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ABSTRACT 

A real-time massively multiplayer online game (MMOG) is a networked 

computer or video game in which tens of thousands to hundreds of 

thousands of consumers may interact with one another in real-time in a 

shared environment, even though these users may be separated by vast 

geographic distances.  Game industry analysis highlights trends indicating 

that online game usage and market penetration will grow significantly over 

the next five to ten years.  As such, game developers and entertainment 

companies seek to offer subscription based mass-market online games.  

However, the risks, costs and complexity involved in the successful 

development and operation of a scalable online game service are high, in 

part due to lack of well established and understood models for the network 

software architecture of such a product.  This thesis explores the literature 

and research regarding distributed military simulation, academic 

networked virtual environments, and commercial online gaming in search 

of patterns for network software architectures which are applicable to 

massively multiplayer online games.  It is the hope of the author to 

contribute to this cross pollination of ideas by providing a thorough review 

of the techniques and approaches for the design and implementation of 

large scale distributed systems having properties similar to those found in 

a massively multiplayer online game system.  In this way, perhaps the 

cost, complexity, and risk involved in building a massively multiplayer 

online game service can be reduced.  
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ABRÉGÉ 

Un jeu en ligne massivement multi joueurs en temps réel est un jeu vidéo 

ou d'ordinateur géré en réseau dans lequel des dizaines à des centaines 

de milliers de consommateurs peuvent interagir entre eux en temps réel 

dans un environnement partagé, et ce même s’ils sont répartis dans des 

régions géographiques très distantes. Les analyses de l’industrie du jeu 

démontrent que l'utilisation et la pénétration de marché du jeu en ligne se 

développeront de manière significative au cours des cinq à dix prochaines 

années. Ceci explique que les développeurs de jeu et les compagnies de 

divertissement cherchent à offrir à un marché grand public des jeux en 

ligne basés sur un abonnement. Cependant, les risques, les coûts et la 

complexité impliqués dans le développement et l'opération d’un service de 

jeu en ligne sont élevés, dû en partie au manque de modèles bien établis 

et compris pour l'architecture de logiciels de réseau de tels produits. Cette 

thèse explore la littérature et la recherche concernant la simulation 

militaire distribuée, les environnements académiques virtuels gérés en 

réseau, et le jeu en ligne commercial à la recherche de modèles pour les 

architectures de logiciels de réseau qui sont applicables aux jeux en ligne 

massivement multi joueurs. C'est l'espoir de l'auteur de contribuer à cette 

pollinisation d’idées en fournissant un examen complet des techniques et 

des approches utilisés dans la conception et l'implémentation de systèmes 

répartis à grande échelle ayant des propriétés semblables à celles que 

l’on retrouve dans les systèmes de jeu en ligne massivement multi joueurs. 
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De cette façon, peut-être, le coût, la complexité et le risque impliqués 

dans la réalisation d’un service de jeu en ligne massivement multi joueur 

pourront être réduits.  
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Introduction 

Already earning more revenue than the movie industry, media and 

entertainment analysts predict the earnings of the video game industry will 

surpass that of the music industry, the current revenue leader in the global 

entertainment and media industry, by the year 2006 [159].  Other industry 

observers predict that worldwide growth for video games and personal 

computer (PC) games to be between 37% to 45% between 2002 and 

2007 [52].  The global video game market is expected to expand from its 

current value of $21.2 billion in 2002 to a market value between $28.4 

billion and $35.8 billion in 2007, growing at an 11% compound annual rate 

[52, 158].  None of the aforementioned figures take into consideration 

revenue based on the sale of accessories, game rentals and the resale of 

used games, which some analysts estimate will account for an additional 

$5 billion or more in annual consumer spending [52]. 

Globally, industry watchers predict that the largest video game market will 

be the Asia/Pacific market, growing 8.5% annually from a spending level 

of $8.4 billion in 2002 to $12.6 billion by 2007 [158].  The United States 

market will experience similar growth, reaching a spending level of $12.3 

billion in 2007; this represents an 11.3% annual growth average from $7.2 

billion in 2002.  The market representing Europe, the Middle East, and the 

rest of Asia will experience 13.8% annual growth to reach $9.3 billion by 

2007 from a level of $4.9 billion in 2002.  At the same time, the Latin 

American and Canadian markets will experience the fastest growth, 
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expanding by a 16.1% yearly to $312 million in 2007 from $148 million in 

2002 and $1.2 billion in 2007 from $575 million in 2002, respectively. 

Alongside the growth of the gaming market will be increased household 

penetration of broadband Internet connectivity.  Game industry analysts 

predict that the worldwide number of households with broadband will grow 

to 190 million by 2008 [51].  Nearly 70% of South Korean households, for 

example, already have broadband connections and the number of 

broadband enabled households in Europe increased by 140% in 2002 [51].  

As broadband services continue to become ubiquitous in these markets as 

well as in the rest of Asia and in North America, the video game industry 

has new opportunities to take their product offerings online.  As a specific 

example, Korean video game developer and publisher NCsoft became the 

first online game vendor to earn over $100 million per year with Lineage 

[141] its highly successful massively-multiplayer online game. 

The success observed in Korea, as well as the success in North America 

and Europe of massively multiplayer online games such as Sony Online 

Entertainment’s Everquest [179] and Lucas Arts Entertainment’s Starwars 

Galaxies [121] is an indicator of the connection between the growth of 

broadband and the growth of online games.  Industry analysts forecast 

that the number of worldwide online games played will increase from 73 

million in 2002 to 198 million by 2008, with online game usage growing to 

35 billion hours per year [51].  In North America, adults representing more 

than 42 million households currently use their personal computers to play 
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games for about 4.8 hours per week either online or offline [198]; by 2007, 

one quarter of North American households, representing approximately 70 

million people, will be playing games online [117]. 

Finally, the latest generation of game consoles are now “online-capable” 

and represent a large installed customer base that is yet to transition to 

online gaming and, thus, a further growth opportunity for online gaming 

[51].  By 2006 there will be 23.4 million online console gamers worldwide; 

however, even given predicted growth of 20% by 2008, online console 

gamers will still represent only 20% of all online gamers [50]. 

All indications are that online game usage and penetration will grow 

significantly; however, a number of challenges will make if difficult for 

companies in the online game market to generate profits from their 

products [51].  Firstly, the costs and complexity involved in the 

development and operation of an online game service are high [5, 43, 51, 

176].  Secondly, consumers are reluctant to pay for gaming content on a 

monthly basis, as is currently the industry norm [51, 67].  Additionally, the 

overwhelming majority of online games that are presently in development 

or operation are narrowly clustered in the fantasy role-playing genre, 

which has not proven accessible to the mass-market audience [67, 78, 

134].  A game developer must overcome these and other challenges in 

order to field a commercially successful online game service. 
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Motivation 

As mentioned above, developing a massively multiplayer online game 

service is a high cost and high complexity endeavour.  A part of this 

difficulty arises from the fact that most commercial online game services 

are based on proprietary architectures and designs and there has been 

relatively little reuse of the lessons learned from other, similar, projects. 

This thesis explores the literature and research regarding distributed 

military simulation, networked virtual environments, and commercial online 

gaming in search of patterns for network software architectures which are 

applicable to massively multiplayer online games.  As we will see, there 

exists a large body of knowledge from the military and academic 

simulation communities that is slowly being appropriated by the 

developers of commercial video games.  It is the hope of the author to 

contribute to this cross pollination of ideas by providing a thorough review 

of the techniques and approaches for the design and implementation of 

large scale distributed systems having properties similar to those found in 

a massively multiplayer online game system.  In this way, perhaps the 

cost, complexity, and risk involved in building a massively multiplayer 

online game service can be reduced. 

Overview 

The body of this thesis is broken down into four main sections.  The first is 

an introduction to massively multiplayer online games; we present a 

definition for massively multiplayer games and provide a brief overview of 
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the history of such games to the present.  Secondly, we explore the 

technical challenges inherent in building and operating a massively 

multiplayer online game.  We identify the similarities and differences 

between the challenges considered by military and academic community 

versus those facing the gaming community, particularly in those cases 

where the communities make very different assumptions about the 

operating environment, needs, or behaviour of the participants in the 

online environment. 

Thirdly, we survey the related research and literature from the military, 

academic, and commercial gaming spaces.  This section, comprising the 

majority of this thesis, explores lessons learned from significant projects in 

each of these domains and considers each project’s network software 

architecture and systems for appropriateness, or lack thereof, to massively 

multiplayer online game systems.  Lastly, we draw upon the surveyed 

material to consider several client/server and peer-to-peer network 

software architectures that can be used to construct a real-time massively 

multiplayer online game. 
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Massively Multiplayer Online Games 

Massively Multiplayer Game (MMP and/or MMPG), Massively Multiplayer 

Online Game (MMO, MMOG, and/or MMPOG), Massively Multiplayer 

Online Role-Playing Game (MMORPG), and Massively Multiplayer Online 

Persistent World (MMOPW) are names which are used interchangeably to 

refer to networked video and computer games in which a large number of 

simultaneous players may each assume an identity and interact in a 

shared environment.  For consistency, this paper uses the name 

Massively Multiplayer Online Game and the acronym MMOG throughout.  

The reader will encounter all of these terms, and perhaps more, in the 

referenced literature.  This chapter explores the nature of such games as 

well as the market and history behind them. 

A Definition 

Many computer and video games feature multiplayer capabilities.  These 

capabilities range from two players sitting together in front of a gaming 

station to thousands of players interacting across the Internet.  For the 

purposes of this discussion we define a massively multiplayer online game 

(MMOG) as a networked computer or video game in which tens of 

thousands to hundreds of thousands of consumers may interact with one 

another in real-time in a shared environment, even though these users 

may be separated by vast geographic distances.  This definition is an 

adaptation of that for a Networked Virtual Environment as stated in [176] 
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and embodies the following characteristics, the first five of which are also 

from [176]: 

• A shared sense of space: All players participate and interact in a 

common virtual world.  Each participant observes the same 

characteristics and attributes of the environment, and is able to 

observe other participants within the environment. 

• A shared sense of presence: Each participant is represented by a 

virtual persona, commonly called an avatar, within the environment.  

An avatar conveys to other participants a physical form, animated 

motions, expressions, and so forth on behalf of the controlling 

participant. 

• A shared sense of time: Participants are able to observe the 

behaviour of other participants in the environment as it occurs. 

• A way to communicate: Participants are able to convey 

information to other participants through some communication 

medium, be it gestures, textual messages, or audible voice. 

• A way to share: Participants interact not only with one another, but 

also with the environment.  The environment reflects the actions of 

the participants where appropriate, and enforces the necessary 

constraints applicable to the represented locale. 

• A massive concurrent user population:  The number of 

simultaneous participants is in the tens of thousands to hundreds of 

thousands.  As we will see, the challenges inherent in constructing 
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an online game to support such a large number of simultaneous 

users increase dramatically over those found in supporting four to 

thirty-two players, the amounts commonly supported for current 

multiplayer games. 

• A sense of fairness:  We assume that, given the opportunity, 

some portion of the user population will endeavour to manipulate 

the system so as to gain some advantage over other participants 

[67, 88, 102, 110, 160, 170, 178, 192, 193].  With their roots in the 

military and academic fields, the majority of systems we will survey 

tend to presume that participants are honest and will not cheat [57, 

143].  As the military is able (in principle) to maintain somewhat 

tight controls on the computing hardware of the participants, these 

systems assume that participants are constrained to the rules 

dictated by the environment.  Instead, the security considerations in 

these domains are primarily concerned with preventing the updates 

reported about an avatar from leaking sensitive information about 

any real-world entity that avatar may represent (for instance, the 

performance characteristics of a new fighter plane) to other 

participants (who might represent a foreign military force or 

competing industrial group). 

In contrast, the commercial gaming domain is primarily concerned 

with preventing a subset of users or an electronic attacker from 

spoiling the gaming experience for paying customers, either by 
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performing actions outside the bounds of allowed game-play, or by 

preventing a paying user from safely accessing the game 

environment.  This can directly jeopardize a games revenue, as 

customers tend to abandon games where cheating is common and 

not controlled [48]. 

• A consumer-friendly cost of entry:  Computer and network 

resources are presumed expensive.  Network bandwidth and 

computing hardware is costly to the operator of the game; and, the 

average user has moderate computer hardware and network 

connectivity.  With the rapid transference of high-end technology 

into the consumer-space, the terms expensive”, “costly” and 

“moderate” are deliberately non-specific.   The point to be taken is 

that that target user is a “typical” home user, not a military or 

academic entity having access to facilities beyond the reach of the 

average consumer. 

