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INTRODUCTION 

Gohberg, Lancaster and Rodman [1,2] introduced a spectral theory 
' 

for monic operator polynomials L in terms of standard triples (X,T,Y). 

If L is linear, i.e. L(l) = .AI -A for some operator A, then X = I, 'l = A, 

and Y = I defines a standard triple for L. More generally, suppose L is 

any monic operator polynomial and (X,T,Y) is a standard triple for L. If 

e1, ••• ,~ is a Jordan chain forT then Xe1 , ••• ,X~ is a Jordan (or Keldys) 

chain for L. In the finite dimensional case we can take T to be in Jordan 

canonical form ~nd then the columns of X give a complete system of eigen-

vectors and generalized eigenvectors for L. Similarly, one can show that . 
the rows of Y (in reverse order) give a ~omplete system of eigenvectors 

* and generalized eigenvectors for L • 

Let L be an operator polynomial and Y a simple closed contour such 

that a(L) nY =. /J • It is. always assumed Y is smooth~ and t -Y has two 

components the interior F+ and the exterior F-. The aim of Chapter 1 

is to give the definition of aY-spectral triple (X+,T+,Y+) for L and to 

show the significance of this definition. In particular, it is easy to 

-1 -1 .. 
show that L (A.) - X+(A.I - T+) -y+ is holomorphic inside Y • If l

0 
E a(L) 

is isolated then this gives a natural way to compute the principal part of 

-1 the Laurent expansion of L (A.) near A. , and leads to a simple proof, for 
0 

operator polynomials, of a result in [10] that gives a formula for the 
. * resolvent in terms of Jordan chains for L and its transpose, L • Also a 

generalization of the resolvent form of (2j is given in section 1.2. 

Section 1.3 discusses the connection between right divisors of L and in-

variant subspaces of T+. The generality of the results here is new. 
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If L is a mon;ic operator polynomial then a(L) is compact, and 

if Y contains a(L) in its interior then Y-spectral triples are the 

same as standard triples. In general, Y-spectral triples are really 

the same as the right and left Y-spectral pairs defined by Gohberc, 

Lerer,and Rodman [8]. 1he exact connection is discussed in section 1.1. 

The definition, given here seems to be simpler and a proof of the 

existence of Y-spectral triples is given in section 1.1, without using 

results on monic operator polynomials as was done in [8]. 

A continuous function A: Y + GL(X), where X is a Banach space, 

is said to admit a right factorizationt relative to Y if, assuming 

+ 0 £ F , 

V 
A(>.) =A+().)· ( t 

i=l 

.. 

+ + where A± :Y u F- -:> GL(X) are continuous functions holomorphic in F-., 
V 

Q
1 

~ ... ~Qv are mutually d'isjoint projectors such that i:l Q:i. = I, and 

< K 
V 

are integers, called the right partial indices. Inter-

changi~g the roles of A+ and A_ one obtains the definition of a left 

factorization. 

The main result of this thesis is that if L is an o.p. of degree ~ t 

and Y is a simple closed contour such that a(L) n·Y =~then Lhasa 

right factorization 

1 
21f i 

relative to Y if and only if 

I ( :) L-1 (>.) (I ••• A. t-li)dA. 
y >.ii 

t sometimes called spectral factorization or Wiener-Hopf factorization. 
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has a generalized inverse fori= 0,1, ••• ,~-1. to prove this, the results 

of Chapter 1 on spectral triples, as well as the concept of reducibility 

of operator polynomials introduced in Chapter 2, are used. For more 

details on the contents of Chapter 2, see the introduction there. 

I would like to thank my thesis supervisor, B.Lawruk, for introducing 

me to the subject of this thesis, and for his interest and guidance. Fin­

ally, I am grateful to I.Gohberg for valuable remarks he made during the 

time he. visited McGill University in November 1978. 
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CHAPTER! 

1. 0 DEFINITIONS 

Let X be a Banach space. L(X) is the space of linear operators on 

and GL(X) is the group of invertible linear operators. A map L:C _. L(X) 
I, 

is called an operator polynomial, abbreviated as o.p., if L(A) • t A Ai 
i=o i 

for some Ai £ L(X). If A
1 

1: 0 then Jl. is called the degree of L. The 

spectrum of L is defined to be o(L) = {AEC; L(A) is not invertible}. 

Notice that cr(L) is closed, but not necessarily bounded. It is always 

assumed o(L) 1: C. 

If L1 and L are operator polynomil:l.ls then.L1 is called a right div­

isor of L if there exists an operator polynomial L2 such that L = L2L
1

• 

If y is a simple closed contour such that a(L)ny = ~ then L
1 

is called 

a y-spectral right divis?r of L if a(L1) is contain~d inside y and cr(L2) 

is contained outside y. In general, the part of a(L) inside y will be 

denoted a+(L), and that outside y will be denoted a_(L). 

By a subspace of a Banach space, we will always mean a closed sub-

space. The sum of subspaces is denoted by + and the direct sum by e. 

If Sj £ L(X,Xj) (j = l, ••• ,n) are operators, where Xj and X are Banach 

n spaces, then col(Sj)j=l denotes the operator 

n 
L(X, $ Xj) 

j=l 
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m 
e L(.Xj, J) (j • 1, ••• ,m) then row (Tj) j•l denotes the operator 

The range of an operator T £ L(X,I) is denoted R(T), and its 

kernel is N(T). S £ L(I,X) is said to be a generalized inverse ofT 

if STS = S and TST = T. It is easily seen that T has a generalized 

inverse if and only if R(T) and N(T) are complemented in Y and X, 

respectively. 

In this chapter we will show how information about the spectral 

.ProperFies of an operator polynomial L can be concentrated into triples 

of operators (X,T,Y). It is convenient. to introduce some terminology. 

A triple of operators (X,T,Y) is called an admissible triple if X£ L(VJr), 

T £ L(V), and Y £ L(X,V) where X and V are Banach spaces; V is called 

the base space of (X, T, Y). and X is the target · space.· A pair of operators 

(X,T) is called a right admissible pair if X e L(V,X) and T e L(V) where X 

and V are Banach spaces, and a similar definition holds for left ad-

missible pairs (T, Y). Often, the adjectives "ri ghtn and "left" will be . 

omitted since the generic symbols (X,T) and (T,Y) will always be used and 

so there is no possibility of confusion. 

The kernel of a right admissible pair {X,T) is defined to be 

CO 

N(X,~) = n N(XTi) 
i=o 

CO 

= n N(col(XTj)ji=o). 
i=o 
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The least positive integer 1 , if it exists, such that 

_1 ~1 j 1 
N(col(X~)j ) = N(col(XT )j ) •o =o 

is called the index of stabilization of (X,T), and is denoted by 

ind(X,T). Otherwise, define ind(X,T) = m. (X,T) is called an 1-

independent admissible pair if 

0 • 

This holds if and only if N(X,T) • 0 and 1 ~ ind(X,T). If (T,Y} is 

a left admissible pair then the range of (T,Y) is defined to be 

~ 

R(T,Y) = + R(TiY) • 
i=o 

We will say that (T,Y) is surjective if R(T,Y) is equal to the base space 

of (T,Y). There are also analogous definitions of index of stabilization 

and !-independence for left admissible pairs. 

A right admissible pair (X',T') is said to be a restriction of the 

right admissible pair (X,T) if there exists 8·COmplemented T-invariant 

subspace W of the base space V of (X,T) and an invertible operator 

S:V ~W (where V' is the base space of (X',T') such that 

Also~ (X,T) can be called an extension of (X',T'). If W =V then (X,T) 

anc (X' ,T') are called similar. 
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1.1 SPECTRAL TRIPLES 

t i 
1.1.1 Definition. Let L(l) = t Ail be an o.p., and let y be a simple 

i=o 
closed contour such that a (L) n y = /J • An admissible triple (X+' T +' Y +) 

is called a y-spectral triple for L if a(T+) is contained inside y and 

t 

I AjX+~ 
j=o 

(i) 

(ii) 

(iii) 

... 0; 

is injective; 

X ~- iy 1 I ,j L-l(')d' +T:f. + "" Z1fi A A A 
y 

for j = 0, ••• , R.-1. 

A·chain x
1

, ... ,~ EX is called a Jordan chain for L at 1
0 

€ d(L) if 

j _!._ (p) - . 
I p! L (l0 )xj+l-p - 0 , 

p=o 
(j = 0' ; •• 'k-1) • 

The meaning of condition (i) is, basically, that it implies that if 

e
1

, ... ,ek is a Jordan chaln forT+ at 1
0 

then Xe
1 

, •.• ,Xek is a Jordan 

chain for L at l . 
0 

I~ the leading coefficient, A1, of L is invertible and y is a 

simple closed contour containing a(L) then 

= {0 for j 

-1 
A

1 
for j 

= o, ... , 

== 9.-1 

1-2 

• 

Thus a y-spectral triple in this case is a standard triple in the sense 
. 

of Gohberg, Lancaster, and Rodman [1]. For standard triples (X,T,Y), 

col(XTj);:! is invertible. 

We will also see shortly (1.1.7) that, in general, y-spectral triples 

are an extension of y-spectral pairs as defined in Gohberg, Lerer, and 

·Rodman [8]. 
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To establish the existence of y-spectral t~iples, methods 

different from those in [8] will be used. The following easy pro-

position relating L().) and Al - T is important. Define operator poly-

nomials 

for j a O, ••• , 1 • Notice that L • L. 
0 

, 

1.1.2 Proposition. Let L be an o.p. and let (X,T) be a right ad­
. "t 

missible pair such that · r AjX~ = 0. Then 
j=o 

t-1 
L(A}X = ( t Lj+l(A)XTj) ().1 -. T) 

j=o 
(1.1) 

t 
Similarly, if (T,Y) is a left admissible pair such that t ~YAj = 0 

j=o 
then 

.. 

t 
YL().) = (AI- T)( t ~y Lj+l(A)). 

j=o 
(1.2) 

Proof. Since ).Lj+l().) = Lj().)- Aj, the right hand side of (1.1) equals 

t-1 t-1 
t (Lj().) - Aj)XTj - ! L ().)XTj+l 

j=o j=o j+l 

= L(ft.)X. 

The proof of (1.2) is similar. 
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1.13 Theorem. Let L be an o.p. and y a simple closed contour such 

that a(L) n y • ~ • There exists a y-spectral triple for L and any 

two such triples are similar. Moreover, if (X+,T+,Y+) is a y-spectral 

triple for L then a(T+) = a+(L) and 

1 
(i}' I: rr!T+Aj = 0, 

j=o 

(ii) 1 

and l.l.l(iii) holds for all j = 0,1,2, ••• 1. 

Proof. 
- + 00 

Let VL be the vector space of all u £ C OR,X) such that, for 

. + + some continuous f:F ~ X holomorphic in F , 

u(t) = 

' X+ u = u(O), 

' d T+u = -u dt ' 

(1.3) 

We will show that 1 ' ' (X+,T+,Y+) is a y-spectral triple for L, called the 

natural y-spectral triple for L. One can verify immediately that· l.l.l(i) 

and (iii) are true. · 

To show l.l.l(ii) is true requires more effort. 
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+ VL has a natural topology induced from the usual Frechet topology 

w + on C OR,X). It is not clear that VL is a Banach space in this topology 

but we will eventually show this. + For the moment, however, VL is regarded 

simply as a vector space. 

+ It is convenient to introduce the notation int y • F and ext y = F • 

Let + 
J..l t ext y and define Sll £ L(VL) by 

1 . tl -1 -1 
{S u)(t) = 

2 
i I e L {l)f(l)(p -l) d>. 

ll 11' y 

where f determines u as in (1.3). S is well-defined for if 
ll 

1 et1~1 (>.)f{>.)dl = 0 then L-l(l)f(l) is holomorphic inside·y • 
y 

is L-1 (>.)f(l)(ll-l)-1 , and hence 1 etl"L-1 (A)f(A)(lJ-A)-ld>. = 0. 
y 

+ . can verify immediately that, for all u e VL , 

' ( l1 I - T+)S u = u 
. ll 

and 

Thus so 

One 

Now, there exists a closed contour y' contained in the interior of y such 

that the part of o(L) lying inside y' is the same as that inside y • We 

' can replace y by y' in the above considerations and conclude that o(T+) ~ int y' 

and for ll e ext y' 

I -1 1 
(pi - T+) u = 211'i 

Fix u e V~ and define 

F(ll) 
t-1 (j) 

= t Lj+l(p)u (0) • 
j=o 

Then, for 1J e:. y, 1.1.2 and (1.4) imply 

{1.4) 
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. 
' ' -1 F(~) • X+(~I - T+) u 

1 --21fi 
t L-1 (>.)£(>.) (lJ- ).)-ld). 
y' 

• 

Now, Fubini's theorem and the Cauchy integral formula imply 

1 f etlJF(p)dl! 1 f { 2li f etil(p-).)-ldp} L-l(>.)f(>.)d>. -21fi 21fi y' 'If y . y 

-
= 

+ In other words, for all u e VL , 

1 f et>.L-1 (>.)f(>.)d). 
21fi y' 

u(t). 

In particular, notice that 1.1.1 (ii) is true. 

Now, define 

·p 
y 

1 

(1.5) 

(1.6) 

' J!. R.-1 
If ye X define f ().) = E Lj+l().}yj • When u is defined as in (1.3}, 

y j=o· 
+ but with fy in place of f, then u e VL and 

t • j R.-1 
col(X+T+ ). u = P y 

J'"'O y 

+ ' 'j R.-1 Also, if u e VL then (1.5) implies Pyy = y, where y • col(X+T+ ) j=o u. 

Hence (1. 7) 

~nd Py e L(X1) is a projection. 
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+ A Banach space structure can be defined on VL by demanding that 

be an isometry. + The topology so defined on VL coincides 

with that inherited from C~CR,X). First of all, since col(X:T~j>1:! is 

continuous in the latter topology, it follows that this topology is finer. 

than the Banach space topology. By the closed graph theorem1it therefore 

+ suffices to show that VL is a 
~ ~ 

closed subspace of C CR,X). Let {u J 
1 .n n= 

+ ~ 
be a sequence in VL such that un ~ u in C CR,X). Then 

u (t) 1 I et>.L-1 ()..)f (>.)d). = ' n 21Ti y yn 

where 
t I j R.-1 

Yn = col(X+T+ )j=o u 
n 

Since f (>.) ~f (>.) uniformly on y, where y = col(u(j) (O))R.-l 
)h y . . j=o 

, we 

conclude that 

u(t) = 

+ + ~ Thus u E VL and VL is a closed· subspace of C (R,X). This completes 

the proof of existence of a y~spectral triple for L. 

