to interac-

tions with oxygen. Other reaction mechanisms have also been attributed to �uorophore

photobleaching.[26]

1.1.1 Fluorescence lifetime and quantum yield

The proportion of emitted �uorescence relative to absorbed photons is known as the quan-

tum yield of a �uorophore, Q�. This quantity can be characterized by the �uorescence

decay rate, k�, and the sum of the non-radiative decay rates,
∑

i k
i
nr, such that,

Q� ≡
k�

k� +
∑

i k
i
nr

. (1.1)

The �uorescence lifetime of a �uorophore is a measure of the mean time it spends in

the excited state before it returns to the ground state and is given by:

τ� ≡
1

k� +
∑

i k
i
nr

. (1.2)

Note that absorption occurs on a femtosecond timescale, and consequently, is negligible

when considering lifetimes. The lifetime is an important quantity in determining the

amount of time a �uorophore can react with another molecule (e.g. oxygen) in its more

reactive excited state. Although in this work we consider the analysis of microscopy

images from emitted �uorescence photons, one can also construct images using measured

lifetimes as a function of position in the sample. This modality, known as �uorescence

lifetime imaging (FLIM), has the advantage of being independent of �uorophore density,

brightness and photobleaching (see [27, 28]).
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1.2 Fluorescence microscopy

1.2.1 Wide�eld epi-�uorescence microscope

Biomolecules labeled with �uorescent tags are widely studied using �uorescence mi-

croscopy. A schematic of a basic setup for a wide�eld epi-�uorescence microscope is

provided in Figure 1.2. At �rst, excitation light (laser, LED, or lamp) is �ltered by an

excitation �lter, which transmits the desired wavelength for absorption by a �uorescently

labeled sample of interest. The �ltered light is subsequently directed toward a dichroic

mirror angled at 45 degrees. The dichroic mirror is chosen to re�ect the excitation light

and transmit �uorescence from the sample. Therefore, the incoming excitation light is

re�ected o� the mirror towards an objective lens, which focuses the light onto the sample

of interest.

Sample

Objective
lens

Dichroic 
mirror

Emission 
filter

Detector

Fluorescence

Light 
source

Excitation
filter

Figure 1.2: Basic wide�eld epi-�uorescence microscope schematic. Filtered excitation
light is �rst re�ected by a dichroic mirror and focused onto the sample of interest
through an objective lens. Emitted �uorescence is collected back through the objective
and transmitted through the dichroic and an emission �lter in order to be collected by
a detector. Excitation light is �ltered out by the dichroic and emission �lter.

Fluorescence from the sample is back collected through the same objective lens and

transmitted through the dichroic mirror. The transmitted �uorescence is passed through

a wavelength speci�c emission �lter and is, �nally, collected by an area camera detector.

Any excitation light scattered or re�ected from the sample back through the objective

should not be able to pass through the dichroic mirror; however, any residual excitation

light that is transmitted by the mirror is �ltered out by an emission �lter. The light
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source and excitation �lter in Figure 1.2 can be replaced with an excitation laser and

beam expander to expand the laser light and a tube lens before the detector to focus the

collected �uorescence onto it. The con�guration where excitation light and �uorescence

from the sample are both passed through the objective is known as epi-�uorescence. The

epi-�uorescence setup is widely used as it allows for easy separation of �uorescence and

excitation light, which can help in enhancing the signal to background ratio.

1.2.2 Spatial resolution: the di�raction limit

In optical microscopy, the di�raction of light from a point source results in a di�raction

pattern known as an Airy disk in the focal plane. Particularly, in a �uorescence mi-

croscope, the objective lens allows for interference of the emitted �uorescence from the

sample, and consequently, leads to the e�ective blurring of the imaged �uorophores. The

intensity of this pattern as a function of space is referred to as the point spread function

(PSF) for the microscope or optical imaging system. Therefore, the inherent lateral res-

olution of a �uorescence microscope, ρAiry, is limited by the width of the PSF, which can

be characterized by the wavelength of the collected light, λ, and the numerical aperture

of the objective lens, NA, as:[29]

ρAiry ≃ 0.61× λ

NA
. (1.3)

Here, we can also write NA ≡ n sinα, where n is the refractive index of the imaging

medium and α is the half-angle that light can be collected from the objective. ρAiry is also

the radius to the �rst zero of the Airy disk and is also known as the Rayleigh resolution

criterion. According to this criterion, if two point sources of light are separated by a

distance smaller than ρAiry, they cannot be resolved as separate �uorescent emitters in

the image. Several other resolution criteria are also used when discussing resolution, but

they only di�er by a scaling factor. The axial resolution is also limited by di�raction,

with the axial distance between the center maximum and the �rst minimum given by:[29]

ζmin =
2λ

NA2 . (1.4)

E�orts to decrease ρAiry and ζmin to obtain better resolutions are rather restrictive.

Standard microscope setups with modern liquid-immersion objectives can attain an NA

of up to 1.49, although this can be further increased to 1.7 in speci�c setups.[30] Fur-

thermore, using shorter than visible wavelengths is unfeasible as this would be damaging

to live cells. Consequently, a lateral resolution of about 190 nm is the theoretical upper
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bound for the resolution limit for visible light (with NA = 1.45), but in practice, �uo-

rescence microscopes have even poorer resolutions.[10, 31] Optimal axial resolutions in a

wide�eld microscope are typically ∼ 800 nm. Most biolmolecules of interest in the cell,

however, have sizes on the order of 1�10 nm. Recent advances in �uorescence microscopy

have allowed one to push past the limits imposed by Eqs. (1.3) and (1.4) to achieve

improvements in the resolution by a factor of about 10. We will discuss some of these

super-resolution techniques later in Chapter 1.3.

1.2.3 Comparing wide�eld and confocal microscopy

In wide�eld microscopy, �uorescence from the entire sample is ultimately collected by the

detector. This includes light from out-of-focus planes, so that the signal-to-noise ratio

(SNR) is often poorer when considering thicker �uorescently labeled specimens. This

loss of resolution in the axial dimension can be mitigated by using a confocal microscope.

Although the con�guration is slightly more complex than that of a conventional wide�eld

microscope, the main addition is a pinhole in front of the detector. This pinhole has

the e�ect of rejecting out-of-focus light, or light outside the confocal spot. Consequently,

confocal microscopes have improved axial resolutions of ∼ 500 nm,[32] while their lateral

resolution is also improved by a factor of
√
2 for small pinholes (diameter of≲ ρAiry/2).[33]

Whereas the �uorescence intensity values in a wide�eld microscope are recorded in pixels,

thus forming an image, a confocal microscope only records the integrated �uorescence

intensity in the confocal volume.

Laser-scanning confocal microscopes (LSCM) are used to scan the sample spatially

to form a complete image. This can be achieved by utilizing two oscillating mirrors

(for horizontal and vertical scanning, typically driven by galvanometers), but several

adaptations for faster scanning have also been developed.[32, 33] Since much less light

reaches the detector in a LSCM, the excitation intensity needs to be increased, which

can lead to more photobleaching, which is detrimental as was previously discussed. The

time taken to scan the sample also limits the image acquisition rates in the LSCM when

compared to wide�eld microscopes. These limitations are addressed in the spinning disk

confocal microscope, which has its own inherent limitations.[32�35]

1.2.4 Total internal re�ection �uorescence microscopy

Total internal re�ection �uorescence microscopy (TIRFM) o�ers a way to improve axial

resolution, while still employing wide�eld imaging. In a TIRFM, as the name suggests,

total internal re�ection from light passing through the objective and the coverslip to the
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sample is utilized. Total internal re�ection occurs at the interface between the coverslip

and the sample, with the evanescent �eld decaying exponentially with distance away from

the coverslip. Since cell cytosol has a refractive index of ∼ 1.38,[32, 36] an objective of

higher NA must be used to make this possible. The sample is excited by the evanescent

�eld with penetration depths that can go lower than 100 nm,[32, 36] which is an improve-

ment to the axial resolution in confocal microscopy. One limitation, however, is that this

technique only enables the user to image the sample near the interface of the coverslip.

1.2.5 Detectors used in �uorescence microscopy

Wide�eld microscopes mainly utilize area photodetectors known as charge-coupled de-

vices (CCDs); however, complementary metal oxide semiconductor (CMOS) detectors are

becoming more common in wide�eld �uorescence microscopy. Speci�cally, the electron

multiplication CCD (EMCCD) and more recently developed scienti�c CMOS (sCMOS)

detectors are favored because of their low-light sensitivities. While EMCCDs outperform

sCMOS in very low-light conditions (important for mitigating photobleaching) in terms of

SNR,[37, 38] sCMOS o�ers improved temporal and spatial resolutions, as well as greater

�elds of view (FOV) and dynamic ranges.[37] Note, however, that lower excitation pow-

ers are necessary in live-cell imaging, so that higher temporal resolutions require very

low light sensitivities.[37] Furthermore, a wider dynamic range is unnecessary under such

conditions.[37] The low-light detection capabilities of EMCCDs make them the current

gold standard for TIRFM.

Unlike wide�eld microscopes, confocal microscopes use single-point detectors, such

as photomultiplier tubes (PMT) and avalanche photodiodes (APD). Spinning disk con-

focal microscopes, however, do employ pixel array detectors, such as those previously

mentioned.

1.3 Super-resolution microscopy

In the previous section, we compared several optical microscopy techniques in terms of

their resolution capabilities. In recent years, super-resolution �uorescence microscopy

(SRM) has garnered considerable attention in the biophysics �eld after the Nobel prize

in chemistry was awarded in 2014 for its development. Here we outline some of the

popular far-�eld SRM techniques.

Some SRM methods are theoretically limited by the improvement in resolution they

are able to o�er. One such technique is (standard) structured illumination microscopy
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(SIM),[39] which can increase the resolution by a maximum factor of 2. The basic idea

in this method is to shift the high spatial frequencies (i.e. structures below the resolution

limit of the microscope) to lower frequencies. This can be accomplished by passing

the excitation laser light through a di�raction grating that forms a stripe pattern with

minimum distance close to the resolution limit. The interference with the sample forms

a Moiré pattern that encodes high frequency information at lower frequencies. A super-

resolved image can be constructed by repeating these measurements at several di�erent

grid rotations and then post-processing the Moiré patterns to reconstruct a super-resolved

image. Typical lateral resolutions achieved with SIM are 100�130 nm and 300�400 nm

axially.[5] Despite its limited resolution improvement, SIM is sometimes favored because

it can be applied to a wide range of �uorophores, in contrast to other SRM techniques,

and is minimally perturbing for live-cell imaging.

SRM methods that theoretically o�er unlimited resolution improvements (but not

in practice) are classi�ed as either deterministic or stochastic approaches. Deterministic

approaches e�ectively reduce the di�raction-limited focal spot size in a LSCM by targeting

the outer region of the focal spot to inhibit �uorescence. On the other hand, stochastic

approaches use wide�eld microscopy and the stochasticity of �uorescence emission, in

processes such as photoblinking, to temporally separate �uorophores that are closely

spaced and localize their di�raction centroids sequentially in time.

The most commonly used deterministic approach is stimulated emission-depletion

(STED) microscopy.[40] In this method, the excitation laser is coaligned with a lower

wavelength STED laser, which has a �doughnut� focal intensity distribution with a (near)

zero-intensity central point. In the typical implementation, an excitation pulse is sent

to excite the sample followed by a pulse from the STED laser that is used to deplete

the excited �uorophores in the outer part of the focal spot through stimulated emission

(SE). Consequently, the remaining �uorescence is then restricted to the center of the

di�raction-limited focal spot. Since the STED pulse needs to compete with the decay

of the �uorophores back to the singlet ground state through spontaneous emission, it

must have a width of a few hundred picoseconds. The width of the outer region a�ected

by the STED beam increases with intensity of the STED laser, which in turn improves

the spatial resolution. Practically, limitations such as photobleaching restrict the user

from increasing the intensity inde�nitely. Lateral and axial resolutions of 30�80 nm and

∼ 100 nm have been achieved using STED, respectively.[4, 5, 10] The need for short

laser pulses in traditional STED and e�cient depletion of �uorophores by SE entails high

laser intensities, making it challenging for live-cell imaging. Recent developments of the

technique have addressed such shortcomings.[10] Other limitations include low photon
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signal from a reduced focal spot and slower imaging, characteristic of LSCMs.[5]

Stochastic approaches include (�uorescent) photoactivation localization microscopy

((f)PALM)[41, 42] and (direct) stochastic optical reconstruction microscopy ((d)STORM).

[43, 44] These techniques share the same basic concept for achieving super-resolution and

are part of a broader subgroup of methods dubbed single-molecule localization microscopy

(SMLM). SMLM o�ers better spatial resolutions than the previously mentioned meth-

ods, at the expense of reduced temporal resolution. Typical lateral and axial resolutions

encountered in SMLM are ∼ 20 nm and ∼ 50 nm, respectively. The poor temporal

resolution makes it incompatible for application in live cells in most instances.[5, 10] In

SMLM, only a small subset of the �uorophores in a sample are emitting at a given time

due to, for example, photoblinking in the case of STORM. Individual �uorophores can

then be localized (assuming they are immobile) at each frame in an image series within

the limitations of the di�raction limit. The precision error of localization, sloc, is deter-

mined by the number of photons collected by an individual �uorophore, Nphot, such that

(in the absence of noise),[4]

sloc ≡ σPSF/
√

Nphot, (1.5)

where σPSF is the standard deviation of the PSF, approximated to be Gaussian for lo-

calization. This last equation is true when the background noise is low and the pixel

size is very small. More general expressions for the localization error when these e�ects

are non-negligible have also been computed.[45, 46] By compiling the many individ-

ual �uorophore localizations after thousands of images, a super-resolved image can be

formed. The necessity to localize individual molecules sequentially also entails that such

approaches are usually limited to chemically �xed (i.e. nonliving) cells. The axial posi-

tion of the �uorophores can also be inferred, for example, by encoding this information

using astigmatism[47] or a double-helix PSF,[48] or by double-plane detection.[5, 49] For

proper application of STORM, the time spent by the �uorescent probe in the o�-state

needs to be su�ciently long for a given density of �uorophores. Furthermore, the �uo-

rophore density must obey the Nyquist criterion, so that there are two �uorophores per

desired resolution length. Note since stochastic super-resolution approaches use wide�eld

microscopy, the SNR can be improved by implementing TIRF imaging.

Super-resolution optical �uctuation imaging (SOFI)[50] is a stochastic approach that

does not fall into the SMLM categorization. In this method, a spatio-temporal cross-

cumulant[51] (a quantity related to the cross-correlation) is computed from an image

series of immobile blinking (or any equivalent process) �uorophores. This cumulant, as a

function of space, can be interpreted as an image. It turns out that the nth-order cumulant
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depends on the nth power of the PSF.[50] If the PSF could be approximated as a Gaussian,

for example, this would correspond to a "new" SOFI image with resolution improved by

a factor of
√
n. As such, SOFI o�ers better temporal resolution than the previously

mentioned stochastic methods at the cost of lower spatial resolution.[5] In practice, since

reconstructed SOFI images do not scale linearly with brightness and di�erent blinking

rates, higher-order cumulants are limited in their improvement of the optical resolution.

This has been addressed in spin-o� techniques, such as, balanced SOFI (bSOFI),[51]

which aimed to linearize the response to these parameters in the SOFI image.

More recently, a new localization SRM method called minimal photon �uxes (MIN-

FLUX)[52] combines the concepts of SMLM and STED to achieve resolutions of ∼ 1 nm

(another recently published technique known as MINSTED[53] has also reported reso-

lutions on this order, but we will not detail it here in the interest of space). The basic

principle relies on probing a �uorophore with a donut shaped excitation beam (instead

of the depletion beam used in STED) with an intensity minimum in the center and de-

termining its position based on the number of photons emitted at several positions of

the intensity minimum. The measurements are subsequently made more precise by it-

eratively moving the probe closer to the �uorophore. The closer the �uorophore is to

the intensity minimum, the less emitted photons are collected. Ideally, the �uorophore

would not emit any photons, indicating that its position is perfectly aligned with the

intensity minimum. Localization becomes possible by stochastically switching the �uo-

rophores between on/o� states, as is done in PALM/STORM. In contrast to other SRM

techniques, MINFLUX does not rely on acquiring more photons to achieve better reso-

lutions, thus minimizing the e�ects of photobleaching and reducing acquisition times for

localization (∼ 100 µs). Furthermore, using centroid localization to determine particle

positions, as is done in SMLM, can lead to inaccuracies depending on the orientation of

the �uorophore.[54, 55] Conversely, localization using MINFLUX has been shown to be

independent of such e�ects.

1.4 Mathematical primer

Before delving into the study of image correlation spectroscopy, we introduce some useful

mathematical formalism. In this section, we begin by introducing stochastic processes

and their autocorrelations. We then present the time-evolution equation (i.e., the master

equation) for a special class of processes, known as jump Markov processes. Finally,

we outline the Gillespie algorithm for these processes,[56] which is used to simulate the

master equation exactly.
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1.4.1 Stochastic processes

In this work, we will be interested in understanding the �uorescence intensity �uctuations

caused by particle di�usion and �uorophore blinking and bleaching (i.e., �uorophore pho-

tophysics). These phenomena can be described mathematically as stochastic processes;

that is, they can be described by a random variable at each point in time. Explicitly, the

photophysical state of a �uorophore, Θt, can be written as:

Θt =

{
1 �uorophore is �uorescing at time t

0 otherwise
, (1.6)

while the position of a particle di�using in R2 can take on any value in that space

at any point in time. The intensity at a given point in space as a function of time in a

�uorescence microscopy image series, i(r, t), is also a stochastic process that is dependent

on the particle positions and the photophysical states of the �uorophores. We will provide

an expression for this quantity in Section 1.5.

All the stochastic processes considered in this work are known as Markov processes.

A Markov process, Xt, has the property that its conditional probability density function

at time tj satis�es:

P (Xtj |Xtj−1
, . . . , Xt1 , Xt0) = P (Xtj |Xtj−1

), (1.7)

for any tj ≥ tj−1 and j ≥ 2; that is, the value of Xtj only depends on the last given state

of the system, Xtj−1
. While this de�nition will not be especially useful in this work, we

will be able to provide an expression for the conditional probability distribution of Θt

through the master equation (presented in Section 1.4.3; see also photostate autocorre-

lation computation) by assuming it to be a Markov process, a standard assumption in

the �eld for photophysical processes of a �uorophore. Interestingly, certain �uorophores

have been shown to follow non-Markovian photoblinking trajectories; one such example

being quantum dots, which exhibit power law photophysical kinetics.[57, 58]

We further de�ne temporal homogeneity as a process that satis�es:

P (Xt+τ |Xt) = P (Xs+τ |Xs), for any s, t > t0; τ ≥ 0. (1.8)

Moreover, the temporal homogeneous process, Xt, is said to be stable if:

lim
t→∞

P (xt|x0) = PS(x), (1.9)
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where PS(x) is called the stationary distribution of Xt. The stationary distribution

characterizes the process after it has had enough time to decorrelate from its previous

state. This distribution will also be useful for computing the photostate autocorrelation

in Chapter 2.

1.4.2 The autocorrelation

Central to this work is the time autocorrelation of the �uorescence intensities, i(r, t),

which is usually written theoretically as (the same quantity is referred to as the autoco-

variance in mathematics):

ϕ(τ) ≡ ⟨δi(r, t)δi(r, t+ τ)⟩, (1.10)

where ⟨·⟩ is the expectation value, or ensemble average and δi(r, t) ≡ i(r, t)− ⟨i(r, t)⟩.
In this last equation, we have implicitly assumed that i(r, t) is a (weakly) stationary

process, i.e., its mean and autocorrelation are independent of the time variable, t. Many

factors, however, may break this assumption, the most obvious one being photobleaching.

We will omit dependence on t throughout the rest of the introductory chapter to be

consistent with the literature, but will reintroduce it in the main chapters, where we do

consider the e�ects of photobleaching.

Another subtle point is that i(r, t) is usually assumed to be sampled discretely in time.

There is, however, some hidden time information in the �uorescence intensity. This is due

to the exposure time of the detector, during which �uorescence is collected. Furthermore,

for the speci�c case of EMCCD detectors (the data presented in the main chapters was

acquired using such detectors), there is also an associated dead time between image frames

where the input signal is processed and �uorescence incident on the detector array is

not recorded. It would, therefore, make sense to instead autocorrelate the �uorescence

intensity collected during the exposure time of a single frame, so that we replace in the

autocorrelation:

i(r, t) →
∫ t+τi

t

i(r, t), (1.11)

where 0 ≤ τi ≤ 1 is the exposure time. Note that the integration of a Markov process

is a well-de�ned quantity (see [56]). We will again only include this e�ect in the main

chapters of this text. In Chapter 2, we will show that considering such e�ects in the

autocorrelation can increase the dynamic range of measurable blinking rates, including

ones that are faster than the detector sampling rate.
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In practice, the autocorrelation of a process sampled uniformly in time, x[t], of length

T can be estimated as (for τ ≥ 0):

ϕ̂(τ) ≡ 1

T − τ

T−τ−1∑
t=0

δx[t]δx[t+ τ ]; (1.12)

however, if µt is unknown and is replaced by the sample mean, x[t], this estimator is

generally biased, i.e.

⟨ϕ̂(τ)⟩ ≠ ϕ(τ ; t). (1.13)

We will revisit this later in Chapter 3, where we will provide a correction for this bias

in our de�ned autocorrelation. Note that the estimator in Eq. (1.12) does have some

nice asymptotic properties, such as being consistent[59] (i.e., the estimator converges in

probability to the parameter it is estimating, ϕ̂
p−→ ϕ) under certain assumptions.

The computation time of Eq. (1.12) scales as O(T 2); however, the autocorrelation can

also be computed using the Wiener-Khinchin theorem, if δxt is stationary, as:

ϕ̂(τ) =
1

T − τ
F−1

τ

(
|δx̃⋆[ω]|2

)
, (1.14)

where F−1
τ (·) is the inverse discrete Fourier transform (DFT), ω is the Fourier transfor-

mation variable and x̃⋆[ω] is the DFT of x⋆[t], where

x⋆[t] = x[t]⊕ 0T+s, with

s ≡ argmin
m≥0

{(2T +m)− 2n = 0}, for any integer n ≥ 0. (1.15)

Here we denote 0N as the N -dimensional zero vector. Eq. (1.14) reduces the computation

time to scale as O(T log T ) when T is a power of 2, due to the fast Fourier transform

(FFT) algorithm.[60] Owing to the cyclical nature of the DFT, Eq. (1.15) ensures that

the autocorrelation computed using Eq. (1.14) is acyclical by padding with zeros to at

least double the length of x[t], as well as assuring that Eq. (1.14) utilizes the FFT by

then padding to the next power of 2. Eq. (1.14) can also be extended for non-stationary

processes through ensemble averaging, instead of time-averaging.[61]

1.4.3 The master equation

The time-evolution of a Markov process is generally characterized by an in�nite order

partial di�erential equation, known as the Kramers-Moyal equation.[56] For the purpose

of this work, however, we will only need to consider jump Markov processes with discrete
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states. A jump Markov process assumes that the number of jumps in any time interval is

countable. In this special case, the time-evolution of the process, Xt, can be characterized

by the forward master equation:[56]

∂tP(Xt = n|Xt0 = n0) =
∞∑

ν=−∞

[
W(n|n− ν, t)P(Xt = n− ν|Xt0 = n0)

−W(n− ν|n, t)P(Xt = n|Xt0 = n0)
]
, (1.16)

where W(n2|n1, t) is the rate of Xt jumping from n1 → n2 at time t and W(n2|n1, t) dt

is the probability of this transition occurring in the time interval [t, t + dt). Notice the

�rst term in the square brackets in Eq. (1.16) represents the probability ��ux� into state

n, while the second term represents the ��ux� out of the state.

1.4.4 The Gillespie algorithm

We will use the Gillespie algorithm in this work to simulate the photoblinking/-bleaching

process in Chapter 2. In order to do this, we will need to assume that this process is

Markovian, as was previously mentioned. We will further assume temporal homogeneity

for simplicity, although this assumption can be broken due to several factors a�ecting

�uorophore photophysics, such as �uctuations in the excitation intensity, pH, temperature

or oxygen levels.

