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Abstract

This work presents high-order~ arbitrary-band delta-sigma oscil1ators. They are a

cIass of digital circuits which, augmented with a minimum of analog circuitry requiring no

trimming, generate fully programmable, high-quality analog sinusoidal signaIs. A generaI­

ization of previous work, they can meet arbitrary signal-band and SNR specifications at a

minimum digital hardware cost~ and without the previously reported stability problems. It

is shown that multitone generation requires but simple modifications to the basic oscillator

topology; this signal generation scheme is thus highly attractive for endowing mixed-sig­

nal integrated circuits and systems with self-test capabilities. Delta-sigma oscillators can

be useful in other applications as weIl.

An essential building block of delta-sigma oscillators is a one-bit digital delta­

sigma modulator with unity Signal-Transfer-Function. A complete. computer-aided design

method, relying on a novel high-order modulator topology allowing the use of power-of­

two coefficients. is formulated and justified. Although the resulting modulators are aimed

specifically at usage in delta-sigma oscillators. they can find applications in oversampled

DIA conversion in general as they require a minimal amount of digital hardware.

DSMüD is the computer-aided design tool which was developed ta automate the

design. simulation and prototyping processes. Ir implements a number of involved design

algorithms, and aIIows for a quick comparison of theoretical. simulated and prototype

behavior. with the use of a graphical user interface. Ir is wrinen mostly for MATLAB and

is thus highly portable and expandable.

The measurements performed on prototypes prove the soundness. flexibility and

efficiency of DSMüD. They also prove chat low hardware cost and high performance lev­

els are attainable with the novel delta-sigma modulator and oscillator topologies presented

here.
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Résumé

Cette thèse présente des oscillateurs delta-sigma de haut ordre et à bande de

fréquence arbitraire. Il s'agit d'une classe de circuits numériques. utiles pour la génération

d'ondes analogiques sinusoidales, entièrement programmables et de haute qualité. En tant

que généralisations d'un circuit proposé antérieurement. ils permettent de satisfaire des

spécifications arbitraires de la fréquence et du rapport signal-bruit des ondes générées, et

ce à un coût minimal et sans problèmes de stabilité. Il est aussi démontré que la génération

simultanée de multiples ondes sinusoidales ne requiert que de simples modifications à la

configuration de base de l'oscillateur. Ce mode de génération de signal est donc très

attrayant pour douer des circuits ou systèmes analogiques-numériques de la capacité

d'autotest. Les oscillateurs delta-sigma peuvent aussi trouver une utilité dans d'autres

applications.

Une composante essentielle d'un oscillateur delta-sigma est un modulateur deIta­

sigma à sortie 1 bit et dont la fonction de transfert du signal est unitaire. Une méthode de

conception de ces circuits complète et informatisée est présentée. Elle est basée sur une

nouvelle topologie utilisant des coefficients égaux à des puissances de deux. Bien qu'elle

vise tout particulièrement l'application aux oscillateurs delta-sigma, cette méthode est

jugée utile pour la conception de tout système de conversion numérique à analogique

suréchantil1onée.

DSMOD est l'outil de conception assistée par ordinateur développé afin d'automa­

tiser cette méthode et d'évaluer ses résultats par des simulations et des prototypes. Ce

logiciel est écrit pour MATLAB et est donc facilement portable et augmentable.

Les expériences réalisées sur des prototypes d'oscillateurs et de modulateurs prou­

vent la validité et l'efficacité des méthodes présentées dans cette thèse. Elles démontrent

aussi les hauts niveaux de performance rendus possibles par les nouveaux circuits pro­

posés.
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Chapter 1

Introduction

1.1 Self-Testable Mixed-Signal Systems

A substantial portion of the cast of manufacturing elcctronic circuits and systems

is taken up by testing. The fundamental reason is that integraled-circuit fabrication exhib­

its significant random device parameter variations and as a result the working circuits

must be sorted from the bad ones based on sorne test. In addition. testing is capital-inten­

sive. as opposed to design which is almost purely knowledge-intensive. Finally. part of the

product value resides in the confidence that the customer places in it. which a manufac­

turer can not guarantee solely by good design practices but necessarily also by testing.

Testing may be done on a system's components at each fabrication step and

throughout its entire life-time. However the amount of testing done at each stage of the

system"s lite depends on economic issues and cannot be worked out as a general rule.

Another testing issue regards which tests are to be performed by external devices. and

which are to be part of self-test schemes. There are many factors pushing manufacturers to

adopt self-test strategies for their products. One is that external testers are extremely

expensive. and that the circuits must be tested sequentially. so that the test duration has a

significant impact on the cost of a circuit. Self-testable circuits need only be powered-up

and instructed to self-test and to report the result. which requires a fraction of the capital

immobilized in a fulI-fiedged tester. Another factor is the need for system-Ievel diagnostic

tests for servicing installed equipment. Finding the failed component in a complex system

is costly if an operator or technician is assigned to the job. Components which signal the

host system when they no longer meet specifications thus reduce maintenance costs (the
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trade-off being increased component complexity and cost). Yet another motivation for

self-testability is the technical difficulty of bringing signais in and out of the device under

test over a significant length of connector (a few feet). especially at high frequencies (for

instance at the 1 GHz range used in wireless communications). a problem which is not as

acute in a self-test scheme. The proper way ta view built-in self-test is as an investment in

hardware. or even a reuse of existing hardware. which retums profits whenever the device

or system must be tested.

Requirements for self-testability should thus be incorporated in the system specifi­

cations sa as to reflect choices made according ta the economics of development. fabrica­

tion and maintenance of its components. and also according ta the level of confidence in

the final product required by the consumer. Such issues have been dealt with for a variety

of purely digital circuits such as memories and microprocessors. and digital Built-ln-Self­

Test (BlST) is now widespread [1 J. The same can not be said of mixed-signal circuits and

systems (i.e. containting both digital and analog circuits). mainly because analog self-test

remains a technical challenge.

Mixed-signal circuits play an increasingly important role in the microelectronics

industry. [n an overwhelming number of applications. electronic systems are designcd ta

accept analog electric signaIs generated by sensors (e.g. microphones. light detectors.

acceleration detectors. receiving antennas). or to provide analog outputs to hactuatars"

(e.g. speakers. displays. electric motars. transmission antennas). or both. Although they

interface with analog signals. much of the processing needed in such systems is performed

by digital circuits (hence the name of mixed-signal systems) which offer more reliability.

precision and insensitivity to manufacturing variations than their analog caunterparts. [n

sorne cases the analag components may be reduced to as liule as analag-to-digital and dig­

ital-ta-analog converters (ADC's and DAC's) but sorne analog circuitry will always be

required.

The fundamental hurdle in testing the functionality of a mixed-signal system is

that it involves generating or reading analog signais. according ta a scheme which exposes

the devices not meeting specifications. The researcher's role is then ta develap design

principles and paradigms for self-testability. applied to mixed-signal systems. and ta

expose the design trade-offs which are involved so that engineers have tools enabling

2
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them to rneet the self-testability specifications. Any proposai for endowing mixed-signal

circuits with self-testing capability will be doubly attractive if it integrates into the exist­

ing digital BIST schemes and reuses existing digital hardware.

A number of such principles have been proposed recently. such as the Mixed-Ana­

log-Digital Built-In-Self-Test (MADBI5T) scheme [2)[3 J. and more are being developed.

such as the IEEE 1149.4 standard [4] which defines a chip- and system-Ievel analog test­

bus. The present work deals with one component of the MADBIST scheme. namely the

analog sinewave source. in an attempt to generalize and improve previous work done in

that field (51[61[7][81 and to automate the design of this crucial circuit in the emerging

area of mixed-signal self-test. This work aIso makes possible the use of high-quality on­

chip signal sources in other. unforeseen applications.

1.2 Literature Review on Analog Sinewave Generation

One key principle of the MADBIST is that the analog source is a mostly digital

circuit and can thus be tested by a standard digital BIST before it is used to excite the

mixed-signal and analog circuits under test. The literature on analog signal generation is...... "-" '""'" ....,: .......

reviewed next. in Jight of this particular requirement.

1.2.1 Analog Resonators

Purely analog oscillators [9] are not reviewed in any detail here because they are

hard ta integrate reliably. as argued in [5]. Sorne reasons are that integrated inductors

needed in passive irnplementations have poor quality factors and are prohibitively large.

and crystals are not integratable at aIl. Active implementations of analog ascillatars using

opamps display limited precision and are affected by device parameter variations. Inte­

grated precision analog components require trimming. which adds ta the fabrication cost.

FinaIly. in a mixed-signai self-test scherne. the circuit generating the test stimulus must be

tested in the first place. It is obvious that using an analog implementation for the signal

source does not get one very far in this regard. Signal generation rncthods relying on digi­

tal circuits combined with digital-to-analog conversion are reviewed instead.

3
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Fig. 1.1: Lossless Discrete Integrator (LD1) resonator.

1.2.2 Direct Digital Frequency Synthesis

Direct Digital Frequency Synthesis or DDFS. as used in [10] for example. consists

in storing in a ROM the values of a normalized sinusoid taken at a large number of e\"enly­

spaced time-instants. An indexing variable (representing the instantaneous phase of the

signal) stored in an accumulator cycles through the ROY! addresses with a chosen phase

increment. The shoncomings of this method are that frequency selecti\"ity cornes at the

price of a large number of ROyl words. while decent S:"R performance entails a large

word-length. making for a significant area o\'erhead. ln addition. arbitraI!' signal ampli­

tude requires that the output of the ROYI be scaled. another costly operation. Yloreover.

the ROYt cannot be implemented by reusing digital hardware. AIl in aIl the hardware cost

can be prohibitive for high-precision signal generation. FinaIly. a high-precision digital­

to-analog converter is needed. In a mixed-signal self-test scheme this converter would not

be testable and would thus impair the scheme's reliability.

1.2.3 LOI Resonator

LDI-resonators and their implementation are discussed to great length in [II}. An

LDI-resonator such as the one shawn in Fig. 1.1 generates a digital sinusoidal signal based

on ils registers· initial conditions and an input parameter k. ft consists of two discrete-time

integrators which hold the resonator's state \'ariables x, (Il J and x~.' Il J. and a multiplier
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which implements the scaling-by-k operation. Provided that 0 < k < ..... the output x2(1l) is a

sinusoidal signal described by the following equation:

(1.1)

where the normaIized angular frequency Qo. the amplitude A and the phase <t> of the sinu­

soid depend on the loop coefficient k and the initial conditions x,(O) and x2(0). and are

given by:

( 1.2)

( 1.3)

and

(lA)

{ Since three independent variables (k. xI(O) and x2(0)) are available to control the

circuit"s operation. the three parameters of the sinusoid (A. 110 , and <!» can independently

be set to arbitrary values. For instance. to obtain a period of oscillation of T samples and

an amplitude A. the loop coefficient and the initial values of the t\\'o integrator variables xI

and x2 can he set according to:

k = 2( 1 - cos ( 2; ) ) .

X.,(O) = A.

( 1.5)

( 1.6)

( 1.7)

(

As argued in [5], the LDI resonator. due to its simplicity and programmability. is

an attractive alternative to a ROM-based digital sinusoïdal generator. as long as the multi­

plier implementing the sca1ing factor k is kept simple. The resolution of the generated sig­

naI depends on the number of bits used in the Implementation of each of the circuit"s

blacks. However. just like DDFS. this signal generation scheme implies the use of a high-

5



Chapter 1: Introduction

1 LDI Resonator
1 r---1 r-----"

1 l, 1 ! 1

ok.=e :~ iL:Jï :. ~ XI i ~ x.., 1 1

MUX ; .\.:!:) • "\!J - ., )
+1\. 0 1 :

1 "~-M~cÏuïat~/----------------------~-- ~~"I :.:.:.: --: i
1 1 1L:.Jl 1

~~r 1....-....... --,. + + ....-.....------1
L-J ,.

1

Output
(1 bit)

(

ii 1

1 1,...1 ...I-- ~

fig. 1.1: 2nd-order delta-sigma osciUatol".

resolution digital-to-analog con\"ener. and again this solution. although potentially more

economical than DDFS. is not enrirely suitable for use in a mixed-signal self-test ~cheme.

1.2.4 Delta-Sigma Oscillator

(
The delta-sigma oscillator was proposed in [5] to o\"ercome the need for a multi­

plier and a high-resolution O.-\C while retaining all the ad\"antages of analog signal gener­

ation based on an LDI-resonator. This circuit consists of an LDI-resonator. a 2nd -order

(

delta-sigma modulator and a 2-input multiplexer. as shown in Fig. 1.2. \\'e thus refer to it

a.-; a 2nd-order delta-sigma-oscillator. Its operation is described next.

In order ta explain the operation of the delta-sigma oscillator. we first take a look

at hov,," the digital sinusoid generated by the LDI-resonator of Fig. l.I could he con\"ened

te a continuous-time analog signal. This can be achie\"ed with a minimal amount af analog

hardware using a digital delta-sigma modulatar (this circuit will be discussed in detail in

Chapter 21. a one-bit DAC and a linear analog filter as shawn in Fig. 1.3. The input ta the

modulator must be highly a\'ersampled (i.e. the sample rate must be ~ignificantly Iarger

than the signal bandwidth J. which allov.:s the modulator to compute a one-bit representa­

tian of the signal. The input digital signal is encoded in the average of the modulator out­

put o\-er sorne significant number of samples. hence the requirement for oversarnpIing.

The one-bit DAC is used ta create an analog equÎ\-alem of the moduJator output. which is

6
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(

Fig. 1.3: Analog sinewave generation using an LDI-resonator and a delta-
sigma modulator.

(

(

then smoothed by a lowpa'is filter to produce a highly accurate analog counterpart to the

digital input. This process is described in more detail in Section 2.1.

The delta-sigma oscillator of Fig. 1.2 is an attractive variant on the scheme shown

in Fig. 1.3. The modulator has been inserted in the resonator loop: as it introduces a unit

delay the integrators in the resonator have been modified to take this into account. The jus­

tification for inserting the modulator in the resonator is that at low frequencies the modula­

tor reproduces its input faithfully. while whatever noise it generates at high frequencies

will be attenuated by the resonator integrators. If the programmable scaling-by-k operation

is done on the modulator output then it can be cheaply implemented by a simple 2-way

multiplexer. instead of a full-ftedged multiplier. This is possible because the modulator

outputs a one-bit signal. The generated signal is embedded in the modulator output bit

stream and is obtained with the use of a one-bit DAC and ~ome analog lowpass filtering.

just as in Fig. 1.3. ~ote that the amplitude of the generated sinusoidal signal must be lim­

ited to sIightly less than the modulator"s reference level. otherwise the oscillacor will

become unstable due to non-linear effects.

The inband power density spectrum for one possible delta-sigma oscillator output

is shawn in Fig. lA. This plot shows a bandwidth equal to one 128lh of the digital sample

rate. The spectral plots were obtained by running a 2 1X-point FIT on simulated data and

averaging over 8 bins. The generated sinusoid is represented by the sharp power-density

spike at the frequency 0.002 x Fs. Its power is roughly -55 dB relative to the output level

of the delta-sigma modulator. equivalent to an amplitude of 0.5. The modulator produces

the spectrally-shaped noise fioor whose total inband po\ver is equal to -75 dB relative to

the modulator output level. The signal-to-noise-power ratio (SNR) for this simulation is

7
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Fig. 1.4: Power spectral density of a signal generated by a 2"d-order delta-
sigma oscillator.

thus 70 dB. Over a smaller bandwidth, the SNR figure wouId be larger. and conversely if

the bandwidth were increased. The maximum possible SNR is fixed for a given ratio of

the digital sampling rate to the signal bandwidth. according to a relationship provided in

[5].

The 2"d-order delta-sigma oscillator meets the MADB [ST requirement of using

mostly digital hardware. Sorne analog filtering is also required, but is assurned ta be

present in the circuit under test. [f not this filtering operation can be implemented by a

cheap RC-network with very loose specifications (i.e large tolerances on the component

values and matching). No trimming is required on these analog components. Because it is

built mostly using digital hardware, this signal source is fully and accurately programma­

ble. impervious to process and temperature variations, and as stated above, self-testable by

the standard methods applicable to digital circuits. ft can reuse digital hardware such as

adders and registers already present in the system. or even transform a digital tester into an

analog tester with the help of a programmable analog tilter.

Since [5] a number of improvements have been proposed to delta-sigma oscilla­

tors. They are: multitone signal generation [6][6][7], bandpass delta-sigma oscillators and

their use in high-frequency signal generation [121 and more specifically in a proposed

MADB[ST for wireless systems [13]. FM-signal generation [14], and high-order delta­

sigma oscillators [16]. AIl of these topics except the latter two are also treated in [15]. The

8
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present thesis deals essentially with high-order and arbitrary-signal-band oscillators. as

weIl as their computer-aided design [18]. The resulting improvements are listed next.

1.3 Proposed Improvements

There are sorne important limitations to the 2nd-order delta-sigma oscillator. which

require explanations and solutions. The object of this thesis is to present a generaI. auto­

mated design framework which addresses these limitations.

1.3.1 Arbitrary Signal Band Location

In many applications signals occupy an arbitrary frequency band within the

Nyquist intervaI. as in the case of communications systems in which the signal is madu­

lated and occupies a given portion of the frequency spectrum. Thus there is a need for sig­

nal sources capable of generating clean tones near sorne arbitrary center frequency in

[O.Fsl2]. i.e. bandpass or highpass oscillators. This is addressed bath in Chapter 2. where

bandpass and highpass modulators are discussed. and in Chapter 3. where it is shown how

to set the center frequency of the signal band to an arbitrary value.

1.3.2 Arbitrary Stable Bandwidth

There is a limit to the bandwidth over which the oscillator can generate a stable

tone. This has been verified experimentally for the 2nd-order oscillator in [5] and [15].

