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CHAPTER O

1. The Tensor-—Product and the Hom. Functors

Let R denote a ring,not necessarily commutative,with an
identity element 1. Throughout we will concern ourselves with
the Categories of right (left) R-modules,where R 1s a fixed ring.

¢R will denote the category of right R-modules,whose typilcal
objects will be written as AR,BR,ER,etc. Similiarly,R¢ will
denote the category of left R-modules,with objects denoted by
RM,RN,etc.

Let ¢Z denote the category of Z-modules (abelian groups).

All maps will be R-homomorphisms.

We will not define the tensor-product formally,but merely
recall its well known properties as a functor T:¢RXR¢ —_— ¢Z'
i.e. T is a covariant functor in both variables,additive and

right exact. Let E M be arbitrary right andlleft R-modules

R’R
respectively. We can characterize the tensor-product E@M by
the universal property that Y ® middle-linear function
f:EXM ——=> G,where G is a Z~modu1e$,351Lndque Z-homomorphism g,
Y the diagram

E@; M

\g

e
.

4

EXM ————> G
is commutative. i.e. g(e®@m)=f(e,m) , ecE,meM.
For a given ER,we will be particularily interested in the

functor TE(.):R¢ —_— ¢Z,defined by TE(M)=E®RM,and if f:M——2N,

1.We use the standard abbreviationstﬁ?,a which mean respectively:

for every,there exisgts,and 'such that.



then TE(f)=1E®f.
We will require the following known results:
(0.1) The homomorphismn (:E8M———3E,defined by f(edr)=cr,ls
a Z-honmonorphism. See [7]

(0.2) Let F,p be free,with basls <x,> and let oM be arbitrary.

R iel”?
Then,each element of F& M has a unilque representation in
the form inQmi,where mieM and mi=O for all but finitely

i
many 1i.

Since,in general,there 1s no ambiguity about the base ring,
we will denote TE(M)=E®8M simply by EgM.

Iet M’RN be any two arbitrary R-modules,then HomR(MN) denotes

R
the group of all R-homomorphisms {:M———>N. Regarding Hom. as a
functor F:R¢XR¢ — ¢Z,we know that it 1s additive,left exact,
contravariant in M and covariant in N.

Again,we will be interested mainly,for a fixed RN,with the
functor FN(.):R¢ _— ¢Z,def1ned by FN(M)=HomR(M,N). Thus,FN is

a contravariant functor in one variable. Let {:M'——3M,then

F(f)=Hom(f,1 )=gel,where 4 is & variohle element of Homa (FL, 1)

T
i

Roeoall that a axduls RN is R—injective,if given any diagram
f
0 —> M —-> M
>R§ e M
9
L
N

with the top row exact (l.e. f is a monomorphism),then there

always exists a map h:M' ———> N 2 hef=g.




Proposition (0.3): FN is an exact functor iff N is injective.

Proof:
Suppoce FN is an exact functor,and consider tne

diagram O —_—>RM —£—>M'

N

where the row is exact. Then,
Fo(ur) B9 B (n) ——> 0 1s exact.

s i.e. Homy(M',N) ——> HomR(M,N) is an epimorphicsm.

gl
Thus,given g,g an heHomR(M',N),3 hef=g

Hence, N 1g injectlve.
Comversly,

let O ——=> M? ~E Mome—> M" —=> 0 be exact.

Since F.. 1s an left exact functor,it suffices to show that

N
FN(M)’iéi FN(M') 1s an epimorphism.

But,if N is injective,then for any {:M'——> N,} g:M—~—> N, >

gof:h

i.e. FN(h) is an epimorphism.

2. The Character—-Group.

let @ denote the rationals,then Q/Z (the rationals modulo 1),
is a divisible abelian group. But since a Z-module is divisible
1ff it is inJjective,(see [6]),Q/2 is injective. Of special interest
is the functor Fé/z(.):¢R———; ¢Z,defined by Fé/Z(E)zHomZ(E,Q/Z).

It is called the character—group of E,and is denoted by E*; In




view of the previous proposition,E¥ 1s an exact functor.
Furthermore, for any ER,E* may be given a structure of a left
R-module,if we define for feE*,the map rf by rf(x)=f(xr),
where reR,xekE.

The following results will be of importance/

(0.4) There is a natural equivalence of the functors (TE)*=FE*

i.e. the canonical map fM:(E@M)&———> HomR(M,E*) is an isomorphism
M. We note that both Tf and F are contravariant

R E Ex*

functors from ﬁ¢ —_— ¢Z'

for every

To say that f, 1s a natural isomorphism,we mean that given any

M

map g:M'——> M, then
Hom(leg,l)

(EQM)* > (EgM*")*
| |
Iy o
w Hom(g,1) v
Homg (M,E*) > Homg (M*, &%)

is a commutative diagram.

(0.5) A module RN is inJjective iff for every left ideal RI,
and for every feHomR(I,N), } xeN » for all rel,f(r)=rx.
(seels6])

let HEi denote the direct—product of a family <Ei> of R-modules,
i

and let ZEi denote thier direct—sum. Given a finite family of
1

R-modules,we will sometimes denote the direct sum by El®E2©...@En
(0.6) The direct-product of any family of injective (right)

R-modules 1s injective iff each module is injective.
(See [7])



(0.7) 1In any cabtegory ¢R,HomR(ZAi,B)éé H(Hom(Al,B))
* * (See [3])

%. Direct—system of R-modules.

let I be a directed set. i.e. (I,<) is partially-ordered,and

for every 1, jel, 3 kel 3 i<k and j<k.

i
and maps. Then 1t is called a direct-system if

let < Ai,fj :i¢jel > be a collection of (right) R-modules

(a) Iis a directed set.

(b) For each pair 1<J, fi:Ai—w—> A.

J
(c) The maps fg are consistent. i.e. if 1j<k,
then flordork
JohiThi

Given a direct system ( Ai’fi >,we can construct théir
2

direct-1limit A, (denoted by li@@i) as follows:

let B=dlisjoint U Ai,and define the following equivalence
iel
relation in B:
) . . Jon y_pK
ai”aj iff E& k 2 i<k, j<k and fi(ai)_fj(aj).
i.e. two element are equivalent 1ff they are eventually mapped

into the same range. We denote by [ai],the equivalence class of

the ai,and then A 1s defined as the collection of these equivalence

classes in B.

In order to give A a structure of a (right) R-module,we

define:



6

5. lag) + [a] = [£5(a;) + £5(a )] Wi,
4. rla;] = [ra,] V reR
These operations are well-defined,and the direct-limit A becomes
a (right) R-module.
(0.8) The direct-limit preserves exactness of sequences,and
commutes with the tensor—-product.
i.e. TE(iiggi) = ;1@>(TE(M1))

See[2]

4, Resolutions of moduleg,and the Homology functor.

et (A): A2—£—> Al—5~> AO be an o-sequence of (right) R-
modules. 1.e. Im(f)C Ker(g).
Define H(A) as Ker(g)/Im(f),then H(A) becomes a functor from

the translatlion category of three-~term o-sequences,into the

category ¢R' H(A) is called the Homology functor,and it is both
additive and R-linear.
As a consequence of the propertlies of the homology functor,

we get the following results: (See [7] )

(0.9) Let
A > BR———> C —> 0
g |
f & h '
0 > Riey Bt oy G

be a commutative diagram over R,with the rows exact. Then,
we get the following canonical exact sequence:
Ker(f)-——>Ker(g)-—->Ker(h)——>Coker(f)-——>Coker(z)

———>Coker(h)




For a given module AR,we define a projective-resolubtion

of A to be an exact sequence

—_—— e ~P >P SA >0,

...———>Pn—~—>P 0

n-1
where the Pi are projective. We will similarily define free and

flat resolutions of A. In particular,we know that every R-module

has a free (and hence projective) resolutions.

R,. | . . .
Torn(h,M) is defined to be the left-derived functor of the
functor E®M, Since,in general,we are concerned mainly with the

Tunctor T.,then Torn(E,M) becomes the left derived functor of TE'

E}

In more detaill,let ...——~>Pp~--> ..... >Pl

a projective resolution of a (left) R-module M,denoted by P .

