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Abstract

This work presents high-order, arbitrary-band delta-sigma oscillators. They are a
class of digital circuits which, augmented with a minimum of analog circuitry requiring no
trimming, generate fully programmable, high-quality analog sinusoidal signals. A general-
ization of previous work, they can meet arbitrary signal-band and SNR specifications at a
minimum digital hardware cost, and without the previously reported stability problems. It
is shown that mulititone generation requires but simple modifications to the basic oscillator
topology; this signal generation scheme is thus highly attractive for endowing mixed-sig-
nal integrated circuits and systems with self-test capabilities. Delta-sigma oscillators can
be useful in other applications as well.

An essential building block of delta-sigma oscillators is a one-bit digital delta-
sigma modulator with unity Signal-Transfer-Function. A complete. computer-aided design
method, relying on a novel high-order modulator topology allowing the use of power-of-
two coefficients. is formulated and justified. Although the resulting modulators are aimed
specifically at usage in delta-sigma oscillators. they can find applications in oversampled
D/A conversion in general as they require a minimal amount of digital hardware.

DSMOD is the computer-aided design tool which was developed to automate the
design, simulation and prototyping processes. It implements a number of involved design
algorithms, and allows for a quick comparison of theoretical. simulated and prototype
behavior, with the use of a graphical user interface. It is written mostly for MATLAB and
is thus highly portable and expandable.

The measurements performed on prototypes prove the soundness, flexibility and
efficiency of DSMOD. They also prove that low hardware cost and high performance lev-
els are attainable with the novel delta-sigma modulator and oscillator topologies presented

here.




Résumé

Cette thése présente des oscillateurs delta-sigma de haut ordre et a bande de
fréquence arbitraire. [l s’agit d’une classe de circuits numériques, utiles pour la génération
d’ondes analogiques sinusoidales, entierement programmables et de haute qualité. En tant
que généralisations d’un circuit proposé antérieurement. ils permettent de satisfaire des
spécifications arbitraires de la fréquence et du rapport signal-bruit des ondes générées. et
ce 4 un colit minimal et sans problémes de stabilité. Il est aussi démontré que la génération
simultanée de multiples ondes sinusoidales ne requiert que de simples modifications a la
configuration de base de |'oscillateur. Ce mode de génération de signal est donc trés
attrayant pour douer des circuits ou systémes analogiques-numériques de la capacité
d’autotest. Les oscillateurs delta-sigma peuvent aussi trouver une utilité dans d autres
applications.

Une composante essentielle d’un oscillateur delta-sigma est un modulateur delta-
sigma & sortie | bit et dont la fonction de transfert du signal est unitaire. Une méthode de
conception de ces circuits compléte et informatisée est présentée. Elle est basée sur une
nouvelle topologie utilisant des coefficients égaux a des puissances de deux. Bien qu’elle
vise tout particulierement 1’application aux oscillateurs delta-sigma, cette méthode est
jugée utile pour la conception de tout systéme de conversion numérique a analogique
suréchantillonée.

DSMOD est I'outil de conception assistée par ordinateur développé afin d automa-
tiser cette méthode et d’évaluer ses résultats par des simulations et des prototypes. Ce
logiciel est écrit pour MATLAB et est donc facilement portable et augmentable.

Les expériences réalisées sur des prototypes d oscillateurs et de modulateurs prou-
vent la validité et I'efficacité des méthodes présentées dans cette thése. Elles démontrent
aussi les hauts niveaux de performance rendus possibles par les nouveaux circuits pro-

posEs.
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Chapter 1

Introduction

1.1 Self-Testable Mixed-Signal Systems

A substantial portion of the cost of manufacturing electronic circuits and systems
is taken up by testing. The fundamental reason is that integrated-circuit fabrication exhib-
its significant random device parameter variations and as a result the working circuits
must be sorted from the bad ones based on some test. [n addition. testing is capital-inten-
sive, as opposed to design which is almost purely knowledge-intensive. Finally, part of the
product value resides in the confidence that the customer places in it, which a manufac-
turer can not guarantee solely by good design practices but necessarily also by testing.

Testing may be done on a system’s components at each fabrication step and
throughout its entire life-time. However the amount of testing done at each stage of the
system’s life depends on economic issues and cannot be worked out as a general rule.
Another testing issue regards which tests are to be performed by external devices. and
which are to be part of self-test schemes. There are many factors pushing manufacturers to
adopt self-test strategies for their products. One is that external testers are extremely
expensive, and that the circuits must be tested sequentially, so that the test duration has a
significant impact on the cost of a circuit. Self-testable circuits need only be powered-up
and instructed to self-test and to report the result, which requires a fraction of the capital
immobilized in a full-fledged tester. Another factor is the need for system-level diagnostic
tests for servicing installed equipment. Finding the failed component in a complex system
is costly if an operator or technician is assigned to the job. Components which signal the

host system when they no longer meet specifications thus reduce maintenance costs (the
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trade-off being increased component complexity and cost). Yet another motivation for
self-testability is the technical difficulty of bringing signals in and out of the device under
test over a significant length of connector (a few feet), especially at high frequencies (for
instance at the | GHz range used in wireless communications), a problem which is not as
acute in a self-test scheme. The proper way to view built-in self-test is as an investment in
hardware, or even a reuse of existing hardware, which returns profits whenever the device
or system must be tested.

Requirements for self-testability should thus be incorporated in the system specifi-
cations so as to reflect choices made according to the economics of development. fabrica-
tion and maintenance of its components, and also according to the level of confidence in
the final product required by the consumer. Such issues have been dealt with for a variety
of purely digital circuits such as memories and microprocessors. and digital Built-In-Self-
Test (BIST) is now widespread [|]. The same can not be said of mixed-signal circuits and
systems (i.e. containting both digital and analog circuits). mainly because analog self-test
remains a technical challenge.

Mixed-signal circuits play an increasingly important role in the microelectronics
industry. In an overwhelming number of applications. electronic systems are designed to
accept analog electric signals generated by sensors (e.g. microphones. light detectors,
acceleration detectors, receiving antennas). or to provide analog outputs to “actuators”
(e.g. speakers, displays. electric motors. transmission antennas), or both. Although they
interface with analog signals, much of the processing needed in such systems is performed
by digital circuits (hence the name of mixed-signal systems) which offer more reliability.
precision and insensitivity to manufacturing variations than their analog counterparts. In
some cases the analog components may be reduced to as little as analog-to-digital and dig-
ital-to-analog converters (ADC’s and DAC’s) but some analog circuitry will always be
required.

The fundamental hurdle in testing the functionality of a mixed-signal system is
that it involves generating or reading analog signals. according to a scheme which exposes
the devices not meeting specifications. The researcher’s role is then to develop design
principles and paradigms for self-testability, applied to mixed-signal systems. and to

expose the design trade-offs which are involved so that engineers have tools enabling
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them to meet the self-testability specifications. Any proposal for endowing mixed-signal
circuits with self-testing capability will be doubly attractive if it integrates into the exist-
ing digital BIST schemes and reuses existing digital hardware.

A number of such principles have been proposed recently. such as the Mixed-Ana-
log-Digital Built-In-Self-Test (MADBIST) scheme [2][3], and more are being developed.
such as the IEEE 1149.4 standard [4] which defines a chip- and system-level analog test-
bus. The present work deals with one component of the MADBIST scheme, namely the
analog sinewave source, in an attempt to generalize and improve previous work done in
that field [S][61[7][8] and to automate the design of this crucial circuit in the emerging
area of mixed-signal self-test. This work also makes possible the use of high-quality on-

chip signal sources in other, unforeseen applications.

1.2 Literature Review on Analog Sinewave Generation

One key principle of the MADBIST is that the analog source is a mostly digital
circuit and can thus be tested by a standard digital BIST betfore it is used to excite the
mixed-signal and analog circuits under test. The literature on analog signal generation is

reviewed next. in light of this particular requirement.

1.2.1 Analog Resonators

Purely analog oscillators [9] are not reviewed in any detail here because they are
hard to integrate reliably, as argued in [5]. Some reasons are that integrated inductors
needed in passive implementations have poor quality tactors and are prohibitively large.
and crystals are not integratable at all. Active implementations of analog oscillators using
opamps display limited precision and are affected by device parameter variations. Inte-
grated precision analog components require trimming, which adds to the fabrication cost.
Finally, in a mixed-signal self-test scheme. the circuit generating the test stimulus must be
tested in the first place. It is obvious that using an analog implementation for the signal
source does not get one very far in this regard. Signal generation methods relying on digi-

tal circuits combined with digital-to-analog conversion are reviewed instead.
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Fig. 1.1:  Lossless Discrete Integrator (LDI) resonator.

1.2.2 Direct Digital Frequency Synthesis

Direct Digital Frequency Synthesis or DDFS. as used in [10] for example. consists
in storing in a ROM the values of a normalized sinusoid taken at a large number of evenly-
spaced time-instants. An indexing variable (representing the instantaneous phase of the
signal) stored in an accumulator cycles through the ROM addresses with a chosen phase
increment. The shortcomings of this method are that frequency selectivity comes at the
price of a large number of ROM words. while decent SNR performance entails a large
word-length. making for a significant area overhead. In addition. arbitrary signal ampli-
tude requires that the output of the ROM be scaled. another costly operation. Moreover.
the ROM cannot be implemented by reusing digital hardware. All in all the hardware cost
can be prohibitive for high-precision signal generation. Finallv. a high-precision digital-
to-analog converter is needed. In a mixed-signal self-test scheme this converter would not

be testable and would thus impair the scheme’s reliability.
1.2.3 LDI Resonator

LDI-resonators and their implementation are discussed to great length in [11]. An
LDI-resonator such as the one shown in Fig. 1.1 generates a digital sinusoidal signal based
on its registers” initial conditions and an input parameter k. [t consists of two discrete-time

integrators which hold the resonator’s state variables x;fn) and xa(n). and a multiplier
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which implements the scaling-by-k operation. Provided that 0 < k < 4. the output x»(n) is a
sinusoidal signal described by the following equation:

X5(n) = Asin(QOn+q)) . (1.1

where the normalized angular frequency . the amplitude A and the phase ¢ of the sinu-

soid depend on the loop coefficient k& and the initial conditions x|(0) and x»(0). and are

given by:
Q, = acos(l—é). (1.2)
A (1 —k)x5(0) + x,(0) 13
B sin (Q,, + 0) ) (-2
and
x,(0)sinQ2
¢ = alan = (1.4

(1 =k -cosQ) x,(0) + x,(0)

Since three independent variables (k. x((0) and x»(0)) are available to control the
circuit’s operation. the three parameters of the sinusoid (A. €. and ¢) can independently
be set to arbitrary values. For instance. to obtain a period of oscillation of 7 samples and
an amplitude A. the loop coefficient and the initial values of the two integrator variables x,

and x» can be set according to:

,
k=2(l—cos(%t}). (1.5)
1(0) = A, (1.6)
x,(0) = £4. (1.7)

I

As argued in [5], the LDI resonator. due to its simplicity and programmability. 1s
an attractive alternative to a ROM-based digital sinusoidal generator. as long as the multi-
plier implementing the scaling factor & is kept simple. The resolution of the generated sig-
nal depends on the number of bits used in the implementation of each of the circuit’s

blocks. However, just like DDFS, this signal generation scheme implies the use of a high-
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Fig. 1.2:  2"d-order delta-sigma oscillator.

resolution digital-to-analog converter. and again this solution. although potenually more

economical than DDFS. is not enurely suitable for use in a mixed-signal self-test scheme.
1.2.4 Delta-Sigma Oscillator

The delta-sigma oscillator was proposed in {5] to overcome the need for a mult-
plier and a high-resolution DAC while retaining all the advantages of analog signal gener-
ation based on an LDI-resonator. This circuit consists of an LDI-resonator. a 2™-order
delta-sigma modulator and a 2-input multiplexer. as shown in Fig. 1.2. We thus refer to it
as a 2™ order delta-sigma-oscillator. Its operation 1s described next.

In order to explain the operation of the delta-sigma oscillator. we first take a look
at how the digital sinusoid generated by the LDI-resonator of Fig. 1.1 could be converted
to a continuous-time analog signal. This can be achieved with a minimal amount ot analog
hardware using a digital delta-sigma modulator tthis circuit will be discussed in detail in
Chapter 2). a one-bit DAC and a linear analog filter as shown in Fig. 1.3. The input to the
modulator must be highly oversampled (i.e. the sample rate must be significantly larger
than the signal bandwidth). which allows the modulator to compute a one-bit representa-
tion of the signal. The input digital signal is encoded in the average of the modulator out-
put over some significant number of samples. hence the requirement for oversampling.

The one-bit DAC is used to create an analog equivalent of the modulator output. which is
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Fig. 1.3:  Analog sinewave generation using an LDI-resonator and a delta-
sigma modulator.

then smoothed by a lowpass filter to produce a highly accurate analog counterpart to the
digital input. This process is described in more detail in Section 2.1.

The delta-sigma oscillator of Fig. 1.2 is an attractive variant on the scheme shown
in Fig. 1.3. The modulator has been inserted in the resonator loop: as it introduces a unit
delay the integrators in the resonator have been modified to take this into account. The jus-
tification for inserting the modulator in the resonator is that at low frequencies the modula-
tor reproduces its input faithfully. while whatever noise it generates at high frequencies
will be attenuated by the resonator integrators. If the programmable scaling-by-k operation
is done on the modulator output then it can be cheaply implemented by a simple 2-way
multiplexer. instead of a ftull-fledged multiplier. This is possible because the modulator
outputs a one-bit signal. The generated signal is embedded in the modulator output bit
stream and is obtained with the use of a one-bit DAC and some analog lowpass filtering,
just as in Fig. 1.3. Note that the amplitude of the generated sinusoidal signal must be lim-
ited to slightly less than the modulator’s reference level. otherwise the oscillator will
become unstable due to non-linear effects.

The inband power density spectrum for one possible delta-sigma oscillator output
is shown in Fig. 1.4. This plot shows a bandwidth equal to one 128" of the digital sample
rate. The spectral plots were obtained by running a le-point FFT on simulated data and
averaging over 8 bins. The generated sinusoid is represented by the sharp power-density
spike at the frequency 0.002 x F§. Its power is roughly -35 dB relative to the output level
of the delta-sigma modulator. equivalent to an amplitude of 0.5. The modulator produces
the spectrally-shaped noise floor whose total inband power is equal to -75 dB relative to

the modulator output level. The signal-to-noise-power ratio (SNR) for this simulation is
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Fig. 1.4:  Power spectral density of a signal generated by a 2"%-order delta-
sigma oscillator.

thus 70 dB. Over a smaller bandwidth, the SNR figure would be larger. and conversely if
the bandwidth were increased. The maximum possible SNR is fixed for a given ratio of
the digital sampling rate to the signal bandwidth, according to a relationship provided in
[51

The 2™-order delta-sigma oscillator meets the MADBIST requirement of using
mostly digital hardware. Some analog filtering is also required, but is assumed to be
present in the circuit under test. [f not this filtering operation can be implemented by a
cheap RC-network with very loose specifications (i.e large tolerances on the component
values and matching). No trimming is required on these analog components. Because it is
built mostly using digitai hardware, this signal source is fully and accurately programma-
ble. impervious to process and temperature variations, and as stated above, self-testable by
the standard methods applicable to digital circuits. [t can reuse digital hardware such as
adders and registers already present in the system. or even transform a digital tester into an
analog tester with the help of a programmable analog filter.

Since [5] a number of improvements have been proposed to delta-sigma oscilla-
tors. They are: multitone signal generation [6][6][7], bandpass delta-sigma oscillators and
their use in high-frequency signal generation [12] and more specifically in a proposed
MADBIST for wireless systems [13], FM-signal generation [14], and high-order delta-

sigma oscillators [16]. All of these topics except the latter two are also treated in [15]. The
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present thesis deals essentially with high-order and arbitrary-signal-band oscillators, as

well as their computer-aided design [18]. The resulting improvements are listed next.

1.3 Proposed Improvements

There are some important limitations to the 2" _order delta-si gma oscillator, which
require explanations and solutions. The object of this thesis is to present a general, auto-

mated design framework which addresses these limitations.
1.3.1 Arbitrary Signal Band Location

In many applications signals occupy an arbitrary frequency band within the
Nyquist interval, as in the case of communications systems in which the signal is modu-
lated and occupies a given portion of the frequency spectrum. Thus there is a need for sig-
nal sources capable of generating clean tones near some arbitrary center frequency in
[0.F /2], i.e. bandpass or highpass oscillators. This is addressed both in Chapter 2. where
bandpass and highpass modulators are discussed, and in Chapter 3. where it is shown how

to set the center frequency of the signal band to an arbitrary value.
1.3.2 Arbitrary Stable Bandwidth

There is a limit to the bandwidth over which the oscillator can generate a stable
tone. This has been verified experimentally for the 3™ _order oscillator in (3] and [15].
This stability problem can be explained by the fact that the delta-sigma modulator noise
constitutes an additional input which can throw the oscillator out of its intended limit
cycle. The solution here is to use a slightly more complex oscillator topology in which the
amount of noise-injection can be controlled, as first proposed in [16]. The resulting oscil-

lators are described in Chapter 3, along with a study of their stability properties.
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1.3.3 Arbitrary SNR

Another limitation is the introduction of noise by the delta-sigma modulator in the
signal band. This noise limits the signal-to-noise ratio of the generated tone. If the OSR is
defined as the ratio of half the sampling rate to the signal bandwidth, then the inband noise
power is fixed for a given value of the OSR for a 2% order delta-sigma oscillator. For a
given digital clocking rate, the oscillator may not be able to produce tones with a high
SNR over a sufficient bandwidth. The solution resides in using a modulator of higher
order which keeps the oscillator loop critically stable while creating a lower noise-floor.
Such modulators were first proposed in [17] and are presented in detail in Chapter 2: they

are designed to be implemented using a minimal amount of digital hardware.

