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Abstract 
 
 In cases were conventional forensic methods have failed in detecting a 

clandestine grave and when the search area is extensive, new methods must be 

applied. The field of remote sensing offers non-invasive methods as to not disturb 

evidence and can cover an extensive area. It is specifically why remote sensing 

methods need to be developed for grave site detection, and pertaining to this 

study, mature grave site detection. Chlorophyll content and vegetation index 

computed anthocyanin levels have been found to be good indicators for 

identifying graves versus false graves. Pattern recognition classifiers were 

proven to not be useful in mature grave detection and should be tested in a 

controlled environment to establish their true performance. A good chlorophyll 

content prediction curve can be computed using vegetation indices, particularly 

RENDVI. Such prediction curves can be applied to airborne imagery so as to 

classify areas as potential graves. This study is a preliminary study in the 

detection of mature grave sites using remote sensing methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Background 
 

Remote sensing implies acquiring information about a surface without 

disruption. It is specifically why its application in the forensic domain is being 

increasingly considered as a way to acquire physical evidence in forensic 

investigations (Clark Davenport, 2001). Methods with low to no destruction of 

crime scenes need to be put in place as to not affect evidence that could otherwise 

be found (Van Belle et al., 2009), explaining the needed use of the remote sensing 

domain in criminal cases. More closely related to this paper is the detection of 

mature grave sites where the buried remains have been decomposing for several 

years. Man-made soil disturbances on the surface are no longer apparent, and low 

level vegetation such as shrubs and graminoids have taken over. Cases in which 

the graves have become naturally concealed and in which conventional methods 

such as eyewitness accounts, informants, or cadaver dogs have failed in locating 

a murder victim, detection is rendered more difficult. The use of geophysical 

instruments that have in the past proved their efficacy (ground-penetrating 

radar, magnetometer, etc.) cannot be implemented, as the location is unknown 

(Powell, 2004). Concealment naturally lowers the chances of cadaver discovery 

(Van Belle et al., 2009); in such clandestine situations where body concealment 

was successful and the search area is extensive, newer methods must be applied.  

It had been demonstrated that ‘fresh’ graves could be identified versus false 

graves in a tropical environment using the sites’ spectral response measured 

over time (Kalacska et al., 2009). There is however a research gap in the 



application of remote sensing methods for grave site detection in a temperate 

environment, more specifically on older graves.  

In the remote sensing domain, objects can be identified based on their 

reflectance, absorbance, and transmittance properties of light otherwise known 

as electromagnetic energy. Each surface uniquely reflects parts of the 

electromagnetic radiation spectrum (Campbell, 2002) or the different wavebands 

that it comprises according to the object’s physical and chemical properties. 

Sensors can measure such properties outputting a range of recorded reflectance 

values for each of its channels, also called a spectrum. Current sensors, from 

spectrometers for ground data to built-in sensors on satellite platforms measure 

light-to-object interactions from each of its input channels. A channel can 

measure average reflectance from a larger range of wavebands (multispectral 

sensor) to a smaller range or even a single waveband (hyperspectral sensor). 

Acquiring hyperspectral information from a surface should provide a more 

detailed data set, as each waveband (nm) or nearly each waveband’s value can be 

analyzed.  Hyperspectral instruments are more effective than multispectral 

sensors (Birk and McCord, 1994) based on the quality of the output data set, 

which can ultimately provide a more effective and accurate discrimination of 

spectral properties.  

Categories of objects or surfaces such as vegetation or roads each have a 

‘signature’ spectrum (Parker and Wolff, 1965). A reflectance graph (mapped 

reflectance values) of vegetation, regardless of the specie or the geographical 

location, will always produce a similar shape hence the word ‘signature’.  



Differences within such category can be noted from intensities of reflectance 

comparing a range of bands from one leaf to another. Though intra-category or 

intra-specie differentiation can be difficult, slight differences in chemical 

composition, moisture content, or surface physical properties can be reflected in 

the recorded spectral properties. Body decomposition affects the surrounding soil 

which in turn should affect the spectral response of a grave site (as demonstrated 

by Kalacska et al., 2009). In turn, the growing vegetation should be affected 

(depending on the stage of decomposition) and those changes could be mesured 

from a leaf’s spectral response.  

 Mammalian decomposition occurs in multiple stages starting at the time of 

death. The decay of organic matter starts with a process called autolysis 

otherwise known as tissue autodigestion. In this process, liquifaction of the body 

tissues into basic components (amino acids, etc.) occurs by a chemical breakdown 

caused by after-death liberated enzymes, bacterial and fungal activity 

(Campobasso et al., 2001). Autolysis starts at the ‘fresh’ stage, which then 

advances to the ‘bloating’ stage in which the body bloats from the gases produced 

by internal bacterial activity, decomposition fluids, and from a rapidly growing 

maggot population if the body is accessible to insect communities. At the start of 

the ‘bloat’ stage, a process called putrefaction begins (Lee Goff, 2009), involving 

the breakdown of proteins by both anaerobic and aerobic bacteria (Campobasso et 

al., 2001) aided by insect communities. The number of stages in the 

decomposition process differs in literature (Lee Goff, 2009) but essentially 

advance to the ‘advanced decay’ stage and subsequently the ‘skeletonization’ 



stage (involving the dry/remains stages). Early cadaveric materials result in an 

area of high fertility through ‘nutrient pulses’ (Stokes et al, 2009), in which the 

surrounding soil contains high levels of carbon and nutrients such as nitrogen or 

phosphorus (Carter et al., 2005).  The soil pH drastically increases (Benninger et 

al., 2008) and decomposition gases such as methane can be recorded (Van Belle 

et al., 2009). The ‘advanced decay’ stage is characterized with a high nitrogen soil 

content that has become too toxic to the vegetation on top of a buried 

decomposing cadaver resulting in a lack of vegetation. All in all however, 

cadaveric materials from the decomposition process have been linked to an 

increased biomass production and an increase in species’ richness (Towne, 

2000).  