In general, the approximate time evolution of a continuous Markov process can be

simulated using the non-in�nitesimal Langevin equation.[56] In the special case when

Xt is a jump Markov process, it is possible to simulate the process exactly through the

Gillespie algorithm.[62]

Here we brie�y outline the algorithm for a temporally homogeneous process. This

condition implies that the wait time to the next jump out of initial state n1 is expo-

nentially distributed,[56] so that one can simulate the next jump time, τ , by randomly

sampling this distribution, so that:

τ = −1

λ
ln(r1), (1.17)

where r1 is a random sample taken from the continuous uniform distribution on [0, 1]

(denoted U(0, 1)) and

λ ≡
∑
n2

W(n2|n1). (1.18)
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The absence of time from this last equation is a consequence of temporal homogeneity.

Note that λ is then simply the rate of leaving n1 at any time. Given that a jump occurred,

we now need to randomly determine the new state, n2. This can be accomplished by

solving:

n2 = argmin
n

{
λr2 <

n∑
n′=−∞

W(n′|n1)

}
, (1.19)

where r2 is again sampled from U(0, 1). Eq. (1.19) is a direct consequence of the jump

probabilities being proportional to the transition rates. Eqs. (1.17) and (1.19) describe

how to exactly simulate a discrete jump Markov process.

1.5 Fluorescence �uctuations and correlation analysis

In Section 1.3 we introduced SRM methods, which cleverly overcome the physical limita-

tions imposed by the di�raction limit on �uorescence microscopy. These techniques are

mostly focused on obtaining super-resolved images of immobile particles, but typically

do not reveal any information about the dynamics in the system (although there exist

methods that aim to obtain both that we will brie�y discuss in Chapter 3). Many ap-

proaches exist for characterizing dynamics in �uorescence microscopy and a very popular

group of such approaches auto- or cross-correlate the �uctuations in �uorescence intensi-

ties to this end. The advantage of these correlation techniques is that they are relatively

quick and accessible, sometimes involving only a simple linear regression in their appli-

cation. Moreover, additive white noise present in an image series will not contribute to

the autocorrelation at non-zero lag values by de�nition.

1.5.1 Mathematical representation of a �uorescence image series

We previously discussed that the image of a point source under a �uorescence microscope

has a spatial intensity distribution characterized by the PSF. Thus, the intensity of an

image series, i(r, t), at position r at time t is given by the spatial convolution of the

apparent �uorophore density, ρ(r, t), and the PSF, I(r), if we ignore the e�ects of noise,

i.e.

i(r, t) = I(r)⊗r ρ(r, t). (1.20)

Note that this equation assumes that the acquisition of the �uorescence image is a linear

and shift invariant process. For example, shift invariance can be broken by a non-uniform

excitation illumination, so that the PSF is not consistent over the entire �eld of view.
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Spherical aberration can also a�ect the PSF when considering di�erent imaging planes

in 3D imaging.[63] See [64, 65] for proposed solutions to these issues.

The apparent �uorophore density can be written as:

ρ(r, t) =
∑
m

qm,tΘm,tδ(r − um,t), (1.21)

where qm,t is the brightness of �uorophore m at time t, given it is in an emissive state

(we later add a stochastic integral to Eq. (1.20), at which point we refer to qm,t as the

instantaneous rate of detector counts); um,t denotes the �uorophore's position; δ(·) is the
Dirac delta function, thus assuming �uorophores are ideal point sources of �uorescence;

and Θm,t is the photo-emissive state of the �uorophore, as given in Eq. (1.6).

Note qm,t will generally depend on multiple factors, including the quantum e�ciency

of the �uorophore and the detector, the absorption cross-section of the �uorophore, how

the detector converts analogue signal to discrete counts, as well as other factors. Note also

we assume a linear relationship between excitation intensity and detector counts. This

is a simplifying assumption as the conversion between number of photons and detector

counts is a stochastic process. We will include this detector noise in our simulations

following a model proposed by Hirsch et al. (2013)[66] for an EMCCD detector. Also

note that Θm,t is a�ected by both photoblinking and photobleaching. We do not consider

the faster transitions between the singlet states, as these are on much shorter timescales

than the time-resolutions of CCD detectors, which we utilize to acquire our data. Using

�uorescence correlation spectroscopy (FCS), which will be introduced in the next section,

one can measure these faster dynamics.[67] We will be particularly interested in Θm,t

throughout this work.

1.5.2 Fluorescence correlation spectroscopy

Historically, FCS[12�14] was the �rst method to propose an autocorrelation approach for

analyzing �uorescence �uctuation data in 1972[12] and is still in use today. The method

consists of autocorrelating the intensity �uctuations collected from a spatially �xed confo-

cal focus in the sample over time.[68] Its �rst realization was applied to a reaction-di�usion

system of particles for measuring di�usion coe�cients and chemical kinetic rates. The

restriction to a single point in space allows for high temporal resolution; however, this is

at the cost of longer acquisition times to attain su�cient data for meaningful statistical

analysis. Scanning FCS (SFCS) was developed to address such limitations by scanning

the sample. Its �rst realization was proposed as a method for determining the molecular
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weights of DNA molecules.[69] This set the stage for the development of the imaging

analog image correlation spectroscopy (ICS) using an LSCM,[15] which we discuss in the

next section.

FCS consists of computing the autocorrelation function (ACF), which is de�ned in

FCS as:

Φ̂FCS(τ) ≡
1

T−τ

∑T−τ−1
t=0 δi(t)δi(t+ τ)(
1
T

∑T−1
t=0 i(t)

)2 (1.22)

where we assumed stationarity. This last estimator is assumed to be an estimate of:

ΦFCS(τ) ≡ ⟨Φ̂FCS(τ)⟩ ≃
⟨δi(t)δi(t+ τ)⟩

⟨i(t)⟩2
. (1.23)

This turns out to be true to lowest order of an expansion in terms of the �uctuations of

Eq. (1.22); however, the ACF is asymptotically unbiased with its variance also approach-

ing zero at large T (see [70]), as is also the case with the sample autocorrelation with

unknown mean. Note in these last equations the intensity is only a function of t since it

is only monitored at a single confocal spot in FCS. The normalization of the FCS ACF

is speci�cally chosen to give information about the particle density within the confocal

volume (we show this in the next section).

1.5.3 Image correlation spectroscopy

ICS[15, 16] was developed as the imaging (spatial domain) extension of FCS and involves

correlation analysis of images from wide�eld and LSCM �uorescence microscopes. It

was �rst utilized to measure concentrations and degrees of aggregation.[15] Assuming

ergodicity in space and time, the idea of ICS is to use spatial information to calculate the

same statistics as in FCS. Since ICS is not limited to �uorescence �uctuations acquired

from a single point in space, statistically meaningful correlations can usually be computed

with less temporal sampling.

In ICS techniques, the generalized spatiotemporal sample ACF is written as:

Φ̂ICS(ξ, τ) ≡
δri(r, t)δri(r + ξ, t+ τ)r,t

i(r, t)ri(r, t+ τ)r
, (1.24)
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where we have used subscripts after the sample means to denote which variables are being

averaged over, and

δri(r, t) ≡ i(r, t)− i(r, t)r. (1.25)

As in FCS, the ACF normalization in Eq. (1.24) is chosen so that the ACF amplitude

gives information about the particle density. To see this, we evaluate the ACF as the lag

variables approach 0. We do not evaluate at 0 because it is potentially a�ected by white

noise.

Using Eqs. (1.20) and (1.21), we evaluate the ACF amplitude denominator, so that:

⟨i(r, t)⟩2 =

(∑
m

⟨qm,tI(r − um,t)⟩

)2

= N2q2⟨I(r − ut)⟩2, (1.26)

where we assumed qm,t ≡ q is a constant; all �uorophores are identical so that the sub-

script m is dropped; N is the number of �uorophores in the sample volume; and ut is

the particle position. Note we have also omitted the photophysical term, Θm,t, as it is

unimportant for the current derivation (see [71] for a derivation including this term).

Similarly, we evaluate the ACF amplitude numerator:

⟨δi2(r, t)⟩ =
∑
m,n

⟨δim(r, t)δin(r, t)⟩

=
∑
m

⟨δi2m(r, t)⟩

= Nq2⟨δI2(r − ut)⟩. (1.27)

In this last equation, we de�ned im(r, t) to be the �uorescence intensity contribution from

the mth �uorophore and assumed independence between di�erent particles.

To evaluate the ensemble averages in Eqs. (1.26) and (1.27), we assume that the

sample being imaged is two-dimensional e.g. a cell membrane. Recall that the 2D PSF

for a point source of light in an optical microscope is an Airy disk, which can be reasonably

approximated as a Gaussian, i.e.,

I(r) = I0 exp(−2r2/ω2
0), (1.28)

with ω0 being the e−2 radius of the PSF and I0 being the amplitude of the excitation

intensity. Note this assumes a linear dependence between the excitation intensity and

the �uorescence intensity. This is a good approximation at low light intensities,[25] but
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breaks down at higher intensities due to optical saturation, where �uorophore excitation

to the excited singlet state is limited by the relaxation rate to the ground singlet state.

We then have:

⟨I2(r − ut)⟩ = ⟨I2(ut)⟩ =
∫
R2

dut P (ut)︸ ︷︷ ︸
=1/AS

I2(ut) = I20πω
2
0/4AS, and (1.29)

⟨I(r − ut)⟩2 = ⟨I(ut)⟩2 =
(∫

R2

dut P (ut)I(ut)

)2

= I20π
2ω4

0/4A
2
S, (1.30)

where AS is the sample area and the unconditioned probability density of �nding a

�uorophore at any time is uniform within this area. We also assumed ω2
0 ≪ AS to extend

the integrals over real space.

Using these last expressions, we write the ACF amplitude:

Φ(ξ → 0, τ → 0) =
⟨δi2(r, t)⟩
⟨i(r, t)⟩2

=
1

Nπω2
0/AS

− 1

N
. (1.31)

The �rst term in this equation represents the amplitude of the ACF, whereas the second

term is a constant o�set. Note that the �rst term is the inverse of the expected number

of �uorophores within a characteristic PSF area.

The original ICS technique was developed using only the spatial autocorrelation. The

more general spatiotemporal ICS (STICS)[72] considers both spatial and temporal lag

variables, as its name implies. The STICS ACF o�ers a visual representation of the

particle dynamics in a system. Brie�y, a di�using population will broaden the STICS

ACF Gaussian pro�le and a �owing population will appear as a translated Gaussian peak.

Another technique dubbed k-space image correlation spectroscopy (kICS)[73] investigates

the autocorrelation of the spatially Fourier transformed intensities. This approach has

several advantages, including being able to separate the photophysics from the trans-

port properties (e.g. di�usion, �ow) in a system, as well as the ability to obtain a PSF

independent ACF. We discuss kICS further in Chapter 3.

Particle ICS (PICS)[74] is a technique that combines ICS and single-particle tracking

(SPT) to determine di�usion coe�cients. Unlike other ICS techniques, PICS normalizes

by the number of particles at a speci�c point in time. Another method, dubbed raster

ICS (RICS),[75] calculates spatial correlations of �uorescence along the independent or-

thogonal scan directions of the raster scan acquired image, collected on an LSCM. RICS

considers the scan times in its autocorrelation, thus allowing for measurement of faster
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di�usion coe�cients in comparison with other ICS techniques.

The assumption of ergodicity connecting FCS to ICS is a strong one. Any inhomoge-

neous distribution of the �uorophores (or �uorescence) in space causes this assumption

to break. Moreover, parameters that vary spatially (e.g. viscosity, con�nement poten-

tials) will alter the particle dynamics in di�erent regions of the sample being studied.

Likewise, non-stationary temporal processes, such as photobleaching, also prevent one

from simply calculating the ACF through a time average without considering these ef-

fects. These types of spatiotemporal non-uniformities are especially encountered when

studying cellular samples.

The lack of ergodicity in these systems calls into question how we should compute the

averages in the sample ACF. Furthermore, the expected value of the ACF will depend

on which means are used in the de�nition of the sample ACF. For instance, in Chapter 2

we show that subtracting the temporal mean of the �uorescence intensity, as opposed to

the spatial one, when de�ning the intensity �uctuations in the ACF, results in a loss of

information in the photoblinking. We further use a moving/local spatial mean to lessen

the e�ect of spatial heterogeneities caused by, for example, the excitation illumination

beam pattern. In Chapter 3, we show that subtracting a local temporal mean in the in-

tensity �uctuation de�nition results in a �ltering of unwanted information about blinking

immobile �uorophore positions. Therefore, one must choose the de�nition of the ACF

carefully depending on the quantities that they hope to measure.

1.5.4 k-Space image correlation spectroscopy (kICS)

As mentioned above, kICS[73] is an ICS technique that considers the autocorrelation of

the spatial Fourier transform of the microscope image �uorescence intensities. One obvi-

ous advantage of kICS is the utilization of the convolution theorem in Eq. (1.20), allowing

for the possibility of dividing out the PSF from the autocorrelation. Another advantage

is the ability to separate photophysical and transport kinetics in certain systems, as will

be shown below.

To derive the kICS autocorrelation, we �rst consider the spatial Fourier transform of

the image series intensities, de�ned in Eq. (1.20):

ĩ(k, t) = Ĩ(k)ρ̃(k, t). (1.32)

The kICS autocorrelation is de�ned as (assuming stationarity):

ϕ̃(k, τ) = ⟨̃i(k, t)̃i∗(k, t+ τ)⟩. (1.33)



1.5. Fluorescence �uctuations and correlation analysis 23

Using Eq. (1.21) in this last equation, we have:

ϕ̃(k, τ) = Nq2|Ĩ(k)|2⟨ΘtΘt+τ ⟩⟨eik·(ut+τ−ut)⟩, (1.34)

where we have used the Fourier transform de�nition f̃(k) ≡
∫
dr exp(ik · r)f(r) and

made the same assumptions as in the last section. Note we have assumed independence

between particle position and photophysics in this last equation. Such an assumption

may not hold if the excitation power varies su�ciently over the region of interest (ROI)

being analyzed and optical saturation has not been attained over its entirety (see [76]).

Note further we do not consider these e�ects of the excitation beam intensity pro�le in

our formalism of an image series in Eq. (1.20), as was previously mentioned.

With the substitution ζ ≡ ut+τ − ut, the expectation value depending on the particle

positions can be rewritten in 2D as:

⟨eik·ζ⟩ =
∫
R2

dζP (ζ, τ)eik·ζ = P̃ (k, τ), (1.35)

which is the Fourier transformed probability distribution of the particle displacement

after time τ . Note we have implicitly assumed that the particle position is a stationary

process. We have further assumed that the sample area is large compared to the particle

displacements, so that the last integral is carried over all space.

The convection-di�usion process is one example of a stationary process of interest in

this work. The motion associated with this process is free di�usion with a velocity. Its

time-evolution equation is given by:[77]

∂τP (ζ, τ) = ∇ζ · ((D∇ζ − v)P (ζ, τ)) , (1.36)

where D is the di�usion coe�cient and v is the velocity. Solving this equation in Fourier

space gives:[77]

P̃ (k, τ) = e−|k|2Dτeik·vτ . (1.37)

In the case of free di�usion, one can then separate di�usion dynamics in Eq. (1.34)

from the rest of the equation by writing:

ln ϕ̃(k, τ) = ln

(
1

4
Nq2I20π

2ω4
0⟨ΘtΘt+τ ⟩

)
− |k|2

(
Dτ +

ω2
0

4

)
, (1.38)

where we have used the Fourier transform of the Gaussian PSF (see Eq. (1.28)) to write

this last expression. The �t for the di�usion coe�cient then simply reduces to be linear in
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|k|2 for �xed τ and the o�set term containing the photophysical information can simply be

ignored. In Durisic et al. (2007),[78] the authors applied kICS to measure di�usion rates

independently of photoblinking of quantum dot probes tagging cell surface receptors, for

example.

Convection-di�usion in 3D will also be of interest to us. To determine the kICS

autocorrelation of this process, we �rst need to provide an expression for the 3D PSF. A

simple approximation is to assume a Gaussian PSF in the axial dimension with an e−2

radius z0, such that:

I(r) = I0 exp(−2(r2
∥/ω

2
0 + z2/z20)), (1.39)

where r∥ is the displacement in the lateral plane, and z is that along the axial direction.

More accurate analytical expressions exist for predicting the 3D PSF (e.g., see [79]). The

details of the kICS autocorrelation calculation for 3D convection-di�usion are given in

Kolin et al. (2006).[73] The resulting expression reads:[73]

ϕ̃(k, τ) = ϕ̃2D(k, τ)×
z20

4
√
π
√
4Dτ + z20

exp

(
− v2zτ

2

4Dτ + z20

)
, (1.40)

with ϕ̃2D(k∥, τ) being the expression found for the kICS autocorrelation in the 2D case in

Eq. (1.34); k∥ being the counterpart of r∥ in Fourier space; and vz being the velocity in the

axial direction. The 3D kICS autocorrelation is thus a product of the 2D autocorrelation

with an additional factor accounting for the axial component of the system.

In Chapter 2, we provide an explicit expression for the photophysical correlation in

Eq. (1.34). Speci�cally, we consider a simple two-state on-o� system with photobleaching.

The on-state occurs when the �uorophore is switching between the ground singlet and

excited singlet states and has the potential to emit �uorescence photons, while the o�-

state occurs when the �uorophore becomes trapped in the triplet state, or any other

intermittent �dark�-state, for example. We will also consider the time-integration e�ects of

the detector in our derivation. In Chapter 3, we extend kICS to analyze systems with non-

uniformly distributed, immobile blinking and bleaching �uorophores. The application of

the original technique to such a system would yield oscillations in the autocorrelation, as

will also be shown in Chapter 3.

1.6 Outline of main chapters

Before we proceed to the main chapters, we �rst brie�y outline their contents.
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In Chapter 2, we introduce a correlation technique for rapidly measuring photophysical

rates of immobile �uorophores. We saw in Chapter 1.3 the rates of these processes are

important for optimizing single-molecule localization microscopy (SMLM), a commonly

used subset of SRM methods. Fluorescent probe photophysical rates can also be useful

for sensing chemical changes in the cell environment. A common technique for measuring

these rates is to localize single molecules, binarize their intensity traces through intensity

thresholding and then �t the resulting binary traces. We will show that this method

can lead to aliasing when the photophysical processes are fast compared to the camera

detector sampling rate. Furthermore, this type of method is typically time-consuming

and cannot be utilized at high �uorescent probe densities, where single molecules cannot

be resolved in isolation.

In Chapter 3, we introduce another correlation technique that can rapidly measure

di�usion properties and photophysical rates of a system simultaneously. Unlike other

�uorescence image correlation methods, our method was capable of analyzing regions with

non-uniform distributions of immobile blinking �uorescent molecules, or �uorophores.

This allowed us to study the dynamics in systems relevant to SMLM. We believe this is

important as most SMLM studies have so far been focused on producing static super-

resolution images without considering dynamics.
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Preface to Chapter 2

In this chapter we will introduce a novel �uorescence image correlation technique for

measuring photoblinking and photobleaching rates of immobile �uorophores. Currently,

the most commonly used method for measuring photoblinking rates is to localize sin-

gle �uorophores and �t their intensity traces. One way to do this is to use hidden

Markov modeling as described in [80] (in fact, this method was developed for analyzing

�uorescence resonance energy transfer trajectories, but this process is analogous to pho-

toblinking under certain assumptions). The on- and o�-blinking times are then collected

from the analyzed �uorophores and binned in histograms that are subsequently �t with

exponential distributions to determine the mean on-o� blinking times (this is the case for

a simple two-state on-o� blinking system). This approach is not only time-consuming,

taking hours to implement typically, but also does not consider the exposure time of

the camera detector, which can result in an aliased measurement of the blinking rates

(when the rates are near or faster than the camera image frame rate). By considering

the e�ect of the camera integration time in our ACF de�nition, we showed that we can

successfully measure these faster photoblinking rates in photoblinking simulations with

simulated EMCCD noise and for real �uorophores; namely, we investigated DNA-Cy5

duplexes immobilized on a glass coverslip. Note that the single-molecule approach can

also consider the e�ects of camera exposure time (to our knowledge, this has not yet been

done). Autocorrelation techniques can also be used at much higher �uorophore densities

than single-molecule methods.

Analyzing single-molecule intensity traces is crucial when di�erent �uorophores do not

assume the same photoblinking rates. On the other hand, the autocorrelation approach

we developed cannot determine the underlying probability distributions for the blinking

rates. Furthermore, unlike single-molecule methods, our technique requires uniformly

distributed �uorophores. This assumption can be hard to satisfy, for instance, when the

�uorophores are aggregated. Another e�ect that needs to be considered when applying

our method is the sampling bias encountered when dealing with rates relevant to STORM

single-molecule localization studies (see Chapter 1.3). The high-throughput nature of our

method, however, makes it a good candidate for rapidly screening dyes for application in
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SMLM and SOFI studies and to actively probe for environmental changes in the cell by

detecting changes in the blinking rates of �uorescent probes.
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Chapter 2

A High-Throughput Image Correlation

Method for Rapid Analysis of

Fluorophore Photoblinking and

Photobleaching Rates

This section is based on the published manuscript:

Sehayek, S., Gidi, Y., Glembockyte, V., Brandão, H.B., François, P., Cosa, G., and

Wiseman, P.W. A High-Throughput Image Correlation Method for Rapid Analysis of

Fluorophore Photoblinking and Photobleaching Rates, Biophys. Rep. 13, 10, 11955�

11966 (2019).[1]

2.1 Abstract

Super resolution �uorescence imaging based on localization microscopy requires tuning

the photoblinking properties of �uorescent dyes employed. Missing is a rapid way to

analyze the blinking rates of the �uorophore probes. Herein we present an ensemble

autocorrelation technique for rapidly and simultaneously measuring photoblinking and

bleaching rate constants from a microscopy image time series of �uorescent probes that

is signi�cantly faster than individual single-molecule trajectory analysis approaches. Our

method is accurate for probe densities typically encountered in single-molecule studies as

well as for higher-density systems which cannot be analyzed by standard single-molecule

techniques. We also show that we can resolve characteristic blinking times that are faster

than camera detector exposure times, which cannot be accessed by threshold based single

molecule approaches due to aliasing. We con�rm this through computer simulation and

single-molecule imaging data of DNA-Cy5 complexes. Finally, we demonstrate that with
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su�cient sampling our technique can accurately recover rates from stochastic optical

reconstruction microscopy (STORM) super-resolution data.

2.2 Introduction

Fluorescence microscopy is the most widely used microscopy modality for live cell imag-

ing and within this �eld super-resolution �uorescence microscopy has expanded rapidly

since initial developments just over a decade ago. Single-molecule localization microscopy

(SMLM) is a major subgroup of these methods that relies on emission photoblinking,

or reversible binding/unbinding of probes, for molecular localization[1�4]. Therefore,

probe development and experimental optimization of SMLM requires the understanding

of probe photophysical and photochemical behavior. Quantitative biophysics measure-

ments are also impacted by emission blinking of probes. Researchers have shown that

�uorescence correlation spectroscopy (FCS) measurements of quantum dot and nanopar-

ticle labeled biomolecules are impacted by blinking of the probe nanoparticles[5, 6]. Thus

it is important to be able to measure the rates of photo-processes accurately and rapidly

to optimize imaging based measurements and for screening new dyes and probes for single

molecule and super-resolution applications.

Currently, it is standard to measure �uorophore photoblinking rates from a �uo-

rescence microscopy image series by �rst localizing a large set of individual (isolated)

dye molecules and then �tting their respective intensity time traces using logistic re-

gression (or a multinomial regression when intermediate �uorescent states exist). The

localization and binarization of these traces is not only time-consuming, dependent on

subjective choice of arbitrary thresholds and manual user-input, but also needlessly dis-

cards important intensity information that can be used to more accurately determine the

photophysical and photochemical properties of the system.

Here we develop an automated image autocorrelation method that can rapidly and

simultaneously measure �ensemble� photophysical/-chemical rates (i.e. photoblinking and

bleaching rates) from a region of interest (ROI) encompassing multiple �uorescent dyes

within a �uorescence microscopy intensity image series (see Figure 2.1). We show that in-

dependent of the underlying photophysical/-chemical process, we can obtain an expression

for the autocorrelation function (ACF) that is solely dependent on the photophysical/-

chemical rate parameters.

