» R

A Study of Nuclear Fragmentation

at Intermediate Energies

HIN HARK GAN

A Thesis submitted to the Faculty of Graduate Studies and Re-
scarch of McGill University in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Department of Physics Marcn 1989
McGill University

Montréal, Québec

Canada

©Hin Hark Gan 1989



To my parents

B 4 H 46 L4




.

Abstract

The model of nuclear dynamics according to the Boltzmann-Uchling-Uhlenbeck
(BUU) equation which incorporates fluctuations is presented. This model is em-
ployed to culculate heavy-ion reactions in the intermediate energy regime (20 <
Eiap/4 <2000 el”) Using alocal (Skyrme-type) interaction. the model s capable
of reproducing diverse features of spectator and participant observables. A\ finite
range interaction is introduced to generate diffuse nuclear sutfaces 1 the Viasov ap-
proach. The peripheral 1caction of ' 4r on “" Al 15 caleulated with this interaction
Characteristic features of the angular distribution of the projectile-like fragments
and its correlation with the target-like fingments are inagreement with experiments.

The stability condition of self-consistent Viasov solutions with a fimte range
interaction is derived. This condition s cast into an eigenvalne equation. The lowest
eigenmodes correspond closely to giant vibration modes. The telatiouship of these

eigenmodes to the time-dependent Vlasov equation 1s explored.
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Résumeé

Un modéle dynamique nucléaire incorporant des fluctuations, basé sur I'équation
de Boltzmann-Uchling-Uhlenbeck (BUU) est présenté. Ce modéle est employé afin
de calculer des réactions d'ions lourds dans un régime d’énergie intermédiaire (20 <
Eran/A <2000 V7). A Paide d'une interaction lecale (de type Skyrme). ce modele
est en mesure de reproduire les divers éléments des observables de spectateur et de
participant. Une interaction de portée finie est introduite afin de générer des surfaces
nucléaires ditfuses dans I'approche de Vlasov. La réaction périphérique °Ar 427 4l
est caleulée a aide de cette interaction. Les traits caractéristiques de la distribution
angulaire des fragments de type projectile et sa corrélation avec les fragments de type
cible sont en accords avee les résultats expérimentaux.

La condition de <tabilité des solutions self-consistantes de Vlasov avec une in-
teraction de portée fine est dérivée. Cette condition est reformulée en un probléme
a valeurs propres. Les vecteurs propres cotiespondants aux plus petites valeurs pro-
pres sont anadognes a des modes de vibrations géants. La relation entre ces vecteurs

propres ot 'équation dépendante du temps de Vlasov est exploreée.
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Chapter 1: General Introduction

1.1 The physics of heavy-ton collisions

The study of heavy-ion collisions as a branch of nuclear physics concerns the
properties of nuclear matter subject to variation of density, pressure and excitation
energy. These diverse physical conditions can be realized in the laboratory by ac-
celerating nuclei against each other. Contemporary heavy-ion accelerator facilities
encompass a brcad bombarding energy range. Nuclear matter is currently probed
at bombarding energy from 10 MeV/A to as high as 200 GeV/A. By subjecting
nuclei to conditions far from their normal state new manifestations of nuclear mat-
ter, it is hoped, will be revealed. This optimism stems from theoretical arguments
predicting the possible phases of nuclear matter according to its temperature and
pressure [Mig 78, Lee 76]. Related to this search for novel phenomena is the effort
to extract the nuclear equation of state describing the response of nuclear matter to
variation of density. This piece of information is of vital importance to thz accurate
determination of the properties of neutron stars and the character of supernovae
explosions [BCK 85]. To ensure the general applicability of this equation of state its
alidity over a large density domain ought to be mapped out. Considerable effort
was excrted in the last few vears in this pursuit [Sto 86, BDa 88], and the issue
remains one of the principal interests in heavy-ion research.

A topic of current interest is the search for the signatures of nuclear liquid-gas
phase transition. Guidance from theoretical analysis instructs us that this is a nec-

essary property of nuclear matter by virtue of the nature of nuclear interaction as
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expressed in its equation of state [GIKKM 84]. The expected phase change should
occur at temperature around 20 MeV, which can be reached at intermediate bon-
barding energies (Eqa5/4 ~ 100MeV). This expectation represents a reasonable

goal of the current heavy-ion research programme.

The preceeding enumeration of the physical phenomena that come under the
purview of heavy-ion research features some of the most pertinent issues to both
theoreticians and experimentalists alike. Heavy-ion physics has, in this view, ex-
tended the scope of the traditional patterns of investigation in nuclear physics.
Apart from these aspirations, the elucidation of the phenomenology of heavy-ion
reactions has brought together concepts from disciplines as diverse as statistical

physics, thermodynamics, fluid dynamics and, of course, nuclear physics.

The study of heavy-ion reactions can be broadly classified into three distinct
energy regimes made nossible by the identification of the reaction mechanisms and
products. Reactions at low energies (Ejqp/A < 20MeV') are predominantly governed
by the (single-particle) mean field potential. The reaction products decay according
to a few well known modes such as fusion, fission, deep-inelastic scattering and
evaporation [Sco 80]. Since the relevant degree of freedom is the mean field the time-
dependent Hartree-Fock (TDHF) theory provides an excellent framework to account
for fusion, fission and deep-inelastic scattering [Dav 85]. This is supplemented by
the statistical evaporation method [FL 83] to explain the cvaporative channel. The
typical time scale of the reaction is about 10 — 10° x 107%2 ser., which is very loug

on the scale of strong interactions.

At relativistic energies (Ei/A = 400MeV), the mean field losses its demi-
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nance over to the nucleonic and mesonic degrees of freedom. Collisions between
nuclei may, in this regime, be viewed as two-body correlations between nucleons.
The resulting systems attain near statistical equilibrium [CMV 81] making them
a fertile ground for the employment of equilibrium concepts [DM 81]. When the
systems finally disintegrate the observed products consist of light particles such
as n,p,d,* He,a,m and K. Recent analysis of events in this energy regime using
more exclusive measuring devises [Gus 84, DO 85] demonstrates that nuclei can
exhibit flow behaviour characteristic of a fluid. Dynamical model as embodied in
the Boltzmann-Uehling- Uhlenbeck (BUU) equation was constructed to test the
sensitivity of this effect on the nuclear matter equation of state (BDa 88]. Af-
ter a few years of vigorous activity, the consensus at this point in writing is that
the nuclear compressibility (K) of this equation is approximately 200 MeV [Gal
87, GDa 88]. This result is compatible with calculations based on more elaborate
many-body techniques [FP 81] and the extracted experimental value from monopole
vibrations [Bla 80]. The search for more sensitive observables continued unabated
however [BDa 88]. Collisions at ultra-relativistic energies (Ei5/A > 10GeV) have
also made a mark in the development of heavy-ion science. Investigators in this
field are principally interested in identifying the possible signatures of the tran-
sition from the nucleonic to quark and gluon degrees of freedom. This aspect of

heavy-ion reactions lies at the boundary between the particle and nuclear physics.

In the preceeding discussions, each energy regime is associated with a relevant
degree of freedom from which a simplifying physical picture or theory is framed.

These theories are naturally specialized for a part..ular energy regime. The trans-
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port model of the BUU type is a notable exception in that it embraces both the
mean field and nucleonic degrees of freedom ([BKD 84]. The older cascade model
[CMV 81] lacks the mean field effect, consequently, it must be regarded as valid
_only in the relativistic domain. Even here, a cautionary remark ought to be added

because nuclei persist in their fluid-like behaviour in the compression phase of the

reaction [Gus 84, DO 85).

The number of nucleons participating in a typical reaction is usually small
(£200). Models based on full dynamics calculations such as the TDHF, hydrody-
namics [TW 80), cascade and BUU are more adapted for this purpose because the
geometry and finiteness of the interacting systems are naturally taken into account.
In parallel with these developments, the beginnings of the relativistic extension of
the BUU model have been witnessed [Bla 88, KLW 87]. This formalism utilizes the
meson exchange models [SW 86] to substitute for more widely used Skyrme-type
interaction. The trend in the theoretical development as we conclude the survey in
the high and low enecrgy regimes is clearly in favour of the dynamical approach even

though it is computationally intensive.

Heavy-ion reactions in the intermediate energy regime (20MeV < Eg/A <
200MeV') are characterized neither purely by the mean field nor nucleon-nucleon
collisions. Rather, these degrees of freedom are simultaneously present, producing
complex physical conditions that are not amenable to analysis by theories described
previously. Elementary nucleon-nucleon collisons are frequently Pauli blocked thus
failing to drive the colliding systems to an equilibrium state. However, sufficient

excitation energy is imparted to the interacting system to enable it to disintegrate
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into large fragments. Experiments performed at the Lawrence Berkeley Laboratory
(LBL) [Jac 87] show that typical mass spectra in this energy regime span over a
broad mass range. This feature distinguishes this energy regime from the relativis-
tic (nucleus-nucleus) collisions where final states are predominantly light particles.
It is often referred to as multi-fragmentation phenomenon. Alternatively, the phe-
nomenon may be viewed as a development of dynamical instability leading to a
sudden disintegration into sizable fragments. The conditions under which such a
scenario can prevail for an infinite systemn have been analysed by authors in refs.
(BS 83, PR 87]. There are further dynamical studies aimed at tracing the trajectory
of the interacting zone on the phase diagram [GB 88]. These lines of thinking serve

to isolate the underlying mechanisms responsible for multi-fragmentation.

Based on the general conditions presented above that are thought to prevail
in the intermediate energy regime a considerable number of models have been con-
structed to predict specific observables. These models fall into two categories: sta-
tistical and dynamical approaches. Within the statistical approach they are several
variants; some are based on phase-space simulations [Gro 84, Koo 86] and others on
the idea of percolation [Bau 86]. These models are quite successful in reproducing
the mass distribution [Jac 8§7]. They possess in common the view that the interact-
ing systems enter a chaotic or complex state due to the intricate interplay between
the mean field and collisions. The resultant system is thus dominated by statistical

effects.

A chaotic state is achieved when the dynamics of the system possesses fluctu-

ations that grow as the system evolves. This basic idea is embodied in dynamical

5
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models of varying degrees of sophistication. In one study where quantum dynam-
ics is solved [KS 84, KW 88] fluctuations are built into the initial system without
asking how they are generated. This preliminary study shows the system is capa-
ble of disintegrating into large fragments. Provided the beam energy is sufficiently
high (Ejas/A > 50MeV) quantum effects are rendered ineffective in the process of
violent collisions. In this limit, semi-classical approaches to nuclear dynamics are
considered to be adequate. This class of dynamical models has the natural advan-
tage of being simpler computationally. Moreover, they have the attractive feature
of handling the collision process, consequently, the entire reaction is completely

determined by the dynamics.

The transport model referred to earlier as the BUU equation is a semi-classical
reduction of quantum dynamics [KB 62]. In recent years, it has emerged as one of
the standard theoretical tools for the analysis of experimental data in the interme-
diate energy regime. The outstanding successes of the model include the prediction
of the nuclear flow effect, transverse momentum analysis and pion production [BDa
88]. To a lesser extent, it explains the basic features of proton spectra [AB 85)
and photon production [Bau 86]. Numerical investigations in this approach are ex-
tensive thus existing reviews [BDa 88, GB 87, Ber 85] must be consulted for full

treatment of the subject.

The BUU model as it stands is not suited for fragmentation studies because
nucleon-nucleon collision effects are averaged over an ensemble of colliding systems
[BKD 84]. The resultant system does not develop structural instability. In a recent

re-examination of this model [BBD 87], a modified collision mechanism is proposed
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to allow for the appearance of fluctuations. Substantial fragmentation is seen with
this modification. The physics of incorporating the collisions self-consistently in
semi-classical approaches is a non-trivial undertaking. This subject is still in its
developing stage [TS 86, AG 88].

Other attemps to understand fragmentation phenomena have been made using
models which are less firmly rooted in quantum many-body theories. It has been
shown that certain features of the mass distribution can be analysed and reproduced
by the molecular dynamics [Aic 88] and hybrid [GD 85] models. Even classical
dynamics approaches [LP 86, VJP 85, SP 87] have been employed in recent studies.

This survey portrays the complexity of intermediate energy collisions and the
lack of a unified approach to the subject. In the author’s view, che search for an
adequate theory of fragmentation needs to go beyond the reproduction of mass
distributions. It is desirable at this juncture to extract more detailed information
about fragmentation from the experiment to enable a more realistic evaluation of

existing models’ validity.

1.2 Present work

The content of this thesis is based on the semi-classical approach to nuclear
dynamics. We derive, in chapter 2, the basic formulae of this approach from the
many-body quantum kinetic equation upon which developments in the subsequent
chapters depend. The resulting (single-particle) transport equation we propose for
nuclear dynamics at intermediate energies is the BUU equation which has been ex-

tended to include single-particle fluctuations [BBD 87]. Within the context of this
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model, contributions made to original knowledge in this thesis are two fold. First,
we performed explicit calculations (chapters 3 and 6) using the model to confront
a selected number of pertinent experimental observables over a considerable cnergy
range. In doing so, the strengths and weaknesses of the model are evaluated. The
second aspect of the thesis’s contribution is on the forma! development of the semi-
classical description of the nuclear ground state and small amplitude vibrations.
We extended the work of Madisson and Brink [MB 82] in generating self-consistent
nuclear density. We took a step further by examining the stability condition of the
(self-consistent) solution. The stability condition is shown to be an eigenvalue prob-
lem whose solutions are a good approximation of giant vibration modes. This led
us to explore the relationship between the stability condition and nuclear vibration

modes.

The BUU equation is separable into terms describing the mean field and the
collision dynamics. The mean field term is shown to be derivable from the many-
body Schrédinger equation in chapter 2. This derivation is made possible through
the standard mean field approximation and semi-classical reduction (h — 0). We
then derive the Uehling-Uhlenbeck collision term using physical arguments simila
to those presented to derive the collision term in the Boltzmann equation [LP 81].
Numerical procedures required to solve the BUU equation are summarized in sect.
2.4. As a necessary part of numerical computation, we test the reliability of our
numerical parameters in maintaining the nuclear ground state properties. Limi-
tations and applicability of the technique are discussed in sect. 2.6. The plan of

the thesis is such that specific aspects of our numerical solution that are thought
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to be sensitive to the data we wish to compare with are tested in the appropriate
chapters.

In chapter 3, preliminary results on spectitor fragmentation are presented. We
first outline the Goldhaber model of spectator fragmentation. Several improvements
(sect. 3.2) to this model are also made and these results are original as well. The
results from the BUU calculations are parametrized according to this model and
compared to available data. We proceed to perform more central collisions at 72
and 92 MeV/A to compare with the mass distributions obtained from the Lawrence

Berkeley Laboratory (LBL) [Jac 87).

We seek to refine the model used in chapter 3 in one essential way. Since previ-
ous calculations are based on the local Skyrme-type interaction the self-consistent
ground state density does not possess a diffuse surface. This is certainly not satisfac-
tory for peripheral heavy ion collisions. A finite range interaction of the BKN-type
[BKN 76] is introduced. This form of interaction implies a non-trivial ground state
self-consistent density. We thus embark on solving for the self-consistent solutions
of nuclear ground state densities in chapter 4. This is performed thoroughly for
different parameter sets and nuclear systems. A sample time propagation of the
newly found ground state density is done using the collisionless BUU ( or Vlasov)
equation.

We cast the statement ensuring the stability of the self-consistent density into
an eigenvalue problem. We call the matrix to be diagonalized the stability matrix.
The eigenfunctions of this matrix are shown to correspond to giant vibration modes

numerically. A formal approach is then taken to relate these eigenfunctions to the
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solutions of the time-dependent Vlasov equation.

Chapter 6 is the culmination of the results established in chapters 2 and 4. The
final model of nuclear dynamics with finite range interaction and diffuse surfaces for
_nuclei are tested. The BUU calculation is done for peripheral interaction of 4%Ar
on 2" Al at 44 MeV/A. Inclusive and exclusive spectator observabies are analysed in

detail. The meaning of these results are interpreted and the validity and limitations

of the BUU model are assessed.
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Chapter 2: The model of nuclear dynamics

2.1 Introduction

This chapter delineates the content of the model of nuclear dynamics we pro-
pose for colliding nuclear systems. The concepts and formalisms introduced here
form the basis for the interpretation of results in the subsequent chapters and for
the extension of the model itself.

We first introduce the derivation of the BUU kinetic equation. This deriva-
tion consists of two parts. In the first part, we consider nucleons moving in the
self-consistent field. The appropriate dynamical equation is the TDHF equation.
Next, we define the Wigner transform of the density matrices and then cast the
TDHF equation in terms of the Wigner function. When the semi-classical limit
is approached, the TDHF equation reduces to the so-called Vlasov equation. In
addition, we summarize the identities satisfied by the Wigner function before and
after the semi-classical limit is approached.

In the second part, a source term is introduced into the Vlasov equation which
represents residual interactions between nucleons. The source term is more com-
monly known as the Uehling-Uhlenbeck collision integral. As a way of gaining a
physical understanding of the collision integral, where rigorous proof is rather in-
volved, we show how using physical arguments alone the essentials of this term can
obtained and interpreted.

The results in the preceeding discussions are standard materials in the nuclear

physics literature. The numerical method used to solve the BUU equation , to be
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introduced in section 2.4, is however a recent innovation. The details of the method
are documented in many places [Won 82, BKD 84, BDa 88}, it is thus considered
sufficient to summarize its essentials in this thesis.

The model of nuclear dynamics presented in sections 2.2, 2.3, and 2.4 consti-
tutes the BUU theory as practiced in heavy-ion physics. This thesis takes a step
beyond this theory by introducing a new collision mechanism as a means to remedy
where the BUU theory has failed. The content of this concept and its superiority
over the BUU theory are discussed in section 2.5. For completeness, the resulting
model is tested for its numerical accuracy in section 2.6. In particular, we examine

the stability of a model nuclear ground state.

2.2 The Viasov formalism

The starting point in the derivation of the kinetic equation is the many-body
dynamics equation. For nuclear systems the dynamics is governed by the many-
body Schrédinger equation

ov

ihos- = HY (2.2.1)

In the nucleus of N nucleons, the general wavefunction is

-

U = U(7),72,73,..-,TN)
and the Hamiltonian, assuming only a two-body potential between nucleons, is

N 2 1 N
H=.2=;2_"7+ EE;V(M-” D (2.2.2)
Equivalently, eqn. (2.2.1) may also be written in terms of the density matrix. We

define the single particle density matrix in the quantized notation to be
py=(¥ |ala, | ¥) (2.2.3)

12



where | ¥) is the N-body state vector. The indices of the creation (a!) and annihi-
lation (a,) operators refer to a complete set of single-particle basis states describing
the spatial (or momentum), spin and isospin nucleon coordinates. These operators

are required to satisfy the usual anti-commutation relations

{aa,afg} = 50/3,
(2.2.4)
{aa,ap} = {actna;} =0

To proceed further, we introduce the following second quantized field operators

[FW 71]

$(F) = Y ta(Maa
) l (2.2.5)
() =Y va(Pal,

where ), are the single-particle wavefunctions. These field operators satisfy the

same anti-commutation relations as the a-operators (suppressing the spin indices)

{#(M, 910N} = (-1

. ) L (2.2.6)
{09} = (#0316} = 0
In this notation, the Hamiltonian operator becomes
H= Etaﬁa ag + = 5 E Vagsa), a};aga., (2.2.7)
af afy$
where the matrix elements of the kinetic energy are
hZ
tas = [ EVUATEWAE T0) = 57, (228)
and the two-body potential
Vagas = [ Erws@w3eW (7 - () (229)

13




The matrix elements of the single-particle kinetic energy and the two-particle po-

tential energy are hermitian:
tap = (o | T | B) = t3, (2.2.10)

Vaﬂ‘76 = (aﬂ l Vv | 76> = ';6aﬂ (2:2.11)

These relations imply that the Hamiltonian operator is also hermitian.
Upon using the hermicity of H, we readily derive the time-dependent equation

for the density matrix

w222 = (¥ | [ala,, ]| ¥)
ot (2.2.12)

= (¥ | a!,la;, H] + [a!, H]a, | ©).