This stability problem can be explained by the fact that the delta-sigma rnodulator noise

constitutes an additional input which can throw the oscillator out of its intended limit

cycle. The solution here is to use a sIightly more complex oscillator topology in which the

amount of noise-injection cao be controlled, as first proposed in [16]. The resulting ose il­

Iators are described in Chapter 3, along with a study of their stability properties.
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1..3..3 Arbitrary SNR

Another limitation is the introduction of noise by the delta-sigma modulator in the

signal band. This noise limits the signaI-to-noise ratio of the generated tone. If the OSR is

defined as the ratio of half the sampling rate to the signal bandwidth. then the inband noise

power is fixed for a given value of the OSR for a 2nd-order delta-sigma oscillator. For a

given digital clocking rate. the oscillator may not be able to produce tones with a high

SNR over a sufficient bandwidth. The solution resides in using a modulator of higher

order which keeps the oscillator loop critically stable while creating a lower noise-ftoor.

Such modulators were first proposed in [17] and are presented in detail in Chapter 2: they

are designed to be implemented using a minimal amount of digital hardware.

1..3..4 Design Automation

The present work explains how the trade-offs between bandwidth. stability. SNR

and hardware cast can be addressed. However the design techniques which are presented.

although they are simple to understand. are computationally involved. Ta demonstrate

their applicability. a computer-aided-design (CAO) tool had to be developed [ 181. Ir is pre­

sented in Chapter 4.

10



( Chapter 2

Low-Cost One-Bit High-

Order Digital Delta-Sigma

Modulators

2.1 Introduction

Delta-sigma modulation has become a technique of choice for implementing reli­

able and accurate integrated data converters for narrowband signaIs. This technique makes

high-precision data-conversion possible with the use of a coarse DAC (for DIA conver­

sion) or ADC (for ND conversion [191) and digital and analog filters. Because it is

required that the signal to be converted occupY a small bandwidth relative to the sampIe

rate. we speak of oversampling data conversion. The oversampling ratio (OSR) is defined

as the ratio of haIf the sampling rate Fs to the signal bandwidth B~V:

F.l2
OSR = -'-~­

B~V
(2.1 )

(

A lowpass oversampling DIA converter using a single-bit DAC and a digital delta­

sigma modulator is depicted in Fig. 2.1. Il consists of three stages: the digital delta-sigma

modulator having a one-bit output. followed by the one-bit DAC operating ut the digital

sample rate. and a lowpass analog filter with corner frequency at the signal band edge.
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On the left of the block diagram are shown the input and output of each block in

the time domain~ on the right in the frequency domain. The input of the modulator is the

digital signal to be converted to the analog domain. In the present example it is a high-res­

olution sinusoid whose frequency is much smaller than the sample rate Fr The modulator

outputs a stream of + 1 and -1 values whose local density equals its instantaneous input.

This fundamentaI aspect of the delta-sigma modulation process is better illustrated in the

spectral density plot shown in Fig. 2.1 (d): the low-frequency input signal is very faithfully

reproduced while large amounts of noise are introduced at higher frequencies. Note that

the modulator does introduce sorne low-power noise in the signal band.

The single-bit DAC then creates an analog signal corresponding to the stream of

+1~s and -l's generated by the modulator: each digital bit coming from the modulator

translates into a tinite-duration pulse, with non-zero rise-time and fall-time. Finally~ the

analog lowpass tilter attenuates the high-frequency noise introduced by the modulator. As

a result of this tiltering operation~ the fast-changing pulse-train coming from the 2-1evel

DAC is smoothed to an accurate~ continuous-time. continuous-valued version of the digi­

tal sinusoidal input.

Note that our example showed a lowpass DIA conversion system: a similar con­

verter for bandpass signaIs is realized by using a bandpass delta-sigma modulator~ i.e. one

that introduces very liule noise over sorne midband range of frequencies~ and a bandpass

analog tilter. Likewise. highpass DIA conversion systems can be built l'rom a highpass

delta-sigma modulator and a highpass analog tilter. Oversampling AID converters func­

tion in an analogous manner~ using a sampIed-data analog modulator. a coarse AOC and a

digital filter.

The major advantage of oversampling DIA conversion over ils Nyquist-rate coun­

terpart is that it works with a low-resolution~ high-speed ·~Nyquist-rate" DAC. even

though the conversion itself is highly accurate. The trade-off is that digital-signal-process­

ing hardware is required to implement the delta-sigma modulator and that only bandlim­

ited signaIs can thus be converted. For bandlimited. integrated applications this trade-off

is more than acceptable, since high-resolution ""Nyquist-rate" DIA converters are difficult

to fabricate reliably. whereas digital-delta-sigma modulators. just like other digital-signal­

processing devices, are more easily and reliably integrated. Moreover. the resolution of
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the conversion can be increased either by using higher-order delta-sigma modulation or by

increasing the OSR. without necessitating better analog component precision.

The contributions to the field of delta-sigma modulation which are the most signif­

icant to the present work. specificaIly for one-bit delta-sigma DIA conversion. are

reviewed in Section 2.2. The beauty of delta-sigma modulation is that it replaces the prob­

lem of component matching and accuracy encountered in the design of Nyquist-rate con­

verters \Vith a special kind of rransfer-function design problem. Indeed. even though it is a

non-linear device. the functionality of a delta-sigma modulator cao be accurately modelled

and designed as that of a linear system described by two transfer functions. which are

defined in Section 2.3. The constraints posed by the specific application of delta-sigma

modulation ta delta-sigma oscillators are the abject of Section 2.4. Section 2.5 presents a

complete method for designing high-order. arbitrary-signal-band modulators for use in

delta-sigma oscillators with a minimal amount of digital hardware. based on an appropri­

ate choice of modulator topology and on the idea of coefficient quantization. The issues of

simulation and prototyping are also addressed. Finally. conclusions are drawn in Section

2.6.

2.2 Literature Review on Delta-Sigma Modulation

A comprehensive review of delta-sigma modulation techniques used in oversam­

pling ND converters is presented in [20). This is relevant here because many principles

and modulator architectures for AID conversion can be reused in the context of oversam­

pling DIA conversion. A slightly older publication [21) sums up sorne of the most impor­

tant contributions to the field of delta-sigma modulation since the 1960·s. bath for DIA

and AID conversion. To the best of our knowledge. delta-sigma modulation was first

applied to DIA conversion. as opposed to ND conversion. in [22]. A high-order DIA

delta-sigma modulator using a single-bit DAC was reported as early as 1987 in [23]. One­

bit modulators work best at large oversampling ratios (at least 16. sometimes larger than

100) and thus require significant amounts of digital processing power. However their

advantage lies in the simplicity of the two-Ievel DAC used in conjunction with them. In
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fact a one-bit DAC is an inherently linear deviee and thus introduces less harmonie distor­

tion than multi-bit DACs. even without trimming. The DACs presented in [24] are good

examples of such relatively simple anaIog circuits which can be used in high-resolution DI

A conversion systems. A large portion of the literature focuses on one-bit modulators. [n

particular, the maximum SNR achievable by one-bit modulators of orders 1 to 8 is given

in [25] for various values of the oversampling ratio

Nonetheless. oversampling data converters using muIti-bit DACs are often deemed

a good compromise between one-bit. highly-oversampled converters and Nyquist-rate

converters [26]. The main reason is that they grant the benefits of noise-shaping while

improving the stability properties of the modulator and keeping its complexity low. Sorne

delta-sigma modulator architectures which necessitate a multi-bit DAC are muIti-stage or

MASH modulators [27]. time-interleaved modulators [28] and paralIei modulators [29]. Ir

has recently been shown that the error created by the non-idealities of a multi-bit DAC can

be whitened and even spectrally-shaped out of the signal band [30]. making multi-bit

delta-sigma modulation very attractive for both DIA and ND conversion. This technique

requires only a reasonable amount of additional digital hardware. This is a recent develop­

ment and no experimentaI results are available to support it yet. Therefore the present the­

sis deaIs exclusively with one-bit delta-sigma moduIators. AIso. in certain applications the

use of a single-bit DAC and hence modulator is preferable. in particular when the com­

pIexity of the analog cireuitry must be kept to a strict minimum. such as for mixed-anaIog­

digital built-in-self-test [3] and oversampled analog signal generation [6][8][ 16]. There is

thus a need for a method to design one-bit digital delta-sigma moduIators with a minimum

amount of digital hardware. Providing such a method is the goal of this chapter.

Delta-sigma modulation has recently been generalized to include bandpass [31]

modulators. which. together with highpass modulators. are given consideration in the

present work. Gther further extensions of delta-sigma modulation. such as complex modu­

[ators [32]. are not treated here. Most of the work presented in this chapter was first intro­

duced in [17].

15



Chapter 2: Low~CostOn~BitHigh~OrderDigital Delta~SigmaModulators

(

li + e .*~ HI(z) ~+
~... r

~ -

1.'
H 2(:J

x y

Fig. 2.2: Signal~ftow graph of a general high-order delta-sigma modulator.
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Fig. 2.3: Linear model of the general high-order delta-sigma modulator.

2.3 Linear Model of Delta-Sigma Modulation

(

Without loss of generality. it may be assumed that any high-order one-bit delta­

sigma modulator can be represented by the block-diagram shown in Fig. 2.2. ft consists of

three main blocks: two linear filters HI and H2 and a one-bit (or two-level) quantizer. The

handlimited input signal. x. is filtered by HI and the feedhack signal from H 2 is subtracted

from the result to produce e. the input to the quantizer. The output of the quantizer is fed

directly to the modulator output y. It is also filtered by H 2 to create the feedhack signal. A

delta-sigma modulator is thus a non-lïnear system with feedback.

The quantizer can be modelled as an additive noise-source so as to obtain a linear

model of the delta-sigma modulator. as shown in Fig. 2.3. Specifically. the quantizer has
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been replaced by a summer whose inputs are the quantizer input e and a noise source q.

and whase output is the quantizer output y. The noise input q is equal ta the quantizatian

errar made at each sampling instant by the 2-level quantizer. As explained in [19]. it is

then straightfarward to relate the output y to the signal input x and to the noise input q in

the frequency domain (the uppercase notation is used to indicate the Z-transform of a sig­

naI):

y (:)
H I (:) , 1

= l +H,(:) ,Xl.::) + 1 +H,(:)' Q(:). (2.2)

We define the signal-transfer-function STF(:.J and the naise-transfer-functian

NTF(:J as fallows:

STF(:)
H I (:.)= 1 + H,(:)

NTF(:.) 1= 1 + H,(:)

(2.3)

(2.4)

The spectral behavior of any delta-sigma modulator (even those which do nat have

the farm of the black diagram shawn in Fig. 2.2) can then be l'ully described by these twa

transfer functions. That is. the Z-transfarm of the output y is written as:

y (::) = STF(:) . XC:) + iVTF(::) . Q(:) . (2.5 )

Q(::J. the Z-transform of q. is assumed to be white noise. The incentive for making

this assumption is that multi-bit quantizers are traditionally modelied as additive white

noise sources. In general, this madel is far fram valid for a one-bit quantizer, but it tums

out that it is accurate enough when applied to high-order delta-sigma modulators. as veri­

fied below from simulation results. From Eqn. (2.2). it is clear that if the magnitude of

H1(:) is large in the signal band, the noise input Cf will be attenuated. At these frequencies.

HI (:) must be correspondingly large for the signal x to be passed unaltered to the output y.

In ather wards we want the STF ta be close ta 1 and the NTF close ta 0 in the signal band.

The linear model given by Egn. (2.5) is nat complete unless the Power Spectral

Density (PSD) of Q(:) is estimated. For multi-bit quantizers, this PSD is taken to be white

noise with average power equal ta P
Q

= ~
2

, where ~ is the size of the quantization inter­
12
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val. However this approximation is only valid because the quantization error is practically

evenly distributed in any quantization interval. regardless of the signal leve!. which is not

the case for a one-bit quantizer.

Luckily. for aIl practical purposes the quantization noise can still be assumed to be

white in high-order modulators, but the average quantization error power PQ depends on

the signal level and is derived in another fashion. First, let us have the following defini-
~ ~

tians. The PSD of the modulator input xr:.) is defined as Sx(j) = /XC::)1 2 1: == el:~I. and the

PSD of the quantization error Q(:.) is assumed to be a constant. i.e. independent of fre­

quency. which we denote as SQ. The signal power is then given by Px = t; SyCf)df. and

the quantization error power by PQ = !~ SQdf = ! ..SQ' wherefr is the digital sample rate.

Assuming the signal and the quantization noise to be uncorrelated. the output PSD is

derived from Eqn. (2.5) to he:

Integrating Eqn. (2.6) over frequency yields the following expression for the output

power:

Since the output y is always + 1 or -1. its power P y is equal to l. Note also that the modula­

tors used in delta-sigma oscillators have STF (t!2rr. (fI}",) = 1 (this is explained in Sec­

tion 2.4.2). Eqn. (2.7) thus simplifies to

or equivalently.

1-Px

(2.8)

(2.9)

(

where ri· /NTF (t/2Tt if/J,» /1dl is the average value of the NTF-magnitude-squared on theJo
unit circle, scaled by f s. This last equation gives a good estimate of the actuaI quantization
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Fig. 2.4: (a) Nyquist-band and (b) Jnband power spectrum for a 6th.order
modulator. The solid line represents simulation data, while the dotted lioe
represents the noise spectrum predicted by the linear model.

,(
noise power density. We finally obtain the following estimate of the modulator output"s

PSD by using this expression for SQ in Eqn. (2.6):

Sy(!)
( l _ P ) /NTF (ef27t(f/f,l ) /2= S (j) + x _

x l. /NTF (t!2rr (J'/j',) ) 1
2
lif

Jo

(2.10)

[1' the input x is a sinusoid with amplitude A. then its average power is ~2 and the PSD of

( l _~ )INTF (j2rr (f/f,) ) 1

2

the output's noise component is t - .~..'
1 /NTF (el-Ir (JI},) ) 1-dl

o

(

The linear model of the output spectrum predicted by Egn. (2.10) has been verified

by simulating a 6th-order modulator designed as per the method of Section 2.5.7. The sim­

ulated and predicted spectra are represented in Fig. 1.4. by a soIid and dotted line. respec­

tively. It is clear from these plots that the linear model yields a very accurate estirnate of

the noise power density, both within the signal band and over the Nyquist interval. Note
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that in these two plots and in aIl subsequent spectral plots. the signal is shown as power.

whereas the noise is shown as power density per signal band 1. The SNR is simply read as

the ratio of the signal level (-10 dB) to the average noise level (-140 dB). that is. 130 dB.

Note also the absence of any perceptible harmonies of the signal tone. proof of the high

linearity of one-bit delta-sigma modulators. despite the presence of the highly non-linear

one-bit quantizer in the circuit.

To summarize. a one-bit delta-sigma modulator takes as input an "oversampled"

multi-bit bandlimited signal and uses the extra bandwidth to encode the input in a stream

of single bits. The one-bit output consists of an accurate replica of the input signal plus

quantization noise which has been "spectrally shaped" so as to be greatly attenuated in the

signal band.

2.4 Special Requirements for Use in~ Oscillators

As explained in Chapter 1 and in Chapter 3. the modulators which can be used in a

delta-sigma oscillator have two special characteristics. These are reiterated and treated

below.

2.4.1 One-Bit Quantizer

[n the context of mixed-signal self test. delta-sigma oscillators must have a single

bit output 50 as to minimize the complexity of the analog circuitry to a one-bit DAC and a

linear filter. Thus the modulator used in the oscillator must use a one-bit quantizer. As a

result. stability of the modulator is a non-trivial issue. and il will be dealt with in Section

2.5.1.

[. Let BW be the signal bandwidth.flN the resolution banuwidth of the N-point FFT (i.e. the size of

one FFT bin). and Pi the noise power found in the i1h FFT bin. Then the noise power density per

signal band for that bin is defined as Pt . B\~'ç' N. The total inbanu noise power is easily obtained

as the average of the inband noise power density per signal band.
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Fig. 2.5: Signal-flow graph of a general high-order delta-sigma modulator
with unity STF.

2.4.2 Unity Signal Transfer Function

ft will be demonstrated in Section 3.2 that the madulator must have a STF strictly

equaI ta unity in order to be used in a delta-sigma oscillator. Here wc present an overall

modulatar topology with that property.

From Eqns. (2.3) and (2.4), it is cIear that if the linear filters HI and H.., can be

made to realize arbitrary transfer functions then the STF and NTF of the modulator of Fig.

2.1 can be set arbitrarily and independently of each other. Indeed, the NTF depcnds on H 2

only and to obtain a desired STF one can set HI according to:

H (::-) = STF (:) = STF ( ) (1 H ( ))
1- NTF(:) :: +.,::. (2.11 )

To make the STF equal to unity, we need Hl (:) = 1 + H 2(:) . which is realized by the sig­

nal-ftow graph shown in Fig. 2.5.

One can transform this signaI-flow graph sa that a single block Hf:) is uscd to real­

ize bath the feedback gain -H2(::) and the feedfof\vard gain 1+H2(::J. instead of two dis­

tinct blocks as in Fig. 2.5. One such averall modulator structure guaranteeing a unity STF

and using a single instance of H(::) is presented in [33] and reproduced in Fig. 2.6. Here

the quantizatian error is fed back as e while any feedback of the input signal x cancels out.

Thus the STF is unity. By direct analysis, the NTF is found ta be:

(

NTF (::) = 1 - H' (::) = 1 _ H (:)
1 + H (:)

21
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Fig. 2.6: An overall structure for delta-sigma modulators with unity
Signal Transfer Function.
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Fig. 2.7: Proposed alternative overall structure for delta-sigma
modulators with unity Signal Transfer Function. The poles of the linear
block H(z) are also the zeros of the Noise Transfer Function, which is a
desired property of the modulator structure.