1.3.4 Design Automation

The present work explains how the trade-offs between bandwidth. stability, SNR
and hardware cost can be addressed. However the design techniques which are presented.
although they are simple to understand. are computationally involved. To demonstrate
their applicability, a computer-aided-design (CAD) tool had to be developed [18]. It is pre-

sented in Chapter 4.
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Chapter 2

Low-Cost One-Bit High-
Order Digital Delta-Sigma
Modulators

2.1 Introduction

Delta-sigma modulation has become a technique of choice for implementing reli-
able and accurate integrated data converters for narrowband signals. This technique makes
high-precision data-conversion possible with the use of a coarse DAC (for D/A conver-
sion) or ADC (for A/D conversion [19]) and digital and analog filters. Because it is
required that the signal to be converted occupy a small bandwidth relative to the sample
rate. we speak of oversampling data conversion. The oversampling ratio (OSR) is defined
as the ratio of half the sampling rate F to the signal bandwidth BW:
F/2
BW '’

OSR = (2.1)

A lowpass oversampling D/A converter using a single-bit DAC and a digital delta-
sigma modulator is depicted in Fig. 2.1. It consists of three stages: the digital delta-sigma
modulator having a one-bit output, followed by the one-bit DAC operating at the digital

sample rate, and a lowpass analog filter with corner frequency at the signal band edge.

11
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On the left of the block diagram are shown the input and output of each block in
the time domain, on the right in the frequency domain. The input of the modulator is the
digital signal to be converted to the analog domain. In the present example it is a high-res-
olution sinusoid whose frequency is much smaller than the sample rate F. The modulator
outputs a stream of +1 and -1 values whose local density equals its instantaneous input.
This fundamental aspect of the delta-sigma modulation process is better illustrated in the
spectral density plot shown in Fig. 2.1(d): the low-frequency input signal is very taithfully
reproduced while large amounts of noise are introduced at higher frequencies. Note that
the modulator does introduce some low-power noise in the signal band.

The single-bit DAC then creates an analog signal corresponding to the stream of
+1's and -1's generated by the modulator: each digital bit coming from the modulator
translates into a finite-duration pulse, with non-zero rise-time and fall-time. Finally, the
analog lowpass filter attenuates the high-frequency noise introduced by the modulator. As
a result of this filtering operation, the fast-changing pulse-train coming from the 2-level
DAC is smoothed to an accurate. continuous-time, continuous-valued version of the digi-
tal stnusoidal input.

Note that our example showed a lowpass D/A conversion system; a similar con-
verter for bandpass signals is realized by using a bandpass delta-sigma modulator. i.e. one
that introduces very little noise over some midband range of frequencies. and a bandpass
analog filter. Likewise, highpass D/A conversion systems can be built from a highpass
delta-sigma modulator and a highpass analog filter. Oversampling A/D converters func-
tion in an analogous manner, using a sampled-data analog modulator. a coarse ADC and a
digital filter.

The major advantage of oversampling D/A conversion over its Nyquist-rate coun-
terpart is that it works with a low-resolution, high-speed “Nyquist-rate”™ DAC, even
though the conversion itself is highly accurate. The trade-off is that digital-signal-process-
ing hardware is required to implement the delta-sigma modulator and that only bandlim-
ited signals can thus be converted. For bandlimited. integrated applications this trade-off
is more than acceptable, since high-resolution “Nyquist-rate™ D/A converters are difficult
to fabricate reliably, whereas digital-delta-sigma modulators, just like other digital-signal-

processing devices, are more easily and reliably integrated. Moreover, the resolution of

13




Chapter 2: Low-Cost One-Bit High-Order Digital Delta-Sigma Modulators

the conversion can be increased either by using higher-order delta-sigma modulation or by
increasing the OSR, without necessitating better analog component precision.

The contributions to the field of delta-sigma modulation which are the most signif-
icant to the present work, specifically for one-bit delta-sigma D/A conversion, are
reviewed in Section 2.2. The beauty of delta-sigma modulation is that it replaces the prob-
lem of component matching and accuracy encountered in the design of Nyquist-rate con-
verters with a special kind of twransfer-function design problem. Indeed, even though it is a
non-linear device, the functionality of a delta-sigma modulator can be accurately modelled
and designed as that of a linear systern described by two transfer functions. which are
defined in Section 2.3. The constraints posed by the specific application of delta-sigma
modulation to delta-sigma oscillators are the object of Section 2.4. Section 2.5 presents a
complete method for designing high-order, arbitrary-signal-band modulators for use in
delta-sigma oscillators with a minimal amount of digital hardware, based on an appropri-
ate choice of modulator topology and on the idea of coefficient quantization. The issues of
simulation and prototyping are also addressed. Finally, conclusions are drawn in Section

2.6.

2.2 Literature Review on Delta-Sigma Modulation

A comprehensive review of delta-sigma modulation techniques used in oversam-
pling A/D converters is presented in [20]. This is relevant here because many principles
and modulator architectures for A/D conversion can be reused in the context of oversam-
pling D/A conversion. A slightly older publication [2]] sums up some of the most impor-
tant contributions to the field of delta-sigma modulation since the 1960’s. both for D/A
and A/D conversion. To the best of our knowledge. delta-sigma modulation was first
applied to D/A conversion, as opposed to A/D conversion, in [22]. A high-order D/A
delta-sigma modulator using a single-bit DAC was reported as early as 1987 in [23]. One-
bit modulators work best at large oversampling ratios (at least 16, sometimes larger than
[00) and thus require significant amounts of digital processing power. However their

advantage lies in the simplicity of the two-level DAC used in conjunction with them. In
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fact a one-bit DAC is an inherently linear device and thus introduces less harmonic distor-
tion than multi-bit DACs. even without trimming. The DACs presented in [24] are good
examples of such relatively simple analog circuits which can be used in high-resolution D/
A conversion systems. A large portion of the literature focuses on one-bit modulators. In
particular, the maximum SNR achievable by one-bit modulators of orders 1 to 8 is given
in [25] for various values of the oversampling ratio

Nonetheless. oversampling data converters using multi-bit DACs are often deemed
a good compromise between one-bit, highly-oversampled converters and Nyquist-rate
converters [26]. The main reason is that they grant the benefits of noise-shaping while
improving the stability properties of the modulator and keeping its complexity low. Some
delta-sigma modulator architectures which necessitate a multi-bit DAC are multi-stage or
MASH modulators [27]. time-interleaved modulators [28] and parallel modulators [29]. [t
has recently been shown that the error created by the non-idealities of a multi-bit DAC can
be whitened and even spectrally-shaped out of the signal band [30]. making multi-bit
delta-sigma modulation very attractive for both D/A and A/D conversion. This technique
requires only a reasonable amount of additional digital hardware. This is a recent develop-
ment and no experimental results are available to support it yet. Therefore the present the-
sis deals exclusively with one-bit delta-sigma modulators. Also. in certain applications the
use of a single-bit DAC and hence modulator is preferable. in particular when the com-
plexity of the analog circuitry must be kept to a strict minimum, such as for mixed-analog-
digital built-in-self-test [3] and oversampled analog signal generation [6][8][16]. There is
thus a need for a method to design one-bit digital delta-sigma modulators with a minimum
amount of digital hardware. Providing such a method is the goal of this chapter.

Delta-sigma modulation has recently been generalized to include bandpass [31]
modulators, which, together with highpass modulators. are given consideratton in the
present work. Other further extensions of delta-sigma modulation, such as complex modu-
lators [32], are not treated here. Most of the work presented in this chapter was first intro-

duced in [17].
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Fig. 2.2: Signal-flow graph of a general high-order delta-sigma modulator.
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Fig. 2.3:  Linear model of the general high-order delta-sigma modulator.

2.3 Linear Model of Delta-Sigma Modulation

Without loss of generality, it may be assumed that any high-order one-bit delta-
sigma modulator can be represented by the block-diagram shown in Fig. 2.2. It consists of
three main blocks: two linear filters /| and H> and a one-bit (or two-level) quantizer. The
bandlimited input signal, x, is filtered by A and the feedback signal from H, is subtracted
from the result to produce e. the input to the quantizer. The output of the quantizer is fed
directly to the modulator output y. It is also filtered by - to create the feedback signal. A
delta-sigma modulator is thus a non-linear system with feedback.

The quantizer can be modelled as an additive noise-source so as to obtain a linear

model of the delta-sigma modulator, as shown in Fig. 2.3. Specifically, the quantizer has
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been replaced by a summer whose inputs are the quantizer input ¢ and a noise source ¢,
and whose output is the quantizer output v. The noise input g is equal to the quantization
error made at each sampling instant by the 2-level quantizer. As explained in [[9], it is
then straightforward to relate the output y to the signal input x and to the noise input ¢ in

the frequency domain (the uppercase notation is used to indicate the Z-transform of a sig-

nal):
Y(-,-) = _m_.x('-)+___l___..Q(~) (7 ‘J)
U l+HLN) T L+ HL() T T

We define the signal-transfer-function S7F(z) and the noise-transfer-function

NTF(z) as follows:

STF(z) = e (2.3)
= L+ H\2) -
|
NTF(z) = —— 24
() YR (2.4)

The spectral behavior of any delta-sigma modulator (even those which do not have
the form of the block diagram shown in Fig. 2.2) can then be fully described by these two
transfer functions. That is, the Z-transform of the output v is written as:

Y(z2) = STF(2)-X(2)+ NTF(2)- Q(2). (2.5)

Q(z), the Z-transform of gq. is assumed to be white noise. The incentive for making
this assumption is that multi-bit quantizers are traditionally modelled as additive white
noise sources. In general, this model is far from valid for a one-bit quantizer. but it turns
out that it is accurate enough when applied to high-order delta-sigma modulators. as veri-
fied below from simulation results. From Eqn. (2.2). it is clear that if the magnitude of
H(2) is large in the signal band, the noise input ¢ will be attenuated. At these frequencies.
H () must be correspondingly large for the signal x to be passed unaltered to the output .
In other words we want the STF to be close to | and the NTF close to O in the signal band.

The linear model given by Eqn. (2.5) is not complete unless the Power Spectral
Density (PSD) of Q(z) is estimated. For multi-bit quantizers, this PSD is taken to be white

4

noise with average power equal to P, = ‘f‘—; , where A is the size of the quantization inter-
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val. However this approximation is only valid because the quantization error is practically
evenly distributed in any quantization interval, regardless of the signal level, which is not
the case for a one-bit quantizer.

Luckily, for all practical purposes the quantization noise can still be assumed to be
white in high-order modulators, but the average quantization error power P depends on
the signal level and is derived in another fashion. First. let us have the following defini-
tions. The PSD of the modulator input X(z) is defined as S () = [X(2)?|__ ..., and the
PSD of the quantization error Q(z) is assumed to be a constant. i.e. independent of fre-
quency. which we denote as S,. The signal power is then given by P, = ﬁ) SyNdf. and
the quantization error power by PQ = fSSQdf = [, where f, is the digital sample rate.
Assuming the signal and the quantization noise to be uncorrelated, the output PSD is

derived from Eqn. (2.5) to be:

SN = SYPISTE ()"« S INTE (1|70 26

Integrating Eqn. (2.6) over frequency yields the following expression for the output

power:

Py = [ SyISTE () ar+ J’O‘SQINTF(#"U’“)IZU. (2.7)

Since the output v is always +1 or -1, its power Py is equal to [. Note also that the modula-

tors used in delta-sigma oscillators have STF (Y1) = | (this is explained in Sec-
tion 2.4.2). Eqn. (2.7) thus simplifies to
| = P\,+SQ-(JJ‘INTF(HZ“‘J’/f?’)I"df). (2.8)
: Jo
or equivalently.
l-P
s al (2.9)

0= o R
ﬂ)‘lzvrma-mm)l df

: 2
where JJ)'INTF Ca Ll )l df is the average value of the NTF-magnitude-squared on the
(

unit circle, scaled by f;. This last equation gives a good estimate of the actual quantization
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Fig. 2.4: (a) Nyquist-band and (b) Inband power spectrum for a 6"-order
modulator. The solid line represents simulation data, while the dotted line
represents the noise spectrum predicted by the linear model.

noise power density. We finally obtain the following estimate of the modulator output’s

PSD by using this expression for Sg in Eqn. (2.6):

(1-P ) |NTF (U717
' : (2.10)

SAN = SN+ . : -
J‘J'INTF(eﬂ"U"“)I'df
0

-

I[f the input x is a sinusoid with amplitude A. then its average power is —- and the PSD of

(1-2 w7 i)’

the output’s noise component is -
j{]‘lNTF(efz“‘f’fl’ ) df

The linear model of the output spectrum predicted by Eqn. (2.10) has been verified
by simulating a 6"-order modulator designed as per the method of Section 2.5.7. The sim-
ulated and predicted spectra are represented in Fig. 2.4, by a solid and dotted line, respec-
tively. It is clear from these plots that the linear model yields a very accurate estimate of

the noise power density, both within the signal band and over the Nyquist interval. Note
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that in these two plots and in all subsequent spectral plots, the signal is shown as power,
whereas the noise is shown as power density per signal band'. The SNR is simply read as
the ratio of the signal level (-10 dB) to the average noise level (-140 dB), that is, 130 dB.
Note also the absence of any perceptible harmonics of the signal tone. proof of the high
linearity of one-bit delta-sigma modulators, despite the presence of the highly non-linear
one-bit quantizer in the circuit.

To summarize, a one-bit delta-sigma modulator takes as input an “oversampled”
multi-bit bandlimited signal and uses the extra bandwidth to encode the input in a stream
of single bits. The one-bit output consists of an accurate replica of the input signal plus
quantization noise which has been “spectrally shaped™ so as to be greatly attenuated in the

signal band.

2.4 Special Requirements for Use in AX Oscillators

As explained in Chapter | and in Chapter 3, the modulators which can be used in a
delta-sigma oscillator have two special characteristics. These are reiterated and treated

below.

2.4.1 One-Bit Quantizer

In the context of mixed-signal self test. delta-sigma oscillators must have a single
bit output so as to minimize the complexity of the analog circuitry to a one-bit DAC and a
linear filter. Thus the modulator used in the oscillator must use a one-bit quantizer. As a
result. stability of the modulator is a non-trivial issue, and it will be dealt with in Section

25.1.

[. Let BW be the signal bandwidth. f/N the resolution bandwidth ot the N-point FFT (i.e. the size of

one FFT bin). and p; the noise power found in the " FFT bin. Then the noise power density per

signal band for that bin is defined as p, - m;’,' N The total inband noise power is easily obtained

¥

as the average of the inband noise power density per signal band.
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Fig. 2.5:  Signal-flow graph of a general high-order delta-sigma modulator
with unity STF.

2.4.2 Unity Signal Transfer Function

It will be demonstrated in Section 3.2 that the modulator must have a STF strictly
equal to unity in order to be used in a delta-sigma oscillator. Here we present an overall
modulator topology with that property.

From Eqns. (2.3) and (2.4), it is clear that if the linear filters #; and H, can be
made to realize arbitrary transfer functions then the STF and NTF of the modulator of Fig.
2.1 can be set arbitrarily and independently of each other. Indeed. the NTF depends on H-

only and to obtain a desired STF one can set A according to:

H(z) = STE(2)

= = ) (L +H.(2)). 2.
NTE () STF () (1 +H,(2) (2.1

To make the STF equal to unity, we need H,(2) = | + H,(2). which is realized by the sig-
nal-tlow graph shown in Fig. 2.5.

One can transform this signal-flow graph so that a single block A(z) is used to real-
ize both the feedback gain -H»(z) and the feedforward gain [+H>(z). instead of two dis-
tinct blocks as in Fig. 2.5. One such overall modulator structure guaranteeing a unity STF
and using a single instance of H(z) is presented in [33] and reproduced in Fig. 2.6. Here
the quantization error is fed back as ¢ while any feedback of the input signal x cancels out.
Thus the STF is unity. By direct analysis, the NTF is found to be:

H(z) _ I 5

NTF(z) = 1-H'(2) = 1—1+H(:.) T+ H(D)
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.....................

H(z) |

Fig. 2.6: An overall structure for delta-sigma modulators with unity
Signal Transfer Function.

|

Fig. 2.7: Proposed alternative overall structure for delta-sigma
modulators with unity Signal Transfer Function. The poles of the linear
block H(z) are also the zeros of the Noise Transfer Function, which is a
desired property of the medulator structure.