Many factors affect the rate of decomposition: whether the body is exposed 

or buried (Vass, 2001), access to the body, soil moisture (Statheropoulos et al., 

2007), which also affects the diffusion of nutrients (Carter et al., 2010), and 

temperature (Lee Goff, 2009). This is why it is often difficult to predict a 

decomposition stage if the body cannot be clearly observed. In the case of this 

paper, the bodies have been decomposing for several years and due to the high 

biomass in the area, the buried bodies have, with certainty, reached the ‘remains 

stage’. Decomposition is a continuous process and the ‘remains’ stage has no 

definite end point (Lee Goff, 2009). In this stage, soil concentrations levels of 

cadaveric nutrients still remain high (Carter et al., 2005): potassium, sodium, or 

calcium (Vass et al., 1992). The soil also contains elevated concentrations of 

calcium, phosphorus and manganese from bone breakdown (Carter et al. 2005). 



From the high soil nutrient content surrounding body remains, vegetation health 

differences should be noted based on its growth location near a grave or not.  

 This study was performed in an old animal graveyard named the ‘Parc 

Safari zoo cemetery,’ which contains buried large mammalian cadavers. In this 

paper, I analyze vegetation spectra from known graves versus known control 

areas and their average leaf chlorophyll content calculated from ground leaf 

samples. I analyze applied vegetation indices on collected leaf spectra, and I test 

the ability of pattern recognition classifiers in separating the grave class 

vegetation spectra from the control class. The routine was performed over four 

months to identify seasonality patterns.  

From the chlorophyll results and vegetation indices results, I have devise a 

prediction curve to estimate chlorophyll content from multispectral CASI 

airborne imagery from the same year and to classify potential grave areas from 

ground vegetation, specifically chlorophyll mesurements. From the grave and 

control results in each category of analysis, I have determined whether twelve 

unknown areas are classifiable as a potential grave or potential non-grave and 

established the methodology’s potential in identifying mature grave sites. 

New methods need to be put in place for detecting naturally concealed 

clandestine graves, particularly in cold cases where the search area is extensive. 

Establishing differences in ground data from known mature graves and false 

graves in a particular environment will drastically aid the development of non-

intrusive techniques, particularly from airborne imagery, from which the search 

area could be minimized. Furthermore, it is important to understand seasonality 



patterns when surface ground objects are all that we can work with. In this 

research, I attempt to show the potential of the remote sensing domain in a 

forensic framework and to establish the possibilities of mature grave site 

detection in a non-intrusive manner. 

 
 
Methods 
 
Site Description 
 

The Parc Safari zoo cemetery (Figure 1) is located in Hemmingford, Quebec 

and has been in operation over the last 50 years. It is located on a local farmer’s 

field that has only been partially disturbed since the last burial. The site contains 

multiple animal graves for which the times of burial and location have not been 

documented. Due to a change in cemetery sites in the recent years, it is known 

that the last burial at the cemetery in question happened some years ago.  

The site is located at coordinates 45° 2' 47.5" N and 73° 31' 57.4" W, south 

of the city of Montreal. The average summer temperature is 19.88°C and the 

average winter temperature is -5.11°C as per the installed temperature logger on 

site. The temperatures can go as high as 35°C and as low as -30°C; the area 

receives a precipitation average of 978.9 cm a year as either snow or rain 

(National Climate Data and Information Archive, for Montreal Pierre Elliott 

Trudeau weather station). The climate is considered by the Köppen climate 

classification as type dfb or as a humid continental climate. The area is located in 

a conflicting zone between tropical and polar air masses where the temperature 

differences between seasons are large (Encyclopedia Britannica, Academic 



Edition). The cemetery soil is dominantly a Eutric Brunisol of the St. Bernard 

series derived from a calcerous and dolomitic till (Mailloux and Godbout, 1954). 

The soil is a shallow well-drained gravelly clay loam with site-recorded soil depths 

ranging from 25 to 60 cm. 

McGill University’s anthropology department has been active on the site 

since 2007 (at the zoo’s administration request) for archaeological purposes and 

education. They have discovered and confirmed the presence, location, and 

identification of three graves in the cemetery. Even though the three sites have 

been disturbed to retrieve bones, some of the remains are still present. The 

surface scars from the excavations remain and have filled up with water since. 

Two control sites were identified after being searched for remains and none were 

found. The three graves and the two controls are here used as baseline data to 

evaluate the ability of the methods described below to discriminate between the 

two categories. That data was then used to evaluate the categorization potential 

of unknown areas as a potential grave or non-grave and to evaluate the 

methodology’s potential in detecting mature grave sites.  

