

Network Software Architectures for Real-Time

Massively-Multiplayer Online Games

Roger Delano Paul McFarlane

Degree of Master of Science

School of Computer Science

McGill University

Montreal, Quebec, Canada

Feb. 02, 2005

A thesis submitted to McGill University in partial fulfillment of the

requirements for the degree of Master of Science.

Copyright © 2005 Roger Delano Paul McFarlane. All rights reserved.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Abaynesta, for her

support and encouragement. Undertaking a full-time graduate degree

while maintaining full-time employment and trying to be a full-time

husband would have been an impossible challenge without your love,

patience, and understanding. I love you.

To my supervisor, Dr. Jörg Kienzle, I would like to express my thanks for

taking on a student with a research area only somewhat related to your

own, Software Fault Tolerance, and granting me the latitude to freely

explore massively multiplayer game infrastructure.

In the course of pursuing my graduate degree and writing this thesis, I was

employed by two supportive organizations. To the management of Zero-

Knowledge Systems Inc., most notably co-founders Austin Hill and

Hammie Hill, I express my profound gratitude for your support and

encouragement to pursue my academic goals. Thank you for allowing me

the flexibility of schedule to take on a full-time course load and for your

understanding and encouragement when the time came for me to move

on to other opportunities.

I would also like to thank the management of the Ubi.com group at Ubisoft

Entertainment Inc. for recognizing the potential of this graduate student

with no direct gaming experience and giving me the opportunity to learn

from and contribute to your game projects while completing my thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS... ii

TABLE OF CONTENTS...iii

LIST OF FIGURES... v

Introduction ..9

Motivation ..12

Overview..12

Massively Multiplayer Online Games...14

A Definition ..14

A Historical Perspective...18

The Technical Challenges ...22

Network Bandwidth..22

Network Latency ..23

Distributed Consistency...24

Fault Tolerance..25

Network Failure..26

Hardware Failure ...27

Participant Failure..27

Administration and Live Production ...28

Cheating ..29

Security of Customer Information .. 29

Scalability...30

Literature Review ...32

Military Modeling and Simulation...32

iv

SIMNET – Simulator Networking ...33

DIS – Distributed Interactive Simulation ..42

ALSP – Aggregate Level Simulation Protocol ...49

HLA – High-Level Architecture ..52

Academic Research...63

NPSNET ..64

PARADISE ..68

MASSIVE...71

Other Systems...74

Commercial Computer Games ..76

First Person Shooters..77

Real-Time Strategy..77

Massively Multiplayer Online Games ..78

Grid Computing ...85

Network Software Architectures...87

Client/Server ..87

Benefits..93

Challenges...93

Peer-to-Peer ..94

Benefits..95

Challenges...96

Conclusion ...99

LIST OF REFERENCES... I

v

LIST OF FIGURES

SIMNET Fully Replicated Data Model. ...34

A Dead Reckoning Example. ..36

Functional Components of the High Level Architecture..54

Client/Server Shards. ..79

Zoned World..82

A replicated multi-server client/server archictecture. ..89

Zoned world multi-server client/server architecture. ...90

A Hierarchical Client/Server Architecture..91

Distributing computational tasks. ..92

Peer-to-Peer Architectures. ..94

vi

ABSTRACT

A real-time massively multiplayer online game (MMOG) is a networked

computer or video game in which tens of thousands to hundreds of

thousands of consumers may interact with one another in real-time in a

shared environment, even though these users may be separated by vast

geographic distances. Game industry analysis highlights trends indicating

that online game usage and market penetration will grow significantly over

the next five to ten years. As such, game developers and entertainment

companies seek to offer subscription based mass-market online games.

However, the risks, costs and complexity involved in the successful

development and operation of a scalable online game service are high, in

part due to lack of well established and understood models for the network

software architecture of such a product. This thesis explores the literature

and research regarding distributed military simulation, academic

networked virtual environments, and commercial online gaming in search

of patterns for network software architectures which are applicable to

massively multiplayer online games. It is the hope of the author to

contribute to this cross pollination of ideas by providing a thorough review

of the techniques and approaches for the design and implementation of

large scale distributed systems having properties similar to those found in

a massively multiplayer online game system. In this way, perhaps the

cost, complexity, and risk involved in building a massively multiplayer

online game service can be reduced.

vii

ABRÉGÉ

Un jeu en ligne massivement multi joueurs en temps réel est un jeu vidéo

ou d'ordinateur géré en réseau dans lequel des dizaines à des centaines

de milliers de consommateurs peuvent interagir entre eux en temps réel

dans un environnement partagé, et ce même s’ils sont répartis dans des

régions géographiques très distantes. Les analyses de l’industrie du jeu

démontrent que l'utilisation et la pénétration de marché du jeu en ligne se

développeront de manière significative au cours des cinq à dix prochaines

années. Ceci explique que les développeurs de jeu et les compagnies de

divertissement cherchent à offrir à un marché grand public des jeux en

ligne basés sur un abonnement. Cependant, les risques, les coûts et la

complexité impliqués dans le développement et l'opération d’un service de

jeu en ligne sont élevés, dû en partie au manque de modèles bien établis

et compris pour l'architecture de logiciels de réseau de tels produits. Cette

thèse explore la littérature et la recherche concernant la simulation

militaire distribuée, les environnements académiques virtuels gérés en

réseau, et le jeu en ligne commercial à la recherche de modèles pour les

architectures de logiciels de réseau qui sont applicables aux jeux en ligne

massivement multi joueurs. C'est l'espoir de l'auteur de contribuer à cette

pollinisation d’idées en fournissant un examen complet des techniques et

des approches utilisés dans la conception et l'implémentation de systèmes

répartis à grande échelle ayant des propriétés semblables à celles que

l’on retrouve dans les systèmes de jeu en ligne massivement multi joueurs.

viii

De cette façon, peut-être, le coût, la complexité et le risque impliqués

dans la réalisation d’un service de jeu en ligne massivement multi joueur

pourront être réduits.

9

Introduction

Already earning more revenue than the movie industry, media and

entertainment analysts predict the earnings of the video game industry will

surpass that of the music industry, the current revenue leader in the global

entertainment and media industry, by the year 2006 [159]. Other industry

observers predict that worldwide growth for video games and personal

computer (PC) games to be between 37% to 45% between 2002 and

2007 [52]. The global video game market is expected to expand from its

current value of $21.2 billion in 2002 to a market value between $28.4

billion and $35.8 billion in 2007, growing at an 11% compound annual rate

[52, 158]. None of the aforementioned figures take into consideration

revenue based on the sale of accessories, game rentals and the resale of

used games, which some analysts estimate will account for an additional

$5 billion or more in annual consumer spending [52].

Globally, industry watchers predict that the largest video game market will

be the Asia/Pacific market, growing 8.5% annually from a spending level

of $8.4 billion in 2002 to $12.6 billion by 2007 [158]. The United States

market will experience similar growth, reaching a spending level of $12.3

billion in 2007; this represents an 11.3% annual growth average from $7.2

billion in 2002. The market representing Europe, the Middle East, and the

rest of Asia will experience 13.8% annual growth to reach $9.3 billion by

2007 from a level of $4.9 billion in 2002. At the same time, the Latin

American and Canadian markets will experience the fastest growth,

10

10

expanding by a 16.1% yearly to $312 million in 2007 from $148 million in

2002 and $1.2 billion in 2007 from $575 million in 2002, respectively.

Alongside the growth of the gaming market will be increased household

penetration of broadband Internet connectivity. Game industry analysts

predict that the worldwide number of households with broadband will grow

to 190 million by 2008 [51]. Nearly 70% of South Korean households, for

example, already have broadband connections and the number of

broadband enabled households in Europe increased by 140% in 2002 [51].

As broadband services continue to become ubiquitous in these markets as

well as in the rest of Asia and in North America, the video game industry

has new opportunities to take their product offerings online. As a specific

example, Korean video game developer and publisher NCsoft became the

first online game vendor to earn over $100 million per year with Lineage

[141] its highly successful massively-multiplayer online game.

The success observed in Korea, as well as the success in North America

and Europe of massively multiplayer online games such as Sony Online

Entertainment’s Everquest [179] and Lucas Arts Entertainment’s Starwars

Galaxies [121] is an indicator of the connection between the growth of

broadband and the growth of online games. Industry analysts forecast

that the number of worldwide online games played will increase from 73

million in 2002 to 198 million by 2008, with online game usage growing to

35 billion hours per year [51]. In North America, adults representing more

than 42 million households currently use their personal computers to play

11

11

games for about 4.8 hours per week either online or offline [198]; by 2007,

one quarter of North American households, representing approximately 70

million people, will be playing games online [117].

Finally, the latest generation of game consoles are now “online-capable”

and represent a large installed customer base that is yet to transition to

online gaming and, thus, a further growth opportunity for online gaming

[51]. By 2006 there will be 23.4 million online console gamers worldwide;

however, even given predicted growth of 20% by 2008, online console

gamers will still represent only 20% of all online gamers [50].

All indications are that online game usage and penetration will grow

significantly; however, a number of challenges will make if difficult for

companies in the online game market to generate profits from their

products [51]. Firstly, the costs and complexity involved in the

development and operation of an online game service are high [5, 43, 51,

176]. Secondly, consumers are reluctant to pay for gaming content on a

monthly basis, as is currently the industry norm [51, 67]. Additionally, the

overwhelming majority of online games that are presently in development

or operation are narrowly clustered in the fantasy role-playing genre,

which has not proven accessible to the mass-market audience [67, 78,

134]. A game developer must overcome these and other challenges in

order to field a commercially successful online game service.

12

12

Motivation

As mentioned above, developing a massively multiplayer online game

service is a high cost and high complexity endeavour. A part of this

difficulty arises from the fact that most commercial online game services

are based on proprietary architectures and designs and there has been

relatively little reuse of the lessons learned from other, similar, projects.

This thesis explores the literature and research regarding distributed

military simulation, networked virtual environments, and commercial online

gaming in search of patterns for network software architectures which are

applicable to massively multiplayer online games. As we will see, there

exists a large body of knowledge from the military and academic

simulation communities that is slowly being appropriated by the

developers of commercial video games. It is the hope of the author to

contribute to this cross pollination of ideas by providing a thorough review

of the techniques and approaches for the design and implementation of

large scale distributed systems having properties similar to those found in

a massively multiplayer online game system. In this way, perhaps the

cost, complexity, and risk involved in building a massively multiplayer

online game service can be reduced.

Overview

The body of this thesis is broken down into four main sections. The first is

an introduction to massively multiplayer online games; we present a

definition for massively multiplayer games and provide a brief overview of

13

13

the history of such games to the present. Secondly, we explore the

technical challenges inherent in building and operating a massively

multiplayer online game. We identify the similarities and differences

between the challenges considered by military and academic community

versus those facing the gaming community, particularly in those cases

where the communities make very different assumptions about the

operating environment, needs, or behaviour of the participants in the

online environment.

Thirdly, we survey the related research and literature from the military,

academic, and commercial gaming spaces. This section, comprising the

majority of this thesis, explores lessons learned from significant projects in

each of these domains and considers each project’s network software

architecture and systems for appropriateness, or lack thereof, to massively

multiplayer online game systems. Lastly, we draw upon the surveyed

material to consider several client/server and peer-to-peer network

software architectures that can be used to construct a real-time massively

multiplayer online game.

14

Massively Multiplayer Online Games

Massively Multiplayer Game (MMP and/or MMPG), Massively Multiplayer

Online Game (MMO, MMOG, and/or MMPOG), Massively Multiplayer

Online Role-Playing Game (MMORPG), and Massively Multiplayer Online

Persistent World (MMOPW) are names which are used interchangeably to

refer to networked video and computer games in which a large number of

simultaneous players may each assume an identity and interact in a

shared environment. For consistency, this paper uses the name

Massively Multiplayer Online Game and the acronym MMOG throughout.

The reader will encounter all of these terms, and perhaps more, in the

referenced literature. This chapter explores the nature of such games as

well as the market and history behind them.

A Definition

Many computer and video games feature multiplayer capabilities. These

capabilities range from two players sitting together in front of a gaming

station to thousands of players interacting across the Internet. For the

purposes of this discussion we define a massively multiplayer online game

(MMOG) as a networked computer or video game in which tens of

thousands to hundreds of thousands of consumers may interact with one

another in real-time in a shared environment, even though these users

may be separated by vast geographic distances. This definition is an

adaptation of that for a Networked Virtual Environment as stated in [176]

15

15

and embodies the following characteristics, the first five of which are also

from [176]:

• A shared sense of space: All players participate and interact in a

common virtual world. Each participant observes the same

characteristics and attributes of the environment, and is able to

observe other participants within the environment.

• A shared sense of presence: Each participant is represented by a

virtual persona, commonly called an avatar, within the environment.

An avatar conveys to other participants a physical form, animated

motions, expressions, and so forth on behalf of the controlling

participant.

• A shared sense of time: Participants are able to observe the

behaviour of other participants in the environment as it occurs.

• A way to communicate: Participants are able to convey

information to other participants through some communication

medium, be it gestures, textual messages, or audible voice.

• A way to share: Participants interact not only with one another, but

also with the environment. The environment reflects the actions of

the participants where appropriate, and enforces the necessary

constraints applicable to the represented locale.

• A massive concurrent user population: The number of

simultaneous participants is in the tens of thousands to hundreds of

thousands. As we will see, the challenges inherent in constructing

16

16

an online game to support such a large number of simultaneous

users increase dramatically over those found in supporting four to

thirty-two players, the amounts commonly supported for current

multiplayer games.

• A sense of fairness: We assume that, given the opportunity,

some portion of the user population will endeavour to manipulate

the system so as to gain some advantage over other participants

[67, 88, 102, 110, 160, 170, 178, 192, 193]. With their roots in the

military and academic fields, the majority of systems we will survey

tend to presume that participants are honest and will not cheat [57,

143]. As the military is able (in principle) to maintain somewhat

tight controls on the computing hardware of the participants, these

systems assume that participants are constrained to the rules

dictated by the environment. Instead, the security considerations in

these domains are primarily concerned with preventing the updates

reported about an avatar from leaking sensitive information about

any real-world entity that avatar may represent (for instance, the

performance characteristics of a new fighter plane) to other

participants (who might represent a foreign military force or

competing industrial group).

In contrast, the commercial gaming domain is primarily concerned

with preventing a subset of users or an electronic attacker from

spoiling the gaming experience for paying customers, either by

17

17

performing actions outside the bounds of allowed game-play, or by

preventing a paying user from safely accessing the game

environment. This can directly jeopardize a games revenue, as

customers tend to abandon games where cheating is common and

not controlled [48].

• A consumer-friendly cost of entry: Computer and network

resources are presumed expensive. Network bandwidth and

computing hardware is costly to the operator of the game; and, the

average user has moderate computer hardware and network

connectivity. With the rapid transference of high-end technology

into the consumer-space, the terms expensive”, “costly” and

“moderate” are deliberately non-specific. The point to be taken is

that that target user is a “typical” home user, not a military or

academic entity having access to facilities beyond the reach of the

average consumer.

The goal of the massively multiplayer online game developer is to use the

techniques and technologies at her disposal to achieve not only a game

system meeting these characteristics, but to also provide an environment

that is richly detailed, highly interactive, and “fun” for the user. For the

purposes of this discussion, we further consider that the MMOG developer

desires to field the environment as a commercial service offering;

therefore, the resulting game system must be amenable to sustainable

operations by a commercial MMOG service provider.

18

18

A Historical Perspective

The genesis of massively multiplayer online games is generally accepted

to have begun with the development of multi-user dungeons (MUDs) by

Roy Trubshar and Richard Bartle in 1979 [36, 67, 76, 108, 186]. This text

based game and the countless variations that followed it allowed

thousands of players to congregate on their favourite servers to explore

dungeons and kill monsters together in a Dungeons & Dragons [9] style

adventure. These games ran, by and large, on mainframe and mini-

computers until well into the 1990s and used a single world database

located in shared memory or on disk [9, 36]. The various incarnations of

the MUD source code have, over the years, been rewritten several times

and migrated to the C and C++ programming languages for the UNIX and

Linux platforms; MUD service providers still enjoy a small but loyal

following [186].

By the mid-to-late 1980s much of the technology was in place to offer

graphical interfaces to multiplayer online games. In 1985, for example,

Randy Farmer and Chip Morningstar created Habitat, a virtual online world

that Commodore-64 users could access through QuantumLink; similarly,

in the late 1980s QuantumLink, Sierra Online and Genie offered

Rabbitjack’s Casino, Yserbius and Air Warrior on their proprietary

networks [108]. These games supported hundreds of simultaneous

players at a time when the average multiplayer game supported up to 16.

19

19

The early 1990s brought other large scale multiplayer games like

Neverwinter Nights on America Online’s (AOL’s) proprietary network [84].

The first Internet based online-game, and the first game to use massively

multiplayer as a marketing term, was 3DO’s Meridian 59 [108, 142] which

was released in 1996. Essentially the first fully graphical MUD, Meridian

59 established many of the game-play and business model trends that

continue in MMO gaming today. For example, the in-game systems used

for chat and character customization, as well as the flat fee pricing model

were industry firsts which have become industry norms.

In 1997, massively multiplayer online games entered the mainstream in

the western world with Origin Systems’ release of Ultima Online [108, 148].