Another topology can be obtained by a straightforward manipulation of the signal-
flow graph of Fig. 2.6, yielding the modulator topology shown in Fig. 2.7. When the quan-
tizer is replaced by its linear model, the input signal feeds straight to the output and back
to the filter input; it also feeds forward to the filter input with the opposite sign, and so the

signal feedback is cancelled, resulting in a unity STF. The NTF is again equal (o
[

L+ H(2)

it instead.

. This topology requires one less subtractor than the one of Fig. 2.6. We thus use
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Since we have shown that the STF can be set to | independently of the NTF. the
rest of this chapter will focus on the design and the implementation of the NTF, or equiva-

lently, of the linear filter H(z).

2.5 Design Method

A complete method by which a modulator is designed so as to convert high-preci-
sion signals to one bit over a given portion of the Nyquist interval with a given signal-to-
noise power ratio (SNR) is presented here. The resulting modulators are meant to be used
specifically in oscillator applications and we describe how to design them using as little
hardware as possible.

This method comprises three main steps. First an NTF of the appropriate order.
OSR and inband noise rejection is computed. Then a modulator topology is chosen and its
coefficients are computed so that the desired NTF is realized. Finally, these coefficients
are quantized to powers-of-two or canonical-signed digits (i.e. sums or differences of a
few powers-of-two) so that they can be implemented more cheaply than using multipliers.
This last process results in an actual NTF which departs from the desired one. but for care-

fully chosen modulator topologies this departure is kept to & minimum.
2.5.1 Noise-Transfer-Function Design

Rather than directly designing the transfer function H(z). we focus instead on the
noise transfer function. It is designed to attenuate the quantization noise enough in the
band of interest so as to produce the desired SNR. If the passband type is bandpass or
highpass. a lowpass prototype with the same oversampling ratio is designed first. Section
2.5.3. explains how the bandpass or highpass modulator is obtained from the realization of
the lowpass prototype. We are thus faced with a pole-zero placement problem. albeit one
with special constraints.

The first of these special constraints has to do with stability. In particular, since
delta-sigma modulators are circuits with a highly non-linear element (the one-bit quan-

tizer), their stability cannot be predicted using the methods for linear systems only. Fortu-
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nately. conditional stability can be guaranteed by an empirical criterion expressed in the
frequency domain. An absolute requirement for stability. given in [34]. is that the magni-

tude of the NTF be less than 2.0 at all frequencies. i.e..

max(INTF(e*™), ., <2.0. (2.13)

As documented in [25], simulations show that the higher this maximum. the
smaller the range of input amplitudes for which the modulator is stable. However, as the
bound decreases toward 1.0, the NTF magnitude in the signal band increases and so does
the inband noise power. The bound on the NTF which results in the maximum SNR 1s thus
some value between 1.0 and 2.0. Finding the bound yielding the maximum SNR involves
trying successive values of the bound. and for each of them finding the input level vielding
the maximum SNR, through simulation. This process requires repetitive simulations and
can be performed by the computer program presented in Chapter 4. Note that the tradi-
tional stability criterion for discrete-time linear systems. namely that the poles must lie
within the unit circle in the Z-plane. also applies.

The second constraint is that the modulator be realizable. Recall that all feedback
loops in a realizable discrete-time system must have at least a unit delay. In the case of the
modulator of Fig. 2.7, the transfer function H(z) must be strictly causal. This implies that
the denominator of H(Z) is of higher order than the numerator. which in turns implies that
the NTF is strictly proper. i.e. that its numerator and denominator have identical orders
and leading coefficients. Formally. we write:

NTF()| __ = 1. (2.14)

In order to maximize the SNR, the zeros of the NTF, which are also the poles of
H(z). should lie on the unit circle within the signal band. The optimal zero locations for a
given OSR are given in [25] for lowpass modulators. The NTF poles can be designed
using specialized filter-design software such as the one presented in [33]. Alternatively, a
more generally available tool such as MATLAB can be used instead to design a Butter-
worth, Chebychev or Elliptic pole configurations for the NTF (our CAD tool does just
that). In all cases one can refer to the data in [25] to obtain the NTF order which is

required to meet the SNR specification for the given OSR.
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Fig. 2.8: (a) Pole-zero configuration of a 6'P-order noise transfer function
designed for an oversampling ratio of 32. (b) Magnitude of the NTF over the
Nyquist interval; (c) in the signal band.

As examples, two 6" order NTFs, one for an OSR of 32 and the other for an OSR
of 128, were designed using the same method as in [25]. The bound on the NTF magni-
tude was arbitrarily set to 1.5 which in general is a good first approximation in designing a
modulator with optimal performance. Fig. 2.8(a) shows the pole-zero configuration of the

NTF for an OSR of 32. Note the poles in a butterworth configuration, inside the unit cir-

(5]
w
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cle. around the signal band. The zeros are on the unit circle at low frequencies. within the
signal band. Fig. 2.8 (b) and (c) show the magnitude of the same NTF. As expected from
the pole-zero configuration. the NTF magnitude is very small in the signal band (low fre-
quencies). The 3 pairs of zeros create the three notches seen in the magnitude plot. At high
frequencies the magnitude reaches a maximum of approximately 3 dB (corresponding to a
gain of 1.5). Fig. 2.9 shows the same information for the NTF designed for an OSR equal

to 128.

2.5.2 Modulator Topologies

We now turn to the problem of realizing a modulator with a given NTF of arbitrary
order. We explore a variety of modulator structures. and will later evaluate which ones
give good results with quantized coefficients. in Section 2.5.4. The three structures we will
retain for that purpose are the resonator cascade. the integrator cascade. and the lossless-
discrete-integrator ladder. or LDI ladder for short. They are discussed below.

The problem of realizing a modulator amounts to finding the structure coefficients
which vield the desired NTF. For this. each term in the numerator and denominator of the
NTF is expressed as a function of the structure coefficients. and these equations are solved
simultaneously. Solving these non-linear equations is computationally intensive. and this
1s one of the reasons for which the entire design method presented here was coded into a
computer-aided-design tool presented in detail in Chapter 4. The remainder of this section
describes the modulator topologies under consideration.

A now widely-used high-order delta-sigma modutator realization was first intro-
duced in [34] and [35] and is shown in Fig. 2.11. Here the realization of H(Z) consists of a
cascade of integrators. with feedback applied from each integrator output to the input to
set the poles. Feedforward branches to the output set the zeros. We thus call this structure
the “integrator cascade with feedback and feedforward branches™. or “integrator cascade™
for short. Variants of this structure have since been used in successful switched-capacitor
implementations [36][37] as well as digital ones [24]. One can modify the structure of Fig.

2.11 to give a unity STF by using the overall topology of Fig. 2.7. as shown in Fig. 2.11.
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Fig. 2.9: (a) Pole-zero configuration of a 6'"-order noise transfer function
designed for an oversampling ratio of 128, with magnitude bounded by 1.5.
(b} Magnitude of the NTF over the Nyquist interval; (c) in the signal band.

Another modulator topology, used in [24] and reproduced in Fig. 2.12. is often
used to realize digital delta-sigma modulators. This is due to the tact that the B coefficients
are multiplying single-bit values: these operations are cheaply implemented by two-input
multiplexers instead of multipliers. However this topology's STF is not unity. The struc-

ture can be modified to have unity STF as shown in Fig. 2.12, but then the B coefficients
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Fig. 2.10: Realization of an Nt order delta-sigma modulator using Chao’s
multiloop-feedback integrator structure.

28
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Fig. 2.11: Realization of an Nh.order delta-sigma modulator based on
Chao’s multiloop-feedback integrator structure, using the overall structure
resulting in a unity signal transfer function.

v
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Fig. 2.12: Realization of an Nh.order delta-sigma modulator based on [24].
Note that the STF is not unity in this case.
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Fig. 2.13: Realization of an Nth_order delta-sigma modulator based on [24],
but modified to have unity STF.

31




Chapter 2: Low-Cost One-Bit High-Order Digital Delta-Sigma Modulators

must be implemented by multipliers. Alternatively the B coefficients can be placed in
another manner as shown in Fig. 2.15, and we call this particular realization a resonator-
cascade. Note that in this particular structure the forward and backward integrators are
interleaved and grouped two-by-two as resonators. In this case also we can no longer play
the trick of implementing the B coefficients using multiplexers because they are used to
scale a multi-bit signal instead of a single-bit one. This in turn is a result of the STF being
equal to unity.

Finally, an essential contribution of this work is an LDI-ladder structure. similar to
the ladder structures used to realize high quality analog filters because of their superior
sensitivity properties. LDI-ladder filters were introduced in {38]: the modulator LDI-lad-
der structure we propose is shown in Fig. 2.15. It is composed of discrete-time integrators.
The output of each integrator is first scaled by a coefficient A; and then is fed forward to
the next integrator in the ladder as well as back to the previous one (except for the first and
last integrators). Each integrator output is also further scaled by a coefficient B; and fed
forward to the quantizer input. Note that this structure displays the main characteristic of
ladders, that is, the way the feedback is distributed around the integrators. and for that rea-
son we expect it to have low sensitivity to coefficient variations. In general. LDI ladders
are designed from a continuous-time prototype which is mapped to a discrete-time equiva-
lent. as described in [38]. However here we use a more direct approach to obtain the real-
ization coefficients. Namely, we solve the non-linear equations relating the coefficients to

the NTF terms. as for the integrator and resonator cascade structures.
2.5.3 Passband Mapping

In the case when the signal band is not centered around DC. the modulator struc-
tures presented in Section 2.5.2 must be modified to implement a bandpass or highpass
NTF. In general, any linear system can be transtormed from lowpass to bandpass or high-

pass by mapping the Z-variable to a new variable [39]. For a bandpass modulator with
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Fig. 2.14: Realization of an N'""_order modulator based on a resonator
cascade, with unity STF.
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<@

Fig. 2.15: Realization of an N order modulator based on the Lossless
Discrete Integrator (LDI) ladder, with an overall structure vielding a signal
transfer function equal to unity.

center frequency . and an OSR defined as the ratio of the signal bandwidth to half the

sampling rate, the mapping is described by:
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Fig. 2.16: Integrator-to-biquad mappings for bandpass modulators.
where

Cos®,
C=- . (2.16)

COS(L)
2-0OSR

In terms of modulator realization. once C has been found. the integrators in the
lowpass prototype realization must be replaced by the appropriate biquads. shown in Fig.

2.16 and described by the following equations:

o=l =2 _vr--1
SN et L (2.17)
R 22 2C: M+
and
l - C:—l + 1 ] (2 18)
b-zb 220zt +
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One very interesting case arises when the center frequency . is equal to /2. In
that case C is 0 and the Z-variable mappings reduces to:

-l -2 (2.19)

which amounts to doubling each delay element in the circuit.
Finally. to obtain a highpass modulator. the mapping is given by:

st (2.20)

The integrators then map according to:

-~

SN (2.21)
-zt [+t
and
Lo, (2.22)
f-z! L+

2.5.4 Coefficient Quantization

The modulators realized with any of the topologies presented in Section 2.5.2 are
not suited for an economical digital implementation. because they require multipliers to
implement the scaling coefficients. However. if an approximation of the desired NTF can
be tound with all coefficients of the realization equal to powers-of-two. then the modulator
can be implemented using only adders. subtractors. registers and fixed-shift units. The fol-
lowing section exposes our strategy for coming up with such an efficient realization. and
the results for each of the topologies described above.

After the NTF has been designed and the corresponding modulator coetficients
have been obtained, a method inspired from the one presented in {40] is used to quantize
these coefficients to powers-of-two (including the biquad coefficients in a bandpass modu-
lator). Each coefficient in the structure is rounded either upward or downward to the near-
est power-of-two, independently of the other coefficients. For a structure with n
coefficients, this gives rises to 2" possible approximations. Among the stable realizations
thus obtained, the one yielding the largest average inband noise attenuation, while respect-

ing the chosen bound on the NTF-magnitude. is retained. if any exists. Note that the NTF-
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magnitude bound may have to be relaxed to a slightly larger value than that used for the
original NTF design.

If a finer quantization is required. the coefficients can be realized by canonical
signed digits (CSD), that is sums or differences of a few powers-of-two. This requires
more hardware but results in smaller coefficient changes. which helps obtain a ‘quantized’
NTF closer to the desired one. It is a trade-off which the designer must address on a case-
per-case basis. Note that the biquad coefficient in a bandpass modulator may have to be
quantized to a CSD of as many as four terms so as to locate the signal band with enough
precision.

This quantization process is simple in principle but even more computationally
intensive than solving for the coefficients of a structure. and therefore the use of the CAD
tool presented in Chapter 4, or a similar one. is absolutely essential here.

As a result of this quantization process. the zeros and poles of the NTF move off
their initial locations. in a manner depending on the modulator structure’s sensitivity to its
coefficients. Fig. 2.17 shows the zeros and poles obtained by quantizing the coefficients
for both our 6 order example NTF's to powers-of-two. for the integrator cascade struc-
ture. The initial poles and zeros. the ones of the modulator with non-powers-of-two coeffi-
cients. are marked by asterisks (*). The various possible locations of the poles when each
coefficient is quantized either upward or downward are identified by the "x’ symbols on
Figs. 2.17(a) and 2.17(c). Note that for clarity not all 212 possible poles are shown but
rather a representative subset of them. Similarly. the zeros of the possible realizations with
quantized coefficients are represented with "o" markers. on Figs. 2.17(b) and 2.17(d).

Our results show that the integrator cascade has serious drawbacks with respect to
coefficient quantization. First. in many instances the zeros move far off the unit circle.
decreasing the inband noise attenuation. Thus. designs realized with the integrator cascade
with powers-of-two coefficients are likely to have a significantly poorer performance than
1s desired.

Much worse is the behavior of the NTF poles under quantization of the coeffi-
cients. For high-order, smalil-bandwidth modulators. all of the 2" sets of quantized coetffi-
cients result either in poles lying outside the unit circle. or in a NTF magnitude exceeding

the allowed maximum of 2.0 given in Section 2.5.1. In either case the resulting modulator
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Fig. 2.17: NTF zeros and poles realized by quantized coefficients in the

integrator cascade modulator structure, for our 6'"-order examples: (a)
poles, OSR=32; (b) zeros, OSR=32; (c) poles, OSR=128; (d) zeros, OSR=128.

is unstable. Thus our design strategy fails completely for this structure and we conclude
that it is extremely difficult to design high-order delta-sigma modulators with powers-of-

two coefficients for the integrator cascade structure.
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Fig. 2.18: NTF zeros and poles realized by quantized coefficients in the

LDI-ladder structure, for our 6'"-order examples: (a) poles, OSR=32; (b)
zeros, OSR=32; (c) poles, OSR=128; (d) zeros, OSR=128.

These results seem to indicate that coefficient quantization requires a realization

having good coefficient sensitivity properties. We now turn to the effect of quantizing the

coefficients of an LDI ladder realization. Just as Fig. 2.17, Fig. 2.18 shows the possible

poles and zeros of the ladder-based structure with quantized coefficients. Note, in Figs.

2.18(b) and 2.18(d), that all the zeros are located on the unit circle, at angles close to their
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original values. Since no damping is present in the ladder, the poles of H(z), which are also
the zeros of the NTF, remain on the unit circle when the coefficients are quantized, which
is not the case with the previous integrator cascade structure.

In addition, the NTF poles remain much closer to their original position than with
the cascade structure (seen in Figs. 2.18(a) and 2.18(c)). This is explained by two facts.
Considering that the poles of H(z) change very little when the B coefficients are quantized,
the transfer functions from the input to each integrator output do not vary significantly
either. Moreover. the change in a specific coefficient A; can be partially cancelled by an
opposite change in the corresponding feedforward coefficient B;, thus keeping the transfer
functions from each integrator output to the filter output nearly unchanged.

Overall, with powers-of-two coefficients only. the ladder structure is capable of
realizing a close approximation to the desired modulator functionality described by an
NTF pole-zero distribution such as those in Fig. 2.8 and Fig. 2.9. The quantized coeffi-

cients of both design examples are given in Table 2.1:

Table 2.1: Quantized coefficients of the 6'P-order designs realized with an LDI-ladder
topology, for OSR=32 and OSR=128

N=6, OSR=32 N=6. OSR=128

LADDER LADDER

L.ADDER FEEDBACK LADDER FEEDBACK o
COEFFICIENTS FEEDFORWARD COEFFICIENTS FEEDFORWARD
' COEFFICIENTS ' COEFFICIENTS

r\{=_’9 B|=2.l ~\|—2” B|=2l

A,=20 B, =2’ A, =21 B, =2'!

Ay=2 By =2* Ay=212 By =2’

Ay=2" By=2'" Ay=2" B, =2

Ag=2" Bs =25 Ag=2" Bg =217

A6=2() B6_‘)|0 Aﬁ=2() B6=724

Fig. 2.19 displays the inband magnitude of the desired NTFs and of the ones real-
ized by a multiplier-free ladder with the best set of quantized coefficients, for both 6th-

order designs. The solid curves represent the NTF of the modulators with quantized coef-
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Fig. 2.19: Inband magnitude of the desired NTF (dashed line) and its

approximation with powers-of-two ladder coefficients (solid line), for our 6th-
order examples: (a) OSR=32, (b) OSR=128.

ficients, while the dashed curves depict the desired NTF. The difference between the two
NTF's is at most 10 dB, both for OSR=32 and for OSR=128. These plots thus demonstrate
that quantizing the coefficients of an LDI-ladder-based modulator is a viable way to
reduce the hardware complexity without sacrificing too much performance. An NP-order
design with quantized coefficients requires 2N adders. N subtractors, 2N shift units. NV reg-
isters and a sign detector.