>PO >RM >0 be

Then,we get the following o-sequence:
f1’1+l fn f‘l fO
...——->TE(Pn)———>...—-—>TE(Pl)—»~>TE(PO)—~—>o ,denoted by EBP.
let Hn(Ewg) denote the homology-modules of E®P :

i.e. Hn(E®£) = Ker(fn)/Im(f ).

n41

Torn(E,M)an(Eﬂﬂ),the left—derived functor of TE(M}.

(0.10) There exlsts a natural isomorphism Torg(E,M)QéEQKM
(Seal7

1)

5. Rings and Modules of Quotients.

Let R be a commutative ring,S a multiplicatively-closad set

Wwith leS and 0¢S. Let A be an R-module.

Let X, be the collection of all formal quotints - where ach,sed.
NS

Define an equivalence relation in K. as Collows:
)



[09]

C
o
N

ii’g BES B 50,4y =B84,

wi

|
no

Iet AS be the totality of these equlvalence classes (denoted

by d}) then A, is an R-module 1f we define
)

ol
L e [ - Liﬁafiai;
8! 5185
A al _ |rd
2. r [S] = [ sJ reR

As these operations are well defined,AS is an R-module,called

the module of quotients. There evidently exlists a cenonical

.

homenmcrphism A --—> A, , defined by a——> [%] .

<
(o]
Considering R as a module over itself,we form the pring of

2.

guotients Rs,and AS can be consldered as an R,-mcdule if we define
I

] - [z

Furthermore, any R-homomcrphism :A—-->A',determines an Rsm

nomonorphism fg:h ——— A4 defined by I [;i] - [f_(_ij In fact,

we can conslder the functor S(.):¢Rm~—> ¢R ,defined by S(A):AS
S

which 1s known to be covariant and exact.

If P is a prime ideal in R (in particular,a maximal ideal),
then S=R~-P is always multiplicatively—closed,and we denote the
corresponding module of guotients by AP. In such a case,the ring
of quotients 1is always local (i.e. with a unique maximal ideal).

(0.11). If E is an RS—module considered as an R-module,then the

canonical map f:E——2E_, is an R isomorphism.
3 .
(See [71])



(0.12) If A,B are R-modules,then for every n>0,there is an
R
. . R S
R,—lsomorphism [Torn(A,B)]Saf Tor, (AS,BS)

S
i Seel[7].
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CHAPTER X

1. Definition and Properties of Flat Modules.

Jet O SM ! >RM >MU >0 be an exact sequence. We recall
that for every object ER in the category ¢R,the functor TE is a
right-exact functor.

e, () TEL o () L po(wt) 5 0 15 exact.
In general,T(f) is not a monomorphism,and we can not idenfify
E®M' as a subgroup of Eg8M.

The following example will 1llustrate the above:

Let E=Zn - the integers mod. n (n>l),considered as a right
Z—-module .,

Let M=nZ — the ideal generated by n, considered as a left
Z—module .

Then, 0 ———> n4 —i—> Z is exact,but 1E®i :annZ~—~>Zn®Z (eeZn),
is not a monomorphism.

For let zeannZ,hence Z=§Xi®(nyi) xi,yieZ V’l

But (1ei)z = ?xiw(nyi) = ?(xin)ﬁyi =0 1in Z .

This motivates the notion of flatness.

DEFINITION: A module E

R 18 flat 1iff the functor TE is exact.
We defiine similarily a flat left R-module.
Before proceeding with the discussion of flat modules,we
recall that V/ ER,HomZ(E,Q/Z) (=E*) is exact and contravariant
as a functor,and can be given a structure of a left R-module.

The following characterization of flat modules is very useful

in proving many results concerning flatness.
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PROPOSITION 1.1 E, is flat iff RE* is injective.

R
Proof':
ER ig flat iff the functor TE is exact.l.e. given any
exact sequence 0 ———> M'—i—>RM,
then o ——> E®M'—£QE>E®M 1s exact.

Recalling the existance of a natural isomorphism (E@M)*QéHomR(M,E*)
we get the following commutatlve diagram:
(EQM)* ———> (E@M')¥ ——> 0
A A

!

'
HomR(M,E*)———>HomR(M',E*)———>O ,

and the exactness of one row certainly implies the exactness of
the other. But this,in turn,implies the exactness of the functor
F_.,which by (0.3) 1s exact 1ff E* is injective.

BE*

PROPOSITION 1.2 E

R s flat iff for every left ideal RI,there
exists a canonical isomorphism EQIs=ET.
Proof:

Suppose Ep is flat,then for any ideal RI,o———>E@I£91>E®R
is exact. But under the natural isomorphism g:E®@R———>E,the image
of 1®8i is clearily ET.

Thus EQI2%EI,
Conversly,
if E@I=#EI,then 0 —-> E®I ——> E 1s exact,hence
E¥———>(ERI)*~—> 0 is also exact.
But (E®I)*€éHomR(I,E*), (by (0.4))

hence E*———> HomR(I,E*)———> 0 is exact for every RI.



But the exactness of the sequence implies that for every ideal
gl,and every feHomp(I,E*), T xeEx > f(r)=rx Y rel,a properity
which characterizes injective module (0.5).
Hence E* is inJjective,and by propn.l.l,
E 1s flat.

COROLLARY 1.2 1In the above proposition,it suffices to consider

only the finitely-generated (f-g) left ideals.

Proof:
For suppose the result holds for every f{—g RI.

Let RJ be an arbitrary ideal and consider 181:E®J ———> E8R.
Let zeE&J,z:insri where xieE,rieJ and ri=o for all but finitely
i
many 1.
Suppose that inarizo in E&R,and let I=2Rri. Then by hypothesis,
i 1
?XiﬂfizO in E®I.
But 3 a canonical homomorphism E®I ———> E&J,thus

;xi&rizo in ERJ.
i

i.e. A

1fi is a monomorphism (mono.) for every RI.

PROPOSITION 1.3 (a). Let < Ei>ieI be an arbitrary family of

right R-modules,and let E=ZEi. Then E is flat iff Ei is flat V 1.
7 ]

J
(b). Let < Ei,fi> be a directed-system of flat
right R-modules. Then E=l1@>Ei 1s flat.
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Proof:

(a). ZEl is flat 1iff (ZEi)* is injective.
i i

But,(0.7), (ZEi)*QéHEi,and HE% is injective iff E% is injective
i i i

\/ i. (0.8).
i.e. iff E; is rlat ¥ 1.
(b). Recall that the direct-limit preserves exactness. (0.9)

181

i.e. as 0 ———> EiQI =—=> EiQR is exact b/ ideal I,and\/ i,

R
hence 0 ———> EET>(E1®I)M7——> li@>(Ei®R) is also exact.
Furthermore,the direct-limit commutes with the tensor-product.

i.c. 1im (E eI)=(limE, )eI V1.
Hence,
0 —-> ERI —-> E@R is exact VI
i.e. Eis flat.

Some Examples of Flat Modules:

1. For any ring R,considered as a module over itself,is abviously
flat. It follows,since every free module F is l1somorphic to a
direct—sum of coples of R,and by prop? 1.3a,that every free module
is flat.

2. More generally,every projective module P, is flat.

R
1.e. since every projective module is a direct—-summand of some free
module FR,there exlsts a direct exact sequence

F ——> Pp=—> 0
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hence, 0 ———> Pﬁ —_D Fﬁ is also direct exact.
il.e. Pﬁ is a direct-factor of the injective module Fﬁ,and hence

itself injective (See[7]). But,by propgil.l,this implies that

PR is flat.

4, For any commutative ring R,we willl show that the ring of

quotients R, is always a flat R-module.

S

PROPOSITICON 1.4 Let E, be flat,then V/reR ¥ r is not a right

R
zero—divisor,the relation xr=0 where xeE implies that x=0.

Proof':
Consider f:R —-> R defined by £(t)=tr YV teR.
Then by hypothesis,f is mono.,and as E is flat,
lEﬁf:EwR -——> E®R 1s also mono.
But E@RS2E by the map x8r -—-> Xr xek,hence 1E®f defines an
endomorphism Kommem X T
Thus xr=0 implies that x=0.