Sorghum sudanse (Figure 3) leaf samples (an abundant annual invasive 

specie in the cemetery area) were collected from the three graves (G1, G2, G3), 

two controls (C1, C2), and twelve areas categorized as ‘unknown’ numbered from 

U1 through U12 (locations in Figure 2). The plant’s origin in the cemetery is 

unknown as it is native to the country of Sudan. The true nature of the unknown 

sites is currently undetermined, as they have not been searched for remains. 

Since the known grave sites are filled with water, leaf samples were collected 



directly around the pits. All ground data was collected on June 4th 2010, August 

7th 2010, September 20th 2010, and October 27th 2010 respectively. Data for the 

month of July is missing due to instrument issues and unavailability.  The data 

from October 2010 only consists of G1, G2, G3, C1, C2, U1, U2, U3, U9, U10, U11, 

and U12 due do extensive leaf aging at the other sites. For each month, 10 leaf 

samples were collected per location and analyzed. The samples totaled 170 for 

each of June, August, and September, and 120 for October for a grand total of 630 

samples. 

 
Leaf Spectra Collection/Instrument Description 
 

The leaf samples collected were placed in a cooler right after collection to 

preserve them until obtaining their individual reflectance spectra in the lab. The 

time between leaf gathering and obtaining their respective spectra did not exceed 

4 hours. The spectra collection was done in the same order as the leaf collection: if 

G1 leaves were collected first, they were also subject to spectra collection first 

and so on. After gathering the spectra for each location, the leaves were cut, 

wrapped in aluminum foil, and placed in the freezer for preservation until they 

underwent chlorophyll extraction at a later date.  

The leaf spectra were collected using an ASD FieldSpec Spectrometer with 

range 325 nm to 1025 nm (visible to near-infrared of the electromagnetic 

spectrum). White reference measurements were taken from a 99% reflective 

Spectralon panel before and between each location’s data (every 10 samples). 

Reflectance for each leaf sample is calculated as a ratio of the raw DN (digital 



number) to the Spectralon panel. Dark current measurements were also taken 

every 50 samples as a means to remove instrument noise. 

All spectral information collected before 490 nm and after 900 nm was 

removed due to extensive noise. The new hyperspectral information cube 

contained 411 dimensions – or one for each nanometer reading. All leaf spectra 

were then subjected to the Savitsky-Golay fourth order polynomial smoothing 

filter in MATLAB to remove any minimally noisy areas. The filter in question is 

built in the program and was applied with a window size of 31. The vegetation 

indices and the pattern recognition algorithms’ performance described below 

were calculated using the smoothed spectra.  

 
Chlorophyll Extraction 

 

Each of the collected ground leaves were cut to a standard size of 1 cm by 1 

cm and placed in accordingly labeled 15 mL polypropylene centrifuge tubes. Each 

centrifuge tube was filled with 10 mL of dimethyl sulfoxide (DMSO) to dissolve 

the chlorophyll pigment from each leaf (Chla and Chlb) in order to estimate the 

total chlorophyll content. From the chlorophyll content, the plants’ 

photosynthetic abilities can be speculated upon, as the higher the chlorophyll 

content, the better the plant’s photosynthetic ability (Curran et al., 1990). The 

methodology for the chlorophyll extraction follows that of Hiscox and Israelstam 

(1979). The reason for following this methodology is that the extracted 

chlorophyll is more stable in a solution of DMSO rather than other proposed 

solvents: methanol, acetone, methanol, etc. (Richardson et al. 2002).  



The centrifuge tubes containing the leaf samples were placed in a preheated 

water bath at 65°C for a period of 20 minutes and covered to avoid any light 

interaction. The samples were removed from the water bath and were let to cool. 

The new solutions were extracted from the centrifuge tubes using plastic 

disposable pipettes and placed in 5 mL 1 cm path length disposable cuvettes until 

filled to about 5 mm from the top. The filled disposable cuvettes were placed in a 

Genesis 10 UV spectrophotometer, calibrated using a cuvette filled with clear 

DMSO for recording absorbance values. The wavebands for which the values were 

recorded are 470 nm, 650 nm (Chla), and 666 nm (Chlb) respectively. It is 

important to note that these values are instrument-appropriate and will change 

from instrument to instrument. 

The total chlorophyll content for each leaf for each location was estimated 

using Arnon’s equations in g/L (Arnon, 1949) converted mg per cm2 according to 

the leaf sample size placed in the centrifuge tubes. For each month, a dummy 

variable analysis was applied to calculate the average difference in chlorophyll 

content from the graves versus the controls. Those results were compared to the 

chlorophyll content of the unknowns in an attempt to classify the unknowns as a 

potential grave or non-grave. A one-way analysis of variance was performed for 

each month and across all months where the all unknowns were put into one 

single class. This step was performed to make inferences about the variance in 

each class and to suggest whether the unknown class contains potential graves or 

not.                                    

 
Vegetation Indices 



 
 A series of commonly used vegetation indices were calculated from the 

smoothed leaf spectra, particularly those involving plant stress estimations 

(Figure 4). Only three were retained: PSRI and ARI2 for showing significant 

differences between grave sites and control sites and RENDVI for chlorophyll 

content estimation (Gitelson and Merzlyak, 1994).  