In this work, we studied dyes that exhibit exponentially distributed dwell times in

both a �uorescent on- and a non-�uorescent o�-state, while also accounting for the e�ect

of photobleaching. Moreover, we lay the mathematical groundwork for extending to more
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Fit ACF

Image series

Probe environment sensing
Probe optimization screening
Probe optimization SMLM

Applications
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Compute ACF

ROI of blinking probes

Figure 2.1: Schematic illustration of autocorrelation method applied to high-density
�uorescent image series of immobile blinking �uorophores. An ROI is �rst chosen to
minimize spatial non-uniformities (top-left) and sample a number of �uorophores (top-
right; dashed circles represent positions of dyes that are not emitting in a given frame).
The �uorescence �uctuation time autocorrelation is then computed for each ROI pixel.
The ACF from each pixel is then averaged (bottom-left) and subsequently �t for the
photophysical/-chemical parameters using the �t model. Applications include fast probe
screening for photophysical and photochemical properties, which can be especially useful
in SMLM, and using probe blinking rates for environment sensing.
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complex systems (e.g. with intermediates, multiple �uorescent states, etc.). Furthermore,

our method can be applied to any system that exhibits binary emission states. We

were able to successfully apply our method to �uorophore densities ranging from those

typically encountered in single-molecule studies (< 1 molecule/µm2) to higher-density

systems where single molecules cannot be resolved. Single-molecule methods for extract-

ing photoblinking rates, which rely on being able to localize isolated single dyes, cannot

analyze these higher-density systems akin to those exploited in SMLM imaging modali-

ties (> 1 molecule/100 nm2). We also show that by using the full �uorescence intensity

information from a CCD camera, we are able to accurately recover photoblinking rates

that are faster than the image frame rate of the camera detector. We achieve this by

using the full intensity information (i.e. no arbitrary threshold) and accounting for the

detector integration time in our ACF �ts.

Our approach involves �rst deriving the ACF for immobile �uorescent dyes, assumed

to be subject to some general photophysical/-chemical emission process. We proceed

to show that we are able to accurately recover photophysical/-chemical rates from a

wide range of realistic computer simulations, including those with rates greater than

the detector's sampling frequency, when we account for the e�ect of detector exposure

time in the autocorrelation analysis. We also show that we can successfully recover rates

from simulations with high densities of blinking particles, which could not be analyzed by

standard single-molecule methods. We further successfully analyze additional simulations

generated by the TestSTORM[7] software package. We experimentally demonstrate our

technique on immobilized DNA-Cy5 complexes and compare our results to those obtained

via typical single-molecule analysis, showing that our method can extract photophysical/-

chemical rates that exceed the camera detector's sampling frequency, while standard

single-molecule analysis cannot. Finally, we analyze STORM super-resolution data and

show that with su�cient sampling, our method can accurately recover the photophysical/-

chemical rates.

We anticipate that our high throughput image correlation based method will prove

useful to researchers interested in rapid characterization of �uorescence probe emission

and photobleaching characteristics as is the case for developers optimizing new �uorescent

proteins through genetic screens, �uorescent probe designers as well as applied researchers

who wish to optimize probe photoblinking for single molecule localization and stochastic

optical �uctuation imaging. We also expect our technique will prove useful for testing

photo-stabilization approaches.
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2.3 Results and Discussion

2.3.1 Theory

Here we derive the ACF for immobile particles subject to a general photophysical/-

chemical process. The basis of our approach is similar to that described by Kolin and

Wiseman (2007) in development of the temporal image correlation spectroscopy (TICS)

�uorescence �uctuation technique[8]. We start with the de�nition of a �uorescence mi-

croscopy image series of intensities, i(r, t):

i(r, t) = is(r, t) + ϵ(r, t) = I(r)⊛r ρ(r, t) + ϵ(r, t), (2.1)

where is(r, t) is the �uorescence signal from the labeled particles at position r and time

t, hereafter referred to as the signal; ϵ(r, t) is an additive noise term, which we assume

to be independent from the signal and from itself for any (r, t) ̸= (r′, t′); I(r) is the

optical point-spread function (PSF); ⊛r is a spatial convolution; and ρ(r, t) is the e�ective

particle density. For a discrete distribution of particles,

ρ(r, t) =
∑
m

qm,tΘm,tδ(r − um,t). (2.2)

In this last equation, δ(·) is the 2-dimensional Dirac delta function; m is the particle index;

qm,t is the instantaneous rate of detector counts for the mth particle at time t, which

depends on several factors, including the number of photons emitted by the particle,

quantum e�ciency of the detector, and camera gain; um,t, and Θm,t, are the position,

and the photo-emissive state of the mth particle at time t, respectively, and

Θm,t =

{
1 mth particle is �uorescing at time t

0 otherwise
. (2.3)

We proceed to write the autocorrelation of the intensity �uctuations between two

�xed times, t1 and t2 (t1 ̸= t2), as

ϕδi(t1, t2) ≡ ⟨δi(r, t1)δi(r, t2)⟩

= ⟨δis(r, t1)δis(r, t2)⟩

≡ ⟨is(r, t1)is(r, t2)⟩ − ⟨is(r, t1)⟩⟨is(r, t2)⟩, (2.4)
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where ⟨·⟩ denotes an ensemble average; and

δi(r, t) ≡ i(r, t)− ⟨i(r, t)⟩. (2.5)

In practice, we compute the intensity �uctuations (given in the last equation) by sub-

tracting local spatial means to help minimize spatial non-uniformity (see Autocorrelation

computation section for further details). Moreover, the equivalence between the auto-

correlated intensity �uctuations and the autocorrelation of the signal in Eq. (2.4) follows

from the autocorrelation of a white-noise process being a delta function. Note that the

additive noise term can have non-zero mean for this equality to hold because we autocor-

relate the intensity �uctuations. Note as well if Θm,t were a weakly-stationary process in

time, we would further assume the autocorrelation in Eq. (2.4) can be written as[9],

ϕδi(t1, t2) ≡ ϕδi(|t2 − t1|); (2.6)

however, we do not make this assumption here, so that we can later introduce photo-

bleaching into our photophysical/-chemical model.

We proceed by computing the �rst term in Eq. (2.4) using Eqs. (2.1) and (2.2),

ϕis(t1, t2) := ⟨is(r, t1)is(r, t2)⟩

= q2
∑
m,n

⟨Θm,t1Θn,t2⟩⟨I(r − um,t1)I(r − un,t2)⟩

= Nq2⟨Θt1Θt2⟩⟨I2(r − u)⟩

+N(N − 1)q2⟨Θt1⟩⟨Θt2⟩⟨I(r − u)⟩2, (2.7)

where N is the number of �uorophores in the analyzed ROI.

In the equation above we have implicitly assumed independence of photostate between

di�erent particles, as well as independence of photostate from position. Furthermore, we

have assumed all �uorophores have equal quantal brightness on average (i.e. ⟨qm,t⟩ ≡ q),

are immobile, and have identical photophysical/-chemical rates. These assumptions only

need to hold within the ROI being analyzed. Note the particle indices (m and n) were

dropped because we further assume the particles are identical.

Similarly, we can write,

⟨is(r, t1)⟩⟨is(r, t2)⟩ = N2q2⟨Θt1⟩⟨Θt2⟩⟨I(r − u)⟩2. (2.8)
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Eq. (2.4) then reduces to,

ϕδi(t1, t2) = Nq2
(
⟨I2(u)⟩⟨Θt1Θt2⟩ − ⟨I(u)⟩2⟨Θt1⟩⟨Θt2⟩

)
, (2.9)

where we have used the fact that shifting the PSF does not change its mean if the

�uorophores are assumed to be uniformly distributed. We show that the second term in

the previous equation is negligible in the Supporting Information (SI). With the omission

of this term, the autocorrelation is simply

ϕδi(t1, t2) = A⟨Θt1Θt2⟩, (2.10)

where A is an all-encompassing term containing non photophysical/-chemical quantities;

speci�cally,

A ≡ Nq2⟨I2(u)⟩. (2.11)

Accounting for the integration time of the detector amounts to redoing the above

derivation, such that

i(r, t) →
∫ t+τi

t

i(r, t) dt. (2.12)

In this case, we instead obtain

ϕδi(τ ; t) = A

∫ t+τ+τi

t+τ

∫ t+τi

t

⟨Θt1Θt2⟩ dt1dt2, (2.13)

with τi being the detector exposure time per frame.

Finally, the temporal autocorrelation of the image series is written as

Φ(τ) ≡ 1

T − τ

T−τ−1∑
t=0

ϕδi(τ ; t), (2.14)

where T is the number of frames in the image series. One can further normalize Eq. (2.14)

by Φ(τ = 1) to avoid �tting for A:

Φ̃(τ) ≡ Φ(τ)

Φ(τ = 1)
. (2.15)

This quantity will be referred to as the ACF throughout this work. Note that it is solely

a function of photophysical/-chemical parameters. We do not divide by Φ(τ = 0) as it is

a�ected by white-noise.
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On Off

Figure 2.2: General photobleaching model

A simple photophysical/-chemical model is shown in the schematic below with on/o�

rates kon and ko�, respectively, and di�erent photobleaching rates from the on- and o�-

states, kp1 and kp2 , respectively. The photobleached state is denoted by ∅. Scheme 2.2 is
a general model, but can be applied to, for example, a system of �uorophores exhibiting

di�erent photobleaching rates from the �rst excited singlet and triplet states (assuming

bleaching does not occur from higher order energy states). Note we do not consider fast

processes such as the exchange between the ground and �rst excited singlet states as they

are well beyond the time resolution of CCD cameras.

As an example, for the simpli�ed case when kp1 = kp2 = kp in Scheme 2.2, Eq. (2.16)

can be calculated explicitly to give

Φ(τ) =
A

T − τ

kon
kpK3Kp

(
e−kpτ − e−kpT

)
(1− e−kp)

×{
ko�kp

(
1− e−K

) (
1− e−Kp

)
e−K(τ−1) + konKKp

(
1− e−kp

)}
, (2.16)

where K ≡ kon + ko� and Kp ≡ K + kp. Note we set τi = 1 (in units of frames here)

for simplicity i.e. no dead time. More details on how to explicitly compute Eq. (2.14)

for the general process illustrated in Scheme 2.2 are provided in the SI. We would like

to emphasize that all the rates are �t simultaneously in the ACF (i.e. kon, ko� and kp).

This would not have been possible had we de�ned the �uctuations in Eq. (2.5) using a

temporal mean subtraction (see SI), as is done when spatial information is not available

e.g. as in FCS.

The relative simplicity of Eq. (2.16) will be helpful to elucidate several important

features of the ACF as computed from Eq. (2.15) throughout this work, even though

we will be using a model that assumes photobleaching to occur only from the o�-state

for �tting purposes (omitted from main text due to size; see Eq. (2.24)). The o�-state

bleaching model was chosen for analysis as we have assumed that photobleaching path-

ways are more likely to occur from the much longer-lived triplet excited states and/or
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radical intermediates, rather than from the short-lived singlet excited state; however,

photobleaching pathways are generally poorly understood. It should be noted that both

models agree on the �tted blinking rates in the limit K ≫ kp (i.e. when the blinking

occurs on a much faster time scale than the bleaching), as shown in the SI. The same

observation was made when comparing the simpli�ed case of a single bleaching rate with

the general case, kp1 ̸= kp2 . The data presented in this study was well �tted using a single

photobleaching rate (i.e. kp), however this can be easily extended to multiple bleaching

rates if necessary. We also provide the photostate autocorrelation for the general case

shown in Scheme 2.2 in the SI.

2.3.2 Computer simulations

We generated computer simulations of image series of blinking emitters to test the va-

lidity of our proposed analysis technique. In Figure 2.3, we show an example of an ACF

computed from a simulation with its �t. Here we see the ACF is comprised of a shorter

and a longer time lag decay, the former being attributed to the photoblinking and the lat-

ter to the photobleaching. This behaviour can be explained by examination of Eq. (2.16)

(as mentioned previously, this is a simpler expression than the one used for �tting) where

we see there are three exponentials that govern the autocorrelation decay. These expo-

nentials have arguments −Kpτ , −Kτ , and −kpτ . Since we usually consider K ≫ kp, we

conclude that only the latter two exponentials contribute to the form of the complete

ACF. Therefore, to get the behavior of the short-time lags we consider the limit kpτ → 0,

while for long time lags we consider Kτ → ∞. Both of these limits are overlaid onto the

ACF, along with its complete �t in Figure 2.3.

For accurate determination of the blinking rates, the range of time-lags to �t over

should be chosen so that the blinking regime has fully decayed, and include a small seg-

ment of the bleaching regime, as the blinking and bleaching rates are both important for

determining the behavior where the two regimes meet; however, we argue that �tting to

longer time lags is unfavorable. One reason for this is because bleaching is a non-ergodic

process, so that the ACF at higher time lags will not converge to its expected value with-

out su�cient sampling. Additionally, an unweighted �t will place too much emphasis

on the bleaching regime for longer lag-ranges, which is especially problematic when the

blinking is fast i.e. the blinking regime is short. It should also be noted that the later

lags of the sample autocorrelation in Eq. (2.20) are prone to small sampling e�ects, and

therefore exhibit high variance and/or bias between di�erent simulations/experiments.
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Figure 2.3: Example ACF computed from simulation and �t. (A) Sample simu-
lated intensity images in time with superimposed local spatial averaging window of size
∆x×∆y. To get the local spatial intensity �uctuation of a pixel, we subtract the spatial
mean taken from the ∆x×∆y window around the pixel. This is done for each pixel over
each frame. These intensity �uctuations are then used to compute the autocorrelation
as in Eq. (2.20). (B) ACF and �t. ACF computed from �uorescence microscopy sim-
ulation of T = 2, 048 frames and N = 1, 000 molecules undergoing photoblinking and
photobleaching. The short-time �t (blinking regime) represents the limiting expression
as kpτ → 0, while the long-time �t (bleaching regime) represents Kτ → ∞. Simulated
rates: kon = 1 s-1, ko� = 0.5 s-1, kp = 0.1 s-1. Fitted rates: kon = 1.03 ± 0.02 s-1,
ko� = 0.501± 0.007 s-1, kp = (9.61± 0.05)× 10−2 s-1.
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Conversely, when the ACF does not exhibit a visible bleaching decay, we found it bene-

�cial to �t to a wide time-lag range. We found this to be particularly important when

dealing with STORM data (see SI for explanation). In this case, to avoid small sampling

e�ects, the ACF should be �t up to about half of the available time-lags.

We include further examples of ACFs computed from simulation and their �ts in

Figure 2.9 and Table 2.5. All �ts for blinking rates are within reasonable error. When the

�tted lag range was increased, the photobleaching rates were recovered more accurately

at the expense of less accurate photoblinking rates. Therefore, �tting over multiple time-

scales can provide a complete description of the photophysical/-chemical rates.

Photoblinking rates beyond camera detector sampling rate

Time-resolved blinking trace

Detector sampled trace

On

Off

CCD camera

Fast blinking decay

Cy5 dye

Figure 2.4: CCD detector time-integrated sampling of fast photoblinking trace. Blink-
ing �uorophore (indicated within black dashed line; e.g. Cy5 dye) is shown with its
time-resolved blinking trace (top trace) with characteristic on-time, ton, faster than de-
tector sampling time, τi, and compared with its detector integrated time trace (bottom
trace). The ACF of an image series of fast blinking dyes reveals a fast blinking decay
at early time lags (top right plot).

When the characteristic blinking rates of a dye are faster than the camera detector sam-

pling rate, intensity time traces acquired using CCD cameras can still provide information

about these blinking kinetics. The autocorrelation of the intensity �uctuations likewise
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makes use of this information (see Figure 2.4). Autocorrelations further avoid the prob-

lem of aliasing because blinking rates that greatly exceed the detector integration time

will be indicated as abrupt or absent short-time decays from which meaningful rates

cannot be extracted.
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Figure 2.5: Comparison of �ts for ACF with and without camera integration time
included in the �tting function over a range of blinking rates. Figures (a) and (b) show
the log of the percent error between simulated and �tted kon and ko�, respectively,
including the camera integration time in the �tting function. Similarly, �gures (c)
and (d) show the log of the percent error between simulated and �tted kon and ko�,
respectively, without accounting for the camera integration time in the �tting function.
The region within the yellow lines represents photoblinking rates that are slower than
the detector frame exposure time. The grid spacing in each of the above contour plots
is 0.1 frames-1. All simulations were done with N = 50 particles and have a �xed
photobleaching rate of kp = 10−4 frames-1. The number of frames for each simulation is
chosen so that νc = 104. All �ts are done over the �rst 150 time-lags (excluding τ = 0).

To demonstrate that our method can successfully recover blinking rates that are faster

than detector sampling, we compare �tting ACFs from simulations with and without

detector integration time included in the �tting model. To do this, we analyzed a set
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of simulations over a wide range of blinking parameters and �xed bleaching rate (see

Figure 2.5). Each coordinate (kon, ko�) represents the �t of the ACF resulting from an

average over �ve simulations with the same parameters. We varied the number of frames

simulated for di�erent blinking parameters, so that the expected total number of blink

cycles, νc, is constant for every simulation (see SI). Note we obtained better results at

higher blinking rates when �tting without the normalization described in Eq. (2.15); that

is, we leave A as a free parameter. We believe this is due to the biased nature of ratio

estimators (see for example Sa�arian and Elson, 2003)[10].

From Figure 2.5, we see that there is a clear advantage in using the time-integrated

�t model over its non time-integrated counterpart. The improvement is evident in the

�tting of kon, while the �tting for ko� also bene�ts with a slight improvement. We think

that this is caused by a greater sensitivity of the �tting function to kon. There also

appear to be some successful �ts in the upper part of the contour plot for ko� without

time-integration, where the �ts with time-integration perform worse. This is caused by a

compensation for the poor �t for kon in the exponential which decays as the sum of the

blinking rates.

TestSTORM simulations

We also generated and analyzed simulations using TestSTORM v2.1 (see Table 2.1). To

test our method under realistic conditions we added drift and an axial dimension using

this simulator. In order to analyze these simulations, it is important to choose an ROI

Fitted Simulated

ton (s) to� (s) ton (s) to� (s)

0.192± 0.004 1.95± 0.05 0.2 2

0.102± 0.002 3.13± 0.07 0.1 3

0.0302± 0.0006 3.9± 0.1 0.03 4

0.052± 0.001 5.1± 0.2 0.05 5

Table 2.1: Examples of ACF �ts computed from TestSTORM simulations.
Each simulation is generated using the prede�ned star pattern. The number of blinking particles on

each arm of the star is set to ⟨Non⟩ ≃ 2/arm for the �rst frame. Drift type is set to the prede�ned

`Large' option. All other options which are not speci�ed are set to default. Default values include

simulated camera exposure time of τi = 0.05 s, T = 3, 000 frames and tp = 1, 700 s. All �ts are done

over the �rst 300 time-lags (excluding τ = 0) without photobleaching accounted for in the �t model (in

each case, the bleaching regime is �at over the range analyzed).
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where the density is approximately constant, as this is one of our assumptions (discussed

further in the SI).

We further tested our method on the preset values supplied by the software for Alexa

568 and Alexa 647. The high �tting error produced from these results (tabulated below)

is caused by insensitivity of the ACF to large changes in kon in the regime kon ≪ ko�. We

refer the reader to the STORM data section and the SI for further details.

Fitted Simulated

ton (s) to� (s) ton (s) to� (s)

Alexa 568 0.025± 0.002 9.31± 0.49 0.025 9.25

Alexa 647 0.048± 0.002 46.3± 8.7 0.05 41.6

Table 2.2: TestSTORM simulations for Alexa 568 and Alexa 647.
Each simulation is generated using the prede�ned star pattern using the default settings of 200 single-

labeled epitopes per star arm. Default values include simulated camera exposure time of τi = 0.05 s,

T = 3, 000 frames. Default photobleaching time constants tp = 100, 000 s for Alexa 568 and tp = 1, 700 s

for Alexa 647. All �ts are done over the �rst 1,500 time-lags (excluding τ = 0) without photobleaching

accounted for in the �t model (in each case, the bleaching regime is �at over the range analyzed).

When multiple labels were allowed per simulated molecule, we found that we can

accurately extract the sum of the blinking rates K ≡ kon + ko�, however the individual

rates could not be accurately resolved. This is due to the assumption of uniform labeling

density being broken.

High-density simulations

A clear advantage of using our method over single-molecule techniques is the power

to quickly analyze dense regions of �uorophores without having to localize any single

molecules. This is particularly relevant for SMLM super-resolution methods characterized

by high labeling densities. Furthermore, single-molecule techniques fail when there exists

too much spatial overlap between simultaneously emitting �uorophores, as it becomes

impossible to isolate enough single particle intensity traces needed for extracting the

blinking rates.

We demonstrate this through simulations by varying the average e�ective fraction per

image occupied by �uorophore PSFs, ρe�, which is computed as,

ρe� ≡ ⟨Θt⟩⟨np⟩, where ⟨np⟩ ≡ N × E�. PSF Area

Sample Area
. (2.17)
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This quantity accounts for the expected number of dyes that are emitting in every frame,

as well as the PSF size from each of these dyes. As our simulations assume a Gaussian

PSF, we calculate the e�ective PSF area as

E�. PSF Area = πω2
0, (2.18)

where ω0 is the e−2 PSF radius. We considered 4 di�erent values for ρe�, speci�cally

0.1, 0.5, 10 and 100. For values greater than ρe� = 0.1, we could not acquire enough

isolated single-molecule intensity time traces to perform a single-molecule analysis. Note

our model and simulations do not account for high-density interactions between simulated

�uorophores, such as self-quenching and homo-FRET.[11, 12] These e�ects would de�ne

an upper density-limit in our analysis of experimental data. We summarize the results

from these simulations in Table 2.3 below.

Autocorrelation Single-molecule

ρe� ton (s) to� (s) ton (s) to� (s)

0.1 9.3± 0.2 0.99± 0.01 9.5± 1.0 1.03± 0.10

0.5 10.3± 0.1 0.99± 0.01 � �

10 10.7± 0.1 0.995± 0.006 � �

100 10.44± 0.04 1.005± 0.004 � �

Table 2.3: Analysis of simulations with varying densities.
All simulations have characteristic blinking times of ton = 10 s and to� = 1 s. Camera exposure time

simulated as τi = 0.1 s for T = 3, 000 frames. photobleaching was not included in these simulations.

ACF �ts were done over the �rst 100 time-lags (excluding τ = 0).

In the simulation with ρe� = 100, N = 45, 000 simulated �uorophores, each with

simulated e−2 PSF radius of 1.7 pixels, were uniformly distributed in a 64×64 pixel grid.

The high-densities successfully analyzed by our technique far exceed those that can be

analyzed using a single-molecule approach, as demonstrated in Table 2.3.

2.3.3 Experimental data

Addition of Ni2+ to DNA-Cy5 system

We next tested our method on surface-tethered DNA-Cy5 complexes in the presence of

di�erent concentrations of Ni2+ ions, which can e�ectively quench the triplet excited state

of Cy5 and avoid the subsequent formation of long-lived transient radicals[13]. We again

benchmark the results from our technique using single-molecule analysis. It is worth
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mentioning that in order to exclude the possibility of over�tting when handling real data,

we recommend carrying out our method on at least two independent ROIs. Figure 2.6,

along with Table 2.4, show analysis results from both techniques at two di�erent Ni2+

concentrations. The �tted photoblinking times are in good agreement with each other

for [Ni2+] = 1.0 mM.

When the concentration of Ni2+ was reduced, we observed a signi�cant decrease in the

proportion of the on-times from both analysis techniques, in line with previous studies[14].

This was expected since the triplet-state of Cy5 is quenched by the Ni2+, but has a lifetime

that is too short to be probed at our acquisition rates. The observed dark-state is likely

from a long-lived radical state of Cy5, which is una�ected by Ni2+ concentrations and

has a longer lifetime.

Autocorrelation Single-molecule

[Ni2+] (mM) ton (s) to� (s) ton (s) to� (s)

1.0 20.6± 1.9 0.285± 0.017 21.4± 2.1 0.301± 0.025

0.2 1.28± 0.23 0.076± 0.008 3.44± 0.31 0.197± 0.013

Table 2.4: Comparison of �tted photoblinking values from analyses shown in Fig-
ure 2.6.

Fitted photoblinking times are in good agreement when [Ni2+] = 1.0 mM. The di�erence in �tted rates

when [Ni2+] = 0.2 mM arises from aliasing in the single-molecule analysis due to fast blinking rates.