Another topology can be obtained by a straightforward manipulation of the signal­

ftow graph of Fig. 2.6, yielding the modulator topology shown in Fig. 1.7. When the quan­

tizer is replaced by its linear model, the input signal feeds straight to the output and back

to the tilter input~ it also feeds forward to the tHter input \Vith the opposite sign, and so the

signal feedback is cancelled, resulting in a unity STE The NTF is again equal to

1 + ~ (~) . This topology requires one less subtractor than the one of Fig. 2.6. We thus use

it instead.
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Since we have shown that the STF can be set to 1 independently of the NTF. the

rest of this chapter will focus on the design and the implementation of the NTF. or equiva­

lently. of the linear tilter Hf:).

2.5 Design Method

A complete method by which a modulator is designed sa as to convert high-preci­

sion signaIs ta one bit over a given portion of the Nyquist interval with a given signai-to­

noise power ratio (SNR) is presented here. The resulting modulators are meant ta be used

spccifically in oscillator applications and we describe how ta design them using as liule

hardware as possible.

This method comprises three main steps. First an NTF of the appropriate order.

OSR and inband noise rejection is computed. Then a modulator topology is chosen and its

coefficients are computed so that the desired NTF is realized. Finally. these coefficients

are quantized to powers-of-two or canonical-signed digits (i.e. sums or differences of a

few powers-of-two) so that they can be implemented more cheaply than using multipliers.

This last process resuIts in an actual NTF which departs from the desired one. but for care­

fully chosen modulator topologies this departure is kept to a minimum.

2.5.1 Noise-Transfer-Function Design

Rather than directly designing the transfer function Hf:). we focus instead on the

noise transfer function. It is designed to attenuate the quantization noise enough in the

band of interest so as to produce the desired SNR. If the passband type is bandpass or

highpass. a lowpass prototype with the same oversampling ratio is designed first. Section

2.5.3. explains how the bandpass or highpass modulator is obtained from the realization of

the lowpass prototype. We are thus faced with a pole-zero placement problem. albeit one

with special constraints.

The first of these special constraints has to do with stability. In particular. since

delta-sigma modulators are circuits with a highly non-linear element (the one-bit quan­

tizer). their stability cannot be predicted using the methods for linear systems only. Fortu-
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nately. condirional stability can be guaranteed by an empirical criterion expressed in the

frequency domain. An absolute requirement for stability. given in [34]. is that the magni­

tude of the NTF be Iess than 2.0 at aIl frequencies. i.e..

max(jNTF(eJ2n:J)l o <f< 1/2) < 2.0. (2.13)

As documented in [25). simulations show that the higher this maximum. the

smaller the range of input amplitudes for which the modulator is stable. However. as the

bound decreases toward 1.0. the NTF magnitude in the signal band increases and so does

the inband noise power. The bound on the NTF which results in the maximum SNR is thus

sorne value between 1.0 and 2.0. Finding the bound yielding the maximum SNR involves

trying successive values of the bound. and for each of them finding the input level yielding

the maximum SNR. through simulation. This process requires repetitive simulations and

can be performed by the computer program presented in Chapter 4. Note that the tradi­

tional stability criterion for discrete-time linear systems. namely that the poles must lie

within the unit circle in the Z-plane. also applies.

The second constraint is that the modulator be realizable. Recall that aIl feedback

loops in a realizable discrete-time system must have at least a unit delay. In the case of the

modulator of Fig. 2.7. the transfer function H(:) must be strictly causal. This implies that

the denominator of H(:.) is of higher order than the numerator. which in tums implies that

the NTF is strictly proper. i.e. that its numerator and denominator have identical orders

and leading coefficients. Farmally. we write:

(2.14 )

{

In arder to maximize the SNR. the zeros of the NTF. which are also the poles of

H(:). should lie on the unit circle within the signal band. The optimal zero locations for a

given OSR are given in [25] for lowpass modulators. The NTF pales can be designed

using specialized filter-design software such as the one presented in [33]. Altematively. a

more generally available tool such as MATLAB can be used instead ta design a Butter­

worth. Chebychev or Elliptic pole configurations for the NTF (our CAO tool does just

that). In aIl cases one can refer to the data in [25] ta obtain the NTF arder which is

required ta meet the SNR specification for the given OSR.
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Fig. 2.8: (a) Pole-zero configuration of a 6th-order noise transfer function
designed for an oversampling ratio of 32. (b) l.\'lagnitude of the NTF over the
Nyquist interval; (c) in the signal band.

As examples. two 6th arder NTFs. one for an OSR of 32 and the other for an OSR

of 128. were designed using the same method as in [25]. The bound on the NTF magni­

tude was arbitrarily set to 1.5 which in general is a good first approximation in designing a

modulator with optimal performance. Fig. 2.8(a) shows the pole-zero configuration of the

NTF for an OSR of 32. Note the pales in a butterworth configuration. inside the unit cir-
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cleo around the signal band. The zeros are on the unit circle al Iow frequencies. within the

signai band. Fig. 2.8 (b) and (c) show the magnitude of the same N'TF. As expected from

the pole-zero configuration. the NTF magnitude is very small in the signal band (la\\' fre­

quencies). The 3 pairs of zeros create the three notches seen in the magnitude plot. At high

frequencies the magnitude reaches a maximum of approximately 3 dB (corresponding to a

gain of 1.5). Fig. 2.9 shows the same information far the NTF designed for an OSR equal

ta 128.

2.5.2 Modulator Topologies

We no\\' tum ta the problem of realizing a modulator with a given NTF of arbitrary

order. We explore a variety of madulator structures. and will later evaluate which anes

give good results with quantized coefficients. in Section 2.5"+. The three structures we will

retain far that purpose are the resonator cascade. the integrator cascade. and the Iassless­

discrete-integrator ladder. or LDI ladder for shart. They are discussed below.

The problem of realizing a modulator amaunts ta finding the structure coefficients

which yield the desired NTF. For this. each term in the numerator and denominator of the

NTF is expressed as a function of the structure coefficients. and these equatians are salved

simultaneausly. Solving these non-linear equations is computationaJly intensive. and this

is one of the reasons for which the entire design method presented here was coded into a

computer-aided-design tool presented in detail in Chapter of. The remainder of this section

describes the modulator topologies under consideration.

A now widelv-used hi~h-order deIta-si2ma modulator realization was first intro-
~ ~ ~

duced in [34] and [35] and is shown in Fig. 2.11. Here the realization of H(:) consists of a

cascade of integrators. with feedback applied from each integrator output to the input to

set the poles. Feedforward branches to the output set the zeros. We thus cali this structure

the "integrator cascade with feedback and feedforward branches". or 'integrator cascade"

for short. Variants of this structure have since been used in successful switched-capacitor

implementations [36][37] as weIl as digital ones [24]. One can modify the structure of Fig.

2.11 to give a unity STF by using the overall topology of Fig. 2.7. as shown in Fig. 2.11.
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Fig. 2.9: (a) Pole-zero configuration of a 6th.order noise transfer function
designed for an oversampling ratio of 128, with magnitude bounded by 1.5.
(b) l\tlagnitude of the NTF over the Nyquist interval; (c) in the signal band.

Another modulator topology, used in [24] and reproduced in Fig. 2.12. is often

used to realize digital delta-sigma modulators. This is due to the fact that the B coefficients

are multiplying single-bit values: these operations are cheaply implemented by two-input

muItiplexers instead of multipliers. However this topology's STF is not unity. The struc­

ture can be modified to have unity STF as shown in Fig. 2.12. but then the B coefficients
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Fig. 2.10: Realization of an Nth-order delta-sigma modulator using Chao's
multiIoop-feedback integrator structure.
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Fig. 2.11: Realization of an Nth-order delta-sigma modulator based on
Chao's multiloop-feedback integrator structure, using the overall structure
resulting in a unity signal transfer function.
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Fig. 2.12: Realization of an Nth-order delta-sigma moduJator based on [24].
Note that the STF is not unity in this case.
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Fig. 2.13: Realization of an Nlh-order delta-sigma modulator based on [24],
but modified to have unity STF.

31



(

{

(

Chapter 2: Law-Cast One.Bit High-Order Digital Delta-Sigma Modulators

must be implemented by multipliers. Altematively the B coefficients can be placed in

another manner as shown in Fig. 2.15. and we cali this particular realization a resonator­

cascade. Note that in this particular structure the forward and backward integrators are

interleaved and grouped two-by-two as resonators. In this case also we can no longer play

the trick of implementing the B coefficients using multiplexers because they are used to

scale a multi-bit signal instead of a single-bit one. This in tum is a result of the STF being

equal to unity.

Finally. an essential contribution of this work is an LDI-Iadder structure. similar to

the ladder structures used to realize high quality anaIog filters because of thcir superior

sensitivity properties. LDI-Iadder filters were introduced in (38]~ the modulator LDI-Iad­

der structure we propose is shown in Fig. 2.15. It is composed of discrete-time integrators.

The output of each integrator is first scaled by a coefficient Ai and then is fed forward to

the next integrator in the ladder as weIl as back to the previous one (except for the first and

last integrators). Each integrator output is also further scaled by a coefficient Bi and fed

forward to the quantizer input. Note that this structure displays the main characteristic of

ladders. that is. the way the feedback is distributed around the integrators. and for that rca­

son we expect it to have low sensitivity to coefficient variations. In generaL LOI ladders

are designed l'rom a continuous-time prototype \vhich is mapped to a discrete-time equiva­

lent. as described in [38]. However here we use a more direct approach to obtain the real­

izaLion coefficients. Namely. we solve the non-linear equations relating the coefficients ta

the NTF terms. as for the integrator and resonator cascade structures.

2.5.3 Passband Mapping

In the case when the signal band is not centered around OC. the modulator struc­

tures presented in Section 2.5.2 must be modified to implement a bandpass or highpass

NTF. In generaI. any linear system can be transformed from lowpass to bandpass or high­

pass by mapping the Z-variable to a new variable [39]. For a bandpass modulator with
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Fig. 2.15: ReaIization of an N1h-order modulator based on the Lossless
Discrete Integrator (LDI) ladder, with an overall structure yielding a signal
transfer function equal to unity.

center frequency roc and an OSR defined as the ratio of the signal bandwidth to half the

sampling rate, the mapping is described by:

(
--~ C-- I

--1 ~ ... - ...
... - C:-l + 1·

(2.15)
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.( Fig. 2.16: Integrator-to-biquad mappings for bandpass modulators.

where

c=
cos Wc

cos( 2. ~SR) .

(2.16)

In terms of modulator realization. once Chas been found. the integrators in the

Iowpass prototype realization must be replaced by the appropriate biquads. shown in Fig.

2.16 and described by the following equations:

(2.17)

and

(

1 -C.:-l + 1
---~ .
1 - .::-1 .::-:! - 2C.:- 1 + 1

(2.18 )
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One very interesting case arises when the center frequency COc is equal to rrJl. In

that case C is 0 and the Z-variable mappings reduces to:

<1.19)

which amounts to doubling each delay element in the circuit.

FinaIly. to obtain a highpass modulator. the mapping is given by:

{

The integrators then map according to:

--1 _-(
... ~

1---1 1+:-[

and

1 1
---~ .
1 - ;:-1 1 + ;:-1

2.5.4 Coefficient Quantization

(1.20)

(1.11 )

(2.22)

(

The modulators realized with any of the topologies presented in Section 2.5.2 are

not suited for an economical digital implementation. because they require multipliers to

implement the scaling coefficients. However. if an approximation of the desired NTF can

be found with aU coefficients of the realization equal to powers-of-two. then the modulator

can be implemented using only adders. subtractors. registers and fixed-shift units. The fol­

lowing section exposes our strategy for coming up with such an efficient realization. and

the results for each of the topologies described above.

After the NTF has been designed and the corresponding modulator coefficients

have been obtained. a method inspired from the one presented in [40] is used ta quantize

these coefficients to powers-of-two (including the biquad coefficients in a bandpass modu­

lator). Each coefficient in the structure is rounded either upward or downward to the near­

est power-of-two. independently of the other coefficients. For a structure with Il

coefficients. this gives rises to 'lll possible approximations. Among the stable realizations

thus obtained. the one yielding the largest average inband noise attenuation. while respect­

in!! the chosen bound on the NTF-magnitude. is retained. if anv exists. Note that the NTF-..... ..... ..
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magnitude bound may have to be relaxed to a slightly larger value than that used for the

original NTF design.

If a finer quantization is required. the coefficients can be realized by canonicaI

signed digits (CSD). that is sums or differences of a few powers-of-two. This requires

more hard\vare but results in smaller coefficient changes. which helps obtain a 'quantized'

NTF cIoser to the desired one. It is a trade-off which the designer must address on a case­

per-case basis. Note that the biquad coefficient in a bandpass modulator may have to be

quantized to a CSO of as many as four terms 50 as to locate the signal band with enough

precision.

This quantization process is simple in principle but even more computationally

intensive than solving for the coefficients of a structure. and therefore the use of the CA.O

tool presented in Chapter 4. or a similar one. is absolutely essentiaJ here.

As a result of this quantization process. the zeros and poles of the N'TF move off

their initial locations. in a manner depending on the modulator structure's sensitivity to its

coefficients. Fig. 2.17 shows the zeros and pales obtained by quantizing the coefficients

for both our 6th arder example NTF's to powers-of-t\vo. for the integrator cascade struc­

ture. The initial poles and zeros. the ones of the modulator with non-powers-of-two coeffi­

cients. are marked by asterisks (*). The various possible locations of the poles when each

coefficient is quantized either upward or do\vnward are identified by the 'x' symbols on

Figs. 2.17(a) and 2.17(c). Note that for darity not ail 2[2 possible poles are shown but

rather a representative subset of them. Similarly. the zeros of the possible realizations \vith

quantized coefficients are represented \Vith '0' markers. on Figs. 2.17(b 1and 2.1 7( d).

Our results show that the integrator cascade has serious drawbacks with respect ta

coefficient quantization. First. in many instances the zeros move far off the unit cirde.

decreasing the inband noise attenuation. Thus. designs realized with the integrator cascade

with po\vers-of-two coefficients are likely to have a significantly poorer performance than

is desired.

Much worse is the behavior of the NTF poles under quantization of the coeffi­

cients. For high-order. small-bandwidth modulators. aIl of the :z/l sets of quantized coeffi­

cients result either in poles lying outside the unit circle. or in a NTF magnitude exceeding

the allowed maximum of 2.0 given in Section 2.5.1. In either case the resulting modulator
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integrator cascade modulator structure, for our 6lh.order examples: (a)
poles, OSR=32: (h) zeros, OSR=32; (c) pales. OSR=128; (d) zeros. OSR=128.

is unstable. Thus our design strategy fails completely for this structure and we conclude

that it is extremely difficult to design high-order delta-sigma modulators \Vith powers-of­

two coefficients for the integrator cascade structure.

(
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Fig. 2.18: NTF zeros and poles realized by quantized coefficients in the

LDI-Iadder structure, for our 6th-order examples: (a) poles, OSR=32; (h)
zeros, OSR=32; (c) poles, OSR=128; (d) zeros, OSR=128.

These results seem to indicate that coefficient quantization requires a rea1ization

having good coefficient sensitivity properties. We now tum to the effect of quantizing the

coefficients of an LDI ladder realization. Just as Fig. 2.17. Fig. 2.18 shows the possible

poles and zeros of the ladder-ba.~ed structure with quantized coefficients. Note. in Figs.

2.18(b) and 2.18(d). that aIl the zeros are located on the unit circle. at angles close to their
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original values. Since no damping is present in the ladder. the pales of H(:). which are aJso

the zeros of the NTF, rernain on the unit circle when the coefficients are quantized. which

is not the case with the previous integrator calicade structure.

In addition. the NTF poles remain much closer to their original position than with

the cascade structure (seen in Figs. 2.18(a) and 2.18(c». This is explained by two facts.

Considering that the poles of H(:.) change very tittle when the B coefficients are quantized.

the transfer functions from the input to each integrator output do not vary significantly

either. Moreover. the change in a specific coefficient Ai can be partially cancelled by an

opposite change in the corresponding feedforward coefficient Bi, thus keeping the transfer

functions From each integrator output to the filter output nearly unchanged.

Overall. with powers-of-two coefficients only. the ladder structure is capable of

realizing a close approximation to the desired modulator functianality described by an

NTF pole-zero distribution such as those in Fig. 2.8 and Fig. 2.9. The quantized coeffi­

cients of both design examples are given in Table 2.1:

Table 2.1: Quantized coefficients of the 6th-order designs realized with an LDI-Iadder
topology, for OSR=32 and OSR=128

N=6.0SR=32 N=6.0SR=12X

L.-\DDER FEEDBACK
LADDER

LADDER FEEDB.·\CK
LADDER

FEEDFORWARD FEEDFORWARD
COEFACIENTS COEFFICIENTS

COEffiCIENTS COEFF[CIE~TS

\ _ ..,.9 B - ..,., A. - ..,-13 B - ,-1
... 1 -- (-- . 1-- 1--

A:! =2° B _..,7 :-\, = 2- 1 B... =211
1--

..-\3 = 2-x B _,4 -1 ' 8 3 =2';/3-- :-\3 =2 -

A _,.1 B _.,10 ..-\4 = 2- 1 B - ,19
4-- 4-- 4--

A - .,.8 8 _.,6 A - .,-12 B _,15
5-- 5-- 5-- 5--

A _,0 B _,10 Afi=2° B - ,2.t
6-'" 6-"- t1--

Fig. 2.t9 displays the inband magnitude of the desired NTFs and of the ones real­

ized by a multiplier-free ladder with the best set of quantized coefficients. for bath 6th_

arder designs. The solid curves represent the NTF of the modulators with quantized caef-
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Fig. 2.19: (nband magnitude of the desired NTF (dashed line) and ils

approximation with powers-of-two ladder coefficients (solid line), for our 6th•

order examples: (a) OSR=32, (b) OSR=128.

ficients. while the dashed curves depict the desired NTF. The difference between the two

NTF"s is at most 10 dB. both for OSR=32 and for OSR= 128. These plots thlls demonstrate

that quantizing the coefficients of an LDI-Iadder-based modulator is a viable way to

reduce the hardware complexity without sacrificing tao much performance. An Wh-order

design with quantized coefficients requires 2N adders. N slIbtractors. 'lN shift lInits. 'V reg­

isters and a sign detector.