With a user population that has, at times, exceeded two hundred thousand

simultaneous customers [109], Ultima Online was the first game to

demonstrate the market potential for MMO games. Indeed, at the time of

this writing, nearly seven years after its original release, Ultima Online

continues to operate in a market now crowded with MMO games.

Outside of North America, particularly in Korea and Taiwan, the success

of massively multiplayer games has been even more impressive. In 1996,

around the same time 3DO was releasing Meridian 59 in the United States,

Nexon released Kingdom of the Winds [144] in Korea, which went on to

attract over one million subscribers [109]. In 1998 another Korean

publisher, NCsoft, released Lineage [141] which now enjoys a worldwide

subscriber base approaching four million users [109]. In comparison,

20

20

Sony Online Entertainment’s Everquest [179], the most popular MMO

game in the west is approaching five hundred thousand subscribers

worldwide [109].

The success of these titles paved the way for the development of more

recent titles such as the Asheron’s Call [130, 187] series by

Microsoft/Turbine, Dark Age of Camelot [139] by Mythic Entertainment,

Star Wars Galaxies [121] by Sony/LucasArts, The Sims Online [56] by

Electronic Arts, Anarchy Online [71] by Funcom, and Shadowbane [196]

by Wolfpack/Ubisoft. Imminent on the horizon are Worlds of Warcraft [18]

by Blizzard, Middle-Earth Online [188] by Turbine/Vivendi, The Matrix

Online [135] by Monolith/Warner-Bros, and many others. A quick search

on 22 February 2004 in the Multiplayer Online Games Directory [138]

returned one hundred eighty-two (182) massively multiplayer titles

currently operating or in development.

An extremely interesting question, which is beyond the scope of this paper,

considers the size of the world-wide market for MMOGs. Game industry

analysts estimate that the online gaming market can support twenty or

fewer massively multiplayer titles over the next few years [51]. Unlike

traditional single and multiplayer games, the average consumer will not

subscribe to more than one MMOG at a time [67] due to the investment of

both time and money required. Additionally, the costs and complexity

involved in launching and subsequently operating MMOG titles make them

21

21

one of the most expensive interactive entertainment product offerings a

company can add to its portfolio [51].

22

The Technical Challenges

Massively multiplayer online games are difficult to design and implement.

Computer Games in general, and networked computer games in particular,

are a complex combination of problems from many domains of computer

science and engineering: three-dimensional graphics, concurrent systems,

real-time systems, distributed systems, human user interaction, physics,

artificial intelligence, graph theory, database systems, digital signal

processing for audio, data compression, electronic security, and

cryptographic protocols are all tools employed by the MMOG developer.

This chapter outlines the many technical challenges faced by the

developer of a massively multiplayer online game.

Network Bandwidth

Massively multiplayer online games utilize the network to exchange

information about the virtual world between participating nodes. The more

dynamically rich the environment, the more information is required to

inform participants about the changes in the world. Additionally, as the

size of the participant set increases, the total amount of information

generated by the system increases. Similarly, increasingly rich

environments with increasingly large user populations result in an

increasingly large volume of information which must be conveyed to each

participant. For a commercial service offering, we assume that each

participant has a finite bandwidth capacity, typically that of a consumer-

grade high-speed modem or broadband connection. Further, we

23

23

presume that the bandwidth available to the massively multiplayer online

game operator is not only finite, but charged to the operator based on

usage. The MMOG developer is thus challenged to limit the bandwidth

consumption of the game while providing the richest experience possible.

Military and academic simulation builders also face bandwidth issues.

Unlike commercial game providers, however, the cost of bandwidth is

generally not a consideration for their projects; instead, their challenge is

to remain within the physical bandwidth limitations of their local and wide

area network resources.

Network Latency

Network Latency is the time taken to transmit a message from one node to

another and represents one of the largest challenges facing massively

multiplayer online game developers [176]. When one network application

transmits data over a network, the network’s latency determines when the

data becomes available for consumption by the receiving application. As

players expect to interact with each other and with the environment in real-

time [6, 67, 82, 118, 149, 152, 176], the MMOG developer wishes to give

the user the illusion that the entire game world is located on their local

machine [176]. Network latency means that incoming data about the state

of the game environment is already somewhat out-of-date by the time it

arrives for processing.

Unfortunately for the MMOG developer, latency is an inherent part of

network communications [30]. Electronic signals take some non-zero

24

24

amount of time to travel from one location to another. A light-based signal

traveling on a fibre-optic link, for instance, would take over 21 milliseconds

to travel from the western to eastern coast of the United States [30]. On

top of this fundamental delay, every piece of network hardware (i.e.,

routers, gateways, modems and network adapters) through which the

signal passes has its own capacity and latency for the processing of

network traffic. It further takes time for an operating system to take data

from an application and deliver it to the network hardware for transmission,

and vice versa for delivery of data to an application. Thus, network

latency is an unavoidable consideration for MMOG developers.

The issue is further complicated by the variability of network latency

across the Internet. Latency varies with the physical distance traveled by

the data, the current load on each piece of network hardware, the current

processing load on the operating system, and other factors. These factors

are beyond the control of the game service provider. Fortunately, the

military and academic communities have developed techniques to

compensate for, and hide the effects of, network latency. For the most

part, the gaming community has already appropriated these techniques

into its repertoire.

Distributed Consistency

Latency and distributed communications make it difficult to maintain

consistent world interpretations for each participant. The MMOG

developer wishes to present users with a single shared environment,

25

25

which is challenging if the messages communicating changes in the

environment arrive at different times at each node. Further, if participants

act based on differing views of the environment, some means must be

provided to determine which resulting version of the environment is correct.

Players expect consistency in areas such as player-to-player and player-

to-environment collision detection and in-game economic transactions (if

applicable) [67]. A lack of consistency hampers the level of immersion of

the player, taking away from their enjoyment of the game and decreasing

their desire to play. Fortunately, the military, academic, and gaming

communities have all found that, for many types of interactions, human

players are often satisfied given the appearance of consistency.

Overall, maintaining consistency in an online game has proven to be a

difficult task for game developers; players commonly uncover defects that

violate the consistency of the game world, many of which may be

exploited to gain an unfair advantage over other players [12, 23, 75, 101,

110, 136 2002, 145, 160, 171, 178, 193, 197]. These consistency

violations tend to stem from implementation or design errors. Achieving

true consistency in a distributed environment is often quite complex,

having subtle failure modes and timing or ordering considerations.

Fault Tolerance

A massively multiplayer online game system should insulate its users from

the failure of one or more of its components. Ideally, failure and failure

recover are transparent to the user population. User visible failures can

26

26

be expensive not only in with respect to the cost of replacing the failed

component(s), but also in terms of the reputation and image of the game,

customer service and support burdens, and, ultimately, user satisfaction

[29].

As in any distributed system, there are a number of areas in which failure

can occur. In this section we consider random failures in network or

computer equipment. For the moment, we assume that software

components operate correctly in accordance to their specifications given

correctly operating network and computing resources. A more in-depth

classification of failure modes and stability can be found in [61].

Network Failure

Computer networks, particularly the Internet, are subject to myriad failure

conditions. For example, network messages may not be delivered if

network connectivity is lost due to power failure, damaged communication

lines, faulty network equipment, overloaded telecommunications systems

due to peak usage, or any number of other random failure causes. An

MMOG provider should take measures to ensure that network failures are

unable to prevent a substantial portion of the paying customer base from

using the game environment. Clearly, it is impractical, if not impossible, to

guarantee that no permutation of network failures prevents any customer

from using the game environment. Rather, a MMOG considers the

likeliness and consequences of failure and fields a network system in

27

27

which the most likely anticipated failure modes affect the least number of

customers.

For most network systems, both in and out of the gaming community,

resilience to network failure is accomplished with redundant network

connections, redundant network equipment with failover, and disaster

recovery plans. The provision and maintenance of robust network

systems represents an established problem that organizations deal with

on a daily basis and is not directly related to the software architecture for a

massively multiplayer game. As such, this topic falls outside the scope of

this work and will not be discussed further.

Hardware Failure

A component may also fail due to hardware issues in the computing

environment. Hardware failure may be an underlying cause of one of the

network failures mentioned above; however, for the purposes of this

discussion, we consider hardware failures in the computing resources

used by the MMOG developer to provide game services to its customers.

This includes game and database servers which may operate incorrectly

due to failure of a power supply, hard disk, or other electronic component.

The distribution of game tasks and responsibilities should be such that, at

worst, the loss of a server due to a hardware failure affects only a

localized subset of players and, at best, the loss and recovery of a server

is entirely transparent to players.

Participant Failure

28

28

The computing device of a player may fail for any number of reasons. As

in military and academic simulation, the massively multiplayer game

developer seeks to isolate the effects of participant failure such that other

players are not affected. In an MMOG where player state is persistent,

the developer also wants to minimize the effects on the players who

experience the failure. For example, a player will be unhappy to

subsequently resume playing the game and find that their character’s

inventory has inexplicably gone missing. Game systems lacking built-in

mechanisms for recovering from participant failure may find their customer

service representatives spending significant portions of their time

searching game event logs to determine whether or not a user’s claim to

have lost items due to disconnection are valid or fabricated [29].

Administration and Live Production

Unlike most types of commercial game or software products, the delivery

of a massively multiplayer online game does not finish when the boxed

software hits store shelves or the package is made available to customers

for download [43, 67, 170]. Beyond its release to the public, a commercial

MMOG is ultimately a 24x7 (i.e., continuous) live service offering; as a

product it will require continual administration, new features, additional

content, and customer support. Ideally, all of this will be provided without

user-visible interruption of service. Thus, it behoves the MMOG developer

to build a system which, in addition to all of the other technical

requirements, is easy and inexpensive to maintain, administer, and extend

29

29

in a live environment. Generally, for military and academic simulation

systems these ongoing requirements are not present, as the participants

come together at some established time to launch the environment,

execute the training or demonstration exercise, and shut-down the

environment.

Cheating

Cheating is widespread in multiplayer games [12, 13, 35, 48, 67, 88, 102,

110, 160, 170, 178, 192, 193] and can have disastrous consequences for

an organization providing massively multiplayer online game service.

Most cheating occurs in order to gain some undue advantage for the

cheating participant [48, 153]. As mentioned previously, honest players

tend to leave a game in which they perceive themselves to be at a

disadvantage due to widespread cheating [48]. A much smaller group of

players, commonly referred to as griefers, will cheat and engage in other

anti-social behaviour purely for the pleasure of it. Representing only 3%

of the average multiplayer game user population, MMOG providers have

found that their customer support representatives spend upwards of 40%

of their time dealing with griefer related issues [153].

Security of Customer Information

As a part of operating a commercial service, a massively multiplayer

online game provider will often require personal or financial information

about its users. For example, the user’s name, address, and credit card

information might be required for billing purposes. In turn, the users of an

30

30

MMOG service expect that any personal or financial information they

entrust to the service provider will be handled in such a way as to protect

the privacy and confidentiality of the user [67]. Indeed, depending on the

location in which the game provider operates, there may be a legal

obligation to ensure the privacy of personal and financial information

collected about its users. Many European countries, for instance, have

had progressive privacy and data protection laws in place for some time.

More recently in Canada, the Personal Information Protection and

Electronic Documents Act (PIPEDA) [79] governs the collection, use, and

disclosure of personal information for national, international, or inter-

provincial commercial activities and, in the United States, the Children’s

Online Privacy Protection Act (COPPA) [59] defines the privacy framework

with which a service provider must comply when offering internet-based

services to children.

While a philosophical and technical discussion around the use and

protection of customer and financial information would be quite interesting,

it is beyond the scope of this work and will not be discussed further.

Scalability

Ultimately, the challenge for the massively multiplayer online game

developer is to design and implement a system that addresses each of the

other technical challenges in the presence of large numbers of concurrent

users. The MMOG developer seeks to partition and distribute

computational tasks and game state such that (1) each participant is

31

31

aware of any and all game information which is relevant to that participant;

(2) each computing device participating in the game is not over-burdened;

(3) the capacity of the network resources available to the game is not

exceeded; and (4) the size of the concurrent user set, and of the virtual

environment, can be increased without requiring architectural changes to

the game.

32

Literature Review

Massively-multiplayer gaming systems are one particular example of a

more general application model, the Networked Virtual Environment (net-

VE). A net-VE is defined [176] as “a software system in which multiple

users interact with each other in real-time, even though those users may

be located around the world.” This chapter provides an historical overview

of networked virtual environment technologies from the military, academic,

and commercial gaming fields; in each exploring the most significant

systems developed.

Military Modeling and Simulation

The United States Department of Defence (DOD) spends in excess of

$1.5 billion per year on modeling and simulation for a variety of purposes,

such as to train individual soldiers, conduct joint training operations,

develop doctrine and tactics, formulate operational plans, assess war-

fighting situations, evaluate new or upgraded systems, and analyze

alternative force structures [32]. The features and technologies of many of

these systems are strikingly similar to those found in massively-multiplayer

online gaming. In particular, many of the technical challenges facing

developers of massively-multiplayer games today have been encountered

in one form or another by the military training community [128]. Indeed,

the DOD was the first to do work on large scale networked virtual

environments [176] and is thus a rich source of information for today’s

game developer.

33

33

This section provides a summary of the most significant military networked

virtual environment based training systems and their potential contribution

to massively multiplayer online gaming. Specifically, we will explore

Simulator Networking (SIMNET), Distributed Interactive Simulation (DIS),

Aggregate Level Simulation Protocol (ALSP), and the High-Level

Architecture (HLA) for Modeling and Simulation.

SIMNET – Simulator Networking

Originally developed for the Defence Advanced Research Projects Agency

(DARPA) by Bold, Beranek and Newman (BBN), Perceptronics, and Delta

Graphics from 1983 through 1990 [154], SIMNET is a distributed

simulation system intended to provide a “low-cost” net-VE for training

military units (tanks, helicopters, command posts, etc.) in co-ordinated

combat and assault tactics [128, 176]. The SIMNET network software

architecture has three core elements: (1) an object-event architecture; (2)

autonomous simulation nodes; and, (3) a set of predictive modeling

algorithms [176].

Object-Event Architecture

The object-event architecture models the world as a collection of objects

which interact by means of events. Objects are used to represent vehicles

(a helicopter, for example), munitions (a missile, for instance) and other

entities within the environment. An event is a message broadcast to the

simulation network indicating a change in world or object state (for

34

34

instance, the explosion of said missile upon striking the aforementioned

helicopter).

Peer-to-Peer / Replicated Data Model

Each simulation node maintains its own repository of information

describing the state of every object in the virtual environment and is

autonomously responsible for maintaining the state of one or more objects

in the virtual world (Figure 1). Object responsibility entails placing event

messages onto the network such that the current state of the object is

accurately represented to the other nodes participating in the environment.

It also entails processing received event messages as a part of calculating

the controlled objects’ new state. Beyond transmitting and receiving event

messages, nodes do not interact with each-other or with the net-VE. The

use of autonomous nodes, each maintaining its own world representation,

means that there is no central server, nor central point of failure. It also

allows nodes to enter and leave the simulation at any time.

Node J

Node K Node X

Ethernet
my state
(object x)

object j object k

Figure 1. SIMNET Fully Replicated Data Model.

35

35

Weakly-Consistent Data Model / Dead-Reckoning

Perhaps the most important design concept for the massively multiplayer

on-line game developer is the Weakly-Consistent Data Model [128].

There exists a broad set of game and simulation scenarios in which no

participant ever requires a complete and fully accurate real-time

representation of the shared state. Rather, in between updates for a given

object, each participant may extrapolate some of the object’s state using a

set of predictive algorithms collectively referred to as dead-reckoning [133],

or more generally as predictive contracts [127]. In order to reduce the

number of messages transmitted, hide the effects of message latency,

and alleviate the effects of lost messages, the developers of SIMNET

introduced the objects and ghosts paradigm. In this model, the node

responsible for an object (its home node) is the only node having the

authoritative version of the object’s state; all other nodes maintain a ghost

copy of the object and track the rate of change of the object’s state (Figure

2). The home node also tracks the rate of change in the object’s state.

An update event is only broadcast when the predictive model for the

object’s state differs from the authoritative model for the object’s state by

some pre-established threshold. When an update is received for a ghost

object, the object’s state is corrected to the new values and dead-

reckoning begins again. A node also transmits heartbeat messages

periodically to inform other simulation participants that it is still actively

involved in the simulation. Typically, dead-reckoning is applied to

36

36

positional information about an object, such as location and orientation,

but the concept can be applied to any state whose values and changes in

values exhibit continuity (i.e., no sudden jumps or gaps) over time.

predictive
error

predicted
path actual

path

received

received

Figure 2. A Dead Reckoning Example.

The ideas embodied by dead-reckoning have been widely adopted by the

training simulation community as well as the network gaming community.

Dead-reckoning protocols trade accuracy of shared state for reduced

network traffic, thus allowing a networked virtual environment to support

more participants [176]. Dead-reckoning protocols generally consist of a

prediction technique and a convergence scheme. The most popular

prediction technique employs derivative polynomials (i.e., based on the

37

37

current value, rate of change and/or acceleration in the rate of change for

a state variable) to approximate the current state of a remote entity,

usually by transmitting the instantaneous rates of change for the value.

