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ABSTRACT

The main result of this thesis is -a necessary and sufficient condi-
2 .

tion for an operator polynomial, L(A) =L Aiki; to have a Wiener-Hopf
factorization with respect to a.simple i;gsed contour,Y, not intersecting
the spectrum of L. A spectral approach to the parti&ular case of stable
factorization was developed by Gohberg, Lerer, and Rodman. This approach
is developed further here, so that the general case can be considered.

One obtains a spectral theory of operator polynomials which is an extension

of the spectral theory of linear operators.
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RESUME

3
Le résultat principal de cette thése est une condition nécessaire
L

et suffisante pour qu'un polynome opérateur, L(\) = I Aiki, se factorise

1=0 .
selon la méthode Wiener-Hopf par rapport 3 une courbe Y, simple et fermée,

dont l'intersection avec ‘le spectre de L est nulle. Une approche spectrale
au cas particulier de faétorisation stable a eté développée par Gohberg,
Lerer, et Rodman. Ici cette approche est &laborée davantage, pour que le
cas général puisse etre considéré. On obtient une théorie spectrale des
polynomes opérateurs qui est une extension de la théorie spectrale des

’ e
operateurs lineaires.
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~ INTRODUCTION

Gohberé, Lancaster’and Rodman [1,2] introduced a spectral theory
for monic operator pblynomials L in terms of standard triples (X,T,Y).
If L is linear, i.e. L(A) = AI -A for some operator A, then X = I, T = A,
and Y = I defines a standard triple for L. More generally, suppose L is
any monic operator polynomial and (X,T,Y) is a standard triple for L. If
€1seeesey is a Jordan chain for T then Xel,...,Xek is a Jordan (or Keldys)
chain for L. In the finite dimensional case we can take T to be in Jordan
canonical form and then the columms of X give a complete system of eigen—
vectors'and generalized eigenvectors for L. Similarly, one can show that
the rows of Y (in reverse order) giﬁe a complete system of eigenvectors

*
and generalized eigenvectors for L .

Let L be an operator polynomial and Y a simple closed contour such
that o(L) nY =. 6 . It is always assumed Y is smooth and € -Y has two
components : the interipr F' and the exterior F . The aim of Chapter 1
is to give the definition of a Y-spectral triple (X+,T+,Y+) for L and to
show the significance of this definition. In particular, it is easy to
show that L‘l(l) - X+(AI - $+)-;Y+ is hplomorphic inside Y . If Ao e o(L)
is isolated then this gives a natural way to compute the principal part of
the Laurent expansion of_L—l(A) near Ao’ and leads to a simple proof, for
operator polynomials, of a result in [10] that gives a formula for the
resolvent in terms of Jordan chains for L and its transpose, L*. A%so a

generalization of the resolvent form of [2] dis given in section-l.Z.

Section 1.3 discusses the connection between right divisors of L and in—

variant subspaces of T+. The generality of the results here is new.



‘:; ' If L is a monic operator polynomiai then o(L) is compact, and
1f Y contains o(L) in its interior them Y-spectral triples are the
same as standard triples. In general, Y-spectral triples are really
‘the same as the right aﬁd left Y-spectral pairs defined by Gohberg,
Lerer,and Rodman [8]. The exact éonnection is discussed in section;l;l.
The definition, given here seems to Eé simpler and a proof of the
existence of Y-gpectral tripleé is given in section 1.1, without using

results on monic operator polynomials as was done in [8].

A continuous function A: Y » GL(X), where X is a Banach space,

is said to admit a right factorizationf relative to Y if, assuming

+
0eF ,

>

N
AQ) = A,0)- (E A M)A ()
i=1 '

+
where A+ :Y u F~ —> GL(X) are continuous functions holomorphic in Fi,
. - . A v
""’Qv are mutually disjoint projectors such that I Qj = I, and

Q

1 i=1
Ky < 0. < Kv are integers, called the right partial indices. Inter-
changing the roles of A+ and A_ one obtains the definition of a left

factorization.

The main result of this thesis is that if L is an o.p. of degree < &
and Y is a simple closed contour such that o(L) ny = ¢ then L has a

right factorization relative to Y if and only if
I

1 -1 -1
] i L () (T... 27 "I)dA

e

AL

‘:} -t sometimes called spectral factorization or Wienér—Hopf factorization.
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has a generalized inverse for 1 = 0,1,...,2-1. to prove this, the results
of Chapter 1 on‘spectral triples, as well as the concept of reducibility
of operator polynomials introduced in Chapter 2, are used. For more

details on the contents of Chapter 2, see the introduction there.

I would like to thank my thesis supervisor, B.Lawruk, for introducing
me to the subject of this thesis, and for his interest and guidance. Fin-
ally, I am grateful to I.Gohberg for valuable remarks he made during the

time he visited McGill University in November 1978.



CHAPTER 1

1.0 DEFINITIONS

Let X be a Banach space. L(X) is the space of linear operators on

and GL(X) is the group of invertible linear operators. A map L:C —> L(X)
. L
1s called an operator polynomial, abbreviated as o.p., if L(}1) = [ Aixi
i=o0
for some Ai e L(X). 1I1f Az # 0 then % is called the degree of L. The

spectrum of L is defimed to be o(L) = {AeC; L(A) is not invertible}.
Notice that o(L) is closed, but not necessarily bounded. It is always

assumed o(L) # C.

If L1 and L are operator polynomigls then Ll is called a right div-

isor of L if there exists an operator polynomiai L2 such that L = L2L1'
| If y is a simple closed contour such that o(L)ny = ¢ then Ll is called
‘a y-spectral right divisor of L if o(Ll) is contained inside y and o(LZ)
" 1s contained outside Y-' In general, the part of o(L) inside y will be

denoted o+(L), and that outside y will be denoted o_(L).

By a subspace of a Banach space, we will always mean a closed sub-
space, The sum of subspaces is denoted by + and the direct sum by ©.

If Sj £ L(X,Xs) (i =1,...,n) are operators, where Xs and X are Banach

spaces, then COI(Sj)?=l denotes the operator

51

n
e B, B xp
S =1
.n



1f Tj € L(AB,AO G=1,...,m) thgn row (Tj)?;l denotes the operator

(T oo T ) € L(:E1 Xj,X)-

The range of an operator T ¢ L(X,Y) is denoted R(T), and its
kernel is N(T). S € L(Y,X) is said to be a generalized inverse of T
if STS = S and TST = T. It is easily seen that T has a generalized
inverse if and only if R(T) and N(T) are complemented in Y and X,
resﬁectively. |

In this chapter we will show how informﬁtion about the spectral
properties of an operator polynomial L can be concentrated into triples

of operators (X,T,Y). It is convenient, to introduce some terminology.

A triple of operators (X,T,Y) is called an admissible triple if X € L(V,X),

T € L(V), and Y ¢ L(X,V) where X and V are Banach spaces; V is called

the base space of (X,T,Y) and X is the target space. A pair of operators

(X,T) is called a right admissible pair if X ¢ L(V,X) and T ¢ L(V) where X

and V are Banach spaces, and a similar definition holds for left ad-

missible pairs (T,Y). Often, the adjectives "right" and "left" will be .

omitted since the generic symbols (X,T) and (T,Y) will always be used and

so there is no possibility of confusion.

The kernel of a right admissible pair (X,T) is defined to be

NX,T) = 0 NI
i=o0

| 3
= N .
N(col(XT )j )



The least positive integer £ , if it exists, such that
N(col(le)i:i) = N(corxthH?

J=o
is called the index of stabilization of (X,T), and is denoted by -

ind(X,T). Otherwise, define ind(X,T) = =. (X,T) is called an &-

independent admissible pair if
N(col(XTj);;t), = 0.

This holds if and only if N(X,T) = 0 and £ > ind(X,T). If (T,Y) is

a left admissible pair then the range of (T,Y) is defined to be

R(T,Y) = + R(TY) .
i=o *

We will say that (T,Y) is surjective if R(T,Y) is equal to the base space

of (T,Y). There are also analogous definitions of index of stabilization

-

and 2-independence for left admissible pairs.

A right admissible pair (X',T') is said to be a restriction of the
rigﬁt admissible pair (X,T) if there exists a.complemented T-invariant
subspace W of the base space V of (X,T) and an'invertible operator

S$:V — W (where V' is the base space of (X',T') such that
X' = (x],)s T = 51| )s
W ’ W

Also, (X,T) can be called an extension of (X',T'). If W =V then (X,T)

anc (X',T') are called similar.



1.1 SPECTRAL TRIPLES

2
1.1.1 Definition. Let L{(}) = I Aili be an o0.p., and let Yy be a simple
i=o
closed contour such that o(L) ny = ¢ . An admissible triple (X+,T+,Y+)

is called a y-spectral triple for L if o(T+) is contained inside y and

2

Ly
(1) jio ij4¢+ 0

(ii) col(X+Ti)

2-1
=0

is injective;

1
(iii) X+TiY+ iy

-5 ! A3 L”l(x)dx for § = 0,..., 2-1 .

Y
A' chain XpseeesXy € X 1s called a Jordan chain for L at Ao e o(L) if

31w, ~
pﬁo STLVOIE, =0, (=0, kD),

The meaning of condition (i) is, basically, that it implies that if
AR 1s a Jordan chain for T+ at Ao then Xgl ,...,Xek is a Jordan

chain for L at Ao.

If the leading coefficient, A£; of L is invertible and y is a

simple closed contour containing o(L) then

0 for i =0,..., 22

a3 loya - .
2ni Y -1 .
At for 3 = a1

Thus a y-spectral triple in this case is a standard triple in the sense
of Gohberg, Lancaster, and Rodman [1]. For standard triples (X,T,f),
-1

col(XTj)j=o is invertible.

We will also see shortly (1.1.7) that, in general, y-spectral triples
are an extension of y-spectral pairs as defined in Gohberg, Lerer, and

‘Rodman [8].



To establish the existence of y-spectral triples, methods
different from those in [8] will be used. The following easy pro-
position relating L(A) and AI -~ T is important. Define operator poly-
nomials '

-]

L) = Ay + Asp +.... + A ,

for j = 05..., % . Notice that Lo = L.

1.1.2 Proposition. Let L be an o.p. and let (X,T) be a right ad-

missible pair such that ‘I A XTj = 0, Then

j=o 3
-1 j
LV)X=( Z L +1(A)XT ) QI - T) : (1.1)
j=0 j J
. X L
Similarly, if (T,Y) is a left admissible pair such that I TjYAj =0
j=o
then - '
. . _ |
YLQ) = OL-T( £ DY L, (). (1.2)
j=o )
Proof. Since ALj+l(A) = Lj(A) - Aj’ the‘right hand side of.(l.l) equals
-1 | -1
I (L) -A)T - I L H(A)XTj+l
4= J J i=o J

2
= L )X~ £Axd
o j=o |

= L(A)X.

The proof of (1.2) is similar.



1.13 Theorem. Let L be an o.p. and y a gimple closed contour such
that o(L) n y = & . There exists 'a vy-spectral triple for L and any
two such triples are similar. Moreover, if (X ,,T+,Y+) is a y-spectral
triple for L then O(T+) = o+(L) and

A
(1)' I TTA, = o0,
joo t 3

(11)' row (T1Y+)§;i is surjective,

and 1.1.1(iii) holds for all j = 0,1,2,... %.

Proof. Let V: be the vector space of all u ¢ Cw(R,X) such that, for

some c'dntinuous £ :F+ -+ X holomorphic in F+,

u(e) = 5= {{ e royeoar . (1.3)

kd

o + v + ' +
Define X+ € L(VL,X), T+ £ L(VL), and Y+ £ L(X,VL) as

X, u = u(0),

tA

(Yix)(t) =§—h 4 e .L"l(x)x dxr .

We will show that (X_;_,T_;,Y_;_) is a y-spectral triple for L, called the

!
natural y-spectral triple for L. One can verify immediately that 1.1.1(i)
and (iii) are true.

To show 1.1.1(ii) is true requires more effort.



VI has a natural topology induced from the usual Frechet topology

on CQCR,X). It is not clear that V: is a Banach space in this topology
but we will eventually show this. For the moment, however, V: is regarded

simply as a vector space.

+ -
It is convenient to introduce the notation int vy = F and ext Yy =F .

Llet u € exty and define Su € L(VI) by

(su u)(t) = E%i'{ -etAL—l(A)f(A)(u —A)—ldk

where f determines u as in (1.3). Su is well-defined for if

0 then L-l(k)f(k) is holomorphic insidey . Thus so

is L_l(A)f(A)(u-A)-l, and hence [ etllrl(k)f(l)(u -A)—ldl = 0, One
Y ;

- can verify immediately that; for all u e VI ’

;e lon ey an
Y

1]
[~

' -
(pI - 'I:_!_)Su u

|
e

] B
and Su( pl - T;) u

Now, there exists a closed contour Y'.contained in the interior of y such
that the part of o(L) lying inside y' is the same as that inside y . We
can replace y by Y' in the above considerations and conclude that U(T;)_S int y°'

and for p € ext y'

GI- 1= g 1, Mt w - L @
Fix u ¢ V: and define
-1 -
- )
F(u) = jio Lj+1(u)u ) .

Then, for u € v, 1.1.2 and (1.4) imply



' ' -17
- F(u) = X+(uI - T+) u

Co.=1 -1
il vry i' L (l)f(k)(u-—l) dA .

Now, Fubini's theorem and the Cauchy integral formula imply

1 tu R | {1, th, -1 3 -1
ol i e "F(u)du a1 i‘ »zn;;e (u=-2) du}Ll (W E£(r)dr
= -1 s M loyemyar
27i '
Y
= ut)

' +

In other words, for all u ¢ VL R
1 -1 @) |
u(t) = oy S L (A)( z. L (A)u (0))dax . (1.5)
wi
Y . j o .
In particular, notice that 1.1.1 (ii) is true, )
Now,.define
I
) P = 1 ! : L-l(k)(L () ... L, (A))dxr (1.6)
Y 27i : 1 L * *
Wl

. : 2-1 o
If y e X" define £ (A) = Z ‘L,,.(A)y, . When u is defined as in (1.3),
but with fy in place of £, then u € VI and

col X T = P
( ) "
j L 1
Also, 1if u e V then (1.5) implies P SR where y = col(X._J+ _u.
j= o

Hence R(col(X T j)j ) = R(PY) (1.7)

and PY'E L(Xz) is a projection.



+
A Banach space structure can be defined on VL by demanding that

col(XLTLJ)?Zi be an isometry. The topology so defined on VI coincides

with that inherited from CmCR,X). First of all, since col(X+I;;)j is
continuous in the latter topology, it follows that this topology is finer .
than the Banach space topology. By the closed graph theorem,it therefore

suffices to show that V+ is a closed subspace of CwCR,X). Let {un}°°

L n=1

be a sequence in V: such that u_+ u in C”GR,X); Then

o A1

un(t) = i 4 (A)f (A)ax ,
Yn

= 1342

where Y, = col(X T )j—o S
- ), 2-1

Since fxl(l) -*f (A) uniformly on Yy, where y col(u (0))j=o s Wwe

conclude that

P
5/ WE Q.