As for the resonator cascade realization. it does not yield stable modulators with

coefficients aIl equal to a single power-of-two. at least for our two NTF examples. How­

ever. if the B coefficients are quantized ta sums or differences of 2 powers-of-two. i.e. 2­

term CSDs. a good approximation of the desired NTF is obtained.

For bandpass modulators. the biquad coefficient C must also be quantized. gener­

ally to more than a single term 50 as to locate the signal band of the quantizcd design with

enough precision.
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2.5.5 Simulation

The modulator design cycle is not complete until simulations and prototypes have

demonstrated the stability of the design for the intended inputs. There are two reasons for

this. First. a delta-sigma modulator is a system with a hard non-linearity and thus its stabil­

ity is conditionaI on the input level in a way which is difficult to predict. Second. in a dig­

ital implementation. finite-register Iength effects may create noise at significant Ievels. or

even instability.

Simulation of the delta-sigma modulator. assuming floating-point precision. is eas­

ily performed by a simple C program. A given modulator design can be simulated at vari­

ous signai levels sa as to determine the maximum SNR and the corresponding input IeveL

as weIl as the avaiIable dynamic range. This was done for both our 6[h arder examples.

The inputs were sinusoids having periods 128 and 512. respectively. for the designs with

OSR=32 and OSR= 128. (The periods are powers-of-2 to ensure coherence of the input

with the observation interval of 2 14 samples). The input amplitude was varied l'rom 10-4 to

0.9 so as to capture the input leveI at which the modulator becomes unstable (i.e. when the

SNR suddenly drops). The output was then processed using the continuoLls-tifth-deriva­

tive window found in [45]. This window has rapidly decaying sidelobes in the frequency

domain and thus dramatically reduces the frequency smearing due to the unavoidable

incoherence of the delta-sigma modulator output. as explained in Appendix A.

Fig. 2.20 shows the results of these amplitude sweep simulations for both designs.

One can clearly notice that the SNR suddenly drops at input Ievels close ta 0.5. This hap­

pens because the modulator is no longer stable. For the moduIator with an OSR of 32. the

available dynamic range is 90 dB. For the modulator with an OSR of 128. it is 160 dB.

Fig. 2.21 shows the inband power spectral density of the simulation outputs for a

0.5 signal amplitude. ClearIy. the noise power assumes the spectral distribution predicted

by the NTF in Fig. 2.12. assuming a white quantization noise (the predicted noise spec­

trum is shown as a dashed curve). The zeros can be seen at the predicted frequencies and

the signal shows no harmonie distortion. The output of the modulator with OSR=32 dis­

plays an SNR of 80 dB, while the one with OSR= 128 has an SNR of 155 dB.
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2.5.6 Prototyping

(

Prototyping can he accomplished by synthesizing an HDL description of the cir­

cuit to a Field-Programmable-Gate-Array (FPGA). The register lengths can he modified

until a prototype using minimum hardware and yielding the expected SNR performance is
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(

(

obtained. The CAD tool described in Chapter 4 can generate VHDL code describing a

given modulator design. Such code has been compiled to implement the 6lh-order modula­

tor with OSR=32 onto a Xilinx 4010 FPGA with a 16-bit register length and 3 integer bits.

The inband spectral density of its output when stimulated by a sinusoidal signal of ampli­

tude 0.5 and period 142.2 is shawn in Fig. 2.22(a). Likewise. Fig. 2.22(b) displays the

inband spectrum for the OSR= 118 prototype with an input sinusoid of amplitude 0.5 and

period 568.9. which was implemented using a register length of 32 bits and 3 integer bits.

The spectra were obtained by sampling the digital bit stream at the output of the FPGA

and performing a Fast Fourier Transform on the data. Notice that the noise spectra are vir­

tually identical ta the ones obtained from floating-point simulations. shown in Fig. 2.21.

The major difference is that the zeros of the NTF cannat be seen as sharply defined for the

prototypes as for the simulations. This is due to the noise fIoor generated by the finite reg­

ister lengths used in the prototypes. A OC error is also seen on these plots at a level signif­

icantly higher than the noise floor. The source of this offset is unknown. and it was not

seen in the results of sinlulations performed on the VHDL description of the prototypes.

This DC component was ignored when computing the SNR.

The SNR figures are comparable to those obtained from simulations. namely 80

dB and 155 dB, respectively for the low- and the high-OSR design. The prototypes thus
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validate the assumption that the fixed-point implementations of the modulator designs

behave as predicted by the linear model and by simulation. Bandpass and highpass proto­

types can be realized and tested in the same fashion with similar results.

2.5.7 Optimal NTF Design

An empirical study of one-bit delta-sigma modulators [25] gives the maximum

SNR that can be achieved by a modulator of a given order and OSR. The parameter which

must be optimized for maximum SNR is the NTF bound. The CAO tool presented in

Chapter 4 is capable of finding the optimal NTF bound.

The method consists of graduaIly increasing the NTF bound. and for cach value

thereof. simulating the modulator with a variety of tone amplitudes and recording the

maximum SNR achieved over aIl these amplitudes. While it is a brute-force method. the

lise of the CAO tool makes it reasonably fast. as described in more detail in Section '+.4.7.

2.6 Conclusion

This chapter contains two important contributions. The first is an overall modula­

tor topology for which the STF is unity. and this is essential for use in delta-sigma oscilIa­

tor. The second is a complete design framework and internai modulator topology. the LD[­

laddcr realization. Together. this method and topology yield hardware-efficient realiza­

tions of high-order digital one-bit delta-sigma modulator. whether for Iowpass. highpass.

or arbitrary bandpass signal bands. based on quantizing the modulator coefficients to pow­

ers-of-two. Finally. simulations and prototypes prove the validity and practicality of these

modulator designs.
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Chapter 3

Arbitrary-Precision Delta-

Sigma Oscillators

3.1 Introduction

As pointed out in Chapter 1. a generaI delta-sigma oscillator topology is intro­

duced and explained in detaiI in this chapter. It overcomes the Iimited stability of Lu. Rob­

erts and Johns' [5] original 2nd-order design (shown in Fig. 1.2). offers complete

tlexibility in setting the location of the signal band in the Nyquist intervaI. and allows for

the use of a high-order modulator. for the purpose of reducing the inband noise power.

The generalized delta-sigma osciIlator topology is shown in Fig. 3.1. Like Lu's

design. it is constructed from a pair of discrete time integrators. a delta-sigma modulator.

and a multiplexer which implements the loop-gain coefficient ko. It aiso displays two new

features. First of aIl. the delta-sigma modulator is not any more the traditional 2no-order

circuit with two zeros at OC. but a modulator of arbitrary order and topology whose Sig­

nal Transfer-Function (STF) is equaI to 1. The second new feature is an additional feed­

back Ioop around the integrators which bypasses the modulator and multiplexer and

implements a scaling coefficient kt.

The special requirement of unity-STF imposed on the modulator is justified in Sec­

tion 3.2. which presents a linear model for the oscillator. Section 3.3 shows how the stabil­

ity of the circuit depends on the scaling coefficient in the modulator-multiplexer Ioop. ko.
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while Section 3.4 demonstrates how the extra loop coefficient kt is used to keep the oscil­

lator stable by maintaining the multiplexed coefficient ko under an acceptable threshold.

no matter what the generated tone frequency is. It is also shown how to implement k, with

a minimal amount of hardware.

This chapter goes beyond the principles of operation and the design of single-tone.

lowpass delta-sigma oscillators. Section 3.5.1 explains how the same generalized topology

can be used to generate signaIs over any arbitrary band within the Nyquist interval. i.e. to

realize bandpass and highpass oscillators. Sorne simple modifications to the hardware.

described in Section 3.5.2. result in multitone generators. useful in particular to excite a

circuit for intermodulation distortion measurements. Section 3.5.3 explains how the noise­

spectrum of the generated signal cao be optimized in the context of mixed-signal self-test.

3.2 Linear Model

As was explained in Section 2.3. the delta-sigma modulator embedded in the oscil­

lator as shown in Fig. 3.1 cao be represented by a linear model. even though it is a non-lin­

ear circuit. This model consists of a Signal-Transfer-Function (STF) from input to output.

t xl
1 _:-1 I---.......-t

_~I .1:2

'-lUX

1)

y
: 5TFf:'J ....: ~--+--'

: NTFf:.) :+- q

-'0 +ko

I-bit output
y

Delta-Sigma
Modulator

( Fig. 3.1: Generalized Delta-Sigma Oscillator (DSO).
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and a Noise-Transfer-Function (NTF) from the quantization noise input q. internaI to the

modulator. to its output. Typically, the quantization error q introduced by the one-bit quan­

tizer inside a delta-sigma modulator is assumed to be additive white noise (this was dis­

cussed in detail in Section 2.3). The modulator is then characterized by STF(:J and

,VTF(:). according to the following equations:

(3.1 )

(

where Yt:), X~(.:) and Q(:) are the Z-transforms of y(n), .\"2(11) and q(n), respectively.

The linear model of the delta-sigma modulator, summed up by Eqn. (3.1 ), implies

a similar model for the delta-sigma oscillator circuit. The first part of this model ignores

the quantization noise and predicts the oscillatory behavior of the circuit. and is the coun­

terpart to the STF modelling of a modulator's behavior with respect to its input signal. The

second part of the model consists of a new noise-transfer-function NTF'(:). which. along

with an estimate of the Power Spectral Density (PSD) of Q(:}. describes the oscillator's

output noise spectrum.

In arder to derive the signal behavior of the oscillator. let us assume for now that

the noise input q of the modulator in Fig. 3.1 is zero. or equivalently set Q(:) ta 0 in Eqn.

(3.1). The circuit resonates if its loop gain has the following form:

k:- I

L (:) = 1 "
( 1 -:- )-

In other words, the characteristic polynomial of the linear system must he:

1 + (k - 2) :-1 + :-2 .

(3.2)

(3.3 )

where k is the totalloop gain in the system. In that case the solution to the difference equa­

tions describing the output of the system with no input will be a sinusoid depending on the

initial conditions (xl(O) and x:!(O» and the loop gain kas described by Eqn. ( 1.1). provided

that O<k<4.

The actualloop gain of the circuit of Fig. 3.1 is found by breaking the loop at the

output of either of the integrators and is given by:

(
(3.4)
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Comparing Egn. (3.2) with Egn. (3"+ J indicates that the circuit will resonate. i.e. produce a

sinusoidal output. provided that STF(:) is unity for aIl :. In that ca..~e the totalloop gain is

given by:

(3.5 J

and the freguency of oscillation. amplitude and phase of the output tone are still given by

Egns. ( 1.2 J. ( 1.3) and ( 1A). respectively.

Let us now develop an expression for the noise spectrum created by the oscillator

circuit. due to the guantization noise in the delta-sigma modulator. The oscillator can be

considered as a linear tilter with an input q located within the modulator. For purposes of

computing the inband noise. this input is considered ta be white noise. even though in fact

it is correlated with the signal being modulated. If IVTF(:., is the transfer function from q to

the modulator output. then we call1VTFï:.) the oscillator's ~oise-Transfer-Function. that

is the transfer function from q to the oscillator output y. It is gi ven by:

(
NTF'(:) = y (:)

=Q(:)

-, -"'
1+(k,-2):. +:.-

-------_-,--_-., . NTF(:.)
1+ (ko + k 1 - 2):. +:.-

(3.6.

In addition ta the poles and zeros of the modulator ~TF. :VTF·(:.) has a pair of

zeros and a pair of pales located on the unit circle in the Z-plane (i.e. at physical frequen­

cies J. provided that 0 < Ik Il <..t. and 0 < Iko + kIl < ..t.. The ne\\" zeros have a radial posi­

tion egual to ±acos ( 1 -IkIi /2) while the new poles are Iocated at

±acos ( 1 -Iko + k d/2) . the frequency of the generated ~inusoid. The presence of the

added zeros. if thev falI in the signai band. is somewhat beneficial in reducing the total
~... ~

amount of inband noise power. The poles on the unit circle represent the fact that the sys­

tem is critically stable.

In Section 2.3 an estimate of the PSD of Q(:) was deri\'ed for delta-sigma modula­

tors and given by Egn. (2.9). The same argument leads to an egui\'alent expression for the

PSD of the quantization noise in the oscillator case:

(

(3.7)
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Note that NTF'(;.) has taken the place of NTF(:.J in Eqn. (2.9). What remains to be deter­

mined to complete the model is the signal power at the output of the modulator. Ps. ~ote

that il i5 equal to the power of the modulator input signal x2 since STF(:.)= 1.

According to the previous discussion. we assume x2 to be a sinusoidal signal and

\vill prove the validity of this assumption later. If the amplitude is programmed to be equal

to A. then the PSD of the noise component of the output. according to Egn. (3.7). is given

by

1 .,

f /NTF' (e/:'1t!) ,-dm
\}

( 3.8)

The signal y feeds back toward the input of the modulator. seeing a transfer func­

tion given by:

_1 _"'l.

1+ (k)-2J': +.:-
(3.9)

(

(

If ko is small. then this transfer function is small everywhere except close to the pole fre­

quency and we can assume that the out-of-band noise is sufficiently attenuated for x2 to be

effectively modeIIed by a sinusoid. thereby validating our initial assumption.

A 6th-order design has been simulated to prove the validity of Eqn. (3.8). The

modulator is the same as the one used in the example of Section 2.3. The tone period is set

to 1024. or equivalently the frequency i5 0.00098. implemented \vith ko=-2.34x 10-5 and

k)=2-)~==6.IOxIO-5. Fig. 3.2(a) shows the spectral content of the output signal over the

~yquist interval for a signal amplitude equal to 0.25 (- 12 dB). Fig. 3.2(b) shows the

inband power spectrum (represented by the solid line). as \vell a~ the spectrum predicted

by the linear model (shown with a doued fine). Note that the continuous fifth-derivative

window has been applied to the data before the FIT \Vas computed. a'i explained in

Appendix A. The SNR of the generated tone over the displayed frequency band i5 130 dB.

This is 60 dB better than the 70 dB achieved by the 2nu arder oscillator over the same sig­

nal band\\"idth (Fig. 104). This example illustrates the gain in signal precision obtained

when a higher-order modulator replaces the 2nu-order modulator. and the possibility to
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Fig. 3.2: (a) Nyquist-band and (b) Inband power spectrum for a 6th·order
oscillator. The solid line represents simulation data, while the dotted line
represents the noise spectrum predicted by the linear modeJ.

achieve virtually limitless SNR (for aIl practical purposes) over small signal bandwidths.

as set out in Section 1.3.3.

3.3 Stability Stndy

3.3.1 Classification of Long-Term Behavior

Just like delta-sigma modulators. delta-sigma oscillators are non-linear systems.

and thus their stability properties depend on the input signal and cannat be predicted by

frequency domain methods. However. the fact that the linearized system described by

Eqn. (3.4) (with no noise input) is critically stable gives us hope that the actual non-linear

system may, in sorne cases, be critically stable tao. Unfortunately it is not known how to

prove it rigorously. The stability of delta-sigma modulators is in general equally difficult

to assess rigorously, although in their case empirical findings [25] compensate for our lack

of theoretical knowledge. What is thus needed here is the equivalent empirical study

applying to delta-sigma oscillators. This section presents such a study.
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Fig. 3.3: Simulation of a 2od.order oscillator: (a) tone amplitude; (b) power

spectral density of a 64k sample taken after 108 iterations.

Sorne non-linear effects can still be predicted in a qualitative way. using the linear

mode!. Because the delta-sigma modulator output can be equal to + 1 or -1 only. the state

variables of the oscillator (x1 and x2) loop can only take on a set of quantized values. After

each period of oscillation. these state variables may have values which correspond to a

sIightly different amplitude of oscillation. This imprecision will affect the amplitude of

oscillation over time. We can foresee two cases. one in which the amplitude of oscillation

converges to a value. hopefully close to the intended amplitude. and another one in which

the amplitude drifts away without bound. until the modulator reaches instability.

Fig. 3.3(a) illustrates the first of these possibilities. The amplitude is initially set to

0.1. but settles to 0.106 aftef about 500.000 samples. The simulation shown here lasted

5.000.000 iterations. after which time an FFI' of the output was computed. It is shown in

Fig. 3.3(b). The tone displays an SNR of 68 dB.

The other case. in which the tone amplitude changes slowly but with no bound. is

illustrated by Fig. 3.4(a). which shows the simulated amplitude of a 6th order oscillator

with OSR 64. The period is 256. The tone amplitude is initially set ta 0.1 but has

decreased ta 0.03 after 108 samples. However it changes so slowly that at any given time

the quality of the signal is as predicted by the linear model. Fig. 3.4(b) shows the FIT of
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Fig. 3.4: Simulation of a 6th-order oscillator: (a) tone am plitude; (b) power

spectral density of a 64k sample taken aCter 108 iterations.

the simulated output over a 64k intervaL taken at the end of the simulation. after 108 sam­

pies. Although the signal power is -30 dB rather than the intended -20 dB, the SNR is 96

dB. This oscillator could still be very useful in an application which can compensate for

the variation in tone amplitude.