The PSRI vegetation index estimates levels of senescence from a leaf 

sample; the PSRI values were originally calculated to compare grave and control 

values from the later months under analysis and to compare locational 

differences in the rates of plant aging. Plant senescence is often associated with 

the degradation of chlorophyll that is gradually being taken over by carotenoids 

resulting in the yellowing of leaves (Knee, 1972). ARI2 estimates anthocyanin 

content from leaf samples. Anthocyanin corresponds to a leaf pigment 

responsible for plant reddening and is particularly abundant in the juvenile and 

senescing stages of a plant’s life; abundant levels of anthocyanin in any stage of 

plant development is often associated to strong environmental stresses including 

those induced by soil constituents (Gitelson et al. 2001). In both cases, the higher 

the resulting value, the greater the plant senescence or the higher the levels of 

anthocyanins.  

 
Pattern Recognition Classifiers  
 
 A number of pattern recognition algorithms were applied to the leaf spectra 

from the Pattern Recognition Toolbox 4.0 for MATLAB (Duin et al., 2004) also 

called PRTools. The graves smoothed spectra (G1, G2, G3) were considered as one 



class. The grave class was compared to the control class constituting of both C1, 

and C2 and each of the unknowns. This process was repeated for each of the 

months to assess classifier performance, and once of all months. For each month 

under analysis, the grave class contained 30 columns of data (10 for each grave), 

the control class contained 20 columns of data (10 for each control), and each of 

the unknowns (U1-U12) contained 10 samples each. For the all-months 

assessment, the grave class contained 120 samples, the control class 80 samples, 

and each of the unknowns 30 or 40 samples depending on the October collection. 

The grave class was compared to the each of the unknowns as opposed to the 

control class due to the restraining size of the data set. Having a lower number of 

training samples can affect the forward feature selection process and ultimately 

classifier performance (Jain and Zongker 1997). The spectra were mixed and 

divided into 60% training data and 40% testing data. The training data in all cases 

contained 60% of each data set to be classified (e.g. 60% graves and 60% U1); the 

same applies to the testing data set, which contained 40% of each class. The data 

set samples were labeled according to which class they pertained to. The data set 

was then subjected to PRTools’ forward feature selection algorithm, which ranks 

each band based on percent separability. Using a forward feature selection 

algorithm optimizes classifier performance, accuracy, result interpretation and 

reliability (Kudo and Sklansky, 2000, Westen et al., 2001). Furthermore, it 

allows for feature discovery (Westen et al., 2001) in which consistent bands of 

high separability could be identified and used to make assumptions on class 

differences. In each case, the top 25 bands picked by the forward feature selection 



algorithm were selected to test each of the classifiers. This was done as a means 

to standardize the methodology across all months.  

 The classifiers constituted of two normal density based classifiers: the 

linear classifier (ldc) and the quadratic (qdc) classifier, and three non-linear 

classifiers: the Parzen classifier (parzenc) and two neural network classifiers. 

The first NN classifier (bpxnc) contains three hidden units and is backed by the 

back-propagation rule (see Heermann and Khazenie, 1992, Paola and 

Schowengerdt, 1995). The second NN classifier (lmnc) works by the Levenberg-

Marquardt rule (see Ranganathan, 2004). The linear and quadratic classifiers 

both assume normal distribution of the data. The Parzen classifier classifies the 

data set based on the Parzen density estimation. 

 The training and testing errors for each classifier was computed; the 

overall classifier performance was calculated by averaging both the 

corresponding testing and training errors resulting in a percentage value as 

overall classification error. Those errors were used to establish classifier 

performance from separability of the grave and control classes and compared 

month by month.  

 
Airborne Imagery Classification 
 
 Multispectral CASI imagery (Figure 5) was collected on August 7th, 2010 at 

12:30 PM local time over the Parc Safari cemetery site with a sensor elevation of 

1000 m. The flight lines were merged and geo-corrected and the standard 

deviation of the bands was estimated prior to acquisition. The CASI image 

contained 10 bands ranging from 488.88 nm to 900.73 nm with a pixel size of 0.8 



m by 0.8 m. Atmospheric correction was performed on the imagery (converted to 

a BIL file format) in ENVI 4.7 using FLAASH with the corresponding flight 

parameters and a ground elevation of 264 feet. Vicarious calibration was 

performed next in MATLAB, outputting a gains file by dividing the ground 

asphalt spectrum and the corresponding imagery ROI mean asphalt spectrum 

(scaled to ground reflectance). The gains file (which corrects the airborne 

imagery according to ground spectra) was applied to the imagery as a final 

calibration process.  

 A chlorophyll prediction curve was computed in TableCurve 2D v5.01 using 

all chlorophyll results for all months against the corresponding log base 2 

RENDVI values calculated from the smoothed spectra. RENDVI values from the 

imagery were calculated in ENVI using bandmath following the equation in Figure 

4. The corresponding log base 2 values were computed in the same manner. The 

output prediction curve with the best adjusted R2 result was applied to the 

imagery to estimate vegetation chlorophyll content. Potential grave sites were 

classified using the density slice option in ENVI, for which the classes were 

derived from ground chlorophyll data from the month of August. Because the 

imagery calculated chlorophyll was scaled by a factor of 2, the ground data 

results were scaled accordingly. All values below the dummy variable cut-off for 

the grave chlorophyll content were classified as a potential non-grave. All values 

above were classified as a potential grave. Other areas: road, water, etc. were put 

in a separate class. 