Let (~, T +' Y +) be a Y -spectral triple for L. Then 

(1.8) 

Indeed, choose x E X and let u(t) denote the difference between 

the right and left hand sides of (1.8) evaluated at x. Then l.l.l(iii) 

implies.u(j)(O) = 0 for j = 0, ••• , R.-1. Notice that 

tT+y 1 I etAX (>.I- T+)-~+x d>. X+e +x = 21Ti y + 

1 
I e t>.L-1 (>.)£ (>.)d>. = --21Ti y 
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~ j . + 
where f(A.) • l Lj+l(A.)X+T+Y+x. It follows that u e VL and 

j=o 
hence u • 0 by (1.5). Since xis arbitrary this proves (1.8). Differen• 

tiating both sides of (1.8) yields 

for all j = 0,1,2, ••.• In particular,l.l.l(iii) holds for all, j. 

. + 
Now, let V+ denote the base space of (X+,T+,Y+) and define' € L(V+,VL) 

as ·(,x) {t) = ~etT+ x. Then l.l.l(ii) implies ' is injective. Also, 

i !-1 
(1.5) and (1.9) imply that ' row(~Y+)j=o is surjective, so' is sur-

jectiv,e. Hence' is invertible {by the closed graph theorem) and (ii)' 

' t 
is true. One sees immediately that X+;= X+ lP ~nd T+' = 'T+' and also 

' 'Y+ = Y+ is simply a restatement of (1.8). 
. 

Thus (X+,T+,Y+} is similar 

' ' t to (X+,T+,Y+) and any two Y-spectral pairs are similar. From (1.9) we 
1 _i . 

see that ' r ~Y+Aj .= 0, which implies (i)' • ~ 
j=o 

It remains to prove o(T+) = o+(L). If l t o(L) then 1.2.1 implies 

where 

thus A.I - T+ is injective. Similarly, for some S' 

' = (A. I -' T ) S' 
+ ; 

thus (ii)' implies A.I - T+ is surjective. Hence o(T+) ~ o(L) • 

To prove the reverse inclusion we start with the fact that 

M(A.) = L-1 (A.) - X+(A.I- T+)-~+ is holomorphic inside y (more precisely, M 

has a holomorphic continuation there). 
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= 0 

which implies M is holomorphic inside y • Define 

for A. e .int y\cr (T +). For A. e: int y\ cr (L), I = L(!.)N(A.), and then. 1.1.2 

implies 

(1.10) 

But int Y is connected so (1.10) holds for all A. e int y. Another 

application of 1.1.2 implies that I = L(A)N(A.) for al: A e: int Y\G(T+). 

Similarly, N(>.)L(A.) = I tnere. Hence cr+(L) c a(T+) and this completes 

the proof of the theorem. 

1.1.4 Corollary. Let L be an o.p., and y a simple closed contour such 

that cr(L) n y = ~. If (X+,T+,Y+) is a· y-spectral triple for L then 

is holomorphic inside y • 

This was shown in the proof of 1.1.3. 

1.1.5 Corollary. Let r and y be simple closed contours not inter-

secting cr(L),and suppose y is contained in the interior of r • Let 

(X,T,Y) be a r-spectral triple for L and 
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P l I (AI - T)-ldA . , . 
y - 2id y 

the Riesz spectral projector. Then (X+,T+,Y+) is a y-spectral triple 

for L with base space R(Py)' where 

and 

X = + XPY, 

T+ = P TP y y 

Proof. Only l.l.l(iii) is not obvious for (X+,T+,Y+). 

But 1.1.4 implies 

= xrr-1 

. 
= -1 I i..jX(i..I- T) -1-y dA 

2tri y 

1 I i..jL-l(i..)di.. • 
2tri = 

y 

1.1.6 Corollary. Let Land y be as in 1.13, and suppose (X+,T+,Y+) is 

a y-spectral triple 

* Jl. * i L (A) = E Ai A 
i=o * 

triple for L • 

* for L. Let X denote the dual space to X and 

* * * * Then cr(L ) == cr(L) and (Y+,T+,X+) is a y-spectral 

The proof is obvious. 

If L(i..) = AI - A then P , as defined in (1.6) , is the Riesz 
y 

spectral projector for A with respect to the contour y • In general, if L 

is any o.p. and (X+,T+,Y+) is a y-spectral triple for L then the range of 
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i R.-1 i 1-1 
col(X+T+)i•o is equal to the range of PY • Hence R(col(X+T+)i=o) is 

~ i~ . 
complemented in x·· or, in other words, col(X+T+)i=o is left invertible. 

i R.-1 _..f. 
Moreover, ~he range of col(X+T+)i=o is equal to the set of all y e x· 

such that, for some polynomial f of degree < t-1, 

y = col( I A.iL-1 (A.)f(A.)dA.)iR.-l 
=o • 

)' 

i. R.-1 
Similarly, the kernel of row(T~+)i=o is equal to the kernel of the 

projector P e L(X1J defined by 

y p D __!_. I (L~ (l) )L-1(A) (I 
y 2tti y • 

L
1

(.A) 

1.-1 ••• A. I)d>. • 

·L R.-1 
Thus row (T~+)i=o is right invertible. For the sake of completeness 

we also note that 

and 

where 

B = 

Also, in definition 1.1.1, R. can be any integer~ deg L. 

The next proposition shows the connection between y-·spectral triples 

and they-spectral pairs defined in [8]. A right admissible pair (X,T) 

is called a right partial y-spectral pair of L if a(T) is contained inside y, 
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1 . i i k-1 
t AiXT • 0, and col(XT )i=o is left invertible for some integer 

i•o 
1 < k < i. - -
1.1.7 Proposition. Let L be an o.p •. and y a simple closed contour not 

intersecting a(L). ·Let (X+,T+) be a right admissible pair with base V+. 

The following statements are equivalent: 

(i) There· exists Y+e L(X,V+) such that (X+,T+,Y+) is ay-spectral 

triple; 
+ . tT X 

(ii) Every u E VL has a representation of the form.u(t) = X+e + 
+ for a unique x t V+' and conversely every u defined this way is in VL; 

(iii) (X+,T+) is a right partial y-;spectral pair for L and any other 

right partial Y-spectral pair for L is its restriction. 

Proof. (i). "* (ii). If u E v+ 
L then (1.5) and (1.9) imply 

u(t} tT+ =X e x + 

where iy t-1 
.x = row(T+ +)i=o • B • col(u(i)(P))~:! 

(i) t-1 i t-1 
x .is unique since col(u (O))iao = col(X+T+)i=o x • 

The converse statement in (ii) is clear. 

(ii) "* (i) • 

be the natural y-spectral triple for L. One checks im-

mediately that X+ (jl =X+ and T+(jl = ~pT+. Let Y+ ·-='P-ly~, then .<x+,T+,Y+) 

is a y-spectral triple for L. 

(i) =* (iii) First of all, (X+,T+) is a right partial y-spectral 

pair for L. Now we will assume, without loss of generality, that 
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(X+~T+) • (X~,T~. If (X,T) is a right partial y-spectral pair for L 

+ tT 
with base space V define ' £ L(V,V1 ) as (Cj)x)(t) = Xe x • Notice that 

' X • X+' and cvT = T.,:.cv ; thus R(Cj)) is invariant under T.,:.. Let M be a 

i k-1 left inverse of col(XT )i=o • Then QCj) = 
+ Q is a projection of VL onto R(Cj)) so R(Cj)) 

(X,T) is a restriction of (X~,T~). 

i k-1 
Cj) where Q = Cj) M col(X~T..:. )i=o • 

+ is complemented in v
1

. Hence 

(iii) ~ (i). If (X+,T+) satisfies (iii) then (X~,T~) is a restriction 

of (X+,T+) • Define the map Cj) as above but now for (X+,T+). Then 

R(Cj)) =V~ so Cj) is invertible. Let Y+ = ,-ly~, then (X+,T+,Y+) is similar 

( ' ' y') to x+,T+' + and is hence a y-spectral triple for L. 

1.1 ~8 Definition. Let L and y be as in 1.1. 9 A right admissible pair 

(X+,T+) is called a right y-spectral for L if there exists an operator Y+ 

such that (X+,T+,Y+) is a y-spectral triple for L. _The definition used 

in [8] is 1.1.9(iii). Similar definitions hold for left y-spectra1 pairs. 

1.2 THE RESOLVENT L-1 (~) 

Let L be an o.p. and A £ o{L) isolated. In some neighbourhood of A 
0 0 

we have the Laurent expansion 
CO 

j =-oo 
B (A- A )j 

j 0 
(1.11) 

( ) (L-1). The principal part of 1.11 is denoted aA 
0 

Let (X ,T ,Y ) be a spectral triple at A for L, i.e. ay-spectral 
0 0 0 0 

triple for L where y is a small circle about A not containing any other 
0 

points of o(L). Then 1.1.4 implies 
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-• t X (T-A I)jY (A- A )-(j+l). 
j 

0 0 0 0 0 
(1.12) 

•o 

L-l has a pole at A
0 

if and only if there exists v ~ 0 such that 

(T - A I)v = 0, and if so then the order of the pole is equal to the 
0 0 . 

V minimal such v. Indeed, if (T -A I) = 0 then Bj = 0 for j > v • 
0 0 -

Conversely, if Bj = 0 for j ~ v , i.e. X (T -A I)jY = 0 for j ~ v , 
0 0 0 0 

then 
col(X Ti)t-l (T- A I)" • row(~Y )jt-l = 0 

o o i=o o o o o =o 

" . and hence (T -A I) = 0. by l.l.l(ii) and 1.1.3(ii)'. 
• 0 0 ~ 

. 
Similarly, one can show that Bj (j = -1,-2; .••• ) have finite dimen-

sional range if and only if the base space of (X ,T ,Y ) is finite 
0 0 0 

dimensional. 

Now we prove the result mentioned in the introduction which is in 

Gohberg and Sigal [10]. 

1.2.1 Theorem. Let L be an o.p. and suppose A E o(L) is isolated. If 
0 

the operators Bj(j = -1,-2, ••• ) in the Laurent expansion (1.11) of L-l 

have finite dimensional range then there exists a canonical system 

i xl , ••• , (i = l, ••• ,p) 

of eigenvectors and generalized eigenvectors of L corresponding to A 
; 0 

and a canonical system 

(i ... 1, ••• ,p) 

* of eigenvectors and generalized eigenvectors of L corresponding to A
0 

such that 
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Proof. Let (X ,T ,Y ) be a spectral triple at ). for L and recall (1.12). 
0 0 0 . 0 . 

The base space of (X ,T ,Y ) is finite dimensional. Hence we can assume: 
0 0 0 

(1) T
0

- >.
0

1 is in Jordan canonical form diag(J'i)i=l' where 

each Ji is an ri x ri nilpotent Jordan block; 

(2) 

(3). 

Then 

where xi 
i 

and xj £ X 

where 

P r 1-1 

= 1: t 
i=l j=o 

X J jy ('\ - ' ·)-(j+l) 
i i i 1\ 1\0 

. 
' 

and an easy computation completes the proof of the theorem. 

We now consider the spectrum at ro for operator polynomials. This concept 

is due to Gohberg and Rodman [4,5]. If Lis an o.p. of degree~ i and cr(L) 

is compact then a spectral triple at ro for L, denoted (X ,T ,T ), is defined 
01) (X) (X) 

..... .t -1 
to be a spectral triple at 0 for the o.p. L, where L(A) =·A L(). ). More 

accurately, we should say !-spectral triple at m, since increasing .t will 

increase the spectrum at ro. For further explanation of this see [4, §3]. 

When using spectral triples at ro we will of course specify which .t is used. 

A finite spectral triple (X,T,Y) for L is defined to be a f-spectral 

triple for L, where r is a simple closed contour containing cr(L). 
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If L has invertible leading coefficient A1 then there is no 

spectrum at ~ • The next theorem is a generalization of [2,theorem 13] 

where the resolvent is expressed in terms of a standard triple for L. 

1.2.2 Theorem.· Let L be an o.p. of degree ~ 1 with a(L) compact. 

Let (X,T,Y} be a finite spectral triple for Land (X ,T ,Y) a spectral 
00 go go 

triple at go for L. Then, 

= X(>.!- T}-ly + X T .t-l(I- AT ) -ly • 
00 OG CO CO 

(1.13) 

Proof. L-l has a Laurent expansion in a neighbourhood of oo : 

For i = 0,1,2, ••• c = 
i 

Similarly, for i ~ 1-2, 

X T .t-2-iy 
CO CO CO 

CO 

= t C A-(i+l) 
CX> i 

= 

= 

1 
2wi 

1 
21ri 

1 
21ri 

= XTiy • 

! >. 1 -2-i L-l(A)d>. 
y 

I >..1- 2-i >..-iL-1(>..-l)d>.. 
y • 

. -1 -2 
Bere we have made the substitution w • >. , dw = - A d). Notice 

that the interior of y is mapped to the exterior of r , whereY is a 

small contour about 0 and r is defined to be {>..-1 ; >. e y}. Combining 

the above facts, (1.13) follows easily. 
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We can use (1.13) to give a simple proof of the following result 

due. in the finite dimensional case, to [6]. 

1.2.3. Theorem. Let L be an o.p. of degree~ t with a(L) compact, and 

let (~,Tw, T=) be a spectral· triple at ClO for .L. If f £ C(R,X) then 
. d . GC> 

L ( dt ) u = f has the particular solution u == u 
0 

+ '! e: C (IR,X) , where 

and 

u (t) • 
0 

f(t) • 

t 
I I e (t-s)).L-1 (l.)d). f(s)ds 
o r 

llO . . 

t X Tt-l+iy f(i)(t) • 
GC> CO CD 

i=o 
t 

Proof. First of all, u (t) = 1 Xe(t-s)TY f(s)ds where (X,T,Y) is a 
0 

0 

finite· spectral triple for L. An easy induction argument shows that 

. 
= 

~1 t 
E X~Y f(i-l-j)(t) + I XTi e(t-s)Ty f(s)ds. 

j=o o 

Hence 

Now, by (1.1.2) and (1.13) 

R. 
r: Li (X, T)Y ). i-

1 
= 1-L(A )X"','r:-1 

(I ~ ~ T..,) ~~oo •• 

i=l : 

f - L(.....L)x rf-1 (1 -.....LT )-~ f and since the dt 00 ClO dt ClO ClO 

second term on the right hand side of this equation is 
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d which is L( dt)v, the proof of the theorem is complete. 

1.3 DIVISORS OF OPERATOR POLYNOMIALS 

Let L be an o.p. with y-spectral pair (X+,T+). In this section the 

connection between invariant subspaces of T+ and right divisors of L is 

investigated. The next theorem and its corollary is due to Gohberg, 

Lerer,· and Rodman [8] (except for (iii) of the theorem), but different 

proofs are given here. 