The goal of the massively multiplayer online game developer is to use the 

techniques and technologies at her disposal to achieve not only a game 

system meeting these characteristics, but to also provide an environment 

that is richly detailed, highly interactive, and “fun” for the user.  For the 

purposes of this discussion, we further consider that the MMOG developer 

desires to field the environment as a commercial service offering; 

therefore, the resulting game system must be amenable to sustainable 

operations by a commercial MMOG service provider. 
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A Historical Perspective 

The genesis of massively multiplayer online games is generally accepted 

to have begun with the development of multi-user dungeons (MUDs) by 

Roy Trubshar and Richard Bartle in 1979 [36, 67, 76, 108, 186].  This text 

based game and the countless variations that followed it allowed 

thousands of players to congregate on their favourite servers to explore 

dungeons and kill monsters together in a Dungeons & Dragons [9] style 

adventure.  These games ran, by and large, on mainframe and mini-

computers until well into the 1990s and used a single world database 

located in shared memory or on disk [9, 36].  The various incarnations of 

the MUD source code have, over the years, been rewritten several times 

and migrated to the C and C++ programming languages for the UNIX and 

Linux platforms; MUD service providers still enjoy a small but loyal 

following [186]. 

By the mid-to-late 1980s much of the technology was in place to offer 

graphical interfaces to multiplayer online games.  In 1985, for example, 

Randy Farmer and Chip Morningstar created Habitat, a virtual online world 

that Commodore-64 users could access through QuantumLink; similarly, 

in the late 1980s QuantumLink, Sierra Online and Genie offered 

Rabbitjack’s Casino, Yserbius and Air Warrior on their proprietary 

networks [108].  These games supported hundreds of simultaneous 

players at a time when the average multiplayer game supported up to 16.  
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The early 1990s brought other large scale multiplayer games like 

Neverwinter Nights on America Online’s (AOL’s) proprietary network [84]. 

The first Internet based online-game, and the first game to use massively 

multiplayer as a marketing term, was 3DO’s Meridian 59 [108, 142] which 

was released in 1996.  Essentially the first fully graphical MUD, Meridian 

59 established many of the game-play and business model trends that 

continue in MMO gaming today.  For example, the in-game systems used 

for chat and character customization, as well as the flat fee pricing model 

were industry firsts which have become industry norms. 

In 1997, massively multiplayer online games entered the mainstream in 

the western world with Origin Systems’ release of Ultima Online [108, 148].  

With a user population that has, at times, exceeded two hundred thousand 

simultaneous customers [109], Ultima Online was the first game to 

demonstrate the market potential for MMO games.  Indeed, at the time of 

this writing, nearly seven years after its original release, Ultima Online 

continues to operate in a market now crowded with MMO games. 

Outside of North America, particularly in Korea and Taiwan, the success 

of massively multiplayer games has been even more impressive.  In 1996, 

around the same time 3DO was releasing Meridian 59 in the United States, 

Nexon released Kingdom of the Winds [144] in Korea, which went on to 

attract over one million subscribers [109].  In 1998 another Korean 

publisher, NCsoft, released Lineage [141] which now enjoys a worldwide 

subscriber base approaching four million users [109].  In comparison, 
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Sony Online Entertainment’s Everquest [179], the most popular MMO 

game in the west is approaching five hundred thousand subscribers 

worldwide [109]. 

The success of these titles paved the way for the development of more 

recent titles such as the Asheron’s Call [130, 187] series by 

Microsoft/Turbine, Dark Age of Camelot [139] by Mythic Entertainment, 

Star Wars Galaxies [121] by Sony/LucasArts, The Sims Online [56] by 

Electronic Arts, Anarchy Online [71] by Funcom, and Shadowbane [196] 

by Wolfpack/Ubisoft.  Imminent on the horizon are Worlds of Warcraft [18] 

by Blizzard, Middle-Earth Online [188] by Turbine/Vivendi, The Matrix 

Online [135] by Monolith/Warner-Bros, and many others.  A quick search 

on 22 February 2004 in the Multiplayer Online Games Directory [138] 

returned one hundred eighty-two (182) massively multiplayer titles 

currently operating or in development. 

An extremely interesting question, which is beyond the scope of this paper, 

considers the size of the world-wide market for MMOGs.  Game industry 

analysts estimate that the online gaming market can support twenty or 

fewer massively multiplayer titles over the next few years [51].  Unlike 

traditional single and multiplayer games, the average consumer will not 

subscribe to more than one MMOG at a time [67] due to the investment of 

both time and money required.  Additionally, the costs and complexity 

involved in launching and subsequently operating MMOG titles make them 
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one of the most expensive interactive entertainment product offerings a 

company can add to its portfolio [51]. 
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The Technical Challenges 

Massively multiplayer online games are difficult to design and implement.  

Computer Games in general, and networked computer games in particular, 

are a complex combination of problems from many domains of computer 

science and engineering: three-dimensional graphics, concurrent systems, 

real-time systems, distributed systems, human user interaction, physics, 

artificial intelligence, graph theory, database systems, digital signal 

processing for audio, data compression, electronic security, and 

cryptographic protocols are all tools employed by the MMOG developer.  

This chapter outlines the many technical challenges faced by the 

developer of a massively multiplayer online game. 

Network Bandwidth 

Massively multiplayer online games utilize the network to exchange 

information about the virtual world between participating nodes.  The more 

dynamically rich the environment, the more information is required to 

inform participants about the changes in the world.  Additionally, as the 

size of the participant set increases, the total amount of information 

generated by the system increases.  Similarly, increasingly rich 

environments with increasingly large user populations result in an 

increasingly large volume of information which must be conveyed to each 

participant.  For a commercial service offering, we assume that each 

participant has a finite bandwidth capacity, typically that of a consumer-

grade high-speed modem or broadband connection.   Further, we 
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presume that the bandwidth available to the massively multiplayer online 

game operator is not only finite, but charged to the operator based on 

usage.  The MMOG developer is thus challenged to limit the bandwidth 

consumption of the game while providing the richest experience possible. 

Military and academic simulation builders also face bandwidth issues.  

Unlike commercial game providers, however, the cost of bandwidth is 

generally not a consideration for their projects; instead, their challenge is 

to remain within the physical bandwidth limitations of their local and wide 

area network resources. 

Network Latency 

Network Latency is the time taken to transmit a message from one node to 

another and represents one of the largest challenges facing massively 

multiplayer online game developers [176].  When one network application 

transmits data over a network, the network’s latency determines when the 

data becomes available for consumption by the receiving application.  As 

players expect to interact with each other and with the environment in real-

time [6, 67, 82, 118, 149, 152, 176], the MMOG developer wishes to give 

the user the illusion that the entire game world is located on their local 

machine [176].  Network latency means that incoming data about the state 

of the game environment is already somewhat out-of-date by the time it 

arrives for processing. 

Unfortunately for the MMOG developer, latency is an inherent part of 

network communications [30].  Electronic signals take some non-zero 
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amount of time to travel from one location to another.  A light-based signal 

traveling on a fibre-optic link, for instance, would take over 21 milliseconds 

to travel from the western to eastern coast of the United States [30].  On 

top of this fundamental delay, every piece of network hardware (i.e., 

routers, gateways, modems and network adapters) through which the 

signal passes has its own capacity and latency for the processing of 

network traffic.  It further takes time for an operating system to take data 

from an application and deliver it to the network hardware for transmission, 

and vice versa for delivery of data to an application.  Thus, network 

latency is an unavoidable consideration for MMOG developers. 

The issue is further complicated by the variability of network latency 

across the Internet.  Latency varies with the physical distance traveled by 

the data, the current load on each piece of network hardware, the current 

processing load on the operating system, and other factors.  These factors 

are beyond the control of the game service provider.  Fortunately, the 

military and academic communities have developed techniques to 

compensate for, and hide the effects of, network latency.  For the most 

part, the gaming community has already appropriated these techniques 

into its repertoire. 

Distributed Consistency 

Latency and distributed communications make it difficult to maintain 

consistent world interpretations for each participant.  The MMOG 

developer wishes to present users with a single shared environment, 
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which is challenging if the messages communicating changes in the 

environment arrive at different times at each node.  Further, if participants 

act based on differing views of the environment, some means must be 

provided to determine which resulting version of the environment is correct.  

Players expect consistency in areas such as player-to-player and player-

to-environment collision detection and in-game economic transactions (if 

applicable) [67].  A lack of consistency hampers the level of immersion of 

the player, taking away from their enjoyment of the game and decreasing 

their desire to play.  Fortunately, the military, academic, and gaming 

communities have all found that, for many types of interactions, human 

players are often satisfied given the appearance of consistency. 

Overall, maintaining consistency in an online game has proven to be a 

difficult task for game developers; players commonly uncover defects that 

violate the consistency of the game world, many of which may be 

exploited to gain an unfair advantage over other players [12, 23, 75, 101, 

110, 136 2002, 145, 160, 171, 178, 193, 197].  These consistency 

violations tend to stem from implementation or design errors.  Achieving 

true consistency in a distributed environment is often quite complex, 

having subtle failure modes and timing or ordering considerations. 

Fault Tolerance 

A massively multiplayer online game system should insulate its users from 

the failure of one or more of its components.  Ideally, failure and failure 

recover are transparent to the user population.  User visible failures can 
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be expensive not only in with respect to the cost of replacing the failed 

component(s), but also in terms of the reputation and image of the game, 

customer service and support burdens, and, ultimately, user satisfaction 

[29]. 

As in any distributed system, there are a number of areas in which failure 

can occur.  In this section we consider random failures in network or 

computer equipment.  For the moment, we assume that software 

components operate correctly in accordance to their specifications given 

correctly operating network and computing resources.  A more in-depth 

classification of failure modes and stability can be found in [61]. 

Network Failure 

Computer networks, particularly the Internet, are subject to myriad failure 

conditions.  For example, network messages may not be delivered if 

network connectivity is lost due to power failure, damaged communication 

lines, faulty network equipment, overloaded telecommunications systems 

due to peak usage, or any number of other random failure causes.  An 

MMOG provider should take measures to ensure that network failures are 

unable to prevent a substantial portion of the paying customer base from 

using the game environment.  Clearly, it is impractical, if not impossible, to 

guarantee that no permutation of network failures prevents any customer 

from using the game environment.  Rather, a MMOG considers the 

likeliness and consequences of failure and fields a network system in 
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which the most likely anticipated failure modes affect the least number of 

customers. 

For most network systems, both in and out of the gaming community, 

resilience to network failure is accomplished with redundant network 

connections, redundant network equipment with failover, and disaster 

recovery plans.  The provision and maintenance of robust network 

systems represents an established problem that organizations deal with 

on a daily basis and is not directly related to the software architecture for a 

massively multiplayer game.  As such, this topic falls outside the scope of 

this work and will not be discussed further. 

Hardware Failure 

A component may also fail due to hardware issues in the computing 

environment.  Hardware failure may be an underlying cause of one of the 

network failures mentioned above; however, for the purposes of this 

discussion, we consider hardware failures in the computing resources 

used by the MMOG developer to provide game services to its customers.  

This includes game and database servers which may operate incorrectly 

due to failure of a power supply, hard disk, or other electronic component.  

The distribution of game tasks and responsibilities should be such that, at 

worst, the loss of a server due to a hardware failure affects only a 

localized subset of players and, at best, the loss and recovery of a server 

is entirely transparent to players. 

Participant Failure 
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The computing device of a player may fail for any number of reasons.  As 

in military and academic simulation, the massively multiplayer game 

developer seeks to isolate the effects of participant failure such that other 

players are not affected.  In an MMOG where player state is persistent, 

the developer also wants to minimize the effects on the players who 

experience the failure.  For example, a player will be unhappy to 

subsequently resume playing the game and find that their character’s 

inventory has inexplicably gone missing.  Game systems lacking built-in 

mechanisms for recovering from participant failure may find their customer 

service representatives spending significant portions of their time 

searching game event logs to determine whether or not a user’s claim to 

have lost items due to disconnection are valid or fabricated [29]. 

Administration and Live Production 

Unlike most types of commercial game or software products, the delivery 

of a massively multiplayer online game does not finish when the boxed 

software hits store shelves or the package is made available to customers 

for download [43, 67, 170].  Beyond its release to the public, a commercial 

MMOG is ultimately a 24x7 (i.e., continuous) live service offering; as a 

product it will require continual administration, new features, additional 

content, and customer support.  Ideally, all of this will be provided without 

user-visible interruption of service.  Thus, it behoves the MMOG developer 

to build a system which, in addition to all of the other technical 

requirements, is easy and inexpensive to maintain, administer, and extend 
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in a live environment.  Generally, for military and academic simulation 

systems these ongoing requirements are not present, as the participants 

come together at some established time to launch the environment, 

execute the training or demonstration exercise, and shut-down the 

environment. 

Cheating 

Cheating is widespread in multiplayer games [12, 13, 35, 48, 67, 88, 102, 

110, 160, 170, 178, 192, 193] and can have disastrous consequences for 

an organization providing massively multiplayer online game service.  

Most cheating occurs in order to gain some undue advantage for the 

cheating participant [48, 153].    As mentioned previously, honest players 

tend to leave a game in which they perceive themselves to be at a 

disadvantage due to widespread cheating [48].  A much smaller group of 

players, commonly referred to as griefers, will cheat and engage in other 

anti-social behaviour purely for the pleasure of it.  Representing only 3% 

of the average multiplayer game user population, MMOG providers have 

found that their customer support representatives spend upwards of 40% 

of their time dealing with griefer related issues [153]. 

