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Abstract 

The model of nuclear clynamics according to the Boltzmann- U (' h1ill~1 -li Il Il'Ill)!'!'!..: 

(BUl;) equation which incorporates fluctuations is prescntccl, This lllod.'l lS l'Ill­

ployed to cttlculate hea\-y-ion reactions in t.he illtermcdiat(' t'1H'l',C;Y n'.!!,llllt' (20 ::; 

E(ab/A. < 200.1/ d') r::,in~ a local (Skyrme-t~l)(') int('rnct.ioll, tllC' lllodC'\ 1~ nlpahl(, 

of rcproducing diycrsc features of sp('ct.ator ilnd participaIlt ()hs('l'\'nbl('~, :\ finit., 

range interaction is introducccl to gcnelHte diff\wc llt:.dear S\llfill'('~ 111 tilt' \ï,,:-,ov i1p­

proaeh, The peri pileralr eactioll of lU A,. on 2; Al l~ calwla t.('d with thi:-. illtl'lë'ICtl01l 

Characteristic fcatures of the Hngulur distnb1ltion of the }>lOjt'ct.il<'-lil\(' fra,!!.l1\1'uts 

and i ts correlation \\ ith the tar)!,et-lil..:e fl<1g,1l1ents n re in a.!!,l(·('lIl<'l1t \\'i th ("qH'ri 1ll('llt." 

The stabili ty comh tion of Self-C()ll~l~ tent Vlasov !-loIn t.iom \\'11 b il Ibll 1.(' 1 il Il.!!,1· 

interaction is dcri y('(!. Thi:s condi tioll I~ ('a~ t into il Il ('i,!!,cm';d 11<' ('qUit t.IOIl. '1'11(' lo\\'(':-,! 

eigenmodes correspond closcly to p:'Hlllt '-1 bratlOll 11lOd('~, TIl(' !t'!atiow.,hip of t.11I'~(· 

eigenmodes to the timc-dcpcnclcut Vlaso\' ('quatÎoll 1~ ('xplOlcd, 



Résumé 

Un modèle dynamiquc nuclénirc mcorporant des fluctuations, basé sur l'équation 

de nolt7.manl1-Uehlin~·C'hknbcck (BUU) est présenté. Ce modèle est employé afin 

cie calculer des réactioIl~ d'ions lourds dans un régime d'énergie intermédiaire (20 ~ 

Etflb/A ~ 200AI( F) .. -\ l'aide d'nne mteraction 10::ale (de type Skyrme). ce modèle 

('ht CIl lIlesure de reproduire les divers éléments de,:: observables de spectateur et de 

partiCl!>itllt. U Ile interactlOll de portée finie est introdUIte afin de générer des surfaces 

Illl<:l("ain's ditfmc!> (bm rapproche de Vlasov. La réaction périphérique IOAr +::!ï .4l 

('st calculée il raide de ("ptte intrfi\ctlOn. Les traits caractéristiques de la distribution 

all~ulaire des frap;meuts de type projectile et sa corrélation avec les fragments de type 

ci hIc ~.Ollt l'Il accot d~ il \"C'(" l('s rl·sult.ats expérimentaux. 

La cOllditioll (h' ~tal)!hté <1(·s solutions sdf-coI1sistantes de Ylasov awc une 111· 

!l'l'act ion d(~ pOl t('·C' nIlle (,ht dl'rivée. Cette condition est reformulée en un problème 

h \'all'urs propres. Les wctcurs propres cOllesponclants aux plus petites ,,<lIeurs pro-

pn'!'-J ~Ollt. i1nalo).!,II('s il des modes de yibrations géants. La. relation entre ces "ecteurs 

propn's t't. 1't~ql1atioll dt~pcndantc du tt'mps de Vlasov est explorée. 



- Acknowledgements 

1 wish to thank my thesis advisor Professor S. Das Gupta for havill~ gnidcd 

~e to the completion of this thesis. In the course of this study, 1 enjoycd mOlllcllb 

of excitement and even laughter in the search for the cIues to answers in the field of 

heavy-ion reactions. This study would not have been possible without his financinl 

assistance, and 1 gratefully acknowledge his generosity. 

1 owe an especial debt of gratitude to Dr. S J. Lee and Dr. E.D. Cooper who 

have a,<;sisted me in appreciating nucIear physics and for their gcncrous efforts ill 

instructing me in computational physics. It is a pleasure to thank Pwf('ssor .1. 

Barrette for bringing to my attention the data from GANIL, cited in Chapter (j, 

prior to its publication, and to Mr. J.F. Malouin for renùering the abst.ract. i Il 

French. 

The support and encouragement 1 received from Rana in the course of writiIll!, 

this thesis will be cheri shed and remembered. 



Table of Contents 

Abstract 

itésumé 

Acknowledgements 

Chapter 1: General introduction 

1.1 The physics of hC'1tvy-ion collisions .................................. , 1 

1.2 Prescnt \vork . . . .. . ................................................. 7 

Chapter 2: The lllodei of nuclear dynamics 

2.1 Illtrod \lct ion. " ............ . .. ........ 11 

2.2 The Vlasov form1tli!:Hll ...... " ...................................... 12 

2.3 The l~ehliIlg-1jhlenbcck collü,ion integral ............................ 23 

2..1 N I\lw'riral IIWtllOd of solu tion ....................................... 28 

2.5 Collisions and fluctuations .... ..................................... 32 

2.6 Numcflcal accuracy of the ground states ......................... ... 34 

Chaptcr 3: Spectatol' and participant dYllamics 

3 1 Pidillliuaty discussion ......................... '" .................. 37 

3 2 The t IH'OI t'tlcal model of spectator fragmcntation .................... 30 

3.3 Thl' DUU ('aleulatlons ............................................ 42 

3.3a IllitiaIization of the colliding systems 

3.3b Accuraey of the numericalmcthod 

3.3e Rcsults and Illterprctatiol1 

3.4 ~Iass ditltrilmtlOll and participant dynamics ......................... 48 

Chapter 4: Nuclei with diffuse surfaces 

-l.1 The self-wIlSls,mt density ............................... , .......... b2 

-l.2 The yariational principle and stability matrix ....................... 58 



4.3 Self-consistency with Coulomb interaction ........................... 62 - 4.4 Time evolutioll of the self-consistent density ......................... 66 

Chapter 5: The stabiIity matrix and vibration modes 

5.1 Introduction. . . . . . . . . . . . . . . . . . . .. . ................................. Gg 

5.2 Eigen-solutions of the stability matrix.. . ........................... iO 

5.3 Vibration modes in th~ lillcarizcd Vlasov t'qllution... . . . . . . .. . ...... 78 

Chapter 6: Peripheral interactions of HI .-\1' on :!7 Al 

6.1 Preliminary discussion. ....... ....................... . ........... S.t 

6.2 Illitialization and error nualysis .. , ......................... ." .. 85 

6.3 Rcsults anù intcrpretation . . . .. ........... ................. .. . .. 8ï 

Chapter 7: Conclusion ................................................ !)2 

Appendix ............................................................ a6 

References .... , . . . . . .... . . . ..... . . . . ..... .. . ......................... 101 

Graphs and Tables 



Chapter 1: General Introduction 

1.1 The physic., of heavy-wn colli.Hons 

The study of heavy-ion collisions as a branch of nuclear physics concerns the 

propcrtics of nuclear matter subject to variation of density, pressure and excitation 

encrgy. These diverse physical conditions can be realized in the laboratory by ac-

celerating nuclei against each other. Contemporary heavy-ion accelerator faciIities 

encompass a broad bombarding energy range. Nucleal' matter is currently probed 

at hombarding energy from 10 MeVjA to as high as 200 GeVjA. By subjecting 

nuclci to conditions far from their normal state new manifestations of nuclear mat-

ter, it is hoped, will be revealed.This optimism stems from theoretical al'guments 

predicting the possible phases of nuclear matter according to its temperature and 

prefisure [Mig 78, Lee 76]. Related to this search for novel phenomena is the effort 

to extract the Iluclear equation of state describing the response of nuclear matter to 

variation of dellsity. This piece of information is of vital importance to the accurate 

ùet.crmmation of the propcrties of neutron stars and the character of supernovae 

explosions [nCK 85]. To ensure the general applicability of this equatjon of state its 

'.'alidity over a large density domain ought to be mapped out. Considerable effort 

was exerted in the last few years in this pt~rsuit [Sto 86, EDa 88], and the issue 

l'cmains onc of the principal interests in heavy-ion research. 

A topie of current interest is the search for the signatures of lluclear liquid-gas 

phase trrulsitioll. Guidance from theoretical analysis instructs us that this is a nec-

( 
essru'y property of nu.:lear matter by virtue of the nature of nuclear interaction as 
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expressed in its equation of state [GKM 84). The expected phase change should 

occur at temperatt:re around 20 MeV, which can be reached nt intermediah' bOlll­

barding energies (Elab/A '""-' 100M eV). This expectation represellts a rt'Hsonnblt' 

goal of the current h-eavy-ion research programme. 

The preceeding enumeration of the physical phenomcna t lmt come under th· 

purview of heavy-ion research features sorne of the most pertinent issues to boUt 

theoreticians and expeJ imentalists alike. Heavy-ion physics ha .. <;, in t.his vi('w, ('x­

tended the scope of the traditional patterns of investigation in nuclear physicH. 

Apart from these aspirations, the elueidation of the phenomcnology of hpavy-ioll 

reactions has brought together concepts from disciplines as diverse as statistÏcal 

physics, thermodynamies, fluid dynamies and, of course, nuc~car physics. 

The study of heavy-ion reactions can be broadly classificd il1to three distillct 

energy regimes made nossible by the identification of the react.ion mechanisms and 

prod ucts. Reactions at low energies (Elab lA < 20M eV) are predominan t.1y goveruul 

by the (single-particle) mean field potential. The reaction products dccay accordinp; 

to a few weIl known modes sueh as fU'lion, fission, deep-inelastic scattering a.nd 

evaporation [Seo 80]. Since the relevant degree offreedom is the meau field the tiJlH·· 

dependent Hartree-Fock (TDHF) theory provides an excellent framework to 11('('01l1l(, 

for fusion, fission and deep-inelastic scattering [Dav 85]. This is supplemcntcd I)y 

the statistical evaporation method [PL 831 to explain the ~-;~porative channel. The 

typical time seale of the reaction is about 10 - 106 
X 10-22 set:., which is very loug 

on the scale of strong interactions. 

At relativistic energies (E'abIA > 400MeV), the mean field losses its demi-

2 



( 

nance over to the nucleonic and mesonic degrees of freedom. Collisions between 

nuclei may, in this regime, be viewed as two-body correlations between nucleons. 

The resulting systems attain near statistical equilibrium [CMV 81] making them 

a fertile ground for the employment of equilibrium concepts [DM 81]. When the 

systems finally disintegrate the observed products consist of light particles such 

as n, p, d, 3 He, ct, 1r and ](. Recent analysis of events in this energy regime using 

more exclusive measuring devises [Gus 84, DO 85] demonstrates that nuclei can 

exhibit flow behaviour characteristic of a fluid. Dynamical mode} as embodied in 

the Boltzmann-Uehling- Uhlenbeck (BUU) equation was constructed to test the 

sensitivity of this effect on the nuclear matter equation of state [BDa 88). Af­

ter a few years of vigorous activity, the consensus at this point in writing is that 

the nucIear compressibility Cl() of this equation is approximately 200 MeV [Gal 

87, G Da 88]. This result is compatible with calculations based on more elaborate 

many-body techniques [FP 81] and the extracted experimental value from monopole 

vibrations [Bla 80). The search for more sensitive observables continued unabated 

however [BDa 88). Collisions at ultra-relat,ivistic energies (Elab/A ~ 10GeV) have 

also made a mark in the development of heavy-ion science. Investigators in this 

field are principally interested in identifying the possible signatures uf the tran­

sition from the nucleonic to quark and gluon degrees of freedom. This aspect of 

heavy-ion reactions lies at the boundary between the particle and nuclear physics. 

In the preceeding discussions, each energy regime is associated with a relevant 

degree of freedom from which a simplifying physical picture or theory is framed. 

These theories are naturally specialized for a part: ... ular energy regime. The trans-
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port mode! of the BUU type is a notable exception in that it embraces botb the 

mean field and nucleonic degrees of freedom [B KD 84]. The older cascade modcl 

[CM V 81] lacks the mean field effect, consequently, it must he regarded as valid 

only in the relativistic domain. Even here, a cautionary remark ought to he added 

because nuclei persist in their fluid-like behaviour in the compression phase of the 

reaction [Gus 8-1, DO 85]. 

The number of nucleons participating in a typical reaction is usually smaIl 

(~200). Models based on full dynamics calculations such as the TDHF, hydrody-

namics [TW 80], cascade and BUU are more adapted for this purpose hecause the 

geometry and finiteness of the interacting systems are naturally taken into accollnt. 

In parallel with these developments, the beginnings of the relativistic extension of 

the BUU model have been witnessed [Blii. 88, KLW 87]. This formalism utilizes the 

meson exchange models [SW 86] to substitute for more widely used Skyrme-type 

interaction. The trend in the theoretical development as we conclu de the survey in 

the high and low ene,'gy regimes is clearly in favour of the dynamical approach cvcn 

though it is computationally intensive. 

Heavy-ion reactions in the intermediate energy regime (20M e V ~ Elab/ A < 

200M eV) arc characterized neither purely by the mean field nor nllclcon-nuclcon 

collisions. Rather, these degrees of freedom are simultaneously present, producing 

complex physical conditions that are not amenable to analysis by theories described 

previously. Elementary nucleon-nucleon collisons are frequently Pauli blocked thus 

failing to drive the colliding systems to an equilihrium state. However, sufficicnt 

excitation energy is imparted to the interacting system to enable it to disintegrate 
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into large fragments. Experiments performed at the Lawrence Berkeley Laboratory 

(LBL) [Jac 87] show that typical mass spectra in this energy regime span over a 

broad mass range. This feature distinguishes this energy regime from the relativis­

tic (nucleus-nucleus) collisions where final states are predominantly light particles. 

It is often referred to as multi-fragmentation phenomenon. Alternatively, the phe­

nomenon may be viewed as a development of dynamical instability leading to a 

sudden disintegration into sizable fragments. The conditions under which such a 

scenario ean prevail for an infinite system have been analysed by authors in refs. 

[BS 83, PR 87]. There are further dynamical studies aimed at tracing the trajectory 

of the interacting zone on the phase diagram [GB 88]. These lines of thinking serve 

to isolate tht: underlying mechanisms responsible for multi-fragmentation. 

Based on the general conditions presented above that are thought to prevail 

in the intermediate energy regime a considerable number of models have been con­

structed to predict specifie observables. These models faIl into two categories: sta­

tistical and dynamical approachcs. Within the statistical approach they are several 

variants; sorne are based on phase-space simulations [Gro 84, Koo 86] and others on 

the idea of percolation [Bau 86]. These models are quite successful in reproducing 

the mass distribution [Jac 87]. They possess in common the view that the interact­

ing systems enter a chaotic or complex state due to the intricate interplay between 

the mean field and collisions. The resu!tant system is thus dominated by statistical 

effeds. 

A chaotic state is achieved when the dynamics of the system possesses fluctu­

ations that grow as the system evolves. This basic idea is embodied in dynamical 
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models of varying degrees of sophistication. In one study wl1f~re quantum dynrun­

ics is solved [K8 84, KW 88] fluctuations are built into the initial system without 

asking how they are generated. This preliminary study shows the system is capn-

?le of disintegrating into large fragments. Provided the beam energy is sufficiently 

high (E,tJ6 / A ~ 50M eV) quantum effects are rendered ineffective in the process of 

violent collisions. In this limit, semi-classicaI approaches to nuclear dYllamics ar(' 

considered to be adequate. This class of dynamicaI models has the naturaI advnll-

tage of being simpler computationally. Moreover, they have the attractive feature 

of handling the collision process, consequently, the entire reaction is cornpletely 

determined by the dynamics. 

The transport model referred to earlier as the BUU equation is a semi-classical 

reduction of quantum dynamics [KB 62]. In recent years, it has emerged as one of 

the standard theoretical tools for the anaIysis of experimentaI data in the illterm('-

diate energy regime. The outstanding successes of the model include the prediction 

of the nuclear flow effect, transverse momentum analysis and pion production [BDa 

88]. To a lesser extent, it explains the basic features of proton spcctra [AD 8fi] 

and photon production [Bau 86]. Numerical investigations in this approach are ex-

tensive thus existing reviews [BDa 88, GB 87, Ber 85] must be consulted for full 

treatment of the subject. 

The BUU model as it stands is not suited for fragmentation studies becausc 

nucleon-nucleon collision effects are averaged over an ensemble of colliding systems 

[BKD 84]. The resultant system does not develop structural instability. In a reccnt 

re-examination of this model [BBD 87], a rnodified collision mechanism is proposcd 
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to allow for the appearance of fluctuations. Substantial fragmentation is seen with 

this modification. The physics of incorporating 'the collisions self-consistently in 

semi-classical approaches is a non-trivial undertaking. This subject is still in its 

developing stage [TS 86, AG 88]. 

Other attemps to understand fragmentation phenomena have been made using 

models which are less firmly rooted in quantum many-body theories. It has been 

shown that certain features of the mass distribution can be analysed and reproduced 

by the molecular dynamics [Aie 88] and hybrid [GD 85] models. Even classical 

dynamics approaches [LP 86, VJP 85, SP 87) have been employed in recent studies. 

This survey portrays the complexity of intermediate energy collisions and the 

lack of a unified approach to the subject. In the author's view, che search for an 

adequate theory of fragmentation needs to go beyond the reproduction of mass 

distributions. It is desirable at this juncture to extract more detailed information 

about fragmentation from the experiment to enable a more realistic evaluation of 

existing models' validity. 

1.~ Present work 

The content of this thesis is based on the semi-classical approach to nuclear 

dynamics, Wc derive, in chapter 2, the basic formulae of this approach from the 

many-body quantum kinetic equation upon which developments in the subsequent 

chapters depend. The resulting (single-particle) transport equation we propose for 

nuclear dynamics at intermediate energies is the BUU equation which has been ex-

tended to include single-particle fluctuations [BBD 87]. Within the context of this 

7 



- model, contributions made to original knowledge in this thesis 8J'C t,wo foid. First., 

we performed explicit calculations (chapters 3 and 6) using the modcl to confront. 

a selected number of pertinent experimental observables over a considerable energ)' 

range. In doing so, the strengths and weaknesses of the model are evaluated. Th(, 

second aspect of the thesis's contribution is on the forma! development. of the semi­

classical description of the nuclear ground state and small amplitude vibrat.ions. 

We extended the work of Madisson and Brink [MB 82] in generating self-consistent. 

nuclear density. We took a step further by examining the stability condition of tll<' 

(self-consistent) solution. The stability condition is shown to be an eigenvalue proh­

lem whose solutions are a good approximation of giant vibration modes. This led 

us to explore the relationship between the stability condition and nuclear vibratioll 

modes. 

The BUU equation is separable into terms describing the mean field and tlH' 

collision dynamics. The mean field term is shown to be derivable from the many­

body Schrodinger equation in chapter 2. This der;vation is made possible through 

the standard mean field approximation and semi-classical reduction (h -+ 0). W(· 

then derive the Uehling-Uhlenbeck collision term usinl~ physical arguments similm 

to those presented to derive the collision term in the Boltzmann equation [LP 81], 

Numerical procedures required to solve the BUU equation are summarized in sect. 

2.4. As a neeessary part of numerical computation, we test the reliability of our 

numerical parameters in maintaining the nuclear ground state properties. Limi­

tations and applicability of the technique are discussed in sect. 2.6. The plan of 

the thesis is such that specifie aspects of our numerical solution that arc thought 
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to be sensitive to the data we wish to compare with are tested in the appropriate 

chapters. 

In chapter 3, preliminary results on spectdor fragmentation are presented. We 

nrst outline the Goldhaber mode! of spectator fragmentation. Several improvements 

(sect. 3.2) to this mode} are also made and these results are original as weIl. The 

results from the BUU calculations are parametrized according to this model and 

compared to available data. We proceed to perform more central collisions at 72 

and 92 MeV / A to compare with the mass distributions obtained from the Lawrence 

Berkeley Laboratory (LBL) [Jac 87]. 

We seek to reflne the mode} used in chapter 3 in one essential way. Since previ-

ous calculations are bascd on the local Skyrme-type interaction the self-consistent 

ground state density does not possess a diffuse surface. This is certainly not satisfac-

tory for peripheral heavy ion collisions. A flnite range interaction of the BKN-type 

[BKN 76] is introduced. This form of interaction implies a non-trivial ground state 

self-consistent density. We thus p.mbark on solving for the self-consistent solutions 

of nuclear ground state densities in chapter 4. This is performed thoroughly for 

diffcrcnt parame ter sets and nuc1ear systems. A sample time propagation of the 

newly found ground state density is done using the collisionless BUU ( or Vlasov) 

equation. 

We cast the statement ensuring the stability of the self-consistent density into 

an eigenvalue problem. We calI the matrix to be diagonalized the stability matrix. 

The eigenfunctions of this matrix are shown to correspond to giant vibration modes 

9 
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numerically. A formaI approach is then taken to relate these eigenfunctions to the 



- solutions of the time-dependent Vlasov equation. 

Chapter 6 is the culmination of the results established in chapters 2 and 4. The 

final model of nuclear dynamics with finite range interaction and diffuse surfaces for 

nuclei are tested. The BUU calculation is done for peripheral interaction of 4° .. h­

on 27 Al at 44 MeV/A. Inclusive and exclusive spectator observabies are analysed in 

detail. The meaning of these results are interpreted and the validity and limitations 

of the BUU model are assessed. 

10 



( Chapter 2: The model of nuclear dynamics 

f.l Introduction 

This chapter delineates the content of the model of nuclear dynamics we pro-

pose for colliding nuclear systems. The concepts and formalisms introduced here 

form the basis for the interpretation of results in the subsequent chapters and for 

the extension of the model itself. 

We first introduce the derivation of the BUU kinetic equation. This deriva-

tion consists of two parts. In the first part, we consider nucleons moving in the 

self-consistent field. The appropriate dynamical equation is the TDHF equation. 

Next, we define the Wigner transform of the density matrices and then cast the 

TDHF equation in terms of the Wigner function. When the semi-classicallimit 

is approached, the TDHF equation reduces to the so-called Vlasov equation. In 

addition, we summarize the identities satisfied by the Wigner function before and 

after the semi-classicallimit is approached. 

In the second part, a source term is introduced into the Vlasov equation which 

represents residual interactions between nucleons. The source term is more com-

monly known as the Uehling-Uhlenbeck collision integral. As a way of gaining a 

physical understanding of the collision integral, where rigorous proof is rather in-

volved, wc show how using physical arguments alone the essentials of this term can 

obtained and interpreted. 

The results in the preceeding discussions are standard materials in the nuclear 

physics literature. The numerical method used to solve the BUU equation , to be 

11 
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introduced in section 2.4, is however a recent innovation. The details of the method 

are documented in many places [Won 82, BKD 84, BDa 881, it is thus considered 

sufficient to summarize its essentials in this thesis. 

The mode} of nuclear dynamics presented in sections 2.2, 2.3, and 2.4 consti-

tutes the BUU theory as practiced in heavy-ion physics. This thesis takes n stcp 

beyond this theory by introducing a new collision mechanism as a means to remedy 

where the BUU theory has failed. The content of this concept and its supcriority 

over the BUU theory are discussed in section 2.5. For completeness, the resulting 

model is tested for its nurnerical accuracy in section 2.6. In particular, we examine 

the stability of a model nuclear ground state. 

