
A Survey of Relational Database Management.
Systems for Microcomputers

by

Brian E. Smith

c

c

c

c

A Survey of Relational Database Management
Systems for Microcomputers

This paper investigates the relational features of several com
mercially available database management systems for microcomputers.
The relational algebra, as described by ALDAT, is introduced to
establish a common frame of reference for the analysis of the individual
systems. MRDSA, a relationally complete database management system
based on ALDAT, is presented as a model of a working DBMS implemented
on a microcomputer. Eight commercial systems are examined in detail
with particular emphasis on the nature and variety of the operations of
the relational algebra offered by each system. While we find that each
DBMS implements a subset of the relational operators, we also note the
addition, in a rather ad-hoc fashion, of non-relational procedures. In
this sense we feel that the power and flexibility of the relational
algebra is not being used to full advantage in most commercial systems.

This research was undertaken in the School of Computer Science at McGill
University.

c

c

ACKNOWLEDGEMENT

I wish to thank Professor T.H. Merrett of the School of Computer
Science ~t McGill University for his patience and encouragement
during many discussions about the contents of this paper.

c
TABLE OF CONTENTS

Chapter 1 INTRODUCTION 1

Chapter 2 ALDAT 5

Chapter 3 MRDSA 18

Chapter 4 LOG IX 25

Chapter 5 CONDOR 34

Chapter 6 DBASE II 40

Chapter 7 RQL 47

Chapter 8 RMS 53

Chapter 9 SEQUITUR 58

c Chapter 10 MICRO RIM 66

Chapter 11 74 RL-1

Chapter 12 CONCLUSION 81

c

c

c

1. INTRODUCTION

Database management systems have been successfully
implemented on mainframe computers for some time and are firmly
established as an integral part of the applications software in
the business environment. In this paper interest focuses on two
relatively recent developments in this area. On the one hand we
have seen the implementation of relational databa~e management
systems following the theoretical model first proposed by Codd
in 1970. On the other hand there are now several systems
available for use with microcomputers, thus making this powerful
data processing tool readily accessible for small business and
personal applications. This paper is concerned with the
implementation of relational database systems on microcomputers
with particular emphasis on the operations on relations which
are provided by the various systems.

As a general guideline for the investigation of relational
DBMSs we briefly recall the original discussion by Codd (1970).
At the most elementary level a relation is defined to be a two
dimensional table of data items. Thus any system which stores
data as sets of fixed-length records may claim to be a
relational database system. However Codd also defines a
relational algebra which uses relations as the primitive units
of data and provides a set of operations for manipulating
relations. The relational algebra was originally defined in
terms of two types of operations: the traditional set theoretic
operations (Cartesian product, union, intersection, difference)
and the special relational operations restriction (now usually
called selection), join, projection and division.

In· the remainder of this paper we shall understand a
relational DBMS to refer to a system which not only stores its
data in the appropriate tabular form, -but also implements (a
subset of) the relational algebra. Since our objective is t.o
examine database systems primarily with respect to their
relational features, we omit a discussion of systems which
manipulate files and records, however successfully, using
implementations which . are clearly non- relational i.e. do not
employ explicit operations drawn from the relational algebra
While such systems may be excellent single or multifile
management systems they fall outside the domain of interest of
the present study.

In order to relate the ensuing discussion to the usual file
oriented termino~ogy we note that a relation corresponds to a
file with un1que fixed-length records. Relations are
two-dimensional tables in which a row (or tuple} corresponds to
a record and a column (domain or attribute) corresponds to a ·
field. The uniqueness property ensures that a relation cannot
contain identical tuples.

INTRODUCTION 1

0

0

Q

We compare the relational operators provided by a selection
of commercially available microcomputer database management

. systems with the relational algebra as extended by ALDAT
(Merrett,l977). This provides us with a general framework and a
theoretical yardstick against which to measure the extent and
versatility of the implementation of the relational algebra in
specific systems. In addition we shall describe the
implementation embodied in MRDSA {Merrett and Chiu,l983) , a
research system at McGill University on the APPLE II
microcomputer using APPLE (UCSD) Pascal. MRDSA is not a
commercial DBMS and makes no claim to user friendliness e.g.
there is no English-like query language built into the system at
the present time. However MRDSA is a fully relational DBMS
supporting an impressive variety of commands in the relational
algebra as well as an interactive relational editor and a single
relation query facility. In the hands of a competent programmer
MRDSA is a powerful and versatile data management system. ALDAT
establishes a theoretical framework while MRDSA exemplifies a
working system which is faithful to the relational philosophy.

The subsequent chapters are devoted to a review of eight
commercially available DBMSs for microcomputers: Logix, Condor,
dBASE II, RQL, RMS, Sequitur, MicroRim and RL-1. Due to the lack
of uniformity in terminology and syntax we have found it
necessary to establish a consistent scheme for describing the
features of the systems. For instance we shall always use the
standard relational terminology: database, relation, attribute,
tuple. Table 1.1 shows the alternative names used in the various
systems. It is also necessary to employ, as far as possible, a
common syntax in describing the systems. Thus, for example, each
system provides a method of specifying a condition for tuple
selection; in one case it might be through a "where" clause and
in another by using an "if" statement. While we retain the
actual keywords employed by the individual systems, we note that
in most cases the condition itself is a fairly general tupl~
selection condition permitting algebraic comparison of numeric.
attribute values, string comparisons and boolean combinations.
We will adopt the convention that "clause" always refers to a
condition of this type; for those systems which differ markedly
from the norm the differences will be documented in the text.

The following meta-syntactical notation will be used:

t } - indicates a mandatory choice

r J - indicates an optional choice

* - indicates repetition zero or more times

R,S,T, •• - are relation names

A,B,C, •• - are attribute names.

INTRODUCTION 2

In addition we note that keywords will be written in lower case
and underlined; names of relations and attributes will always be
upper case.

The concepts of key fields and sorting are handled
differently in the various systems. Some general comments on
these features are appropriate here. Sorting is not a
relational operation -a sorted relation, i.e. a· relation in
which the tuples are ordered on a specified attribute (or set of
attributes), has exactly the same tuples as the original
unsorted version; thus, in terms of the relational algebra,
sorting is merely the identity operation. Nevertheless, the
end-user will want to view the relation in a specific order:
this requirement may be satisfied by (1) implementing relational
commands such as project and join with automatic sorting on
specified or default fields (2) having an explicit sort command
which permits the user to sort on specified fields prior to
printing, or (3) embedding the sort routine in output commands
such as list, print, display. As we shall see all three methods
are used 1n practice. Notwithstanding the formally trivial
nature of sort commands we will indicate how each system handles
the sorting requirement, since it is closely related to the
nature of the implementation and is a measure of the degree to
which a system adheres to the relational philosophy.

In the relational context a key is defined to be a minimal
subset of the attributes of a relation which can be used to
identify uniquely each tuple. A key is minimal in the sense that.
if we.omit any attribute of the key we can no longer uniquely
identify each tuple, whereas if we include an extra attribute
the resulting subset of attributes is no longer considered to be
a key, even though it clearly provides a unique identification
of tuples. This clarification of the concept of a relational
key is necessary because several commercial systems use the word
"key" in the context of sort key i.e. a favoured field (usually
indexed) on which sorting can be done most efficiently. IJ•he
concept of a favoured attribute is a clear violation of the
relational model.

INTRODUCTION 3

Database Terminology

MRDSA . Database Relation Tuple Attribute .
Logix : Database Relation Item Column

Condor . Database Record Data item •

dBASE II Database Record Field
or File

RQL . Database Table Row Column .

RMS • Database Table Row Column .
Sequitur . Database Table Row Column .

Q
MicroRIM . Database Relation Row Attribute •

RL-1 : Database Relation Row Column

Table 1.1

INTRODUCTION 4

2. ALDAT

2.1 INTRODUCTION

The objective of ALDAT is to provide
convenience and flexibility as possible within
the relational algebra. The facilities provided
Merrett (1984) and Merrett and Chiu (1983).
briefly here, introducing ALDAT syntax and
simplicity of the conceptual foundations.

as much power,
the framework of
are described by

We review them
emphasizing the

In order to illustrate the nature of relational algebra
procedures in ALDAT, consider the following example of a
relation which summarizes delivery schedules for a local
trucking company.

The relation is

DELIVERY(DELNO,SUPPLIER,DEST,PRODUCT,QTY,UPRICE).

Each order, or delivery, is labelled with a unique number
(DELNO} and consists of shipping goods from SUPPLIER to.DEST. A
delivery may involve several products, the quantities and unit
prices of the goods being labelled QT~ and UPRICE respectively.

DELI~RY(DELNO
4
6
l
3
5
4
6
1
2

SUPPLIER
Adams
Green
Fingal
Green
Cow an
A dams
Green
Finga1
A dams

2.2 UNARY OPERATIONS

DEST
Brown
Daly
O'Neill
Daly
Stanley
Brown
Daly
O'Neil1
White

Table 2.1.1

PRODUCT
Eggs
Apples
Eggs
Pears
Pears
Apples
Pears
Apples.
Pears

QTY
20
62
26
42
31
50
17
23
35

UPRICE)
1.20
0.40
1.20
0.50
0. so .
0.40
0.50
0.40
0.50

Projection creates a new relation by including only.
specified attributes i.e it takes all tuples in a relation and
projects them on a given list of attributes. In ALDAT notation

ROUTE <- DELNO, SUPPLIER, DEST in DELIVERY

yields the new relation

ALDAT 5

0

c

ROUTE (DELNO
4
6
1
3
5
2

SUPPLIER
A dams
Green
Fingal
Green
Cow an
A dams

Table 2.2.1

DEST }
Brown
Daly
O'Neill
Daly
Stanley
White

Note that
eliminated
relations.

ROUTE contains only six tuples since duplicates are
in accordance with the uniqueness property of

For future reference consider the projection

GOODS <- DELNO, PRODUCT, QTY, UPRICE in DELIVERY -
GOODS(DELNO PRODUCT QTY UPRICE}

4 Eggs 20 1.20
6 Apples 62 0.40
1 Eggs 26 1.20
3 Pears 42 0.50
5 Pears 31 0.50
4 Apples 50 0.40
6 Pears 17 0.60
1 Apples 23 0.40
2 Pears 35 0.60

Table 2.2.2

The relation GOODS identifies products, quantities and unit
prices for each delivery.

While projection creates a new relation by restricting the.
attributes (or columns) to be included, selection works ·by
selecting tuples (or rows) from a relation according to a
specified condition. In ALDAT the condition is realized as a
clause between the key words "where" and "in". For example

FRAGILE <- where PRODUCT = "Eggs" ~ DELIVERY

FRAGILE{ DELNO SUPPLIER DEST PRODUCT QTY OPRICE)
4 Adams Brown Eggs 20 1 .. 20
1 Fingal O'Neill Eggs 26 1.20

Table 2 .. 2.3

The condition may be any logical expression which can be
evaluated to true or false on any single tuple of the relation.
ALDAT envisages completely general tuple conditions including
comparison of attribute values and boolean combinations.

ALDAT 6

Combining projection
T-selector, as illustrated:

and selection we obtain the

EGGDEL <- SUPPLIER,DEST,QTY where PRODUCT="Eggs" in DELIVERY

EGGDEL(SUPPLIER
A dams
Fingal

·DEST
Brown
O'Neill

Table 2.2.4

QTY)
21)
26

The "T" in T-selector stands for "tuple" and signifies that each
tuple in the original relation contains all the information
necessary to determine whether or not the tuple will be included
in the result relation. The T-selector is a special case of the
more general QT-selector (Q for quantifier) which is the.basis
of ALDAT's single relation query system. The QT-selector is
discussed briefly in section 3.2 (page 19); we do not dwell on
it since a detailed discussion is not required for the present
analysis. It is permitted to nest T~selectors. For example

where PRODUCT = "Eggs" in (SUPPLIER, DEST, QTY in DELIVERY)

is equivalent to EGGDEL.

The general notation for the T-selector is

A,B,C, ••• where condition in R

where A,B,C ••• is a subset of the attributes of relation R.

2.3 RELATIONAL EDITOR

The relational editor provides the user with the ability to
change the data in individual tuples i.e. to add, delete, or
update selected tuples. Any or all of the attribute values in
the tuple may be changed at the user's discretion. This facility
is essential to the end-user for whom each tuple, or file
record, is the primary object of concern. The programmer-user,
on the other hand, sees the initial and final relations as the·
basic units of data; to him or her the relational editor is
simply an operation of the relational algebra which converts a.
source relation into a result relation. A unary relational
operator is provided to allow the programmer-user to maintairr
this strictly relational point of view.

ALDAT 7

2.4 GLOBAL UPDATE

The relational editor permits the end-user to update tuples
one at a time. However, applications may require that several
tuples be updated at once; for example a customer may wish every
instance of her maiden name to be changed to her married name.
In this case a batch or global update facility is called for.
ALDAT provides the ability to update sets of tuples according to
specified criteria as a variant of the QT-selector (of which the
T-selector is a special case). Briefly, the QT-selector
incorporates quantifiers and adds a · single relation query
facility to the relational algebra. Using QT-expressions, the
user can request the names of all types of widgets (the
universal quantifier) or professors- who teach at least one
graduate course (the existential quantifier) and so forth.

Many of the commercial systems.we have investigated provide
some sort of batch update and some also include a posting
operation which allows one to update one relation from the data
in another; ALDAT does not incorporate this type of (binary)
update.

2.5 BINARY OPERATIONS

In its simplest form the join command refers to the
"natural join" which consists of concatenating tuples from two
source relations when the tuples have the same value for a
common attribute (or group of attributes). In ALDAT the natural
join is denoted by ijoin. For example

DELIVERY <- ROUTE ijoin GOODS

reconstructs the relation DELIVERY by forming the natural jo-in
of ROUTE and GOODS (tables 2.1.1, 2.2.1, 2.2.2). The join is
understood to be on those tuples from the two source relations
which have the same value of the common attribute DELNO. ALD~T
syntax allows the common attribute(s} to be specified explicitly
e.g.

DELIVERY <- ROUTE (DELNO ijoin DELNO) GOODS.

In general, for binary relations R(A,B), S(B,C) and T(D,E), the
natural join is defined by

R ijoin s = {<a,b,c) : (a,b) ~Rand (b,c) E. s} I

or
R(B ijoin D)T =

Note that A,B and

ALDAT

{<a,b,d,e): (a, b) ER and (d,e) ET and b=d~

C can be groups of attributes so that the.