1.3.1 Theorem. Let Land L1 be o.p.'s and y a simple closed contour such 

that a(L) n y = a(L1) n y = t/J. Let (X+,T+) be a right y-spectral pair 

for L. -1 If LL
1 

is holomorphic inside y then there exists a unique 

invariant subspace L of T+ such that (X+IL ,T+jL) is a right y-spectral 

pair of L1• Moreover, the following statements are equivalent: 

(i) LL~1 is holomorphic inside y ; 

(ii) any right y-spectral pair for L1 is a restriction of (X+,T+); 

(iii) 

Proof. If L is an invariant subspace of T+ such that (X+IL,T+IL ) is a 

y-spectral pair for L1 then 1.1. 7 implies 

+ I tT !L VL
1 

= tu;u(t) =X+ Le.+ x, xeL }. 
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.. 

Hence + + VL • t(L), where ~ e L(V+,VL) is defined as in the proof of 
1 t'f+ 

1.1.3 (tx)(t) = X+ e x. This proves uniqueness of L in the state-

ment of the theorem. Existence is a consequence of the results proved 

below. Without loss of generality (X+,T+) is the-natural y-spectral 

pair for L, since any two y•spectra1 pairs for L are similar. 

(i) => (iii). This is clear since Li1 = L-l(LL~1). 

(iii) => (i) + + d tA -1 
If VL

1 
5. VL then L{ dt )( ~ e L1 (A)dA) = 0 • 

Differentia~ion under the integral sign yields 

I etA L(A)L~1 (~)d). • 0, 
y 

which is equivalent to (i) • 

(ii) => (iii) • This is clear from the first statement of the proof. 

(iii) => (ii). + + + If VL · _:: VL then (X+IVL , T+l V+ ) is the natural y-
1 1. L1 . + 

spectral pair of L1 , and is a restriction of {X+,T+) (Notice that VL is 
. 1 

+ complemented in VL since + and VL into complemented 

t . 
subspaces of X .). Since any two y-spectra1 pairs for L1 are similar, (ii) is 

proved. 

1. 3.2 Corollary. Let 
-1 . . 

L,L
1

, and y be as in the theorem. LL
1 

is holomorphic 

and invertible inside y if and only if the right y-spectral pairs of L and L1 
+ + coincide, or if and only if VL = VL • 

1 

1.3.3 Remark. The above corollary applies in the case L1 is ay-spectral 

right divisor of L. 

-1 If LL1 is holomorphic inside y then the subspace L in 1.3.1 will be 

called the invariant subspace of T+ corresponding to L1• Notice that Lis 

a complemented subspace of the base space of {X+,T+). 
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1.3.4 Remark. There are two other ways to characterize L : 

1) ... {/ ).iL~1 ().)f(>.)d). ; f a polynomial } •. 
y 

i 1-1 Since col(X+T+)i=o is left invertible, this uniquely determines L; 

+ -1 
Define lP e L {V+,VL) as usual, then L = lP (Vt+ ) .. 

1 
2) 

If LL~1 is holomorphic inside.Y and o(L
1

) is contained inside 

then LL~1 is entire and in the finite dimensional case it is a poly-

nomial. This is no longer true in infinite dimensions (an entire function 

is a pplynomial if and only if it has a pole at m). In [8], the following 

example is given. 
. n 

If A is an operator ~uch that o(A) = {0} and A I 0 

(n = 1,2, ••• ) let L(>.) = I and L
1 

(>.) = I + 'AA,; then L(>.) L~1 (>.) = (I + >.A)-l 

is entire but is not a polynomial. The next theorem gives a necessary and 

sufficient condition for the quotient to be a polynomial. 

1.3.5 Theorem. Let L be an o.p •. of degree ~ t and L
1 

an o.p. of 

-1 degree ~ k. Suppose o(L1) is compact and M= LL1 is entire. Let (X
1

,T
1

,Y1) 

be a finite spectral triple for L
1 

and (X ,T ,Y ) a spectral triple at m oo oo 

for L
1

. Then an explicit formula for M can be given in terms of the 

coefficients of L and the spectral triples for L1: 

t-1 
M(>.) = I 

j=o 

+ 

t j 
{ E A X Ti-(j+l)y + t A X Tj+k-i-ly }>.j 
i=j+1 i 1 1 1 i=o i m oo oo 

E { 
j=t 

t 
t A X ~+k-i-~ }Aj 

ioom oo 
i=o 

(1.14) 
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M is polynomial if and only if there exists a non-negative integer p 

such that .t 
E A X Ti+p • 0 

.t-i CIO CIO • (1.15) 
i==o 

If such a p exists then the degree of M is~ max(p+ .t-k,.t-1). 

Proof. 1.2.3 implies that 

(1.16) 

The fact that M is entire implies 

t 
E i 

i=o AiXl Tl = 0 

Indeed, let Y be a simple closed contour containing u(L1) and use 1.1.7: 

.t 
t A

1 
I ).iL~1().)f().)dJ. = I L(A)L~1 ().)f().)d). 

i=o Y Y -

.... o. 

Thus we can apply 1.1.2 and (1.16) to obtain: 

Notice that, since u(T ) = {0} , I- ).T is entire, 
... o:> 

(1.18) 

and lim Jl~ll/n = 0. This shows that there is no problem of con-
eo 

n --l- co 

vergence in (1.14). Using (1.18) one easily sees that the second 

term in (1.17) 

.t-1 
t { 

j=:=o 

can be rewritten as 

CO .t • 
t { t A X TJ+k-1-iy } ).j • 

i CO CO CO. 

j=.t i=o 
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Collecting the various terms together one obtains (1.14). Finally, 

rewrite the last term in (1.14) in the form 

M is a polynomial if and only if this series terminates, and since 

R.-1 
(Y ••• T --r) 

CO CO CO is surjective this is equivalent to (1.15). 

statement of the theorem is now easily verified. 

The last 

The next corollary gives a formula for the quotient and remainder 

in a generalized Euclidean algorithm. Actually, it is difficult to . 
attach any significance to this result in.general, but if L

1 
has invertible 

leading coefficient then we obtain theorem 6 of [1], which was a crucial 

part of that paper. An important generalization of this case is when L
1 

is reducible in the sense of Chapter 2. With respect to the decomposition 

determined by L1 we have R(A.) = (rij(A.))~,j=o and deg rij< j • Thus 1.3.6 

gives a formula for the (unique) remainder satisfying this condition, and 

also a fGrmulae for the quotient. 

1.3.6 Corollary. Let L be an o.p. of degree~ R. and L
1 

an o.p. of 

degree~ k1and suppose a{L1) is compact. Let (X
1

,T
1

,Y
1

) be a finite spectral 

triple for L
1 

and 
k 

L (A.) = E B A.j 
1 j=o j 

(X ,T , Y ) a spectral triple at- for L
1

• 00 C) .., 

R. j 
and L(A.) = E Aj A • Then 

j=o 

L(A.) = M(A.)L1 (A.) + R(A.) 
' 

where 
k-1 

R().} = i: R A.j and 
j=o j 

R. i R.-j 
Rj = ( l: AiX1T1) ( I: T~lBj+m) 

i=o m=o 

Write 
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M is defined as in (1.14) except with A
1 

replaced by 

A' • 
i 

Proof. We claim that 

where 

1 • o,.. ••• k-1 

i > k 

LL- 1- RL-l is entire. Indeed by 1 1 2 1 1 , •• 

Hence if Y is a simple 

closed contour containing a(L1) then for all j = 0,1,2, ••• 

= I Aj L(>.)L~1 (>.)d). , 
y 

-1 and the claim follows •. Apply 1.3.5 to M= L'L1 where L' ~ L-R and the 

corollary is proved. 

Suppose L = L2L1• The next theorem shows bow a left y-spectral pair 

for L2 can be constructed from a left y-spectral pair (T+,Y+) for I;. and 

the invariant subspace of T+ corresponding to L1• 

1.3.7 Theorem Let L,L
1

, and L2 be o.p.'s such that L = L2L
1

, andy 

a simple closed contour such that a(L) n y = o(Li)n y = ~ • 
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Let (T+,Y+) be a left y-spectral pair of L,and L the invariant subspace 

of T+ corresponding to t 1• If T+ £ L(V+/L) is the operator induced 

from T+ and Y+ • nY+' where n £ L(V+,V+/L) is the natural projection, 

then (T+,Y+) is a left y-spectral pair for t 2• 

Proof. Without loss of generality, (T+,Y+) is the natural left y-spectral 

+ + + + pair for L with base space v1 , and then L = v1 • Also, let (T2,Y2 ) be 
1 + 

the natural left y-spectral pair for L2 with base space v
1 

• In particular, 
2 

recall that 

Y ( ) l I tAL-l(')d' d Y+(t) - - 1 f et).L-
2
1(')d' + t = 2ni e 1\ "' an 2 - 21Ti 1\ 1\ 

y y . 

+ + d Define ~ E L(VL' v
1 

) as lflu = L
1 

( dt )u • Then • lfl is surjective 1for if 
2 . · tA -1 

V E V+ 
L2 

there is a polynomial f(A) such that v(t) = f e 1
2 

(A)f(A)dA 
y 

tA -1 + and thus ~u = v, where u(t) = f e L_ ().)f(A)dA • Moreover, N(~) = V • 
y Ll 

+ -
Indeed, it is clear that· v

1 
5.. N(~) and if u E N(l/J) then 

tA -1 l d 
u(t) = f e L (A)f(A)dA for some polynomial f(A). Since L1 ( dt)u = 0, 

y 

i.e. £ etAL;1 (A)f(A)dA = 0 , -1 it follows that g(A) = L
2 

().}f(A) is 
y . 

holomorphic inside y and u(t) = f 
y 

tA -1 · + 
e t

1 
().)g().}dA , which implies u E v

1 
• 

1 
- + + + Thus ~ induces an isomorphism ~ between V L /VL and v

1 
, by the closed 

1 2 

graph theorem. 

+ +- --Now, notice that ~T+ = T2 lfl • Hence T2 lfl = ~ T+ • 

-- + and so ~ Y+ = Y2 • This shows that the admissible pair 

+ Also, lf/Y+ = Y2 

(T+,Y+) is 
+ + 

similar to (T2,Y
2

) and is hence ay-spectral pair for 12 • 
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1.3.8 Corolla!Y. (cf. [1,§6]) Let the hypotheses be as in the theorem. 

• • right y-spectral pair for L , L2 is a right divisor of L*, 

and the invariant * * ~ subspace of T+ corresponding to L2 is L • 

Proof. The first claim has already been proved in 1.1.6, and the se.cond 

is trivial. Recall that T+(L) ~ L implies T:cC) ~ C . We must show 

• is a y-spectral pair for L2• The theorem states 

that {T+,Y+) is a left y-spectral pair for L2 and hence (~,~) is a 

* • * • right y-spectral pair for t 2 • But '11' £ L((V+jL) , V+) defines an iso-

* 1 * * -* * • * * morphism between (V~L ) and E , and Y+ '11' • Y+ and '11' T+ = T+ '11' 

It fo:J.lows that { Y:jlt, T:j_i ) is similar to (~,~). This completes 

the proof of the corollary. 

1.3.9 

+ spectral pairs for L and t 2 with base spaces V+ and v2, respectively. 
. • + 

The proof of 1.3.7 shows.that there is a natural surjectiontP eL(V+,v
2

) 

with kernel L , the invariant subspace of T+ corresponding to t
1

, uniquely 

determined by 

1 =--
2'11'i 0.=0, ..• ,!2-1). 

+ + . 
Indeed, when (X+,T+) and (x

2
,T

2
) are the natural y-spectral pairs of L 

and t
2

, respectively , this is just the tP defined in 1. 3. 7. In the 

general case one can argue by similarity. We also note that tP has a 

+ natural section X e L(v
2

,v+) uniquely determined by 

(j = o, ... , .t-1). 

Again, in the case of natural spectral pairs, for v e V+ 
L2 

(xv)(t) l I etAt-
1
1. (A)X+

2
(Al- T+

2
)-lv dA = 21Ti 

y 
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• v(t) • 

Hence 1P xv = v and X is a section of lJ!. 

This remark is used in the proof of the next theorem, which gives 

a formula for a y-spectral triple for L = t
2
t
1 

in terms of y-spectral 

triples for t 1 and t 2• This is a generalization of [2,theorem 17], which 

is for standard triples of monic operator polynomials. 

1.3.10 Theorem, Suppose L"" t 2L
1

· and o(.Li)ny = t/1 (i •1,2). Let 

+ + + 
(Xi, Ti, Yi) be a y-spectral triple for Li with base space yt (i == 1,2). 

~et V+== V~ x v; and define X+ & L(V+~X), T+~.L (V+), and Y+ e: L(X,V+) as 

. y+ = ( y;) , 

where A= 
1 

f t~1 (A.)x;cu - T;>-1 dA. 2tri , 
y 

1 
f (AI- T+)-ly+ {L-l(A) + + -Iy+ B = 2tri - X2(AI - T2) 

2 
} dA 

1 1 2 y 

Then (~,T+,Y+) is a y-spectral triple for L. 

' ' ' Proof. Let (X ,T ,Y ) be a y-spectral triple for L. 
+ + + 

Without loss + + 'I 'I of generality (X1 ,T1) = (X+ L ,T+ L ) 
+ and v
1 

= L where L 

' is the invariant subspace ofT+ corresponding to t 1• Let 1Ji ~ L(V~,V;) 

be defined as in the previous remark. Recall that N(~) = L and there is a 
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+ natural section x e: L (V 2, V+) • + Thus V~ • L $ x(V2), and there is the 

+ + isomorphism ' & L(Vl X v2,V+) 
u defined by ,( ) • u + XV• We claim 
V 

since for j = 0,1, ••• 

Hence T~(u + xv) 

= 

·Also 

+ = x
1 

u+ Av 

= X (u) 
+v 

so X~ ~p • X+. Finally, 
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= X'T.jB ++ • 

Indeed~ for j = 0,1, ••• 

. -1 . 
Hence ~ Y' = Y and the proof of the theorem is complete. 

+ + 

1.3.11 Remark. If a(Li) is contained inside y (so finite spectral . 

triples are considered) then one can give other formulas for A and B. 