As for the resonator cascade realization, it does not yield stable modulators with
coefficients all equal to a single power-of-two, at least for our two NTF examples. How-
ever. if the B coefficients are quantized to sums or differences of 2 powers-of-two. i.e. 1-
term CSDs, a good approximation of the desired NTF is obtained.

For bandpass modulators, the biquad coefficient C must also be quantized, gener-

ally to more than a single term so as to locate the signal band of the quantized design with

enough precision.
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2.5.5 Simulation

The modulator design cycle is not complete until simulations and prototypes have
demonstrated the stability of the design for the intended inputs. There are two reasons for
this. First, a delta-sigma modulator is a system with a hard non-linearity and thus its stabil-
ity is conditional on the input level in a way which is difficult to predict. Second. in a dig-
ital implementation. finite-register length effects may create noise at significant levels. or
even instability.

Simuiation of the delta-sigma modulator, assuming floating-point precision. is eas-
ily performed by a simple C program. A given modulator design can be simulated at vari-
ous signal levels so as to determine the maximum SNR and the corresponding input level.
as well as the available dynamic range. This was done for both our 6" order examples.
The inputs were sinusoids having periods 128 and 512, respectively, for the designs with
OSR=32 and OSR=128. (The periods are powers-of-2 to ensure coherence of the input
with the observation interval of 2!+ samples). The input amplitude was varied from 107 to
0.9 so as to capture the input level at which the modulator becomes unstable (i.e. when the
SNR suddenly drops). The output was then processed using the continuous-fitth-deriva-
tive window found in [45]. This window has rapidly decaying sidelobes in the frequency
domain and thus dramatically reduces the frequency smearing due to the unavoidable
incoherence of the delta-sigma modulator output, as explained in Appendix A.

Fig. 2.20 shows the results of these amplitude sweep simulations for both designs.
One can clearly notice that the SNR suddenly drops at input levels close to 0.5. This hap-
pens because the modulator is no longer stable. For the modulator with an OSR of 32, the
available dynamic range is 90 dB. For the modulator with an OSR of 128, it is 160 dB.

Fig. 2.21 shows the inband power spectral density of the simulation outputs for a
0.5 signal amplitude. Clearly, the noise power assumes the spectral distribution predicted
by the NTF in Fig. 2.12, assuming a white quantization noise (the predicted noise spec-
trum is shown as a dashed curve). The zeros can be seen at the predicted frequencies and
the signal shows no harmonic distortion. The output of the modulator with OSR=32 dis-

plays an SNR of 80 dB, while the one with OSR=128 has an SNR of 155 dB.
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Fig. 2.20: Simulated SNR versus input amplitude for the 6M-order designs:

(a) OSR=32, (b) OSR=128.
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Fig. 2.21: Simulated inband power spectrum for the 6'M-order designs: (a)
OSR=32, (b) OSR=128.

2.5.6 Prototyping

Prototyping can be accomplished by synthesizing an HDL description of the cir-
cutt to a Field-Programmable-Gate-Array (FPGA). The register lengths can be modified

until a prototype using minimum hardware and yielding the expected SNR performance is
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Fig. 2.22: inband power spectra for the 6'"-order prototypes: (a) OSR=32, (b)
OSR=128.

obtained. The CAD tool described in Chapter 4 can generate VHDL code describing a
given modulator design. Such code has been compiled to implement the 6'"-order modula-
tor with OSR=32 onto a Xilinx 4010 FPGA with a 16-bit register length and 3 integer bits.
The inband spectral density of its output when stimulated by a sinusoidal signal of ampli-
tude 0.5 and period 142.2 is shown in Fig. 2.22(a). Likewise, Fig. 2.22(b) displays the
inband spectrum for the OSR=128 prototype with an input sinusoid of amplitude 0.5 and
period 568.9, which was implemented using a register length of 32 bits and 3 integer bits.
The spectra were obtained by sampling the digital bit stream at the output of the FPGA
and performing a Fast Fourier Transform on the data. Notice that the noise spectra are vir-
tually identical to the ones obtained from floating-point simulations, shown in Fig. 2.21.
The major difference is that the zeros of the NTF cannot be seen as sharply defined for the
prototypes as for the simulations. This is due to the noise floor generated by the finite reg-
ister lengths used in the prototypes. A DC error is also seen on these plots at a level signif-
icantly higher than the noise floor. The source of this offset is unknown. and it was not
seen in the results of simulations performed on the VHDL description of the prototypes.
This DC component was ignored when computing the SNR.

The SNR figures are comparable to those obtained from simulations. namely 80

dB and 155 dB, respectively for the low- and the high-OSR design. The prototypes thus
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validate the assumption that the fixed-point implementations of the modulator designs
behave as predicted by the linear model and by simulation. Bandpass and highpass proto-

types can be realized and tested in the same fashion with similar results.
2.5.7 Optimal NTF Design

An empirical study of one-bit delta-sigma modulators [25] gives the maximum
SNR that can be achieved by a modulator of a given order and OSR. The parameter which
must be optimized for maximum SNR is the NTF bound. The CAD tool presented in
Chapter 4 is capable of finding the optimal NTF bound.

The method consists of gradually increasing the NTF bound. and for each value
thereof. simulating the modulator with a variety of tone amplitudes and recording the
maximum SNR achieved over all these amplitudes. While it is a brute-force method. the

use of the CAD tool makes it reasonably fast, as described in more detail in Section 4.4.7.

2.6 Conclusion

This chapter contains two important contributions. The first is an overall modula-
tor topology for which the STF is unity, and this is essential for use in delta-sigma oscilla-
tor. The second is a complete design framework and internal modulator topology. the LDI-
ladder realization. Together, this method and topology vield hardware-efficient realiza-
tions of high-order digital one-bit delta-sigma modulator, whether for lowpass. highpass.
or arbitrary bandpass signal bands, based on quantizing the modulator coefficients to pow-
ers-of-two. Finally, simulations and prototypes prove the validity and practicality of these

modulator designs.
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Chapter 3
Arbitrary-Precision Delta-

Sigma Oscillators

3.1 Introduction

As pointed out in Chapter [, a general delta-sigma oscillator topology is intro-
duced and explained in detail in this chapter. [t overcomes the limited stability of Lu, Rob-
erts and Johns® [5] original 2" order design (shown in Fig. [.2), offers complete
flexibility in setting the location of the signal band in the Nyquist interval. and allows for
the use of a high-order modulator, for the purpose of reducing the inband noise power.

The generalized delta-sigma oscillator topology is shown in Fig. 3.1. Like Lu’s
design. it is constructed from a pair of discrete time integrators. a delta-sigma modulator.
and a multiplexer which implements the loop-gain coefficient k. [t also displays two new
features. First of all, the delta-sigma modulator is not any more the traditional 2" order
circuit with two zeros at DC, but a modulator of arbitrary order and topology whose Sig-
nal Transfer-Function (STF) is equal to 1. The second new feature is an additional feed-
back loop around the integrators which bypasses the modulator and multiplexer and
implements a scaling coefficient &;.

The special requirement of unity-STF imposed on the modulator is justified in Sec-
tion 3.2, which presents a linear model for the oscillator. Section 3.3 shows how the stabil-

ity of the circuit depends on the scaling coefficient in the modulator-multiplexer loop. Aj.
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while Section 3.4 demonstrates how the extra loop coetficient k| is used to keep the oscil-
lator stable by maintaining the multiplexed coefficient k; under an acceptable threshold,
no matter what the generated tone frequency is. It is also shown how to implement &; with
a minimal amount of hardware.

This chapter goes beyond the principles of operation and the design of single-tone.
lowpass delta-sigma oscillators. Section 3.5.1 explains how the same generalized topology
can be used to generate signals over any arbitrarv band within the Nvquist interval. i.e. to
realize bandpass and highpass oscillators. Some simple modifications to the hardware,
described in Section 3.5.2, result in multitone generators. useful in particular to excite a
circuit for intermodulation distortion measurements. Section 3.5.3 explains how the noise-

spectrum of the generated signal can be optimized in the context of mixed-signal self-test.

3.2 Linear Model

As was explained in Section 2.3, the delta-sigma modulator embedded in the oscil-
lator as shown in Fig. 3.1 can be represented by a linear model. even though it is a non-lin-

ear circuit. This model consists of a Signal-Transfer-Function (STF) from input to output.

1 x{ ==l x2

' + STF(z) —
"Ux g Q{::::::::
/ 7? s NTF(z) %= ¢

-k +kq Delta-Sigma
Modulator

1-bit output
\4

Fig. 3.1: Generalized Delta-Sigma Oscillator (DSO).
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and a Noise-Transfer-Function (NTF) from the quantization noise input g. internal to the
modulator, to its output. Typically, the quantization error g introduced by the one-bit quan-
tizer inside a delta-sigma modulator is assumed to be additive white noise (this was dis-
cussed in detail in Section 2.3). The modulator is then characterized by STF(Z) and

NTF{(z), according to the following equations:

Y(z) = STF(2) X,(2) + NTF (2) Q(2). (3.1

where Y(z2), X»(2) and Q(2) are the Z-transforms of v(n), x»(#n1) and ¢(n), respectively.

The linear model of the delta-sigma modulator, summed up by Eqn. (3.1), implies
a similar model for the delta-sigma oscillator circuit. The first part of this model ignores
the quantization noise and predicts the oscillatory behavior of the circuit. and is the coun-
terpart to the STF modelling of a modulator’s behavior with respect to its input signal. The
second part of the model consists of a new noise-transfer-function N7F'(z). which. along
with an estimate of the Power Spectral Density (PSD) of Q(z). describes the oscillator’s
output noise spectrum,.

In order to derive the signal behavior of the oscillator. let us assume for now that
the noise input ¢ of the modulator in Fig. 3.1 is zero. or equivalently set &(z) to O in Eqn.

(3.1). The circuit resonates if its loop gain has the following form:

o |
L) = —* (3.2)
(1-z"1)-

[n other words, the characteristic polynomial of the linear system must be:

I+ (k=2)z 1+ 272, (3.3)

where 4 is the total loop gain in the system. In that case the solution to the difference equa-
tions describing the output of the system with no input will be a sinusoid depending on the
initial conditions (x{(0) and x»(0)) and the loop gain & as described by Eqn. (1.1). provided
that O<k<4.

The actual loop gain of the circuit of Fig. 3.1 is found by breaking the loop at the

output of either of the integrators and is given by:

(k STF(z) +k,)z"!
L(z) = 2 T _)_])2') : (3.4)
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Comparing Eqn. (3.2) with Eqn. (3.4) indicates that the circuit will resonate. i.e. produce a
sinusoidal output. provided that STF(z) is unity for all z. In that case the total loop gain is
given by:

k = k0+kl {3.3)

and the frequency of oscillation. amplitude and phase of the output tone are still given by
Eqns. (1.2). (1.3) and (1.4). respectively.

Let us now develop an expression for the noise spectrum created by the oscillator
circuit. due to the quantization noise in the delta-sigma modulator. The oscillator can be
considered as a linear filter with an input ¢ located within the modulator. For purposes of
computing the inband noise. this input is considered to be white noise. even though in fact
it is correlated with the signal being modulated. If NTF(z) is the transfer function from g to
the modulator output. then we call NTF'(z) the oscillator’s Noise-Transfer-Function. that

is the transfer function from g to the oscillator output y. It is given by:
-1 22

Y(2) L+ (k -2)z +:

NTF'(z) = =2 = — - NTF(2) (3.6)

<) L+ (ky+k =2)2 +27

t

In addition to the poles and zeros of the modulator NTF. NTF'(2) has a pair of
zeros and a pair of poles located on the unit circle in the Z-plane (i.e. at physical frequen-
cies). provided that 0 < lkll <4 and O0< Iko + kl! < 4. The new zeros have a radial posi-
tion equal to Facos(l - |k1|/2) while the new poles are located at
tacos (1 — |k, +k,|/2) . the frequency of the generated sinusoid. The presence of the
added zeros. if they fall in the signal band. is somewhat beneficial in reducing the total
amount of inband noise power. The poles on the unit circle represent the fact that the svs-
tem 1s critically stable.

[n Section 2.3 an estimate of the PSD of Q(z) was derived for delta-sigma modula-
tors and given by Eqn. (2.9). The same argument leads to an equivalent expression for the

PSD of the quantization noise in the oscillator case:

1-P,

S (3.7)

Q=7 o 2
j( INTF’ (e127)|"df
)
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Note that NTF'(z) has taken the place of NTF(z) in Eqn. (2.9). What remains to be deter-
mined to complete the model is the signal power at the output of the modulator, Ps. Note
that it is equal to the power of the modulator input signal x> since STF(z)=1.

According to the previous discussion. we assume X to be a sinusoidal signal and
will prove the validity of this assumption later. If the amplitude is programmed to be equal
to A. then the PSD of the noise component of the output. according to Eqn. (3.7). is given

bv

-

[“AT./\'|NTF'(eI3’ffJI“
= (3.8)

i N
j INTE' (12| dw
)

The signal y feeds back toward the input of the modulator. seeing a transfer func-

tion given by:

X,(2) k():-!

- (3.9)

O ek -y
If ky is small. then this transfer function is small evervwhere except close to the pole fre-
quency and we can assume that the out-of-band noise is sufficiently attenuated for x- to be
effectively modelled by a sinusoid. thereby validating our initial assumption.

A 6™ order design has been simulated to prove the validity of Eqn. (3.8). The
modulator is the same as the one used in the example of Section 2.3. The tone period is set
to 1024, or equivalently the frequency is 0.00098. implemented with k(,=-2.34x10‘5 and
kl=2’”=6.10x10'5. Fig. 3.2(a) shows the spectral content of the output signal over the
Nvquist interval for a signal amplitude equal to 0.25 (-12 dB). Fig. 3.2(b) shows the
inband power spectrum (represented by the solid line). as well as the spectrum predicted
by the linear model (shown with a dotted line). Note that the continuous fifth-derivative
window has been applied to the data before the FFT was computed. as explained in
Appendix A. The SNR of the generated tone over the displaved frequency band is 130 dB.
This is 60 dB better than the 70 dB achieved by the 2" order oscillator over the same sig-
nal bandwidth (Fig. 1.4). This example illustrates the gain in signal precision obtained

when a higher-order modulator replaces the 2" order modulator. and the possibility to
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Fig. 3.2: (a) Nyquist-band and (b) Inband power spectrum for a 6"-order
oscillator. The solid line represents simulation data, while the dotted line
represents the noise spectrum predicted by the linear model.

achieve virtually limitless SNR (for all practical purposes) over small signal bandwidths.

as set out in Section 1.3.3.

3.3 Stability Study

3.3.1 Classification of Long-Term Behavior

Just like delta-sigma modulators, delta-sigma oscillators are non-linear systems.
and thus their stability properties depend on the input signal and cannot be predicted by
frequency domain methods. However, the fact that the linearized system described by
Eqn. (3.4) (with no noise input) is critically stable gives us hope that the actual non-linear
system may, in some cases, be critically stable too. Unfortunately it is not known how to
prove it rigorously. The stability of delta-sigma modulators is in general equally difficult
to assess rigorously, although in their case empirical findings [25] compensate for our lack
of theoretical knowledge. What is thus needed here is the equivalent empirical study

applying to delta-sigma oscillators. This section presents such a study.
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Fig. 3.3: Simulation of a 2"%-order oscillator: (a) tone amplitude; (b) power
spectral density of a 64k sample taken after 108 iterations.

Some non-linear effects can still be predicted in a qualitative way. using the linear
model. Because the delta-sigma modulator output can be equal to +1 or -1 only. the state
variables of the osciliator (x; and x>) loop can only take on a set of quantized values. After
each period of oscillation, these state variables may have values which correspond to a
slightly different amplitude of oscillation. This imprecision will atfect the amplitude of
oscillation over time. We can foresee two cases, one in which the amplitude of oscillation
converges to a value, hopefully close to the intended amplitude. and another one in which
the amplitude drifts away without bound, until the modulator reaches instability.

Fig. 3.3(a) illustrates the first of these possibilities. The amplitude is initially set to
0.1, but settles to 0.106 after about 500,000 samples. The simulation shown here lasted
5.000.000 iterations, after which time an FFT of the output was computed. It is shown in
Fig. 3.3(b). The tone displays an SNR of 68 dB.

The other case, in which the tone amplitude changes slowly but with no bound. is
illustrated by Fig. 3.4(a), which shows the simulated amplitude of a 6" order oscillator
with OSR 64. The period is 256. The tone amplitude is initially set to 0.1 but has
decreased to 0.03 after 10® samples. However it changes so slowly that at any given time

the quality of the signal is as predicted by the linear model. Fig. 3.4(b) shows the FFT of
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Fig. 3.4: Simulation of a 6''-order oscillator: (a) tone amplitude; (b) power
spectral density of a 64k sample taken after 108 iterations.

the simulated output over a 64k interval, taken at the end of the simulation, after 108 sam-
ples. Although the signal power is -30 dB rather than the intended -20 dB, the SNR is 96
dB. This oscillator could still be very useful in an application which can compensate for
the variation in tone amplitude.