Y

a(t) =

Thus u € V+ and V+

L L is a closed'éubspacevof CwCR,X). This completes

~ the proof of existence of a y-spectral triple for L.

>

Let X Ly 9 +,Y ) be aY-spectral triple for L. Then
tT 1 oW
X+ e +Y+ = omi £ ()x)dx . (1.8)

Indeed, choose x ¢ X and let u(t) denote the difference between
the right and left hand sides of (1.8) evaluated at x. Then 1.1.1(iii)

implies_u(j)(o) =0 for j =0,e.., 2-1 . Notice that

eT _ 1 ' W N
X+e +Y+x = 51 i, e X+(AI T+) lY+x dx
1l . tl -1

ey J AYE(A)dx
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where £f(0) = I j+1(A)X4Ii¥+x . It follows that u € VL and
j=o

hence u = 0 by (1.5). Since x is arbitrary this proves (1.8). Differen-

tiating both sides of (1.8) yields

tA
e

T 1 3.-1
X,e +1§1Y+ = Su i Prrtona (1.9)

for all § = 0,1,2,... . In particular,lul.l(iii) holds for éll i.

Now, let V denote the base space of (X Y,) and define ¢ ¢ L(V+,VI)

Tty
as (px)(t) = X+efr+ x. Then 1.1.1(ii) implies ¢ is injective. Also,

(1.5) and (1.9) imply that ¢ row(TiX+}§;i is surjective, so ¢ is sur-
jective. Hence ¢ is invertible (by the closed graph theorem) and (ii)'

is true., One sees immediately that X X ¢ and T = wT;, and also

oY, = Y' is simply a restatement of (1.8). Thus 0.4 Y ) is similar

+’ +,

Y!) and any two Y-spectral pairs are similar. From (1.9) we
L
z

f to ( +, +’

see that ¢ TiX4Aj _¥ 0, which implies (1)' . -

j=o

It remains to prove o(T+) = o+(L). If 2 é'o(L) then 1.2.1 dimplies

i,8-1 _
col(X+T+) = S(AL- T+) N
i=o
h S = 1(L’1(A) 221 L‘ (A)x Tjﬂ)’l-l
where = co j—o> LD P

thus AI - T, is injective. Similarly, for some s'
2-1 K _ ' .
row(Tj'_Y_*_)i=° (AL T+)S H
thus (ii)' implies AI - T+ is surjective. Hence o(T+) < o(L) .

To prove the reverse inclusion we start with the fact that
M(}) = L—l(l) - X+(AI - T+)_1Y+ is holomorphic inside Y (more precisely, M

- has a holomorphic continuation there).
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@ Indeed, for j = 0,1,2,...

1 k| . 3;-1 -
L {{ Muyax o 4'“, mya - x 1ty

which implies M is holomorphic inside y . Define
g(x) = MQ) + X (I - T) lY+

for ) e.dnt y\o (T+). For X € int Y\ o(L), I = L(A)N(A), and then.1.1.2

implies

. )2 1

- - 3
I = p(A)M(A) + jzo Lj+1(l2X¥I¥$+ . (1.10)

But int Y is connected so (1.10) holds for all A € int y. Another
application of 1.1.2 implies that I = L(A)N(\) for »all— A € int Y\U(T_.).
Similarly, N(O)L(A) =1 there. Hence c+(L) _<_:_ o(T+) and this completes
tl;ne proof of the theorem. |

1.1.4 Corollary. Let L be an o.p., and y a simple closed contour such |

that o(L) ny = 4. If (X+,T+,Y+) is a - y-spectral triple for L then

-1 , _1
L () - X+(AI - '.1+) Y+
is holomorphic inside Yy .
This was shown in the proof of 1.1.3.

1.1.5 Corollary. Let T and y be simple closed contours not inter-
secting o(L), and suppose Y is contained in the interior of T . Let

C (X,T,Y) be a TI-spectral triple for L and
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-

-1 '
PY 271 i (AT -T) dr ,.

the Riesz spectral projector. Then (X 4 +,Y ) is a Y-spectral triple

for L with base space R(Py), where

X, = ¥,
T+ = PYTPY s

and Y+ = PyY .

Proof. Only 1.1.1(iii) is not obvious for (X s +,Y,).

But 1.1.4 implies

= yrJ
X +'1‘1Y + XT°P Y

=y L J(AI-T)'lde

2ni
.
S I ijr(u- T)-lY da
2ni .
Y .
I i; -1
71 i AL 0N .

1.1.6 Corollary. Let L and y be as in 1.13, and suppose (X 4> +,Y ) is

a y-spectral triple for L. Let X denote the dual space to X and
* 2 . :
i *
L= I A A7 . Then o(L ) = o(L) and
i=o *
triple for L .

*
X +: +,X+) 1s a y-spectral

The proof is obvious.

If L(X)) = AI - A then PY , as defined in (1.6) , is the Riesz
spectral projector for A with respect to the contour y . Invgeneral, if L

is any o.p. and (X Y ) is a y-spectrél triple for L then the range of

+’ +!
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i,2-1 o121

col(X*I+)i=o is equal to the range of PY . -Hence R(cpl(x+1+)i=o) is
complemented in Xl or, in other words, col(X+Ii):;i i1s left invertible.

Moreover, the range of col(X+Ii):;§ is equal to the set of all y ¢ XL

such that, for some polynomial f of degree < £-1,

y =col( f ANLTTMEWAN L
v

Similarly, the kernel of row(TiX+):;i is equal to the kernel of the

projector ;§ € L(Xl) defined by

LM

~ 1 . -1, 2-1

PY = 21‘_1 5 : L ()\) (I AL )\ I)d)\ .
L, (V)

.

Thus row (T1X+)i;i is right invertible. For the sake of completeness

we also note that

PY = col(X+Ii)i;$-- row(TiX+)i;i *B
and FY = ,B-'col(X+Ti)§;i . ?ow(TiY+)i;i—
where . Al A2 cee Az

B = ) . ) .

Also, in definition 1.1.1; £ can be any integer > deg L.

The next proposition shows the éonnection between Y-spectral triples
and the y-spectral pairs defined in [8]. A right admissible pair (X,T)

is called a right partial y-spectral pailr of L if o(T) is contained inside Y,
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L2

z AiXTi = 0, and col(XTi): -1 is left invertible for some integer
‘i=0

1<kz<?t.

1.1.7 Proposition. Let L be an o.p. and Yy a simple closed contour not

intersecting o(L). Let (X+,I+) be a right admissible pair with base V+.

The following statements are equivalent:

4

(i) There exists Y e L(X,V ) such that (X o +,Y ) is a y-spectral

triple; _
(11i) Every u ¢ V: has a representation of the form u(t) = X e T+
for a unique x € V,, and conversely every u defined this way is in VL

(iidi) (X+,T+) is a right partial Y;Spectral pair for L and any other

right partial Y-spectral pair for L is its restriction.

Proof. (1) (i1). If ue V; then (L.5) and (L.9) imply

-

tT4

| uit) = X+e T x
- -1 (1)
where X = row(TiY_'_)i=o B - col(u (0))3.___0 .
x .1is unique since col(u(i)(O))i;i = col(X/ Ti)z 1y

The converse statement in (ii) is clear.

+
(11) = (i) . Define the isomorphism ¢ € L(V,,V;) by (ex)(t) = x+etT+ x.

Let (X' 0 +,Y )} be the natural y-spectral triple for L. One checks im~
: v = B M = ) '
mediately that X+ 9 X+ and T;_w ¢I4. Let Y Q 1Y 4 then ( ps +,Y )

1s a y-spectral triple for L.

(i) = (iii) First of all, (X+,T+) is a right partial Y-spectral

palir for L. Now we will assume, without loss of generality, that



i
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‘=> (X+,T+) = (X;,T;). If (X,T) 1s a right partial y-spectral pair for L

+
with base space V define ¢ € L(V,VL) as (9px)(t) = XetT X . Notice that

X = Xitp and 9T = TL@ 3 thus R(¢) is invariant under T;. Let M be a
i.k-1 i k-1

left inverse of col(XT )i=° . Then Q¢ = ¢ where Q=0 M col(X#T;_)i=o

Q is a projection of VI onto R(9) so R(p) is complemented in V:. Hence

- (X,T) is a restriction of (X',T;).

(iii) = ({). 1f (X+,T+) satisfies (iii) then (X',T;) is a restriction
of (X+,T+) . Define the map ¢ as above but now for (X+,T+). Then
-1

Y', then (X+,T;,Y+) is similar

R(p) = V+ so ¢ is invertible. Let Y+ = ¢— +

L
to (Xi,T;,Y;) and is hence a fy-spectral triple for L.

1.1.8 Definition. Let L and Ybe as in 1.1.9 A right admissible pair
(X+,T+) is called a right y-spectral for L if there exists an operator Y,
such that (X+,T+,Y+) is a +y-~spectral triple for L. . The definition used

in [8] is 1.1.9(iii). Similar definitions hold for left y-spectral pairs.

1.2 THE RESOLVENT L—l(k)'

Let L be an o.p. and Ao e o(L) isolated. In some neighbourhood of XO

we have the Laurent expansion

co

. __1 _ j
L ()= = Bj(l- lo) | (1.11)

j 00
- -1
The principal part of (1.11) is denoted N L 7).
, Ay
Let (XO,TO,YO) be a spectral triple at lo for'L, i.e. a Y—sﬁectral

triple for L where y is a small circle about Ao not containing any other

points of o(L). Then 1.1.4 implies
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-

. | -
: AO(L ) =X (M- T) lyo

. ooy oy 43D
jfo XO(TO xol) Y ( Ao) . (1.12)

L! has a pole at lo 1f and only if there exists v > 0 such that

(To - AOI)v = 0, and 1f so then the order of the pole is equal to the
minimal such v. Indeed, if (To-AoI)v = 0 then Bj =0 forj>v.
_ . . 5y ,

Conversely, if Bj 0 for j > v, i.e. XO(To AOI) Yo 0 for j>v,

then

i1,2-1 v -1 _
col(XoTo)i=° (To- AOI) row(TgYo)j=° =0

“and hence (r, - A D" =0, by 1.1.1(11) and 1.1.3(11)".

Similarly, one can show that B (j.= ~1,-2,...) have finite dimen-

J
sional range if and only if the base space of (xo’To’Yo) is finite

dimensional.

-

Now-we-prove the result mentioned in the introduction which is in

Gohberg and Sigal [10].

1.2.1 Theorem. Let L be an o.p. and suppose XO e o(L) is isolated. 1If

the operators Bj(j = -]1,-2,...) 1in the Laurent expansion (1.11) of L--1

have finite dimensional range then there exists a canonical system

i 1

xl gveoy Xr (i = 1""’p)

i

of eigenvectors and generalized eigenvectors of L corresponding to Ao

and a canonical system

i i
Y] seees Yy (i=1,...,p)
i }

*
of eigenvectors and generalized eigenvectors of L corresponding to Ao

>such that
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p ri-l ri-j
E abh=:1 & (a- Ao)"(jﬂ) 3 xi gkl © Ylic .
0 1=1 j=o R

Proof. Let (Xo’To’Yo) be a spectral triple at lo for L and recall (1.12).

The base space of (XO,TO,YO) 1s finite dimensional. Hence we can assume:

) To- AOI is in Jordan canonical form diag(Ji)z=l, where

each Ji is an r, X ry nilpotent Jordan block;

. o o r

- P - i,7i : i .
(2) Xo row(Xi)i=l, where Xi (xj)j=l and xj e X 3

r.-1

_ p _ 1,5 1 %

(3) Yo c°1(Y1)1=1’ where Yi col(yri_j)j=o and yj e X .
Then : ip ri—l .
5, wl = @ : XiJiYi ( - Ao)‘(JH)
(] i=l j=o 4

and an easy computation completes the proof of the theorem.

We now consider the spectrum at « for operator polynomials, .This concept
is due to Gohberg and Rodman [4,5]. If L is an o.p. of degree < £ and o(L)
is compact then a spectral triple at « for L, denoted (X&,Tw,Tw), is defined
to be a spectral triple at 0 for the o.p. Z, where L(A) =~Az L(A—l). More
accurately, we should say f-spectral tfiple at é, since increaéing 2 will
increase the spectrum at «. For further explanation of this see [4, §3].

When using spectral triples at « we will of course specify which % is used.

A finite spectral triple (X,T,Y) for L is defined to be a I'-spectral

triple for L, where I' is a simple closed contour containing o(L).
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If L has invertible leading coefficient Az then there is no
spectrum at ©» , The next theorem is a generalization of [2,theorem 13]

where the resolvent is expressed in terms of a standard triple for L.

1.2.2 Theorem. Let L be an o.p. of degree < & with o(L) compact.
Let (X,T,Y) be a finite spectral triple for L andA(Xw,Tm,Ym) a spectral

triple at « for L. Then,

'y = xo1- D +xr  rlaaan . @)
Proof. L--1 has a Laurent expansion in a neighbourhood of « :
' vy = 1 ¢ v
I 8
For 1=0,1,2,... C, = — f A loa = xrly.
i 2ni T _ :
Similarly, for i < 2-2, _
2-2-1, _ 1 L -2-1 ~~1
X T Y, = 57 LA L ~(A)dA
Y
= 2 YT ha
2ni . :
¥
1 i-1,
o £ w L (w)dw
= C1 .
Here we have made the substitﬁtion w = k—l, dw = - X—Zdl . Notice

that the interior of y is mapped to the exterior of T , whereY is a
small contour about 0 and T is defined to be {A—l; A e v}, Combining

the above facts, (1.13) follows easily.
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We can use (1.13) to give a simple proof of the following result

due, in the finite dimensional case, to [6].

1.2.3 Theorem. Let L be an o.p. of degree < £ with o(L) compact, and
let (X »T,»T,) be a spectral triple at « for L. If f e CR,X) then

( )u = f has the particular solution u=uo+y € CwCIR,X), where
u (t) =

and L
- £ = & x Ty f(i)(t)
i=o0

QO S

; eE L0y £(s)as
T

Proof. First of all, uo(t) = f Xe(t S)T Y £f(s)ds where (X,T,Y) is a -
o

finite spectral triple for L. An easy induction argument shows that

diu i-1
2 = & xoy £ j)(:;> ¢ 1 xrt 9Ty £oae,
dt Jj=o °
Hence ' di“o
L(——)u = I A
i=o0 1 dti
%
- 1 LDy T D
i=1
Now, by (1.1.2) and (1.13)
2 i _
L GGDYAT = X T Tha -y Ty .
i“l o o

Thus, L( )u =f - L(dit)xm'li—l(I - _c(lit— Tw)-lYm f and since the

second term on the right hand side of this equation is



' 2
( )XT (1+-:—t-r vy
dt

which is L(———)v ,» the proof of the theorem is complete.

1.3 DIVISORS OF OPERATOR POLYNOMIALS

_ Let L be an o.p., with y-spectral pair (X+,T+).' In this section the
connection between invariant subspaces of I+ and right divisors of L is
investigated. The next theorem and its corollary is due to Gohberg,
Lerer,' and Rodman [8] (except for (iii) of the theorém), but different
proofs are given here.