Let (X. ,T, , Yi) be a spectral triple at~ for·Li for some chosen 
].~ • ].CO ~ 

Then A = 

B = 

Indeed, enlarge y to be a circle with large radius and then 

1 L~l(A)X;(AI - T;)-ldA A = 2'1ri I 
y 

... 
A-(j+l)dA)X+(T+)j 1 

1: ( I L~1 (A) = 
2'1ri j=o y 2 2 
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whiCh gives the required result. For B one uses 

1.4 TRANSFORMATIONS OF OPERATOR POLYNOMIALS 

If A = ( a b ) e GL
2

(£) let 1p be the fractional linear transformation 
c d 

aA. +b 
CA +d • Recall that 1p is bijective with inverse d~ ~b • If Lis an o.p. -c a 

of degree ~ 1 define the transformation of L ~nder f as 

1 -1 
L (A) = (-eA. +a) L(rp (A.)), 

which is also an o.p. of degree ~ 1 • 

1.4.1. Theorem. Let L be an o.p. of degree::_ 1 and y a simple closed 

-contour such that a(L) n y .. = t/J. Let 1p be a fractional linear transformation, 

-d suppose--- is in the exterior of y , and set y = ~p(y). If (X ,T ,Y) 
c + + + 

is a y-spectral triple for L , 
• • • 

where 

-X = X , + + 

and 

Proof. Notice that • maps the interior of y to the interior of y and by 
I'V .... 

the spectral mapping theorem a(T+) ~ rp(a(T+)) is contained inside y • Now, 

L (A) 
q> 

and, by lemma 1.4.~., 

1 
i ~i = E Ai(dA.-b) (-cA.+a) 

i=o ~ 
i . R.-i . j 

(dA. -b)_ {-eA. +a) = E uij A. , 
j=o 
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.t 
where (u j)i.t j • (det A)1 uA-1 is invertible. Then L (A.) = t A ).i 

i .~ . ' ~0 L 

- - .t 1 where. (A
0 

••• A.t) • (A
0 

••• A.t)U andU·=(uij I) i,j ... o & L (X l is invertible. 

Also, one checks easily that 

for. i = 9, ••• ,1 . and thus 

Hence is injective, and 

1 
1: A'xTi = <'A: 

i=o i + + o 

... o· . 

It remains to show (c) of definition 1.1.1: 

In the second equality the substitution ). = ,(w) was made. 

1.4.2 Corollary. Let L be an o.p. of degree_:: 1 such that o(L) is compact 

and let (X,T,Y) and (X ,T ,Y ) be finite and infinite spectral triples for L, 
<lO oo en 
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respectively. 
-1 1-2 

Then, (X,T-ai,Y) and (X ,T (I-aT) ,(1-aT) Y) are 
01> Cl> 00 00 

finite and infinite spectral triples for L (;\) • L(;\ +a),_ respectively. 
a 

Proof. For the case of finite spectral triples take •(A) • A-a, and 

~et y be a large contour containing a(L). For the case of infinite 

- 1 -1 
1 

....., i -spectral triples note that L(;\) = A L(A ) = E Ai;\ where A1 = A1_i. 
i=o 

Then, 

• 

..., 
Let y be a smal~ contour about 0 not containing any other points of a(L), 

....., 
, 'and apply the theorem to Land ' 

1.4.3 Corollary. Let L be an o.p. of degree ~ 1 such that a(L) is 

compact and 0 i a(L), and let {X,T,Y) and (X ,T ,Y) be finite and infinite 
00 <XI 00 

spectral triples for L, respectively. Define 

....., --
then, (X,T,Y) is a finite spectral triple for L. 

Proof. Choose a simple closed contour y containing a(L) but not 0, and 

let >. be a small circle about 0 not containing any points of a (L)\ 0 • 
0 
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,..., ,.., ,., -1 
'lben r •y + y contains o(L) in its interior, where y • {A ;A e: y} • 

0 

-1 t-2 - -The theorem implies that (X,T ,T Y) is a Y-spectral triple for L 
· -1 ab 0 -1 . 

(take t (A) • A. and (c d) • <_1 · 0 ) ) • Also, by definition, (T•' 't.,Y.) 
,.. ,_ ,.., __ ...... ,...... 

is a y -spectral triple for L. Thus 1.1.5 implies that (X,T,Y) is a y­
o -spectral triple for L • 

1.4.4 Lemma. Define the map u: M
2
(c) -+ M

1
(C) as follows : for 

a b 
A • (c d), u(A) • uA is defined via 

i t.-i ! j t. 
col{ (aA. +b) (eA. +d) }i•o • uA col(A. >1-o • 

Then u 'is a homomorphism, uaA "' a 1uA, and det uA • (detA) t(.t+l)/l 
. . 

Proof. The defining property for uA can be written 

·. 

where 

Then 

I 

= (~A.+d)t. (cq~n(A)+d)-t. u {c'A+d')-f.u..col(>.1l 
u A » i=o 

• 
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Hence uAB • uAuB, and also u1 ... I, so u is a homomorphism. Thus to 

prove det uA • (det A)t(l+l)/l it suffices to consider the five cases 

A = ( 1 0 ) ( 1 a ) ( 0 1 ) ( a 0 ) ( 1 0 ) 
a 1 ' 0 1 ' 1 0 ' 0 1 ' 0 a 

since any A e: M
2
(t) can be decomposed as a finite product of.such elemen­

tary matrices. The proof is then completely elementary and the details 

won 1 t be provided here. Finally, uaA = a Jl.u A for a e; e: is also obvious. 

1.5 DEPENDENCE ON PARAMETERS 

CC> 1 i 
Let M be a C manifold and let L (A)·= t Ai(m)A be an o.p. with 

m i=o 
coefficients depending smoothly on m e: M. "This means that Ai :M + L(X) 

is smooth fori= o, ... ,JI.. 

If v
1 

and v
2 

are vector bundles over M, denote by ~(v1 ,v2) the usual 

space of homomorphisms of vector bundles: f e.: L (V 
1

, V 
2
) if f is a smooth 

fibre-preserving map from v
1 

to v
2 

and is linear on each fibre. 

1.5.1. Theorem. Let M and L be as above, and let {y} M be a.family 
m m me: 

of simple closed contours such that a(L ) n y == " and depending smoothly 
m . m · 

on m e: M in the following sense: for each m e.: M there exists a neighbourhood 
0 ' 

U of m such that for all m e: U the portion of a(L ) inside y is contained 
o m m 

Then there exists a vector bundle V+ over M and 

is a y -spectral triple for L • 
m m 

Proof. Define.the projections P • P e.: L(XJI.) as in the proof of 1.1.3: 
. m Ym 
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-1 L (>.)(L 1(>.) ••• L 
4
(>.))d>.. 

m m, mltN 

Choose m £ M. The hypotheses on y imply that for m in a neighbourhood 
o m 

of m we can replace the contour integral over y in the definition of P 
o m m 

by that over y Thus it is clear that P depends smoothly on m e M. m m 
0 

This defines a vector bundle R(P) • {R(P )} M over M. Now, let 
m me 

((X+) ,(T+) ,(Y+) ) be the natural y -spectral triple for L with base 
m m m m m 

+ . i t-1 
space v

1 
as in the proof of 1.1.3. Also, let Q = col(X+T+)i=o • Since 

m . + 
~ defin7s an isometry between v1 and R(Pm) 

m 

has a natural vector bundle structure over M. 

is given by 

1 
= --21Ti 

Then, one computes easily that 

it follows that V~ = {V~ }m £ M 
m 

-1 + 
Also,.~ e L(R(Pm), V1 ) 

m 

(X Q-1) 1 I L-10.) (Lm,l(>.) ••• Lm,t(>.))IR(P) d>.' =--
+ m 21Ti Y m m m 

1 I 
(QY+)m =-- J L-1(>.)d>. 21Ti . 

Ym . m 

>.R.-1! 

AI 

(QT+Q-l)m 1 -1 =-- J 1m {>.)(Lm,l(>.) ••• Lm,t(>.))jR(P) d>. 21Ti 
Ym 

>.R.I 
, m 
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t Now, since R(P) is an embedded submanifold of M x X it follows 

-1 -1 
that X+Q & L(R(P),X), QT+Q & L(R(P)), and QY+ e L(X,R(P)). this 

completes the proof of the theorem. 

c 
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CHAPTER 2 

The purpose of this chapter is to introduce "reducibility" of ad­

missible pairs and of operator polynomials and to show how these concepts 

are natural for considering spectral factorization (see section 2.3). 

In section 2.1, reducibility of admissible pairs is defined and a 

sufficient condition for an admissible pair to be reducible is given. 

Reducibility of operator polynomials is defined in 2.2 and necessary 

and sufficient conditions for an operator polynomial to be reducible are 

given in terms of its coefficients and also in terms of the spectrum at 

infinity. These results make it clear that reducibility of operator poly­

nomials is a generalization of operator polynomials simply behaved at 

infinity as defined in [8]. 

Given a reducible admissible pair (X,T) there is~ natural way to 

construct a reducible operator polynomial having (X,T) as finite spectral 

pair. This is very closely related to a construction via special left 

inverseslntroduced in [5,6] (see section 2.5). Also, a reducible operator 

polynomial has a natural finite spectral triple, which we call the com­

panion triple in analogy with the case of invertible leading coefficient 

discussed in [1,2]. 

In section 2.4 some simple applications to initial value problems 

for ordinary differential equations are obtained, and we give a gene~ali­

zation of Lopatinskii's theorem on Y-spectral right divisors. In 

section 2.5, inverse problems for spectral pairs and triples are considered. 
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2.1 REDUCIBILITY OF ADMISSIBLE PAIRS 

2.1.1 Definition. Let (X,T) be a right admissible pair with base space V 

and iet D denote a decomposition of its target space: X= X
0 

$ ••• $ Xt • 

t Pi E L(X) will denote the projection of X onto Xi. Write X= col(Xi)i=o , 

where Xi = PiX,and define 

If QD(X,T) is invertible then (X,T) is said to be reducible with respect 

to D • The possibility that some of the Xi are zero is not excluded. 

An admissible pair (X,T) is said to.be reducible if it is reducible 

~.th respect to some decomposition of its target space. The next pro-

position gives a partial answer as to when an admissible pair is reducible. 

In the finite dimensional case it gives a complete answer : (X,T) is re-

ducible if and only if N(X,T) = 0. 

2.1.2 Proposition. Let (X,T) be a right admissible pair. If (X,T} is 

reducible then N(X,T) = 0 and ind(X,T) < oo Conversely, if N(X,T) = 0, 

. i . j i-1 
ind(X,T)< ro , and R(X) and R(XT IN(col(XT ). )) fori= l, ••• ,t are 

J=O 

complemented in X then (X,T) is reducible. Indeed, let t ~ ind(X,T) and 

choose subspaces X
0

, ••• ,Xt of X such that fori= 1, ••• , t-1 

... i I _i i-1 
$ Xt = R(XT N(col(X~)j=o)), 

x
0 

$ R(X) = X • 

Then X= X
0 

$ ••• $ Xt and this decomposition reduces (X,T). 
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Proof. If (X,T) is reduced by a decomposition X~ X
0 

e ... e x1 
then N(X,T) • 0 and ind(X,T) ~ t • Thus the first assertion is clear. 

Notice also that x
1 

~ 0 if and only if ind(X,T) = t • For the converse, 

choose subspaces Xi as above (see lemma 2.1.3). Let Qi denote the pro­

jection of X onto Xi+1 e ... e X1 along X
0 

e ... e Xi, and let 

i t-1 
S ~ col(QiXT )i=o • Notice that S is obtained from QD(X,T) by a permutation 

of rows. Thus it suffices to show that S is bijective. 

-One can easily prove by induction on i that fori= 0,1, ••• , t-1 

Letting i = t-1 shows that S is injecti~e. 

To prove surjectivity of S, let yi £ R(Qi) (i = 0,1, ••• , t-1) be 

given. Choose x E X 
0 

_i i-1 
xi £ N(col(XT"') j=o) for 

such that y
0 

= Xx
0 

and then choose successively 

i ~ 1, ••• , t such that 

i i-1 . i 
XT xj = yi - t QiXT xj 

j=o 

R. 
Let x = .r xj, then fori= 0,1, ••• , t-1 

j=o 

t-1 
Hence, Sx = col(yi)i=o and the proof is complete. 

2.1.3 Lemma. Let E and F be closed subspaces of a Banach space G such 

that E c F. If E is complemented in G then E is complemented in F. 

Proof. E Et M= G implies E $ {Mn F) = F. 
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2.1.4 Remark. If (X,T) is a right admissible pair such that col(~)ji-l 
•o 

il i i .. l has a generalized inverse for some i ~ 1, then R(XT N(col(X~)j•o))is 

i+l - i i 
complemented in X if and only if R(col(~)j=o) is complemented in X • 

Indeed, let W denote the former subspace and let S be a generalized inverse 

of col(ni>~:!· If y £ R(col(ni):~0) with y • ( Y::J where y' t f 
and yi+l e X , then 

y = ( XT:~J + c i:l-XT1Sy ,) 

and it is easily seen that 

i i-1 0 
y e R(col(X~)j=o)}$ <w> • 

j i i+l If W is closed in X then R(col(XT )j=o) is closed in X , and if W 
i i. 

is complemented then R(col(~)j ) is complemented. Conversely, if the ==o r 

. i+l 0 . _i+l 
latter subspace is complemented in X then <w> is complemented in X , 

and 2.1.3 implies W is complemented in X • 

There is an analogous definition of reducibility for left admissible 

pairs (T,Y): given a decomposition D of X write Y = row(Yifi=o and define 

then (T,Y) is said to be reducible with respect to D if RD(T,Y) is invertible. 

2.1.5 Proposition. Let (T,Y) be a left admissible pair. If (T,Y) is 

reducible then (T,Y)· is surjective and ind(T,Y) < ~ • Conversely, if (T,Y) 

is surjective, ind(T,Y)< ~ L -1 i i-1 
, and N(Y} and (T-y} (R(row(~Y) j=o)) for i = 1, ••• R, 

are complemented in X then (T,Y) is reducible. Indeed, let t ~ ind(T,Y) and 

choose subspaces· X , ••• ,Xft of X such that fori= 1, ••• , t 
. 0 "' 
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X
0 

e ... e Xi"" (TiY)-1 (R(row(~Y)~:!» and X
0 

• N(Y). 

Then X= X
0 

e ... e x1 and this decomposition reduces (T,Y). 

The proof of this proposition is similar to that of 2.1.2. 

Notice that 

For future reference notice that if subspaces Xi of X are chosen as 

in 2.1.5 then for i = 0,1, ••• , 1-1 

Also, (T,Y) is reduced by the decomposition X= X
0 

e ... • x1 if and 

only if row (~YIR(Q.))~=o is ivertible: Here Q) are the projectors 
J 

defined in the proof of 2.1.2. 