In the spectral domain, these departures from the linear behavior can be said to be
caused by the noise generated by the modulator. This noise is scaled by &, before being
injected into the resonator. If & is large. then the disturbance created by this noise is likely
to throw the oscillator into instability very rapidly. If, on the contrary, kyyis small, then it is
reasonable to assume that the resulting closed-loop circuit may display the same oscilla-
tory behavior as the pure digital resonator (as argued in the previous section), at least over
some significant period of time after the initial conditions have been set. [n other words if
the noise injected in the resonator loop is small enough. we expect the oscillator to be able
to compensate for this disturbance. For this reason, A, must be kept under a certain thresh-
old to prevent the injected noise from throwing the system into instability. The object of

our empirical study is thus to find this threshold for various oscillator designs.
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3.3.2 Method

[n order to obtain an overall estimate of what constitutes an appropriately small
value of k), extensive simulations were conducted, for a variety of lowpass oscillator
designs. Six designs were simulated, using modulators of orders 2. 4, and 6. and for OSRs
equal to 32 and [28. In each case the modulator was designed to offer the maximum SNR
for the given order and OSR, as described in Section 2.5.7. using the resonator cascade
structure with non-quantized coefficients (note that the modulator coefficients need not be
quantized for this study, and thus any modulator structure will yield the same results). The
oscillators were designed with k;=0. i.e. with no feedback loop other than through the
multiplexer coefficient &, as in the original 2" order delta-sigma oscillator of [5].

Increasing values of ky were used: they were chosen so as to make visible the max-
imum range for which the various oscillator designs are stable, with the tone always being
generated within the signal band. Increasing tone amplitudes were also used. In each case
the time during which the oscillator remained stable was recorded. up to a maximum of
108 samples. This is an upper bound on the requirements of a practical test, i.e. a | second
test at a 100 MHz rate. Stability was defined as follows: the modulator is stable as long as
the modulator quantizer input is less than ten times larger than the quantizer output level,
in absolute value. This criterion is arbitrary but. from experience. captures the essential
facts about modulator and oscillator stability. When the oscillator was still stable at the

end of the simulation, the amplitude and SNR of the generated tone were computed.
3.3.3 Results

Note that only results for lowpass oscillators are presented here. Similar results
hold for bandpass and highpass oscillators.

The following six tables contain the simulation results. Each column corresponds
to a given value of k. The value of the tone frequency is given relative to the sampling
rate as f, and relative to the upper signal-band-edge frequency as f/f,,. A; is the tone ampli-
tude programmed by the initial register values in the oscillator. Each table cell is shaded so

as to represent the outcome of the simulation in the following manner. [f at the end of the
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simulation the tone amplitude was still within 10% of the intended value, the cell is not
shaded and displays the final tone amplitude A, and the SNR at the end of the simulation.
[f the modulator was still stable but the tone amplitude had departed from the intended
value by more than [0%, the corresponding table cell is lightly shaded, and again contains
the values of A and of the SNR. Finally, when the modulator had become unstable before
the end of the simulation time, the cell is a darker shade of grey and displays the simula-

tion iteration at which instability was reached.

Table 3.1: Oscillator Stability Results for N=2, OSR = 32

ko kg=106 ky=107

f 1.6x107 5.0x10™
ffu 0.010 0.032
A= Ar=0.0467 Ar=0.264
0.025 SNR =36.9dB SNR =51.7dB
A = Ap=0.109 A =0.487

0.1 SNR =45.6 dB SNR =56.4 dB
A = Ap=034 Ar=0.796
0.25 SNR = 54.1 dB SNR = 56.0 dB
A, = Ap=0.542 Ap=0.808

0.5 SNR =57.8 dB SNR =55.5dB
A= Ar=0.780 A,=0.781
0.75 SNR =56.7 B SNR = 56.5 dB

Table 3.2: Oscillator Stability Results for N=2, OSR=128

kg 106 103 1o s5ei07
! 1.6x107 5.0¢10 1.6x107 3.6x/07°
fifu 0.041 0.129 0.407 0.911
A, = Ap=0.0245 Ap=0.0241 Ar=0.0258 Ap=0.0248
0.025 SNR = 60.7 dB SNR = 60.9dB SNR = 58.1 dB SNR = 53.2dB
A, = Ay=0.0997 Ap=0.100 A, =0.0960 Ap=0.0923
0.1 SNR = 74.9 dB SNR = 74.5dB SNR =71.8 dB SNR = 65.3 dB

wn
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Table 3.2: Oscillator Stability Results for N=2, OSR=128

ko 106 1073 o+ Sxl0™
! 1.6x107 5.0x10* 1.6x107 3.6x/07°
ffu 0.041 0.129 0.407 0911
A= Ar=0.250 Ap=0.249 Ap=0.246 Ap=0.243
0.25 SNR =82.4dB SNR =81.0dB SNR =79.8dB SNR=723dB
A= A= 0.503 A= 0.504 A4,=0517 Ap= 0.301
0.5 SNR =87.2dB SNR =87.7dB SNR =86.3 dB SNR=73.1dB
A= A;=0.752 Ap=0.751 4,=0.752 Ap=0.744
0.75 SNR =83.1dB SNR =86.2dB SNR =89.3dB SNR =80.2 dB
Table 3.3: Oscillator Stability Results for N=4, OSR=32
ko 106 1073 104
f 1.6x107* 5.0x107 1.6x107
flfu 0.010 0.032 0.102
A= Ar=0.0247 A;=0.0247 A =0.0234
0.025 SNR =54.4dB SNR =354.1dB SNR =529dB
A= A,=0.0997 A=0.104 unstable at
0.1 SNR = 66.3 dB SNR =65.7dB 1=2.320e+07
A, = Ap=0.274 unstable at unstable at
0.25 SNR =74.0dB t=9.37de+07 t=1.045e+07
A, = Ay=0.535 unstable at unstable at
0.5 SNR =79.7 dB t=1.311e+07 t=3.074e+06
A, = unstable at unstable at unstable at
0.75 =181 t=930 =318
Table 3.4: Oscillator Stability Results for N=4, OSR=128
) 106 103 10 5xl0™
f 1.6x107* 5.0x107 1.6x107 3.6x/07
fifu 0.041 0.129 0.407 0.911
4, = A/»= 0.0248 A= 0.0246 A= 0.0256 r\, =0.0298
0.025 SNR =108.9dB SNR = 108.0dB SNR=104.2dB SNR =96.8 dB
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Table 3.4: Oscillator Stability Results for N=4, OSR=128

Ky 1076 107 10 Selot

f 1.6x107* 5.0x10 1.6x1073 3.6x/07
flfut 0.041 0.129 0.407 0.911
A, = A;=0.100 Ar=0.101 Ar=0.996 A;=0.113
0.1 SNR =119.0dB SNR = 119.1 dB SNR =113.7dB SNR = 110.4 dB
A, = Ay=0.250 Ag=0.251 A, =0.247 A;=0.286
0.25 SNR = 127.2dB SNR = 127.1 dB SNR =117.4dB SNR = 116.0 dB
A= Ay=0.500 Ar=0.501 unstable at unstable at
0.5 SNR=132.3dB SNR = 133.3dB t=5.615e+07 1=8.308e+07
A= unstable at unstable at unstable at unstable at
0.75 t=4.900e+01 t=4.600e+01 t=4.500e+01 t=1.760e+02

Table 3.5: Oscillator Stability Results for N=6, OSR=32

kg 10°° 1x107 Ixio™
f 1.6x107 5.0x107 1.6x107°
Hfu 0.010 0.032 0.102
A= Ap=0.0248 Ar=0.00248 A;=0.0289
0.025 SNR = 68.4 dB SNR =67.8 dB SNR =68.1 dB
A = Ar=0.104 Ar=0.154 unstable at
0.1 SNR =81.2dB SNR =83.0dB 1=4.707e+07
A, = Ap=0.261 Ay=0.375 unstable at
0.25 SNR =87.7dB SNR =90.9 dB 1=2.219e+07
A= unstable at unstable at unstable at
0.5 t=3.645e+05 t=8.456e+04 t=1.618e+05
Table 3.6: Oscillator Stability Results for N=6, OSR=128
ko 108 1x107 1xl0™ selot
f 1.6x107 5.0x107 1.6x107 3.6x107°
fu 0.041 0.129 0.407 0.911
A= Ar=0.0250 A;=0.025 Ar=0.0250 A, =0.0251
0.025 SNR = 146.6 dB SNR = 147.5dB SNR = 144.3dB SNR = 140.2 dB
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Table 3.6: Oscillator Stability Results for N=6, OSR=128

) 10°% Ix10°8 Ixio sxlo

f 1.6x107 5.0x107 1.6x10°% 3.6x/07
fifu 0.041 0.129 0.407 0.911
A= A;=0.100 A;=0.100 A,=0.100 A;=0.100
0.1 SNR = 157.1dB SNR =157.0dB SNR = 154.5dB SNR=157.1dB
A= Ap=0.250 Ap=0.250 A,=0.250 A,= 0251
0.25 SNR = 165.6 dB SNR =165.2dB SNR =163.7dB SNR =165.0dB
4,= unstable at unstable at unstable at unstable at
0.5 t=9163 t=6989 1=1629 t=4712
A= unstable at unstable at unstable at unstable at
0.75 =38 t=39 =42 t=146

The following trends are clearly visible from the collected data. First of all, oscilla-
tors designed for the lower OSR value (i.e. 32) remain stable only for small values of k.
such as 10, When kg is set to 107 the low-OSR oscillators remain stable only for small
signal amplitudes. This is true for all three orders in these results. namely 2. 4 and 6.
Another trend is that as the modulator order is increased. the range of stable input ampli-
tudes diminishes. This is not surprising. given that the same fact holds for delta-sigma
modulators. Finally. one should note the accuracy of the tone amplitude tor the 6'"-order
design with OSR=128, throughout the entire range of values of k. (These values of A,
span most of the signal band for an OSR of 128). Very little variation in amplitude is
observed.

These results. which were collected with &, set to 0. lead to the expected conclu-
sion that k5 must be kept smaller than some threshold value. This will be accomplished in

the next section by letting k| take non-zero values.
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3.4 Minimal Realization of Stable Oscillator

3.4.1 Design Method

We now turn to the problem of realizing an oscillator capable of generating stable
tones over a given signal band. If the signal band extends from the radial frequencies ®, to

. then the total loop gain & must be programmable in the range [k, .k,] given by:

k,p, = 2(l—cos(z)d.h) (3.10)

An empirical study similar to the ones presented in Section 3.3 must be conducted so as to
obtain a bound on &, which ensures enough stability. Once this bound is known. a set of
discrete values for k| are chosen. so that the difference between any two adjacent values of
k| 13 less than twice the bound on k. These discrete values of k; are chosen so that they
can all be realized by sums and differences of only a few powers-of-two. An algorithm
which computes a set of appropriate values of k, and their CSD realizations is imple-

mented in the CAD tool and explained in Section 4.4.3.
3.4.2 Design Example

As an example. consider the design used in the previous section for N=4 and
OSR=128. The values of & for which the tone frequency spans the signal band are in the
interval [0.0. 6.02x107*]. The stability study performed in Section 3.3 revealed that the
oscillator is stable for signal amplitudes up to 0.5 for k0=10'5 but not for k0=lO"‘. We thus
set the bound on kj to 5x107. A possible set of CSD values for &, such that &j+k| spans
the interval {0.0.6.02x10™*] with the constraint that k()<5x10‘5 is then given below in Table

3.7.

Table 3.7: Discrete values of k1 and their CSD realizations

k) CSD REALIZATION
3.05x107 »Is
1.22x107 y-13
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Table 3.7: Discrete values of k1 and their CSD realizations

ky | CSD REALIZATION ‘
2.14xi0™ 302 AeIf
2.05x107~ | 113, ae1s
3.66x107 AT NS :
4.38x107 a-ilaelf ’
$A49x107 AL
6.10x10~ | Sil_aniz

These values can be realized by the simple arrangement shown in Fig. 3.5. using
five fixed-shift units. three multiplexers. one adder and one numeric inverter. The fixed- or
hard-wired-shift units implement the multiplications by the powers-of-two 27!! 10 271°. To

program the oscillator to operate at a given frequency. the following method applies. First

. 4 > X 2'1‘l ;__

r—.- x 2-12 ,___

—  x213 > MUX
|

17
_—"j X 2-14

Fig. 3.5: Implementation of the programmable CSD-coefficient ;.




Chapter 3: Arbitrary-Precision Delta-Sigma Oscillators

the appropriate loop gain k is computed. Then the closest available value of k| is selected
and the multiplexers in the schematic of Fig. 3.5 are set so as to implement it. Finally. &, is
computed as the difference between & and &;.

As an example, Table 3.8 gives the revised stability results for two values of 4.
Also listed are the values of Ay and k. These results. when compared to those of Table 3.4.
show that the use of the CSD-coefficient &, indeed solves the stability problems previ-

ously encountered.

Table 3.8: Revised Oscillator Stability Results for N=4, OSR=128

k 107 Sxio™
k| 1.22x167% = 2713 549107 = 271 4 2014
kq 220007 A9l
f 1.6x107" 365107
7, 0.467 1911
A, = A;=00252 A, =0.0248
0.025 SNR = 108.2 dB SNR = 108.1 dB
A, = Ar=0.100 Ar=0.101
0.1 SNR =1199 dB SNR = 118.1 dB
4, = A,=0.251 A,=0.253
0.25 SNR = 1264 dB SNR = 127.1 dB
A, = A, =0.502 A,=0.505
0.5 SNR = 135.0dB SNR =132.4dB
4, = unstable at unstable at
0.75 t=4.50e+01 1=3.00e+02

This oscillator design is thus very stable. and offers a wide tone dynamic range.
The latter fact is illustrated by the results of simulations for mid-band tones of amplitudes
varving from 1077 up to past the onset of instability. with results shown in Fig. 3.6. These
simulations were again conducted over 10® samples. The peak SNR is approximately 130

dB.
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Fig. 3.6: SNR vs programmed tone amplitude for the N=4, OSR=128

3.4.3 FPGA Prototype

The stable 4™-order design presented in the previous section was to be imple-
mented on a Xilinx FPGA, using VHDL-code generated by DSMOD. the CAD tool pre-
sented in Chapter 4. The modulator uses a 24-bit numerical format with 2 integer bits.
while the oscillator uses a 38-bit register-length. Shorter registers could be used in the
oscillator by scaling its internal variables. but at the cost of reduced frequency resolution.
Unfortunately, once synthesized (using the Synopsys FPGA compiler) the prototype
required more hardware than is contained in a single Xilinx 4010 FPGA. the prototyping
platform available for this research work. However. previous experience has demonstrated
that for smaller circuits the FPGA prototype behaves according to a simulation of the
VHDL code as performed by the Synopsys VHDL simulator.

The inband spectrum produced by the VHDL-level simulation of this prototype for
a total loop gain of 5x 107 and a tone amplitude of 0.5 is displayed in Fig. 3.7. The SNR is

equal to 130 dB as predicted by the DSMOD simulations.
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Fig. 3.7: Inband power spectrum generated by the 4'"-order oscillator
prototype with OSR=128.

3.5 Additional Improvements

[n the context of the generation of stimuli for frequency-testing analog circuits,
three additional improvements are presented. The first is the generation of tones over an
arbitrary frequency band. The second is the simultaneous generation of multiple tones.
and the third is the matching of the oscillator’s noise spectrum to the response of the cir-

cuit under test.

3.5.1 Arbitrary Passband

So far it has been assumed that a sinusoid was to be generated at a frequency close
to DC, i.e. that we were dealing with lowpass oscillators built using lowpass modulators.

[n many applications it may be desirable to generate tones in an arbitrary frequency band
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Fig. 3.8: Power spectrum of the signal generated by an 8".order bandpass
oscillator: (a} Nyquist interval; (b) signal band.

in the Nyquist interval. In that case the modulator must be designed for the same signal
band: in other words a bandpass or highpass modulator must be used.

The topology for a bandpass oversampled oscillator presented in [12] and [15] can
be used with a high-order bandpass delta-sigma modulator to create a high-quality band-
pass signal generator. Alternatively, the topology of Fig. 3.1 can be used: k; must be cho-
sen so as to keep the value of ky small when frequencies in the signal band are generated.
The delta-sigma modulator used in the circuit must be a bandpass modulator whose signal
band corresponds to the oscillator’s range of tone frequencies. A bandpass modulator can
be obtained from a lowpass modulator by replacing each integrator by an appropriate
biquad. based on a frequency transformation equation for discrete-time systems, as
explained in detail in Section 2.5.3.