Security of Customer Information 

As a part of operating a commercial service, a massively multiplayer 

online game provider will often require personal or financial information 

about its users.  For example, the user’s name, address, and credit card 

information might be required for billing purposes.  In turn, the users of an 
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MMOG service expect that any personal or financial information they 

entrust to the service provider will be handled in such a way as to protect 

the privacy and confidentiality of the user [67].  Indeed, depending on the 

location in which the game provider operates, there may be a legal 

obligation to ensure the privacy of personal and financial information 

collected about its users.  Many European countries, for instance, have 

had progressive privacy and data protection laws in place for some time.  

More recently in Canada, the Personal Information Protection and 

Electronic Documents Act (PIPEDA) [79] governs the collection, use, and 

disclosure of personal information for national, international, or inter-

provincial commercial activities and, in the United States, the Children’s 

Online Privacy Protection Act (COPPA) [59] defines the privacy framework 

with which a service provider must comply when offering internet-based 

services to children. 

While a philosophical and technical discussion around the use and 

protection of customer and financial information would be quite interesting, 

it is beyond the scope of this work and will not be discussed further. 

Scalability 

Ultimately, the challenge for the massively multiplayer online game 

developer is to design and implement a system that addresses each of the 

other technical challenges in the presence of large numbers of concurrent 

users.  The MMOG developer seeks to partition and distribute 

computational tasks and game state such that (1) each participant is 
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aware of any and all game information which is relevant to that participant; 

(2) each computing device participating in the game is not over-burdened; 

(3) the capacity of the network resources available to the game is not 

exceeded; and (4) the size of the concurrent user set, and of the virtual 

environment, can be increased without requiring architectural changes to 

the game. 
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Literature Review 

Massively-multiplayer gaming systems are one particular example of a 

more general application model, the Networked Virtual Environment (net-

VE).  A net-VE is defined [176] as “a software system in which multiple 

users interact with each other in real-time, even though those users may 

be located around the world.”  This chapter provides an historical overview 

of networked virtual environment technologies from the military, academic, 

and commercial gaming fields; in each exploring the most significant 

systems developed. 

Military Modeling and Simulation 

The United States Department of Defence (DOD) spends in excess of 

$1.5 billion per year on modeling and simulation for a variety of purposes, 

such as to train individual soldiers, conduct joint training operations, 

develop doctrine and tactics, formulate operational plans, assess war-

fighting situations, evaluate new or upgraded systems, and analyze 

alternative force structures [32].  The features and technologies of many of 

these systems are strikingly similar to those found in massively-multiplayer 

online gaming.  In particular, many of the technical challenges facing 

developers of massively-multiplayer games today have been encountered 

in one form or another by the military training community [128].  Indeed, 

the DOD was the first to do work on large scale networked virtual 

environments [176] and is thus a rich source of information for today’s 

game developer. 
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This section provides a summary of the most significant military networked 

virtual environment based training systems and their potential contribution 

to massively multiplayer online gaming.  Specifically, we will explore 

Simulator Networking (SIMNET), Distributed Interactive Simulation (DIS), 

Aggregate Level Simulation Protocol (ALSP), and the High-Level 

Architecture (HLA) for Modeling and Simulation.  

SIMNET –  Simulator Networking 

Originally developed for the Defence Advanced Research Projects Agency 

(DARPA) by Bold, Beranek and Newman (BBN), Perceptronics, and Delta 

Graphics from 1983 through 1990 [154], SIMNET is a distributed 

simulation system intended to provide a “low-cost” net-VE for training 

military units (tanks, helicopters, command posts, etc.) in co-ordinated 

combat and assault tactics [128, 176].  The SIMNET network software 

architecture has three core elements: (1) an object-event architecture; (2) 

autonomous simulation nodes; and, (3) a set of predictive modeling 

algorithms [176]. 

Object-Event Architecture 

The object-event architecture models the world as a collection of objects 

which interact by means of events.  Objects are used to represent vehicles 

(a helicopter, for example), munitions (a missile, for instance) and other 

entities within the environment.  An event is a message broadcast to the 

simulation network indicating a change in world or object state (for 
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instance, the explosion of said missile upon striking the aforementioned 

helicopter). 

Peer-to-Peer / Replicated Data Model 

Each simulation node maintains its own repository of information 

describing the state of every object in the virtual environment and is 

autonomously responsible for maintaining the state of one or more objects 

in the virtual world (Figure 1). Object responsibility entails placing event 

messages onto the network such that the current state of the object is 

accurately represented to the other nodes participating in the environment.  

It also entails processing received event messages as a part of calculating 

the controlled objects’ new state. Beyond transmitting and receiving event 

messages, nodes do not interact with each-other or with the net-VE.  The 

use of autonomous nodes, each maintaining its own world representation, 

means that there is no central server, nor central point of failure.  It also 

allows nodes to enter and leave the simulation at any time. 

Node J

Node K Node X

Ethernet
my state
(object x)

object j object k

 

Figure 1. SIMNET Fully Replicated Data Model. 
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Weakly-Consistent Data Model / Dead-Reckoning 

Perhaps the most important design concept for the massively multiplayer 

on-line game developer is the Weakly-Consistent Data Model [128].  

There exists a broad set of game and simulation scenarios in which no 

participant ever requires a complete and fully accurate real-time 

representation of the shared state.  Rather, in between updates for a given 

object, each participant may extrapolate some of the object’s state using a 

set of predictive algorithms collectively referred to as dead-reckoning [133], 

or more generally as predictive contracts [127].  In order to reduce the 

number of messages transmitted, hide the effects of message latency, 

and alleviate the effects of lost messages, the developers of SIMNET 

introduced the objects and ghosts paradigm.  In this model, the node 

responsible for an object (its home node) is the only node having the 

authoritative version of the object’s state; all other nodes maintain a ghost 

copy of the object and track the rate of change of the object’s state (Figure 

2).  The home node also tracks the rate of change in the object’s state.  

An update event is only broadcast when the predictive model for the 

object’s state differs from the authoritative model for the object’s state by 

some pre-established threshold.  When an update is received for a ghost 

object, the object’s state is corrected to the new values and dead-

reckoning begins again.  A node also transmits heartbeat messages 

periodically to inform other simulation participants that it is still actively 

involved in the simulation.  Typically, dead-reckoning is applied to 
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positional information about an object, such as location and orientation, 

but the concept can be applied to any state whose values and changes in 

values exhibit continuity (i.e., no sudden jumps or gaps) over time. 

predictive
error

predicted
path actual

path

received

received

 
Figure 2. A Dead Reckoning Example. 

The ideas embodied by dead-reckoning have been widely adopted by the 

training simulation community as well as the network gaming community.  

Dead-reckoning protocols trade accuracy of shared state for reduced 

network traffic, thus allowing a networked virtual environment to support 

more participants [176].  Dead-reckoning protocols generally consist of a 

prediction technique and a convergence scheme.  The most popular 

prediction technique employs derivative polynomials (i.e., based on the 
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current value, rate of change and/or acceleration in the rate of change for 

a state variable) to approximate the current state of a remote entity, 

usually by transmitting the instantaneous rates of change for the value.  

For example, a first-order derivative polynomial scheme for approximating 

object position p′  would predict, given the object’s position 0p , velocity 0v , 

and acceleration 0a  at some time t , that the position after time lapse t∆  

would be tvpp ∆⋅+=′ 00 .  A second order derivative polynomial scheme 

would further consider the acceleration of the object and predict that 

2
02

1
00 tatvpp ∆⋅+∆⋅+=′ . 

A convergence scheme is required in order to adjust the current 

approximation to more correctly represent a newly received update.  The 

simplest form of convergence simply updates the local representation to 

match the updated values, possibly resulting in discontinuity of the local 

state.  Linear convergence involves the selection of a future convergence 

point and then linearly adjusting the local state over time in the direction of 

the convergence vector.  For example, the correction of the position of the 

aircraft in Figure 2 might follow a convergence path along the line 

indicated by the prediction error.  More sophisticated approaches involve 

correcting the local approximation along quadratic, cubic, quaternion or 

spline based convergence vectors. 

Position-History Based Dead-reckoning [174], or PHBDR, an extension to 

the derivative polynomial approach, chooses between first and second 



38 

38 

order polynomials based on the objects state over previous updates.  

Rather than transmitting instantaneous values for the rates of change, the 

rate of change is derived from the previous observed states and an 

approximation formula chosen based on threshold values in the rates at 

which the value appears to be changing.  Similarly, the convergence 

algorithm used to correct approximation errors is dynamically selected 

based on the significance of the predictive error. 

Auto-adaptive dead-reckoning [24] further extends these ideas by varying 

the rate at which updates are transmitted to an observer based on the 

relationship between the object and its observer.  For example, an 

observer that is far away from an object may have lower accuracy 

requirements for the approximated state than an observer that is close to 

the observed object.  Based on threshold values describing the 

relationship between object and observer, a different error tolerance value 

may be used to determine when an update should be transmitted, serving 

to lower the rate at which updates are transmitted over the network to 

“distant” observers. 

More generally, a predictive contract [127] is any specification for deriving 

a reasonable estimate of an object’s state over time.  Consumers of a 

predictive contract may extrapolate the current state of an object based on 

its initial state and the predictive contract.  Dead-reckoning techniques are 

specific examples of predictive contracts.  Other predictive contracts 

would include statements like: 
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• traveling along waypoints A, B, and C 

• flying in Delta formation 

• following an arc having radius R with velocity V 

The network gaming community has found dead-reckoning to be a very 

useful technique to appropriate from the military simulation community [6, 

21, 87, 128, 129, 152].  Evaluations of dead-reckoning techniques in 

computer games have found them able to reduce the impact of network 

transmission delay across a variety of game genres [150] and, when 

combined with synchronized clocks across hosts, to provide a fairly 

accurate approximation of the state of remote objects [4].  In spite of the 

computational cost of prediction as well as the additional implementation 

complexity, dead-reckoning has been successfully applied to first person 

shooters [15], flight/space simulators [118], racing games [150], sports 

games [150],  and massively-multiplayer online games [21, 112, 114].  

The use of other types of predictive contracts has not yet been adopted by 

the game development community.  When queried by the author, the 

participants of a network gaming roundtable [195] at the 2004 Game 

Developer’s conference were largely unaware of predictive contracts; 

those developers who were aware of predictive contracts, came from the 

military simulation domain.  

Dead-reckoning and predictive contracts are not without drawbacks.  It is 

important to note that a weakly-consistent data model is vulnerable to 

time-related cheating [12, 13, 35, 48].  A dishonest participant can pretend 
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to have greater latency in order to see the actions of other players before 

sending out their own updates, with timestamps set in the past.  This 

effectively, allows a cheater to see slightly into the future.  A cheater could 

alternatively elect not to send updates as regularly as the game expects; 

instead, the cheater deliberately drops as many updates as tolerated by 

the game (we presume that after some threshold of dropped updates the 

game will determine that the participant is no longer playing) before 

sending an update that accords the cheater some advantage.  As long as 

the cheating party periodically sends plausible updates, one cannot 

discern a cheater from an honest player having a poor network connection. 

A recently suggested approach to securing dead-reckoning is to introduce 

delay in the processing of messages until all participants have committed 

to their choice of action for the current time-slice of the game using a 

cryptographic hash [35].  The delay with which updates are applied to the 

world representation is managed as a function of the observed latencies of 

each player.  In order to avoid stalling the game, players do not transmit 

their moves in advance.  Game state is updated by dead-reckoning if 

players must wait for a participant to commit to their choice of action.  The 

effect of this approach on the perceived responsiveness of a game to the 

user’s commands is not clear. 

SIMNET Shortcomings 

Several aspects of SIMNET render it an inappropriate technology on 

which to base a massively multiplayer online game.  Firstly, as a 
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development of the United States Military, SIMNET defines an overly 

specific and specialized set of message packets [124, 176]; the 

introduction of new types of simulation entities is not directly supported.  

Secondly, the SIMNET network protocol is explicitly tied to Ethernet 

multicast and requires network bridges for simulations which span 

Ethernet LANs, at the cost of latency [124].  Thirdly, SIMNET was not 

developed as an open or interoperable solution; it is insufficiently 

documented for easy use by parties outside of those involved in the 

original project [176].  These drawbacks made SIMNET less than ideal for 

a long-lived military standard for networked virtual environments. 

SIMNET also has some deficiencies that, while acceptable for the military 

simulation community, deter from its usefulness as an MMOG platform.  