2.1.6. Remark If (T,Y) is a left admissible pair s~ch that row(~Y)~:! 

has a generalized inverse for some i ~ 1, then (T~)-1(R(row(TjY)~:!>> 

is complemented in X if and only if ~(row(TjY)~=o) is complemented 

in ~+l. Indeed, let W denote the former subspace and let S be a genera­

lized inverse of row(TjY)ji=-o1 • If X e N(ro~(TjY)~ ) write X= ex' ) 
J=o xi+l 

where x' 

and it is easily seen that 

N(row(~Y)~=o) =A •l N(row~~Y)~:!J 
where i 

A = { ( -ST Y x ) x e W } 
X 
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If W is a complemented subspace of x then clearly N(row(TjY)ji ) is 
=o 

i+l complemented in X • Conversely, suppose the latter subspace is com-

i+l plemented in X • Then, by 2.1.3, it is complemented in 

- ~sT~x ) e(r:(~Y) ;:!>) 
A= {( . xe:X} e ' ' X 

i.e. - N(row(TjY)~ ) A= ft B, ==o 

for some subspace B. Let C be a complement of N(row(TjY)~-l) in xi then 
J=o 

A e <c> = xi+l 
0 

i+l xi · ~-i+l 
Hence A e M = X , where M == B e ( ) M is closed in x- , 

0 . . i+l 
since there is a continuous projection P of X onto A such that M= N(P). 

- st - "" Let M be the projection of.M onto the (i+l) coordinate, then M is closed 
i• 

since M ::> ( X ) • Now, we can show that 
- 0 

-WftM =X. 

Indeed, w +M~ X is clear and if X_E w n M then ex'> E: M for some X~ & xi. 
X 

Hence -STiyx 
= ( ) + (~) ' 

X 

where the first term is in B. 

Then x = x e W and so 

-ST~x i 
( ) e N(row(~Y)j ) n B ·= 0 • 

=o 
X 

Thus x = 0. This completes the proof that W is complemented in X • 
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2.2 REDUCIBILITY OF OPERATOR POLYNOMIALS 

The purpose of this section is to show that given a reducible 

admissible pair (X,T) there is a natural way to construct an operator 

polynomial having (X,T) as finite spectral pair. 

4.2.1 Definition. An o.p. L is said to be right reducible if there is 

a decomposition X= X $ ••• $ X4 such that if we write 
. 0 "" 

1 
L(A) ~ (aij(A))i,j=o , where aij(A) is an o.p. with coefficients in L(Xj,Xi), 

then 

(i) ajj(A) has degree j with invertible leading coefficient; 

(ii) deg aij(A) < j for i I j • 

As in 2.1, Xi = 0 is allowed and we regard (i) and (ii) as holding 

vacuously in that case. 

The next theorem gives a necessary and sufficient condition for L to 

be right reducible, in terms of its coefficients. Another characterization 

of reducibility in terms of the spectrum at ~ will be given in 2.2.6. Notice 

that the easy part of 2.2.6 implies that if L is right reducible then cr{L) 

is compact. This is needed in the proof of 2.2.2. 

1 
2.2.2 Theorem Let L(A) = I AiAi be an o.p •• Fori= -1,0, ••. , .t-1 

1 i=o 
define l.Ji = () N(Aj) and also set W t = X • L is right reducible if and 

j=i+l 

only if 

(i) w_1 = 0 and Wi is an invariant subspace of Ai for all i; 

(ii) for all i, R(A::l(Wi) is closed and 
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... w . 
i 

Moreover, if L is right reducible then there is a unique decompo-

sition of X that reduces L (which will be called the canonical de-

composition of V determined by L) given by 

(i- o, •.• , t) • 

Proof. First of all, notice that N(AijWi) = Wi-l fori= 0, ••• , t 

and that w_
1 

= 0 if L(l) is 1-1 for some l E C • 

t 
Now, suppose the decomposition X = e Xj reduces L. One can 

j=o 
i 

easily show by induction on t that Wi =j~o Xj a~d Xi= R(Ailwi) 

fori= 0, ••• , t This proves uniqueness of the decomposition re-

ducing L. Also the validity of (i) and (ii) follows immediately. 

Consider the following statement: if L is an o.p. of degree < t 

satisfying (i) and (ii) then L is right reducible. We will prove this 

statement is true by induction on t (which proves the converse to the 

theorem). For t = 0 there is no problem because then L(l) = A is 
0 

invertible •.. Suppose the statement is true for o.p. 's of degree.::_ t-1. 

If L is an o.p. of degree~ t satisfying (i) and (ii) then 

X= N(A1) $ Xt where x1 = R(A1). Corresponding to this decomposition of X, 

and 

At = (: (I-P): (I-P) ) 

L(A) =· (p L(l)P PL(A) (I-P) . ) 
(1-P)L(l)P (1-P)L(l)(I-P) 

where P is the projection on N(~) along X1 Notice that 

(l-P)A1{I-P) £ L{R(A1}) is invertible - it is bijective continuous, 



c 

-46-

hence invertible by .the closed graph theorem. Now, L(A):•PL(A)P 

is · an o. p. of degree ~ 1-.1 with coefficients in L (N (A
1
)) • The 

corresponding conditions (i) and (ii) for L are a subset of those for L. 

-The induction hypothesis implies that L is reduced by a decomposition 
. 1.-1 
iHA1) • • xj. If i ~ j ~ 1. then xi .=. wj 

j•o 
(I-P)Aj!Xi • 0. Hence 

deg(I-P)L(A)PIXi < i-1 

and 

I. 
Referring to (2.2) it is now easily seen that the decomposition X • • Xj 

j=o 
reduces L. This completes the proof of the theorem. 

Let L be right reducible. From now·on we assume that the leading 

coefficients of aii 
. I. k . k 

aij(A) = E aij A 
k=o 

j 
{i = 0, ••• ,1.) are monic, i.e. aij = 6ijiX." Then, 

J 
fork> j. A finite spectral pair for L will now 

~ 

be constructed from its coefficients. When L is monic (i.e. x1 • X) this 

is simply the companion pai, defined in [1]. 

I. i . 
2.2.3 Definitions. Let Vc • • (Xi) • Elements of Vc will be denoted 

i•l 1 . i i k 
by x = col(x1, ••• ,xl. ), where xi • col(x1, ••• ,x) £ (\) , and xi£ Xi 

. i 
k will be called the (i,k) coordinate of x. Let Pi &L(Vc,Xi) denote the 

k projection onto the (i,k) component. Let Ji £ L(Xi,Vc) denote the 

inclusion of Xi into the (i,k) component of Vc. Both the latter definitions 

are fori= 1, ••• , I. and k.= l, ••• ,i. Define, fori • 0, ••• ,1., 
: i 

x1 e L(Vc,Xi) and Y1 £ L{X1,vc), and, for i • 1, ••• , I. ,. T1 £ L(Vc'(Xi) ) 

as follows: 
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o I o 1 I Xo ~ -(aOl a02 a02 . . . 

xi=~ (i = l, ••• ,t ), 

Y!· = 0, 
0 

i 
yi = Ji (i == 1, ••• R. >. 

0 Ix 

Tif (X )i 
i == 

i 

0 
-aii • . 

. 
companion map for a1i(A), and 

. T1~Xj)j = 

Finally, define 

such that 

and 

X e c 

X == c . 

0 . 
0 

0 
. -aij 

Jl, 
col(X:j.)i=o 

. . 

. 1 
la~ .. aot ... 

0 

Ix 
i 

i-1 . -aii 

0 . . . 
0 

t-1 
a Ot ) ' 

is the 

for j rl i • 

L(X,V) c 

The admissible triple (X ,T ,Y ) is called the companion triple for.~ • c c c 

The next theorem and its proof give the motivation for these 

definitions. 
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2.2.4 Theorem. If L is a right reducible o.p. then the co~pan1on. 

triple is a finite spectral triple for L. 

Proof. First of all, we note an important property of T : 
c 

(k- l, ••• ,i-1). It follows 

PlTk = Pk+l (k 0 i 1) ic i = , ••• ,- and also 

The fact that (X ,T ) is a finite spectral pair for L is due to 
c c 

1.1.7 and the usual linearization procedure for ODE's. Indeed, if 
d • 

L(dt)u = 0 (where u e: Cao (R,X)) then for i = Q, ••• , R. 

hence for i = 1, ••• ,11. 

R. 
= - }; 

j=l 

R. . j k-1 k 
=- E I aij vj , 

j=l k=l 

where 

and 

.. 

V = 
i 

and 

d Thus every solution of L( dt)u = 0 has a (unique) representation of 

(2.3) 

) tTc the form u(t =.X e v c 0 
for some v e: V , 

0 c and as usual the converse 

is true. Therefore (X ,T ) is a finite spectral pair for L. 
c c 

It remains to show that fork= 0, ••• , R.-1 

= XTky 
c c c (2.4) 
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where r is a large contour containing a(L). 

From the remarks at the beginning of the proof: 

Also, we can write L(A) 

such that M(O) = I. 
-1 

Hence PiL (A)Pj 

= 

""MO.-l) 

where e(A) ~ 0 as A ~ ~ • 

Thus fork= O,l, ••• ,i-1 

0 i "' j 

0 i = j 
Ix i == j 

i 

0 i == 0 • 

R. 
( E A~ ) m m=o 

Pi I A~-l(A)dA Pj = PiX Tky Pj r c c c 

k = o, .•. ,i-2,i ~ 2 

k .,. i"'"'l, i~l 

where M(A) is an o.p. 

We claim that this implies (2.4). Indeed, since (X ,T ) is a finite 
c c 

spectral pair for we know (1.1.7) that there exists Y e L(X,V) such;that 
c 

for all k = 0,1, ••• 



0 

0 

-so-

- -Thus 0 • QD(X , T ) (Y - Y ) ·• Y - Y , where D is the canonical de-c c e e e e -composition of L, so Y • Y and the theorem is proved. e c 

We now show that given a decomposition of X reducing an admissible 

pair· (X,T) there is a natural way to construct a reducible o.p. with 

finite spectral pair (X,T). 

2.2.5 Theorem. 

(i) Let L be a right reducible o.p. An admissible pair (X.T) is a 

finite spectral pair for L if and only if 

t 
1: AiXTi "' 0 

i==o 

and the canonical decomposition of X determined by L reduces (X,T) 

(ii) Conversely, let (X,T) be an admissible pair reduced by a de-

composition D of its target space X • There is a unique right reducible . 

o.p. L with canonical decomposition D and finite 
t 

Explicitly, if D is the decomposition X= & Xj 
j=o 

L(A) 
t = (aij (A))i,j=o ' 

).jl 
j-1 k 

aij (i.) = 6ij + 1: ai. 
xj k=o · J 

k X TiJ:+l 
aij =- i j ' 

spectral pair {X,T). 

then 

Ak , 

(2.5) 

where V~ £ L(Xj,V) for j = 1, ••• , t and k = l, ••• ,j are defined via 

Also (X,T,Y) is a finite spectral triple for L where 
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t 

(j ... 1, ••. '1 ) • 

Let (X,T) be a finite spectral pair for L. By definition, 

I AiXTi == 0. 
i=o 

Also, (X,T) is similar to the comparison pair (X ,T ) 
c c 

of L so it is clear that D , the canonical decomposition of X determined 

by L, reduces (X,T). 

R. 
Conversely, suppose {X,T) is an admissible pair such that E AiXTi =0 

i=o 
and D r~duces (X,T). Let 

S E L(V,V ) is invertible and I claim that X= X S and T = s-1T S. c c c 

This can be calculated directly but we use a trick to simplify the proof. 

- ...... -1 · tT · Let X= X S and.T = S T s. If x & V define u e v1 by u(t) = Xe ·x. There c c 
· tT tT is a unique y e: V such that Xe x = X e c y • Differentiating both sides • c c 

of this equality several times with respect to t yields 

Hence, 

QD(Xc,Tc)y = QD(X,T)x • 

XetT = X etTcs = XetT • c . 

Again, differentiation with respect to t yields 

,...., """"" ~ ,..., 
QD(X,T)T = QD(X,T)T = QD(X,T)T • 

Hence, T = T and X = X. This proves that (X,T) is similar to (X ,T ), 
c c 

showing that it is a finite spectral pair for L. 
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(ii) 
1 

If L(A) = (a1j(A)}i»j=o is a right reducible o.p. with 

canonical decomposition D and finite spectral pair (X,T) then one can 

show that (2.5) holds, thus proving uniqueness. Indeed, without loss 

of generality (X,T) = (X ,T ), the companion pair of L. Since 
c c 

QD(X ,T ) = I, then Vkj = J~ and (2.5) follows from (2.3) for i > 0 
c c J 

and for i = 0 from the definition of X • Now~ given any admissible 
0 

pair (X,T) reduced by D simply define L via (2.5). Fori= 0, ••• ,1 

1 1 1 k k 
Pi 1: '\XTk = I I a X T 

k=o k=o j=o ij j 

= 

= 0 • 

t . -
Hence I '\XTk = 0 

k=o 
and (i) implies that (X,T) is a finite spectral 

pair for L.- Finally, 2.2.4 proves that the companion triple (X ,T ,Y) 
c c c 

is a finite spectral triple for L. It follows that (X,T,Y) is a finite 
• 

S-lT s and Y -- s-1 
spectral triple for L since X = X S» T = -y c c ' c where 

The next theorem gives a characterization of right reducibility in 

terms of the spectrum at ~ • 

2.2.6 Theorem. Let L be an o.p. of degree 51 • 

The following statement are equivalent: 

(i) there exists an invertible C e L(X) such that CL(A) is 

right reducible; 
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(ii) there exist mutually disjoint projectors Pie L(X) (i • 0, ••• ,1) 
t t ~i 

such that I • t Pi and L(l) ( t A Pi) is an o.p. of degree 1 with 
i•o i•o · 

invertible leading coefficient; 

(iii) a(L) is compact and if (X ,T ) is a spectral pair at ~ then 
CIO ID 

R(X T1) is complemented in X for all i • 0,1, ••• and fori= 1,2, ••• 
flO CO 

Proof. The equivalence of (i) and (ii) is obvious. 

- -k 1 - j-
Now, let Xj = X1_

3
• and let Pi e L( $ (Xj) ,Xi) be defined as in 2.2.3. 

j=o 

(ii) ~ (iii). If (ii) holds then the~e is an o.p. M(l) with M(O) 
1 

invertible such that L(A) ~ M(l-1) ( E AiPi) 
i=o 

Then, 

Thus for (X ,T ) we can take (in block operator form) 
CO ID 

1 
V = $ <'j~ )1 

"" i i=o 

and 
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-X • 0 
0 

(i == 1' ••• ' .t ) 

and 0 

(i == 1, . • • .t ) 

0 

One easily computes that for i == 0,1,2, ••• , .t-1 

and 
• 1 

also T .. o. 
CO 

and 

This proves (iii} . 