1.3.1 Theorem; Let L and L, be o.p.'s and v a simple closed contouf such

1l
that o(L) ny = o(Ll) ny = ¢. Let (X+,T+) be a right vy-spectral pair

for L. If LLIl

1nvariant subspace L of T such that (X |L »T IL) is a right Y—spectral

is holomorphic inside ¥ then there exists a unique

pair of L Moreover, the following statements are equivalent:

l.
(1) LL-} is holomorphic inmside y ;
1 -
(ii) any right Y—spectrél pair for L, is a restriction of (X,,T,);
. 1 0
+ +
{i1) v, < v .

1
Proof. If L is an invariant subspace of I+ such that (X+|L,T+|L ) is a

y-spectral pair for L. then 1.1.7 implies

1

V+ = {ujult) = X l et?:+|Lx,'st }.
L1 +'L ,
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Hence VI = ¢(L), where ¢ ¢ L(V+,VI) is defined as in the proof of

1
1.1.3 ¢ (ex)(t) = X+ etT+ x. This proves uniqueness of L in the state-
ment of the theorem. Existence 1s a consequence of the results proved

below. Without loss of generality (X+,T+) is the natural y-spectral

palir for L, since any two y-spectral pairs for L are similar.

(1) = (iii). ‘This is clear since L;"Ll = L"l(LL'il).

i) = @) £V, v then Ly s Loany =0 .
L, =V then Mg )¢S 1

Differentiation under the integral sign yields

félunq%nm - 0,
_Y -

which is equivalent to (i) .

(i1) = (i4i) . This is clear from the first statement of the proof.

. + - : i
(i1d) = ({i). If V+ .c¢ V. then (X (V+ s T | + ) dis the natural y-
. Ll‘— L + Ll + VL
spectral pair of Ll’ and is a restriction of (X+,T+)l (Notice that V:
1

complemented in V+ since col(X Ti)!z'_1 embeds V+ and V+ into complemented
: L + +'1=0 L1 L

- subspaces of Xz.); Since any two Y-spectral pairs for Ll are similar, (ii) is

is

proved.

1.3.2 Corollary. Let L,Ll, and vy be as in the theorem. LL1 is holomorphic

and invertible inside ¥ 1f and only if the right y-spectral pairs of L and L1

coincide, or if and only if V: = V+ .

Ly

1.3.3 Remark. The above corollary applies in the case L, is a Y-sﬁectral

1
right divisor of L,

-1
If LL1

called the invariant subspace of T+ corresponding to L

is holomorphic inside y then the subspace L in 1.3.1 will be

1° Notice that L is

a complemented subspace of the base space of (X+,T+).
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1.3.4 Remark. There are two other ways to characterize L :

- i, 2-1 i -1 . '
1) (col (}gk$+)i=o|L ) = .{i ALy (A\)E(A)dA ;3 £ a polynomial }..

Since col(X+$i)i;i is left invertible, this uniquely determines L;

: + -
2) Define ¢ € L(V,,V.) as usual, then L = ¢ 1(V + ).
L Lt

1

If LL, is holomorphic inside y and o(Ll) is contained inside

1

then LLI1 is entire and in the finite dimensional case it is a poly-

nomial. This is no longer true in infinite dimensions (an entire function
is a polynomial if and only if it has a pole at = ). In [8], the following

example is given. If A is an operator such that o(A) = {0} and A" # 0O

(n =1,2,...) let L) =IandL () =1+ AA, then L(\) Lil(k) = (L +a)

is entire but is not a polynomial. The next theorem gives a necessary and

sufficient condition for the quotient to be a polynomial.

1.3.5 Theorem. Let L be an o.p, of degree  § % and L. an o.p. of

1
degree < k. Suppose a(Ll) is compact and M = LL1 is entire.  Let (Xl;Tl,
be a finite spectral triple for Ll and (X;,T;,Y;)Aa spectral triple at

Yl)

for L.. Then an explicit formula for M can be given‘in terms of the

1
coefficients of L and the spectral tripies for Ll:
-1 2 . 3 ' .
M) = £ {ox AaxTo Wy 43 oax Ty
j=o0 i=j+1 A _ i=o
® L JHe1-1, | |
+ ¢ { I AXT . 1A : (1.14)

j=* 1i=0
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M is polynomial if and only if there exists a non-negative integer u

such that »
X T:H-p

z-i w0 oo = 0 L4 (1.15)

2

If such a u exists then the degree of M is < max(u + 2-k,2-1).

Proof. 1.2.3 implies that
Lzl(l) X, (AI- T ) lY + X T (1-— AT ) lY (1.16)

The fact that M is entire implies

v 2 i
I AXT =
i=0 Ai 11 0

Indeed, let Y be a simple closed contour contaiﬁing G(Ll) and use 1.1.7:
. 1 -1 -1 |

z A S OANL,EQ)A = S LAYL, QR)YEQ)dAA

i=0 + y 1 Y 1

Thus we can apply 1.1.2 and (1.16) to obtain:

-1
M) = X L%, Iy

11+LumT Taar™ @an
j=o0 j

Notice that, since o(T ) = {0} , I-AT_ is entire,

@-a)t=rear + a7 o+, | (1.18)

and 1lim llT::lllln = 0. This shows that there is no probleﬁ of con-
n- '
vergence in (1.14). Using (1.18) one easily sees that the second

term in (1.17) can be rewritten as

=1 ] JHe-1-1 g, = ¢ JHe-1-1, 4
o { T AXT Y, b+ @ {1 AXT iY°° | 30 S
j=o i=o j=¢ i=o ’
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Collecting the various terms together one obtains (1.14)., Finally,

rewrite the last term in (1.14) in the form

1., j+k=2~1 3
Ay XTI, b S S

T (
j=*  i=0

I M

M is a polynomial if and only if this series terminates, and since
x_ ... Ti—lY“) is surjective this is equivalent to (1.15). The last

statement of the theorem is now easily verified.

The next corollary gives a formula fof the quotient and reméinder
in a generalized Euclidean algorithm. Actuélly, it is difficult to
attach any significance to this result in'general, but if Ll has invertible
leading coefficient then we obtain theorem 6 of [i], which was a prucial
part of that paper. An important generalization of this casg is when Ll

is reducible in the sense of Chapter 2. With respect to the decomposition

L ,
= A . dd r < . Thus 1.3.6
determined by L. we have R(}) (rij( ))1,J=o and deg 1 i

1
gives a formula for the (unique) remainder satisfying this condition, and

also a formulae for the quotient.

1.3.6 Cbrollarz. Let L be an o.p. of degree < & and L, an o.p. of

degree < k and suppose o(Ll) is compact. Let (Xl’Tl’Yl) be a finite spectral

triple for L1 and (Xw,Tm, Y ) a spectral triple at « for Ll. Write
S £
L) = 5 BA and Loy = : A, 2. Then
1 _ 3 . k|
J=o j=o
L(}) = M(A)Ll(l) + RO ,
where k-1 3
R(A) = = ij and
J=o
2 2~
i
R, = 3
i ( Lo AT o TlilYlBjm), ;
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M is defined as in (1.14) except with A, replaced by

i
Ai"Ri 1’0,.0.,k‘1
Ai =
Ai i>k
Proof. We claim that LL;l— RLI1 is entire. Indeed, by 1.1.2
ROV = L(x,,T,)( kEI D oyL (A))Lal(i)
1 1’71 -, 1 711,j%1 1

j=o0

Ly

1

L(Xl,Tl)(XI - Tl

]

™
o
]
=

where L(Xl,Tl) Hence if Y 1is a simple

closed contour containing G(Ll) then for all j = 0,1,2,...

£ A R(A)Ll (A)dr = L(Xl’Tl)T1Y1~

= s JrooToa
! 1

and the claim follows.. Apply 1.3.5 to M = L'L_1 where L' = L-R and the

1
corollary is proved.

Suppose L = Lle. The next theorem shows how a left y-spectral pair
for'L2 can be constructed from a left y-~spectral pair (T+,Y+),for L and

the invariant subspace of T+ corresponding to Ll"

1.3.7 Theorem Let L’Ll’ and L, be 0o.p.'s such that L = L)L, and v

a simple closed contour such that o(L) ny = U(Li)n Yy =¢ .



O
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Let (T+,Y+) be a left y-spectral pair of L,and I the invariant subspace
of I, corresponding to Ll. If —'f+ € L(V+/L) is the operator induced
from T+ and -f_'_ = 1rY+, where 7 € L(V+,V+/L) is the natural projection,

then (-'i'-_'_,i'_) is a left y-spectral pair for L2.

Proof. Without loss of generality, (T+,Y+) is the natural left y-spectral

palr for L with base space V'I':, and then I = V‘I': . Also, let (T;,Y; ) be
1 M

the natural left y-spectral pair for L2 with base space VI . In particular,

: 2

recall that

1
2ni

ta. -1

1y etl rePloa .
Y _

Y (t) =57

ot
i (}\)dl‘ and .Y2(t) =

Y
R + _+ d
Define V¢ € L(VL,VL ) as Yu = Ll(—ag-)u . Then- ¢ is surjective,for if
"2 : , N
v e V: there is a polynomial £(A) such that v(t) = [ etkLzl(A)f(A)dl
2 Y
Pl odear . Moreover, NG =V .
. 1

and thus yu = v, where u(t) = [ e
Y

Indeed, it is clear that - V: < N(¥) and if u e N(‘J))’ then
' 1
A =
t 1 ( d Yu = 0,

1" de

Y .
tee. [ eL;POIEMIA =0, it follows that g) = LT EQ) s
Y : _ , | ,
holomorphic inside v and u(t) = S et}\Lll()\)g(l)dl s which implies u ¢ V: .
. Y 1
) - 4+, + +
Thus ¢ induces an isomorphism y between VL/VL and VL » by the closed
1 2

graph theorem.

+ + - ot
Now, notice that tpT+ = T2 ¢ . Hence T2 Y= ¥ T+ . Alsq, 1])Y+ = YZ

+

9 This shows that the admissible pair (—'I-"_‘_,Y_'_) is

and so E§+=Y

similar to (T;,Y;:) and is hence a y-spectral pair for L, .
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1.3.8 _Corollary. (cf. [1,§6]) Let the hypotheses be as in the theorem.

* * x _ %
Then (Y+,T+) is a right y-spectral pair for L , L2 is a right divisor of L*,

K ] *
and the invariant subspace of T+ corresponding to L2 is Ll .

Proof. The first claim has already been proved in 1.1.6, and the second
%
- is trivial. Recall that T+(L) < L implies T+(El) = El . We must show
LI S *
that (Y+|L ,T+|L ) 1is a y-spectral pair for L2. The theorem states

— —k ok
that (T+,Y+) is a left y-spectral pair for L2 and hence (Y+,T+) is a

* * * %
right +y-spectral pair for L,. Butw e L((V+1L) ,V+) defines an iso-
hism b v./L )" and I dY 1 =Y andrT =T 1
morphism between (V, an ,and Y 7 =Y andw T =T v .

* 1 % Ll —tk
It follows that (Y |I°,T |I ) is similar to (Y,T,). This completes

the proof of the corollary.

_ ’ g _
1.3.9 Remark. Suppose L LZLl’ and (X+,T+) and (X2,T2) are right Y-
spectral pairs for L and L2 with base spaces V+ and V;, respectively.
The proof of 1.3.7 shows .that there is a natural sur}ectionlb eL(V+,V;)
with kernel L , the invariant subsﬁace of T+ corresponding to Ll’ uniquely

determined by

>

ferhd, o1 o0 oyl 3 i
X, (T, = 525 £ A Ll(x)x+(x1 T,) " dA ] 0,en02y-1).

+
2

and L,, respectively , this is just the y defined in 1.3.7. 1In the

e .
Indeed, when (X+,T+) and (XZ’T ) are the natural y-spectral pairs of L

general case one can argue by similarity. We also note that § has a

natural section X € L(V;,V+) uniquely determined by

. -1 j, -1 + _ k-l - _
X+T+x Dy J A L1 (A)XZ(AI T2) di (J=0,.0., 2-1).
Again, in the case of natural spectral pairs, for v a'VI
' 2
| 1 th, -1, ot +, -1 :
(xv) () = 701 S e le(A)Xz(AI TZ) v dx .
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P O B 2 W |
Then (YXv)(t) Ll('dt)xv Tl i e XZ(AI T2) v dA
= y(t) .

Hence ¢ xv = v and X is a section of V.

This remark is used in the proof of the next theorem, which gives
a formula for a y-spectral triple for L = L2Ll in terms of y-spectral
triples for L1 and L2. This is a generalization of [2,theorem 17], which

is for standard triples of monic operator polynomials.

1.3.10 Theorem, Suppose L = L, L_- and a(Li)twy =d (1 =1,2). Let

271
+
(Xi.T:,YI) be a y-spectral triple for Li with base space VI (i =1,2).
+ ) \ ,
Pet V+ = V1 x V2 and define x+ € L(V+,X), Tu_gL (V+),>and Y+ £ L(X,V+) as
. +
X, = (XlA)
+ okt
. o1 1% | -
+ = . * ’ .
| o T
2
. B
Y, = S ,
2
' 1 -1,y + =1
where A= oo /L (.A)xz(u Tz) dx ,
Y
1. 0 -l -1 + + -1+
B e g OT- DT 050 - 01 - 1) Ny,

Then (X+,T+,Y+) is a Y—spectral triple for L.

1 1] ]
Proof. Let (X+,T+,Y+) be a y-spectral triple for L.

' S ' ' +
Without loss of generality (Xl,Tl) (X+|L ’T+|L ) and Vl = [ | where L

is the invariant subspace of Iivcorresponding to Ll. Let p ¢ L(V;,V;)

be defined as in the previous remark. Recall that N(y) = L and there is a
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' +
natural section ye L(.V;,V_'_) . Thus V_;_ =L & x(Vz) » and there is the
isomorphism ¢ ¢ L(VI x V;,V_'_) defined by qw(:) =u + yxv. We claim

' omroyry
that ¢ defines a similarlity between (X+,T+,Y+) and (X+,T+,Y+). pr,

u + + -+
q)T+(v) @ Tlu + Y X v

12
+

'1'2v

+ + +
| ]
T+u + lezv + XT2v

and Y+X+ + XT+ = T_:_ ¥, since for j = 0,1,...

12 2

! ij (A)X {I + T, (AI - T ) }

[ tj + 'j
x+»T+ lez XTIy XTz .2n1

o1 jH -1 +o00 bl
‘.znif; AL T (IX, (M T,) “d

o, L\ 'j 1
X_'_T+ T+x .