And with the help of the commutation relations (2.2.4) we obtain

.+ Opji 1 . .
zfl——atJ = Z(tj:vpm - PJatm) + 5 z(V,ap.,pfyzﬂ)m + pf:))aﬂvaﬂ’ﬂ) (2'2_13)

@ afy

after some algebraic manipulations. We have defined the anti-symmetric matrix

elements of the potential energy to be
vjaﬂ'r = Viapy = Viays = —Vja'rﬂ (2.2.14)
and the two-particle density matrix
Poa = (V| alalaras | ) (2:215)

Equation (2.2.13) expresses the time evolution of the single-particle matrix p;,
in terms of the single- and two-particle matrix elements, p(?). In a similar manner,

one can also derive the time evolution of the two-particle density matrix which

14



will in turn depend on the next order matrix elements, p{®. This procedure can
be continued until p(¥). The result is a set of N coupled differential equations to
be regarded as completely equivalent to the N-body Schrédinger equation (2.2.1)
when they are solved simultaneously. To arrive at a tractable theory of quantum
dynamics, this set of equations is usually truncated at the single- or two-particle
density matrix equation. The well-known TDHF equation, proposed by Dirac,
truncates this series at the single-particle level. The fundamental approximation of
the TDHF equation says that it is possible to write
P = (¥ | afafaaag | V)
= —Paféy = —Pha~é (2.2.16)

22 PabPBy — PBSPay
This is essentially the mean field approximation apart from the anti-symmetric

property of the matrix that retains the two-particle correlation as required by the

Pauli principle.
An important mathematical property of the matrix p follows from the approx-

imation of eqn. (2.2.16) when we set index a = §. We read from egn. (2.2.16)
that
Z PBaPavy = Py (2.2.17)
a
where we have used ), pao = N to arrive at this equation. More conventionally,

the above statement is written in the operator form
pPl=p (2.2.18)
which evidently implies that p admits only eigenvalues 0 and 1. Furthermore,

from the definition of the density matrix (eqn. (2.2.3) ) and the anti-commutation
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property of the operators a}, and a,, we conclude that statement (2.2.18) constrains

the general wavefunction to be a Slater determinant
| ¥) = ala}...a}, | 0) (2.2.19)

which is spanned by a (complete) set of single-particle basis states.
The next important quantity we would like to define is the Hartree-Fock mean

field potential

(J ‘ U I 7) = z f’ja‘yﬁpéa (2220)
al

With the above definition the potential energy part of the equation of motion

(eqn.(2.2.13) ) may be written, after using the fundamental approximation, as
29 ot = };(o‘ [T | 7)pm = b3l 1 U 14))
=S (G1U I el =G lal N 1U 1) (2221)
p”

={j |Up—pU|i) =(3][U,p]|i)

The equation of motion of pj; can now be identified as the Heisenberg equation in

the density matrix formalism
th—=={j [ [Hur,p]| i) (2.2.22)
where the mean field Hamiltonian
Hyrp =T+ U (2.2.23)

We call the derived expression the TDHF equation to be consistent with literature.
It is a non-linear equation in p due the appearance of p in Hy . This is a general
feature of the truncated many-body dynamics equation.

16
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In the application of TDHF to heavy-ion reactions, the equations to be solved
are usually not in the form written in eqn.(2.2.22) . Rather, it is most often formu-
lated in the conventional wavefunction language. We insisted on deriving the TDHF
equation in the density matrix formalism so as to permit an apparent transition to
the Vlasov equation later. The success of the TDHF equation as a basis of small
amplitude vibration is well docunented [SF 75, GS 81). In the last f- w years, exten-
sive calculations in the low energy heavy ion reactions have further demonstrated
the validity of the TDHF' equation as a suitable dynamical theory for nuclear phe-
nomena. Of specific interest to our consideration here is its success in describing low
energy reactions ( < 10 MeV/A ), ranging from fusion to deep-inelastic scattering
phenomena [Dav 85, BKN 76).

TDHEF calculations are numerically intensive, consequently, many calculations
have been performed with reduced dimensionality of the problem. This is a difficulty
that has hampered a systematic comparison with experiment. As an alternative to
the TDHF equation, we present in the next few pages, a derivation of its semi-
classical reduction with the desire to achieve a more manageable equation.

The Vlasov equation is a semi-classical reduction of the quantum mechanical
TDHF (eqn.(2.2.22) ). To perform this reduction the TDHF equation may be

transformed into an equation describing time evolution of the Wigner function.

The Wigner function is defined as

5 4) = —1 3 P a4 soi—3
f(r,,),t)—(27rh)3 /dsexp( is S)p(F + §/2,7 — §/2,t) (2.2.24)

where 7 is spin-isospin degeneracy factor. The Wigner function is simply the Fourier

transform of the relative coordinate of the off-diagonal density matrix. The Wigner

17



funiction is real but not positive definite; therefore, it is not always permissible to
interpret it as the phase space density. However, it may be regarded as the quantum
counterpart of the classical phase space density in the Liouville equation [Rei 84)].
In addition, it is possible to define more general Wigner functiors with two, three or
more particle phase space variables. Since the TDHF is a single-particle dynamical
equation, it suffices to consider the single-particle Wigner function (eqa. (2.2.24) )
here.

From f(7,p,t), single-particle physical quantities such as density, current and

kinetic energy density attain their classical forms:

’

p(7,1) 1]

JEn = [ep 2 46 (22.29
p2

T(T,1) { 517;1

Similarly, a momentum space density may also be defined

o) = [&rf,50) (2.2.26)
and the particle number of the system

N = [¢pgpt = [Eratrit

(2.2.27)
- / Erd®pf(F, 1)

If we now take the Fourier transform of the TDHF equation, it is then express-
ible in terms of the Wigner function [RS 80}

3f(ra,tp,t) + %f(;'-‘,j;‘,t)sin(%X)H(F,ﬁ, t)=0 (2.2.28)
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where the classical Liouville operator
A=(V, -V, -V,-V,) (2.2.29)

The single-particle Hamiltonian in the TDHF equation is written as

H(7 jit) = / s expl-iL (7 + /24 | Hur | 7 2,1)

2

p g
e t
2m + U(r’p’ )

(2.2.30)

Notice that the mean field could in general be momentum dependent. When eqn.

(2.2.28) is displayed in expanded form, we obtain

%t—f +{fH) - (g)2 f(—l:;!)iH +..=0 (2.2.31)
where {,} is the Poisson bracket. The first and the second term together form
the familiar classical Liouville equation, and the higher order terms in % constitute
the quantum corrections to classical dynamics. Before proceeding any further, it
should be clarified that though the dynamics of these terms being governed by the
Liouville operator is classical the intialization of the Wigner function respects the
Pauli principle. A systematic analysis of quantum correction order-by-order in h
would be desirable to check the extent of the validity of semi-classical dynamics.
This effort has largely been rendered difficult by the complexity of the Liouville op-
erator (X) Nonetheless, the inclusion of A% term in the analysis of stnall amplitude
vibrations (giant resonances for example) has been reported by some authors [KSS
86, BDD 86, BDi 88]. They concluded that the gross features of these vibrations are

well described by the semi-classical dynamics without % correction. As discussed

previously, the application of the TDHF to heavy ion reactions has been known for

19



some time [BKN 76]. So, instead of introducing a complicated quantum mechan-
ical equation in the form of eqn.(2.2.28) the GANIL research group [Gré 87) has

systematically coinpared their semi-classical calculations with the TDHF results.

Quite remarkably. the semi-classical dynamics appears to provide good agreement

with its quantum parent for both small and large amplitude motions of nuclei. This
gives us added confidence to proceed using the semi-classical dynamics.

Equation (2.2.28) without quantum corrections is commonly known as the
Vlasov equation

HELY 4 {567,500, HE 5 )} = 0 (2.23)

This equation preserves the phase space distribution f at all times which is an
expression of the incompressibility of f(,p) in the frame of the moving point (7, p).
Accordingly, once f(¥,p,t = 0) is initialized to respect the Pauli principle (f <
v/(27k)?), it will be preserved at all subsequent times.

Proceeding further in our examination of the kinetic equations (eqs. (2.2.28)
and (2.2.32) ), we now look at the properties of the Wigner function according to
these equations. When we take the Wigner transform of the product of operators

[RS 80], the projector property of p (eqn.(2.2.18) ), becomes
(7, pt) (2.2.33)

where the normalized f is

(21r?'z)3

f(Fp,t) = f(7,p,t) (2.2.34)

To the lowest order in %, consistent with the approximation made in deriving the

20



Vlasov equation (2.1.26), the above condition simplifies to
Fr = ~ 2 Frfee =
(f(r, ,t)) = f(7,5,1) (2.2.35)

The Vlasov dynamics thus does not preserve the Slater determinant property of the
wavefunctions of TDHF. It does, however, retain the Pauli principle through the
condition f2 = f. Equation (2.2.32) together with the above property completes
our reduction of the TDHF dynamics to the semi-classical dynamics.

We may also readily prove that the Vlasov equation satisfies the following
conservation laws and invariance:

(1) energy-momentum

(2) particle number

(3) Galilean invariance

These are the basic properties that a dynamical theory of heavy ion reactions
ought to embody. In addition, they provide a check and constraint on attempted
solutions of the Vlasov equation. The simplicity of the Vlasov equation lies in the
drastic approximation we made to the many-body Schrédinger equation (2.2.1) .
This equation was first reduced to a single-particle equation (2.2.22) and a further
approximation was made to reduce the quantum dynamics into a semi-classical one.
The non-linearity of the TDHF equation is, however, retained in the Vlasov equation
as long as the single-particle potential, U(7, p,t), is a self-consistent potential. This
potential is often assumed to be functionally density-dependent.

In this section, we shall confine ourselves to a general consideration of the

solution of the Vlasov equation in the static limit. In this limit, the Vlasov equation
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reduces to a vanishing Poisson bracket:

{f(r“,i), H(F,zi‘)} =0 (2.2.36)

The general solution of this equation is any functional of the Hamiltonian f(H"™),
where 7 is any positive integer. This is a severe restriction on the functional form
of f that we can choose to construct solutions of eqn. (2.2.36) . Nonetheless, the
possible solutions allowed by the equation are, in principle, infinite in number. For
fermionic systems, we further require the occupation of particles in phase space to
respect the Pauli principle

f(pt) < (—2-;;%5 (2.2.37)

A possible choice of f describing the ground state nucleus is the Thomas-Fermi

approximation [RS 80, BDT 86]

f(H) = @-:h—):;(-)(g(H)). (2.2.38)

where the O -function ensures that condition (2.2.37) is maintained. The argument,
g(H), is taken to be (Ap — H), where A is the Fermi energy. Since g( H) must
be positive, energy levels can only be filled up to Ap, which is a constant for static
systems. An extension to systems with finite temperature, g, is also possible by the

following choice of f

f(H,B) = (27:’h)3 { 1+ eP(H=2r) } - (2.2.39)

In the standard treatment of the Fermi system in statistical mechanics particles are

considered to be non-interacting, i.e. H = p?/2m, in which case eqn. (2.2.39) is
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simply a Fermi-Dirac occupation probability. Because nucleons are strongly inter-
acting, even at moderate temperatures (T~10 MeV), they can not be treated as
a free nucleon gas [Lej 86, FL 83]. Of course, this statement is imprecise without
‘specifying the density of the system which determines the average inter-nucleon
distance, and therefore, the effective strength of the interaction. The solution of
the Vlasov equation in the static limit (eqn. (2.2.38) )is completely specified when
Ap and U(F,p,t) are known. In the case of finite temperature it has to be supple-
mented by S. In our reduction of the linear many-body dynamics equation (2.2.1)
we introduced a mean field potential that is density dependent, U = U(F, p, p,t).
If this is so eqns. (2.2.38) and (2.2.39) become non-linear integral equations in
f. In other words, our choice of f must be consistent with the functional of U.
The standard method of solving these non-linear equations is the iterative scheme
where a guessed solution is progressively improved with increasing number of it-
erations. The non-linear nature of the eqns. (2.2.38) and (2.2.39) is a reflection
of the retention of interaction between the nucleons, approximated at the level of

mean field. From this point of view, the time-dependent Vlasov equation describes

self-interacting systems.

The self-consistent solution of the time-independent eqn. (2.2.32) will be devel-
oped in chapter 4. The time-dependent solution, unlike the ground state solution,
is much more involved. There are no exact solutions but approximate solutions do
exist especially for small amplitude motions [BDD 86, BDi 88, KSS 86)]. In chapter
6, an attempt is also made to arrive at approximate solutions of small amplitude
vibrations.
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2.8 The Uehling-Uhlenbeck collision integral

When the beam energy of the projectile is raised the final momenta (53, )
of colliding nucleons are frequently scattered out of the Fermi sea i.e. | s | and
| P [> Pr. Mean field dynamics will then have to be supplemented by two-body
scattering. The effect of collision is to add a source term to the Vlasov equation

(assuming a momentum-independent potential)

a_f ﬁ = = = = 4 - -
—at-l_+_17_’l;.vrlfl _VrIU'Vplfl =I(r17p11t) (2'3'1)

where the source term [CLG 87, Ber 80, BM 86, GB 87]

K7, p1,t) = — /d:’pz(c‘i??;l:);le'pg' w(p1p2 — pr P2r)
X [fxfz(l - A1 - f2)) - fu fr(1 = fr)(1 - fz)] (2.32)
x 6%(Pr + P2 — Pv = P2 )b(e1 + €2 — €1 — &21)

The f; is as defined in eqn.(2.2.34) with the index i refering to the momentum
coordinate p; and the single particle energies ¢; = p? /2m+ U(7,t). We also denote
w to be the transition rate of the nucleon-nucleon collisions. The collision integral
has the effect of widening the phase-space domain occupied by the nucleons. In
nuclear fragmentation final state nuclei occupy domains far from each other. The
introduction of the collision term is then a step towards a more complete theory
of heavy-ion reactions. However, as we shall soon realize, the physics embodied by
eqn. (2.3.1) is insufficient to describe fragmentation phenomena with precision.

It is thus necessary to re-examine the basic assumptions in the derivation of

this equation (2.3.1) . We present, in the next few paragraphs, a derivation of

the Uehling-Uhlenbeck collision integral based on physical arguments. Rigorous
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derivations of this term may be consulted in several review articles and papers [KB
62, TS 86, YY 87].

The number of nucleons in the phase space volume d*r;d3p; is

—_d3r d°
(Tl,pl)(2 Ry rid’py
The collision number per unit volume and unit time between nucleons in d*r,dp;
and d3r,d%p; is proportional to
d4? P1d3P2

~w(prp2 — 13‘1'13‘2'))?(7-“1,1".1)f(’-'.1v1’2) (27h)8 (2.3.3)

63(51 +52 -51' - 52’)6(61 ~+ € — €17 ~ 62:)
The negative sign signifies the depletion of nucleons of states p; and p2, and w is

the rate of collision; we have also attached momentum and energy conserving delta
functions. Implicit in the above expression is the assumption that two-particle
correlations can be written as a product of single-particle distribution functions.
Physically, this demands that the systems to be treated must be dilute [LP 81].
For many-body nucleon system the final states are Pauli blocked according to
the occupation numbers of the final states, namely fy and le. The collision number

of the forward reaction per unit time is proportional to
—w(ifz = prp2 ) if2(1 = fi)(1 = )8 (B + P2 — By — Pr)X

B3 pdPprd3pyd®py
6(61 + € — €1 — 621) 2! (g;h)f; p2

(2.3.4)

The reverse reaction p, + pz — pi1+ + pr may be similarly obtained, and we
readily find that it is just eqn. (2.3.4) with the indices 1 and 2 interchanged for
"and 2' respectively. We further notice, from the detailed balance, the equality

between the forward and reverse transition rates [LP 81].

w(pip; — pipar) = w(Py'P2r — P1P2) (2.3.5)
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This result enables us to factor w from the forward and the reverse reaction terms.
To find the rate of change of the single-particle distribution, f (*1,P1,t), we integrate
over P2, P’, and py variables to obtain the final form of the transport equation up

toa proportiona.lity constant:

d3p d3p 'dspgl - - o
(27rh)3 ,/ 2(ml)9 w(p1Pz - PrP2')
x [Af = 1)1 = o) = fufot = R0 - £
(2.3.6)
x 83(Py + P2 — Pv — Pu)b(er + €2 — e —ex)

_dp df 1
(2‘1rh)3 dt

The transition rate is related to the cross-section whose relation in the center

of mass of the colliding pair is

w(ps = py) ~ ve1o (P, Pf) (2.3.7)
where p, and py are the initial and final momenta in this frame. This transport
equation has been extensively used to analyse various features of heavy-ion reactions
(BKD 84, Sto 86, GBD 87, BDa 88, Dan 88]. We call it the Boltzmann-Uehling-
Uhlenbeck (BUU) but it has also been known by other names in literature: the
Vlasov-Uehling-Uhlenbeck equation [KJS 85], the Boltzmann-Nordheim equation
[Nor 28] and the Landau-Vlasov equation [Gré 87].

The collision integral vanishes identically when the system attains statistical

equilibrium. The precise statement of the condition is that

[flfz(l - fi) = fo) = fufr(1 - fi)Q = fz)] =0 (2.3.8)
whose solution is just the Fermi-Dirac occupation factor
fim (2.3.9)
' eBle-u) 4 1 e
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More specifically, the ground state solution of the Thomas-Fermi type can be seen
to statisfy the equilibrium condition above.

In the numerical evaluation of the collision integral w is treated as an input
from the experiment through relation (2.3.7) . At relativistic energies, the elastic
differential cross-section of the free nucleon-nucleon scattering can be assumed to

take the form [Per 74]

dael ~bjt|
e (2.3.10)

where the slope of the exponent is energy dependent

_ 6[3.65(1/5 — 1.866))°
"V8) = T 3655 = 1.866)]

according to a parametrization [CMV 81, Mas 84, BDa 88] widely used in reaction
studies. In these expressions, the s and ¢ are the Mandelstam variables. The scat-
tering angle in this region is highly forward peaked as opposed to a near isotropic
angular distribution seen in low energy (Ejqa5/A < 50MeV') experiments. The inclu-
sion of the inelastic cross-sections is also possible , however, due to their negligible
contribution at intermediate energies they will not be discussed in this thesis.
Another question worthy of attention is the medium correction to the cross-
section currently used. For a fixed density, the total cross-section approaches the
free cross-section, 0/™¢ above a certain energy. At high energies, nucleons may be
treated as point-like particles whereby the nuclear mean potential has only negligible
effect. This problem of treating medium correction has been studied by a few

authors [CLG 87, BM 86, KK 68]. They replaced the transition matrix of the free
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nucleon-nucleon T-matrix by the Briickner G-matrix:
w(prp2 = prpy) =| (Bipe | G | prrpze) | (2.3.11)

suitable for scattering in the medium. With this correction they found the new

cross-section to scale according to [CLG 87]

)/3
a(p,p, T) =1+ an, =

an "__"T (2.3.12)
" (p/pF)

where T is the temperature and a,, are fixed coefficients.

2.4 Numerical method of solution

The BUU kinetic equation is an integro-differential equation describing the
time evolution of f, the distribution in phase-space. The numerical method of
solving this equation consists of choosing an appropriate representation of f and
then to propagate this f in time. We solve the kinetic equation in two steps. First,
f is evolved for a (small) time step At according to the Vlasov dynamics then f
is instantaneously changed by the collision integral. At all subsequent times these
two steps are repeated until the simulation is completed.

Of central importance to our method is the idea of decomposing f into a set
of folding functions S to be formally written as

(7 Byt) = ZS(r L ON A A0) (24.1)

NS
where N is the number of such functions per nucleon. This technique is prevalent
in numerical simulations of heavy-ion reactions. Some authors take S to be a set

of coherent states (or moving gaussian bases) [Gré 87, RDH 80] whereas others
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assume them to be triangnlar or gaussian packets [Len 88]. For sufficiently large N
the folding procedure is insensitive to the choice of folding functions. In this thesis

we work with delta functions or point (test) particles
S(f-‘— m(t), F- if.(t)) =6 (F - F.(t)) 6 (ﬁ‘ - z?i(t)) (2.4.2)

Suppose the configuration space is partitioned into cubic cells then the density in a

cell centered at 7, is

p(7a) = 3 [ Rrdpf(7, )

1 AN
= z 1
NVa 1€Va

(2.4.3)

where V, is the volume of the cell. Other physical quantities can be similarly
evaluated.

Given the representation of f and the choice of folding functions, it can be
easily shown that the Vlasov equation is satisfied when the centers of the folding

functions follow the classical trajectory

o7i(t) _
alfz N - m (2.4.4)
e -V, U(7)

In other words, evolving f according to the Vlasov equation is equivalent to evolving
a large collection of test particles according to Hamiltonian dynamics.

So far, the mean field function U has not been specified. This function is yet
another essential aspect of our model. For the present exploration the simpiified
version of the Skyrme potential is used. The mean field function has a simple
structure

U(F) = —124.0p(7) + 70.50*(F) MeV (2.4.5)
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Because of the rapid rise of the repulsive term with density this U is referred to as the
stiff potential. It possesses the usual saturation property with its coefficients chosen
so as to minimize at the nuclear matter saturation binding energy of —16MeV/A.
The corresponding compressibility X = 378 M eV, which is large compared to more
sophisticated nuclear matter theories [FP 81] and extracted experimental value [Bla
80).

We may now proceed to evaluate the force on each test particle. The ~-

component of the force on the test particle at 7, is

Fy(i) = = |U(,i+1) — U(z4,—1 )} /(1'7,-+1 — Ty-) (2.4.6)

where i is the cell label. Having described how the density p and the force are
determined, the coordinates of the test particles (7, p;) are propagated (stepwisc)
in time according to the Hamiltonian dynamics. We do this by using a . second

order algorithm as follows

Ti(t+6t/2) =7 (t —6t/2) + 6tE'Lt—),
m (2.4.7)
Dt + 6t) = pi(t) - 8tV U(7, t + 6t/2).
Equations (2.4.6) and (2.4.7) constitute the solution to the time-dependent Vlasov
equation (2.2.32) in the test particle representation.