~.~ The Vla"ov formali"m 

The starting point in the derivation of the kinetic equation is the many-body 

dynamics equation. For nuclear systems the dynamics is governed hy the mnny-

body Schrodinger equation 

ih 8w = Hq" 
8t 

In the nucleus of N nucleons, the general wavefunction is 

(2.2.1) 

and the Hamiltonian, assurning only a two-hody potential between nucleons, is 
N 2 N 

H = L :~ + ~ 2: V(I fa - ~ 1) (2.2.2) 
.=1 ',J=1 

Equivalently, eqn. (2.2.1) rnay also he written in terms of the density matrix. We 

define the single particle density matrix in the quantized notation to be 

(2.2.3) 

12 
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( 

whcre 1 \}I) is the N -body state vector. The indices of the creation (a!) and annihi-

lation (al) operators refer to a complete set of single-particle basis states describing 

the spatial (or momentum), spin and isospin nucleon coordinates. These operators 

are required to satisfy the usual anti-commutation relations 

(2.2.4) 

To proceed further, we introduce the following second quantized field operators 

[FW 71] 

o (2.2.5) 

o 

whcre tPo are the single-particle wavefunctions. These field operators satisfy the 

same anti-commutation relations as the a-operators (suppressing the spin indices) 

{~(r), tfit(ri)} = 6(r - rÎ) 

{~(r), ~(rÎ)} = {~t(r), ~t(rÎ)} = 0 

In this notation, the Hamiltonian operator becomes 

wherc the matrix elements of the kinetic energy are 

and the two-body potential 

Vo P"Y6 = f d3rd3r't/J:(r)t/J~(rÎ)V(lr - rÎ Dt/J-y(fjtP6(rÏ) 

13 
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(2.2.7) 

(2.2.8) 

(2.2.9) 



The matrix elements of the single-particle kinetic energy and the two-particle po-

tential energy are hermitian: 

(2.2.10) 

(2.2.11 ) 

These relations imply that the Hamiltonian operator is al80 hermitian. 

Upon using the hermicity of H, we readily derive the time-dependcnt equatioll 

for the density rnatrix 

ih 8;:1 = ('li 1 [a! aJ , H] 1 'li) 
(2.2.12) 

t ~ t ~ = ('li 1 al' [aj, Hl + [ai' H]aJ l'li). 

And with the help of the commutation relations (2.2.4) we obtain 

(2.2.13) 

Biter sorne algebraic manipulations. We have defined the anti-symmetric matrix 

elements of the potential energy to be 

(2.2.14) 

and the two-particle density matrix 

(2.2.l5) 

Equation (2.2.13) expresses the time evolution of the single-particle matrix P}I 

in terms of the single- and two-particle matrix elements, p(2). In a similar manner, 

one can also derive the time evolution of the two-particle density matrix which ..,..... 
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will in turn depend on the next order matrix elements, p(3). This procedure can 

be continued until p( N). The result is a set of N coupled differf'ntial equations to 

be regarded as completely equivalent to the N-body Schrodinger equation (2.2.1) 

wh en thcy are solved simultaneously. To arrive at a tractable theory of quantum 

dynamics, this set of equations is usually truncated at the single- or two-particle 

density matrix equation. The well-known TDHF equation, proposed by Dirac, 

truncates this series at the single-particle level. The fundamental approximation of 

the TDHF equation says that it is possible to write 

P!:J,6 = ('11 1 a~alaaa{1 1 '11) 

~ Pa6Pfh - pfJ6Pa-y 

(2.2.16) 

This is essentially the mean field approximation apart from the anti-symmetric 

property of the matrix that retains the two-particle correlation as required by the 

Pauli principle. 

An important mathematical property of the matrix p follows from the approx-

imation of eqn. (2.2.16) when we set index Ct = 8. We read from eqn. (2.2.16) 

that 

(2.2.17) 
o 

whcrc we have used Lo Pao = N to arrive at this equation. More conventionally, 

the above statement is written in the operator form 

(2.2.18) 

which evidently implies that p admits only eigenvalues 0 and 1. Furthermore, 

from the definition of the density matrix (eqn. (2.2.3) ) and the anti-commutation 

1~ 



property of the operators al and ao:, we conclude that statement (2.2.18) constrn.ins 

the general wavefunction to he a Slater determinant 

l 'lt) = a!a~ ... a~ 10) (2.2.19) 

which is spanned by a (complete) set of single-particle hasis states. 

The next important quantity we would like to define is the Hartree-Fock menn 

field potential 

(j 1 U 1 ,.,.) = L 'Cjo-y6P60 (2.2.20) 
06 

With the above definition the potential energy part of the equation of motion 

(eqn.(2.2.13) ) may be written, after using the fundamental approximation, as 

iTi 8;:, Ipot = L: ({j 1 U 1 "")P-ya - Pi'Yb 1 U 1 i)) 
"'Y 

= L:({j 1 U 1 i)b 1 pli) - (j 1 pl "t)(,.,. 1 U 1 i)) (2.2.21) 

= (j 1 U p - pU 1 i) = (J 1 rU, p] 1 i) 

The equation of motion of Pji can now be identified as the Heisenberg equation in 

the density matrix formalism 

in 8;r = (j 1 [HMF,p] 1 i) (2.2.22) 

where the mean field Hamiltonian 

HMF =T+U (2.2.23) 

We calI the derived expression the TDHF equation to be consistent with litcrature. 

1t is a non-linear equation in p due the appearance of p in HM F. This is a general 

{eature of the truncat.ed many-body dynamics equation. 

16 



( In the application of TDHF to heavy-ion reactions, the equations to he solved 

are usually not in the form written in eqn.(2.2.22) . Rather, it is most often formu-

lated in the conventional wavefunction language. We insisted on deriving the TDHF 

equation in the density matrix formalism so as to permit an apparent transition to 

the Vlasov equation later. 'l'he suceess of the TDHF equation as a basis of small 

amplitude vibration is weIl documented [SF 75, GS 81]. In the last fr w years, exten-

sive caleulations in the low energy heavy ion reactions have further demonstrated 

the validity of the TDHF equation as a suitable dynamical theory for nuclear phe-

nomena. Of specifie interest to our consideration here is its success in descrihing Iow 

energy reactions ( $ 10 MeV/A ), ranging from fusion to deep-inelastic scattering 

phenomena [Dav 85, BKN 76]. 

TDHF calculations are numerieally intensive, consequently, many calculations 

have been performed with reduced dimensionality of the problem. This is a difficulty 

that has hampered a systematic comparison with experiment. As an alternative to 

the TDHF equation, we present in the next few pages, a derivation of its semi-

classical reduction with the desire to achieve a more manageable equation. 

The Vlasov equation is a semi-classical reduction of the quantum mechanical 

TDHF (eqn.(2.2.22». To perform this reduction the TDHF equation may be 

transformed into an equation describing time evolution of the Wigner function. 

The Wigner function is defined as 

(2.2.24) 

where, i~ Spill-isospin degeneracy factor. The Wigner function is simply the Fourier 

transform of the relative coordinate of the off-diagonal density matrix. The Wigner 
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function is real but not positive definitej therefore, it is not always permissible to 

interpret it as the phase space density. However 1 it may be l'egarded as the quantum 

counterpart of the classical phase space density in the Liouville eqtlation [Rei 84]. 

,In addition, it is possible to define more general Wigner functior.s with two, three or 

more particle phase space variables. Sinee the TDHF is a single·particle dynamicaI 

equation, it suffices to eonsider the single-particle Wigner fnnction (eqn. (2.2.24) ) 

here. 

From J(T,p, t), single-particle physieal quantities suell as dem.ity, current and 

kinetic energy density attain their classical forms: 

p(r, t) 1 

= J d3
p 

... 
Ï(r,t) 

p 
J(T,p,t) m 

p2 
T(r, t) 2m 

Similarly, a momentum space density may also be defined 

g(p,t) = J d3rf(r,p,t); 

and the particle number of the system 

N = f d3pg(p,t) = J d3rp(r, t) 

= f d3rd3pf(r, p, t). 

(2.2.25) 

(2.2.26» 

(2.2.27) 

H we now take the Fourier transform of the TDHF equation, it is then express-

ible in terms of the Wigner function [RS 80J 

8f(r,p,t) 2f(- - ) . (n-A)H(- ... ) 0 ôt + i r, p, t sm 2' r, p, t = (2.2.28) 
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where the classical Liouville operator 

... 
A=(Vr·V,,-Vp·V'r) (2.2.29) 

The single-particle Harniltonian in the TDHF equation is written as 

H(r,p, t) = f dl s exp(-i:. S)(r + ;/2,t 1 HMF 1 r - '8/2, t) 

2 

= :m + U(r,p, t) 

(2.2.30) 

Notice that the mean field could in general be momentum dependent. When eqn. 

(2.2.28) is displayed in expanded form, we obtain 

(2.2.31) 

where {,} is the Poisson bracket. The first and the second term together form 

the familiar classical Liouville equation, and the higher order terms in n constitute 

the quantum corrections to classical dynamics. Before proceeding any further, it 

should be clarified that though the dynamics of these terrns being governed by the 

Liouville operator is classical the intialization of the Wigner function respects the 

Pauli principle. A systematic analysis of quantum correction order-by-order in n 

would be desirable to check the extent of the validity of semi-classical dynamics. 

This effort has largely been rendered difficult by the complexity of the Liouville op­

erator (A). Nonetheless, the inclusion of n2 term in the analysis of small amplitude 

vibrations (giant resonances for example) has been reported by sorne authors [KSS 

86, nDn 86, BDi 88]. They concluded that the gross features of these vibration,> are 

weB described by the semi-classical dynamics without n correction. As discussed 

previously, the application of the TDHF to heavy ion reactions has been known for 
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sorne time [BKN 76]. So, instead of introducing a complicated quantum mechnll-

ical equation in the form of eqn.(2.2.28) the GANIL research group [Gré 87] has 

systematically compared their semi-classical calculations with the TDIIF results. 

Quite remarkably. the semi-classical dynamics appears to provide good agreement 

with its quantum parent for both small and large amplitude motions of nuclei. This 

gives us tLàded confidence to proceed using the semi-classical dynamics. 

Equation (2.2.28) without quantum corrections is commonly known as the 

Vlasov equation 

âf(r,p,t) + {f('" - t) H('" - t)} - 0 ôt r,p, , r,p, - (2.2.32) 

This equation preserves the phase space distribution f at all times which is an 

expression of the incompressibility of f(r, p> in the frame of the moving point (r, p). 

Accordingly, once j(r,p, t = 0) is initialized to respect the Pauli principle (f :5 

'Y/(21r1i)3), it will be preserved at all subsequent times. 

Proceeding further in our examination of the kinetic equations (eqs. (2.2.28) 

and (2.2.32) ), we now look at the properties of the Wigner function according to 

these equations. When we take the Wigner transform of the product of operators 

[RS 80], the projector property of p (eqn.(2.2.18) ), becomes 

j(r,i/, t) cos (~ A)Ï(r,i, t) == j(r,i, t) (2.2.33) 

where the normalized f is 

j-( ...... ) (27rh)3
f
( ... _ ) 

r,p,t = r,p,t 
'Y 

(2.2.34) 

To the lowest order in li, consistent with the approximation made in deriving the 
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Vlasov equation (2.1.26), the above condition simplifies to 

(Î(r,p, t») 2 = Î(r,i, t) (2.2.35) 

The Vlasov dynamics thus does not preserve the Slater determinant property of the 

wavefunctions of TDHF. It does, however, retain the Pauli principle through the 

condition P = l Equation (2.2.32) together with the above property completes 

our reduction of the TDHF dynamics to the semi-classical dynamics. 

We may also readily prove that the Vlasov equation satisfies the following 

conservation laws and invariance: 

(1) energy-momentum 

(2) particle number 

(3) Galilean illvariance 

These are the basic properties that a dynamical theory of heavy ion reactions 

ought to embody. In addition, they provide a check and constraint on attempted 

solutions of the Vlasov equation. The simplicity of the Vlasov equation lies in the 

drastic approximation we made to the many-body Schrodinger equation (2.2.1) . 

This equation was first reduced to a single-particle equation (2.2.22) and a further 

approximation was made to reduce the quantum dynamics into a semi-classical one. 

The non-linearity of the TDHF equation is, however, retained in the Vlasov equation 

as long as the single-particle potential, U( r, p, t), is a self-consistent potentiaJ. This 

potential is often assumed to be functionally density-dependent. 

In this section, we shall confine ourselves to a general consideration of the 

solution of the Vlasov equation in the static limit. In this limit, the Vlasov equation 
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- reduces to a vanishillg Poisson bracket: 

{!(r,p), H(r,p)} = 0 (2.2.36) 

,The general solution of this equation is any functional of the Hamiltonian f(H"), 

where n is any positive integer. This is a severe restriction on the Cunctionru Corm 

of f that we can choose to construct solutions of eqn. (2.2.36) . Nonetheless, the 

possible solutions allowed by the equation are, in principle, infini te in number. For 

fermionic systems, we further require the occupation of particles in phase space to 

respect the Pauli principle 

(2.2.37) 

A possible choice of ! describing the ground state nucleus is the Thomas-Fermi 

approximation [RS 80, BDT 86] 

f(H) = (2:")3 e(g(H»). (2.2.38) 

where the e -function ensures that condition (2.2.37) is maintained. The argument, 

g(H), is taken to be ("F - H), where ÀF is the Fermi energy. Since g(H) must 

be positive, energy levels can only be filled up to "F, which is Il constant for static 

systems. An extension to systems with fini te temperature, {J, is also possible by t,h«:> 

following choice of f 

(2.2.39) 

In the standard treatment of the Fermi system in statistical mechanics particles are 

considered to be non-interacting, Le. H = p2/2m, in which case eqn. (2.2.39) is 
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(. simply a Fermi-Dirac occupation prohahility. Because nucleons are strongly inter-

acting, even at moderate temperatures (T-lO MeV), they can not he treated as 

a free nucleon gas [Lej 86, FL 83). Of course, this statement is imprecise without 

specifying the density of the system which determines the average inter-nucleon 

distance, and therefore, the effective strength of the interaction. The solution of 

the Vlasov equation in the static limit (eqn. (2.2.38) )is completely specified when 

>'F and U( r,p, t) are known. In the case of fini te temperature it has to he supple-

mented by f3. In our reduction of the linear many-body dynamics equation (2.2.1) 

we introduced a mean field potential that is density dependent, U = U(r, P,P, t). 

If this is so eqns. (2.2.38) and (2.2.39) become non-linear integral equations in 

f. In other words, our choice of f must be consistent with the functional of U. 

The standard method of solving these non-linear equations is the iterative scheme 

where a guessed solution is progressively improved with increasing numher of it-

erations. The non-linear nature of the eqns. (2.2.38) and (2.2.39) is a reflection 

of the retention of interaction between the nucleons, approximated at the level of 

mean field. From this point of view, the time-dependent Vlasov equation describes 

self-interacting systems. 

The self-consistent solution of the time-independent eqn. (2.2.32) will he devel-

oped in chapter 4. The time-dependent solution, unlike the ground state solution, 

is much more involved. There are no exact solutions but approximate solutions do 

exist especially for small amplitude motions [BOO 86, BDi 88, KSS 86]. In chapter 

6, an attempt is also made to arrive at approximate solutions of small amplitude 

vibrations. 
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!.9 The Uehling-Uhlenbeck colli~ion integral 

When the beam energy of the projectile is raised the final momentn. (Pl' ,P2' ) 

of colliding nucleons are frequently scattered out of the Fermi sen. i.e. 1 j;1' 1 IUld 

J P2' 1> PF. Mean field dynamics will then have to he supplemented by two-hody 

scattering. The effect of collision is to add a source term to the Vlasov equation 

(assuming a momentum-independent potential) 

where the source term [CLG 87, Ber 80, BM 86, GB 87] 

1( '" ... t) jd3P2d3PI,d3P2' ( ... - ...... ) 
rJ,pl, = - (27rn)9 w PIP2 --+ PI'PZ' 

X [llÎ2(1-1l' )(1 - 12') - Îl' 12,(1- Ît}(l- 12)] 

x 63 (Pl + P2 - PI' - P2' )6(El + f2 - fI' - f2') 

(2.3.1 ) 

(2.3.2) 

The Îi is as defined in eqn.(2.2.34) with the index i refering to the momentum 

coordinate Pi and the single particle energies fi = P~ /2m+ U(rl,t). We also denote 

w to be the transition rate of the nucleon-nudeon collisions. The collision integral 

has the effect of widening the phase-space domain occupied by the nucleons. In 

nuclear fragmentation final state nuclei occupy domains far from each other. The 

introduction of the collision term is then a step towards a more complete theory 

of heavy-ion reactions. However, as we shaH soon realize, the physics embodied by 

eqn. (2.3.1) is insufficient to descrihe fragmentation phenomena with precision. 

It is thus necessary to re-examine the basic assumptions in the derivation of 

this equation (2.3.1) . We present, in the next few paragraphs, a derivation of 

the Uehling-Uhlenbeck collision integral based on physical arguments. Rigorous 

24 



( 

( 

derivations of this term may be ~onsulted in several review articles and papers [KB 

62, TS 86, YY 87]. 

The number of nucleons in the phase space volume d3r1d3 pl is 

J-c.. ..) 'Y d3 d3 
r}'PI C271'h)3 Tl Pl 

The collision number per unit volume and unit time hetween nucleons in d3r 1d3 pl 

and d3rl d3p2 is proportional to 

C.. .. ...... ),-C.... .. ),-( .... ..) d3 
Pl da Pz 

-w PIP2 ~ PI'P2' Til Pl Tl ,Pz (271'h)6 x 
(2.3.3) 

63 CPI + pz - Pl' - Pl' )6(fl + f2 - fI' - f2') 

The negative sign signifies the depletion of nucleons of states Pl and ÏÎ2, and w is 

the rate of collision; we have also attached momentum and energy conserving delta 

functions. Implicit in the ahove expression is the assumption that two-particle 

correlations can be written as a product of single-particle distribution lunctions. 

Physically, this demands that the systems to be treated must he dilute [LP 81]. 

For many-body nu cleon system the final states are Pauli blocked according to 

the occupation numbers of the final states, namely jl' and i2" The collision number 

of the forward reaction per uni t time is proportional to 

-W(PIPZ -+ PI'~' )id2(1 - jl' )(1 - j2' )63 (Pl + P2 - Pl' - P2')X 

d3PI d3p2 d3 pl'd3p2' 
6(fl + E2 - fI' - E2') (271'h)12 

(2.3.4) 

The reverse reaction Pl + P2 --t Pl' + Pz, may be similarly obtained, and we 

readily find that it is just eqn. (2.3.4) with the indices 1 and 2 interchanged for 

l'and 2' respectively. We further notice, from the detailed balance, the equality 

between the forward and reverse transition rates [LP 81]. 

(2.3.5) 
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- This result enables us to factor w from the forward and the reverse reaction terms. 

To find the rate of change of the single-particle distribution, j( ri, Pl, t), we integratf' 

over f/2, Pl'! and P2' variables to obtain the final form of the transport equation up 

to a proportionality constant: 

d3Pl jd3P2cPPl'd3]J21 ~ ~ .. -
- (211"n)3 (211"h)9 W(PIP2 -+ Pl' P2' ) 

X [Îli2(l - ill )(1 - i2/) - ÎJ'i2/(l - il)(l - i2)] 

X 63 (Pl + P2 - Pl' - P2 1 )6(fl + f2 - El' - f2') 

d3
pl dil 

oc -
(211"h)3 dt 

(2.3.6) 

The transition rate is related to the cross-section whose relation in the center 

of mass of the colliding pair is 

(2.3.7) 

where p. and PI are the initial and final momenta in this frame. This transport 

equation has been extensively used to analyse various features of heavy-ion reactions 

[BKD 84, Sto 86, GBD 87, BDa 88, Dan 88]. We calI it the Boltzmann-Uehling-

Uhlenbeck (BUU) but it has also been known by other names in literaturc: the 

Vlasov-Uehling-Uhlenbeck equation [KJS 85], the Boltzmann-Nordheim equation 

[Nor 28] and the Landau-Vlasov equation [Gré 87]. 

The collision integral vanishes identically when the system attains statistical 

equilibrium. The precise statement of the condition is that 

(2.3.8 ) 

whose solution is just the Fermi-Dirac occupation factor 

- 1 
li = e{J(f,-p) + 1 (2.3.9) 
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More specifically, the ground state solution of the Thomas-Fermi type can be seen 

to statisfy the equilibrium condition above. 

In the numerical evaluation of the collision integral w is treated as an input 

from the experiment through relation (2.3.7). At relativistic energies, the elastic 

differential cross-section of the free nucleon-nucleon scattering can be assumed to 

take the form [Per 74] 

dUel -61'1 
- "'J e 
dt 

where the slope of the exponent is energy dependent 

b( 0) = 613.65( ~ - 1.866)]6 
1 + [3.65{ Vs - 1.866)] 

(2.3.10) 

according to a parametrization [CMV 81, Mas 84, BDa 88] widely used in reaction 

studies. In these expressions, the /; and t are the Mandelstam variables. The SCé'.t-

tering angle 10 this region is highly forward peaked as opposed to a near isotropie 

angular distribution seen in low energy (E'a.6/A ~ 50MeV) experiments. The inclu-

sion of the inelastic cross-sections is aIso possible , however, due to their negligible 

contribution at intermediate energies they will not be discussed in this thesis. 

Another question worthy of attention is the medium correction to the cross-

section currently used. For a fixed density, the total cross-section approaches the 

free cross-section, (TIree above a certain energy. At high energies, nucleons may be 

treated as point-like particles whereby the nuclear mean potential has only negligible 

effect. Tbis problem of treating medium correction has been studied by a few 

authors [CLG 87, BM 86, KI( 68]. They repluced the transition matrix of the free 
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'; , - nucleon-nucleon T -matrix by the Brückner G-matrix: 

(2.3.11 ) 

suit able for scattering in the medium. With this correction they found the new 

cross-section to scale according to [CLG 87] 

pJ/3 
a(p, p, T) = 1 + Lan) (/ )n 

n) P PF 

where T is the temperature and a nJ are fixed coefficients. 

!.4 Numerical method of ",olution 

(2.3.12) 

The BUU kinetic equatioll is an integro-differential equation describing the 

time evolution of J, the distribution in phase-space. The numerical method of 

solving this equation consists of choosing an appropriate representation of f nnd 

then to propagate this f in time. We solve the kinetic equation in two steps. First, 

f is evolved for a (smaIl) time step At according to the Vlasov dynamics then f 

is instantaneously changed by the collision integral. At an subsequent timcs thcsc 

two steps are repeated until the simulation is completed. 

Of central importance to our method is the idea of decomposing f into a set 

of folding functions S to be formally written as 

AN 
f(r,p,t) = ~LS(r-~(t),p-P.(t») 

1=1 

(2.4.1) 

where il is the number of such functions per nucleon. This technique is prevalent 

in numerical simulations of heavy-ion reactions. Sorne authors take S to be a set 

of coherent states (or moving gaussian bases) [Gré 87, RDH 80] whereas othcrs 
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assume them to be triangular or gaussian packets [Len 88]. For sufficiently large fi 

the folding procedure is insensitive to the choice of folding functions. In this thesis 

wc work wi th delta functions or point (test) particles 

S(T - r,(t), p - p,(t)) = .s(T - r,(t») .s(p - Pi(t)) (2.4.2) 

Suppose the configuration space is partitioned into cuhic ceUs then the density in a 

ecll centered at ra is 

P{To) = ~o f d3
rd

3pf(r,i/) 

1 AN (2.4.3) 

=--LI 
NVa iEVa 

where Va is the volume of the celle Other physical quantities can he similarly 

evaluated. 