The level of trust accorded to each autonomous simulation node poses a 

security risk in a consumer environment, where fair-play cannot be 

mandated by policy or oath, and customer retention is jeopardized by 

cheating participants.  For example, a dishonest node may grant unfair 

capabilities to objects under its control, teleporting vehicles or ignoring 

requests to apply damage from enemy munitions.  Alternatively, a node 

may make unfair use of the information at its disposal, requesting that 

enemy units apply damage when they have not been hit, or making use of 

positional knowledge of enemy units that should not be visible to the 

player. 
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The network communications model and platform of SIMNET, Ethernet 

multicast to all simulation participants, is not appropriate for massively 

multiplayer online games.  SIMNET effectively broadcasts all events to the 

entire simulation network, regardless of the relevance of a particular event 

to a given node.  With this model, the SIMNET network software 

architecture proved to be somewhat scalable (a five site simulation 

involving some 850 objects was conducted in 1990 [133]), but not to the 

level required for an MMOG. 

DIS –  Distributed Interactive Simulation 

Attempting to overcome the shortcomings of SIMNET, in 1989 the United 

Stated Department of Defence and supporting industries initiated a 

process to formalize and extend the SIMNET protocols to support a wider 

range of military small unit simulation requirements.  These efforts 

culminated in the ratification of the IEEE Distributed Interactive Simulation 

(DIS) standard in 1993 [90, 91, 92, 93, 94, 95]. 

The DIS network software architecture has the same basic components 

and structure as SIMNET but is designed to support fully distributed 

heterogeneous simulations having fewer than three hundred (300) 

participants over a UDP/IP local area network (LAN) [124, 176].  For the 

purposes of this discussion, the core differences between DIS and 

SIMNET are: (1) a larger set of predefined simulation entities, the DIS 

terminology for SIMNET objects; (2) a larger suite of message definitions, 
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including an entity specific “data” message; and (3) the use of UDP/IP 

broadcast instead of Ethernet multicast as a network transport facility. 

DIS was well received and supported by the training community; over one 

hundred DIS compatible systems were developed [176].  DIS was capable 

of effectively supporting up to the design target of 300 participants; 

however, DIS so successfully met its DOD objectives that it inspired a 

demand from the training community for simulations supporting a larger 

number of entities.  Extensions to the DIS protocol and hierarchical 

hardware architectures were introduced in the late 1990 for the Synthetic 

Theater of  War (STOW) [25] and Joint Precision Strike Demonstration 

(JPSD) [106] exercises, which scaled to support 3000 and 30000 entities, 

respectively. 

One approach for extending the scalability of DIS across LAN boundaries 

for the STOW and JPSD exercises was to introduce gateway servers to 

act as the interface between the LAN and a wide area network (WAN).  

For the STOW exercises, the Application Gateway (AG) serves as a 

bridge between DIS participant sites, allowing them to operate as a single 

DIS session.  Tasks performed by an AG include packet aggregation, 

delta compression, relevance filtering [25, 124, 165, 190], each of which is 

discussed below.  For the JPSD exercises, the Run-Time Gateway (RGW) 

bridges simulation sites using interest management (IM) to ensure that 

each simulation receives relevant information [156].  JPSD is further 

discussed in the section on relevance filtering. 
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Packet Aggregation 

In order to reduce the number of message packets transmitted across the 

WAN an application gateway would bundle multiple protocol data units 

(PDUs) from the subnet into larger message packets before transmission.  

In the STOW environment, this technique was specifically useful in order 

to accommodate the Ethernet frame size and rate requirements of the 

Network Encryption System (NES) used to secure communications across 

the WAN [124]; however, packet aggregation is a useful technique for 

reducing bandwidth requirements even in the absence of the constraints 

introduced by the NES. 

The user datagram protocol (UDP) [155] and transmission control protocol 

(TCP) [46] of the internet protocol (IP) suite [47] each have a header of 

twenty-eight (28) and forty (40) bytes respectively.  For networked virtual 

environments having traffic composed of frequent small messages, a large 

portion of the required bandwidth may be devoted to header information 

for the underlying network protocol.  Merging messages into a single 

packet eliminates packet headers.  Depending on the environment and the 

amount of data contained in each packet, aggregation may eliminate up to 

50% of the bandwidth requirements for a networked virtual environment 

[176].   Clearly it pays to transmit as much information per packet as 

possible, to reduce the amount of bandwidth wasted on network protocol 

overhead. 
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Packet aggregation often requires a trade-off between bandwidth and 

timeliness.  The transmission of a data message may be delayed until 

sufficient messages can be aggregated, thus increasing the latency of 

message delivery.  Additionally, delayed data may lose its relevancy to the 

receiver, or even be superseded by a subsequent update before being 

transmitted.  In the ideal case, large sets of update messages become 

available to the transmitting host at some regular interval, making packet 

aggregation a rather trivial process.  More generally, updates become 

available in an unpredictable manner and some transmission policy for 

packet aggregation manages the trade-off between message delay and 

message size [175].  For example, in a time-based transmission policy a 

packet may be sent after some fixed period following the availability of the 

first update message; this provides an upper bound on the delay 

introduced by the packet aggregator.  In a quorum-based transmission 

policy a packet is transmitted when it contains some minimum number of 

updates; this ensures a particular reduction in bandwidth and packet rates.  

One could also employ a hybrid approach where a packet is sent when 

the period expires or when the quorum is reached, whichever comes first; 

this approach can be used to dynamically balance the aggregation trade-

off in response to object update rates. 

Packet aggregation is particularly suited to client/server network 

architectures in which a game server host is responsible for multiple game 

objects, or large portions of the game environment.  Indeed, developers of 
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client/server multiplayer games typically have the server send out 

aggregate state update messages to the clients rather than sending out an 

update message per object [20, 86, 87, 118, 146, 178].   

Delta Compression 

In order to decrease the number of bytes required to transmit data from 

one application gateway to another, each message undergoes delta 

compression using the Protocol Independent Compression Algorithm 

(PICA) [190].  PICA, and other delta compression schemes, exploits the 

observation that much of the data describing an entity’s state changes 

infrequently.  Rather than always sending the full state of an entity, it is 

often sufficient to regularly transmit only the portions of the state which 

have changed, and less frequently retransmit the full state.  PICA is 

“protocol independent” because it performs this compression at the bit 

level, removing redundant bits from the previously transmitted state 

representation, without any regard for the semantics or structure of the 

message content.  In addition to PICA, each application gateway also 

offers a Quiescent Entity Service (QES) which detects and tracks 

stationary simulation entities.  The QES informs other application 

gateways that an entities state is no longer changing and that heartbeat 

updates for that entity will not be transmitted over the WAN; based on the 

last known state of that entity, each AG can then generate the appropriate 

heartbeat updates for its local subnet. 
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PICA requires a mechanism for reliable message delivery, as each 

message represents the change in state from the previous message.  The 

lost of a message introduces errors in the derived local state until the next 

full state update is received.  The magnitude of the error is compounded if 

packet aggregation is further employed.  One approach is for the recipient 

of a delta compressed message to detect a lost packet (usually by 

assigning a sequence number to each packet) and issue a retransmit 

request, or negative acknowledgement (NAK) to the sender [124, 176].  In 

the worst case, a lost packet results in a NAK from many other application 

gateways, leading to network congestion and more lost packets [124]. 

The Quake 3 network model [87] demonstrates a technique for applying 

delta compression to purely unreliable protocols.  Rather than waiting for a 

NAK from a client, the game server continuously sends out delta 

compressed state from the last positively acknowledged state.  This 

approach transparently handles packet loss at the expense of more 

frequent message transmission.  Because a client’s positive 

acknowledgement message is also delivered unreliably, it further requires 

each client to cache all past states later than that on which the most 

recently received update is based. 

Relevance Filtering 

In order to decrease the number of messages processed by each host on 

a LAN, its application gateway discards updates which are not relevant to 

the entities it serves.  An AG uses Grid Filtering to discard updates for 
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entities which are outside of the geographic area covered by its local 

subnet.  An AG also applies Culling to discard updates for entity types 

which are not of interest to its local subnet; for example, updates for 

seaborne vessels may be discarded by an application gateway serving a 

subnet composed of ground vehicles [124]. 

The designers of the JPSD simulation architecture modified the DIS 

implementation of participating simulators to broadcast their updates on a 

local multicast channel and introduced the run-time gateway to manage 

inter-simulation messaging on behalf of its clients [156].  Each RGW, 

based on a priori knowledge of the characteristics of its clients distributes 

interest expressions to all of the other RGW hosts.  When an update is 

received from a client simulation, its RGW reads the update and forwards 

it to all other RGW nodes having an interest expression which is satisfied 

by the contents of the update. 

DIS Shortcomings 

Like SIMNET, DIS was developed for small unit training and is not suitable 

as a massively multiplayer online game platform.  The sizes of DIS 

messages are slightly larger than those for SIMNET, requiring more 

network bandwidth per message.  In order for the simulation to be 

completely decentralized and nodes fully autonomous, DIS requires that 

every entity maintain its own complete representation of the virtual world 

which, in turn, requires that every message must be received and 

processed by every participant.  DIS further requires that all entities 
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periodically broadcast their entire state for the benefit of new participants, 

as well as still-alive messages if their update rate slows.  Given these 

requirements, a simulation having 100,000 players would have network 

connectivity requirements of up to 375 Mbit/s of bandwidth to each player 

[120], a figure well in excess of modern broadband access.  This is in 

addition to the large computational and space requirements for 

maintaining the state of each entity by dead-reckoning. 

The decentralized nature of DIS also has the same MMOG security and 

trust issues found in SIMNET.  For example, the anecdotal Mega-Death 

program cheated by collecting the positions of enemy players and then 

simultaneously issuing a detonation event for powerful munitions next to 

each one [176].  The inability to detect or prevent cheating, when 

combined with unreliable UDP/IP broadcast, has led to disputes in DIS 

exercises where a player that should have “died” turns around to shoot the 

player that just “killed” him [176]. 

ALSP –  Aggregate Level Simulation Protocol 

The operational goal for the STOW program was the ability to run real-

time simulations having 100,000 to 300,000 participants, a value on the 

order of the size of Operation Desert Storm in the early 1990s [176].  

Therefore, in early 1990, DARPA sponsored MITRE to explore the design 

of a general interface by which large simulation exercises, such as those 

based on DIS, could cooperate, increasing the functionality and value of 

the existing combat simulations developed by various training 
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organizations [194].  This effort resulted in the development of the 

Aggregate Level Simulation Protocol (ALSP) [105] which uses 

synchronization algorithms from the analytic simulation community [69] to 

join multiple independent simulations to form a larger, seamless simulation 

covering a larger scope than intended or possible by the original 

simulation designs [194].  Using the ALSP to aggregate platform-level 

entities into simplistic groups of forces, the Joint Training Confederation 

and similar groups commonly simulate battlefields with 20,000 to 100,000 

entities [128]. 

While the ALSP is not directly applicable to massively multiplayer real-time 

gaming, it does provide some ideas which may be helpful to MMOG 

developers.  In particular, it introduced an infrastructure layer into the 

distributed simulation framework.  This common software component, 

composed of a translator and gateway layer, is responsible for creating 

and transmitting update events, receiving updates and modifying local 

ghost objects, controlling local simulation time, and converting between 

the internal and external representations of entity attribute values. 

Time Management 

That ALSP provided a test platform for many of the ideas that would later 

become part of the High Level Architecture for Modeling and Simulation.  

The time management services of the ALSP and of the HLA are a prime 

example of this.   The time management system of the ALSP utilized a 

conservative execution model based on the Chandy-Misra time 
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synchronization algorithm [28, 194] to manage the advance of simulation 

time between the concurrent processes participating in the distributed 

simulation.  Conservative execution algorithms prevent inconsistency by 

having each simulator advance its simulation clock only when it can safely 

assert that no unknown action taken by another entity could possibly 

cause its perceived state to differ from the correct state.  In essence, 

participants that interact with one another synchronize and execute the 

simulation in lock-step. 

Optimistic execution algorithms such as Time Warp [103], on the other 

hand, allow participants to extrapolate the state of the environment; if the 

extrapolation proves to be invalid then some corrective measure is taken.  

In Time Warp algorithms, the simulation state and time revert to the last 

known valid state and time, possibly causing entities to move 

discontinuously.   Further advances in time management are discussed in 

the section on the HLA Time Management service. 

Infrastructure 

As a precursor to HLA Run-Time Infrastructure the Aggregate Level 

Simulation Protocol introduced a common software infrastructure 

facilitating the distributed interaction of simulators.  The ALSP software 

component is composed of translators and gateways.  Each translator 

handles the semantic conversion between the internal and external 

representations of simulation data and prevents the local simulator from 

advancing its simulation clock until it is safe to do so [194].  Each gateway 
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is responsible for applying the Chandy-Misra time synchronization 

algorithm.  Operating in a peer-to-peer manner, the gateways provide an 

event transport service which guarantees that no participating simulator 

will receive a late event.  Gateways also allow simulations to join and 

resign from the simulator in a time coherent manner [194]. 

ALSP Shortcomings 

The requirement to link numerous, possibly dissimilar, simulations into one 

aggregated system while maintaining the high-fidelity desired by the 

training community, introduced additional complexity into the management 

of time within the system.  In the ALSP, time is not tied to wall-clock time.  