The discretization of the configuration space and time unavoidably introduces
numerical parameters to the space and time dimensions. We partitioned the config-
uration space into cubic cells of length ¢ = 1fm and discretized the time dimension
in steps of 62 = 0.3fm/c (1.0 x 10~?*sec). Apart from these two numerical param-

eters there is the freedom to choose the number of test particles per nucleon, N.
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We fix N at 200 unless otherwise indicated. The statistical fluctuations of density
in each cell is about 20% for this N. To further reduce the density fluctuations we

have also resoried to spreading a test particle density contribution to its adjacent

cells. For example, when a test particle is found in the cell at 7, we consider its

contribution to the density of the cell to be 1/(3NV) and 1/(9NV) for its adjacent
cells. In section 6, the reliability of these parameters will be tested.

We now summarize the test particle implementation of the BUU equation in
our numerical method [BDa 88, BKD 84].

The test particles are
1. used to Monte Carlo the phase space density f of a static
nucleus; they are then
2. propagated in the mean field for a time step At according to
the classical trajectory in eqn. (2.4.7) . This is followed by
3. elastic scattering between the test particles. Two test particles are
candidates for scattering when they pass the point of closest approach, and

(3a) their distance of closest approach

b< or/m, (2.4.8)

where the maximum elastic cross-section o is 55 mb [BDa 88].
(3b) Once they are within this distance they are allowed to
scatter with a probability of

o(V/3s)/or

where o(,/s) is an energy dependent cross-section.
To simplify calculation, we chose a constant cross-section
of 40 mb. We compared this choice to an energy dependent
cross-section [BDa 88] and found the results to be compatible.
The scattering angle is then determined by eqn. (2.3.10)

(3c) The final necessary check is to ensure that the test
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particles being promoted to new momenta values do not violate
the Pauli principle. The probability of blocking is determined by
P=1-(1- fi)1 - fa) (2.4.9)

4. Having concluded that conditions (3a,b and c) are satisfied, we
repeat steps 1, 2 and 3 until the entire simulation is completed.

In principle, each test particle should be checked for scattering with all other
test particles in the colliding system. If this be so, the number of comparisons at
step 1 would be of the order of ~ (N A)? and accordingly the cross-section (step 3b)
is reduced by a factor of 1/N2. For N ~ A ~ 100, this number is approximately
10%, which would requirc enormous computing hours. We are then led to make a
suitable approximation [BKD 84]. In this approximation, collisions between test
particles are decomposed into N sets of perallel simulations. Each simulation is
composed of N Ap test particles from the projectile and N A7 test particles from
the target. In the way, collisions are not allowed between test particles of different
simulations. Hence, the number of comparisons at step 3 for symmetric colliding

systems is reduced to N A2,

2.5 Collisions and fluctuations

The theory of nuclear reaction based on the BUU kinetic theory does not
generate sufficient fluctuations to account for fragmentation phenomena [BBD 87).
According to this approach each phase-space volume d*r;d3p; is a source of test
particle collisions. Moreover, momenta of the scattered particles are not correlated
i.e. they are not necessarily close in phase-space. As a result, the rate of change of f

due to collisions grows in a continuous and gradual fashion without much variation
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from one phase-space domain to another. This analysis on the nature of the collision
integral demonstrates the weakness of the diluteness assumption mentioned earlier
in its derivation. Alternatively, this feature of the BUU theory may be viewed as a
superposition of N parallel simulations. In the process of averaging a great number
of simulations, the fluctuations contained in each simulation are effectively damped.
This is the reason that the BUU theory does not generate sufficient fluctuations to
account for the formation of fragments in nucleus-nucleus collisions.

Following Bertsch [BBD 87}, we developed a model of nuclear reaction with
a modified collision mechanism. The essentials of this model are motivated by
physical arguments. We would like to model a collision between two nucleons in a
physical way yet retain the test particle method. More precisely, when a collision
between two test particles occurs we require 2N and not 2 test particles to change
their momentum directions. In this manner, the final momenta of the particles are
correlated. Proper counting of the collision number implies that the cross-section
o(1/3) of collision must be suppressed by a factor of 1/N.

Let us formulate the above statements in concrete terms. Suppose two test
particles ¢ and j, with isospin indices 7; and 7, , have statisfied the conditions for
collision (steps 3a, b, c) with the cross-section a(y/3)/N, we associate (N — 1) test
particles, each possessing isospin 7,, with the i** particle; and similarly for the j*
particle. The criterion for associating the test particles to the i** particle, say, is
that only those test particles closest in phase space to it are chosen. This entails a

definition of the phase space distance like

di = (P, = k)’ + (pr /R (s — 72)? (2.5.1)
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where k is the index of any test particles to be compared with the :*» particle.
At this point, there are two groups of particles, namely the i— and j—group.

From each group, an average momentum can be defined:
- N -~
<P(i)> =Y A/ N (2.5.2)
k=1

where pi.(2)’s are the momenta of those test particles that are close in phase-space
to the it* test particle, and similarly for the j—group. The average momenta of
these groups of particles are allowed to scatter elastically without further Pauli
blocking. The change in the momenta, Ap; and Ap, (—~Ap,), are then attributed
tn each test particle of the i~ and j—group respectively. This procedure treats
the collision between two groups of test particles, representing two nucleons, thus
mimicking a nucleon-nucleon collision. As may be easily shown, it also has the virtue

of conserving the overall energy and momentum but not the angular momentum,

2.6 Numerical accuracy of the ground states

Having completed the account of the proposed numerical technique to solve the
time dependent Vlasov equation, we proceed to test the reliability of this technique
systematically. The solutions of the Vlasov equation known to us are those of the
static solutions which correspond to the ground states of nuclei. For local interac-
tion such as the Skyrme force, the ground state has a simple density distribution
(eqn.(2.2.38) ):

) = sy 3 PR (2.6.1)

where the Fermi momentum is given by

1/2
b

Pr(7) = [2am(Ar - U(p))] r<R (2.6.2)
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which is a constant in the interval 0 < r < R, where R is the cut off radius.

A proper description of the ground state in time requires the density to be stable
and that the momentum and energy be conserved. For this purpose, we selected
three symmetric systems for study: *He,?° Ne and *°Ca nuclei. These systems were
initialized with the model ground state density (2.6.1) and then evolved for a period
of 100 fm/c. The density distributions of *He,2° Ne and 4°Ca nuclei are shown in
Figs. 2.1, 2.2 and 2.3 respectively. It is quite evident that the nuclei remain bound
as a system. However, in all three cases the model density at the surface could not
be maintained. Moreover, this behaviour is progressively magnified as the nuclear
size decreases. The feature is indicative of the use of finite grid size in configuration
space. In Figs. 2.4 and 2.5 the rms radii and momenta are seen to execute oscillatory
motions. For 4°Ca and 2° Ne, the amplitudes of their oscillations are small whereas

rather significant oscillation is observed for *He nucleus.

After 100 fm/c, the CM momentum acquired a non-zero value of 1.6 to 4.5
MeV/c per nucleon in the order of decreasing mass size. For medium size *°Ca
nucleus, the error in the CM motion is small for beam colliding energy per nucleon
greater than 50 MeV. For the same beam energy, *He nucleus will suffer an er-
ror exceeding 20%. The effect of coarsening the configuration space is particularly
pronounced in the calculation of the total energy of the system. The rise in total
energy can be as much as 20% for 4°Ca nucleus and up to 30% for 4 He nucleus. The
dominant source of the poor energy conservation comes from the rather primitive
way in which the gradient of the potential is evaluated on the grid space. Equiva-

lently, we can express non-conserving energy in terms of the excitation energy. We
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obtain excitation energy per nucleon in the range of 2.5 to 5.5 MeV. The excita-
tion energy acquired by the nucleus goes into radial expansion hence the observed
oscillatory motion and gradual increase of the rms radii and momenta (Figs. 2.4
and 2.5). Work is now in progress to improve upon the evaluation of this quantity.
The conclusion we draw from this discussion is that for small nuclei (A< 4) the nu-
merical computation of its dynamical quantities ought to be significantly improved.
For medium size nuclei A > 20, the results are quite satisfactory provided the beam

energy of collision exceeds 50 MeV/A.
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Chapter 3: Spectator and participant dynamics

3.1 Preliminary discussion

The spectator-participant picture of heavy-ion collisions is an accepted view
at high energies. The overlapping zone of the excited nuclear matter is called the
participant of the reaction and the remaining cold matter is called the specta-
tor. As the beam energy is lowered (Ej;5/A < 100MeV) the clean separation of
two distinct regions gradually disappears due to the domination of mean field and
the increase of interaction time between the ions. Keeping the limitation of the
spectator-participant picture in mind, we will refer to spectators and participants
in the subsequent discussions as working terminologies.

In the last few years, much of the effort in the heavy-ion physics at high energy
has focused on the participant region of the reaction. This is not surprising in view
of the intense interest in understanding the properties of the hadronic matter at high
density. Consequently, dynamical calculations done to address the spectator physics
are conspicuously scarce. This chapter is on the whole a preliminary attempt to
address the relevance of spectator dynamics to the study of nuclear fragmentation.

The fragmentation of the projectile nucleus (or spectator) at high energy [Gre
75) has been successfully explained by the statistical fragmentation model of Gold-
haber [Gol 74]. There has been a considerable interest in testing the validity of
this model at lower energies [Day 86, Gue 83, Ste 87). Since the reaction mech-
anism is expected to change as the beam energy is lowered, Goldhaber’s model

provides a way of measuring the effect of this change in the observable. This model
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is characterized by a size-independent momentum width oy (to be explained in the
next section) of the projectile-like fragment. Extensive experimental studies from
20 MeV/A to 100 MeV/A [Gue 83, Gel 77, Ste 87, Kya 86, Rud 86, Biz 86] have
_shown that oy deviates substantially from its value at high energies. The systemat-
ics of the data compiled in ref. [Ste 87] suggest that oy rises rapidly from 30 McV
to 50 MeV and then saturates at higher energies. As yet, no physical interpretation

has been given to this data.

Our calculation will aim at obtaining quantities that are characteristic of the
Goldhaber model such as the momentum distribution and its width, 0. It has
been remarked that our calculation is a preliminary one, and this is for a good
reason. Spectator dynamics is largely a study of the interaction of nuclear surfaces
of interacting ions. So a detailed comparison with experiment can only be made
with dynamical models that have correctly treated the nuclear surface. Currently,
our simple model of nuclear mean field (eqn.(2.4.5)) gives no diffusiveness of surface
whatsoever (eq.(2.6.1)). We ought to go a step further by introducing a finite range
potential to generate a self-consistent diffuse surface. This problem is an interesting
one, and it requires a reformulation of our basic equations for the self-consistent den-
sity. The following chapters will be devoted to generating self-consistent densities

and the exposition of its consequences.

Participant dynamics is a result of the complex interplay between the roles of
the mean field and two-body collisions. Current dynamical models with varying
degrees of sophistication have been devised [KS 84, GD 85, Aic 88] to obtain its

mass distribution. The collision mechanism introduced in section 2.4 represents
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another attempt in this direction. In section 3.4, we demonstrate in two sample

calculations the capability of our approach in reproducing the mass distribution.

3.2 The theoretical model of spectator fragmentation

The Goldhaber model is a statistical , though not a thermodynamic, model of
the spectator fragmentation. It was initially developed by Feshbach and Huang [FH
73] who assumed that a highly excited projectile in its rest frame emits particles
or fragments randomly. It was further assumed that the nuclear mean field effects
are negligible, consequently, the momentum distribution of the emitted fragments
reflects the Fermi motion of the nucleons in the projectile.

The momentum distribution of the projectile-like fragment (i.e. fragment trav-
elling close to the beam velocity) of size K observed in high energy collisions can
be fitted with a Gaussian

g(Pk) o exp{—-}—)é—} (3.2.1)

20%

where o is the width of the distribution. Feshbach and Huang [FH 73] derived
this distribution for the fragmentation of a large nucleus of size A in its rest frame.
They considered the fragment of size K to be a random sampling »f A nucleons. The
drawback of this derivation is the requirement that A be large. We thus regard the
Gaussian form of the momentum distribution to be an assumption. The statistical
assumptions of Feshbach and Huang were, however, taken over by Goldhaber [Gol
74) who derived a size dependent width ok which is in accord with the experiment.

The width is directly related to the mean square of the fragment’s momentum vector

=t = (7)) (322)
=]
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where the average here is taken over all possible sets of K nucleons chosen from A

nucleons. In the rest frame of the projectile

A
Y h=0. (3.2.3)

1=1

"Upon using this constraint on the nucleons’ momenta, the width in eqn.(3.2.2) is

readily shown to have a parabolic dependence on K:

K(A-K) ,

2 _

(3.2.4)
where gy is independent of K and it is directly related to the Fermi momentum of
the projectile

§=%@ﬂ=-p (3.2.5)
For a typical nucleus, Pr ~ 250MeV /c which gives 09 =~ 112MeV/c. A smaller
oo is expected when the Pauli exclusion effect is taken into account. Bertsch [Ber
81) showed that this correction narrows the width to about 90 MeV/c for 4 Ar
projectiles.

After the projectile interacted with the target, the mean field and collision
effects would have altered the velocity of the emerging projectile in both the trans-
verse and longitudinal directions. We call (ﬁzx) and (ﬁ 'L k) the average shifts of
the momentum of projectile-like fragments in the Z- and transverse direction re-
spectively. The rest frame of the fragmenting nucleus will differ from the projectile
frame when (ﬁzx) and (}3_]_}() are finite. These effects are not considered in the
Goldhaber model. With these modifications the differential cross-section in the

laboratory frame is then given by

% x exp{—(f"x - Bk — (Pik) - (ﬁZK))2/2af(} (3.2.6)
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where I-"oK is the beam momentum of K nucleons which we take to be in the Z-

direction. The above equation can also be written as follows

;1% cxexp{'—(P;"{ + P2y —2APok + (Pzx )Pk cos 0)/20}(}

X exp{—((ﬁz}()2 + (ﬁ_LK)z + 2P0K(Pz1())/2a§(} (3.2.7)
X exp{PK(PJ_K) sinOcoscp/af(}

where ¢ is the angle between (f" 1 k) and the component of 131( on the 1 plane. In
an experiment, the events at different ¢’s are not discriminated and so data are in
fact averaged over events at all ¢’s. When the ¢ dependent piece in eqn.(3.2.7) is
averaged it becomes a modified Bessel function:

<exp{PK (PLK) sinfcos <p/a?(} >

2r

— 1 : 2
=2 ), dcpexp{PK(P_u()smﬂcoscp/aK} (3.2.8)

= Jo (—iPK(P_LK) sinO/a?()
Hence the final form of eqn. (3.2.6) in the laboratory frame has the structure

d’o
dEdf}

«xEY?], (——iPK(P_LK) sin 0/0";()
X exp{ - (P}:- + P2 — 2(Poxc + (Pzk))P cos o) / 2a§‘.} (3.2.9)
X exp{—- ((}-"z}{)2 + (ﬁJ_K)z + 2P0K<PZK>) /2‘73(}
where E is the kinetic energy of the fragment K in the laboratory.

The simple model of Goldhaber (eqn.(3.2.1) ) has been tested in the energy
range 0.40 < Ej,3/A < 2 GeV with targets and projectiles of wide range of sizes [Gre

75). These experiments confirmed that the Gaussian distribution is independent of

target and projectile size. The validity of this model is, however, dependent on
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the energy range probed [Day 86, Gue 83]. Firstly, the lower momentum side of
the distribution in the longitudinal direction generally departs from the Gaussian
distribution, and this is progressively magnified as the beam energy is lowered.
_Secondly, the compiled experimental width in the beam direction ¢z [Ste 87] shows
a gradual increase within the energy range 20 < Ej43/A < 50 MeV/A, and levels off
to 0oz ~ 85 MeV /c thereafter. The calculations in the following section are aimed
at testing the Gaussian distribution of the Goldhaber model as modified according

to eqn.((3.2.6) ) together with its width.

3.8 The BUU calculations
3.3a Initialization of the colliding systems

The nucleus we chose for initial exploration was a symmetric 2** Ne nucleus.
For simplicity, the collision partner was also chosen to be the same. The colliding
systems were then boosted against each other at laboratory projectile energy of 50
MeV/A in one case and 100 MeV /A in the other. At 50 MeV/A, the mean field
effects are expected to dominate the dynamics whereas at 100 MeV/A the role of
collisions would be significantly enhanced. If we view the interacting Fermi spheres
in the CM frame where all calculations in the BUU code are performed, there is
a significant overlap at 50 MeV/A and much less so at 100 MeV /A. As a quick
measure of the extent of the overlapping spheres, we compare the distance between
the centers of the Fermi spheres, dr. For a small nucleus such as 2Ne, the Fermi
momentum can be taken to be Pr = 230 MeV/c so the minimum df for two non-

overlapping spheres is roughly 450 MeV/c. This number is to be compared with dr
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= 306 MeV /c at 50 MeV/A and dr = 431 MeV/c at 100 MeV/A.

We chose the reaction plane to be the X-Z plane with Z-axis as the beam
direction. The final necessary parameter to fix the set up is the impact parameter
b. This was chosen in the range 0 < b < 2R , where R is again the defining sharp
nuclear surface radius. We fixed b at an intermediate impact parameter

£
V3

We further required that the nuclei to be mirror images of each other. This means,

1+v2) =431 fm. (3.3.1)

for a target nucleus in CM having coordinate (+, p) the projectile (also in CM) will

be assigned a coordinate (—7, —p). This arrangement is by no means a necessary

one.
3.3b Accuracy of the numerical method

The numerical computation of the momentum distribution and its width g re-
quires an accurate determination of the momenta of the colliding pair. We checked
the reliability of our numerical method by traversing the colliding pair in the op-
posite directions with b large enough so that they do not interact with each other.
After a period of 100 fm/c, which is about the length in time that all subsequent
calculations will be performed, the transverse momentum per nucleon acquired a
non-zero value of ~2 MeV/c. This uncertainty is small (~ 1%) relative to the lon-
gitudinal momentum in the CM frame. The change in the longitudinal direction is
also about the same.

Next, we tested the spread in momentum due to the mean field alone. The

collision cascade was switched off and so the nuclei were allowed to interact through
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their mean fields only. After a few runs were taken at b = 4.31fm it was found
that the spread per nucleon Ap/A ~ 10 MeV/c. Since there were no collisions this

spread reflects the errcr in the mean field calculation. As we will see later (Fig.

3.2) this fictitious spread accounts for only 20% of the actual spread.

The spectators or more generally the fragments emerging from the region of
violent collisions are in their excited states. These fragments will deexcite by eject-
ing energetic particles and eventually reach their respective ground states. These
features were seen in numerical calculations. More precisely, we extracted the rms
radius and momentum of each fragment and vraced its time evolution. ¥For exam-
ple, at Ejap/A = 100 MeV with b = 4.31 fm/c, the collisions are over by 40 fm/c
and distinct clusters are formed at time > 50 fm/c. The rms radii and momenta
of the fragments from ¢ = 50 fm/c onwards continue to change and then saturate
at t, ~ 80 fm/c. So what we consider as final states of the fragments are those
fragments at ¢,. When the impact parameter or the beam energy is changed t, will
correspondingly change but the criteria we used in our calculations to determine ¢,

were always the same.

3.3c Results and interpretation

The experimental width o¢ is extracted by fitting a Gaussian (eqn.(3.2.1) ) to
the observed momentum distribution. This is done for a certain fragment of size I
at an angle  from the beam direction. At a fixed impact parameter b, our model
calcuiations will produce a distributed K values. It is a prohibitive task generate

sufficient events for those fragments with a specific K. We circumvent this difficulty
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by rewriting eqn. (3.2.4) as follows

A-‘l 2

—I{—(-A_:-T{—SUK (3.3.1)

0f =

In this form, all the K dependent factors are on the r.h.s. of the equation. Given

a set of events from our simulations, o is averaged over these events found at all

angles. We thus write

o3, = (BA=D (Pu/K ~ (Puc/ K)P) (3.3.2)

where subscript ¢ refers to the component. The quantity (P;x/K) defined in this
equation is the average momentum per nucleon of the given set of events in the ¢
direction. In the rest frame of the fragmenting nucleus, the isotropy of the distribu-
tion implies 6¢,’s to be the same. It is possible to test this feature of the Goldhaber
model from eqn.(3.3.2) .

At impact parameter b = 4.31 fm we generated 21 runs which in effect gave
us 42 events since the target and projectile are completely symmetrical in the CM.
We further so remark that a projectile-like event is an event whereby its longitu-
dinal momentum Pzyc > 0.6Pz, which is in consistent with the cut used in the
experiment [Day 86j. In the laboratory frame this corresponds to 80% of its beam
momentum.