0 

0· 

pi+l 
i+l 

pi+l 
1 

It is now 

R(X T1) 
(I) .., 

clear 

-= xi+l 

that for i ... 0, ••• ,· .t-1 

-e ••• e XR. 

X i i .., 
) R(X T ) = R{X T IN 

(I) ""' ""' 00 

X Ti-1 
.., 00 



0 
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(iii).,. (ii). Define a decomposition of X as follows: 

fori= 0, ••• , !-1 and 

X e R(X ) = X • 
0 CO 

The hypotheses of (iii) and proposition 2.1.2 imply that this decomposition 

reduces (X ,T ). 
CO CO 

Thus, by 2.2.5, there is a right reducible o.p. 

= (b ij (>,)) :,j=o with finite spectral pair (X ,T ). 
<10 00 

Here 

and 

where 

bk = - ""'x TL~k+l f k o j 1 d j 1 ij i :V j or = , ••• , - an > , 

X = 
CO 

defined as in 2.2.5. 

for i == 0, ••• , 1..· • 

We want· to show that all 

Notice that the 

. R. ..... R. 
hypotheses of (iii) imply T

00 
= 0, so XR;TCC) = 0. Also, for i = 1, ••• , R.-1, 

= 0 

and X = 0. Hence 
0 

R. 
Ai~ L1(>.) = E 

i=o xi 

R. . Now, since T ::: 0, -1.3.5 implies that 
<lO 
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for some o.p. M(A) with M(A) invertible • .. 
fori"' 0, ••• , I. then 1: • E P1 i•o 

Thus i~ we let Pi • P.fL-i 
.. 1.-:t 

and L(>.) ( E ). Pi) is an o.p. of. 
i•o 

degree I. with invertible leading coefficient. 

This completes the proof of the theorem. 

There are definitions and results dual to.those above. An o.p. L 

is said to be left reducible ~f there is a decomposition X= X
0 

e ... e X1 
I. 

such that if we write L().) = (aij().))i~j=o' where aij().) is an o.p. with 

coefficients in L(Xj ,Xi), then 

(i) a ().) has degree j with invertible leading coefficient; 
. ij 

(ii) deg aij {).) < i for i + j • 

If L is left reducible then the spectrum of L is compact. One can 

define a companion triple (X ,T ,Y ) for L in the obvious way (for the . c c c 

sake of brevity this definition is omitted). A quick proof that this 

triple is a finite spectral triple for L can be given by duality. Indeed, 

* * * * * .L is a right reducible o.p. and {Y ,T ,X ) is the comparison triple for L • c c c 

* * * * Hence, by 2.2.4, (Y ,T ,Y ) is a finite spectral triple for L • Take 
c c c 

* * * the transpose of the conditions satisfied by. (Y ,T ,X) and restrict to X , 
c c c 

then it follows that (X ,T ,Y ) is a finite spectral triple for L. c c c 

2.2.7. 

define 

(i) 

(ii) 

!1, 

Theorem. Let L(A) = t A ).i 
i i=o 

be an o.p. For i = -1,0, ••• , t-1 

-w = 
i 

I. 
+ R(Aj) 

j=i+l 

w = -1 
X and wi 

-1 ...... 
(Ai) (Wi) n wi-1 

-1 ..... 
(Ai) (Wi) + Wi-1 

and w1 = 0. L is left reducible if and only if 

is an invariant subspace of Ai for all i ; 

for i 0, ••• , (2.7) = W· = !1, 
i 

= X for i = 1, ••• ' I. (2. 8) 
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t. 
Proof Suppose L is reduced by the decomposition X = $ Xj • Then 

- j•o 
a(L) is compact which implies w_1 • X • Also, one can show by in-

duction that 

and e X = 
j~i j 

-w -i 

t. 
• xj 

j=i+l 

· for i = 0, ••• , 

Hence (i) and (ii) follow immediately. 

f. • 

Consider the following statement: if L is an o.p. of degree~ f. 

satisfying (i) and (ii) then L is left reducible. We will prove this 

statemen~ is true by induction on f. (which proves the converse to the 

theorem). For t = 0 there is no problem because then L(A) = A is in-. 0 

vertible. Suppose the statement is true for o.p. ''s of degree ~ !-1. 

If L is an o.p. of degree~ 1 satisfying (i) and (ii) then X • N(A1) $ X1 
Corresponding to this decomposition of X , 

and PL()..)P PL()..)(I-P) '\ 

(I-P)L(A) (I-P) ) 

(2.9) L(~) = 

(I-P)L(A)P 

where P is the projection on N(At) along X
1 

Now, L(A): = PL(A)P is an o.p. of degree < t-1 with coefficients 

in L(X) where X = PX and we will show that (i) and (ii) hold for this 

o.p. and then apply the induction hypothesis. First of all, write 
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-1 • o, •.• , 1-2 , and w1_
1 

= 0. I claim that w1 • PW1 for 1 ~ 1-1. 

- ,..., - """"' 
Indeed~ Wi ~ PWi is clear for all i and if Wi • PW1 for some i < 1-1 

-then since Wi-l = R(Ai) + w1 we have 

- ..... 
(notice tha~ X1 ~ Wi so Ai(X1) ~ Wi fori< 1-1). Hence PWi-l • Wi-l 

and thus the claim is proved by induction on i, the case i = 1-1 being 

obvious. Now, one can show that (i) and (ii) hold for L: 

(i) First of all, w_l = PW_l = PX =X. 
- -· Since PWi ~ Wi + (I-P)Wi 

we deduce that wi ~ wi • is a projector in w1 with kernel X1 

and range Wi. It follows that W1 is closed and Wi iD X1 = w1 for i 2.; 1-1. 

Also, Ai(Wi) = PAi(Wi) ~ PWi = wi so wi is an invariant subspace of Ai 

(ii) The fact that w1 is an invariant subspace of Xi is equivalent to 

- - -1 - - ' - - - -1 - -
wi ..=. (Ai) (\..Ti) n wi-1, since . wi ~ wi-1 •. Now, if X e (Ai) (Wi} n wi-1 then 
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Hence X e: wi so X = Px £ wi • Thus (2. 7) holds for L. Also 

-l-x = (A1) (Wi) + Wi-l implies 

x = 

c 

fori= 1, ••• , t-1 and thus (2.8) holds for L • Thus the induction 

hypothesis implies that Lis reducible, i.e. there exists a decomposition 

1-1 
X = & X that reduces L. By the first part of this proof 

j=o j 

.t-1 
W = & X 

i j=i+l j 

- R. 
and hence W = & X 

i j=i+l. j 

-If we notice that Aj(X1) ~ Wj, i.e. 

or 
deg PX PL(l)(I-P) ~ i-1, 

i 
t 

and refer to (2.9) it is easily seen that the decomposition X= & Xj 
j=o 

reduces L. This completes the proof of.the theorem. 
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2.2.8 Remark By induction on R., starting with the fact that X1 • R(A
1
), 

one can also prove that if L is left reducible then there is a ~ique 

decomposition of X reducing L. 

The next theorem is the analogue of 2.2.6. 

2.2.9 Theorem. Let L be an o.p. of degree ~ R. • The following statements 

are equivalent: 

(i) there exists an invertible C £ L(X) such that L(A)C is left reducible; 

exist mutually disjoint projectors Pi£ L(X) (1 = 1, ••• ,1) 
1 R._!:f. 
1: Pi and ( 1: X- P1)L(A) is an o.p. of degree R. with in-· 

i=o i=o 

(11) there 

such that I = 

vertibl~ leading coefficient; 

(iii) a(L) is compact, and if (T ,Y ) is a left spectral pair at ~for L 
CO (lCI 

i then N(T Y ) is complemented in X for i = 0,1,2,... and for 1 = 1,2, ••• 
CO CO 

• 

2.3 SPECTRAL FACTORIZATION • .. 
Let L be an o.p. and y a simple closed contour not intersecting a(L). 

The purpose of this section is to give a necessary and sufficient condition 

for L to have a right factorization with respect to y • Gohberg, Lerer, and 

Rodman [7,8] considered the case of canonical and quasi-canonical factor!-

zation. First we need some preliminary results, which are of independent 

interest also. 

2.3.1 Theorem. A left admissible pair (T,Y) is the left finite spectral 

pair of a right reducible o.p. of degree~ R. if and only if row(~Y)~=o 
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has a .generalized inverse for i = 0,1, ••• , 1-2 , and is right in-

vertible for i • ~1. 

Proof. We first establish 
1 i 

X = e X set W = $ X 
j=o j i j=o j 

some notation. Given a decomposition 

- 1 
for i=O,, •• , 1 and Wi= · $ X for i = 

j=i+l j 

""' 

0, ••• , L-1. 

Also,let w_1• 0 and w1 • 0. Define Pij E L(Wj-l'Wi-l) as the natural pojection, 

and notice that Pi+l,i Pij = Pi+l,j • 

Now, if (T,Y) is the left finite spectral pair for a right re-

ducible o.p. L of degree~ 1 , then without loss of generality (Y,T) = (Y ,T ), 
c c 

the left companion pair for L. After a moment's reflection it is clear 

that there is a permutation of blocks a E L(V ,V) such that if we let 
c 

Y = ay and T = OT a-1 then 
c c 

,.., 
y = 

and 

-T = 

c9 

~10 
0 

.o 

Ml M2 

p21 0 

p32 

0 

M1-l 
... 0 

• (2.10) 

0 

p 1, R.-1 0 
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Now, for simplicity of notation, and without loss of generality, we 

-- -· assume (Y, T) = (Y,T) and V = V. A direct computation shows that for 

i 0::: 0, ••• , R.-1 

1 N2 Ni 
p10 N1 1 ••• 1 

0 p20 
N2 

2 ... Ni 
2 

i 0 0 p30 (Y ••• T Y) = 
0 

• Ni 
i 

Pi+l,O 

0 0 0 0 . 
• . . 
0 0 0 0 

k ~ -
for some Nj e L(X,Wj-l). Notice that N(Pj+l,O) = Wj apd Pj+l,OIWj = Iwj ; 

thus 

i-1 
R(Y ••• T Y) = 

• 

0 

is complemented in V and 

i-1 - i-1 i 
N(Y ••• T Y) e col(Wj)j=o = X 

Hence row (TjY)~-l has a generalized inverse fori= 1, ••• , R. and is of 
J=O ·, 

course surjective fori = ~. As an aside, notice that Wi = (TiY)-1 (row(TjY)~:!> 

and X = N(Y). 
0 

Conversely, suppose row (~Y)~=o has a generalized inverse for 
R. 

i = 0, ••• , R. -1. Due to remark 2 .1.6, there exists a decomposition X = e Xj , 
j=o 
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chosen as in 2.1.5, that reduces (T,Y) • Fori • 1, ••• , 1 let 

Then ~1 is invertible, ~i is left invertible (i"' 1, ••• , 1-1) and, 

-for some Mji e: L(Xi,Wj-l) (j == 1, ••• ,i), we have 

Then 

0 M12 00 ... M1,1-1 0 

-1 r- M22 0 ... M2, 1-1 0 Mu. ~1 T~1 "' wl 
0 I"" 

w2 (2.12) 

M1-1,1-1 O 

0 

In other words, if M denotes the right hand side of (2.12) we have to show 

Now, for j = 1, ••• 1 



t;1Miw • 
j-1 

Hence Tl/ltiW 
,.. 

j-1 

0 IW. 
Also, '1/1 

0 

1 0 0 

0 0 

and thus 

•· 
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M1j . 
• 

•~. 
• 

Mjj 
0 

0 

0 

1/Jt Mlw 
j-1 

= (0 

0 

0 . 
• 

0 

I ~j 
0 

• 
0 

~YI""w ) 
j • 

for all j, so Tl/1 R. • t; t M • 

YIW ) = y 
0 

At this point we apply 2.3.3 with Vj = Wj to obtain 1/1 E 

and Mj 

-1 
tp T~ 

Also, 

- -1 € L(Wj_1 ,W
0

) as in the lemma. Let ~ = 1/11 1/J , then 

-1 -1 = 1/1{1/11 Tl/11)1/1 and is equal to the same expression as in (2.10). 

PlO 
~-ly = 1/1 0 

0 

-
k Now, defining aij {i,j = 1, ••• , 1, k = 0, ••• ,j-1) so that {2~ 11) holds 

and choosing a~j (j = 1, ••• , 1 , k = O, ••• ,j-1) arbitrarily in L{Xj,X
0

) 

we obtain a right reducible o.p. L with (T,Y) as left finite spectral 

pair if we define 
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L(1..) "" 

where 

2.3.2. Theorem. A right admissible pair (X,T) is the right finite 

spectral pair for a left reducible o.p. of degree ~ t if and only if 

col(XTj)ji has a generalized inverse fori= 0,1, ••• , ~2, and is 
=o 

left invertible for i = t-1. 

Pr~of. If (X,T} is the right finite spectral pair for a left reducible 

o.p. L then, as in 2.3.1, using the explicit form of the right companion 

pair for·L, one can show that col(X~)~=o n~s a generalized inverse 

for i = 0,1, ••• , t-1, and is of course injective fori= 1-1. 

Conversely, suppose col(XTj)~=o has a generalized inverse for 

i = 0,1, ••• , 1-2 and is left invertible fori= t-1. Due to remark 2.1.4, 
R. 

there exists a decomposition X= e Xj, chosen as in 2.1.2, that reduces 
j=o 

(X,T}. Fori= 1, ••• , t let 

, 

-where the projectors Qj are defined as in 2.1.2 with R(Qj) = Wj. Then 't 
is invertible, 'i is right invertible (i = 1, ••• , t-1), and, for some 

-Mij £ L(Wj_1 ,X1) (j = l, ••• ,i), we have 

Here Pi is t~e projection of X onto Xi. The construction of a left 

reducible o.p. L having (X,T) as right finite spectral pair is now 

completely analogous to 2.3.1 and the details are omitted. 
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2.3.3. Lemma. Given a decreasing sequence of subspaces 

V
0 

.= V1 .= •.• .=_V .t-l 2 V t • 0 , and subspaces X1 (i • 1, ••• ,1) 

such that Xi e Vi • Vi-l.!~d operators Mij £ L{Xj,Vi-l), i ~ j, 

define the operator ME: L($ Vi) as in the right band side of (2.12) • 
.t-i i=o 

There exist ~ £ L( $ Vi) and Mj E: L(Vj_1 ,V
0

) (j • 1, ••• ,1) 
i=o 

such that 

Ml ~ 
-. ... ,M.t 

~M pll 0 0 + (2.13) - ' 
p32 • 

'1 
• • . . • . . 

p t,R.-1 0· 

and in block matrix form ~ is upper triangular with identity ~long the 

diagonal. 