In the spectral domain. these departures l'rom the linear behavior can be said to be

caused by the noise generated by the modulator. This noise is scaled by ko before being

injected into the resonator. If ko is large. then the disturbance created by this noise is likely

to throw the oscillator into instability very rapidly. If, on tlze contrary. ko is small. t!zen il is

rellsonable to assume that the reslliting closed-Ioop circuit may display tlze saille oscilla­

(ory belzavior as (Ize pure digital resonator (as argued in the previous section), at least over

sorne significant period of time after the initial conditions have been set. [n other \vords if

the noise injected in the resonator loop is small enough, we expect the oscillator to be able

to compensate for this disturbance. For this reason. ko must be kept under a certain thresh­

old to prevent the injected noise l'rom throwing the system inta instability. The object of

our empirical study is thus to find this threshold for various oscillator designs.
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3.3.2 Method

[n order to obtain an overall estimate of what constitutes an appropriately small

value of k{), extensive simulations were conducted. for a variety of lowpass oscillator

designs. Six designs were simulated. using modulators of orders 2. -+. and 6. and for OSRs

equal to 32 and 128. In each case the modulator was designed to offer the maximum SNR

for the given order and OSR. as described in Section 2.5.7. using the resonator cascade

structure with non-quantized coefficients (note that the modulator coefficients need not be

quantized for this study. and thus any modulator structure will yield the same results). The

oscillators were designed with k, =0. i.e. with no feedhack loop other than through the

multiplexer coefficient ko, as in the original 2nd-order delta-sigma oscillator of [5].

Increasing values of ko were used~ they were chosen so as to make visible the max­

imum range for which the various oscillator designs are stable. with the tone always being

generated within the signal band. Increasing tone amplitudes were also used. ln each case

the time during which the oscillator remained stable was recorded. up to a maximum of

lOs samples. This is an upper bound on the requirements of a practical test. i.e. a 1 second

test at a 100 MHz rate. Stability was defined as follows: the modulator is stable as long as

the modulator quantizer input is Jess than ten times larger than the quantizer output leveL

in absolute value. This criterion is arbilrary but. From experience. captures the essential

facls about modulator and oscillator stabiIity. When the oscillator was still stable at the

end of the simulation. the amplitude and SNR of the generated tone \Vere computed.

3.3.3 Results

Note that only results for lowpass oscillators are presented here. Similar results

hold for bandpass and highpass oscillators.

The following six tables contain the simulation results. Each column corresponds

to a given value of ko. The value of the tone frequency is given relative to the sampling

rate as/. and relative to the upper signal-band-edge frequency asf/J,.t' Ai is the tone ampli­

tude programmed by the initial register values in the oscillator. Each table cell is shaded 50

as to represent the outcome of the simulation in the following manner. If at the end of the
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simulation the tone amplitude was still within 10% of the intended value. the cell is not

shaded and displays the final tone amplitude Al and the SNR at the end of the simulation.

[f the modulator was still stable but the tone amplitude had departed from the intended

value by more than 10%, the corresponding table cell is Iightly shaded. and again contains

the values of Al and of the SNR. Finally, when the modulator had become unstable before

the end of the simulation time, the ceII is a darker shade of grey and displays the simula­

tion iteration at which instability was reached.

Table 3.1: Oscillator Stability Results for N=2, OSR =32

ko ko=IO"6 ko=IO')

f 1.6xI0-~ 5.()xl()-~

flfIl 0.010 OJJJ2

A= Af =0.0467 04[=0.264-1

0.025 SNR = 36.9 dB SNR = 51.7 dB

A= Ar=O.109 AI = 0,4871

0.1 SNR =45.6dB SNR = 56.4 dB

A= Ar= 0.344 Ar=0.7961

0.25 SNR = 54.[ dB SNR =56.0 dB

04 , = Ar= 0.542 Al= 0.808

0.5 SNR =57.8 dB SNR =55.5 dB

A - Ar= 0.780 AI = 0.781r-

0.75 SNR =56.7 dB SNR = 56.5 dB

Table 3.2: Oscillator Stability Results for N=2, OSR=128

ko 10-6 10-) I(r~ 5xl(r-+

f 1.6xJO-~ 5.0xIO-~ 1.6x/()"J 3.6x f()-J

j7jCI 0.0-11 0.129 0../07 0.911

Ar = At = 0.0245 A{=0.0241 Ar= 0.0258 Al = 0.0248

0.025 SNR = 60.7 dB SNR::: 60.9dB SNR =58.[ dB SNR::: 53.2 dB

A,= A{=0.0997 Ar= 0.100 A, = <L0960 Ar= 0.0923

0.[ SNR = 74.9 dB SNR =74.5 dB SNR = 71.8 dB SNR = 65.3 dB
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Table 3.2: Oscillator Stability Results for N=2't OSR=128

ko 10-6 10.5 /fr~ 5x/rt-!

f 1.6xIO--! 5.0xI0·-! 1.6x10·.1 3.6x/(r.1

jlji, O.O.f.1 0./29 O..f.07 0.911

A,= Ar = 0.250 Al = 0.249 A/= 0.246 04/= 0.1-l3
0.25 SNR=82AdB SNR =81.0 dB SNR =79.8 dB SNR = 72.3 dB

A,= A{= 0.503 Ar = 0.504 A,=0.517 AI = 0.301

0.5 SNR = 87.2 dB SNR = 87.7 dB SNR = 86.3 JB SNR= 73.1 dB

A,= AI = 0.752 AI =0.751 ..\1=0.752 A, =0.7-l-l
0.75 SNR = 83.1 dB SNR == 86.2 dB SNR = X9.3 JB SNR = XO.2 JB

Table 3.3: Oscillator Stability Results for N=4, OSR=32

ko /0.6 10.5 IO'-!

f 1.6xIO'-! 5.0xl(}~ /.6:dr)"3

jlfu O,(J/O O.VJ2 O.!O]

A i = Ar= 0.02-l7 :\r =0.0247 At =0.023-l
0.025 SNR =5-lA dB SNR =5-l.1 dB SNR = 52.9 dB

A,= .-\[=0.0997 Ar=0.104 unstable at
0.1 SNR = 66.3 dB SNR =65.7 dB r=2.320e+07

A,= Ar = O.27-l unstable at unsrable at

0.15 SNR = 7-l.0 dB t=9.374e+07 t= 1.045e+07

A,= A/= 0.535 unstable at unstable at
0.5 SNR =79.7 dB t=1.3 Il e+07 t=3.074e+06

A,= unstable at unstable at unstable at
n.75 t=181 t=930 t=318

Table 3.4: Oscillator Stability Results for N=4, OSR=128

ko 10.6 urS IO'-! 5xU)"-!

f 1.6xI0·-! 5.0xIO·-! 1.6xf(;-:' 3.6.r/f)"-'

flfu 0.0.f.1 0.129 O..J07 0.9/1

A,= A{= 0.0248 AI =0.0246 Ar = 0.0256 Ar= 0.0298

n.025 SNR = 108.9 dB SNR = 108.0 dB SNR = 104.2 dB SNR:: 96.8 dB
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Table 3.4: Oscillator Stability Results for N=4, OSR=128

kt) 10.6 10.5 IrT~ 5xl rT-l

f 1.6xI0~ 5.0xIO·~ 1.6xI0·] 3.6xI0·]

fljil 0.041 0.129 0.407 0.911

A,= A(= 0.100 A(=O.IOI Al = 0.996 Ar= 0.113

n.1 SNR = 119.0 dB SNR = 119. 1dB SNR = 113.7 c.JB SNR = IIOA dB

A,= A[= 0.250 Ar = 0.251 At =0.2·P Al =0.286

0.25 SNR = 127.2 dB SNR = 127.1 dB SNR = 117,4 c.JB SNR = 116.0 dB

A,= Al =0.500 Al = 0.501 unstable at unstable at

n.5 SNR = 132.3 dB SNR = 133.3 dB t=5.615e+07 t=8.308e+07

A,= unstable at unstable at unstable at unstable at

n.75 t=4.900e+01 t=4.600e+Ol l=4.500e+O 1 t= 1.760e+02

Table 3.5: Oscillator Stability Results for N=6, OSR=32

ko 10.6 l:clfT S IxIO·4

f 1.6xI0·-l 5.0xl()~ /.ru / (J']

jlfil 0.010 OJ)J2 0.102

A,= A(= 0.0248 A(= 0.OO24R Al = 0.0289

0.025 SNR = 68,4 dB SNR = 67.8 dB SNR =68.1 dB

A= Al = 0.104 Ar = 0.154 unstable al,
0.1 SNR = 81.2 dB SNR = 83.0 dB t=4.707e+07

A,= .4[=0.261 Af =0.375 unstable at

0.25 SNR = 87.7 dB SNR =90.9 dB t=2.21ge+07

A,= unstable at unstable at unstabJe at

0.5 t=3.645e+OS t=8.456e+04 t= 1.6 18e+05

Table 3.6: Oscillator Stability Results for N=6, OSR=128

ko 10.6 Ix10·5 IxIO·-l 5x1O'4

f 1.6.'1:10.4 5.0xI0-4 1.6xU)"'1, 3.6xIO· ,1,

jlfu 0.041 0.129 0.-/07 0.911

A,= A[=O.0250 Af =0.025 A,. = 0.0250 At =0.0251

0.025 SNR = 146.6 dB SNR = 147.5 dB SNR == 144.3 dB SNR = 140.2 dB
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Table 3.6: Oscillator Stability Results for N=6, OSR=128

k() 10-6 l.do-5 IxIO--t 5x1O-4

f 1.6xIO-4 5.0xI0-4 1.6xIO-"!- 3.6xI0':-

jljil 0.0-11 0./29 0.-/07 (J.911

A, = A1=0.100 Ar = 0.100 At = 0.100 At = 0.100

0.1 SNR = 157.1 dB SNR = 157.0 dB SNR = 15-t.S dB SNR=I57.ldB

A, = Al = 0.250 Al = 0.250 A{= 0.250 A, = 0.251

0.25 SNR = 165.6 dB SNR = 165.2 dB SNR = 163.7 dB SNR = 165.0 dB

A, = unstable al unstable al unstable at unstable al

0.5 t=9163 t=6989 t=1629 t=4712

A, = unstable al unstable al unstable at unstable al

0.75 t=38 t=39 t=42 t=146

The following trends are clearly visible from the eollected data. First of aIL oseiIIa­

tors designed for the lower OSR value (i.e. 32) remain stable only for small values of ko.

sueh as 10-6 . When ka is set to 10-5 the low-OSR oseillators remain stable only for small

signal amplitudes. This is true for aIl three orders in these results. namely 2. -l and 6.

Another trend is that as the modulator order is inereased. the range of stable input ampli­

tudes diminishes. This is not surprising. given that the same faet holds for delta-sigma

modulators. FinaIly. one should note the accuracy of the tone amplitude for the 6th-order

design \Vith OSR= 128. throughout the entire range of values of ko. (These values of ko

span most of the signal band for an OSR of 128). Very little variation in amplitude is

observed.

These results. which were coIIeeted with k I set to O. lead to the expected conclu­

sion that ko must be kept smaller than sorne threshold value. This will be aecomplished in

the next section by letting k I take non-zero values.
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3.4 Minimal Realization of Stable Oscillator

3.4.1 Design Method

Wc now tum to the problem of realizing an oscillator capable of generating stable

tones over a given signal band. If the signal band extends from the radial frequencies Û)a to

CûtJ. then the total loop gain k must be programmable in the range [ka.kbI given by:

k = 2 ( 1 - cos ro )a.b u.h (3.10)

(

{

An empirical study similar ta the ones presented in Section 3.3 must be conducted so as ta

obtain a bound on ko which ensures enough stability. Once this bound is known. a set of

discrete values for k, are chosen. so that the difference between any two adjacent values of

k( is less than t\Vice the bound on ko. These discrete values of k, are chosen sa that they

can aIl be realized by sums and differences of only a few powers-of-two. An algorithm

which computes a set of appropriate values of k, and their CSO realizations is imple­

mented in the CAO tool and explained in Section 4.-+.5.

3.4.2 Design Example

As an example. consider the design used in the previous section for :\"=4 and

OSR= 128. The \·alues of k for which the tone frequency spans the signal band are in the

interval [0.0. 6.02x 1O~]. The stability study performed in Section 3.3 revealed that the

oscillator is stable for signal amplitudes up to 0.5 for ko= 10-5 but not for ko= 10-'+. We thus

set the bound on ko to 5xI0·S. A possible set of CSO \·alues for k, such that ko+k, spans

the interval [0.0.6.02x 10--+] with the constraint that ko<5x 10-5 is then given below in Table

3.7.

Table 3.7: Discrete values of kt and their CSD realizations

k, CSD REALIZATIO~

3.05x 10-5 ,-15-

1.22x ]0-4 ,-13
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Table 3.7: Discrete values of kt and their CSD realizations

A:I CSD RE-\UZATIO ....

2_I~x iO~
.., ,-1<::

)
"-1-

3.05,10-: ::-1:..;.. 2-1~

3.66x 10-: ,-11 ,~1~

~-58x ]O~ ~- i r ,-1::

5"+9x 10-: .,-1; ... -l~

6.IOx]O~ ... -il ... -j~

These values can be realized by the simple arrangement shown in Fig. 3.5. using

five fixed-shift units. three multiplexers. one adder and one numeric invener. The fixed- or

hard-wired-shift units implement the multiplications by the powers-of-two 2- 11 to 2- 15
. To

program the oscillator to operate at a gi\'en frequency_ the follov.-ing method applies. First
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the appropriate loop gain k is computed. Then the cIosest available value of k 1 is selected

and the multiplexers in the schematic of Fig. 3.5 are set sa as ta implement il. Finally. ko is

computed as the difference between k and k l'

As an example. Table 3.8 gives the revised stability results for two values of k.

:\150 listed are the values of koand k l . These results. when eompared ta thase of Table 3.4.

show thm the use of the CSO-coeffieient k l indeed solves the stability problems previ­

ouslyencountered.

Table 3.8: Revised Oscillator Stability ResuJts for ~=4, OSR=128

k I{)~ 5xl{J-4

k l 1.22xIO-J = TU 5.-19:<:10·-1 = 2- 11 + 2·/.J

ko -2.2:(/0.5 _-1. 9x10.5

f 1.6x/frJ J.fJxl(r-~

f/f:J 0.-/07 {J.911

.1,= A t =0.0252 A, =O.02-t8

0.025 S~R = 108.2 dB SNR = 108.1 dB

.-\l= Ar = 0.100 :\i =0.101

0.1 SNR = 119.9 dB S~R = 118.1 dB

:\,= A r = 0.251 At = n.253

0.25 SNR = 1~6A dB
1

S~R = 127.1 dB

.-\,= ..\! =0.502 Ar =0.505

0.5 S~R = 135.0 dB S~R = 132,-t dB

A,= unstable at unstable al

0.75 t=4.50e+Ol t=3.00e+02

This oscillator design is thus very stable. and offers a \vide tane dynamic range.

The latter faer is illustrated by the results of simulations for mid-band tanes of amplitudes

varying from 10-7 up to past the onset of instability. \vith resuIts shown in Fig. 3.6. These

simulations were again condueted over 108 samples. The peak S~R is approximately 130

dB.

61



Chapter 3: Arbitrary·Precision Delta·Sigma Oscil/ators

( 15°/ i
,+,*/

+1100 .+

+ - \
· 1

+ 1
• 1

CO 50 :1
~ .+" : 1

• 1

cr:

or
,+ ·1z · 1

Cf) +" · ~
· 1

·1

: i

-sot 1
!

-100 i
-8 -6 -4 -2 0

10 10 10 10 10
Inout Amplitude

Fig. 3.6: SNR vs programmed tone amplitude for the N=4, OSR=128
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3.4.3 FPGA Prototype

The stable 4[h-order design presented in the previous section \Vas to be imple­

mented on a Xilinx FPGA. using VHDL-code generated by OSMOD. the CAD tool pre­

sented in Chapter 4. The modulator uses a 24-bit numerical format with 2 integer bits.

while the oscillator uses a 38-bit register-Iength. Shorter registers could be used in the

oscillator by scaling its internaI variables. but at the cost of reduced frequency resolution.

Unfortunately. once synthesized (using the Synopsys FPGA compiler) the prototype

required more hardware than is contained in a single Xilinx 4010 FPGA. the prototyping

platform available for this research work. However. previous experience has demonstrated

that for smaller circuits the FPGA prototype behaves according to a simulation of the

VHOL code as performed by the Synopsys VHOL simulator.

The inband spectrum produced by the VHOL-Ievel simulation of this prototype for

a total loop gain of 5x 10-4 and a tone amplitude of 0.5 is displayed in Fig. 3.7. The SNR is

equal to 130 dB as predicted by the OSMOO simulations.
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Fig. 3.7: Inband power spectrum generated by the 4lh~order oscillator
prototype with OSR=128.

3.5 Additional Improvements

In the cantext of the generation of stimuli for frequency-testing analog circuits.

three additional improvements are presented. The first is the generation of tones over an

arbitrary frequency band. The second is the simultaneous generation of multiple tones.

and the third is the matching of the ascillator"s noise spectrum to the response of the cir­

cuit under test.

3.5.1 Arbitrary Passband

Sa far it has been assumed that a sinusoid was ta be generated at a frequency close

to OC. i.e. that we were dealing with lowpass oscillators built using lowpass modulators.

In many applications it may be desirable to generate tones in an arbitrary frequency band
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Fig. 3.8: Power spectrum of the signal generated by an 8th.order bandpass
oscillator: (a) Nyquist interval; (b) signal band.

in the Nyquist interval. In that case the modulator must be designed for the same signal

band: in other words a bandpass or highpass modulator must be used.