, _ .
Hence . oT +(‘v) T +(_u + yv)
u
= ]
T, cp(v)
' .
s0 cp'l.‘+ = T+q> . Also
o)™ = Xl(u+yv)
+7 Ny + X
= XIu+ Av
u
= X, ()

§0 X_;_q) = X, . Finally,
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-1 ' o J _ +
9 Y+ Y+ XYZ
+
Y2
and we claim that YL - XY; = B, Indeed, for j = 0,1,...
widv' ottt o 1 j. -1 -1 _ I O N '
XYY, - XY XY, 3 £ ) )1 L, ) X,(AL-T,) Y,} da

1 | PR N RE DI SR, SR S I
= ‘jr' A xl(u Tl) lYl {L2 (x). x2(u T2) le}dk
= yiprd
= X+T+ B .
Hence ¢—1Y; = Y+ and the proof of the theorem is complete.
-1.3.11 _Remark, If o(Li) is contained inside y (so finite sﬁectral
triples are considered) then one can give other formulas for A and B.
Let (Xiw’IiQ’ Yiw) be a spectral triple at = for ‘L, for some chosen

1
%, > deg L (i=1,2).

w 2143

_ 1 +eptyd
Then A = 3 (leTlm 'Ylm)xz(Tz)
j:o . .
o %,~1+]
- +, 3 + 2
B jio(Tl) Y (X T, Yy) -

Indeed, enlarge y to be a circle with large radius and then

1 -1 + + -1
A = o S/ Ll (A)XZ(AI - Tz)- da
Y
I T -1 ~(3+1) +,
Py jio ( i Ll () dA)XZ(TZ)
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which gives the required result. For B one uses

-1
(1- A1)

2

‘ L. -1
-1 + + -1+ 2
1T - %01 - 1)) ]Yz X, T,%

1.4 TRANSFORMATIONS OF OPERATOR POLYNOMIALS

ab

c d )e GLZ(C> let ¢ be the fractional linear transformation

If A= (

al +b . . dA -b
or +d ° Recall that ¢ is bijective with inverse o) +a .. If L is an o.p.

of degree < & define the transformation of L under ¢ as

L () = (-ex +a) L"),

which is also an o.p. of degree < L.

1.4.1. Theorem. Let. L be an o.p. of degree < & and Yy a simple closed
contour such that o(L) n y.= ¢. Let ¢ be a fractional linear transformation,
suppose :g- is in the exterior of y , and set y = ¢(y). If (X+,T+,Y+)

is a y—spéctral triple for L then (z+,§;,§;) is a ?—spectral triple for LW’

-

~ where
% - x
;.,. = q>('r+),
and Y, = (det A~ D ar 4 cT+)2'_2Y+ .

Proof, Notice that ¢ maps the interior of y to the interior of ; and by
the spectral mapping theorem 0(%;) = ¢(G(E;)) is contained inside ; . Now,

£

L) = I Ah-b)i(er+ ay* 1
¢ ' i=0 9
‘ i, i . j
and, by lemma 1.4.4, (dX -b) (-cA +a) = I uij A7,

j=o
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L
L £ : - 5 L1
= tible. Th L = A
where (uij) 1,{=0 (det A) uA"l_ is invertible en (p_(x) iio 4 A

~ ~ L L, .
e e = _ s e U= I y i i .
where (Ao Az) (Ao AR.)U and (uij )i,j=o e L(X") 1is invertible

Also, one checks easily that
~ i, ~ -1 i -% 2
- - = +
(dT+ bI) " ( cT++aI) T+(cT+ d1) (det A)
for £ = 0,... L2 fvand thus

U ol ™Y = corx.tHt (et Lt an~* (detayt .

+ 4+ 1=0 + 4 1=0
ndiios B 2 . .
Hence col(X +T +) f=0 is injective, and
-2—-: AXT = (Ao Az) COI'(X+T+)i=O

I

i

: i i -2 2
= sa +
(A0 A 2) col(X+T +) i=0 (eT . dI) “(det A)

= 0. -
It remains to show (c) of definition 1.1l.1:

1 1 -1 1
2nt LA L, A 27l

I Ai(.-_cx{—a)"g' e oy a
Y Y .

~% =1 def A

= 2 7 e et & (ewray ) T L7 w) dw

27l y (cwtd)
= XTY .

In the second equality the substitution A = ¢(w) was made.

1.4.2 Corollary. Let L be an o.p. of degree < 2 such that o(L) is compact

and let (X,T,Y) and (Xw,Tw,Ym) be finite and infinite spectral triples for L,
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respectively. Then, (X,T~aIl,Y) and (X“,Tm(l-aT )-1,(I—aTw)z-2Y;) are

finite and infinite spectral triples for La(k) = L(A+a), respectively.

Proof. For the case of finite spectral triplés take ¢(A) = A-a, and

let y be a large contour containing o(L).  For the case of infinite
L ~

spectral triples note that E(X) = AlL(A—l) = I Z;Ai where Ai = Al-i'
i=o
Then,
~ L -1
La(l) A La(l )
L
= 3 Ai)\i(1+al)£i .
i=0

Let y be a small contour about 0 not containing any other points of c(fb,

A
1-a)

take ¢(1) = s and apply the theorem to L and o .

1.4.3 Corollary. Let L be an o.p. of degree < & such that o(L) is
compact and 0 ¢ o(L), and let (X,T,Y) and (x_,T_,Y ) be finite and infinite

spectral triples for L, respectively. Define

’i = (Xxm)y

- -1
T =T o),
o T

=
B

and
then, (i;%,?) is a finite spectral triple for L.

Proof. Choose a simple closed contour ¥y containing o(L) but not 0, and

let Ao be a small circle about 0 not containing any points of o(L)\ O .
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Then T -;;-i- Y, contains o(z) in its interior, where ; = {A-I;A evl).

-1 ,2-2

The theorem implies that (X,T ~,T" "Y) is a Y-spectral triple for :

(ﬁake g (A) = k-l and (: :) = (

-1

0 -1 :
0 )). Also, by definition, (TQ,TQ,YQ)

is a Yo-speccral triple for i. Thus 1.1.5 implies that (i;iﬁ?} is a ;:

spectral triple for L .

1.4.4 Lemma. Define the map u: M2(C) > Mn(C) as follows : for

a=CG5, e =

YA

is defined via

col{ ;ax +b )j’(cA +d) 2'-1}:-0 - uA COIO‘j):ao .
Then u 1s a homomorphism, u, , = azuA’ and det u = (detA)2(£+1)/2 .

Proof. The defining. property for uA can be written

where

Then

A

(e +&)* cot{(e, NN} = weorah

o (A
A

YAB

al+b

) = o¥d

1,4
col{A )i=o

olp?
ad o
e

a b, a'b' -
Let A = (C d), B = (C' d')’ andAB (

(@ +D* eoli ey ON'Y_

@+ coll(o, (e ONTY_

| (e +§) . (cch(A) +d) ~* uA(c')‘ +d';_£ uBcol()\i):ao

iz
u,uy col(x )i==o .
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= I, so u is a homomorphism. Thus to

Hence uAB = uAuB, and also UI
prove det uA = (det A)"'u'ﬂ)/2 it suffices to consider the five cases
10 1a 0 a0 10

since any A € MZ(C) can be decomposed as a finite product of such elemen-
tary matrices. The proof is then'completely elementary and the details
won't be provided here. Finally,uaA‘ = alu for « ¢ € is also obvious.

A

1.5 DEPENDENCE ON PARAMETERS
L

Let M be a C manifold and let Lm(A)'= z Ai(m))\i be an o.p. with
' i=o0
coefficients depending smoothly on m € M. This means that Ai:M > LX)

is smooth for i = 0,...,2 .

If Vl and V2 are vector bundles over M, denote by L(Vl’VZ) the usual
space of homomorphisms of vector bundles: f£ ¢ .L(Vl,Vz) if £ is a smooth
fibre-presetving map from Vl to V2 and is linear on each fibre.

-

1.5.1. Theorem. Let M and L be as above, and let {y } be a family
L m mmeM

of simple closed contours such that a(Lm) n Y, = ¢ and depending smoothly
onme M in the following sense: for each m e M there exists a neighbourhood
U of moAsuch that for all m ¢ U the portion of c(Lm) inside ' is contained
ingide "y . Then there exists a veétor bundle V+r over M and

m

o

X, e L(V,L0, T_e L(V), Y ¢ L(X,v ) such that,for all me M,((X+)m,(T;+)m,(Y+)m)
is a Ym-spectral triple for Lm.

Proof. Define the projections Pm = PY € L(Xz) as in the proof of 1.1.3:
. m
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I
p =L ;| : oo ). L ())dA
m 2ni * m m’]- m,J?. ¢
Y
m 12-11

Choose m € M. The hypotheses on Y imply that for m in a neighbourhood
of m  Wwe can replace the contour integral over Y in the definition of Pm

by that over Ym . Thus it is clear that Pm depends smoothly on m ¢ M.

[o]

This defines a vector bundle R(P) = {R(Pm)}m e M over M. Now, let

((x+)m,(T+)m,(Y+)n? be the natural ymfspectral triple for Lm with base

-+ . : _ i!,"l
space VL as in the proof of 1.1.3. Also, let Q = col(X+ﬂ;)i=o . Since
m
| + + o+
Qm defines an isometry between VLm and R(Pm) it follows that VL = {VLm}m e M

has a natural vector bundle structure over M. Also, Q;le: L(R(Pm),V: )

m
is given by
' -1
-1 . L t); -1 -
(Qm x)(t) 31 1(.f e 'L M\ C E Lm,j_l_l(k)xj)dl .
' m j=o0 .
Then, one computes easily that
o o=y _ 1 -1 | ' '
(X+Q )m = 21 Yi Lm (>\) (Lm,l(k)"..Lm,l(A)) IR(Pm) dx »
1 1
@), =35m 7 : L ooa ,
Yo . m _
%2—11
AL ;
qroh == s o tooa .. on ar
+ m 27i : m m,1 "m, 8 IR(P ) :
o \ WM "
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L it follows

‘:> Now, since R(P) is an embedded submanifold of M x y
Cthat X0 ¢ L(R(D),D), QIO " ¢ L(R(P)), and QY & L(X,R(P)). This

completes the proof of the theorem.
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CHAPTER 2

The purpose of this chapter is to introduce "reducibility” of ad-
missible pairs and of opefator polynomials and to show how these concepts

are natural for considering spectral factorization (see section 2.3).

In section 2.1, reducibility of admissible pairs is defined and a
sufficient condition for an admissible pair to be reducible is given.
Reducibility of operator polynomials is defined in 2.2 and necessary
and sufficient conditions for an operator polynomial to be reducible are
given in terms of its coefficients and also in terms of the spectrum at
infinit;. These results make it clear that reducibility of operator poly-

nomials is a generalization of operator polynomials simply behaved at

infinity as defined in [8].

Given a reducible admissible pair (X,T) there is -a natural ﬁay to
construct a redﬁcible operator polynomial having (X,T) as finite spectral
pair. This is very closely relat;d to a construction via special left
inversesintroduced in [5,6] (see section 2.5). Also, a reducible operator
polynomial has a natural finite spectral triple, which we call the com-
panion triple in analogy with the case of invertible leading coefficient

discussed in [1,2].

In section 2.4 some simple applications to initial value problems
for ordinary differential equations are obtalned, and we give a generali~-
zation of Lopatinskii's theorem on Y-spectral right divisors. In

section 2.5, inverse'problems for spectral pairs and triples are considered.
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@ 2.1 REDUCIBILITY OF ADMISSIBLE PAIRS

2.1.1 Definition. Let (X,T) be a right admissible pair with base space V
and let D denote a decomposition of its target space: X = Xﬁ & ... @ Xz .

Pi € L(X) will denote the projection of X onto X Write X = col(Xi)i=§ ’

i.

where Xi = Pix,and define

i-1 &

Q% T) = COI(XiTj)j=o,i=l :

If QD(X,T) is invertible then (X,T) is said tovbe reducible with respect

to D . The possibility that some of the X

i are zero is not excluded.

]

| An admissible pair (X?T) is said to be reducible if it is reducible
with respect to some decomposifion of its target.épace. The next pro?
position gives a partial answer as to when an admissible pair is reducible.
In the finite dimensional case it giﬁes a complete answer : (X,T) 1is re-

ducible if and only if N(X,T) = O.

2.1.2 Proposition. LetA(X,T) be a right admissible pair. If (X,T) is

reducible then N(X,T) = 0 and ind(X,T) < « . Conversely, if N(X,T) = 0, .

j);;i)) for 1 = 1,...,% are

ind(X,T)< © , and R(X) and R(XT" |N(col(XT
complemented in X then (X,T) 1is reducible. Indeed, let £ > ind(X,T) and

choose subspaces Xb,...,X of X such that for 1 = 1,..., 2-1

L

1 1-1
X, ® ... ©X, = ROXT |N(col(XTj)j=o)),

X; ®...0X = R,

Xb_ & RX) = X .

‘::‘ Then X = Xo ®... & X2 and this decomposition reduces (X,T).
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Proof. If (X,T) is reduced by a decomposition X = Xﬁ ® ... & Xz

then N(X,T) = 0 and ind(X,T) < £ . Thus the first assertion is clear.
Notice also that Xz # 0 if and only if ind(X,T) = £ . For the converse,
choose subspaces Xi as above (see lemma 2.1.3). Let Qi denote the pro-

jection of X onto Xi+l ® ... & Xi along Xo ® ... & Xi, and let

i,2-1

S = col(QiXT )i = ° Notice that S is obtained from QD(X,T) by a permutation

of rows. Thus it suffices to show that S is bijective.

‘One can easily prove by induction on i that for i = 0,1,..., 2-1

N(col(XTj) ) = N(col(QjXTj)j_o) .

'

Letting i = £2-1 shows that § is injective.

To prove surjectivity of S, let vy € R(Qi) (1=0,1,..., 2-1) be

given. Choose xo € X such that yo = Xx, and then choose successively

xi € N(col(XT )j ) for i+ 1,..., £ such that
i-1
XTx =y, ~ I QXTix .
R i j=o i j "
L _
Let x = . xj, then for 1 = 0,1,..., 2-1
j=o
i
QiXTix= X QiXTix =y, -
j=o 3
-1

Hence, Sx = C°1(yi)i= and the proof is complete.

2.1.3 Lemma. Let E and F be closed subspaces of a Banach space G such

that E ¢ F. If E is complemented in G then E is complemented in F.

Proof. E® M =G implies E & (MnF) =
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2.1.4 Remark. If (X,T) is a right admissible pair such that col(XTj);:i
has a generalized inverse for some i > 1, then R(XTi[N(col(XTj);:i))is
complemented in Xi+1 if and only if R(col(XTJ);=o) is complemented in ¥ .

Indeed, let W denote the former subspace and let S be a generalized inverse

- _ t
i . Ifye R(col(XIj);'=°) with y =( y ) vhere y' ¢ Xi

: 1
of col(XTj) _
| J=o Yi41

and Yi41 € X , then
vy 0
y = +
i i
- C\XT Sy' yi+1—XT Sy'

and it is easily seen that

. i-1 0
Reorxrh? ) = (7. ) v € Reol@@)D}e () .
" j=o i . 3 :
XT Sy .
3.1 1+1
If W is closed in X then R(col(XT )j=o) is closed in X 7, and if W

j)il ) is complemented. Conversely, if the

is complemented then R(col(XT j=o
| 141

latter subspace 1s compleménted in X then (3) is cbmplemented in Xi+1,

and 2.1.3 impliés W is complemented in X .

There is an analogous definition of reducibility for left admissible
pairs (T,Y): given a decomposition D of X write Y = row(YiY;=o and define

, o i-1 g
Ry(LY) = oY L

then (T,Y) is said to be reducible with respect to D if RD(T,Y) is invertible.