Given the representation of f and the choice of folding functions, it can be 

easily shown that the Vlasov equation is satisfied when the centers of the folding 

functions follow the classical trajectory 

ôfi(t) p, 
at=;; 
ôp,(t) __ " U( .... ) ât - v, r,. 

(2.4.4) 

In other words, evolving f according to the Vlasov equation is equivalent to evolving 

a large collection of test particles according to Hamiltonian dynamics. 

So far, the mean field function U has not been specified. This function is yet 

lUlother essential aspect of our model. For the present exploration the simplified 

version of the Skyrme potential is used. The mean field function has a simple 

structure 

U(rj = -124.0p(rj + 70.5p2(r) MeV 
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- Because of the rapid rise of the repuisive terrIl with density this U is referred to as the 

stiff potential. It possesses the usual saturation property with its coefficients choSt'Il 

so as to minimize at the nudear matter saturation binding energy of -16MeVjA. 

!,he corresponding compressibility K = 378M eV, which is larg<: comparcd to mort> 

sophisticated nuclear matter theories [FP 81] and extracted experimentai valut, [DIa 

80]. 

We may now proeeed to evaluate the force on each test particle. The '"Y-

component of the force on the test particle at ri is 

(2.4.6) 

where i is the eell label. Having described how the density p and the force are 

determined, the eoordinates of the test particles (r., Pa) are propagated (stepwise) 

in time according to the Hamiltonian dynamics. We do this by using a . sccond 

order algorithm as follows 

Ti(t + ot/2) = r.(t - 6t/2) + MPI(t) , 
m (2.4.7) 

ff.(t + St) = PI(t) - 6t~IU(TI' t + 6t/2). 

Equations (2.4.6) and (2.4.7) constitute the solution to the time-dependent Vlasov 

equation (2.2.32) in the test particle representation. 

The discretization of the configuration space and time unavoidably introduccR 

numerieal parameters to the space and time dimensions. We partitioncd t.he config-

uration space into cubic cells of length f. = Ifm and discretized the time dimension 

in steps of ot = 0.3fm/c (1.0 x 10-24sec). Apart from these two numerical param­

eters there is the freedom to choose the number of test particles per nuclcon, N. 
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We fix fi at 200 unless otherwise indicated. The statistieal fluctuations of density 

in each eell is about 20% for this fi. To further reduce the density fluctuations we 

have also resorted to spreading 8 test particle density contribution to its adjacent 

cells. For example, when a test particle is found in the eelI at Ta we consider its 

contribution to the density of the eeU to be 1/{3NV) and 1/(9NV) for its adjacent 

eells. In section 6, the reliability of these parameters will be tested. 

We now summarize the test particle implementation of the BUU equation in 

our numerical method [BDa 88, BKD 84]. 

The test particles are 

1. used to Monte Carlo the phase spaee density f of a static 

nucleus; they are then 

2. propagated in the mean field for a time step lit according to 

the classieal trajectory in eqn. (2.4.7) . This is followed by 

3. elastic scattering between the test particles. Two test particles are 

candidates for scattering when they pass the point of closest approach, and 

(3a) their distance of closest approaeh 

where the maximum elastic cross-section UT is 55 mb [BDa 88]. 

(3b) Once they are within this distance they are allowed to 

scatter with a probability of 

where 0'( Vs) is an energy dependent cross-section. 

To simplify caleulation, we chose a constant cross-section 

of 40 mb. We eompared this choice to an energy dependent 

cross-section [BDa 88] and found the results to be compatible. 

The scattering angle is then determined by eqn. (2.3.10) 

(3C' ) The final necessary check is to ensure that the test 
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particles being promoted to new momenta values do not violate 

the Pauli principle. The probability of blocking is determined by 

4. Having concluded that conditions (3a,b and c) are satisfied, we 

repeat steps 1, 2 and 3 until the entire simulation is completed. 

(2.4.9) 

In principle, each test particle should be checked for scattering with allother 

test particles hl the colliding system. If this be so, the number of comparisons at. 

step 1 would be of the order of ,.., (NA)2 and accordingly the cross-section (step 3b) 

is reduced by a factor of 1/ N2. For Iv '" A f'OoJ 100, this number is approximntely 

108, which would requirc enormous computing hours. We are theu led to make a 

suitable approximation [BKD 84]. In this approximation, collisions between test. 

particles are decomposed into il sets of pr_rallel simulations. Each simulation is 

composed of il Ap test particles from the projectile and il AT test particles from 

the target. In the way, collisions are not allowed between test particles of diffcrcnt 

simulations. Renee, the number of comparisons a.t step 3 for symmetric colliding 

systems is reduced to il A 2• 

!.5 Colli.sion.s and fluctuation.s 

The theory of nuclear reaction based on the BUU kinetic theory does not 

generate sufficient fluctuations to account for fragmentation phenomena [BBD 87]. 

According to this approach each phase-space volume d3rI d3pl is a. source of test 

particle collisions. Moreover, momeDta of the scattered particles are Ilot corrclatcd 

i.e. they are Dot necessarily close in phase-space. As a result, the rate of change of f 

due to collisions grows in a continuous and graduaI fashion without much variation 
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from one phase-space domain to another. This analysis on the nature of the collision 

integral demonstrates the weakness of the dilut.eness assumption mentioned earlier 

in its derivation. Alternatively, this feature of the BUU theory may be viewed as a 

superposition of N parallel simulations. In the process of averaging a great number 

of simulations, the fluctuations contained in each simulation are effectively damped. 

This is the reason that the BUU theory does not generate sufficient fluctuations to 

account for the formation of fragments in nucleus-nucleus collisions. 

Following Bertsch [BBD 87], we developed a model of nuclear reaction with 

a modified collision mechanism. The essentials of this model are motivated by 

physical arguments. We would like to model a collision between two nucleons in a 

physical way yet retain the test particle method. More precisely, when a collision 

betwcen two test particles occurs we require 2N and not 2 test particles to change 

thci1' momentum directions. In this manner, the final moment a of the particles are 

correlated. Proper counting of the collision number implies that the cross-section 

0'( Js) of collision must be suppressed by a factor of 1/ il. 

Let us formulate the above statements in concrete terms. Suppose two test 

particles i and J, with isospin indices Ti and TJ , have statisfied the conditions for 

collision (steps 3a, h, c) wi th the cross-section 0'( Vs) / il, we associate (N - 1) test 

particles, each possessing isospin T" with the ith particlej and similarly for the ph 

particle. The criterion for associating the test particles to the i th particle, say, is 

that ouly those test particles closest in phase space to it are chosen. This entails a 

dcfinition of the phase space distance like 

(2.5.1) 
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- where k is the index of any test particles to be compared with the i fh particle. 

At this point, there are two groups of particles, namely the i- and j -group. 

From each group, an average momentum can be defined: 
fi 

(P(i») = L Pk(i) / IV (2.5.2) 
1e=1 

where Pk( i)'s are the momenta of those test particles that are close in phase-spltce 

to the ith test particle, 8lld similarly for the j-group. The average moment a of 

these groups of particles are allowed to scatter elastically without further Pauli 

hlocking. The change in the moment a, /):;"Pi and /):;"PJ (-/):;"p.), are then attributed 

tn each test particle of the i- and j -group respectively. This procedure trcats 

the collision between two groups of test particles, representing two nucleons, thus 

mimicking a nucleon-nucleon collision. As may be easily shown, it also has the virtue 

of conserving the overall energy and momentum but not the angular momentum. 

!.6 Numerical accuracy of the ground "tate" 

Having completed the account of the proposed numerical technique to solve the 

time dependent Vlasov equation, we proceed to test the reliability of this technique 

systematically. The solutions of the Vlasov equation known to us are thos(~ of t.he 

static solutions which correspond to the ground states of nuclei. For local intcrac-

tion such as the Skyrme force, the ground state has a simple density distribution 

(eqn.(2.2.38) ): 

(2.6.1 ) 

where the Fermi momentum is given by 

[ ]

1/2 
PF(f) = 2m(~F - U(p» , r ::; R (2.6.2) 
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which is a constant in the interval 0 ~ r ~ R, where R is the cut off radius. 

A proper description of the ground state in time requîres the density to be stable 

and that the momentum and energy be conserved. For this purpose, we selected 

three symmetric systems for study: 4 He, 20 Ne and 40C a nuclei. These systems were 

initialized with the model ground state density (2.6.1) and then evolved for a period 

of 100 fm/co The density distributions of 4He,20 Ne and 40Ca nuclei are shown in 

Figs. 2.1, 2.2 and 2.3 respectively. It is quite evident that the nuclei remain bound 

as a system. However, in aIl three cases the model density at the surface could not 

be maintained. Moreover, this behaviour is progressively magnified as the nuclear 

size decreases. The feature is indicative of the use of fini te grid size in configuration 

space. In Figs. 2.4 and 2.5 the rms radii and momenta are seen to execute oscillatory 

motions. For 40Ca and 20 Ne, the amplitudes of their oscillations are small whereas 

rather significant oscillation is observed for 4 He nucleus. 

After 100 fm/e, the CM momentum acquired a non-zero value of 1.6 to 4.5 

MellIe per nu cleon in the order of decreasing mass size. For medium size 40Ca 

nucleus, the error in the CM motion is smaIl for beam colliding energy per nucleon 

greater than 50 Ale V . For the same beam energy, 4 H e nucleus will suffer an er­

ror exceeding 20%. The effect of coarsening the configuration space is particularly 

pronounced in the caIculation of the total energy of the system. The rise in total 

energy can be as mu ch as 20% for 40Ca nucleus and up to 30% for 4 He nucleus. The 

dominant source of the poor energy conservation cornes from the rather primitive 

way in which the gradient of the potential is evaluated on the grid space. Equiva­

lently, we can express non-conserving energy in terms of the excitation energy. We 
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- obtain excitation energy per nucleon in the range of 2.5 to 5.5 MeV. The excita­

tion energy acquired by the nucleus goes into radiai expansion hence the observed 

oscillatory motion and graduaI increase of the rms radii and moment a (Figs. 2.4 

and 2.5). Work is now in progress to improve upon the evaluation of this quantity. 

The conclusion we draw from this discussion is that for small nuclei (A$ 4) the nu­

merical computation of its dynamicaI quantities ought to be significantly improved. 

For medium size nuclei A ~ 20, the results are quite satisfactory provided the bcam 

energy of collision exceeds 50 MeV/A. 
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Chapter 3: Spectator and participant dynamics 

9.1 Preliminary di$c'U$$ion 

The spectator-participant picture of heavy-ion collisions is an accepted view 

at high energies. The overlapping zone of the excited nuclear matter is called the 

participant of the reaction and the remaining cold matter is called the specta­

tor. As the beam energy is lowered (E'd/A ~ lOOMeV) the clean separation of 

two distinct regions gradually disappears due to the domination of mean field and 

the increase of interaction time between the ions. Keeping the limitation of the 

spectator-participant picture in mind, we will refer to spectators and participants 

in the subsequent discussions as working terminologies. 

In the last few years, much of the effort in the heavy-ion physics at high energy 

has focused on the participant region of the reaction. This is not surprising in view 

of the intense interest in understanding the properties of the hadronic matter at high 

density. Consequently, dynamieaI calculations done to address the spectator physies 

are conspicuously scaree. This chapter is on the whole a preliminary attempt to 

address the relevance of spectator dynamics to the study of nuclear fragmentation. 

The fragmentation of the projectile nucleus (or spectator) at high energy [Gre 

15} has been suecessfully explained by the statistical fragmentation mode! of Gold­

habcr [Goi 74]. There has been a considerable interest in testing the validity of 

this model at lower energies [Day 86, Gue 83, Ste 87]. Since the reaction mech­

anism is expected to change as the beam energy is lowered, Goldhaber's mode} 

provides a way of measuring the effect of this change in the observable. This model 
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, - is characterized by a size-independent momentum width 0'0 (to be explained in the 

next section) of the projectile-like fragment. Extensive experimental studies Crom 

20 MeV/A to 100 MeV/A [Gue 83, Gel 77, Ste 87, Kya 86, Rud 86, Biz 86] have 

shown that 0'0 deviates substantially from its value at high energies. The systemnt-

ics of the data compiled in ref. [Ste 87] suggest that 0'0 rises rapidly from 30 MeV 

to 50 MeV and then saturates at higher energies. As yet, no physical interpretation 

has been given to this data. 

Our calculation will aim at obtaining quantities that are characteristic of the 

Goldhaber model such as the momentum distribution and its width, uo. It has 

been remarked that our calculation is a preliminary one, and this is for a good 

reason. Spectator dynamics is largely a study of the interaction of nuclear surfaces 

of interacting ions. So a detailed comparison with experiment can only be made 

with dynamical models that have correctly treated the nudear surface. Currently, 

our simple model of nuclear mean field (eqn. (2.4.5» gives no diffusiveness of surface 

whatsoever (eq.(2.6.1)). We ought to go a step further by introducing a fini te range 

potential to generate a self-consi'3tent diffuse surface. This problem is an interesting 

one, and it requires a reformulation of our basic equations for the self-consistent dcn-

sity. The following chapters will be devoted to generating self-consistent densitics 

and the exposition of its consequences. 

Participant dynamics is a result of the complex interplay between the roles of 

the mean field and two-body collisions. Current dynamical models with varying 

degrees of sophistication have been devised [KS 84, GD 85, Aic 88] to obtain its 

mass distribution. The collision mechanism introduced in section 2.4 represents 
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( another attempt in this direction. In section 3.4, we demonstrate in two sample 

calculations the capability of our approach in reproducing the mass distribution. 

3.! The theoretical model of -'pectator fragmentation 

The Goldhaber model is a statistical , though not a thermodynamic, model of 

the spectator fragmentation. It was initially developed by Feshbach and Huang [FH 

73] who assumed that a highly excited projectile in its rest frame emits particles 

or fragments randomly. It was further assumed that the nuclear mean field effects 

are negligible, consequently, the momentum distribution of the emitted fragments 

reflects the Fermi motion of the nucleons in the projectile. 

The momentum distribution of the projectile-like fragment (i.e. fragment trav-

elling close to the beam velocity) of size K observed in high energy collisions cao 

be fitted with a Gaussian 

{ P2} 
g( PK) ex exp - 20'1 (3.2.1) 

where U K is the width of the distribution. Feshbach and Huang [FH 73] derived 

this distribution for the fragmentation of a large nucleus of size A in its rest frame. 

They considered the fragment of size K to be a random sampling ')f A nucleons. The 

drawback of this derivation is the requirement that A be large. We thus regard the 

Gaussian form of the momentum distribution to be an assumption. The statistical 

assumptions of Feshbach and Huang were, however, taken over by Goldhaber [Gol 

74] who derived a size dependent width uK which is in accord with the experiment. 

The width is directly related to the mean square of the fragment's momentum vector 

1 1 K 2 

C1k = a(Pk) = a( (LPi) ) 
i=l 

(3.2.2) 
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where the average here is taken over all possible sets of 1( nucleons chosen from A 

nucleons. In the rest frame of the projectile 

A 

LPa =0. 
a=1 

(3.2.3) 

'Upon using this constraint on the nucleons' momenta, the width in eqn.(3.2.2) is 

readily shawn to have a parabolic dependence on ](: 

2 K(A-K) 2 
(lK = A -1 (10 (3.2.4) 

where (10 is independent of ]( and it is directly related to the Fermi momentum of 

the projectile 

2 1( 2 1 2 
(10 = - p ) = -PF 3 5 

(3.2.5) 

For a typical nucleus, PF ~ 250MeVlc which gives (10 ~ 112MeV/c. A smaller 

(10 is expected when the Pauli exclusion effect is taken into account. Bertsch [Ber 

81] showed that this correction narrows the width to about 90 MeV Ic for 40 Ar 

projectiles. 

After the projectile interacted with the target, the mean field and collision 

effects would have altered the velocity of the emerging projectile in both the trans­

verse and longitudinal directions. We calI (PZK) and (P.l.K ) the average shifts of 

the momentum of projectile-like fragments in the Z- and transverse direction rc-

spectively. The rest frame of the fragmenting nucleus will differ from the projectile 

frame when (PZK) and {P.J..K} are finite. These effects are not considered in the 

Goldhaber mode!. With these modifications the differential cross-section in the 

laboratory frame is then given by 

(3.2.6) 
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where POK is the beam momentum of K nucleons which we take to be in the Z-

direction. The above equation can also be written as follows 

:~~ oc exp { -(Pk + pJK - 2(POK + (PZK))PK cos 8) /2O'~} 
K 

xexp {-({PZK)2 + (Pl.K)2 + 2POK(PZK))/20'k} (3.2.7) 

x exp { PK (P l.K ) sin 8 cos <p / O'k } 

where cp is the angle between (P.l.K) and the component of PK on the 1. plane. In 

an experiment, the events at different <p's are not discriminated and so data are in 

fact averaged over events at all 'P's. When the 'P dependent piece in eqn.(3.2.7) is 

averaged it becomes a modified Bessel function: 

(3.2.8) 

Hence the final form of eqn. (3.2.6) in the laboratory frame has the structure 

d~;n ocEl/2 Jo (-iPK(P.l.K) sin8/O'k) 

x exp { - (pk + pJK - 2(POK + (PZK ) )PK cos 8) /20'-:': } 

x exp { _((.PZK}2 + (PJ..K)2 + 2POK(PZK}) /20'k} 

where E is the kinetic energy of the fragment J( in the laboratory. 

(3.2.9) 

The simple model of Goldhaber (eqn.(3.2.1) ) has been tested in the energy 

range 0.40 $ E'ab/ A $ 2 GeV with targets and projectiles of wide range of sizes [Gre 

75]. These experiments confirmed that the Gaussian distribution is independent of 

target and projectile size. The validity of this model is, however, dependent on 
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the energy range probed [Day 86, Gue 83]. Firstly, the lower momentum si de of 

the distribu~,ion in the longitudinal direction generally departs {rom the Gaussinn 

distribution, and this is progressively magnified as the beam energy is lowcred. 

Seeondly, the eompiled experimental width in the beam direction (70Z [Ste 87] shows 

a graduai inerease within the energy range 20 :5 E'abIA :5 50 MeV/A, and levels off 

to (70Z ~ 85 MeV le thereafter. The ealeulations in the following section are aimed 

at testing the Gaussian distribution of the Goldhaber model as modified acc..ording 

to eqn.( (3.2.6) ) together with its width. 

9.9 The BUU calcv.lation~ 

3.3a Initialization of the colliding systems 

The nucleus we ehose for initial exploration was a symmetric 20 Ne nucleus. 

For simplicity, the collision partner was also chosen to be the same. The colliding 

systems were then boosted against each other at laboratory projectile energy of 50 

MeV 1 A in one case and 100 MeV / A in the other. At 50 MeV 1 A, the mean field 

effects are expected to dominate the dynamics whereas at 100 Me V 1 A the role of 

collisions would be significantlyenhanced. If we view the interacting Fermi spheres 

in the CM frame where aIl calculations in the BUU code are pcrformcd, therc is 

a significant overlap at 50 MeV 1 A and much less so at 100 MeV/A. As a quick 

measure of the extent of the overlapping spheres, we compare the distance between 

the centers of the Fermi spheres, dF. For a small nucleus sucb as 20 Ne, the Fermi 

momentum can be taken to be PF = 230 MeV je 50 the minimum dF for two non-

overlapping spheres is roughly 450 MeV Ic. This number is to be compared with dF 
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( = 306 MeV le at 50 MeV/A and dF = 431 MeV/c at 100 MeV lA. 

We chose the reaction plane to be the X-Z plane with Z-axis as the beam 

direction. The final necessary parameter to fix the set up is the impact parameter 

b. This was chosen in the range 0 ~ b ~ 2R , where R is again the defining sharp 

nuclear surface radius. We fixed b at an intermediate impact parameter 

R 
b = J3(1 + Vi) = 4.31 lm. (3.3.1) 

We further required that the nuclei to be mirror images of each other. This means, 

for a target nucleus in CM having coordinate (T, PJ the projectile (also in CM) will 

be assigned a coordinate (-T, -p). This arrangement is by no means a necessary 

one. 

3.3b Accuracy of the numerical method 

The numerical computation of the momentum distribution and its width 0'0 re-

quires an accurate determination of the moment a of the colliding pair. We checked 

the reliability of our numerical method by traversing the colliding pair in the op-

posite directions with b large enough so that they do not interact with each other. 

ACter a period oC 100 fm/c, which is about the length in time that aIl subsequent 

cruculations will be performed, the transverse momentum per nucleon acquired a 

non-zero value of ",2 MeV / c. This uncertainty is small ('" 1%) relative to the lon-

gitudinal momentum in the CM frame. The change in the longitudinal direction is 

also about the same. 

Next, we tested the spread in momentum due to the mean field alone. The 

collision cascade was switched off and so the nuclei were allowed to interact through 

( 
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- their mean fields only. After a few runs were taken at b = 4.31/171 it was found 

that the spread per nu cleon ApiA ~ 10 MeV le. Since there \Vere 110 collisionr this 

spread refieets the errC'f in the mean field caleulation. As we will see later (Fig. 

3.2) this fictitious spread accounts for only 20% of the actual spread. 

The spedators or more generally the fragments emerging from the region of 

violent collisions are in their exeited states. These fragments will deexeite byeject­

ing energetie particles and eventually reach their respective ground states. Tht!se 

features were seen in numerical calculations. More preeisely, we extracted the rms 

radius and momentum of each fragment and \,raced its time evolution. l<"br exam­

pIe, at E'abiA = 100 MeV with b = 4.31 fm/e, the collisions are over by 40 fmle 

and distinct clusters are formed at time ~ 50 fm/c. The rms radii and moment a 

of the fragments from t ::: 50 fmlc onwards continue to change and then saturate 

at t. '" 80 fm/e. So what we consider as final states of the fragments are thosc 

fragments at t •. When the impact parameter or the beam energy is changcd tll will 

eorrespondingly change but the criteria we used in our ealculations to determine tif 

were always the same. 

3.3c Results and interpretation 

The experimental width (70 is extracted by fitting a Gaussian (cqn.(3.2.1) ) to 

the observed momentum distribution. This is done for a certain fragment of size ]( 

at an angle 8 from the beam direction. At a fixed impact parameter b, our modl'I 

ealculations will produce a distributed 1< values. It is a prohibitive task generate 

sufficient events for those fragments with a specifie K. We circumvent this difficulty 

44 



by rewriting eqn. (3.2.4) as follows 

A-l 2 q2 _ q 
0- K(A-K) K 

(3.3.1) 

In this form, aU the K dependent factors are on the r .h.s. of the equation. Given 

a set of events from our simulations, Uo is averaged over these events found at all 

angles. We thus write 

2 (K(A-l) 1 ( 2) 
U OI = A _ K (P.K K - PiK/K ) (3.3.2) 

where subscript i refers to the component. The quantity (PiK / K) defined in this 

equation is the average momentum per nucleon of the given set of events in the i 

direction. In the rest frame of the fragmenting nucleus, the isotropy of the distribu-

tion implies UO I 's to be the same. It is possible to test this feature of the Goldhaber 

model from eqn.(3.3.2) . 

At impact parameter b == 4.31 fm we generated 21 runs which in efFect gave 

us 42 events sinee the target and projectile are completely symmetrical in the CM. 

We further so rernark that a projectile-like event is an event whereby its longitu-

dinal momentum pz/( ~ 0.6Poz, which is in consistent with the eut used in the 

experiment [Day Sej. In the laboratory frame this corresponds to 80% of its beam 

momentum. 