For example, a first-order derivative polynomial scheme for approximating

object position p′ would predict, given the object’s position 0p , velocity 0v ,

and acceleration 0a at some time t , that the position after time lapse t∆

would be tvpp ∆⋅+=′ 00 . A second order derivative polynomial scheme

would further consider the acceleration of the object and predict that

2
02

1
00 tatvpp ∆⋅+∆⋅+=′ .

A convergence scheme is required in order to adjust the current

approximation to more correctly represent a newly received update. The

simplest form of convergence simply updates the local representation to

match the updated values, possibly resulting in discontinuity of the local

state. Linear convergence involves the selection of a future convergence

point and then linearly adjusting the local state over time in the direction of

the convergence vector. For example, the correction of the position of the

aircraft in Figure 2 might follow a convergence path along the line

indicated by the prediction error. More sophisticated approaches involve

correcting the local approximation along quadratic, cubic, quaternion or

spline based convergence vectors.

Position-History Based Dead-reckoning [174], or PHBDR, an extension to

the derivative polynomial approach, chooses between first and second

38

38

order polynomials based on the objects state over previous updates.

Rather than transmitting instantaneous values for the rates of change, the

rate of change is derived from the previous observed states and an

approximation formula chosen based on threshold values in the rates at

which the value appears to be changing. Similarly, the convergence

algorithm used to correct approximation errors is dynamically selected

based on the significance of the predictive error.

Auto-adaptive dead-reckoning [24] further extends these ideas by varying

the rate at which updates are transmitted to an observer based on the

relationship between the object and its observer. For example, an

observer that is far away from an object may have lower accuracy

requirements for the approximated state than an observer that is close to

the observed object. Based on threshold values describing the

relationship between object and observer, a different error tolerance value

may be used to determine when an update should be transmitted, serving

to lower the rate at which updates are transmitted over the network to

“distant” observers.

More generally, a predictive contract [127] is any specification for deriving

a reasonable estimate of an object’s state over time. Consumers of a

predictive contract may extrapolate the current state of an object based on

its initial state and the predictive contract. Dead-reckoning techniques are

specific examples of predictive contracts. Other predictive contracts

would include statements like:

39

39

• traveling along waypoints A, B, and C

• flying in Delta formation

• following an arc having radius R with velocity V

The network gaming community has found dead-reckoning to be a very

useful technique to appropriate from the military simulation community [6,

21, 87, 128, 129, 152]. Evaluations of dead-reckoning techniques in

computer games have found them able to reduce the impact of network

transmission delay across a variety of game genres [150] and, when

combined with synchronized clocks across hosts, to provide a fairly

accurate approximation of the state of remote objects [4]. In spite of the

computational cost of prediction as well as the additional implementation

complexity, dead-reckoning has been successfully applied to first person

shooters [15], flight/space simulators [118], racing games [150], sports

games [150], and massively-multiplayer online games [21, 112, 114].

The use of other types of predictive contracts has not yet been adopted by

the game development community. When queried by the author, the

participants of a network gaming roundtable [195] at the 2004 Game

Developer’s conference were largely unaware of predictive contracts;

those developers who were aware of predictive contracts, came from the

military simulation domain.

Dead-reckoning and predictive contracts are not without drawbacks. It is

important to note that a weakly-consistent data model is vulnerable to

time-related cheating [12, 13, 35, 48]. A dishonest participant can pretend

40

40

to have greater latency in order to see the actions of other players before

sending out their own updates, with timestamps set in the past. This

effectively, allows a cheater to see slightly into the future. A cheater could

alternatively elect not to send updates as regularly as the game expects;

instead, the cheater deliberately drops as many updates as tolerated by

the game (we presume that after some threshold of dropped updates the

game will determine that the participant is no longer playing) before

sending an update that accords the cheater some advantage. As long as

the cheating party periodically sends plausible updates, one cannot

discern a cheater from an honest player having a poor network connection.

A recently suggested approach to securing dead-reckoning is to introduce

delay in the processing of messages until all participants have committed

to their choice of action for the current time-slice of the game using a

cryptographic hash [35]. The delay with which updates are applied to the

world representation is managed as a function of the observed latencies of

each player. In order to avoid stalling the game, players do not transmit

their moves in advance. Game state is updated by dead-reckoning if

players must wait for a participant to commit to their choice of action. The

effect of this approach on the perceived responsiveness of a game to the

user’s commands is not clear.

SIMNET Shortcomings

Several aspects of SIMNET render it an inappropriate technology on

which to base a massively multiplayer online game. Firstly, as a

41

41

development of the United States Military, SIMNET defines an overly

specific and specialized set of message packets [124, 176]; the

introduction of new types of simulation entities is not directly supported.

Secondly, the SIMNET network protocol is explicitly tied to Ethernet

multicast and requires network bridges for simulations which span

Ethernet LANs, at the cost of latency [124]. Thirdly, SIMNET was not

developed as an open or interoperable solution; it is insufficiently

documented for easy use by parties outside of those involved in the

original project [176]. These drawbacks made SIMNET less than ideal for

a long-lived military standard for networked virtual environments.

SIMNET also has some deficiencies that, while acceptable for the military

simulation community, deter from its usefulness as an MMOG platform.

The level of trust accorded to each autonomous simulation node poses a

security risk in a consumer environment, where fair-play cannot be

mandated by policy or oath, and customer retention is jeopardized by

cheating participants. For example, a dishonest node may grant unfair

capabilities to objects under its control, teleporting vehicles or ignoring

requests to apply damage from enemy munitions. Alternatively, a node

may make unfair use of the information at its disposal, requesting that

enemy units apply damage when they have not been hit, or making use of

positional knowledge of enemy units that should not be visible to the

player.

42

42

The network communications model and platform of SIMNET, Ethernet

multicast to all simulation participants, is not appropriate for massively

multiplayer online games. SIMNET effectively broadcasts all events to the

entire simulation network, regardless of the relevance of a particular event

to a given node. With this model, the SIMNET network software

architecture proved to be somewhat scalable (a five site simulation

involving some 850 objects was conducted in 1990 [133]), but not to the

level required for an MMOG.

DIS – Distributed Interactive Simulation

Attempting to overcome the shortcomings of SIMNET, in 1989 the United

Stated Department of Defence and supporting industries initiated a

process to formalize and extend the SIMNET protocols to support a wider

range of military small unit simulation requirements. These efforts

culminated in the ratification of the IEEE Distributed Interactive Simulation

(DIS) standard in 1993 [90, 91, 92, 93, 94, 95].

The DIS network software architecture has the same basic components

and structure as SIMNET but is designed to support fully distributed

heterogeneous simulations having fewer than three hundred (300)

participants over a UDP/IP local area network (LAN) [124, 176]. For the

purposes of this discussion, the core differences between DIS and

SIMNET are: (1) a larger set of predefined simulation entities, the DIS

terminology for SIMNET objects; (2) a larger suite of message definitions,

43

43

including an entity specific “data” message; and (3) the use of UDP/IP

broadcast instead of Ethernet multicast as a network transport facility.

DIS was well received and supported by the training community; over one

hundred DIS compatible systems were developed [176]. DIS was capable

of effectively supporting up to the design target of 300 participants;

however, DIS so successfully met its DOD objectives that it inspired a

demand from the training community for simulations supporting a larger

number of entities. Extensions to the DIS protocol and hierarchical

hardware architectures were introduced in the late 1990 for the Synthetic

Theater of War (STOW) [25] and Joint Precision Strike Demonstration

(JPSD) [106] exercises, which scaled to support 3000 and 30000 entities,

respectively.

One approach for extending the scalability of DIS across LAN boundaries

for the STOW and JPSD exercises was to introduce gateway servers to

act as the interface between the LAN and a wide area network (WAN).

For the STOW exercises, the Application Gateway (AG) serves as a

bridge between DIS participant sites, allowing them to operate as a single

DIS session. Tasks performed by an AG include packet aggregation,

delta compression, relevance filtering [25, 124, 165, 190], each of which is

discussed below. For the JPSD exercises, the Run-Time Gateway (RGW)

bridges simulation sites using interest management (IM) to ensure that

each simulation receives relevant information [156]. JPSD is further

discussed in the section on relevance filtering.

44

44

Packet Aggregation

In order to reduce the number of message packets transmitted across the

WAN an application gateway would bundle multiple protocol data units

(PDUs) from the subnet into larger message packets before transmission.

In the STOW environment, this technique was specifically useful in order

to accommodate the Ethernet frame size and rate requirements of the

Network Encryption System (NES) used to secure communications across

the WAN [124]; however, packet aggregation is a useful technique for

reducing bandwidth requirements even in the absence of the constraints

introduced by the NES.

The user datagram protocol (UDP) [155] and transmission control protocol

(TCP) [46] of the internet protocol (IP) suite [47] each have a header of

twenty-eight (28) and forty (40) bytes respectively. For networked virtual

environments having traffic composed of frequent small messages, a large

portion of the required bandwidth may be devoted to header information

for the underlying network protocol. Merging messages into a single

packet eliminates packet headers. Depending on the environment and the

amount of data contained in each packet, aggregation may eliminate up to

50% of the bandwidth requirements for a networked virtual environment

[176]. Clearly it pays to transmit as much information per packet as

possible, to reduce the amount of bandwidth wasted on network protocol

overhead.

45

45

Packet aggregation often requires a trade-off between bandwidth and

timeliness. The transmission of a data message may be delayed until

sufficient messages can be aggregated, thus increasing the latency of

message delivery. Additionally, delayed data may lose its relevancy to the

receiver, or even be superseded by a subsequent update before being

transmitted. In the ideal case, large sets of update messages become

available to the transmitting host at some regular interval, making packet

aggregation a rather trivial process. More generally, updates become

available in an unpredictable manner and some transmission policy for

packet aggregation manages the trade-off between message delay and

message size [175]. For example, in a time-based transmission policy a

packet may be sent after some fixed period following the availability of the

first update message; this provides an upper bound on the delay

introduced by the packet aggregator. In a quorum-based transmission

policy a packet is transmitted when it contains some minimum number of

updates; this ensures a particular reduction in bandwidth and packet rates.

One could also employ a hybrid approach where a packet is sent when

the period expires or when the quorum is reached, whichever comes first;

this approach can be used to dynamically balance the aggregation trade-

off in response to object update rates.

Packet aggregation is particularly suited to client/server network

architectures in which a game server host is responsible for multiple game

objects, or large portions of the game environment. Indeed, developers of

46

46

client/server multiplayer games typically have the server send out

aggregate state update messages to the clients rather than sending out an

update message per object [20, 86, 87, 118, 146, 178].

Delta Compression

In order to decrease the number of bytes required to transmit data from

one application gateway to another, each message undergoes delta

compression using the Protocol Independent Compression Algorithm

(PICA) [190]. PICA, and other delta compression schemes, exploits the

observation that much of the data describing an entity’s state changes

infrequently. Rather than always sending the full state of an entity, it is

often sufficient to regularly transmit only the portions of the state which

have changed, and less frequently retransmit the full state. PICA is

“protocol independent” because it performs this compression at the bit

level, removing redundant bits from the previously transmitted state

representation, without any regard for the semantics or structure of the

message content. In addition to PICA, each application gateway also

offers a Quiescent Entity Service (QES) which detects and tracks

stationary simulation entities. The QES informs other application

gateways that an entities state is no longer changing and that heartbeat

updates for that entity will not be transmitted over the WAN; based on the

last known state of that entity, each AG can then generate the appropriate

heartbeat updates for its local subnet.

47

47

PICA requires a mechanism for reliable message delivery, as each

message represents the change in state from the previous message. The

lost of a message introduces errors in the derived local state until the next

full state update is received. The magnitude of the error is compounded if

packet aggregation is further employed. One approach is for the recipient

of a delta compressed message to detect a lost packet (usually by

assigning a sequence number to each packet) and issue a retransmit

request, or negative acknowledgement (NAK) to the sender [124, 176]. In

the worst case, a lost packet results in a NAK from many other application

gateways, leading to network congestion and more lost packets [124].

The Quake 3 network model [87] demonstrates a technique for applying

delta compression to purely unreliable protocols. Rather than waiting for a

NAK from a client, the game server continuously sends out delta

compressed state from the last positively acknowledged state. This

approach transparently handles packet loss at the expense of more

frequent message transmission. Because a client’s positive

acknowledgement message is also delivered unreliably, it further requires

each client to cache all past states later than that on which the most

recently received update is based.

Relevance Filtering

In order to decrease the number of messages processed by each host on

a LAN, its application gateway discards updates which are not relevant to

the entities it serves. An AG uses Grid Filtering to discard updates for

48

48

entities which are outside of the geographic area covered by its local

subnet. An AG also applies Culling to discard updates for entity types

which are not of interest to its local subnet; for example, updates for

seaborne vessels may be discarded by an application gateway serving a

subnet composed of ground vehicles [124].

The designers of the JPSD simulation architecture modified the DIS

implementation of participating simulators to broadcast their updates on a

local multicast channel and introduced the run-time gateway to manage

inter-simulation messaging on behalf of its clients [156]. Each RGW,

based on a priori knowledge of the characteristics of its clients distributes

interest expressions to all of the other RGW hosts. When an update is

received from a client simulation, its RGW reads the update and forwards

it to all other RGW nodes having an interest expression which is satisfied

by the contents of the update.

DIS Shortcomings

Like SIMNET, DIS was developed for small unit training and is not suitable

as a massively multiplayer online game platform. The sizes of DIS

messages are slightly larger than those for SIMNET, requiring more

network bandwidth per message. In order for the simulation to be

completely decentralized and nodes fully autonomous, DIS requires that

every entity maintain its own complete representation of the virtual world

which, in turn, requires that every message must be received and

processed by every participant. DIS further requires that all entities

49

49

periodically broadcast their entire state for the benefit of new participants,

as well as still-alive messages if their update rate slows. Given these

requirements, a simulation having 100,000 players would have network

connectivity requirements of up to 375 Mbit/s of bandwidth to each player

[120], a figure well in excess of modern broadband access. This is in

addition to the large computational and space requirements for

maintaining the state of each entity by dead-reckoning.

The decentralized nature of DIS also has the same MMOG security and

trust issues found in SIMNET. For example, the anecdotal Mega-Death

program cheated by collecting the positions of enemy players and then

simultaneously issuing a detonation event for powerful munitions next to

each one [176]. The inability to detect or prevent cheating, when

combined with unreliable UDP/IP broadcast, has led to disputes in DIS

exercises where a player that should have “died” turns around to shoot the

player that just “killed” him [176].

ALSP – Aggregate Level Simulation Protocol

The operational goal for the STOW program was the ability to run real-

time simulations having 100,000 to 300,000 participants, a value on the

order of the size of Operation Desert Storm in the early 1990s [176].

Therefore, in early 1990, DARPA sponsored MITRE to explore the design

of a general interface by which large simulation exercises, such as those

based on DIS, could cooperate, increasing the functionality and value of

the existing combat simulations developed by various training

50

50

organizations [194]. This effort resulted in the development of the

Aggregate Level Simulation Protocol (ALSP) [105] which uses

synchronization algorithms from the analytic simulation community [69] to

join multiple independent simulations to form a larger, seamless simulation

covering a larger scope than intended or possible by the original

simulation designs [194]. Using the ALSP to aggregate platform-level

entities into simplistic groups of forces, the Joint Training Confederation

and similar groups commonly simulate battlefields with 20,000 to 100,000

entities [128].

While the ALSP is not directly applicable to massively multiplayer real-time

gaming, it does provide some ideas which may be helpful to MMOG

developers. In particular, it introduced an infrastructure layer into the

distributed simulation framework. This common software component,

composed of a translator and gateway layer, is responsible for creating

and transmitting update events, receiving updates and modifying local

ghost objects, controlling local simulation time, and converting between

the internal and external representations of entity attribute values.

Time Management

That ALSP provided a test platform for many of the ideas that would later

become part of the High Level Architecture for Modeling and Simulation.

The time management services of the ALSP and of the HLA are a prime

example of this. The time management system of the ALSP utilized a

conservative execution model based on the Chandy-Misra time

51

51

synchronization algorithm [28, 194] to manage the advance of simulation

time between the concurrent processes participating in the distributed

simulation. Conservative execution algorithms prevent inconsistency by

having each simulator advance its simulation clock only when it can safely

assert that no unknown action taken by another entity could possibly

cause its perceived state to differ from the correct state. In essence,

participants that interact with one another synchronize and execute the

simulation in lock-step.

Optimistic execution algorithms such as Time Warp [103], on the other

hand, allow participants to extrapolate the state of the environment; if the

extrapolation proves to be invalid then some corrective measure is taken.

In Time Warp algorithms, the simulation state and time revert to the last

known valid state and time, possibly causing entities to move

discontinuously. Further advances in time management are discussed in

the section on the HLA Time Management service.

Infrastructure

As a precursor to HLA Run-Time Infrastructure the Aggregate Level

Simulation Protocol introduced a common software infrastructure

facilitating the distributed interaction of simulators. The ALSP software

component is composed of translators and gateways. Each translator

handles the semantic conversion between the internal and external

representations of simulation data and prevents the local simulator from

advancing its simulation clock until it is safe to do so [194]. Each gateway

52

52

is responsible for applying the Chandy-Misra time synchronization

algorithm. Operating in a peer-to-peer manner, the gateways provide an

event transport service which guarantees that no participating simulator

will receive a late event. Gateways also allow simulations to join and

resign from the simulator in a time coherent manner [194].