The first set of runs we would nov like to discuss is at Ejap/A = 100 MeV.
The result in Fig. 3.1 shows a mass distribution which is peaked at mass size K
= 15 with a width of less than 4 mass units. We attribute the observed mass
dispersion to the collision dynamics since mean field by itself does not produce

fluctuations. The momentum distribution in the Z-direction is shown in Fig. 3.2,
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it exhibits a clear peak and a Gaussian-like distribution. Evidently more events
are needed to establish to the shape una:nbiguously. Similar Gaussian distributions

were also obtained for other components. A more tangible measure of the success

of our model are the widths 69;. The momentum widths without the angular cut

are nearly isotropic gp; =~ 70 MeV/c for i = z,y and z, as shown in Table 3.1a.
This value is estimated to have statistical errors of about 20% given the size of the
sample (42 events). However, the systematic errors coming from the inaccuracy of
the momentum vectors, whose error was quoted earlier, are small compared to the
statistical errors. We compare this value with the experimental width oz = 86
MeV/c [Day 86, Gre 75] which indicates the qualitative nature of the success of
our model. A quantitative agreement can not, however, be be forthcoming for
other reasons. The poor description of the nuclear surface and the absence of
Coulomb interaction, mentioned earlier, have contributed to the discrepancy with
experiment. In addition, the calculation was done without averaging over different
impact parameters. As similar calculation at Ejq3/A = 50 MeV, gives o9, to be
approximately 15 MeV/c smaller (Table 3.1a). The reduction of the width has
been seen in experiments at lower energies (Eiq3/A < 50 MeV) [Ste 87, Gel 77, Ege

86).

A further aspect of our results is the average downward shift of the momen-
tum per nucleon (P,x/K). The X and Z components of the momentum shift arc
comparable in magnitude. This observation is true for beam encrgies at 50 MeV/A
and 100 MeV/A (see Table 3.1b). At 50 MeV/A, this value is = —50 MeV /c and

—30 MeV/c at 100 MeV/A. An average negative {Pxy/K) means that the aver-
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age scattering angle of the projectile is negative. At lower beam energy, this value
naturally increases as the collision dynamics weakens due to the Pauli blocking. In
the Y-direction, (Pyyg/K) ~ 0 as expected from the symmetry of the initial set
up. From this point onwards further discussions on the spectator properties in this
section are confined to Ejqp/A = 100MeV .

From the numerical simulations we can extract (P,x/K) and o2, which are then
substituted into %0 /dEdSY ( eqn.(3.2.9) ) to fixed this distribution. The graphical
display of the double differential cross-section is shown in Fig. 3.3 as a function of
the spectator kinetic energy in the laboratory for 64,5 = 0°,3.5°,7° and 15°. The
shapes of these curves remain Gaussian with an approximate constant full width
at half-maximum (FWHM) of ~ 140 MeV. This value is again comparable to the
experimental value ~ 160 MeV [Gue 83] but measured for 12C +12 C.

Proceeding further in our test of the Gaussian conjecture, we compare the

theoretical angular distribution

do d%o
5= / dE (3.3.3)

directly with our simulations. Since (P,/K) and o2; for the systems considered
here are not available from the experiment they are again supplied by those ob-
tained from our simulations. The histogram shown on the left of Fig. 3.4 is the
angular distribution compiled from the simulations with no Coulomb interaction.
Overlapping on this histogram is the smooth curve derived from the Gaussian as-
sumption (eqn.(3.2.6) ). The curve fits the histogram rather well. This result
peaks at 81,5 = 4° which is somewhat large compared to the existing experimen-

tal data. Though there are difficulties in measuring 6,5 < 2° in the experiment,
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the data clearly indicate a peak somewhere between 0° and 2° [Day 87, Gue 83).
This discrepancy motivated us to perform a similar calculation with the inclusion of
Coulomb interaction (see Appendix for details). The result is visibly different; the
pea.k is now shifted from 4° to 2° thus bringing it closer to the experimental results.
Coulomb contribution to the spectator angular distribution is thus non-negligible
even at 100 MeV/A. The theoretical Gaussian distribution, as can be seen on the
right of Fig. 3.4, shows once again excellent agreement with our calculations after

the Coulomb correction.

We have learnt from the above evaluation of the results the capability of the
BUU approach in reproducing diverse features of the spectator properties. It must
be emphasized, however, a direct comparison with the experiment has not been
attempted here. This subject will be pursued further in chapter 6 but this time

with the object of confronting the experimental data.

3.4 Mass distribution and participant dynamics

The theoretical effort to explain the mass distribution of high energy heavy ion
collision is very extensive (see ref [Hif 85] and references therein). These efforts were
spurred by the observed mass distribution [Hir 84] that has a power law character
,do/dA ~ A~T where 7 is a constant. This form of the mass distribution admits a
simple interpretation. When a classical gas undergoes a phase transition, droplets
are formed whose mass distribution is precisely described by the power law stated
above [Fis 67]. In view of the similarities between the properties of the nuclear

equation of state [JMZ 83, GKM 84] and the van der Waals liquid, the power law
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was interpreted as evidence of a nuclear liquid-gas transition [GKM 84]. Should
this conjecture be true it would have opened up fertile field of research in heavy-
ion physics. This interpretation of data was countered by models based on chaotic
(cold) fragmentation [CDL 84, AH 84] which are also capable of reproducing the
mass distribution. The underlying assumptions about the physical mechanisms
responsible for fragmentation in these approaches are irreconcilable. Added to this
scene of fragmentation theories are models based on statistical [FR 82,83, Koo 86,

Gro 84] arguments. It appears then the mass distribution is insensitive to the

underlying physical inputs of these approaches.

In this thesis, we view fragmentation phenomena as complex processes driven
by two-body nucleon correlations and mean field. The initial colliding nuclei are
confined to a certain region in phase space. Collisions open up the initially unavail-
able phase space volume occupied by the final states. Meanwhile, the mean field
tends to bind the nucleons into pockets we call nuclei. Whether or not the mean
field and the two-body correlations can drive the coiliding systems to a state where
the variety of assumptions about fragmentation become valid is a question we are
not about to address here. What we do hope to achieve here is to reproduce certain

features of the mass distribution with our dynamical model.

We performed near central collisions of °Ca on 4°Ca at 92 MeV/A and 72
MeV /A where experimental data are available in this energy range [Jac84]. At each
bombarding energy, 30 simulations were taken in the impact parameter range 0 <
b < 4.2fm. All the calculations here were done without the additional complication

of the Coulomb interaction. The precautions exercised in the last section on how
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to define a final fragment were similarly taken.

The events obtained from the simulations are shown in fig. 3.5a for beam en-
ergy at 92 MeV /A . The mass distribution is characterized by a rapidly decreasing
Yyield from A = 1 to 9 and is relatively flat beyond Ax12. The spectrum then rises to
peak at A~20. This spectrum combines the contributions of the spectator and par-
ticipant fragments. The experimental data cited in the last paragraph [Jac 87] are
however for fragments from the intermediate rapidity region (or the participants).
We imposed the momentum cut, as described in section 3.3c, to filter the spectator
contribution of the spectrum. Fig. 3.5b shows two very distinct distributions. Par-
ticipant fragments populate mainly the low mass region and their yield decreases
rapidly with fragment size. The spectator fragments are seen to be predominantly
large clusters. Apart from its contribution to the large mass region the spectators
are also seen to contribute to the very small mass region. The low yield in this
region can be explained by a scenario whereby spectator fragments are occasionally

destabilized by collisions and subsequently fragments into several small clusters.

More quantitatively, if we constrain ourselves to fit the participant spectrum
with the power law then our calculation gives the exponent 7 = 1.5 whereas the
experimental value is almost 3.0. The initial fall-off of the distribution in our model
is too slow. Bauer et al. [BBD 87] who performed central collisions using the same
model for 2°Ne on 2°Ne at 100 MeV/A found the exponent to be close to our value.
This is indicative of the insensitivity of the participant spectrum to the size of the

colliding systems.

As the beam energy is reduced to 72 MeV/A, the qualitative character of the
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mass distribution changes (Fig. 3.6a). The contribution to the higher mass region
is enhanced to compensate for the reduced yield in the intermediate mass region
(A =6—15). The strong peak at high mass region occurs at A ~ 20. Upon applying
the momentum cut, as described before, the spectrum of the participant events are
found to retain the character of the unfiltered spectrum (see Fig. 3.6b). Data for
A > 14 are, however, not available to confirm this feature of our results at lower

energy. This calculation serves to clarify the effect of lowering the beam energy on

the participant observable.
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Chapter 4: Nuclei with diffuse surfaces

4.1 The self-consistent density

The theoretical description of nuclear reactions at low energy requires an ac-
curate preparation of the nuclear ground state. Such a consideration is an essential
aspect of nuclear fusion studies [Dav 85] where the Hartree-Fock approach pro-
vides the basis for the construction of ground states. Realistic ground states can
be achieved in this approach [VB 72, BKN 76, Neg 82]. The wavefunctions of the
nucleons are determined self-consistently by the Schrédinger equation with an un-
derlying interaction. Since the basis of nuclear dynamics presented in chapter 2 is
semi-classical in content it is intrinsically satisfying to stay within the semi-classical
approach in the construction of the ground states. The Thomas-Fermi approxi-
mation (TFA) as expressed in equation (2.2.38) is a solution to the lowest order
truncation in the h-expansion of the Hartree-Fock equation. This approximation
is capable of generating diffuse nuclear surfaces provided the potential is finite in
range. The extension of the TFA [RS 80, Coo 88] which represents a truncation of
the next order in the h-expansion (eqn. 2.2.31) will improve the nuclear surface.
This alternative, however, requires the extension of the Vlasov equation. A method
of solving the time propagative solution of the next order in the h-expansion is
not known, even numerically. Consequently, we will only consider ground states

derivable from the TFA.

The approach taken in this chapter to generate the nuclear surface is an ex-

tension of Maddison and Brink’s work [MB 82]. They considered a simple Skyrme
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type interaction with a Yukawa term in one dimension. This form of interaction is
precisely the so-called BKN interaction [BKN 76]. We extend this work to three
dimensions and consider cases with and without the Coulomb interaction. In fact,
their work (MB) came to our attention orly after the completion of our calculations.

The conventional form of the mean field potential used in heavy-ion reactions

is a zero range potential with three adjustable constants:
U.(p) = Ap(7) + Bp°(7), (41.1)

and it is derivable from the Skyrme forces. Within the TFA (eqn. 2.2.38) the

self-consistent equation to be solved is

P = G e —Uo)] O -U ) 4a2)

When U = U,, this equation is an algebraic equation in p whose solution for a finite

nucleus of radius R is
pPM)=po <R
(4.1.3)

=0 r>R

where pg is a constant. Zero-range potentials in the TFA thus do not generate

diffuse surfaces. Let us now consider the BKN potential
U7, p) = 4p(7)+ Bp*()+ [ &*rofF, Ppte”) (81.4)

The finite range interaction, v(7, 1), has the familiar Yukawa form

- el?—r".l/a
o(F, ) = Vp———
[~ r'l/a
(4.1.5)
=41Vo D _ fe(r,r',0)Yem (8, 6)Y7in (8, ¢')
{Lm
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where a is the range of the force and Vp determines its strength. The radial function

in the above expansion has the structure

fl(r’ 1", a) = il(r</a)kl(7'>/a) (416)

where i¢(r</a) and k¢(r> /a) are modified spherical Bessel functions. For spherically
symmetric ground state nuclei only the £ = 0 term in the expansion survives. Thus

only the following functions need to be considered:

sinhr e~ T

and ko(r) =

to(r) = (4.1.7)

The potential of the spherically symmetric system then simplifies to become

U(r, p) = Us(p(r)) + Uy(r) (4.18)

where U, is given in eqn.(4.1.1) and the finite range Yukawa potential is
Uy(r) = [ ol e

e~r/a inh(r
=4[ A d'”‘“‘—‘-‘l‘f—/—/—“lp( ) (419)

smh(r/a)/ dr' o2& e~ “_p( )]

r/a

When U of the expression above is inserted into the TFA (eqn.(4.1.2) ) we find
that it is no longer an algebraic equation in p(7), hence constant density is not a

solution. The self-consistent equation with the BKN potential reads
5 ,
3CP () +Us(p(r) = Ar = Uy(r)y  Ar=U(r,p) 20 (4.1.10)

where

(27h)? )2/3

C= 10m ( ¥

(4.1.11)
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This equation is the semi-classical counterpart of the Hartree-Fock self-consistent
equation for the nuclear ground state. The self-consistency condition for the wave-
function has been replaced by the density function. Semi-classical method further
constrains the range of the density to lie within a cut-off radius R through the con-
dition Ap — U(7, p) 2 0. The space of solutions, p, allowed must satisfy the particle
number constraint

N= /darp(r). (4.1.12)

For the moment we will consider spin-isospin saturated system (y = 4) with no

Coulomb interaction.

The iterative procedure of solving eqn.(4.1.10) begins with a guessed density
and Ar. From these initial values

(1). we evaluate Uy(r) (eqn.(4.1.9) ), the Yukawa potential.

(2). Using the known Ar and Uy from step (1) a unique function p in the interval
0 < r < R is evaluated from eqn.(4.1.10) . To avoid double valuedness of p,
the parameters of the BKN interaction must be chosen such that the L.h.s. of
eqn.(4.1.10) is single valued.

(3). We now check to ensure that the new p(r) gives the correct particle number to
a prescribed accuracy. If this is not fulfilled Ap is adjusted using the particle

number constraint

N = /d3rp(r)
o (4.1.13)

Once a new Ap is obtained, steps (2) and (3) are repeated until the solution

converges.
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(4). Steps (2) and (3) iterate for correct Ar and p with a fixed U, given at step
(1). Uy must then be updated with a new p. Having updated U,, steps (2)
and (3) are repeated. The seif-consistent procedure converges when A g, p and
U, simultaneously converge. In practice, the convergence of Af is sufficient to
ensure p and U, converge also.

In the numerical procedure, outlined above, the functions were placed on suffi-
ciently fine grid size Ar = 0.0125 fm and the Ar value was calculated to 10 figures of
accuracy. We further performed all the calculations with the grid size (or spacing)
doubled but keeping the accuracy of Ar unchanged. The self-consistent densities
from these two cases agreed to 6 significant figures at each point on the grid. An
additional test was also done to determine the uniqueness of the converged den-
sity. A necessary though not a sufficient test is to ensure uniqueness of the solution
starting with drastically different initial densities. We took a square and a smooth
Myers’ density (see next paragraph) for this purpose. The solutions were found to
be identical up to 6 figures at each point on the grid.

The self-consistent calculation was perfomed for 4 He, 160 and 4°Ca nuclei with

the BKN force parameters unaltered:

A = -373.3MeV fm?, B =3238.1MeV fm?, o=2
(4.1.14)
Vo = —-363.0MeV a = 045979fm

The self consistent densities for these nuclei are shown in the first column of Fig.
4.1 . We have also overlapped an analytic density distribution given by the Myers’
formula shown in dotted lines. This form of the density has a reasonable surface be-

haviour and we thus regard it as representing the experimental density distribution.
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The Myers’ density distribution for a nucleus of size A is given by [Mye 78

or) = po1- (1 + g)e-R/a _smlr?%/a) <R
R ~r/a (4.1.15)
= pol§ cosh(Rfa) —sisb(R/)] S v> R

where R = 1.184!/3 fm and @ = 1/v2 fm. This density distribution has the
property that its density gives the right number of particles 4x [ drr?p(r) = 4 po R3

with the choice of R above and pp = 0.145fm ™3,

In all three nuclei (Fig. 4.1) the BKN force parameters give poor charac-
terization of the nuclear surface. The central density is always higher than the
Myers’ distribution and the surface density decreases too rapidly. We contrast this
to realistic surfaces obtained by Bonche, Koonin and Negele [BKN 76] where the
self-consistent calculations were done in the Hartree-Fock approach. Evidently, the
truncation of the kinetic equation at the lowest order in the hi-expansion has resulted
in sclf-consistent densities that have poor characterization of nuclear surfaces. Since
our approach to self-consistent solutions is quite different from the Hartree-Fock’s,
we have the freedom to choose a different set of parameters for self-consistent cal-
culation, This freedom will be exploited in section 4.3 to improve upon the nuclear

surface.

Even if the self-consistent density obtained is unique it does not follow that
the energy of the system is minimized by this density. We are thus led to examine
the stability of our solution to eqn. (4.1.10) . This is analogous to the question of

stability of the Hartree-Fock solutions [Tho 61].
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4.2 The variational principle and stability matriz

The solution we seek for the ground state must minimize the total energy of

the system. The problem of obtaining an extremum and determining that it is a

minimum of the total energy can be understood from the variational principle. The

starting point is to construct an energy functional of the system and then take the
first variation to obtain an extremum condition from which a solution is found.
From the extremum solution the second variation is evaluated. Stability of the
solutions requires the second variation to be positive definite.

The kinetic energy of a system of N nucleons is

2
T = / d%dapé’fr; £, ). (4.2.1)
Upon using the Thomas-Fermi ansitz of the Wigner function, the kinetic energy

functional becomes

T[] = / dre(@) =C / &rs3 () (4.2.2)

where the coefficient C is given by

7rh)3)2/3’

C= 10m (41r 27

(4.2.3)

and 7(7) is the kinetic energy density. The corresponding potential energy functional
is

Vid= [ el (1:2.4)
where the potential energy density is

Vip()] = / Ua(pldp + 307) [ &4'p (s 1)
(4.2.5)
C,pa'.'H(i") + EP(T“')/dsT'p(TT)U(F, .,.7)

=1
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In line number two above, A and B Skyrme parameters have been relabelled as C,

and C; respectively; and o, > 1. The sought-for energy functional, from eqns.(4.2.2)

and (4.2.4) , is
E{p] =T(p] + Vo]
=C/ drptP (7 (4.2.6)

2

1 1 - -
Z = +ICi/d3rp"'+l(f")+ -é/dsrdsr'p(r')v(r,r')p(ﬂ

=1
The variational parameter of E[p] is the density itself.

When E[p] is expanded in Taylor series about the ground state po, we obtain

[PN 62]
Elp] = Elpal+ [ d*rh(7)on(s)
1 (4.2.7)
+ 5/dardsr'dp(rT)S(F,r’)ép(ﬂ +...
where the Hamiltonian can be identified to be
§E[po)
h(F) = —= 4.2.8
=50 (4.28)
and the interaction energy matrix as
2
S(7, ) = _&Elpo] (4.2.9)
5p(7)6p(r)

At the moment p is an arbitrary small variation from po, the ground state den-
sity. The extremum condition for E[p] subject to the particle number constraint is

formally written as
5{md-A/ﬁ%Mn}=o, (4.2.10)
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where ) is the Lagrange multiplier. From the second term of the Taylor expansion

(eqn.(4.2.7) ) this equation implies that
/ Er(h(F) - \)6p(7) = 0 (4.2.11)
We thus arrive at the extremum condition
h(F)-A=0 (4.2.12)
where the Hamiltonian (of eqn. (4.2.8) ) is

h(7) = —Z-Cp‘*’/’(f‘) + E Cip™(7) + / d'r'v(7,17)p(r"). (4.2.13)

(from here on the subscript '0’ of pp is suppressed). Now compare the extremum
condition (eqn. (4.2.12) ) to the self-consistent equation (4.1.10) we solved pre-
viously. With the identification A = Ap they are seen to be identical. Hence,
the self-consistent density obtained before corresponds to an extremum of the en-
ergy functional E[p]. Stated differently, the vanishing of the Poisson bracket (eqn.
2.2.36), from which the self-consistent solution was derived, is equivalent to the so-
lution of the extremum rondition (eqn.(4.2.12) ). These two statements are equiv-
alent because they are simply stating the equilibrium condition of the ground state
in different forms.

The construction of the energy functional which enables the derivation of the
self-consistent equation from the variational principle has served to reproduce known
results. However, we can proceed a step further by examining the stability of the

self-consistent solution. The derivation of the extremum condition requires the
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explicit introduction of a Lagrange multiplier to constrain the particle number of

the system. Alternatively, we can also explicitly state the constraint simply as
6N = / d*rép(7) =0 (4.2.14)

From the extremum condition, h(7) = Ar, the first variation of the energy functional
(eqn.(4.2.7) ) vanishes due to the particle number constraint. So to guarantee that
E[p] evaluated at the ground state is a minimum the second variation must be

positive definite

2 / Brdr 6p(F)S(F, )6 p(rT) > 0 (4.2.15)

This condition may be physically interpreted as the excitational energy resulting
from small departures from the ground state density p. A condition ensuring the

stability condition (4.2.15) to hold is that the following eigenvalue equation
/ &' S(7T)6p(rT) = ebplF) (4.2.16)

has only positive eigenvalues, ¢ > 0. Upon performing the functional differentiation,

the explicit form of the S-matrix reads

S(F, 1) = [%OCp""‘(r'“) + 30 Cop™ )| - 1) 07T (4217)

We call this the stability matrix in view of its role in determining the stability of
the self-consistent density. This is a (real) symmetric matrix due to the symmetric
property of the Yukawa potential. It is curious that the second variation of the
kinetic energy term is actually singular outside the nucleus. This ill-behaved S-

matrix calls for special care in solving the eigenvalue equation (4.2.16) .
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For each eigenvalue ¢, there is a corresponding eigenfunction p,. Stability of the
ground state requires that ¢, > 0 for ’s. Each ép, represents a variation away from
the ground state. It is then possible to relate these eigenfunctions to the physical
yibrational modes of the nucleus. We must, however, add a word of caution here
since the eigenvalues, ¢,, do not have the dimension of energy instead they have
the dimension of MeV fm3. Nevertheless, this connection can be made, and the
following chapter is exclusively devoted to the extraction of the solutions of stability
equation (4.2.16) . These solutions will then be compared in detail with physical
vibration modes. For this reason we have deferred the method employed to solve
eqn. (4.2.16) . Suffice it now to mention that ¢,’s are positive definite and that they

are bounded from below.