Computed p-values from [Ni2+] = 1.0 mM on-/o�-time histograms using χ2 goodness-of-�t (expected

distribution assumed to be geometric) were ∼ 10−6 and ∼ 0.3, respectively; and ∼ 0.02 for both

[Ni2+] = 0.2 mM histograms. The poor p-value for the �t of the on-time when [Ni2+] = 1.0 mM is

likely due to the simpli�ed assumption of a two-state model. Three independent ROIs were used for

the ACF analysis of the 0.2 mM data; tabulated results are averaged �tted values from these ROIs.

Additional parameters: τi = 0.1 s, T = 7, 990 frames (1.0 mM), T = 2, 359 frames (0.2 mM).

The computed ACF when the concentration of Ni2+ was reduced from 1.0 mM to

0.2 mM also exhibited a quick short-time decay (see Figure 2.6), which suggests fast

photoblinking dynamics. The �tted ACF (see Table 2.4) shows that the characteristic

photoblinking o�-time is beyond the sampling frequency of the camera detector.1 This

�nding is not corroborated by our single-molecule analysis, however. We explain this

observation by arguing that while our autocorrelation method uses the full intensity

information, the single-molecule analysis requires binarization of the single-molecule in-

tensity time traces in order to extract blinking rates so that short blinking events are

1Errors on �tted blinking times were high when analysis was done on a single ROI due to the small
number of points in the blinking regime; therefore, three independent ROIs were analyzed to get blinking
time estimates, in this case.
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missed. This limits the single-molecule analysis to photoblinking dye systems that are

slower than detector exposure times.
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Figure 2.6: Comparison of autocorrelation and single-molecule analyses for probe
blinking data imaged at di�erent Ni2+ concentrations. (A) Sample �uorescence intensity
images (contrast adjusted) from experiment of surface-tethered DNA-Cy5 duplexes. (B)
ACFs computed from data and �ts (top); Pearson residuals (bottom). (C) Histograms
of observed on- and o�-times from single-molecule analysis, overlaid with expected dis-
tributions. Assumed underlying distribution is geometric with best-�t parameter from
maximum-likelihood estimation (MLE).

We con�rm this hypothesis through simulation with photophysical/-chemical param-

eters chosen to be similar to the ones recovered using our autocorrelation method in

Table 2.4 at [Ni2+] = 0.2 mM. The analysis of the simulation is shown in Figure 2.7. In

this �gure, we see that both blinking times extracted using the single-molecule analysis

are inconsistent with the simulated ones. Both recovered times were also inconsistent

with our method in the analysis of the faster blinking data, as shown in Table 2.4.
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Autocorrelation Single-molecule

ton (s) to� (s) ton (s) to� (s)

0.94± 0.25 0.066± 0.008 2.15± 0.18 0.153± 0.008

Figure 2.7: Comparison of autocorrelation and single-molecule analyses on a rapid
photoblinking simulation. Simulated on-o� times are similar to the ones extracted from
the [Ni2+] = 0.2 mM data using our autocorrelation method (shown in Table 2.4). (a)
ACF and �t. (b) Pearson residuals from (a). (c) and (d) histogram of observed on-
and o�-times, respectively, overlaid with expected distributions. Assumed underlying
distribution is geometric with best-�t parameter from MLE. p-values from χ2 goodness-
of-�t were computed to be ∼ 0.6 and ∼ 0.2 in (c) and (d), respectively. Simulation
parameters: ton = 1 s, to� = 0.067 s, tp = 4 s, T = 2, 048 frames, N = 170, τi = 0.1 s.

Note that the times output by the single-molecule analysis are also consistently higher

than the ones extracted measured by our method. This is because the very short o�-time

events are missed by the single-molecule analysis, leading to an overestimation of both

ton and to�. This is an expected result from aliasing in the single-molecule analysis, which

is not present in our autocorrelation analysis. Furthermore, the problem of aliasing is

avoided altogether by using an autocorrelation because if the blinking is too fast, the

autocorrelation would not exhibit a short-time blinking decay, thus indicating that a �t

for the photoblinking would not be accurate.
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STORM data

We now discuss the applicability of our method in the regime kon ≪ ko�. To do this

we analyzed the stochastic blinking of Cy5 in the presence of beta-mercaptoethanol (β-

ME), imaged under diferent laser intensities. Low densities of Cy5 were used in order to

compare with single-molecule analysis. Analyses of two separate data sets are shown in

Figures 2.10 and 2.11. In Figure 2.10, our results are consistent with the single-molecule

analysis, while in Figure 2.11 only ton was reasonably recovered. ko� (recall, ko� = 1/ton)

was accurately recovered in both instances because it is e�ectively responsible for the

decay in the ACF when kon ≪ ko�. The inconsistency in the recovered values for kon

between both analyses in Figure 2.11 can be explained by insu�cient sampling in the

chosen ROI. These results suggest that single-molecule techniques require less sampling to

correctly recover blinking rates in the regime kon ≪ ko� in comparison with our method.

However, since our technique can quickly analyze high-density dye systems, acquiring

su�cient sampling is not a problem as demonstrated in Figure 2.8, where we show the

�tted kon value from the ACF converges to the simulated value with increasing number of

sampled blinking particles. Nevertheless, high labeling densities are required for achieving

high spatial resolutions relevant in SMLM methods, as demonstrated in the same �gure.

Recall that our method requires an ROI with randomly positioned labels; for example, our

autocorrelation analysis can successfully extract the sum of the blinking rates in samples

with multiple labels per molecule, but cannot resolve both rates individually. We also

point out that at very high densities when �uorophores are separated by distances smaller

than typical Förster radii, self-quenching and homo-FRET can occur. So care should be

exercised to verify that quenching is not present at these high densities, or a lower surface

density should be used.

We show in the SI that more sampling is required with increasing ko�/kon from sim-

ulation when using our method (see Figure 2.16). This is consistent with our results in

Figures 2.10 and 2.11. To ensure su�cient sampling, one can plot the �tted kon values as

a function of number of frames and check for convergence. The large errors on to� from

the single-molecule analyses in Figures 2.10 and 2.11 are due to the restriction that we

required both techniques be analyzed within the same ROI, rather than the entire image

series. This is also due to long blink cycles in these datasets, leading to fewer events.

To accurately perform our analysis in this regime, we found it necessary to �rst divide

out the non-uniform background from the image series. This is because we did not account

for non-uniform laser excitation in our method. Although this e�ect does not usually bias

the blinking rates extracted using our method, given we only performed our analyses on
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Figure 2.8: Percent error on ACF �t for kon as a function of expected total blink cycles,
νc (bottom axis), and Nyquist spatial resolution limit (top axis). Gradient demonstrates
spatial resolutions which are of relevance in SMLM super-resolution methods. Each
point represents the average �tted kon value from 5 independent simulations, while
error bars represent the minimum and maximum percent errors over the 5 simulations.
To vary νc, T was �xed while N was varied across simulations. Analysis was done on
a 45 × 45 pixel ROI in the center of each simulated image series. Simulated image
series were background corrected before analysis. All �ts are done over the �rst 2,000
time-lags (excluding τ = 0). Simulation parameters: T = 4, 096 frames; ton = 0.05 s;
to� = 50 s; laser e−2 beam radius, Ω0 = 64 pixels; kp = 2 × 10−3 s; 100 nm pixel size
(dashed vertical line).
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ROIs, small changes in the ACF cause signi�cant variations in recovered kon values when

kon ≪ ko� (see SI for more details). We used the prede�ned movmean function inMatlab

with a 10× 10 pixel sliding window on each frame of the image series to approximate the

background, which we then divided from each corresponding frame of the original image

series. Furthermore, since we need to rely on the part after the blinking decay in the

ACF to recover kon, we choose to �t to a wider time-lag range.

2.3.4 Comparison with other methods

Several other studies have examined photophysical/-chemical properties of a system using

autocorrelation methods[15, 16]. For instance, Widengren et al. (1995)[17] showed that

FCS can be used to recover photophysical/-chemical parameters while simultaneously

characterizing the di�usion and density of �uorescent dyes. Point FCS data are sampled

at much shorter binning times than possible with wide�eld imaging and thus can resolve

faster processes. Although similar high time resolutions are not possible to achieve with

wide�eld microscopy, we presented a theoretical correction to the autocorrelation in order

to push the capability to extract blinking rates that lie beyond the sampling frequency

of the detector when increasing time-resolution is not an option. Furthermore, in FCS

the non-uniform illumination in the confocal spot must be accounted for, which can

render the mathematics to be relatively complex. Spatial non-uniformity can usually be

mitigated in wide�eld data by choosing appropriate ROIs, where excitation intensity can

be assumed to be uniform. There also exist techniques for achieving �at laser illumination

pro�les in wide�eld setups[18]. Moreover, the lack of spatial information in FCS means

additional data is required to fully determine the on-o� blinking rates and multi-point

experiments are needed if rates vary in space. We have shown in this work that de�ning

the intensity �uctuations through spatial mean subtraction yields an autocorrelation

expression that can be �t for kon, ko� and kp, simultaneously. Conversely, in the SI we

show that de�ning the �uctuations through temporal mean subtraction (as is done when

spatial information is not available, e.g. FCS) results in an autocorrelation expression that

cannot be simultaneously �t for both kon and ko�. Processes with similar �uorescence

behavior to photoblinking have also been studied using FCS, such as Förster resonance

energy transfer (FRET)[19, 20] and binding/unbinding to a surface under total internal

re�ection �uorescence (TIRF) illumination[21].

Balanced super-resolution optical �uctuation imaging (bSOFI), an extension of SOFI

developed by Geissbuehler et al. (2012)[22], o�ers a way to obtain super-resolved spatial

maps of the molecular brightness, on-time ratio and molecular density. By computing a
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temporal autocorrelation, the authors were also able to extract spatial maps of kon and

ko�. The authors further indicate that their technique can be extended beyond simple

two-state systems. As we have assumed uniform molecular density and brightness, the

di�erence between the two techniques is that our method holds only in a local region

(i.e. in an ROI). However, spatial maps can also be extracted using our method simply

by analyzing a collection of ROIs. Also, bSOFI assumes knowledge of the PSF and relies

on solving systems of equations of coupled molecular parameters. Our method is solely

dependent on the photophysical/-chemical parameters and does not require extraction

of any other parameters intrinsic to the system. Moreover, bSOFI does not address the

e�ects of photobleaching which are usually present.

Previous works have also tackled the problem of resolving events that are faster than

the exposure time of camera detectors. Super temporal-resolved microscopy (STReM)[23]

is a technique relying on PSF engineering through rotating phase masks which was suc-

cessfully used to study processes up to 20 times faster than detector exposure times.

Autocorrelations have also been utilized to extract photophysical/-chemical proper-

ties in a single-molecule context.[24] Haase et al. (2004)[25] have previously reported that

it is possible to extract triplet lifetimes as short as half the binning time of a single pho-

ton avalanche photodiode using histogram or autocorrelation methods on �uorescence

collected from a single dye; however, this was found to require long intensity time traces

(so that this analysis would not be possible with moderate photobleaching rates), while

the on-time could not be correctly recovered simultaneously by either method when the

triplet state was very short-lived compared to the �on�-state. Single molecule autocorre-

lation methods have also been useful for accurately analyzing power-law blinking kinetics

of quantum dots[26].

Single molecule analysis techniques typically require hours of processing and are hard

to automate when many dyes need to be localized. Conversely, the technique we have

developed in this work does not require long computation times, or involved user input. In

Figure 2.12, we show the time taken to compute the autocorrelation de�ned in Eq. (2.20)

for varying image series sizes, which is the most time-consuming step in our method

for larger image series. From this �gure one can see autocorrelation computation is

on the order of seconds, with the longest computation time taking about �ve minutes

to be computed (for a 512 × 512 pixel, 4, 096 frame image series). For large image

series, computation times can be even further reduced by utilizing parallel computing

(see GitHub code).
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2.4 Conclusions

We have presented an autocorrelation method that that can rapidly extract photophysical/-

chemical rates from a �uorescence image series in a single �t. Furthermore, this �t is

solely dependent on photophysical/-chemical parameters and does not rely on knowledge

of other system parameters. This has potential applications in SMLM because it can

be utilized for high-throughput screening of blinking �uorescent probes, as well as for

testing photo-stabilization approaches. We have also shown that we can recover rates

that are faster than CCD camera integration times by �tting a theoretical model for the

ACF of the time-integrated intensities. We demonstrated this with both simulation and

experimental data. Autocorrelations also have the advantage of avoiding aliasing when

the blinking rates are too fast, as was discussed. Moreover, we have successfully analyzed

high-density blinking �uorophore simulations, which could not be analyzed using stan-

dard single-molecule image analysis. We further found that given su�cient sampling, our

method can successfully recover the correct photophysical/-chemical rates from STORM

super-resolution data. In future work, we hope to quantify the amount of sampling

required to successfully analyze this type of data. This can be done by theoretical calcu-

lations of the bias and variance of the ACF.

2.5 Methods/Experimental

Materials

NiCl2 · 6H2O salt, glucose oxidase type VII from Aspergillus niger (G2133), catalase from

bovine liver (C30), and β-mercaptoethanol were purchased from Sigma. Water (molecular

biology grade) was acquired from Thermo Scienti�c HyClone. 5 M NaCl stock solution

and streptavidin were purchased from Life Technologies. Tris-HCl (pH 7.5 and 8.0) bu�er

was acquired from Fisher Scienti�c. Poly(ethyleneglycol) Silane, MW 5000 (mPEG-

Sil) and biotin-PEG-Sil were purchased from Laysan Bio Inc. 10x PBS bu�er (1.37 M

NaCl, 27 mM KCl, 80 mM NaH2PO4, 20 mM K2HPO4, pH 7.4) was obtained from

Life Technologies. Dye-labeled and biotinylated DNA oligonucleotides used in this study

(Table 2.6) were acquired from Integrated DNA Technologies and puri�ed by HPLC by

the provider. All other materials were used without further puri�cation.
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Single molecule sample preparation and surface immobilization

Imaging in the presence of nickel ions

The glass coverslips for single-molecule imaging studies of Cy5-DNA in the presence of

Ni2+ were prepared as previously described[14]. Glass coverslips (Fisher scienti�c) were

�rst cleaned in piranha solution (25% H2O2, 75% conc. H2SO4 by volume) for 1 h and then

rinsed with water and HPLC grade acetone 3 times. Clean coverslips were then amino

silanized with Vectabond/acetone 1% solutions for 5 min. They were then rinsed with

water and dried under a nitrogen stream. The coverslips were passivated with a mixture

of poly(ethylene glycol) succinimidyl valerate (mPEG-SVA, MW = 5000) and biotin-

PEG-SVA. More speci�cally, the coverslips were masked with patterned silicone �lms

(Grace, Bio-Labs) and the unprotected area was incubated with 25% w/w m-PEG-SVA

solution containing 0.25% w/w biotin-PEG-SVA in 0.1 M sodium bicarbonate solution

for 3�4 h. The silicone templates were removed, and the excess PEG rinsed with water.

STORM imaging

The glass coverslips for STORM studies were initially cleaned and then passivated in one

step utilizing PEG-Silane as previously described.[27] A mixture of poly(ethylene glycol)

silane, MW 5000 (PEG-Sil) and Biotin-poly(ethylene glycol) silane (bio-PEG-Sil) at a

ratio of 99/1 (w/w) was used. Imaging chambers (∼ 8 µL) were constructed by pressing

a polycarbonate �lm with an adhesive gasket onto a PEG-coated coverslip. Two silicone

connectors were glued onto the predrilled holes of the �lm and served as inlet and outlet

ports.

Single molecule sample preparation and surface immobilization

Before image acquisition, the surface was incubated with 12 µL of 0.2 mg/mL streptavidin

solution for 10 min. The unbound streptavidin was washed away with imaging bu�er.

Following streptavidin incubation, biotinylated DNA-Cy5 complexes were immobilized

on PEG-coated glass coverslips via biotin-streptavidin interactions upon incubating a

100 pM solution of the construct. Unbound complexes were �ushed out with additional

imaging bu�er.
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TIRF microscopy and imaging

Imaging in the presence of nickel ions

Single-molecule measurements were performed using an objective-based total internal re-

�ection �uorescence (TIRF) microscope (Olympus IX-71 inverted microscope) equipped

with laser-based TIRFM illumination module (IX-RFAEVA-2, Olympus) coupled to a

diode pumped solid-state red laser (641 nm, CrystaLaser). The beam position was ad-

justed using a TIRFM illuminator to achieve total internal re�ection through an oil-

immersion objective (NA 1.45, Olympus PLAN APO N 60X). For Cy5 imaging, the

excitation was directed by a beam splitter (FF660-Di01-25×36, Brightline Semrock) and

�ltered with two emission �lters before the detector (HQ 685/70 and HQ 685/80, Chroma

Technology). Fluorescence from the surface immobilized molecules was collected by the

same objective and imaged onto the chip of the electron-multiplying CCD (EMCCD) de-

tector (Cascade II: 512, Roper Scienti�c). An additional 2× magni�cation was achieved

by a relay lens placed between the camera and the microscope. Emission was chromat-

ically separated using a dichroic mirror (640dcxr, Chroma Technology) with the `green'

and `red' channels each imaged on half the EMCCD chip. Images consisted of a region

ca. 35 µm× 70 µm, (ca. 135 nm/pixel). The acquisition was controlled by µ-Manager

software (freely available) capturing 16-bit 512× 512 pixel images with an exposure time

of 100 ms, a conversion gain of 3, and multiplication gain of 4095. Excitation was carried

out with a power output of 5.0�6.5 mW measured out of the objective.

STORM imaging

Fluorescence imaging was carried out using an inverted Nikon Eclipse Ti microscope

equipped with the Perfect Focus System (PFS) implementing an objective-type TIRF

con�guration with a Nikon TIRF illuminator and an oil-immersion objective (CFI SR Apo

TIRF 100× Oil Immersion Objective Lens, numerical aperture (NA) 1.49). The e�ective

pixel size was 160 nm. A 647 nm laser was used for excitation (Agilent MLC400B Mono-

lithic Laser Combiner). For Cy5 imaging, the laser beam was passed through a multi-

band cleanup �lter (ZET405/488/561/647×, Chroma Technology) and coupled into the

microscope objective using a multiband beam splitter (ZT405/488/561/640rpc, Chroma

Technology). For Cy5, �uorescence light was spectrally �ltered with a (ET705/72m,

Chroma Technology) emission �lter. All images series were recorded onto a 512 × 512

pixel region of a back-illuminated EMCCD camera (iXon X3 DU-897-CS0-#BV, Andor

Technology). The camera was controlled using Micro-Manager Software (Micro-Manager

1.4.13, San Francisco, CA, USA).
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Anti-fading solution

To increase Cy5 photostability, all experiments were carried out under a constant �ow

of an oxygen scavenger solution consisting of D(+)glucose 0.8�3.0% w/v and glucose

oxidase type VII (165 units/mL) 0.04 mg/mL (1600 units/mL) catalase. For STORM

imaging, solutions were 20 mM in TRIS bu�er pH 8.0, 50 mM in NaCl, and 146 mM in

2-mercaptoethanol. Imaging under 0.2 and 1.0 mM Ni2+ ions was performed under the

bu�er conditions speci�ed in Table 2.7. The imaging solution was injected through one

of the ports and incubated for at least 10 min to allow the equilibration of the oxygen

concentration in the chamber. All experiments were conducted at room temperature

(23 ◦C).

Computer simulations

All individual simulations were generated and analyzed using Matlab R2017a on a Dell

XPS 9530 (Intel(R) Core� i7 @ 2.3 GHz, 16 GB RAM) running Windows 10. All phase-

space analyses were also generated using Matlab R2017a on a dedicated research server

(Intel(R) Core� i7 @ 3.2 GHz, 16 GB RAM) running Ubuntu version 18.04.

To simulate �uorophore movies, we randomly distributed point emitters on a pixel

grid with speci�ed number of frames. We proceeded to convolve the generated image

series with a 2D Gaussian function (integrated over pixel dimensions) to simulate the

optical PSF. To model photoblinking and bleaching of the simulated emitters we used the

Gillespie algorithm[28]. The rate diagram in Scheme 2.2 represents the photophysical/-

chemical process that we simulated. In all simulations we assume photobleaching only

occurs from the o�-state i.e. kp1 = 0 and kp2 = kp. For each time frame of the simulated

image series, the average number of counts from a simulated emitter is proportional to

the integral of its photostate over the frame time. For more simulation details, we refer

the reader to the SI.

To assign intensity values to the pixels we used an EMCCD model proposed by Hirsch

et al.[29] We drew numbers from a Poisson distribution, with rate parameter being a

function of pixel location, x, and frame number, f , as described by the equation below,

n(x, f) = (ns(x, f) + na�)QdL(x) + ndn + ncic, (2.19)

where ns(x, f) is the counts from the simulated emitters at pixel x and frame f ; na� and

ndn are the counts for the simulated auto-�uorescence and dark noise, respectively; ncic is

number of counts for the simulated clock-induced charge; Qd is the value used to model
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the quantum yield of the detector; and L(x) is the simulated laser illumination pro�le.

We then proceeded to simulate EM gain and readout noise.

The computed ACFs were �t using Eqs. (2.15) and (2.24) assuming again that pho-

tobleaching occurs exclusively from the o�-state (see SI for more details). When the

photobleaching was not apparent in the ACF, we simply used the same �t model in the

limit where kp → 0.

The �tting of the ACFs for obtaining photophysical/-chemical parameters was done

using the built-in Matlab function nlinfit. The errors were subsequently computed

using the built-in Matlab function nlparci. We used uniformly drawn random num-

bers in the interval (0, 1) as initial guess parameters for the blinking rates, in order to

demonstrate the robustness of our method. When the photoblinking rate is also a �tting

parameter, we have found that the initial guess must be small in order for the �t to

converge. We consistently used 10−4 as an initial guess for kp. Note we have discarded

the 0th time-lag from all the �ts presented in this work as it includes white-noise.

Autocorrelation computation

The autocorrelation was calculated as,

Φ̂(τ) =
1

XY

X∑
x=1

Y∑
y=1

1

T − τ
F−1

t

(
|Ft(δ∆x×∆yi(x, y, t))|2

)
, (2.20)

where X and Y are the number of pixels along each dimension in the image ROI and

Ft is the fast Fourier transform in time. δ∆x×∆y denotes the local spatial �uctuation

at pixel (x, y) i.e. we subtract the mean of a rectangular region centered on pixel (x, y)

of dimensions ∆x × ∆y from the number counts at pixel (x, y) (see Matlab function

movmean for details). We choose to de�ne the �uctuations this way in order to deal with

spatial non-uniformity in the intensity, which was not accounted for in the theory of this

work. We set ∆x = ∆y = 10 pixels. Ideally, the size of the local rectangular region being

subtracted should be slightly bigger than the e−2 radius of the PSF. To further mitigate

the e�ects of non-uniformity in the analysis of our experimental data, we chose to do

our analyses on ROIs. For small ROIs, we replaced the local spatial mean subtraction

by a global one. When analyzing our simulations, the autocorrelations were computed

on the entire pixel grid, unless speci�ed otherwise. The ACF was computed by dividing

Eq. (2.20) by Φ̂(τ = 1). Note that the above equation utilizes the Wiener-Khinchin

theorem to minimize the computation time via Fourier (reciprocal) space calculations.
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Single-molecule analysis

Fluorescence intensity-time trajectories of individual molecules were extracted from the

videos using a self-written algorithm in Matlab. The same was done in the analysis

of the simulated �uorescence image series. On-o� transitions for the Cy5 + Ni2+ system

were investigated through the application of hidden Markov modeling (HaMMy) using

the software provided by the Ha lab[30]. On-o� transitions for the Cy5 + β-ME system

were investigated through the application of a threshold. Background signal was �tted

to a Gaussian function. Intensities above 5 standard deviations from the center of the

background signal were considered on-state peaks.

Additional Content

� The Supporting Information is available free of charge on the ACS Publications

website.