The first set of runs we would now like to discuss is at Elab/A = 100 MeV. 

The result in Fig. 3.1 shows a mass distribution which is peakcd at mass size K 

= 15 with a width of less than 4 msss units. We attribute the observed msss 

dispersion to the collision dynamics since mean field by itself does not produce 

fluctuations. The momentum distribution in the Z-directioll is shown in Fig. 3.2, 

( 
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it exhibits a clear peak and a Gaussian-like distribution. Evidently more evcnts 

are needed to estabtish to the shape unalnbiguously. Similar Gaussiall distributions 

were also obtained for other eomponents. A more tangible measure of the succcss 

.of our model are the widths (1oi. The momentum widths without the angular cut 

are nearly isotropie (10i ~ 70 MeV je for i = x, y and z, as shown in Table 3.1a. 

This value is estimated to have statistical errors of about 20% given the size of t.he 

sample (42 events). However, the systematie errors coming from the inaecuracy of 

the momentum vectors, whose error was quoted earlier, are sm ail cornpared to the 

statistical errors. We compare this value with the experimental width (10Z ~ 86 

MeV le [Day 86, Gre 75] whieh indieates the qualitative nature of the success of 

our model. A quantitative agreement can not, however, be be forthcoming for 

other reasons. The poor description of the nuclear surface and the absence of 

Coulomb interaction, mentioned eartier, have contributed to the discrepaney with 

experiment. In addition, the ealculation was done without averaging ovcr diffcrcnt 

impact parameters. As similar calculation at ElablA = 50 MeV, givcs (101 to be 

approximately 15 MeV le smaUer (Table 3.la). The reduction of the width has 

been seen in experiments at lower energies (E'o.bIA S 50 MeV) [Ste 87, Gel 77, Ege 

86]. 

A further aspect of our results is the average downward shift of the momcn­

tum per nucleon (P'K 1 !(). The X and Z components of the momentum shift ar(~ 

comparable in magnitude. This observation i::; true for beam encrgies at 50 Mc V/A 

and 100 MeV/A (see Table 3.1b). At 50 MeV/A, this value is ~ -50 MeV/c and 

-30 MeV Je at 100 MeV/A. An average negative (Px K /!<) rncans that the avcr-
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age scattering angle of the projectile is negative. At lower beam energy, this value 

naturally increases as the collision dynamics weakens due to the Pauli blocking. In 

the Y-direction, {Py K / K} ~ 0 as expected from the symmetry of the initial set 

up. From this point onwards fUl-ther discussions on the spectator properties in this 

section are confined to E'ob/A = lOOMeV. 

From the numerical simulations we cao extract {P.K / K} and o'~. which are then 

substituted into J2(1/dEdfl ( eqn.(3.2.9) ) to fixed this distribution. The graphical 

display of the double differential cross-section is shown in Fig. 3.3 as a function of 

the spectator kinetic energy in the laboratory for 8'G6 = 00 ,3.5°,70 and 150
• The 

shapcs ()f these curves remain Gaussian with an approximate constant full width 

at haU-maximum (FWHM) of", 140 MeV. This value is again comparable to the 

experimental value'" 160 MeV [Gue 83] but measured for 12C +12 C. 

Proceeding further in our test of the Gaussian conjecture, we compare the 

theoretical angular dis tribu tion 

du J d2(J 
dO = dE dEdn (3.3.3) 

directIy with our simulations. Since (PtK 1 ]{) and O'~i for the systems considered 

hcrc are not available from the experiment they are again supplied by those ob-

taincd from our simulations. The histogram shown on the left of Fig. 3.4 is the 

angular distribution compiled from the simulations with no Coulomb interaction. 

Overlnpping on this histogram is the smooth curve derived from the Gaussian as-

sumption (eqn.(3.2.6)). The curve fits the histogram rather weIl. This result 

peaks nt 8,ab = 40 which is somewhat large compared to the existing experimen-

ta! data. Though there are difficulties in measuring 8'011 ~ 2 0 in the experiment, 
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- the data clearly indicate a peak somewhere between 0° and 2° (Day 87, Gue 83). 

This discrepancy motivated us to perform a similar calculation with the inclusion of 

Coulomb interaction (see Appendix for details). The result is visibly different; tilt' 

peak is now shifted from 40 to 2° thus bringing it closer to the experimental results. 

Coulomb contribution to the spectator angular distribution is thus non-negligible 

even at 100 MeV lA. The theoretical Gaussian distribution, as call be seell on the 

right of F;g. 3.4, shows once again excellent agreement with our calculations aftel' 

the Coulomb correction. 

We have learnt from the above evaluation of the results the capability of the 

BUU approach in reproducing diverse features of the spectator properties. It must. 

be emphasized, however, a direct comparison with the experiment has Ilot beell 

attempted here. This subject will be pursued further in chapter 6 but this time 

with the object of confronting the experimental data. 

9.4 Ma~~ di&trib'Ution and participant dynamic.9 

The theoretical effort to explain the mass distribution of high energy heavy ion 

collision is very extensive (see ref [Hüf 85] and references therein). These efforts werc 

spurred by the observed mass distribution [Hir 84] that has a power law charaeter 

,du IdA,...., A -T where T is a constant. This form of the mass distribution admits a 

simple interpretation. When a classical gas undergoes a phase transition, drop lets 

are formed whose mass distribution is precisely described by the power law stated 

above [Fis 67]. In view of the similarities between the properties of the nuclcal' 

equation of state [JMZ 83, GKM 84] and the van der Waals liquid, the power law 
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was interpreted as evidence of a nuclear liquid-gas transition [GKM 84). Should 

this conjecture be true it would have opened up fertile field of research in heavy­

ion physics. This interpretation of data was countered by models based on chaotic 

(cold) fragmentation leDL 84, AH 84] which are also capable of reproducing the 

rnass distribution. The underlying assumptions about the physical mechanisms 

responsible for fragmentation in these approaches are irreconcilable. Added to this 

scene of fragmentation theories are models based on statistical [FR 82,83, Koo 86, 

Gro 84] arguments. It appears then the mass distribution is insensitive to the 

undcrlying physical inputs of these approaches. 

In this thesis, we view fragmentation phenomena as cornplex processes driven 

by two-body nucleon correlations and mean field. The initial colliding nuclei are 

confined to a certain region in phase space. Collisions open up the initially unavail­

able phase space volume occupied by the final states. Meanwhile, the mean field 

tends to bind the nucleons into pockets we caU nuclei. Whether or not the mean 

field and the two-body correlations can drive the coaiding systems to astate where 

the variety of assumptions about fragmentation become valid is a question we are 

not about to address here. What we do hope to achieve here is to reproduce certain 

fentures of the mass distribution with our dynamical model. 

We performed near central collisions of 40Ga on 40Ga at 92 MeV/A and 72 

Ale l'lA. where experimental data are available in this energy range [Jac84]. At each 

bombarding energy, 30 simulations were taken in the impact parameter range 0 < 

b ~ 4.2fm. AlI the calculations here were done without the additional complication 

of the Coulomb interaction. The precautions exercised in the last section on how 
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- to define 8. final fragment were similarly taken. 

The events obtained from the simulations are shown in fig. 3.50. for beam cn­

ergy at 92 MeV / A . The mass distribution is characterized by a rapidly decrcl\Sing 

yield from A = 1 to 9 and is relatively fiat beyond A~12. The spectrum thcn riscs to 

peak at A~20. This spectrum combines the contributions of the spectator and par­

ticipant fragments. The experimental data cited in the last paragraph [Jac 87] are 

however for fragments from the intermediate rapidity region (or the participants). 

We imposed the momentum eut, as described in section 3.3c, to filter the spectat.or 

contribution of the spectrum. Fig. 3.5b shows two very distinct distributions. Par­

ticipant fragments populate mainly the low mass region and their yield decreases 

rapidly with fragment size. The spectator fragments are seen to be predominantly 

large clusters. Apart from its contribution to the large mass region the spectators 

are also seen to contribute to the very small mass region. The low yield in this 

region can be explained by a scenario whereby spectator fragments are occasionally 

destabilized by collisions and subsequently fragments iuto sever al small clusters. 

More quantitatively, if we constrain ourselves to fit the participant spectrum 

with the power law then our calculation gives the exponent T ~ 1.5 whereas the 

experimental value is almost 3.0. The initial faH-off of the distribution in our modcl 

is too slow. Bauer et al. [BBD 87] who performed central collisions using the same 

model for 20 Neon 20 N e at 100 MeV / A found the exponent to be close to our value. 

This is indicative of the insensitivity of the participant spectrum to the size of thl' 

colliding systems. 

As the beam energy is reduced to 72 MeV/A, the qualitative character of the 
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mass distribution changes (Fig. 3.6a). The contribution to the higher mass region 

is enhanced to compensate for the reduced yield in the intermediate mass region 

(A = 6 -15). The strong peak at high mass r('gion occurs at A ~ 20. U pon applying 

the momentum cut, as described before, the spectrum of the participant events are 

found to retain the character of the unfiltered spectrum (see Fig. 3.6b). Data for 

A ~ 14 are, however, not available to confirm this feature of our results at lower 

energy. This calculation serves to clarify the effect of lowering the beam energy on 

the participant observable. 
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Chapter 4: Nuclei with diffuse surfaces 

The theoretical description of nuclear reactions at low ellergy requires aIl ac-

curate preparation of the nuclear ground state. Such a consideration is an essentit\l 

aspect of nuclear fusion studies [Dav 85] where the Hartree-Fock approach pro-

vides the basis for the construction of ground states. Realistic ground states can 

be achieved in this approach [VB 72, BKN 76, Neg 82]. The wavefunctions of tlw 

nucleons are determined self-consistently by the Schrodinger equatioll with an un-

derlying interaction. Since the basis of nuclear dynamics presented in chapter 2 is 

semi-classical in content it is intrinsically satisfying to stay within the serni-classical 

approach in the construction of the ground states. The Thorna..,-Fermi approxi-

mation (TFA) as expressed in equation (2.2.38) is a solution to the lowcst order 

truncation in the li-expansion of the Hartree-Fock equation. This approximation 

is capable of generating diffuse nuclear surfaces provided the potential is finite in 

range. The extension of the TFA [RS 80, Coo 88] which represcnts a trullcation of 

the next order in the n-expansion (eqn. 2.2.31) wiIJ irnprove the nuclcar surface. 

This alternative, however, requires the extension of the Vlasov equation. A rnethod 

of solving the time propagative solution of the next order in the h-expansion is 

not known, even numerically. Consequently, we will ouly consider groulld states 

derivable from the TFA. 

The approach taken in this chapter to generate the nuclear surface is an cx-

tension of Maddison and Brink's work [MB 82]. They cousidered a simple Skyrrne 
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type interaction with a Yukawa term in one dimension. This form of interaction is 

prccisely the so-called BKN interaction [BKN 76]. We extend this work to three 

dimensions and consider cases with and without the Coulomb interaction. In fact, 

thcir work (MB) came to our attention onlyafter the completion of our calculations. 

The conventional form of the mean field potential used in heavy-ion reactions 

is a zero range potential with three adjustable constants: 

Ua(p) = Ap(r") + Bp~(r"), (4.1.1) 

and it is derivable from the Skyrme forces. Within the TFA (eqn. 2.2.38) the 

self-consistent equation to be solved is 

1 47r [ ] 3/2 ( ) p(r') = (27rh)3 "3 2m(~p - U(p» f) ÀF - U(p) (4.1.2) 

When U = Ua, this equation is an algebraic equation in p whose solution for a finite 

nucleus of radi us R is 
p( T) = Po r::; R 

(4.1.3) 
=0 r>R 

where Po is a constant. Zero-range potentials in the TFA thus do not generate 

diffuse surfaces. Let us now con si der the BKN potential 

(4.1.4) 

The fini te range interaction, v(T', ri), has the familiar Yukawa Corm 

_ elF-ril/a 
v(r, r') = Vo ... 

Ir - r'lla 
= 411'Vo L ft(r, r' ,a)Ylm(6, t/»Yt':n(6', 4>') 

(4.1.5) 

l,m 
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, ... 

where a is the range of the force and Vo determines its strength. The radial function 

in the above expansion has the structure 

(4.1.6) 

where it( r < la) and kt( r> / a) are modified spherical Bessel {unctions. For spherically 

symmetric ground state nuclei only the .e = 0 term in the expansion survives. Thus 

on1y the !ollowing functions need to be considered: 

. () sinhr 
'0 r =-­

r 

e-r 

and ko(r) = -
r 

(4.1.7) 

The potential of the spherically symmetric system then simplifies to become 

U(r, p) = U.(p(r» + U,(r) (4.1.8) 

where U. is given in eqn.(4.1.1) and the finite range Yukawa potential is 

U,(r) = J v(r, ri )p(ri )d3r' 

Vi [
e-r/a lr d 1 '2 sinh(r' la) (') 

= 411' 0 -/- r r '1 p r r a 0 r a 
(4.1.9) 

sinh( rIa) 100 
d ' '2 e-

r
' la ( 1)] + r r ---p r ria r ri la 

When U of the expression ab ove is inserted into the TFA (eqn.(4.1.2) ) wc find 

that it is no longer an algebraic equation in p(r), hence constant dcnsity is Ilot a 

solution. The self-consistent equation with the BKN potential reads 

(4.1.10) 

where 

c = _3_ (~ (211',,)3 ) 2/3 

tOm 47r "( 
(4.1.11) 

54 



This equation is the semi-classical counterpart of the Hartree-Fock self-consistent 

equation for the nuclear ground state. The self-consistency condition for the wave-

function has been replaced by the density function. Semi-classical method further 

constrains the range of the density to lie within a eut-off radius R through the con-

dition >'F - Uer, p) ~ O. The space of solutions, p, allowed must satisfy the particle 

number cOllstraint 

(4.1.12) 

For the moment we will consider spin-isospin saturated system (1 = 4) with no 

Coulomb interaction. 

The iterative procedure of solving eqn.(4.1.10) begins with a guessed density 

and >'F. From these initial values 

(1). we evaluate UlI (r) (eqn.(4.1.9) ), the Yukawa potential. 

(2). Using the known >'F and Ur from step (1) a unique function p in the interval 

o < r :5 R is evaluated from eqn.( 4.1.10). To avoid double valuedness of p, 

the parameters of the BKN interaction must he chosen such that the I.h.s. of 

eqn.( 4.1.10) is single valued. 

(3). \Ve now check to ensure that the new p(r) gives the correct particle r.llmher to 

a prescribed accuracy. If this is not fulfilled ÀF is adjusted using the particle 

number constraint 

N = J d3rp(r) 

41r 1 IR 3 [ ] 3/2 = "3 (21r1i.)3 Jo d r 2m(ÀF - Uer, p)) . 

(4.1.13) 

Once a new >'F is obtained, steps (2) and (3) are repeated until the solution 

converges. 
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(4). Steps (2) and (3) iterate for correct >'F and p \Vith a fixed U" given nt st<,p 

(1). U'IJ must then be updated with a new p. Having updated UII , steps (2) 

and (3) are repeated. The self-consistent procedure converges when ..\FI p and 

U" simultaneously converge. In practice, the convergence of ..\F is sufficiellt to 

ensure p and U JI converge also. 

In the numerical procedure, outlined above, the functions were placed on suffi-

ciently fine grid size Âr = 0.0125 fm and the >'F value was calculated to 10 figures of 

accuracy. We further performed all the calculations with the grid size (or spacing) 

doubled but keeping the accuracy of ÂF unchanged. The self-consistent densities 

from these two cases agreed to 6 significant figures at each point on the grid. An 

additional test was also done to determine the uniqueness of the converged den-

sity. A necessary though not a sufficient test is to ensure uniqueness of the solution 

starting with drastically difFerent initial densities. We took a square and a smoot.h 

Myers' density (see next paragraph) for this purpose. The solutions were found t.o 

be identical up to 6 figures at each point on the grid. 

The self-consistent calculation was perfomed for 4 He, 160 and 4 0 Ca nuclci with 

the BKN force parameters unaltered: 

A = -373.3MeVfm3
, B = 3238.1MeV fm6

, (7=2 
( 4.1.14) 

Vo = -363.0MeV a = O.45979fm 

The self consistent densities for these nuclei are shown in the first column of Fig. 

4.1 . We have ruso overlapped an analytic density distribution given by the Mycrs' 

formula shown in dotted lines. This form of the densi ty has a reasonable surface b(~-

haviour and we thus regard it as representing the experimental density distribution. 
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The Myers' density distribution for a nucleus of size A is given by [Mye 78] 

( ) [1 (1 R) _R/iisinh(r/ii)] r < R pr=po - +-=-e _ 
a rIa 

[
R l e- r / à 

= po â cosh(R/a) - sinh(R/â)J rlâ r> R. 

(4.1.15) 

where R = 1.18Al/3 fm and a = 1/../2 fm. This density distribution has the 

property that its density gives the right number of particles 47r J drr2 p( r) = 431r poR3 

with the choice of R above and Po = O.145fm-3 • 

In aIl three nuclei (Fig. 4.1) the BKN force parameters give poor charac-

terization of the nuclear surface. The central density is always higher than the 

Myers' distribution and the surface density decreases too rapidly. We contrast this 

to realistir. surfaces obtained by Bonche, Koonin and Negele [BKN 76] where the 

self-consistent calculations were done in the Hartree-Fock approach. Evidently, the 

truncation of the kinetic equation at the lowest order in the n-expansion has resulted 

in self-consistent densities that have poor characterization of nuclear surfaces. Since 

our approach to self-consistent solutions is qui te different from the Hartree-Fock's, 

we have the freedom to choose a different set of parameters for self-consistent cal-

culation. This {reedom will be exploited in section 4.3 to improve upon the nuclear 

surface. 

Even if the self-consistent density obtained is unique it does not follow that 

the energy of the system is minimized by this density. We are thus led to examine 

the stability of our solution to eqn. (4.1.10) . This is analogous to the question of 

stabilityof the Hartree-Fock solutions [Tho 61]. 
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" 4.2 The variation al principle and .'Itability matrix 

The solution we seek for the ground state must minimize the total enCl'gy of 

the system. The problem of obtaining an extremum and determining thllt. it is a 

.minimum of the total energy can he understood from the variational principlc. The 

starting point is to construct an energy functional of the system and then take the 

first variation to obtain an extremum condition from which a solution is found. 

From the extremum solution the second variation is evaluated. Stability of the 

solutions requires the second variation to be positive definite. 

The kinetic energy of a system of N nucleons is 

(4.2.1) 

Upon USillg the Thomas-Fermi ansiitz of the Wigner function, the kinetic energy 

functional hecomes 

(4.2.2) 

where the coefficient C is given by 

c = _3_ (~ (271'n )3) 2/3, 
10m 411' 'Y 

(4.2.3) 

and T( T) is the kinetic energy density. The corresponding potential energy functional 

lS 

where the potential energy density is 

V[p(T)} = l P 

U.(p)dp + ~p(r) J d3r' p(r')v(r, ri) 

2 

= L: . ~ 1 C.pa i +1 (T) + ~p(?) J d3r' p(r')v(r, ri) 
. 1 (7, .= 
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". 

In line number two above, A and B Skyrme parameters have been relabelled as CI 

and C2 respectivelYi and u, > 1. The sought-for energy funet.ional, from eqns.( 4.2.2) 

and (4.2.4) , is 

E[p] =T[p] + Vrp] 

= C / d3rl/3(rj+ 

2 

L (T, ~ 1 Ci f d3rpC1·+I(f) + ~ J d3rd3 r' p(r')v(r, r')p(T) 
1=1 

The variational parameter of E[p] is the density itself. 

(4.2.6) 

When E[p] is expanded in Taylor series about the ground state Po, we obtain 

[PN 62] 

E[p] = E[Pol+ J d3rh(f}6p(T) 

+ ~ f d3rd3r'6p(r')S(r,r')6p(rj + ... 

where the Hamiltonian can he identified to be 

h(rj = c5E[poJ 
6p(rj 

and the interaction energy matrix as 

( 4.2.7) 

( 4.2.8) 

(4.2.9) 

At the moment 6p is an arbitrary small variation from po, the ground state den-

sity. The extremum condition for E[p] subject to the particle number constraint is 

formally wri t ten as 

(4.2.10) 
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where À is the Lagrange multiplier. From the second term of the Taylor explUlsioll 

(eqn.(4.2.7) ) this equation implies that 

(4.2.11 ) 

We thus arrive at the extremum condition 

h(r) - À = 0 (4.2.12) 

where the Hamiltonian (of eqn. (4.2.8) ) is 

+ ~ C.pCJ'(r) + J dlr'v(r,r')p(ri). 

• 
(4.2.13) 

(from here on the subscript '0' of Po is suppressed). Now comparc the extrcmum 

condition (eqn. (4.2.12» to the self-consistent equation (4.1.10) we solvcd pre-

viously. With the identificatjon À = ÀF they are seen to he idelltical. Renee, 

the self-consistent density obtained belore corresponds to an extremum of the en-

ergy functional E[p]. Stated differently, the vanishillg of the Poisson hracket. (eqn. 

2.2.36), from which the self-consistent solution was derived, is equivalent to the so-

lution of the extremum "ondition (eqn.(4.2.12) ). These two statemcnts af(' (!CJuiv-

aient because they are simply stating the equilihrium condition of the ground state 

in different forms. 

The construction of the energy functional which enables the derivation of the 

self-consistent equation from the variational principle has served to reproducc known 

results. However, we can proceed a step further by examining the stability of the 

self-consistent solution. The derivation of the extremum condition requires th(! 
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( cxplicit introduction of a Lagrange multiplier to constrain the particle number of 

the system. Alternativcly, we can also explicitly state the constraint simply as 

( 4.2.14) 

From the extremum condition, h(?) = >-F, the first variation ofthe energy functional 

(eqn.( 4.2.7) ) vanishes due to the particle numher constraint. So to guarantee that 

Erp] evaluated at the ground state is a minimum the second variation must he 

positive definite 

( 4.2.15) 

This condition may be physically interpreted as the excitational energy resulting 

from small departures from the ground state density p. A condition ensuring the 

stability condition \4.2.15) to hold is that the following eigenvalue equation 

( 4.2.16) 

has only positive eigenvalues, f > O. Upon performing the functional differentiation, 

the explicit fnrm of the S-matrix reads 

(4.2.17) 

Vve calI this the stability matrix in view of its role in determining the stability of 

the self-consistent density. This is a (real) symmetric matrix due to the symmetric 

propcrty of the Yukawa potential. It is curious that the second variation of the 

kindic energy tcrm is actually singùlar outside the nucleus. This ill-behaved S-

matrix caUs for special care in solving the eigenvalue equation (4.2.16) . 
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For each eigenvalue~, there is a corresponding eigenfunction p,. Stability of tlu.' 

ground state requires that fi > 0 for i's. Each bpI represents a variation I\\vay from 

the ground state. It is then possible to relate these eigenfunctions to the physirnl 

vibrational modes of the nucleus. We must, however, add a word of caution ht'ce 

since the eigenvalues, El, do not have the dimension of energy instcad th~y have' 

the dimension of MeV fm 3
• Nevertheless, this connection cao b(· made, and t)l(' 

following chapter is exclusively devoted to the extraction of the solutions of stabiJit,y 

equation (4.2.16) . These solutions will then he compared in detail with physiclli 

vibration modes. For this reason we have deferred the rnethod ernployed to solve 

eqn. (4.2.16) . Suffice it now to mention that El 's are positive defillite and that they 

are bounded from below. 