The topology for a bandpass oversampled oscillator presented in [11] and [151 can

be used with a high-order bandpass delta-sigma modulator ta create a high-quality band­

pass signal generator. Alternatively. the topology of Fig. 3.1 can be used: kt must be cho­

sen so as to keep the value of ko small when frequencies in the signal band are generated.

The delta-sigma modulator used in the circuit must be a bandpass modulator whose signal

band corresponds to the oscillator's range of tane frequencies. A bandpass modulator can

be obtained from a lowpass modulator by replacing each integrator by an appropriate

biquad. based on a frequency transformation equation for discrete-time systems. as

explained in detail in Section 2.5.3.

Fig. 3.8 shows the spectrum generated by an 8th-arder bandpass oscillator with

OSR= 118. The signal in this example is centered at a quarter of the sanlple rate. but any

other center frequency is possible. The modulator is realized with quantized coefficients

for hardware-efficiency. Simulations over a billion samples indicate that this design is sta­

ble. The spectral plots of the output show an SNR equal to 130 dB for a signal amplitude

of 0.5. Notice the zeros of the noise spectrum in the signal band; four of the notches corre­

spond to the zeros of the modulator NTF, while the fifth one at midband is created by the
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resonator loop. As a comparison. a bandpass modulator of order 4 such as the one pre­

sented in [12) provides an SNR of 85 dB for a signal amplitude of 0.5. and an OSR of 118.

This examplifies the fact that increasing the order of the modulator increases the SNR of

the generated tone for bandpass oscillators aIso. Note also that one advantage of the band­

pass oscillator over the lowpass version is that no harmonies of the generated signal are

present in the signal band.

Highpass osciUators are also possible. The CSD loop gain coefficient k, is set to a

value near 4. and a highpass modulator as described in Section 1.5.3 is used.

3.5.2 Multitone Oscillators

Multitone signal generators are essential for frequency response and intermodula­

tion tests. such as the ones presented in [3). The principle of time-division multiplexing is

used to modify a single-tone oscillator to a multitone one. as explained in [61 and [8). To

obtain an M-tone circuit. each register in the original circuit must be replaced by M regis­

ters in series. both in the resonator Ioop and in the modulator. as shown in Fig. 3.9. Note

also that the resonator coefficients ko and kt are cycled through M distinct values. corre­

sponding to the frequencies of the M tones. This is achieved by using a simple multiplex­

ing scheme and multiples of the main dock signal.

Although previous studies were concerned with multitone generators using 10 °_
arder lowpass (6) and 4th-arder bandpass modulators [11) only. the principle applies

equally to higher order circuits, as first reported in [16). A higher-order generator is capa­

ble of generating more tones at a given SNR, or alternatively it can spread the same num­

ber of tones over a wider signal band~ still with the same SNR. Thus. even when extremely

low noise levels are not required. higher-order oscillators can still be used ta speed up the

testing process by exciting an analog circuit at a greater number of frequencies simulta­

neously, or ta test circuits over a wider bandwidth.

Fig. 3.10 shows the simulated output of a four-tone generator based on a 4 th arder

lowpass delta-sigma modulator. The amplitude of each tone was set to 0.15 or -15 dB.

Since the four tones are actually time-domain multiplexed, their effective power is divided
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by four, resulting in -21 dB tones as seen on the plot (the tones are actually slightly lower

on the plot due ta the windowing of the data before the FFT is computedJ.

An attractive feature of this generation scheme is that the parameters of each sinu­

soid (amplitude, frequency and phase) can be set independently of the other sinusoid. This

is very useful ta control the crest factor of the complex sinusoid used to excite the analog

circuit under test, sa as to avoid saturation and other non-linear effects. Note aIso that

bandpass and highpass multitone generators are aiso possible.
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Fig. 3.9: !\tI-tORe signal generator.
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Fig. 3.10: Simulated inband spectrum of a four-tone, 4th.order lowpass
oscillator.

Fig.3.11: Overall structure of a typical mixed-signallC

3.5.3 Optimized Noise Spectrum

The additional degrees of freedom provided by a high-order design can be used to

shape the out-of-band noise in the digital domain so as to accommodate the limitations of

the analog circuit under test. (This concept has been proposed for the design of deIta­

sigma modulators in general in [46]).

To illustrate this concept we consider the situation in which the analog-to-digital

converter contained in a simple lowpass codee (shown in Fig. 3.11 ) must undergo a sinu­

soidal-input based test. In many instances the anti-aliasing fiIter (AAF) preceding the

ADC-proper will be much less sensitive to high levels of high-frequency input-noise than

the AOC, since it is designed to attenuate such inputs. High noise levels at sorne frequen­

cies outside the signal band could trigger non-linear effects and corresponding responses

of the AOC in the signal band. which would decrease the test accuracy.
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Our strategy here is to match the noise spectrum of the signal source to the transfer

function of the AAF. 50 that the ADC sees a uniform noise power spectrum in addition to

the sinewave input. In effect. this kind of noise-shaping maximizes the dynamic range of

the test stimulus seen by the AOC by using the AAF as a lowpass tilter.

3.6 Conclusion

High-order delta-sigma modulation-based analog signal generation has been

shown to be feasible, both with respect to issues of stability and of hardware cost. The

increased accuracy of high-order designs. which has been demonstrated by simulation

results and experimental data. can be used to achieve various improvements in the quaJity

and speed of on-chip testing of analog circuits. In particular. for a given signal bandwidth

and digital cIocking rate. high-order designs present two major improvements over lower­

arder designs previously presented: purer tones can be produced and more simultaneous

tanes of a given SNR can be praduced. Also. the characteristics of the analog device being

tested can be better matched 50 as to reduce unwanted non-linear rcsponses to the out-of

band noise associated with delta-sigma-modulatian-based signal generation. which would

degrade the test. Ali these improvements were made possible by limiting the gain ko in the

delta-sigma modulator loop: this in turn was accomplished by including an additionaL

hardware-efficient scaling loop with gain k ,. which bypasses the madulator.
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A Computer-Aided-Design

Tool: DSMOD

4.1 Motivation and Requirements

The delta-sigma rnodulators and oscillators presented in Chapter 2 and Chapter 3

are difficult to design by hand. because many of the design steps are cornputationaJly

intensive. Sorne of these require solving non-linear equations (NTF design. structure map­

ping) while sorne are exhaustive searches through a solution space (coefficient quantiza­

tion. oscillator design. optimal NTF design). Also. simulation is essential to determine

stability and frequency-domain measures such as SNR and harmonie distortion. Finally.

fast prototyping of these circuits is desirable in order to assess the effects of finite word­

length and their behavior over very long periods of time. before they are integrated omo

silicon. which represents a rnuch larger investment in time and resources than prototyping.

Quick prototyping is possible with Field-Programmable-Gate-Arrays (FPGAs). which can

be synthesized with a Hardware-Description-Language (HDL) compiler. Hand-coding the

HDL description of a circuit requires technical knowledge of the language and may take

sorne time to debug, and this can advantageously be automated too.

These facts motivated the creation of a computer-aided design (CAO) tool to

implement design. simulation. and prototyping of digital delta-sigma modulators and
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oscillators of arbitrary order and signal band. This tool bears the narne DSMüD for

--Delta-Sigma Modulator and OsciIIator Designer--,

Section 4.2 of this chapter covers the existing CAD lOols which solve problems

similar to the ones at hand. and discusses their applicability to the design of delta-sigma

osciIIators. Based on that brief discussion. Section 4.3 explains the choices that were made

regarding the actual implementation of OSMüD. Section 4,4 presents each of the capabil­

ities of the tool in detaiI. including a description of the user interface and of the algo­

rithms. Possible improvements to the tool are discussed in Section 4.5,

4.2 Existing CAD Toois

Numerous general-purpose filter and circuit design tools exist but they are not

re\"iewed here because they cannot provide an integrated environment used to design. sim­

ulate and implement digital delta-sigma modulators and oscillators. ~ore specialized tools

which deaI with specifie aspects of these three tasks are regularly reported in the literature.

FiltorX [46). for instance_ can design continuous rime filters of any order. according to a

\'ariety of optimization criteria and against arbitrary sets of constraints on the magnitude

and phase response. This tool couId be used to design a ~TF. The shortcoming is that the

rest of the design and simulation v.'ork must still be perfonned by another tool. However

when a very special N'TF is needed (such as for optimizing the noise spectrum of a signai

source in a mixed-signal testing application. as proposed in Section 3.5.3). a tool such as

FiltorX should be used. and the resulting NTF can then be passed on to the delta-sigma

oscillator CAO tool.

Another design step for which a number of tools exist is coefficient quantization.

or digital filter design \vith CSD coefficients. ~any such tools optimize the design of

finite-impulse response (RR) filters \\"ith CSO coefficients [40][41 ][42][43}. These filters

have a large number of zeros (sometimes more than 100) and the tools generally seek to

minimize the maximum ripple in the passband and stopband. The Iinear filters embedded

in delta-sigma oscillators are generally infinite-impulse response (IIR) filters. and there-
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fore the aforementioned these tools cannat he used. In addition it may be difficult to inte­

grate these speciaIized tools with our delta-sigma oscillator design tool.

OSMOD. which is the focus of the remainder of this chapter. wa~ first presented in

[18] as an integrated design and prototyping environment for delta-sigma oscillators.

4.3 Implementation Choices

4.3.1 Programming Platform

The preceding section points to the fact that e\'en though a specialized CAO tool is

powerful to solve part of the design problem. il may be difficult ta link it to the rest of the

design flow. For this reason the tool presemed here wa.~ programmed for MATLAB [44J.

due to the tlexibility and widespread use of this computation and visualization soft\vare

package, In other words. MATLAB constitutes the common baliis through which a number

of tools can communicate at a high-Ievel of abstraction by sharing variables and functions.

[n addition. .\1ATLAB handles aIl the computational aspects of the design problem and

can be supplemented with a variety of toolboxes containing high-le\'el functions such as

transfer function design and non-linear equation solving. as weIl as graphical user inter­

face (Gl"I 1capabilities. thereby greatly reducing the difficulty of the task of programming

the CAO tool. Finally. .\1ATLAB is an interactive software as weIl as a programming lan­

guage. and thus debugging the tool is made easy by direct access to aH the variables and

functions, The only drawbacks are that MATLAB has liule provisions for object-oriented

programming. has no data structures except arrays. and its language is interpreted rather

than compiled.

Simulations require simpler mathematical operations since they implement simple

difference equations. Thus they are better implemented in a compiled language. C was

chosen for this purpose. given its widespread use across aIl computer platforms. and even

as a functionaI modelling language in sorne instances. for example for Digital Signal Pro­

cessors. The simulators are interfaced with the rest of the tool via data files using a prede­

termined format.
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4.3.2 Graphical User Interface

The advantages of graphical user interfaces (GUIs) need not be proven here. as vir­

tually aU of today's software incorporate one. The CAO tool should make the design flow

explicit. and let the user see only the relevant design parameters. The result is that no time

is wasted wondering what is the next design step and what parameters are important.

Rather. any extra time can be used to evaluate the impact of a wider variety of design

choices.

A CAO tool can also be useful as a teaching tooi. since it exposes the user ta aU

aspects of the design. Actually. since the design of delta-sigma modulators and oscillatars

cannot be done by hand. due to the complexity of the task. learning to design them

amounts to leaming how a computer can design them. This learning process would be

impeded if a specific language had to be learned in arder ta do the design and visualize the

results. \Vith a graphical interface. the user facuses solely on the design steps. parameters

and results (transfer function plots. coefficient values. circuit topologies. simulation out­

putS) without getting invalved in producing ail these results. OSMOO ha.."i been used at

~cGiII Cniversity in the graduate VLSI design project course.

Examples of the GlTI will be shawn in the next section. as they relate to each indi­

\'idual module of the CAO too1.

4.4 Design Flow and Algorithms

Let us reiterate the problem to be solved by the oscillator designer using OSMüO.

Given specifications on the signal bandwidth and on the S:\R of the generated tone over

the signal band. a detailed signai flow graph (SFG) of a delta-sigma oscillator must be

obtained and validated through simulation and prototyping. This signal flo\\" graph may

look Iike the one shawn in Fig. 4.1. It consists of t\\'o main digital blacks: a Lossless-Dis­

crete- [ntegrator (LD1) resonator and a I-bit digital delta-sigma modulator <here a lowpass.

LDI-Iadder based modulator is depicted. although modulators of other topologies and

passband types could be used~ refer to Section 2.5.2 and Section 2.5.3). The modulator is

of arbitrary order N. AlI the scaling coefficients except ko <A, to A~. B, to BN and k, to
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Fig. 4.1: Generalized signal-flow graph of the delta-sigma oscillator.
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kM) are CSDs (sums/differences of powers of two) and 50 are realized by shift units and

adders instead of multipliers. As demonstrated in Chapter 3. when ail the coefficients and

the initiai values of the resonator integrators (XI (0) and x2 (0» are properly chosen. the cir­

cuit resonates and creates a one-bit output whose power density spectrum is composed of

a single tone and noise concentrated at frequencies outside the signal band. The design

objectives are to determine the modulator topology. the order of the modulator (i.e. the

number of integrators in the modulator), a set of cheaply realizable modulator coefficients

and a set of power-of-two resonator coefficients (2 L1 to 2L
\() which implement the pro­

grammable coefficient k 1 so as to ensure that the oscillator is stable and produces tones of

the required SNR over the given signai band.

The next section describes the enure design flow from a global perspective. The

following sections explain each design step in detail. In each case the graphicaI interface

and design parameters are presented. the relevant algorithms are explained. and the out­

puts (texl. plots and files) created by the tool are described.

4.4.1 Overview of the Design Flow

The delta-sigma modulator used in the oscillator sets the resolution and bandwidth

of the oscillator's output signal. Thus, as shown in Fig. 4.2. the design tlow starts with the

creation of a delta-sigma modulator (represented by the grey box). more specifically by

specifying the signal band and designing a modulator NTF which results in an appropri­

ately low noise floor in the signal band. An arbitrary NTF can be designed. or altematively

DSMOD can search for an NTF which maximizes the SNR of the modulator output (note

that it is hard to predict the input level at which the maximum SNR is reached, thus the

need to perform a search). [n either case the result is a pair of polynomials or equivalently

a set of poles and zeros representing the desired NTF.

At this point the user can elect to either design an oscillator or to continue the mod­

ulator design procedure. The latter option requires that the user select a modulator topol­

ogy. for which OSMOO computes the coefficients which realize the desired NTF <shown

as ··Structure Mapping" in Fig. 4.2).
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Fig. 4.2: Overview of the DSMOD's design flow.

After the modulator coefficients have been computed, the tool can perform a simu­

lation of the modulator or of the oscillator (if one has been designed, as implied by the

dashed arrows), which is needed to establish stability, SNR, and distortion level. Another

available option is to quantize the coefficients to CSDs, which aiso leads to the possibility

of simulating the resulting design.

Designing the oscillator amounts to computing a minimal set of power-of-two val­

ues of 2LI to 2L", which ensure that tones can be generated at frequencies throughout the

signal band while ko is kept below a threshold specified by the user. The modulator need
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Fig. 4.3: (a) Power spectra of the simulated output of oscillators using

delta-sigma modulators of order 2, 4 and 6; (b) using a 6th-order modulator,
for two difTerent bandwidths.

not be designed for this step~ only the signal band must be known by the too1. However.

simulating the oscillator (and thus proving its stability) requires that a modulator have

been designed up to "Structure Mapping".

Lastly, a prototype can be generated only if the modulator coefficients have been

quantized. Again. either a modulator or an oscillator prototype can be generated.

4.4.2 NTF Design

Fig. 4.3(a) shows examples of power spectra for oscillator designs using modula­

tors of various orders N. It illustrates one of the basic design trade-offs involved here:

modulator order vs. dynamic range. It can be seen that higher-order designs result in a

lower noise-fioor in the passband, while they require more hardware. Using OSMüO, one

can quickly find the modulator order needed to meet the design specifications. Another

trade-off is that of bandwidth vs. dynamic range. If the range of signal frequencies is

extended relative to the digital dock rate F s and the arder of the modulator kept constant.

then the noise floor is raised, as illustrated by Fig. 4.3(b). However, if the physical band­

width is fixed, this means that a slower digital dock rate can be used. The NTF design

module lets the user explore and optimize both these trade-offs.
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Fig. 4.4: DiaJog box for the NTF design module.

The user-interface for the NTF design is shown in Fig. 4.4. The design parameters

can be subdivided in two sets. The passband type, the oversampling ratio (OSR) and the

center frequency Fe define the signal band. The other parameters determine the shape of

the NTF. The NTF can be elliptic, butterworth with optimally-located zeros, or supplied

by the user; this is controlled by the -NTF Type". The order of the NTF is given by 'LPP

Order' if ir is lowpass or highpass, or rwice 'LPP Order' if it is bandpass. Finally. the NTF

Sound allows for controlling the stability of the modulator. It can be set to any value

between 1.0 and 2.0; values doser to 2.0 yield modulators with a higher inband noise

attenuation but a smaller range of stable input amplitudes. Finally, the bandwidth factor

(""BW Factor" in the dialog box) aJlows for designing a NTF attenuating the quantization

noise over a smaller or larger band than the actual signal bandwidth; this may be desired to

adjust the design against subsequent aIterations of the NTF due to coefficient quantization

effects.

The "Opt. Butter." NTF type stands for "Butterworth with optimally located

zeros". This design option produces the best NTFs, in our experience. The design algo­

rithm designs a lowpass prototype NTF as follows. Let us first recall that, as stated in Sec-
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Fig. 4.5: Plots created by the NTF design module: (a) Pole-Zero plot, (b)
Inband plot of the NTF magnitude, (c) Nyquist-band plot of the NTF

tion 2.5.1. the NTF numerator and denominator must have equal leading coefficients.