ALSP Shortcomings

The requirement to link numerous, possibly dissimilar, simulations into one

aggregated system while maintaining the high-fidelity desired by the

training community, introduced additional complexity into the management

of time within the system. In the ALSP, time is not tied to wall-clock time.

Instead, the system executes as fast as possible with the requirement that

all events be processed in timestamp order by each participant. This

incurs significant processing and network overhead, which may result in

delayed time advancement in real-time modelling systems; conversely, it

also means that hours to days of simulation time may pass in minutes to

hours of wall-clock time, for faster than real-time modeling systems [128].

HLA – High-Level Architecture

In 1995 the Defence Modeling and Simulation Office (DMSO) [55] initiated

the High Level Architecture for Modeling and Simulation (HLA) project to

define a general purpose simulation framework facilitating interoperability

and reusability of large numbers of distributed heterogeneous simulators.

In the HLA, an individual federate (simulator) or set of federates

developed for one purpose can be combined with other federates and

53

53

applied to some other purpose as a federation: a composable set of

interacting simulations [41]. The HLA builds on the lessons learned from

the previous real-time distributed simulation projects described above, as

well as that of the analytical simulation community, to define a simulation

model and common run-time infrastructure by which to aggregate diverse

simulation applications. It extends the ambitions of the ALSP to not only

aggregate simulators based on the traditional real-time and DIS models,

but to simultaneously support other simulation models within the same

simulation, particularly those based on discrete-event simulation

formalisms. The HLA was accepted as an IEEE standard in 2000 [96, 97,

98, 99].

The high level architecture is formally defined by the federate interface

specification [97], the object model template specification [98], and the

HLA framework and rules specification [96]. For our purposes, the key

innovation of the HLA is the introduction of a standardized Run-Time

Infrastructure (RTI) for distributed simulation, defined in the federate

interface specification. The HLA Object Model allows a structured

specification of each federate, its attributes, and the overall federation to

be published to all participants. However, the HLA object models are

largely descriptive; the primary consumers of an HLA object model are the

human developers attempting to integrate a federate into a federation.

Finally, the HLA framework and rules specification describes the design

54

54

principles, constraints, and requirements that a federate and federation

must adhere to in order to be HLA compliant.

Functionally, the core elements of an HLA federation (Figure 3) are

federates, the federate interfaces to the RTI, and the RTI itself [39, 40, 41,

42]. The remainder of this section describes the run-time infrastructure

and the services it provides. It further discusses the applicability of the

services and concepts of the RTI to massively multiplayer online gaming.

SimulationLive PlayerSupport Utility

Run-time Infrastructure

Federation
Management

Object
Management

Time
Management

Declaration
Management

Ownership
Management

Data Distribution
Management

* * *

Interfaces

Figure 3. Functional Components of the High Level Architecture.

Run-Time Infrastructure

The RTI provides six core service classes. The federation management

service facilitates the creation and operation of a federation. The

declaration management service allows a federate to specify the data it

intends to produce and declare the data it expects to consume. The

55

55

object management service is used to create, delete, identify, and

otherwise manage simulation objects. The ownership management

service allows one object to dynamically transfer control of attributes to

another object during a federation execution. The time management

service maintains temporal consistency throughout the distributed

simulation. The data distribution management service provides efficient

routing and exchange of messages between federates. The HLA federate

interface specification [97] defines both the functionality provided by these

services as well as the application programming interface (API) used by

software developers to access these services.

RTI – Federation Management

The Federation Management service facilitates the creation, dynamic

control, modification and deletion of a federation execution [97]. This

service manages the complete lifecycle of the federation and its federate

members. It supports:

• the creation and initialization of the federation based on data found

in the Federation Object Model (FOM) document data, or FDD [98];

• federates joining or leaving the federation;

• saving and restoring the state of a federation execution to/from

persistent storage;

• the registration and management of synchronization points for

federates and for the federation; and,

• the destruction of a federation execution.

56

56

The Federation Management facilities provide a pattern for system

administration and service discovery that may be of interest to the

massively multiplayer online game developer.

RTI – Declaration Management

The Declaration Management (DM) service allows joined federates to

declare the manner in which they intend to participate in the federation

[97]. It further allows federates to discover the object instances, attributes,

interactions, and service which are available within the federation. The

DM service provides a pattern for providing data-driven and meta-data-

driven (schema) distributed systems. Data-driven techniques and

systems are becoming a standard part of the game developer’s arsenal of

tools and are a natural fit for massively multiplayer online game systems

[115, 116, 167]. Data-driven techniques have been used by game

developers from all game genres, from role-playing games to real-time

strategy games and first person shooters, to provide flexibility and

extensibility during development and to allow the user community to build

their own game modifications, or mods [164].

RTI – Object Management

The Object Management (OM) service provides a remote object

interaction paradigm similar to that of Microsoft’s Distributed Component

Object Model (D-COM) [131] and the Common Object Request Broker

Architecture (CORBA) [147]. These object-oriented models for distributed

computation provide a layer of abstraction between the invocation of a

57

57

procedure on an object and the physical location at which the object

resides and at which the execution of the procedure takes place. They

further provide facilities for object and service discovery. These models,

particularly when object methods are defined as asynchronous, may be of

value to an MMOG developer as it allows him or her to focus

independently on the interaction of objects and the distribution of objects.

RTI – Data Distribution Management

The Data Distribution Management (DDM) facilitates the transfer and

delivery of simulation updates between federates using a

producer/consumer model [97]. The DDM service applies and extends the

distribution techniques of previous military and academic simulations,

making use of area-of-interest management, packet aggregation,

hierarchical distribution, and various network topologies. The DDM

service abstracts the notion of multicast, interest, and regions away from

the network using the concept of routing spaces: a mechanism for

expressing and applying interest to network updates [97, 128]. In the

commercial game space, middleware companies are adapting these ideas

for multiplayer and massively multiplayer online games [162].

RTI – Ownership Management

The Ownership Management service of the Run-Time Infrastructure

allows joined federates and the RTI to transfer ownership of objects

instances and instance attributes among joined federates [97]. This

supports the cooperative modeling of an entity across multiple hosts. It

58

58

further provides a means for the control of an object or an attribute to

migrate from one host to another. In the HLA a federate may divest its

ownership to the RTI, allowing the RTI to assign ownership to any

interested federate, or a set of federates may coordinate an exchange of

ownership among themselves.

An ownership management service may be quite useful for a massively-

multiplayer online game environment. MMOG systems offering seamless

worlds using client/server architectures will require a mechanism by which

entities are transferred from one server to another as they move through

the environment. If the MMOG system provides support for the

reassignment of ownership without the participation of the current owner,

an ownership management service can also be used as a fault-tolerance

measure; objects managed by a failed host can be transparently

reassigned to another host.

RTI - Time Management

Each federate maintains two local clocks. Scaled-wallclock-time is used

to synchronize federates execution with humans and live entities. Logical-

time, which is synonymous with simulated-time, is used to ensure that

messages are delivered, and events occur, in the proper order. The Time

Management service provides a federation execution with mechanisms to

order the delivery and application of messages throughout the federation

execution [97]. In providing this service, the RTI extends the ASLP and its

other predecessors to support [68, 70]:

59

59

• federates having different event ordering requirements (e.g., DIS

and ALSP)

• federates using different time advance mechanisms (e.g., time-

stepped or event driven)

• real-time, scaled real-time, and as-fast-as-possible simulators

• federates using conservative synchronization

• federates using optimistic synchronization

• federates having different event transportation requirements (e.g.,

reliable and best effort message delivery)

• federates having different message ordering and processing

requirements (e.g., receive order, priority order, causal order, etc)

 To meet these requirements, the time management service is responsible

for coordinating the message transportation system (i.e., the Data

Distribution Management, or DDM, system) of the federation and the time

advance mechanisms employed by each federate. The message delivery

capabilities of the DDM system are categorized according to (1) the

reliability of message delivery and (2) message ordering [68]. With regard

to reliability, best effort message delivery means the transportation system

will attempt but not guarantee to deliver the message; while reliable

message delivery means the transportation will utilize mechanisms such

as retransmission to ensure that the message is delivered. These

semantics are equivalent to those of User Datagram Protocol (UDP) [155]

and the Reliable Data Protocol (RDP) [151, 191], respectively.

60

60

With regard to message ordering, the HLA DDM provides five schemes

[68] by which messages will be delivered to a federate:

• Receive Order. Incoming messages are placed into a first-in-first-

out (FIFO) queue. The RTI thus delivers messages to the federate

in the order in which they were received. This is the simplest

ordering mechanisms and has the least latency.

• Priority Order. Incoming messages are placed into a priority

queue, where precedence is given to the message having the

lowest time stamp. This mechanism is also quite simple and

exhibits fairly low queuing latency.

• Causal Order. This ordering guarantees that a federate receiving

messages for two events E and F, where E causally precedes [113]

F, will have the message for event E delivered to it before the

message for event F. For example, event E might be the firing of a

weapon and event F might be the subsequent destruction of the

weapon’s target.

• Causal and Total Order. This ordering extends the Causal Order

mechanism to additionally guarantee that messages for events

having no causal relationship (i.e., messages pertaining to

concurrent events) will be delivered to all federates in the same

order. That is, for concurrent events P and Q, this ordering

guarantees that all federates will observe P before Q or all

federates will observe Q before P.

61

61

• Time Stamp Order. This message delivery order guarantees that

messages are delivered to the federate fully ordered based on their

time stamp. As a consequence, the RTI further ensures, using

conservative synchronization techniques, that no message is

delivered to a federate “in its past” (i.e., no time stamp ordered

message is delivered having a time stamp lower than the current

time of the federate).

To support the time stamp order delivery of messages, the RTI time

management service also provides a time advance mechanism. The time

management service permits a federate to advance its logical time to T

only when it can guarantee that the federate will not receive a time stamp

order message having a time stamp less than or equal to T. To support

this, each federate specifies a look-ahead value denoting the minimum

distance into the future that it will generate a time stamp ordered event. A

federate may advance its logical time to the lowest logical time plus look-

ahead taken over all participating federates. This means that a federate

may not process any local event until the federate’s logical time has

advanced to the time of the event. The federate may also request that

run-time infrastructure only deliver time stamp ordered events to the

federate when the federate’s logical time reaches that of the event, for

conservatively synchronized federates; optimistically synchronized

federates may relax this constraint.

62

62

Based on these facilities and requirements the HLA Federate Interface

Specification [97] defines two broad ways in which a federate can interact

with the time management system. A joined federate either is, or is not,

time-constrained. Time-constrained federates receive and process time

stamp ordered messages and require that their logical time be regulated

by the run-time infrastructure. A joined federate may also be time-

regulating. Time-regulating federates generate time stamp ordered

messages which in turn control the advance of logical time for time-

constrained federates.

HLA Shortcomings

The High Level Architecture for Modeling and Simulation provides a

wealth of patterns and techniques for the massively multiplayer online

game developer. However, it is not, as a reference system, well suited for

use as the underlying implementation of an MMOG environment. The

HLA, with its design objectives focused on interoperability, multiple

hardware and language interfaces, and legacy system support is more

general than required for an MMOG [128]. For game development,

particularly on game consoles and other constrained platforms, the

memory and computation requirements to support an interface richer than

required become a concern. Further, the HLA provides computationally

expensive correctness and repeatability guarantees that exceed the

requirements of most online games. Although correctness and

repeatability are highly desirable, primarily for testing and quality

63

63

assurance purposes, an operational MMOG only needs to provide its

participants with the appearance of consistency and fairness [60, 63].

Rather than using a fully HLA compliant subsystem for implementing an

MMOG, a game developer may use the HLA concepts to build a system

more specifically tailored to the needs of online games. Over the course

of the developing the HLA Run-Time Infrastructure the Defence Modeling

and Simulation Office funded exploratory options for game constructed via

the RTI [128]. The OpenSkies system [38], from Cybernet Systems

Corporation, is an online gaming framework which is extensible to

massively multiplayer online games [37] and is directly derived from the

HLA. Similarly, Quazal’s Eterna [162, 163], a middleware infrastructure

for massively multiplayer online games, also has its roots in the High Level

Architecture.

Academic Research

While the majority of the impetus and funding for the development of large

scale virtual networked environments has historically emanated from the

Department of Defence, much of the knowledge and expertise developed

by DOD projects failed to transition outside of each individual project [176].

Thus, a great deal of the technology developed under the auspices of the

DOD was subsequently reinvented, published, and extended by the

academic community. This section covers the most significant of the early

academic contributions to networked virtual environment, and in turn

MMOG, development.

64

64

NPSNET

The NPSNET Research Group [140] of the Naval Postgraduate School

focuses on developing networked virtual environment technology for use

by the Department of Defence. In particular, this group developed the

Naval Postgraduate School Network (NPSNET) [124, 157] Simulator as a

test bed for exploring the construction of large scale virtual environments.

This effort culminated in NPSNET-IV [123], which extended the DIS

protocols using IP multicasting and human interface design techniques in

order to provide an virtual environment in which fully articulated human

players could interact with almost all types of ground, air, and subsurface

military vehicles [176] .

The NPSNET Research Group explored the use of internetworking

technologies, particularly those used by the Internet, as a communications

medium for building large scale distributed virtual environments [123].

They were the first group to exploit the real-world characteristics of spatial,

temporal, and functional locality within a large scale environment by

introducing an entity-local area-of-interest-manager (AOIM) and using IP

multicasting to restrict and focus local processing and network resources

[125].

IP Multicasting

Instead of using server software to perform point-to-point delivery of

updates from the source entity to receiving entities, NPSNET used the

emerging facilities of IP based inter-networks to simultaneous multicast

65

65

packets to a set of subscribers [125]. The IP Multicast Protocol [45]

provides one-to-many and many-to-many unreliable message delivery

over the Internet. This places the burden of propagating messages from

publisher to subscriber on the network transport system instead of the

application. This can allow for extremely efficient utilization of network

bandwidth and computational resources; only one message need be

transmitted over the network for an arbitrarily sized recipient set [189].

There are however, a number of obstacles to using IP multicast for a

massively-multiplayer online game. Firstly, IP multicast is not ubiquitously

supported across the Internet [10, 165]. A number of multicast based

systems have reintroduced specific server processes which emulate

network multicast services for regions of the network where it is not

supported [11, 66] . Secondly, where IP multicast is supported, the

sustainable number of multicast groups is insufficient for very large entity

populations [10, 128]. Thirdly, the MMOG developer must select an

appropriate strategy for the creation, management, and assignment of

multicast groups [2, 73, 165]. For this, we turn to area of interest

management.

Area of Interest Management

In an area of interest management scheme, entities transmit updates to a

set of subscription managers who take responsibility for delivering the

updates to all interested parties. In NPSNET, the area of interest (AOI)

manager uses spatial, temporal, and functional relationships between

66

66

entities in order to partition the virtual environment into smaller

environments and/or classes in which an entity can express interest [123,

124, 125, 126]. While the primary AOI criteria used was spatial, based on

the hexagonal grid inhabited by an entity, area of interest management

has been adopted and expanded by a number of other projects [1, 2, 3, 58,

83, 119, 127, 137, 156, 165, 177, 184, 185, 201].

One way to specify interest is to introduce an interest expression language

by which an entity can describe the information it would like to receive

[127, 156, 176]. Using predicates, each entity declares a sequence of

filters or assertions that an update must pass in order to be considered

relevant to the entity. In this model, server processes generally manage

the filtering and delivery of messages to the interested parties, as the

resulting delivery patterns for filtering are application based and do not

correlate with network multicasting [176].

There exist other schemes for interest management that do not explicitly

rely on application data; these schemes are more easily mapped to

message delivery optimizations such as network multicasting. One such

approach assigns a different multicast address to each entity in the virtual

environment [2, 177]. Each entity then subscribes to the set of multicast

groups corresponding to those entities in which it is interested. This

scheme requires some means for each entity to discover the simulation

objects that are in its general vicinity or otherwise worthy of its attention.

Directory, or beacon, servers provide a means for an entity to discover the

67

67

members of its interest set, and the corresponding multicast group for

each member [8]. This approach may further be extended to support

multiple levels of fidelity or multiple channels of information by assigning

more than one multicast group to an entity [176]; clearly, a multicast-

group-per-entity approach can consume a large number of multicast

addresses for simulations have large entity populations.

Another scheme for mapping interest management onto network multicast

protocols is to assign a multicast address to each region of the simulation

[73, 125, 165, 176]. In this approach, an entity transmits its updates to the

multicast group corresponding to the region of the virtual environment in

which it currently resides. In comparison to a multicast-group-per-entity

approach, a multicast-group-per-region approach may significantly reduce

the number of multicast groups required, but may significantly increase the

load on the network routing system to manage the frequent changes in

multicast group subscriptions [73].

Hybrid schemes have also been proposed, where both group-per-entity

and group-per-region approaches are employed [1, 2, 3, 176, 177]. These

hierarchical interest management systems use locality, entity type,

information type, and/or area-of-interest filters to control the information

received by an entity, either by directing the entity to one or more multicast

groups, or with application server software which is responsible for

message delivery. For massively multiplayer online games having

client/server architectures, hybrid approaches are particularly interesting

68

68

as the server may also perform message aggregation on the receiver’s

behalf and the network topology can be such that a client remains

connected to a single server, which can provide (more) stable message

latencies than having a client connection migrate from host to host during

a game.