Instead, the system executes as fast as possible with the requirement that 

all events be processed in timestamp order by each participant.  This 

incurs significant processing and network overhead, which may result in 

delayed time advancement in real-time modelling systems; conversely, it 

also means that hours to days of simulation time may pass in minutes to 

hours of wall-clock time, for faster than real-time modeling systems [128]. 

HLA –  High-Level Architecture 

In 1995 the Defence Modeling and Simulation Office (DMSO) [55] initiated 

the High Level Architecture for Modeling and Simulation (HLA) project to 

define a general purpose simulation framework facilitating interoperability 

and reusability of large numbers of distributed heterogeneous simulators.  

In the HLA, an individual federate (simulator) or set of federates 

developed for one purpose can be combined with other federates and 
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applied to some other purpose as a federation: a composable set of 

interacting simulations [41].  The HLA builds on the lessons learned from 

the previous real-time distributed simulation projects described above, as 

well as that of the analytical simulation community, to define a simulation 

model and common run-time infrastructure by which to aggregate diverse 

simulation applications.  It extends the ambitions of the ALSP to not only 

aggregate simulators based on the traditional real-time and DIS models, 

but to simultaneously support other simulation models within the same 

simulation, particularly those based on discrete-event simulation 

formalisms.  The HLA was accepted as an IEEE standard in 2000 [96, 97, 

98, 99]. 

The high level architecture is formally defined by the federate interface 

specification [97], the object model template specification [98], and the 

HLA framework and rules specification [96].  For our purposes, the key 

innovation of the HLA is the introduction of a standardized Run-Time 

Infrastructure (RTI) for distributed simulation, defined in the federate 

interface specification.  The HLA Object Model allows a structured 

specification of each federate, its attributes, and the overall federation to 

be published to all participants.  However, the HLA object models are 

largely descriptive; the primary consumers of an HLA object model are the 

human developers attempting to integrate a federate into a federation.  

Finally, the HLA framework and rules specification describes the design 
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principles, constraints, and requirements that a federate and federation 

must adhere to in order to be HLA compliant. 

Functionally, the core elements of an HLA federation (Figure 3) are 

federates, the federate interfaces to the RTI, and the RTI itself [39, 40, 41, 

42].  The remainder of this section describes the run-time infrastructure 

and the services it provides.  It further discusses the applicability of the 

services and concepts of the RTI to massively multiplayer online gaming. 

SimulationLive PlayerSupport Utility

Run-time Infrastructure

Federation
Management

Object
Management

Time
Management

Declaration
Management

Ownership
Management

Data Distribution
Management

* * *

Interfaces

 

Figure 3. Functional Components of the High Level Architecture. 

Run-Time Infrastructure 

The RTI provides six core service classes.  The federation management 

service facilitates the creation and operation of a federation.  The 

declaration management service allows a federate to specify the data it 

intends to produce and declare the data it expects to consume.  The 
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object management service is used to create, delete, identify, and 

otherwise manage simulation objects.  The ownership management 

service allows one object to dynamically transfer control of attributes to 

another object during a federation execution.  The time management 

service maintains temporal consistency throughout the distributed 

simulation.  The data distribution management service provides efficient 

routing and exchange of messages between federates.  The HLA federate 

interface specification [97] defines both the functionality provided by these 

services as well as the application programming interface (API) used by 

software developers to access these services. 

RTI –  Federation Management 

The Federation Management service facilitates the creation, dynamic 

control, modification and deletion of a federation execution [97].  This 

service manages the complete lifecycle of the federation and its federate 

members.  It supports: 

• the creation and initialization of the federation based on data found 

in the Federation Object Model (FOM) document data, or FDD [98]; 

• federates joining or leaving the federation; 

• saving and restoring the state of a federation execution to/from 

persistent storage; 

• the registration and management of synchronization points for 

federates and for the federation; and, 

• the destruction of a federation execution. 
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The Federation Management facilities provide a pattern for system 

administration and service discovery that may be of interest to the 

massively multiplayer online game developer. 

RTI –  Declaration Management 

The Declaration Management (DM) service allows joined federates to 

declare the manner in which they intend to participate in the federation 

[97].   It further allows federates to discover the object instances, attributes, 

interactions, and service which are available within the federation.  The 

DM service provides a pattern for providing data-driven and meta-data-

driven (schema) distributed systems.  Data-driven techniques and 

systems are becoming a standard part of the game developer’s arsenal of 

tools and are a natural fit for massively multiplayer online game systems 

[115, 116, 167].  Data-driven techniques have been used by game 

developers from all game genres, from role-playing games to real-time 

strategy games and first person shooters, to provide flexibility and 

extensibility during development and to allow the user community to build 

their own game modifications, or mods [164]. 

RTI –  Object Management 

The Object Management (OM) service provides a remote object 

interaction paradigm similar to that of Microsoft’s Distributed Component 

Object Model (D-COM) [131] and the Common Object Request Broker 

Architecture (CORBA) [147].  These object-oriented models for distributed 

computation provide a layer of abstraction between the invocation of a 



57 

57 

procedure on an object and the physical location at which the object 

resides and at which the execution of the procedure takes place.  They 

further provide facilities for object and service discovery.  These models, 

particularly when object methods are defined as asynchronous, may be of 

value to an MMOG developer as it allows him or her to focus 

independently on the interaction of objects and the distribution of objects. 

RTI –  Data Distribution Management 

The Data Distribution Management (DDM) facilitates the transfer and 

delivery of simulation updates between federates using a 

producer/consumer model [97].  The DDM service applies and extends the 

distribution techniques of previous military and academic simulations, 

making use of area-of-interest management, packet aggregation, 

hierarchical distribution, and various network topologies.  The DDM 

service abstracts the notion of multicast, interest, and regions away from 

the network using the concept of routing spaces: a mechanism for 

expressing and applying interest to network updates [97, 128].   In the 

commercial game space, middleware companies are adapting these ideas 

for multiplayer and massively multiplayer online games [162]. 

RTI –  Ownership Management 

The Ownership Management service of the Run-Time Infrastructure 

allows joined federates and the RTI to transfer ownership of objects 

instances and instance attributes among joined federates [97].  This 

supports the cooperative modeling of an entity across multiple hosts.  It 



58 

58 

further provides a means for the control of an object or an attribute to 

migrate from one host to another.  In the HLA a federate may divest its 

ownership to the RTI, allowing the RTI to assign ownership to any 

interested federate, or a set of federates may coordinate an exchange of 

ownership among themselves. 

An ownership management service may be quite useful for a massively-

multiplayer online game environment.  MMOG systems offering seamless 

worlds using client/server architectures will require a mechanism by which 

entities are transferred from one server to another as they move through 

the environment.  If the MMOG system provides support for the 

reassignment of ownership without the participation of the current owner, 

an ownership management service can also be used as a fault-tolerance 

measure; objects managed by a failed host can be transparently 

reassigned to another host. 

RTI - Time Management 

Each federate maintains two local clocks.  Scaled-wallclock-time is used 

to synchronize federates execution with humans and live entities.  Logical-

time, which is synonymous with simulated-time, is used to ensure that 

messages are delivered, and events occur, in the proper order.  The Time 

Management service provides a federation execution with mechanisms to 

order the delivery and application of messages throughout the federation 

execution [97].  In providing this service, the RTI extends the ASLP and its 

other predecessors to support [68, 70]: 
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• federates having different event ordering requirements (e.g., DIS 

and ALSP) 

• federates using different time advance mechanisms (e.g., time-

stepped or event driven) 

• real-time, scaled real-time, and as-fast-as-possible simulators 

• federates using conservative synchronization 

• federates using optimistic synchronization 

• federates having different event transportation requirements (e.g., 

reliable and best effort message delivery) 

• federates having different message ordering and processing 

requirements (e.g., receive order, priority order, causal order, etc) 

 To meet these requirements, the time management service is responsible 

for coordinating the message transportation system (i.e., the Data 

Distribution Management, or DDM, system) of the federation and the time 

advance mechanisms employed by each federate.  The message delivery 

capabilities of the DDM system are categorized according to (1) the 

reliability of message delivery and (2) message ordering [68].  With regard 

to reliability, best effort message delivery means the transportation system 

will attempt but not guarantee to deliver the message; while reliable 

message delivery means the transportation will utilize mechanisms such 

as retransmission to ensure that the message is delivered.  These 

semantics are equivalent to those of User Datagram Protocol (UDP) [155] 

and the Reliable Data Protocol (RDP) [151, 191], respectively. 
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With regard to message ordering, the HLA DDM provides five schemes 

[68] by which messages will be delivered to a federate: 

• Receive Order.  Incoming messages are placed into a first-in-first-

out (FIFO) queue.  The RTI thus delivers messages to the federate 

in the order in which they were received.  This is the simplest 

ordering mechanisms and has the least latency. 

• Priority Order.  Incoming messages are placed into a priority 

queue, where precedence is given to the message having the 

lowest time stamp.  This mechanism is also quite simple and 

exhibits fairly low queuing latency. 

• Causal Order.  This ordering guarantees that a federate receiving 

messages for two events E and F, where E causally precedes [113] 

F,  will have the message for event E delivered to it before the 

message for event F.  For example, event E might be the firing of a 

weapon and event F might be the subsequent destruction of the 

weapon’s target.  

• Causal and Total Order.  This ordering extends the Causal Order 

mechanism to additionally guarantee that messages for events 

having no causal relationship (i.e., messages pertaining to 

concurrent events) will be delivered to all federates in the same 

order.  That is, for concurrent events P and Q, this ordering 

guarantees that all federates will observe P before Q or all 

federates will observe Q before P. 
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• Time Stamp Order.  This message delivery order guarantees that 

messages are delivered to the federate fully ordered based on their 

time stamp.  As a consequence, the RTI further ensures, using 

conservative synchronization techniques, that no message is 

delivered to a federate “in its past” (i.e., no time stamp ordered 

message is delivered having a time stamp lower than the current 

time of the federate). 

To support the time stamp order delivery of messages, the RTI time 

management service also provides a time advance mechanism.  The time 

management service permits a federate to advance its logical time to T 

only when it can guarantee that the federate will not receive a time stamp 

order message having a time stamp less than or equal to T.  To support 

this, each federate specifies a look-ahead value denoting the minimum 

distance into the future that it will generate a time stamp ordered event.  A 

federate may advance its logical time to the lowest logical time plus look-

ahead taken over all participating federates.  This means that a federate 

may not process any local event until the federate’s logical time has 

advanced to the time of the event.  The federate may also request that 

run-time infrastructure only deliver time stamp ordered events to the 

federate when the federate’s logical time reaches that of the event, for 

conservatively synchronized federates; optimistically synchronized 

federates may relax this constraint. 



62 

62 

Based on these facilities and requirements the HLA Federate Interface 

Specification [97] defines two broad ways in which a federate can interact 

with the time management system.  A joined federate either is, or is not, 

time-constrained.  Time-constrained federates receive and process time 

stamp ordered messages and require that their logical time be regulated 

by the run-time infrastructure.  A joined federate may also be time-

regulating.   Time-regulating federates generate time stamp ordered 

messages which in turn control the advance of logical time for time-

constrained federates. 

HLA Shortcomings 

The High Level Architecture for Modeling and Simulation provides a 

wealth of patterns and techniques for the massively multiplayer online 

game developer.  However, it is not, as a reference system, well suited for 

use as the underlying implementation of an MMOG environment.  The 

HLA, with its design objectives focused on interoperability, multiple 

hardware and language interfaces, and legacy system support is more 

general than required for an MMOG [128].  For game development, 

particularly on game consoles and other constrained platforms, the 

memory and computation requirements to support an interface richer than 

required become a concern.  Further, the HLA provides computationally 

expensive correctness and repeatability guarantees that exceed the 

requirements of most online games.  Although correctness and 

repeatability are highly desirable, primarily for testing and quality 
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assurance purposes, an operational MMOG only needs to provide its 

participants with the appearance of consistency and fairness [60, 63]. 

Rather than using a fully HLA compliant subsystem for implementing an 

MMOG, a game developer may use the HLA concepts to build a system 

more specifically tailored to the needs of online games.  Over the course 

of the developing the HLA Run-Time Infrastructure the Defence Modeling 

and Simulation Office funded exploratory options for game constructed via 

the RTI [128].  The OpenSkies system [38], from Cybernet Systems 

Corporation, is an online gaming framework which is extensible to 

massively multiplayer online games [37] and is directly derived from the 

HLA.  Similarly, Quazal’s Eterna [162, 163], a middleware infrastructure 

for massively multiplayer online games, also has its roots in the High Level 

Architecture. 

Academic Research 

While the majority of the impetus and funding for the development of large 

scale virtual networked environments has historically emanated from the 

Department of Defence, much of the knowledge and expertise developed 

by DOD projects failed to transition outside of each individual project [176].  