2.1.5 Proposition. Let (T,Y) be aAleft admissible pair. If (T,Y) ié

reducible then (T,Y) is surjective and ind(T,Y) < » . Conversely, if (T,Y)

is surjective, ind(T,¥)< « , and N(Y) and (TiY)—l(R(row(TjY);;i)) for i=1,...8
are éomplemented in X then (T,Y) is reducible. Indeed, let % > ind(T,Y) and

choose subspaces’ Xﬁ""’Xz of X such that for i = 1,..., %
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X ®..0X = 1y~ (R(row(TjY) )) and X_ = N(V).

Then X = Xb ® ... O Xz and this decomposition reduces (T,Y).

The proof of this proposition is similar to that of 2.1.2.

Notice that

i- 1 o

e nceor (e iT1° = (Y P Reow (I 20

For future reference notice that if subspaces Xi of X are chosen as

in 2.1.5 then for i = 0,1,..., 2-1

)i

j=o "

J
R{row(T Y) ) = R(row(T Y
IR(Qj)

Also, (T,Y) is reduced by the decomposition X = Xb ®& ... & X£ if and

only if row (TjY is ivertible: Here Qj are the projectors

)i
IR(Qj) j=o
defined in the proof of 2.1.2.

| | | gy i-1
2.1.6. Remark If (T,Y) is a left admissible pair such that row( Y)j=
has a generaliéed inverse for some 1 > 1, then (TiY)—l(R(row(TjY)i;i))
j=o ) is complemented

in‘Xi+1. Indeed, let W denote the former subspace and let S be a genera-

lized inverse of row(TjY)j=o. If x ¢ N(row(T Y)j=°) write x = (: )

i .
]
wvhere x' € X~ and xi+l€ X . Then

—STiY X T x' + STiY x

X

i+l

i+l 0

and it 1s easily seen that

N(row(TjY);'=o) = A Q(N(row(TjY);;i),
0

» _emd
where T STinc) . xeW . }
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If W is a complemented subspace of y then clearly N(row(TjY);'go) is

complemented in Xiﬂ" . Conversely, suppose the latter subspace is com-
plemented in Xi+1. Then, by 2.1.3, it is complemented in
~ —stlyx N(row(TjY);;t)
A= {( ~ ) s xe X} @ ,
x , 0

‘:l.e. ~
A= N(row(TjY);__:o) e B,

for some subspace B. Let C be a complement of N(row(TjY);'_:_i) in xi then

X ° (C) - Xi+1 .
. 0 .
! xt Co 441
Hence A ®M=X , where M=B @& ( 0) . Mis closed in X »

+1

since there 1s a continuous ﬁrojectiori P of Xi onto A such that M = N(P).

Let ﬁ be the projection of M onto the (i+1)St coordina—te, then ')\4' is closed

iv
since M o ( }é ). Now, we can show that

~

WweM =X,
Indeed, W+ M = X is clear and if x ¢ W n M then (: ) ¢ M for some x' ¢ Xi.
Hence o -STiY;E y
G) = . ) + .(0) ,

‘where the first term is in B.

Then X = x ¢ W and so

—STin 1
( ) e N(row(tdy) j=g) 1B = 0.
X

Thus x = 0. This completes the proof that W is complemented in X .
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2.2 REDUCIBILITY OF OPERATOR POLYNOMIALSV

The purpose of this section is to show that given a reducible
admissible pair (X,T) there is a natural way to construct an operator

polynomial having (X,T) as finite spectral pair.

4.2.1 Definition. An o.p. L is said to be right reducible if there is

a decomposition X = Xb ... & Xz such that if we write

. ‘
L(A) = (aij(l))i’j=o , where aij(k) is an o.p. with coefficients in L(Xj,Xi),
then

(1) ajj(k) has degree j with invertible leading coefficient;

(11) deg aij(l) <j fori#ij.

As in 2.1, X1

vacuously in that case.

=0 1is allowed and we regard (i) and (ii) as holding

The next theorem gives a necessary and sufficient condition for L to
be right reducible, in terms of its coefficients. Another characterization
iof reducibility in terms of the spectrum at « will be given in 2.2.6. Notice
that the easy part of 2.2.6 implies that if L is right reducible then o(L)
is compact. This is needed in the proof of 2.2.2.
2.2.2 Theoremz Let L()\) = ﬁo AiA be an o.p. . For 1 é -1,0,..., 2-1

define W, = N N(A,) and also set W, = X . L is right reducible if and
j=1+1

only if

(1) W_l = 0 and Wi is an invariant subspace of Ai,for all i;

(i1) for all i, R(Ai Wi) is'closed and
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R(A, [W.) ® N(A |W,) = W,

Moreover, if 1 is right reducible then there is a unique decompo-
sition of X that reduces L (which will be called the canonical de-

composition of V determined by L) given by

Xi}=’R(Ai|Wi) (1=0,000, 2) &

Proof. First of all, notice that N(Ailwi) =W, for 1 = 0,..., &

and that W_, = 0 if L()) is 1-1 for some r e C .

1

£
Now, suppose the decomposition ¥ = jG Xj reduces L. One can
=0

, i
easily show by induction on g that W, =& X, and X, = R(A IW )
1423 0701 11

for 1 = 0,..., £ . This proves uniqueness of the decomposition re-

ducing L. Also the validity of (i) and (ii) follows.immediately.

Consider the followinélstatemeht: if L is an o.p. Qf degree < ¢
satisfying (i) and (ii) then L is right reducible. We will prove this
statement 1s true by induction on % (Whicﬁ proves the converse to the
theorem). For £ = 0 there is no problem beéause then L(}) = Ao isv
invertible.. Suppdse the statement is true for o.p.'s of degree < 2-1.
If L is an o.p. of degree < £ satisfying (i) and (ii) then

X = N(Az)la Xl where Xl = R(Ak)' Corresponding to this decomposition of X,

0 0
A ‘
0  (I-P)Ay (I-P)

and L) = (Pm)r B (1-B) )
(I-P)L(X)P  (I-P)L(r)(I-P)

where P 1s the projection on N(AR) along Xz "« Notice that

(I—P)AE(I—P) € L(R(Az)) is invertible - it is bijective continuous,
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hence invertible by the closed graph theorem. Now, L(A):=PL(A)P
is an o.p. of degree < f&~1 with coefficients in[ (N(Az)). The
corresponding conditions (1) and (ii)‘for L are a subset of those for L.

The induction hypothesis implies that L 1s reduced by a decomposition

. -1 :
N(A,) = @& X,. Ifi<j<fthen X, cW soA(X,)cW and
) = 2% SR g ¥y s A Sy and
(I-P)AjIXi = 0. Hence
deg(I—P)L(A)P|Xi_g:L—l .
: | .
Referring to (2.2) it is now easily seen that the decomposition X = @ X3
j=o0

reduces L. This completes the proof of the theorem.

Let L be right reducible. From now'on we assume that the leading

- = : j =
coefficien;s of aq (1 =0,...,2 ) are monic, 1i.e. aij 6ijIXj' Then,

aij(A) = 3 a:j'lk for k > j. A finite spectral pair for L will now
k=0

be constructed from its.coefficients. When L is monié (i.e. Xz = X) this

is simply the compaﬁion pair defined in [1].

_ N .
2.2,3 Definitions. Let Vc = & (Xi)i. Elements of Vc wlll be denoted
i=]

1 i i k
1 co;(xi,..t,xi) € (Xi) , and X € Xi

will be called the (i,k) coordinate of x. Let P: eIKVc,Xi) denote the

by x = col(xl,...,xz ), where x

projection onto the (i,k) component. Let Jt C‘L(Xi’vc) denote the

inclusion of Xi into the (i,k) component of Vc' Both the latter definitions

are for 1 =1,..., £ and k=1,...,i. Define, for 1 =20,...,2 ,

€ L(X:L’Vc)" and, for 1 = 1,..., ¢, Ti_e L(Vc,(Xi) )

Xi £ L(Vc,Xi) and Y

as follows:

i
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al I |aO' al al—l )
02 o e 02 02 ”> 00 02 ,

>
L]
1
~
[
(=]
paert
[
o0
N

i
Y; = 0,
Y, =3 @=1,...2)
i i ’ »
0 Iy 0
T.(, i = °
i'(xi) : . Ixi is the
~a° _ai—l
11 °* ° - ii

companién map for aii(l), and

9 . ¢ - 9
TikX.)j = 0 0 for j #1 .
” 3 _.0 -1 . .
TRy - T3

Finally, define Xc E L(Vc’X)f Tc € L(Vc), and Yc £ .L(X;Vc) :

-

L
i=0

such that X col(Xi)

C

o 2
T = col (Ti) i=1 [

- v . |
and Yc | row(Yi)i=l .

The admissible triple (Xc’Tc’Yc) is called the companion triple for L.

The next theorem and its proof give the motivation for these

definitions.
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2.2.4 Theorem. If L is a right reducible o.p. then the companion.
triple is a finite spectral triple for L. |

Proof. First of all, we note an important property of Tc:

k K+l '
Lk S _
Pi:c Pi (k = 0,...,1-1) and also
1.1 i, -1
BT PiT, = | a12 12| cer [ e ) (2.3)

The fact that (X ’Tc) is a finite spectral palr for L is due to
c
1.1.7 and the usual linearization procedure for ODE's. Indeed, if

( )u =0 (where u e C (R,X)) then for i = 0,..., %

L -1
d.i k
(dt u, = z T (dt) uj , and

i j=1 kéo ij

hence for 1 = 1,...,%

L ]
I 3 ak 1 vk

1
vt - - ,
j=1 k=1 9 J

where V= col(vl,..., v )

i-1

uy ).

and V1 = col(ui,..., (

Thus every solution of LG:%?)u = 0 has a (unique) representation of
the form u(t) =.Xcetcho for some v, € Vc » and as usual the converse

is true. Therefore (Xc’Tc) is a finite spectral pair for L.

It remains to show that for k = 0,..., -1

! AkL—l(x)dA = ch:YC (2.4)
r
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where T is a large contour containing o(L).
From the remarks at the beginning of the proof:

Pi(chEYc)Pj = xiTiYi

i#]
0 1=3 k=0,...,4-2,1 > 2
= I, i=3 k=i-1,121
i |
0 i=0.
_1 £
Also, we can write L(A) =M(A 7) ( I Aum) where M(1A) is an o.p.
m=0
such that M{0) = I. o
| -1 - -1
Hence P,L (AP, = P, (I A TP M(X )P
i J 1 meo ~o i
22
= Pi( I A m)Pj + () .
i=0 :
I é(X)
13 i ’

>

where e€(d) + 0 as A >« .

Thus for k = 0,1,...,1i~1

i 4 = PchTﬁYch .

p, A Yo)ar b
T

We claim that this implies (2.4). Indeed, since (XC,TC)'is a finite

spectral pair for we know (1.1.7) that there exists 5; € L(X,V) such

for all k = 0,1,...

s Yooa = x T
T . c c C

;that
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Thus 0 = QD(XC,TC)(ch-Yc) = Yc -Yc, where D is the canonical de-

composition of L, so Yc = §c and the theorem is proved.

We now show that given a decomposition of X reducing an admissible
pair (X,T) there is a natural way to construct a reducible o.p. with

finite spectral pair (X,T).

2.2.5 Theorem,

(i) Let L be a right reducible o.p. An admissible pair (X,T) is a

finite spectral pair for L if and only if

L

i
z AiXT = 0'
=0

and the canonical decomposition of X determined by L reduces (X,T)

(i1) Conversely, let (X,T) be an admissible pailr reduced by a de-
composition D of its target space X . There is a unique right reducible -

o0.p. L with canonical decomposition D and finite spectral pair (X,T).

. L
Explicitly, if D is the decomposition X = & Xj then
J=o
L) = (a,.0Nn*
ij i:j=° - )
. -1
3o k .k
a, A) =8, 21+ I a,, r ,
ij ij P &
k i k+l '
aij = - XiT Vj . (2.5)
where V§ € L(X&,V) for j = 1,..., £ and k = 1,...,] are defined via

-1 kj &
(Q,(X,T)) = r°W(Vj)k=1,j=1 .

Also (X,T,Y) is a finite spectral triple for L where
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L
Y = row (Yj)j=o .
Y =0,
o
and Y, = V3 G =1,0..,2) .
v h| k| ?

Proof. (i) Let (X,T) be a finite spectral pair for L. By definition,
2 ,
T AiXTi = 0. Also, (X,T) is similar to the comparison pair (xc’Tc)
i=o '
of L so it is clear that D , the canonical decomposition of X determined

by L, reduces (X,T).
. : 13 .
Conversely, suppose (X,T) is an admissible pair such that I AiXT =0
i=o
and D reduces (X,T). Let

-1
§ = QX,,T) = Qp(X,T) .

S ¢ L(V,VC) is invertible and I claim that X = XcS and T = S—chS.

vThis can be calculated diréctly but we use a trick to simplify the proof.

chS. If x € V define u € V; by u(t) = Xe™Tx . There

Let i = XCS and,? =85
. . tT tT, . .
is a unique y € Vc such that Xe "'x = Xce y . Differentiating both sides

of this equality several times with respect to t yields

QD(XC’TC)Y = QD(XsT)X .
 Hence, xetT = x etTes = xetT .

[

Agéin, differentiation with respect to t yields

~ A

Qy (X, DT = @)X, DT = Q(X, DT .

Hence, T = T and X = X. This proves that (X,T) is similar to (Xc,Tc),

showing that it is a finite spectral pair for L.
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2
i,j=0

canonical decomposition D and finite spectral pair (X,T) then one can

(11) If L(A) = (aij(k)) is a right reducible o.p. with

show that (2.5) holds, thus proving uniqueness. Indeed, without loss

of generality (X,T) = (Xc,Tc), the companion pair of L. Since
k
QD(XC,TC) = I, then Vj

and for i = 0 from the definition of Xo. Now, given any admissible

= J? and (2.5) follows from (2.3) for i > 0

pair (X,T) reduced by D simply define L via (2.5). For i = 0,...,%

3 ')
P, : Aerk = 5 I atj ijk
k=0 k=0 j=o
') . -1
' = 3 cijAjXTj - XiTi I I v§+1ijk
j=o . .3=1 k=0
= 0.

Hence % AkXTk.= 0 and (i) implies that (X,T) is a finite spectral
pair fot—z.- Finally, 2.2.4 proves that the companibn triple (Xc,Tc,Yc)
is a finite spectral triple for L. It follows that (X,T,Y) is a finite
'spectral triple for L since X = XCS, T = S-chS, and Y = S—ch wherg

S = Q,(X,T).

The next theorem gives a characterization of right reducibility in

terms of the spectrum at « .,

2.2.6 Theorem. iet L be an o.p. of degree < 2 .
The following statement are equivalent:
(1) there exists an invertible C tiL(X) such that CL{}) is

right reducible;



(11) there exist mutually disjoint projectors P:I. e L(X) (1 =0,...,%
' L L g1 »
such that I = Pi and L(A) (£ A Pi) is an o.p. of degree % with
i=o0 i=o '

invertible leading coefficient;

(i1i) o(L) is compact and if (Xb’Tm) is a spectral pair at « then

R(X_ T0) is complemented in X for all i = 0,1, ... and for i = 1,2,...

RETH = RG T N1 (1) 120 (2.6

Proof. The equivalence of (i) and (ii) is obvious.