5ij == o for i > j, and 5ii • IV • 
i-1 

Now, direct computation yields 

-
Nll 512 N12 813 

0 ~1 N22 523 

0 IV 
2 • 

... 
••• 

... 

N1 t-1 511 , . 

N2,1-1 521 
• 

• 

.. 
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j 
where Nij = E Sim Mmj' j ~ i, 1 = 1, ••• , 1 • 

m=i 

Also, the right hand side of {2.13) is 

~2 "' • • • MJI.-1 

p21 . p21512 • P2151,.11.-1 

p32 p32523 P3252,.11.-1 
• • • 

• • .. 
• • 

0 
p .11.-1, .11.-2 p .11.-l , .t-2 s .11.- 2 ' .11.-1 

p .fl. f..;.l , . 
rJ 

j-1 
where Mj = t M S j +M. {j = 1, ••• ,JI. ) 

mm J • 
m=l 

~ 

"' MJI. 

P2151.11. 

p3252JI. 

• 

• 
p .11.-1, .11.-25 .11.-2, t 

P .t .11.-15.11.-1 .11. , ' 

-~-~~ .. ~-.. 

Let Pij e: L(Vj_1,v1_1), j ~ i, be the natural projections. Now, 

choose s1_1 ,.~~. £ L(V1_1,vJI._2) such that PR.,R.-l s1_1 , 1 = N11 • 

.. 
Having chosen Sij e: L(Vj-l'Vi-l) for i = k,k+1, ••• , .11.-1, j = i+l, ••• ,JI. 

choose Sk-1 ,j e: L(Vj-l,vk_2) for j = k,k+1, ••• , .11. such that 

• 
j = .11. 

This defines the components of~ by induction. Finally, Mj (j = 1, ••• ,.11.) 

are defined successively such that 
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j. 1, ••• , R.-1 

-
j - R. 

There is an analogous lemma needed for the proof of 2.3.2, but for 

the sake of brevity this is omitted. 

For the main theorem on spectral factorization we need the following 

simple lemma. The proof is standard. 

2.3.4 Lemma. Let C € L(X,Y) and Be L(.Y,Z) where X,.Y,Z are Banach 

spaces, and set A = BC. If C is right invertible then A has a generalized 

inverse •if and only if B has a generalized inverse. 

2.3.5 Theorem. Let L be an operator polynomial ·pf degree~ R. and y a 

simple closed contour not intersecting a(L). Then L has a right factori-

zation with respect to y if and only if 

_1_ I 
2'1fi y 

· has a generalized inverse for i "" 0,1, ••• , 1-1 • 

{2.14) 

Proof. First of all, the statement of the theorem can be expressed in 

terms of spectral pairs. Let (X+,T+,Y+) be a Y -spectral triple for L. 

Since (2.14) is equal to 

and the second factor is right invertible, lemma 2.3.4 shows that (2.14) 

j i 
ha.s a gene~alized inverse if and only if col(X+T+) j,.;,o has a generalized 

inverse. 
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Without loss of generality, 0 is in the interior of y • Suppose L 

has a right factorization with respect to Y : 

" L(.A) • L+(A) ( t 
. 1-1 

+ + 
where L+: y V F- -+ GL(X) are continuous, and holomorphic in F- • Let 

- 'V 

L
1

().) = ( E ). "iQ >· L (.A) • Without loss of generality, L_ (eo) = I. 
i="l i -

I claim that L+ is an o.p. and L
1 

is a left reducible o.p. • Indeed, 

V -K 
( t A i Qi) L~1 ().) L(.A) = L_ (>..) • 
i=l 

The right hand side is holomorphic in F- and the left hand side is 

holomorphic in F+\0 with at most a pole flt 0. Hence L_ is a polynomial 

-1 
in >.. and, in fact, QiL-

-1 
is a polynomial in A · of degree ~ "i" 

"t ~ 0 because otherwise QiL- = 0 which implies L_ is not surjective 

for A € y , a contradiction. It is now easy to see that L1 is a left 

reducible o.p. Similarly, 

'V 

L(>..)L=l(A) ( I: 
i=l 

and it follows that L+ is an o.p. and Ki ~ 1 fori= 1, ••• , v. 

Thus 

~ow, since L = L+L- is a y-spectral factorization, 1.3.2 implies (X+,T+) 

+ is a right y-spectral pair for L1 • But a(L1) ,;: F so 2.3.2 implies 

j i 
col(X+T+)j=o has a generalized inverse fori= 0,1, ••• , 1-1. 

Conversely, suppose co1(X+T~)~=o has a generalized inverse for: 

i = 0,1, ••• , 1-1. Then 2.3.2 implies that there is a left reducible o.p. 

L1 of degree 2 t with right finite spectral pair (X+,T+). If (X ,T ) is a 
CO CO 
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right spectral pair at m for L1 we know that T! • 0 and so 1.3.5 

implies L
1 

is a right divisor of L, i.e. 

for some o.p. L+ which is in fact invertible in y u F+ by 1.3.4 • Also, 

R. 
L1 (X) = ( E XiPi) L_(X) 

i=o 

-1 for some L_, an o.p. in X of degree ~ .t, which is invertible in y u 

here Pi is the projection of X onto the component Xi in the decomposition 

of X that reduces L
1

. Thus L has a right factorization with respect to y. 

This completes the proof of the theorem. 

Similarly, we have 

2.3.6. Theorem. Let L be an operator polynomial of degree~ R. and y a 

simple closed contour not intersecting a(L). Then L has a left factor!-

zation with respect to y if and only if 

1 
21Ti I 

y 
-1 ( ,ii)d' L (A) I ••• 11. 11. 

has a generalized inverse for 1~ 0,1, ••• · ~-1 • 

L(A) = (> 
L is a right reducible o.p. with a(L) = {0} and the companion triple 

for L is 
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( 0 :) X • t 

I 
x2 

T = (: >) , 

c 0 ) T = 

IX 
2 

Now, R(X) = R(A) $ x2 and N(X) = N(A) •. Since the pair (X,T) is reducible 

(whatever the choice of A) the hypotheses of the second part of 2.1.2 are 

not necessary. But, L has a right factorization relative to y, where y is 

a simple closed contour coptaining 0, if and only if A has a generalized 

inverse. Notice that L always has a left factorization relative to y (cf. [11.]). 

The partial indices (right or left) are always unqiue·; this is proved 

by a standard argument using Liouville' s theorem. The next two theorems 

show how to determine these indices. 

2.3.8. TI1eorem. Let L be an operator polynomial of degree~ t and y a 

simple closed contour not intersecting a(L). Suppose Lhasa right 

factorization relative toy • Fori= O,l, ••• ,t let 

M = 
i 

{I A. ~-l(A.)f (A.)dA.; f 
y 

is a polynomial of degree ~ t-1 

such that. f A.j~l(A)f(A)dA. = 0 for j = O,l, ••• ,i-1}. 
y 
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.. 

Then M0,~, ••• ,M1 is a decreasing sequence of complemented subspaces of X 

and i is one of the right partial indices for L relative to y if and only 

if Mi ~ Mi-l • 

Proof. 

since 

Let (X+,T+,Y+) be a y-spectral triple 

j !-1 
row(T+Y+)j=o is surjective, that 

for L. One can show easily, 

It follows that M is a complemented subspace of X and there is a decom-
1 

position' X = $ Xj such that7for j = 0, ••• , !-1 1 
j=o 

X $· M = X 
0 0 

(see the proof of 2.3.1 and 2.3.2 ). Now, i is one of the right partial 
.. 

indices for L relative to y if and only if Xi ~ 0, which clearly holds 

if and only if Mi ~ Mi-l • 
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2.3.9 Corollary. Let the hypotheses be as in the theorem, and let k 

. be a positive integer. The right partial indices of L relative to y 

are ~ k if arid only if 

I 
y 

is surjective, and are ~ k if ~d only if 

N( I( . ~ J L-l(A) (I. .. A t-li)d>.) ~ N( I >.kL-l(A) 
t-1 

(I ••• A I)d>. ). 
y • . y 

,.k-li 

Proof. From the proof of the theorem one sees that the right partial 

indices are ~ k if and only if ~-l = X , and are < k if and only if 

~ = 0, from which the corollary follows easily, •. 

It is customary in finite dimensions to use a basis in X to write 

Ki n 
the middle term in a factorization for L in the form diag(>. )i=l , where 

n = dim X ·and K • n 
Now, let 

(i = 1, ••• , t ) and let q
0 

= 0, then dim Mi = qi+l- qi. A simple 

counting argument based on the proof of 2.3.8 shows that 

Kj = card {i; qi+l - qi ~ n-j+l} 

for j = l, ••• ,n, which is the formula of [9]. Furthermore, 2.3.9 can be 

regarded as a generalization of Lopatinskii's theorem [2, theorem 21]. 
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2.3.10. Theorem. Let L be an operator polynomial of degree ~ 1 and y 

a simple closed contour not intersecting a(L) • Suppose L has a left 

factorization relative to y • For i = 0,1, ••• , f. let 

).~-1 (>.).d). x e; R( ~(,~ l L-l(>.)(I ••• ~i-l)d).)}. Mi = {Xj 'l ~ y • 
).t.-11 

. y f.-1 
l. I 

Then M: ,'M
1

, .•• ,'M 
0 1 

is an increasing sequence of complemented subspaces 

of X and i is one of the left partial indices for L relative to y if and only 

if 'Mi_1 ~ 'Mi. 

Proof. 

injecti~e, one can show that 

Hence Mi is a complemented subspace of X and there is a decomposition 

1 
X = e X. such that,for·i = 0,1, ••• ~ f., 

j=o J 

. 
Now, i is one of the left partial indices if and only if Xi ~ O, which 

..... "" 
holds if and only if M1_1 ~ Mi • 

2.3.11 Corollary. Let the hypotheses be as in the theorem, and let k 

be a positive integer. The left partial indices of L relative to y are 

.~ k if and only if 

I 
y 

is injective, and are < k if and only if 
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R c R(/ 
y 

...., 
Proof. The right partial indices are~ kif and only if ~-l = 0, and.are 

< k if and only if ~ = X , from which the corollary follows easily. 

Let us return to example 2.3.7. We can determine the partial indices 

of L for various choices of A E L(X2,X
0

). The left partial indices L 

(relative to a simple closed contour containing 0) are always 0 and 2. 

For right factorization, assuming A has a generalized inverese, we have 

the following cases: 

A invertible 

N(A) = O;R(A) ~ X 
0 

N(A) ~ O,X2;R(A) = X
0 

N(A) I O,X2;R(A) I xo. 
A= 0 

2.4 ORDINARY DIFFERENTIAL EQUATIONS 

right partial indices 

1 

2.4.1 Proposition. Let L be an o.p. and y a simple closed contour 
m 

such that o(L) n y = ~ ~ Let B(A) = E BjAj be an o.p. with coe­
j=o 

fficients Bj t: L(X,Y), where Y is a Banach space. Then the following 

statements are equivalent: 

(i) 

(ii) 

+ d 
~or any y E. Y there is a unique u E. VL such that B( dt )u lt =o = Y ; 

m . 
If (X+,T+) is ay-spectral pair for L then E BjX+r! is 

j=o 
invertible. 
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+ 00 tT.+ Proof. VL is the set of all u E C (R,X) such that u(t) = X+e x 
tl d m _4 

for some x. Also, if u(t) = X+e + x then B( dt)ul =o = (I BjX+~)x 
t j=o 

The proof of the proposition is now obvious. 

For the rest of this section we will assume X is finite dimensional. 

First, a result that generalizes theorem 21 of [2] is given and then we 

prove an extension of 2.4.1. 

2.4.2 Theorem. Let L be an o.p. of degree ~ t and y a simple closed 

contour such that a(L) n y = t/J • Let (X+, T+) be a y-spectral pair of L 

and let D be a decomposition of X. Then the following statements are 

equival'ent: 

(i) 
. + 

There is a y-spectral right divi~or L ·9£ L that is reducible 

with canonical decomposition D ; 

(ii) D reduces (X+,T+) j 

(iii) 1 BD(>.) L-1 ().) . (I. .. ). .t-li)dA 
y k 

o.p. with coefficients in L(X, $ (Xj)j) 
j=l k 

is surjective, where BD is the 

(here D is the decomposition 

X= $ Xj) defined by BD(>.) 1 X = 0 and for i = 1, ••• ,k 
j=o o 

Proof. 

and is 

only if 

= l('ji ,i-1 
CO A xi j=o £ 

(X ) 1 c 
i -

k 
& 

j=l 

The equivalence of (i) and (ii) is true in infinite dimensions 

a consequence of 1.3:2 and 2.2.5. Also, D reduces (X+,T+) if and 
m j 

m j z: BjX+T+ is invertible, where BD (A) = z: B/' • Thus:the 
j=o j=o 

equivalence of (ii) and (iii) follows from 1.1.3 (ii)' and the fact that 
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2.4.3 Theorem. Let L be an o.p. and y a simple closed contour such 

+ . 
that a (L) ny • ;,. Let .P denote the number of roots of M: ""' det L 

1D 

inside y (counted according to multiplicity), and let B(A.) = I BjAj 
+ . .. + j•o 

be an o.p. with coefficients Bj in L(X,CP ). Take Y = cP in 2.4.1, 

then (i) and (ii) of 2.4.1 are also equivalent to the following statements: 

(iii) -1 1-1 + ·I B(.A)L (>.) (I ••• .A I)d.A is surjective, i.e. has rank p ; 
y 

(iv) - + + Factor M as M M where M contains all the roots of M inside y. 

c Let L denote the o.p. such that 

c + Then the rows of B(>.) L (A.) are linearly independent module M (>.). 

Proof. The equivalence of (i) and (ii) is proved as before. Notice 

that dim V~= p+ so existence is equivalent to uniqueness in (i). A 

similar statement holds for (ii). The operator in (iii) is equal to 
m . 

<. E BjX+T:)(Y+···rr!.-ly+). Using 1.1.3 (ii)' the equivalence of (ii) 
j=o 

and (iii) follows easily. 

(iii) ~ (iv). If x e: Cp+ such that xB(A.)Lc(.A} = P(.A):tl(>.) for some 

-1 
X-valued polynomial P,then xB(A.)L (A.) is holomorphic inside y and so 

X I B{A.)L-1(A.)(I ••• A1- 1I}dA = o. 
y 

Thus (iii) implies x = 0, and (iv) holds. 