Autocorrelation analysis of additional simulations; STORM data analysis com-

parisons; autocorrelation computation times; additional methods data; deriva-

tion of photostate autocorrelation; autocorrelation of temporal �uctuations;

simulation details; comparison of di�erent photo-bleaching models; expected

total number of blinking cycles derivation; further discussion of STORM data;

autocorrelation analysis with non-uniform densities; comparison between local

and global spatial mean subtraction; ROI selection

� We will maintain a GitHub repository with analysis and simulation codes relevant

to this study at https://github.com/ssehayek/blink-project.git.
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Supplementary �gures and tables
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Figure 2.9: Autocorrelation analysis of �uorescence microscopy simulations and their
�ts (N = 100, T = 2, 048 frames and τi = 0.1 s for all simulations). All �ts are done
over the �rst 200 time-lags (excluding τ = 0). Simulation and �t parameters are given
in Table 2.5.

Fitted Simulated

Figure kon (s
-1) ko� (s-1) kp (s

-1) kon (s
-1) ko� (s-1) kp (s

-1)

(a) 4.8± 0.1 0.49± 0.02 (9.7± 0.1)× 10−2 5 0.5 0.1

(b) 0.97± 0.03 7.0± 0.4 (4.5± 0.2)× 10−2 1 7 0.05

(c) 10.1± 0.2 11.4± 1.4 (8.9± 0.5)× 10−3 10 10 0.01

(d) 1.02± 0.04 2.05± 0.08 0.106± 0.002 1 2 0.1

Table 2.5: Corresponding �tted values for the simulated photoblinking and bleaching
rates from Fig. 2.9.
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Autocorrelation Single-molecule
ton (s) to� (s) ton (s) to� (s)

1.14± 0.01 69.3± 1.2 1.01± 0.18 67.8± 23.6

Figure 2.10: Comparison of autocorrelation and single-molecule analyses of STORM
data under 4.5 mW laser light intensity (τi = 0.05 s, T = 3, 600 frames). (a) Autocorre-
lation and �t (photobleaching assumed to be negligible). (b) Pearson residuals from (a).
(c) and (d) histogram of observed on- and o�-times, respectively, overlaid with expected
distributions. Assumed underlying distribution is geometric (truncated)* with best-�t
parameter from MLE. p-values from χ2 goodness-of-�t were computed to be p ∼ 0.2 in
both (c) and (d). Table compares �tted photoblinking times from both methods. The
analysis in either case was done on a single ROI.
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Autocorrelation Single-molecule

ton (s) to� (s) ton (s) to� (s)

0.135± 0.002 14.7± 0.3 0.167± 0.022 71.0± 21.8

Figure 2.11: Comparison of autocorrelation and single-molecule analyses of STORM
data under 20 mW laser light intensity (τi = 0.05 s, T = 3, 600 frames). (a) Autocorre-
lation and �t (photobleaching assumed to be negligible). (b) Pearson residuals from (a).
(c) and (d) histogram of observed on- and o�-times, respectively, overlaid with expected
distributions. Assumed underlying distribution is geometric (truncated)* with best-�t
parameter from MLE. p-values from χ2 goodness-of-�t computed to be p ∼ 0.02 and
p ∼ 0.3 in (c) and (d), respectively. Table compares �tted photoblinking times from
both methods. The analysis in either case was done on a single ROI.

*Since the observed values for to� are very close to the number of frames in the image series itself, we

force the condition that there is 0 probability to exceed this value, while maintaining geometric weights

for the other observations.



60 Chapter 2. Measuring Photophysical Rates of Immobile Fluorophores

28 29 210 211 212 213
10-2

10-1

100

101

102

103

Figure 2.12: Computation times for calculating autocorrelations de�ned in Eq. (2.20)
of di�erent sized image series. Local spatial �uctuations were calculated using the de-
fault 10×10 pixel windows. Computation times were calculated on a research dedicated
server (speci�cations detailed in methods section of main text).

Name Linker DNA sequence

Cy5-SeqA phosphoramidite 5'-TTT TAT ATC TAT AGC GCG C-

Cy5-3' 5'-ATT AGA TTA GCC CTT

CCA GTG CGC GCT ATA GAT ATA

AAA AGT GGC GTG GC-Biotin-3'

Cy5-RS1 succinimide 5'-Cy5-ACT CCA AGA CTT CGA CAC

GAC T-3' 5'-Biotin-AGT CGT GTC

GAA GTC TTG GAG T-3'

Cy5-D18 succinimide 5'-Cy5- ACC TCG CGA CCG TCG

CCA -Biotin-3'

Table 2.6: Sequences of all oligonucleotides used in this study.
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Sequence Quencher Bu�er Laser λ
Laser

power*

Frame

time

Emission

�lters

Cy5-RS1 Ni2+ (0.2 mM)
TRIS,

pH 7.5
641 nm

6.5 mW

100 ms

HQ 685/70

and HQ

685/80Cy5-SeqA Ni2+ (1.0 mM)
PBS,

pH 7.4
5.0 mW

Cy5-D18 β-ME (143 mM)
TRIS,

pH 8.0
647 nm

4.5 mW

and

20 mW

50 ms
ET

705/72m

Table 2.7: Single-molecule imaging conditions used in this study.

*Measured out of the objective in wide�eld mode.

Imaging bu�ers

� PBS bu�er pH 7.4 (137 mM NaCl, 2.7 mM KCl, 8 mM NaH2PO4, 2 mM K2HPO4)

� Tris bu�er pH 7.5 (50 mM Tris-HCl, 40 mM NaCl)

� Tris bu�er pH 8.0 (20 mM Tris-HCl, 50 mM NaCl)

Photostate autocorrelation

We �rst discuss the reason for neglecting the second term in Eq. (2.9). We assume here

that the PSF is well-approximated by a Gaussian, but the argument should be easily

extendable for any reasonable PSF functional shape; speci�cally, we have,

⟨I(u)⟩2

⟨I2(u)⟩
=

ω2
0

AROI

≪ 1 =⇒ ⟨I(u)⟩2 ≪ ⟨I2(u)⟩,

where ω0 is the e−2 radius of the Gaussian PSF and AROI is the area of the region of

interest being analyzed, which we assume to be much greater than ω0. Additionally, we

expect the autocorrelation of the photostate to be positive on average, since each state

has inherent memory in time,

⟨Θt1Θt2⟩ − ⟨Θt1⟩⟨Θt2⟩ ≥ 0.

It follows that,

⟨I2(u)⟩⟨Θt1Θt2⟩ ≫ ⟨I(u)⟩2⟨Θt1⟩⟨Θt2⟩.
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Omitting the second term in Eq. (2.9) yields Eq. (2.10).

In order to calculate Eq. (2.10) explicitly, we solve the system of di�erential equations

in Eq. (2.21) representing the general photobleaching process depicted in Scheme 2.2.

d

dt

 Non(t)

No�(t)

N∅(t)

 =

 −(ko� + kp1) kon 0

ko� −(kon + kp2) 0

kp1 kp2 0


 Non(t)

No�(t)

N∅(t)

 . (2.21)

To get P(σ2|σ1), i.e. the conditional probability of the photostate at time t2, σ2, given

the state at time t1 (≤ t2), σ1, we solve the above system of di�erential equations with

initial condition,  Non

No�

N∅

 (t = t1) = δσ1,σ2 ,

where δσ1,σ2 is the Kronecker delta function. This can be easily accomplished by using

standard eigenvalue/eigenvector methods.

To compute the autocorrelation while accounting for photobleaching, we specify that

for t < 0, Θt is a pure photoblinking process, while for t ≥ 0, it is the same blinking

process with bleaching �turned on�. We can then calculate the autocorrelation by using

the law of total probability conditioned at t = 0,

⟨Θ2Θ1⟩ =
∑

θ0,θ1,θ2

θ1θ2P(Θ2 = θ2|Θ1 = θ1)P(Θ1 = θ1|Θ0 = θ0)P(Θ0 = θ0)

= P(Θ2 = 1|Θ1 = 1)
∑
θ0

P(Θ1 = 1|Θ0 = θ0)P(Θ0 = θ0).

In the above equation, Θ0 is the observed photostate at t = 0, so that P(Θ0 = θ0) is

the steady-state probability of the photoblinking process. Θ1 and Θ2 are the observed

photostates at times t1 and t2 (t1 ≤ t2), respectively.

We now explore three cases of the photostate autocorrelation relevant to this paper.

(i) Symmetric photobleaching. In this case, we consider kp1 = kp2 = kp. The

autocorrelation can then be expressed as,

⟨Θ2Θ1⟩ =
kon
K2

e−kpt2(kon + ko�e
−K(t2−t1)), (2.22)
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where we have de�ned K = kon + ko�. When including the e�ect of time-integration

of the detector, we get for τ ̸= 0∫ t+τ+τi

t+τ

∫ t+τi

t

⟨Θt2Θt1⟩dt1dt2

=
kon
K2

e−kp(t+τ)

(
ko�
(
1− e−K

) (
1− e−Kp

)
KKp

e−K(τ−1) +
kon
(
1− e−kp

)
kp

)

where Kp = K + kp. Note we set τi = 1 (in units of frames here) for simplicity

i.e. no dead time. Finally, we carry out the sum in Eq. (2.14),

Φ(τ) =
A

T − τ

kon
kpK3Kp

(
e−kpτ − e−kpT

)
(1− e−kp)

×{
ko�kp

(
1− e−K

) (
1− e−Kp

)
e−K(τ−1) + konKKp

(
1− e−kp

)}
. (2.23)

One can then normalize as in Eq. (2.15) to obtain an expression in terms of only

photophysical/-chemical rates.

(ii) O�-state photobleaching. We now consider a model that only allows photo-

bleaching from the o�-state i.e. kp1 = 0 and kp2 = kp.

In this case,

⟨Θ2Θ1⟩ =
kon

4K∆2
e−(Kp−∆)t2/2

{(
(Kp − 2ko� +∆)− (Kp − 2ko� −∆)e−∆(t2−t1)

)
×
(
(Kp +∆)− (Kp −∆)e−∆t1

)}
,

where we have de�ned,

∆ ≡
√

K2
p − 4kpko�.

The time-integrated photostate autocorrelation is then (for τ ̸= 0),∫ t+τ+τi

t+τ

∫ t+τi

t

⟨Θt2Θt1⟩dt1dt2

=
1

2K∆3
kon(∆− 2ko� +Kp)e

−(Kp−∆)(t+τ)/2

×

{
∆+ 2ko� −Kp

∆− 2ko� +Kp

(
1− e−∆ +

∆−Kp

∆+Kp

∆e−∆(t+1)

)(
1− e−(Kp+∆)/2

)
e−∆(τ−1)

−
(
∆+Kp

∆−Kp

∆+
(
1− e−∆

)
e−∆t

)(
1− e−(Kp−∆)/2

)}
,
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where we again set τi = 1. Finally, the sum in Eq. (2.14) gives

Φ(τ) =
1

2K∆3
kon(∆− 2ko� +Kp)e

−(Kp−∆)τ/2

{
∆+ 2ko� −Kp

∆− 2ko� +Kp

(
1− e−(Kp+∆)/2

)
e−∆(τ−1)

×
(
(1− e−∆)

1− e−(Kp−∆)(T−τ)/2)

1− e−(Kp−∆)/2
+∆e−∆∆−Kp

∆+Kp

1− e−(Kp+∆)(T−τ)/2

1− e−(Kp+∆)/2

)
−
((

1− e−∆
) 1− e−(Kp+∆)(T−τ)/2

1− e−(Kp+∆)/2
+

∆+Kp

∆−Kp

∆
1− e−(Kp−∆)(T−τ)/2)

1− e−(Kp−∆)/2

)
×
(
1− e−(Kp−∆)/2

)}
. (2.24)

(iii) Asymmetric photobleaching. In the most general case of the two-state blinking

system, both the on- and o�-states have independent bleaching rates of kp1 and kp2 ,

respectively.

The photostate autocorrelation in this case is computed as

⟨Θ2Θ1⟩ =
kon

4K∆2
e−(Kp−∆)t2/2

{(
(Kp − 2kp1 +∆)− (Kp − 2kp1 −∆)e−∆t1

)
×
(
(Kp − 2(kp1 + ko�) + ∆)− (Kp − 2(kp1 + ko�)−∆)e−∆(t2−t1)

)}
,

(2.25)

where we have rede�ned,

Kp ≡ K + kp1 + kp2 , and

∆ ≡
√
K2

p − 4(kp1(kp2 + kon) + kp2ko�).

The time-integrated and time-averaged expressions are omitted from this text be-

cause of their size, but computation of these quantities is straightforward and we

follow the same procedure as in the case above.

Temporal-mean subtraction

De�ning the autocorrelation through the temporal intensity �uctuations, produces an

autocorrelation expression that cannot be used to simultaneously �t both photoblinking

rates in a simple two-state system. To demonstrate this, we consider the simple case of

on-o� photoswitching without bleaching. The general autocorrelation of the temporal



2.6. Supporting Information 65

intensity �uctuations is written as

Φδti(τ) ≡ ⟨δtis(r, t1)δtis(r, t2)⟩

= ⟨is(r, t1)is(r, t2)⟩ − ⟨⟨is(r, t1)⟩t⟨is(r, t2)⟩t⟩, (2.26)

where the temporal mean is denoted as ⟨·⟩t. The �rst term was already calculated in

Eq. (2.7). The second term can be calculated explicitly to give (making the same as-

sumptions given in the main text)

⟨⟨is(r, t1)⟩t⟨is(r, t2)⟩t⟩ = q2⟨Θt1⟩⟨Θt2⟩{N⟨I2(u)⟩+N(N − 1)⟨I(u)⟩2}.

Note that the temporal average does not a�ect I(u) as the �uorophores are assumed to

be immobile. Eq. (2.26) then yields

ϕδi(t1, t2) = A⟨δΘt1δΘt2⟩, (2.27)

where,

A ≡ Nq2⟨I2(u)⟩.

If we take Θt to be a simple two-state process (i.e. a �uorophore turning on and o�),

we have,

⟨Θt⟩ =
kon
K

and

⟨ΘtΘt+τ ⟩ =
kon
K2

(kon + ko�e
−Kτ )

=⇒ ⟨δΘtδΘt+τ ⟩ =
konko�
K2

e−Kτ ,

where,

K ≡ kon + ko�.

As one can see, Eq. (2.27) is una�ected by the interchange kon ↔ ko� so that both rates

cannot be �t for simultaneously. Conversely, using spatial intensity �uctuations gives an

expression that is not symmetric in the blinking rates, as was shown in this work.

Simulation details

This section gives full details about our simulations, initially discussed in methods section

of main text. In order to explicitly compute the mean number of counts in Eq. (2.19) we
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�rst compute the counts from the simulated emitters at pixel x and frame t as

ns(x, f) =

∫
f

∫
x

I(r)⊛r ρ(r, t) dr dt.

The �rst integral is over the entirety of pixel x, while the second integral is over the

exposure time of frame f . We choose the form of the PSF to be a Gaussian with e−2 radius

ω0. The laser illumination pro�le is also chosen to be Gaussian with peak set to unity at

the center of each simulated image and e−2 radius Ω0. Each simulated �uorophore emits

navg photon counts per frame per molecule on average, given that the molecule occupies

the on-state for a full frame.

Tabulated below are default parameters used in our simulations.

Parameter description Value

Analogue to digital conversion factor 12

Auto�uorescent photon rate (na�) 1− 5% of navg pixel
-1

Clock induced charge (ncic) 5× 10−3 frame-1 pixel-1

Dark noise photon rate (ndn) 8× 10−4 frame-1 pixel-1

Detector quantum e�ciency (Qd) 0.9

EM Gain 200

Exposure time (τi) 0.1 s frame-1

Image dimensions 64× 64 pixels2

Laser e−2 radius (Ω0) 128 pixels

Average photon rate per molecule (navg) 500 frame-1

PSF e−2 radius (ω0) 1.7 pixels

Table 2.8: Default simulation parameters.
These parameters were used to generate simulations presented throughout this work, unless otherwise

stated. Some simulated noise values are negligible, but are included for completeness.

Photobleaching model comparison

As mentioned in the main text, the autocorrelation of a blinking system of particles

photobleaching from the o�-state is comparable to that of equal photobleaching rates

from both on- and o�-states in certain limits. We show two examples comparing the two

models in Figure 2.13. As can be observed from this �gure, the two models diverge from

one another as both blinking rates become comparable to the photobleaching rate i.e. as

K approaches kp. Conversely, in the limit where at least one of the blinking rates is much

faster than the bleaching rate, the autocorrelations from both models recover the correct
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Log of %

 error

Figure 2.13: Contour plots comparing the autocorrelation of the symmetric-bleach
model to that of the o�-bleach model as a function of the photoblinking rates. Each
plot compares the log of the percent error between the �xed kon and the �tted kon;
the same plots for ko� yield almost identical results, and so are omitted from this
work. In order to generate these plots, we �rst evaluate the o�-bleach model with a
�xed set of parameters, and subsequently �t the symmetric-bleach model in order to
assess how well the chosen blinking rates can be recovered from the �t. In Figure (a)
kp = 10−2 frames-1 and in (b) kp = 10−4 frames-1. Note that kp is not expected to agree
between both models, and so is not compared here.

Log of %
 error

Figure 2.14: Contour plots comparing the autocorrelation of the symmetric- and
asymmetric-bleach models as a function of the photoblinking rates. Each plot compares
the log of the percent error between the �xed kon and the �tted kon; the same plots for ko�
yield more accurate results when kp2 is lower. The same relation was found between kon
and kp1 . In order to generate these plots, we �rst evaluate the asymmetric-bleach model
with a �xed set of parameters, and subsequently �t the symmetric-bleach model in order
to assess how well the chosen blinking rates can be recovered from the �t. In Figure (a)
kp1 = 10−2, kp2 = 10−3 frames-1 and in (b) kp1 = 10−3, kp2 = 5× 10−3 frames-1.
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blinking rates i.e. K ≫ kp. The same behavior was observed when comparing the model

with equal bleaching rates from both on/o� states to the general case when the two rates

are not equal, kp1 ̸= kp2 , as can be seen in Figure 2.14. In this case, the two models agree

on the �tted blinking rates when K ≫ kp1 + kp2 .

Expected total number of blink cycles

We derive the expected total number of blink cycles in T frames for N �uorophores

undergoing photobleaching exclusively from the o�-state.

The expected length of a blink cycle is,

Tc =
1

kon
+

1

ko�
.

Assuming there are Ne�(t) unbleached �uorophores in the in�nitesimal time window [t, t+

dt), this means the in�nitesimal number of cycles that occur on average in this window

is

dνc = Ne�(t) dt/Tc =⇒ νc =

∫ T−1

0

Ne�(t) dt/Tc. (2.28)

In order to proceed, we need to �rst determine Ne�(t). As the bleaching only occurs from

the o�-state, we have,

N ′
e�(t) = −kpNo�(t). (2.29)

As was shown in Eq. (2.21), No�(t) can be computed from solving the following coupled

di�erential equations,

d

dt

(
Non(t)

No�(t)

)
=

(
−ko� kon

ko� −(kon + kp)

)(
Non(t)

No�(t)

)
.

with initial conditions,

Non(t = 0) = Nkon/K, No�(t = 0) = Nko�/K.

The solution to Eq. (2.29) is given by,

Ne�(t) =
N

4K∆
e−(Kp−∆)t/2×{

(∆ +Kp)(∆ +K − kp)− (∆−Kp)(∆ + kp −K)e−∆t
}
.
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In order to determine the number of frames needed for a �xed number of expected events,

we numerically solve Eq. (2.28) for T . To choose the number of frames for the simulations

in Figure 2.5, we additionally impose the condition that minTc = 2 frames (independent

of the rates simulated).

Analysis of STORM data

Application of STORM analysis requires the condition kon ≪ ko� in order to yield isolated

emitters. Here we discuss the applicability of our method in this limit.

For demonstration purposes, we make the simplifying assumptions of negligible pho-

tobleaching and detector-resolvable on-times. The autocorrelation of the image intensity

�uctuations is then given by Eq. (2.22). We simplify this equation further using the fact

that kon ≪ ko�, so that we now have

Φ(τ) ≃ A
kon
ko�

(
kon
ko�

+ e−ko�τ

)
.

From this expression we see that ko� is responsible for the exponential decay, while in-

formation about kon can be found in the constant o�set term. Moreover, we have that

the ratio kon/ko� tends to 0, so that the constant term becomes small enough to be

comparable to the noise, making it more di�cult to recover kon from a �t as this ratio

decreases.

10-4 10-2 100
-102

-100

-10-2

-10-4

-10-6

Figure 2.15: Logarithm of o�set values from Eq. (2.22) for di�erent instances of
(kon, ko�) when kp = 0.
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From Figure 2.15 one can also see that increasing the value of kon by an order of

magnitude has little e�ect on the o�set as the ratio kon/ko� decreases. This is problematic

since this means small systematic errors in the ACF computed from data can result in

signi�cantly biased �ts for kon, which is why it is important to correct for background

illumination when kon ≪ ko�, for example. It is also crucial to get as much information

as possible for kon from the ACF by �tting a wide time-lag range. In Figure 2.16, we

demonstrate the performance of our method through simulations generated with di�erent

values of this ratio. As expected, the �ts for kon worsen as kon/ko� decreases. We also

show in Figure 2.8 that the �t for a simulation generated with low kon/ko� converges to

the correct kon value given enough sampling.
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Figure 2.16: Percent error on ACF �ts for kon for di�erent instances of kon/ko� from
simulation as a function of number of frames analyzed. Each point represents the
average �tted kon value from 5 independent simulations, while error bars represent the
minimum and maximum percent errors over the 5 simulations. Analysis was done on a
45× 45 pixel ROI in the center of each simulated image series. Simulated image series
were background corrected before analysis (see STORM data section in main text for
more details). All �ts are done over the �rst 2,000 time-lags (excluding τ = 0). Insets
show magni�ed portions of plots. Simulation parameters: N = 200; to� = 60 s; laser
e−2 beam radius, Ω0 = 64 pixels; kp = 2× 10−3 s. ton is chosen according to the given
kon/ko� for each plot.
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Non-uniform densities

Here we analyze a simulated movie that is non-uniform in density and show that the

most e�ective approach, in this case, is to compute the ACF from an ROI where the label

density can be considered approximately uniform. We simulate a �star� pattern using the

TestSTORM[7] package suite with set default parameters, except for the blinking rates.

This pattern consists of 16 arms, with each arm having 200 simulated �uorescent labels

randomly placed along it, by default.

ED

A CB

Fitted Simulated

Figure ton (s) to� (s) ton (s) to� (s) tp (s)

(A) 0.0518± 0.0003 0.843± 0.005 0.05 5 1700

(B) 0.0516± 0.0003 0.852± 0.005

(C) 0.0502± 0.0003 1.36± 0.01

(D) 0.051± 0.001 5.1± 0.2

(E) 0.052± 0.001 5.0± 0.2

Figure 2.17: Di�erent ROIs used to analyze simulated movie. Fits to the correspond-
ing ACFs are shown in the table. All �ts are done over the �rst 200 time-lags (excluding
τ = 0) and without bleaching incorporated into the �t function as the autocorrelations
do not show a bleaching decay due to the relatively slow bleaching rate simulated. Cam-
era exposure time simulated as τi = 0.05 s for T = 3, 000 frames. (A) temporal mean of
the simulated image counts, in this case the whole movie was analyzed without choosing
an ROI; (C) the ROI is chosen so that the autocorrelation is computed only in the gray
region; (B), (D), (E) ROIs superimposed on the temporal mean of simulated counts.
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The non-uniformity of this pattern can be seen in the temporal mean in Figure 2.17 (A).

The �ts are only accurate for the ROIs shown in Figures 2.17 (D) and (E). In Figure 2.18

we compare the autocorrelations computed from Figures 2.17 (A) and (E). One can see

that the decay due to photoblinking is the same. This matches with the accurate recovery

of the sum of the rates in each case in Figure 2.17, which is approximately equal to ko�

since kon ≪ ko� (recall ton = 1/ko�). Conversely, the ACF o�sets do not match.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Figure 2.18: Comparison between ACFs computed from ROIs shown in Fig-
ures 2.17 (A) and (E).

Local spatial mean subtraction

As argued in the previous section, non-uniformity in an image series can yield inaccurate

�ts for photophysical/-chemical parameters. As a way to mitigate these e�ects, we choose

to de�ne intensity �uctuations through subtraction of local spatial means (see Eq. (2.20)).