4.3 Self-consistency with Coulomb interaction

Let us recall the parameters in the phenomenological BKN interaction. The
BKN interaction is
~|7=r"|/a

-
!

U(F, p) = Ap(F) + Bp®(7) + Vo ] P () (4.3.1)

|7 - r7| /a
Parameters A and Vj are negative which implies the interaction associated with
them gives rise to attractive force. The interaction associated with paramecter B,
being positive, provides a repulsive force. The combination of the attractive and
repulsive forces, which are the basic aspects of the nuclear forces, gives rise to the
saturation of nuclear matter. In the nuclear matter limit this interaction reduce to

the usual Skyrme interaction form

U(po) = (A + 4nVoa®)po + Bp] (4.3.2)
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where py is the nuclear matter density. The Yukawa interaction, in this limit is
proportional to py and thus has been absorbed into the first term of the eqn. (4.3.1)
. We observe that only in the case of finite systems has the Yukawa interaction
brought any modifications to the Skyrme interaction.

Parameters A, B, V; and a can be adjusted to improve upon the properties
of the nuclear system. It is, however, preferable to restrict the parameter space
so as to retain the nuclear matter properties of the BKN interaction. The BKN
interaction fixes the parameter combination (A4 +47Vpa®), this results in a reduced
parameter space of only two dimensions. Suppose the strength of A is increased,
the binding energy would increase whereas increasing the range parameter a would
increase the thickness of the nuclear surface and thereby reduces the binding energy.
A proper choice of parameters should then optimize our demand for a reasonable
binding energy and a good surface behaviour.

With these desired features in mind, we conducted a parameter search and
concluded that the BKN interaction without the Coulomb interaction over-binds
the nucleus. For example, the 4°Ca system with any reasonable parameters would
give Ey/A =~ —11 MeV. To compare with experimental binding energy (see Table
4.2) we need to extend the BKN interaction to include the Coulomb interaction.

The Coulomb interaction removes the isospin degeneracy. This necessitates the
distinction between the proton (p,) and neutron (p,) densites with p = pp + pn.

The modified Wigner function with the degeneracy removed is given by

2

f7.9) = oy 2 O(M = Ui - 5) (43.3)

=pn

where v equals to 2 and ¢ refers to the proton or neutron index. Protons and
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neutrons now feel different potentials, and they are concisely written as

Uy(7) = Us(7) + Uy(7) + U(F)bgp (4.3.4)

The last term on the right of this equation is the Coulomb potential

1 -
= po(r) (43.5)
- I

UL(7) = & / &2

|7
The corresponding self-consistent equation for either the proton or neutron density
is

SCREE + U = Ay = Uy(D) = Ulhapi Xy =Up(N 20 (436)

Equation (4.3.6) couples p, and p, through the Skyrme potential (i.e. the
p-dependent terms). These coupled equations must be solved simultaneously. The
calculational scheme is condensed in the flow chart attached. Initially we simply
guess the values of A\; and p, from which the potentials Uy(7) are evaluated. From
these potentials we proceed to iterate eqn.(4.3.6) for p,’s until they converge; and
we call this set of calculations loop A. Loop B adjusts the proton and neutron
numbers separately, which results in new A;’s. Loop A is an internal loop of B so
it is iterated each time the A;’s in loop B need to be adjusted. Having computed
the densities p, with the correct proton and neutron number, the potentials U, are
again updated. The outermost loop C ensures simultaneous convergence of pg, A,
and U;. We performed this calculation with the same degree of accuracy as the
previous self-consistent calculation.

We again conducted a parameter search with the new potential Uy(). The

search was done for both the stiff (0 = 2) and soft (¢ = 7/6) potentials. The stiff
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potentials that optimize our desire for improved surface and reasonable binding
energy are the STIFF1 and STIFF2 in Table 4.1. The attractive component of the
STIFF1 potential is entirely absorbed in the Yukawa potential whereas the STIFF2
potential has a large range for parameter a with non-zero A parameter. Its surface
behaviour is very similar to the STIFF1 (see Fig. 4.1 column 2 and 3) and the

central density lies between those obtained with the BKN and STIFF1 potentials.

We have also displayed the proton and neutron self-consistent densities of the
STIFF1 in Fig. 4.2 and their potentials for *He,'® O and 4°Ca in Fig. 4.3. Due
to the presence of Coulomb repulsion the central density of the proton is always
lower than neutron density, and the reverse is true at the surface. This behaviour
at the surface is accidental for nuclei having equal number of protons and neutrons.
Had we chosen an asymmetric system such as 228 Pb (N > Z) the proton density
would always be lower that the neutron density. It is worth noting that the lack of
quantum effects has completely snoothed out the central density (see also ref [RS
80]) . Physically the 0 nucleus is known to have maximum density not at the
origin. This feature is, of course, beyond the scope of the Vlasov formalism. The
potentials in Fig. 4.3 are likewise monotonically smooth. They display expected
behaviours. Due to the finite range interaction, the potentials extend beyond the
cut-off radius R. For the 1°Ca nucleus, the central potential’s depth for protons is
about —40MeV and vanishes at 6 fm. From then onwards the Coulomb contribution
completely dominates. The neutron potential is very similar to the proton potential
apart from a shift in its depth due to the absence of Coulomb interaction. The depth

reaches —50Mel’ and the force extends as far as 8 fm.
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The self-consistent density generated by the BKN interaction represents an
improvement in the description of ground state nuclei over the conventional Skyrme
interaction. The readjustment of the BKN interaction parameters further improve

upon the surface density and gives good fits to the experimental binding energy.

4.4 Time evolution of the self-consistent density

In the preceeding section, the self-consistent densities were obtained for ground
states possessing spherical symmetry. This allowed significant simplification in the
extraction of the self-consistent densities. The method of generating the ground
states will be used in chapter 6 to initialize colliding systems in heavy-ion reactions.
In course of the reaction, the symmetry possessed by the ground states is destroyed
by nucleus-nucleus interactions. Under such a circumstance, the dynamics must be
solved in 3-D. The exercise of this section is to show how accurately the newly found
ground states can be maintained with the numerical method outlined in chapter 2.
In other words, we are testing the accuracy of the Vlasov dynamics. We perform
this test for the ¥°Ca nucleus in full 3-D computation.

Given the self-consistent proton and neutron densities of °Ca nucleus, we can
Monte Carlo these distributions using the test particle method just as described in
chapter 2. The momenta of the test particles are determined by the self-consistent
densities through the relation Pr(7) ~ p!/3(7). With 200 test particles per nucleon
it is possible to map the self-consistent density very well as can be seen in Fig. 4.5
at t = 0 fm/c. Similarly, the rms radii and momenta of the nuclei were found to be

almost exactly mapped.
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From the self-consistent densities mapped by the test particles the potential

energy is evaluated. The Yukawa and Coulomb potentials are respectively given by

~I7-rl/a

U,(7F) = Vo / Pr' e p(r") (4.4.1)
| —1r'|/a
and
Ue(7) = €2 / d*r' — ! —pp(r") (4.4.2)
|7 — |

Since the positions of all the test particles are known it might at the first glance be
possible to compute the potentials directly. In practice, this straightforward method
of evaluating the potentials is prohibitively long because the number of evaluations
is proportional to the square of the number of test particles. A more efficient way
is by solving for the potentials in their differential forms. The Yukawa potential is

the solution of the equation
1
(v2 — a—z) U, (7) = —4maVop(7) (4.4.3)
and the Coulomb potential is the solution of the Poisson equation
VEU(F) = —4me? p,(7) (4.44)

These differential equations are solved by a standard numerical method (see Ap-
pendix). The above equation must also be supplemented by specified boundary
conditions Uy(7y,) and U(7hp), where 7, are the boundary points.

The total energy of the system can now be calculated and it is given by

1 AN 2
Epr == L+
N < 2m (4.4.5)

[ v+ 3 [ &[v,@0 + Up(d)
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where V,(p) is the potential energy density of the Skyrme interaction (first term
of eqn.(4.2.5) ). Because of the local density fluctuations due to finite number
of test particles used the nucleus is mildly excited. This excitational energy is
approximately 2 MeV/A just as found in section 3.3.

The time evolution of the density at 0 , 30, 60 and 90 fm/c are exhibited
in Fig. 4.5 . The surface of the nucleus is seen to be distorted somewhat but it
retains much of its original character. At all times, it is more diffuse than the
self-consistent density. This feature is an indication of the limitations in the use of

numerical parameters and it is also reflected in the case with square density.
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Chapter 5: The stability matrix and vibration modes

5.1 Introdxction

The theoretica' issues to be developed in this chapter are a direct extension
of the last chapter. To recapitulate, it was found necessary to ensure the stability
of the solutions of self-consistent equation (eqn. 4.2.12). The necessary condition
for this to hold is that the eigenvalues of the stability matrix S(7,7') be positive
definite, as expressed in eqn. (4.2.16). The equation in question is a linear integral
equation whose solution is standard. In section 5.2, this equation will be solved by
an expansion method. The eigenvalues will be shown to be positive definite for a
chosen set of parameter called the STIFF1. This confirms that the self-consistent
density obtained in the last chapter for this parameter set indeed minimizes the
energy functional of the system.

The eigenfunctions corresponding to these eigenvalues display behaviours char-
acteristic of giant (or collective) vibration modes as found in liquid drop and scaling
models [BM 75]. We will show graphically the extent of agreement with these mod-
els. Having shown this we take a formal approach to the issue raised by the physical
origin of the vibration modes seen in the eigenfunctions of the stability matrix. The
mean field dynamics of the thesis is based on the time-dependent Vlasov equation
(TDVE), so it seems entirely natural to develop the eigenmodes of nuclear vibrations
from TDVE. The resulting solutions can then be compared with the eigenfunctions
of the stability matrix. An exact solution of the TDVE is formidable, thus various

approximations are invoked to solve it.
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5.2 Eigen-solutions of the stability matriz

The stability equation to be solved is the linear integral equation
() = [ &' g(r? (5:2.1)

where € is the eigenvalue corresponding to eigenfunction g(+) which was called the
transition density in the last chapter. This eigenfunction is required to satisfy the

particle number conservation
/ d*rg(7) =0 (5.2.2)

Eqn. (5.2.1) together with the constraint (5.2.2) forms the statement of our problem.

We construct solutions of the multipole type

9(7) = §e(r)¥em(6,8)  €=0,1,2,... (5.2.3)

where the radial function ge(r) is determined by the stability equation. Physical
vibrations possessing this structure are well known in the nuclear liquid drop model
[RS 80, BM 75]. We distinguish two types of solutions corresponding to £ = 0 and

£2>1:
g(F)=go(r) £=0

=Ge(r)Yem(6,8) £21

These two kinds of solution are inherently distinct. Due to constraint (5.2.2) , jo(r)

(5.2.4)

solution becomes a compressional mode whereas Ge(r) (¢ = 1) solutions could be
interpreted as surface modes of different multipole orders.
The solutions for the case £ > 1 satisfies the constraint (5.2.2) automatically

due to the presence of the spherical harmonics Y. For £ = 0 case, §o itself has
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to be constructed to fulfill this constraint. We shall first discuss how to construct
go and then §e. The technique to be employed throughout this section to solve
eqn.(5.2.1) is the expansion of the radial functions in terms of a complete set of

functions. We write

do(r) = Y bapn(r) (5.2.5)

n=]

where b0 are unknown coefficients to be determined by the stability equation. The

basis functions ¢, are constructed from the product of spherical Bessel functions:

en(r) = jo(kor)jo(knr) 0<r<R

=0 r>R (5.2.6)

_ (n+ D
kn— R b

where R is the cut-off radius. In this choice of R, we have confined the variation

n=12,..

of §o(r) within the nucleus. This set of functions ensures §, will satisfy condition
(5.2.2) . Since {jo(kn7)} is a complete set of functions, the effect of multiplying a

weighting factor jo(ko7) to the elements of this set does not change its completeness

property.
The ¢,’s are independent but not orthonormal to each other. They can be

orthonormalized using the Gram-Schmidt procedure. We call the orthonormalized

functions @y, so gy can now be written as
o0
do(r) =Y aSn(r) £=0 (5.2.7)
n=1

where al’s are the new coefficients. Since §o can only be determined up to a

normalization constant we have the freedom to normalize it to unity:
o0
[ Erlatr) = Yl =1 (528)
n
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The construction of basis functions for £ > 1 case is much simpler. We expand

[o o]
gi(r) =Y al@L(r) £>1 (5.2.9)
n=1
where "
¢"(T) = \/2_:r-ﬁj0(k"r) r< R
=0 r>R (5.2.10)
lc,.:z-z}—;E n=12,..

With this choice of basis functions, {$%} is a complete set of orthonormal functions.
We also require the norm of §, be rormalized to unity as in eqn.(5.2.8) . The
unknowns in §o and §¢ are now contained in the coefficients a® and !, respectively.
They are determined by the stability eqn.(5.2.1) .

When the multipole solution §/Yem is substituted into the stability equation

the radial function §; satisfies an integral equation of the structure (£ > 0)
€de(r) = vo(r)Ge(r) + 47 Vo /dr'r’zgg(r')ft(r, r',a) (5.2.11)
where the radial function of the Yukawa potential is given by
fe(r, 7", a) =1e(r</a)ke(rs[a): (5.2.12)
and the kinetic plus the Skyrme potential part of the S(7, 1) matrix is

2
va(r) = 1990,;-‘/3@) +3 Cuop™ (1) (5.2.13)

1=1

Upon substituting the expansions of g, (¢ > 0) in eqns.(5.2.7) and (5.2.9) , we

obtain
Z al (eg?:f,(r) - v,(r)@t (r) — 4nVp /dr'r'chf,(r')fg(r, r',a)) =0 (5.2.14)
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Now multiply this expression by @%, and perform the volume integral with respect

to the r variable to get

Z(eanm - Snm)afl - 0 (5-2.15)
where we have defined a stability matrix on the function space to be

Som = / drr 3 (r)o, (r) B () +

(5.2.16)
41rVo/dr'dr(rr')zcﬁf,(r')f[(r, ' a)pt.(r)
In matrix notation, the eigenvalue equation reads
Sa! = la’ (5.2.17)

where the eigenvector &’ = (af,af,...) and the eigenvalue for £ multipole is now
labelled ¢¢. We have thus transformed the eigenvalue problem in the integral form
(eqn.(5.2.1) ) into a regular matrix diagonalization problem.

For each £ we have a different set of eigenvectors {a‘} corresponding to eigen-
values {€/}. In this manner, each multipole mode ¢ has, in principle, an infinite
number of soluiions for an infinite size matrix. Before interpreting the eigenvalue
¢! and eigenfunction §q, the reliability of our diagonalization procedure ought to be
considered. The only relevant spatial dimension in constructing Sp, is the radial
coordinate. The basis functions ¢4 were placed on 1-D grid space of even grid
size Ar = 0.0125 fm (the same grid size was used in the last chapter to find the
self-consistent density). On the same grid space, the matrix elements S,,, were
evaluated. Sy, is syrumetric with respect to its indices so only those elements
with n > m need be evaluated. In the matrix diagonalization, the eigenvalue of

interest for each € is the lowest one. This permits us to truncate the dimension
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(N) of S since the size of the matrix will determine the accuracy of this lowest
eigenvalue or equivalently its eigenfunction as N is successively increased. In fact,
there are two numerical parameters N and Ar. Convergence of a solution can only
.be secured by increasing N and refining Ar simultaneously. The parameter set we
selected for study was STIFF1. We tried N from 25 to 200 and Ar in the interval
0.0125 — 0.050 fm. Sufficient convergence of the eigenvalues was found for N = 100
with Ar = 0.0125 fm. The error in the eigenvalues in Table 5 is less then 0.5

MeV fm3.

The stability of three symmetric systems was studied: 90,*° Ca and 2°8 Pb,
Evaluation of S,,, requires that the self-consistent densities for these systems be
known. The method of obtaining these densities has been extensively discussed
in the last chapter. Table 5.1 displays the ~igenvalues of the stability matrix for
multipoles £ = 0 — 5. The eigenvalues are indeed positive definite except for small
(negative) values of the lowest eigenvalues seen in £ = 1 case. These eigenvalues
can be shown analytically to be zero from the stability equation because ¢ = 1
case corresponds to the translational mode of the nuclens. Non-zero eigenvalues

obtained here reflect the error in our numerics of approximately 0.3 MeV fm?.

The eigenvalues of the stability matrix for £ = 0 — 5 are sumnmarized in Table
5.1. For each £ there are N number of eigenvalues but only the first four are
displayed. They are characterized by the number of nodes of their corresponding
eigenfunctions. For a fixed ¢, the eigenvalue increases with the number of nodes
of its eigenfunction. The { = 0 mode does not possess a zero-node eigenfunction

in contrast to £ > 1 modes. Apart from this difference, the eigenvalues of all £’s
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are seen to increase with £ values. By inspection, they are seen to decrease with
the size of the system. The dependence of the lowest eigcnvalues on the size of
the system and the number of nodes they possess are indicative of the physical
vibration modes. We plotted the eigenfunctions corresponding to the lowest (first)
cigenvalue for { = 0, 1 and 2 cases in Fig. §.1. Striking characteristics of the
lowest eigenfunctions are observed here. The first eigenfunction of the £ = 0 case
exhibits characteristics of a monopole transition density which has only one node.
For ¢ = 1, the lowest eigenfunction corresponds to the translational mode; and for
¢ = 2 it corresponds to quadrupole surface vibration. As a measure of the agreement
of these eigenfunctions with the physical transition densities we compare them to
better known giant vibration modes.

Nuclear vibration can be viewed as a drop of classical fluid oscillating about its
spherically symmetric equilibrium density p. For multipole mode vibrations € > 1,

the fluid motion is assumed to be irrotational and incompressible:

—

VxVA=0 V.V(@=0 (5.2.18)

where V(7) is the velocity field of the fluid at 7. If we write V in terms of the velocity
potential ¢ for irrotational fluid, ‘7(1"') = —V¢, the incompressibility condition

becomes

V=0 (5.2.19)

The general solution of ¢ satisfying proper boundary conditions is a linear cornbi-

nation of r'Ylm(G, @) functions. From the continuity equation, we have

gt.ap - . (pf') =v. (p€f¢) (5.2.20)
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The transition density for multipole vibration is obtained from this equation by

substituting the solution of ¢ and assuming normal mode vibration. We obtain
bpu(F) o &r'7 ' (r)Yem(6, 8)  €=1,2,... (5.2.21)

with p'(r) = ;f—rp(r). The radiai dependence in §p¢(7) can be identified with g¢(r)
in eqn.(5.2.9) . In fact, ge(r) can be shown directly from the stability equation
to be proportional to r¢ in the vicinity of the origin. However, it is not obvious
how the p'(r) factor can be extracted from the same equation. In Fig. 5.2, the
lowest eigenfunctions of the stability equation for £ = 2 and 3 cases are compared
to the transition densities of the liquid drop model (eqn.(5.2.21} ). With the same
equilibrium density p, comparisons are made for 0,4° Ca and ?° Pb nuclei. The
agreement between them is almost perfect in the interior region and at the surface
of the nucleus. The intermediate region of ép¢(r) shows a slight deviation from
ge(r)-

Monopole mode involves the compression of nuclear density. The incompress-
ible assumption V-V = 0 must certainly be relaxed in the derivation of its transition
density. The velocity potential ¢ for this mode is usually taken to be 2. From the

continuity equation, the monopole transition density with this velocity potential is

6p(r) « (3p(r) + rp'(r)) (5.2.22)

Alternatively, if nucleon density distribution is scaled by a coordinate transforma-
tion r — ar, 6p again yields the expression above. Hence, ép of this form is called

the scaling transition density.
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As can be seen in Fig. 5.3, the scaling density deviates substantially from g,,
the solution obtained from the stability equation. This deviation is particularly
severe in the interior of the nucleus. §o shows almost no change in its character
with nuclear size. It is flat throughout the nuclear interior but the scaling density
changes significantly. Curiously enough, it seems to approximate o very well for
208 pp nucleus.