OSMOO designs a succession of highpass butterworth transfer functions with that prop­

erty: the only degree of freedom is the natural frequency of the transfer function. As the

natural frequency increases above 0, the maximum value of the NTF magnitude increase

above L.O. The procedure is stopped when the NTF bound has reached the desired value.

The poles of the resuIting transfer function are kept, and the zeros at DC are replaced by

zeros on the unit circle. optimally located in the signal band 50 as to maximize the average

inband attenuation. The optimal zero locations are taken from [25]. If the desired NTF is

bandpass or highpass, the poles and zeros are then mapped as explained in Section 2.5.3.

Fig. 4.5 shows the graphical output of the NTF design operation. Three plots are

78



(

(

Chapter 4: A Computer-Aided-Design Tool: D5MOD

created; the first displays the poles (x's) and zeros (o's) of the designed NTF, the other two

show the NTF magnitude response over the signal band and over the Nyquist interval, that

is from OC to half the sampling rate.

4.4.3 Structure Mapping

OSMOO offers a choice of three modulator topologies, namely the integrator cas­

cade, the resonator cascade. and the LDI-Iadder. These are shown in Fig. 2.11, Fig. 2.15

and Fig. 2.15. respectively, in Section 2.5.2. Once the user has selected one of these three

topologies (via a trivial dialog box, not shown here for the sake of conciseness), the tool

computes the A and 8 coefficients for which the modulator will have the desired NTF.

This is done by simultaneously solving the equations expressing each term of the NTF

numerator and denominator in terms of the modulator coefficients. It tums out that for the

three topologies the numerator of the NTF depends only on the A coefficients, and thus the

procedure of solving the equations is broken up in two distinct steps, first for the A coeffi­

cients. then the B coefficients.

For instance, the equations relating the NTF of a 4[h-order lowpass LDI-Iadder

modulator to its coefficients are given below:

where

NTF(z) =
-4 -3 -2 -[

- +a).: +a2: +ll[': + 1
--4 -3 -2 -[ ,

bot: +b3: +b2: +b): +1
(4.1 )

and

(4.2)

(4.3)

(

AI 0 0

A 2A 3 +A 3A 4 -3 A)A 3A 4 -2 A[A 2 A[A 2A 3

3 -A 2A 3 -A3A 4 AI -A)A:. 0

-1 0 0 0
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Fig. 4.6: Dialog box for the coefficient quantization module.

The tool salves the non-linear expressions given by Eqns. (4.2) and (4.3) simultaneously

using MATLAB's optimization toolbox, and chus obtains the A coefficients. It then solves

the linear matrix equation given by Eqn. (4.2) so as to obtain the B coefficients. Similar

equations describing aIl three topologies. for orders 2 to 6. are programmed into OSMOD.

[f the modulator is highpass. the same equations apply. and the integrators are

replaced by differentiators. as explained in Section 2.5.3. [f it is bandpass. the integrators

are replaced by biquads described by a single coefficient C, and the equation for this

biquad coefficient, Eqn. (2.16), is solved in addition to the lowpass equations.

4.4.4 Coefficient Quantization

Fig. 4.6 shows the dialog box for the coefficient quantization operation. and Fig.

4.7 represents the algorithme Each of the coefficients can be quantized to a specified nUffi­

ber of power-of-two terms, from 1 to 6 C'#CSDs for AlB/C"). If more than 1 CSO term is

chosen, then the precision of the quantized coefficient values to be used is specified in bits.

That is, if the precision is 8 bits, then the CSO terms for a single coefficients will not differ
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Fig. 4.7: Aigorithm for coefficient quantization.

by more than a factor of 28. These two parameters control the initial step of the algorithm.

in which the allowed CSD values are computed. The parameter ..# Adj. Values'·. on the

other hand. controls the extent of the search. That is. for each coefficient. as shown in Fig.

4.7. the specified number of CSD values directly above and below the initial coefficient

value are tried; if 1 adjacent CSD value is specified. the search will explore fewer quan­

tized coefficient combinations; if more adjacent CSD values are specified. the search will

be broader. Each possible set of quantized coefficients is evaluated for stability and inband
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(a) (h)

(

(

Fig. 4.8: Plots created by the coefficient quantization module: (a) NTF poles under
quantization, (b) NTF zeros under quantization.

noise power. The last parameter controlling the search, the NTF bound, fixes an upper

bound on the maximum of the NTF magnitude resulting from the coefficient quantization

process. Coefficient sets resulting in NTFs which violate this bound are rejected. When

the search is complete, the coefficient set resulting in the stable modulator NTF with the

lowest inband noise power is kept.

Feedback on the search is given via two plots showing the behavior of the NTF

poles and zeros under the coefficient quantization process. These are shawn in Fig. 4.8(a)

and (bl, respectively. The stars (*) represent the initiai pole/zero location, while the 'x's

and 'o's represent the poles and zeros of aIl the possible NTF's that were explored. These

plots give useful feedback about the effectiveness of the coefficient quantization process.

[f no 'x's are found near the original NTF pole locations, for instance. then the quantiza­

tion process will not yield any usable coefficient set, and the user is made aware of the

necessity of increasing the number of CSD terms per coefficient. of increasing the extent

of the search, or of using a different modulator structure.
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4.4.5 Oscillator Design

Once the signal band has been specified. the design of a delta-sigma oscillator.

apart from the modulator design, amounts ta selecting the set of discrete values that kt

must be able ta take on, and how ta implement these values efficiently. The principles of

this design problem are explained in Section 3.4. The user specifies the maximum value

that the multiplexed coefficient. ka. can take; this bound is called kOma:c Recall that,

according ta Section 3.3. kOmlLr contraIs the stability of the oscillator. Any two adjacent

values of kt cannot differ by more than 2kOnra:C' and the goal becomes finding a small set

of values of kl' implemented using a minimum number of CSOs, for which this constraint

is respected. The smaller is kOmax' the more stable the oscillator. but aIso the larger the set

of values of k l will be and the more costly it will be to implement.

DSMOO tackles the problem using the algorithm depicted in Fig. 4.9. The range

of values which the totaI loop coefficient k must be able to take on. [kmin• knr,uI, is com­

puted from the lower and upper edge frequencies defining the signai band. The first value

of k" which we calI kt ( 1), must falI between km,"n and k - + ko . If zero CSO (i.e.min max

kl=O) is nat enough to find such a value, more CSDs are added until this value. k l (1), is

found. Then the next interval in which the algorithm seeks ta find a new value of kl' i.e.

k l (2). is computed; this interval is equal ta:

[ka,khI = [(k l (1) +kOmax ),(k,(1) +2kOmax ) I· (4.5)

The search procedure is repeated until a value of k1 has been found which lies

within komax of kmlLP the upper bound on the loop gain k. The output of this entire opera­

tion is a table of values of k l • expressed as SUffiS and differences of powers-of-two.

4.4.6 Simulation

Simulations allow the user ta assess whether a design is stable for a given signal

level and frequency. The motivation for this capability is that delta-sigma modulators.

being non-linear circuits, are only conditionaIly stable. When embedded in oscillator cir­

cuits, it becomes very difficuIt to predict their stability properties. Simulations thus serve

to validate a given design in a few minutes.
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Fig. 4.9: Aigorithm for osciHator design with a bound on ko.

The tool includes a simulation library. capable of producing the outputs of aIl the

modulator and oscillator topologies that it cao design. [f finite-register-Iength effects are

not considered. simulating these circuits amounts to iterating through simple difference
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Fig. 4.10: Dialog box for simulation.

equations. This is easily programmed in the C language~ the advantage over simulating

using MATLAB is a tremendous gain in speed because the simulators are compiled

instead of interpreted. The interface between the MATLAB platform on which most of

OSMOO runs and the simulators consists in a set a files of a predetermined format.

through which the simulation parameters and results are communicated.

The simulation parameters are set by the user via the dialog box shown in Fig.

4.10. A typical simulation will produce plots of the output's power spectral density such as

the ones shown in Fig. 4.11, along with a computed estimate displayed as a dotted curve.

Note also the possibility of performing a sweep of the signal amplitude. This fea­

ture can he used to quickly obtain the maximum SNR that a design can achieve. Since one

cannot predict the input level at which this maximum is attained. it is read from a plot of

the circuit"s SNR versus the input level based on simulation results. as shown in Fig. 4.3.
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(a) (b)

(

Fig.4.11: Plots created from simulation output: (a) Nyquist-band power
spectral density, (h) (nband power spectral density.

4.4.7 Optimal NTF Design

The functions of NTF design. structure mapping, and amplitude-sweep simulation

cao be combined to design an NTF which maximizes the SNR for a given modulator order

and OSR. The algorithm is a basic search controlled by the parameters of the dialog box

shown in Fig. 4.13. These are: the NTF bounds to design NTFs for, the signal amplitudes

to simulate the designs with, the simulation time, the sample size over which the SNR is

computed, the signal band parameters, and finally the modulator order. Fig. 4.14 illustrates

this algorithm: NTFs are designed for a range of NTF bounds, using "Butterworth with

optimal zeros" method. For each NTF, the coefficients of an arbitrary modulator structure

are computed (OSMOO makes use of the resonator cascade for this purpose) and an

amplitude-sweep simulation is performed. The NTF which yields the highest SNR is

retumed as the optimal solution for the given search parameters.
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Fig. 4.12: Plot created from the output of an amplitude·sweep simulation.

4.4.8 FPGA Prototyping

Floating point simulations are very practical on a workstation but they may not

reveal limitations of actual implementations (usually based on fixed-point arithmetic). ln

particular. sorne designs may become unstable over very long periods of operation. and

the SNR performance may be impaired by finite-register-Iength effects. The tool addresses

this problem by generating and testing actuaI prototypes of the designed oscillator.

First, the required register-Iengths are entered by the user in the dialog box shown

in Fig. 4.15. VHDL code is then automatically generated, along with the scripts needed to

simulate it and then compile it using an external synthesis tool (Synopsys) for a Field-Pro­

grammable-Gate-Array (FPGA) technology (Xilinx 4010).

In the case of the LDI ladder structure, the integrator variables can be scaled 50 as

to make optimal usage of the available register bits. Simulations are performed to estab-
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Fig. 4.13: Dialog box for the optimal NTF design.

lish the maximum value that each register must be capable of holding. These values are

then rounded up to the nearest power of two. If these values are called 2'"' to 1,mv then the

scaled LDI-Iadder modulator which is implemented in the prototype is shawn in Fig. 4.16.

The scaled coefficients ensure that aIl integrators will have maximum values in the same

range as the tirst integrator, thereby maximizing the dynamic range of the signaIs through­

out the ladder. The number of integer bits in the numerical representation is chosen so as

to accommadate the maximum possible integrator value. The VHDL code describing the

6lh arder LOI-Iadder modulator for OSR=32 described in Chapter 2. is given in Appendix

B.

The state variables in an LOI resonator can also be scaled sa as to make a most

efficient use of the available register Iength. Ta do sa we note that, when referring ta Fig.

1.1, bath integrators have the same gain at any given frequency of oscillation. In addition

the product of the two integrator gains and of the Ioop coefficient k must equal 1, since the

amplitude and frequency of oscillation is sustained over time. As a result each integrator

contributes a gain equal to 1/Jk. The scaling is based on the smallest required non-zero
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Specify:
• NTFbound increment

• Simulation Input Levels
• Simulation Time

• FFT Length

NTFbound =1.0

Increment NTFbound

Design NTF and compute

Set New Input Level

Simulate and Compute SNR

no

no

Save NTFbound and Input Level

(

Compare Results with Expected SNR

Fig.4.14: Algorithm for designing a delta-sigma modulator with maximum
SNR, for a given order and OSR.

89



(

{

Chapter 4: A Computer-Aided-Design Tool: DSMOD

Fig.4.15: DiaIog box for prototype code generation.

:cl
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Fig.4.17: ScaIed Lossless Discrete lntegrator (LD[) resonator when k<l.

value of k, called kmin, which determines the frequency resolution of the resooatof. A

properly scaled LDI resonator is then shown in Fig. 4.17 fOf the case in which k< 1. and

Fig. 4.17 for k:> 1. The same scaling operation is valid for a delta-sigma oscillator and is

perfonned by DSMOO before VHDL code is generated fOf an oscillator prototype. Note

that both ka and k[ (as labelled in Fig. 3.1) must be scaled.
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Fig.4.16: Scaled LDI-Iadder-based modulator used to implement the prototypes.

4.5 Possible Improvements

This tooi is still undergoing development. New features are added as research on

signal generation progresses.
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Fig.4.18: Scaled Lossless Discrete Integrator (LDI) resonator when k>l.

4.5.1 Implementation

(

The computing speed of OSMOO could be greatly increased if it were written in a

lower-Ievel language. such as C. This cornes about principaIly because OSMOD uses

many iterative loops. such as in the coefficient-quantization modules. which are ineffi­

ciently run by the MATLAB software. Fortunately it may be possible ta avoid reprogram­

ming the tool from scratch by automatically generating C-code from the MATLAB code.

using a newly released l\1ATLAB product. This strategy would aJlow one ta maintain

MATLAB as the development platform for OSMüO. with aIl the ease-of-debugging

offered by interactivity and interpreted code.

4.5.2 Improving Modulator Design

(

Arbitrary NTF shapes are greatly desirable in the context of mixed-signal testing

applications. as argued in Section 3.5.3. A module similar ta FiltorX could be developed

for this purpose. or aItematively FiltorX [46] itself could be interfaced to DSMOO or even

re-coded for MATLAB.

Because of its modularity, the tool can easily be extended to include new modula­

tor and oscillator topologies. as weIl as new prototyping technologies. In particular. modu­

lator topologies optimized for DIA and AID conversion could be included in the tool. A

module for scaling coefficients for SC implementation can be designed. as weIl as another

one for decimation and anti-aliasing fiiters. The trend proposed here is to evolve toward a

block-by-block system design tool, or collection of tools.
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4.5.3 Improving Simulation

A module for fixed-point simulations would be quickly realizable based on the

fixed-point module for SIMULINK. an extension package for MATLAB.

4.5.4 Improving Prototyping

For use in industriaI settings. the tool could be interfaced with a silicon compiler

via the VHDL language. so as ta produce functional silicon layouts in a few hours. [n this

context. estimating the silicon area occupied by the osciUator or modulator would help

with floor-planning an integrated circuit containing other components.

Finally. the size of each register and computational element in a given design could

be computed. Simulations can help predict the largest possible numerical value at any

given point in the circuit while a linear model of noise injection due to number truncation

can predict the effect of finite-register length. The combination of these two techniques

should allow one ta choose the number of integer and fractional bits needed at every point

in the circuit. This would further minimize the hardware cast of the designed circuits.

4.6 Conclusion

Most of the DSMüO software is written for MATLAB. a programmable. general­

purpose matrix-algebra software. The advantages are multiple. First. the tool is based on a

powerfuI. proven mathematical engine. Second. MATLAB provides an ideal flexible

work-area ta supplement the tool and ta allow it to communicate with other similar tools.

Lastly. the code and the user-interface are usable without any changes across aIl computer

platforms supported by MATLAB. For these reasons this tool could easily incorporate

contributions from widespread sources.

This chapter explained how and why our CAD tool is crucial in allowing a specifie

class of signal generator to be painlessly incorporated in more complex systems. The tool

is based on a design module specialized for delta-sigma modulators and LDI resonators.

and on simulation and prototyping modules for rapid and easy design validation. Our
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research group has used this tool very successfully in its own research on signaI genera­

tian.

Such a tool is usable by system-Ievel designers with little knowledge of delta­

sigma modulation for designing self-testable system. It can be viewed as one among a col­

lection of expert tools that could be used to quickly assemble complex systems at the

VHDL-code level or signal-flow-graph level.
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Conclusions

5.1 Discussion of Results

The aim of the research presented herein has been ta explore ways in which delta­

sigma signal generation could be improved. Two types of improvements were sought: to

increase the signal quality for a given bandwidth. and to design delta-sigma oscillators sta­

ble over an arbitrary signal band. Chapters 2 and 3 presented law-hardware cast solutions

to these problems. One is the LDI-Iadder-based delta-sigma modulator with single-bit out­

put and unity STF, which can be designed to have cheaply-implementable power-of-two

coefficients. Another is the stable delta-sigma oscillator topology. which makes use of an

additional feedback loop as compared to the original oscillator design. It has been argued

why these particular circuits were better suited for use in delta-sigma signal generation

than other ones of the same kind. Multitone generation has been addressed too and shown

to require very simple modifications to the single-tone circuits.

However this thesis is meant to be mare than simply an account of these results. It

strives ta forma1ize the methods by which the circuits are designed. One key benefit of

such a formalization is the possibility of autamating these design methods. In fact~ many

of them are computationally intensive and necessitate automation. Another goal has been

to include prototyping into a fast design cycle. Protatyping using Field-Programmable

devices offers a valuable compromise between lengthy and imprecise simulations and

costly silicon prototypes. Not only do the FPGA prototypes reponed herein support the

validity of our results, they alsa demonstrate how prototyping can be used to rapidly close

the design cycle with a hardware-Ievel validation of a given design.
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As a result of the needs for automation and prototyping. DSMOD has been devel­

oped into a full-fledged delta-sigma oscillator design software. and presented in Chapter 4.

ft demonstrates the foIIowing points: that it is possible to simultaneously develop new cir­

cuits and the tools needed ta design and evaluate them: and that a complex computer­

aided design tool for a very specifie class of digital circuits can be built on the MATLAB

platform and used ta design working prototypes in but a few hours. with no expert knowl­

edge required.