We recall that if R is an integFfal-domain,a module E is

torsion—free if the relation xr=0 implies that x=0 or r=0. In view

n . . A
of the above prop. every flat module over an integral-domain is

torsion—free.

2. Flatness of Quotient-Modules.

PROPOSITION 1.4 ER is flat iff for all exact sequences

{’ oy
0 > B == CR 2> R > 0,and for all left R-modules

sequence o ———> BgM £§£> CoM §9£> EaM ———> 0 18 exact.

RM,the



Proof:
Suppose ER is flat and RM is arbitrary. Since every
module is an epimorphic image of a free module,}’ an exact

gsequence 0 >K = >RF D M >0,where F ig free und K=Ker(p).

Now congider the following dlagram:

f@lK g@lK v
TB(K) ———> Tc(K) ———D TE(K)

TR Tg() o Te(n)

P
[

v f®lF V = ~
Tg(F) —=> T (F) =--> T (F)

TB(p); To(p) | T.(p)
TB(M) ____> Tc(M) __—_> TE(M)

The diagram is abviously commutative,and all the rows and columns
are exact.
Furthermore,as F is free (and hence flat),f@lF is mono.,and

as the tensor product is always right exaot,g@lK is an epimorphism

(epi.). But by (0.9),this implies that o a map d 3

Ker(TC(i))———>Ker(TE(i))-9->cOker(TB(1))»-->Coker(TC(i))
~—~>Coker(TE(i)) is exact.

But as the map TB(p) is epi.,Coker(TB(i))=TB(M),and similarily for

TC(p) and TE(p).However,the flatness of E implies that Ker(TE(i))

is null.

i.e. 0———>BAM———>CRM——>E®M———30 is exact V’RM.
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Conversly,

consider any exact sequence of the form O >B >C >ER >0
in which C is flat (say free).

M=R/I,where I is a f-g ideal.Then, 0 >T SR SR/ T——==>0

let R

is exact.

Subtituting K=I,F=R and M=R/I in the above diagram,then ¥ a map

d 3
d f&lM
Ker(lc®i)——~>Ker(lE®i)~-—>B&M ——> C8M 1is exact.

But,by hypothesis,f®l,, is mono. and hence,Im(d)=0,and furthermore

M
the flatnegs of C implies that Ker(lc®1)=o.

i.e. O-——>Ker(lE®i)———>O is exact,hence,Ker(lE®i)=O.

i.e. 1.81:E®@1——->E®R is mono. for every f-g ideal _I.

E R

Thus,E, is flat.

PROPOSITION 1.5 Let O >E! L >ER 2 SEM >0 be exact where

E" is flat. Then,E is flat iff E' is flat.
Proof:
Consider any monomorphism u:M'———>RM.Then we get the

following commutative diagram:

f@lM, g@lM,
E'®M' ————> ESM' ———=> E"gM?
|
1E,®u 1E®u | lE"®u!
| |
v gl v g@lM v
E'OM ———=> EgM ————> BE"eM

Now,by prop-.1.4,both f®1,, and fal

a m .
M M @re mono
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Furthermore,as E" is flat,lga8u is mono..

If E is flat then 1.8u is mono.,and hence,(lE®u)o(f®lM) is

E
also mono.. But by commutativity of the diagram,this Implies
that (f@lM)o(lE,Qu) 1s mono.,and therefore,lE,au is mono. for
every monomorphism u.

i.e. E' 1s flat.

If E' is flat,then the map 1.,®u 1s mono.,and 1t follows

EI

directly from the diagram that 1.8u is mono..

E
i.e. E is flat.

From the above proposition,we can not conclude that a
submodule of a flat module is flat. In fact,this is not generally
true as can be seen by the féllowing example:

let R=Z4= <0,1,2,3> —~ the ring of integers mod4.

Now,R 1s abviocusly flat as an R-module,but we will show that the
ideal I=<0,2> is not flat.

By propositon 1.2,I is flat iff I@®Il—-—>I«I is an isomorphism.
As TeI=0 it suffices to show that I®I#0

Consider the map f:IxI-——>I defined by f(x,y)=2 if x=y=2,and
f(x,y)=0 otherwise. Clearly, f is middle linear, and hence there
must exist a Z-homomorphism w:I@I———>I > w(x®y)=(x,y).

i.e. I®I can not be the trivial group, hence, I is not flat.

We may also note that in the above proposition, the flatness

of both E' and E does not imply that E" is flat.
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For example, let R=Z and consider the exact sequence

Qmm——>nZ Sl———> [0Z———=>0  n>l

It will be shown later that over Principal-ideal—domains
(or more generally, over Prufer domains),a module is flat iff it

is torsion-free. Hence, both Z and nZ are flat,but Z/nZ is not.

The following proposition gives both necessary and sufficient

condition for the flatness of E".

PROPOSITION 1.6 Let ER be an R-module, and E' a submodule of E.

(1) If E/E' is flat, then for all ideals gl of R,

E'I=E'NEI (*)
Conversly,
(ii) If E is flat,and for all (f-g) ideals RI (*) holds,
then E/E' is flat.
Proof':

(i) Consider o SREA f>E & SE/E'--——>0 where E/E' is flat.

Now, for every ildeal RI, O———;RI—5—>R 1s exact, hence, the diagram

el 201

E'®I —==-> E@I =——=(E/E")geI
: |
:L1 1@.1 ! lE®l : ! lE/E|®i
|
g H
h 4 v i v
2'or “2L 5 per %1 (E/E')sR

is commutative, and the rows are exact.
Since E/E' is flat, lE/E‘Qi is mono., and by routine diagram-—
chasing, we can show that

Im(lEQi)f\Im(fﬁll) = Ime@lR)o(lE!®ij




i.e. EINE' = E'I ideal ,I.

R
o
(1ii)Consider the exact sequence O SE e SE & SE/BE'———30

where E 1s flat. Let RI be a f—-g ideal, and denote E/E' by E".
Hence,

E'eT giei> E®l 5§£> E"@I ~—>0 is always exact.

Flatness of E implies that E®IS£EI, and the image of E'6I
under this canonical isomorphism is E'l,
i.e. E"QIS2EI/E'I.
Therefore, (by proposition 1.2), E" is flat iff E"I=EI/E'I.

Now, E" consists of elements of the form Zg(xi)ri where xieE, rieR.
i

— S 1 4
But ?g(xi)ri_ig(xiri)mig(xi) where Xi€E

i.e. E"I=g(EI)=EI/EINE', hence, E" is flat iff EI/EINE'=EI/E'I.
But E'IC EINE"
i.e. E" is flat iff E'I=EINE"
The above proposition is now used to prove yebt another result
regarding flat modules, which will be very useful in future proofs.

As preliminaries, let E, be any module and conslder the exact

r

=
¥

sequence O >K >F

>0, where F 1s free with basis <fi>,
and K=Ker(f).
Each xeK can be written as Z firi where Pi:O for all but finitely

1
many 1.

-~ I_ the ideal Z Rr,.
X ; i
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COROLLARY 1.8 E is flat iff for every xekK, XEKIX.

Proof:
Suppose E is flat, then (proposition 1.6) xer\FIX=KIX.
Conversly,

Let I be any ideal, and suppose that xeKNFI.

R
Clearly, IX(:I for every xeKNFI,and hence, KNFI=KI.(*)
As F is free, it is flat, and since (*) is satisfied, E is also

flat (proposition 1.6).

REMARK: It follows from the corcllary that if xeK, x=2 firi,
i
y =2 k,r, e ], .
then x . llrl where 11eh.

7
AL

3. Tensor Product of Flat Modules

Recall that, in general, E®_,M is in the category of Z-modules,

R

but 1f R is a commutative ring then E@RM can be considered us an

R-module, if we define r(x®y)=(xr)Ry xecE, yeM and reR.

Suppose that E and M are both {lat. Can we, in the commutative
cege, conclude that EgM is a flat R-module ? The angwer ig in the
affirmative. In fact, we prove o nore gensral recultb.