Thus, a great deal of the technology developed under the auspices of the 

DOD was subsequently reinvented, published, and extended by the 

academic community.  This section covers the most significant of the early 

academic contributions to networked virtual environment, and in turn 

MMOG, development. 
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NPSNET 

The NPSNET Research Group [140] of the Naval Postgraduate School 

focuses on developing networked virtual environment technology for use 

by the Department of Defence.  In particular, this group developed the 

Naval Postgraduate School Network (NPSNET) [124, 157] Simulator as a 

test bed for exploring the construction of large scale virtual environments.  

This effort culminated in NPSNET-IV [123], which extended the DIS 

protocols using IP multicasting and human interface design techniques in 

order to provide an virtual environment in which fully articulated human 

players could interact with almost all types of ground, air, and subsurface 

military vehicles [176] . 

The NPSNET Research Group explored the use of internetworking 

technologies, particularly those used by the Internet, as a communications 

medium for building large scale distributed virtual environments [123].  

They were the first group to exploit the real-world characteristics of spatial, 

temporal, and functional locality within a large scale environment by 

introducing an entity-local area-of-interest-manager (AOIM) and using IP 

multicasting to restrict and focus local processing and network resources 

[125]. 

IP Multicasting 

Instead of using server software to perform point-to-point delivery of 

updates from the source entity to receiving entities, NPSNET used the 

emerging facilities of IP based inter-networks to simultaneous multicast 
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packets to a set of subscribers [125].  The IP Multicast Protocol [45] 

provides one-to-many and many-to-many unreliable message delivery 

over the Internet.  This places the burden of propagating messages from 

publisher to subscriber on the network transport system instead of the 

application.  This can allow for extremely efficient utilization of network 

bandwidth and computational resources; only one message need be 

transmitted over the network for an arbitrarily sized recipient set [189].  

There are however, a number of obstacles to using IP multicast for a 

massively-multiplayer online game.  Firstly, IP multicast is not ubiquitously 

supported across the Internet [10, 165].  A number of multicast based 

systems have reintroduced specific server processes which emulate 

network multicast services for regions of the network where it is not 

supported [11, 66] .  Secondly, where IP multicast is supported, the 

sustainable number of multicast groups is insufficient for very large entity 

populations [10, 128].   Thirdly, the MMOG developer must select an 

appropriate strategy for the creation, management, and assignment of 

multicast groups [2, 73, 165].  For this, we turn to area of interest 

management. 

Area of Interest Management 

In an area of interest management scheme, entities transmit updates to a 

set of subscription managers who take responsibility for delivering the 

updates to all interested parties.  In NPSNET, the area of interest (AOI) 

manager uses spatial, temporal, and functional relationships between 
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entities in order to partition the virtual environment into smaller 

environments and/or classes in which an entity can express interest [123, 

124, 125, 126].  While the primary AOI criteria used was spatial, based on 

the hexagonal grid inhabited by an entity, area of interest management 

has been adopted and expanded by a number of other projects [1, 2, 3, 58, 

83, 119, 127, 137, 156, 165, 177, 184, 185, 201]. 

One way to specify interest is to introduce an interest expression language 

by which an entity can describe the information it would like to receive 

[127, 156, 176].  Using predicates, each entity declares a sequence of 

filters or assertions that an update must pass in order to be considered 

relevant to the entity.  In this model, server processes generally manage 

the filtering and delivery of messages to the interested parties, as the 

resulting delivery patterns for filtering are application based and do not 

correlate with network multicasting [176]. 

There exist other schemes for interest management that do not explicitly 

rely on application data; these schemes are more easily mapped to 

message delivery optimizations such as network multicasting.  One such 

approach assigns a different multicast address to each entity in the virtual 

environment [2, 177].  Each entity then subscribes to the set of multicast 

groups corresponding to those entities in which it is interested.  This 

scheme requires some means for each entity to discover the simulation 

objects that are in its general vicinity or otherwise worthy of its attention.  

Directory, or beacon, servers provide a means for an entity to discover the 
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members of its interest set, and the corresponding multicast group for 

each member [8].  This approach may further be extended to support 

multiple levels of fidelity or multiple channels of information by assigning 

more than one multicast group to an entity [176]; clearly, a multicast-

group-per-entity approach can consume a large number of multicast 

addresses for simulations have large entity populations. 

Another scheme for mapping interest management onto network multicast 

protocols is to assign a multicast address to each region of the simulation 

[73, 125, 165, 176].  In this approach, an entity transmits its updates to the 

multicast group corresponding to the region of the virtual environment in 

which it currently resides.  In comparison to a multicast-group-per-entity 

approach, a multicast-group-per-region approach may significantly reduce 

the number of multicast groups required, but may significantly increase the 

load on the network routing system to manage the frequent changes in 

multicast group subscriptions [73]. 

Hybrid schemes have also been proposed, where both group-per-entity 

and group-per-region approaches are employed [1, 2, 3, 176, 177].  These 

hierarchical interest management systems use locality, entity type, 

information type, and/or area-of-interest filters to control the information 

received by an entity, either by directing the entity to one or more multicast 

groups, or with application server software which is responsible for 

message delivery.  For massively multiplayer online games having 

client/server architectures, hybrid approaches are particularly interesting 
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as the server may also perform message aggregation on the receiver’s 

behalf and the network topology can be such that a client remains 

connected to a single server, which can provide (more) stable message 

latencies than having a client connection migrate from host to host during 

a game. 

PARADISE 

At Stanford University, the Distributed Systems Group developed the 

Performance Architecture for Advanced Distributed Interactive Simulation 

Environments (PARADISE) to explore network software architecture for 

building large-scale multiplayer three-dimensional simulations running 

over a wide area network [54].  Like several other academic projects we 

will survey, the contributions of the PARADISE network were directed at 

DIS or DIS-like simulation environments.  Several of those contributions 

have already been mentioned in previous sections.   For example, 

Position History Based Dead-reckoning [174, 175] was a product of this 

group's research.  As this extension to dead-reckoning has already been 

covered, it will not be discussed further in this section.  Some of the 

group's other contributions include projection aggregation, hierarchical 

area-of-interest servers, and exploration of the design and use of reliable 

multicast protocols for data distribution. 

Projection Aggregation 

As the number of entities within a simulation environment increases, so 

too does the volume of updates each participating host must process.  
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Given a large enough population of "interesting" entities, the volume of 

messages may overburden a host or saturate a network connection.  

Techniques such as dead-reckoning and interest-based filtering of 

messages serve to decrease the number of messages received by each 

host.  We have also seen approaches to message aggregation which 

reduce the number of messages by bundling them based on 

organizational information, such as the type of object the message is 

about, or based on the location of the entity in the virtual environment.  

The PARADISE group developed Projection Aggregation to apply both 

organization and locality information when creating aggregations [176].  

More generally, the approach extends to arbitrary dimensions along which 

one would like to project [177]. 

Unlike packet aggregation, which saves bandwidth overhead by 

combining multiple messages into a single packet, projection aggregation 

introduces new container entities which provide summary information for 

their members.  For example, a projection aggregation might transmit the 

number of entities in the projection, a focal point, and information about 

how the entities are distributed about that point.  This would allow a distant 

observer to construct a low-fidelity approximation of the projection, which 

may be sufficient for the specific purposes of that simulation environment 

[177].  An approach such as this would be useful to model crowded areas, 

for example, where detailed information about entities in one’s immediate 
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vicinity is required, but where crowd density information is sufficient for 

representing the entities beyond one’s range of direct interaction. 

Arranged in a hierarchy, projection aggregation also provides a general 

model for providing variable level-of-detail in update messages and 

hierarchical area of interest management [177].  In this model, a parent 

aggregation represents summary information for its member entities, 

which may be the parts of a tank, a formation of fighter planes, or a distant 

fleet of warships.  As an observer requires a higher-fidelity view of an 

aggregate object, it simply subscribes to updates from the child 

aggregates instead of the parent. 

Dead-reckoning techniques can be further applied to the summary 

information, with updated summaries being transmitted when the actual 

distribution of the aggregated entities differs by some threshold from the 

predicted distribution.  The PARADISE team observed a 40% reduction in 

the number of entities in the interest set of each host and a 72% reduction 

in packet rate [177]. 

Reliable Multicast 

To further reduce the number of update messages required by the DIS 

protocols, the PARADISE group explored the use of reliable multicast 

protocols to eliminate the need for frequent heartbeat messages from 

entities having stable state [176].  Log-Based Receiver-reliable Multicast 

(LBRM) provides a reliable multicast and persistence system with low-

latency recovery from packet loss [85].  This technique adds log servers 
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which maintain a history of recently transmitted messages from one or 

more hosts.  If a log server does not receive an acknowledgement from 

each of a designated list of Designated Ackers then the message is 

multicast again, otherwise, the message is unicast on receipt of a negative 

acknowledgement from any other subscribers who notice that they failed 

to receive a particular message.  With this scheme, the team was able to 

support terrain as a first-class entity while reducing heartbeat packet 

overhead by a factor of fifty and lowering the time required by a new 

participant to learn the current state of the environment [85]. 

MASSIVE 

The Communications Research Group at the University of Nottingham 

created the Model, Architecture, and System for Spatial Interaction in 

Virtual Environments (MASSIVE) teleconferencing environment to explore 

interaction and awareness models in collaborative virtual environments 

[80].  The group looked not only at network software architecture, but also 

at integrating heterogeneous user-interfaces, multimedia, and common 

patterns of social interaction into the virtual environment.  The MASSIVE 

network software architecture has evolved from a peer-to-peer system in 

its early incarnations to a client-server model with a fully replicated 

distributed database and emulated multicast [81]; server processes 

maintain centralized representations of the world state and distribute 

updates from the otherwise autonomous client process that owns a given 

entity to all observers of that entity.  MASSIVE is particularly interesting for 
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its spatial model of interaction and its division of the virtual environment 

into locales.   

Spatial Model of Interaction 

As its name suggests, this model uses spatial properties, such as 

proximity, as a means for mediating entity interaction.  Objects can move 

about the virtual environment in order to from groups with other entities 

and hold conversations within these groups [80].  Similar to the DIVE 

system, every entity has an aura around it which defines the area in which 

it can meaningfully interact, a nimbus defining the area in which the 

object’s properties may be observed, and a focus defining the area in 

which it is interested.  Two objects may interact when their auras intersect 

and one’s focus intersects the other’s nimbus.  More concretely, the 

intersection of auras implies that it may be possible for the objects to 

interact while the interaction of focus and nimbus implies that one object is 

aware of the other. 

The specifics of the interaction is determined by the level of awareness 

one object has of another.  For example, in an environment supporting 

audio, a player who is close to a speaking player and is “looking” at that 

speaker would hear that speaker more clearly or loudly than another 

speaker at the periphery of our avatar’s senses.  Similarly, entities in the 

center of one’s field of vision would be rendered with greater fidelity than 

objects at the edge or outside of one’s field of vision.  This model rather 

intuitively approximates the real-world behaviour of the human senses. 
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Unfortunately, a pure aura-nimbus-focus implementation of the spatial 

model of interaction does not scale to large numbers of entities [176].  The 

pair-wise management of spatial interactivity requires considerable 

processing resources; moreover, the specialization of updates based on 

the degree of interaction between pairs of entities results in messages that 

are customized for each particular recipient.  A system based on the 

spatial model of interaction cannot easily take advantage of network 

efficiency optimizations such as multicasting. 

Locales 

A locale, introduced by the creators of the Spline system [8], encapsulates 

a region within the virtual environment, such as a room, corridor, open 

space, or vehicle with it’s own local coordinate system and a set of 

boundaries through which entities might pass into other locales.   The 

approach is strikingly similar to the manner in which portal based graphics 

engines [122] represent the world and compute a potential visibility set 

(PVS); a portal is analogous to a boundary between a locale.  The third 

generation of the MASSIVE system extended this idea to integrate 

awareness and projection aggregations, which the authors referred to as 

abstractions [161]. 

Locales allow a virtual environment to effectively support non-Euclidian 

structures such as virtual mirrors, worm-holes, and buildings whose 

interior is larger than their exterior, within a three dimensional framework.  

Combining focus with locales/portals or binary space partition (BSP) trees 
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is also an effective way to perform interest management based not only on 

proximity, but on what is actually visible to the participant.  This level of 

granularity and accuracy, while desirable, is counter-balanced by the need 

for low-latency discovery about new entities that enter a participant’s field 

of vision.  If, in order to maintain sufficient interactivity, a client must be 

informed about an entity the player cannot currently see, but has the 

potential to see in the immediate future, then it may not be worthwhile to 

support fine-grained visibility culling at all. 

Other Systems 

This section describes several other academic projects whose 

contributions have already been mentioned in the context of extending or 

enhancing a previously mentioned technique or approach.  Rather than 

restating each contribution here, we briefly summarize each project and 

highlight any contributions not previously mentioned.  Inclusion of a project 

in this section, as opposed to its own larger section, does not relate in any 

way to the magnitude or importance of the contribution of the project; it is 

purely a side-effect of the organization of this work. 