Using an example we demonstrate that this yields better results than simply subtracting

the global spatial mean from each image. In Figure 2.19 we compare the autocorrelation

computed from both local and global spatial mean subtractions of a simulation with a

non-uniform laser illumination pro�le (using our default simulated laser e−2 beam radius

of Ω0 = 128 pixels).
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Figure 2.19: Comparison of ACFs calculated with local and global spatial mean
subtraction. Simulation parameters: T = 2, 048 frames, N = 50, τi = 0.05 s,
kp = 2× 10−2 s-1.

Fitted Simulated

ton (s) to� (s) ton (s) to� (s)

Local 0.101± 0.005 0.946± 0.038 0.1 1

Global 0.115± 0.006 0.411± 0.012

Table 2.9: Fitted and simulated values for the ACFs shown in Figure 2.19.

ROI selection

Ideally, an ROI should be chosen so that it is big enough to sample su�cient blinking

�uorophores; however, non-uniformity present in an image series also needs to be consid-

ered. For example, photobleaching rates are well known to be dependent on excitation

laser intensity, which could cause spatial dependence on the bleaching rates. We also

discussed the e�ects of analyzing non-uniform �uorophore densities using our method.

Therefore, it is important to consider these e�ects and to select ROIs that are also small

enough so that non-uniformity is not present.
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Preface to Chapter 3

In this chapter we will introduce another novel �uorescence image correlation technique

optimized for rapid simultaneous measurements of di�usion coe�cients, photoblinking

rate constants and fraction of di�using particles. As was previously discussed, FCS only

considers temporal �uorescence �uctuations in a single focal volume in the computation

of its ACF, while ICS techniques utilize both spatial and temporal information to in-

crease the statistical sampling. Therefore, most ICS methods require ergodicity in both

time and space to be properly applied for analysis of a given ROI and time of interest

(TOI) sample from a microscopy image series of the system of interest. This requirement

is especially challenging to meet in the complex environment of live cells. A spatially

inhomogeneous distribution of �uorophores within an ROI is one example that can vio-

late such a condition. If this inhomogeneous population of particles can be assumed to

be immobile or slowly moving, one can apply a Fourier �lter[72] or subtract a moving

average[75, 81] from the �uorescence image series to remove these components. If the

�uorophores are also blinking and bleaching, however, these solutions are not generally

applicable without additional consideration of these e�ects. Here we developed an ex-

tended kICS technique that is capable of analyzing ROIs with spatially inhomogeneous

distributions of �uorophores that are subject to photophysical processes. This allows for

analysis of �uorescence image series that were previously inaccessible to image correlation

methods, including the analysis of systems relevant to SOFI and STORM. This further

allows one to increase spatial sampling by analyzing larger ROIs. We demonstrated the

range of applicability and applied our method on computer simulated images with simu-

lated EMCCD noise and Dronpa-C12 labeled beta-actin in live NIH/3T3 and HeLa cells.

The di�usion rates measured using our method for globular actin (G-actin) in the cyto-

plasm were consistent with previously reported values in the literature. Furthermore, we

showed that the photoblinking rates followed the expected trend with varying excitation

intensity in the live HeLa cell experiments.

Previously mentioned comparisons with single-molecule approaches apply to our ex-

tended kICS method, except that with this technique one can analyze ROIs with spatially

inhomogeneous distributions of immobile blinking and bleaching particles. Note that our



78 Preface to Chapter 3

technique also requires su�cient spatial and temporal sampling to yield accurate mea-

surements. On the other hand, it can be challenging to employ SPT methods on systems

with both blinking and di�usion processes. We hope our developed method will be used

together with STORM or SOFI to also characterize dynamics pertinent to optimization

of the single-molecule localization measurements.
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Chapter 3

Rapid Ensemble Measurement of

Protein Di�usion and Probe Blinking

Dynamics in Cells

This section is based on the published manuscript:

Sehayek, S., Yi, X., Weiss, S., and Wiseman, P.W. Rapid Ensemble Measurement of

Protein Di�usion and Probe Blinking Dynamics in Cells, Biophys. Rep., 1, 2, 100015

(2021).[3]

3.1 Abstract

We present a �uorescence �uctuation image correlation analysis method that can rapidly

and simultaneously measure the di�usion coe�cient, photoblinking rates, and fraction

of di�using particles of �uorescent molecules in cells. Unlike other image correlation

techniques, we demonstrated that our method could be applied irrespective of a non-

uniformly distributed, immobile blinking �uorophore population. This allows us to mea-

sure blinking and transport dynamics in complex cell morphologies, a bene�t for a range

of super-resolution �uorescence imaging approaches that rely on probe emission blinking.

Furthermore, we showed that our technique could be applied without directly accounting

for photobleaching. We successfully employed our technique on several simulations with

realistic EMCCD noise and photobleaching models, as well as on Dronpa-C12 labeled

beta-actin in living NIH/3T3 and HeLa cells. We found that the di�usion coe�cients

measured using our method were consistent with previous literature values. We further

found that photoblinking rates measured in the live HeLa cells varied as expected with

changing excitation power.
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Why it matters

We developed an image correlation �uorescence �uctuation analysis technique that can

analyze microscopy images of cells containing non-homogeneous distributions of immo-

bile biomolecules labeled with �uorophores that are subject to photoblinking and pho-

tobleaching. As far as we know, this is the �rst image correlation method that does

this. This enables the study of intricate cellular systems using �uorescent probes with

complex photophysical properties. Our method rapidly and simultaneously measures dif-

fusion and photoblinking rates, as well as the fraction of di�using particles. We tested our

technique on simulations and Dronpa-C12 labeled beta-actin in live NIH/3T3 and HeLa

cells. Our measured di�usion coe�cients from the live cell experiments were consistent

with previously reported values in the literature.

3.2 Introduction

The past decade has seen a revolution in optical microscopy with the advent of far-�eld

super-resolution approaches. Fluorescence super-resolution microscopy has become an

invaluable tool for furthering our understanding of biological systems by allowing one

to circumvent the di�raction limited resolution of traditional �uorescence microscopy

techniques, leading to important insights in cell biology, neuroscience and cellular bio-

physics.[1�5] Among the super-resolution imaging techniques, single-molecule localization

microscopy (SMLM) methods are one of the most commonly used. These methods rely on

photophysical processes to localize the position of single �uorophores with a spatial un-

certainty much lower than the wavelength di�raction limit of light. Some popular exam-

ples of such techniques are stochastic optical reconstruction microscopy (STORM)[6] and

photoactivated localization microscopy (PALM).[7] Super-resolution optical �uctuation

imaging (SOFI)[8] also relies on the stochastic photoswitching nature of �uorophores, but

builds super-resolution images using the cumulants of the �uorescence �uctuations. Many

applications of super-resolution, however, have so far been limited to studying immobile

components in cells, or static molecules in chemically �xed cells, without examining their

dynamic counterparts. While super-resolution has also been coupled with quantitative

methods to investigate these dynamics, there are currently only a limited number of

approaches that combine super-resolution imaging and measurement of dynamics. No-

tably, stimulated emission depletion (STED) microscopy was combined with �uorescence

correlation spectroscopy (FCS) in STED-FCS,[9] which was shown to better character-

ize heterogeneous di�usive behavior of membrane biomolecules than traditional FCS by
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reducing the beam spot size. Scanning versions of this technique exist, as well.[10, 11]

Single-particle tracking (SPT) and PALM were also combined in sptPALM.[12] Minimal

photon �uxes (MINFLUX)[13] is also capable of super-resolved SPT. Another example

is fcsSOFI, which combines FCS and SOFI techniques to form super-resolved di�usion

maps.[14]

Many methods currently exist for measuring the dynamics in biological systems and

a signi�cant subset rely on measurement of �uorescence �uctuations to compute auto-

correlations that are then �t with speci�c models to measure transport parameters, such

as biomolecule di�usion coe�cients and directed �ow rates. Conventional FCS[15�17] is

a widely used example that analyzes �uorescence �uctuation time series collected from a

single �xed laser focal spot. Imaging FCS[18] was developed to allow for multiplexed FCS

analysis of pixels forming a �uorescence image. Similarly, image correlation spectroscopy

(ICS) methods[19�22] also analyze �uorescence �uctuations in images, but utilize both

spatial and temporal information when computing the autocorrelation. One advantage of

ICS techniques is that the use of spatial information increases statistical sampling; how-

ever, the inherent spatiotemporal heterogeneity in biological systems makes it di�cult to

simply average over di�erent pixels and frames. ICS techniques usually handle spatiotem-

poral heterogeneity by analyzing many smaller local regions of interest (ROIs), and then

correlating over a chosen time of interest (TOI). This is the approach for generating �ow

maps when using spatiotemporal image correlation spectroscopy (STICS).[21] The most

challenging example of heterogeneity in time in �uorescence microscopy is the issue of

photobleaching, which has been addressed using both pre-[23�25] and post-processing[26�

30] methods. Another example is anomalous di�usion, which has been investigated in

multiple FCS studies.[31�36]

As super-resolution aims to better resolve complex cell processes in space and time,

a technique that can analyze dynamics in the presence of spatially and temporally het-

erogeneous structures is required. Here we present an image correlation method that

can successfully and rapidly analyze heterogeneous systems for accurate measurement

of biomolecule di�usion coe�cients, probe photoblinking rates and fraction of particles

undergoing di�usion (see Figure 3.1). Along with measuring dynamic parameters in a

complex cell environment, we anticipate that the measurement of probe photoblinking

rates will be useful for optimal �uorescent probe development and optimization for meth-

ods like STORM and SOFI. The ability of our method to analyze spatially heterogeneous

systems further allows us to signi�cantly increase the spatial sampling used in our auto-

correlation computation.

Our method is based on k-space image correlation spectroscopy (kICS),[19] which
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Figure 3.1: Schematic illustrating extended kICS method application. (A) An ROI
and sliding time-window are �rst chosen from an image series. Intensity �uctuations
are computed locally in time, according to the chosen time-window size, to mitigate
the e�ects of photobleaching. (B) The 2D spatial Fourier transforms of the intensity
�uctuations are �rst computed in each frame, then this k-space ROI frame stack is
autocorrelated in time. A circular averaging of the autocorrelation is also calculated
when the dynamics of the system are isotropic. Non-uniformly distributed, immobile
blinking �uorophore populations do not systematically a�ect the �uctuation de�ned
autocorrelation. (C) Computed ACF (points) and simultaneous �ts (lines) over �ve
time-lags. (D) The process of computing the ACF and �tting is rapid (order of seconds
for 64 × 64 pixel image series with 2048 frames) and outputs: the di�usion coe�cient
(D), the sum of the photoblinking rates (K), the fraction of time spent in the on-state
(ρon), and the fraction of di�using particles relative to all particles (fD).

was originally developed for measuring transport parameters independently from the

�uorophore photophysics. Similar to other ICS techniques, one of the underlying as-

sumptions behind kICS is uniformity in space and time in the data being analyzed.[20]
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Non-uniformity in space caused by the presence of immobile structures were commonly

�ltered out by either subtracting the time average, or equivalently, applying a Fourier

�lter. This solution does not work, however, when the �uorophores labeling these struc-

tures are undergoing photophysical processes e.g. photoblinking and photobleaching on

timescales comparable to the imaging, thus making them di�cult to analyze with tra-

ditional ICS methods. This is especially relevant in the context of SMLM and SOFI

methods. Therefore, this signi�cant extension of kICS is important for dealing with real

heterogenities in space and time in the complex cellular environment.

We begin by showing that our de�nition of the autocorrelation is approximately inde-

pendent of immobile particle positions. We then derive the autocorrelation for a mixed

system of photoblinking immobile and di�using particles that is independent of any di-

rect imaging parameters in 2D, such as the point spread function (PSF). We proceed to

demonstrate the accurate measurement of di�usion and photophysical parameters, when

applying our technique on simulations. We then employ our method on Dronpa-labeled

beta-actin (β-actin) imaged in live 3T3 and HeLa cells. Our measured di�usion coe�-

cients for β-actin from these experiments are consistent with previously reported values.

Furthermore, we observed that the photoblinking follows the expected dependence on

excitation power in our HeLa cell experiments.

3.3 Theory

In the development of the original kICS technique by Kolin et al. (2006),[19] it was shown

that di�usion and �ow dynamics could be recovered regardless of the photophysical prop-

erties of the �urophores (e.g. photoblinking and photobleaching). However, the original

method did not consider the presence of immobile particle populations also undergoing

photophysical processes. We show here that with the presence of such populations, one

cannot simply apply the original kICS analysis technique. We further derive an expres-

sion for the autocorrelation function (ACF) that we simultaneously �t for transport and

photophysical parameters. This expression is independent of any direct imaging param-

eters in 2D (e.g. PSF size, amplitude, etc), as well as the immobile particle positions,

allowing us to probe systems with complex immobile particle spatial arrangements and

non-uniform cell morphologies. Furthermore, this enables us to maximize statistical spa-

tial sampling when computing the ACF. This is in contrast with other image correlation

techniques, which require spatially uniform regions for analysis.[20] Consequently, previ-

ous image correlation techniques would not be able to include cell boundaries and narrow
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projections, such as dendritic spines and narrow cellular lamellae, such as dendritic pro-

jections, when choosing ROIs for analysis. The 2D model presented here can be used

to model membrane dynamics sampled using TIRF microscopy, for example. We later

extend this to the 3D case when analyzing the live 3T3 and HeLa cell data. We will refer

to the developed technique as an extended kICS method.

We begin with the de�nition of a �uorescence microscopy image series of intensities

in 2D, i(r, t):

i(r, t) =
∑
α

i(α)s (r, t) + ϵ(r, t) =
∑
α

I(r)⊛r ρ
(α)(r, t) + ϵ(r, t), (3.1)

where i
(α)
s (r, t) is the �uorescence intensity from the labeled particles at position r and

time t, belonging to population α with common transport parameters; I(r) is the PSF;

⊛r is a spatial convolution; ϵ(r, t) is an additive noise term, which is assumed to be

independent from itself for any (r, t) ̸= (r′, t′); and ρ(α)(r, t) is the apparent particle

density of population α, i.e., the density of particles in population α that are emitting

and detectable. Note we only consider dependence of population α on particle position

in this work. The apparent density of particles belonging to population α is given by:

ρ(α)(r, t) =
∑
m

qm,tΘm,tδ(r − u
(α)
m,t). (3.2)

In this last equation, δ(·) is the 2-dimensional Dirac delta function; m is an index denoting

the �uorophores (which we also refer to as �particles�); qm,t is the instantaneous rate of

detector counts for the mth �uorophore at time t, which depends on several factors,

including the photon budget, quantum e�ciency of the detector, and camera detector

gain; u
(α)
m,t is the position of the mth �uorophore at time t (belonging to population α),

and Θm,t is its photo-emissive state, expressed as:

Θm,t =

{
1 mth particle is �uorescing at time t

0 not emitting
. (3.3)

Note we do not consider photophysical transitions between singlet states (i.e., absorp-

tion/emission and quenching), as these are far beyond the time-resolution capabilities of

electron multiplying charge-coupled device (EMCCD) camera detectors.

Since we developed this approach for wide�eld �uorescence microscopy, we account

for faster processes by also considering the e�ects of camera detector integration time by
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substituting:[30]

i(r, t) →
∫ t+τi

t

ds i(r, s), (3.4)

with τi being the integration time (in this work, we consider τi = 1); however, we leave

the integration out of the notation, as it is straightforward to redo the derivation with it.

De�ning the spatial Fourier transform as f̃(k) ≡
∫
dr exp(−ik · r)f(r), we have the

Fourier counterparts of Eqs. (3.1) and (3.2); respectively,

ĩ(k, t) = Ĩ(k)
∑
α

ρ̃(α)(k, t) + ϵ̃(k, t), (3.5)

and,

ρ̃(α)(k, t) =
∑
m

qm,tΘm,t exp
(
−ik · u(α)

m,t

)
. (3.6)

In this work, we calculate the autocorrelation as:

ϕ̃(k, τ) ≡ ⟨δtĩ(k, t)δtĩ∗(k, t+ τ)⟩t. (3.7)

Practically, the above autocorrelation is realized by computing a time average, therefore

we use the notation ⟨. . .⟩t to denote an expectation value that only considers random

variables that depend on time to be random. We also de�ne δt as a �uctuation with

respect to the time average, i.e.,

δtĩ(k, t) ≡ ĩ(k, t)− ⟨̃i(k, t)⟩t. (3.8)

Note in the original kICS work,[19] the autocorrelation was de�ned without the �uctua-

tions. In the Supporting Information (SI), we show that the original de�nition leads to

noisy autocorrelations a�ected by the immobile blinking particle positions (see SI: Com-

parison with original kICS method). Using the Fourier transform of an image series in

Eq. (3.5), we can express the autocorrelation in Eq. (3.7) as:

ϕ̃(k, τ) = |Ĩ(k)|2
∑
α,β

⟨δtρ̃(α)(k, t)δtρ̃∗(β)(k, t+ τ)⟩t + ⟨δtϵ̃(k, t)δtϵ̃∗(k, t+ τ)⟩t

+

{
Ĩ(k)

∑
α

⟨δtρ̃(α)(k, t)δtϵ̃∗(k, t+ τ)⟩t + Ĩ∗(k)
∑
α

⟨δtρ̃∗(α)(k, t+ τ)δtϵ̃(k, t)⟩t

}
.

(3.9)

The terms in the curly brackets are zero, assuming noise and particle positions are in-

dependent. We show in SI: Noise autocorrelation that the autocorrelation of the noise
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(i.e., the second term) only a�ects τ = 0 by a constant o�set, which we will denote by

ϕ̃ϵ. Note |k|2 = 0 is also a�ected by the noise, but is omitted from the analysis.

Using Eq. (3.6), for immobile populations we have:

δtρ̃
(α)
imm(k, t) = q

∑
m

δtΘm,t exp
(
−ik · u(α)

m

)
, (3.10)

where we have assumed all �uorophores have equal quantal brightness (i.e., qm,t = q).

Note further that the time indexing is dropped for immobile particle positions so that

they are una�ected by the time averaging. Conversely, for mobile populations:

δtρ̃
(α)
mob(k, t) = q

∑
m

Θm.t exp
(
−ik · u(α)

m,t

)
, (3.11)

since
〈
exp

(
−ik · u(α)

m,t

)〉
t
= 0 for |k| ≠ 0, assuming the mobile particle positions are

uniformly distributed in space within the chosen ROI.

Using Eqs. (3.10) and (3.11), Eq. (3.9) for one mobile and one immobile population

becomes:

ϕ̃(k, τ) = q2|Ĩ(k)|2×{
Nimm∑
m=n

⟨δtΘm,tδtΘn,t+τ ⟩t +
Nimm∑
m ̸=n

⟨δtΘm,t⟩t⟨δtΘn,t+τ ⟩t exp (−ik · (um − un))︸ ︷︷ ︸
immobile

+

Nmob∑
m=n

⟨Θm,tΘn,t+τ ⟩t ⟨exp (−ik · (um,t − un,t+τ ))⟩t︸ ︷︷ ︸
mobile

}
+ ϕ̃ϵδτ,0, (3.12)

where we have assumed non-identical particles are mutually independent, so that we can

sum their individual autocorrelations, and δτ,0 is the Kronecker delta function. Note the

�uctuations are not necessarily expected to vanish in the second term since, in practice,

they are computed by subtracting the sample time average, which does not converge

to the ensemble average in non-ergodic systems. Furthermore, subtraction by the spa-

tial average only a�ects the autocorrelation at |k| = 0. Notice also the second term is

a�ected by the immobile particle positions, which is why we need to de�ne conditions

when it is approximately zero. It is clear that without photobleaching (or any other

non-stationary photophysical process) the photophysical �uctuations are indeed zero on

average; however, in the presence of bleaching the �uctuations need to be properly de-

�ned to make sure the second term in Eq. (3.12) is approximately zero. For this reason,



3.3. Theory 87

we use local time-averaging over a subset time-window to compute Eq. (3.8) in practice

(see �Autocorrelation computation� in Materials and Methods), i.e.,

δtĩ(k, t) = ĩ(k, t)− 1

Tw

t+Tw−1∑
s=t

ĩ(k, s), (3.13)

where Tw is the window size chosen for the local time average. If the photobleaching

is slow and Tw is large enough, then Eq. (3.8) is a good approximation of Eq. (3.13).

On the other hand, if the photobleaching is signi�cant one must account for Tw in the

autocorrelation (see SI: Time-windowed correction, where we provide an expression for

this correction). Eq. (3.8) will also not hold when the dynamics in the system are slow

and resemble immobility; in this case, the e�ects of time-windowing should again be

accounted for (for example, see Figure 3.2 (C)). Note that if the second term in Eq. (3.12)

is zero, then the autocorrelation is independent of any assumptions on immobile particle

positions, making it a powerful tool to study previously inaccessible systems using image

correlation. Time-windowed or moving-average subtraction has been previously used in

raster ICS (RICS) as a way to �lter out slow-moving �uorescent objects.[22, 37]

In order to obtain a quantity that is independent of PSF, we de�ne the autocorrelation

function (ACF) as:

Φ̃(|k|2, τ) ≡ ϕ̃(|k|2, τ)
ϕ̃(|k|2, τ = 0)− lim|k|2→∞ ϕ̃(|k|2, τ = 0)

. (3.14)

The second term in the denominator removes dependence of the ACF on the noise;

practically, it is computed as the large |k|2 o�set in the autocorrelation. Furthermore,

if the mobile components of the system being analyzed are isotropic, one can circularly

average the autocorrelations for statistical sampling purposes.[19, 20, 38] Since the focus

of this work will be on such systems, the dependence of the ACF in this last equation is

left to be on |k|2. It should also be mentioned that this de�nition of the ACF leads to

division by zero after su�cient decay of the PSF, so that the ACF must be appropriately

trimmed in |k|2 prior to �tting. For a 2D mixture of di�using and immobile particles,

Eq. (3.14) can be written explicitly as:[19, 30, 39]

Φ̃(|k|2, τ) =
fD
(
ρon + (1− ρon)e

−Kτ
)
e−|k|2Dτ + (1− fD)(1− ρon)e

−Kτ

1− (1− fD)ρon
, (3.15)

where D is the di�usion coe�cient; K ≡ kon + ko� is the sum of the photoblinking rates,

where kon and ko� are the on- and o�-blinking rates, respectively; ρon is the fraction of
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time spent in the �uorescent on-state; and fD is the fraction of particles di�using. Note

that the blinking in this last expression is assumed to follow a two-state on-o� model,

without photobleaching. In the SI, we include a derivation considering the e�ects of

bleaching and detector time-integration, as well as a derivation for the 3D e�ects on the

ACF (see SI: Autocorrelation function derivation).

3.4 Results and Discussion

3.4.1 Computer simulations

We �rst apply our extended kICS method on 2D computer simulations of immobile �la-

mentous structures composed of �xed emitting particles, with a second simulated popu-

lation of freely di�using particles, as shown in Figure 3.2. The �t results from this �gure

are tabulated in Table 3.1. The �tted parameters demonstrate the wide range of di�u-

sion coe�cients that are measurable in heterogeneous morphologies using our extended

technique.

The simulations assumed both immobile and di�using particle populations to have the

same photoblinking and photobleaching rates. Each simulation also contained simulated

EMCCD noise (see Sehayek et al. (2019)[30] for noise model details). We note that

our method is not limited to analyzing EMCCD data and could also be applied to data

acquired by other camera detectors used in wide�eld setups. This is because we considered

the exposure time of each frame when deriving the ACF (see Eq. (3.4)). Examples of

other such detectors are scienti�c complementary metal-oxide-semiconductors (sCMOS)

cameras and single-photon avalanche diode (SPAD) arrays, both of which have been used

in multiplexed FCS studies.[40, 41] An extension of our method to sCMOS data would

most likely require characterization of spurious correlations from hot pixels characteristic

of such cameras, but this should be possible using a camera speci�c masking operation.

As well, recent work by Mandracchia et al. (2020)[42] presents an adaptive algorithm

approach to correct for noise characteristic of sCMOS cameras and such an approach

may be useful before performing kICS.