PARADISE

At Stanford University, the Distributed Systems Group developed the

Performance Architecture for Advanced Distributed Interactive Simulation

Environments (PARADISE) to explore network software architecture for

building large-scale multiplayer three-dimensional simulations running

over a wide area network [54]. Like several other academic projects we

will survey, the contributions of the PARADISE network were directed at

DIS or DIS-like simulation environments. Several of those contributions

have already been mentioned in previous sections. For example,

Position History Based Dead-reckoning [174, 175] was a product of this

group's research. As this extension to dead-reckoning has already been

covered, it will not be discussed further in this section. Some of the

group's other contributions include projection aggregation, hierarchical

area-of-interest servers, and exploration of the design and use of reliable

multicast protocols for data distribution.

Projection Aggregation

As the number of entities within a simulation environment increases, so

too does the volume of updates each participating host must process.

69

69

Given a large enough population of "interesting" entities, the volume of

messages may overburden a host or saturate a network connection.

Techniques such as dead-reckoning and interest-based filtering of

messages serve to decrease the number of messages received by each

host. We have also seen approaches to message aggregation which

reduce the number of messages by bundling them based on

organizational information, such as the type of object the message is

about, or based on the location of the entity in the virtual environment.

The PARADISE group developed Projection Aggregation to apply both

organization and locality information when creating aggregations [176].

More generally, the approach extends to arbitrary dimensions along which

one would like to project [177].

Unlike packet aggregation, which saves bandwidth overhead by

combining multiple messages into a single packet, projection aggregation

introduces new container entities which provide summary information for

their members. For example, a projection aggregation might transmit the

number of entities in the projection, a focal point, and information about

how the entities are distributed about that point. This would allow a distant

observer to construct a low-fidelity approximation of the projection, which

may be sufficient for the specific purposes of that simulation environment

[177]. An approach such as this would be useful to model crowded areas,

for example, where detailed information about entities in one’s immediate

70

70

vicinity is required, but where crowd density information is sufficient for

representing the entities beyond one’s range of direct interaction.

Arranged in a hierarchy, projection aggregation also provides a general

model for providing variable level-of-detail in update messages and

hierarchical area of interest management [177]. In this model, a parent

aggregation represents summary information for its member entities,

which may be the parts of a tank, a formation of fighter planes, or a distant

fleet of warships. As an observer requires a higher-fidelity view of an

aggregate object, it simply subscribes to updates from the child

aggregates instead of the parent.

Dead-reckoning techniques can be further applied to the summary

information, with updated summaries being transmitted when the actual

distribution of the aggregated entities differs by some threshold from the

predicted distribution. The PARADISE team observed a 40% reduction in

the number of entities in the interest set of each host and a 72% reduction

in packet rate [177].

Reliable Multicast

To further reduce the number of update messages required by the DIS

protocols, the PARADISE group explored the use of reliable multicast

protocols to eliminate the need for frequent heartbeat messages from

entities having stable state [176]. Log-Based Receiver-reliable Multicast

(LBRM) provides a reliable multicast and persistence system with low-

latency recovery from packet loss [85]. This technique adds log servers

71

71

which maintain a history of recently transmitted messages from one or

more hosts. If a log server does not receive an acknowledgement from

each of a designated list of Designated Ackers then the message is

multicast again, otherwise, the message is unicast on receipt of a negative

acknowledgement from any other subscribers who notice that they failed

to receive a particular message. With this scheme, the team was able to

support terrain as a first-class entity while reducing heartbeat packet

overhead by a factor of fifty and lowering the time required by a new

participant to learn the current state of the environment [85].

MASSIVE

The Communications Research Group at the University of Nottingham

created the Model, Architecture, and System for Spatial Interaction in

Virtual Environments (MASSIVE) teleconferencing environment to explore

interaction and awareness models in collaborative virtual environments

[80]. The group looked not only at network software architecture, but also

at integrating heterogeneous user-interfaces, multimedia, and common

patterns of social interaction into the virtual environment. The MASSIVE

network software architecture has evolved from a peer-to-peer system in

its early incarnations to a client-server model with a fully replicated

distributed database and emulated multicast [81]; server processes

maintain centralized representations of the world state and distribute

updates from the otherwise autonomous client process that owns a given

entity to all observers of that entity. MASSIVE is particularly interesting for

72

72

its spatial model of interaction and its division of the virtual environment

into locales.

Spatial Model of Interaction

As its name suggests, this model uses spatial properties, such as

proximity, as a means for mediating entity interaction. Objects can move

about the virtual environment in order to from groups with other entities

and hold conversations within these groups [80]. Similar to the DIVE

system, every entity has an aura around it which defines the area in which

it can meaningfully interact, a nimbus defining the area in which the

object’s properties may be observed, and a focus defining the area in

which it is interested. Two objects may interact when their auras intersect

and one’s focus intersects the other’s nimbus. More concretely, the

intersection of auras implies that it may be possible for the objects to

interact while the interaction of focus and nimbus implies that one object is

aware of the other.

The specifics of the interaction is determined by the level of awareness

one object has of another. For example, in an environment supporting

audio, a player who is close to a speaking player and is “looking” at that

speaker would hear that speaker more clearly or loudly than another

speaker at the periphery of our avatar’s senses. Similarly, entities in the

center of one’s field of vision would be rendered with greater fidelity than

objects at the edge or outside of one’s field of vision. This model rather

intuitively approximates the real-world behaviour of the human senses.

73

73

Unfortunately, a pure aura-nimbus-focus implementation of the spatial

model of interaction does not scale to large numbers of entities [176]. The

pair-wise management of spatial interactivity requires considerable

processing resources; moreover, the specialization of updates based on

the degree of interaction between pairs of entities results in messages that

are customized for each particular recipient. A system based on the

spatial model of interaction cannot easily take advantage of network

efficiency optimizations such as multicasting.

Locales

A locale, introduced by the creators of the Spline system [8], encapsulates

a region within the virtual environment, such as a room, corridor, open

space, or vehicle with it’s own local coordinate system and a set of

boundaries through which entities might pass into other locales. The

approach is strikingly similar to the manner in which portal based graphics

engines [122] represent the world and compute a potential visibility set

(PVS); a portal is analogous to a boundary between a locale. The third

generation of the MASSIVE system extended this idea to integrate

awareness and projection aggregations, which the authors referred to as

abstractions [161].

Locales allow a virtual environment to effectively support non-Euclidian

structures such as virtual mirrors, worm-holes, and buildings whose

interior is larger than their exterior, within a three dimensional framework.

Combining focus with locales/portals or binary space partition (BSP) trees

74

74

is also an effective way to perform interest management based not only on

proximity, but on what is actually visible to the participant. This level of

granularity and accuracy, while desirable, is counter-balanced by the need

for low-latency discovery about new entities that enter a participant’s field

of vision. If, in order to maintain sufficient interactivity, a client must be

informed about an entity the player cannot currently see, but has the

potential to see in the immediate future, then it may not be worthwhile to

support fine-grained visibility culling at all.

Other Systems

This section describes several other academic projects whose

contributions have already been mentioned in the context of extending or

enhancing a previously mentioned technique or approach. Rather than

restating each contribution here, we briefly summarize each project and

highlight any contributions not previously mentioned. Inclusion of a project

in this section, as opposed to its own larger section, does not relate in any

way to the magnitude or importance of the contribution of the project; it is

purely a side-effect of the organization of this work.

DIVE - Distributed Databases

The Distributed Interactive Virtual Environment (DIVE), developed by the

Swedish Institute of Computer Science, uses a peer-to-peer distribution

model to simulate a concurrent shared memory which is used by

distributed processes to provide a shared world database [26, 27]. DIVE’s

shared memory model implements an active, partially-replicated

75

75

distributed database. Each participating application process maintains its

own local copy of the world database while sending and receiving updates

to the database via reliable IP multicast and multicast proxy servers,

where IP multicast is not supported [66]. The DIVE database is also

dynamic, meaning that entities and entity types can be added to the

environment at run-time.

RING – Network Topologies

RING is a client-server system for networked virtual environments [72]. In

RING every entity is managed by exactly one client host and

communication between clients is managed by servers, which filter and/or

aggregate messages and simulate multicast. Like the locale system used

by MASSIVE, a RING environment is composed of rooms and corridors

connected by doors, which are analogous to portals/boundaries; this

allows RING to perform line of sight visibility tests to filter messages. As

these concepts are discussed elsewhere in this thesis, they will not be

repeated here. For the purposes of this section, the key contribution of

the RING project is the group’s experimentation with, and insight into,

network topologies and messaging protocols [73], which will be further

explored in the chapter on network software architectures.

BrickNet – Client/Server Architectures

BrickNet [172, 173] is a virtual environment toolkit that was among the first

to explore client/server architectures [176]. Rather than replicating the

world database (as done in its contemporary projects SIMNET, DIS, and

76

76

DIVE), BrickNet partitioned its data model among the client hosts, and

used servers to broker and mediate the exchange of information among

the clients. Derived from BrickNet, a PC based gaming library called

NetEffect has been used to implement HistoryCity, a virtual world in which

children can explore the history of Singapore [44, 176].

Commercial Computer Games

Companies and developers within the video and computer game industry

have, in the last eight to twelve years, become extremely open with regard

to sharing the technologies and approaches used in their products.

Developer conferences, trade magazines, and books have been available

for quite some time, mostly targeted to game developers and/or

prospective game developers. More recently, crossover and transfer of

both technology and individuals between the military/academic community

and the gaming community has become more common [128, 129, 150,

168, 183]. Computer and video game development has become a topic

for study at specialized schools, as well as mainstream colleges and

universities [74]. Increasingly, companies and industry groups actively

pursue collaborations with academic institutions [65, 100]. Indeed, the

distinction between military, academic, and commercial research and

development in the multiplayer and massively-multiplayer environments

may no longer be appropriate.

This section briefly summarizes the massively-multiplayer online game

literature emanating or derived from the commercial video and computer

77

77

game industry. The many instances where commercial games have

adopted or extended techniques originating in the military and/or

academic space are not repeated here; rather, those examples are

mentioned in the preceding sections in the context of the extended

technique(s).

First Person Shooters

The popular series of Quake games, from Id Software [89], have proven to

be successful not only as commercial products, but also as foundations for

research into the development of multiplayer online games. The Quake

games make use of dead-reckoning, delta compression, and client/server

network software architectures [86, 87]. Id Software has released the

source code for Quake, Quake II and Quake III Arena under open-source

and non-commercial use licenses, allowing students and enthusiasts alike

to modify and extend the games. For example, a group of students at the

University of Washington used Quake as a test-bed to explore the game

play effects of different choices of transport and network layer strategies

[20]. Another group of students, at the University of Michigan, extended

Quake to support the use of distributed game servers employing full world

database replication and optimistic synchronization [33, 34].

Real-Time Strategy

Real-Time Strategy (RTS) games, such as Blizzard Entertainment’s

Warcraft series [19] or Microsoft Corporation’s Age of Empires series [132],

allow a small group of players to command tens, if not hundreds, of semi-

78

78

autonomous units against one another, dispersed across the game

environment. The networking models for this style of play have different

requirements from those of action or simulation games, in which the player

typically controls exactly one character with much smaller visibility into the

game environment. RTS games largely use a synchronized-parallel

model of distributed simulation, in which identical copies of the game

environment are simulated in lock-step on each node [16, 82, 181].

Rather than transmitting state updates, individual hosts transmit and

synchronize on command updates; the game engine is such that given an

identical command stream, the evolution of the simulation is entirely

deterministic across all hosts. The network model does not scale

effectively beyond support for several dozen players [181]. Indeed, it is

not clear if the RTS genre, as currently defined, is well suited to larger

numbers of simultaneous players.

Massively Multiplayer Online Games

As discussed previously, a number of game development and publishing

companies have entered the massively multiplayer online game market.

In addition, several game technology companies have taken up the

challenge to produce middleware and development platforms for

massively multiplayer online games. This section explores the network

software architectures currently exploited by MMOG developers.

79

79

Shards

One common technique for distributing the computational requirements of

client/server massively multiplayer online games is to partition the player

space across more than one logical instance, or shard [49, 53, 67], of the

game world (Figure 4). An MMOG using this technique might offer (1)

several identical shards of the game world, where each acts as a sort of

parallel universe to the others [139, 148, 179], (2) several distinct game

worlds, representing disjoint regions of the world or catering to different

styles of play [196], or (3) a set of identical shards for a set of worlds [121].

Each shard typically corresponds to a game server, or cluster of game

servers, allowing the MMOG provider to scale the system as the player

population grows.

Figure 4. Client/Server Shards.

In shard-based game systems, a player in one shard cannot interact with

a player in another shard, even if the two players are in the same location

in the logical game world. In this regard, a shard based game system

does not strictly conform to our previously given definition of a massively

80

80

multiplayer online game; players in the “same” game do not necessarily

inhabit a common environment, and may not be able to interact with one

another. For example, a common scenario in shard-based games is for a

user to join an MMOG only to find herself isolated from her friends, who

happen to reside on another shard; this scenario is only grudgingly

tolerated by players [49, 53]. The primary attraction for most MMOG

players is the opportunity to interact with others, particular with their

friends [67].

A shard based world, where each shard corresponds to a server, has a

number of benefits.

• Compared to the other approaches we will consider in this section,

shards are the least complex [14].

• Maintaining the consistency of the game world on a single shard

server is fairly straightforward; the server’s representation of the

world state is correct, by definition.

• Each shard is independent of the others; communication between

shard servers is not, in general, required.

• A shard represents a complete world, all game resources (art,

sounds, and models) are localized to that world. This can simplify

the loading and management of resources on the client, as well as

the management of game assets by the game’s artists and

developers.

81

81

• When the player population grows, one or more additional shards

may be introduced to which new players are assigned.

There are two principal drawbacks to using shards. Firstly, as discussed

above, shards result in the segregation of the player population. Secondly,

for systems where each shard corresponds to a single game server,

individual shards are not scalable. For a given shard, the server on which

it resides will support some maximum number of concurrent users. Once

this limit is reached, there is no way to increase the capacity of a shard

other than replacing or upgrading the server hardware.

Zoned Worlds

Another approach, closely related to shards, is to divide the world into

distinct regions, or zones (Figure 5), and allow the player some explicit

means for travelling from one zone to another [14]. Each zone is

managed by a different server or server process, allowing the player

capacity of the massively multiplayer online game environment to scale by

the addition of new zones. Zones also allow the effects of server failure to

be isolated to the players using the failed server. In essence, a zone is a

region-oriented shard system that explicitly allows player migration. This

approach can be used both in a single world environment, where there

exists a single cluster of zone servers representing the game world, or in a

shard-based environment, where there exist multiple clusters, each

representing a shard.

82

82

Figure 5. Zoned World.

A massively multiplayer online game that is presented to the user as a

single zoned world provides many of the benefits of shards (distributing

the user population across multiple servers) without the forced

segregation of users. As mentioned above, an MMOG can also be

presented as a set of zoned shards; this allows the developer to support a

larger number of simultaneous players in a single shard, thus reducing the

required number of shards and decreasing the degree of user segregation.

This approach, where each shard is supported by a server cluster

implementing the zones of the shard, is the most prevalent network

software architecture employed by the MMOG products on the market at

the time of this writing [14, 49, 53, 62, 63].

The main drawback to zoned worlds is the explicit discontinuity between

zones. Players dislike the interruptions incurred as their game client

83

83

transitions to a new zone, unloading the game resources for the previous

zone and loading the resources for the new zone [49, 53]. Ironically,

these explicit transition points are quite attractive to MMOG developers as

they serve to greatly limit the complexity of building large game

environments [14]. A second drawback, which is similar to that of shards,

is the difficulty in scaling the capacity of an individual zone. For a given

zone, the server on which it resides will support some maximum number

of concurrent users. Once this limit is reached, there is no way to

increase the capacity of a zone other than replacing or upgrading the

server hardware. This issue has the potential to be more problematic in a

zone-based system than in a shard-based system. Limiting the number of

players in a popular shard distributes the players across multiple copies of

the same game world; the player does not, in principle, miss out on any

part of the game experience. Limiting the number of players in a zone

may prevent players from freely exploring the entirety of the online

environment.

Seamless Worlds

A seamless world is a zoned world in which the boundaries and transitions

between zones are transparent to the player [14, 49, 53]. This model is

almost identical to the a zoned world model; however, the servers for

neighbouring zones must interact in order to notify each other about

objects that are ‘close’ to the zone borders, and in order to transfer

ownership of objects as they cross zone boundaries [14]; more ambitious

84

84

seamless world models might employ dynamic zone boundaries, growing

and reducing the extent of a zone in order to maintain zone populations

that do not overburden the computing resources of any game servers.

Seamless worlds offer a number of benefits [14]. Firstly, a seamless world

can present the player with a much larger contiguous environment in

which to play. Secondly, a sophisticated seamless world environment

might dynamically manage the location of zone boundaries in order to

more evenly distribute the player population across the available servers;

this provides a mechanism for greater scalability, as well as for fault

tolerance. Thirdly, a seamless world insulates the client from the load and

transition times associated with zoned worlds; the game client must

dynamically anticipate and load required data in the background as

appropriate during game play. Lastly, a seamless world does not

segregate the player population.