Iet Rl, R2 be two rings, le an Rl—MOdULB and RlMR2 a

(Rl~Rg) bimodule. We can conslder E®,M as o right R,-module, 1f

1

we define (x®y)r=x®(yr) where xeck, yel, PERE.

R

In such a case, we have the following:




21

PROPCSITION 1.7 Suppose that ER is a flat lemodule, and
1

M, ig a flat R,.-module, then E®_ M is a flat (right) R,-module.
1R2 2 Rl 2

Proof:

R

Consider any exact sequence O~-~>N'—~—>RN
2

As M ig flat, 0———>ME_N!——->M®_N 15 exact.
R2 R

2

But, we can conslder M&RN ag a left Rl—module,
2

Ry

hence, E®, (M@ _N') ——— > L8_(M®_N) 1s a monomorphism.
Ry Ry Ry Ry

But there 1s a trivial identifaction of E@R(MERN) with(E&RM)GRN.
2

1 1 2
i.e. (E®,M)O,N' ——> (E8,M)8_N is mono.
Rl R2 Rl R2
Thus, E@RM is a flat R2~module.
1

CORQOLLARY 1.7 1Iet R be commutative, E and M flat R-modules.

Then, E8M is flat.
Proof:
It is a direct consequence of the above proposition.

As a final characterization of flatness in this chapter, we

show that 1f E, is flat, then each linear relation in E is a

R

consequence of linear relations in R.
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PROPCSITION 1.8 ER is flat 1iff the following hold:

1f <ei>iel and <&, >. are two finlite families of elements in

171el

E and R respectively, such that X eiti=o, then 3— a finite

family <Xj>j€J in E and a family <aj

1

i>jeJ,i€I of elements in R,

such that 3 a,,t,=0 Y jeJ, and ey= 2 xjay, vV iel.

Proof':

Suppose that ER ig flat and let RI: 2 Rt

i J J

i
i

Now, E®I==EI, and hence, X eiti=0 in EI implies that 2 efti=o

in EoI.

Let

Hence,

The

Jed is

Bug

i i

RF be free with basis <ui>ieI’ then

0 SK—x >F r >1 >0 1s exact, where f(ui)=tib/i.
0——>E8KEBL S rePi8l meT———50 is exact.
=z ej®ti=o in E®l implies that = ei®ui€Ker(l®f)=Im(l®i).
i ) i

il.e. 2 e,Bu.= 2 X.®i(r,.) for some x.cE, r.ecR h
2 880y AR ( J) e Je » T 4€R, where

g finite family.
as ieR &/jeJ.

i(rj)eF, i(rj)z 2 a,.u, for some a,

5 Ji71 J

As fei(r;)=0, this lmplies that Z at,=0 Y gea.

1

Furthermore, ; e 0u,= ; XJ®(% ajiui) = %(Z X.a..)@ui.

1 J i 1 J JoJt

But, as F is free with basis Uy the representation of E®F in

terms of the = e,®u, 1s unique (0.2).

1



hence, e, = ; xjaji\{lel

J
Conversly,

let _I be any f-g ideal, and suppose that y= = eiﬁti is in

R i
Ker(9), where {:E@I———>EI.
Then, by hypothesis, E} families <xj>jeJ’ <aji>jel,iel and
y= 2(2 x.a,,)8t, = Z x.8(3 a,,t,)
i J Ji 1 3 J oy Jd 1
=ZXJ.®O=O
J

i.e. Ker(9)=0, and hence E®I=2EI, which implies that E is flat.
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CHAPTER 2

1. Preliminaries

Glven any ring R, we have seen that free===>projective===>flat,
and if R is an integral—-domain, flat===>torsion-free. 1

In this chapter, we: will deal with characterizations of classes
of rings, for which some of the above implications are reversed.,
For example, what rings are characterized by the properity that
every flat (right) module is projective?

Finally, we look at the class of rings over which every module
is flat.

Before attempting to look at these questions, we need some

further results regarding flatness.

PROPOSITION 2.1 Let o >K oF

SE >0 be an exact sequence.

R
Then, the following are equivalent:

(a). E is flat.
(b) Given any ueK,j} a homomorphism @:F———>K 3 @(u)=u
(c) Given any finite set <ui>i=l,..,n uieK,E} a
homomorphism Q:F———>K with ﬁ(ui)=ui ¥/i.
Proof:

(a)==>(b). Let <XJ> be a base for F, then for ueck,

" Jed
u=. .2 x, r. where r,eR,
1= J1 T 1
k
Let Iu= 2 Rr., then as E is flat, ueKI .
i=1 * e

‘ k
i.e. u= 2 kiri, where k.,eK. (proposition 1.6)
1=1 +

1. We use ===> to denote "implies".




Define,

p(X, ): ki j—zl,-oa,k
0:F——>K by Ji

P(x) = 0 JEIpseeerdy

24 B

Then, clearly, @ satisfies the required properties.

(b)==>(2a).

k
Suppose that u= £ x, r; ¢ K, and that +a pr—K >

1=1 1
¢(u)= u. Then

k
u= 2 P(x. Jr; € KI, V/ueK.
1=1 91

Thus, E i1s flat.

(corollary 1.6)

To complete the proof, it suffices to show that (b)==>(c).

We proceed by induction on n.

If n=1, then the existance of ¢ is given by (b).

Suppose, that there exists a map @ for all m< n, n>l.

Consider Uy
¢n(un)= Uy -
Define v, = ui—¢n(ui) for i=1,...,n=-1

Then, by the induction hypothesis,;} gt :Fe-—->K,
i=1,...,n=1. Now, define @:F-——>K by

D= prep g0 .

U uyE K, and let ¢n:F———>K be such that

where @'(Vi)=

It is easily verified that ¢ has the desired properties.

V,

1
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We nmcall that the direct-limit of flat module 1is flat. We
now show that, 1n fact, every flat module 1is a direct-limit of
projective, and even free modules. With these results, the
problem of over what rings is flat==>projective, is reduced to
finding the class of rings over which the direct-limit of projective

modules is projective, and similarily for free modules.

PROPOSITION 2 .24 ER is flat iff it is the direct-limit of

projective modules.
Proof:
Over any ring R, projective==>flat, hence the direct-
limit of projectives 1is abviously flat.
Conversly,

suppose that E, is flat, and consider the exact sequence

R
0 >SK >FR SE >0 where F 1s free.

Let < Ki,fi> be the direct-system of all f—g submodules K,

of K, ordered in the natural way, where fg are the canonical
monomorphisms.

K is abviously the ;5§>Ki

Suppose that each Ki is generated by <uil’u12""’uisi>'

But as E is flat,k/li,Z} ¢i:F———>Ki_9-¢i(ui )= u, j:l,...,si.
J J
(proposition 2.1).

i.e. k/i, Ki Is a direct—-summand of F,

==> Ki is projective v/i.




Hence, F= K, @R, k/i, where R, =% F/Ki and proJjective.
Therefore,
< F/Ki,g£> is a direct—-system of projective modules,
J

where F/Ki< F/Kj if KiC:K and gy are the natural homomorphisms.

j:
But 1im F/K,= B/KEZE

i.e. E 1s a direct—-1limit of projective modules.

PROPOSITION 2.2B E, is flat iff it is the direct-limit of

R

free modules.
Proof:
By proposition 2.2A, E is a direct-limit of < Pi,f§>,
where Pi are projectives.
Now, %/jq E'a free right R-module Fi’ B'Fis Pi@Qi.
We can thus, represent every Pi as a direct-limit of free modules

as follows:

Z. = .
11. 12 13, o . . .
Fi >Fi >Fi ) where Ker(bik)_ Qy &/k.
i.e.
S A% - , k41 K+l /.
Pi 1s & direct-limit of < Fik’gik > where Fik= Fi, gik =34 Vl.

Consider the < Fik>’ ordered in the natural way. i.e. Fik< Fjl
if PiC'Pj

Define the maps hjl to be the canonical monomorphisms of Pj

int .
into Fjl
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-
@]

h.
h,, are defined > the dlagram O———>PJ.-Q;>Fjl

J1
\\\ B

|

|
Iy
P,
J

1

7
is commutative &*j.