Note the non-uniformity in the immobile particle positions placed along the sim-

ulated �laments in Figure 3.2, which con�rms that the technique can be successfully

applied in non-homogeneous systems. Conversely, previous image correlation techniques

required ROIs to be selected where the spatial distribution of particles was homogeneous

e.g. avoiding cell boundaries (see SI: Comparison with original kICS method where we

compare our extended kICS technique to the original one).[20] It would be impossible
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to select such an ROI with both di�using and immobile particles in the simulations

shown in Figure 3.2. The ability to analyze larger ROIs further enables us to increase

the spatial sampling in our analyses; however, we assume that all the particles within

this ROI have transport and photophysical parameters that are drawn from common

distributions, i.e., we assume a single di�using population and a single photophysical

population (while the extension to multiple populations with di�erent dynamic parame-

ters is possible, one must be mindful of the possibility of over�tting). Thus, our analysis

o�ers a coarse-grained approach for quickly measuring these parameters within regions.

SPT is bene�cial when a common distribution cannot be assumed for such parameters.

However, the �uorescence correlation approach can be applied to cell expression systems

where high density labeling might not permit SPT. SPT is also limited by factors such

as photoblinking in transport populations.

In Figure 3.2 (B), the shape of the ACF is characterized by a decay at low |k|2, and a

convergence to a non-zero value at higher |k|2. The former is attributed to the di�usion

coe�cient, while the latter is due to the presence of an immobile particle population, as

can be seen from Eq. (3.15) (note that these �ts use the time-integrated version of this

equation; see SI: Autocorrelation function derivation for details). The decrease in the

ACF amplitude and o�set with increasing time-lag is due to the photophysical processes

in the system, i.e., photoblinking and photobleaching.

When the ACF is characterized by an initial increase along |k|2, as is the case in

Figure 3.2 (C), one needs to account for the e�ect of the sliding time-window (see SI:

Time-windowed correction). This type of behavior occurs when the di�usion is relatively

slow, or when the chosen time-window is relatively short.

In Figure 3.2 (D), we show sample images from a simulation with more noise. Speci�-

cally, we increased the simulated auto�uorescence background, while decreasing the pho-

ton budget of the simulated �uorophores. To accurately analyze such an image series

(Figure 3.2 (E)), we required larger ROIs than the ones used in the previous analyses.

Consequently, we generated this simulation on a 256× 256 pixel grid.

Note that photobleaching was not considered in the �ts shown in Table 3.1. A deriva-

tion considering the e�ects of bleaching on the ACF is included in SI: Time-windowed

correction. Although one can consider these e�ects, we have demonstrated that we can

still obtain accurate parameters in the presence of photobleaching, without having to

incorporate it into our �t model (given appropriate choice of time-window). This is

bene�cial as bleaching pathways of a �uorescent label are not often known.
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Figure 3.2: Example ACFs and �ts computed from simulations of �lamentous struc-
tures composed of static blinking particles, with a second population of freely di�using
particles. Both populations are set to have the same photophysical properties. Each
simulation also contained simulated EMCCD noise. The ACF �ts were all done over
the �rst 10 time-lags; only the �rst 5 are shown. Time windowing was done with
Tw = 200 frames in each case. Simulation and �t details are shown in Table 3.1. (A)
Example of simulated intensity images in time. (B, C) Computed ACFs (points) and cor-
responding simultaneous �ts (lines) for simulations with D = 5 and 0.01 pixels2/frame,
respectively. In (C), we utilize a �t model that corrects for the chosen sliding time-
window. (D) Sample simulation with higher simulated auto�uorescence background
and lower photon budget than simulation shown in (A). (E) Corresponding computed
ACF and �t of simulation shown in (D) with D = 1 pixels2/frame.

We also note that the fraction of time spent in the on-state, ρon, cannot be measured

for a purely immobile population, i.e., fD = 0. This can be seen by the lack of dependence

on ρon in Eq. (3.15) in this limit. Previous techniques have described how to measure the

photoblinking rates for immobile emitters.[30, 43�46]

To perform our analysis, it is essential to choose a time-window, an ROI, a range of

time-lags to �t simultaneously, and cuto� values for |k|2. As discussed in the Theory

section above, the choice of time-window will mainly depend on the photobleaching rate.

A value of Tw that is too small results in loss of information, but a smoother ACF. A

value of Tw that is too large will result in a noisier ACF that is more in�uenced by

the photobleaching, which may lead to poorer �ts. With a simulated bleaching rate

of kp = 10−4 frames−1 (with a frame acquisition time of 50 ms, this corresponds to a
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characteristic bleaching time of 500 s), we �nd a suitable choice of time-window to be

Tw = 200 frames. We will use this value consistently throughout this work for the same

value of kp. The same value of Tw can be used for smaller bleaching rates. In general, we

found from our simulations that Tw can be chosen to be about 2�5% of the characteristic

bleaching time.

As mentioned above, when choosing an ROI it is necessary to select a relatively large

region, in order to avoid aliasing of the ACF along |k|2. This is especially important

when dealing with larger di�usion coe�cients, as the decay will appear in a short range

of small |k|2.

Fig. 3.2 (B) Fig. 3.2 (C)

Fit Simulation Fit Simulation

D (pixels2·frame-1) 4.66± 0.06 5 0.0113± 0.0001 0.01

K (frame-1) 1.02± 0.02 1 1.68± 0.01 1.7

ρon 0.095± 0.006 0.1 0.59± 0.01 0.59

fD 0.68± 0.03 0.7 0.59± 0.02 0.65

Fig. 3.2 (E)

Fit Simulation

D (pixels2·frame-1) 1.12± 0.07 1

K (frame-1) 0.284± 0.006 0.3

ρon 0.36± 0.03 0.33

fD 0.36± 0.06 0.35

Table 3.1: Comparison of �tted and simulated parameters for �ts shown in Figure 3.2.

Each simulation had photobleaching rate kp = 10−4 frame−1 over T = 2048 frames. Simulations (B) and
(C) were generated on 128 × 128 pixel grids, while (E) was on a 256 × 256 pixel grid. The simulations
were assigned 8130, 8411, 9048 total particles, respectively. In each case, �tted parameters and errors
were obtained by splitting the simulation spatially into 4 equally sized and independent ROIs and then
calculating the mean and its standard error from their analyses.

Similarly, when choosing a range of time-lags to �t, it is best to choose a wide range,

in order to capture slower dynamics. If the range is too large, the simultaneous �tting

will be visibly biased and a smaller range should then be used. Trying to �t a larger

time-lag range can be complicated by the presence of photobleaching, for example (we

show how to account for these e�ects in SI: Time-windowed correction). We also remark

that the ACF is noisier for higher time-lags, so that it is informative to compare them

with their �ts to gauge whether the �tted time-lag range is too wide. We showed that we

can achieve reasonable �ts for our simulated parameters by �tting the 10 �rst time-lags in
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our analyses in Table 3.1. Systematic errors were reduced when including more time-lags

in the �t, or when choosing larger ROIs, but in non-simulated data, it may be di�cult

to make such adjustments.

Finally, we discuss choosing cuto� values for |k|2. We discard the value of the ACF

at |k|2 = 0 since it is a�ected by the noise in the system, as was mentioned in the Theory

section. Excluding a few small |k|2 is also bene�cial for avoiding the autocorrelation from
the time-windowing, when not using the time-window correction (see SI: Time-windowed

correction for details). The maximum value for |k|2 can be selected by examining where

the ACF begins to diverge due to the normalization in Eq. (3.14). It is optimal to choose

the largest possible range of |k|2 to �t while avoiding points that are too noisy due to

the normalization. Choice of the maximum cuto� will depend on PSF size as well as

the noise in the system. As was previously mentioned, this is to avoid division by zero

that occurs due to our de�nition of the ACF in Eq. (3.14). This occurs because the

noise is subtracted from the denominator, which is then e�ectively zero after the PSF

has su�ciently decayed. In Figure 3.2 (E), due to the higher noise in the simulation, the

�t has a smaller chosen maximum cuto� of |k|2 since higher values result in a divergence

of the ACF.
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Figure 3.3: Example ACF computed from simulation of dendritic structures and �t.
(A) Sample simulated intensity images in time. Simulations contain immobile particles
on the dendrites, along with a background of freely di�using particles. Both populations
are assumed to have equal photophysical properties. (B) Computed ACF (points) and
corresponding simultaneous �t (lines). The �t is done over the �rst 10 time-lags; only
�rst 5 are shown. Time windowing was done with Tw = 200 frames. Fit details are
shown in Table 3.2.

In Figure 3.3, we perform the same analysis on a simulated dendritic morphology. A

comparison of the simulated and �tted parameters recovered using our analysis is shown

in Table 3.2. This further demonstrates the ability of the technique to be applied inde-

pendently of immobile particle distribution. In this case, it would again be impossible to
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select an ROI containing a uniform distribution of both di�using and immobile popula-

tions for analysis using previous image correlation techniques. As mentioned previously,

with the extended kICS technique developed in this work, we are no longer restricted by

this requirement and can further bene�t from large ROIs to increase the spatial sampling

in our analysis.

Fit Simulation

D (pixels2·frame-1) 2.80± 0.08 3

K (frame-1) 0.86± 0.01 0.9

ρon 0.38± 0.03 0.44

fD 0.26± 0.02 0.3

Table 3.2: Comparison of �tted and simulated parameters for �ts shown in Figure 3.3.

Simulation had photobleaching rate kp = 10−4 frame−1 and was generated on 128× 128 pixel grid with
10744 total particles and T = 2048 frames. Fitted parameters and errors were obtained by splitting the
simulation spatially into 5 64×64 ROIs, with some overlap between di�erent parts, and then calculating
the mean and its standard error from their analyses. The ROIs were chosen so that a signi�cant portion
of the simulated dendritic structure was encompassed, overall.

3.4.2 Live NIH/3T3 cell data

Using a wide�eld �uorescence microscope equipped with an EMCCD camera detector,

we imaged β-actin labled with Dronpa-C12 in an NIH/3T3 �broblast cell line expression

system. The Dronpa-C12 exhibited blinking and photobleaching during image aquisition

and the β-actin pool was both di�usively mobile within the cell and immobile in actin

�laments. A sample of our analysis from the data is shown in Figure 3.4.

In Figure 3.4 (C), we recon�rm that the blinking of immobile �uorophores can be used

to obtain a SOFI[8] image using SOFI 2.0[47, 48] (see GitHub code for SOFI 2.0). Along

with our dynamic analysis of this data, we demonstrate that we can extract both static

and dynamic information from our system with careful selection of correlation analysis

approaches.

Since the data was acquired using a wide�eld �uorescence microscope with actin

monomers di�using in the cytoplasm, we needed to employ a 3D model for the ACF �t

(see SI: Di�using and immobile populations (3D) for more details). The extension to

a 3D model (without considering integration time e�ects) is achieved through a scaling

factor that depends on τ , and consequently, does not a�ect the behavior of the ACF along

|k|2. Using the 2D �t model for the ACF yielded visibly inconsistent �ts to the data.

Notably, our reported value for the apparent di�usion coe�cient (9.2± 0.4 µm2 · s−1) is
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within range of the simulated and experimentally veri�ed di�usion coe�cient of globular

actin (G-actin) in the cytoplasm of ∼ 3�30 µm2·s-1.[49�53] This is also in reasonable

agreement with the di�usion coe�cient of Dronpa-labeled actin in an MCF-7 cell of

13.7 µm2· s-1, reported by Kiuchi et al. (2011)[52] Our measurement of a relatively rapid

di�usion coe�cient is further con�rmed by the behavior of the ACF, which exhibits a

characteristic initial decay in |k|2, as in Figure 3.2 (B). This is in contrast to systems with
lower di�usion coe�cients, which exhibit an initial increase in |k|2, as in Figure 3.2 (C). As
can also be seen from Figure 3.4, our assumption of a single di�using population provides

a reasonable �t to the data. Therefore, we argue that it would not be advantageous to

include more di�using components in our �t model since it would risk over�tting our

data.

In order to account for 3D e�ects, we needed to �rst estimate the e−2 radius along

the axial direction from the data. To this end, we used the Abbe resolution criterion to

determine the full width at half maximum of the PSF in z, i.e., 2λ/NA2, which was then

converted to an e−2 radius.

McGrath et al. (1998)[49] demonstrated that they can simultaneously measure actin

�lament turnover rate, fraction of actin in �laments and actin di�usion using either

�uorescence recovery after photobleaching (FRAP) or photoactivation of �uorescence

(PAF). In their model, the �lamentous actin is not necessarily immobile, but not di�using.

We show that on the time and spatial scales we considered in our analysis, the actin �ow

is negligible. Furthermore, �lament turnover rate is an important parameter at �lament

ends, but we chose ROIs away from these ends, so that we would not have to consider

such e�ects.

Since �ow appears as an imaginary component in the autocorrelation,[19] we compared

the magnitude of the imaginary part to that of the modulus of the autocorrelation, i.e.,∣∣∣ℑ(ϕ̃(k, τ))∣∣∣∣∣∣ϕ̃(k, τ)∣∣∣ . (3.16)

This quantity was determined to be very small (close to machine precision), con�rming

that the �ow is negligible relative to other dynamics over the time and spatial scales

examined.
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Figure 3.4: ACF computed from Dronpa-C12 labeled actin in a live NIH/3T3 cell
and �t. (A) Fluorescence image of Dronpa-C12 labeled actin in a live NIH/3T3 cell,
with ROI used in analysis highlighted. (B) Sample �uorescence images in time of ROI
shown in (A). (C) SOFI image generated from immobile blinking �uorophores (see
GitHub code for SOFI 2.0). (D) Computed ACF from ROI shown in (A) (points) and
corresponding simultaneous �t (lines). The �t was done over the �rst 5 time-lags. Time-
windowing was done with Tw = 100 frames. Fitted parameters: D = 9.2±0.4 µm2 · s−1,
K = 7.6± 0.4 s−1 and fD = 0.58± 0.03. Fit for ρon omitted due to inconsistent values
between di�erent ROIs and TOIs. Pixel size: 177.78 nm. Frame time: 50 ms. Analysis
details: Two spatially independent ROIs (each about 30× 30 µm2) over two temporally
independent TOIs (each about 50 s in length) were considered in the analysis. The
reported �tted parameters and errors are given as the mean and its standard error from
these analyses.

From our analysis of the data shown in Figure 3.4, we also found a di�using fraction

of fD = 0.58± 0.03. Gasilina et al. (2019)[54] reported a percentage of �lamentous actin

(F-actin) of 48± 4% from their immunoblotting-based analysis of wild type NIH/3T3

�broblast cells. If we assume F-actin to be immobile and G-actin to be di�using, then

this value corresponds to fD = 0.52± 0.04.

We further tested whether the G-actin was undergoing anomalous subdi�usion in the

cell. This can approximately be done by replacing the dependence of the ACF from

τ → τα (ignoring detector time integration), where α is the degree of subdi�usion.[34] A

�t including α as a free parameter yielded a �tted value of α ∼ 1, indicating that the

di�usion of the G-actin within this non-migrating cell was mainly free di�usion.
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3.4.3 Live HeLa cell data

We proceeded to analyze Dronpa-C12 labeled β-actin in live HeLa cells imaged under

di�erent excitation intensities. Our analyses are shown in Figure 3.5, with results given

in Table 3.3 below.

Measurements of the apparent di�usion coe�cient from the HeLa cells are again

within the range of ∼ 3�30 µm2·s-1 for G-actin di�usion in cytoplasm. Furthermore, the

di�usion coe�cients are about the same as we measured in the 3T3 �broblast cell. The

di�usion coe�cient measured from the low power dataset, however, is lower than the ones

measured at higher powers. One possible explanation for this observation is the lower

excitation power would lead to lower excitation probabilities, especially outside of the

focal plane. As such, the signal-to-noise ratio (SNR) may not be su�cient to detect as

many of the �uorescent proteins di�using in 3D away from the focal plane, thus reducing

the measured apparent di�usion coe�cient (these events might be characterized by our

analysis as photoblinking, for instance).

We also observed that the sum of the photoblinking rates, K, decreased and on-time

fraction, ρon, increased consistently with decreasing excitation intensity. Computing the

mean on-time residency from Table 3.3 we obtained ton = 81± 3 ms at full excitation

power and ton = 118± 1 ms at medium excitation power (note, we use the convention

ko� ≡ 1/ton). We also calculated the mean o�-time to be to� = 99± 6 ms at full excitation

and to� = 113± 7 ms at medium excitation. The increasing on-time with decreasing

excitation intensity, as well as the roughly constant o�-time, is characteristic behavior

of any �uorophore because of the long-lived triplet state (or any similar dark state that

depletes the ground singlet state).[55] This e�ect on the photoblinking rates as a function

of excitation power was also observed in wild type Dronpa.[56]

We point out that Dronpa is expected to have a non-emissive state with a longer

o�-time,[56] while we found ton ≃ to�. In fact, Habuchi et al. (2005)[56] found that wild

type Dronpa has three distinct dark states, of which one is signi�cantly longer than the

others. The to� values we measured can, therefore, depend on the residency times of

multiple o�-states. We make a simplifying argument to illustrate why our measurement

may not be able to detect a much longer o�-time. In our technique, we explicitly have

ρon ≡ kon/K. If we now assume that kon is a sum of two rates, say kslowon and kfaston , such

that kslowon ≪ kfaston , then we have ρon ≃ kfaston /K. In other words, the rate corresponding to

the longer time does not contribute to ρon and is thus not detected by our analysis.
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Figure 3.5: Example ACF analyses of independent HeLa cells irradiated at di�erent
excitation powers. Fluorescence images of Dronpa-C12 labeled actin in live HeLa cells,
with ROI used in analyses highlighted, are shown on top part of �gure. Corresponding
computed ACFs from ROIs (points) and respective simultaneous �ts (lines) are shown on
bottom part of �gure. The time lag ranges for the �ts varied from τ = 2 to either τ = 10
or τ = 20. Time-windowing was done with Tw = 100 frames. Pixel size: 177.78 nm.
Frame time: 10 ms. Image series length: 50 s.

At low power, the measured K is consistent with a longer on-time, assuming ton is

the only characteristic time that is a function of excitation intensity. Note we could not

properly measure ρon and fD for the low-power data as di�erent �tting ranges of τ and

|k|2 would signi�cantly a�ect these �tted parameters. This is, once more, likely due to

the lower SNR, causing the ACF to be noisier. In general, ρon and fD varied most among

the �tted parameters when �tting the ACF over di�erent ranges.

We also found a mean value for the di�using fraction of fD = 0.30 ± 0.02. Blikstad

and Carlsson (1982)[57] have previously reported values of unpolymerized actin measured

from HeLa cell homogenates between 35�45%.

Note the time-integrated 3D di�usion model did not �t our HeLa cell data well.

This is possibly due to the non-negligible dead time (∼ 1 ms) of the EMCCD camera

detector relative to the shorter frame times used for imaging this data (10 ms). Instead of

accounting for this e�ect in our model, we found that simply excluding the �rst time-lag

from our analyses gave reasonable �ts.
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D (µm2·s-1) K (s−1) ρon fD

Excitation Power

Full (∼ 24 mW)

10.9 23.6 0.490 0.252

8.89 21.4 0.451 0.376

12.8 22.8 0.416 0.322

Medium (∼ 19 mW)

12.8 18.5 0.545 0.230

10.9 16.6 0.495 0.323

7.39 17.2 0.501 0.290

Low (∼ 14 mW) 5.31 10.9 � �

Table 3.3: Fit parameters measured from independent HeLa cells at di�erent excita-
tion powers.

Di�erent rows are ROI analyses of independent cells. Fits for ρon and fD at low power were omitted due
to inconsistent �tted values when using di�erent τ and |k|2 �tting ranges.

3.5 Conclusions

We have presented an extended kICS �uorescence �uctuation rapid analysis method that

simultaneously �ts for the di�usion coe�cient, photoblinking rates and fraction of dif-

fusing particles from a �uorescence image series. This is done independently from any

other parameters. Unlike other image correlation techniques, our current approach can

be applied to regions with non-uniform �uorophore distributions, including complex cel-

lular morphologies. This enables us to increase spatial sampling across areas of the cell,

which improves the statistical precision of the ACF and extends the dynamic range for

transport coe�cient measurement. Furthermore, we have shown through physically real-

istic simulations that we can obtain accurate �t results in the presence of photobleaching,

without having to consider its e�ects. We also demonstrated that our method can mea-

sure an apparent di�usion coe�cient of Dronpa-C12 labeled actin in live NIH/3T3 and

HeLa cell data that is consistent with previous literature values. We further observed that

the �tted photoblinking parameters, measured from several independent HeLa cells, gave

the expected trend as a function of excitation power. Lastly, our reported values for the

di�using fractions in both 3T3 and HeLa cells agree well with literature values. We antic-

ipate that our technique will be useful in the study of dynamics in super-resolution, due

to its ability to analyze more intricate systems than previous image correlation methods.

In the future, we plan to apply our method to measure biomolecular binding kinetics

since photoblinking and mean-�eld binding/unbinding are virtually analogous processes

mathematically (under certain assumptions). Another potential application could be to
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use the measured photoblinking rates as probes for sensing changes in a cellular environ-

ment.

3.6 Materials and Methods

Live cell imaging

The NIH/3T3 �broblast and Hela cells were transfected with plasmids containing either

the Dronpa-C12 β-actin fusion protein or with Lipofectamine 2000 using the standard

protocol. Prior to imaging, cell culture media was gently replaced into 1x PBS bu�er

warmed to 37◦C. The cells with prominent actin stress �bers were empirically identi�ed

for imaging. The NIH/3T3 �broblast cell data was imaged with acquisition time of 50 ms

per frame and we observed slow detaching of its focal adhesion sites during the imaging

time course. The same data appeared in previous work.[47] The HeLa cells were imaged

at 10 ms per frame under excitation powers of ∼ 14, ∼ 19 and ∼ 24 mW.

Imaging was performed with an inverted �uorescence microscope using wide�eld imag-

ing mode (Nikon Eclipse Ti, Tokyo) equipped with an EMCCD camera (Andor iXon,

model no. DU-897E-CSO-#BV) and a standard EGFP �lter cube (460/60 nm band pass

excitation �lter, 495 nm long pass dichroic and 520/40 nm band pass emission �lter).

Excitation of 485/25 nm was used (cyan option, AURA light engine, ©Lumencor, Inc.,

Beaverton, OR, UCA). A 60x oil immersion objective (NA=1.4) was combined with an

extra 1.5x magni�cation module integrated into the microscope body.

Computer simulations

Simulations were created and analyzed using MATLAB R2020a on a Dell XPS 9530

(Intel(R) Core� i7 @ 2.3 GHz, 16 GB RAM) running Windows 10. Simulations were also

created using MATLAB R2020a on a dedicated research server (Intel(R) Core� i7 @ 3.2

GHz, 64 GB RAM) running Ubuntu version 18.04.

To simulate �uorophores on �laments, we �rst drew angles from a normal distribution

with speci�ed mean and standard deviation. This determined the direction of each �la-

ment in the synthetic image series. Then, starting from a �lament's endpoint (randomly

distributed along simulated image edges), particles were iteratively placed along the �la-

ments with incremental distance (in pixels) drawn from a uniform distribution on (0, 1).

This process was repeated until the edge of the synthetic image was reached. Each time a

simulated emitter was placed, a prede�ned probability determined whether the position
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was occupied by an aggregate. Each simulated aggregate had an assigned mean number

of �uorophores following a Poisson distribution, as well as a random distance from the

aggregate center (mean position) following a normal distribution with a chosen standard

deviation. Simulated di�using particles were initialized randomly within the pixel grid

and allowed to di�use with periodic boundaries.

Synthetic emitters were subject to stochastic switching between on- and o�-states at

speci�ed rates to simulate photoblinking. Photobleaching was assumed to be equal from

the on/o�-states in all simulations. Both populations of immobile and di�using particles

were simulated to have the same photoblinking and photobleaching rates.

We then convolved the simulated image series with a 2D Gaussian function (integrated

over pixel dimensions) to simulate the optical PSF. To emulate the e�ect of the detector

integration time, we split each frame into 50 �subframes�, so that a single frame was

comprised of a sum of its constituent �subframes�. For more simulation details, we refer

the reader to SI: Simulation details.