The benefits of seamless worlds come at the expense of considerable

complexity. Whereas a zoned world allows a single server to manage all

local interactions between players, a seamless world must support

interactions between players straddling the boundaries between

neighbouring zones. As we have seen, maintaining distributed

consistency is quite difficult and error prone. Further, care must be taken

in designing game content (in-game assets such as maps, models and art)

such that they respect server boundaries and the radii of awareness for

85

85

players [14]. For seamless worlds having dynamic zone boundaries, this

complexity further increases.

Despite these challenges, the massively multiplayer online game

developers and middle-ware vendors are actively pursuing the benefits of

seamless worlds. At the time of this writing, a number of current and

upcoming MMOG products provide seamless world support [104, 135, 187,

188]. Additionally, several MMOG infrastructure vendors have introduced

middleware supporting seamless worlds [7, 17, 200].

Grid Computing

Butterfly.net [7, 22] extends the multiple server model described above by

using a grid computing framework for resource management and

allocation. Grid computing (also called utility computing) is a model in

which the computational and storage capacities of connected devices are

viewed as a managed pool of resources. Participants in the grid can

request and use these resources as their needs and service agreement

dictate. This model has several attractive features. Firstly, it can be

mapped rather naturally onto a fault-tolerance by fail-over model. If a

server becomes overloaded it can request that some of its responsibilities

be reassigned to another resource. If server failure is detected, an

administrative process could automatically assign the tasks of the failed

server to another resource. Open-source grid computing toolkits [182] are

available for use by massively multiplayer online game developers.

86

86

An organization having such a grid could run several massively

multiplayer online game products using the same network and hardware.

The load distribution properties of the grid may be used to dynamically

assign and balance the use of computing resources to each MMOG as it

needs. Such a service could be offered to MMOG developers using a

public-utility model in which the MMOG provider pays for the computing

resources they use each month. This would serve to lower the initial costs

of deploying and operating a new massively multiplayer online game.

Conversely, an MMOG provider offering multiple MMOG products on its

own grid could, in principle, run them all on the same infrastructure. This

would avoid much of the difficulty of provisioning infrastructure for a new

MMOG product and allow the game provider to leverage their hardware

investment over multiple products.

87

Network Software Architectures

This chapter considers models for distributing simulation tasks and world

representation for a massively multiplayer online game network.

Categorized broadly, there are two basic structures for creating a

distributed game network: client/server and peer-to-peer. In the following

sections, we will briefly examine several variations and combinations of

these two basic architectural patterns, discussing the benefits and

challenges of the basic approaches.

Client/Server

In a client/server system, one or more server nodes are tasked with

providing services to the player (client) workstations. Clients do not

communicate directly with other clients; rather, they communicate directly

with one or more servers, which will in turn communicate with the other

clients (and possibly servers) participating in the system. In the simplest

client/server architecture, a single server provides the entire game

environment for all clients or some subset of clients (Figure 4). Multi-

server architectures allow the game designer to (1) partition the clients

across several server hosts and/or (2) to partition the environment across

multiple hosts [176].

In a replicated client/server system (Figure 6) clients are partitioned

across multiple servers. This architecture is similar to the architecture for

shard world. Each client sends and receives updates via a single server

for the duration of the game session and the servers communicate among

88

88

themselves using peer-to-peer protocols, much as in DIS or SIMNET [72,

176]. When a server receives an update from one of its clients, it is

responsible for forwarding the update to other interested clients to which it

is connected, as well as to each of the other servers. As opposed to

having a single server managing the entire game environment, this

architecture distributes the workload of handling the clients by dividing the

clients among the servers. Because each server will likely have clients

which are widely scattered throughout the virtual environment, the level of

inter-server communications and per-server processing required to

support the clients can be quite high [73, 176]. Architectures of this form

are able to support networked virtual environments in which the client is

trusted to authoritatively compute and distribute game state. In these

architectures, the servers primarily route messages; however, these

architectures have been shown less scalable than others we will discuss

[73]. For virtual environments in which the client is not trusted, these

architectures require the servers to shoulder the additional burden of

observing, arbitrating, and/or computing game state.

89

89

Figure 6. A replicated multi-server client/server archictecture.

As mentioned previously, another approach for distributing the

computational and client load across multiple servers is to divide the game

world into zones and assign each zone to a server (Figure 7). In this

approach, each server is responsible for managing the state of the objects

within its zone(s) as well as for maintaining appropriate communications

with clients currently within its zone(s). As the object(s) controlled by a

client move through the environment, the client communicates with the

appropriate game server for the object’s current zone. As such, each

zone-oriented game server provides a natural location from which to

provide area-of-interest-management and message aggregation when

distributing game state updates to interested clients. Compared to

replicated server approaches, partitioning the game environment and

client population across multiple servers can reduce inter-server

messaging requirements by as much as 95% [176] and has been shown

to scale more effectively to large client populations [73]. Inter-server

90

90

communication is not eliminated entirely as client crossing zone

boundaries (whether seamless or not) must be transferred from the server

for the objects current zone to the server for the neighbouring zone.

Additionally, administration and implementation of zone based servers can

be quite complex and error prone [14, 176], as can managing and

redirecting clients to the appropriate game server as they move

throughout the environment.

Figure 7. Zoned world multi-server client/server architecture.

The network interface that a game presents to its clients can be simplified

by combining the two previous approaches. Rather than having the

clients communicate directly with the zone servers, clients can instead

communicate with gateway, or front-end, servers (Figure 8) that route

messages to the appropriate back-end game server [14, 22, 199]. To the

client, the game service appears as a set of replicated servers, each

capable of acting as its entry point into the virtual environment. Internally,

however, the game service provider is able to transparently partition the

91

91

game world and distribute the computational load across the “real” game

servers. This additional level of indirection can be used to facilitate:

Figure 8. A Hierarchical Client/Server Architecture.

• fault tolerance: a failed server can be dynamically replaced without

affecting its clients

• dynamic zone boundaries: an over-populated zone might be

divided and a portion of its clients transparently reassigned to

another server

• scalability: additional servers and/or zones can be added to the

world without affecting the client interface

A massively multiplayer online game developer may also distribute the

computations for a game zone across multiple servers (Figure 9). For

example [14]:

92

92

Phys ics
Servers

Game
Servers

Front-end
Servers

Database
ServersAI

 Servers

Figure 9. Distributing computational tasks.

• a “physics server” might compute changes in game state that

evolve over time

• a “game server” might manage interactions between players (e.g.,

combat, commerce, etc)

• a “database server” might manage persistent state and

transactional semantics

 Assuming that the network bandwidth available to the massively

multiplayer online game provider’s infrastructure is scalable, an MMOG

system utilizing distributed computation to model a zoned world can, in

principle, scale indefinitely [73, 199]. Grid computing frameworks can be

used to help manage the complexity of assigning tasks and provisioning

computational resources within the game network [22, 31, 64, 182].

93

93

Benefits

The primary benefit of client/server architectures is that they are well

understood by the gaming and research industries. Client/server

architectures have fairly straightforward administrative, security, and

consistency models [43, 110, 114, 128, 166]. Centralized control and

administration of server resources also simplifies the live operation of a

massively multiplayer online game service. Additionally, having a

controlled hardware and software environment on the servers facilitates

easier development and deployment of an MMOG [43]. Hierarchical

client/server models have been shown to be, in principle, scalable to large

client populations [73] and client/server architectures are easily amenable

to grid computing [22].

Challenges

There are a number of reasons why MMOG developers and providers are

dissatisfied with client/server architectures. Firstly, implementing

client/server architectures for an MMOG can require significant investment

in game server hardware and network infrastructure [29, 107]. Managing

this investment is further complicated by difficulties in estimating the initial

popularity of an MMOG so as to calculate the resources required in order

to provide sufficient capacity. Recurring utility, hosting, and/or bandwidth

costs for server facilities also increase as the number of servers increase.

In particular, nearly all game updates will pass through the game

provider’s network, causing their bandwidth consumption to be quite high,

94

94

and possibly quite expensive. Additionally, latency in message delivery is

higher for messages passing through a server than for messages sent

directly from peer-to-peer.

Peer-to-Peer

One general family of models for distributing a simulation across multiple

nodes is to consider every node an equal peer to the others (Figure 10-a).

In a peer-to-peer system design the workstation of each player may

communicate directly with any other player’s workstation. Further, no

single node is solely responsible for some function without which the

system ceases to operate. Providing many technological benefits, it has

been argued that peer-to-peer architectures represent the future of online

gaming [62, 63, 111, 163]. This section briefly considers peer-to-peer

architectures for massively multiplayer online games, discussing their

benefits and drawbacks.

(a) unsupervised (b) supervised

Peer 1

Peer 2 Peer 3

Peer 4 Peer 5

Supervisor

Peer 2 Peer 3

Peer 4 Peer 5

Server

Peer 1 Peer 2

Peer 3
Peer 4

Peer 5
Peer 6

Root

Servers

Servers

(c) hierarchically arbitrated

Figure 10. Peer-to-Peer Architectures.

The application of peer-to-peer architectures for massively multiplayer

online games is an active research area [12, 13, 37, 77, 111, 163]. Hybrid

systems utilizing peer-servers for game computations, and/or hierarchical

95

95

routing through peer-servers for message delivery, are attractive ways for

a game developer to lower hardware and bandwidth costs. Key issues

include the management and application of locality of interest [111], and

the development of a suitable security model for trusting client hosts with

authoritative game state. Open-source peer-to-peer toolkits [111, 169,

180] are freely available, allowing a MMOG developer to readily explore

peer-to-peer architectures.

Benefits

Peer-to-peer architectures are attractive to MMOG service providers for a

number of reasons, not least of which is their potential for substantial

reduction on operating and hardware costs. A system which leverages

the computational capacity of its users may require a significantly lower

hardware investment on the part of the game service provider [29, 62, 63,

107, 111, 168]. Quality game server hardware is expensive; estimating

the popularity of the game in order to provide sufficient capacity, without

waste, is difficult [29]; and, recurring utility or hosting costs for server

facilities reach significant proportions over time [107]. Additionally, MMOG

providers seek to reduce recurring bandwidth costs which, over the

lifetime of a successful MMOG product, might approach or even exceed

the hardware investment [107].

In a peer-to-peer architecture bandwidth costs are largely assumed by the

user population; indeed, it is quite possible that the bandwidth consumed

by a given user in a peer-to-peer context will not exceed any threshold at

96

96

which the user’s Internet service provider charges additional fees. For an

MMOG service provider, the ideal system architecture would seem to be a

peer-to-peer system in which the capacity of the system increases as the

utilization of the system increases, particularly if utilization does not

overtake capacity [62].

Peer-to-peer systems also offer a number of technical advantages over

client/server architectures. Firstly, direct routing of messages between

peers can provide lower network latency than passing messages through

intermediate hosts [73]; for hierarchical routing of messages through peer-

servers, this advantage is moot [111]. Peer-to-peer overlay systems have

also been shown to be resilient to node failures [111, 169, 180], possibly

providing the fault-tolerance properties required of an MMOG system.

Challenges

Peer-to-peer architectures also present a number of challenges. Firstly, a

pure peer-to-peer system does not require that any particular subset of

participants remain active in order for the system to continue to function; in

particular, this would imply that the game would continue to operate

without the participation of the MMOG service provider, which weakens

the revenue model. Additionally, the security and privacy constraints

surrounding some game related data, such as a user’s personal and

financial information, make it unattractive to locate that data on hosts

outside of the strict control of the game provider [111, 163]. For the

remainder of this discussion, we will assume a hybrid peer-to-peer model

97

97

in which some set of required hosts are controlled by the MMOG service

provider (see (Figure 10-b and Figure 10-c).

Another concern a massively multiplayer online game developer faces

when considering a peer-to-peer architecture is that of game security [12,

13, 43, 63, 77, 111, 163]. A peer-to-peer system might elect to place

decision making authority on user machines, providing opportunity to

cheat. The alternative, using distributed decision and/or transactional

techniques, introduces considerable complexity and provides other

opportunities to cheat [14]. Peer-to-peer systems also reveal the network

address of each user to some subset of other users, exposing users to

possible network attack from their peers. Researchers and game

technology companies are actively exploring solutions to these issues [13,

35, 48, 63, 77, 111, 160, 163].

Peer-to-peer security models based on reputation capital have been

proposed [63, 163] in which a node A decides whether or not to trust

another node B based on the past performance of B. The degree of trust

which A accords B is based on the opinions expressed by other nodes

that have previously interacted with B. This approach can be combined

with run-time verification [48], a general validation approach in which a set

of rules defining correct/incorrect transaction semantics is evaluated by

nodes to determine if the constraints of the game system have been

violated. This is much like a post-condition assertion or invariant following

98

98

the execution of the transaction. Peers, or server based arbiters, can use

the results of run-time verification as a basis for forming their opinions.

Another challenge is that the administration and maintenance of a peer-to-

peer system is less well understood than for client/server systems, the de

facto standard architecture presently used for massively multiplayer online

games [63]. One of the defining properties of a peer-to-peer system is

that it is adaptively self-organizing [62], which makes understanding,

debugging, and patching the system more complex than for a client/server

model. Perhaps a supervised or arbitrated peer-to-peer system [63] could

utilize resource allocation and management techniques from the grid-

computing domain [64] in order to ease the facilitate administration of the

distributed system. Grid technology may also provide mechanisms to

reduce the complexity of balancing load across the heterogeneous

computing resources provided by the users.

A final challenge is the variation in quality of service as peer relationships

change over time. The game play experience of a given user might

change dramatically with the capabilities of their current peer set as some

peers will have better connectivity or computing resources than others

[111].

99

Conclusion

Game industry analysts highlight trends indicating that online game usage

and market penetration will grow significantly over the next five to ten

years; however, the risks, costs and complexity involved in the successful

development and operation of a scalable online game service are high, in

part due to lack of well established and understood models for the network

software architecture of such a product. In this thesis, we have explored

the technological landscape from which the massively multiplayer online

game developer might select techniques and approaches for the network

software architecture of a massively multiplayer online game.

We first introduced the concept of a massively multiplayer online game,

presenting a definition and historical overview of MMOG projects and

products. We considered the technical challenges inherent in building and

operating a massively multiplayer online game, commenting on the

similarities and differences between the constraints of military/academic

simulation and those of commercial game development. With our context

thus established, we surveyed the literature from the military, academic,

and commercial gaming domains, identifying the techniques and

approaches of interest to the MMOG developer. Lastly, we drew upon

the surveyed material to consider the pros and cons of client/server and

peer-to-peer network software architectures for implementing a real-time

massively multiplayer online game.

I

I

LIST OF REFERENCES

1. Aarhus, L., K. Holmqvist, and M. Kirkengen. Generalized Two-Tier

Relevance Filtering of Computer Game Update Events. in

Proceedings of the 1st Workshop on Network and System Support

for Games. 2002. Bruanschweig, Germany: ACM Press.

2. Abrams, H., K. Watsen, and M. Zyda. Three-Tiered Interest

Management for Large-Scale Virtual Environments. in Proceedings

of the ACM Symposium on Virtual Reality Software and Technology.

1998. Taipei, Taiwan: ACM Press.

3. Abrams, H.A., Extensible Interest Management for Scalable

Persistent Distributed Virtual Environments. Ph.D. 1999.

Department of Computer Science, Naval Postgraduate School.

4. Aggarwal, S., et al., Accuracy in Dead-Reckoning based Distributed

Multi-Player Games. in ACM SIGCOMM 2004 Conference on

Network and System Support for Games. 2004.

http://ww2.cs.fsu.edu/~khandelw/research/paper.pdf

5. Alexander, T., A Flexible Simulation Architecture for Massively

Multiplayer Games, in Game Programming Gems 3, D. Treglia,

Editor. 2002, Charles River Media, Inc.: Hingham, Massachusetts.

p. 506-519.

6. Aronson, J., Dead Reckoning: Latency Hiding for Networked

Games. 1997, Gamasutra.

http://www.gamasutra.com/features/19970919/aronson_01.htm

II

II

7. Ballbach, M. and M. Ferguson, Product Review: Massively

Multiplayer Online Game Middleware. 2003, Gamasutra.

http://www.gamasutra.com/features/20030115/ferguson_01.htm

8. Barrus, J.W., R.C. Waters, and D.B. Anderson, Locales: Supporting

Large Multiuser Virtual Environments. IEEE Computer Graphics

and Applications, 1996. 16(6): p. 50-57.

9. Bartle, R.A., Incarnations of MUD. 2004.

http://www.mud.co.uk/richard/incarns.htm

10. Bassiouni, M.A., et al., Performance and Reliability Analysis of

Relevance Filtering for Scalable Distributed Interactive Simulation,

in ACM Transactions on Modeling and Computer Simulation

(TOMACS). 1997, ACM Press. p. 293 - 331.

11. Bauer, D. and S. Rooney. The Performance of Software Multicast-

Reflector Implementations for Multi-player Online Games. in

Proeedings of the 5th COST264 Internaltion Workshop of

Networked Group Communication (NGC 2003). 2003. Munich, GR:

Springer.

12. Baughman, N. and B.N. Levine. Cheat-Proof Playout for

Centralized and Distributed Online Games. in Proceedings of the

Twentieth IEEE Computer and Communication Society INFOCOM

Conference. 2001: IEEE Computer Society.