4.9 Self-conJiJtency with Coulomb interaction 

Let us recall the parameters in the phenomenological DKN interaction. The 

BKN interaction is 

J 
-jr-rïl/a , e ... 

U(r,p) = Ap(T)+Bpl7(T)+Vo d3 r ...... p(r') 
Ir - r'lla 

(4.3.1) 

Parameters A and Vo are negative which implics the interaction associatcd witl! 

them gives rise to attractive force. The interaction associat(·d with pammct.er n, 

heing positive, provides a repulsive force. The combinatioll of the attractiw' amI 

repulsive forces, which are the basic aspects of the nuclear forces, gives risc to the 

saturation of nuclear matter. In the nuclear matter limit this interaction ff~ducc to 

the usual Skyrme interaction form 

( 4.3.2) 
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where po is the nuclear matter density. The Yukawa interaction, in this limit is 

proportional to po and thus has been absorbed into the first term of the eqn. (4.3.1) 

. We observe that only in the case of fini te systems has the Yukawa interaction 

brought any modifications to the Skyrme interaction. 

Parameters A, B, Vo and a can he adjusted to improve upon the properties 

of the nuclear system. It is, however, preferable to restrict the parameter space 

so as to retain the nuclear matter properties of the BKN interaction. The BKN 

interaction fixes the parameter combination (A + 411' Voa3 ), this results in a reduced 

parame ter space of only two dimensions. Suppose the strength of A is increased, 

the binding energy would increase whereas increasing the range parameter a would 

increase the thickness of the nuclear surface and thereby reduccs the binding energy. 

A proper choice of parameters should then optimize our demand for a reasonahle 

binding cncrgy and a good surface behaviour. 

With these desired features in mind, we conducted a parameter search and 

concluded that the BKN interaction without the Coulomb interaction over-binds 

tht' nucleus. For example, the 40Ca system with any reasonable parameters would 

giv(' EblA:::::: -11 MeV. To compare with experimental binding energy (see Table 

4.2) wc lleed to extend the BKN interaction to include the Coulomb interaction. 

The Coulomb interaction removes the isospin degeneracy. This necessitates the 

dIstinction between the proton (pp) and neutron (Pn) densites with P = Pp + Pn. 

The modified Wigner function with the degeneracy removed is given by 

(4.3.3) 

where 1 equaIs to 2 and q refers to the proton or neutron index. Protons and 
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neutrons now feel different potentials, and they are concisely written as 

(4.3.4) 

The last term on the right of this equation is the Coulomb potential 

2/ 3' 1 -Uc(f) = e d r.. ... pq(r') 
Ir - r'i 

(4.3.5) 

The corresponding self-consistent equation for either the proton or neutron density 

IS 

(4.3.6) 

Equation (4.3.6) couples Pn and Pp through the Skyrme potential (i.e. the 

p-dependent terms). These cou pied equations must be solved simultaneously. Tlw 

calculational scheme is condensed in the fiow chart attached. Initially wc simply 

guess the values of ,xq and Pq from which the potentials Uq(f) are evaluated. From 

these potentials we proceed to iterate eqn.( 4.3.6) for Pq 's until they converge; and 

we caU this set of calculations loop A. Loop B adjusts the proton and neutron 

numbers separately, which results in new ,xq 's. Loop A is an intcrnalloop of il 80 

it is iterated each time the ,xq '8 in Ioop B neecl to be adjusted. Having computc>d 

the densities pq with the correct proton and neutron number, the potentials Vq urc 

again updated. The outermost loop Censures simultaneous convergence of Pq, ,xq 

and Uf' We performed this calculation with the same degree of accuracy 8.'i the 

previous self-consistent calculation. 

We again conducted a parameter search with the new potentia} Uq(rj. The 

search was done for both the stiff (0' = 2) and soft (0' = 7/6) potentials. The stiff 
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potentials that optimize our desire for improved surface and reasonable binding 

energy are the STIFFI and STIFF2 in Table 4.1. The attractive component of the 

STIFFI potential is entirely absorbed in the Yukawa potential whereas the STIFF2 

potential has a large range for parameter a with non-zero A parameter. Its surface 

behaviour is very similar to the STIFFI (see Fig. 4.1 column 2 and 3) and the 

central density lies between those obtained with the BKN and STIFFI potentials. 

We have also displayed the proton and neutron self-consistent densities of the 

STIFFI in Fig. 4.2 and their potentials for 4He,16 0 and 40Ca in Fig. 4.3. Due 

to the presence of Coulomb repulsion the central density of the proton is always 

lowcr than neutron density, and the reverse is true at the surface. This behaviour 

at the surface is accidenta! for nuclei having equal number of protons and neutrons. 

Had we chosen an asymmetric system such as 208 Pb (N > Z) the proton density 

would always be lower that the neutron density. It is worth noting that the lack of 

quantum effects has completely smoothed out the central density (see also ref [RS 

80]) . Physically the 160 nucleus is known to have maximum density not at the 

origin. This feature is, of course, beyond the scope of the Vlasov formalism. The 

potentials in Fig. 4.3 are likewise monotonically smooth. They display expected 

bchaviours. Due to the fini te range interaction, the potentials extend beyond the 

eut-off radius R. For the 40Ca nucleus, the central potential's depth for protons is 

about -401\1 e V and vanishes at 6 fm. From then onwards the Coulomb contribution 

completely dominates. The neutron potential is very similar to the proton potential 

apart from a shift in its depth due to the absence of Coulomb interaction. The depth 

rcaches - 50M e l'and the force extends as far as 8 fm. 
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The self-consistent density generated hy the BKN interaction represcnts lln 

improvement in the description of ground state nuclei over the conventionru Skyrmc 

interaction. The readjustment of the BKN interaction parameters further improvc 

upon the surface density and gives good fits to the experimental binding energy. 

~.~ Time evolu.tion 01 the Jell-conJÎJtent denJity 

In the preceeding section, the self-consistent densities were obtained for ground 

states possessing spherical symmetry. This allowed significant simplification in the 

extraction of the self-consistent densities. The method of generating the ground 

states will he used in chapter 6 to initiaIize colliding systems in heavy-ion renctions. 

In course of the reaction, the symmetry possessed by th~ ground states is destroycd 

by nucleus-nucleus interactions. Under sueh a eireumstance, the dynamics must be 

solved in 3-D. The exercise of this section is to show how accuratcly the n('wly found 

ground states ean be maintained with the numerical method outlined in chapter 2. 

In other words, we are testing the accuracy of the Vlasov dynamics. W(> perfol'lIl 

this test for the 40Ca nucleus in full 3-D computation. 

Given the self-consistent proton and neutron densities of 40Ca nucleus, wc cau 

Monte Carlo these distributions using the test particle mcthod just as descrihcd in 

chapter 2. The moment a of the test particles are determined by the self-consistent 

densities through the relation PF(?) - pl/3(rj. With 200 test particles pcr nucleon 

it is possible to map the self-consistent density very well as can be seen in Fig. 4.5 

at t = 0 fml c. Similarly, the rms radii and momenta of the nuclei were found to he 

almost exactly mapped. 
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From the self-consistent densities mapped by the test particles the potential 

energy is evaluated. The Yukawa and Coulomb potentials are respectively given by 

(4.4.1) 

and 

Uc(T) = e2 f d3
r' jr ~ rIIPp(rl ) (4.4.2) 

Since the positions of all the test particles are known it might at the first glance be 

possible to compute the potentials directly. In practice, this straightforward method 

of evaluating the potentials is prohibitively long because the number of evaluations 

is proportional to the square of the number of test particles. A more efficient way 

is by solving for the potentials in their differential forms. The Yukawa potential is 

the solution of the equation 

( 4.4.3) 

and the Coulomb potential is the solution of the Poisson equation 

(4.4.4) 

These differential equations are solved by a standard numerical method (see Ap-

pcndix). The above equation must also be supplemented by specified boundary 

conditions Uy(rbp) and Uc(Tbp), where Tbp are the boundary points. 

The total energy of the system can now be calculated and it is given by 

1 AN 2 

ET=NL;~ + 
1 

J d3rV,(p) + ~ J d3r[Uy(T)p(f) + Uc(rjpp(T)] 
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l - where V.(p) is the potential energy density of the Skyrme interaction (first term 

of eqn.( 4.2.5». Beeause of the loeal density fluctuations due to S.nite number 

of test particles used the nucleus is mildly excited. This excitational energy is 

approximately 2 MeV 1 A just as found in section 3.3. 

The time evolution of the density at 0 , 30, 60 and 90 fm/e are exhibited 

in Fig. 4.5. The surface of the nucleus is seen to be distorted somewbat but it 

retains much of its original charaeter. At a11 times, it is more diffuse than t.he 

self-consistent density. This feature is an indication of the limitations in the use of 

numerical parameters and it is also reflected in the case with square density. 
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Chapter 5: The stability matrix and vibration modes 

5.1 Introd'l.: ction 

The theoretica1 issues to be developed in this chapter are a direct extension 

of the last chapter. To recapitulate, it was found necessary to ensure the stahility 

of the solutions of self-consistent equation (eqn. 4.2.12). The necessary condition 

for this to hold is that the eigenvalues of the stability matrix S( r, rï ) be positive 

definite, as expressed in eqn. (4.2.16). The equation in question is a linear integral 

equation whose solution is standard. In section 5.2, this equation will be solved by 

an expansion method. The eigenvalues will he shown to be positive definite for a 

chosen set of parameter called the STIFF1. This confirms that the self-consistent 

density obtained in the last chapter for this parameter set indeed minimizes the 

energy functional of the system. 

The eigenfunctions corresponding to these eigenvalues display behaviours char­

aderistic of giant (or collective) vibration modes as found in liquid drop and scaIing 

models [BM 75]. We will show graphically the extent of agreement with these mod­

els. Having shown this we take a formaI approach to the issue raised by the physicaI 

origin of the vibration modes seen in the eigenfunctions of the stability matrix. The 

mean field dynamics of the thesis is based on the time-dependent Vlasov equation 

(TDVE), so it seems entirely natural to develop the eigenmodes of nucIear vibrations 

from TOVE. The resulting solutions CM then be compared with the eigenfunctions 

of the stability matrix. An exact solution of the TOVE is formidable, thus various 

approximations are invoked to solve it. 
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') i - 5.! Eigen·$ol'Ution~ of the ~tability matrix 

The stability equation to be solved is the linear integral equation 

(5.2.1 ) 

where E is the eigenvalue corresponding to eigenfunction g( r) which was called the 

transition density in the last chapter. This eigenfunction is required to satisfy the 

particle number conservation 

(5.2.2) 

Eqn. (5.2.1) together with the constrrunt (5.2.2) forms the statement of our problcm. 

We construct solutions of the multipole type 

f. = 0,1,2, ... (5.2.3) 

where the radial function 9t(r) is determined by the stability equation. Physicl11 

vibrations possessing this structure are weIl known in the nuclear liquid drop mode} 

[RS 80, BM 751. Wf' distinguish two types of solutions corresponding to e = 0 and 

f ~ 1: 
g(rj = 9o(r) e = ° 

(5.2.4 ) 

These two kinds of solution are inherently distinct. Due to constraint (5.2.2) ,90(r) 

solution becomes a compressional mode whereas g,( r) (f. > 1) solutions could he 

interpreted as surface modes of different multipole orders. 

The solutions for the case e > 1 satisfies the constraint (5.2.2) automatically 

due to the presence of the spherical harmonics Y,m . For e = 0 case, 90 itself has 
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to he constructed to fulfill this constraint. We shall first discuss how to construct 

iio and then 9t. The technique to he employed throughout this section to solve 

eqn.(5.2.1) is the expansion of the radial functions in terms of a complete set of 

functions. We write 
00 

90(r) = L b~CPn(r) (5.2.5) 
n=1 

where b~ are unknown coefficients to he determined by the stahility equation. The 

basis functions cpn are constructed from the product of spherical Bessel functions: 

=0 r>R 

k
n 

= (n + 1)11", 
R 

(5.2.6) 

n = 1,2, ... 

where R is the eut-off radius. In this choice of R, we have confined the variation 

of 9o( r) within the nucleus. This set of functions ensures 90 will satisfy condition 

(5.2.2) . Since {jo(knr)} is a complet.e set of functions, the effect of multiplying a 

wcighting factor jo{ ko r) to the elements of this set do es not change its completeness 

property. 

The CPn'8 are independent but not orthonormal to each other. They can be 

orthonormalized using the Gram-Schmidt procedure. We calI the orthonormalized 

functions e;?n, so go can now be written as 

00 

90(r) = ~ a~e;?n(r) (5.2.7) 
n=1 

where a~'s are the new coefficients. Since 90 cao only be determined up to a 

normalization constant we have the freedom to normalize it to unit y: 

J d3 r[go(r)J2 = f:[a~J2 = 1 
n 

(5.2.8) 
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The construction of basis functions for f ~ 1 case is much simpler. We expl1nd 

where 

00 

Yt(r) = L a~cp~l(r) 
n=1 

-t ( ) kn . (k ) C()n r = IiL:TiJo 'nr 
v27rR 

=0 

k-~ 
n - R 

r>R 

n = 1,2, ... 

(5.2.9) 

r$R 

(5.2.10) 

With this choice of basis functions, {<p~} is a complete set of orthonormal functiollB. 

We ruso require the norm of fu be normalized to unit y as in eqn.(5.2.8). The 

unknowns in 90 and 9t are now contained in the coefficients a~ and a~ respectivc1y. 

They are determined by the stability eqn.(5.2.1) . 

When the multipole solution 9/Ytm is substituted into the stability equation 

the radial function 9t satisfies an integral equation of the structure (e 2: 0) 

(5.2.11 ) 

where the radial function of the Yukawa potential is given by 

(5.2.12) 

and t.he kinetic plus t.he Skyrme potential part of the S( r, ,.i) matrix is 

2 

va(r) = 1;Cp-l/3(r) + L:C,0',p17.-1(r) 
1=1 

(5.2.13) 

Upon substituting the expansions of fit (i ~ 0) in eqns.(5.2.7) and (5.2.9) , wc 

obtain 

f: a~ (f<P~(r) - v.(r)<p~(r) - 47rVo J dr'r,2C()~(r')!t(r, r', a») = 0 
n=1 

(5.2.14) 
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( 
, 

NoVI multiply this expression by rp~ and perform the volume integral with respect 

to the r variable to gct 

n 

.where we have defined Il stahility matrix on the function space to he 

Snm = f d7·r2<p~(r)v .. (r)c.p:n(r)+ 

41r Vo J dr' dr(rr' )2cp~(r')!t( r, r', a )cp:n(r) 

In matrix notation, the eigenvalue equation reads 

(5.2.15) 

(5.2.16) 

(5.2.17) 

where the eigenvector ât = (aL a~, ... ) and the eigenvalue for l multipole is now 

lahelled ft. We have thus transformed the eigenvalue problem in the integral form 

(eqn.(5.2.1) ) into a regular matrix diagonalization problem. 

For each f we have a different set of eigenvectors {â t } corresponding to eigen-

values {l}. In this manner, each multipole mode l has, in principle, an infini te 

number of soluUons for an infinite size matrix. Before interpreting the eigenvalue 

ft and eigenfunction 9t, the reliability of our diagonalization procedure ought to he 

considered. The only relevant spatial dimension in constructing Snm is the radial 

coordinate. The hasis functions rp~ were placed on 1-D grid space of even grid 

size Ôr = 0.0125 {m (the same grid size was used in the last chapter to find the 

self-consistent density). On the same grid space, the matrix elements Snm were 

evaluated. Snm is sY,hIretric with respect to its indices 50 only those elements 

with n ~ m need he evaluated. In the matrix diagonalization, the eigenvalue of 

interest for each e is the lowest one. This permits us to truncate the dimension 
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(N) of S sinee the size of the matrix will determine the aceuracy of this low('st 

eigenvalue or equivalently its eigenfunction as N is successively incren..~ed. In fad, 

there are two numerical parametero:> N and 6r. Convergence of a solution CllIl o1l1y 

he secured by increasing N and refining ~r simultaneously. The parameter set. W(' 

selected for study was STIFFl. We tried N from 25 to 200 IUld ~r in the illtcrvnl 

0.0125 - 0.050 fm. Sufficient convergence of the eigenvalues was found for N = 100 

with ..1r = 0.0125 fm. The error in the eigenvalues in Table 5 is less thcll 0.5 

MeV/m3
• 

The st ability of three symmetric systems was studied: 16 0,40 Ca and 208 Pb. 

Evaluation of Snm requires that the self-consistent densities for thcse systC'rIlS b(· 

known. The method of ohtaining these densities has been extensively disCUSH(·d 

in the last ehapter. Table 5.1 displays the -~genvalues of the stability matrix for 

multipoles l = 0 - 5. The eigenvalues are indeed positive definite except for small 

(negative) values of the lowest eigenvalues 3een in i = 1 case. These eigcnvahlf's 

can be shown analytieally to be zero from the stability equation bc("aUSf~ e = 1 

case corresponds to the translational mode of the nucle'ls. Non-zero eigeuvalups 

obtained here reflect the error in our numerics of approximatcly 0.3 MeV 1m3
• 

The eigenvalues of the stability matrix for i = 0 - 5 are summarized in Table 

5.1. For each e there are N number of eigenvalues but only the first four arf' 

displayed. They are characterized by the number of nodes of thcir corrcspouding 

eigenfunctions. For a fixed l, the eigenvalue increases with the number of nodei> 

of its eigenfunction. The f = 0 mode does not possess a zero-node eigcnfuuctioll 

in contrast to l ~ 1 modes. Apart from this difference, the eigenvalues of aU l's 
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( are seen to increase with e values. By inspection, they are seen to decrease with 

the size of the system. The dependence of the lowest eigcnvalues on the size of 

the system and the number of nodes they possess are indicative of the physical 

vi bration modes. We plot ted the eigenfunctions corresponding to the lowest (first) 

eigcnvalue for e = 0, 1 and 2 cases in Fig. 5.1. Striking characteristics of the 

lowcst eigenfunctions are observed here. The first eigenfunction of the e = 0 case 

exhibits characteristics of a monopole transition density which has only one node. 

For f = 1, the lowest eigcnfunction corresponds to the translational mode; and for 

C = 2 it corresponds to quadrupole surface vibration. As a measureof the agreement 

of these eigcnfunctions with the physical transition densities we compare them ta 

bettcr kllown giant vibration modes. 

Nuclear vibration can be viewed as a drop of classical fluid oscillating about its 

sphcrically symmetric equilibrium density p. For multipole mode vibrations e ~ 1, 

the fluid motion is assumed ta be irrotational and incompressible: 

~ X V(f) = 0; (5.2.18) 

whcre l'(T) is the velocity field of the fiuid at r. Ifwe write li in terms of the velocity 

potentinl 4> for irrotational fluid, V (i'i = - V ifJ, the incompressibili ty condition 

OCCOIllCS 

(5.2.19) 

The general solution of ifJ satisfying proper boundary conditions is a linear combi-

nation of rtYlrn(O, cP) functions. From the conti nuit y equation, wc have 

â - ( .... ) .... ( - ) at0p=-V. pl' =\7. pVIP (5.2.20) 
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- The transition density for multipole vibration is obtained from this equation by 

substituting the solution of 4> and assuming normal mode vibration. Wc obtain 

e = 1,2, ... (5.2.21) 

with p'(r) = :rP(r). The radiai dependence in ÔPt(r) can he identified with 9t(7') 

in eqn.(5.2.9). In fact, 9l(r) can be shown directly from the stability equation 

to be proportional to r t in the vicinity of the origin. However, it is not obvious 

how the p'(r) factor can be extracted from the same equation. In Fig. 5.2, tht' 

lowest eigenfunctions of the stability equation for e = 2 and 3 cases are comparcd 

to the transition densities of the liquid drop model (eqn.(5.2.21 \ ). With the samt' 

equilibrium density p, comparisons are made for 160,40 Ca and 208 Pb nuclei. The 

agreement hetween them is almost perfect in the interior region and at the surfnce 

of the nucleus. The intermediate region of bpt(r) shows a slight deviation from 

9t(r). 

Monopole mode involves the compression of nuclear density. The incompress­

ible assumption V· V = 0 must certainly be relaxed in the derivatioll of i ts transi tion 

density. The velocity potential l/10 for this mode is usually takcn to he r'J.. From tlH> 

continuity equation, the monopole transition density with this velocity poü!ntial is 

6p(r) ex: (3p(r) + rp'(r)) (5.2.22) 

Alternativcly, if nu cleon density distribution is scaled by a coordinatc transforma­

tion r -t Ctr, 6p again yields the expression above. Hence, 6p of this form if! callccl 

the scaling transition density. 
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As can he seen in Fig. 5.3, the scaling density deviates substantially from g", 

the solution ohtained from the stability equation. This deviation is particularly 

severe in the interior of the nucleus. go shows almost no change in its character 

with nuclear size. It is fiat throughout the nuclear interior but the 3caIing density 

changes significantly. Curiously enough, it seems to approximate 90 very weIl for 

208 Pb nucleus. 

The monopole mode is not as well reproduced by 90, but we must remark 

that the scaling density is an approximation of the eigenfunction of this mode. 

The similarity between the multipole mode solutions 91 and bPI of the liquid drop 

model is particularly impressive. This remarkahle similarity warrants a systematic 

examination of the physical origin of the eigenfunctions of the stability equation. 

BeCore doing so, we add the following comments. In the limit of small amplitude 

motion, p = po + bp(t), the density matrix form of the TDHF equation can he 

lincarized to read [RS 80] 

(5.2.23) 

The stability matrix S is precisely the R.P.A. matrix used to find the eigenmoùes 

of physical vibrations. This is entirely similar in structure to the stability equation 

(( 5.2.17) ). It should be stressed that our stabili ty equation is derived from static 

considerations but eqn.( 5.2.23) is deduced from the TDHF dynamics. To show the 

full ~uuùogy between the semi-classical and the quantum approaches, we have to 

derive a similar statement to eqn.(5.2.23) from the TDVE in the smaIl amplitude 

limit. This derivation will be followed in the next section. The algebra involved 

will be considerable. Chapters 6 is indppendent of the results of this section. 
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L 5.9 Vibration mode" in the linearized Vla"ov approach 

Various approximations of the Vlasov equation have been advanced by severnl 

authors to understand nuclear vibration modes within the semi-clnssical method. 

Signifieant progress in this area has been achieved by authors in refs. [DDD 86, DDi 

88J. In their most reeent work [BDi 88] the linearized Vlasov cquation is solved self-

consistently with separable forces. Works with externally induced forces [KSS 86] 

have also been discussed. The conneetion of vibrations in the Iluclear matter limit 

within the semi-calssical approach to the Fermi liquid parametcrs of the Landau 

theory has been explored [JJ 80]. 

Our aim is to compare as closely as possible the solution of the linearizcd 

Vlasov equation to the eigenfunctions of the st ability equatioll. The works cited 

do not have the desirable approximation for our purpose. In particular, wc seek ln 

retain the residual interaction 6U( r, t) without making any assumption Ilhout. its 

structure. The transition density is then solved self-consistently with this 6U. 