(iv) ~ (iii). There exists a reducible y-spectral right divisor L + 

of L, by 2.4.2 and 2.1.2. Also (iii), and hence (iv), holds if B is 

replaced by BD , where D is the canonical decomposition of X determined 

+ by L • Write . + 
B=QL +R 
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where Q and R are operator polynomials and, with respect to the de-
k . 

composition D , R = (rij>i,j=o with deg rij < j. Then there is a 

+ + unique p x p matrix S such that R(A) • SBD(l). Now, 

I B(l)L-1 (>.)(1. •• l 1
- 1I)dA = S 1 BD(>.)L-l(A)(I ••• AR.-l I)d:>. 

y y 

is surjective, which implies L is invertible. 

some o.p. L then Le = (L+)c(L-)c and 

-+ Since L = L L for 

. c + = S Bif modulo M .• 

•C + Hence BL is linearly independent modulo M • 

With the assumptions as in 2.4.3, an o.p. B,with coefficients in 

L(X,Cp+) is said to cover (or complement) L with respect to y if (iv) 

is satisfied. This is the condition used by Agmon,Do_uglis, Nirenberg 
. 

in their paper: "Estimates near the boundary for solutions of elliptic 

partial differential equations satisfying general boundary conditions II", 

Comm. Pure. Appl. Math. 17 (1964), 35-92. The condition (iii) was that 

used by Lopatinskii in: "A method of reducing boundary problems for a 

system of differential equations of elliptic type to regular elliptic 

equations", Ukrain. Mat. Z. 5 (1953), 123-151. A direct proof of the 

equivalence of these two conditions does not seem to exist in the literature. 

2.5 OTHER RESULTS 

Let (X,T) be an !-independent admissible pair. 
i 

Let X = e Xj be a 
j=o 

decomposition Do£ X and define w
1 

= e Xj fori= o •... ,t . Then it is easy 
j=o 

to see that (X,T) is reduced by D if and only if 
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(2.15) 

Indeed, let Qi denote the projection of X onto Xi+l $ ••• e X1 along 

X
0 

$ ••• e Xi, as in 2.1.2. Then Wi • R{I-Qi) and (X,T) is reduced by D 
i 1-1 

if and only if col(Qi XT )i=o is invertible, or if and only if (2.15) 

holds. 

This shows that reducibility of admissible pairs is very closely 

_i 1-1 
related to the special left inverses of col(X~)j used in [5,6], =o 

except that here it is not necessary for T to be invertible. Given a 

reducible admissible pair {X,T), 2.2.5 showed how to construct a re-

ducible o.p. with {X,T) as finite spectral triple. The next proposition 
. 

shows that this construction is really the same as that in [5,6]. 

2.5.1 Proposition. Let L be a right reducible o ~-p. such that 0 i o(L), 
1 

and with canonical decompo~ition X • j!o Xj • Let (X,T) be a finite 

i 
spectral pair for L and d~.fine Vj for 1 ~ j ~ 9. and 1:~ i ~ j as in 2.2.5. 

i 
Also, let Vj = 0 

left inverse of 

i for j < i, and set V = 
j t-1 

col~XT )j=o and 

i ( 1 1 V 
1

) .. Then V ••• V ) is a 

(2.16) 

Also, (Vl V 1) 
1-1 1 

= T {V ••• Vl) is a left inverse to col(XT-j);:! 

and 

L{>.) ... 
-t 1 

L{O) {I- XT (V1>. + ••• + V 9.).. ) } . (2.17) 

1 1 
Proof. Since t t vix Ti-l - I it follows that 

j=l i=l j j 

9. 1 vix Ti-1 I • }'; t 
i=l j=l 

. j .j 

1 
t ViXTi-1 = , 

i=l 
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which proves (V1 ••• V1) is a left inverse of col(~)jt-l • Now, 
•o 

t 
A

0 
X + A

1 
XT + • • • + A

1 
XT • 0 so 

A
0
XT-l = -(A1 ••• A1) col(XTj);:! • 

But Lis reducible so A
1

1w
1
_1 = 0 and 

Hence, 

Now, (2:..16) and (2.17) follow immediately •. 

Let L be an o.p. of degree ~ R., and "for j =·f, ... ,1 define 
l-j L 1 

Lj(T,Y) =· E TYAi+j" It is a consequence of (1.5) that row(.Lj(T,Y))j=l 
i 0 j 1-1 

is a left inverse of col{XT )j=o· In the case that L is a right reduc-

ible o.p. we have Vj = L.(T,Y). The next theorem can thus be regarded 
J 

as an extension of 2.5.1. 

2.5.2 Theorem. Admissible pairs {X,T) and (X ,T }, with a(T) = 0, 
00 00 CO 

are finite and infinite spectral pairs, respectively, for an o.p. L of 

degree ~ 1 such that a{L) is compact if and only if 

(2.18) 

is invertible. Moreover, if (X,T,Y) and (X ,T ,Y ) are finite and 
eo ClO eo 

infinite spectral triples for an o.p. of degree~ 1 such that a(L) is 

compact, then (2.18) has inverse 
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( ~l (T,Y) · • .. · ~1(T,Y) ) 

Ln(T ,Y )... L1(T ,Y) 
~eoco coeo 

where Lt-j(Tco,Yco) = ~ ~-kyco~ for j = 0, ••• , 1-1. 
k=o 

(2.19) 

Proof. We prove the last statement of the theorem first. Define 

Now, if r is a simple closed contour containing a(L) then 

i.. 
1 k+i-j-1 

XTl.j+l (T, Y) = : XT ;:-Y -\_ 
k=J+l 

1 =-
2ni 

and also, 

Then, for i,j = 0,1, ••• , 1-1 

and hence QW + QeoWeo = IX! • From (1.5) it follows that WQ = IV and, 

similarly, W Q = IV • To complete the proof that (2.18) is invertible eo oo 

00 

with inverse (2.19) it is left to show that W Q = 0 and WQ = 0, and for oo eo 

this lemma 2.5.3 is used. 
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WQ ... 
00 

1-1 ,.., • 
= -(Y ••• T )a B 

1-1 -= - (T -y ••• Y)B ~ T£-1) 
00 00 

Iteraticn yields, for all i = 1,2, ••• 

Since the right hand side tends to zero as i ~ oo , this implies WQ = 0. 
00 

Similarly, W
00

Q = 0. 

Conversely,suppose (2.18) is invertible. Choose at o(T) and replace 

T by T-al and T
00 

by T
00

(I-aT
00
)-l in (2.18). One can show that the resulting 

operator is still invertible. 

Hence col(XTi)~:! is invertible, where 

- (X X ) X = 
00 

) and ( -1 0 T = (T -a!) 

0 
-1 

T (T-aT ) 
(10 (10 
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--Proposition 2.2.5 implies that (X,T) is a finite spectral pair of 

-a monic o.p. L • Define 

then. 1.4.1 implies that L has (X,T) as finite spectral pair and (X~,T~) 

as spectral pair at ""' • This completes the proof of the theorem. 

2.5.3 Lemma. Let L be an o.p. of degree~ t • Define B as in 1.1.9, 

and B with Aj replaced by Aj = A1_j • Let a be the permutation of blocks 

in r that maps the j th block to the (t-j) th block. If (X, T) is an ad-
. t i 

missible pair such that l: AiXT = 0 then 
. i=o .. 

i (:r'=- oB (:1J T1 (2.20) 

~ t i 
Similarly, if (T,Y) is an.admissible pair such that l: T YAi = 0 then 

i=o 

Jl.-1 - 1 t-1 (T -y ••• Y)B = -T (Y ••• T Y)Ba •. 

Proof. To establish (2.20) we must show that for j = 0, ••• , t-1 

The proof for (T,Y) is similar. 

The next proposition considers the inverse problem for spectral 

triples. 



c 

-84-

2.5.4 Proposition. Admissible triples (X,T,Y) and (X ,T ,Y ), with 
00 00 CO 

a(T) = 0, are finite and infinite spectral triples for an o.p.L of 
00 

degree ~ 1 such that a(L) is compact if and only if 

(i) 

(ii) 

(iii) 

Proof. 

(2.18) is invertible; 

L XT1-2..:f__ X T Y = -y 
00 00 00 

fori= 0,1, ••• 1-2 • 
' 

-1 1-1 -1_ 
X(ai-T) Y + X T (I-aT ) -y 

CXI C» CO 00 
is invertible for some a e C. 

If (X,T,Y) and (X ,T ,Y) are finite and infinite spectral 
00 00 00 

triples for L then 2.5.2 implies (i), and 1.2.2 implies (ii) and (iii) • 

Conversely, suppose (i) - (iii) hold for admissible triples (X,T,Y) 

and {X"',T(Xl,Y .. ) , with cr(T .. ) = 0. Choose· a t a(T) so that (iii) holds 

and define X,T , and L as in the second part of the proof of 2.5.2 • 

. Also, define 

then 

y 
= (- (T-.a.I) 1-2y I 

(I-aT )"~- 2Y 
(XI 

' 

--i- t-2-i i t-2-i XT Y = -X(T-ai) -y + X T (I-aT ) -y 
0000 00 CO 

= 0 fori= 0, ••• , R.-2 

and is invertible for i = t-1. 
~ .... ""' 

It follows that (X,T,Y) is a finite 

spectral triple for CL for some invertible C e L(X). Define 

L(A) = (A-a) 1 CL«A-a)-1), then 1.4.1 implies L has (X,T,Y) as finite 

spectral triple and (X ,T ,Y) as spectral triple at eo • 
00 CO 00 

2.5.5. Remark. We can rewrite the condition in (iii) as: 

there exists a E £ such that 
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00 

t 
i•o 

2.5.6. Remark • The proof of 2.5.4 shows that (ii) and (iii) 

imply 

is invertible. Thus if X has finite dimension n one can replace (i) by 

(i)' dim V + dim V == nt 
00 

.where V and V_ are the base spaces of (X,T,Y) and (X ,T ,Y ), respectively. 
- 000000 

Assume now that X has finite dimension n. The next theorem shows 

what sequences of operators can be the Fourier coefficients of the 

inverse of an o.p •• This result partially generalizes one in F. Gantmacher, 

The Theory of Matrices, p.207, where rational functions for the case n = 1 

are considered. 

Given ci E L(X) 
00 

(i = 0,1,2, ••• ), let H(ci)i=o denote the block 

"Toeplitz" or "Hankel" operator 

.... 

00 

We say that H(ci)i=o has degree t if 

c cl c2 ct-1 0 

CO cl c2 • et 
rank H(ci)f=o ;:: rank 

c2 ) 
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and if !. is the smallest positive integer having this property. In the 

case there is no such !. we say that the degree is •. It is easy to verify 
00 • 

that H(ci)i=o has finite degree if and only if it has finite rank. If 
00 

ci e L(X). (i = 0, +1, +2, ••• ) we say that deg(ci)i•-<>O =!.if. 

I 

and !. is the smallest positive integer having this property. 

2.4.7 Theorem. Let ci £ L(X) (i = 0,+1,+2, ••• ), with c_i = 0 for 

all but finitely many positive integers i. Then there is an o.p. L of 

degree~!. such that fori= 0,+1, ••• 

(2.21) 

where r is a simple closed contour containing a(L), if and only if 

(i) 

(ii) 
• QC) 

t > deg(ci)i=-oo 

CIO 

-(i+l) (iii) l: ci a converges and is invertible for some a e: c. 
-a> 

Proof. If L is an o.p. of degree ~ t with the Fourier coefficients c
1 

let (X,T,Y) and (X ,T ,Y ) be finite and infinite spectral triples for L, 
CO CO <X> 

respectively. Then 

)
oo ( i)CIO 0 ( i a> 

H(ci i=o = col XT i=o row T Y)i=o (2.22). 
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Since col(XTi)i!-l is injective and row(~)i!-l is surjective, 
=o =o 

(ii) follows. 
' 01> 01> 

Also, rank H(ci)i=o = dim V and rank H(ct-Z-i)i=o = dim v ... 

so (i) is true. Finally~ (iii) holds since, for a large, 
OD 

L-1(a) = E ci a-(i+l) • 
- CO 

Notice that if (X,T,Y) is the natural finite spectral triple for L then 

= t 
i=o 

(2.23) 

Similar,ly, , if (X , T , Y ) is the natural spectral triple at (10 for L then 
(10 "" "" 

y (t) = .... 

Now, suppose the operato~ci satisfy (i) - (iii). 

implies, in particular, that there is an a > 0 such that 

for all i = 0,1,2, ••• , and thus 
ti 

.t 11 ci iJ 11 < 
0 

constant · 

(2. 24) 

Condition (iii) 

i 
11 cia 11 .::_ constant 

< ()() 

Hence if we define Y(t) by the expression (2.23) then Y is an analytic 
·fO 

function R ~· L(X), which can be regarded as a map X~ COR,X). Then, 

d t-1 00 
define the subspace V= R(Y ... ( dt) Y) of C OR,X). I clai~ that V is 

invariant under dd • Indeed, if u e V then .for some x e xi 
t 

u = 

01> 

t 
i=o 

Where r = (c c ) fori= 0,1,2, ••• i i ••• i+!-1 
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CD 

Since 1 ~ deg H(ci)i=o there are operators Sj E L(X) (j • o •••. , t-1} 

such that 

Then 
du - = dt 

.., i 
t 

I: if ri+l x 
i=o 

i•o ' 
where x' e: x1 

is defined by x'
0 

• S
0

x1 and x' "" xj-l + Sjxt for 
du j d 

j = 1,... .t-1. Thus dt e V, and V is invariant under dt • Let 

d 
T e L(V) denote the restriction of ~ 

Xu == u(O). 
. 1-1 

col(X-r-l)j =o 

By definition (Y ••• t
1-ly) 

is injective. Indeed, if 

· 0 = col~XTj) R.-l x 
j=o 

= t-1 
col(ri)i=o x 

to V and define X eL(V,X) as 

is surjective and I claim that 
.., ti 

u = E ~ r 1x such that 
i=o 

<» 

then the. fact that 1 ~ deg B(c1)i=o implies r 1x = 0 for all i and hence 

u = 0. Now. (2.22) holds and 
. <» 

it follows that dim V = rank H(c1)·i=o • 

Analogous definitions for Y..,, starting with (2.24),and for V yields 

an admissible triple (X~,T..,,Y00) such that dim V = rank H(c1~2-i)f=o • 

Notice that T
00 

is nilpotent since c_i = 0 for i large. Also, XTiy = c
1 

and X..,T~Y<» = cl_2_i fori= 0,1,2,... • It follows from 2.5.4, an~ 

. remark 2.5.5 and 2.5.6, that (X,T,Y} and (X ,T ,Y ) are finite and infinite 
()0 (¥) CX> 

spectral triples for an o.p. of degree ::.. J!.. Then {2.21) holds, and the proof 

of the theorem is complete. 
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