 
 



Results/Discussion 
 
 Significant differences can be found in the spectra from the graves versus 

the controls as shown in Figure 6. The reflectance spectra of the graves show 

differences, particularly in the near-infrared region, for the months of June and 

September. A likely explanation for the average grave spectrum’s increased  

reflection in the NIR for those months is a difference in the internal cellular 

structure of the plant; levels of hydration in the cellulose walls (Knipling, 1970) 

is a possibility. The average spectra for each of the grave and control class in the 

month of August overlaps and presents no difference anywhere on the 

reflectance graph. Because of spectral differences in the reflectance in other 

months, seasonality patterns in Sorghum sudanse near graves and controls 

should be noted.  

 The chlorophyll extraction results can be found in Figure 7, which shows 

the sample mean for each location for each month in mg per cm2. The highest 

chlorophyll content values occur in the month of June with the graves having 

significantly higher chlorophyll contents that all other locations. The results 

show stabilization of the of the grave’s chlorophyll content in the month of August 

where the chlorophyll content of the grave leaves have decreased and the 

chlorophyll content of all other locations have increased, resulting in similar 

results across all classes. The August chlorophyll content results coincide with 

the spectral averages in Figure 6, where no notable differences in reflectance can 

be observed in the average spectra of the two classes. Chlorophyll content 

differences can again be noted in the months of September and October where the 



graves show higher chlorophyll values than the controls, the values of which 

have decreased. The U6 location content peaks up in the months of August and 

September with values close to the grave values. Table 1 shows the dummy 

analysis test on all chlorophyll data for each month. The control value represents 

how much chlorophyll should be found in a control, and the grave value 

represents how much more chlorophyll can be found in a grave relative to a 

control leaf sample. The dummy test failed for the month of August supported by 

the average values in Figure 7 in which the chlorophyll content for the graves 

and controls are very similar.  Using the grave threshold from the dummy 

analysis for all statistically significant results (June, September, and October), 

the unknowns could be potentially classified. None of the unknowns can be 

classified as a potential grave for the month of June. For the month of September, 

U1, U2, U3, U6, U8, U9, U10, U11, and U12 could all be classified as potential 

graves. In the month of October, from the available data, U1, U2, U9, U10, U11, 

and U12 could be classified as potential graves. However, C1 falls in the threshold 

for the month of September, strongly implying the chances of false positives. 

Furthermore, none of the unknowns can be classified in either June or August, 

which brings us to the conclusion that classifying the unknowns from the 

chlorophyll results of the graves using this particular data set is doubtful. 

Another important point to note is that soil moisture increases the diffusion of 

soil nutrients (Carter et al., 2010). All grave leaves were collected around the 

grave water pits, and though soil moisture was not measured, it is fair to assume 

that higher soil moisture for the graves could potentially have an effect on the 



chlorophyll values. Furthermore, it is a problem to not know the age of the 

graves, as they could be far more recent than any potential graves near the 

unknowns. Because all unknown locations are fairly scattered through the 

graveyard, the potential for at least one unknown to be near a grave is high, 

suggesting that chlorophyll data from known graves with different ages could aid 

in classifying the unknowns.  

Figure 8 shows the chlorophyll content across all months for visualization 

purposes. Due to changes across the months during which the data was collected, 

the chlorophyll data from all months combined should not be used to derive 

conclusions. However, even combining all chlorophyll data from all months under 

analysis shows a relatively strong difference in the leaf chlorophyll content 

between the graves and controls. In the same figure, U6 with its combined values 

shows similar chlorophyll content results as the graves with very close means. 

Figure 9 shows a graphed one-way analysis of variance for each month, and all 

months combined. In this case, the unknowns were put into one class to analyze 

the variance across all the unknowns. The month of August shows similar results 

across all classes as expected from the mean contents in Figure 7. For all other 

months and all months combined, large variances in the grave class are observed 

possibly due to the environment from which the leaves were collected. 

Furthermore, G1 leaves were collected around a deeper pit than G2 and G3, 

which may affect access to nutrients. G1 chlorophyll content means from Figure 

7 are generally lower than G2 and G3, explaining the large variances in Figure 9. 

In terms of the unknown class, the results meet the controls and graves in the 



middle. Variance for each graph is relatively strong, suggesting that some of the 

unknowns are potential graves. However, classifying the unknowns from the 

monthly chlorophyll data in this case is doubtful. The U6 location may also be 

affecting the unknown class ANOVA graphs as the chlorophyll content in two of 

the three months was significantly higher that other unknowns. 

In the case of this research, it would be vital to have more known grave 

sites and control sites with known grave ages. Knowing the grave ages could 

provide inferences on the changing patterns of chlorophyll content from a 

relatively recent grave to a more mature grave. For further research, all locations 

should be in a similar plant growth environment where soil moisture is 

controlled. Such data set could provide more reliable results for chlorophyll 

content assumptions and for deriving chlorophyll seasonal patterns. All in all, a 

greater chlorophyll content can be observed from the grave sites as opposed to 

the controls. As we go further in the data set, there is stronger evidence that at 

one point in Sorghum sudanse plant phenology, graves and false graves cannot be 

distinguished either in the spectra of in the chlorophyll content,possibly due to 

environmental factors (see all data for August 7th, 2010).  