The motivation for this research is the need for law-cast self-test solutions for

mixed-signal circuits and systems. The fact that delta-sigma oscillators are digital circuits

makes them suitable for a system-design strategy in which hardware is re-used to imple­

ment the self-test functionality. This should contribute to lowering the cost of endowing a

gi ven mixed-signal device or system with self-test capability. Perhaps the greatest advan­

tage of these circuits is that they are fully programmable and are as insensitive ta process

and temperature variations as any digital hardware: the same is certainly not true of signal

generation circuits based on analog solutions.

5.2 Future Directions

The original 2nd-order oscillator has been successfully incorporated in a voiceband

codee [2][3]. The novel oscillators presented here should make possible the implementa­

tion of self-testable mixed-signal circuits more complex and more demanding in perfor­

mance. Telecommunications systems. with their strict constraints on reliability and the

huge costs associated with their maintenance. should benefit greatly from on-board high­

precision testing capability.

Although the issue of signal generation has now been addressed in much depth. the

mixed-signal self-test algorithms and their implementation have not been greatly debated

since [3J was published. There is a definite need to upgrade these algorithms to make use

of the new possibilities offered by arbitrary-precision delta-sigma oscillators.

There aIso is a need to assess the cost trade-offs involved in implementing self­

testability in mixed-signal integrated circuits, boards and systems. Although such issues
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are ultimately dealt with by industry. pointing to specifie, eeonomieally viable applica­

tions of mixed-signal self-test would allow industry to more rapidly take over the burden

of developing prototypes -- and working produets.
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Windowing

A.t Principles of Windowing

Consider the task of testing a Iinear time-invariant discrete-time system. Since the

system is L.T.I., one can obtain its transfer function (frequency response) and predict the

Fourier transform of the output given the input. using Fourier analysis. If the system's

transfer function is HUoo) and the input is x(n). then the Fourier transfonn of the ouput .v(n)

is given by (see [39], p. 203):

~ jwn
Y(jro) = H(jro) ~ x(n)e .

n = -0:1

(A.l)

'(

[n fact. information about the expected output signal is not only easily obtained but

also easily expressed in the frequency domain. For this reason the specifications of a linear

system are most often given in the frequency domain, and the goal of testing is then to

decide whether the frequency domain specifications are meL

The design is usually tested against its specifications either through simulation or

by fabricating and testing a real implementation. [n both cases. typical tests in the fre­

quency domain consist in observing the system's response to a sinusoidal or DC input and

comparing it to the theoretical response at the same frequency.

One major problem arises here: sinusoidal and OC inputs extend over an infinite

period of time. and so do their corresponding outputs. Simulations and physical tests, on

the contrary, can generate only a finite number of output samples. The complete output of
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the real system is thus unavailable. and it is impossible to directly compare the Fourier

transform of the desired output to the one of the actuaI output.

However. the finite number of output samples can be processed so that they give

fIse to a good approximation of the Fourier transform of the infinite-duration output

(which would be obtained if the test or the simulation ran forever). Windowing is the

name given to this type of processing. in which N output samples are weighted according

to their time-index. so as to reduce the effects of using a finite-extent output sequence.

In the mathematical formulation that follows. it is assumed that the complete out­

put sequence y(n) is available. and that the window has zero value everywhere except in

the observation intervaJ. This trick allows us to think of the windowed. finite-duration out­

put as the product of the complete output with another sequence. even though the com­

plete output is unavailable. AdditionaI assumptions are that N is even and that the

observation intervai is [-NI2, NI2-/}.

In addition to being equal to zero everywhere except in the observation intervai.

the window w(n) must be even except for its last value in the observation intervaL which

equaIs 0 (see [48]). To summarize. the constraints on u:(n) are:

(

{
w (n) = 0

W (11) = W ( -fl )

,v
Inl > :;- .

N
Il :f; ":) •

(A.2)

(A.3)

The Fourier transform of the windowed output is given by:

~ jwn
y W UOJ) = ~ y (n) lV (n) e .

n =-00

(A.4)

(A.5)

[

Before examining in details the effects of windowing, it is pertinent to reaIize that

nothing tells us a-priori that the Fourier transform of a finite number of unprocessed sam­

pIes will appropriately approximate the Fourier transform of the complete signal. In fact

the key to windowing is choosing how to weight the samples in the finite-duration obser-
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Fig. A.1: (a) A typical l·bit noise·shaped data converter output sequence;
(b) its Fourier transform

varion intervaI 50 that their Fourier transform constitutes a good approximation, depend­

ing on the particularities of the system (48) and the features of the output signal which are

to be observed.

The specifie effects of windowing are best expIained through an exampIe. Fig. A.l

shows part of one possible output of a discrete-time system. namely the output of a one-bit

delta-sigma converter. The Fourier transform of the output is aIso shown. (In the case of

the delta-sigma converter, which is not a linear system, the expected Fourier transforrn of

the output is obtained after the system has been linearized.) Note that the output sequence

has infinite duration. In this particular example the Fourier transform indicates that the

signal is composed of two low-frequency sinusoids plus a fair amount of noise at high-fre­

quency and very littIe noise at low-frequency

As previsously explained, only a finite-extent output sequence is obtained from

simulation or testing, and this truncated output can he thought of as the product of the infi-
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Fig. A.2: (a) Processing window; (b) Fourier transform of the same
window.

nite-duration sequence with a window which has non-zero values only in the observation

interval. A typicaI window and its Fourier transform are shown in Fig. A.3.

Multiplication of two signaIs in the time-domain becomes convolution in the fre­

quency domain. Thus the Fourier transform of the infinite-duration signal (Fig. A.l (b» is

convolved with the Fourier transform of the window (Fig. A.3(b») to result in the Fourier

transfonn of the windowed~ finite-duration signaI~ shown in Fig. A.3.

Windowing results in a deformation of the initial Fourier transform. Tones at sin­

gle frequencies are spread over a non-zero frequency interval~ the information at frequen­

cies between two nearby tones is thus lost. Furthermore. the low-power noise floor at low

frequency is lost under the smearing of the more powerful tones and high-frequency noise.

In spite of seemingly disastrous results, a carefully chosen window does preserve

the essentiaI features of the Fourier transform. If the initial signal contains tones at very

nearby frequencies~ then a window with a narrow mainlobe must be used. If the dynamic

range is initiaIly very large. then a window with low sidelobes is to be chosen. If. as in the
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Fig. A.3: (a) Windowed output sequence; (b) Fourier transform of the
windowed sequence.

case of noise-shaped signals, there are two frequency regions with very different power

levels. then a window with a fast sidelobe decay is preferred so as to minimize the inter­

ference of one region over the other. The theoretical detaiIs of windowing are presented in

[48J.

Finally, the Fourier transform of the windowed signal is computed at discrete fre­

quencies by an FFI' algorithm; in the time domain this corresponds ta periodically extend­

ing the signal, as shown in Fig. A.3.

Additional considerations come into play in obtaining a reasonable approximation

to the desired Fourier transform.

First. the effect of start-up transients must be minimized. This is accomplished by

discarding the initial samples of a simulation or a test, and keeping the rest of the samples

for analysis. As a rule of thumb, the second half of the results can be used for frequency

analysis, while the first half should he ignored.
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Fig. A.4: (a) Periodic extension of the finite-duration sequence; (h) discrete
Fourier transform of the finite-duration sequence.

The second consideration is a trick that takes advantage of a property of most win­

dows and of the use of the discrete Fourier transform. The Fourier transform of an N-point

window equals zero at aH multiples of 2rrIN ex~ept at low-frequencies. Also. the discrete

Fourier transfonn has values only at frequencies that are multiples of 21t1N. Thus. atone at

one of these discretized frequencies will spread only to nearby frequency bins. In practical

terms. the period of such a tone must be a divisor of the sample-size.

A.2 High-Performance Windows

Nuttaii [45] identifies a basic tradeoff in designing or choosing a window: that

between a low main sidelobe level and fast-decaying sidelobes at higher frequencies. Here

we focus on windows providing fast-decaying sidelobes. since we are worried about very-
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high resolution single tones being smeared across the signal band because of their inevita­

ble iocoherence due to delta-sigma modulation.

Fast decaying sidelobes are obtained when many derivatives of the window at ilS

edges are continuous. In generaI, a raised-cosine window is defined as:

(A.6)

where K+ 1 is the number of cosine terms making up the window and N is the window

length. A K+ I-term window can be made to have aH its derivatives up to the (2K-l)lh

equal to zero everywhere. provided the following equalion is respected:

1 1

(-1) k (-1) K
al) 1

k ' (_I)KK2 al 0
0 (-1) k-

= (A.7)
al;, 0

0 ( -1) 1;,k 2J (-1) KKI

( ([K 0

0 (_I)kk2K
(-1) K K 2K

As an example. the coefficients of the 4-term. continuous-fifth-derivative raised-cosine

window are given in [45] to be:

(

ao 10/3:?
a, 15/32

=
a., 6/32

a3
1/3:?

(A.8)
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VHDL Source Code

B.l VHDL code for 6th·Order Modulator, OSR=32

The following code describes a 6th-order modulator designed by DSMOD as

described in Section 4.4.8. This code was entirely generated by OSMOD. Note that only

the higher level of hierarchy describing the design is given here. The code describing the

integrators. the adders and the registers is not shown.

Delta-Sigma Modulator
Generated by DSMOD

Xavier Haurie & Gordon W. Roberts
MACS Laborator/, McGill University (EE Dept.l
Montreal (QC) Canada
email: dsmod@macs.ee.mcgill.ca

Modulator Parameters:
Structure: Scaled Ladder
Passband: any (LP, BP or HP)
Order: 6

library synopsys;
use synopsys.bv_arithmetic.all;
use work.arithmetic.all;
use work.sequential.all;
use work.blocks.all;

entity modulator is
generic (size: positive := 1;

int_bits: positive := Il;
port (x: out bit;

a: in bit_vector(size-l downto 0);
clk: in bit;
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reset: in bit);
pragma template

end modulator;

architecture structural of modulator is

signal subfirst_out: bit_vector(size-l downto 0);
signal subI_out: bit_vector(size-l downto 0);
signal intI_out: bit_vector(size-I downto 0);
signal addb_inl: bit_vector(size+2-1 downto 0);
signal sub2_out: bit_vector(size-l downto Ol;
signal int2_out: bit_vector(size-l downto 0);
signal add2_out: bit_vector(size-l downto 0);
signal addb_in2: bit_vector(size+2-1 downto 0);
signal sub3_out: bit_vector(size-I downto 0);
signal int3_out: bit_vector(size-l do~nto 0);
signal add3_out: bit_vector(size-l downto 0);
signal addb_in3: bit_vector{size+2-1 downto 0);
signal sub4_out: bit_vector(size-l downto 0);
signal int4_out: bit_vector(size-l downto 0);
signal add4_out: bit_vector(size-l downto 0);
signal addh_in4: bit_vector(size+2-1 downto 0);
signal subS_out: bit_vector(size-l downto 0);
signal intS_out: bit_vector(size-l downto 0);
signal addS_out: bit_vector(size-l downto 0);
signal addh_inS: bit_vector(size+2-1 downto 0);
signal addb_in6: bit_vector(size+2-I downto 0);
signal int6_out: bit_vector(size-l downto 0);
signal addb_ouc: bit_vector(size+2-1 downto 0);
signal add~out: bit_vector(size+2-1 downto 0);
signal add~inl: bit_vector(size+2-1 downto 0);
signal comp_out: bit_vector(size-l downto 0);
signal mod_in: bit_veccor(size-l downto 0);
signal aIu_out,alu_in: bit_vector(size-l downco 0);
signal alu_l_out,alu_l_in: bit_vector(size-l downto 0);
signal a2u_out,a2u_in: bit_vector(size-l downto 0);
signal a2u_l_out,a2u_l_in: bit_vector(size-l downco 0);
signal a3u_ouc,a3u_in: bit_vector(size-l àO'Nnto 0);
signal a3u_l_out,a3u_l_in: bit_vector{size-l downto 0);
signal a4u_out,a4u_in: bit_vector(size-l downto 0);
signal a4u_l_out,a4u_1_in: bic_vector(size-l downto 0);
signal a5u_out,a5u_in: bit_vector(size-l downto 0);
signal a5u_l_out,a5u_l_in: bit_vector(size-l downto 0);
signal a2d_out,a2d_in: bit_vector(size-l downto 0);
signal a2d_I_out,a2d_l_in: bit_veccor(size-l downto 0);
signal a3d_out,a3d_in: bit_vector(size-l downto 0);
signal a3d_l_out,a3d_1_in: bic_vector(size-l downto 0);
signal a4d_ouc,a4d_in: bit_vector(size-l downto 0);
signal a4d_l_out,a4d_l_in: bit_vector(size-l downto 0);
signal aSd_out,a5d_in: bit_vector(size-l downto 0);
signal a5d_I_out,aSd_l_in: bit_vector(size-l downto 0);
signal a6d_out,a6d_in: bit_vector(size-l downto 0);
signal a6d_I_out,a6d_1_in: bit_vector(size-I downto 0);
signal bI_out, bI_in: bit_vector(size-I downto 0);
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signal bl_l_out,bl_l_in: bit_vector(size-l downto QI;
signal b2_out,b2_in: bit_vector(size-l downto Q);
signal b2_1_out,b2_1_in: bit_vector(size-l downto Q};
signal b3_out,b3_in: bit_vector(size-l downto 01;
signal b3_1_out,b3_1_in: bit_vector(size-l downto QI;
signal b4_out,b4_in: bit_vector(size-l downto a};
signal b4_1_out,b4_1_in: bit_vector(size-l downto 01;
signal b5_out,b5_in: bit_vector(size-l downto 01;
signal b5_1_out,bS_l_in: bit_vector(size-l downto 0);
signal b6_out,b6_in: bit_vector(size-l downto Q};
signal b6_1_out,b6_1_in: bit_vector(size-l downto 01;

begin

-- Connect I-bit output to comparator multi-bit output
mod_in <; a(size-l downto û};

-- Connect I-bit output to comparator mulci-bit output
x <= not comp_out(size-l);

-- instantiate comparator
comp: comparator

generic rnap(size, int_bits)
port map(comp_out, add~out(size+2-1}1;

addq: adder2
generic rnap(size+2,0,01
port map(add~out,add~inl,addb_out);

add~inl <; sxt(mod_in,size+21;

addb: adder6
generic map(size+2,Q,0,Q,Q,Q,Ql
port

map(addb_out,addb_inl,addb_in2,addb_in3,addb_in4,addb_in5,addb_in61;
addb_inl <= sxt(bl_out,size+2};
addb_in2 <= sxt(b2_out,size+2};
addb_in3 <= sxt(b3_out,size+21;
addb_in4 <= sxt(b4_out,size+21;
addb_in5 <= sxt(b5_out,size+2};
addb_in6 <= sxt(b6_out,size+21;

subfirst: adder2
generic map(size,O,ll
port map(subfirst_out,mod_in,comp_outl;

subi: adder2
generic map(size,O,l}
port map(subl_out,subfirst_out,a2d_out};

sub2: adder2
generic map(size,O,ll
port map(sub2_out,alu_out,a3d_out);

sub3: adder2
generic map(size,O,l)
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sub4: adder2
generic map(size,O,l)
port map(sub4_out,a3u_out,a5d_out);

sub5: adder2
generic map(size,O,l)
port map(sub5_out,a4u_out,a6d_out);

intI: b_int
generic map(size)
port map(intl_out,subl_out,clk,reset);

inc2: f_int
generic map(size)
port map(int2_out,sub2_out,clk,reset);

int3: b_int
generic map(size)
port map(int3_out,sub3_out,clk,reset);

int4: f int
generic map(size)
porc map(int4_out,sub4_out,clk,reset);

int5: b_int
generic map{size)
porc map(int5_out,sub5_out,clk,reset);

int6: f int
generic map(size)
port map(int6_out,a5u_out,clk,reset);

alu_in <= intI_out;
alu: shift_right

generic map(size,l)
port map(alu_out,alu_in);

a2u_in <= int2_out;
a2u: shift_right

generic map(size,3)
port map(a2u_out,a2u_in);

a3u_in <~ int3_out;
a3u: shift_right

generic map(size,2)
port map{a3u_out,a3u_in);

a4u_in <= int4_out;
a4u: shift_right

generic map{size,3)
port map(a4u_out,a4u_in);
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a5u_in <= int5_out;
a5u: shift_right

generic map(size,4l
port map(a5u_out,a5u_in);

a2d_in <= int2_out;
a2d: shift_right

generic map(size,8)
port map(a2d_out,a2d_in);

a3d_in <; int3_out;
a3d: shift_right

generic map(size,5)
port map(a3d_out,a3d_inl ;

a4d_in <; inc4_out;
a4d: shift_right

generic map(size,7)
port map(a4d_out,a4d_in);

a5d_in <= int5_out;
a5d: shift_right

generic map(size,6)
port map(a5d_ouc,aSd_in);

a6à_in <= inc6_out;
a6d: shift_right

generic map(size,4)
port map(a6d_out,a6d_in);

b1 in <; intI_out;
bl: shift_right

generic map(size,l)
port rnap(bl_out,bl_in);

b2_in <= inc2_out;
b2: shift_right.

generic map(size,l)
port map(b2_out,b2_in);

b3_in <= int.3_out;
b3: shift._right

generic map(size,l)
port map(b3_out,b3_in);

b4_in <= int4_out;
b4: shift._right

generic map(size,l)
port map(b4_out,b4_in);

bS_in <= int5_out;
b5: shift_right

generic map(size,3l
port map(b5_out,b5_in);
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b6_in <= int6_out;
b6: shift_right

generic map(size,31
port rnap(b6_out,b6_in);

end structural;
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