DIVE - Distributed Databases 

The Distributed Interactive Virtual Environment (DIVE), developed by the 

Swedish Institute of Computer Science, uses a peer-to-peer distribution 

model to simulate a concurrent shared memory which is used by 

distributed processes to provide a shared world database [26, 27].  DIVE’s 

shared memory model implements an active, partially-replicated 
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distributed database.  Each participating application process maintains its 

own local copy of the world database while sending and receiving updates 

to the database via reliable IP multicast and multicast proxy servers, 

where IP multicast is not supported [66].  The DIVE database is also 

dynamic, meaning that entities and entity types can be added to the 

environment at run-time.  

RING –  Network Topologies 

RING is a client-server system for networked virtual environments [72].  In 

RING every entity is managed by exactly one client host and 

communication between clients is managed by servers, which filter and/or 

aggregate messages and simulate multicast.  Like the locale system used 

by MASSIVE, a RING environment is composed of rooms and corridors 

connected by doors, which are analogous to portals/boundaries; this 

allows RING to perform line of sight visibility tests to filter messages.  As 

these concepts are discussed elsewhere in this thesis, they will not be 

repeated here.  For the purposes of this section, the key contribution of 

the RING project is the group’s experimentation with, and insight into, 

network topologies and messaging protocols [73], which will be further 

explored in the chapter on network software architectures. 

BrickNet –  Client/Server Architectures 

BrickNet [172, 173] is a virtual environment toolkit that was among the first 

to explore client/server architectures [176].  Rather than replicating the 

world database (as done in its contemporary projects SIMNET, DIS, and 
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DIVE), BrickNet partitioned its data model among the client hosts, and 

used servers to broker and mediate the exchange of information among 

the clients.  Derived from BrickNet, a PC based gaming library called 

NetEffect has been used to implement HistoryCity, a virtual world in which 

children can explore the history of Singapore [44, 176]. 

Commercial Computer Games 

Companies and developers within the video and computer game industry 

have, in the last eight to twelve years, become extremely open with regard 

to sharing the technologies and approaches used in their products.  

Developer conferences, trade magazines, and books have been available 

for quite some time, mostly targeted to game developers and/or 

prospective game developers.  More recently, crossover and transfer of 

both technology and individuals between the military/academic community 

and the gaming community has become more common [128, 129, 150, 

168, 183].  Computer and video game development has become a topic 

for study at specialized schools, as well as mainstream colleges and 

universities [74].  Increasingly, companies and industry groups actively 

pursue collaborations with academic institutions [65, 100].  Indeed, the 

distinction between military, academic, and commercial research and 

development in the multiplayer and massively-multiplayer environments 

may no longer be appropriate. 

This section briefly summarizes the massively-multiplayer online game 

literature emanating or derived from the commercial video and computer 
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game industry.  The many instances where commercial games have 

adopted or extended techniques originating in the military and/or 

academic space are not repeated here; rather, those examples are 

mentioned in the preceding sections in the context of the extended 

technique(s). 

First Person Shooters 

The popular series of Quake games, from Id Software [89], have proven to 

be successful not only as commercial products, but also as foundations for 

research into the development of multiplayer online games.  The Quake 

games make use of dead-reckoning, delta compression, and client/server 

network software architectures [86, 87].  Id Software has released the 

source code for Quake, Quake II and Quake III Arena under open-source 

and non-commercial use licenses, allowing students and enthusiasts alike 

to modify and extend the games.  For example, a group of students at the 

University of Washington used Quake as a test-bed to explore the game 

play effects of different choices of transport and network layer strategies 

[20].  Another group of students, at the University of Michigan, extended 

Quake to support the use of distributed game servers employing full world 

database replication and optimistic synchronization [33, 34]. 

Real-Time Strategy 

Real-Time Strategy (RTS) games, such as Blizzard Entertainment’s 

Warcraft series [19] or Microsoft Corporation’s Age of Empires series [132], 

allow a small group of players to command tens, if not hundreds, of semi-
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autonomous units against one another, dispersed across the game 

environment.  The networking models for this style of play have different 

requirements from those of action or simulation games, in which the player 

typically controls exactly one character with much smaller visibility into the 

game environment.  RTS games largely use a synchronized-parallel 

model of distributed simulation, in which identical copies of the game 

environment are simulated in lock-step on each node [16, 82, 181].  

Rather than transmitting state updates, individual hosts transmit and 

synchronize on command updates; the game engine is such that given an 

identical command stream, the evolution of the simulation is entirely 

deterministic across all hosts.  The network model does not scale 

effectively beyond support for several dozen players [181].  Indeed, it is 

not clear if the RTS genre, as currently defined, is well suited to larger 

numbers of simultaneous players. 

Massively Multiplayer Online Games 

As discussed previously, a number of game development and publishing 

companies have entered the massively multiplayer online game market.  

In addition, several game technology companies have taken up the 

challenge to produce middleware and development platforms for 

massively multiplayer online games.  This section explores the network 

software architectures currently exploited by MMOG developers. 
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Shards 

One common technique for distributing the computational requirements of 

client/server massively multiplayer online games is to partition the player 

space across more than one logical instance, or shard [49, 53, 67], of the 

game world (Figure 4).  An MMOG using this technique might offer (1) 

several identical shards of the game world, where each acts as a sort of 

parallel universe to the others [139, 148, 179], (2) several distinct game 

worlds, representing disjoint regions of the world or catering to different 

styles of play [196], or (3) a set of identical shards for a set of worlds [121].  

Each shard typically corresponds to a game server, or cluster of game 

servers, allowing the MMOG provider to scale the system as the player 

population grows. 

 

Figure 4. Client/Server Shards. 

In shard-based game systems, a player in one shard cannot interact with 

a player in another shard, even if the two players are in the same location 

in the logical game world.  In this regard, a shard based game system 

does not strictly conform to our previously given definition of a massively 
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multiplayer online game; players in the “same” game do not necessarily 

inhabit a common environment, and may not be able to interact with one 

another.  For example, a common scenario in shard-based games is for a 

user to join an MMOG only to find herself isolated from her friends, who 

happen to reside on another shard; this scenario is only grudgingly 

tolerated by players [49, 53].  The primary attraction for most MMOG 

players is the opportunity to interact with others, particular with their 

friends [67]. 

A shard based world, where each shard corresponds to a server, has a 

number of benefits. 

• Compared to the other approaches we will consider in this section, 

shards are the least complex [14]. 

• Maintaining the consistency of the game world on a single shard 

server is fairly straightforward; the server’s representation of the 

world state is correct, by definition. 

• Each shard is independent of the others; communication between 

shard servers is not, in general, required. 

• A shard represents a complete world, all game resources (art, 

sounds, and models) are localized to that world.  This can simplify 

the loading and management of resources on the client, as well as 

the management of game assets by the game’s artists and 

developers. 
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• When the player population grows, one or more additional shards 

may be introduced to which new players are assigned. 

There are two principal drawbacks to using shards.  Firstly, as discussed 

above, shards result in the segregation of the player population.  Secondly, 

for systems where each shard corresponds to a single game server, 

individual shards are not scalable.  For a given shard, the server on which 

it resides will support some maximum number of concurrent users.  Once 

this limit is reached, there is no way to increase the capacity of a shard 

other than replacing or upgrading the server hardware. 

Zoned Worlds 

Another approach, closely related to shards, is to divide the world into 

distinct regions, or zones (Figure 5), and allow the player some explicit 

means for travelling from one zone to another [14].  Each zone is 

managed by a different server or server process, allowing the player 

capacity of the massively multiplayer online game environment to scale by 

the addition of new zones.  Zones also allow the effects of server failure to 

be isolated to the players using the failed server.  In essence, a zone is a 

region-oriented shard system that explicitly allows player migration.  This 

approach can be used both in a single world environment, where there 

exists a single cluster of zone servers representing the game world, or in a 

shard-based environment, where there exist multiple clusters, each 

representing a shard. 
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Figure 5. Zoned World. 

A massively multiplayer online game that is presented to the user as a 

single zoned world provides many of the benefits of shards (distributing 

the user population across multiple servers) without the forced 

segregation of users.  As mentioned above, an MMOG can also be 

presented as a set of zoned shards; this allows the developer to support a 

larger number of simultaneous players in a single shard, thus reducing the 

required number of shards and decreasing the degree of user segregation.  

This approach, where each shard is supported by a server cluster 

implementing the zones of the shard, is the most prevalent network 

software architecture employed by the MMOG products on the market at 

the time of this writing [14, 49, 53, 62, 63].  

The main drawback to zoned worlds is the explicit discontinuity between 

zones.  Players dislike the interruptions incurred as their game client 
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transitions to a new zone, unloading the game resources for the previous 

zone and loading the resources for the new zone [49, 53].  Ironically, 

these explicit transition points are quite attractive to MMOG developers as 

they serve to greatly limit the complexity of building large game 

environments [14].  A second drawback, which is similar to that of shards, 

is the difficulty in scaling the capacity of an individual zone.  For a given 

zone, the server on which it resides will support some maximum number 

of concurrent users.  Once this limit is reached, there is no way to 

increase the capacity of a zone other than replacing or upgrading the 

server hardware.  This issue has the potential to be more problematic in a 

zone-based system than in a shard-based system.  Limiting the number of 

players in a popular shard distributes the players across multiple copies of 

the same game world; the player does not, in principle, miss out on any 

part of the game experience.  Limiting the number of players in a zone 

may prevent players from freely exploring the entirety of the online 

environment. 

Seamless Worlds 

A seamless world is a zoned world in which the boundaries and transitions 

between zones are transparent to the player [14, 49, 53].  This model is 

almost identical to the a zoned world model; however, the servers for 

neighbouring zones must interact in order to notify each other about 

objects that are ‘close’ to the zone borders, and in order to transfer 

ownership of objects as they cross zone boundaries [14]; more ambitious 
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seamless world models might employ dynamic zone boundaries, growing 

and reducing the extent of a zone in order to maintain zone populations 

that do not overburden the computing resources of any game servers. 

Seamless worlds offer a number of benefits [14].  Firstly, a seamless world 

can present the player with a much larger contiguous environment in 

which to play.  Secondly, a sophisticated seamless world environment 

might dynamically manage the location of zone boundaries in order to 

more evenly distribute the player population across the available servers; 

this provides a mechanism for greater scalability, as well as for fault 

tolerance.  Thirdly, a seamless world insulates the client from the load and 

transition times associated with zoned worlds; the game client must 

dynamically anticipate and load required data in the background as 

appropriate during game play.  Lastly, a seamless world does not 

segregate the player population. 

The benefits of seamless worlds come at the expense of considerable 

complexity.  Whereas a zoned world allows a single server to manage all 

local interactions between players, a seamless world must support 

interactions between players straddling the boundaries between 

neighbouring zones.  As we have seen, maintaining distributed 

consistency is quite difficult and error prone.   Further, care must be taken 

in designing game content (in-game assets such as maps, models and art) 

such that they respect server boundaries and the radii of awareness for 
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players [14].  For seamless worlds having dynamic zone boundaries, this 

complexity further increases. 

Despite these challenges, the massively multiplayer online game 

developers and middle-ware vendors are actively pursuing the benefits of 

seamless worlds.  At the time of this writing, a number of current and 

upcoming MMOG products provide seamless world support [104, 135, 187, 

188].  Additionally, several MMOG infrastructure vendors have introduced 

middleware supporting seamless worlds [7, 17, 200]. 

Grid Computing 

Butterfly.net [7, 22] extends the multiple server model described above by 

using a grid computing framework for resource management and 

allocation.  Grid computing (also called utility computing) is a model in 

which the computational and storage capacities of connected devices are 

viewed as a managed pool of resources.  Participants in the grid can 

request and use these resources as their needs and service agreement 

dictate.  This model has several attractive features.  Firstly, it can be 

mapped rather naturally onto a fault-tolerance by fail-over model.  If a 

server becomes overloaded it can request that some of its responsibilities 

be reassigned to another resource.  If server failure is detected, an 

administrative process could automatically assign the tasks of the failed 

server to another resource.  Open-source grid computing toolkits [182] are 

available for use by massively multiplayer online game developers. 
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An organization having such a grid could run several massively 

multiplayer online game products using the same network and hardware.  

The load distribution properties of the grid may be used to dynamically 

assign and balance the use of computing resources to each MMOG as it 

needs.  Such a service could be offered to MMOG developers using a 

public-utility model in which the MMOG provider pays for the computing 

resources they use each month.  This would serve to lower the initial costs 

of deploying and operating a new massively multiplayer online game.  

Conversely, an MMOG provider offering multiple MMOG products on its 

own grid could, in principle, run them all on the same infrastructure.  This 

would avoid much of the difficulty of provisioning infrastructure for a new 

MMOG product and allow the game provider to leverage their hardware 

investment over multiple products. 
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Network Software Architectures 

This chapter considers models for distributing simulation tasks and world 

representation for a massively multiplayer online game network.  