8

0

0

definitions given here are quite general. The second form is
required if the join is done on distinct attributes from the
input relations.

In the above example each DELNO is associated with one and
only one SUPPLIER - DEST pair and with a set of products. The
natural join associates each such pair, via DELNO, with the set
of PRODUCTs. In a more general setting the join attribute may be
associated with a set of items in each of the two source
relations. In the following example each office has two
telephone lines, the usual extension (a four digit number) and
an intercom number (two digit) connecting the office to the main
switchboard:

OCCUPANTS(OFFICE PROF) TELEPHONE(OFFICE LINE)
606 Smith 606 5821
606 MacKenzie 606 29
815 White 815 4823
815 Black 815 31
815 Green 522 5120
423 Jones 522 24
423 A dams

Table 2.5.1

Then the natural join

PROFDATA <- OCCUPANTS ijoin TELEPHONE

yields the result relation

PROFDATA(PROF OFFICE LINE)
Smith 606 5821
Smith 606 29
MacKenzie 606 5821
MacKenzie 606 29
White 815 4823
White 815 31
Black 815 4823
Black 815 31
Green 815 4823
Green 815 31

Table 2.5.2

Another type of join, though best avoided in practice, is
the Cartesian product R x S of two relations R and S which is
formed by concatenating every tuple of S to every tuple of R.
In the case of databases with large relations it is evident that
the Cartesian product will result in very unwieldy relations and
will have a correspondingly slow execution time. Nevertheless
some commercial systems implement join as a Cartesian product

ALDAT 9

£
•

followed by tuple selection on an appropriate logical condition.
For instance with input relations R(A,B) and T(D,E), the
T-selector

where B = D in R x T

is equivalent to the natural join

R(B ijoin D)T.

The natural jDin is, in fact, a generalization of set
intersection (hence the "i" in ijoin). For relations R(A,B) and
~(~,B) i.e. relations with identical attributes, the natural
JOln R ijoin S is precisely the intersection of the set of
tuples in R with the set of tuples in s. Other set operations
(union, symmetric difference etc.) can also be generalized to
form relational operators in a similar fashion. To facilitate
the discussion of the various types of joins obtained in this
way consider the two relations AGE and INCOME

AGE(NAME YEARS) INCOME(NAME SALARY)
-B- 41 B 28
F 27 G 18
G 32 p 26
A 19 A 14
c 24 R 36
D 36 c 20
E 21 D 40

E 25

Table 2.5.3

where SALARY is recorded to the nearest thousand dollars. The
natural join AGEINC is given by

AGEINC <- AGE ijoin INCOME

AGEINC(NAME YEARS SALARY)
B 41 28
G 32 18
A 19 14
c 24 20
D 36 40
E 21 25

Table 2.5.4

ALDAT 10

Note that AGEINC omits those persons for whom either YEARS or
SALARY is unknown. If all available information is required in a
single relation it could be obtained by using the union join
(ujoin)

DETAIL <- AGE ujoin INCOME

DETAIL(NAME YEARS SALARY)
-B- 41 28
F 27 * G 32 18
A 19 14
c 24 20
D 36 40
E 21 25
p * 26
R * 36

Table 2.5.5

where an asterisk denotes a missing value. We note that the
union join consists of three distinct types of tuples. For
input relations R(A,B) and S(B,C} we identify the three types as
follows:

Type 1: tuples from R which match no tuple from S

Type 2: tuples which belong to the natural join R ijoin S

Type 3: tuples from S which match no tuple from R.

The following table summarizes the joins which are obtained as
generalizations of set theoretic operations.

ALDAT ll

Q

TYPE OF
JOIN

: ALDAT
: NOTATION . .

: RESULT

• .
1ntersection : R 1jo1n S : The natural Join

: : Type 1 only

union : R ujoin S : The union join
: : Types 1,2 and 3

:EXAMPLE . .
• ·-=-===-:AGEINC
:(table 2.3.4)

:DETAIL
:(table 2.3.5)

left : R ljoin S : The natural join
: : augmented by
: tuples from R ·

:All but the last
:two tuples of
:DETAIL

: : which match no
: : tuple from S
: : Types 1 and 2

. .
:
• ..

.
right : R rjoin S The natural join :All tuples of

:DETAIL except
:(F,27,*}

left
difference

right
difference

symmetric
difference

: augmented by
: tuples from S
: : which match no
: : tuple from R
: : Types 2 and 3

: R dljoin S : All tuples from
which match no

: tuple from S
. • . • . . : Type 1 only

: R drjoin S : All tuples from
:
• . . •

: which match no
: tuple from R
: Type 3 only

.
R :(F,27,*)

:
S :(P,*,26)

:(R,*,36)
: R sjoin s . .
:

: All tuples from :(F,27,*Y
: either R or S :(P,*,26)
: which do not match:(R,*,36)
: any tuple in the :

: . . : other relation :
: Types.l and 3 :

Table 2.5.6

Since there is no need to have both left and right difference
joins (one can be derived from the other by interchanging the
positions of R and S) we limit ourselves to the "difference
join" djoin defined by

R djoin S = R dljoin S.

The family of joins defined here is collectively called the "f
joins".

ALDAT 12

Another family of operations, called the ·~- joins" is
defined in terms of "set selectors", which are a generalization
of relational division (Codd l972).Since operations of this type
are rarely implemented in commercial database systems we
restrict this discussion to the division operator. Consider the
relations R(A,B) and S{B):

R(! B) S(B)
X I 2
y l 3
z l
X 2
y 2
t 2
y 3
t 3
X 4
t 4

Table 2.5.7

In R, each value of A is associated with a set Ra of values of
B. In the example

Rx = ll,2,4} Ry = fl, 2, 3} Rz = {1} Rt = { 2,3,4]

Since S is a set of values of attribute B we can make set
comparisons between Ra and S, such as Ra 2 S, Ra = S etc. Then
relational division R 7 S is defined by

R+S =R2S = l<a):Ra~S}.

In the example

R + S = {y,t}

since Ry = \1,2,31 ::> \2,3} = s
and Rt = {2 1 31 4} ;) {.2, 3\ = s.
To interpret division, suppose that attribute A refers to the
names of professors while B gives course numbers. Then.
R(A,B)~S(B) yields the names of all professors who teach all of
the courses specified in S. In fact Q ~R.;. S gives the relation

Q(A)
y
t .

In ALDAT division is extended by defining relations using other
set comparisons in an analogous manner. For future reference we
note the following notation:

ALDAT 13

Ra Q\ S
Ra ~ S

is equivalent to
is equivalent to

where U is the universe.

Rar.S=Z
RavS = U

The remaining family of joins, the "a - joins" can be
derived by selecting tuples from the Cartesian product R x S of
two relations. We have already observed that

where B = C in R x S

is equivalent to the natural join R(B ijoin C)S and it is called
the "equi-join" in this context. The "less-than" and
"greater-than" joins are defined analogously by replacing ~=" by
"<" and ">" respectively in the T-selector. For the example
relations

R(A B) S(C !!)
a 50 30 X

b 10 15 y
c 20 10 z

Table 2.5.8

R X S = P(A B c D)
a 5o 30 X
a 50 15 y
a 50 10 z
b 10 30 X
b 10 15 y
b 10 10 z
c 20 30 X

c 20 15 y
c 20 10 z

Table 2.5.9
so that

o,

where B< C in p = T(A B c D)
b 10 30 X
b 10 15 y
c 20 30 X

Table 2.5.10

where B=C in p = U(A B c f!}
b Io Io z

Table 2.5.,11

ALDAT 14

c

,.....
\!pi

where B > C in p = V{A B c !t)
a 5o 30 X
a 50 15 y
a 50 10 z
c 20 15 y
c 20 10 z

Table 2.5.12

2.6 DOMAIN ALGEBRA

Tbe ·domain algebra operates on attributes (domains) to give
new attributes as results. Operations are classified as
horizontal or vertical. Horizontal operators are used to create
a new attribute as a combination of values in existing
attributes of a tuple. Vertical operators may be thought of as
aggregation operations on attributes e.g. totals, subtotals and
averages of all the values in a specified attribute may be
obtained and used to create a new attribute. Result attributes
of the domain algebra are "virtual" i.e they are defined by
expressions of the domain algebra but their values are not
stored explicitly. When the result values are required in a
relation it is necessary to use a command of the relational
algebra to create a relation containing the desired attribute.
For example consider the domain algebra statement

let TOTPRICE be QTY*UPRICE

which creates a new (virtual) attribute TOTPRICE representing
the total price associated with each order in DELIVERY (table
2.1.1). Then the relational algebra command

CHARGES <- DELNO, PRODUCT, TOTPRICE ~ DELIVERY

yields the result relation CHARGES. Note that it is the
projection that actualizes the new attribute TOTPRICE:

CHARGES (DELNO PRODUCT TOTPRICE)
4 Eggs 24.00
6 Apples 24.80
1 Eggs 31.20
3 Pears 21.00
5 Pears 15.50
4 Apples 20.00
6 Pears 8.50
1 Apples 9.20
2 Pears 17.50

table ·2.6.1

ALDAT 15

c

While the horizontal operations of the domain algebra create a
new attribute by combining values in tuples, one tuple at a
time, the vertical operations combine values from more than one
tuple. Although ALDAT incorporates a wide variety of vertical
operations we restrict our attention to the straightforward
cases which are appropriate in the present study.

The "reduction" operation produces a single result from the
values from all tuples of a single attribute in the relation.
Summation is an example.

let TOTAL be red + of TOTPRICE ----
will produce the new attribute TOTAL which is the sum of the
prices (TOTPRICE) for all orders in CHARGES. In this notation
red indicates a reduction operation and + specifies the actual
arithmetic operator to be employed. Any operator which is both
commutative and associative may be used with "red". The
statement

AMOUNT <- TOTAL in CHARGES

creates the relation

AMOUNT (TOTAL)
171.70.

•

Notice that although the result consists only of the single
value 171.70 nevertheless it is actualized as a relation. This
is consistent with the requirement that the relational algebra
operates on relations to produce relations. To find the average
total price per order we can write

let AVPRICE be (red + of TOTPRICE)/(red + of 1)

where "red + of TOTPRICE" yields TOTAL and "red + of 1" gives
the number oy-tuples {i.e. adds 1 for each tuple in the
relation). Then

AVERAGE <- AVPRICE in CHARGES

yields

AVERAGE {AVPRICE)
19.08 •

Equivalence reduction is similar to simple reduction but it
provides a different result for different sets of tuples in the
relation. Each set is identified by all tuples having the same
value for a specified attribute. An important example is
subtotalling. For example

ALDAT 16

0

let AMT be eguiv + of QTY Bx PRODUCT

AMOUNT <- PRODUCT,AMT in DELIVERY

yields

AMOUNT(PRODUCT AMT)
Eggs ~
Apples 135
Pears 125

Table 2.6.2

Clearly the keyword 'equiv' denotes equivalence reduction while
the attribute specified after 'by' is used to group the tuples
into equivalence classes. As in the case of simple reduction
the virtual attribute is actualized by using a command of the
relational algebra. ALDAT incorporates a second type of vertical
domain algebra called 'functional mapping'. Since this feature
is not commonly found in commercial applications it is not
necessary to go into details here other than to observe that
this type of domain algebra is useful for scientific
applications involving statistical calculations. A simple
example of functional mapping is the creation of an attribute
containing cumulative frequencies.

This completes our discussion of ALDAT and establishes the
frame of reference for investigating actual computer systems. We
next consider MRDSA.

ALDAT 17

c

3. MRDSA

3.1 INTRODUCTION

MRDSA is a relational database management system which is
implemented on the Apple II microcomputer using Apple (UCSD}
Pascal. Relational operators are implemented as Pascal
procedures which can be called from Pascal programs to execute
algorithms for the relational commands join, project etc.
Although MRDSA is intended for use by programmers, the MRUSA
procedures themselves are masked from the user so that it is not
necessary to be familiar with the programming details of the
system subroutines in order to use MRDSA effectively.

It is not our intention here to present a complete
description of the actual details of program structure and
syntax, which can be found in the MRDSA programmer's manual
(Chiu, 1982). The emphasis is rather on the nature and
versatility of MRDSA procedures, so that only those syntactical
elements which are necessary for an understanding of the present
discussion will be introduced.

3.2 UNARY OPERATORS

In order to project the relation ROUTE (table 2.2.1) from
DELIVERY (table 2.1.1) we would write the following short
program:

PROCEDURE EXAMPLE;
VAR DOMLIST: DLIST;
BEGIN (*EXAMPLE*)

DOMLIST(O) := 'DELNO';
DOMLIST(l) := 'SUPPLIER';
DOMLIST(2) := 'DEST';
PROJECT('DELIVERY',DOMLIST,3,'ROUTE');

END {*EXAMPLE*)

In general the syntax for the procedure project is

project ('R' ,DOMLIST,N,'S')

where R is the source relation, DOMLIST is an array of N names
specifying the attributes of R to be projected, N is the number
of attributes to be projected, and S is the result relation. The
names of the attributes in DOMLIST are specified via assignment
statements in the MRDSA procedure. Implementation of projection
in MRDSA yields a result relat.ion which is sorted
lexicographically.

MRDSA 18

0
In discussing other examples of MRDSA procedures ·we omit

program details and specify only the syntax of the actual
procedure call i.e. the relational operator. The reader will
readily understand the underlying structure.

The MRDSA procedure QTEXPR provides a quantified query
facility on single relations; it is based on the QT-selector
which is a combination of projection and selection including
quantifiers (cf ALDAT). The QT-selection syntax is

QTEXPR ('R',VALCNT,QSYMB,N,FCN,QTPRED,QTCOUNT,'S'}

where R and·s refer to the operand and result relations,
respectively. The expressions VALCNT, QTPRED and QTCOUNT are an
essential part of the syntax, but are irrelevant in the case of
QT-selection in the absence of quantifiers i.e. they are
necessary to specify the number of quantifiers, the nature of
the quantifiers, etc. but can be ignored when simple selection
and projection are required. QSYMB is an array which is used to
specify the QT-expression to be evaluated; in the case of simple
tuple selection each value of QSYMB will be S (for selection). N
stands for the number of symbols in QSYMB. FCN is an integer and
specifies which function to use in procedure QPRED, the
procedure which actually defines the query or queries to be
answered. Thus we see that QTEXPR always requires an associated
QPRED command. The syntax for QPRED is

QPRED (FCN,I,Q,ATTRI}

where FCN indicates which QPRED function is to be used, I
indicates which predicate within a QPRED function is to be used;
I = 0 for the predicate associated with the first attribute (or
attribute group} etc. Q is the quantity used in Q-PREDICATE and
ATTRI is an array of attribute values of the current tuple. As
an example consider relation P(A,B,C,D) in table 2.5.9-. Suppose
we want to answer the query

A,B where B < C in P.