~ L 2'ﬂ! ~
Now, let X, =X ., and let Pk e L(® X )j,X ) be defined as in 2.2.3.
k| -3 i j=o ki i
(ii) » (1ii). If (ii) holds then there is an o.p. M(X) with M(0)
, _ ) 3 |
invertible such that L(A) = M(A 1) (I AiPi) .
i=o .
Then, T =2 o™y - )
A A i
= M(A) (£ A i -
i=o _

Thus for-(Xw,Tm) we can take (in block operator form)

L
® (xi)i
i=o

<
]

>
X col(Xi)i____o

~ 2
diag(Ti)i=o

=]
|

and
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~

where i; € L(Vu,ii) and '1'i eL((E;)i) are defined by
X =0
°
X, = Pt (1=1 2)
1 i ,".,
and 0 Ijr
~ i
Ti = - A=1,... 2)
Xi
0 0

and also Ti = 0, It is now clear that for i = 0,..., 21

i ~ ~
X o
and R(XTD) = R(X T N S ).
x 171

This proves (iii) .
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(1i1) » (41). Define a decomposition of X as follows:

X = rx_TH

i+1 0»..' Q X

2

for 1 = 0,..., %1 and

X, ®R(X) = X .

The hypotheses of (iii) and proposition 2.1.2 imply that this decomposition
reduces (X _,T ). Thus, by 2.2.5, there is a right reducible o.p.

2' .
Ll()\) = (bij(l))i’j___o with finite spectral pair (Xm,Tw). Here

. .
b, (M) =6, M1y + I b Ak
1] 1] Xj " k=0 1j
and b = - X, T for k=0,...,4-1 and § > 1,
ij 1w j -
here X = ¢ 1(;( )9' -
whe : © e L
and the 5? € L&j ,Vw) are defined as in 2.2.5. We want to show that all
bfj =0, i.e. EiTi = 0 fori=0,..., &. Notice that the
hypotheses of (iii) imply Ti = 0, so ')v(%‘l‘: = 0. Also, for 1 = 1,..., 21,
P § i
XT, = Py XTI
i
= 0
and ’}v(o = 0. Hence
2oy
Ll()\) = iz A P'}‘('i .

Now, since T* = 0, 1.3.5 implies that

L(A) = MQ) Ll()‘),
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for some o.p. M(X) with M()) invertible. Thus if we let P1 = Pj;_i
. :

£ o4
for 1 = 0,..., 2 then I.= [ Pi and L(A) (£ Az iPi) is an o.p. of-
i=o i=0 - '

degree % with invertible leading coefficient.

This completes the prpof.bf the theorem.

" There are definitions and results dual to. those above. An o.p. L
is said to be left reducible if there is a decomposition X = X; 6...6 X2

such that if we write L()\) = (ai (l))z ()\) is an o.p. with

j i,§=0’ where ai

3

coefficients in L(X&,X&),'then
(1) pij(l) has degree j with invertible leading coefficient;
- (i1) deg'aij(k) <i fori# 3.

If L is left_redudible then the spectrum of L is compact. One can
define a companion triple ﬁXC,TC,Yc) for L in the obvious Qay (for thg
sake of brevity this definition is omitted). A quick proof ﬁhat this
triple is a finite spectral triple for L can be given by duality. Indeed,
,L* is a ;1ght reducible o.p. and (Y:,T:,X:) is the comparison triple for L*.
Hence, by 2.2.4, (YZ,T:,Y:) is'a_finite spectral triple for L*. Take
the transpose of fhe_conditions satisfied by.’(YZ,T:,X:) and restrict to X ,

then it follows that (Xc’Tc’Yc) is a finité spectral triple for L.

2
2.2.7. Theorem. Let L(A) = £ A.Al be an o.p. For i = -1,0,..., 21

) o 1 :
define ﬁi = 4+ R(A,) and ﬁi =0, L is left reducible if aﬁd only if
j=t11 3
(1) ﬁ;l = X and ﬁi is an invariant subsﬁace of Ai for all 1 ;
1) GOIED W = W fori=0,..., % @)
BOTHHY + W = X fordi=1,..., 8 (2.8)
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.

.  ;
Proof Suppose L is reduced by the decomposition X = @& Xj . Then
J=o

o(L) is compact which implies w_l = X . Also, one can show by in-

duction that .
W o= © X
i j=1+1 3
and @ Xj (Ai)-l(wi) “for 1 = 0,000, £ .
j#

Hence (i) and (ii) follow immediately.

éonsider the following statement: if L is an o.p. of degree < %
satisfying (i) and (ii) then L is left reducible. We will prove this
statement is true by induction on % (which proves the converse to the
theorem); Fo; 2 = 0 there is no problem because then L(A) = Ao is in-
vertible. Suppose the statement is true for o.p.;é of degree < f-1.
If L is an o.p. of degree < % satisfying (i) and (ii) then X = N(Al) o X

L
where Xl = R(Az). Corresponding to this decompositionm of X ,

0 0

0 (I—P)Al(I—P)

and : PL(A)P PL()) (I-P)

LG) = (2.9)

(I-P)L(A)P (I-P)L(}) (I-P)

where P is the projection on N(Az) along Xz .

Now, i(A): = PL(A)P 1is an o.p. of degree < -1 with coefficients
in LX) where X = PX and we will show that (1) and (ii) hold for this

o.p. and then apply the induction hypothesis. First of all, write
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_ ©-1_ _ -1 _
L(A) = I Aik 4 Where Ai = PAiP , and set Wi + R(Ai) for
i=o0 j=i+l

1=0,..., -2, and W,_, = 0. I clain that ¥, = PW, for 1 < 2-1.

Indeed, ﬁi < P‘ﬁi is clear for all i and if ﬁi = P'V;I’i for some 1 < 2-1

= R(Ai) + ’ﬁ we have

then since ;J N

i-1

PV, c© R(PA)) +PW

i-1 i

In

R(PAiP) + R(PAi(I—P)) + ﬁi

In

R(Ai) + wi

< Wi

(notice that X, cw i-1 -1

and thus the claim is proved by induction on i, the case i = £-1 being

so Ai(Xi) E_ai for 1 < £-1). Hence PW, . =W

obvious. Now, one can show that (i) and (ii) hold for L:

(1) First of all, W, =PW , =PX =1X.

1
Since ?ﬁi' S W+ (TP,
c 'ﬁi + Xz
W,
we deduce that W g;- . Hence Pla is a projector in 'ﬁi with kernel X
and range ﬁi It follows that Wi is closed and W:L ] X = W for 1 < - 2-1.
Also, Ki(ﬁi) PA (W ) PWi ﬁi so Wi is an invariant subspace of Ai ;

(ii) The fact that ﬁi is an invariant subspace of Ki is equivalent to

T - - -
< (a) "W)oo W ., since W

=1

- _ - =1.- -
i < wi—l . Now, if x¢ (Ai) (Wi) n wi—l then
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Aix = PAiPx + PAi(I—P)x + (I—P)Aix

Hence x € Wi so X =Px € Wi .

-1~ ~
X= (AW + W _

Thus (2.7) holds for L. Also

1 implies

- _l ~ ~
= P(A ,
X (Ap ") +pw,

- =1.= -
s @) ") AW,

for 1 = 1,..., 2~1 and thus (2.8) holds for L . Thus the induction

hypothesls implies that L is reducible, i.e. there exists a decomposition

-1 .
X = @ Xj that reduces L. By the first part of this proof
j=o |
_ -1
Wi = @& X,
j=i+1
. ~ L
and hence W1 = @& Xj .
J=1+1

If we notice that Aj(Xz) E_ﬁj, i.e.

PA,(I-P) = O (i_<_.j_f_2)

P
Xi 3
or . deg Py PL(V) (I-P) < i-1,
i
‘ L
and refer to (2.9) it is easily seen that the decomposition X = & Xj
= =0

reduces L. This completes the proof of the theorem.



2.2.8 Remark By induction on £, starting with the fact that Xz = R(Az),
. one can also prove that if L is left reducible then there is a unique

decomposition of X reducing L.

The next theorem is the analogue of 2.2.6,
2.2.9 Theorem. Let L be an o.p. of degree < 2 . The following statements

are'equivalent:

(1) there exists an invertible C € L(X) such that L(A)C is left reducible;

(ii) there exist mutually disjoint projectors P e LX) A=1,...,8)
L

such that I = I Pi and ( E f iP )L(A) is an o.p. of degree % with in-
i=o i=o0

vertible leading coefficient;

(iii) c(L)'is compact, and if (Tw,Yw) is a left spectral pair at © for L
. then N(TiYw) is complemented in X for 1 = 0,1,2,... and for i = 1,2,...

NeTY ) = (riy )" (R(row(TiYw)J=o)) .

2.3 SPECTRAL FACTORIZATION.

Let L be an o.p. and Y a simple closed contour not intersecting o(L).
The purpose of this section is to give a neéessary and sufficient condition
for L to have a right factorization with respect to y . Gohberg, Lerér, and
Rodman [7,8) considered the caée of canonical and quasi-canonical facgori-
zation. First we need some preliminary results, which are of independent

interest also.

2.3.1 Theorem. A left admissible pair (T,Y) is the left finite spectral

pair of a right reducible o.p. of degree < ¢ if and only if row(TjY)j -0
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has a generalized inverse for 1 = 0,1,..., %2 , and is right in-
vertible for 1 = 2-1.

Proof. We first establish some notation. Given a decomposition

3 1 - L :
X= @& X set Wi= ) j& for 1=0,,.., % and Wi= ® x, fordi=0,..., %1,
J=o ] j=o _ j=i+1 k|

Also,let W;1=() and W2 = 0, Define Pij € L(Wj_l,Wi_l) as the natural pojection,

and notice that Pi+1,i Pij = Pi+1,j .

Now, if (T,Y) is the left finite spectral pair for a right re-
ducible o.p. L of degree < £ , then without loss of generality (Y,T) = (Yc’Tc)’
the left companion pair for L. After a moment's reflection it is clear
that there is a permutation of blocks ¢ € L(VC,V) such that if we let

Y = oY and E = OT 0_1 then
c c

P10
¥ =0
.0 i
and _
- 1 2 . o Mz_l M2
: P 0 eee O 0 :
~ 21 :
32 .
. 0
ke - 0 Poa-1 O
where Mj € L(wﬁ—l’wo) are given by
2° 1 al—j
1 21,3+ 0 P1p
ao al az-j :
Mj - _ 2] 2,3+ %z ] (2.11)
2° 1 ]
23 28,541 0 B
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Now, for simplicity of notation, and without loss of generality, we

- assume (Y,T) = (Y;}) and V = V. A direct computation shows that for

i = 0,.00’ 2-1

1 2 i
?10 Nl Nl cee Nl
2 i
0 P20 NZ L N ] NZ
..tpn=| ¢ O P30 .
L] - o ¢ *
. * i
. . : . Ni
Pie1,0
. 0 0 0 0
0 o0 0 0
k ~ _ 3oL~
for some Nj EvL(Xst_l)- N?tice that N(Pj+1,0) = Wj and Pj+l,0|“5 —IRB ;

thus
~ (i-1
1(W,),
col( j)J=o

R(Y...T "Y)

o..lto

is'complemented in V and

i

i-1 ~ \i-1
Y)G)col(wj)j___o = X .

N(Y...T

Hence row (TJY);;i has a generalized inverse for 1 = 1,..., & and is of

i

-1
3=’

course surjective fori = R. As an aside, notice that Wi = (TiY)—l(row(TjY)

and X6 = N(Y).

Conversely, suppose row (TjY)§=o has a generalized inverse for

: 2
i=0,..., £2-1. Due to remark 2.1.6, there exists a decomposition)y = @ Xj s
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chosen as in 2.1.5, that reduces (T,Y) . For i =1,..., £ let
~ 1-1
wi roy (TJY|W3)j=° .

Then ¢2 is invertible, wi is left invertible (L = 1,..., £-1) and,

for some Mji € L(Xi’wj—l) (3 =1,...,1), we have

1 i
T lei = ¢i col(Miji)j=l .
Then
Mg 0 M, 00 LMy, 0 M,
' -1 _ 0 IZ M, 0 ..M 0 M,
vy To, = W, 22 2,8-1 22
0 Ty, v (2.12)
My1,9-1°
o Ly Mgy
W1

In other words, if M denotes the right hand side of (2.12) we have to show

yM=T, .
Now, for j =1,...%

TV, |§j*l = T'rj'lvﬁj_-l

j j
(T YIXj T YI’W‘J

(recall X, & ﬁB =W ) and
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5 o\
wMI'v = w * L ]
LW L
-1 M 0
3 I
L
0 0
0 0
- . j ~
= ('pj col(Mij)1=l Tlewj )_
Hence TY = ¢y M for all j, so Ty, = ¢ M.
elv,_y ) le_l | 2= Y
0 I ~ ,
Also, ¥, [ o o | = Ylwo) =Y
0 0
P10. ’
and thus wz—lY = 9 .
0
. : IS -1
At this point we apply 2.3.3 with Vj = Wj to obtain y ¢ L( ® Wi)
. i=o0
and.M.:l € L(ﬁj_l,ﬁo) as in the lemma. Let ¢ = wz w—l, then
= -1 -1 ' |
o Tp = w(wl Twl)w and is equal to the same expression as in (2.10).
o [ P10 10
Also, Q 1Y = ¥ 0 = 0
0 ' 0
Now, defining a?j (i, =1,..., &, k =0,...,3-1) so that (2.11) holds
and choosing agj (G=1,0.., ¢, k=0,...,j-1) arbitrarily in L(Xj,X6)

we obtain a right reducible o.p. L with (T,Y) as left finite spectral

pair if we define
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LO) = Gag (0 4
-1
- k) ; k ,k
where aij(A) Gij A IX,j + kio aij )

2.3.2. Theorem. A right admissible pair (X,T) is the right finite

spectral pair for a left reducible o.p. of degree < £ if and only if
i

J=o
left invertible for i = 2-1.

col(XTj) has a generalized inverse for i = 0,1,..., %2, and is

Proof. If (X,T) is the right finite spectral pair for a left reducible
0.p. L then, as in 2.3.1, using the explicit form of the right companion
pair for'L, one can show that col(XTj);=o hhas a generalized inverse

for 1 = 0,1,..., 21, and is of course injective fpr i= ¢1.

i1

)j=0
i=0,1,..., 2~2 and is left invertible for i = %2-1. Due to remark 2.1.4,

. A ) )

there exists a decomposition X = ® X , chosen as in 2.1.2, that reduces

2o 3

Conversely, suppose col(XT has a generalized inverse for

(X,T). For i =1,..., ¢ let

-

i-1

3
xt) )

b, = col(Qj

where the projectors Qj are definéd as iﬁ 2.1.2 with.R(Qj) = ﬁj' Then ¢£

is invertible, wi is right invertible ({ = 1,..., £-1), and, for some

Mij € L(wj-l’Xi) = 1’...fi)’ we have
i i
PiXT = row(M.ij)j=1 ¢i .
Here Piyis the projection of X onto Xi' The construction of a left

reducible o.p. L having (X,T) as right finite spectral pair is now

completely analogous to 2.3.1 and the details are omitted.
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2.3.3. Lemma. Given a decreasing sequence of subspaces

' V°_3 Vlfg ves 2 Vz_l_g Vv, = 0, and subsyades Xi 1=1,...,2)

such that Xi o Vi = Vi~1 and operators M , € L(X ’vi-l)’ i<},

o 13 3
define the operator M € L( & Vi) as in the right hand side of €2.12).
' -1 i=0 : :
1 - |
There exist ¥ € I( 12; Vi) and Mj > L(Vj-l’vo) 3=1,...,2)
such that
Ml Mz e e N \Mz
wM = [ Fap O ° 1y , (2.13)
32 v,
l“ ‘ P 0

“and in block matrix form Y is upper triangular with identity along the

diagonal.