Fig. 3.8 shows the spectrum generated by an 8M-order bandpass oscillator with
OSR=128. The signal in this example is centered at a quarter of the sample rate. but any
other center frequency is possible. The modulator is realized with quantized coefficients
for hardware-efficiency. Simulations over a billion samples indicate that this design is sta-
ble. The spectral plots of the output show an SNR equal to 130 dB for a signal amplitude
of 0.5. Notice the zeros of the noise spectrum in the signal band; four of the notches corre-

spond to the zeros of the modulator NTF, while the fifth one at midband is created by the
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resonator loop. As a comparison, a bandpass modulator of order 4 such as the one pre-
sented in [12] provides an SNR of 85 dB for a signal amplitude of 0.5. and an OSR of 128.
This examplifies the fact that increasing the order of the modulator increases the SNR of
the generated tone for bandpass oscillators also. Note also that one advantage of the band-
pass oscillator over the lowpass version is that no harmonics of the generated signal are
present in the signal band.

Highpass oscillators are also possible. The CSD loop gain coetficient £ is set to a

value near 4, and a highpass modulator as described in Section 2.5.3 is used.

3.5.2 Multitone Oscillators

Multitone signal generators are essential for frequency response and intermodula-
tion tests, such as the ones presented in [3]. The principle of time-division multiplexing is
used to modify a single-tone oscillator to a multitone one, as explained in [6] and [8]. To
obtain an M-tone circuit. each register in the original circuit must be replaced by M regis-
ters in series, both in the resonator loop and in the modulator, as shown in Fig. 3.9. Note
also that the resonator coefficients &, and k| are cycled through M distinct values. corre-
sponding to the frequencies of the M tones. This is achieved by using a simple multiplex-
ing scheme and multiples of the main clock signal.

Although previous studies were concerned with multitone generators using and.
order lowpass [6] and 4"P-order bandpass modulators [12] only. the principle applies
equally to higher order circuits, as first reported in [16]. A higher-order generator is capa-
ble of generating more tones at a given SNR, or alternatively it can spread the same num-
ber of tones over a wider signal band, still with the same SNR. Thus. even when extremely
low noise levels are not required. higher-order oscillators can still be used to speed up the
testing process by exciting an analog circuit at a greater number of frequencies simulta-
neously, or to test circuits over a wider bandwidth.

Fig. 3.10 shows the simulated output of a four-tone generator based on a 4% order
lowpass delta-sigma modulator. The amplitude of each tone was set to 0.25 or -15 dB.

Since the four tones are actually time-domain multiplexed. their effective power is divided
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by four, resulting in -21 dB tones as seen on the plot (the tones are actually slightly lower
on the plot due to the windowing of the data before the FFT is computed).

An attractive feature of this generation scheme is that the parameters of each sinu-
soid (amplitude, frequency and phase) can be set independently of the other sinusoid. This
is very useful to control the crest factor of the complex sinusoid used to excite the analog
circuit under test, so as to avoid saturation and other non-linear effects. Note also that

bandpass and highpass multitone generators are also possible.
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Fig. 3.9: M-tone signal generator.
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Fig. 3.10: Simulated inband spectrum of a four-tone, 4'".order lowpass
oscillator.
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Fig. 3.11: Overall structure of a typical mixed-signal IC

3.5.3 Optimized Noise Spectrum

The additional degrees of freedom provided by a high-order design can be used to
shape the out-of-band noise in the digital domain so as to accommodate the limitations of
the analog circuit under test. (This concept has been proposed for the design of delta-
sigma modulators in general in [46]).

To illustrate this concept we consider the situation in which the analog-to-digital
converter contained in a simple lowpass codec (shown in Fig. 3.11) must undergo a sinu-
soidal-input based test. In many instances the anti-aliasing filter (AAF) preceding the
ADC-proper will be much less sensitive to high levels of high-frequency input-noise than
the ADC, since it is designed to attenuate such inputs. High noise levels at some frequen-
ctes outside the signal band could trigger non-linear effects and corresponding responses

of the ADC in the signal band, which would decrease the test accuracy.

67




Chapter 3: Arbitrary-Precision Delta-Sigma Oscillators

Our strategy here is to match the noise spectrum of the signal source to the transfer
function of the AAF, so that the ADC sees a uniform noise power spectrum in addition to
the sinewave input. In effect, this kind of noise-shaping maximizes the dynamic range of

the test stimulus seen by the ADC by using the AAF as a lowpass filter.

3.6 Conclusion

High-order delta-sigma modulation-based analog signal generation has been
shown to be feasible, both with respect to issues of stability and of hardware cost. The
increased accuracy of high-order designs. which has been demonstrated by simulation
results and experimental data, can be used to achieve various improvements in the quality
and speed of on-chip testing of analog circuits. In particular. for a given signal bandwidth
and digital clocking rate. high-order designs present two major improvements over lower-
order designs previously presented: purer tones can be produced and more simultaneous
tones of a given SNR can be produced. Also. the characteristics of the analog device being
tested can be better matched so as to reduce unwanted non-linear responses to the out-of
band noise associated with delta-sigma-modulation-based signal generation. which would
degrade the test. All these improvements were made possible by limiting the gain & in the
delta-sigma modulator loop: this in turn was accomplished by including an additional.

hardware-efficient scaling loop with gain &, which bypasses the modulator.




Chapter 4
A Computer-Aided-Design
Tool: DSMOD

4.1 Motivation and Requirements

The delta-sigma modulators and oscillators presented in Chapter 2 and Chapter 3
are difficult to design by hand, because many of the design steps are computationally
intensive. Some of these require solving non-linear equations (NTF design. structure map-
ping) while some are exhaustive searches through a solution space (coefficient quantiza-
tion. oscillator design. optimal NTF design). Also. simulation is essential to determine
stability and frequency-domain measures such as SNR and harmonic distortion. Finally.
fast prototyping of these circuits is desirable in order to assess the effects of finite word-
length and their behavior over very long periods of time. before they are integrated onto
silicon. which represents a much larger investment in time and resources than prototyping.
Quick prototyping is possible with Field-Programmable-Gate-Arrays (FPGAs). which can
be synthesized with a Hardware-Description-Language (HDL) compiler. Hand-coding the
HDL description of a circuit requires technical knowledge of the language and may take
some time to debug, and this can advantageously be automated too.

These facts motivated the creation of a computer-aided design (CAD) tool to

implement design, simulation. and prototyping of digital delta-sigma modulators and
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oscillators of arbitrary order and signal band. This tool bears the name DSMOD for
“Delta-Sigma Modulator and Oscillator Designer™.

Section 4.2 of this chapter covers the existing CAD tools which solve problems
stmilar to the ones at hand. and discusses their applicability to the design of delta-sigma
oscillators. Based on that brief discussion. Section 4.3 explains the choices that were made
regarding the actual implementation of DSMOD. Section 4.4 presents each of the capabil-
ities of the tool in detail. including a description of the user interface and of the algo-

rithms. Possible improvements to the tool are discussed in Section 4.5.

4.2 Existing CAD Tools

Numerous general-purpose fiiter and circuit design tools exist but they are not
reviewed here because they cannot provide an integrated environment used to design. sim-
ulate and implement digital delta-sigma modulators and oscillators. More specialized tools
which deal with specific aspects of these three tasks are regularly reported in the literature.
FiltorX [46], for instance. can design continuous time filters of any order. according to a
variety of optimization criteria and against arbitrary sets of constraints on the magnitude
and phase response. This tool could be used to design a NTF. The shortcoming is that the
rest of the design and simulation work must still be pertormed by another tool. However
when a very special NTF is needed (such as for optimizing the noise spectrum of a signal
source in a mixed-signal testing application. as proposed in Section 3.5.3). a tool such as
FiltorX should be used. and the resulting NTF can then be passed on to the delta-sigma
oscillator CAD tool.

Another design step for which a number of tools exist is coefficient quantization.
or digital filter design with CSD coefficients. Many such tools optimize the design of
finite-impulse response (FIR) filters with CSD coefficients [40][+1][42][43]. These filters
have a large number of zercs (sometimes more than 100) and the tools generally seek to
minimize the maximum ripple in the passband and stopband. The linear filters embedded

in delta-sigma oscillators are generally infinite-impulse response (IIR) filters. and there-
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fore the aforementioned these tools cannot be used. In addition it may be difficult to inte-
grate these specialized tools with our delta-sigma oscillator design tool.
DSMOD. which is the focus of the remainder of this chapter. was first presented in

[18] as an integrated design and prototyping environment for delta-sigma oscillators.

4.3 Implementation Choices

4.3.1 Programming Platform

The preceding section points to the fact that even though a specialized CAD tool is
powerful to solve part of the design problem. it may be difficult to link it to the rest of the
design flow. For this reason the tool presented here was programmed for MATLAB [44].
due to the flexibility and widespread use of this computation and visualization software
package. In other words. MATLAB constitutes the common basis through which a number
of tools can communicate at a high-level of abstraction by sharing variables and functions.
[n addition. MATLAB handles all the computational aspects of the design problem and
can be supplemented with a variety of toolboxes containing high-level functions such as
transfer function design and non-linear equation solving. as well as graphical user inter-
face (GUI) capabilities. thereby greatly reducing the difficulty of the task of programming
the CAD tool. Finallv. MATLAB is an interactive software as well as a programming lan-
guage. and thus debugging the tool is made easy by direct access to all the variables and
functions. The only drawbacks are that MATLAB has little provisions for object-oriented
programming. has no data structures except arravs. and its language 1s interpreted rather
than compiled.

Simulations require simpler mathematical operations since they implement simple
difference equations. Thus they are better implemented in a compiled language. C was
chosen for this purpose. given its widespread use across all computer platforms. and even
as a functional modelling language in some instances. for example for Digital Signal Pro-
cessors. The simulators are interfaced with the rest of the tool via data files using a prede-

termined format.
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4.3.2 Graphical User Interface

The advantages of graphical user interfaces (GUIs) need not be proven here, as vir-
tually all of today’s software incorporate one. The CAD tool should make the design flow
explicit. and let the user see only the relevant design parameters. The result is that no time
is wasted wondering what is the next design step and what parameters are important.
Rather. any extra time can be used to evaluate the impact of a wider variety of design
choices.

A CAD tool can also be useful as a teaching tool. since it exposes the user to all
aspects of the design. Actually. since the design of delta-sigma modulators and oscillators
cannot be done by hand. due to the complexity of the task. learning to design them
amounts to learning how a computer can design them. This learning process would be
impeded if a specific language had to be learned in order to do the design and visualize the
results. With a graphical interface. the user focuses solely on the design steps. parameters
and results (transfer function plots. coefficient values. circuit topologies. simulation out-
puts) without getting involved in producing all these results. DSMOD has been used at
McGill University in the graduate VLSI design project course.

Examples of the GUI will be shown in the next section. as they relate to each indi-

vidual module of the CAD tool.

4.4 Design Flow and Algorithms

Let us reiterate the problem to be solved by the oscillator designer using DSMOD.
Given specifications on the signal bandwidth and on the SNR of the generated tone over
the signal band. a detailed signal flow graph (SFG) of a delta-sigma oscillator must be
obtained and validated through simulation and prototyping. This signal flow graph may
look like the one shown in Fig. 4.1. It consists of two main digital blocks: a Lossless-Dis-
crete-Integrator (LDI) resonator and a [-bit digital delta-sigma modulator (here a lowpass.
LDI-ladder based modulator is depicted. although modulators of other topologies and
passband types could be used; refer to Section 2.5.2 and Section 2.5.3). The modulator is

of arbitrary order N. All the scaling coefficients except & (4| to Ax. B| to By and &; to
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Fig. 4.1: Generalized signal-flow graph of the delta-sigma oscillator.
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kyp) are CSDs (sums/differences of powers of two) and so are realized by shift units and
adders instead of multipliers. As demonstrated in Chapter 3, when all the coefficients and
the initial values of the resonator integrators (x;(0) and x, (0)) are properly chosen, the cir-
cuit resonates and creates a one-bit output whose power density spectrum is composed of
a single tone and noise concentrated at frequencies outside the signal band. The design
objectives are to determine the modulator topology. the order of the modulator (i.e. the
number of integrators in the modulator), a set of cheaply realizable modulator coefficients
and a set of power-of-two resonator coefficients (2% to 25v) which implement the pro-
grammable coefficient k; so as to ensure that the oscillator is stable and produces tones of
the required SNR over the given signal band.

The next section describes the entire design flow from a global perspective. The
following sections explain each design step in detail. In each case the graphical interface
and design parameters are presented, the relevant algorithms are explained. and the out-

puts (text, plots and files) created by the tool are described.
4.4.1 Overview of the Design Flow

The delta-sigma modulator used in the oscillator sets the resolution and bandwidth
of the oscillator’s output signal. Thus, as shown in Fig. 4.2, the design flow starts with the
creation of a delta-sigma modulator (represented by the grey box), more specifically by
specitying the signal band and designing a modulator NTF which results in an appropri-
ately low noise floor in the signal band. An arbitrary NTF can be designed. or alternatively
DSMOD can search for an NTF which maximizes the SNR of the modulator output (note
that it ts hard to predict the input level at which the maximum SNR is reached, thus the
need to perform a search). [n either case the result is a pair of polynomials or equivalently
a set of poles and zeros representing the desired NTF.

At this point the user can elect to either design an oscillator or to continue the mod-
ulator design procedure. The latter option requires that the user select a modulator topol-
ogy, for which DSMOD computes the coefficients which realize the desired NTF (shown

as “Structure Mapping” in Fig. 4.2).

74



Chapter 4: A Computer-Aided-Design Tool: DSMOD

Modulator Design

NTF Design Optima} NTF
Design
Structure Mapping Oscillator Design
/
/
/
/

Coefficient Quanti-
Zation

— o — e — — — — a——— wwe 3

VHDL Code Gener-

. Simulation
ation

Fig. 4.2: Overview of the DSMOD’s design flow.

After the modulator coefficients have been computed, the tool can perform a simu-
lation of the modulator or of the oscillator (if one has been designed, as implied by the
dashed arrows), which is needed to establish stability, SNR, and distortion level. Another
available option is to quantize the coefficients to CSDs, which also leads to the possibility
of simulating the resulting design.

Designing the oscillator amounts to computing a minimal set of power-of-two val-
ues of 25 to 25 which ensure that tones can be generated at frequencies throughout the

signal band while kg is kept below a threshold specified by the user. The modulator need
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Fig. 4.3: (a) Power spectra of the simulated output of oscillators using

delta-sigma modulators of order 2, 4 and 6; (b) using a 6'P-order modulator,
for two different bandwidths.

not be designed for this step; only the signal band must be known by the tool. However.
simulating the oscillator (and thus proving its stability) requires that a modulator have
been designed up to *“*Structure Mapping”.

Lastly, a prototype can be generated only if the modulator coefficients have been

quantized. Again, either a modulator or an oscillator prototype can be generated.

4.4.2 NTF Design

Fig. 4.3(a) shows examples of power spectra for oscillator designs using modula-
tors of various orders N. It illustrates one of the basic design trade-offs involved here:
modulator order vs. dynamic range. [t can be seen that higher-order designs result in a
lower noise-floor in the passband, while they require more hardware. Using DSMOD, one
can quickly find the modulator order needed to meet the design specifications. Another
trade-off is that of bandwidth vs. dynamic range. If the range of signal frequencies is
extended relative to the digital clock rate F; and the order of the modulator kept constant.
then the noise floor is raised, as illustrated by Fig. 4.3(b). However, if the physical band-
width is fixed, this means that a slower digital clock rate can be used. The NTF design

module lets the user explore and optimize both these trade-offs.
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Fig. 4.4: Dialog box for the NTF design module.

The user-interface for the NTF design is shown in Fig. 4.4. The design parameters
can be subdivided in two sets. The passband type, the oversampling ratio (OSR) and the
center frequency F,. define the signal band. The other parameters determine the shape of
the NTF. The NTF can be elliptic, butterworth with optimally-located zeros, or supplied
by the user; this is controlled by the *“NTF Type™. The order of the NTF is given by "LPP
Order’ if it is lowpass or highpass, or twice ‘LPP Order’ if it is bandpass. Finally, the NTF
Bound allows for controlling the stability of the modulator. It can be set to any value
between 1.0 and 2.0; values closer to 2.0 yield modulators with a higher inband noise
attenuation but a smaller range of stable input amplitudes. Finally, the bandwidth factor
(“BW Factor” in the dialog box) allows for designing a NTF attenuating the quantization
noise over a smaller or larger band than the actual signal bandwidth; this may be desired to
adjust the design against subsequent alterations of the NTF due to coefficient quantization
effects.

The *“Opt. Butter.”” NTF type stands for “Butterworth with optimally located
zeros™. This design option produces the best NTFs, in our experience. The design algo-

rithm designs a lowpass prototype NTF as follows. Let us first recall that, as stated in Sec-
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Fig. 4.5: Plots created by the NTF design module: (a) Pole-Zero plot, (b)
Inband plot of the NTF magnitude, (c) Nyquist-band plot of the NTF

tion 2.5.1, the NTF numerator and denominator must have equal leading coefficients.
DSMOD designs a succession of highpass butterworth transfer functions with that prop-
erty: the only degree of freedom is the natural frequency of the transfer function. As the
natural frequency increases above 0, the maximum value of the NTF magnitude increase
above 1.0. The procedure is stopped when the NTF bound has reached the desired value.
The poles of the resulting transfer function are kept, and the zeros at DC are replaced by
zeros on the unit circle, optimally located in the signal band so as to maximize the average
inband attenuation. The optimal zero locations are taken from [25]. If the desired NTF is
bandpass or highpass, the poles and zeros are then mapped as explained in Section 2.5.3.