Categorized broadly, there are two basic structures for creating a 

distributed game network: client/server and peer-to-peer.  In the following 

sections, we will briefly examine several variations and combinations of 

these two basic architectural patterns, discussing the benefits and 

challenges of the basic approaches. 

Client/Server 

In a client/server system, one or more server nodes are tasked with 

providing services to the player (client) workstations.  Clients do not 

communicate directly with other clients; rather, they communicate directly 

with one or more servers, which will in turn communicate with the other 

clients (and possibly servers) participating in the system.  In the simplest 

client/server architecture, a single server provides the entire game 

environment for all clients or some subset of clients (Figure 4).  Multi-

server architectures allow the game designer to (1) partition the clients 

across several server hosts and/or (2) to partition the environment across 

multiple hosts [176]. 

In a replicated client/server system (Figure 6) clients are partitioned 

across multiple servers.  This architecture is similar to the architecture for 

shard world.  Each client sends and receives updates via a single server 

for the duration of the game session and the servers communicate among 
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themselves using peer-to-peer protocols, much as in DIS or SIMNET [72, 

176].  When a server receives an update from one of its clients, it is 

responsible for forwarding the update to other interested clients to which it 

is connected, as well as to each of the other servers.  As opposed to 

having a single server managing the entire game environment, this 

architecture distributes the workload of handling the clients by dividing the 

clients among the servers.  Because each server will likely have clients 

which are widely scattered throughout the virtual environment, the level of 

inter-server communications and per-server processing required to 

support the clients can be quite high [73, 176].  Architectures of this form 

are able to support networked virtual environments in which the client is 

trusted to authoritatively compute and distribute game state.  In these 

architectures, the servers primarily route messages; however, these 

architectures have been shown less scalable than others we will discuss 

[73].  For virtual environments in which the client is not trusted, these 

architectures require the servers to shoulder the additional burden of 

observing, arbitrating, and/or computing game state. 
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Figure 6. A replicated multi-server client/server archictecture. 

As mentioned previously, another approach for distributing the 

computational and client load across multiple servers is to divide the game 

world into zones and assign each zone to a server (Figure 7).  In this 

approach, each server is responsible for managing the state of the objects 

within its zone(s) as well as for maintaining appropriate communications 

with clients currently within its zone(s).  As the object(s) controlled by a 

client move through the environment, the client communicates with the 

appropriate game server for the object’s current zone.  As such, each 

zone-oriented game server provides a natural location from which to 

provide area-of-interest-management and message aggregation when 

distributing game state updates to interested clients.  Compared to 

replicated server approaches, partitioning the game environment and 

client population across multiple servers can reduce inter-server 

messaging requirements by as much as 95% [176] and has been shown 

to scale more effectively to large client populations [73].  Inter-server 
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communication is not eliminated entirely as client crossing zone 

boundaries (whether seamless or not) must be transferred from the server 

for the objects current zone to the server for the neighbouring zone.  

Additionally, administration and implementation of zone based servers can 

be quite complex and error prone [14, 176], as can managing and 

redirecting clients to the appropriate game server as they move 

throughout the environment. 

 

Figure 7. Zoned world multi-server client/server architecture. 

The network interface that a game presents to its clients can be simplified 

by combining the two previous approaches.  Rather than having the 

clients communicate directly with the zone servers, clients can instead 

communicate with gateway, or front-end, servers (Figure 8) that route 

messages to the appropriate back-end game server [14, 22, 199].  To the 

client, the game service appears as a set of replicated servers, each 

capable of acting as its entry point into the virtual environment.  Internally, 

however, the game service provider is able to transparently partition the 
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game world and distribute the computational load across the “real” game 

servers.  This additional level of indirection can be used to facilitate: 

 

Figure 8. A Hierarchical Client/Server Architecture. 

• fault tolerance: a failed server can be dynamically replaced without 

affecting its clients 

• dynamic zone boundaries: an over-populated zone might be 

divided and a portion of its clients transparently reassigned to 

another server 

• scalability: additional servers and/or zones can be added to the 

world without affecting the client interface 

A massively multiplayer online game developer may also distribute the 

computations for a game zone across multiple servers (Figure 9).  For 

example [14]: 
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Figure 9. Distributing computational tasks. 

• a “physics server” might compute changes in game state that 

evolve over time 

• a “game server” might manage interactions between players (e.g., 

combat, commerce, etc) 

• a “database server” might manage persistent state and 

transactional semantics 

 Assuming that the network bandwidth available to the massively 

multiplayer online game provider’s infrastructure is scalable, an MMOG 

system utilizing distributed computation to model a zoned world can, in 

principle, scale indefinitely [73, 199].  Grid computing frameworks can be 

used to help manage the complexity of assigning tasks and provisioning 

computational resources within the game network  [22, 31, 64, 182]. 



93 

93 

Benefits 

The primary benefit of client/server architectures is that they are well 

understood by the gaming and research industries.  Client/server 

architectures have fairly straightforward administrative, security, and 

consistency models [43, 110, 114, 128, 166].  Centralized control and 

administration of server resources also simplifies the live operation of a 

massively multiplayer online game service.  Additionally, having a 

controlled hardware and software environment on the servers facilitates 

easier development and deployment of an MMOG [43]. Hierarchical 

client/server models have been shown to be, in principle, scalable to large 

client populations [73] and client/server architectures are easily amenable 

to grid computing [22].   

Challenges 

There are a number of reasons why MMOG developers and providers are 

dissatisfied with client/server architectures.  Firstly, implementing 

client/server architectures for an MMOG can require significant investment 

in game server hardware and network infrastructure [29, 107].  Managing 

this investment is further complicated by difficulties in estimating the initial 

popularity of an MMOG so as to calculate the resources required in order 

to provide sufficient capacity.  Recurring utility, hosting, and/or bandwidth 

costs for server facilities also increase as the number of servers increase.  

In particular, nearly all game updates will pass through the game 

provider’s network, causing their bandwidth consumption to be quite high, 
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and possibly quite expensive.   Additionally, latency in message delivery is 

higher for messages passing through a server than for messages sent 

directly from peer-to-peer. 

Peer-to-Peer 

One general family of models for distributing a simulation across multiple 

nodes is to consider every node an equal peer to the others (Figure 10-a).  

In a peer-to-peer system design the workstation of each player may 

communicate directly with any other player’s workstation.  Further, no 

single node is solely responsible for some function without which the 

system ceases to operate.  Providing many technological benefits, it has 

been argued that peer-to-peer architectures represent the future of online 

gaming [62, 63, 111, 163].  This section briefly considers peer-to-peer 

architectures for massively multiplayer online games, discussing their 

benefits and drawbacks. 

(a) unsupervised (b) supervised

Peer 1

Peer 2 Peer 3

Peer 4 Peer 5

Supervisor

Peer 2 Peer 3

Peer 4 Peer 5

Server

Peer 1 Peer 2

Peer 3
Peer 4

Peer 5
Peer 6

Root

Servers

Servers

(c) hierarchically arbitrated

 

Figure 10. Peer-to-Peer Architectures. 

The application of peer-to-peer architectures for massively multiplayer 

online games is an active research area [12, 13, 37, 77, 111, 163].  Hybrid 

systems utilizing peer-servers for game computations, and/or hierarchical 



95 

95 

routing through peer-servers for message delivery, are attractive ways for 

a game developer to lower hardware and bandwidth costs.  Key issues 

include the management and application of locality of interest [111], and 

the development of a suitable security model for trusting client hosts with 

authoritative game state.  Open-source peer-to-peer toolkits [111, 169, 

180] are freely available, allowing a MMOG developer to readily explore 

peer-to-peer architectures.  

Benefits 

Peer-to-peer architectures are attractive to MMOG service providers for a 

number of reasons, not least of which is their potential for substantial 

reduction on operating and hardware costs.  A system which leverages 

the computational capacity of its users may require a significantly lower 

hardware investment on the part of the game service provider [29, 62, 63, 

107, 111, 168].  Quality game server hardware is expensive; estimating 

the popularity of the game in order to provide sufficient capacity, without 

waste, is difficult [29]; and, recurring utility or hosting costs for server 

facilities reach significant proportions over time [107].  Additionally, MMOG 

providers seek to reduce recurring bandwidth costs which, over the 

lifetime of a successful MMOG product, might approach or even exceed 

the hardware investment [107]. 

In a peer-to-peer architecture bandwidth costs are largely assumed by the 

user population; indeed, it is quite possible that the bandwidth consumed 

by a given user in a peer-to-peer context will not exceed any threshold at 
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which the user’s Internet service provider charges additional fees.  For an 

MMOG service provider, the ideal system architecture would seem to be a 

peer-to-peer system in which the capacity of the system increases as the 

utilization of the system increases, particularly if utilization does not 

overtake capacity [62]. 

Peer-to-peer systems also offer a number of technical advantages over 

client/server architectures.  Firstly, direct routing of messages between 

peers can provide lower network latency than passing messages through 

intermediate hosts [73]; for hierarchical routing of messages through peer-

servers, this advantage is moot [111].  Peer-to-peer overlay systems have 

also been shown to be resilient to node failures [111, 169, 180], possibly 

providing the fault-tolerance properties required of an MMOG system. 

Challenges 

Peer-to-peer architectures also present a number of challenges.  Firstly, a 

pure peer-to-peer system does not require that any particular subset of 

participants remain active in order for the system to continue to function; in 

particular, this would imply that the game would continue to operate 

without the participation of the MMOG service provider, which weakens 

the revenue model.  Additionally, the security and privacy constraints 

surrounding some game related data, such as a user’s personal and 

financial information, make it unattractive to locate that data on hosts 

outside of the strict control of the game provider [111, 163].  For the 

remainder of this discussion, we will assume a hybrid peer-to-peer model 
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in which some set of required hosts are controlled by the MMOG service 

provider (see (Figure 10-b and Figure 10-c). 

Another concern a massively multiplayer online game developer faces 

when considering a peer-to-peer architecture is that of game security [12, 

13, 43, 63, 77, 111, 163].  A peer-to-peer system might elect to place 

decision making authority on user machines, providing opportunity to 

cheat.  The alternative, using distributed decision and/or transactional 

techniques, introduces considerable complexity and provides other 

opportunities to cheat [14].  Peer-to-peer systems also reveal the network 

address of each user to some subset of other users, exposing users to 

possible network attack from their peers.  Researchers and game 

technology companies are actively exploring solutions to these issues [13, 

35, 48, 63, 77, 111, 160, 163]. 

Peer-to-peer security models based on reputation capital have been 

proposed [63, 163] in which a node A decides whether or not to trust 

another node B based on the past performance of B.  The degree of trust 

which A accords B is based on the opinions expressed by other nodes 

that have previously interacted with B.  This approach can be combined 

with run-time verification [48], a general validation approach in which a set 

of rules defining correct/incorrect transaction semantics is evaluated by 

nodes to determine if the constraints of the game system have been 

violated.  This is much like a post-condition assertion or invariant following 
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the execution of the transaction.  Peers, or server based arbiters, can use 

the results of run-time verification as a basis for forming their opinions. 

Another challenge is that the administration and maintenance of a peer-to-

peer system is less well understood than for client/server systems, the de 

facto standard architecture presently used for massively multiplayer online 

games [63].  One of the defining properties of a peer-to-peer system is 

that it is adaptively self-organizing [62], which makes understanding, 

debugging, and patching the system more complex than for a client/server 

model.  Perhaps a supervised or arbitrated peer-to-peer system [63] could 

utilize resource allocation and management techniques from the grid-

computing domain [64] in order to ease the facilitate administration of the 

distributed system.  Grid technology may also provide mechanisms to 

reduce the complexity of balancing load across the heterogeneous 

computing resources provided by the users. 

A final challenge is the variation in quality of service as peer relationships 

change over time.  The game play experience of a given user might 

change dramatically with the capabilities of their current peer set as some 

peers will have better connectivity or computing resources than others 

[111].  
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Conclusion 

Game industry analysts highlight trends indicating that online game usage 

and market penetration will grow significantly over the next five to ten 

years; however, the risks, costs and complexity involved in the successful 

development and operation of a scalable online game service are high, in 

part due to lack of well established and understood models for the network 

software architecture of such a product.  In this thesis, we have explored 

the technological landscape from which the massively multiplayer online 

game developer might select techniques and approaches for the network 

software architecture of a massively multiplayer online game. 

We first introduced the concept of a massively multiplayer online game, 

presenting a definition and historical overview of MMOG projects and 

products.  We considered the technical challenges inherent in building and 

operating a massively multiplayer online game, commenting on the 

similarities and differences between the constraints of military/academic 

simulation and those of commercial game development.  With our context 

thus established, we surveyed the literature from the military, academic, 

and commercial gaming domains, identifying the techniques and 

approaches of interest to the MMOG developer.    Lastly, we drew upon 

the surveyed material to consider the pros and cons of client/server and 

peer-to-peer network software architectures for implementing a real-time 

massively multiplayer online game. 
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