The linearized continuity equation for small departures from the cflllilibriulll 

configuration 

J(r,p, t) = fo{T,fJ) + hf(r,p, t) 

is wri tten as 

a -- ... 
Bi 6 p( r, t) = - v . 6 J ( r, t) 

The transition eurrent in this equation takes the {orm 

bl(r, t) = J d3P! 6f(T,p, t) 
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If we i.ake the second order time derivative of the continuity equation, we get 

(5.3.27) 

The time derivative of 6Ï(r, t) in its explicit form reads 

Wc appeal to the Vlasov equation to substitute for :t 1 from which we obtain 

(5.3.28) 

where Uo is the (self-consistent) ground state potential. After performing a few 

integrals this equation simplifies to become 

ô .. (2....... 6p ... p...) 
ôt 6J(r, t) = - ;;; V· 6T + ;;VUo + ;;;VDU (5.3.29) 

where pis the ground state density and the kinetic energy tensor of the vibrating 

system is 

(5.3.30) 

Tirnc dcpcndence is now contained in bU, Dp, 6T and of course DI. Equation 

(5.3.27) , from the results above, becomes 

82 
........... (... ...) 

m at2Dp = 2VV : DT + V· 6pVUo + pVDU (5.3.31) 

whcre : dcnotes the tensor product. The kinetic energy term may be written in a 

morc transparent way. Wc write 

(5.3.32) 

( 
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< - If we define the change in the kinetic energy of the system due to small variat.ion 

as 

(5.3.33) 

-and the tensor components of the quadrupole moment (in the momentum space) us 

(5.3.34) 

then eqn. (5.3.31) becomes 

82 2 2 1-- .... - - -
m ôt2ÔP = 3" 6T + 3'VV: Q + v· (6pVUo + p'\1~U) (5.3.35) 

This is the general result of the linearized Vlasov equation. Specifie approximations 

will be made to this equation in subsequent developments. The equation of motion 

for the displacement function 6p depends on both the variation of the kim·tic alld 

potential functions. Kinetic contributions come in parts: th(~ first term dcpends 

on the diagonal or Po deformation of Fermi sea in fJ 1 whereas the second terrn 
.... 

depends on its quadrupole moment. Evaluation of Q poses sorne difficulty as w(' 

will encounter shortly. Therefore, specifie approximations will be made to this 

equation. 

To maintain consistency with the last eht'pter wc must take the nuclear groulld 

state to be 

(5.3.3û) 

We restrict the variation from 10 to the Fermi surface 

(5.3.37) 
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( 

In the single-particle shell model this approximation is equivalent to confining tran-

sition of levels in the vicinity of the Fermi surface. 

The transition density and kinetic energy in this approximation are respectively 

and 
6T( r, t) = iC p2/3(rjSp(r, t) 

C = _3_ (~(21t'Ti)3) i 
lOrn 471' "Y 

Let us focus on the followil1g terms of equation (5.3.35) 

2 2 .... (.... ....) 3V ST + V· SpVUo + pV6U 

The first term in the above equation can be written as 

V. (~O Cp-l/'J6pV p) + V . (pV( ~O C p-l/36p)) 

(5.3.38) 

(5.3.39) 

(5.3.40) 

(5.3.41 ) 

To evaluate the second term, we use the extremum condition (eqn.(4.2.12)) 

to get 

5 2/3 UO=>'F--Cp 
3 

- ( -) -(10 / -) V· 6pVUo = -V gCp-136pVp 

This term cancels the first term of eqn.(5.3.41) 50 eqn.(5.3.40) simplifies to 

The variation of the hamiltonian in this expression is 

6h(r, t) = ~ Cp-l/3(rj6p(r, t) + 6U(r, t) 
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'i - -
<11. ••• : When the residual potential 6U is written explicitly, it reads 

2 

6U(r, t) = ~ C,QipCJ.-l(fjc5p(r", t) + J d3 r'v(r, ri )c5p(ri , t) (5.3.46) 

From here, we can cast 6h in terms of the stahility matrix 

(5.3.47) 

Our final {orm of the approximated linearized Vlasov equation is 

82 .. - 1 _ .. -
m ôt26p = V· (pV6h) + 3VV: Q (5.3.48) 

The first term is a functional of 6p but the second term is not. To evaluate QI) the 

structure of c5f must he known. For this reason eqn.(5.3.48) describing oscillations 

of finite systems is not an eigenvalue equation with c5p as its eigenfunction. If t}w 

quadrupole deformation of the Fermi sea can he regarded as small the contribution 

of QI) term may be neglected. This approximation is certainly compatible with the 

liquid drop model. Even in the stability equation (EtJp = V6h) no information of 

the P2 deformation is required. With this additional approximation cqn.(5.3.48) 

simplifies to 

(5.3.49) 

This equation is now linear in 6p and therefore it is an cigenvaluc equation that 

can he solved in a similar manner to that used to solve stability cquation. Notiœ 

the difference in structure hetween the stahility and this equation. In the nud(~ar 

matter limit, we recover an old result [JJ 80] 

(5.3.50) 
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( where k is a constant. 

The lowest eigenfunctions for different f. values of eqn.(5.3.49) are compared to 

tbe eigen{unctions of the stability equation and the transition densities of the liquid 

drop model in Fig. 5.2. f equals 2 and 3 cases are shown; the agreement between 

the cigenfunctiom; of eqn.(5.3.49) and stability matrix is almost exact. Fig. 5.2 

shows their eigenfunctions are exactly overlapped thereby giving us the assurance 

of the intimate connection between eqn.(5.3.49) and the st abili t y equation. The 

monopole (f = 0) displays charaeter quite different from the st abili t y equation for 

aU the systems evaluated (see Fig. 5.3). Moreover, the eigenfunctions show little 

or no change in charaeter with the size of the system unlike the scaling transition 

density. 

Further progress in the evaluation of the monopole mode is made by keeping 

the quadrupole term. Lee and Cooper [LC 88] suggested expanding ~ f in the form 

hJ(r,p, t) = 6(p - PF(r» L F,(r, t)P,( cos Br.,,) , (5.3.51) 

which includes all higher or der deformations in the Fermi sea. F, are now the 

ullknowns to he determined byeqn.(5.3.49) . Because of the gradient operation on 

the quadrupolc term the deformations of different orders are cou pIed leading to an 

illfinitc set of equations to be solved self-consistently. They truncated this set of 

cquations at 1 = 3 and found a slight change in the eigenfunctions of the monopole 

mode. Truncating this set of equations at higher 1 considerably complicates the 

prohlem. Thus it is not certain how closely the monopole mode of the Vlasov 

approach can reproduce the eigenfunction 90 of the stability equation. 
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· "-- Chapter 6: Peripheral interactions of 40 Ar on 27 Al 

6.1 Preliminary dücu",,,ion 

The specifie reaction selected for detailed study in this chapter is 

40Ar(44MeVjA) +27 Al-+34 X +others 

where 34 X is any projectile-like fragment (PLF) of size A = 34. We singled out 

this reaction because the properties of its PLF and TLF (target-like fragments) 

have been extensively measured [Day 86, Heu 87, Day 89]. We will examine the 

validity of the elements of our model using both the inclusive and exclusive data 

measured. Authors in ref. [Gré 87] have performed calculations of this reaction with 

the standard BUU model [BKD 84). Because of the lack of fluctuation mechanisrn 

in this model the authors confined their findings to the averaged properties of the 

PLF. 

The model of nuclear dynamics to be tested in this chapter reprcsents the 

culmination of the successive stages of theoretical development pursucd in chaptcl's 

2 and 4. This model consists of four basic elements; they are the collision mechanism 

responsible for the generation of fluctuations, nucIeon-nucleon cross-section, mean 

field and nuclear surface. In the following, we make a fcw minor changes in the 

ingredients of our model and state the specific mean field parametrization to he 

employed. It is known that the low energy (E'ab/ A < 50M eV) frce nucleon-nuclcon 

cross-sections show the lack of angular dependence. This pcrmits us to f(!placc the 

cross-section used in chapter 3 (eqn. 2.3.10) by an isotropie one. We further set the 

total cross-section to be 55 mb. 
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The potential of the BKN-type with the STIFFI parametrization (see Table 

4.1) will be used. This potential is used in conjunction with the Coulomb potential. 

The resultant self-consistent ground state densities associated with this potential 

(DKN plus Coulomb) were obtained for various systems in chapter 4. 

6.!! Initialization and error analy3i~ 

The colliding nuclei were init.ially set up in the CM frame with the reaction 

plane defined by the X and Z axes. We chose the Z-direction to be the direction of 

the beam momentum. BeCore the nuclei interact through their nuclear potentials 

they were initialized to be on a Coulomb trajectory. At a distance R. between the 

centcrs of the nuclei, sufficiently far for the nuclear potentials not to interact, the 

components of the beam momentum are altered by the Coulomb potential according 

t.o 

(6.1.1) 

Pz = Pt sin 6. + Pr cos 9. (6.1.2) 

where 9. is the angle between the vector R. and the Z-axis. The tangential and 

radial components of the momentum are derived from the conservation of the total 

angular momentum f and kinetic energy Ecm in the CM 

(6.1.3) 

[ ( 
f..2 0)]1 

Pr = 2p. Ecm - 2p.R~ - R. (6.1.4) 

( 
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where IL is the reduced mass and 0' = ZTZpe'l. Angle 9. is obtained from the 

solution of the equation of motion [Gol 81], it is given by 

(6.1.5) 

where E is the eccentricity 

(6.1.6) 

Having initialized the nuclei to be on a Coulomb trajeetory the subsequent motion 

was determined numerically. 

We performed this calculation using configuration space grid size of 1 fm, timc 

discreteness (hi) of 0.5 fm/e and a total of 100 test particles per nucleon. To ensure 

numericru stability with these parameters, we calculated time evolved quantities of 

the ground state 40 Ar and 27 Al. The diffuse surfaces of the nuclei were found to 

be maintained for at 1east 150 fm/e. We then tested the effectiveness of the Pauli 

blocking routine; it was found to block 95% of the attempted collisions. In a typical 

simulation for systems considered here there are about 200 attempted collisions. 

Therefore the numher of spurious collisions is approximately 10. The effect of 

this error cou1d he reflected in the deformation of the nucleus in configuration 

and momentum space, and the loss of particles. We quantified the extent of the 

deformation by evaluating (r;) and (p;) where i is the component index. The 

sphericity of the ground state measured by these quanti tics was preserved to a 

good accuracy after 80 fmlc - a period after which the ions wou1d have ceascd to 

interact. The 10s8 of particles in the same period was 0.5 nucleons for both argon 

and aluminium nuclei. 
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Our objective is to study 40 Ar +21 Al -+34 X + others. Restricting to 34 X ollly 

requires prohibitive computing to generate enough statistics hence we will consider 

masses between 32-36, and compare with experimental results. This corresponds to 

integrating the impact parameter in the range 5.76-7.76 Cm. In Cact, our calculation 

shows an almost linear relationship between the average size of the PLF and impact 

paraIIlef;er, as shown in Fig. 6.1. In this range, the collision rate diminishes arter a 

period of 80 fm/c and the final state spectator nuclei approached their respective 

Coulomb trajectories by 150 fm/co An accurate determination of the projectile (or 

target) trajectory is required to ensure precision in the angular distribution. We 

performed a test calculation in CM with 40 Ar and 27 Al nuclei sufficiently far from 

each other so as to prevent their nuclear forces from interacting. To a.void long range 

interaction the Coulomb was not included in this calculation. The magnitudes of 

their moment a were changed by less than 1 MeV Ic per nucleon. which is indeed 

a.ccurate. 

The BUU code with fluctuations generates an event for each simulation. We 

compiled 110 simulations in the impact parameter range specified. Of these events, 

81 were accepted after applying the momentum and mass eut. To he consistent with 

the experimental eut in the PLF momentum, we aceepted only those events with 

Pz 2: O.8Po in the lab, where Po is its heam momentum. The average value of the 

mass for nuclei in the mass range 32-36 is 34.4. Fig. 6.2 shows the mass distribution 

of the PLF and TLF. It can be seen that the spectrum is divided between the PLF 

and TLF. The mass distribution of PLF is sharply peaked at 34-35 whereas the 

TLF distribution shows more dispersion. 
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6.9 Re~tJ.lt6 and interpretQ,t~on 

The angular distribution of the PLF from our model and experiment [Day 86] 

are shown in Fig. 6.3. Both results show a rapid drop of yield in the angular 

orange 2° - 10°, in the labo AH angles of the PLF from our calculations are negative 

which signifies the domination of the mean field over the collision dynamics. This 

information can not be extracted from the experiment however. The experimental 

distribution is more forwardly peaked than our result. The correlated TLF angular 

distribution is shown in Fig. 6.4. Experimentally, this distribution is obtained by 

selecting only those TLF that are in coincidence with the PLF at 3.1 0 [Heu 87]. It is 

clearly beyond our computational ability to duplicate this result, consequently, the 

model calculation shown in histogram of Fig. 6.4 corresponds to TLF in coincidence 

with all PLF in Fig. 6.3. This amounts to allowing some angular spread in the PLF. 

Our model shows a Gaussian·like distribution similar to the experimental data and 

with the correct peak position (experimental plot here is for A=32j A=36 case shows 

similar behaviour but with its peak located at an angle higher by ~ 10°). The full 

width at half-maximum (FWHM) of the histogram is about 20° - 300 compared to 

the exprimental value of 50°. Thus our model underpredicts the FWHM of TLF 

angular distribution and it also shifts the maximum in the yield of the angular 

distribution of PLF. 

It is instructive to calculate the scattering angle of the PLF without the con­

tamination of the collision dynamics. This was done by switching off' the collision 

routine of our program. The spectrum of the scattering angles of PLF is plotted 

in Fig. 6.5 for scattering in the impact parmeter range 0-11 fm. The scattering 

88 



angles are negative for b < 9.5 fm and positive beyond this impact parruneter. At 

b = 9.5 fm, the Coulomb repulsion exactly cancels the attractive nuclear mean field. 

The highest scattering angle obtained is -11.5°, and it occurs at b = 5.0 fm. Sim-

ilar curves can be obtained with more sophisticated dynamical approacb such as 

the TDHF. There is, however, no such existing calculation for the specifie renctiol1 

considered here. In the full calculation, events were obtained from collisions in the 

impact parameter range 5.76-7.76 fm. Within this range the result of the potentin) 

scattering gives angles ranging from _4° to _11°. Comparing this result to the 

angular distribution of the PLF of full calculation (Fig. 6.3) we find the collision 

effects have advanced the scattering to the front region by f"V 2°. The yield in the 

forward region, however, remains low in comparison to the experiment. 

The TLF angular distribution in Fig. 6.4 contains more relevant information. 

Potential scattering, discussed in the last paragraph, gives a FWHM of the angular 

distribution of TLF of only 10° in the impact parameter range 5.76-7.76 fm; its 

peak lies somewhere between 60° and 70°. Comparing these results with those of 

the full calculation (i.e. with collisions) in Fig. 6.4, we infer two measurable effects 

of collisions. The peak of the TLF angular distribution is down shifted by R: 20°. 

This effect is explained by the additional momentum transfer from the projectile 

to the target due to collisions. As remarked before, the peak of the TLF angular 

distribution (Fig. 6.4) is positioned close to the observed peak. 

At a fixed impact parameter potential scatterings do not generate any angu-

lar dispersion. The small FWHM (10°) seen in the potential scattering is due to 

integration over the impact parameter. The increase in FWHM due to collisions 
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(. is about 200
• This amount of FWHM increase measures the extellt of weakening 

in the target-projectile correlations due to collisions. Data from GANIL [Heu 87, 

Day 89) show a gradual increase of FWHM with the number of particle loss in the 

projectile. In other words, larger FWHM is associated with more central collisions 

hence more nucleon-nucleon collisions. 

From the interpretation given to the FWHM of the TLF angular distribution, 

we attribute its smallness obtained in our model to the lack of fluctuations or 

randomness generated by the collision dynamics. The model's collision dynamics 

is constructed from two basic ingredients, namely the nucleon-nucleon cross-section 

and the treatment of fluctuations as explained in chapter 2. Present calculations do 

not permit the separation of the effects of each factor of the collision dynamics. More 

systematic investigations are required to test especially the sensitivity of nucleon­

nucleon cross-section to observables presented in this chapter. 

For peripheral interactions more realistic nuclear density profiles than those 

obtained (in chapter 4) might be needed. This would entail the introduction of 

more refined interactions in our self-consistent density calculation or to go beyond 

the Thomas-Fermi approximation. These considerations are worth exploring. 

Results of correlations between the TLF and PLF are shown in Figs. 6.6 and 

6.7. Figure 6.6 shows the correlation between the angles of the 'rLF and masses of 

the PLF. In Fig. 6.7, the correlation between their masses are exhibited. In both 

figures, the experimental points are obtained for the TLF in coincidence with the 

PLF at 3.1 0 [Heu 87]. This angular cut has not been imposed on the results of 

model calculation. Comparison with data in Figs. 6.6 and 6.7 should be made in 
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the mass range 32-36 of the PLF because of the limitation in the range of impact 

parameter spanned in model calculation. Within this mass range of the PLF, the 

model data points follow the experimental poim s rather weIl in both Figs. 6.6 

and 6.7. The physics contained in the overall features of these results are readily 

interpreted. As the PLF mass increases the corresponding impact parameter ruso 

increases (see Fig. 6.1). Collisions at higher impact parameters tend to impart less 

longitudinal momentum to the target than those at lower impact pararneters. It is 

dear that larger momentum transfer to the target implies that its remnants (TLF) 

will emerge into more {orward angles. In Fig. 6.7 the mass 1088 in the projectile 

is measured against the corresponding msss loss in the target. This relationship is 

not linear and it is borne out by our mode!. 

In summary, the BUU based model with fluctuations has enabled us to analyse 

and interpret the properties of the PLF and its correlated TLF. The basic {eatures 

of their angular distributions are reproduced. The dependence of the angle and 

mass of TLF on the msss of PLF is very well described by the model. 
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Chapter 7: Conclusion 

In the present chapter, the relevance of this work to the intermediate energy 

collisions is assesed and its significance in the wider context of heavy-ion research 

ls exposed. We will also provide indications for the future development of the BUU 

model with fluctuations. Results derived from the semi-classical analysis of the 

nuclear vibrations are summarized. 

The objective of this thesis is to use the BUU model fluctuations in describing 

aspects of intermediate energy collisions. We performed the calculations at 44, 72, 

92 and 100 MeV/A, concentrating on experimental observables such as the mass 

distribution, momentum distribution of the projectile-like fragments, and target­

projectile correlations. The exploratory calculations in chapter 3 involving the 

propert.ies of spectator fragments (angular and momentum distributions) provided 

qualitative agrœments with the experiments. This suggests that the BUU model 

has combined the essential elements necessary to explain these observables. The 

BUU model, we reiterate, combines both the mean field and collision dynamics, 

and at all times the fermion statistics is obeyed. 

We proceeded from there to examine the quality of the mass distributions 

of the spectator and participant fragments. The trend of the participant mass 

distribution was reproduced but the production of light particles (A :5 10) was 

underpredicted. This discrepancy is attribut able in part to non-conservation in 

energy in the numerical computation (see section 2.4) and shell effects. The latter 

consideration clearly lies beyond the scope of our semi-classical treatment but the 

energy non-conservation can be remedied by abandoning the point (test) particles 
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u in the decomposition of the phase-space for particles with fini te spatial extent [Len 

88J. The work on the influence of this factor to the quality of mass distribution is in 

progress [GalB8]. This effect is purely numerical in origin and it has no connections 

with the essentials of the BUU model. 

In chapter 6, we introduced refinements into the model by propagating a Bnite 

range mean field and using an isotropie nucleon-nu cleon cross-section appropriate 

for lower energy reactions. Formalism developed in chapter 4 showed that this 

finite range interaction generates ground state densities with adequate surface dif-

fusiveness. With these refinements, we embarked on calculations aimed at detailed 

comparison with the experi":lents. Characteristic features of the inclusive and exclu-

sive spectator observables were successfully repr.:>duc:ed. For the purpose of future 

development of the BUU model, we shaH now emphasize the main weaknesses of 

the mode!. 

The quality of the angular distribution of projectile-like fragments and its cor-

related target-like fragments need to be improved. These aspects of the data are 

related ta two competing factors: the mean field and collision dynamics. The un-

certainties lie chiefly in the nucleon-nucleon cross-section, and possibly in the way 

the fluctuations are generated (section 2.4). The present study is not sufficiently 

systematic to enable us ta disentangle the influence of each factor on observables. 

Further studies in this direction are called for. 

The determination of corrections to free nucleon-nudeon cross-section in the 

medium would be in its own right a valuable contribution to nuclear physics. The 

major in medium modification, namely the Pauli blocking, is already taken into ac-
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count in our model. Furthermore, theoretical investigations on the nature of single­

particle fluctuations in the reaction process would greatly enrich our understanding 

of non-equilibrium phenomena. These aspects of heavy-ion studies highlight the 

scope offered by the field. 

On the whole, this thesis demonstrates the strength of the BUU model with 

fluctuations in explaining diverse aspects of the participant and spectator observ­

ables. Contemporary complementary models for nucIear fragmentation based on 

statistical ideas [FR 82, 83, Koo 86] are incapable of providing a unified approach 

to these observables in the manner the BUU model has. From a wider perspective, 

the sample calculations of this thesis complement the success of the mode} at higher 

energies (0.4 :5 E,fl,,/A < IGeV) [BOa 88]. 

The development of the semi-classical theory of nucIear ground states in chapter 

4 and nuclear vibrations in chapter 5 provides an alternative view of the subject to 

more complicated quantum mechanical TDHF and RPA theories. We first extracted 

the nuclear ground state densities from the extremum condition of the energy func­

tionaI of the system. In this calculation, Coulomb contribution was explicitly built 

into the energy functional and the entire problem was solved in 3-D with spherical 

symmetry. This piece of work is a direct extension of Maddison and Brink's work 

[MD 81]. The stability of our ground state solutions was then examined through the 

stability matrix. We showed their stability implies that the stability mat,rix must 

possess only positive eigenvalues. The content of this statement is analogous to the 

stability of the ground state solutions of the Hartree-Fock equation. Proceeding 

further in our semi-cIassical approach, the eigenfunctions of our stability matrix 
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were shown to possess the char acter of giant vibration modes which ine1udes the 

monopole and multipole modes. 

Further advance was made in section 5.3 when the eigenfunctions of the mul-

tipole modes (l > 1) of the linearized Vlasov equation were shown to be the srune 

numerically to the ones obtained by diagonalizing the stability matrix. The formai 

equivalence of the these appoaches remains to be proven however. The development 

of semi-c1assical theory of nuclear ground state and nuclear vibration modes in this 

thesis parallels those in quantum theories . 
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Appendix 

Numerical ",olution of the Yukawa and Coulomb potential" 

The Yukawa and Coulomb potentials are respectively 

and 

The nucleon and charge (proton) density distributions are p and Pp reaspectively. 