Fig. 4.5 shows the graphical output of the NTF design operation. Three plots are
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created; the first displays the poles (x's) and zeros (0’s) of the designed NTF, the other two
show the NTF magnitude response over the signal band and over the Nyquist interval, that

is from DC to half the sampling rate.

4.4.3 Structure Mapping

DSMOD offers a choice of three modulator topologies, namely the integrator cas-
cade, the resonator cascade. and the LDI-ladder. These are shown in Fig. 2.11, Fig. 2.15
and Fig. 2.15, respectively, in Section 2.5.2. Once the user has selected one of these three
topologies (via a trivial dialog box, not shown here for the sake of conciseness), the tool
computes the A and B coefficients for which the modulator will have the desired NTF.
This is done by simultaneously solving the equations expressing each term of the NTF
numerator and denominator in terms of the modulator coefficients. [t turns out that for the
three topologies the numerator of the NTF depends only on the A coefficients, and thus the
procedure of solving the equations is broken up in two distinct steps, first for the A coeffi-
cients, then the B coefficients.

For instance, the equations relating the NTF of a 4" order lowpass LDI-ladder

modaulator to its coefficients are given below:

- -2 -1
I +az +a,z +al + 1

NTF(z) = - — — (4.1)
byl +byz b,z TH+bz 41
where
a, = AjA, +AA; +AJA - 4, (4.2)
ay = (A3A;—2)A A, - 24,4, - 2A;A, +6; (4.3)
and
- i ~ - ]
[ 1 A, 0 0 I—BI a, b,
A3 +A A -3 AAA, -2 A|A, AAALIBy lay) _ 16) (4.4)
3-A,A-AA, A -AA, 0 [[By] |q b3
| -1 0 0 0 By [1] b
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Fig. 4.6: Dialog box for the coefficient quantization medule.

The tool solves the non-linear expressions given by Eqns. (4.2) and (4.3) simultaneously
using MATLAB’s optimization toolbox, and thus obtains the A coefficients. [t then solves
the linear matrix equation given by Eqn. (4.2) so as to obtain the B coefficients. Similar
equations describing all three topologies, for orders 2 to 6. are programmed into DSMOD.

[f the modulator is highpass, the same equations apply. and the integrators are
replaced by differentiators, as explained in Section 2.5.3. If it is bandpass, the integrators
are replaced by biquads described by a single coefficient C, and the equation for this

biquad coefficient, Eqn. (2.16), is solved in addition to the lowpass equations.

4.4.4 Coefficient Quantization

Fig. 4.6 shows the dialog box for the coefficient quantization operation, and Fig.
4.7 represents the algorithm. Each of the coefficients can be quantized to a specified num-
ber of power-of-two terms, from 1 to 6 (“#CSDs for A/B/C”). If more than | CSD term is
chosen, then the precision of the quantized coefficient values to be used is specified in bits.

That is, if the precision is 8 bits, then the CSD terms for a single coefficients will not differ
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Fig. 4.7: Algorithm for coefficient quantization.

by more than a factor of 2%. These two parameters control the initial step of the algorithm.
in which the allowed CSD values are computed. The parameter “# Adj. Values™. on the
other hand. controls the extent of the search. That is. for each coefficient. as shown in Fig.
4.7. the specified number of CSD values directly above and below the initial coefficient
value are tried: if | adjacent CSD value is specified. the search will explore fewer quan-
tized coefficient combinations; if more adjacent CSD values are specified. the search will

be broader. Each possible set of quantized coefficients is evaluated for stability and inband
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(a) (b)

Fig. 4.8: Plots created by the coefficient quantization module: (a) NTF poles under
quantization, (b) NTF zeros under quantization.

noise power. The last parameter controlling the search, the NTF bound, fixes an upper
bound on the maximum of the NTF magnitude resulting from the coeffictent quantization
process. Coefficient sets resulting in NTFs which violate this bound are rejected. When
the search is complete, the coefficient set resulting in the stable modulator NTF with the
lowest inband noise power is kept.

Feedback on the search is given via two plots showing the behavior of the NTF
poles and zeros under the coefficient quantization process. These are shown in Fig. 4.8(a)
and (b), respectively. The stars (*) represent the initiai pole/zero location, while the "x’s
and ‘o’s represent the poles and zeros of all the possible NTF's that were explored. These
plots give useful feedback about the effectiveness of the coefficient quantization process.
[f no "x’s are found near the original NTF pole locations, for instance. then the quantiza-
tion process will not yield any usable coefficient set, and the user is made aware of the
necessity of increasing the number of CSD terms per coefficient. of increasing the extent

of the search, or of using a different modulator structure.
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4.4.5 Oscillator Design

Once the signal band has been specified, the design of a delta-sigma oscillator,
apart from the modulator design, amounts to selecting the set of discrete values that k|
must be able to take on, and how to implement these values efficiently. The principles of
this design problem are explained in Section 3.4. The user specifies the maximum value
that the multiplexed coefficient, k3, can take; this bound is called kg, Recall that,
according to Section 3.3, kg, controls the stability of the oscillator. Any two adjacent
values of k| cannot differ by more than 2k, . and the goal becomes finding a small set
of values of k|, implemented using a minimum number of CSDs, for which this constraint
is respected. The smalier is k,,,,, the more stable the oscillator, but also the larger the set
of values of kwill be and the more costly it will be to implement.

DSMOD tackles the problem using the algorithm depicted in Fig. 4.9. The range
of values which the total loop coefficient £ must be able to take on, [k, Kyl IS cOm-
puted from the lower and upper edge frequencies defining the signal band. The first value
of k|, which we call (1), must fall between &, and k,, +k;, . If zero CSD (ie.
k(=0) is not enough to find such a value, more CSDs are added until this value, k[(1), is
found. Then the next interval in which the algorithm seeks to find a new value of &y, i.e.
k4(2), is computed; this interval is equal to:

kk,] = [k (1) +kp, ). k(1) +2k

Qmax

)] (4.5)

QOmax )

The search procedure is repeated until a value of k; has been found which lies

within k,,,,. of k... the upper bound on the loop gain . The output of this entire opera-

nax»

tion is a table of values of k|, expressed as sums and differences of powers-of-two.

4.4.6 Simulation

Simulations allow the user to assess whether a design is stable for a given signal
level and frequency. The motivation for this capability is that delta-sigma modulators,
being non-linear circuits, are only conditionally stable. When embedded in oscillator cir-
cuits, it becomes very difficult to predict their stability properties. Simulations thus serve

to validate a given design in a few minutes.
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Fig. 4.9: Algorithm for oscillator design with a bound on .

The tool includes a simulation library, capable of producing the outputs of all the
modulator and oscillator topologies that it can design. [f finite-register-length effects are

not considered, simulating these circuits amounts to iterating through simple difference



Chapter 4: A Computer-Aided-Design Tool: DSMOD

Fig. 4.10: Dialog box for simulation.

equations. This is easily programmed in the C language: the advantage over simulating
using MATLAB is a tremendous gain in speed because the simulators are compiled
instead of interpreted. The interface between the MATLAB platform on which most of
DSMOD runs and the simulators consists in a set a files of a predetermined format,
through which the simulation parameters and results are communicated.

The simulation parameters are set by the user via the dialog box shown in Fig.
4.10. A typical simulation will produce plots of the output’s power spectral density such as
the ones shown in Fig. 4.11, along with a computed estimate displayed as a dotted curve.

Note also the possibility of performing a sweep of the signal amplitude. This fea-
ture can be used to quickly obtain the maximum SNR that a design can achieve. Since one
cannot predict the input level at which this maximum is attained. it is read from a plot of

the circuit’'s SNR versus the input level based on simulation results, as shown in Fig. 4.3.
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Fig. 4.11: Plots created from simulation output: (a) Nyquist-band power
spectral density, (b) Inband power spectral density.

4.4.7 Optimal NTF Design

The functions of NTF design, structure mapping, and amplitude-sweep simulation
can be combined to design an NTF which maximizes the SNR for a given modulator order
and OSR. The algorithm is a basic search controlled by the parameters of the dialog box
shown in Fig. 4.13. These are: the NTF bounds to design NTFs for, the signal amplitudes
to simulate the designs with, the simulation time, the sample size over which the SNR is
computed, the signal band parameters, and finally the modulator order. Fig. 4.14 illustrates
this algorithm: NTFs are designed for a range of NTF bounds, using “‘Butterworth with
optimal zeros” method. For each NTF, the coefficients of an arbitrary modulator structure
are computed (DSMOD makes use of the resonator cascade for this purpose) and an
amplitude-sweep simulation is performed. The NTF which yields the highest SNR is

returned as the optimal solution for the given search parameters.
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Fig. 4.12: Plot created from the output of an amplitude-sweep simulation.

4.4.8 FPGA Prototyping

Floating point simulations are very practical on a workstation but they may not
reveal limitattons of actual implementations (usually based on fixed-point arithmetic). In
particular, some designs may become unstable over very long periods of operation, and
the SNR performance may be impaired by finite-register-length effects. The tool addresses
this problem by generating and testing actual prototypes of the designed oscillator.

First, the required register-lengths are entered by the user in the dialog box shown
in Fig. 4.15. VHDL code is then automatically generated, along with the scripts needed to
simulate it and then compile it using an external synthesis tool (Synopsys) for a Field-Pro-
grammable-Gate-Array (FPGA) technology (Xilinx 4010).

In the case of the LDI ladder structure, the integrator variables can be scaled so as

to make optimal usage of the available register bits. Simulations are performed to estab-
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Fig. 4.13: Dialog box for the optimal NTF design.

lish the maximum value that each register must be capable of holding. These values are
then rounded up to the nearest power of two. If these values are called 2™ to 2™ then the
scaled LDI-ladder modulator which is implemented in the prototype is shown in Fig. 4.16.
The scaled coefficients ensure that all integrators will have maximum values in the same
range as the first integrator, thereby maximizing the dynamic range of the signals through-
out the ladder. The number of integer bits in the numerical representation is chosen so as
to accommodate the maximum possible integrator value. The VHDL code describing the
6" order LDI-ladder modulator for OSR=32 described in Chapter 2. is given in Appendix
B.

The state variables in an LDI resonator can also be scaled so as to make a most
efficient use of the available register length. To do so we note that, when referring to Fig.
1.1, both integrators have the same gain at any given frequency of oscillation. In addition
the product of the two integrator gains and of the loop coefficient & must equal 1, since the
amplitude and frequency of oscillation is sustained over time. As a result each integrator

contributes a gain equal to 1/ Jk. The scaling is based on the smallest required non-zero
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Fig. 4.14: Algorithm for designing a delta-sigma modulator with maximum
SNR, for a given order and OSR.
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Fig. 4.15:

out

Fig. 4.17: Scaled Lossless Discrete Integrator (LDI) resonator when k<l1.

value of k, called & which determines the frequency resolution of the resonator. A

min’
properly scaled LDI resonator is then shown in Fig. 4.17 for the case in which k<I, and
Fig. 4.17 for k>1. The same scaling operation is valid for a delta-sigma oscillator and is
performed by DSMOD before VHDL code is generated for an oscillator prototype. Note

that both & and k; (as labelled in Fig. 3.1) must be scaled.
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Fig. 4.16: Scaled LDI-ladder-based modulator used to implement the prototypes.

4.5 Possible Improvements

This tool is still undergoing development. New features are added as research on

signal generation progresses.
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our

Fig. 4.18: Scaled Lossless Discrete Integrator (LDI) resonator when 4>1.

4.5.1 Implementation

The computing speed of DSMOD could be greatly increased if it were written in a
lower-level language, such as C. This comes about principally because DSMOD uses
many iterative loops. such as in the coefficient-quantization modules, which are ineffi-
ciently run by the MATLAB software. Fortunately it may be possible to avoid reprogram-
ming the tool from scratch by automatically generating C-code from the MATLAB code,
using a newly released MATLAB product. This strategy would allow one to maintain
MATLAB as the development platform for DSMOD. with all the ease-of-debugging

offered by interactivity and interpreted code.

4.5.2 Improving Modulator Design

Arbitrary NTF shapes are greatly desirable in the context of mixed-signal testing
applications, as argued in Section 3.5.3. A module similar to FiltorX could be developed
for this purpose, or alternatively FiltorX [46] itself could be interfaced to DSMOD oreven
re-coded for MATLAB.

Because of its modularity, the tool can easily be extended to include new modula-
tor and oscillator topologies, as well as new prototyping technologies. In particular, modu-
lator topologies optimized for D/A and A/D conversion could be included in the tool. A
module for scaling coefficients for SC implementation can be designed, as well as another
one for decimation and anti-aliasing filters. The trend proposed here is to evolve toward a

block-by-block system design tool, or collection of tools.
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4.5.3 Improving Simulation

A module for fixed-point simulations would be quickly realizable based on the

fixed-point module for SIMULINK, an extension package for MATLAB.

4.5.4 Improving Prototyping

For use in industrial settings, the tool could be interfaced with a silicon compiler
via the VHDL language, so as to produce functional silicon layouts in a few hours. In this
context, estimating the silicon area occupied by the oscillator or modulator would help
with floor-planning an integrated circuit containing other components.

Finally, the size of each register and computational element in a given design could
be computed. Simulations can help predict the largest possible numerical value at any
given point in the circuit while a linear model of noise injection due to number truncation
can predict the effect of finite-register length. The combination of these two techniques
should allow one to choose the number of integer and fractional bits needed at every point

in the circuit. This would further minimize the hardware cost of the designed circuits.

4.6 Conclusion

Most of the DSMOD software is written for MATLAB, a programmable, general-
purpose matrix-algebra software. The advantages are multiple. First. the tool is based on a
powerful. proven mathematical engine. Second, MATLAB provides an ideal flexible
work-area to supplement the tool and to allow it to communicate with other similar tools.
Lastly, the code and the user-interface are usable without any changes across all computer
platforms supported by MATLAB. For these reasons this tool could easily incorporate
contributions from widespread sources.

This chapter explained how and why our CAD tool is crucial in allowing a specific
class of signal generator to be painlessly incorporated in more complex systems. The tool
is based on a design module specialized for delta-sigma modulators and LDI resonators.

and on simulation and prototyping modules for rapid and easy design validation. Our
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research group has used this tool very successfully in its own research on signal genera-
tion.

Such a tool is usable by system-level designers with little knowledge of delta-
sigma modulation for designing self-testable system. It can be viewed as one among a col-
lection of expert tools that could be used to quickly assemble complex systems at the

VHDL-code level or signal-flow-graph level.
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Chapter 5

Conclusions

5.1 Discussion of Results

The aim of the research presented herein has been to explore ways in which delta-
sigma signal generation could be improved. Two types of improvements were sought: to
increase the signal quality for a given bandwidth, and to design delta-sigma oscillators sta-
ble over an arbitrary signal band. Chapters 2 and 3 presented low-hardware cost solutions
to these problems. One is the LDI-ladder-based delta-sigma modulator with single-bit out-
put and unity STF, which can be designed to have cheaply-implementable power-of-two
coefficients. Another is the stable delta-sigma oscillator topology. which makes use of an
additional feedback loop as compared to the original oscillator design. It has been argued
why these particular circuits were better suited for use in delta-sigma signal generation
than other ones of the same kind. Multitone generation has been addressed too and shown
to require very simple modifications to the single-tone circuits.

However this thesis is meant to be more than simply an account of these results. It
strives to formalize the methods by which the circuits are designed. One key benefit of
such a formalization is the possibility of automating these design methods. In fact, many
of themn are computationally intensive and necessitate automation. Another goal has been
to include prototyping into a fast design cycle. Prototyping using Field-Programmable
devices offers a valuable compromise between lengthy and imprecise simulations and
costly silicon prototypes. Not only do the FPGA prototypes reported herein support the
validity of our results, they also demonstrate how prototyping can be used to rapidly close

the design cycle with a hardware-level validation of a given design.
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As a result of the needs for automation and prototyping, DSMOD has been devel-
oped into a full-fledged delta-sigma oscillator design software. and presented in Chapter 4.
[t demonstrates the following points: that it ts possible to simuitaneously develop new cir-
cuits and the tools needed to design and evaluate them: and that a complex computer-
aided design tool for a very specific class of digital circuits can be built on the MATLAB
platform and used to design working prototypes in but a few hours, with no expert knowl-
edge required.

The motivation for this research is the need for low-cost self-test solutions for
mixed-signal circuits and systems. The fact that delta-sigma oscillators are digital circuits
makes them suitable for a system-design strategy in which hardware is re-used to tmple-
ment the self-test functionality. This should contribute to lowering the cost of endowing a
given mixed-signal device or system with self-test capability. Perhaps the greatest advan-
tage of these circuits is that they are fully programmable and are as insensitive to process
and temperature variations as any digital hardware; the same is certainly not true of signal

generation circuits based on analog solutions.