Define the homomorphisums @gi:Fik"*—>F]1’ by the composition

man
J1 P
Pix= hJ P 8qy-
1.C. .
21k fi "51
Fik >Pj >PJ )Fjl
Then,

< Lk’¢ > is a direct-system, as the maps are consistent.

l.e.
P o
ORIy = hrs.fj.g 1 th £y
= ° - jt = .
= h fj £Yegyy = hogo T8y,
rs
= ¢ik

It is also evident that the direct-1limit of the F,

1k is E.

We can now proceed to the discuss the guestions which were

raised in the beginning of the chapter.
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2, Domainsg over which Flat = Torsion-free.

We recall that a ring R is a (right) semi-hereditary 1f every

f—g ideal I, 1s projective.

R
DEFINITION: A ring R is called a Prufer—domain i1ff R is a

semi-hereditary integral-domain.

We may note that, over integral domains, a non-zero 1ldeal 1is
projective iff 1t is invertible. We will now guote the following,
well known characterization of Prufer domains. (Seel[3])

Corollary 2.3: R is a Prufer domain iff every f-g, torsion-free

R-module is projective.
We can now give, a complete classification, of the domains

over which flat=torsion-free.

THEOREM 2.4: Every torsion-free module is flat iff R is a

Prufer domain.
Proof':
Suppose R 1is Prufer.
Then, by the above corollary, every f-g, torsion-free R-module is
projective.

But, every torsion-free module is a direct-limit of f—-g torsion-—
free modules, and hence, a direct-limit of projectives. Since, a
direct-1limit of projectives is flat (proposition 2.2A), hence,
every torsion-free module is flat.

Conversly,

suppose that torsion-free==>flat.
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Hence, any f—-g ideal IR is flat, since it is torsion-free.
We will prove later, that any f—-g flat module over an integral-
domain 1s projective. 1.e. every f—g ideal IR is projective,
==> R 1s a Prufer domain.

2. Rings over which Flat=Brojective, and Flat=Free.

We have already seen, that it sufifices to look at the class
of rings for which the direct-limit of projective (or free)
modules is projective (or free).

Given a ring R, let JR denote its Jacobson radical. 1i.e. JR
is the intersection of all maximal right ideals in R.

DEFINITIONS: (1). An ideal I in a ring R is (right) T-nilpotent,

if given any sequence <ai>i in I, j-n, 9-anan_l....al=o.

(2). A ring R is semi-simple if JR=O.

H. Baas (See[l]), in his paper on Finistic Dimension, proved
the following:

THEOREM 2.5 The following are equivalent:

(a). The direct-limit of projective right R-modules
is projective.

(b). JR is right T-nilpotent and R/J 1s seml-simple
and Artinian.

(c): R satisfies the descending chain condition on

principal left ideals.
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A ring R, satisfying any of the above equivalences, is called
(right) Perfect. We will attempt here to reproduce the proof of
the above result, but proceed to discuss a subclass of the perfect
rings, namely, those rings over which flat=free.

The following results are due mainly to Gomorov (Seel[5]).

THEOREM 2.6 In order that all flat right modules are free,

it is necessary and sufficlent that R is a local ring with a
right T-nilpotent maximal ideal.
Proof:
Assume flat==>free.
Lemma 1. Every element aeR with a right inverse, has a left
inverse.
Suppose ab=1, and consider the descending chain
RaDRa®D>Ra’D ....
Since flat==>free (and hence flat==>projective), by theorem 2.6,
R satisfies the descending chain condition on principal left ideals.

. n n+1
i.e. a CRa ffor some n. |

==> a- ran+l for some reR.
hence,
(ra—l)an=o
but then,

(ra—l)anbn=0=(ra—l)(ab)n=ra—l

i.e. ra=1, hence a has a left inverse (and r=b).



31

Lemma 2 The non-invertible elements of R form a right T-
nilpotent ideal, 1if every non-invertible element 1s nilpotent.

For suppose that every non-invertible is nilpotent.
Tet I be the set of all non-invertible elements.

Clearly,

if ael, then arel kfreR.

Suppose that a,bel, then we show that a+bel. For assume the

contrary,
then ; ceR > (avb)c=1

but as a 1s nilpotent,-g'a minimum n g—an=o

=> an_l(a+b)0=an"l

il

n

> oa “Lpe=alt

n-i_

==> (1-bc)a 0

but as bcel, 1t follows that 1-bec is invertible

n-1_

hence, a 0, which contradicts minimality of n.

Therefore, I the set of all non-invertible elements, 1s an ideal

R)
in R, and hence, automatically the unique maximal ideal.
i.e. IR=JR the Jacobson radical.

By theorem 2.5, IR is T-nilpotent.

We have reduced the prooffhow, to proving that every non-
invertible element is nilpotent.
let a be any non-invertible element, und assume that it is

be 2 free module with basis <«x.>

not nilpotent. Let bR 171eT’

where I is arbitrary.




Let G be the free submodule of F generated by Zy= Xi"xi+la'

Then, G is a proper submodule of F. For assume that F=G,

n
==> Xl=i%lziri = Xyr+ ><2(r’2—arl)+...+xn(rn-~ aFN~l)
+ Xn+larn
But, as Xy form a base,
==> r=1 and r, = atTt i l1,...,n
Also,
ar_ = 0 ==> aan—l= anz O
i.e. a is nilpotent.
Contradiction.
Let Gn denote the free module generated by (zl,...,zn).

Then,

G is free ith basis X X cee
F/’n is free, wi asls X, 15X o

, where ii are the
images of the Xy under the epimorphism F—~—>F/Gn.
But,
F/G: l£@>F/Gn-
i.e. F/G 1sg a direct-limit of free module , and by hypothesis,
is llat, and hence, free.

Now, as F/G# 0, let VsV ..

Let t, be the Images of the Xy under the map F——->F /G,




Let b= 5 uk_lr.
3 1

now, tk+1= ? ijj , where wjeR.

hence, v,= (= Vjo)b ==> l=wlb , and by lemma 1 ,

c_,

== wlb=l=bwl
Furthermore,

15 By (bwyd= B 0= T o8
but,

tk+2= ? ijj where kjeR.

==> Vlwl=(§ ijj)a

hence,

but
b(kla)=(bkl)a= bwl= 1
==> a 1s 1lnvertible
Contradiction,
i.e. every non-invertible element is nilpotent, hence, by lemma
2, we have the necessary condition.
Conversly,
suppose that R is & local ring with a right T-nilpotent

maximal ideal. Then (theorem 2.5), every flat right module i
projective. But over a local ring, by the well-known result of I.

Keplangkl, evary prcjective module 1s free.




(N
s

i.e. every Tlut rigzght module 1is frec.

e T .

4. Rings over which the Direct-Product of Flat Modules 1s Flat,

et us recall that 1L < E, >, 1s an arbitrary lfamily of flat

rizht R-modules, then E= Z Ei is also flat. This immediately

of rings is I Ei

suggests another problem, 1.e., For what class
i

always flat?. This question was answered by 3. Chase (Seel[4]),

and we reproduce here goéme of its main results.

DEFINITION: A module AR is finitely—-related 1T & an exact

>0, where F 1s free, and both K and

sequence 0O >K >FR SA

Foare finitely-generated,

COROLLARY 2.7 Every finitely-related flat module is projective.

Proof:

Suppose ER is finitely-related, then.}‘an exact sequence

0 >K SE >E >0 , where K is f—g.

Let <ui>i=1,.. n &enerate K. Since E is flat, ﬁ‘a map P:F———>K,

¢

3 ¢(ui)= u, k/i. (proposition 2.1)

1.e. the above sequence is split—exact,

==> E 1s a direct-summand of F, and hence, projectivd

We come now, to the main theorem.




THECREM 2.7 The direct—-product of any family of flat right

R-modules is flat iff every f-g left ideal RI is finitely-related.