Then the appropriate segments of the MRDSA program would be

MRDSA 19

t •

.
QSYMB (0) : = S;
QSYMB (1) : = S;
QTEXPR('P' ,VALCNT,QSYMB,2,0,QTPRED,QTCOUNT,'W');

•
•

FUNCTION QPRED(FCN,I,Q,ATTRI);
BEGIN (*QPRED*)

CASE FCN OF
0: CASE I OF

0: QPRED := ATTRI(l) < ATTRI{2);
END;

END;
END;

The result of this query is relation

W(A B)
b 10
c 20 •

For a more complete discussion of QTEXPR and QPRED see the MRDSA
user's manual.

3.3 RELATIONAL EDITOR

In MRDSA the relational editor is an interactive interface.
The procedure EDIT, like other relational operators, is
implemented as a Pascal procedure. Unlike the other operators
EDIT provides a high level interactive interface for the
end-user. The editor provides the user with four operations:
access, delete, insert and update. The user supplies a search
key {one or more attributes of a given relation) and MRDSA
presents one tuple at a time for editing. The editor is invoked
with the command

EDIT ('R' ,DOMLIST,DOMLEN,KEYNO,N,'S',l,l)

where R and S are the input and output relations, respectively,
DOMLIST is an array whose N attributes appear in an order which
specifies the sort order and is used as a search key, DOMLEN is
an array of N lengths corresponding to attributes of DOMLIST,
KEYNO is the number of attributes in the search key. Note that
if R = S then no relation is created but R will be changed by
the edit session. In this context a search key consists of one
or more attributes of a given relation and it is used to
identify one or more tuples ot the input relation. Editor
commands are insert, delete, update, find and scan. Details on

MRDSA 20

these and other aspects of the editor can be found in the
Relational Editor user's manual.

3.4 GLOBAL UPDATE

This type of operation is not implemented in MRDSA.

3.5 BINARY OPERATIONS

The procedure mer]oln in MRDSA implements the family of
joins which we refer to as~- joins in our discussion of ALDAT.
Thus merjoin is a generalization of both the natural join and
the Cartesian product, as well as the set operations. Merjoin
has six modes: I,L,R,U,D and S corresponding to the intersection
(natural), left, right, union, difference and symmetric
difference joins respectively. Furthermore if N {the number of
attributes on which the join is to be performed) is zero, the
Cartesian product is assumed for modes I,U,L and R, while an
empty relation is returned for modes D and s. The usual set
theoretic operations intersection, union, difference and
symmetric difference are implemented by merjoin, in the
appropriate mode, where DOMLIST specifies the complete set of
attributes for both input relations. In this case both relations
must be defined on exactly the same set of attributes. The
syntax of merjoin is

MERJOIN ('R' ,'S' ,DOMLISTl,DOMLIST2,N,'T',MODE).

For example the program segment

DOMLlSTl(O) := 'DELNO';
DOMLIST2(0) := 'DELNO';
MERJOIN ('ROUTE' ,'GOODS' ,DOMLIST,DOMLIST,1,'DELIVERY',I)

implements the natural join of ROUTE and GOODS
the relation DELIVERY (tables 2.1.1, 2.2.1,
specifying the different modes of merjoin we can
of the cases discussed in ALDAT (cf table 2.5.5).

to reconstruct
2.2.2). By

implement all

The ~ - joins described in chapter 2 are also available in
MRDSA. The procedure sigjoin has 12 modes corresponding to
different set comparisons (subset, superset, empty intersection,
etc.). Since we have not seen any attempt to implement division,
·or other modes of sigjoin, in the commercial systems which we
consider, it is not necessary to go into details of this
command. Nevertheless we mention briefly two useful applications

MRDSA 21

c

of sigjoin.

The general syntax for sigjoin is

SIGJOIN ('R','S',DOMLISTl,DOMLIST2,N,'T' ,MODE).

We observe that mode CIO (complement of
implements the natural composition. The
segment shows how to obtain the natural
relation AGE and INCOME (table 2.5.3):

empty intersection)
following program

composition of the

DOMLIST(O) := 'NAME'
SIGJOIN ('AGE','INCOME',DOMLIST,DOMLIST,1,'YRSAL',CIO);

The resulting relation is

YRSAL (YEARS SALARY)
19 14
41 28
24 20
36 40
21 25
32 18

Table 3.5.1

Note that the same result could be obtained using
commands:

MERJOIN ('AGE','INCOME' ,DOMLIST,DOMLIST,l,'AGEINC',l)
PROJECT ('AGEINC','DOMLIST',2,'YRSAL')

the two

where DOMLIST in MERJOIN is the same as in SIGJOIN, while
DOMLIST in PROJECT specifies the (non join) attributes YEARS and
SALARY.

Our second example of sigjoin refers to the division
example of table 2.5.7. The MRDSA command

DOMLIST(O) := 'B';
SIGJOIN ('R','S',DOMLIST,DOMLIST,1,'Q' ,GE);

will yield the result relation Q = R(A,B) ~ S(B} i.e.

Q(~)
y
t

Note that mode GE (superset) of sigjoin implements relational

MRDSA 22

0

division.

3.6 DOMAIN ALGEBRA

At the present time the domain algebra is not available in
MRDSA; however a full set of both horizontal and vertical
operations of the domain algebra, as described in ALDAT, has
been implemented on the IBM PC version of MRDSA (Van Rossum,
1983).

3.7 CONCLUSION

MRDSA provides the programmer with a powerful and versatile
tool for creating, editing, and manipulating a relational
database. MRDSA has been successful in implementing many of the
relational operations which are discussed in the theoretical
literature on relational databases, and in some cases has added
useful extensions of the relational algebra as defined by Codd
(e.g. quantified queries}.

MRDSA 23

0

c

ALDAT

QT-SELECTORS

PROJECT

MRDSA

=

SELECT ON GENERAL: =
TUPLE CONDITION

QUANTIFIERS

UPDATES

,U.- JOIN
I

(\

u

+

LEFT

er- JOIN

c <t -

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

MRDSA

=

NO

:mode LE

. GE .
: IO

:

<

CLE

CGE

CIO

SYNTAX AND COMMENTS

:project('R' ,DOMLIST,N,'S')

:QTEXPR('R' ,VALCNT,QSYMB,N,O,QTPRED 1

QTCOUNT I • s ')

:General QTEXPR syntax cf user manuc

:Tuple updates provided by EDIT

:I sigjoin('R' ,'S' ,DOMLIST,DOMLIST,
N, ' T' , MODE)

The domain algebra has been
:implemented on the IBM PC
version of MRDSA

:Edit('R' ,DOMLIST,DOMLEN,KEYNO,
-- N,'S',l,l) . .

:The MRDSA editor can find only
:tuples which match values given
:for a pre-defined search key.
:There is no integrity checking.

24

4. LOGIX

4.1 INTRODUCTION

Logix is a relational DBMS for UNIX and UNIX like
operating systems. Since Logix commands are shell-level programs
in UNIX, a user may freely alternate between Logix and UNIX
commands. Before we proceed to the relational algebra in Logix
we introduce some important definitions and terminology. A
database is defined. to be a set of relations residing in one
UNIX directory; a relation in Logix consists of attributes which
are either "key" or "residual" attributes: a key is a set of
attributes whose values uniquely identify a tuple (relational
key). Whenever an order for the tuples in a relation is not
specified, the order of the key attributes is assumed. In
creating a relation at least one attribute must be designated as
the key, though the user may specify any contiguous set of
attributes as the key. Details may be found on page 3 of the
Logix tutorial. Most Logix commands do not change the input
relations; the result is usually a new relation which is given
the default name RESULT unless a name is explicitly specified in
the command.

4.2 UNARY OPERATIONS

The projection command in Logix has the syntax

$project R B! A,B, •••• ,K

The attributes listed in the "by" clause are the key attributes
of the result relation; these need not be the same as the key of
the input relation. However, because key attributes must contain
unique values for every tuple, only one tuple from the input
relation with a particular key value will be placed in the
RESULT relation. In the Logix implementation duplicate tuples
are automatically eliminated and the remaining tuples are sorted
on the. (new) key order. Additional (non-key) attributes of the
input relation may be included in the project command as
residual attributes, by listing them in the command line after a
colon. For example in the DELIVERY relation (table 2.1.1) we
could write

$project DELIVERY £y SUPPLIER, DEST: PRODUCT, QTY

and the RESULT relation would contain five tuples, one for each
unique SUPPLIER - DEST pair, with values of PRODUCT and QTY
arbitrarily selected from the set of tuples for each SUPPLIER -
DEST combination.

LOG IX 25

c

0

0

In conjunction with, and as an extension of, projection,
L?g~x supports the statistical operations of finding maxima,
m1n1ma, sums, averages and counts of groups of tuples. The
commands min and max are similar to project but rather than
s~l~cting-an ar?itrary tuple they will select the tuple with
m1n1mum or max1mum values, respectively, in the residual
attributes. The commands ~' avg and count perform some of the
functions of the domain algebra which we discuss in section 4.6.

The command select creates a new relation which contains
some of the tuples of the source relation. The condition for
tuple selection is entered interactively in response to prompts
(->) and terminated by a null line. Conditions for inclusion
may be formed using the usual order comparisons 1 negation and
arithmetic operations. For attributes with text types the
pattern matching oper~tors "matches", "begins with", "ends"with"
and "contains" are available. String concatenation and Boolean
combinations are also permitted. In order to illustrate select,
and other Logix commands, we introduce the relat1ons
FIRST(NAME,YEAR) and LAST(NAME,YEAR), representing respectively
the year in which a customer first placed an order and the year
of the last order placed. Note that there are some customers for
whom either the first or last date is not given.

FIRST(NAME YEAR) LAST(NAME
-A- 1976 -A-

B 1968 B
c 1982 c
D 1970 D
E 1974 E
F 1981 G
G 1974 p

R

Table 4.2.1

select NEWCUST from FIRST
-> YEAR > 1979
->

yields the relation

NEWCUST(NAME
-F-

C

YEAR)
1981

.1982

YEAR)
1982
1980
1982
1970
1977
1978
1976
1965

It is not~worthy that the Logix implementation of select uses an
interactive approach instead of the more usual conditional
clause (e.g. "if" or "where") which is employed by most systems.

LOGIX 26

Logix supports the use of "command modifiers" to add
flexibility to the relational algebra. Most Logix commands can
be modified using either "by" or "if" clauses. "By" clauses can
be used to specify an order for the tuples other than the
default order by key columns. We illustrate the use of command
modifiers by giving examples using the list command which is a
non-relational command used strictly for output. For example

$list ROUTE £y SUPPLIER

will result in the tuples of relation ROUTE (table 2.2.1) being
listed with SUPPLIER as the first attribute and supplier names
being sorted in alphabetical order, thus:

SUPPLIER
A dams
A dams
Cow an
Fingal
Green
Green

DELNO
2
3
5
1
3
6

DEST
White
Daly
Stanley
O'Neill
Daly
Daly

Any number of attributes may be specified after "by". The other
type of command modifier, the "if" clause, allows the user to
select only those tuples which satisfy a given condition to be
included in the result of a command. This produces the effect of
a select. For example

$list ROUTE if "SUPPLIER= 'Green'"

will yield the listing

DELNO
3
6

SUPPLIER
Green
Green

DEST
Daly
Daly •

The "if" and "by" clauses can be combined in a single command,
as in

$list ROUTE £y SUPPLIER if "DELNO > 3"

which causes the following listing

SUPPLIER
A dams
Cow an
Green

DELNO
4
5
6

DEST
Brown
Stanley
Daly.

Another feature of Logix which increases the versatility of the
relational operators is the concept of "segments". A segment of
a relation is defined to be any contiguous sequence of
attributes of that relation which has been designated as a

LOG IX 27

segment. Each segment has a name and most operations on
attributes can also be applied to segments. We note that in
MRDSA the concept of a segment is not explicitly defined but one
can achieve a similar effect by appropriately choosing the
attributes to be included in the DOMLIST arrays of the MRDSA
commands.

4.3 RELATIONAL EDITOR

Logix provides a relational editor red for interactively
viewing, updating, inserting and deleting tuples in a relation.
red is a line editor, similar to the UNIX line editor ed.
Relations may be edited tuple-by-tuple or global commands may~e
used to change several tuples. The editor is invoked with the
command red R. A full-screen editor fred enables users to
define forms and interactively update relations, providing the
same features as red.

4.4 GLOBAL UPDATE

Several commands are available for adding tuples to an
existing relation or changing tuples according to specified
criteria. The command addto will add tuples from a text file to
a relation, while append will add tuples from one relation to
another using a statement of the form append R to s. Append may
be used even if the two relations do not have identical
structures - "Logix will look for columns with identical names
and map the items (tuples) of one relation onto the other".
However "attributes with the same name must have the same
domain". The update command is used to update one relation
based on the contents of another; this type of binary update may
be used to "post" master files from transaction files. As
already mentioned, interactive updating is possible using the
line or full-screen editors.

4.5 BINARY OPERATIONS

Logix has a join command with syntax

$join R,S to T

This command corresponds to the left JOln operation
(MERJOIN, mode L in MRDSA) though it is more limited
corresponding MRDSA command because the user cannot
explicitly in the join syntax the attributes on which
is to be performed; thus the join in Logix is limited

LOG IX

in ALDAT
than the
specify

the join
to joins

28

c
on keys i.e. it is assumed that the join will be performed on
matching key values in the two input relations. (A
communication from the manufacturers of Logix asserts that "the
general join facility" is being implemented. We have received no
further details so we cannot expand further, thus we may be
underestimating the join capability of Logix by the time this
paper appears.)

The commands compare, conflicts, diffa, diffb and merge are
the "comparison operators" in Logix. These operations are
similar to set operations in that the two operand relations are
defined on the same set of attributes, but a new feature is
introduced in the form of a "tag" attribute which is appended to
the result relation and which keeps track of which input
relation contributes each tuple of the result. Thus the
comparison operators combine set theoretic and domain algebra
features. We illustrate these operators using the relations
FIRST and LAST (table 4.2.1).