III

III

13. Baughman, N., M. Liberatore, and B.N. Levine, Cheat-Proof

Playout for Centralized and Serverless Online Games. in Technical

report 04-35. 2004. http://signl.cs.umass.edu/pubs/

14. Beardsley, J., Seamless Servers: The Case For and Against, in

Massively Multiplayer Game Development, T. Alexander, Editor.

2003, Charles River Media, Inc.: Hingham, Massachusetts. p. 213-

227.

15. Bernier, Y. Latency Compensation Methods in Client/Server In-

game Protocol Design and Optimization. in Proceedings of the

2001 Game Developers Conference. 2001. San Jose, CA: CMP

Media LLC.

16. Bettner, P. and M. Terrano, 1500 Archers on a 28.8: Network

Programming in Age of Empires and Beyond. 2001, Gamasutra.

http://www.gamasutra.com/features/20010322/terrano_01.htm

17. BigWorld Pty, BigWorld Technology. 2004.

http://www.bigworldtech.com

18. Blizzard Entertainment, World of Warcraft. 2004.

http://www.blizzard.com/wow

19. Blizzard Entertainment, Homepage. 2004. http://www.blizzard.com

IV

IV

20. Bonham, S., et al., Quake: An Example Multi-User Network

Application - Problems and Solutions in Distributed Interactive

Simulations. in CSE 561 Term Project Report. 2000, University of

Washington.

http://www.cs.washington.edu/homes/grossman/projects/561project

s/quake

21. Brockington, M., Client-Side Movement Prediction, in Massively

Multiplayer Game Development, T. Alexander, Editor. 2003,

Charles River Media, Inc.: Hingham, Massachusetts. p. 293-303.

22. Butterfly.net, The Butterfly Grid, in http://www.butterfly.net. 2004:

Martinsburg, WV.

23. Byrne, G., Security Issues of Online Gaming. 2004, GameDev.net.

http://www.gamedev.net/reference/articles/article2062.asp

24. Cai, W., F.B.S. Lee, and L. Chen. An Auto-adaptive Dead

Reckoning Algorithm for Distributed Interactive Simulation. in

Proceedings of the Thirteenth Workshop on Parallel and Distributed

Simulation. 1999. Atlanta, GA: IEEE Compuer Society.

25. Calvin, J.O., et al. STOW Realtime Information Transfer and

Networking System Architecture. in Proceedings of the 12th

Workshop on Distributed Interactive Simulation. 1995.

V

V

26. Carlsson, C. and O. Hagsand. DIVE - A Multi-user virtual reality

system. in Proceedings of the 1993 Virtual Reality Annual

International Symposium. 1993. Seattle, WA: IEEE Computer

Society Press.

27. Carlsson, C. and O. Hagsand. The Distributed Interactive Virtual

Environments - Architecture and Applications. in Proceedings of the

IEE Colloquium on Distributed Virtual Reality. 1993. London, UK:

Institution of Electrical Engineers.

28. Chandy, K.M. and J. Misra, Distributed Simulation: A Cast Study in

Design and Verification of Distributed Programs. IEEE Transactions

on Software Engineering, 1979. SE-5(5): p. 440-452.

29. Chappe, O., Personal communication. 2004, Ubi.com Shanghai:

Montreal, Canada. p. (Former) Director of Operations.

30. Cheshire, S., Latency and the Quest for Interactivity. in

Synchronous Person-to-Person Interactive Computing

Environments Meeting. 1996, Volpe Welty Asset Management, LLC:

San Francisco, CA.

http://www.stuartcheshire.org/papers/LatencyQuest.html

31. Coddington, P.D., et al. Extensible Job Managers for Grid

Computing. in Proceedings of the 26th Australasian Computer

Science Conference in Research and Practice in Information

Technology. 2003. Adelaide, Australia: Australian Computer

Society, Inc.

VI

VI

32. Committee on Modeling and Simulation, et al., Modeling and

Simulation: Linking Entertainment and Defense. 1997, Washington

D.C.: National Academy Press,

http://www.nap.edu/readingroom/books/modeling/.

33. Cronin, E., B. Filstrup, and A. Kurc, A Distributed Multiplayer Game

Server System. 2001, Electrical Engineering and Computer

Science Department, University of Michigan.

34. Cronin, E., et al. An Efficient Synchronization Mechanism for

Mirrored Game Architectures. in Proceedings of the First Workshop

on Network and System Support for Games. 2002. Bruanschweig,

Germany: ACM Press.

35. Cronin, E., B. Filstrup, and S. Jamin. Cheat-Proofing Dead

Reckoned Multiplayer Games. in Proceedings of the 2nd

International Conference on Application and Development of

Computer Games (ADCOG'03). 2003. Hong Kong.

36. Cuciz, D., The History of MUDs: Part II. 2001, Gamespy Industries

Inc.

http://www.gamespy.com/articles/january01/muds1/index4.shtm

37. Cybernet Systems Corporation, OpenSkies Massive Multiplayer

Onling Gaming (MMPOG) SDK. in OpenSkies Documentation.

2004. http://www.openskies.net/files/Openskies_MMPOG.pdf

38. Cybernet Systems Corporation, OpenSkies. 2004.

http://www.openskies.net

VII

VII

39. Dahmann, J.S., R.M. Fujimoto, and R.M. Weatherly. The

Department of Defence High Level Architecture. in Proceedings of

the 1997 Winter Simulation Conference. 1997.

40. Dahmann, J.S., R.M. Fujimoto, and R.M. Weatherly. The

Department of Defence High Level Architecture: An Update. in

Proceedings of the 1998 Winter Simulation Conference. 1998.

41. Dahmann, J.S. The High Level Architecture and Beyond:

Technology Challenges. in Proceedings of the 13th Workshop on

Parallel and Distributed Simulation (PADS). 1999. Atlanta, GA:

IEEE Computer Society.

42. Dahmann, J.S., J.O. Calvin, and R.M. Weatherly, A Reusable

Architecture for Simulations. Communications of the ACM, 1999.

42(9): p. 79-84.

43. Dalton, W., MMP Server Development and Maintenance, in

Massively Multiplayer Game Development, T. Alexander, Editor.

2003, Charles River Media, Inc.: Hingham, Massachusetts. p. 236-

243.

44. Das, T.K., et al. Developing Social Virtual Worlds Using NetEffect.

in Proceedings of the Sixth IEEE Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises. 1997.

Cambridge, MA: IEEE Computer Society.

VIII

VIII

45. Deering, S., RFC-1112: Host Extensions for IP Multicasting. 1989,

Internet Engineering Task Force (IETF).

http://www.ietf.org/rfc/rfc1112.txt

46. Defence Advanced Research Projects Agency (DARPA), RFC 793

- Transmission Control Protocol. 1981, Internet Engineering Task

Force (IETF). http://www.ietf.org/rfc/rfc793.txt

47. Defence Advanced Research Projects Agency (DARPA), RFC 791

- Internet Protocol. 1981, Internet Engineering Task Force.

http://www.ietf.org/rfc/rfc791.txt

48. DeLap, M., et al. Is Runtime Verification Applicable to Cheat

Detection? in SIGCOMM '04 - NETGAMES Workshop. 2004.

Portland, OR: ACM Press.

49. Delio, M., Multiplayer Games: Shards Unite! in Wired News. 2004,

Lycos, Inc.

http://www.wired.com/news/games/0,2101,62736,00.html

50. DFC Intelligence, Online Gaming on the Video Game Systems.

2002. http://www.dfcint.com/game_article/aug02article.html

51. DFC Intelligence, Challenges and Opportunities in the Online

Game Market. 2003.

http://www.dfcint.com/game_article/june03article.html

52. DFC Intelligence, Worldwide Market Forecasts for the Video Game

and Interactive Entertainment Industry. 2003.

http://www.dfcint.com/game_report/games_reports_toc.html

IX

IX

53. Dibbell, J., What's in a Shard? in Terra Nova "Blogs". 2004.

http://terranova.blogs.com/terra_nova/2004/04/whats_in_a_shar.ht

ml

54. Distributed Systems Group, The PARADISE Project. 2004,

Stanford University: Stanford, CA. http://www-

dsg.stanford.edu/paradise.html

55. DMSO, Defence Modeling and Simulation Office. 2004.

http://www.dmso.mil

56. Electronic Arts, The Sims Online. 2004.

http://www.thesimsonline.com

57. Elkins, A., J.W. Wilson, and D. Gracanin. Security Issues in High

Level Architecture Based Distributed Simulation. in Proceedings of

the 33rd Winter Simulation Conference. 2001. Arlington, VA: IEEE

Computer Society.

58. Eugster, P.T., et al., The Many Faces of Publish/Subscribe, in ACM

Computing Surveys (CSUR). 2003, ACM Press. p. 114 - 131.

59. Federal Trade Commission, Children's Online Privacy Protection

Act of 1998. 15 U.S.C. §§ 6501-6506, P.L. No. 105-277, 112 Stat.

2681-728. 1998: United States Government.

60. Fitch, C., Part 4 - Foundations II. in Cyberspace in the 21st Century.

2000, Gamasutra - CMP Media LLC.

http://www.gamasutra.com/features/20001229/fitch_01.htm

X

X

61. Fitch, C., Part 5 - Stability Before Security. in Cyberspace in the

21st Century. 2001, Gamasutra - CMP Media LLC.

http://www.gamasutra.com/features/20011226/fitch_02.htm

62. Fitch, C., Part 6 - Scalability with a Big 'S'. in Cyberspace in the

21st Century. 2001, Gamasutra - CMP Media LLC.

http://www.gamasutra.com/features/20010226/fitch_01.htm

63. Fitch, C., Part 7 - Security is Relative. in Cyberspace in the 21st

Century. 2002, Gamasutra - CMP Media LLC.

http://www.gamasutra.com/features/20020805/fitch_01.htm

64. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of

Supercomputer Applications, 2001. 15(3).

65. Frasca, G. Practical Game Theories: Academics Fragging

Developers. in Roundtable Sessions of the 2004 Game Developers

Conference. 2004. San José, CA: CMP Media LLC.

66. Frécon, E. and M. Stenius, DIVE: a scaleable network architecture

for distributed virtual environments. Distributed Systems

Engineering, 1998. 5(3): p. 91-100.

67. Friedl, M., Online Game Interactivity Theory. 2002, Hingham:

Charles River Media.

XI

XI

68. Fujimoto, R.M. and R.M. Weatherly. Time management in the DoD

high level architecture. in Proceedings of the 10th Workshop on

Parallel and Distributed Simulation (PADS). 1996. Philadelphia, PA:

IEEE Computer Society.

69. Fujimoto, R.M., Parallel and Distributed Simulation Systems. 1999:

John Wiley & Sons Inc.

70. Fujimoto, R.M. Parallel and Distributed Simulation Systems. in

Proceedings of the 33rd Winter simulation Conference. 2001.

Arlington, VA: IEEE Computer Society.

71. Funcom Inc., Anarchy Online. 2004. http://www.anarchy-

online.com/

72. Funkhouser, T.A. RING: A Client-Server System for Multi-User

Virtual Environments. in ACM SIGGRAPH Special Issue on 1995

Symposium on Interactive 3D Graphics. 1995. Monterey, CA: ACM

Press.

73. Funkhouser, T.A. Network Topologies for Scalable Multi-User

Virtual Environments. in Proceedings of the 1996 IEEE Virtual

Reality Annual International Symposium (VRAIS'96). 1996. San

José, CA.

74. Gamasutra, Game Development Education Portal. 2004, CMP

Media LLC. http://www.gamasutra.com/education/

XII

XII

75. Gamer-Talk.net, Champions of Norrath: Realms of EverQuest

Cheat Codes for Playstation2. 2004. http://www.gamer-

talk.net/cheat311.html

76. Gamespy, #19: Roy and Richard Play in the MUD. in 25 Smartest

Moments in Gaming. 2003, Gamespy Industries Inc.

http://www.gamespy.com/articles/july03/25smartest/index8.shtml

77. GauthierDickey, C., et al. Low Latency and Cheat-Proof Event

Ordering for Peer-to-Peer Games. in NOSSDAV'04. 2004. Cork,

Ireland: ACM Press.

78. Goslin, M., J. Shochet, and J. Schell, Toontown Online: Building a

Massively Multiplayer Game for the Masses, in Massively

Multiplayer Online Game Development, T. Alexander, Editor. 2003,

Charles River Media: Hingam, MA. p. 3-19.

79. Government of Canada, Bill C-6: The Personal Information

Protection and Electronic Documents Act. Statutes of Canada,

Second Session, Thirty-Sixth Parliament. 2000: Public Works and

Government Services Canada - Publishing.

80. Greenhalgh, C. and S. Benford, MASSIVE: a collaborative virtual

environment for teleconferencing, in ACM Transactions on

Computer-Human Interaction (TOCHI). 1995, ACM Press: New

York, NY. p. 239-261.

XIII

XIII

81. Greenhalgh, C., J. Purbrick, and D. Snowdon. Inside MASSIVE-3:

flexible support for data consistency and world structuring. in

Proceedings of the third international conference on Collaborative

virtual environments. 2000. San Francisco, CA: ACM Press.

82. Greer, J. and Z.B. Simpson, Minimizing Latency in Real-Time

Strategy Games, in Game Programming Gems 3, D. Treglia, Editor.

2002, Charles River Media, Inc.: Hingham, Massachusetts. p. 488-

495.

83. Han, S., M. Lim, and D. Lee. Scalable Interest Management Using

Interest Group Based Filtering For Large Networked Virtual

Environments. in Proceedings of the ACM Symposium on Virtual

Reality Software and Technology (VRST). 2000. Seoul, Korea:

ACM Press.

84. Harrison, D., Mac, PC and Linux Players Unite! : Players can romp

together in the worlds of Neverwinter Nights. 2004, Digital Game

Developer. http://www.digitalgamedeveloper.com/cgi-

bin/getframeletter.cgi?/headlines/gametalk.htm

85. Holbrook, H.W., S.K. Singhal, and D.R. Cheriton. Log-Based

Receiver-Reliable Multicast Distributed Interactive Simulation. in

SIGCOMM '95. 1995. Cambridge, MA: ACM Press.

XIV

XIV

86. Hook, B., Introduction of Multiplayer Game Programming. in Book

of Hook. 2003.

http://www.bookofhook.com/Article/GameDevelopment/Multiplayer

Programming.html

87. Hook, B., The Quake 3 Networking Model. in Book of Hook. 2004.

http://www.bookofhook.com/Article/GameDevelopment/TheQuake3

NetworkingModel.html

88. Howard, M. and D. LeBlanc, Writing Secure Code: Practical

Strategies and Techniques for Secure Application Coding in a

Networked World. 2nd ed. 2003, Redmond: Microsoft Press.

89. id Software, id Software Homepage. 2004.

http://www.idsoftware.com/

90. IEEE Computer Society, IEEE Std 1278-1993: IEEE standard for

information technology - protocols for distributed interactive

simulations applications - Entity information and interaction. 1993:

New York.

91. IEEE Computer Society, IEEE Std 1278.2-1995: IEEE standard for

distributed interactive simulation communication services and

profiles. 1995: New York.

92. IEEE Computer Society, IEEE Std 1278.1-1995: IEEE standard for

distributed interactive simulation - application protocols. 1995: New

York.

XV

XV

93. IEEE Computer Society, IEEE Std 1278.3-1996: IEEE

recommended practice for Distributed Interactive Simulation

exercise management and feedback. 1996: New York.

94. IEEE Computer Society, IEEE Std 1278.4-1997: IEEE trial-use

recommended practice for distributed interactive simulation -

verification, validation, and accreditation. 1997: New York.

95. IEEE Computer Society, IEEE Std 1278.1a-1998: IEEE standard

for distributed interactive simulation - application protocols. 1998:

New York.

96. IEEE Computer Society, IEEE Std 1516-2000: IEEE standard for

modeling and simulation (M&S) high level architecture (HLA) -

framework and rules. 2000: New York. p. i-22.

97. IEEE Computer Society, IEEE Std 1516.1-2000: IEEE Standard for

Modeling and Simulation [M and S] High Level Architecture [HLA] -

Federate Interface Specification. 2001: New York. p. i-467.

98. IEEE Computer Society, IEEE Std 1516.2-2000: IEEE standard for

modeling and simulation (M&S) high level architecture (HLA)-object

model template (OMT) specification. 2001: New York. p. i-130.

99. IEEE Computer Society, IEEE Std 1516.3-2003: IEEE

Recommended Practice for High Level Architecture (HLA)

Federation Development and Execution Process (FEDEP). 2003:

New York. p. i-32.

XVI

XVI

100. IGDA, International Game Developers Association (IGDA) Website.

in Adacemic/Student Relations. 2004.

http://www.igda.org/academia/

101. IMG News, DiabloII.Net Recaps Real Issues. in Inside Mac Games.

2002.

http://www.insidemacgames.com/news/story.php?ArticleID=4741

102. Isensee, P., Secure Sockets, in Game Programming Gems 3, D.

Treglia, Editor. 2002, Charles River Media, Inc.: Hingham,

Massachusetts. p. 546-556.

103. Jefferson, D.R., Virtaul Time. ACM Transactions on Programming

Languages and Systems, 1985. 7(3): p. 404-425.