 As previously noted, none of the plant indices calculated showed significant 

differences between the graves and controls but for PSRI (plant senescence) and 

ARI2 (anthocyanin content).  Those results can be found in Figure 10, which 

shows changes in the calculated values from month to month. Seasonal patterns 

can once more be observed to be coinciding with the spectra and chlorophyll 

results for the month of August. The length of each of the coloured bars on the 



scale represents the PSRI or ARI2 value for that particular month and particular 

location. The differences in values across all locations can be noted from the size 

difference of each bar. In cases where the October bar is not present, the data is 

absent (no leaf sample collection for certain locations in October due to extensive 

plant aging). The PSRI values for the graves are much higher than the controls 

for the months of June, September and October. The values for August across the 

two classes are similar. The fact that the PSRI values for the graves are higher 

than the controls does not make sense according to the chlorophyll results, 

particularly for the months of September and October where plant senescence 

should be examined. For both months, chlorophyll content values are higher for 

the graves than the controls, which coincides with a lower rate of plant aging. 

Plant senescence is often related to degradation of the chlorophylls (Merzlyak et 

al.,1999) and a degradation in the carotenoids (Biswall, 1995). No significant 

results were found from either of the CRI1 and CRI2 vegetation indices. 

Furthermore, differences in plant senescence are observed in the month of June, 

when plants were not, and should not, be senescing unless it were to be caused by 

environmental factors. In the month of September, PSRI values for some 

locations (particularly the graves) increased drastically, only to drop in October. 

This questions the legitimacy of the equation used and the wavebands it involves. 

Nonetheless, the equation for plant senescence shows important differences 

between the graves and the controls. In the case of PSRI, U6 again shows similar 

results to the graves.  



 ARI2 results show consistently higher values for the graves than the 

controls, except for the month of August for which the values are similar. 

Because the vegetation indices were computed from the spectra, the VI results 

should follow a similar trend. U6 again shows similar results to the graves except 

for the month of June, which coincides with the chlorophyll extraction data. The 

levels of leaf anthocyanins are often associated with environmental stresses; 

since the values differ from location to location, soil constituents (Gitelson et al. 

2001) are probably the main cause for higher levels of anthocyanins in the grave 

leaves. G1 results follow the same trend as its corresponding chlorophyll results. 

Thus far, the results from all methodologies coincide with one another. 

Anthocyanin levels can be used as a good indicator of differentiation between 

graves and false graves, as is the chlorophyll content. Again, classification of the 

unknowns is difficult as it is from the chlorophyll data. As mentioned, analyzing 

graves of known ages and with a similar environment to the unknowns would 

help in potential classification.  

 The pattern recognition classifier results can be found in Tables 2 through 

6. The values in the tables represent the overall classification error for each 

classifier. Each of the locations was compared to the grave class resulting in two 

classes per run. The value for a location under a specific month is the 

classification error (for the classifier that it represents) in separating the grave 

class from the location spectra. In an ideal situation, the grave class and the 

control class should have minimal error. Each of the normal densities linear 

classifier (Table 2), the neural network by backpropagation rule classifier (Table 



3), and the Parzen classifier (Table 4) show strong inconsistencies across all 

months for each location. In some instances, the graves and controls could not be 

separated when in other instances it could. Those classifiers do not follow the 

trends from previous analyses. The quadratic classifier shows poor results (high 

overall classification error) for all comparisons across all months. However, 

comparing the data from all months combined, that quadratic classifier’s 

performance is considered very good with an ability to separate the control class 

from the grave class with an overall error of 19%. In a real life data set, such 

result is promising. However, for all the locations for which the October data is 

missing, the quadratic classifier does not perform well with high overall errors. 

This coincides with a lower number of training and testing samples. It has been 

noted in literature that a small sample size can affect classifier performance from 

inferior results by the forward feature selection (Jain and Zongker, 1997). 

Estimation problems can also occur with a small data set as variances in 

parameter estimates can cause deviations between the training and testing data 

(Kraaijveld, 1996) resulting in a high overall classification error. The use of the 

quadratic classifier in this case, should be limited to large data sets and cannot be 

used to classify the unknowns as a potential grave or non-grave. The neural 

network by the Levenberg-Marquardt rule is probably the most reliable classifier 

in terms of class separation. Though some inconsistencies exist across the 

months, out of all the classifiers analyzed, it shows the best results with either 

separation or non-separation for each location. However, based on poor 

separation for the control class versus the grave class in the months of August 



and September, confidently classifying the unknowns as a potential grave or 

potential non-grave is not possible. In this case, the methodology has failed in not 

only separating the control class from the grave class but also in potentially 

classifying the unknowns. Based on those results, pattern recognition classifiers 

should not be used in the identification of mature graves. Another important to 

note is that soil constituents may change based on grave age. Such can show 

differences in some waveband values and ultimately affecting classifier 

performance. Classifiers may then be able to separate a grave from another grave 

by using the forward feature selection algorithm in selecting the top bands of 

separation. Classifiers in the case of this study should not be used. It would 

however be interesting to test classifiers over graves of different ages and in 

controlled environments.  

 The forward feature selection results, from which the classifiers were 

evaluated, can be found in Figure 11. This further shows the inability of the 

forward feature selection algorithm to rate similar ranges of bands accordingly 

across all months. No bands could be identified that repeatedly came up at the top 

of the forward feature selection results. It is likely in this case, that the forward 

feature selection algorithm significantly affected classifier performance. Since 

strong variations in the chlorophyll content of the graves can be observed, it is 

likely that there are also strong variations in the grave spectra, affecting the 

forward feature selection process and classifier performance from training to 

testing data.  