Proof':

Suppose that the direct-product of flat modules is flat,

r
Iet RI be any f-g ideal. 1.e. I= % Ru, wu.€ R.
. i i
1=1
let RF be free with basis (Xl""’xr)’ and consider the exact
sequence
0 >K >RF £ >T >0, where f(xi)= U, K=Ker(f).
Now ,
(k) )
keK, let R be a copy of the ring R.
Let Ag= Il r{K)
kekK
hence,
if k= al(k)xl+ a2(k)X2+...+ ar(k) e K, then
r
f(k)z‘z ai(k)ui= 0
i=1

r
Let ajz <aj(k)>k€K, theni§laiui= 0

By hypothesis, A is flat,
hence (proposition 1.8),2} bl,...,bne A, My >y in R
and J

r n
Zm,,a:o, a.= 2 b,m, . (*)




then, as f(zi)=o, == 21525540052, € K.

Let bi:<bi(k)>keK’ bi(k)eR. Then, by (*),

aj(k)= % b, (k)m, J=1,...,r

$o1 i iJ

s

But,
r r n
k=2 a (k)x,= 2( = b,(k)m, .)x.
j=1 4 Jogs1 =1 v
r

n
= 2 b,(K)( Z m..x.)
1=l j=1 *JJ

n
= % bi(k)zi

i.e. 21’22"“’zn zgenerate K.
== RI is finitely-related.
Conversly,
suppose that every f-g left 1deal is finitely-related.
We quote the following lemma without proof (Seel2])

M be a finitely-related module, < E.>, an

Ilemma: Let
Lemima s 171iel’

R
arbitrary family of right R-modules. Then, the canonical
homomorphism

(I Ei)®M ——> H(EjﬁM)
iel iel

is an isomorphism,.

Assuming the lemma, let Ei be flat b/iel, and hence, for every

f-g ideal I,

lEgj
Ei®J —_—t EiﬁR is mono.
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hence, H(EiQJ) —£-> H(E1®R) is mono.
i i

But, by hypothesis, J is finitely-related. Thus, we have

1(E,eJ) L 1(E, 8R )
1 i

(LIE, )&J -£-> (IE, )8R
il i_L

Evidently, g 1is also mono. for every f—g ideal RI,

==> I Ei is flat. (proposition 1.2)

The class of rings over which every f-g (left) ideal is finitely
related, can be completely given by an ideal-theoritic character-

ization. 1In fact, S.Chase proved the following:

THEOREM 2.8 R is a ring > every f-g left ideal 1is finitely-

related iff Y aeR, the ideal of all left zero—divisors of a is f—g,

and the intersection of any f-g ideals 1is again f-3.

We will not give a proof here, but give few examples of rings
which satisfy the above. We note that in view of the theorem, if
R 1s an integral-domain, then the direct-product of any family of
flat right R-modules 1s flat iff the intersection of any two f-g

left ideals 1is again f-g.




EXAMPIES :
(a). Left—-Noetherian rings, as clearly, every f-g left
module is finitely-related.
(b). Left semi-hereditary rings.

For let I be any f-g ideal, and hence, projective.

R
Thus, B-an exact sequence

B >1 >0, where F 1s free and f—g.

0 >K >R
But, Fe2Keél

==> K is f—g.

i.e. ;I is finitely-related.

R

(c). R= K[Xl,Xg,...] — the ring of polynomials over a field.
(1). If the number of indeterminants 1s finite, then R 1s Noetherian,
(ii). If the number is infinite, then R is an integral-domain, with
the property that the intersection of any two f—g ideals is

also f-g.

[=

5. Rings over which every Module 1is Flat.

v/
DEFINITION: A ring R 1is regular if V’reR, 3‘ aeR » rar= r,.

PROPOSITION 2.9 Every right R-module 1s flat iff R 1s a regular

ring.
Note: As the concept of regularity is symmetrical, we can conclude
that all left R-mnodules are also flat.

Proof:

Suppose that every right R-module is flat.



consider the sequence

0 >rR >R SR/rR——=>0.

Now, as R/rR 1s flat

==> PRMI= rR for any left ideal I (proposition 1.¢).

R
Let RI:Rr, then

rRN\Rr= rRr
but, reriRMNRr,

==> r= rar for some &

=

i.e. is regular.
Conversly,
suppose that R ig regular.
It is well-known, that over regular rings, every f—g ideal is
principal . Let AR

consider o >K SE

be any module.

R‘;A >0

It suffices to show that V’ueK, ueKI (proposition 1.6)
since I is f-g V”ueK, it is principal. i.e. I = Rr for some r.
now, ucK ==> u=fr for gome el

but, r= rar for some a¢R.

}__
[
o
i
-
3
Ay
3
N

uar € KI
u

REMARK: WE will show later, that R is regular iff every cyclic

module is flat.
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CHAPTER 3

1. Faithfullv-Flat Modules

DEFINITION: A module E, is falthfully-flat (f-flat) if E

R

is flat, and for all .M, E@M=0 ==> M=0O.

R

PROPOSITION 3.1 E f—flat 1iff for all maximal left l1ldeals

is
R

2N, E# EM.
Proof:
Suppose that E is f£-flat, then as R/Mf0 ==> ER/M#O
but E®R/MS¥E/EM
i.e. B4EM,
Conversly,

every lideal RI#R, is contained 1n some maximal ideal RM'

hence, E#EM ==> E#EI
i.e. E®R/I (=2E/EI) # ©
i,e. for all cyclic modules R/I£0, E@R/I4£0.
Now, if RN is an arbitrary, non-trivial module, 1t contains
a cyclic submodule N'. DBut as E is flat, we can identify E@N'
as a subgroup of EeN.

hence, as ERQN'£0 ==> EQN#£0.

Remarks:
(a). It follows from the above proposition, that the direct-
sum of f-flat modules is also f-flat. In particular, as R 1s

evidently f-flat as a module over itself, it follows that every
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free module 1is f-flat. We will show now, that the same 1s not
true for projective modules. In fact, 1f every projective module
over R is f-flat then R contains no non-trivial idempotent.

i.e. suppose that e#0,1 is idempotent, then Re being a direct-
summand of R, is projective.

But Re®(1—e)R=0 as xe®(l-e)y = xe2®(l—e)y

= xe®e(l—-e)y = O

(b). If R is a Principal-Ideal-Domain, it follows that ER is
f-flat iff it is torsion-free, and E#Ep for any prime element p.
In particular, Q is not f-flat Z-module. However, we can

show this directly, for consider

zeQ@Zm m>1
7 AN
then, z= ; xiﬁyi s xieQ yiezm
mx, X,
. o1 _ .
but, Xi®yi_ - @yi = = @myi = 0 k/l.

il.e. Q&Zm= 0.

(¢), If R is a local ring, then every f—g flat module is f-flat.
This follows from the proposition, for if M 1s the unique maximal

ideal, and E is f-g, then EM=E ==> E=0.

PROPOSITION 3.2 Let © >E! >ER >ET >0 be exact. Then

if E' and E" are flat, and one of them is f-flat, then E is also

f-flat.

Proof:
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by proposition 1.5, E is flat.
As E" 1is flat, then for any RM’ Q——>F ' M~ SE QM ———DE " @M ———~ 0
is exact (proposition 1.4).
Now, if E@M=0, then E'8M and E"@M are both the trivial groups.
but, as one of E' and E" is f-=flat, ==> M=0
i.e. E is f-flat.

2. Flatness in terms of the Tor. Functor, and Homological Dimension,

Ilet R be a fixed ring. Recall, that the functor Tori(ER;RM)
is the left-deived functor of E%RM. In particular, keeping ER

fixed, then Torn(E,.) is the left-derived functor of TE(.):R¢7——>¢Z

defined by TE(M)=E®M1

We also recall that—} a natural isomorphism TorO(E,M)G£E®M,

hence given any exact sequence O SM! >RM SM" >0, we get

the following derived, exact sequence:

...———>Tor2(E,M")———>Torl(E,M')—~—>Torl(E,M)———>Torl(E,M")
——E@M ' ~——SEQM~—SEOM" ———>0 ,

We can now relate the flatness of E with the Tor. functor.