Synthetic pixel intensity values were assigned using the EMCCD model presented by

Hirsch et al.,[58] as was previously described in Sehayek et al.[30]

The ACF was �tted to Eq. (3.24) in the SI, unless otherwise stated. The �tting

model assumed one di�using and one immobile population. The global �tting of the

ACF was done using the built-in Matlab object GlobalSearch with fmincon as a local

solver. The �tted parameters were chosen according to the least-squares method across

the speci�ed domain of the ACF. All �tted parameters were constrained to be greater

than zero, with the added conditions ρon, pD ≤ 1. We used uniformly drawn random

numbers in the interval (0, 1) as an initial guess for all �tted parameters to demonstrate

the robustness of our method. In the case where the �t did not visually match the data,

we repeated the �tting process until reasonable agreement was achieved. The �ts always

excluded the points |k|2 = 0, as they are a�ected by the noise in the system. The τ = 0

curve was also excluded from our �ts, as it does not contain any useful information when

using the de�nition in Eq. (3.14). Our analyses were performed on several ROIs and/or

TOIs. The reported �tted parameters and their errors were then taken to be the mean

and the standard error on the mean from these analyses.

Autocorrelation computation

The autocorrelation was calculated as:

ϕ̃(k, τ) =
1

T − τ
F−1

t

(∣∣Ft(δt,Tw ĩ(k, t))
∣∣2) , (3.17)
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where Ft is the fast Fourier transform in time, and δt,Tw denotes the time-windowed

�uctuation, as in Eq. (3.13); that is, at pixel (x, y) and frame t, we subtract the mean

intensity of Tw subsequent frames, including frame t (we usedMatlab movmean function

to do this). De�ning the �uctuations in this way diminishes the oscillations caused

by photobleaching (see SI: Comparison with original kICS method). The choice of Tw

should, ultimately, depend on the photobleaching rate. Note that the Wiener-Khinchin

theorem is used in Eq. (3.17) to minimize autocorrelation computation time via Fourier

(reciprocal) space calculations.

The autocorrelation in Eq. (3.17) was then circularly averaged. This was done by

averaging all autocorrelation points with the same value of |k|2. Finally, the ACF was

computed as shown in Eq. (3.14). To determine the �large� |k|2 o�set in the denominator

of the equation, a range of |k|2 values were chosen after the τ = 0 autocorrelation had

su�ciently decayed and averaged over.

Supporting Material

� Comparison with original kICS method; autocorrelation function derivation: 2D,

3D, with time-windowed correction; simulation details; noise autocorrelation.

� kICS GitHub repository: https://github.com/ssehayek/kics-project.git
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3.7 Supporting Information

Comparison with original kICS method

As discussed in the main text, applying the original kICS method[19] to an image se-

ries with an immobile blinking population yields oscillations in the ACF. The original

technique de�ned the kICS autocorrelation without the temporal �uctuations, i.e.,

ϕ̃orig(k, τ) ≡ ⟨̃i(k, t)̃i∗(k, t+ τ)⟩t. (3.18)

Using this de�nition, one can follow the same steps used to derive Eq. (3.12) in the main

text to instead obtain:

ϕ̃orig(k, τ) = q2|Ĩ(k)|2×{
Nimm∑
m=n

⟨Θm,tΘn,t+τ ⟩t +
Nimm∑
m ̸=n

⟨Θm,t⟩t⟨Θn,t+τ ⟩t exp (−ik · (um − un))︸ ︷︷ ︸
immobile

+

Nmob∑
m=n

⟨Θm,tΘn,t+τ ⟩t ⟨exp (−ik · (um,t − un,t+τ ))⟩t︸ ︷︷ ︸
mobile

}
+ ϕ̃ϵδτ,0. (3.19)

Notice that the cross-term in this last equation (i.e., the second term) is non-zero, in

general. Furthermore, there is no prospect of making it zero, as was the case when in-

troducing the time-windowed mean subtraction. Thus, the original kICS technique is

a�ected by oscillations caused by the individual immobile particle positions. We demon-

strate this e�ect in Fig. 3.6.

In part (a) of the �gure below, oscillations are caused by the immobile particle po-

sitions and the presence of photobleaching. Part (b) further demonstrates that it is, in

general, insu�cient to de�ne the intensity �uctuations by simply subtracting the time

average, as photobleaching will still a�ect the ACF, in this case. Finally, part (c) shows

that using an appropriate choice of time-windowed intensity �uctuations can signi�cantly

lessen the oscillatory e�ect.

Note we are not claiming that the extended kICS technique developed in the main

text is superior to the original one. The original method allowed one to separate transport

kinetics from photophysical processes in systems without an immobile blinking population

of �uorophores. In this work, we extended the analysis to systems with these populations
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and aimed to measure di�usion coe�cients, as well as photophysical rates and di�using

particle fractions.
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Figure 3.6: Comparison of ACF (a) without temporal mean subtraction (original
kICS method), (b) with temporal mean subtraction, and (c) with time-windowed mean
subtraction. Time-window used in (c) is Tw = 200 frames. Simulation parameters:
D = 1 pixels2·frame-1, K = 1 frame-1, ρon = 0.3, pD = 0.35 and kp = 5× 10−4 frame-1.

Autocorrelation function derivation

Di�using and immobile populations (2D)

Here we explicitly provide the ACF for a combination of immobile and di�using parti-

cles. We assume the �uorophores are undergoing a simple two-state, on-o� photoblinking

process, in the absence of photobleaching. However, we will use the expression derived

here to �t for ACFs computed from systems with photobleaching. This can be a good

approximation for such systems when using the time-windowed subtraction in Eq. (3.13)

to compute the �uctuations, as discussed in the main text. In the later subsection titled

�Time-windowed correction�, we present a derivation that explicitly accounts for photo-

bleaching. The �t function for the expression supplied here will also be included in the

provided GitHub repository as Matlab code.

Accounting for the e�ect of detector time-integration in Eq. (3.4), the autocorrelation

in Eq. (3.7) is re-expressed as:

ϕ̃(k, τ) ≡


∫ τ+1

τ
dt2
∫ 1

0
dt1⟨δtĩ(k, t1)δtĩ∗(k, t2)⟩t τ ̸= 0

2×
∫ 1

0
dt2
∫ t2
0

dt1⟨δtĩ(k, t1)δtĩ∗(k, t2)⟩t τ = 0
. (3.20)
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Using the mobile component from Eq. (3.12), the autocorrelation for a di�using parti-

cle is then (see Sehayek et al.[30] for photophysical autocorrelation details; also see Kolin

et al.,[19] as well as Berne and Pecora[39] for the Fourier autocorrelation of di�using

particles),

ϕ̃di�(Q, τ) ≡ ρon


e−Q(τ−1)

(
(1−e−Q)

2
ρon

Q2 +
(1−ρon)(1−e−(Q+K))

2
e−K(τ−1)

(Q+K)2

)
τ ̸= 0

2 1
Q(Q+K)

×(
Q− Q(1−ρon)(1−e−(Q+K))

Q+K
+

(Q+e−Q−1)Kρon

Q
−
(
1− e−Q

)
ρon

)
τ = 0

,

(3.21)

where we de�ne,

Q ≡ D|k|2. (3.22)

Note that in Eq. (3.21), we have left out dependence on the PSF and q, as they are

ultimately divided out by the normalization in Eq. (3.14).

Likewise, we obtain the autocorrelation for an immobile particle by explicitly express-

ing the immobile component in Eq. (3.12),[30]

ϕ̃imm(τ) ≡
1

K2
ρon(1− ρon)×


(
1− e−K

)2
e−K(τ−1) τ ̸= 0

2×
(
e−K +K − 1

)
τ = 0

, (3.23)

where we again omit PSF and q dependence.

It follows that the ACF, de�ned in Eq. (3.14) (including camera time-integration), for

a mixture of di�using and immobile particles is:

ϕ̃(Q, τ) =
pDϕ̃di�(Q, τ) + (1− pD)ϕ̃imm(τ)

pDϕ̃di�(Q, 0) + (1− pD)ϕ̃imm(0)
. (3.24)

Di�using and immobile populations (3D)

Here we discuss the analysis of 3D systems. We again consider the combination of im-

mobile and di�using populations. A full expression for the 3D ACF will be included in

the provided GitHub repository as Matlab code. In the work of Kolin et al.,[19] it was

shown that for an LSM, the 3D contribution to the kICS autocorrelation appears as a

multiplying factor to its 2D counterpart. Namely, for a di�using population, the factor

is:
z20

4
√
π
√

4Dτ + z20
, (3.25)
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where z0 is the e−2 PSF radius in the axial direction.

Considering detector time-integration in the autocorrelation, as in Eq. (3.20), the

autocorrelation of a blinking, di�using particle in 3D then has the form (in the absence

of bleaching):

ϕ̃di�,3D(A, τ) ∝
∫ τ+1

τ

dt2

∫ 1

0

dt1
1√

4D(t2 − t1) + z20
e−A(t2−t1) (τ ̸= 0). (3.26)

This integral can be done by substituting:

u =
√

4D(t2 − t1) + z20 . (3.27)

Eq. (3.26) is then reduced to:

ϕ̃di�,3D(B, τ) ∝ 1

2
eBz20

∫ τ+1

τ

dt2

∫ √
4Dt2+z20

√
4D(t2−1)+z20

du e−Bu2

(τ ̸= 0), (3.28)

with

B ≡ A/4D. (3.29)

A similar calculation can be performed when τ = 0.

For immobile populations, the 3D multiplying factor is simply 1/z0, as can be seen

by setting D = 0 in Eq. (3.25).

Time-windowed correction

Here we derive the theoretical expression for the ACF while considering the e�ect of

the time-windowed mean subtraction. A full expression will be made available in the

provided GitHub code repository. For generality, we assume the processes considered

are non-stationary in time (as is the case with photobleaching, for example). Given the

complexity of this expression, it is best used when the photobleaching is prominent and

when Eq. (3.24) cannot produce a reasonable �t to the data.

We begin by averaging the autocorrelation in Eq. (3.7) of the main text over all frame

pairs for lag τ while using the de�nition of the local temporal �uctuation in Eq. (3.13)



3.7. Supporting Information 107

to obtain:

ϕ̃(k, τ) =
1

T − τ

T−τ−1∑
t=0

{
g̃i(k; t, t+ τ)

− 1

Tw

t+Tw−1∑
s=t

[
g̃i(k; t, s+ τ) + g̃i(k; s, t+ τ)− 1

Tw

t+Tw−1∑
s′=t

g̃i(k; s, s
′ + τ)

]}
,

(3.30)

where we have de�ned (accounting for detector time-integration in Eq. (3.4)):

g̃i(k;u, v) ≡


∫ v+1

v
dv′
∫ u+1

u
du′ 〈̃i(k, u′)̃i∗(k, v′)

〉
t

u ̸= v

2×
∫ u+1

u
dv′
∫ v′

u
du′ 〈̃i(k, u′)̃i∗(k, v′)

〉
t

u = v
. (3.31)

The simplest way to carry out the sums in Eq. (3.30) is to rewrite them using time-lags

(see Fig. 3.7). We can then rewrite the �rst term in the square brackets of Eq. (3.30) as:

T−τ−1∑
t=0

t+Tw−1∑
s=t

g̃i(k; t, s+ τ) =
T−τ−1∑
t=0

Tw−1∑
ν=0

ϕ̃i(k, τ + ν; t), (3.32)

where we de�ne:

ϕ̃i(k, τ ; t) ≡ g̃i(k; t, t+ τ). (3.33)

(b) 
Second term

𝑣

𝑢 > 𝑣

𝑢 < 𝑣

𝑢 = 𝑣

|𝑢 − 𝑣| = 𝑇w − 𝜏 − 1

|𝑢 − 𝑣| = 𝜏 
𝑢

𝑢 = 0
𝑣 = 𝜏

(a)
First term

𝑢

𝑣 < 𝑢

|𝑢 − 𝑣| = 𝑇w + 𝜏 − 1

|𝑢 − 𝑣| = 𝜏 
𝑣

𝑢 = 0
𝑣 = 𝜏

𝑢 = 𝑇 − 𝜏 − 1 

(c) 
Third term

𝑢

𝑣

|𝑢 − 𝑣| = 0 

|𝑢 − 𝑣| = 𝜏 
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=
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 −

 1
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II
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Figure 3.7: Illustration of sums in square brackets of Eq. (3.30). Diagonal lines within
regions represent �xed time-lags, i.e., constant |u−v| in Eq. (3.31). Sums are, therefore,
simpler when carried out over and along diagonals. Time ordering of u and v is also
shown within di�erent subregions. Depiction of third term in (c) only shows the two
innermost sums from Eq. (3.30).
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Using this last de�nition, the time-index, t, must follow t ≡ min(u, v), such that,

g̃i(k;u, v) → ϕ̃i (k, τ ≡ |u− v|; t ≡ min(u, v)) . (3.34)

We continue to rewrite the second term (according to the subregions depicted in

Fig. 3.7),

T−τ−1∑
t=0

t+Tw−1∑
s=t

g̃i(k; s, t+ τ) =
τ∑

ν=0

T−ν−1∑
t=τ−ν

ϕ̃i(k, ν; t)︸ ︷︷ ︸
I

+
Tw−τ−1∑

ν=1

T−1∑
t=τ

ϕ̃i(k, ν; t)︸ ︷︷ ︸
II

. (3.35)

Finally, the third term in the square brackets of Eq. (3.30) can be re-expressed as:

T−τ−1∑
t=0

t+Tw−1∑
s=t

t+Tw−1∑
s′=t

g̃i(k; s, s
′ + τ) =

T−τ−1∑
t=0

(
Tw−1∑
ν=0

t+Tw−ν−1∑
t′=t

ϕ̃i(k, τ + ν; t′)︸ ︷︷ ︸
I

+
τ∑

ν=1

t+Tw−1∑
t′=t+ν

ϕ̃i(k, τ − ν; t′)︸ ︷︷ ︸
II

+
Tw−1∑
ν=τ+1

t+Tw−ν−1∑
t′=t

ϕ̃i(k, ν − τ ; t′ + τ)︸ ︷︷ ︸
III

)
. (3.36)

Notice the number of terms in di�erent diagonals is not constant for the third term, as

was the case with the other terms.

For a mixture of immobile and di�using populations with the same photophysical

properties,[19, 30, 39]

〈̃
i(k, u)̃i∗(k, v)

〉
t
≡ e−kpmax(u,v)ρon

(
ρon + (1− ρon)e

−K|u−v|) (Nimm +Ndi�e
−|k|2D|u−v|

)
,

(3.37)

where kp is the photobleaching rate, assumed to be equal from both on- and o�-states.

Note the last equation assumes the cross-terms due to non-identical particles in Eq. (3.12)

are e�ectively zero for reasonable choice of Tw. We also omit the PSF and q from this

equation as they cancel out when using the normalization in Eq. (3.14).

The time-window correction to the ACF must be used when the di�usion is relatively

slow, as was demonstrated in Figure 3.2 (C). Using the time-window correction can also

allow for choosing smaller windows, which is necessary when the photobleaching is more
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prominent. See the main text for more details.

We compare �ts with and without the time-window correction in Fig. 3.8 and Table 3.4

below. Photobleaching was not accounted for in either �t model. As we expect, the �ts

are more accurate when using the time-window correction. Furthermore, from this �gure,

one can see the e�ect of choosing a small time-window on the ACF at small |k|2.

(a)
with correction

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

(b) 
without correction

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Figure 3.8: Comparison of �ts (a) with and (b) without time-window correction. The
�bump� seen at early |k|2 is caused by the correlation of the time-window. Time windows
used were (a) 50 frames and (b) 100 frames. Fit was done over �rst 25 time-lags, in both
cases; only �rst 5 are shown. Photobleaching rate was set to kp = 5× 10−4 frame-1.

With correction Without correction Simulation

D (pixels2·frame-1) 0.447± 0.007 0.39± 0.02 0.5

K (frame-1) 0.60± 0.02 0.474± 0.003 0.6

ρon 0.84± 0.02 0.29± 0.03 0.833

fD 0.27± 0.03 0.73± 0.03 0.3

Table 3.4: Comparison of �tted and simulated parameters for �ts shown in Figure 3.8.

Simulation was generated with T = 2048 frames on a 128 × 128 pixel grid with 4813 total particles.
Fitted parameters and errors were obtained by splitting the simulation spatially into 4 equally sized and
independent ROIs, and then calculating the mean and its standard error from their analyses.

Simulation details

This section provides the default parameters used in our simulations (see Table 3.5).

More details about the noise model and how we assign synthetic intensity values to the

pixels in our simulations can be found in Sehayek et al. (2019).[30]
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Parameter description Value

Analogue to digital conversion factor 12

Auto�uorescent photon rate 5% of mean simulated image series intensity

Average photon rate per molecule 5, 000 frame-1

Clock induced charge 5× 10−3 frame-1 pixel-1

Dark noise photon rate 8× 10−4 frame-1 pixel-1

Detector quantum e�ciency 0.9

EM Gain 200

Exposure time (τi) 0.05 s frame-1

Image dimensions 128× 128 pixels2

Laser e−2 radius 2×
√
number of pixels

PSF e−2 radius 3 pixels

Probability of aggregation 0.3

Mean number of monomers per aggregate 2

Number of �laments (where applicable) 20

Standard deviation of distance 0.3 pixels

between aggregate center and monomers

Table 3.5: Default simulation parameters.
These parameters were used in our simulations, unless otherwise stated. Some synthetic noise parameter

values are negligible, but are included for the purpose of completeness.

Noise autocorrelation

Here we derive an expression for the autocorrelation of the Fourier transform of the noise.

Assuming ⟨ϵ(r, t)⟩t ≡ µϵ, it follows that:

⟨ϵ̃(k, t)⟩t =
∫
ROI

dr ⟨ϵ(r, t)⟩t︸ ︷︷ ︸
µϵ

e−ik·r AROI→∞∝ δ(k). (3.38)

In this last equation, AROI denotes the area of the chosen ROI. Therefore, we have:

⟨δtϵ̃(k, t)δtϵ̃∗(k, t+ τ)⟩t = ⟨ϵ(k, t)ϵ̃∗(k, t+ τ)⟩t, for |k| ≠ 0. (3.39)

Furthermore, by de�nition of white-noise:

⟨ϵ̃(r′, t)ϵ̃∗(r′′, t+ τ)⟩t ≡ σ2
ϵ δτ,0δ(|r′′ − r′|), (3.40)
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where σ2
ϵ is the variance of the white-noise. Using Eqs. (3.39) and (3.40), we obtain:

⟨ϵ(k, t)ϵ̃∗(k, t+ τ)⟩t =
∫
ROI

dr′
∫
ROI

dr′′⟨ϵ̃(r′, t)ϵ̃∗(r′′, t+ τ)⟩te−ik·(r′′−r′)

= σ2δτ,0

∫
ROI

dr′
∫
ROI

dr′′δ(|r′′ − r′|)e−ik·(r′′−r′)

= AROIσ
2δτ,0. (3.41)
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Chapter 4

Conclusion

In this work, we showed that image correlation methods can be used to rapidly, simul-

taneously and accurately measure multiple dynamic or kinetic parameters from noisy

�uorescence image series.

In Chapter 2, we developed an image correlation method for rapidly measuring the

photophysical rates of immobile �uorophores. We demonstrated that this technique can

measure photoblinking rates that are faster than the camera detector sampling rate,

while the traditionally used single-molecule thresholding methods cannot. Furthermore,

the latter methods take at least hours to implement and cannot be used at high particle

densities, while our method can perform the same analysis in seconds and can be used at

very high densities. Our method's capability to rapidly measure �uorophore photoblink-

ing rates can be useful for quickly screening �uorescent probes for application in STORM

or SOFI. An extension of the method could possibly be used to map di�erent cellular

environments if the probe �uorophores have di�erent photophysical rates in di�erent com-

partments. Some drawbacks of this method are its requirement for the �uorophores to

be uniformly distributed in the analyzed ROI and the large number of blinking events

needed to correctly measure photoblinking rates relevant to STORM. Perhaps the for-

mer issue could be corrected by recomputing the ACF assuming a speci�c non-uniform

distribution of particles, e.g., uniformly distributed aggregates in space, with monomers

uniformly distributed among the aggregates.

In Chapter 3, we presented a method for analyzing systems with both mobile and

immobile populations subject to photophysical processes. We showed the technique can

be rapidly utilized to measure the di�usion rate, photoblinking rates and fraction of

di�using particles. Unlike other image correlation methods, we also showed that the

technique could analyze ROIs with non-uniformly distributed immobile �uorophores in

space that are subject to blinking and bleaching. This is especially useful for studying

systems relevant to STORM and SOFI. Moreover, our method can in principle be used

in tandem with these super-resolution techniques to recover both static and dynamic
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information from a system. On the other hand, while we were able to select larger ROIs

to increase spatial sampling in our analysis, our technique also required these larger ROIs

to avoid aliasing in the ACF, so that it is probably not suited for generating spatial maps

of the �tted parameters. A more �ne-tuned approach would be to use an SPT technique,

such as sptPALM.[82]

While image correlation methods can measure parameters of interest rapidly and ac-

curately, they only o�er single point estimates of these parameters. Therefore, obtaining

the errors on parameters measured with correlation methods is not always straightfor-

ward. Conversely, single-molecule approaches typically extract parameter distributions,

but cannot be utilized at high densities and are di�cult to implement in certain sys-

tems (e.g. with both blinking and transport). Furthermore, correlation methods need to

assume a given theoretical model and it is not trivial to compare accuracy with other

models. To overcome the model selection problem, some recently developed methods

use non-parametric Bayesian inference (e.g. see [83, 84]) to determine posterior parame-

ter distributions by analyzing photon counts within a confocal volume (most parameters

are still determined with the standard Bayesian inference approach, though); however,

these methods have signi�cantly slower analysis times and have yet to be applied to real

biological systems.

The techniques presented in the main chapters of this work were de�ned with alter-

native ACF normalizations to the traditional FCS and ICS normalization, which is used

to determine particle density information. On the other hand, the normalizations that

we employed were used to yield ACF de�nitions that were independent of any micro-

scope parameters (under certain assumptions), and only dependent on photophysical and

transport dynamics. Furthermore, we de�ned the �uorescence intensity �uctuations in

the ACF of both these techniques through subtractions of local spatial/temporal aver-

ages. This allowed us to accurately extract information from systems that are not ergodic

in space or time. Therefore, examining alternative ICS ACF de�nitions in the future can

be bene�cial depending on which parameters one would like to measure. In other words,

in certain cases it may be bene�cial to deviate from the traditional mean square inten-

sity normalization and global mean subtracted intensity �uctuations that underpin most

applications of FCS and ICS.

It would also be interesting to study the dynamic range of the extended kICS technique

presented in Chapter 3 to see the limits of di�usion and photoblinking rates that can be

accurately measured, similar to what was done in Chapter 2. Since we accounted for

the e�ect of the camera detector time-integration in the extended kICS method (as was

also done for the method developed in Chapter 2), we expect that it can measure faster
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di�usion and photoblinking rates. It would also be of interest to compare this technique

with sptPALM,[82] for example, which collects truncated di�using particle trajectories

that are intermittently in the �uorescent �on�-state.

Another potential application of our methods would be to utilize them to measure

binding rates. Similar to STORM and PALM, binding kinetics can be used to form super-

resolution images with a technique known as point accumulation for imaging in nanoscale

topography (PAINT).[85] DNA-PAINT[86] is a popular variation of this technique that

utilizes dye-labeled DNA oligomers that bind to complimentary strands bound to a target

object. A recent implementation used peptide-protein interactions to employ PAINT in

live cells.[87] When using imaging modalities like TIRFM, that illuminate only a thin

section of the sample in the axial direction, the binding of the �uorophore complexes to the

target object resembles blinking and the unbound molecules only appear as �uorescence

background. Therefore, the rapid analysis capabilities of our techniques could be utilized

to screen for optimal characteristic binding times for SMLM localization.

Finally, we propose to improve our method presented in Chapter 2 by estimating

the bias of the ACF, similar to what was done in Chapter 3 to account for the �nite

time-windowed mean subtraction. This can be particularly useful for correcting the

discrepancy in the measured blinking rates that we encountered for low sampling of

the STORM data. Further statistical properties of the ACF, such as the variance, can

also be computed to characterize its convergence at these low sampling limits. Note

that these statistical properties, however, cannot be computed exactly due to the ACF

normalization.

The methods we presented show promise for characterization of complex dynamic and

kinetic parameters for blinking dyes imaged in vitro and in living cells. We anticipate our

method in Chapter 2 will be useful for optimization of probe development pipelines for

photoblinking �uorophores needed for SMLM. The method presented in Chapter 3 opens

the door for rapidly studying the dynamics in complex cellular structures, encountered

in SMLM, using image correlation.
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