The command

$merge FIRST LAST

yields the relation

RESULT(NAME TAG YEAR)
A -1- 1976
A 2 1982
B 1 1968
B 2 1980
c c 1982
D c 1970
E 1 1974
E 2 1977
F a 1981
G 1 1974
G 2 1978
p b 1976
R b 1965

Table 4.5.2

The meanings of the five possible tag values 1,2,a,b,c are given
in the following table; the expressions "attrib1" and "attrib2"
refer to the complete set of attributes in the first and second
input relations respectively.

LOG! X 29

c

0

c

TAG MEANING
VALUE

ALDAT
EQUIVALENT

1 :tuple comes from first
:relation - key value in
:both relations

:attribl in (rell keyl ijoin key2 rel2

2 :tuple comes from second :attrib2 in (rel2 key2 ijoin keyl rell
:relation - key value in
:both relations

a :tuple comes from first :attribl in (rell keyl djoin key2 rel2
:relation - key value not:
:in second relation

b :tuple comes from second :attrib2 ig (rel2 key2 djoin keyl rell
:relation - key value not:
:in first relation

c :tuple is common to both :rell ijoin rel2
:relations :

Table 4.5.3

The Aldat equivalent in table 4.5.3 ignores the additional tag
attribute. If it seemed desirable to include such an attribute
it could be defined via ALDAT's domain algebra. The following
table indicates which tag values are included in the RESULT
relations created by the comparison operators.

COMMAND
merge
compare
diffa
diffb
conflicts

TAGS
1,2,a,b,c
1,2,a,b
1
2
1,2

table 4.5.4

The conflicts operator is used when residual attributes are
included to select tuples with common keys but different
residual columns. Note that the tag attribute actually appears
in the RESULT relations for the comparison operators.

The set operations in Logix are union and common. The
union command yields a relation which includes only those tuples
which would be tagged a,b or c in a merge command. However no
tag attribute is included in the result of union. Tuples whose
keys are common to both input relations but whose residual
attributes differ are omitted. For example

$union FIRST LAST

LOG IX 30

0

0

0

yields the relation

RESULT(NAME
-C-

D
F
p
R

YEAR}
1982
1970
1981
1976
1965

Table 4.5.5

Note that union in Logix is not what we commonly refer to as
union in set theory. However the command common yields the set
theoretic intersection (i.e. tuples tagged with 'c' in merge but
without the tag attribute). Thus

$common FIRST LAST

yields

RESULT{NAME YEAR)
-c- 1982

D 1970.

4.6 DOMAIN ALGEBRA

In section 4.2 we mentioned the statistical operations of
Logix. We have already discussed the functions of the commands
min and max. The remaining statistical operators are count, sum,
and avg. The command count is a form of projection which not
only projects on the specified attributes but also appends an
extra attribute, headed TALLY, which specifies the number of
occurrences of each unique combination of attribute values in
the key attributes named in the count command. For example,
referring to table 2.1.1

$count DELIVERY ~ SUPPLIER, DEST

yields
RESULT(SUPPLIER DEST TALLY)

A dams Brown 2
A dams White 1
Cow an Stanley 1
Fin gal O'Neill 2
Green Daly 3

Table 4.6.1

LOGIX 31

The command sum will calculate the sum of the values for a
specified residuar-ittribute and will append an extra attribute,
called COUNT, which records the number of tuples contributing to
the sum. Note that COUNT is an attribute in this situation and
is actually the same as the attribute TALLY defined above. The
command

$sum DELIVERY BY SUPPLIER, DEST: QTY

creates
RESULT{SUPPLIER

A dams
A dams
Cow an
Fingal
Green

DEST QTY
Brown 7lJ
White 35
Stanley 31
O'Neill 49
Daly 121

Table 4.6.2

COUNT)
2
1
1
2
3

The attribute QTY now specifies the total number of objects
being shipped from each supplier to each destination (we
overlook the fact that in this example we are adding eggs to
apples !). We see that sum implements subtotalling, a function
of equivalence reduction in ALDAT. The command avg is similar to
sum except that it calculates the average of the values of a
giVen residual column, while again appending the COUNT
attribute. Thus the statistical operations min, max, count, sum
and avg are seen to perform some of the funct1ons of the domain
algebra.

LOG! X 32

0
ALDAT

QT-SELECTORS

PROJECT

SELECT ON GENERAL:
TUPLE CONDITION

QUANTIFIERS

UPDATES

JJ.-JOIN
I

('\

u
+

LEFT

0"- JOIN

c 1:
2 i:.
A .IX

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

:

. .

. .

LOG IX

>

=

NO

YES

<

<

<

SYNTAX AND COMMENTS

:$project R BY A,B, •• {residual columns)

:select R from S
:-> condition {entered interactively)

. .
:addto, append, $update ~ from S
:l1ne and full screen ed1tors

:$common R S (set intersection only)

:$merge R S (set union plus tags)

: } compare, diffa }

: diffb, conflicts

restricted join plus
tag - limited to
relations with same
structure.

< :$join R,S to T (restricted to join on keys)

NO NO

NO NO :

NO <

<

<

<

. .

. •

• •
{

min 1 max
count
sum
avg

R by A,B, •••• :P,Q, ••

$red R , $fred R {line and full-screen)

NOTES: (1) implicit select is possible via 'if' clauses (cf command
modifiers).

T f"\~T V

(2) LOGIX manufacturers have communicated that the 'general
join facility' is being implemented.

......

0

c

5 CONDOR

5.1 INTRODUCTION

CONDOR Series 20/rDBMS is a relational DBMS for Z80
microcomputers. Some preliminary remarks are in order before
discussing the relational algebra. First we consider the way
CONI~R handles sorting; the following comment on "usage
strategy" is taken from the user's manual. (CONDOR,l981 Page 35).
"Sorting is not required nor done automatically· by CONDOR Series
20/rDBMS commands • However if files are sorted response time
will improve by as much as 90%". The syntax for the explicit
sort command is

sort R £y A,B, •••.•• [D] ,

where up to 32 attributes may be specified with A as the major
sort field, followed by B and so on. The optional switch 'D'
when specified will cause the relation to be sorted in
descending order. In implementing the sort a temporary work file
is created on the current disk drive and the relation is
rewritten in the sorted order; the work file is erased at the
end of the sort.

Another important aspect of CONDOR is the "matching fields"
feature. The binary relational operators require that the
attributes on which the operation is to be performed be
explicitly specified as matchirig fields; these fields
(attributes) must be defined identically (i.e. have the same
name, size and type) in the two operand relations. Recall that
in Logix the join command was limited to predefined key
attributes; in CONDOR the philosophy is quite different - to
quote again from the user's manual "one of the primary features
of a relational database is that there is no requirement that
specific key fields be defined". Thus in the join, and other,
commands attributes must be specified explicitly as matching
fields.

5.2 UNARY OPERATIONS

The project command

project R £y A,B, •••••

is equivalent to the project operator in MRDSA and the simple

CONDOR 34

c

project in Logix. The command

select R where clause

is used to create a RESULT relation consisting of those tuples
which satisfy the where clause. The selection condition permits
numeric or character comparison of attribute values with
constants or other attribute values. Boolean combinations are
permitted though both 'and' and 'or' may not be used together in
the same command. The usual comparison operators, as well as
several synonyms , are available. For example <>, NE, IS NOT,
and ARE NOT may be used to express '.not equal'.

5.3 RELATIONAL EDITOR

The command update with syntax

update R where clause

selects the set of tuples which are presented interactively for
editing by the user. We emphasize that update is an interactive
command which permits the user to change one tuple at a time.
The where clause is the same as in the select command.

5.4 GLOBAL UPDATE

A general feature of CONDOR is that it employs a business
oriented terminology. For example

post R S matching A, B,.... H_opr C,D •••) •.• ~

where opr can be any of the following operators:
REPLACE (REP) I ADD (SUM} I SUBTRACT (SUB).

The ADD and SUBTRACT operators apply only to attribute values
declared as numeric (N) or dollar ($) data types. The post
command is used to update attribute values in one relation with
those from another. In effect post is a combination comparison
- updating operation which matches attribute values from the two
input relations and, when a match occurs, the tuple from R is
updated from the matching tuple in s, as specified by the
operators in the command: thus attribute values may be added to,
subtracted from, or replaced by values of the second
relation.The result relation consists of updated instances of
all tuples R that matched tuples of S. A typical application of
post is to update a master file from a transaction file. The
following illustration is taken from the user's manual:

CONDOR 35

post TASK TIME matching TASKNO and add HOURS.

The result of this command is as follows - for each matching
TASKNO in the input relations TASK and TIME, the hours specified
in the TIME relation are added to the hours already in the TASK
relation. If no attributes or operators (add, subtract, replace)
are specified in the syntax, the command will default to a
complete replacement operation. The RESULT relation created by
post may be used to maintain an audit trail and for verification
purposes~ for further details and examples the reader is
referred to the user's manual {page 36).

5.5 BINARY OPERATIONS

The join command in CONDOR has syntax

join R S matching A,B,C, .••• [D]

where up to 32 attributes may be specified. The join implemented
by this command is the natural join unless the optional switch
'D' is specified; in this case if no match occurs between any
one tuple in R with the tuples of S, a tuple will be forced to
appear in the RESULT relation with default values of S joined to
the unmatched tuple from R. This is the left join (MERJOIN -
modeL in MRDSA).

The comparison operator compare may be used to match tuples
of one relation with tuples of another by specified attribute(s)
and create a RESULT relation consisting of tuples from the first
input relation which match (or do not match) the tuples of the
second relation. The syntax is

compare R S ~matching . l
l not match1ng J

A, B, ••••

We illustrate this command by referring to table 2.5.3 where
relations AGE and INCOME are defined. The command

compare AGE INCOME matching NAME

creates the relation

CONDOR 36

0
RESULT(NAME

-B-

G
A
c
D
E

YEARS)
41
32
19
24
36
21

Table 5.5.1

In ALDAT terminology this would be

RESULT<- NAME,YEARS in (AGE ijoin INCOME) .

Thus, in
equivalent
attributes
command

general, CONDOR's compare matching procedure is
to a natural JOln followed by a projection on the
of the first relation in the join. Likewise the

compare AGE INCOME not matching NAME

yields

RESULT(NAME YEARS)
-F- 27

Again, the ALDAT equivalent would be

RESULT<- NAME,YEARS in (AGE djoin INCOME)

i.e a (left) difference JOln followed by
attributes of the first relation.

projection on

The set theoretic union of two
identical structures (attribute order
implemented using the command

combine R S

relations which have
and type) may be

The result relation is the union of R and s, both of which
remain unchanged. Set intersection is obtained by using compare
on all attributes of the two relations, again assuming identical
structures.

5.6 DOMAIN ALGEBRA

CONDOR provides some of the effects of the domain algebra
through the stax command, with syntax

CONDOR 37

c
stax R £y A,B, •••.•• option

where the available options are A,C,M,T and P which result in
averages, count, maxima and minima, totals and printer output,
respectively. Note that the option M results in both minimum and
maximum values being displayed i.e. one cannot have one without
the other. If no option is specified all statistics are
displayed on the screen. The stax command will display the
statistics specified in 'option' for the attributes included in
the attribute list. Stax implements some of the simple reduction
operations in ALDAT.

Features of the horizontal domain algebra are implemented
through the compute command with syntax

computeR st C = t\A opr B1 •••• \

where C is the name of the new attribute and opr may be + , ,
* or I . The user's manual states that "using this command
properly requires a careful understanding of the syntax;
otherwise unexpected results may be obtained" and further
"caution must be exercised in using this command because of its
global effects". An example offered in the manual is

compute ORDERS st PROFIT = PRICE - COST.
•

This command will cause a new attribute, PROFIT, to be added to
the ORDERS relation. In ALDAT this result would be achieved by
the statement

let PROFIT be PRICE - COST

followed by a projection on all the attributes of ORDERS plus
the new attribute PROFIT.

This comletes our survey of the relational features of the
CONDOR Series 20 relational database management system.

CONDOR 38

0

c

ALDAT

QT-SELECTORS

PROJECT

SELECT ON GENERAL:
TUPLE CONDITION

QUANTIFIERS

UPDATES

p.-JOIN
I

(\

u
+

LEFT

<r- JOIN

c </:.

2 1:.

. . . .
:

. .

. .

CONDOR

=

<

NO

YES

=

<

NO

<

NO NO

NO NO

SYNTAX AND COMMENTS

project R Qy A,B •••

select R where clause (AND and OR cannot
be used in the same clause}

post R S matching A,B, ••• {_oprB,C •• \ .• \

JOln R S matching A,B, ••• (natural join)
compare R S matching A,B, ••• (natural join
plus projection on R - set intersection i
all attributes are specified}

combine R S (set union only)

compare R S not matching A,B, •.•
join R S matching A,B, ••• D

A)?(' : NO =
DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

CONDOR

< compute R st C= {tA opr B !· ... \

<

NO

<

stax R BY A,B, ••• option

update R where clause

{max,min,count,
avg,total)

39

0

0

c

6 dBASE II

6.1 INTRODUCTION

This DBMS runs on a variety of micro.computers and is
available for the more widely used operating systems, such as
CP/M, MS-DOS etc. The system is relational in that data are
stored and managed according to the relational model. Several
relational commands are implemented directly while others may be
effected in a less obvious fashion. For example, at first sight,
it appears as if the project command is completely overlooked,
yet on further investigation it is evident that one can in fact
realize projection by use of the £QPY command which permits the
user to copy any subset of the attributes of a given relation.