The monopole mode is not as well reproduced by §o, but we must remark
that the scaling density is an approximation of the eigenfunction of this mode.
The similarity between the multipole mode solutions §, and ép;, of the liquid drop
model is particularly impressive. This remarkable similarity warrants a systematic
examination of the physical origin of the eigenfunctions of the stability equation.
Before doing so, we add the following comments. In the limit of small amplitude
motion, p = po + 6p(t), the density matrix form of the TDHF equation can be
lincarized to read [RS 80]

(S = hwy)bp, = 0 (5.2.23)

The stability matrix S is precisely the R.P.A. matrix used to find the eigenmodes
of physical vibrations. This is entirely similar in structure to the stability equation
((5.2.17) ). It should be stressed that our stability equation is derived from static
considerations but eqn.(5.2.23) is deduced from the TDHF dynamics. To show the
full analogy between the semi-classical and the quantum approaches, we have to
derive a similar statement to eqn.(5.2.23) from the TDVE in the small amplitude
limit. This derivation will be followed in the next section. The algebra involved

will be considerable. Chapters 6 is independent of the results of this section.
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5.3 Vibration modes in the linearized Vlasov approach

Various approximations of the Vlasov equation have been advanced by several
authors to understand nuclear vibration modes within the semi-classical method.
Significant progress in this area has been achieved by authors in refs. [BDD 86, BDi
88]. In their most recent work [BDi 88] the linearized Vlasov equation is solved self-
consistently with separable forces. Works with externally induced forces [IKSS 86]
have also been discussed. The connection of vibrations in the nuclear matter limit
within the semi-calssical approach to the Fermi liquid parameters of the Landau
theory has been explored [JJ 80).

QOur aim is to compare as closely as possible the solution of the linearized
Vlasov equation to the eigenfunctions of the stability equation. The works cited
do not have the desirable approximation for our purpose. In particular, we seek to
retain the residual interaction 6U(7,t) without making any assumption about its
structure. The transition density is then solved self-consistently with this 6U.

The linearized continuity equation for small departures from the equilibrium

configuration
F(7pt) = fo(F,P) + (7, P\ t) (5.3.24)
is written as
a g - Ty~
a&)(r, t)=-V.4J(r,t) (5.3.25)

The transition current in this equation takes the form

-

§J(F 1) = / ep s i) (5.3.26)
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If we take the second order time derivative of the continuity equation, we get
§J(7,t) (5.3.27)
The time derivative of §J(7,t) in its explicit form reads
(7 IS po
—6J(rt) = Sp——6f(F,pt
50060 = [epZ 261G AY)
We appeal to the Vlasov equation to substitute for 5‘9—‘ f from which we obtain

0 7o P (B Srrrirr S spa S
677 1) = / ¢pZ (—; V6 + VU, -V,6f +V6U -V, fo) (5.3.28)

where Uj is the (self-consistent) ground state potential. After performing a few
integrals this equation simplifies to become

O 2. (2o = fpe pa
= 8J(7,1) = -(m .67 + L3I0, + mvw) (5.3.29)

where p is the ground state density and the kinetic energy tensor of the vibrating
system is

6T (7,t) = /dap §f(7, p,t) (5.3.30)
Time dependence is now contained in §U, ép, 6T and of course 6 f. Equation

(5.3.27) , from the results above, becomes
m=—ép = 2VV : 6T +V- (6p€7Uo +p§6U) (5.3.31)

where : denotes the tensor product. The kinetic energy term may be written in a

more transparent way. We write
UV 6T = /d3p(p V)G V)éf
2m

. 2 3 p 3 31-7" 6ﬁ'6_p2v2
=3V /‘“’%5”5;/‘1”( > )

(5.3.32)
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If we define the change in the kinetic energy of the system due to small variation

2
§T(7,t) = / dsp-;%?-& f (5.3.33)

and the tensor components of the quadrupole moment (in the momentum space) as

Qu(ft) = = [ &3, ~ 16,0617, 5,1 (5.3.34)

then eqn. (5.3.31) becomes

;2 6p = gV25T -;- V:Q+ Y- (6pVUo +pVEU) (5.3.35)
This is the general result of the linearized Vlasov equation. Specific approximations
will be made to this equation in subsequent developments. The equation of motion
for the displacement function §p depends on both the variation of the kinetic and
potential functions. Kinetic contributions come in parts: the first term depends
on the diagonal or P, deformation of Fermi sea in é§f whereas the second term
depends on its quadrupole moment. Evaluation of a poses some difficulty as we
will encounter shortly. Therefore, specific approximations will be made to this
equation.
To maintain consistency with the last che pter we must take the nuclear ground

state to be

fo(7,p) = @“}ﬂge(l’—m‘(ﬂ) (5.3.30)

We restrict the variation from f; to the Fermi surface

§f(7,p,t) = 6F(7,p,t)é(pr (T) — p) (5.3.37)
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In the single-particle shell model this approximation is equivalent to confining tran-
sition of levels in the vicinity of the Fermi surface.

The transition density and kinetic energy in this approximation are respectively

8p(F) = p¥(7) / dQ,6 F (', p, t) (5.3.38)
and 5
6T(7,t) = 3Cp*(Mbp(71)
- 3 (3 (2mh) ) F (5.3.39)
"~ 10m (47r 5

Let us focus on the following terms of equation (5.3.35)
e @ [ ,
“VIST + 9 (6pVUo + pvw) (5.3.40)

The first term in the above equation can be written as

-

¢ (-léqcp-‘/aapﬁp) +V. (N(%Qc,r‘/%p)) (5.3.41)

To evaluate the second term, we use the extremum condition (eqn.(4.2.12))

Uo =AFp — ngzls (5.3.42)
to get
v. (5pVUo) = —v(-g—cp-mapvp) (5.3.43)

This term cancels the first term of eqn.(5.3.41) so eqn.(5.3.40) simplifies to
V. (Nah) (5.3.44)

The variation of the hamiltonian in this expression is

10

6h(7,t) = 3 Cp~Y3(P)ép(F, t) + 8U (7, t) (5.3.45)
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When the residual potential §U is written explicitly, it reads
2
SU(1) = Y- Cuow™ (W00l 0) + [ dromrNent ) (33.40)
i=1

From here, we can cast 6k in terms of the stability matrix

Sh(F, 1) = / &Br' S(7, 1) p(r7 ) (5.3.47)
Our final form of the approximated linearized Vlasov equation is
vV Q (5.3.48)

The first term is a functional of §p but the second term is not. To evaluate @,, the
structure of §f must be known. For this reason eqn.(5.3.48) describing oscillations
of finite systems is not an eigenvalue equation with ép as its eigenfunction. If the
quadrupole deformation of the Fermi sea can be regarded as small the contribution
of Q,, term may be neglected. This approximation is certainly compatible with the
liquid drop model. Even in the stability equation (eép = Véh) no information of
the P, deformation is required. With this additional approximation eqn.(5.3.48)
simplifies to

—mwlp =V - (pﬁah) (5.3.49)

This equation is now linear in §p and therefore it is an eigenvalue equation that
can be solved in a similar manner to that used to solve stability equation. Notice
the difference in structure between the stability and this equation. In the nuclear

matter limit, we recover an old result [JJ 80]

(V2 4+ k%)6p(7) =0 (5.3.50)
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where k is a constant.

The lowest eigenfunctions for different ¢ values of eqn.(5.3.49) are compared to
the eigenfunctions of the stability equation and the transition densities of the liquid
drop model in Fig. 5.2. € equals 2 and 3 cases are shown; the agreement between
the eigenfunctions of eqn.(5.3.49) and stability matrix is almost exact. Fig. 5.2
shows their eigenfunctions are exactly overlapped thereby giving us the assurance
of the intimate connection between eqn.(5.3.49) and the stability equation. The
monopole (£ = 0) displays character quite different from the stability equation for
all the systems evaluated (see Fig. 5.3). Moreover, the eigenfunctions show little
or no change in character with the size of the system unlike the scaling transition
density.

Further progress in the evaluation of the monopole mode is made by keeping

the quadrupole term. Lee and Cooper [LC 88] suggested expanding éf in the form
§f(7\p,t) = 6(p— pr(r)) Y _ Fi(r,t)Pi(cos bz.5) (5.3.51)
[

which includes all higher order deformations in the Fermi sea. F; are now the
unknowns to be determined by eqn.(5.3.49) . Because of the gradient operation on
the quadrupole term the deformations of different orders are coupled leading to an
infinite set of equations to be solved self-consistently. They truncated this set of
cquations at [ = 3 and found a slight change in the eigenfunctions of the monopole
mode. Truncating this set of equations at higher ! considerably complicates the
problem. Thus it is not certain how closely the monopole mode of the Vlasov

approach can reproduce the eigenfunction go of the stability equation.
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Chapter 6: Peripheral interactions of 1° Ar on 27 Al

6.1 Preliminary discussion

The specific reaction selected for detailed study in this chapter is
PAr(44MeV/A) +27 Al -3 X + others

where 34X is any projectile-like fragment (PLF) of size A = 34. We singled out
this reaction because the properties of its PLF and TLF (target-like fragments)
have been extensively measured [Day 86, Heu 87, Day 89]. We will examine the
validity of the elements of our model using both the inclusive and exclusive data
measured. Authors inref. [Gré 87] have performed calculations of this reaction with
the standard BUU model [BKD 84)]. Because of the lack of fluctuation mechanism
in this model the authors confined their findings to the averaged properties of the
PLF.

The model of nuclear dynamics to be tested in this chapter represents the
culmination of the successive stages of theoretical development pursued in chapters
2 and 4. This model consists of four basic elements; they are the collision mechanism
responsible for the generation of fluctuations, nucleon-nucleon cross-section, mean
field and nuclear surface. In the following, we make a few minor changes in the
ingredients of our model and state the specific mean field parametrization to be
employed. It is known that the low energy (Eiap/A < 50MeV') free nucleon-nucleon
cross-sections show the lack of angular dependence. This permits us to replace the
cross-section used in chapter 3 (eqn. 2.3.10) by an isotropic one. We further set the

total cross-section to be 55 mb.
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The potential of the BKN-type with the STIFF1 parametrization (see Table
4.1) will be used. This potential is used in conjunction with the Coulomb potential.
The resultant self-consistent ground state densities associated with this potential

(BKN plus Coulomb) were obtained for various systemns in chapter 4.

6.2 Instialization and error analysis

The colliding nuclei were initially set up in the CM frame with the reaction
plane defined by the X and Z axes. We chose the Z-direction to be the direction of
the beam momentum. Before the nuclei interact through their nuclear potentials
they were initialized to be on a Coulomb trajectory. At a distance R, between the
centers of the nuclei, sufficiently far for the nuclear potentials not to interact, the
components of the beam momentum are altered by the Coulomb potential according

to

P, = Py cosb; — P,siné, (6.1.1)

P. = P;sin6, + P, cos#, (6.1.2)

where 6, is the angle between the vector R, and the Z-axis. The tangential and
radial coniponents of the momentum are derived from the conservation of the total

angular momentum ¢ and kinetic energy E.,, in the CM

P, = 'I% (6.1.3)
P = [2u(Bem - f}ﬁ - 1—‘;—)] : (6.1.4)
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where g is the reduced mass and @ = Z7Zpe?. Angle 6, is obtained from the

solution of the equation of motion [Gol 81}, it is given by

6; = cos—l(%) —cos™! [(l‘ﬁ;- + 1) /c] (6.1.5)

where € is the eccentricity

1

¢ = [(2157;""’)2 +1]’ (6.1.6)

Having initialized the nuclei to be on a Coulomb trajectory the subsequent motion
was determined numerically.

We performed this calculation using configuration space grid size of 1 fm, time
discreteness (6t) of 0.5 frn/c and a total of 100 test particles per nucleon. To ensure
numerical stability with these parameters, we calculated time evolved quantities of
the ground state *Ar and 2" Al. The diffuse surfaces of the nuclei were found to
be maintained for at least 150 fm/c. We then tested the effectiveness of the Pauli
blocking routine; it was found to block 95% of the attempted collisions. In a typical
simulation for systems considered here there are about 200 attempted collisions.
Therefore the number of spurious collisions is approximately 10. The effect of
this error could be reflected in the deformation of the nucleus in configuration
and momentum space, and the loss of particles. We quantified the extent of the
deformation by evaluating (r?) and (p?) where ¢ is the component index. The
sphericity of the ground state measured by these quantities was preserved to a
good accuracy after 80 fm/c - a period after which the ions would have ceased to
interact. The loss of particles in the same period was 0.5 nucleons for both argon

and aluminium nuclei.
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Our objective is to study 4° Ar +27 Al -3 X 4 others. Restricting to 34X only
requires prohibitive computing to generate enough statistics hence we will consider
masses between 32-36, and compare with experimental results. This corresponds to
.integra.ting the impact parameter in the range 5.76-7.76 fm. In fact, our calculation
shows an almost linear relationship between the average size of the PLF and impact
parameter, as shown in Fig. 6.1. In this range, the collision rate diminishes after a
period of 80 fm/c and the final state spectator nuclei approached their respective
Coulomb trajectories by 150 fm/c. An accurate determination of the projectile (or
target) trajectory is required to ensure precision in the angular distribution. We
performed a test calculation in CM with 4°Ar and ¥ Al nuclei sufficiently far from
each other so as to prevent their nuclear forces from interacting. To avoid long range
interaction the Coulomb was not included in this calculation. The magnitudes of
their momenta were changed by less than 1 MeV/c per nucleon. which is indeed

accurate.

The BUU code with fluctuations generates an event for each simulation. We
compiled 110 simulations in the impact parameter range specified. Of these events,
81 were accepted after applying the momentum and mass cut. To be consistent with
the experimental cut in the PLF momentum, we accepted only those events with
P, > 0.8P, in the lab, where P, is its beam momentum. The average value of the
mass for nuclei in the massrange 32-36 is 34.4. Fig. 6.2 shows the mass distribution
of the PLF and TLF. It can be seen that the spectrum is divided between the PLF
and TLF. The mass distribution of PLF is sharply peaked at 34-35 whereas the

TLF distribution shows more dispersion.

87



6.9 Results and interpretaiion

The angular distribution of the PLF from our model and experiment [Day 86]
are shown in Fig. 6.3. Both results show a rapid drop of yield in the angular
range 2° — 10°, in the lab. All angles of the PLF from our calculations are negative
which signifies the domination of the mean field over the collision dynamics. This
information can not be extracted from the experiment however. The experimental
distribution is more forwardly peaked than our result. The correlated TLF angular
distribution is shown in Fig. 6.4. Experimentally, this distribution is obtained by
selecting only those TLF that are in coincidence with the PLF at 3.1° [Heu 87]. Itis
clearly beyond our computational ability to duplicate this result, consequently, the
model calculation shown in histogram of Fig. 6.4 corresponds to TLF in coincidence
with all PLF in Fig. 6.3. This amounts to allowing some angular spread in the PLF.
Our model shows a Gaussian-like distribution similar to the experimental data and
with the correct peak position (experimental plot here is for A=32; A=36 case shows
similar behaviour but with its peak located at an angle higher by ~ 10°). The full
width at half-maximum (FWHM) of the histogram is about 20° —30° compared to
the exprimental value of 50°. Thus our model underpredicts the FWHM of TLF
angular distribution and it also shifts the maximum in the yield of the angular
distribution of PLF'.

It is instructive to calculate the scattering angle of the PLF without the con-
tamination of the collision dynamics. This was done by switching off the collision
routine of our program. The spectrum of the scattering angles of PLF is plotted

in Fig. 6.5 for scattering in the impact parmeter range 0-11 fm. The scattering
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angles are negative for b < 9.5 fm and positive beyond this impact parameter. At
b = 9.5 fm, the Coulomb repulsion exactly cancels the attractive nuclear mean field.
The highest scattering angle obtained is —~11.5°, and it occurs at b = 5.0 fm. Sim-
_ila.r curves can be obtained with more sophisticated dynamical approach such as
the TDHF. There is, however, no such existing calculation for the specific reaction
considered here. In the full calculation, events were obtained from collisions in the
impact parameter range 5.76-7.76 fm. Within this range the result of the potential
scattering gives angles ranging from —4° to —11°. Comparing this result to the
angular distribution of the PLF of full calculation (Fig. 6.3) we find the collision
effects have advanced the scattering to the front region by ~ 2°. The yield in the

forward region, however, remains low in comparison to the experiment.

The TLF angular distribution in Fig. 6.4 contains more relevant information.
Potential scattering, discussed in the last paragraph, gives a FWHM of the angular
distribution of TLF of only 10° in the impact parameter range 5.76-7.76 fm; its
peak lies somewhere between 60° and 70°. Comparing these results with those of
the full calculation (i.e. with collisions) in Fig. 6.4, we infer two measurable effects
of collisions. The peak of the TLF angular distribution is down shifted by ~ 20°.
This effect is explained by the additional momentum transfer from the projectile
to the target due to collisions. As remarked before, the peak of the TLF angular

distribution (Fig. 6.4) is positioned close to the observed peak.

At a fixed impact parameter potential scatterings do not generate any angu-
lar dispersion. The small FWHM (10°) seen in the potential scattering is due to

integration over the impact parameter. The increase in FWHM due to collisions
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is about 20°. This amount of FWHM increase measures the extent of weakening
in the target-projectile correlations due to collisions. Data from GANIL [Heu 87,
Day 89] show a gradual increase of FWHM with the number of particle loss in the
projectile. In other words, larger FWHM is associated with more central collisions

hence more nucleon-nucleon collisions.

From the interpretation given to the FWHM of the TLF angular distribution,
we attribute its smallness obtained in our model to the lack of fluctuations or
randomness generated by the collision dynamics. The model’s collision dynamics
is constructed from two basic ingredients, namely the nucleon-nucleon cross-section
and the treatment of fluctuations as explained in chapter 2. Present calculations do
not permit the separation of the effects of each factor of the collision dynamics. More
systematic investigations are required to test especially the sensitivity of nucleon-

nucleon cross-section to observables presented in this chapter.

For peripheral interactions more realistic nuclear density profiles than those
obtained (in chapter 4) might be needed. This would entail the introduction of
more refined interactions in our self-consistent density calculation or to go beyond

the Thomas-Fermi approximation. These considerations are worth exploring.

Results of correlations between the TLF and PLF are shown in Figs. 6.6 and
6.7. Figure 6.6 shows the correlation between the angles of the TLF and masses of
the PLF. In Fig. 6.7, the correlation between their masses are exhibited. In both
figures, the experimental points are obtained for the TLF in coincidence with the
PLF at 3.1° [Heu 87]. This angular cut has not been imposed on the results of

model calculation. Comparison with data in Figs. 6.6 and 6.7 should be made in

90



the mass range 32-36 of the PLF because of the limitation in the range of impact
parameter spanned in model calculation. Within this mass range of the PLF, the
model data points follow the experimental poinis rather well in both Figs. 6.6
.a.nd 6.7. The physics contained in the overall features of these results are readily
interpreted. As the PLF mass increases the corresponding impact parameter also
increases (see Fig. 6.1). Collisions at higher impact parameters tend to impart less
longitudinal momentum to the target than those at lower linpact parameters. It is
clear that larger momentum transfer to the target implies that its remnants (TLF)
will emerge into more forward angles. In Fig. 6.7 the mass loss in the projectile
is measured against the corresponding mass loss in the target. This relationship is
not linear and it is borne out by our model.

In summary, the BUU based model with fluctuations has enabled us to analyse
and interpret the properties of the PLF and its correlated TLF. The basic features
of their angular distributions are reproduced. The dependence of the angle and

mass of TLF on the mass of PLF is very well described by the model.
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Chapter 7: Conclusion

In the present chapter, the relevance of this work to the intermediate energy
collisions is assesed and its significance in the wider context of heavy-ion research
is exposed. We will also provide indications for the future development of the BUU
model with fluctuations. Results derived from the semi-classical analysis of the
nuclear vibrations are summarized.

The objective of this thesis is to use the BUU model fluctuations in describing
aspects of intermediate energy collisions. We performed the calculations at 44, 72,
92 and 100 MeV/A, concentrating on experimental observables such as the mass
distribution, momentum distribution of the projectile-like fragments, and target-
projectile correlations. The exploratory calculations in chapter 3 involving the
properties of spectator fragments (angular and momentum distributions) provided
qualitative agreements with the experiments. This suggests that the BUU model
has combined the essential elements necessary to explain these observables. The
BUU model, we reiterate, combines both the mean field and collision dynamics,
and at all times the fermion statistics is obeyed.

We proceeded from there to examine the quality of the mass distributions
of the spectator and participant fragments. The trend of the participant mass
distribution was reproduced but the production of light particles (A < 10) was
underpredicted. This discrepancy is attributable in part to non-conservation in
energy in the numerical computation (see section 2.4) and shell effects. The latter
consideration clearly lies beyond the scope of our semi-classical treatment but the

energy non-conservation can be remedied by abandoning the point (test) particles
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in the decomposition of the phase-space for particles with finite spatial extent [Len
88]. The work on the influence of this factor to the quality of mass distribution is in
progress [Gal 88]. This effect is purely numerical in origin and it has no connections

with the essentials of the BUU model.

In chapter 6, we introduced refinements into the model by propagating a finite
range mean field and using an isotropic nucleon-nucleon cross-section appropriate
for lower energy reactions. Formalism developed in chapter 4 showed that this
finite range interaction generates ground state densities with adequate surface dif-
fusiveness. With these refinements, we embarked on calculations aimed at detailed
comparison with the experiments. Characteristic features of the inclusive and exclu-
sive spectator observables were successfully reproduced. For the purpose of future
development of the BUU model, we shall now emphasize the main weaknesses of

the model.