104. Johnson, J., Massively-Multiplayer Engineering. in Game

Developers Conference 2004 - Roundtables Sessions. 2004.

http://www.gdconf.com/archives/2004/johnson_jeff.doc

105. Joint Training Confederation, Aggregate Level Simulation Protocol

(ALSP) Web-Site. 2004. http://alsp.ie.org/alsp/

106. JPSD Project Office, Joint Precision Strike Demonstration. 2004.

https://peoiewswebinfo.monmouth.army.mil/JPSD/

107. Julien, M., Personal communication. 2004, Ubi.com: Montreal,

Canada. p. Director of Operations.

XVII

XVII

108. Kent, S.L., Week 1 - From MUDs to Mainstream: The History of

MMOGs. in Massively Multiplayer Online Games: The Past, the

Present, and the Future. 2003, Gamespy Industries Inc.

http://www.gamespy.com/amdmmog/week1/

109. Kent, S.L., Week 3 - Designing for the Hordes. in Massively

Multiplayer Online Games: The Past, the Present, and the Future.

2003, Gamespy Industries Inc.

http://www.gamespy.com/amdmmog/week3/

110. Kirmse, A. and C. Kirmse, Security in Online Games. 1997.

http://www.gamasutra.com/features/19970707/security.htm

111. Knutsson, B., et al. Peer-to-Peer Support for Massively Multiplayer

Games. in INFOCOMM '04. 2004. Hong Kong, China.

112. Lambright, R., Distributing Object State for Networked Games

Using Object Views, in Game Developer Magazine. 2002. p. 30-39.

113. Lamport, L., Time, Clocks, and the Ordering of Events in a

Distributed System, in Communications of the ACM. 1978, ACM

Press. p. 558 - 565.

114. Lee, J., Considerations for Movement and Physics in MMP Games,

in Massively Multiplayer Game Development, T. Alexander, Editor.

2003, Charles River Media, Inc.: Hingham, Massachusetts. p. 275-

289.

XVIII

XVIII

115. Lee, J., Leveraging Relational Database Management Systems to

Data-Drive MMP Gameplay, in Massively Multiplayer Game

Development, T. Alexander, Editor. 2003, Charles River Media, Inc.:

Hingham, Massachusetts. p. 372-384.

116. Lee, J., Relational Database Guidelines For MMOGs. in The

Development of Massively Multiplayer Online Games Resource

Guide. 2003, Gamasutra.

http://www.gamasutra.com/resource_guide/20030916/lee_01.shtml

117. Li, C., et al., Connectivity Splits the Gaming Industry. 2003,

Forrester Research.

118. Lincroft, P., The Internet Sucks: Or, What I Learned Coding X-Wing

vs. TIE Fighter. 1999, Gamasutra.

http://www.gamasutra.com/features/19990903/lincroft_01.htm

119. Logan, B. and G. Theodoropoulos. Dynamic Interest Management

in the Distributed Simulation of Agent-Based Systems. in

Proceedings of 10th AI, Simulation and Planning Conference. 2000.

Tucson, AZ: Society for Computer Simulation International.

120. Loral Systems Company, Technical Report: Strawman Distributed

Interactie Simulation Architecture Description Document Volume 1.

1992, Advanced Distributed Simulation Technology Program Office:

Orlando, FL.

121. LucasArts Entertainment Company and Sony Online Entertainment,

Star Wars Galaxies. 2004. http://www.starwarsgalaxies.com

XIX

XIX

122. Luebke, D. and C. Georges. Portals and mirrors: simple, fast

evaluation of potentially visible sets. in Proceedings of the 1995

symposium on Interactive 3D graphics. 1995. Monterey, CA: ACM

Press.

123. Macedonia, M.R., et al., NPSNET: A Network Software Architecture

for Larege Scale Virtual Environments. Presence, 1994. 3(4).

124. Macedonia, M.R., A Network Architecture for Large Scale Virtual

Environments. Ph.D Dissertation. 1995. Computer Science

Department, Naval Postgraduate School: Monterey, CA.

125. Macedonia, M.R., et al. Exploiting Reality with Multicast Groups: A

Network Architecture for Large-Scale Virtual Environments. in

Proceedings of the 1995 IEEE Virtual Reality Annual International

Symposium (VRAIS'95). 1995.

126. Macedonia, M.R., A Taxonomy for Networked Virtual Environments.

IEEE Multimedia, 1997. 4(1): p. 48-56.

127. Mellon, L. and D. West. Architectural Optimizations to Advanced

Distributed Simulation. in Proceedings of the 1995 Winter

Simulation Conference. 1995. Arlington, VA: ACM Press.

128. Mellon, L., J. Aronson, and D. West. Applying the Technology of

Distributed Training Simulations to Internet Gaming. in Proceedings

of 1999 Game Developer's Conference. 1999. San José, CA: CMP

Game Group.

XX

XX

129. Mellon, L. Game Develoment and the Research Community: How

might they overlayp? in PADS 2003. 2003.

130. Microsoft Corporation, Asheron's Call. 2004.

http://www.microsoft.com/games/zone/asheronscall/

131. Microsoft Corporation, Microsoft Component Object Model (COM)

Technology Website. 2004. http://www.microsoft.com/com

132. Microsoft Inc., Age of Empires Homepage. 2004.

http://www.microsoft.com/games/empires/

133. Miller, D. and J.A. Thorpe, SIMNET: The Advent of Simulator

Networking. Proceedings of the IEEE, 1995. 83(8): p. 1114-1123.

134. Mine, M.R., J. Shochet, and R. Hughston, Building a massively

multiplayer game for the million: Disney's Toontown Online. ACM

Computers in Entertainment, 2003. 1(1).

135. Monolith Productions Inc. and Warner Bros. Entertainment Inc.,

The Matrix Online. 2004. http://www.thematrixonline.com

136. Moran, J., Cheating Poses Potential Problem to a Burgeoning

Online Gaming Market. December 12, 2002.

http://www.gamemarketwatch.com/news/item.asp?nid=2611

137. Morse, K.L., Interest Management in Large-Scale Distributed

Simulations. 1996, University of California, Irvine.

138. MPOGD Inc., Multiplayer Online Games Directory. 2004.

http://www.mpogd.com

XXI

XXI

139. Mythic Entertainment Inc., Dark Age of Camelot. 2004.

http://www.darkageofcamelot.com/

140. Naval Postgraduate School, NPSNET Homepage. 2004.

http://www.npsnet.nps.navy.mil/npsnet

141. NCsoft, Lineage. 2004. http://www.lineage.com

142. Near Death Studios Inc., Meridian 59 Official Website. 2004.

http://meridian59.neardeathstudios.com/

143. Neely, R.B. Security Architecture Development and Results for a

Distributed Modeling and Simulation System. in 15th Annual

Computer Security Applications Conference. 1999. Pheonix, AZ:

IEEE Computer Society.

144. Nexon Games, Kingdom of the Winds. 2004.

http://www.nexustk.com

145. O'Brien, M. and G. Gray, Game Cheats and Cheat Prevention.

2002, ArenaNet Inc.

http://www.arena.net/news/articles/mikearticle040802.html

146. Olsen, J.M., Server-Side Object Refresh Rates, in Massively

Multiplayer Game Development, T. Alexander, Editor. 2003,

Charles River Media, Inc.: Hingham, Massachusetts. p. 228-235.

147. OMG, Common Object Request Broker Architecture (CORBA)

Homepate. 2004, Object Management Group. http://www.corba.org

148. Origin Systems and Electronic Arts, Ultima Online. 2004.

http://www.uo.com

XXII

XXII

149. Pantel, L. and L.C. Wolf. Network Issues for Video and Games: On

the impact of delay on real-time multiplayer games. in 12th

International Workshop on Network and Operating Systems

Support for Digital Audio and Video. 2002. Miami, FL: ACM Press.

150. Pantel, L. and L.C. Wolf. On the Suitability of Dead Reckoning

Schemes for Games. in Proceedings of the 1st Workshop on

Network and System Support for Games. 2002. Bruanschweig,

Germany: ACM Press.

151. Partridge, C. and R. Hinden, RFC-1151: Version 2 of the Reliable

Data Protocol. 1990, Internet Engineering Task Force (IETF).

http://www.ietf.org/rfc/rfc1151.txt

152. Patterson, J., Keep it Smooth: Asynchronous Clients and Time

Travel, in Massively Multiplayer Game Development, T. Alexander,

Editor. 2003, Charles River Media, Inc.: Hingham, Massachusetts.

p. 304-313.

153. Pizer, P., Social Game Systems: Cultivating Player Socialization

and Providing Alternate Routes to Game Rewards, in Massively

Multiplayer Game Development, T. Alexander, Editor. 2003,

Charles River Media: Hingham, Massachusetts. p. 427-441.

154. Pope, A., The SIMNET network and protocols, in Technical Report

7102. 1989, BBN Systems and Technologies: Cambridge, MA.

155. Postel, J., RFC 768 - User Datagram Protocol. 1980, Internet

Engineering Task Force (IETF). http://www.ietf.org/rfc/rfc0768.txt

XXIII

XXIII

156. Powell, E.T., et al. Joint Precision Strike Demonstration (JPSD)

Simulations Architecture. in Proceedings of the 14th Workshop on

Standards for the Interoperability of Distributed Simulations. 1996.

157. Pratt, D.R., A Software Architecture for the Construction and

Management of Real-Time Virtual Worlds. Ph. D Dissertation. 1993.

Computer Science Department, Naval Postgraduate School:

Monterey, CA.

158. PricewaterhouseCoopers LLP, Entertainment and Media Outlook:

2003-2007, Global Overview. 2003.

159. PricewaterhouseCoopers LLP, Global Entertainment and Media

Outlook: 2004-2008. 2004.

160. Pritchard, M., How to Hurt the Hackers: The Scoop on Internet

Cheating and How You Can Combat It. 2000, Gamasutra.

http://www.gamasutra.com/features/20000724/pritchard_01.htm

161. Purbrick, J. and C. Greehalgh. Extending Locales: Awareness

Management in MASSIVE-3. in Proceedings of Virtuality 2000.

2000.

162. Quazal, Duplication Spaces. in Quazal Eterna Documentation.

2002: Montreal, Canada. http://www.quazal.com

163. Quazal, Game Security, Hybrid Architectures, and Quazal Eterna.

in Quazal Eterna Documentation. 2003: Montreal, Canada.

http://www.quazal.com

XXIV

XXIV

164. Rabin, S., The Magic of Data-Driven Design, in Game

Programming Gems, M. DeLoura, Editor. 2000, Charles River

Media: Hingham, Massachusetts.

165. Rak, S.J. and D.J. Van Hook. Evaluation of Grid-Based Relevance

Filtering for Multicast Group Assignment. in Proceedings of the 14th

Workshop on Standards for the Interoperability of Distributed

Simulations. 1996.

166. Randall, J., Scaling Multiplayer Servers, in Game Programming

Gems 3, D. Treglia, Editor. 2002, Charles River Media, Inc.:

Hingham, Massachusetts. p. 520-533.

167. Riley, S., Data-Driven Systems for MMP Games, in Massively

Multiplayer Game Development, T. Alexander, Editor. 2003,

Charles River Media, Inc.: Hingham, Massachusetts. p. 385-396.

168. Rooney, S., D. Bauer, and R. Deydier, A Federated Peer-to-Peer

Network Game Architecture, in IEEE Communications Magazine.

2004. p. 114-122.

169. Rowstron, A. and P. Druschel. Pastry: Scalable, Decentralized

Object Location and Routing for Large-Scale Peer-to-Peer Systems.

in Proceedings of SOSP-01. 2001. New York, NY: ACM Press.

170. Sage, P.D., Customer Support and Player Reputation: It's All About

Trust, in Massively Multiplayer Game Development, T. Alexander,

Editor. 2003, Charles River Media, Inc.: Hingham, Massachusetts.

p. 90-99.

XXV

XXV

171. Shachtman, N., 'Blizzard' of Cheaters Banned. 2002, Wired News.

http://www.wired.com/news/games/0,2101,55092,00.html

172. Singh, G., et al., BrickNet: A software toolkit for network-based

virtual worlds. Presence: Teleoperators and Virtual Environments,

1994. 3(1): p. 19-34.

173. Singh, G., et al. BrickNet: Sharing Object Behaviors on the Net. in

Proceedings of the Virtual Reality Annual International Symposium

(VRAIS'95). 1995: IEEE Computer Society.

174. Singhal, S. and D.R. Cheriton, Exploiting Position History for

Efficient Remote Rendering in Networked Virtual Reality. Presence:

Teleoperators and Virtual Environments, 1995. 4(2): p. 169-193.

175. Singhal, S., Effective Remote modeling in large-scale distributed

simulation and visual environments. Ph. D. Dissertation. 1996.

Department of Computer Science, Stanford University: Stanford,

CA.

176. Singhal, S. and M. Zyda, Networked Virtual Environments: Design

and Implementation. SIGGRAPH Series, ed. S. Spencer. 1999,

New York: Addison-Wesley and ACM Press.

177. Singhal, S.K. and D.R. Cheriton. Using Projection Aggregations to

Support Scalability in Distributed Simulation. in Proceedings of the

1996 International Conference on Distributed Computing Systems.

1996. Hong Kong, China: IEEE Computer Society.

XXVI

XXVI

178. Smed, J., T. Kaukoranta, and H. Hakonen. Aspects of Networking

in Multiplayer Computer Games. in Proceedings of the International

Conference on Application and Development of Computer Games

in the 21st Century. 2001. Hong Kong SAR, China.

179. Sony Online Entertainment, Everquest. 2004.

http://www.everquest.com

180. Stoica, I., et al. Chord: A scalable Peer-to-Peer Lookup Service for

Internet Application. in Proceedings of SIGCOMM-01. 2003. New

York, NY: ACM Press.

181. Svarovsky, J., Real-Time Strategy Network Protocol, in Game

Programming Gems 3, D. Treglia, Editor. 2002, Charles River

Media, Inc.: Hingham, Massachusetts. p. 496-505.

182. The Globus Alliance, Homepage. 2004. http://www.globus.org

183. The United States Army and The MOVES Institute, America's Army

PC Game: Vision and Realization. Game Scenes Exhibition, Yerba

Buena Art Center, ed. M. Davis. 2004, San Francisco.

184. Theodoropoulos, G. and B. Logan. A Unified Framework for

Interest Management and Dynamic Load Balancing in Distributed

Simulation. in Proceedings of the Twelfth European Simulation

Symposium (ESS2000). 2000. Hamburg, Germany: Society for

Computer Simulation Interna.

XXVII

XXVII

185. Theodoropoulos, G. and B. Logan. An Approach to Interest

Management and Dynamic Load Balancing in Distributed

Simulation. in Proceedings of the 2001 European Simulation

Interoperability Workshop (ESIW'01). 2001: Simulation

Interoperability Standards Organisation and Society for Computer

Simulation.

186. Toth, V.T., A Brief History of MUD2. 2004.

http://www.mud2.com/history.htm

187. Turbine Entertainement Software Corporation, Asheron's Call 2.

2004. http://ac2.turbinegames.com

188. Turbine Entertainment Software Corporation and Vivendi Universal

Games, Middle-Earth Online. 2004. http://www.middle-

earthonline.com

189. Van Hook, D.J., Simulation Tool for Developing and Evaluating

Networks and Algorithms in Support of STOW 94. 1993.

190. Van Hook, D.J. and J.O. Calvin, A Protocol Independent

Compression Algorithm (PICA). 1994, MIT Lincoln Laboratory

Project Memorandum.

191. Velten, D., R. Hinden, and J. Sax, RFC-908: Reliable Data Protocol.

1984, Internet Engineering Task Force (IETF).

http://www.ietf.org/rfc/rfc908.txt

XXVIII

XXVIII

192. Viega, J. and G. McGraw, Building Secure Software: How to Avoid

Security Problems the Right Way. Professional Computing Series,

ed. B.W. Kernighan and C. Partridge. 2002, Boston: Addison-

Wesley.

193. Wayner, P., Policing Online Games: Digital Currency. 2003,

Gamasutra.

http://www.gamasutra.com/features/20031010/wayner_01.shtml

194. Weatherly, R., D. Seidel, and J. Weissman. Aggregate Level

Simulation Protocol. in Proceedings of the 1991 Summer Computer

Simulation Conference. 1991. Baltimore, MD: The MITRE

Corporation.

195. Weinstein, D., Multiplayer Tricks of the Trade. in Roundtables of the

2004 Game Developer's Conferences. 2004, CMP Media LLC: San

José, CA.

http://www.gdconf.com/archives/2004/weinstein_dave.doc

196. Wolfpack Studios and Ubisoft Entertainment, Shadowbane. 2004.

http://www.shadowbane.com

197. Yan, J.J. and H.-J. Choi, Security Issues in Online Games. The

Electronic Library: International Journal for the Application of

Technology in Information Environments, 2002. 20(2).

198. Yonish, S. and J. Gordon, PCs Remain Dominant Device for

Gamers. 2002, Forrester Research.

199. Zona Inc., Terazona Whitepaper. 2003. http://www.zona.net

XXIX

XXIX

200. Zona Inc., Terazona. 2004. http://www.zona.net

201. Zou, L., M.H. Ammar, and C. Diot, An Evaluation of Grouping

Techniques for State Dissemination in Networked Multi-User

Games. 1999, Georgia Institute of Technology.