The following information is necessary to understand the
way dBASE II works. The system maintains two work areas named
PRIMARY and SECONDARY; the relation residing in either work area
at any time is called the USE relation for that area. In this
context we note that the command select has an entirely
different meaning in dBASE II from the usual selection operator
of the relational algebra. Here select is used to identify
either the primary or secondary work ·area as supplying the
operand relations in dBASE II commands. The select command has
the form

select 5 primary 1
l.. secondary 5

6.2 UNARY OPERATIONS

Relational algebra selection is implemented in dBASE II via
the locate command

locate scope for clause

where scope is an optional command modifier which specifies the
set of tuples to be included in the command; scope may be all,
to search the entire relation, next n, to search only the next n
tuples (including the current one), or record n which means
examine only then th record {or tuple). If scope is omitted it
defaults to all. The for clause may include numeric comparison,

DBASE II 40

c
string and substring matching
corresponds to selection on
described in ALDAT.

and Boolean operators. Locate
a general tuple condition as

dBASE !I provides another approach to tuple selection via
the concept of 'keys' and indexed files. We note that key, in
this context, refers to a sort key and not a key in the
relational sense of unique tuple identifier. In order to use the
find command it is necessary to create an indexed relation using
the command

index~ A,B, •••••• to IR

where IR indicates an indexed relation which is said to have the
specified attribute list as its key. Notice that the relation
to be indexed is not explicitly named since the command
automatically works on the USE relation in the current work
area. Several indexes may be created for the same relation; the
index command creates a new indexed relation which is stored as
a B-tree and which contains pointers to the tuples in the USE
relation. The USE relation itself is unchanged. Searching and
sorting relations is more efficient when the indexed relation
technique is used. The command

find char string

causes the computer to find the first tuple in an indexed
relation {in USE) whose key is the same as 'char string'. The
user's manual states that "a typical find time is two seconds on
a floppy diskette system". Find may only be used with indexed
relations. In many cases the 1ndex command need only be used
once since other commands will automatically adjust the index
when new tuples are added to the relation.

The command

sort on A !£ R S [ascendi~g] l
l [descendln9J J

creates a new relation sorted on the specified attribute. The
source relation is unaltered and remains in USE. The manual
states "to sort on several keys (fields), start with the least
important key, then use a series of sorts leading up to the
major key". If neither ascending nor descending is specified,
ascending is assumed. The manual further states "the index
command is compared with the sort command in this way: index,
when done, performs nearly all of sort's duties. Also, index
generally allows greater freedom and greater speed than sort".

DBASE II 41

c

0

dBASE Il does not have an explicit projection operator.
However there is a £2EY command which may be used to duplicate
an entire relation or part of a relation. Thus by setting up an
empty relation with the appropriate structure (attribute names,
order and type) specifying only a subset of the attributes in
the operand relation we can effectively produce a projection.
The manual warns that "when you £.Q.J2Y to an existing filename,
the file is written over and the old data is destroyed". The
command £QQY to temp creates a new relation called temp.DBF. The
general syntax-for £QPY is

£.Q.I2Y to R [structure] [fields A,B,...) •

For example to project relation ROUTE (table 2.2.l,page 6) from
DELIVERY (table 2.1.1) we would write:

use DELIVERY
copy to ROUTE structure fields DELNO,SUPPLIER,DEST

As we shall see in section 6.5 the join command in dBASE II also
permits the projection of the result of a join on specified
attributes.

The copy command causes the creation of a new relation but does
not automatically display it. The display command has syntax

display {scope] [off][for clause]

Scope has already been explained with locate. Normally record
numbers are included with the display. To suppress the printing
of record numbers the option 'off' may be specified. Displaying
selected tuples is possible by including the optional 'for'
clause.

6.3 RELATIONAL EDITOR

Three commands are available for interactive editing. The
edit command:

use R
edit n

may be employed to edit the nth tuple in relation
the use command 'opens' the relation while 'edit
tuple to be displayed for full screen editing.

R. Note that
n' causes the

Another command,change, may be used to select tuples for

DBASE II 42

0
editing according to specified criteria.

change [scope) A~ B, ••••] [for clause]

finds the first tuple that meets the condition in the 'for'
clause and displays the tuple for editing; when you are finished
with that tuple the next one is presented and so on until all
tuples have been examined or the 'escape' key is pressed. Full
screen editing allows the user to change, add or delete tuples.

A third editing command which is very useful in practice is
browse which provides the user with a 'window' into the
relation. The view of the relation may be changed from the
keyboard by means of scrolling the screen up or down, left or
right. Changes may be made to the relation while in the browse
mode.

6.4 GLOBAL UPDATE

The command

update from R on key Sadd l
l replace 1

A, B, ••••

may be used to modify the USE relation with data from another
·relation. The options in update are add or replace, meaning that
we can update attribute values in the USE relation by adding
values from the other or by replacing them with values from the
other relation. Update is implemented by comparing tuples in
the 'from' and USE relations and performing the add or replace
function if the keys match. Note that in order to use this
command the USE relation must be presorted or indexed on the
key, while the 'from' relation must be presorted on the key.

The command

replace [scope] A with exp [, B with exp] * for clause

is used to replace data in attribute(s), where the 'exp' can be
"specific new information (including blanks) or it could be an
operation such as deducting sales tax from all your bills
because you have a resale number". The specified attribute(s)
may already exist in the operand relation, in which case the
command amounts to a global replacement of attribute values, or
may be new attribute(s) in which case the replace operation
becomes a command of the horizontal domain algebra (cf section
6.6). The 'for' clause allows the user to replace attribute

DBASE II 43

0

0

values in selected tuples.

6.5 BINARY OPERATIONS

The join command is implemented as a Cartesian product
followed by tuple selection (the e -joins in ALDAT}. This
implementation may cause problems with execution time and data
storage if the condition for tuple selection is too loose. From
the description of join syntax usage it is evident that by
specifying only a subset of the attributes in the attribute list
one can produce the effect of a project on the result relation.
The following example, taken from the user's manual, illustrates
the sequence of instructions to be used when performing a join:

use INVENTORY
select Secondary
use ORDERS
join to NEWREL on P.PART:NUMBER = PART:NUMBER;

field CUSTOMER,ITEM,AMOUNT,COST

This program segment creates a new relation (NEWREL) with four
fields with the same data types as in the two source relations.
Notice that using the 'P.' prefix in P.PART:NUMBER calls a
variable from the work area (primary) which is not currently in
USE. We observe that the join syntax permits the user to effect
an implicit projection in conjunction with the join. We also
note that by varying the conditional expression and attribute
list in the join command it is possible to construct other types
of operation such as natural composition, less-than join etc.,
though the family of ~-joins could not be derived from this
implementation. The general syntax for join is

join toR~ condition field A,B, ••••

We close this section by noting that the update command
discussed in section 6.4 is in fact a binary operation, namely a
binary update or 'post' command.

6.6 DOMAIN ALGEBRA

In section 6.4 it was noted that the replace command may be
used to implement the horizontal domain algebra function of
creating a new attribute and appending it . to a relation. For
example to add a new attribute TOTPRICE to the DELIVERY relation
(table 2.1.1) we would write

DBASE II 44

0

c

use DELIVERY
replace all TOTPRICE with QTY*UPRICE.

Since the general replace syntax supports the simultaneous
creation of multiple attributes and also permits the user to
specify the scope as well as a 'for' clause, we conclude that
dBASE II implements a very general version of the horizontal
domain algebra.

Vertical operations of the domain algebra are count, sum
and total. The command

count [scop~ [for clausel tto memory variable]

will count the number of tuples in the USE relation. If the
'for' clause is included then only the tuples which satisfy the
condition are counted. If the 'to' clause is included, the
integer count is stored in a memory variable which will be
created at this time if it was not defined prior to this
command. The command

sum A [,B) *fto memory var [,memory var] *] [scope] [tor clause)

adds numeric expressions involving the USE relation according to
the scope and 'for' clauses. Up to five attributes may be summed
·simultaneously. If the 'to' clause is present the sums will be
saved in memory variables. The command

total on key to R r A (1 B)*) (for clause)

may be used to calculate totals for specified attributes and
place the totals in a new relation. The USE relation must be
either presorted or indexed on the key.

We conclude that dBASE II incorporates several useful
features of both horizontal and vertical domain algebra. Totals
and subtotals are accessible via the sum and total commands in
conjunction with the optional 'for' clauses. While averages and
other statistical functions are not explicitly provided, we note
that a general feature of dBASE II is the availability of
built-in programming features, specifically the
'if •.• else ••• endif' and the 'do while ••••.• enddo' structures.
The 'do case' structure is also available. This programming
capability may be used to create "command files" thus enabling
the user to define his or her own custom designed commands.

DBASE II 45

c

0

ALDAT

QT-SELECTORS

PROJECT

:dbase II:

=
SELECT ON GENERAL: <
TUPLE CONDITION

QUANTIFIERS

UPDATES

JJ-- JOIN
I

(\

u
+

LEFT

<r- JOIN

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

. .

. .

NO

YES

>

NO

NO

NO

NO

NO NO

NO NO

NO =

>

<

<

<

SYNTAX AND COMMENTS

£2£! toR [structure](fields A,B, •• J
locate (scope) for clause

update from R on key {add A,B,... t
l replace A, B, ••• J

replace [scope] A with exp _
[,B with exp]*[for claus~

join to R on cond field A ,B *

replace (scope} A with exp [, B with exp) *
[for clause] (allows multiple attribut

comparison, also scope and for clause)

count {scope) [for c lausej (to mem var1

sum A[,B1*[to mem var(,to mem va~ *1
(scope) tfor clause]

total on key to R[A[,B]*] (for claus~

edit n (fetch tuple by number)
change tscope1 A f,B1 *{for clause){ fetch
tuple using for clause_) __

b
7. RQL

7.1 INTRODUCTION

RQL is described as a relational algebraic query language.
It is a relational DBMS for the Apple microcomputer and it
requires at least 48K RAM, the DOS operating system (version 3.3
or greater), the APPLESOFT language and at least two floppy
diskette drives. The user's manual is well written and contains
many examples. First time users of a database system should be·
able to teach themselves how to use RQL with relative ease. The
syntax is easy to follow and is clearly intended to permit the
user to formulate queries and requests in a 'natural' manner.

It appears that RQL operators such as project and select do
not automatically sort the result relations. In order to sort a
relation prior to displaying it, the command

sort R by A

may be used to sort the tuples in ascending order on the
specified attribute. After execution a new relation R.SRT is
created. The name is generated automatically. Since relation
names cannot exceed eight characters in length, the input
relation name must be no longer than four characters to
accommodate the extension .SRT. The rename command can be used
to give a shorter name to a relation prior to issuing a sort
command. It seems that both the original relation R and the
sorted version R.SRT are stored in the database.

7.2 UNARY OPERATIONS

Projection in RQL is thought of as attribute selection.
Thus

1 R be select A,B, ••. from S

will project S on the named attributes and create the new
relation R. If no attributes are specified the operation simply
copies the . input relation. Duplicate tuples are eliminated in
RQL's implementation of projection.

RQL 47

\
I

The selection operation is visualized as a tuple selection
from a specified relation with a general tuple selection
condition given in the form of a 'where' clause. In RQL syntax
two types of 'where' clause are permitted, clause! and clause2.
The general form of clause! is as follows:

= =
<> <>

attribute < t value) (~~a\ attribute < t value 1 * > "value" > 'value"
<= <=
>= >=

where value, without quotes, specifies a value if the attribute
type is numeric whereas "value" implies a character value. We
note that the clause! syntax permits comparisons with constants
only and does not allow for the comparison of the values of two
different attributes. The syntax for selection in RQL is

let R be select from S where clause!. -- --
The user's manual next introduces "projection and selection
operation" (Chen and Driscoll,l982) and states that "a new table
can be created by selecting columns and rows from an existing
table according to qualifications placed on the row values". The
syntax is

let R be select A,B, ••••• from S where clause!

This combined projection/selection operator
T-selector in ALDAT (cf ALDAT, page 7).
reference to table 2.1.1 and table 2.2.4
relation EGGDEL from DELIVERY by the command

corresponds to the
For example with

we can create the

let EGGDEL be select SUPPLIER DEST QTY from DELIVERY
Wh.'ere PRODUCT= "Eggs".

7.3 RELATIONAL EDITOR

RQL does not support a relational editor permitting
interactive editing of tuples one at a time. The only
interactive procedure is insert R which, when invoked, causes
RQL to prompt the user for the tuple to be input, one attribute
value at a time, into relation R. The prompt explicitly displays
the name, field width and data type of the attribute to be
entered.

RQL 48

0

7.4 GLOBAL UPDATE

The command

update R with A = ~ value l fB = { value i.lttwhere clausel
l"value~l rvalue"ll

will cause all tuples satisfying clausel to be modified with the
specified attribute values. For example, referring to the EGGDEL
relation in table 2.2.4 the command

update EGGDEL with SUPPLIER = ,.Evans" QTY = 24
where DEST = ,.Brown,.

results in

EGGDEL(SUPPLIER
Evans
Fingal

DEST
Brown
O'Neill

Table 7.4.1
The command

delete R where clause!

QTY)
'"24

26

allows the user to delete, with a single statement, all the
tuples of R which satisfy clausel. For example

delete EGGDEL where QTY > 25 .

when applied to the relation in table 7.4.1 results in the new
relation

EGGDEL(SUPPLIER
Evans

7.5 BINARY OPERATIONS

DEST
Br'O'Wn

The join command has syntax

QTY}
24

let R be join S T where clause 2 •

RQL 49

e

c

Clause2 is used only for the join operation and has the form

= =
<> <>

attrib from < attrib from l~~d) attrib from < attrib from
rel 1 > rel 2 rel 1 > rel 2

<= <=
>= >=

We note that the natural join is a special case in which clause2
consists of a single equality comparison of attributes from the
two input relations. The ability to include Boolean combinations
of comparisons between attributes from the operand relations
generalizes the concept of natural join as defined in ALDAT.
The family of e -joins, and generalizations involving multiple
comparisons, can be derived from the join command in RQL albeit
with an expensive implementation consisting of Cartesian product
followed by tuple selection.

The set operations in RQL are union, intersection, relative
complement and symmetric difference. Attributes must match in
number, length and type in the two input relations. The new
relation will have the same attribute names as the first input
relation in the command. Syntax for the four set operations is
as follows:

SET OPERATION SYNTAX
Union let R be in s or in T
Intersection let R be 1n S and -. T : 1n
Relative complement : let R be in S minusT
Symmetric difference: let R be in S or T but not both --

7.6 DOMAIN ALGEBRA

The "aggregate function" in RQL corresponds to vertical
domain algebra operations. Both simple and equivalence reduction
are represented. The general form of the syntax for four of the

·five aggregate functions is

r ~~ m1n
max
sum

R.A [where clause~

while the fifth operation has the syntax

count R [where clausel] •

RQL 50

0

c

The names of the functions are self explanatory. If the optional
where clause is omitted simple reduction, involving all tuples
of the relation, is assumed. Inclusion of the where clause
limits the arithmetic function to tuples satisfying clause! and
is therefore an implementation of equivalence reduction
operations such as subtotalling. For example, referring to
DELIVERY (table 2.1.1), the command

sum DELIVERY.QTY where PRODUCT = "Eggs"

will Jesuit in the value 46 being displayed i.e. the total
number of eggs being shipped. Likewise

min DELIVERY.QTY where DEST = "Daly"

will display the result 17 which is the m1n1mum value of QTY in
tuples for which DEST = "Daly". It is evident that the specified
attribute in these commands must be numeric. The command

count DELIVERY where QTY > 25 and PRODUCT <> "Eggs"

will result in the numeric display 5 i.e. the number of tuples
for which the QTY exceeds 25 and the PRODUCT is not eggs.