5.2 Future Directions

The original 2" _order oscillator has been successfully incorporated in a voiceband
codec [2][3]. The novel oscillators presented here should make possible the implementa-
tion of self-testable mixed-signal circuits more complex and more demanding in perfor-
mance. Telecommunications systems, with their strict constraints on reliability and the
huge costs associated with their maintenance, should benefit greatly from on-board high-
precision testing capability.

Although the issue of signal generation has now been addressed in much depth, the
mixed-signal self-test algorithms and their implementation have not been greatly debated
since [3] was published. There is a definite need to upgrade these algorithms to make use
of the new possibilities offered by arbitrary-precision delta-sigma oscillators.

There also is a need to assess the cost trade-offs involved in implementing self-

testability in mixed-signal integrated circuits, boards and systems. Although such issues
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are ultimately dealt with by industry, pointing to specific, economically viable applica-

tions of mixed-signal self-test would allow industry to more rapidly take over the burden

of developing prototypes -- and working products.

97




Appendix A
Windowing

A.1 Principles of Windowing

Consider the task of testing a linear time-invariant discrete-time system. Since the
system is L.T.I., one can obtain its transfer function (frequency response) and predict the
Fourier transform of the output given the input, using Fourier analysis. If the system’s
transfer function is A(jw) and the input is x(#n), then the Fourier transform of the ouput yfn)
is given by (see [39], p. 203):

oo

Y(jo) = H(jo) ¥ xn) " (A1)
n= oo

[n fact, information about the expected output signal is not only easily obtained but
also easily expressed in the frequency domain. For this reason the specifications of a linear
system are most often given in the frequency domain, and the goal of testing is then to
decide whether the frequency domain specifications are met.

The design is usually tested against its specifications either through simulation or
by fabricating and testing a real implementation. In both cases, typical tests in the fre-
quency domain consist in observing the system’s response to a sinusoidal or DC input and
comparing it to the theoretical response at the same frequency.

One major problem arises here: sinusoidal and DC inputs extend over an infinite
period of time, and so do their corresponding outputs. Simulations and physical tests, on

the contrary, can generate only a finite number of output samples. The complete output of
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the real system is thus unavailable, and it is impossible to directly compare the Fourier
transform of the desired output to the one of the actual output.

However. the finite number of output samples can be processed so that they give
rise to a good approximation of the Fourier transform of the infinite-duration output
(which would be obtained if the test or the simulation ran forever). Windowing is the
name given to this type of processing, in which N output samples are weighted according
to their time-index. so as to reduce the effects of using a finite-extent output sequence.

[n the mathematical formulation that follows, it is assumed that the complete out-
put sequence y(n) is available, and that the window has zero value everywhere except in
the observation interval. This trick allows us to think of the windowed., finite-duration out-
put as the product of the complete output with another sequence, even though the com-
plete output is unavailable. Additional assumptions are that N is even and that the
observation interval is [-N/2, N/2-1].

[n addition to being equal to zero everywhere except in the observation interval,
the window w(rn) must be even except for its last value in the observation interval. which

equals O (see [48]). To summarize. the constraints on w(n) are:

win) =0 || >1¥. (A.2)
w(n) = w(-n) nxg. (A.3)
w(g) = 0. (A.4)

The Fourier transform of the windowed output is given by:

. jon =
Yy(o) = Y y(n)w(n)e . (A.5)
n = -oca
Before examining in details the effects of windowing, it is pertinent to realize that
nothing tells us a-priori that the Fourier transform of a finite number of unprocessed sam-
ples will appropriately approximate the Fourier transform of the complete signal. In fact

the key to windowing is choosing how to weight the samples in the finite-duration obser-
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Fig. A.1: (a) A typical I-bit noise-shaped data converter output sequence;
(b) its Fourier transform

vation interval so that their Fourier transform constitutes a good approximation, depend-
tng on the particularities of the system [48] and the features of the output signal which are
to be observed.

The specific effects of windowing are best explained through an example. Fig. A.1
shows part of one possible output of a discrete-time system, namely the output of a one-bit
delta-sigma converter. The Fourier transform of the output is also shown. (In the case of
the delta-sigma converter, which is not a linear system, the expected Fourier transform of
the output is obtained after the system has been linearized.) Note that the output sequence
has infinite duration. In this particular example the Fourier transform indicates that the
signal is composed of two low-frequency sinusoids plus a fair amount of noise at high-fre-
quency and very little noise at low-frequency

As previsously explained, only a finite-extent output sequence is obtained from

simulation or testing, and this truncated output can be thought of as the product of the infi-
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Fig. A.2: (a) Processing window; (b) Fourier transform of the same
window.

nite-duration sequence with a window which has non-zero values only in the observation
interval. A typical window and its Fourier transform are shown in Fig. A.3.

Multiplication of two signals in the time-domain becomes convolution in the fre-
quency domain. Thus the Fourier transform of the infinite-duration signal (Fig. A.1(b)) is
convolved wtth the Fourier transform of the window (Fig. A.3(b)) to result in the Fourier
transform of the windowed, finite-duration signal, shown in Fig. A.3.

Windowing results in a deformation of the initial Fourier transtorm. Tones at sin-
gle frequencies are spread over a non-zero frequency interval; the information at frequen-
cies between two nearby tones is thus lost. Furthermore, the low-power noise floor at low
frequency is lost under the smearing of the more powerful tones and high-frequency noise.

In spite of seemingly disastrous results, a carefully chosen window does preserve
the essential features of the Fourier transform. If the initial signal contains tones at very
nearby frequencies, then a window with a narrow mainlobe must be used. If the dynamic

range is initially very large, then a window with low sidelobes is to be chosen. If, as in the
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Fig. A.3: (a) Windowed output sequence; (b} Fourier transform of the
windowed sequence.

case of noise-shaped signals, there are two frequency regions with very different power
levels. then a window with a fast sidelobe decay is preferred so as to minimize the inter-
ference of one region over the other. The theoretical details of windowing are presented in
[48].

Finally, the Fourier transform of the windowed signal is computed at discrete fre-
quencies by an FFT algorithm; in the time domain this corresponds to periodically extend-
ing the signal, as shown in Fig. A.3.

Additional considerations come into play in obtaining a reasonable approximation
to the desired Fourier transform.

First, the effect of start-up transients must be minimized. This is accomplished by
discarding the initial samples of a simulation or a test, and keeping the rest of the samples
for analysis. As a rule of thumb, the second half of the results can be used for frequency

analysis, while the first half should be ignored.
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............................................

Fig. A.4: (a) Periodic extension of the finite-duration sequence; (b) discrete
Fourier transform of the finite-duration sequence.

The second consideration is a trick that takes advantage of a property of most win-
dows and of the use of the discrete Fourier transform. The Fourier transtorm of an N-point
window equals zero at all multiples of 2r/N except at low-frequencies. Also. the discrete
Fourier transform has values only at frequencies that are multiples of 27t/N. Thus. a tone at
one of these discretized frequencies will spread only to nearby frequency bins. In practical

terms. the period of such a tone must be a divisor of the sample-size.

A.2 High-Performance Windows

Nuttall [45] identifies a basic tradeoff in designing or choosing a window: that
between a low main sidelobe level and fast-decaying sidelobes at higher frequencies. Here

we focus on windows providing fast-decaying sidelobes, since we are worried about very-
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high resolution single tones being smeared across the signal band because of their inevita-
ble incoherence due to delta-sigma modulation.
Fast decaying sidelobes are obtained when many derivatives of the window at its

edges are continuous. In general, a raised-cosine window is defined as:

K
21tn
w(n) = a,cos—-. (A.6)
z k N
k=40
where K+1 is the number of cosine terms making up the window and N is the window
length. A K+ [-term window can be made to have all its derivatives up to the (2K-1P

equal to zero everywhere. provided the following equation is respected:

[ S S Y S PR
) a

L1 ... (-0 =X 1
.9 s ld 0

01 ... («O% . Hfe !

......... o= 0 (A.7)
k) 3 ak

0 1 ... (%" . =)*K!

......... ..;- 1K P ..K..' "K (IK —0-

|0 1 .. (=)kT (=) KT T

As an example, the coefficients of the 4-term. continuous-fifth-derivative raised-cosine
window are given in [45] to be:

ro
2y 10/32
a
o [15/32] (AS)
a- 6/32
1/32
[43]
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VHDL Source Code

B.1 VHDL code for 6"-Order Modulator, OSR=32

The following code describes a 6"M-order modulator designed by DSMOD as
described in Section 4.4.8. This code was entirely generated by DSMOD. Note that only
the higher level of hierarchy describing the design is given here. The code describing the

integrators, the adders and the registers is not shown.

-~ Delta-Sigma Modulator

-- Generated by DSMOD

-- Xavier Haurie & Gordon W. Roberts

-- MACS Laboratory, McGill University (EE Dept.)
-- Montreal (QC) Canada

-- email: dsmod@macs.ee.mcgill.ca

-- Modulator Parameters:

-- Structure: Scaled Ladder

-- Passband: any (LP, BP or HP)

-- Order: 6

library synopsys:

use synopsys.bv_arithmetic.all;
use work.arithmetic.all:

use work.sequential.all;

use work.blocks.all;

entity modulator is
generic (size: positive := 1;
int_bits: positive := 1);
port (x: out bit;
a: in bit_vector(size-1 downto 0);
clk: in bit;
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reset:

in bit):

-- pragma template
end modulator;

architecture structural of modulator is

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

subfirst_out:
subl_out:
intl_out:
addb_inl:
sub2_out:
int2_out:
add2_out:
addb_in2:
sub3_out:
int3_out:
add3_out:
addb_in3:
sub4_out:
int4_out:
add4_out:
addb_ind:
sub5_out:
int5_out:
addS5_out:
addb__in5:
addb_in6:
int6_out:
addb_out:
addg_out:
addqg_inl:
comp_out:
bit_vector(size-1 downto 0);

mod_in:

alu_out,alu_in:
alu_1l_out,alu_1_in:
aZu_out,a2u_in:
a2u_l_out,a2u_1_in:
a3u_out,a3u_in:
a3u_1l_out,al3u_1_in:
adu_out,adu_in:
adu_1_out,adu_1_in:
aSu_out,a5u_in:
aSu_1_out,aSu_1l_in:
a2d_out,a2d_in:
a2d_1_out,a2d_1_in:
a3d_out,a3d_in:
a3dd_1l_out,a3d_1_in:
ad4d_out,add_in:
ad4d_1_out,ad4d_1_in:
a5d_out,a5d_in:
a5d_1_out,a5d_1_in:
a6d_out,a6éd_in:
aéd_1l_out,a6d_1_in:
bl_out,bl_in:

bit_vector(size-1 downto 0);
bit_vector(size-1 downto 0);:
bit_vector(size-1 downto Q)
bit_vector(size+2-1 downto 0);
bit_vector(size-1 downto 0);
bit_vector(size-1 downto C);
bit_vector(size-1 downto 0);
bit_wvector(size+2-1 downto 0);
bit_vector(size-1 downto 0):
bit_vector (size-1 downto 0};
bit_vector(size-1 downto 0);
bit_vector(size+2-1 downto 0);
bit_vector(size-1 downto 0);
bit_vector (size-1 downto 0);
bit_vector(size-1 downto 0);
bit_vector(size+2-1 downtc 0);
bit_vector(size-1 downto 0);
bit_vector(size-1 downto 0);
bit_vector{(size-1 downto 0):
bit_vector{size+2-1 downto 0);
bit_vector(size+2-1 decwnto 0);
bit_vector(size-1 downto Q):
bit_vector(size+2-1 downto 0):
bit_vector(size+2-1 downto 0):
bit_vector(size+2-1 downto 0});
bit_vector(size-1 downto 0);

bit_wvectorisize-1 downto 0):
bit_vector(size-1 downto
bit_wvector{size-1 downto 0):
bit_vector(size-1 downto
bit_vector({size-1 downto 0):
bit_vector{size-1 downto
bit_vector(size-1 downto 0);
bit_vector(size-1 downto
bit_wvector(size-1 downto 0} ;
bit_vector(size-1 downto
bit_vector(size-1 downto Q) ;
bit_vector(size-1 downto
bit_vector(size-1 downto 0);
bit_vector(size-1 downto
bit_vector(size-1 downto 0):
bit_vector(size-1 downto
bit_vector(size-1 downto 0);
bit_vector(size-1 downto
bit_wvector(size-1 downto 0);
bit_vector(size-1 downto
bit_vector{size-1 downto 0);
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signal bl_1 _out,bl_1_in: bit_vector(size-1 downto 0Q);
signal b2_out,b2_in: bit_vector(size-1 downto 0};
signal b2_1 out,b2_1l_in: bit_vector(size-1 downto 0):
signal b3_out,b3_in: bit_vector(size-1 downto 0);
signal b3_1_out,b3_1_in: bit_vector(size-1 downto 0);
signal bd4_out,bd_in: bit_vector(size-1 downto 0):
signal b4_1_out,bd4_1_in: bit_vector(size-1 downto 0);
signal bS_out,bS5_in: bit_vector{size-1 downto 0);
signal bS5_1_out,b5_1_in: bit_vector(size-1 downto 0);
signal b6_out,bé_in: bit_vector(size-1 downto 0):
signal bé6_1l_out,b6_1_in: bit_vector(size-1 downto C);
begin

-- Connect l-bit output to comparator multi-bit output
mod_in <= a(size-1 downto 0):

-- Connect l-bit output to comparator multi-bit output
X <= not comp_out(size-1);

-- instantiate comparator
comp: comparator
generic map(size, int_bits)
port map(comp_out, addg out(size+2-1)):

addqg: adder2

generic map(size+2,0,0)

port map(addg_out,addq_inl, addb_out) ;
addg_inl <= sxt{mod_in,size+2);

addb: adderé6
generic map(size+2,0,0,0,0,0,0)
port
map (addb_out,addb_inl,addb_in2,addb_in3,addb_ind, addb_in5,addb_1
addb_inl <= sxt(bl_out,size+2);
addb_in2 <= sxt(b2_out,size+2);
addb_in3 <= sxt(b3_out,size+2);
addb_ind4 <= sxt(b4_out,size+2);
addb_in5 <= sxt(b5_out,size+2);
addb_in6é <= sxt(b6_out,size+2);

subfirst: adder?2
generic map(size,0,1)
port map(subfirst_out,mod_in, comp_out);

subl: adder2
generic map(size,0,1)
port map{subl_out, subfirst_out,a2d_out);

sub2: adder2
generic map{size,0,1)

port map(sub2_out,alu_out,a3d_ocut};

sub3: adder2
generic map(size,0,1)
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.

port map(sub3_out,a2u_cut,add_out);

sub4: adder2
generic map{size,0,1)
port map(sub4_out,alu_out,aS5d_out):

subb5: adder2
generic map(size,0,1)
port map(sub5_out,adu_out,aéd_out) ;

intl: b_int
generic map(size)
port map(intl_out,subl_out,clk, reset);

inc2: f_int
generic map(size)
port map{int2_out,sub2_out,clk, reset);

int3: b_int
generic map(size)
port map({int3_out,sub3_out,clk, reset);

intd: f_int

generic map(size)

port map(intd_out, sub4_out,clk, reset) ;
int5: b_int

generic map(size)

port map(int5_out, sub5_out,clk, reset) ;

inté: f_int
generic map(size)
port map(inté_out,aS5u_out,clk,reset);

alu_in <= intl_out;
alu: shift_right
generic map(size,l)
port map(alu_out,alu_in};

aZu_in <= int2_out;
a2u: shift_right
generic mapi{size, 3)
port map (a2u_out,a2u_in};

a3u_in <= int3_out;
a3u: shift_right
generic map(size,2)
port map{a3u_out,a3u_in);:

adu_in <= int4_out;
ad4u: shift_right
generic map(size, 3)
port map(adu_out,adu_in);
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aSu_in <= int5_out;
aSu: shift_right
generic map(size,4)
port map(aSu_out,alSu_in);

a2d_in <= int2_out;
a2d: shift_right
generic map(size, 8)
port map(a2d_out,a2d_in):

a3d_in <= int3_out;
a3d: shift_right
generic map(size,5)
port map(a3d_out,aldd_in);

add_in <= intd4_out;
a4d: shift_right
generic map(size,7)
port map{add_out,add_in);

asd_in <= intS5_out;
asd: shift_right
generic map(size,6)
port map(aSd_out,aSd_in);

aéd_in <= int6_out;
a6d: shift_right
generic map(size,4)
port map(aéd_out,aéd_in);

bl_in <= intl_out;

bi: shift_right
generic map(size,l)
port map(bl_out,bl_in);

b2_in <= intc2_out;

b2: shift_right
generic map(size,l)
port map(b2_out,b2_in});

b3_in <= int3_out;

b3: shifc_right
generic map(size,l)
port map(b3_out,b3_in);

bd_in <= intd_out;

bd4: shift_right
generic map{size,l)
port map(b4_out,bd_in);

b5_in <= int5_ocut;

b5: shift_right
generic map(size, 3)
port map(b5_out,b5_in);
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b6_in <= inté_out;
b6: shift_right
generic map(size, 3)

port map{b6_out,bé6_in);

end structural;
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