£
L .
Sij)i,j=l’ where Sij € (vj-l’vi-l)’

Sij =0 for i >3, and Sii = IV . Now, direct computation yields

i-1

-

N1 S12 Mg S13 e0e M1 S M
wo = [0 Ty Ny Bpy e No,-1 Son N
0 1 : . ;
v . S : :
0 Iy, e-1,0-1%0-10M 0
o I, N
v, ) a8
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where Nij = mii Sim Mmj, J.Z i; i= 1)"-9 L.

Also, the right hand side of (2.13) is

n n
MM, - - . M, M,
: | : | P..S P,.S
- . 2171,48-1 2112
Por P2iS12 : ‘L L
P..S
P13 P32523 ' P3252,0-1 32522
L} ° ¢
0 P P 3 - P S
g-1, 8-2 9-1,0-2°8-2,8-1  2-1,8-2°2-2,8
Pl,l*l P£,2~lsﬂ—1,2
o i1 ' o
where Mj = E MmSmj + Mj (G =100, ) .
m=1
Let Pij € L(Vj-l’vi—l)’ J_§;i, be the natural projections. Now,
choose Sl—l,le L(Vl-l’v2—2) such‘that Pl,l—l.sz—l,l = sz.
Having chosen 535 L(vj_l,vi_l) for i = k,k+l,..., ¢-1, j = i+l,jf.,2
choose» Sk~1,j € L(Vj—l,vk~2) for j = k,k+l,..., 2 such that
(Nkksk,j+1) 3 = k,ktl,..., zil

P k-15k-1,5 =

This defines the components of ¥ by induction. Finally, M, G=121...,2)

h|

are defined successively such that
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31 My Sp,5e0) 37 Loeees 271
Mj + I Mmsmj =

There is an analogousvlemma needed for the proof of 2.3.2, but for

the sake of brevity this is omitted.

For the main theorem on spectral factorization we need the following
simple lemma. The proof is standard. |
2.3.4 Lemma. Let Ce L(X,Y) and Be L(Y,Z) where X,Y,Z are Banach
spaces, and set A = BC. If C is right in?ertible then A has a generalized

inverse 'if and only if B has a generalized inverse.

2.3.5 Theorem. Let L be an operator poi&nomial'pf degree < £ and y a
simple closed contour not intersecting o(L). Then L has a right factori~

zation with respect to y if and only if

oy @ A Ina (2.14)

ATL

-

" has a generalized inverse for 1 = 0,1,..., 21 .

Proof. First of all, the statement of the theorem can be expressed in
terms of spectral pairs. Let (X+,T+,Y+) be a ¥ —spectrél triple for L.

Since (2.14) is equal to

col(X+Ti)i

j=o' row(T_::_Y_'_);?’;]; N

and the second factor is right invertible, lemma 2.3.4 shows that (2.14)
has a generalized inverse if and only if col(X+Ti);go has a generalized

inverse.
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Without loss of generality, O is in the interior of y . Suppose L

has a right factorization with respect to Y @

\Y Ki
L) =L (I oATe) L,
_ i=

+ + :
where L YV F - GL(X) are continuous, and holomorphic in F~ . Let
i=1

I claim that L+ is an o.p. and LI

A" .
L, () = ( £ A"Q) L (1) . Without loss of gemerality, L_(=) = I.
is a left reducible o.p. . Indeed,

VoK a1
SRR ERCRICRR AN

The right hand side is holomorphic in F and the left hand side is
holomorphic in F+\0 with at most a pole at 0. Hence L_ is a polynomial

in k—l and, in fact, QiL— is a polynomial in A-l’ of degree < Ki' Thus
Ki_z 0 because otherwise QiL— = 0 which implies L_ 1is not surjective
for X e Yy , a contradiction. It is now easy to see that L1 1s a left
reducible o.p. Similarly,

v =K

Lty ( zoa
1=1

i
Q) = LM

-

and it féllows that L, is an o.p. and k, <% fori=1,...,V.

i
Now, since L = L+L_ is a y-spectral factorization, 1.3.2 implies (x+,T+)

is a right y-spectral pair for L

col(X+Ti);=o

1°

has a generalized inverse for i = 0,1,..., 2-1.

But o(Ll) g_F& so 2.3.2 implies

Convérsely, suppose col(x+11);=o has a generalized inverse for’

i=0,1,..., 2~1. Then 2.3,2 implies that there 1s a left reducible o.p.

L, of degree < 2 with right finite spectral pair (X+,T+). If (X ,T ) is a

1
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right spectral pair at = for L1 we know that T: =0 and so 1.3.5

implies L, is a right divisor of L, i.e.

1

L) =L, ML, Q)

for some o.p. L+ which is in fact invertible in y v F* by 1.3.4 . Also,

3
L.(AD)=( £2A
1 i=0

1
P) L (V)

for some L , an o0.p. in A-l of degree < &, which is invertible in Yy u F-;

1 is the projection of X onto the component Xi in the decomposition

of X that reduces Ll. Thus i has a right factorization with respect to y.

‘This completes the proof of the theorem.

here P

Similarly, we have

2.3.6. Theorem. Let L be an operator polynomial of degree < 2 and vy a

simple closed contour not intersecting o(L). Then L has a left factori-

zation with respect to y if and only if

1
A T L’l(x) aI ... anya
271 .
Y : -
2l

has a generalized inverse for i= 0,1,... £-1 .

2.3.7. Example. Let X_é Xo © XZ’ Ae L(XZ’XO)’ and

I -AX

L 1is a right reducible o.p. with o(L) = {0} and the companion triple

vfor L 1is
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0 A
X = .
IX 0
2
0 I -
T = X2 ’
o 0
0 0
T = v .
0 I
X

Now, R(X) = R(A) @ X, and N(X) = N(A).. Since the pair (X,T) is reducible

2
(whatever the choice of A) the hypotheses of the second part of 2.1.2 are
not necessary. But, L has a right factorization relative to v, where y is

a simpie closed contour containing 0, if and only if A has a generalized

inverse. Notice that L always has a left factorization relative to y (cf. [11]),

The partial indices (right or left) are always unqiue; this is proved
by a standard argument using Liouville's theorem. The next two theorems

show how to determine these indices.

2.3.8. Theorem. Let L be an operator polynomial of degree < £ and v a
simple closed contour not intersecting o(L). Suppose L has a right
factorization relative to y . For i = O,l,..;,l let
1-1 '
Mi = {/ 2L “(WM)f()dx; £ 1is a polynomial of degree < 2-1
Y , |

such that S AJLTT0E0A = 0 for 3 = 0,1,...,1-1}.
Y . .
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Then Mo’Ml""’ME is a decreasing sequence of complemented subspaces of X
and 1 {s one of the right partial indices for L relative to y if and only

i c .
tEM M,

Proof. Let (X+,T+,Y+) be a y-spectral triple for L. One can show easily,
-1
J=o0

since row(TiY+) is surjective, that

i-1
j=o )

- 1 3
M, = R(X,T |N(col(X,T}) .

It follows that M is a complemented subspace of X and there is a decom-

£
position' X = & X, such that,for j=0,..., 21,
| joo 3
Xjp1 @ ... 0 X, = M,
X e-M = X
o o

- (see the proof of 2.3.1 and 2.3.2 ). Now, i is one of the right partial -
indices %or L relative to vy if and only if Xi # 0, which clearly holds

if and only if Mi g Mi—l .
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2.3.9 Corollary. Let the hypotheses be as in the theorem, and let k

. be a positive integer. The right partial indices of L relative to Yy

are > k 1f and only if

I - L'l(x)- aI ... A’Hl)dx

is surjective, and are < k if énd only if

I .
NC S| . iy ... ¥ nay c N( [ Aoy @ ... Y Ina ).
Yy{ . . Y
A1y

Proof. From the proof of the theorem one sees that the right partial
indices are > k if and only if Mk—l = X, and are < k if and only if

Mk = 0, from which the corollary follows easily,._

It is customary in finite dimensions to use a basis in X to write
< .
the middle term in a factorization for L in the form diag() i);=1 , where

n=dimX and «k, < ... < K- Now, let

1 —— —
I
. q = rank S| oy @ .. M na
Y| 4o
ot

(1=1,..., &) and let q, = 0, then dim M, = q ., - q,. A simple

counting argument based on the proof of 2.3.8 shows that

kK, = card {1i > n-j+1}

i 3941 T Yy
for j = 1,...,n, which is the formula of [9]. Furthermofe, 2.3.9 can be

regarded as a generalization of Lopatinskii's theorem [2, theorem 21].
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‘:} 2.3.10. Theorem. Let L be an operator polynomial of degree < ¢ and vy
. a simple closed contour not intersecting g(L) . Suppose L has a left

factorization relative toy . For 1 =0,1,..., £ let

1 I
M o= (x osf AiL'l(x)dA xe R( /| : oy a.. athayy.
Y =g : v| a1y

Then‘ﬁb;ﬁl,...,3a is an increasing sequence of complemented subspaces

of X and 1 is one of the left partial indices for L relative to y if and only

1EM_ ZM.

-1

Proof. Llet (X+,T+,Y+) be a y-spectral triple for L. Since col(X Tj) -0 is

+ 4+ 4

injectiée, one can show that

S gedy 1 Jo yi-1 40
My = ()T RGrow(TyY ) 70 ))

~

Hence Mi is a complemented subspace of X and there is a decomposition

L -
X = X, such that,for-i = 0,1,..., 2,
=0 J : :
Xo ... 0 Xi = Mi .

Now, 1 is one of the left partialAindices 1f and only if Xi # 0, which

holds if and only if Mi—l ; Mi .

2.3.11 Corollary. Let the hypotheses be as in the theorem, and let k
be a positive integer. The left partial indices of L relative to y are

.> k if and only if
I
. —1
f L-()a ...

Al

xk'lz)dx

is injective, and are < k if and only if

‘:;
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oy a... ¥ nay

.

R (J » oo < rU
Y ’ Y
91

\4-1 | A

I

Proof. The right partial indices are > k if and only if ﬁk—l = 0, and are

< k 1if and only if ﬁk = X , from which the corollary follows easily.

Let us return to example 2.3.7. We can determine the partial indices
of L for various choices of A ¢ L(X ,XA). The left partial Indices L
(rglative to a simple closed contour containing 0) are always O and 2.
For right factorization, assuming A has a generalized inverese, we have

the following cases:

right partial indices

A invertible .  1
N(A) = O;R(A) # Xo , ‘ 0,1
N(A) # O,XZ;R(A) = Xo 1,2 .
N(a) # 0,X,3R(A) # X~ _ 0,1,2
A=0 ' , 0,2

>

2.4 ORDINARY DIFFERENTIAL EQUATIONS

2.4.1 Proposition. Let L be an o.p. and Yy a simple closed contour

m .
such that o(L) ny =4 . Let B(}) = I B.AJ be an o.p. with coe-
j=o |
fficients Bj e L(X,Y), where Y is a Banach space. Then the following

statements are equivalent:

+ N
(1) For any y € Y there is a unique u € V. such that B(—g—)u =y;
Jor @ L dt ’ " lt=o
n .
(i1) If (X,,T,) is a y-spectral pair for L then I B,X, T3 is
Vi Ty oo IHH

invertible. .
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Proof. V+ is the set of all u ¢ CNGR,X) such that u(t) = X etT+x

L
= ( Tj)x .

tT
- +
for some x. Also, if u(t) = X, e lt =0 j=0 j Xehs

~E +

x then B(

The proof of the proposition i1s now obvious.

For the rest of this section we will assume X is finite dimensional.
First, a result that generalizes theorem 21 of [2] is given and then we

prove an extension of 2.4.1.

2.4.2 Theorem. Let L be an o.p. of degreé‘i 4 and y a simple closed
contour such that o(L) ny = ¢ . Let (X+,I+) be a y-spectral pair of L
and let D be a decomposition of X. Then the following statements are

equivalent:

. + . -
(1) There is a y-spectral right divisor L ‘of L that is reducible
with canonical decomposition D ;

(ii) D reduces (X ,T ) 3

(iii) f B (A) L (A) (I... 2_1I)dl is surjective, where BD is the
. k . .
o.p. with coefficients in L(X @ (X )j) (here D is the decomposition
K 3=1

X= 0 Xj) defined by B (l)l X, =0 and for i = 1,...,k

. j=0
5,00, = erdr )it apt o @y
D Xi i j=o i j=1 J

In

Proof. The equivalence of (i) and (ii) is true in infinite dimensions

and is a consequence of 1.3.2 and 2.2.5. Also, D reduces (X+,T+) if and
: : m m
only if I B.X 'I’j is invertible, where B_(A) = I B,Aj . Thus:the
j++ D _ i
j=o j=o
equivalence of (ii) and (iii) follows from 1.1.3 (ii)' and the fact that

-.1 m
/B (VL M ... ¥ nay = ¢ : B.X Tj)(Y
Y J—o ,

2—1
+ Y+)'
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2.4.3 Theorem. Let L be an o.p. and y a simple closed contour such
that o (L) ny = §. Let.p+ denote the number of roots of M: = det L

m

inside vy (counted according to multiplicity), and let B(A) = I BjAj
, j=0

+
be an o.p. with coefficients B, in L(X,Cp ). Take Y = ¢ in 2.4.1,

3

then (i) and (ii) of 2.4.1 are also equivalent to the following statements:

(iiid) J B(A)L~1(A) (I... Xz_lI)dX is surjective, i.e. has rank p+;
Y

- +
(iv) Factor M as M M+ where M contains all the roots of M inside ¥y.

Let LS denote the e.p. such that

LOILS(A) = LS)LO) = M) .

Then the rows of B(X) LC(A) are linearly independent modulo M+(A).

Proof. The equivalence of (i) and (ii) is proveﬁ as before. Notice
that dim V: = p+ so existence is equivalent to uniqueness in (i). A

similar statement holds for (ii). The operator in (iii) is equal to

m ' .
m 2~ t ) :
( io Bjx+I+)(Y+ ...T; 1Y+). Using 1.1.3 (ii)' the equivalence of (ii)

|
and (iii) follows easily.

(1ii) =» (dv). If x ¢ Cp+ such that xB(A)LC(A) = P(k)M+(A) for some

' X-valued polynomial P, then xB(A)L-l(A) is holomorphic inside y and so

x £ BT a ... ¥ lnpa = o.
Y

Thus (iii) implies x = 0, and (iv) holds.