PROPOSITION 3.3 The following are equivalent:

(a). Ep is flat.
(b). for all left R-module M, Y n>0, Tor_ (E,M)=0.
(c). for all left R-module M, Torl(E;M)=O

(d). for all f-g left ideals I of R, Torl(E,R/I)zo
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Proof':
(d)==2(b). Let RM be arbitrary, and consider the free
resolution of M, ...—~~>Fn———>Fn_l———>... >FO >M >0,
since E is flat,
(F) .. .———>E®Fn———>E®Fn_l-——>. . .-——>E®FO———;E®M———->0 is exact.

but, Torn(E,M) is isomorphic to the homology modules of the
complex (F), and as (F) is an exact sequence, Hn(E®E)=O ¥ n>0

i.e. Torn(E,M)zo for n>0.

(b)==_(c)==>(d) Trivial.
(d)==_(a). Consider any f-g ideal RI,
then,

0 >T SR >R/I-—-—>0 is exact.

hence,
Torl(E,R/I)———>E®I~——>E®R is exact.
but Torl(E,R/I)zo,
i.e. E@I——>EeR is mono. Y/ f—g I
==> K 1s flat.

DEFINITIONS: (1). AR has projective dimension = n, and denoted

by dimAR=n, if g-a projective resolution for A of length n, where

n is minimum,

Otherwise, we denote dimA Pl

R=

(2). AR has weak—dimension = n, and denoted by




w.dimA_=n, if E} a flat resolution for A of length n, where n

R

is minimum.

(3). Define the right global dimension of R

c.dimR,) as the sup dimA,.
few]
R A R
R
(4). Define the weak right zlobal dimension of R

(w.g.dimRR) as sup w.dimAB

Ag

As customary, the (weak) dimension of the trivial module is
denoted by -1.

Before we proceed, we need the following relavent result,
which we only state as a theoren.

THEOREM 3.4 Tor (E,M)£=H (E®P), where P is a flat resolution

of M.
i.e. this theorem states that, in effect, to compute Torn(E,M)

.3

it suffices to consider erity the lat resclublons of M, rather
then the projective ones. With this result, we are now able to
prove the following:

PROPOSITICN 3.5 The following arc equivalent:

(a). w.d j_:nARSﬂ

<

(b). Tork(A,M):O v it and v kon.

(c). Given sny cxact seqguence O—«~———>X—-—~‘/En 1T

— DB e A0,

where Ej 1=0,1,...,n=1 are flat,then X 1s necessarily Ilat.

Proof:
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(a)==>(b). Let P be a flat resolution of AR' Then,
Torn(A,M) = Hn(gﬁM) (theorem 3.4)

But, as w.dimARg n, we can choose P » Pk=o\vfk>n.

i.e. Tork(A,M)eok/ Koh .

(b)==>(c). Let P be a flat resolution of A, and put

l). We then get the Collowing exact sequences:

O=2hy by 2k o0

Ol Dby, m==2hy 0
this, 1In term, gilvegs the followling exact sequences:
O:Torn+l(EO,M)~~w>Torn+l(A,M)~—~>Torn(Al,M) ~~~~~ >Tor (uo,u)zo

Dmm=3Tor, (£, ) ==>Tor, (£, ,1)—30

Om*~>Tor3(An_g,M)—m~>Tor2(Annl,M)~~~>0

o"—~>Tur2(Anml,m)~w~>Torl(X,m)Mw~>o
hance,

Torl(X,M QéTorz(An_ m)ee. . .=tTor, (7

il

=, X 1ls 'lat,




PROPCSITION 3.8 Let O St >ER SE"~——>0 be exacht,

E', Furthermore, eguality

i}
jun3

where I 1s fluat. Then, w.dimE"y 1+ w.dl
holds 1f E" is not [lat.
Proof:

Yo

E" dig not flat. 1.e. w.dimE" 0.

@]

Suppos

Now, Tor n>0 and any LM, we have

R

0-——>Tor (B",M)——=>Tor (E',})~-—>0 15 exact.

+1

i.e. Tor_  (E",M)=2Tor (E',M)

+l(
hence, by the previous proposition,
== W.dimE"= l+w.dimg’

t, and the inzguality

o]

Furthernore, 1f E" ig flut, then E' 1s also [1
is trivially satis{ied.

whe re

R R’

It is well-known (3ce[7]), that z.dim Ro= sup dim C
C, ranges over all cyclic modules. As the malin result of this
section, we willl prove that the same 1s true for the wesak global

dimension of R.

i.e. w.g.dim R, = sup w.dim A,, where the A, are cyclic.
R 2 R R
R

The theorem is the conseguence of the following lemma:




LEMMA 3.7: et < Ai>i€I

module ER’ where (I,g) 1s a well-ordered set, and the Ai

satisfy the following:

(1). A1=O’ and AiC‘Aj for igJ.

(2). If j is a limit-—ordinal, then A.:\y/Ai.

. . i<j
(3). w.d1m(Ai+l/Ai)§n \/161.

Then, if Ap=\UA;, ==> w.dim A g n.
iel *

Proof:
We proceed by induction on n.
Suppose n=0.
We show that A, is flat V¥ iel.

Now, A, 1s flat, and as w.dim(A2/Al)=o,==> A, 1s flat.

suppose that Ai is flat v/i< J.
(i). if j 1s not a limit-ordinal, then

Om—=>B, . —SA DA A, e act .
> j-1 > 3 > J/ j-1 >0 1s exact

but, both A,

and A./A.
J-1 J/ J—

1 are flat,

== Aj is flat,.
(11). if J is a limit—ordinal, then

Aj= £1Q>Ai, and hence, Aj is flat.

i<d
i.e. A, is flat V ier.

/
b = = 1
ut A thi lim A,

hence, A is flat, and w.dim A = 0

be a family of submodules of a

47
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Proceeding with the induction hypothesis, assume that the

lJemma is true for all m<{ n, n>0.

Let FR be the free module generated by the non-zero elements

of A.
Let Fi be the free modules generated by the non-zero elements
of A
Then, F,CF, ,CF Y icI.
consider the epimorphism {:F———>A defined in the natural way.
let K=Ker(f), then , by restricting the domain of f, we get
maps Fi——-——>Ai with kernels Ki= Fif\K.
Hence, we get the following commutative diagram :
0 O;
L

0 —=> Kyj=—=—> F,——> AiT——> 0

“-— o0

!
i

O —=> K> =>4, 0
| | |
i { !
A\ A2 N
O ===> Ky g /Ky=mDF g /By ==y /A =2 0
| ! !
X d .
0 0 0

The columns are exact, the upper two rows are exact, and the

bottom row is an O-sequence., However, by routine diagram-—chasing,
we conclude that O~——>Ki+l/Ki———>Fi+l/Fi———>Ai+l/Ai—~—>o is 2lso
exact V ieI.

Now, Fi+1/Fi is free, thus flat. It follows (proposition 3.8)

that W‘dim(Ki+1/Ki)§ n-1.




Thig implies that we can use the induction hypothesis on\//Ki,
i

as clearly, < Kj>ieI satlsly the postulates of the lemma.
But, U/ K,= \U(F;NK)= (UF)NK= FAK = K
1 i 1

==> w.dim A { n-1.

Furthermore,

0 >K >F S>A >0 1g exact.
Reapplying proposition 3.6,
w.dim A 1 + w.dim K

1 + (n-1)

THECREM 3.7 w.g.dim R, = sup w.dim AP where A rangegs over all
L A L
cyclic right R-modules.,
Proof:

Triviaelly, sxp w.dim AR g wW.g.dim RR
Assume now, that k/ cyclic module A, w.dim A ('n ny 0.

We will show that for an arbitrary ER’ w.dim E ¢ n
let <xi>icI generate E, and well-order the set I.

Define the submodule Aj as the one generated by K> IR

Clearly, < Aj>i€I the conditions of the lemma, and asg A,3

n /
[ki{—l/
i1s cyclic (zenecrated by the natural image of Xi)’ then by hypothegsis

. b/.
w.dLm(Ai+l/Ai) gn i.
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But, E=LJA1, hence, by the lemma,
o

w.dim E n

COROLLARY 3.7 A ring R 1s regular iff every cyclic right

(left) module is flat.