The quality of the angular distribution of projectile-like fragments and its cor-
related target-like fragments need to be improved. These aspects of the data are
related to two competing factors: the mean field and collision dynamics. The un-
certainties lie chiefly in the nucleon-nucleon cross-section, and possibly in the way
the fluctuations are generated (section 2.4). The present study is not sufficiently
systematic to enable us to disentangle the influence of each factor on observables.

Further studies in this direction are called for.

The determination of corrections to free nucleon-nucleon cross-section in the
medium would be in its own right a valuable contribution to nuclear physics. The

major in medium modification, namely the Pauli blocking, is already taken into ac-
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count in our model. Furthermore, theoretical investigations on the nature of single-
particle fluctuations in the reaction process would greatly enrich our understanding

of non-equilibrium phenomena. These aspects of heavy-ion studies highlight the

scope offered by the field.

On the whole, this thesis demonstrates the strength of the BUU model with
fluctuations in explaining diverse aspects of the participant and spectator observ-
ables. Contemporary complementary models for nuclear fragmentation based on
statistical ideas [FR 82, 83, Koo 86] are incapable of providing a unified approach
to these observables in the manner the BUU model has. From a wider perspective,
the sample calculations of this thesis complement the success of the model at higher

energies (04 < Eiq/A < 1GeV') [BDa 88].

The development of the semi-classical theory of nuclear ground states in chapter
4 and nuclear vibrations in chapter 5 provides an alternative view of the subject to
more complicated quantum mechanical TDHF and RPA theories. We first extracted
the nuclear ground state densities from the extremum condition of the energy func-
tional of the system. In this calculation, Coulomb contribution was explicitly built
into the energy functional and the entire problem was solved in 3-D with spherical
symmetry. This piece of work is a direct extension of Maddison and Brink’s work
[MB 81]. The stability of our ground state solutions was then examined through the
stability matrix. We showed their stability implies that the stability matrix must
possess only positive eigenvalues. The content of this statement is analogous to the
stability of the ground state solutions of the Hartree-Fock equation. Proceeding

further in our semi-classical approach, the eigenfunctions of our stability matrix
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were shown to possess the character of giant vibration modes which includes the
monopole and multipole modes.

Further advance was made in section 5.3 when the eigenfunctions of the mul-
tipole modes (£ 2 1) of the linearized Vlasov equation were shown to be the same
numerically to the ones obtained by diagonalizing the stability matrix. The formal
equivalence of the these appoaches remains to be proven however. The development
of semi-classical theory of nuclear ground state and nuclear vibration modes in this

thesis parallels those in quantum theories.
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Appendix
Numerical solution of the Yukawa and Coulomb potentials

The Yukawa and Coulomb potentials are respectively

e-IF-f1l/a

87 = Vo [ r Tmrpti)
and
dc(F)=e / d3r1 pp(rl)

The nucleon and charge (proton) density distributions are p and p, reaspectively.

These potentials are special cases of the solution of the differential equation

62 62 62
“(axz t o T a2 +"2)¢(z,y, z) = 5(z,y,2) (1)

where S(z,y,2) is the source function. The coordinate system in which we choose
to solve this equation is the cartesian coordinate system. For the case of the Yukawa
potential, the constant

1

= )

which is proportional to the inverse square of its range. The source function is

directly dependent on the nucleon density:
S(z,y, z) = dmaVop(z, y, 2) (3)

The Coulomb potential satisfies the Poisson equation so k? = 0, and its source

function is
S(z,y,2) = 4me® py(z, y, 2) (4)
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Equation (1) can be rewritten to read

&k o 02 A2 ]
_(W“L?)‘:’(T’y’:): o Tort 3 )<f’(-r’U-~’)+5(-r,y,:) (5)

The form of this equation suggests an itcrative method of solving for ¢, the potential
function. If we call ¢™ the potential at the m'* step of the iteration then it can be
used to find ¢™*+1/3 the potential at a step further in the iteration. The iterative

equation takes the form

AP 0w,
“(5?52‘*?)*‘ “/B(I’y’:):(ayﬁaﬁ 3 )6y, + ey ) (©)

where the fractional superscript signifies 1teration in one direction, namely the r

direction. Similarly, we can write iterative equations in the y and = directions as

follows:
& kN m & 9w

- 51:13+ —§->¢ +2/3(1:,y,;) = (5-.1—2.1{.5_.'3 +—3')¢m+l/3(-13,y,2)+5(.r,y,z) (7)
02 kz it 02 02 2k2 m+2/3

_(5?+'3—)"’ (2.9, 2 “(5?+5!/_'1+T b (r.y,z)+ Slr,y, =) (8)

To be consistent. eqns. (G), (7) and (8) must be solved simultancously  We fiist

th

guess ¢' and specify the source function S to begin the iteration At the '™ step,

eqn. (6) allows p™+1/3

to be evaluated. This function 1s then substituted into eqn.
(7) to find 0™*2/3. Similarly, ¢"*+! i obtained from known ¢"+2/% evaluated
eqn. (7). This procedure is repeated at each step in the iteration scheme until ¢
converges. In the following, we will show how any one of the equs. (6), (7) and
(8) i »valuated for the ¢ on the Llis. We call the @ to be «=aluated® ¢™*! and ity

preceeding step ¢™.

o7



We now introduce three acceleration parameters R;, R, and R;. These pa-
rancter will increase the rate of convergence of ¢, In the 1 direction the iterative
equation (can be cither eqn. (6), (7) or (8)) reads

R/’s are to be appropriately chosen and the converged solution is independent of
them. The iterative equation is solved on discretized space with even spacing in
each ditection. To facilitate writing our formulae, we introduce the symbol z! to
denote the coordinate in the ¢ direction and at the I'® position of the grid space.
The supersctipt { can take the values {1.2,.... N, = 1. NV,}, where N, is the maxi-
mum number of grid points in the 7 direction. The i-component Laplacian on the

discretized space s

.Q_; y 1M n ___1_ m n+1 _aamr.n m n-—1
[) (") (Az,)? ¢ ( 26" () ) + ¢ (‘l'l ) (10)

where Aur, is the size of the grid in the : direction. The coordinates of the other
directions are kept fixed in this equation. The L.h.s. of eqn. (9) now reads

1
(Ax,)-

m+l( H+l)+(l (Dm+l(ln)+¢m+l( :z—l) (11)

. 2 . . . .
where we have set a, = (Az,)*( kT +R,) —2. In the matrix notation this expression

hecomes -
'm+l n+1
3 1 ;' 1n+(1€ n)) (12)
(A‘L‘l)l 1 m+1(l'n-l)

where T stands for transpose operation on the matrix.

We lubelled the r.his of eqn. (9) as

mye oy . 0- 02 )‘I"Q m n
$"(e!) = (5 +0‘+T—R)¢( ") 4 S(z) (13)
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In this expression, functions o™ ans S™ are evaluated at x?* and the second deriva-
tives are written as in eqn. (10). This equation has only ¢ dependent terms at the

m* step. Our final equation from eqns. (12) and (13) is

T

1 1 ¢m+l(£:!+l)
Sm ny . . m+1 ?
T\ T) g o

This is a three-point equation in ¢™*! at 2M*! o+ and ™.

The boundary condition of the potential ¢ deteimines S™ and ¢™*+! at ! and
rfv' Consider S™ at z? in eqn. (14). This value is related to o™+ at 2!, &} and
z?. Since ¢™t1(x}) is known, ¢ *1(2?) is proportional to ¢"+ (). At the next
grid point z¥, S™ is related to ¢™* ! at 7, 2% and r}. Since ¢"*! at 2? and +3 are
already known to be proportional to each other from the previous step, ¢™*%! at
z3 and x?! are then also proportional to each other. This process cau be continued

: Ny —1 . . N - .
until S™ at z;* 7. Thus the general relationship betweer the unknown funetions

(¢™+1’s) of eqn. (14) can be written in terms of the two point recursion formula

¢m+l(l_:l+l) = A(mzl-i-l) +B($n+l)¢m+l(‘7,:a) (15)

t

Here, we have introduced two coefficient functions A and 5. The problem has now
been delegated to solving for these cocfficients. Let us see how they are solved.
. - . h
At the boundary points x?” where matter density is assumed to vanish. p(z,”) =

0, it is legitimate to make the following approximation

; 1 bp 1, b , +
ot (z)?) = o™ (2] —Az,) (16)
. . bp 1 . . hp N, Thi ae the
(the + sign is u.ed when z,” = z; and — sign when z,” = r,”*) This mecans the

potential varies slowly at the boundary. For the short range Yukawa potential this
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o,

approximation is quite adequate. In the case of the long range Coulomb potential
the boundary has to be chosen sufficiently far from the charge distribution. Equation
(16) enables us to find .4 and B at the boundary points; A(z’?) = 0 and B(z'?) = 1.
To find A and B at other points we need to find recursion formulae for them.

We insert recursion formula for ¢™*! in eqn. (15) into eqn. (14) to get
(B! + a]om1(@)) = ~(820)5™(a7) - A@r+) - g™ (17)
which we can write as
67 e = Aa?) + B () (18)

with the coefficients given by

Az H) + (A, )P S™(a})

.4(13?) = - o+ B(:L-:H'l)

(19)

-1

ar ¥ BT o

B(z}) =
Upon comparing equ. (18) to eqn. 15 we find the A and B coefficient functions
above to be 4 and B respectively. Given their values at the boundary points, recur-
sion formulae (19) and (20) determine their values elsewhere inside the boundary.

Having found these coefficients. 9™+ (2+!) is obtained through relation (15). This

calculation must be repeated for j and k components as remarked previously.
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Figure Captions: Chapter 2

Fig. 2.1 The model self-consistent density (full line) derived from the
density-dependent interaction is compared to the evolved density distributions

(dashed line) at various times.

Fig. 2.2 Samec as in Fig. 2.1 but for 2°Ne nucleus.

Fig. 2.3 Same as in Fig. 2.1 but for *He nucleus.

Fig. 2.4 The time-dependent rms radii of the ground state nuclei in the

Vlasov dynamics.

Fig. 2.5 Same as ii. Fig. 2.4 but for the rms momenta.
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Table 3.1a The intrinsic width 09 in X, Y and Z directions obtained from the
BUU simulations are displayed. The results are for the reaction 2°Ne +2° Ne at
different beam energies without Coulomb potential. The impact parameter in all

cases is 4.31fm and with a total of 42 events.

Table 3.1b Same as in Table 3.1a but for components of the averaged momen-

tum per nucleon.
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Table 3.1a

b=4.31fm
Eus/A Tox ooy 0oz
(MeV) (MeV/c) (MeV/c) (MeV/c)
No Coulomb 50 65.6 53.1 49.1
No Coulomb 100 70.3 75.1 68.2
Table 3.1b
b=4.31fm
Ein/A (Pxk/K) (Pyi /K) (Pzi [ K)
(MeV') (MeV /<) (MeV'/c) (MeV/c)
No Coulomb 50 -51.1 -2.0 -53.1
No Coulomb 100 -29.4 1.3 -33.0




Figure Captions: Chapter3

Fig. 3.1 Histogram shows the mass distribution of fragments from 20 Ne+2° Ne
at Era/A = 100MeV with a fixed impact parameter b = 4.31fm. The total number

of events in this histogram is 42.

Fig. 3.2 The momentum distributionin the Z-component of the projectile-like
fragments is shown here. These events (or fragments) are the same as those shown

in Fig. 3.1

Fig. 3.3 The yield function d?c/dEdQ of the projectile-like fragments accord-
ing to the Gaussian conjecture is plotted at various angles. The incident energy of
the =% Ne projectile is Ej/A = 100MeV. Parameters o, {P) ¢ /K) and (Pzx / K)
of the Gaussian distributions are obtained from the BUU calculations as displayed
in Table 3.1a and 3.1b. The mass number K = 15. The graphs are all normalized

to unity at their peaks.

Fig. 3.4 Angular distribution of the projectile-like fragments with (b) and
without (a) the inclusion of the Coulomb potential. The smooth curves are derived
from the Gaussian conjecture where its parameters are determined from the BUU
calculations. Events i1 the histogram are from the BUU calculation of 2 N: +20 Ne

at Erqp/4 = 100McV . The mass number K = 15.
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Fig. 3.5 The mass distributions of **Ca +1°% Ca at 92MeV'/A are displayed.
These results come from 30 runs spanning the impact parameter b from 0 to 4.2 fm.
The upper histogram displays the mass distribution of all fragments and in the lower
histogram the contributions from the spectators (dashed line) and the participants
(full line) are separated. In the latter histogram a cut in the momentum of the

fragments in the CM of the colliding ions is imposed for this distinction.

Fig. 3.6 Same as in Fig. 3.5 but for a lower beam energy, Eqap/A = T2MeV .
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Table 4.1 This table summarizes six sets of parameters used to generate self-
consistent densities. The stiff potentials are those with 0 = 2 and the soft potentials
with ¢ = 7/6. These potentials are given names as appear in the first row. The
total number of parameters in each set is five but not all of them are independent.
The combination (4 + 4ma®Vy) is always fixed but with different values between

soft and stiff potentials; and similarly for the B parameter.

Table 4.2 The parameter sets exhibited in Table 4.1, except for the BKN,
were used to evaluate the binding energies of nuclei and the results are displayed in
this table. These calenlations were done with the inclusion of Coulomb potential.

The experimental binding energies are also shown here for comparison.



-

i‘j Table 4.1
BKN STIFF1 STIFF2 SOFT1 SOFT2 SOFT3
o 2 2 2 7/6 7/6 7/6
A(MeV fm?) -373.30 0.00 -300.00 —1936.80 —1563.60 -1428 20
B(MeV fm39) 3238.10 3238.10 3238.10 2805.30 2805.30  2805.30
a(fm) 0.45979 0.45979  0.45979 0.800 0.45979  0.45979
Vo(MeV) -363.00 —668.65 80.50 —-363.04 —G68.65 —T79.48
Table 4.2
—E[A(MeV)
STIFF1 STIFF2 SOFT1 SOFT2 SOFT3  Expt.
1He 4.43 3.04 6.25 6.02 5.63 7.07
160 7.25 5.62 9.80 8.43 7.89 7.08
40Ca 8.22 6.76 10.78 9.08 8.65 8.55




Figure Captions: Chapter 4

Fig. 4.1 Self-consistent density distributions (solid line) with the stiff po-
tential (o = 2) are compared to the Myers™ distributions (dashed line). The first
column is with the BKN parameters, second column with the STIFF2, and the
last column with the STIFF1, In all cases the Coulomb potential was included

in the self-consistent calculation.

Fig. 4.2 The sclf-consistent proton (dash-doted line) and neutron (dashed
linc) densities of the STIFF1 potential for three nuclei are shown. Total density

is shown 1n full line.

Fig. 4.3 The sclf-consistent proton (dashed line) and neutron (full line)
potentials for three nuclei are shown. Parameter set STIFF1 was used in this

calculation.

Fig. 4.4 Same as in Fig. 4.1 but for soft potentials. Results in coulmn
one, two and three were calculated using SOFT1, SOFT2 and SOFT3 potentials

respectively.

Fig. 4.5 The self-consistent density of the STIFF1 potential with Coulomb
interaction (solid line) ‘'~ compa-ed to its ctensity alreedy evolved by the Vlasov

cquation. The quality of the evolved density is shown at various times.
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Table 5 The eigenvalues of the stability matrix (eqn. 5.2.16) for monopole
(¢ = 0) and multipole (£ = 1 — 5) modes are displayed. These eigenvalues are in
units of MeV fm3. First column labels the number of nodes of their corresponding
eigenfunctions for each ¢; a maximum of up to three nodes are shown. The table
displays results from three symmetric systems: 160,%° Ca and 2°® Pb. The eigenval-

ues of 28 P for £ = 5 case suffer large numerical error, and they are omitted for

this reason.
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Table 5

no. of nodes =() 1 2 3 4 5

160
0 0.17 37.14 78.80 120.19 158.67
1 239.63 204.47 325.10 349.79 368.80 383.15
2 372.65 407.80 418.98  424.85 428.12 430.07
3 429.18

100,
0 -0.11 22.54 50.98 82.04 113.45
1 220.16 286.73  310.21 332.13 351.04 366.69
2 361.10 400.69 413.97 421.68 426.18 428.91
3 427.46

208Pb
0 0.24 8.50 20.18 34.61
1 168.19 276.30  287.30 300.27 313.89
2 330.45 372.19 389.29  402.62 412.34
3 403.72



Figure Captions: Chapter 5

Fig. 5.1 The eigenfunctions of the stability matrix for 4°Ca nucleus corre-
sponding to the lowest (full line) and its next higher (dashed line) eigenvalue are
shown. These modes are displayed for =0, 1 and 2 cases. Dotted lines are the

self-consistent densities of 4°Ca,

Fig. 5.2 The lowest level eigenfunctions of the stability matrix for £ = 2 (upper
curves) and £ = 3 (lower curves) are plotted in full lines. For each case, the results of
three symmetric systems are shown. Transition densities of the liquid drop model
are shown in dash-dotted lines. The eigenfunctions of the corresnonding modes
(¢ = 2 and 3) from the linearized Vlasov equation (5.3.49) are indistinguishable
from those obtained by diagonalizing the stability matrix; this is the case for all
three systems shown here. The dotted lines are the self-consistent densities of the

nuclei.

Fig. 5.3 The monopole (£ = 0) vibration modes of the stability matrix (full
line), scaling model (dash dotted line) and linearized Vlasov equation (dashed line)
are compared for three symmetric systems. The dotted lines are again the self-

consistent densities of the nuclei.



0.2

0.15mwnr |

............
‘e
.
.
.

............
*
-
.
.
.

”
-

]

N

¥y

v W

)

2 Il 2 [ 2 [ g 2 3 2 2

-l



6p (fm=>)

......

.......

B

2 4 6
RADIUS (fm)




oS
4



Figure Captions: Chapter 6

Fig. 6.1 The mass correlation of the projectile-like fragments to the impact
parameter for the reaction 4°Ar(44MeV/A) +27 Al is shown. The events here
come from the impact paremeter range 5.76-7.76 fm. In this range, the contri-
bution from each impact parameter is correctly weighted. The total number of

similations is 110.

Fig. 6.2 Mass distributions of the projectile and target-like fragments are
shown. The events shown here are exactly the same as those in Fig. 6.1. The
distribution in the middle comes exclusively from the target-like fragments. Very

small fragments (A < 5) are participant clusters. Total number of events is 110.

Fig. 6.3 Angular distribution of the projectile-like fragments of size A =
32-36 is displayed in the histogram. All scattering angles are negative. Events
in the histogram comes from 81 simulations after momentum and mass cut.

Experimental data are shown as filled circles for A = 34.

Fig. 6.4 The angular distribution of the target-like fragments in coincident

with those in Fig. 6.3. Experimental data are shown as filled circles for A = 32.

Fig. 6.5 Angular distribution of the projectile-like fragments as a function
of impact parameter. This calculation was performed in the BUU model without

the collision cascade.
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Fig. 6.8 Correlation between the angles of the target-like fragments and
the masses of the projectile-like fragments is shown. No cuts are imposed so they
are 110 events in total. Comparison with the experiment should only be made
_for Mpr = 32 — 36 because of the selection of the range of impact parameter

(see Fig. 6.1).

Fig. 6.7 Same as in Fig. 6.6 but for correlation between their masses.
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The Boltzmann-Uehling-Uhlenbeck model is extended to include fluctuations. The model is
then apphied to study both spectator and participant physics. The model is capable of providing a
unified, parameter-free description of wide-ranging phenomena in intermediate energy heavy-ion

collisions.

1. INTRODUCTION

In this paper, we present some resuits from a model in
which at initial time we have two ions approaching each
other; at the end the nuclei break up into fragments
moving with different velocities. The model is essential-
ly parameter-free in the sense that the ingredients for the
calculation are the nuclear mean field and scattering
cross sections which are fixed by other data.

The model allows us to examine theoretically many as-
pects of heavy 1on collisions. Experience at Bevalac en-
ergy has taught us that for nonzero impact parameters
we expect to see spectators which are only mildly per-
turbed as opposed to participants which are at the seat
of violent collisions. As the beam energy decreases such
clear distinction ultimately will vanish. Our model al-
lows us to study this transition region. We are able to
calculate the velocity distribution of the spectators and
their slowing down in a fully microscopic model. Like-
wise we are also able to study, simultaneously, the frag-
mentation of the participants. This last topic has be-
come the subject of much study in recent years. The
model gives a mass distribution; for reasons to be ex-
plained later, quantitative fits, Isotope by isotope, are not
expected. Nonetheless gross features are expected to
emerge. At the very least, the model 1s useful for under-
standing the change of dynamics as the beam energy 1s
altered. In the present study we have analyzed *Ne on
®Ne and *Ca on **Ca in the energy range 50-100
MeV /nucleon.

The model is a straightforward generalization of the
Boltzmann-Uehling-Uhlenbeck (BUU) model? which
has proven to be very useful in the theoretical analysis of
heavy ion collisions.