There is no attempt to implement the horizontal domain
algebra in RQL.

RQL 51

0

0

ALDAT

QT-SELECTORS

PROJECT :

SELECT ON GENERAL:
TUPLE CONDITION :

QUANTIFIERS

UPDATES

/-1..- JOIN
7

()

u
+

LEFT

a-- JOIN

c 4

. .

RQL

<

NO

YES

>

<

<

<

NO

NQ NO

SYNTAX AND COMMENTS

let R be select A,B, ••• from S

let R be select from S where clause

: update R with A=
{ value 1 [B=

"value"
where clause!

let R be join S T where clause2

(
value1l*

"value'1J

let R be in S and in T (set intersection)

let R be in S or in T (set union)

let R be in S or T but not both(symm diff)

let R be in S minus T(relative complement}

2 ~ : NO NO :

{;\ ,ex-
DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

RQL

. .

. .

NO =

NO

<

<

<

: 1~1 max
sum . •

: count

R.A (where clause~

R [where clause~

1nsert R (permits interactive input)

52

0

c

8. RMS

8.1 INTRODUCTION

Produced by the same manufacturer as RQL, RMS is a
relational menu system with the same system requirements as RQL.
There are significant differences between the two systems, both·
·1ith respect to the user interface (menu vs syntax} and the
available commands.

RMS must be accessed via a password which may be SUPER or
REGULAR. Only users with SUPER passwords have the ability to
perform operations which alter the content of a database such as
destroy or rename a database, update a relation (table) with
protection and so forth. In order to create a relation in RMS
the DEFINE TABLE menu option is used. The procedure for actually
defining the relation i.e. specifying number of attributes,
attribute names, lengths and data types is performed
interactively with the system prompting for each input. Full
details are provided in the clearly written user's manual
(Driscoll,l983).

Selecting the SORT TABLE menu option will cause the
computer to request the name of the relation to be sorted and
the attribute on which to sort the relation. RMS will then
rearrange the relation on the requested attribute. Sorts may be
fast or slow - the fast sort being possible only if the relation
fits entirely in core memory. The user's manual suggests that
one should try the fast sort first and only resort to the slow
sort if an "out of memory" error occurs.

8.2 UNARY OPERATIONS

Selection is possible with the SELECT ROWS menu option. A
new relation with attributes identical to the input relation
must first be defined using DEFINE TABLE, and then RMS will fill
this relation with only those tuples satisfying a given
condition. The condition is entered by first typing in the
attribute number in the form Cn, where 'C' stands for column and
'n' is the actual column number; then a general condition can be
constructed using the usual combination of comparison,
arithmetic operations (including exponentiation) ·and Boolean
operators. Examples of selection conditions are:
C2 <= 5 I C3 > "M" I NOT(C3 = "B") ' C4 = C2 AND C4 < Cl

RMS 53

0

Q

Note that attributes may be compared to each other and not
merely to constants.

Projection may be implemented by selecting PROJECT COLUMNS
from the command menu. It is necessary to use DEFINE TABLE to
create the {empty} relation which is to receive the projected
attributes. PROJECT COLUMNS is more general than the usual
projection operator; for example it may be used to insert
attributes of one relation {the operand) into another (the
result) - this is accomplished by creating a new relation with
the desired attributes of the original relation plus any
additional attributes, which may be placed anywhere within the
sequence of attribute declarations when DEFINE TABLE is used to
set up the recipient (result) relation. PROJECT COLUMNS is then
used to insert the old attributes into their respective
locations in the new relation. Another application of this
command would be to change the declaration of the data type for
an attribute, for example increasing the length of a character
attribute, by defining a new relation with the desired changes
and projecting the old relation into the new one. See page 19 in
the RMS user's manual for details.

8.3 RELATIONAL EDITOR

Inserting tuples into a table (relation) is effected via
the INSERT ROW menu option. Once a relation is selected RMS
allows the. user to insert a new tuple attribute by attribute.
The user's manual states the following: "Preceding each request
for entry is a reminder of the column name and its data type.
To represent the proper length, a block is displayed of the
declared size in which you must place your data''. Tuple updating
and deletion require the UPDATE ROWS option which causes the
relation to be displayed tuple by tuple. Five responses are
available to the user as shown in the following table:

ENTER
Return

E

D

R

+/- n

RMS

: RESULT
No change - display next tuple

:Discontinue ('end') updating

Delete current tuple

Replace current tuple - system prompts for
input as in INSERT ROW

: moves forward (+) or backward (-) n tuples,
where n is an integer

Table 8.3.1

54

0

8.4 GLOBAL UPDATE

The command ROW CALCULATIONS may be chosen from the menu to
make mass changes to a relation i.e. to effect global updates.
This is accomplished through a statement of the form

if condition then calculation

which causes the specified calculation to be performed for all
tuples which satisfy the condition. The 'calculation' permits
the user to compute a new attribute value from values of
existing attributes. Very general computations may be performed
involving numeric and literal comparisons, arithmetic operations
and Boolean combination. It appears that ROW CALCULATIONS is
actually used to change values of an existing attribute;
however, combining this capability with the extended projection
operation in RMS it is clear that the user can define a new
relation which will contain all of the attributes of the
original relation plus any new attribute(s) created via ROW
CALCULATIONS. We shall return to this command when we discuss
the domain algebra in section 8.6.

8.5 BINARY OPERATIONS

The JOIN menu option supports the same family of joins as
in RQL i.e. the $ -joins of ALDAT, plus the ability to use
multiple comparisons in the JOln condition. The RMS user's
manual provides full details on how to create the result
relation and how to specify the condition. The implementation is
explicitly stated to be based on the Cartesian product plus
selection logic, and a warning is issued that joining large
relations may be slow. Some hints are provided for speeding up
the join in special cases.

Four set operations are provided using the menu options
INTERSECTION, UNION, DIFFERENCE, and TABLE MINUS TABLE. For
example consider the relations FIRST and LAST (table 4.2.1, page
26). To find all customers whose first and last orders were
placed in the sa~e year, use the INTERSECTION command as follows
- underlined words are printed by the computer:

RESULTANT TABLE NEW
TABLE 1 FIRST
TABLE 2 LAST

with the result

RMS 55

0

0

NEW(NAME
-C-

D

YEAR)
1982
1970

The other set commands are used in a similar fashion.

8.6 DOMAIN ALGEBRA

The vertical domain algebra is implemented via the
STATISTICS menu option. Once the relation and attribute (numeric
or dollar data) are specified RMS computes and displays the
following quantities:

NUMBER OF OBS
TOTAL
MIN OBS
MAX OBS
RANGE
MEAN
POPULATION VAR
SAMPLE STANDARD DEV.

No options are permitted here and all of the above quantities
are displayed whenever STATISTICS is used. There is no provision
for equivalence reduction operations such as subtotalling. In
this respect the domain algebra of RMS is weaker than that of
RQL. On the other hand RQL makes no attempt to implement the
horizontal domain algebra whereas RMS, as mentioned previously,
permits the creation of new attribute values via ROW
CALCULATIONS and new attributes in which to store these values
via the DEFINE TABLES and PROJECT COLUMNS menu options. This
provides for a flexible implementation of the horizontal domain
algebra.

RMS 56

0

0

ALDAT

QT-SELECTORS

PROJECT

SELECT ON GENERAL:
TUPLE CONDITION

QUANTIFIERS

UPDATES

.U- JOIN
I

n
u
+

LEFT

<r- JOIN

c <t
:::> i> - -

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

RMS

RMS

>

=

NO

YES

>

<

<

<

NO

NO NO

NO NO

NO =

<

<

NO

=

SYNTAX AND COMMENTS

PROJECT COLUMNS (may add extra attributeE
to existing relation)

SELECT ROWS

ROW CALCULATIONS(permits changes to tuple
via an if ••• then statement)

JOIN (Boolean combination of comparisons)

UNION

1
set theoretic

DIFFERENCE
operations only

TABLE MINUS TABLE

:ROW CALCULATIONS + PROJECT COLUMNS

:STATISTICS(NUMBER OF OBS, TOTAL, MIN OBS
MAX OBS, RANGE, MEAN,
POPULATION VAR, SAMPLE STD DEV

INSERT ROWS
UPDATE ROWS

57

9. SEQUITUR

9.1 INTRODUCTION

Sequitur is described as "an easy-to-use relational
database system with word-processing facilities". it requires
the UNIX operating system. Rather than use the traditional
database language approach to invoke commands, Sequitur employs
a visual approach which involves full-screen editing techniques
and a command menu. The 'command screen' displays a list of
operations; at the bottom of the screen there is a prompt,
"command:", and the user responds by typing the name of the
desired command. The essential idea here is that all
information is displayed on the screen in the form of a table.
For example each relation has an associated "columns table"
which displays information on the names, types etc. of the
attributes in the relation. The following example is taken from
Sequitur's reference manual (Sequitur,l982):

Database: Inventory

Column Name
+Part No.
+Part Name
+List Price
+Description

~
Number
Text
Money
Text

Height
1
1
1
2

Table 9.1.1

Table: Columns

Width
10
15

8
20

Lines
11

1
1
5

Similarly there is a 'Tables table' which displays information
on all relations (tables) in a database. These tables may be
edited and entries may be inserted, changed or deleted using the
full-screen editor. When these two tables are filled the user
has created a database which contains "empty" relations. The
next step is to enter data into the relations. To Sequitur a
database is a collection of named tables. Each database can
contain as many as 750 relations and the number of databases is
limited only by the storage capacity of the computer system.

Sequitur provides two ways of displaying data viz. Table
Style and Page Style. In Table Style the user sees a number of
rows with column headings at the top this is the usual
relational view of the data. By pressing two keys Sequitur
allows the user to change the display to Page Style which
presents the data one row (tuple) at a time and in a different
format i.e. with attribute names on the left side of the screen
followed by the actual values. For example the first tuple of
the relation

SEQUITUR 58

0

0

SALESMAN(NAME
+Brown Er
+Adams Ph

AGE
40
32

SALARY
50000
29000

REMARKS)
An aggress
Somewhat u

Table 9.1.2

when displayed in Page Style is as follows:

NAME:
AGE:
SALARY:
REMARKS:

Brown Eric Michael
40
50000
An aggressive salesman with an impressive record.
He won the top salesman award in 1972 and again
in 1981.

Table 9.1.3

The advantage of Page Style is that it allows the user to enter
and edit pages of text and makes word-processing an integral
feature of the system. The number of pages of text that can be
entered in a row is limited only by the hardware. This approach
is unique among DBMS's which we have examined and it is a
resourceful method of overcoming the often irritating
limitations imposed by fixed field widths. One can return to
Table Style at any time by pressing the same two keys.

All operations in Sequitur, whether related to choosing
commands, creating relations or formatting reports for output,
are accomplished by adding to or editing information in tables
which appear on the screen.

Before we proceed to the relational algebra it is necessary
to note that in Sequitur ''information is not duplicated as it is
manipulated; it is stored in one place, the original data table.
When you perform a selection or some other database command, you
are actually creating a table consisting of 'pointers' to the
selected rows in the data table. A table of pointers is called a
virtual table". And further "in Sequitur, any editing operation
is performed directly on the original information and all the
pointers which you or other users have created in virtual tables
then point to the changed information •••• all Sequitur's
operations work on virtual tables so you can perform any
sequence of operations and output the results at any point".

An explicit SORT command may be selected from the command
menu to implement ascending or descending sorting on the
attributes specified in the SORT template which is presented to
the user. Nested sorting is supported in Sequitur.

SEQUITUR 59

c

9.2 UNARY OPERATIONS

In Sequitur, selection may be either MANUAL, which displays
tuples one at a time and lets the user specify whether or not to
include them in the result relation, or SELECT FROM TABLE, which
presents the user with a template i.e an empty relation. The
user then employs the full-screen editor to fill in the template
putting in the values which are required and leaving blank the
attributes on which no conditions are imposed. For example if we
want to select all the salesmen whose salary is less than
$40,000 from the SALESMAN relation of table 9.1.2 we would fill
in the template as follows:

Database: PERSONNEL Editing Template: SALESMAN
CONTROL NAME AGE SALARY REMARKS
+ <40000
+

Table 9.2.1

We see that a template row is used to specify a general tuple
selection condition such as might be realized with a 'where' or
'if' clause in more traditional DBMS environment. A template
row can describe one or more conditions for each attribute of
the row. Conditions may involve arithmetic and literal
comparisons and the Boolean operation ' for 'NOT'. For
example the condition >H<N informs Sequitur to include all
tuples that have text beginning with the letters I,J,K,L,M in
the specified attribute.

If we look again at the template, table 9.2.1, we see a
CONTROL column on the left. The 'control' conditions are SLICE,
GROUP, OR, NOT. SLICE allows the user to specify the attributes
from the input which will be included in the resulting virtual
table. Attributes may be omitted and those that remain may be
arranged in any order by placing sequence numbers in the
appropriate columns of the SLICE row of the template. The SLICE
operation is Sequitur's implementation of projection. The
control word GROUP is used to specify one or more attributes;
Sequitur will then group together all tuples which have a common
value in the specified attribute(s). When the select is
performed the entire group will be included in the output if any
tuple in the group matches the template. This generalizes
selection as envisaged in ALDAT and provides a useful mechanism
for classifying tuples by membership in a (user defined) group.
The control word OR is placed between two rows in a template and
is used to tell Sequitur to select all tuples that satisfy
either the previous conditions or the following ones. NOT
excludes any tuple of the input relation which matches the
template row. If groups are specified 1 any group which contains

SEQUITUR 60

0

Q

such a row is excluded. The manual contains the following
example which exhibits several of the features discussed above:

Database:
CONTROL
+SLICE
+
+NOT
+OR
+
+

PEOPLE
NAME
-1-

Jones

SALARY
2

>25000

Editing Template: SALARY
TITLE YEARS

>=7

table 9.2.2

This template for the relation SALARY is Sequitur's formulation
of the query "find the name and salary (in that order) of each
employee whose salary exceeds $25000, excluding Jones, as well
as those employees who have been with the company for at least
seven years". The combination of selection and projection is
equivalent to the T-selector discussed in ALDAT.