3. Weak Dimensions of Noetherian Rings, and Rings of Quotients.

Before proceeding these two Important examples, we make the
following observation rezarding the weak global dimension of R,
which 1s 2 consequence of the symmetric properties of the Tor.
functor.

Recall that w.dim ARg n iff Torn+l(A,M)=a for all RM'
Similarily, w.dimRM & n iff Torn+l(A,M)=O for all QR'

Now, let both A and M vary. Suppose that sup w.dim AR‘ n,

then Torn takes only the null values, and conversly. Hence,

+1

by the above symmetry of Tor we conclude that sup w.dim M ( n.

n+1’ R
l.e. left weak global dimension = right weak global dimension,
and it 1s denoted simply by w.g.dim R.

As a trivial consequence of the definition, we note that over

any ring R, w.g.dim R ( g.dim RR

< g.dim RR'

(A). Let R be a right Noetherian ring.
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PROPOSITION 3.8 For any f—-g module AR, w.dim A = dim A.

Proof':
It suffices to show that dim A  w.dim A, as the reverse
inequality is abviously true.

Let AR be f-g, and assume that w.dim A { n. Then, E% a flat

resolution O-->Pn———>Pn_l———>.... >PO >A >0, where the

Pi are f—-g and flat.

But, as R is right noetherian, every f—-g right module 1is finitely
related, and every finitely-related flat module is projective
(corollary 2.7).

i.e. P i=0,1,...,n are projectives,
==> dim A  w.dim A.

COROLLARY 3.8 If R is right-noetherian, then w.g.dim R = g.dimRR.

Proof:
Again, it is sufficient to prove that g.dim RRQ w.g.dim R.
suppose that AR is c¢cyeclic, then
dim A = w.dim A { w.g.dim R (proposition 3.8)

hence,

sup dim A ( w.g.dim R, where A&
A

cyclic modules.

z ranges over all

l.e. g.dim R
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(B). Let R be a commutative ring.

We recall that for every multiplicatively-closed set 3, the

functor S(.):¢R———>¢R defined by S(A):AS is an exact functor
S

into the category of Rs—modules, where RS denotes the ring of

quotients. Furthermore, 3‘ an RS—isomorphism
Rs R
Torn+1(AS’BS)=:[TOPn+1(A’B)]S

PROPOSITION 3.9 Over any commutative ring R, w.g.dim RS

£ w.g.dim R.
Proof:
Assume that w.g.dim R = n n3} 0.
Let A,B be arbitrary RS—modules. It suffices to show that
RS
Torn+l(A,B)=o.
A can be regarded as an R-module if we define ra:{g}a k/reR, aeh,
and similarily for B.
R
hence, Torn+l(A,B)=O
but,

R

Tor S

R
rl+l(AS,BS)’z‘é[Torn+l(A,B)]S (by 0.12)

RS
i.e. Torn+l(AS,BS)=o

But as an RS—module, AQéAS, and similarily for B (by 0.11)

R
S .
thus, Torn+l(A,B)=o, ==> W.g.dim ng n
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PROPOSITION 3.10 Let A be an R-module, then

w.dim(AS)RSg w.dim Ag.
Proof':

Assume w.dim AR= n, then we show that for any

RS—module B,
RS
Torn+l(AS,B)=O.

Now, B can be considered as an R-module, hence,

RS R
o~ —
Torn+l(AS’BS)”“[Torn+1(A’B)]S" 0.

But B and B, are 1lsomorphlc as R ,-modules,

S S

Rq

i.e Torn+l(AS,B )=0

S

COROLLARY 3.10 If E is a flat R-module, then ES is a flat

RS—module.
Proof:

E flat ==> w.dim ERg 0

==> w.dim(E
S

==> ES is RS—flat

S)R €0 (proposition 3.10)
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4, Finltely—Generated Flat Modules over Integral-Domains.

As a final application, we will prove that every f-g flat
module over an integral-domain 1is projective. We first prove
the following result, which is Interesting in itself:

Iet R be a local ring and M 1ts unique maximal ideal, then

THECREM 3.11 Every f-g flat module over a local ring R is free%

Proof:

Let ER be f—g flat module, and let (ul,ug,...,un) be a

minimal set of zenerators for E. Consider the exact sequence

0 ==K JFp == E——=>0,

where F 1s free with basis (xl,...,xn), f(xi)nui v'i, K=Ker(f).

m
Now, let keK, then k= 2 x.4&, a,€eR.
1. 11 i
m
but since f(k)=0, ==> Zou,2,=0.
R
Hence, aieM V’i. For suppose that a, ¢i for gome jo. Then,
0
Gy 1s invertible, which implics that we can cxprezs di in tern

o
O

ol (a.).,. , which contradicts the minimality of (a.)..
1¢¢O i1
hence, KCFM.
m .
Ag before, we denots by Ik:.% Rai, thus Ik is f—g k/'keK,

i=1

Now, as E is flat, then b/keK, ksKIk (proposition 1.6)

1. I have not seen in the literature a proof of the above result,

which 1is as short and direct as the one presented here.
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== .2, for some k.eK.
. i i
i=1
but as KCFM,
==> ka %xjmij
J
hence,
k= ;(% ijij)ai = 3 Xj(; mijai)
i3] J i
m /
but k= 2 x.a., and cince x. form 2 basis, ==> a.= 2 0, .2, V’j
o1 9 J J7 5 TiJ71
J= 1
. y
i.e. Ikclkll \V/keK.

but, I

e
a8

k

Hence, K=0,

et R be now an 1

of quotlents, where
ring of guotients

We note that for
a set of elecments 1s
indepedent in ES'

LEMMEA 3,12 Tet

Then, k/ maximal 1de

Procf:

is finitely-gencrated,

and E=ZF

)
[

Tree R-module.

ntegral—domain. Denote by T the module

_lf:
R, be
L

3
tho

4

let

corresponaing

< fn/n> 0,feR>.

cevery torsion-free module E, ECE., and hence,
e

linearily—indepedent in E il they arc lincor.--

be -z and flat over an intesral-—-domain R.

~ ™ -
al M, ce,

an FeR-M, 2 Ef is Rf—fr




\V/M, EN is a f—g [lat Ry»module (proposition 3.
Vi Vi
But, Ry is alwayeg local, hence, EF is Rw—free (thecrem 3.11),
e] 62 en
with basis, say, (= ,=",...,= ) where e,cE, s,eR-M. But, as s.
5,78 s 1 i i
1 n
are invertible, ==> €585, 008 alsc form a base for EN'
Extent the base to a zetb R L LR of senerators for

-1
"

E over R. As E isg flat, and hence, torgion-free,

. N
.= L ==Y e, s ey S. . € S,
\j/i>n, e, 5% Tigr Sy <R, 1J¢M
- J
let £= I s.. , then 1t Tfollows that E_. is R.-free, with

<o 1] i f
1,
basis (el,eg,...,en)

THEOREM 3.12 Every f-g flat module over an integral-domailn

R is projective.
Proof:
Iet P¥=( f/Ef is Rf—Tree>. Then, by the above lemma,
P¥ is not contained in any maximal ideal, and hence, the ideal
generated by P* is R.

==>>,ﬁ a finite set > R= flR+...+fnR.

Let B= II Rf ; then B is faithfully-flat R-module, as evidently,
i i

BM£B for any maximal ideal M (proposition 3.1)




As RC B, and B is f-flat, hence, E ig finitely-related

R-module if B@RE is a finitely-related B-module (Seel[2]).

n
But, the map f:B@RE —_> I Ef defined by

i=1 i

r r r
i n
,...,—% )8 X ——> (—-IZ I %)
1 fnn 71

r
(-
r

X e

is a B-isomorphism. Furthermore, each Ef is f'—g, free Rf

1 1

-module,

and hence, projective
n
E is I'-g, projective over Il R
f, . T.
1 "1 i=1 "1

=3

==>
1

But every f—g, projective module 1is finiftely-related. 1i.e.

f R

n
I B, =<By_E is a finiltely-related B-module,
=1 "1

1

==> K 1s finitely-related R-module.

But, every finitely-related flat module is projective
(proposition 2.7).
i.e. E 1s a projJective R-module.
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