These potentials are special cases of the solution of the differential equation 

(1) 

where S(x, Y, z) is the source function. The coordinate system in which we choose 

to solve this equation is the cartesian coordinate system. For the case of the Yukawa 

potcntial, the constant 

2 1 
k =-­

a 2 (2) 

which is proportional to the inverse square of its range. The source function is 

directly depe.'1dent on the nu cleon density: 

S(x,y,z) = 47raVop(x,y,z) (3) 

The Coulomb potential satisfies the Poisson equation so k2 = 0, and its source 

function is 

(4) 
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Equation (1) can be rewri t ten to read 

( 
82 /.:2 ) ( 8 2 D2 21.: 2 ) 

- âx2 + 3" 4;(x,y,:;) = ôy2 + D:;l +3 <jJ(.r,y.:;)+S(.r,y,:) (5) 

The form of this equation suggests an iÜ.rati"c method of solving for d>, tht' potentinl 

function. If we caU tP Tn the potential at the m'" step of the it<>rat.ion thell it ("a.n IH' 

used to find tjJm+ 1/3, the potcntial at a ~tep further in the i t<>ratioll. Tht' i t.t'rntiVl' 

equation takes the form 

_ _ ~ rn+l/3 _ _ _ __ _-_ fil. ~ • ~ 
( 

82 7.2) ( û2 Dl ')/.:2) 
8x2 + 3 ri> (x,y,_)- ôy2 + D:;2 + 3 <P (.l.y,~)+S(.I,y,~) (G) 

where the fractional superscript signifies Iteration iu olle dircdion, Illllllely th(' ./' 

direction. Similarly, wc can writc i tcrati\'c cquat.iolls in the !J Hud :; c1in'('j,iou:, il:' 

follows: 

_ ( 82 
1.:

2
) m+2/3( _) _ ( Ô'l. D'J. 2k2) 111+1/3 ~ _ 

8y2 + 3 tjJ x,y,_ - [)x2 + D:;2 + 3 rP (.L',y,~)+S(.r,y, ... ) (7) 

( 
82 1.: 2 ) ( [)2 D'l. '>k2 

) 'm+I() - JcIll+:.!/:I( ) C'( ) (8) - 8z2 + 3 <P J,',y,:; = Dx2 + Dy'}. +3 'il .r.y,:: +.J .l',!},:: , 

To bc consistellt. cqns. (C), (i) anJ (8) mu:,t \)(' ~oJV('d '>llllllltllll('()ll:'}Y \V,· filhl. 

guess tjJl and specify the source fllnction S to hei!,in the itf'ratio!l At t.llt' 1",11 :,ll'p, 

eqn. (G) allows Ç>nl+I/3 to he evaluated. TllÏs fllllction IS tlWll :"llb~tit.lltt·r1 iuto (·qll. 

(ï) to find 0 111+2/3. Similarly, ÇJlII+l i:-: ohtaiucJ froIn knowll r:/ It +'1./'J f'valuat.(·d III 

eqn. (i). This procedure is repeated at each ~tcp in the iteratioll !->du!Illl' IlntIl rfJ 

converges. In the following. \w \"ill 'ihow how HUy olle of the ('qJl!->. (G), (ï) allrI 

(8) i· ~valuated for the d> on the I.h.s. We ,a11 the <p 1,0 Iw ... ·<tluat('(1 rj/It+1 ;IUJ it.~ 

preceeding step Ç>m. 
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\Ve now iutroducc thrce accclcration pararneters Rx, Ry and Rz. These pa-

l'iLlllctcr will incrca.'ic the rate of convergence of <p. In the z direction the iterative 

{·qua.tion (can he cithcr eqn. (G), (Î) or (8)) reads 

RI 's arc to he appIOpriately chosen and the convergrd solution is independent of 

them. The iterative eqnation is ~olvcd on discrctized space with even spacing in 

{'/tell dil('ction. To facilitate writing our formulae, wc introcluce the syrnbol x: to 

d('n()t<~ the ("Oordinau· in the 1 dilection and nt the lth position of the grid space. 

The !->llpc1:-,nipt. 1 can take the nllurs {1.2 ...... V1 - L,NI}' where JVI is the maxi-

ulIlm llllllllH'l" of ,11,1 id poillts lU the i direction. The z-component Laplacian on the 

cliscrC't.Ïzed spaC(' is 

whcrc ~.L'I is the sizc of the grid in the l direction. The coordinates of the other 

directions arc kept fixcd in this eqnation. The I.h.s. of eqn. (D) now reads 

(11) 

" 1.. 2 
\\'11('1'1.' W(' have sd. (II = (~.r 1)- ( T + R,) - 2. In the l1latrix notation this expression 

\lI'COlll<'S 

1 ( 1 ) T (9111+1C.r:l+l)) 
_ Q <;m+l(x") 

(~.r1)2 l' a>m+lC:r~~l) 
(12) 

wh(', c T ~tallds for transpose operation on the rnatrix. 

\Ve lalJl'lled the 1'.h.s of t'qn. (D) as 

(13) 
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In this expression, functions om nns sm are e':aluated at .r:1 and the second dcri,'/\-

tives are written as in eqn. (10). This cquntion has only <:> dcpeudent tenus nt the 

m th step. Our final equation from eqns. (12) Dnd (13) is 

(14) 

This is a three-point equation in 4>m+l nt x:l+l, X~I and x;t-l. 

The hound?ry condition of the potentinl ~ dcttJ.,.~illes 5 111 and cfJrn+1 nt .r: and 

Ni C 'd sm t 2' (14) Tl' 1 . 1 t cl '111+ 1 l " 1 XI' onSl er a XI ln eqn. '. 11S va uc 1~ rc a,e tf) cJJ nt '/:1' .r; HU( 

grid point x~, 5 m is related tü </>m+ 1 at x; , x; and .1':. Since ~III+ 1 at :1.'; nnd .r: 111'(' 

nlready known to bc propOltional to each other from the pl'cviolls stc'P, QrII+1 lit. 

.r~ and .r~ are then aJso proportional to eaeh otIter. This prOrCtib CHU 1)(' ("outiuucd 

until sm at x;V, -1. Thus the general relatioulihip h<'t\\'('Pll tlH' ll11kllOWIl ftlIlI'tio\lS 

(cP m+1 's) of eqn. (14) can he written in terms of the t,wo point recursiOll formula 

(15 ) 

Here, we have introduced two coefficient functions A amI IJ. TIte pwl>l('Jll lws 1I0W 

been delegated to solving for these coefficients. Let 11S see llOw thcy me :-.olved. 

At the boundarypoints x~P where matter dcnsity is assmnecl t.o vanish. p( x~ll) = 

0, it is legitimate ta make the following approximation 

(lG) 

(the + sign is t..~-ed when x~P = x: and - ~igl1 \vhen x~P = :1'» This meanH t.he 

potential varies slowly at the boundary. For the short range Yukawa pot.ential this 
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----- _ ... _----------

approximation is quite adequate. In the case of the long range Coulomb potential 

the boundary has to be chosen sufficiently far from the charge distribution. Equation 

(16) cnables us to find A and Bat the boundary points; A(x~P) = 0 and B(x~P) = 1. 

To find A and il at other points we need to find recursion formulae for them. 

We insert rccursion formula for ljJm+l in eqn. (15) into eqn. (14) to get 

which wc can writc as 

\Vith the coefficients given by 

.4(x~) = _ A(x~+l) + (~xl)2Sm(X~) 
al + B(x~+l) 

È(xn ) _ -1 
1 - al + B(x~+l) 

(18) 

(19) 

(20) 

Upou eornparillp; cqu. (18) to eqn. 15 we find the A and iJ coefficient functions 

aboY<' t,o bl' .-1. and il respectively. Gi\'en their values at the boundary points, recur-

:-3iOll fonnulac (Hl) and (20) dctermine their mlues elsewhere inside the boundary. 

IIaviug found thcse coefficients. orn+l(x~+l) is obtained through relation (15). This 

calculatioll must be },f'peated for j and k components as remarked previously. 
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Figure Captions: Chapter 2 

Fig. 2.1 The moclcl self-consistent density (full Hne) derived from the 

density-clepenclent interaction is compared to the evolved density distributions 

(dashcd li ne ) at yarious times. 

Fig. 2.2 Sume as in Fig. 2.1 but for 20 Ne nucleus. 

Fig. 2.3 Same as in Fig. 2.1 but for 4 He nucleus. 

Fig. 2.4 The time-depenclent rms radii of the ground state nuclei in the 

V1a.5O\' clynumics. 

Fig. 2.5 Same as h. Fig. 2.4 but for the rms momenta. 



,--.. 
1"") 

1 

E 
'*-
'-" 

Q .. 

0.24 ~ 

0.2 

0.16 -
0.12 

0.08 0 

0.04 

8:24 

0.2 

0.16 ---
~ 

0.12 

60 0.08 

0.04 

o. o 1 

\ _. ,t 

-~-'~~"'''''''' ~"""'-._" ,· .... _._-"'_ ... ,,,~,,;: __ .. L, U~, r 

-
\ 

\ 

fm/c \ 

-- , - , 

\ 

\ 

fm/c 
\ 
\ 

\ 

~~ 

2 3 

~ 

1 

r-

1'- ___ -_ 

'\ 

\ 
\ 

30 fm/c \ 
\ 

\ i- \ 

\ 
, 

1 ....... 1 

------, 
" " 

\ 

- \ 

90 fm/c 
\ 

i- \ 
\ 

\ \ 
\ " ~, 1 1 l 1 '-L 

4 5 o 1 2 3 4 5 

Radius (fm) Fig. 2.1 



0.24 r 

0.2 

0.16 
i,..-----

r-- __ -- "'\ 

" \ \ 
0.12 1- \ \ 

0.08 0 fm/c \ 30 fmy' 1'" 

f-
~ 

\ 
,.--.... 

1") 
0.04 1 

E 
8:24 

~ 

'--" 

~ 
~ 

\ \ 
\. " 1 1 -~ ~ 

Q.. 0.2 
1-- ---- ....... 

0.16 
....... ...... 

" " 
0.12 

\ \ 
1-

\ \ 

0.08 60 fm/c\ 90 fmy '"' 
1-

...., 

\ \ 

0.04 
\ \ 

'\ 
1- \ 

"- "-
O. " 1 i 

...,. 

o 2 4 5 3 5 o 1 4 2 3 1 

Radius (fm) Fig. 2.2 

~ ~ 



0.24 
1 

0.2 
1 

1 

0.16 

0.12 

0.08 

1 t::--, 
---" 1 " -;30 fm/c f- 0 "fm/ c 

\ " ,.--..... 
1"') 

0.04 1 

, 
r-

" 
i- \ 

E 
8:24 

'+-

'-"'" 
" "-. ........ , 

Q.. 
0.2 

0.16 

0.12 

0.08 

:::... 
~ , 

6U fm/c 
, 

fm/c '~O 
"- " 0.04 " \ 

"'" \ - , 
" '-

O. 1 ........ L 1 1 1 1 -1 1 

o 2 5 0 4 5 2 3 1 3 4 1 

Radi us (fm) Fig. 2.3 

~ ç ~ 



~ 

E 
~ 

'-'" 

(f) 

~ 

o 
<{ 
a:::: 
. 

U1 

~ . 
0:: 

6 

5 ~ 

4 ~ 

3 

1-

2 

1- -

1 

o 1 

-

Ground state 

Full line 40Ca 
Broken line 20Ne 
Dash dot line 4He 

-

---

o 10 20 30 40 50 60 70 80 90 100 

TIME (fm/c) Fig. 2.4 

-.".,,1 '-'"' 



300 

275 ~ 

r-.. 250 ~ u 

" > 
Q) 

2 225 ~ 
'---" 

· 
2 200 

Ground stote 

Full line 40Co 
Broken li ne 20Ne 
Dash dot line 4 He 

-o 
2 t:::"- ....... ~ -- .,...., ......._- -

· (f) 
175 ~ - - , ,/ /' , , ,/ ,/ 

' ........ - ...,.. '_.""" 
....... - - - 1 ..........,.. - -

....... -· 
2 
ci 150 

125 

100 

• , 

() 10 20 30 40 50 60 70 80 90 1 00 

TIME (fm/c) Fig. 2.5 



(~ 

( 

Table 3.la The illtrinsic width (10 in X, Y and Z directions obtained from the 

llUU simulations are displaycd. The results are for the reaction 20 Ne +20 Ne at 

diffcrcnt beam energies without Coulomb potential. The impact parameter in aIl 

cases is 4.3lfm and \Vith a total of 42 events. 

Table 3.lb Sml1e as in Table 3.la but for components of the averaged momen­

tmll pt'1' nuclcon. 
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Table 3.1a U 

b = 4.31fm 

E'ca6IA (TOX O'OY O'oz 

(MeV) (MeVlc) (Mel/lc) (MeVlc) 

No Coulomb 50 65.6 53.1 49.1 

No Coulomb 100 70.3 75.1 68.2 

Table 3.lb 

b = 4.31fm 

E'o.blA (PxKIK) (PYI< 11\) (PZK 1 ]() 

(MeV) (MeVlc) (MeVlc) (MeV Ic) 

~o Coulomb 50 -51.1 -2.0 -53.1 

~o Coulomb 100 -29.4 1.3 -33.0 



Figure Captions: Chapter 3 

Fig. 3.1 Histogram shows the mass distribution of fragments from 20 N e+20 Ne 

at ElablA = lOOMe V with a fixed impact parameter b = 4.31fm. The total number 

of events in this histogram is 42. 

Fig. 3.2 The momentum distribution in the Z-component of the projectile-like 

fragments is shawn hcre. Thcse events (or fragments) are the same as those shown 

in Fig. 3.1 

Fig. 3.3 The yicld function d2
(J / dEdn of the projectile-like fragments accord­

ing to the Gaussiall conjecture is plotted at various angles. The incident energy of 

t.he :!o.Vc proj('ct.ile is E'u/,IA = lOOlUeV. Parameters UO,{Pl.K/J(} and {PzJ(/I{} 

of the Gaussiall dist.ributions arc obtained from the BUU calculations as displayed 

iIl Tahk- 3.1a illld 3.1 b. The mHSS number K = 15. The graphs are an normalized 

t,o uuity at thcir peaks. 

Fig. 3.4 Angular distribution of the projectile-like fragments with (b) and 

without (a) the inclusion of the Coulomb potentia!. The smooth curves are derived 

from the Gaussian conjecture where its parameters are determined from the BUU 

calculations, Events i.1. the histogram are from the BUU calculation of 20 N:. ~ 20 Ne 

nt ElublA = lOOMcV', The mass number 1\ = 15. 
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1 i 

Fig. 3.5 The mass distributions of 40Ca +40 Ca at 92.:UeltP/.4 are displayed. - These results come from 30 mns spanning the impact parameter b from 0 to -1.2 Cm. 

The upper histogram displays the mass distribution of aIl fragments anù in the l()w~r 

histogram the contributions from the spectators (dashed li ne ) and the participunts 

(full line) are separated. In the latter histogram a eut in the momcntum of the 

fragments in the CM of the colliding ions is imposed for this distinction. 

Fig. 3.6 Same as in Fig. 3.5 but for a lower beam en('rgy, E'abiA = 72MeV . 
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Table 4.1 This table summarizes six sets of parameters used to generate self­

consistent dCIlsities. The stiff potentials are those with (7 = 2 and the soft potentials 

with (j = ï /6. These potentials are given names as appear in the first row. The 

total Ilumber of paramcters in each set is five but not aU of them are independent. 

The combina.tion (A + 411'a3 Vo) is always fixed but with different values between 

soft anù stiff potentia.lsj and similarly for the B parameter. 

Table 4.2 The parameter sets exhibited in Table 4.1, except for the BKN, 

\Vere uscd to cvaluate the binding energie5 of nuclei and the results are displayed in 

t.his table. These calculations were done with the inclusion of Coulomb potential. 

Thc ('x!wl'imcntal binding energies are al 50 shown here for compari5on. 



BKN STIFFI STIFF2 SOFT1 SOFT2 SOFT3 

(j 2 2 2 7/6 7/6 7/6 

A(MeVfm3
) -373.30 0.00 -300.00 -1936.80 -1563.60 -1428 :!() 

B(MeV fm 3(1
) 3238.10 3238.10 3238.10 2805.30 2805.30 2805.ao 

a(fm) 0.45979 0.45979 0.4597D 0.800 0.45979 O.45Dï0 

Vo{.l'vleV) -363.00 -668.65 80.50 -363.04 -668.65 -i7D..lS 

Table 4.2 

-EjA(MeV) 

STIFFl STIFF2 SOFTl SOFT2 SOFT3 Expt. 

4He 4.43 3.04 6.25 6.02 5.63 7.07 

16 0 7.25 5.62 9.80 8.43 7.89 I.as 

40Ca 8.22 6.76 10.78 9.08 8.65 8.5S 

-: l 



( Figure Captions: Chapter 4 

Fig. 4.1 Self-consistent clensity distributions (soHd Hoe) with the stiff po­

tential ((7 = 2) are campared ta the Myers· distributions (dashed line). The first 

column is with the DKN parameters, second column with the STIFF2, and the 

last column with the STIFFl. In aIl cases the Coulomb potential \Vas included 

in the self-consistent caJculatian. 

Fig. 4.2 The self-consistent proton (dash-doted line) and neutron (dashed 

line) dcnsitics of the STIFFI potential for three nuclei are shown. Total density 

is shown in full liue. 

Fig. 4.3 The self-consistent proton (dashed line) and neutron (full Hne) 

potcutiab fol' tluee lluclei are shown. Parameter set STIFFI was used in this 

l" alclIlation. 

Fig. ,1.4 SalUe as ln Fig. 4.1 but for saft potentials. Results in coulmn 

one, two and thrcc were calculutcd using SOFTI, SOFT2 and SOFT3 potentials 

respccti W' ly. 

Fig. 4.5 The self-consistent density of the STIFFI potential \Vith Coulomb 

interaction (saliel linc) :" compa·'cd ta its dcnsity alret>cly evolved by the Vlasov 

equatioll. The qualit.y of the evolved density is shawn at various times. 
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Table li The eigenvalues of the stability matrix (eqn. 5.2.16) for monopole 

(1 = 0) and multipole (i = 1 - 5) modes are displayed. These eigenvalues are in 

units of MeV 1m3 • First column labels the number of nodes of their corresponding 

eigenfunctions for each lj a maximum of up to three nodes are shown. The table 

displays results from three symmetric systems: 160,40 Ca and 208 Pb. The eigenval­

ues of 208 Pb for f = 5 case suffer large numerical error, and they are omitted for 

this reason. 



'\ Table 5 -

no. ofnodes 1 2 3 4 5 

160 
0 0.17 37.14 78.80 120.19 158.67 
1 239.63 294.47 325.10 349.79 368.80 383.15 
2 372.65 407.80 418.98 424.85 428.12 430.07 
3 429.18 

40Ca 

0 -0.11 22.54 50.98 82.04 113.45 
1 220.16 286.73 310.21 33.2.13 351.04 366.09 
2 361.10 400.69 413.97 421.68 426.18 428.91 
3 427.46 

208Pb 

0 0.24 8.50 20.18 34.61 
1 168.19 276.30 287.30 300.27 313.89 
2 330.45 372.19 389.29 402.62 412.34 
3 403.72 



(~ Figure Captions: Chapter 5 

Fig. 5.1 The eigenfunctions of the stability matrix for 40Ca nucleus corre­

~ponding to the lowest (full line) and its next higher (dashed line) eigenvalue are 

shown. These modes are displayed for l=O, 1 and 2 cases. Dotted lines are the 

self-consistent densities of .coCa. 

Fig. 5.2 The lowest level eigenfunctions of the stability matrix for l = 2 (upper 

curves) and l = 3 (lower curves) are plotted in fulllines. For each case, the results of 

three symmetric systems are shown. Transition densities of the liquid drop model 

are shown in dash-dotted lines. Th,. ~jg~nfilndions of the corresoonding modes 

(f = 2 and 3) from the linearized Vlasov equatiol! (5.3.49) are indisHnguishable 

from those obtained by diagonalizing the stability matrixj this is the case for ail 

three systems shown here. The dotted lines are the self-consistent densities of the 

nudei. 

Fig. 5.3 The monopole (l = 0) vibration modes of the stability matrix (full 

li ne ), scaling model (dash dot ted line) and linearized Vlasov equation (dashed line) 

are compared for three symmetric systems. The dotted lines are again the self­

consistent densities of the nudei. 
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Figure Captions: Chapter 6 

Fig. 6.1 The mass correlation of the projectile-like fragments to the impact 

parameter for the reaction 40 Ar(44MeV/A) +27 Al is shown. The events here 

come from the impact paremeter range 5.76-7.76 fm. In this range, the contri­

bution from each impact parameter is correctly weighted. The total number of 

similations is 110. 

Fig. 6.2 Maas distributions of the projectile and target-like fragments are 

shown. The events shown here are exactly the same as those in Fig. 6.1. The 

distribution in the middle cornes exclusively from the target-like fragments. Very 

smali fragments (A < 5) are participant clusters. Total number of events is 110. 

Fig. 6.3 Angular distribution of the projectile-like fragments of size A = 

32-36 is displayed in the histogram. AlI scattering angles are negative. Events 

in the histogram comes from 81 simulations after momentum and mass cut. 

Experimental data are shown as filled circles for A = 34. 

Fig. 6.4 The angular distribution of the target-like fragments in coïncident 

with those in Fig. 6.3. Experimental data are shown as filled circles for A = 32. 

Fig. 6.S Angular distribution of the projectile-like fragments as a function 

of impact parameter. This calculation was performed in the BUU model without 

the collision cascade. 



u Fig. 6.6 Correlation between the angles of the target-like fragments and 

the masses of th,~ projectile-like fragments is shown. No cuts are imposed so they 

are 110 events in total. Comparison with the experiment should only he made 

for MpLF = 32 - 36 hecause of the selection of the range of impact parame ter 

(see Fig. 6.1). 

Fig. 6.7 Same as in Fig. 6.6 but for correlation hetween their masses. 
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ApplicadoDl of the extendecl Boltzm .... Ueblial·UbleDbeck _odel 
to partielput ad lpectator dyaamiCi 

H. H. Oan, S. J. Lee, and S. Du Oupta 
P"1sies Ihptl"m~IIt. McGiII UII;umity, MOllt,.."" Qu~b«. COllad" HJA lT3 

(Received 28 May 1987) 

The Boltzmann-Uehlina·Uhlenbeck mode) is extended to include fluctuations. The model is 
then appbed to study both spectator and participant phyllcs. The model is capable or providin. a 
unified, parameter-rree description of wide.ran,inl phenomena in intennedlate enel1Y heavy.ion 
collisions. 

1. INTRODUcnON 

ln this paper, wc present some results from a model in 
which at initial time we have two ions approaching each 
other; at the end the nuclei break up lOto fragments 
moving wlth difrerent velocities. The model is essential­
Iy parameter-free ln the sense that the Ingredients for the 
calculation are the nuclear mean field and scattenng 
cross sections which are fixed by other data. 

The model allows us 10 examine lheoretlcally many as· 
pects of heavy Ion collisions. Experience al Bevalac en· 
ergy has taught us that for nonzero impact parameters 
we expect to see speclators which are only mildly pel" 
turbed as opposed to participants which are at the seat 
of violent collisions. As the beam energy decreases such 
clear distinction ultimately will vanish. Our model al­
lows us to study this transition reglon. Wc are able to 
calculate the velocity distribution of the spectators and 
their slowing down ln a fully microscoplc model. Llke­
wise we are also able to study, simultaneously, the frag. 
mentation of the participants. This last topic has be· 
come the subject of much study in recent years. The 
model gives a mass distribution; for reasons to be ex­
plained lat el', quantltatlve fits, Isotope by isotope, are not 
expected. Nonetheless gross features are expected to 
emerge. At the very least. the model 15 useful for under­
standing the change of dynamics as the beam energy IS 
altered. In the present study we have analyzed ~oNe on 
2~e and 40Ca on 40Ca ID the energy range 50-100 
MeY Inucleon. 

The model is a stralghtforward generalizatlon of the 
Boltzmann-Uehbng-Uhlenbeck (BUU) model'·2 whlch 
has proven to he very useful in the theoreucal analysls of 
heavy ion collisions. 