I1. THE EXTENDED BUU MODEL

The work presented here is based on the model report-
ed in Ref. 3 except for some changes. We first need to
describe some de.ails of the numerical methods to solve
the BUU model before we can explain the modifications
needed for the extended version. The mean field 1s taken
to be of the form

Ulp)=[—124(p/pg)+70.5(p /py)’) MeV . (m

36

The collision cross section between nucleons is taken to
be 40 mb,’ although we have also. used energy dependent
total cross sections to ascertain if any significant
differences would be seen. There were none. In the usu-
al BUU model, the imtial phase space density is
represented by a large number of test particles. If the
nucleus 4 has nucleon number N, then we represent
the initial phase-space density of this nucleus by N , N
test particles. Similarly the phase-space density of the
nucleus B is represented by NN test particles. For Ne
on Ne we take N =200; for Ca on Ca we take N =100.
Each test particle carries an isospin index. The density
is defined in cubes of volume 1 fm’ p(r)=n/(8/’N
where n is the number of test particles in the cube and
/=1 fm. In the BUU model the test particles propa-
gate in time according to plt)=—V U and ilt)=p/m
except when they collide. This collision cross section 1s
0,,/N. The Pauli blocking 1s checked for each col-
lision. When two test particles collide they change from
(r, P Nrpy) to (£, py)(ry,py). We build a sphere of ra-
dus 7 around r,; and radius p around p) such that eight
test particles in this phase space volume imply complete
filmg. Define f|=n,/(8—1), where n, 15 the number
of test particles not including the test particle at (r,,p}).
Similarly f,=n,/7. The probability of scattering is tak-
ento be (1-f, }1~f,). For low beam energy we have
also sometimes used the following preseiection rule. Let
pp be the beam momentum per particle in the c.m. of
colliding 1ons. In a collision we have p,+p,=p;+p;
and p} +p}=p? +py}. For | and 2 to be thrown out of
the two Ferrm spheres we need (pitpy)?>p} and
{(p3tpo) 2pE. Using the conservation laws, a necessary
(but by no means sufficient) condition for this to happen
15

(Py1py) + (pytpo) > 2pf .

At high energy this 1s not a good rule as it neglects the
depletion in the Fernu sphere, tut at low energy we find
this 1s a useful preselection and cuts down on comput-
ing. Once the preselection rule 1s satisfied the test parti-
cles are allowed to scatter; afterwards the Pauli block-
ings for p| and p; are tested by drawing spheres in phase
space as described carher. The numbers of collisions we

2368 © 1987 The Amencan Physical Society
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find in our calculstion are consistent with what has ap-
peared in the literature before.’*

The BUU model treats collisions as a continuous
source and will show no fluctustions. In the extended
BUU model collision is treated stochastically. The fol-
lowing is the basic prescription. We suppress collisions
between two test particles by a factor of 1/N, but if a
collision occurs after the suppression not only do two
test particles suffer momenta change but 2(N —1) other
test particles change momenta also. Physically this cor-
responds to two actual particles colliding. Suppose two
test particles 1 and j with isospin indices , and r; suc-
cessfully collided and suffered momenta change Ap and
-Ap. We choose (N —1) test particles with the same
isospin 7, closest to 1 in phase space and ascribe to all of
them the same momentum change Ap. This requires
defining a distance in phase space. We define

dj a(p,—pi P+ (pp /R, -1, ).

Here pg is the Fermi momentum and R the normal ra-
dws of the nucleus. The process is repeated for test par-
ticles closest to j and they are ascribed a momentum
change —Ap.

The prescription above conserves total momentum but
usually not the total energy. With a shght modification
both the total momentum and the total energy can be
conserved. We choose N — 1 particles closest to i as be-
fore. Now calculate the average momentum of these
particles (including the sth test particle). Call this

R -~
(pl=|{3Tp |/N;

similarly calculate (p, ). We now recalculate Ap and
—Ap from a collision between (p, ) and (p, ). This Ap
1s now attributed to all the test particles in the ith set
and — Ap to all the particles in the jth set. It 1s easy to
venify that this procedure conserves both total momen-
tum and total energy.

We have done calculations both with and wathout the
Coulomb force. We compute p.(r) in | fm® boxes where
p.r) s wne charge density. The Coulomb potential 1s
then obtained from numerical solution of Poisson’s equa-
tion. The numencal techmgue 1s the same as used in
uime dependent Hartree-Fock (TDHF) calculations® ex-
cept that in our case no symmetry 1s assumed.

In the beginning of the calculation we have two nuclet
approaching each other: the minal phase-space density
of each nucleus 1s modeled to be sharp spheres 1n
configuration and momentum space. For further details,
see the Appendix of Ref. 6. At the end one has a few lo-
cal pockets of density comparable to normal nuclear
density against a diffuse background. We interpret such
local pockets as clusters. A fragment 1s defined as ti.c
connected volume in space where the density exceeds a
certam threshold value (10% of normal nuclear density).
The number of nucleons 1n this connected volume gives
the number of nucleons in the cluster. We ignore all
clusters where the total nucleon number 1s less than 0.5.
Depending upon the situation, the code is run up to time
80-150 fm/c after the two nuclei imnally touch each
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other. On Vax 785 cach run takes 45 min without the
Coulomb interaction. Inclusion of the Coulomb interac-
tion approximately doubles this time.

IT1. SPECTATOR DYNAMICS

For heavy 1on collisions at high energy, the partici-
pant spectator model proved to be very useful. Consider
the collision of two heavy ions at a given impact param-
eter (Fig. 1. A given part 4 of one ion will meet a cer-
tain part B of the other ion. Now the binding energy
per nucleon in nuclei is about 8 MeV. Thus if the ener-
gy of collision is high, the fact that 4’ was attached to
A is incidental; A’ will fly off after the collision with
essentially unchanged velocity. Thus 4’ can be called
the spectator in this collision. Similarly there will be a
spectator B' from the other ion. A, however, will hit B.
They are the participants. The participants will usuaily
disintegrate, giving rise to many objects.

We do not expect such a clear picture to emerge in
the energy range we are considering. Clearly, below a
certain beam energy the model of the whole of (4 +4")
nteracting with the whole of (B + B’) is more appropri-
ate. An intermediate picture between these two ex-
tremes 1s also possible. Further, the applicability of each
model depends not only upon the beam energy but also
upon the masses of the colliding ions involved. These
complications become important at intermediate impact
parameters. We will deal with such situations later. For
the moment we turn to more periphera! collisions where
one clearly sees spectatorlike fragments, Experimental
results for projectilelike spectators in the beam energy of
interest here can be found in Refs. 7-9,

Comparison with experimental data requires integra-
tion over impact parameters and (depending upon the
charges of the ions and the beam energy) inclusion of the
Coulomb force in addition to the nuclear force. To be
able to discuss the physics easily we will first consider a
fixed impact parameter and ignore the Coulomb force.
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F1G. 1. Participants and speciators. Part 4 overlaps with
part B. They are participants. Parts 4’ and B’ are spectators.
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The effect of impact parameter integration and the
Coulomb force will be indicated later. We consider Ne

. on Ne at impact parameter

- -

b=R(V2/3+V173)=4.31 fm

at 100 MeV/nucleon laboratory energy. Here R is the
radius of each ion. In a simple geometrical model (Fig.
1) the participants are decided by the geometrical over-
lap of the two i10ns; the rest are spectators. There are
two spectators; one projectilelike and one targetlike.
The number of nucleons in each spectator is predicted to
be 16.6 in the geometrical model for this specific b. Ina
dynamical model one would expect a distribution in
mass numbers. The distribution obtained from 21 runs
is shown in Fig. 2. Each run produces two pieces of
data since we are considering equal ion collisions and we
can include both projectilelike and targetlike spectators
to increase statistics. The spectators have a distribution
of momenta. In the Goldhaber model'® the width of this
momentum spread in the projectile frame is

y_ k4K ,
A—1

Here A is the mass of the projectile, K is the mass of the
spectator, P,y 1s the momentum of the spectator 1n the
Z (direction in the projectile frame, and ¢ =0, =80
MeV/c in the high energy situation.

In our case we have a distribution of K values and we
find it more convenient to rewrite the above equation

(K(A—l)
A ~-K

Here P,x /K is the average slowing down i the projec-
tile frame. The Goldhaber model 1s based solely on
counting and thus cannot predict a slowing down. How-
ever, this is expected in dynamical models and also seen
in experiments. We expect Pz, /K to be independent of
K but dependent on b, the impact parameter. Hence for
this fixed & value we calculate Pz, /K from all K values
and use this in Eq. (3) to estiumate 0,. We find o, =70

(P2x (2)

(P /K -y 7K )2> —o?. 3

e b=4,31fm
12}
v |
-
28
p ]
o -
04_ [_J
T T T
12 14 16 18
A

FIG. 2. For Ne on Ne collisions at 100 MeV/nucleon the
distnbution 1n masses of the spectators for 1mpact parameter
b =4.31 fm. The results from 21 runs are shown. Each run
gives two spectators.

MeV/c. A decrease in the value of o, at lower energy
was predicted on theoretical grounds.'' The quantity
Pzx /K is found to be -33 MeV/c compared to the ex-
perimental value of —2) MeV/c seen in experiments at
92 MeV/nucleon beam energy.’ Precise comparison
with experiment should not be made at this stage as
Pyx /K is dependent upon b, the magnitude falling with
increasing b.

We digress here temporarily to indicate the numencal
accuracy in our calculstion. The collision subroutine
conserves momenta and energy. The only inaccuracy in
our calculations 1s in solving the Viasov propagation.
This was tested by calculating conserved quantities for
an isolated nucleus at time ¢ =0 and ¢ =100 fm/c at
which time the majority of our calculations can be
stopped. We have also considered more complicated sit-
uations where again one can test conserved quantities.
Of interest here 1s the fluctuation in the total momentum
in a direction, say y, and the loss in the number of part-
cles due to numerical inaccuracy in the Vlasov propaga-
tion. Both of these effects are small, at o less than 5 per-
cent level of the value of the observables we are trying to
calculate.

It is likely that the spectators will also have an aver-
age transverse momentum. This, of course, is outside
the scope of the Goldhaber model. In our calculation
we take & to be 1in the X direction. It is possible for
Pyx /K =Py to be nonzero. Naturally we expect 5, =0.
This is borne out 1n our calculations. In the present ex-
ample we find py = —29.4 MeV/c. (Similar results have
been found by Tsang 1n BUU calculations.'?) However,
the value of gy i1s a function of both the tmpact parame-
ter and the energy. For this energy 1t has a negative
value; the magnmitude 1nitially grows with impact param-
eter, reaches a maxamum (near b=4.31 fm), and then
begins to fall. A net nonzero value of 5 will tend to de-
viate the spectators away from the forward direction.
This would imply that do /d 2 maximizes not at 0°, but
at some finite angle. Relevant expermental data’ ~° m-
dicate that the maxima, If not at (", arc between O° and
2°. We will later show that, at this energy, the Coulomb
interaction acts the opposite way and integration over
impact parameter will push the maximum of do /d €1 to-

N
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-4'5 =30 (o] 1'5 3'0 4'5
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e (PZK/K_ <PZK/K>) MQV/C
FIG. 3. Distnbution of the z component of the momentum

of the spectatorlike fragments. The case shown i for Ne on
Ne at b =4.31 fm; the beam energy 1s 100 MeV /nucleon.
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wards 0. For the moment, we will continue discussing
this orie impact parameter and without the Coulomb
force.

A formula similar to Eq. (3) can be used to calculate
o} and a’{. In this specific casé we verify that

oi=0% =0} One can test 1if the momentum distribu-

tion is Gaussian,
0(Pyy ) x expl = Pzx —Pzx 12 /2((Py — Py )] 4)

A histogram of the distribution seen 1n the present ex-
ample 1s shown 1n Fig. 3. A Gaussian conjecture ap-
pears t~ be a reasonable approximation, although many
more runs are required to establish a shape unambigu-
ously.

Experimentally one usually measures d 20 /dE dQ for
projectilelike fragments at a small angle 8 with respect
to the beam axis. To calculate this directly in Monte
Carlo simulation would take prohibitively long. Instead

J

d’o
dE d )

The last integral in Eq. (6) 1 the 3Bessel function
Jot —1PxsinbP y /a%). In our s-crific example we
choose K =15; at 0=3.5" numernicai calculation using
Eq. (6) gives a full width at half maximum (FWHM) of
143 MeV. This 1s to be compared with the value =160
MeV seen in experiments at 85 MeV/nucleon laboratory
energy.® Agan, since impact parameter integration has
not been done, 143 MeV 15 a rough estimate.

We now return to the discussion of a net 5, in the
spectator. I this s large 1t signifies a measurable
deflecion away from the forward direction. (We have
verified that at higher energy, 200 MeV/nucleon, the
effect 1s negligible.) We have chosen b =4.31 fm, where
P (b) due to nuclear forces 1s about maximum 1n magni-
tude. It has a negative value which imphes negative an-
gle scattering. A quantitative estimate of the deflection
away from the 0 degree can be obtained by plotting a
histogram of the spectator angles as obtained in Monte
Carlo ssmulauons directly; alternauvely we calculate ai,
P, and P, from our simulations, use these values in
Eq. 6. and integrate [(d’0/dEdQ)E to obtain
do/dQ as a function of . In Fig. 4 we have done both
and obtaned the resuits with and without the Coulomb
force. The Coulomb force by tself would impart a posi-
tive p, and thus, in this example, brnings the maximum
closer to 0°.

Several other representative calculations were done
which lead us to beheve that the model can at least semi-
quantitatively describe spectator dynamics. We can ac-
count for the slowing down of the spectators. In experi-
ments the slowing down per particle 1s the largest for
smaller fragments.” This 1s easily explained in the mod-
el; the hghter projectilehke fragments originate from

we extract p,, Py, and width from the Monte Carlo
simulations and use the Gaussian assumption [Eq. (4)] to
compute d’/dE dQ). Let O be the angle the detector
makes with respect to the beam axis and Z — X be the
plane containing the beam and the detector, then a frag-
ment of momentum P, reaching the detector has the
following momentum decomposition:

Py =Pycos62 +PK51n02 .

The cross section for the event is
3

d,: wexpl —(Py—Pox 2P 7,0} /20%]). (5
K

In Eq. (5), P, is the average momentum in the Z direc-
tion, P 1x 18 the average transverse momentum, and i, is
the direction of the impact parameter which is not
known and needs to be averaged. When this is done, Eq.
(5) leads to

«E'2exp| (PR + Py + P 2 — 2Py Py cos8) /20 | f:” exp(2Pysin6P , cos6, /201 )d 0, /27 . (6)

—

lower impact parameter and the mean field is more
effective in decelerating the projectile. We have seen
that apart from the Coulomb field, the nuclear mean
field, can, by itself, impart a transverse momentum.
This depends upon the beam energy but also upon the
nuclear masses; this has an important effect on the angu-
lar distribution. In the future we will make detailed cal-
culations to compare with all the available experimental
data’® in this energy range.
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FIG. 4. Dustnbution in angle for spectatorlike fragments
without (a) and with (b) the Coulomb force included. The his-
tograms are obtained by binning the spectator angles as ob-
taned from the runs; the continuous curves are obtained from
the Gaussian assumption [Eq. (6)) where the constants o,
P,.and Pzx are determuned from the runs. Here K =15.
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1IV. MASS DISTRIBUTION OF PARTICIPANTS

We now turn to more central collisions and ask the
following question: What is the mass distribution of
fragments which are not spectatorlike? A variety of ap-
proaches have been used to answer this question: micro-
canonical ensemble simulations,'>~" the evaporation
model,'® various models of liquid-gas phase transition
(see Ref. 17 and references therein), the Cascade-Viasov
approach,® and various other models.'*'*

For central collisions (b =0), a mass distribution was
obtained in Ref. 3 for Ne on Ne collision at 100
MeV/nucleon in a calculation very similar to the present
one. To be able to compare with experimental data we
need to integrate over impact parameter. We would also
like to see how the theoretical predictions change as the
beam energy 1s varied.

Figure 5 shows our results for Ca on Ca collision at 92
MeV/nucleon. Thirty runs spanning the impact param-
eter b=0 to 42 fm were taken. To reduce statistical
fluctuations, the results have been averaged over 3 mass
units for each bin. Figure 5 gives the histogram of all
the clusters and also a filtered histogram where we re-
move spectatorlike fragments. We use the following cn-
terion: In the c.m. of the colliding 10ns, the initial
momentum -per particle in each 1on 1s =p,. After the

(a)

20

10}

COUNTS

304
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© "§ 12 18 24 30

FIG. 5. Mass distnibutions for Ca on Ca colhisions at 92
MeV/nucleon. This 1s the result from 30 runs spanming the
impact parameter b from O to 4.2 fm; the top curve (a) includes
all clusters; 1n (b) we separate out contnbutions from partici-
pants (solid line) and spectators (dashed line); for the latter a
cut 1n the momentum of the fragments 1n the c.m. of the collid-
ing ions 1s imposed for the distinction. The yield Y{(4) given
by the solid curve in (b) fails off slower than what 1s scen in ex-
pernment (Ref. 20).
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collision if the absolute value of the Z component of the
momentum per particle in the cluster is > 0.6p, in the
c.m,, we leave them out. This means (a) we rule out
those projectilelike fragments whose Z component of
momentum per particle in the laboratory is greater than
0.8(p7 )0 and (b} we rule out targetlike spectators
which are slowly moving in the lab. For this beam ener-
gy this amounts to ruling out targetlike spectators whose
kinetic energy 1n the laboratory is less than (3.654
MeV), where A4 1s the number of nucleons in the cluster.

In our calculation (Fig. 5), we see that the yield Y( A)
from participants (alls off with 4 with some leveling
occurring around A = 12. There are some recent data
obtained in experiments of Ar on Ca at 92
MeV/nucleon.’® The falloff seen in experiments is faster
than what the caiculation gives. If we constrain our-
selves to fit both the experimental data and the theoreti-
cal calculanion by a power law Y( 4)= A4 77, then experi-
ment gives 7= 3.0, whereas theory gives 7=1.5. Experi-
mental data do not go beyond 4 =12, but there is some
indication of the cross section flattening out around
A =10. The man failure of the model therefore is that
the imual falloff 1s too slow.

Figure 6 shows results of a similar calculation for Ne
on Ne at 100 MeV/nucleon. Here 25 runs spanning
b =0to 3.9 fm were taken. In the data shown in Fig. 6
the Coulomb interaction is included; however, for frag-
mentation of Ca on Ca or Ne on Ne, the Coulomb in-
teraction 1s unimportant. Remembering that in the
latter case the total number of nucleons is half compared
to the case for Ca on Ca, the mass distribution in the
case of Ne on Ne is ssnilar to that of Ca on Ca.

The model fails at low beam energy. At high energy,
the two nuclei, upon impact, quickly break up and nu-

o (@)
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FIG. 6. Same as in Fig 5 except that we consider Ne on Ne
at 100 MeV/nucieon.
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FIG. 7 Same as tn Fig. 5 except that this s for Ca on Ca at
72 MeV/nucleon. Note that the yield Y ( 4) vs 4 for the parti-
apanthke fragments [sold curve in (b)) shows a mimmum
around A4 =12.

cleons which are close together in phase space will
remamn bound to produce clusters. At low beam energy
the scenano 1s different; energy 15 dumped into a region
of configuration space but it 1s not enough to break up
the system quickly. Consequently, other processes like
evaporation, which cannot be accommodated in the
present {ramework, will become a major mechanism in
deciding the mass distnbution. A beam energy of 50
MeV /nucleon 1s already too low for this model.
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- be studied in the standard BUU model.
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Figure 7 shows our calculation for Ca on Ca at 72
MeV/nucieon. We have no reason to believe that at this
energy the model will break down quslitatively. The
most noticeable feature is the U shape of the reaction
cross section as a function of 4. This shape remains
after one removes from the histogram spectatorlike frag-
ments. Recent experimental data?® have not established
this increase of Y(4) vs A beyond A4 =12, but there is
at least a hint of this occurring in the experiment?® of Ar
on Ca at 42 MeV/nucleon. Unfortunately the data do
not go beyond 4 =12; for equal ion collisions data up to
A =24 would be a very useful test of the model.

V. SUMMARY AND DISCUSSION

The extended BUU model is a direct generalization of
the BUU model which has become a very useful theoret-
ical tool for intermediate energy heavy ion collisions.
We therefore felt that 1t is important to test the predic-
tive power of the extended BUU model. It is a
parameter-free model which addresses a very complex
problem. It 1s gratifying to see that the main features of
spectator physics come out rather well from the model.
In future work we will include the diffuseness of the sur-
face carefully, as one expects this to play a significant
role for precise comparison with experiments. Our
present treatment does not treat the surface properly.
This is related with the larger problem of treating the
surface in the Vlasov prescription. For mass distribu-
tions 1n more central collisions between equal ions, the
most 1nteresting prediction is that we expect o see a
minimum 1n the Y(A4) vs 4 curve. This should happen
between 50 and 100 MeV/nucleon beam energy.

Note added. The average properties of spectators can
Recent work
can be found 1n Refs. 21 and 22. We thank C. Grégoire
for bringing this to our attention.
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