The UNIQUE command operates on specified column(s) of a
single input relation. It makes a result relation consisting of
tuples with unique entries in the specified column(s). Thus if
two or more tuples have identical values in the specified
attribute(s), the result includes only the first such tuple.
The DUPLICATE rows command is similar to UNIQUE except that it
finds all the tuples that have the same values for the specified
attribute(s). The result relation consists of groups of two or
more tuples with identical values in the specified attribute(s).
The user's manual states that "DUPLICATE is useful for locating
and deleting rows inadvertently entered twice".

9.3 RELATIONAL EDITOR

The EDIT command allows the user to insert, change or.
delete tuples. It also allows one to recover deleted tuples or
restore changed tuples to previous states. When attribute values
are changed Sequitur saves the new version of the tuple but also
retains the old version; previous versions are kept until the
user explicitly asks Sequitur to discard them. Previous versions
may be examined and used to replace the current version at any
time. The MANUAL select menu option is also an interactive
editing command which provides the user with the ability to
include or exclude a particular tuple in a result relation.

SEQUITUR 61

0

0

9.4 GLOBAL UPDATE

Sequitur has limited global update capabilities. The 'mass
changes' which are available are REMOVE rows and RENAME columns.
The manual describes these operations_as follows: "REMOVE rows
will take a table which is the result of a database command and
remove the corresponding rows from the base table. If you have
used the same column name in more than one table, RENAME columns
allows you to change the name in one of the tables."

The APPEND command may be used to add
relation to the end of another. The result is
"one, which is unchanged, and another, which has
table containing both its original rows and
another table".

9.5 BINARY OPERATIONS

a copy of one
two relations:

become a larger
the rows from

The JOIN command combines relations by matching tuples from
the two operand relations if they have the same entries in the
attribute(s) specified in the command. Once again the.command is
entered by filling a template which shows both relations side by
side. The join appears to be a simple equi-join: the possible
control conditions in the template are MATCH, which specifies
the attributes on which the join is to be performed, and SLICE
which allows one to project only the required attributes in the
result relation. Thus one can use the JOIN operation to
implement a natural composition. Sequitur asks the user to enter
the names of the two operand relations and also the name of the
result relation: it also asks if you desire an 'outer join'. The
manual states "an outer join means that every tuple in the first
relation is included in the result relation whether or not it
has a match in the second relation". In this case the attributes
in the result relation which are derived from the second input
relation are left blank. This corresponds to the left join or
ljoin in ALDAT.

Set theoretic commands are UNION, INTERSECTION and
DIFFERENCE. THe UNION command produces a result relation which
consists of all the tuples from the first relation followed by
all the tuples from the second relation. Sequitur's UNION is
more general than simple set union in that the operand relations
need not have identical attributes. The manual states that "the
column names from the first table will be followed by those from
the second table, left to right". Inevitably this implies that
some of the entries in each row will be blank. The INTERSECTION

SEQUITUR 62

http:operations.as

command finds tuples in two relations which have identical
entries in specified attribute(s) and puts the tuples from the
first relation that have a match in the second relation into a
result relation which consists only of the attributes in the
first relation, and only of those tuples in the first relation
for which there is a match in the specified attribute(s) of the
second relation. This is the 'left semi-join' and is
equivalent to an intersection join followed by projection on the
attributes of the first relation. Sequitur sorts the result
relation on the matched attribute. The DIFFERENCE command
operates in a similar fashion but the result relation contains
only those tuples from the first relation which do not match
entries in the specified attributes of the second relation: this
corresponds to a left difference join, djoin, in ALDAT.

9.6 DOMAIN ALGEBRA

The _domain algebra operations of Sequitur are
under the heading "output commands". The "Functions
the format:

DO TO GROUPED BY NEW NAME SPACES
+

described
Table" has

The arithmetic function to be performed is entered in the DO
column and the attribute on which it is to be performed is
entered in the TO column. The GROUPED BY column is used to
specify which attribute(s} in the relation are to be 'grouping
attributes' - Sequitur groups together all tuples with identical
entries in these attributes. In the NEW NAME column the user
enters a label to be printed under the grouping attribute in the
output report. Finally the SPACES column is used to specify the
number of blank lines to insert between results i.e. it is used
for carriage control. The available DO options are:
T(TOTAL), MI(MINIMUM), MA(MAXIMUM}, A(AVERAGE), C(COUNT).
If one types 'T' or 'TOTAL' in the DO column, Sequitur will
compute and print the total of all attributes specified in the
TO column for each group of tuples i.e. it prints subtotals by
groups. One can also request grand totals, averages etc. by
leaving the GROUPED BY column blank. We note that these features
are available as output operations and not in the algebraic
sense of creating new relations which become a part of the
database.

Sequitur's pamphlet (Mini/Micro 82) summarizes this
discussion, under the heading 'Arithmetic Capability' as
follows: "Sequitur has full arithmetic capability, including
user defined computations for queries, global . updates and

SEQUITUR 63

0
reports. Tables may have columns with calculated values.
Arithmetic expressions may be used in select and join templates.
Selections can also be based on relationships between columns in
a row. Arithmetic expressions can be used anywhere Sequitur will
accept a number. Reports can have columns which are calculated
from other columns in a row, and calculated values can be
printed anywhere on a form".

In summary we note that Sequitur has an original and
creative approach with some excellent features, notably
integrated word processing and a consistent visual technique for
command specification via table displays and full screen
editing. While we have seen claims that Sequitur is
"relationally complete" we find no reference to a command for
relational division in the reference manual. Also it ~s not
clear from the manual if the features of the horizontal domain
algebra are available.

SEQUITUR 64

d

ALDAT :Sequitur: SYNTAX AND COMMENTS

QT-SELECTORS

PROJECT =

SELECT ON GENERAL: =
TUPLE CONDITION

QUANTIFIERS

UPDATES

p.- JOIN
I

u

+

LEFT

<r- JOIN

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

SEOTJT'l'TTR

NO

: NO

. . =

<

NO

<

NO

NO NO

NO NO

: NO =

. •

?

<

<

=

. .

.SLICE

SELECT

the 'mass' changes named in the manual are
REMOVE ROWS and RENAME COLUMNS

JOIN
INTERSECTION (ijoin + project rell)

UNION (generalizes set union - appends
tuples from second relation to end of first
relation - attributes need not match)

DIFFERENCE (djoin + project rell)

:Sequitur brochures claim that horizontal
:domain algebra operations are available.
:The user's manual does not indicate how
:to realize them.

:using the FUNCTIONS TABLE one can specify
:a DO option which may be T(TOTAL},
:MI(MINIMUM},MA(MAXIMUM),A(AVERAGE),C(COUNT).

:The DO command will subtotal etc. if a
:GROUPED BY clause is included.

EDIT 1nvokes the full screen relat1onal
·: editor. One can insert, delete or update.

as well as restore tuples to previous
states.

0

10 MICRORIM

10.1 INTRODUCTION

MicroRIM operates on any of the following microprocessor
systems: 8080, 8085, Z-80, APPLE II or Ill with Z-80 card. It
requires a CP/M (release 2 or higher) or MSDOS operating system.
MicroRIM requires 52000 bytes of main memory. The minimum
secondary storage is one floppy diskette drive with 152 K bytes.

Data security is provided via password types which may be
specified as OWNER or USER with subclassification as READ or
MODIFY passwords. This prevents unauthorized users from changing
data in the database. Once a database is defined using the
define DBNAME command the attributes command lets the user
describe each attribute in the database. The user's manual
states "all attributes typically are described once and then
combined into relations or tables later using the relations
command". The attributes command has the syntax

attname type [length1 (key]

where attname is the name of the attribute, type defines the
data type, length specifies the field width and key declares the
attribute to be a key field. Square brackets, as usual, indicate
optional choices, braces specify compulsary choices.

Keys are optional. In MicroRIM a key field (or attribute)
is a search key rather than a key in the relational sense. When
an attribute is specified as a key field MicroRIM builds an
index (inverted) file using the B-Tree technique for that field.
This permits faster searches for locating tuples with particular
values of the key attribute. Attributes can be changed from key
to non-key and vice-versa using the delete key and build key
commands, respectively. The syntax for these commands is

delete key for A in R
build _lli for A in R

The command relations is used to combine attributes to form
relations. After entering the relations command, each relation
is defined in a single statement us1ng the format

RELNAME with attnamel [attname2 ·····1 •

Up to 20 relations may be defined in a single database.

MICRORIM 66

0

The command

load R

is used to enter tuples to a new relation or to add tuples to a
relation which already exists.

10.2 UNARY OPERATIONS

Both
command in
syntax

projection and
MicroRIM. The

selection are combined in a single
command, project, has the following

project R from s using S A,B, •• ([sorted .Qy C,D, •.]
1.all)

[where clause] -

Both where and sort clauses are optional. These clauses specify
the tuples and their order, respectively, in the new relation.
The where clause has the form

where conditionl [{~~d} condition2 J
Up to 10 conditions for tuple selection can be included. These
conditions are quite general and include comparison of
attributes. The mandatory using clause specifies the attributes
and their order in the new relation. All specifies all
attributes and their existing order from the second input
relation. In this case the command becomes simple tuple
selection on the specified where condition. Project does not
automatically eliminate dupl1cate tuples so that the delete
duplicates command may be needed to tidy up the result relation.

MicroRIM also has an explicit select
non-algebraic in that it is strictly an

command, but it is
output command. Its

general syntax is

select A,B, ••. from R [sorted £y C,D, •• ~[where clause]

and it provides essentially
though strictly for output
result of this command.

MICRORIM

the same capabilities as project
since no relation · is created as a

67

c

c

10.3 RELATIONAL EDITOR

Interactive editing is performed by typing RIMEE which
invokes the relational editor. The editor has two modes - L for
load, E for edit. If L is used a screen showing each data field
and its type is presented; underlines indicate the positions on
which to enter data. In edit mode the user is requested to enter
a where clause to select the tuples to be modified. Tuples
satisfying the where clause will then be presented one at a time
and the user can type over, delete or insert characters using
cursor control.

10.4 GLOBAL UPDATE

Global editing is possible with the change command:

change A to value in R. where clause.

For example the relation ROUTE (table 2.2.l,page 6) may be
modified with the command

change DEL# to 7 in ROUTE where SUPPLIER ~ Green

to yield the result

ROUTE (DEL# SUPPLIER DEST
-4- Adams Brown

7 Green Daly
1 Fingal O'Neill
7 Green Daly
5 Cow an Stanley
2 A dams White

Table 10.4.1

The command assign is similar to change. The manual states
that "assign allows the user to change the value of an attribute
by assigning an additional value to that same attribute". The
syntax is

assign A to value of attrib2 op value of attribl in R
(where clausel

where 'op' can be +, -, * or /. The value of attribl must be an
integer, real or dollar data type. The manual gives the
following example:

MICRORIM 68

Q

0

0

SALARY (NAME WAGE)
Tom 50.00
Dick 75.00
Harry 65.00

assign WAGE to WAGE + $5.00 in SALARY

SALARY (NAME WAGE)
Tom 55.00
Dick 80.00
Harry 70.00

10.5 BINARY OPERATIONS

The join command has the syntax

join R using A with S using B forming T[where operator)

The operator in the where condition may be EQ, NE, GT, GE, LT,
LE. The attributes on which the join is to be performed must be
named. If the where expression is omitted EQ is assumed,
resulting in the 1ntersection (equi) join. Clearly the join in
MicroRIM is limited to the 9 -joins in ALDAT. The join will
execute much faster if the EQ comparison is used and the
attribute named in the second relation is key.

The command

intersect R with S forming T fusing AB C •••]

forms a new relation where the tuples of R and S have common
matching attributes. If the two input relations have identical
attributes this is the set theoretic intersection. If the using
clause is omitted all attributes from both operand relations
will be in the result relation. Common attributes will be listed
only once. "MicroRIM compares each tuple of S with all tuples of
R using all the common (same name) attributes in each relation.
When a matching condition is found, attributes from both
relations 1 and 2 are transferred to the new relation". This
describes the ijoin command in ALDAT.

The subtract command

subtract R from S forming T lusing A,B, •••••]

creates a new relation where the tuples of S have no matching
common attributes with tuples of R. The manual states that

MICRORIM 69

0

0

"subtract is the opposite of the intersect command". It is
equivalent to the right difference join (drjoin) in ALDAT.

The union command

union R with S forming T using A,B, ••••

"forms a new relation T similar to the way the intersect command
combines relations except in how the union command handles rows
which do not match (on common attributes): whereas the intersect
command discards rows which do not match on common attributes,
the union command includes them". Missing values are filled
with the null value -0- in the result relation. The attributes
used in the matching process are common to all three relations.
The manual claims that "this command will operate much faster if
there is an attribute common to both relations which is· key".
The following example comes from the manual:

EMP-DATA (NAME SHIFT POSITION BOSS)
Smith 1 Clerk Ho
Kay 1 Sales Ho
Hays 2 Maint Wagner
Buck 3 Maint Wiley

D-NAME (BOSS TITLE DPT-NM
~ Mgr Mktg
Jones Spv Mfg
Wagner VP Plant

union EMP-DATA with D-NAME forming E-O-DATA
using NAME BOSS DPT-NM

E-O-DATA {NAME BOSS DPT-NM)
Smith Ho Mktg
Kay Ho Mktg
Hays Wagner Plant
Buck Wiley -0-
-0- Jones Mfg

We see that MicroRIM's union command is identical to union JOln
in ALDAT and becomes set union if both relations have identical
attributes. Note that union can be used to add a new attribute
to an existing relation by creating a temporary relation with an
extra 'empty' attribute of the type required and then using the
union command to transfer the data from the old relation into
the new one. Full details, including an example, are given in
the manual.

MICRORIM 70

0

Q

10.6 DOMAIN ALGEBRA

The command

tally A from R where clause

is used to print out the distribution of values for an
attribute: each distinct value and the number of occurrences is
reported. For example, referring to table 10.4.1,

tally SUPPLIER from ROUTE

will cause the following output:

SUPPLIER

A dams
Cow an
Fingal
Green

NUMBER OF
OCCURRENCES

2
1
1
2.