 The prediction curve obtained from the TableCurve 2D analysis is graphed 

in Figure 12. The prediction curve for chlorophyll as a function of log base 2 

RENDVI values with an adjusted R2 of 0.51 is as follow: 

 Chl (mg/cm2) = -0.030841137 + (-0.099339052 / log RENDVI) 

It has been demonstrated in literature that RENDVI is a good vegetation index for 

the estimation of chlorophyll (Gitelson and Merzlyak, 1994). The density slice 

classified map from the CASI imagery can be found in Figure 13. The threshold 

for the classification was obtained from the August dummy test for chlorophyll 

ground data multiplied by 2 as the chlorophyll results from the imagery were 

scaled as such. Because the dummy test for the August data was not statistically 

significant, the mapped classification from the imagery should not be considered 

statistically significant either. In fact, the graves do not come up in the 

classification as ‘potential graves’ when the controls area (which was found to 

contain no bodies) is classified as a potential grave site. This is mostly due to 

chlorophyll values being similar across all classes in August; in such a case, 

applying a threshold will only give false positive or false negatives. Because the 

imagery was taken in the month of August, the August dummy test for 

chlorophyll had to be used. In the case of this study, soil data was not collected 

and such should be considered when classifying imagery as it was performed. For 

future research, acquiring airborne hyperspectral imagery would also provide 

more accurate results. In the case of the CASI imagery, the closest bands to the 

RENDVI equation were used rather than exact mentioned band, which ultimately 

skews the results from the prediction curve. Imagery over the site under analysis 



should be taken every day of ground data collection in order to conclude if 

imagery-based classification coincides with ground data. If a large enough data 

set is built, grave search over airborne imagery is a strong possibility.  

 

Conclusion 

 Significant differences in the chlorophyll content indicate that chlorophyll 

could be used as an indicator of a buried decomposing body at a later stage in the 

decomposition process. The same goes for leaf anthocyanin content for which 

grave leaves appear to contain at a significantly higher level. Seasonality 

patterns are observed across the months for both the chlorophyll content and VI 

calculated anthocyanin content; patterns that should be noted in future research. 

Classification of the unknowns is doubtful using all data sets, as the grave values 

are generally too high to make inferences. It is possible that the growing 

environment of grave leaves near water pits has an effect on the recorded and 

calculated values of chlorophyll and anthocyanins, which rendered classification 

of the unknowns possibly inconclusive. Pattern recognition classifiers over 

vegetation spectra failed in not only separating between controls and graves in 

some instances, but also in classifying the unknowns; their use should be tested in 

a controlled environment. A good prediction curve can be computed by estimating 

chlorophyll using the log of RENDVI values and classification of imagery from 

ground data, which is possible if the ground data differences are statistically 

significant. For further research, more vegetation data should be acquired over a 

larger number of controls and graves. Testing chlorophyll and anthocyanin levels 



over graves of different ages could be significant in establishing a pattern across 

ages which would distinctly help in forensic investigations. All collection sites 

should be located in a similar growth environment to avoid large variances errors 

in the results. Hyperspectral airborne imagery should be collected during each 

day of data collection to test the accuracy of airborne classification from ground 

data. The detection of mature grave sites using remote sensing methods is 

possible and needs to be developed further across a wide range of studies to 

standardize methodologies and provide a complete data set which would be useful 

for forensic investigations.  
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Appendix. 
 
 

 
 Figure 1 : Parc Safari Zoo cemetery view 
 
 

 
 Figure 2 : Map locations for all data collection points 
 
 
 



 
                Figure 3 : Sorghum sudanse sample 
 
 
 

 
 Figure 4 : List of vegetation indices applied on collected leaf spectra 
 
 

Vegetation Index Description Equation Reference

NDV I Normalized Difference Vegetation Index b750−b680
b750+b680 Rouse et al (1973)

RENDV I Red-edge Normalized Difference Vegetation Index b750−b705
b750+b705 Gitelson & Merzlyak (1994)

PRI Photochemical Reflectance Index b531−b570
b531+b570 Gamon et al (1998)

PSRI Plant Senescence Reflectance Index b680−b500
b750 Merzlyak et al (1999)

RV SI Red-edge Vegetation Stress Index b714+b752
2 − b733 Merton (1998)

CRI1 Carotenoid Reflectance Index 1 1
b510 − 1

b550 Gitelson et al (2002)

CRI2 Carotenoid Reflectance Index 2 1
b510 − 1

b700 Gitelson et al (2002)

ARI2 Anthocyanin Reflectance Index 2 b800
(

1
b550 − 1

b700

)
Gitelson (2001)

2



 

 
 Figure 5 : CASI imagery from August 2010 
 
 
 
 
 
 
 
 



 
 Figure 6 : Average leaf spectra for the grave and control classes 
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September 20 2010
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 Figure 7 : Chlorophyll extraction content means for each collection date 
 
 

 
 Figure 8 : Chlorophyll content across all months 
 
 
 



 
   Figure 9 : ANOVA results for the grave, control, and unknown classes for each 
                      month and all months combined 
 
 



 

 
     Figure 10 : PSRI and ARI2 results for each collection date 
 
 
 



 
   Figure 11 : Forward Feature Selection results for graves vs. Controls for each 
                         collection date 
 
 

 
  Figure 12 : Computed prediction curve for vegetation chlorophyll content 
 



 
  Figure 13 : Potential grave areas from CASI imagery computed using the Chl 
                        prediction curve 
 
 
 
  Table 1 : Dummy variable analysis over ground chlorophyll data 

 
 
 
 
 
 
 
 
 

Controls Graves !"#$%$!!!!!