(iv) = (iii). There exists a reducible y-spectral right divisor L+
of L, by 2.4.2 and 2.1.2. Also (iii), and hence (iv), holds if B is
replaced by BD.’ where D is the canonical decomposition of X determined

-+
: +
by L . Write B=qL +R
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where Q and R are operator polynomials aﬁd, with respect to the de-
k .

< L4
F15%1,3=0 TRE
unique p+ x p+ matrix S such that R(}) = SBD(A). Now,

composition D , R = ( with deg r Then there is a

r st toa... A lna=s s BD(A)L'I(A) (1.. ¥ T nax
Y Y

is surjective, which implies L is invertible. Since L = L—L+ for

. _ + _
some o.p. L then L = (L )c(L )c and

Bt = Uit + SBDLC
=8 BDLC modulo Mt .

Hence BL® 1is linearly independent modulo M+.

With the assumptions as iﬁ 2.4.3, an o.p. B with coefficienté in
L(X,Cp+) is said to cover (or complement) L with respect to vy if (iv)
is satisfied. This is the condition used by Agmon,Douglis, Nirenberg
in their paper: "Estimatés near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions II",
Comm. Pure. Appl. Math. 17 (1964), 35-92. The condition (iii) was that
used by pratinskii in:‘"A method of reduciﬁg boundary probléms for a
system of differential equations of elliptic type fo regular elliptic
equations”, Ukrain. Mat..Z. 5(1953), 123-151. A direct proof of the

equivalence of these two conditions does not seem to exist in the literature.

2.5 OTHER RESULTS

' 2
Let (X,T) be an f2-independent admissible pair. Let X = & Xj be a
) ’ i j=o
decomposition U of X and define wi = & Xj for 1 = 0,...,2 . Then it is easy
j=o '

to see that (X,T) is reduced by D if and only if
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L

ot )t s R(col(X'ld);:i) =X . (2.15)

3 3=o

Indeed, let Qi denote the projection of X onto Xi+1 @ ... ® Xi' along

'Xb ®... 0 Xi, as in 2.1.2. Then Wi = R(I—Qi) and (X,T) is reduced by D

if and only if col(Qi XTi):;i is invertible, or if and only 1f (2.15)

holds.

This shows that reducibility of admissible pairs is very closely
related to the special left inverses of col(XTj)i:i used in [5,6],
except that here it is not necessary for T to be invertible. Given a

reducible admissible pair (X,T), 2.2.5 showed how to construct a re-

ducible o.p. with (X,T) as finite spectral triple. The next proposition

shows that this construction is really the same as that in [5,6].

.

2.5.1 Proposition. Let L be a right reducible o.p. such thét 0 ¢ o(L),

L
and with canonical decomposition X = & Xj . Let (X,T) be a finite

J=o0
spectral pair for L and define V§ for 1 <j <% and 1:<1i <j as in 2,2.5.
Also, let V§ =0 for J <1, and set Vi = (Vi . Vi).Then (Vl...Vm) is a
" left inverse of col(XTj)§;i and
- [ .
L) =10 { I-x1 WP 4V L a6
Also, (Vl .o Vz) = Tl-l(Vn cee Vl) is a left inverse to col(XT-j);;i
and | R
L) = L(0) {I-XT ~ (vl)\’L FaodVA N (2.17)
, L L 1. 4-1
Proof. Since r L VijT = T it follows that :
i=1 i=1 H
% 2 -
I = I I _v;xju.‘i 1
i=1 j=1
L
X v:I.XTi—l

i=1



-80-

which proves (vl,..vl) is a left inverse of col(XTj);:i » Now,

AX+AXT+ ... FAXIY =0 so
o 1 2

: ~1 -1
But L is reduc;ble sobAi|Wi_l =0 agd
1 L -1
N(V" ... V) c°1(wi)i=o

f_ N(Al oo e Az) [

| S S R A ‘Y
HenCE, "onT (V oo V ) (Al eo e Az)o

Now, (2:16) and (2.17) follow immediately.

Let L be an o.p. of degree 52,, and for 3 ='-’_1,...,£ define
-3j . ' '
. . . l
Lj(T,Y) = I TlYAi+j. It is a consequence of (1.5) that row(Lj(T,Y))j=l

io §o2-1
is a left inverse of col(XT )j=0

ible o.p. we have Vj :'Lj(T,Y). The next theorem can thus be regarded

. In the case that L is a right reduc-

. as an extension of 2.5.1. .

P

2.5.2 Theorem. Admissible pairs (X,T) and (X ,T), with o(T ) = O,
are finite and infinite spectral pairs, respectively, for an o.p. L of

degree < £ such that o(L) is compact if and only if

X wai'l
: : ’ (2.18)
xttt x

-

is invertible. Moreover, if (X,T,Y) and (X;,Tw,Yw) are finite and
infinite spectral triples for an o.p. of degree < % such that o(L) is

compact, then (2.18) has inverse
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L (T,Y) «eoe. L,(T,Y)
(2.19)
IE(TOO,Y@)... f (T JY)

where iz AT Y ) = Z Tj kY Ak for § = 0,..., 2-1.
_j w? o
k=0
Proof. We prove the last statement of the theorem first. Define

Q= col(XTj);;i » Qo = col(X TL mimdyid W = row(L (1‘,1{));}=l

j=o 3

and W_ = row(L (Tm,Ym)):?;i :

8-3

Now, if T is a simple closed contour containing o(L) then

2

xr'L,, (ny) = 3 xeITh s
J 41
A Sl R S Y A )dA
: Y k—3+l
and also,
- ] i
meili TY) = I mzlithmAk
-3 k=0
s ARTeN (v g 2AEyda
27i Ak *
Y k=0
Then, for 1,§ = 0,1,..., &1
XT'L (TY)+XT1 (T Y)=»GI
j"‘l 2‘.‘1 w? "o ij

and hence QW + QW_ =T . From (1.5) it follows that WQ = I, and,

similarly, WQ = To complete the proof that (2.18) is invertible

IV .
o .
‘:} with inverse (2.19) it is left to show that Wa-= 0 and wQ_ = 0, and for

this lemma 2.5.3 is used.
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| g
wo = (... T w8 |
X

L
!
”~~
4
3
»
|
[
N’
Q
w
N s ee >4
3 8
2|°
[
S~
fie

' x 1o
= 7t ... Tz-lY)B : o*

L, .2
T(WQ )T .
Iteratipon yilelds, for all 1 = 1,2,...

1/81

ot /4 < const.tm prt g /4

©o

Since the righf hand side tends to zero as i = < , this implies WQ_ = 0.
Similarly, W Q = O.

Coﬁversely,suppose (2.18) is invertible. Choose a ¢ o(T) and replace
T by T-al and T by Tm(I—-aTm)—l in (2.18). One can show that the resulting

operator 1s still invertible.

1

. -~ L_
Hence col(XTi)i=o is invertible, where

X = (XX)
~1 -
T - (T - al) 0 .
* : : -1
0 Tw(T—aTm)

and’



Proposition 2.2.5 implies that (X,T) is a finite spectral pair of

a monic o.p. Z « Define
L~ -
L(A) = (A-a) L((A- a) 1) ’
then 1.4.1 dimplies that L has (X,T) as finite spectral pair and (x_,T)
as spectral pair at « ., This completes the proof of the theorem.

2.5.3 Lemma. Let L be an o.p. of degreé_ﬁ £ . Define B as in 1.1.9,

and E with A, replaced by Zj = Ag_j . Let o be the permutation of blocks

k)
in X£ that maps theAjth block to the (R.—j)th block. If (X,T) is an ad-
missible pair such that I AiXTi = 0 then
L. - _ i=o
xr?¥1 3 ‘
Bl ¢ J=-oB|: ¥ ' (2.20)
X xr¥1
. -y
Similarly, if (T,Y) is an.admissible pair such that I T YAi = 0 then
i=0" ' :

... 0=t ... " ro .

Proof. To establish (2.20) we must show that for J = 0,..., 2-1

-1 Foml
. = - X 4, Lo .
By X Heeo on'rj (A, 5% ‘ A XT°)T
But, this is an immediate consequence of ( = AiXT yrr = 0.
i=o

The proof for (T,Y) is similar.

The next proposition considers the inverse problem for spectral

triples.
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2.5.4 Proposition. Admissible triples (X,T,Y) and (Xm,Tw,Yw), with
o(T_) = 0, are finite and infinite spectral triples for an o.p.L of

degree < % such that o(L) is compact if and only if

(1) (2.18) 1is invertible;

@ xry = x* Yy for 1 =0,1,... -2 ;

(iii) X(aI—T)-lY + XmTi-l(I—aTm)_lYm is invertible for some a £ C.

Proof. If (X,T,Y) and (Xm,Tw,Yw) are finite and infinite spectral

triples for L then 2.5.2 implies (1), and 1.2.2 implies (ii) and (iif) .

Conversely, suppose (i) - (iii) hold for admissible triples (X,T,Y)
and (X_,T_,Y. ) , with U(Tm) = 0. Choose' a ¢ o(T) so that (iii) holds

and define X,; , and E as in the second part of the proof of 2.5.2.

. Also, define

- ~(r-a1)* %y )
Y = ' - )
(1-a1 ) %y
then
XTY = -x(1-an)* "y + x_1i(r-ar )y

0 for 1 = 0,..., 2-2

and is invertible for 1 = 2-1. It follows that (%X,T,¥) is a finite
spectral triple for CL for some invertible C e L(X). Define

L(A) = (l—a)z CZ«A—a)—l), then 1.4.1 implies L has (X,T,Y) as finitg

. spectral triple and (Xw,Tw,Ym) as spectral triple at « .,

2.5.5. Remark. We can rewrite the condition in (iii) as:

there exists a € € such that
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roarya W) 4 p gt Tyl
i=o i=o

is invertible.

2.5.6. Remark . The proof of 2.5.4 shows that (ii) and (iii)
imply

-1

~i
T )i=o

col(§ . row(Ei§):;i

is invertible. Thus if X has finite dimension n one can replace (i) by

(i)' dimV + dim vV, = nt

where V and V_ are the base spaces of (X,T,Y) and (Xm,Tw,Ym), respectively.

[}

“Assume now that X haé finite dimension n. The next theorem shows
what sequences of operators can be the Fourier ébefficients of the
‘inverse of an o.p.. Thi; resuit partially generalizes one in F. Gantmacher,
The‘Theory of Matrices, p.207, where rational functions for the casen = 1

are considered.

Given N e LX) (1= 0,1,2,...), let H(ci):=o denote the block
"Toeplitz" or "Hankel" operator

c ¢Cc, ¢C Teve

o 1 2
Cl C.2 P
Cy vee ¢ .

We say that H(Ci)i=o has degree % if

co Cl cz * 0 cz_l
c, C, . e
L . %
rank H(c,), = rank 172 . :
1"i=0 Cy )
c

ﬂ,—lcz LI C22~2



O

and if 2 is the smallest positive integer having this property. In the
case there is no such % we say that the degree is «. It 1s easy to verify

that H(c has finite degree if and only if it has finite rank. If

[ ]
i)i=o
c, e L(X) (iAi=0, +1, +2,...) we say that deg(c )o_ = 8 if

i ' - o . . {1 iz~
. . |
deg H(ci)i=o_§ 2 and deg H(c2-2—1)1=o <% ,

and £ is the smallest positive integer having this property.

" 2.4.7 Theorem. Let c, € LX) ({ =0,+1,+2,...), with c g = 0 for

all but finitely many positive integers i. Then there is an o.p. L of

degree < &£ such that for 1 = 0,+1,...

1 i -1
¢y = S £ FrTeoan, (2.21)

where I' is a simple closed contour containing o(L), if and only if

we

2 °
(1) rank H(ci)i=o +.rank H(°2—2-1)1=o = nl

(ii) L > deg(ci)i=_m

[+ ]
(1id) L c af(l+l) converges and is invertible for some a € C.

-00

i

Proof. If L is an o.p. of degree < % with the Fourier coefficients ey

let (X,T,Y) and (Xm,Tm,Ym) be finite and infinite spectral triples for L,

respectively. Then

*® N . i o o
H(ci)i=o = col(XT )i=o row (T Y)i=o' | (2.22%
H(c, . ). = col(X Ti)°° . row(TiY

2-2-1"1=0 w o {=¢p o w/{=0
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Since col(XTi)::i is injective and row(TiY):;i is surjective,
(11) follows. Also, rank H(c,), = = dim V and rank H(c, , ,),_ = dimV_

so (i) is true. Finally, (iii) holds since, for a large,

a—(1+1) .

L_l(a)’= )X c;

- OO

Notice that if (X,T,Y) is the natural finite spectral triple for L then

Y(t) ='§%I ;e lonan
T
""" © 1
i=o

Similaqu,x if (Xw,Tw,Ym) is the natural spectral triple at « for L then
= et
¥ = zo Co~2-1 1T

. (2.24)
i= .

Now, suppose the operatorsc, satisfy (i) - (iii). Condition (iii)

i

implies, in particular, that there is an a > 0 such that llciaiH < constant

for all i = 0,1,2,..., and thus

3 i ©
t ‘1 ‘tl i :
T | Ci T I < constant - ﬁ ir ( o ) < o

" Hence if we define Y(t) by the expression (2.23) then Y is an analytiec

function R - L(X), which can be regarded as a map X -+ d%R;X). Then,
. .
define the subspace V = R(Y..;(—%E) lY) of CwGR,X). I claim that V is

invariant under ~Q—u -Indeed, if u € V then for some x ¢ X2

dt.
] .Y
u= (... E 7 0x
o i
= L
P T

where r, = (ci oo ci+£-l) for 1 = Q,1,2, oo e
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Since % > deg H(ci):=o there are operators S, € L(X) (j = 0,..., 2-1)

h|
such that -1
N c1+ = Z C S .
2 j:o 1+j j
Then o q
du I x
dt ! i+l
i=o0 )
>4
= L,y
?
i=o it i

L '
) == ' =
where x' € X dis defined by X S x and x xj—l + ijz for

o X
du 3 d
j=1,... &1, Thus 3¢ € V, and V is invariant under —ac ° Let
T € L(V) denote the restriction of *%E to V and define X e¢L(V,X) as
Xu = u(0). By definition (Y ... Tz—lY) is surjéctive and I claim that
. . ®© i )
<:ol(XTJ)'Q'-1 is injective. 1Indeed, if u= I t r.x such that
j=o . : . i=0 i! i
. gy 41 | -
0» col (XT )j=o x .
_ -1
= col(ry); o *
then the fact that 2 > deg H(ci):=0 implies ryx = 0 for all i and hence
u=0., Now. (2.22) holds and it followé that dim V = rank H(c Yo .

i“i=o
Analogous definitions for Y_, starting with (2.24),and for V yields

an admissible triple (X¢’Tm’Ym) such that dim V = rank H(c242—i)

i=o

‘Notice that T_ is nilpotent since c_, = 0 for i large. Also, XTiY = ¢

i i

and X T.¥_ = ¢, , . for 1=0,1,2,... . It follows from 2.5.4, and

- remark 2.5.5 and 2.5.6, that (X,T,Y) and (Xm,Tm,Ym) are finite and infinite

spectral triples for an o.p. of degree < £. Then (2.21) holds, and the proof

of the theorem is complete.
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