Operations of the (vertical) domain algebra are provided by
the command

·compute function A from R [where clause] •

possible functions are count, min, max, sum, and all. Count
gives the number of non-missing--values tor- the attribute in
tuples which satisfy the where clause. The other names are
self-explanatory. The ability to include the where clause
permits some simple reduction (totals) and equivalence reduction
(subtotals) commands to be performed.

The assign command mentioned earlier may be combined with
the union command to change values in a specified attribute and
then add that attribute to another relation. This capability
appears to be MicroRIM's only attempt to implement the
horizontal domain algebra.

MICRORIM 71

.o

ALDAT :MicroRIM: SYNTAX AND COMMENTS

QT-SELECTORS

PROJECT =

SELECT ON GENERAL: =
TUPLE CONDITION :

QUANTIFIERS

UPDATES

}.).. - JOIN
I

(\

u
+

.: NO

: YES

. .

:

=

=

NO

project R from S using fA,B, ••• ?
t all I

tsorted ~ D,E, ••• J (where clause]

project R from S using all where clause

change A to value in R where clause
: assign A to val2 op-vall in R where clause
:(op may be+,-,/,*. vali refers to a value of
: attribute i)

:join R using A with S using B forming T
: where operator
: (operator may be EQ, NE, GT,GE, LT, LE -
: with the default EQ yielding the equi-join)

:intersect. R with S. forming '!' [using A, B,. ·]
: (generalized set 1ntersect1on)

. .

union R with S forming T [using A,B, ••]
(generalized set union)

= subtract R from S forming T (using A,B, ••]

LEFT

o-- JOIN

MICRORIM

. . NO

: NO NO

: NO NO

: NO = . .

72

0

0

ALDAT

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

EDIT

MICRORIM

:MicroRIM: SYNTAX AND COMMENTS

: . .
• .

<

<

<

=

:assign A to val2 op vall in R where clause
:(op may be+,-,/,*} provides lim1ted horiz
:ontal domain algebra

. . . . tally A from R where clause
compute function A from R where clause
(functions: count,min,max,sum,all)

RIMEE (invokes relat1onal ed1tor)
tuples are selected via a where clause and
are edited interactively.

73

0

11 RL-1

11.1 INTRODUCTION

RL-1 operates under IBM DOS on the IBM PC. The user's
manual is very well written and is an excellent introduction to
the relational approach to data management. It includes many
examples and the first time user of RL-1 (or any other
relational system) would find it useful. The commands in RL-1
fall in one of three categories :

1. The Data Manipulation Language (DML) incorporates commands
for creating and· manipulating relations, including the
relational algebra.

2. The Relational Editor

3. A program Interface which permits access to application
programs in high level languages.

A key in RL-1 is a true relational key.

10.2 UNARY OPERATIONS

All of the commands of the relational algebra include the
option of projecting on a desired set of attributes via the
keyword select. However the select command is very versatile and
encompasses projection, jo1ns etc. The general syntax for the
unary operations is:

select fA~ B, ... } from R [where clause] I ordered E1_ C-J F, [G, H ••• J]

r c::reate s-1
1nsert S

If the where and ordered by clauses are omitted the command is
simple projection on the attribute list or on all of the
attributes (i.e. display the entire relation) if the asterisk is
used instead of an attribute list. The where clause permits
tuple selection on the usual logical condition involving Boolean
combinations of numeric and string comparisons. Simple selection
(i.e. without projection) is effected by using a *and including
a where clause. The user's manual is careful to explain that
"multiple key attributes do not allow the definition of one
primary order inherent in the data" but goes on to acknowledge
that it is often necessary to order the data for a clearer
presentation hence the ordered by clause which causes

RL-1 74

lexicographic ordering on the attribute list specified in the
clause; any number of attributes is allowed. Inclusion of the
optional minus sign causes sorting in descending order. The
create phrase specifies a name for the result relation. Note
that if the create phrase is not included the result is for
output only and no new relation is created. On the other hand
when create is used the result relation is given the specified
name and saved, but is not automatically displayed on the
screen. To generate screen output use the statement "select *
from S".

While create S directs the result ot the select command to
a new relation S, the insert S option causes RL-1 to append the
result to an existing relat1on. Thus the insert phrase, although
part of the general select command, posts new tuples to an
existing relation and is therefore a type of update command.

11.3 RELATIONAL EDITOR

The full screen relational editor REDIT supports
interactive editing and includes update and delete commands to
change values at the current cursor location or delete the
current tuple, respectively. The command 'cancel record' is used
to cancel all updated values on the current tuple and reinstate
the original values. The insert command will insert a new tuple
with default values which are then updated to contain the
desired values. The find and search commands are used to locate
tuples which have spec1fied values for attributes: find works
only on key attributes while search can be applied to any
attribute, resulting in considerably longer execution times.
Find may be used with various modifiers such as next, previous,
maximum and so forth. Full details are g~ven in the user's
manual.

10.4 GLOBAL UPDATE

The update command may be used to change the data in a
single relation. Thus

update A= exp [,B = exp, ••.•) from R (where claus~

will cause the specified attributes in relation R to be changed
in accordance with the attribute expressions for tuples
satisfying the where clause. For example, if all egg deliveries
are to be decreased by twenty percent due to an egg shortage,

RL-1 75

0

then the appropriate command for the DELIVERY relation (table
2.1.1) would be

update QTY = QTY - (QTY*0.2) from DELIVERY
where PRODUCT~ "Eggs".

Another mass change which can be used is

delete from R where clause

which will modify R by deleting all tuples which satisfy the
where clause.

11.5 BINARY OPERATIONS

The join command in RL-1 has the form

select t A~B, •.• l from S joined with T over D [=EJ

The attribute on which the join is to be performed is specified
in the over clause. If the attribute has the same name, D say,
in both input relations then "over D" is sufficient whereas
"over D = E" is required if the attribute is named D · in one
relatidn and E in the other. This is a limited form of the
natural join since the join can only be performed over a single
attribute. Other versions of the e -join family are not
implemented in RL-1.

11.6 DOMAIN ALGEBRA

the domain algebra are
new attribute which is

simply include the
exp in the attribute

Horizontal and vertical commands of
available in RL-1. In order to create a
calculated from existing attributes
appropriate expression in the form [A=1
list. Consider the relation

RL-1 76

FOODS (PRODUCT
Milk
Bread
Jam

QTY
-s

2
1

UNIT-PRICE)
1.50
0.75
1.10

Table 11.6.1

select PRODUCT , (QTY*UNIT-PRICE) from FOODS

yields the result relation (output only}

PRODUCT
Milk
Bread
Jam

(QTY*UNIT-PRICE}
7.50
1.50
1.10

Table 11.6.2

Note that the expression (QTY*UNIT-PRICE) is itself used as the
attribute name. In order to replace this with some meaningful
name such as TOT-PRICE simply write

select PRODUCT , TOT-PRICE = (QTY*UNIT-PRICE) from FOODS

to get the
expression
TOT-PRICE.

same relation
(QTY*UNIT-PRICE)

as in table
replaced by

11.6.2 but with the
the column heading

Vertical domain algebra is implemented with the command

select statistic [A=] exp from R

where the statistic may be any one of the following:
sum, avg, count, max, min, sd.
The names are self-explanatory (sd stands for standard
deviation). For example

select sum (QTY*UNIT-PRICE) from FOODS

yields the result

SUM (QTY*UNIT-PRICE}
10.10

Note that this result, though only a single value, is output in
the form of a relation in accordance with the relational
approach. In order to produce a result for each subgroup of a
relation use a grouped by phrase as in the example, based on
DELIVERY (table 2.1.1):

RL-1 77

c

select SUPPLIER , sum(QTY) from DELIVERY grouped by SUPPLIER

which yields

SUPPLIER
A dams
Green
Fingal
Cow an

SUM(QTY)
105
121

49
31

Table 11.6. 3

The result shows subtotals of QTY for each supplier. When using
the grouped by phrase it may be desirable to restrict the output
to those aggregrate values of each subgroup which satisfy a
certain condition. In this case the having clause is used. For
example

select SUPPLIER , sum(QTY) from DELIVERY grouped by SUPPLIER
having sum(QTY) 9! 100

has the result

SUPPLIER
A dams
Green

SUM(QTY)
105
121

We conclude that RL-1 implements a reasonable subset of the
relational and domain algebras. It adopts a data management
approach which is consistent with the relational philosophy and
avoids ad hoc procedures. The join command is limited to the
natural join (ijoin) and there is no explicit reference to set
theoretic commands such as union and intersection.

RL-1 78

0

ALDAT

QT-SELECTORS

PROJECT . .
. .

RL-1

=

SELECT C •N GENERAL : =
TUPLE CONDITION

QUANTIFIERS

UPDATES

~:;!;- JOIN
I

(\

u
+

LEFT

<J- JOIN

DOMAIN ALGEBRA

HORIZONTAL

REDUCTION

EQUIVALENCE
REDUCTION

RL-1

NO

YES

<
NO

NO

NO

NO

NO NO

: NO NO

. .

. .

NO =

=

<

<

. .

SYNTAX AND COMMENTS

select t A,~,···) from R (where clause)

t ordered !!.Y. (-1 F ,G, •••] (:reate ssl
1nsert

The select command is a T-selector and
encompasses both projection and selection.

: update A=exp(,B=exp, •• J from R [where claus~
NOTE: using the insert clause in the select
command causes tuples to be posted to a rel.

. .

. .

select A,B, ••• from S joined with T
over D(=E] •

:create new attributes by including the
:required expression in the attribute list •

:select statistic[A=) exp from R(grouped £y B1
: (having exp] --
: (statistic may be sum,avg,count,max 1 min,sd)

(grouped by implements subtotals etc.)
(having restricts the result to statistics
which satisfy a given condition).

79

ALDAT RL-1

EDIT <

c RL-1

SYNTAX AND COMMENTS

REDIT 1nvokes the full screen editor. Tuples
: may be inserted, changed, deleted and

restored to the pre-edit condition • . .
:Find and search are used to locate tuples
:which have specified attribute values. Find
:can be used only with key attributes.

80

0

c

,...,
~

12. CONCLUSION

The database management systems which we have considered in
this paper are all relational systems. Each one implements some
of the operations of the relational algebra. Only MRDSA can
claim relational completeness. Among the nine systems we find
MRDSA, RQL and RMS to be products of an academic environment and
as such to be well suited for pedagogical and research
applications. The other systems: CONDOR, dBASE II, LOGIX,
MicroRIM, RL-1 and SEQUITUR are intended for the commercial
marketplace and are oriented toward business applications.
Consequently these systems all include user-friendly features
such as report writers, help menus and so forth. We have chosen
not to investigate these features in detail in the present paper
since our objective was to compare relational features o·f DBMS
packages.

We find great diversity in the terminology employed in the
systems; for example the relational operation of projection is
variously called project, copy, slice, and select. The
implementations are equally diverse with some systems using a
high-level query syntax, others employing a menu approach (RMS,
SEQUITUR) and one providing an integrated word-processing
capability (SEQUITUR).

The variety and richness of the implementations is quite
impressive in view of the short history of relational · DBMS
packages for microcomputers. No doubt this reflects an attempt
to get into the rapidly growing database management market at an
early stage and the emergence of so many viable packages in such
a short time is tribute to the ingenuity and energy of the
system developers. However there is a negative aspect to this
rapid growth which resides in the fact that the attempt to
develop systems with commercial appeal has resulted in the
addition of ad-hoc procedures which seem to add little to the
overall effectiveness of the resulting systems. Quite the
contrary, this results in a departure from the relational
philosophy.

It is our conviction that, in the long run, systems which
are implemented so as to adhere strictly to the rules of the
relational algebra, and which are relationally complete, will be
the most likely to become established in the marketplace and
will be the eventual winners in this increasingly important and
exciting field.

0

c

References

ABW Corporation, 1982. Sales leaflet for RL-1.

ABW Corporation, 1982. RL-1 Relational Database Management
System Users manual, version 1.02. (July 1982).

Ashton-Tate, 1981. dBASE
Database Management System.

II Assembly-Language Relational

K.S. Barley and J.R.Driscoll, 1981. A survey of data-base
management systems for microcomputers. Byte (Nov. 1981} 208-234.

S. Bonthron and M. Darnovsky, 1982. Sequitur Reference Manual,
version 3.11. (Nov. 1982).

D. Chen and J.R.Driscoll, 1982. RQL User's Manual (release 1,2).
Hello Software.

G. Chiu, 1982. MRDSA User's Manual, Technical Report 82.9,
McGill University School of Computer Science.

E.F. Codd, 1970. A Relational Model of Data for Large Shared
Data Banks. CACM 13, No. 6. (June 1970).

E.F.Codd, 1971.
sublanguages in R.
1972, 65-98.

Relational completeness of data-base
Rustin ed. Data Base Systems, Prentice-Hall

Condor, 1981. Condor Series 20/rDBMS User's Operation Manual,
Release 2-04. (June 1981).

R.H. Edelson, 1981. dBASE II relational DBMS for CP/M. Interface
Age (Aug. 1981) 60-63.

Hello Software, 1982. Sales Leaflet for RMS/RQL.

Hello Software, 1983. RMS User's Manual.

Logical Software, 1981. LOGIX Relational Database Management for
UNIX Tutorial (Nov. 1981)

T.H. Merrett, 1977. Relations as programming language elements.
Information Proc. Lett., 6, 1, 20-33.

T.H. Merrett, 1984. Relational Information Systems. Reston
Publishing Company 1984.

REFERENCE 82

0

0

T.H. Merrett and G. Chiu, 1983. MRDSA: full support of the
relational algebra on an Apple II. Proceedings: Conference on
Design, Implementation and Use of Relational DBMS on
microcomputers, Toulouse 14-15 Feb. 1983.

T.H. Merrett and B.E.Smith, 1983. A Comparison of Relational
Database Systems for Microcomputers. Ibid. 31-51.

MicroRIM, 1982. Sales Leaflet.

MicroRIM, 1982. DEer's Manual (MSDOS version) (Jan. 1983).

Pacific Software, 1982. SEQUITUR, Mini/Micro 82, 1-13.

T. VanRossum, 1983. Implementation of a Domain Algebra and a
Functional Syntax. McGill University School of Computer Science
M.Sc. Thesis. Technical Report SOCS-83.

REFERENCE 83