June 4 2010 &'&()* &'&+,- 0

August 7 2010 &'&+.* &'&&./ &'*&,

September 20 2010 &'&(/. &'&)0) &

October 27 2010 &'&**( &'&&-- &'&)+

Chl Content 



 
  Table 2 : Overall classification errors for the normal densities linear classifier 

 
 
 
  Table 3 : Overall classification errors for the NN by backpropagation rule  
                   classifier 

 
 
 
 
 
 
 
 
 
 
 

June August September October All Months

C1,C2 0.15 0.28 0.22 0.35 0.25

U1 0.09 0.25 0.25 0.11 0.15

U2 0.25 0.13 0.13 0.19 0.19

U3 0.09 0.13 0.22 0.16 0.21

U4 0.03 0.03 0.06 N/A 0.16

U5 0.13 0.13 0.03 N/A 0.17

U6 0.13 0.28 0.22 N/A 0.18

U7 0.22 0.25 0.06 N/A 0.15

U8 0.16 0.16 0.25 N/A 0.18

U9 0.16 0.13 0.22 0.13 0.18

U10 0.16 0.16 0.31 0.19 0.24

U11 0.25 0.19 0.31 0.09 0.24

U12 0.16 0.22 0.16 0.22 0.24

Normal Densities Linear

June August September October All Months

C1,C2 0.19 0.50 0.18 0.29 0.40

U1 0.09 0.11 0.13 0.15 0.23

U2 0.00 0.24 0.13 0.25 0.22

U3 0.09 0.28 0.26 0.13 0.25

U4 0.13 0.03 0.11 N/A 0.23

U5 0.13 0.10 0.06 N/A 0.22

U6 0.09 0.16 0.03 N/A 0.18

U7 0.26 0.09 0.24 N/A 0.18

U8 0.00 0.15 0.22 N/A 0.22

U9 0.21 0.25 0.25 0.16 0.22

U10 0.25 0.19 0.13 0.18 0.27

U11 0.24 0.19 0.24 0.19 0.24

U12 0.28 0.28 0.14 0.25 0.25

NN by Backpropagation rule 



 
  Table 4 : Overall classification errors for the Parzen classifier 

 
 
 
   Table 5 : Overall classification errors for the normal densities quadratic  
                    classifier 

 
 
 
 
 
 
 
 
 
 

June August September October All Months

C1,C2 0.25 0.39 0.20 0.20 0.38

U1 0.19 0.11 0.08 0.13 0.20

U2 0.08 0.26 0.20 0.22 0.22

U3 0.24 0.26 0.24 0.28 0.23

U4 0.22 0.03 0.20 N/A 0.20

U5 0.26 0.13 0.03 N/A 0.20

U6 0.24 0.15 0.03 N/A 0.20

U7 0.19 0.32 0.19 N/A 0.17

U8 0.20 0.26 0.21 N/A 0.20

U9 0.28 0.28 0.25 0.26 0.24

U10 0.26 0.22 0.19 0.17 0.24

U11 0.15 0.28 0.23 0.26 0.23

U12 0.20 0.19 0.11 0.26 0.25

Parzen

June August September October All Months

C1,C2 0.41 0.49 0.58 0.58 0.19

U1 0.67 0.41 0.72 0.72 0.13

U2 0.43 0.50 0.72 0.72 0.15

U3 0.70 0.70 0.72 0.68 0.13

U4 0.30 0.70 0.43 N/A 0.75

U5 0.29 0.35 0.72 N/A 0.36

U6 0.68 0.68 0.33 N/A 0.41

U7 0.72 0.69 0.72 N/A 0.63

U8 0.57 0.66 0.72 N/A 0.55

U9 0.63 0.68 0.72 0.72 0.13

U10 0.59 0.64 0.72 0.72 0.13

U11 0.72 0.45 0.48 0.72 0.13

U12 0.72 0.72 0.43 0.72 0.13

Normal Densities Quadratic



 
 
    Table 6 : Overall classification errors for the NN by Levenberg-Marquardt rule  
                     classifier 

 

June August September October All Months

C1,C2 0.08 0.28 0.18 0.30 0.18

U1 0.09 0.09 0.16 0.16 0.08

U2 0.03 0.16 0.09 0.22 0.16

U3 0.09 0.13 0.22 0.13 0.20

U4 0.13 0.03 0.09 N/A 0.16

U5 0.09 0.13 0.00 N/A 0.11

U6 0.09 0.19 0.03 N/A 0.14

U7 0.16 0.09 0.03 N/A 0.16

U8 0.00 0.03 0.19 N/A 0.17

U9 0.22 0.22 0.18 0.30 0.21

U10 0.16 0.16 0.13 0.16 0.29

U11 0.19 0.09 0.28 0.22 0.17

U12 0.27 0.25 0.06 0.13 0.20

NN by Levenberg-Marquardt rule 