Il. THE EXTENDED BUU MODEL 

The work presented here is based on the model report­
ed in Ref. 3 except for some changes. We first need to 
describe some de~ails of the numenca! methods to solve 
the BUU model hefore we can explain the modifications 
needed for the extended version. The mean field 15 ta ken 
to he of the form 

U(p)=[ -124(pIPol+ 70.S(plpo)2] MeY. Il) 

The collision cross section between nucleons is taken to 
be 40 mb,l although we have also· used ener,y dependent 
total cross sections to ascertain if Any signifteant 
ditrerences would be seen. There were none. In the usu­
al BUU model, the initiai phase space density is 
represented by a large number of test particles. If the 
nucleus A has nudeon number N.4 then we represent 
the Îmtial phase-space density of this nucleus by N 4 N­
test partlcles. Slmllarly the phase·space density of the 
nucleus B is represented by N,N test particles. For Ne 
on Ne wc take N =200; for Ca on Ca we take N = 100. 
Each test partlcle carnes an Isospin index. The denslty 
is defined in cubes of volume 1 fml; p(,) =" I( I)/)l N 
where n is the number of test particles in the cube and 
5/ = 1 fm. In the BUU model the test partlcles propa­
gate ln time according to p(t)= -V,U and Ï'(t)=p/m 

ellcept when they collide. This collision cross secllon l!o 

0/1/1 IN. The Pauli bloc king IS checked for cach col­
HSlDn. When two test particles colhde they change from 
(r"PI)(r2,P2) to (r"pj)(r2.pi). We bulld a sphere of ra­
diUS , around 1'1 and radiUS p around pj such that elght 
test particles ln thlS phase space volume Imply complete 
filhng. Define fi == ni 118- 1 l, where ni IS the numher 
of test parllcles not IDcludlng the test panlcle at (rl,pi 1. 
Simllarly 12 = n ~ /7. The probabihty of scattenng 15 tak­
en to be (1-f, )( 1 - 12), For low beam energy we have 
also sometimes used the followmg preselection rule. Let 
:!:Po be the beam momentum pel' particle in the c.m. of 
colliding Ions. In a colhsion wc have PI + P2 = pi + pi 
and pi +p~ =p? +pi2

• For 1 and 2 to be thrown out of 
the IWO Fermi spheres we need (pi±PoI2 ?pJ and 
(pi±PoI2 ?Pi- Ustng the conservallon laws, a neccssary 
(but by no means sufficlent) condition for thls to happen 
15 

At hlgh energy thls 15 not a good ru le as It neglects the 
depleuon ln the Fern .. ,-phere, ~ ut at low energy we lind 
this IS a useful preselectIOn and cuts down on comput­
lOg. Once the preselection rule 15 saUsfied the test partl­
cles are allowed to \Catter; afterwards the Pauli block­
IOgs for pi and pi are tested by drawing spheres 10 phase 
space as descnbed earher. The numbers of collisions we 
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find in our calcul.tion are consistent wilh wh a' h.s ap­
peared in the literature before.),4 

The SUU model treatl collisions as a continuous 
source and will show no fluctuations. In the extended 
BUU mode' collision is treated stochasticaUy. The fol­
lowins is the basIc prescription. We suppress collisions 
betwcen two test partlcles by a factor of liN, but If a 
collision accurs after the suppression not only do two 
test partlcles suifer momenta chanse but 2( N - Il other 
test particles chan,e momenta also. Physically this cor­
responds to two actual particles collidin,. Suppose two 
test partlcles , and j with isospin indices T, and 1) suc­
cess(ully coJlided and suft'ered moments change 4p and 
-~p. We choose IN - 1) test panicles wlth the same 

isospan T, closest to 1 in phase space and ascnbe to ail of 
them the same momentum change 4p. This requires 
defimng a distance ln phase space. We define 

d,i a:(P,-Pk )2+(PFIR )2(r,_r" )2 • 

Here PF is the Fermi momentum and R the nonnal ra­
dius of the nucleus. The process is repcated for test par­
Ile les c10sest to land they are ascnbed a momentum 
change -4p. 

The prescnptlon above conserves total momentum but 
usually not the total energy. With a shght modification 
both the total momentum and the total energy can he 
conserved. We choose N - 1 partlcles c10sest toi as he­
fore. Now calculate the average momentum of these 
partldes (includmg the Ith test partide). Cali this 

(p, h: l,;, P, liN; 
~Imilarly calculale < Pl ). We now recalculate 4p and 
- Ap from a colhsion between (P, ) and < p J ). This Ap 
,s now attnbuted to ail the lest parucles an the Ith set 
and - 4p to ail Ihe parucles ln Ihe jlh set. It IS easy to 
venfy that thls procedure conserves both total momen­
rum and total energy. 

We have done calculatlons both WI!h and wlthout the 
Coulomb force. We compute Pclr) an 1 fm 3 boxes where 
p, (r) 1" we charge denslty. The Coulomb potenual 15 

then obtamed from numeneal solutIOn of POlsson's equa­
lion. The numencal techmque IS the same as used ID 
lime dependent Hartree-Fock ITOHF) calculallons~ ex­
cept that m our case no symmetry IS assumed. 

ln the beganmng of the calculat,on we have two nuclel 
approachmg eaeh other; the initial phase-space denslly , 
of each nucleus IS modeled to be sharp spheres ID 
configuratIon and momentum space. For further detalls. 
see the Appendlx of Ref. 6. At the end one has a few lo­
cal poekets of denslly comparable to normal nuclear 
denslty agaIDst a dIffuse background. We Interpret such 
local poekets as clusters. A fragment 15 defined as li.e: 
connected volume ln !lpace where the denslty exceeds a 
certaan Ihreshold value (10% of normal nuclear densaty). 
The number of nucleons ln thls connected volume gives 
the number of nucleons ID the cluster. We ignore ail 
elusters where the total nucleon number 15 less than 0.5. 
Dependtnl! UpOD the sltuauon. the code is run up to Ume 
80-1 SO fmle after the two nuclei inmally touch cach 

other. On Vax 785 each run takes 45 min _jthoui tbe 
Coulomb interaction. Inclusion of the Coulomb interac­
tion approlimate)y doubles this time. 

ID. SPECI'ATOR DYNAMICS 

For heavy Ion collisions at high ener,y, the partici­
pant spectator model proved to be very usefuJ. Consider 
the collision of two heavy ions al a given impact param­
eter (Fig. 1). A given pan A of one ion wiJ) meet a cer­
tain part B of the other ion. Now the binding energy 
pcr nucleon in nuclei is about 8 MeV. Thus if the ener­
,y of collision is high, the fact that A' wu attached to 
If is incidental; A' will fly of aner the collision WÎth 
essentially unchanged veloc:ity. Thus If' can be called 
the spectator in this collision. SimiJarly there will be a 
speetator B' (rom the other ion. A, however. will hit B. 
They are the participants. The participants wall usually 
disintegrate. giving rise to msny objects. 

We do not expect such s clear picture to emer,e in 
the ener,y range we are considering. Clearly, below a 
certain beam energy the model of the whole of (If + A ' ) 
Interacting with the whole of (8 +8') is more appropri­
ate. An intermedlate plcture between these two ex­
tremes 15 also possible. Further, the applicability of each 
model depends not only upon the beam energy but also 
upon the masses of the colliding ions Involved. These 
complications bec:ome Important at intermediate impact 
parameters. We will deal with such situations later. For 
the moment we tum to more periphera' collisions where 
one clearly sees speetatorlike fragments. Experimental 
results for projectdelike spectators in tbe beam energy of 
mlerest here can be found in Refs. 7-9. 

Comparison wuh experimental data requires integra­
lion over impact parameters and (depending upon the 
charses of the ions and the beam energy) inclUSion of the 
Coulomb force in addition to the nuclear force. To be 
able to dlscuss the physics ea5i1y we will tirst conslder a 
fixed Impact parameter and ignore the Coulomb force. 

BEFORE 

-
8 

A 

1 

B 

AFTER 

FIG. 1. Participanls and Speclltors. Part A overlaps .nIb 
part B. They are panicipants. Pans A 1 and B' are lpecllton. 
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The eft"ect of impact parameter intelration and the 
Coulomb (oree will be indicated later. We consider Ne 
on Ne at impact parameter 

b=R(V'2ïj+vïn'=4.31 fm 

at 100 Mel' Inucleon laboratory enerlY. Here R is the 
radius of each ion. In a simple gcometrical model (Fig. 
1) the panicipants are decided by the leometncal over· 
lap of the two Ions; the rest are speetators. There are 
two speetators; one projectilelike and one tarletlike. 
The number of nuclcons in each spectatol' is predicted to 
he l6.6 in the geometrical model for this specifie b. In a 
dynamlcal model one would ellpect a distribution in 
maS5 numbers. The distribution obtained from 21 runs 
is shown in Fig. 2. Each run produces two pieces of 
data sIDce we arc considering equal ion collisions and we 
can include both projcctilelike and tarletlike spectators 
to incrcase statistlcs. The spectalors have a distribution 
of momenta. In the Goldhaber model JO the width of this 
momentum spread in the projectile frame is 

( p2 > _ K( A -K) 2 (2) 
ZK - A -1 u,. 

Ucre A is the mass of the projecille, K is the mass of the 
spectator, Pz" IS the momentum of the spectator ln the 
Z direction ln the projectile frame, and u =0 Z == 80 
MeV le in the high energy situataon. 

ln our case we have a distnbulion of K values and we 
find it more convement to rewrite lhe above equatlon 

( 
K (A -1) 2) 2 

A -K (PzK/K -PZK IK) =o,!. (3) 

Here PZK IK is the average slowmg down ln Ihe proJec· 
tile frame. The Goldhaber mode! 15 based soldy on 
counung and thus cannot predlcl a slowing down. How· 
ever. thls is ellpected ID dynamlcal models and also seen 
in expenmenls. We ex peel P ZK 1 K to be mdependent of 
K but dependent on b, the Impact parameter. Hence for 
this filled b value we calculate Pz" IK from ail K values 
and use this in Eq. (3) to e<;tJmate u:. We find 0::==70 

~r,~ b=4.31fm 

12 

12 14 16 
A 

lB 

FIO.2. For Ne on Ne colhsions al 100 MeV/nucleon Ihe 
dlstnbutlon ID masses of the Spectalors for Impaci parameter 
b =4.31 fm. The resulls from 21 runs are shown. Each run 
lives IWO spec::talors. 

MeV /c. A dccrease in the value of (1 n al Iower ener.y 
was 'kedicted on thcoretical arounds. Il The quantity 
PZK / is found to be -33 MeVlc compared to the el­
perimental value of -23 MeV le secn in ellperimentl at 
92 MeV Inuclcon beam eneray.' Precise comparison 
with experiment should not be m.de at this stale as 
Pu IK is dependent upon b, the ma.nitude fallinl wnh 
increasing b. 

We digress here temporarily to IRdicate the numencal 
accuracy in our calculation. The collision lubroutine 
conserves momenta and ener.y. The only in.ccuracy in 
our calculations IS in solving the Vlasov propa.ation. 
This was tested by calculatinl conserved quantities for 
an isolated nucleus al lime 1 =0 and 1 = 100 fmle at 
which time the majority of our calculations can he 
stopped. We bave also considered more complicated sit· 
uations where again one can test "anserved quanmles. 
Of interest here 15 the fluctuation in tt-e tOlal momentum 
IR a direction, say y, and the loss ln the number of parti· 
cles due to numerical inaccuracy in the Vlasov propaga· 
tlon. Both of these effccts are small, al J less than S pero 
cenl level of lhe value of the observables we are uylDg to 
calculale. 

It is Iikely that the spectators will also have an aver· 
age transverse momentum. This, of course, is oUlslde 
the scope of the Goldhaber model. In our calculallon 
we take b to be ID the X direction. Il is pOSSible for 
P fK IK =Px 10 be nonzero. Naturally we ellpect P, =0. 
This is borne OUi ID our calculations. In the present ell' 
ample we find Px = - 29.4 MeV le. Œimilar resulls have 
been found by Tsang IR BUU calculallons. 12 ) However, 
the value of Px 15 a functlon of both the Impact parame· 
ter and the energy. For thls energy It has a negallve 
value; the magnitude Initially grows wlth Impact param· 
eter, reaches a maximum (near b =4. 31 fm), and then 
begans to fall. A net nonzero value of P r willlend to de­
vlate the spectators away from the forward direction. 
This would Imply that du/dO m3lllmiZeS not at O·, bUI 
al some finate angle. Relevant expenmental data 7 - Il ln­

dlcate that the maXima, If not al O·, are between O· and 
2°. We will laler show that, al Ihls enerlY, the Coulomb 
mteraction aels the opposite way and integration over 
Impact parameter Will push the maximum of du Id Cl to-

-45 -30 -15 0 15 30 4!;) 

16 (PzK/K - < PzK/K > ) MtlV/c 

FIG. 3. DlstnbulIon of Ihe z comp«lnenl of the mmr.entum 
of the spectatorhke fralmenl!. The case shown Il for Ne on 
!Ç~ al b = 4.31 fm; lhe beam ener,y 15 100 Me V Inucleon. 
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wards 0". for the moment, we will continue disc:ussing 
this one Impact parameter and without the Coulomb 
force. 

A formula simllar to Eq. (3) can be used to calculate 
o~ and o~. In thls specifie casè we verify that 
o~ =:::C7~ ==oz. One can test If the momenlum distribu­
tion is Gausslan. 

(4) 

A hlstogram of the distribution seen 10 the present ex­
ample IS shown an fig. 3. A Gausslan conjecture ap­
pears ln he a reasonable approximation, although many 
more runs are requJred to establish a shape unambigu­
ously. 

Expenmentally one usually measures d 2
(1 IdE da for 

projeculelike fragments at a small angle () with respect 
to the beam IXIS. To calculate thls duectly in Monte 
Carlo simulation wou Id take prohibitlvely long. In5tead 

The last mtegral ln Eq. (6) Il> Ihe nessel functlon 
Jol -,P"sm()PIK lui). In our s~"'·"ic example we 
choose K = 15; at O=3.S· numencal calculatlon uSJng 
Eq. (6) glves a full wldth at half maximum (fWHM) of 
143 MeY. ThiS IS to be compared wnh the value == 160 
MeV o;een in experiments al 85 MeV Inucleon laboratory 
~nergy.K Agam. sance Impact parameter mtegrauon has 
not been done. 143 MeV IS a rough estlmate. 

We no,," relurn ta the diSCUSSion of a net Pi ln the 
'pectalor. If thlS 15 large Il sigmfies a measurable 
del1eclJon away from the forward direction. (We have 
~enfied that at hlgher energy, 200 MeY Inucleon, the 
~ffect IS neghglble.l We have chosen b = 4. 31 fm, where 
PI (b) due to nuclear force!> 15 aboul maximum an magm· 
t ude. It has a negauve value which Imphes negatlve an· 
gle scaltenng. A quantitative estlmate of the deftectlon 
.. way from the 0 degree can be obtamed by plottlng a 
hlstogram of the spectator angles as obtamed ln Monte 
Carlo Simulations dlrectly; alternatlvely we calculate 11k, 
PL'" and PIA from our simulatIOns, use these values in 
Eq. (6), and mtegrate f(d 2CTldEdfl)dE 10 obtain 
d CT IdSl as a functlon of 6. In Fig. 4 we have done both 
.. nd obtamed the results wuh and wlthout the Coulomb 
force. The Coulomb force by IIself would Impart a pOSI' 
tlve PI and thus. m IhlS example. bnngs the maximum 
doser to O·. 

~e\'eral othl!r representatlve calculatlons were done 
whlch lead us 10 beheve that the model can alleast seml' 
quantllatlvely descnbe spectator dynamlcs. We can ac· 
I..'ount for the slowmg down of the spectators. In expen· 
",ents the slowing down per parucle IS the largest for 
,maller fragmenls. ~ This IS easlly explamed m the modo 
d; the hghter proJecttlellke fragments ongmate from 

we extract pz, 'Ix, and width from the Monte Carlo 
sImulations and use the Gauuian assumption [Eq. (4)] to 
compute d 2

0 IdE dO. Let 6 be the anlle the detector 
makes with respect to the beam axis and Z - X be the 
plane containing the beam and the detec:tor. then a frag­
ment of momentum PK reachin, the detector has the 
following momentum decomposition: 

P" =p"cos92 +PKsm6.R . 

The cross section for the event is 

d 3u - .Q - 2 2 
-3-cx:exp[-(PK-PZK~-P.LKIi'J.) 120,,]. (S) 
d PK 

ln Eq. (S), Pz,. is the average momentum in the Z direc­
tion. P.LK 15 the average transverse momentum, and fil is 
the direction of the impact parameter which is not 
known and needs to be averaged. When Ihis is done, Eq. 
(S) leads to 

(6) 

lower impact parameter and the mean field is more 
etrective in deceleratmg the projectile. We have seen 
that apart from the Coulomb field, the nuclear mean 
field, can, by itself. Impart a transverse momentum. 
This de pends upon the beam energy but also upon the 
nuclear masses; thls has an important efJ'ect on the angu· 
tar distnbutJon. ln the future we Win make detailed cal· 
culations to compare with ail the avallable experimental 
data'-9 in this energy range. 

L. 
1/1 
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FIG. 4. Dlstnbutlon ln angle for spectatorhke fragments 
wnhoul (al and wllh (bl the Coulomb force Included. The hls, 
tograms are obtained by blnDlng the spectator anlles as ob· 
talned from the runs; the conllnuous curves are obtlined from 
the Gausslan assum~lIon (Eq. (6») where the constants oit 
fi.A • and PZK are deleruuned from the runs. Here K = 1 S. 
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IV. MASS DISTRIBunON OF PARTICIPANTS 

We now tum to more central collisions and ask the 
foUowinl question: What ii the mass distribution of 
Craaments which are not spectatorlike? A variety of ap­
proaches have been uscd to answer this question: micro· 
canonical ensemble simulations,13-15 the evaporation 
model,I6 vanous models of Iiquid·gas phase transition 
(sec Ref. 17 and references therein), the Cascade-Vlasov 
approach,6 and various other models. 18•19 

For central collisions (b =0), a mass distribution was 
oblained in Ref. 3 for Ne on Ne collision at 100 
MeV Inucleon in a calculation very similar to the present 
one. To, he able to compare with ell.perimental data we 
need to intelrate over Impact parameter. Wc would also 
like to see how the theoretical predictions change as the 
beam energy 15 varied. 

Figure S shows our results for Ca on Ca collision al 92 
MeV Inucleon. Thirty runs spanning the impact parame 
eler b =0 to 4.2 fm were taken. To reduce statistical 
fluctuations, the results have been averaged over 3 mass 
units for each bine Figure S gives the hlstogram of ail 
the c1usters and also a filtered histogram where we re· 
move spectatorlike fragments. We use the following en· 
terion: ln the c.m. of the colliding Ions, the initIal 
momentum 'per panlcle in each Ion 15 :tpz. After the 
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FIG. S. Mus dislnbullons for Ca on Ca collisions at 92 
MeY /nucleon. This 15 the result from 30 runs spanntng the 
impact parameter b from 0 104.2 fm; the top curve (a) lDeludes 
ail c!usten; ID (b) we separate out contnbu&lons from panici' 

-- pants (solid line) and speetators (dashed line); for tbe latter a 
eut ln the momenlum of the fragments ln the c.m. of the eollid· 

"'., Ing ions 15 Imposed for the distinction. The )'Ield Y( A) glven 
by the sohd curve ln IbJ falls 011' slower than what IS seen ID ex· 
penmenl (Ref. 20), 

collision if the absolute value of the Z component of the 
momentum per parucle in the eluster is > O .• z in the 
c.m., we Icave them out. This mcans (al we rule out 
thase projectilelike fralments whase Z component of 
momentum per panic1e in the laboratory il ,reater than 
O. 8(pz )llb' and (bl we rule out tar,etlike spect.tors 
which are slowly movin, ln the lab. For this bcam ener· 
gy this amounts to rulins out t.r.etlike spectaton whose 
kinetic energy IR the laboratory is less than (3.65 A 
MeV), where JI IS the number of nucleons in the cluster. 

ln our calculation (Fig. 5), we sce that the yield Y( A) 

from panicipants falls oft' with A with some levelina 
occurring around A.= 12. Thcre are some recent data 
obtained in experiments of Ar on Ca al 92 
MeV Inucleon. ~o The falloft' seen ID ell.penments is faster 
than what the calculauon gives. If we constraan our· 
selves to fit both the expenmental data and the theoretl' 
cal calculauon by a power law Y ( A ) == A -1, then uperi· 
ment glVes or=: 3.0, whereas theory lives T"=' l.S. Experi. 
mental data do not go beyond A = 12, but there is some 
indication of the cross section ftattening out around 
A =: 10. Tbe malR failure of the model thereforc is lhat 
the Intllal falloft' IS too slow. 

Figure 6 shows results of a simllar calculatlon for Ne 
on Ne at 100 MeV /nucleon. Hcre 25 runs spannang 
b =0 to 3.9 fm werc taken. In the data shown ln Fil. 6 
the Coulomb mteraction is includcd; however, for frai' 
mentation of Ca on Ca or Ne on Ne, the Coulomb in· 
teraction 15 unimportant. Remembcring that an the 
latter case the total number of nucleons is half compared 
to the case for Ca on Ca, the mass distribution in the 
case of Ne on Ne is slmalar to that of Ca on Ca. 

The model fails al low beam cnergy. At high energy, 
the IWo nuclei, upon impact, qUlckly break up and nu· 
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FIG. 6. Same as ID Fig S exeept that we conslder Ne on Ne 
al 100 MeV /nucleon. 
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FIG. 7 Same as ln FIg. 5 elcept that thls IS for Ca on Ca at 
72 MeV/nucieon. Note that the yleld YC A) YS A for the paru­
clI'anthke fragments (sohd curye IR (b)) shows a minImum 
around A =:; 12. 

cleons whlch are close together m phase space wIll 
remaan bound to produce c1ullters. At low beam energy 
the scenano IS dlfl'erent: energy IS dumped mto a reglon 
of configuration space but Il IS not enough to break up 
the system qUlckly. Consequently, other processes hke 
evaporallon. which cannot he accommodated ln the 
present framework. wall become a major mechanism ln 

decldang the mass distribution. A beam energy of 50 
MeV Inucleon IS already too low for thls model. 
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Filure 7 shows our calculation for Ca on Ca at 72 
MeV /nucleon. We hlve no reuon to beliève tblt at this 
enerlY the model will break down qualitatively. The 
Most noticeable felture is the U shlpe of tbe raction 
cross section as a function of A. Thi. lhape remains 
after one removes from the histolram spectatorlike frll-

, ments. Recent experimental data20 have not estlblished 
this increase of Y( A) vs A beyond .A:a 12. but there is 
at least a hint of this occurrinl in the experiment20 of Ar 
on Ca at 42 MeV /nucleon. Unfortunltely tbe data do 
not 10 beyond A = 12; for equal ion caDisioDS data up to 
If == 24 would he a very useful test of the model. 

V. SUMMARY AND DISCUSSION 

The extended BUU model is a direct generalization of 
the BUU model which has become a very useful theoret­
ical tool for intermediate energy heavy ion collisions. 
We therefore feh that It is important to test the predic­
tive power of the extended BUU model. It is a 
parameter-free model which addresses a very complex 
problem. It 15 gratifymg to see that the main features of 
spectator physlcs come out ratber weil from the model. 
In future work we WIll include the difl'useness of the sur­
face carefully. as one expects this to play a significant 
role for precIse comparison with experiments. Our 
present treatment does not treat the surface properly. 
This is related wuh the larger probJem of treaunl the 
surface ID the Vlasov prescription. For mus distribu­
tions ID more central collisions between equal ions, the 
most anteresting prediction is that we expect to see a 
mmimum an the Y ( If) vs A curve. This should happen 
hetween 50 and 100 MeV Inucleon beam energy. 

.Vote added. The average properties of spectators can 
. be studied in the standard BUU model. Recent work 

can be found tn Refs. 21 and 22. We thank C. Grégoire 
for bringmg thls to our attention. 
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