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CHAPTER 0 

1. The Tensor-Product and the Hom. Functors 

Let R denote a ring,not necessarily commutative,with an 

identity element 1. Throughout we will concern ourselves with 

the Categories of right (left) R-modules~where R a fixed ring. 

~R will denote the category of right R-modules,whose typical 

abjects will be written as AR'Bn'ER,etc. Similiarly,R~ will 

denote the category of ft R-modules,with objects denoted by 

RM'RN,etc. 

Let ~Z denote the category of Z-modules (abelian groups). 

All maps will be R-hornbmorphisrns. 

We will not define the tensor-product forrnally,but merely 

recall its well known properties as a functor T:~RxR~ ---> ~z· 

i.e. T is a covariant functor in both variab s,additive and 

right exact. Let ER'RM be arbitrary right and left R-modules 

respectively. We can charac rize the tensor-product E®RM by 

the universal property that V 1 middle inear function 

f:ExM ---/ G,where Gis a Z-module~,J a unique Z-homornorphisrn g, 

~ the diagram 

is commut ive. i.e. g(e®m):;:f(e,m) , eEE,rnEM. 

For a given ER,we will be particularily interested in the 

functor 

l.We use the standard abbrcviations VJ, ~ which mean respectively

"for ever~/,'there exis(tts', and 'such that". 
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then TE(f)=lE®f. 

We will require the low knovm re sul ts: 

( J .l) The iSîl ,defir~ed b.;· f(e®r")=i3r, .Ls 

See [ 7] 

t Hl\'1 itrary. 

Then,each element of F®R M has a unique representation in 

the form ? 1 ®mi,w re mieM and mi=O for all but ite 
l 

many i. 

Since,in general,t re is no ambiguity about t 

we will denote TE(M)=E®.RM simply by ES!V1. 

Let RM'RN be any two arbitrary R-modules,then HomR(MN) denotes 

the group of all sms f:M---)N. Reg Hom. as a 

functor F:R~xR~ ---> ~2 ,we know that it is additive, ft exact, 

contravariant in M and cov ant in N. 

A~ain,we will be interested mainly,for a fixed RN,with the 

a contravariant functor in one variable. Let f:M' 

0 

RN is R-injective,if given 
f 

is 
"" N 

, then 

1 ' '1 •.. \ n ~ r· } i\ J • 

dl ram 

with the top row exact (i.e. fis a monomorphism),then there 

always exists a map h:M' ---> N ~ hof=g. 
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Proposition (0.3): FN is an exact functor iff N is injective. 

Proof: 

Suppoce an exact functor,and consider the 

dia~;ram 

where the row is exact. Then, 

FN(M') &Jil> FN(M) ---> 0 is exact. 

' 
i.e. HomR (M', N) ---> HornR ( M, N) ls an epimorphi::::'n. 

Thus,given g,] an heHomR(M',N),~ hof 

He nee, N is injective . 

Cornversly, 

Let 0 
h ---) 0 exact. 

e FN is an left exact functor,it suffices t s th at 

hism. 

But,if N is injective,then for any f:JV1'---> N,:J g:M---> N, 7 

i.e. FN(h) is an epirnorphism. 

2. The Character-Group. 

let Q denote t rationals,then Q/Z (t rationals modulo 1), 

is a divisible lian group. But since a Z-module is divisib 

iff it is injective,(see [G]),Q/Z is in ctive. Of special rest 

is the functor FQ/Z( .):~R---/ ~z,defined by FQ/Z(E)=Homz(E,Q/Z). 

It is cal led the character-group of E, and is denoted by E-*; 
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view of the vious proposition, is an exact functor. 

Furthermore,for any ER,E* be given a structure of a ft 

R-module,if we de for feE*,the map rf by rf(x) f{xr), 

where reR,xeE. 

The following results will be of importance/ 

(0.4) There is a ural equivalence of the functors (T )* 
E 

i.e. the canonical map fM:(E~M);---> HomR(M,E*) is an isomorphism 

* for every Rr· We note that both TE and FE* are contravariant 

functors from R~ ---> ~z· 

To say that fM is a natural isomorphism,we mean that given any 

map g:M'---> M,then 

(E®M)* (E®M')* 
! 

fM fM' 

v Hom(g,l) v 

HomR(M,E*) -----------------> Ho~(M',E*) 

is a commutat diagram. 

(0.5) A module RN is injective iff for every 

and for every feHomR ( I ,N), :f x eN ;,. for 

le ft ideal RI, 

1 re:I,f(r)=rx. 
( e[6]) 

Let ilE. denote the direct-product of a family <E
1

> of R-modules, 
i l 

and let ~i denote thier direct-sum. Given a fini 
l 

family of 

R-modules,v.re will sometimes denote the direct sum by E
1

®E
2

E& ••• aŒn. 

(0.6) The direct-product of any family of injective (right) 

R-modules is injective iff each module is in ctive. 
(See [7]) 



(0.7) In any category îR,HomR(. 
l 

3. Direct-system of R-modules. 

5 

,B)~ ~(Hom(A1 ,B)) 
l ( e·[3]) 

Let I be a directed set. i.e. (I,<) is partially-ordered,and 

for every i,jE:I, j. kEI ,_ l<k and j<k. 

Let < ,rr :i<jEI >be a collection of (right) R-modules 

and maps. Then it is called a direct-system if 

(a) Ils a directed set. 

(b) For each pair i<j, ri: Aj 

(c) The maps ft are consistent. i.e. if i~j<k, 

then r~" ri =f~ . 

Given a direct system< A.,rJ ),we can construct thé1r 
l l 

direct-llmit A,(denoted by limê~) as follows: 
--.>l 

Let tsjoint U Ai,and define the following equivalence 
iEI 

relation in B: 

i.e. two element are equiv nt iff they are eventually mapped 

lnto the same range. We denote by [ ],the equiv nee class of 

the ai,and then A is deflned as the collection of these equivalence 

classes in B. 

In order to give A a structure of a (right) R~uodule,we 

define: 

1. 1A=[li] 
-1 -1 

2. [ai] =[ai ] 
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3 • k)i, j 

4. r[ 

The se rations are well-defined,and the direct imit A becomes 

a {right) R-module. 

(0.8) The direct-limit preserves exactness of sequences, 

commutes with the tensor-product. 

i.e . 
e [ 2] 

4. Resolutions of modules 1 and the Homology functor. 

Let (A): 
f 0' ---> A -'à-) A 1 0 be an a-sequence of (right) R-

modules. 1 .e. Im(f)C Ker(g). 

f H(A) as Ker(g)/Irn(f),then H(A) becomes a functor 

the translation category of three-term o-sequences,into the 

category ÇR. H(A) is called t 

additive and R-linear. 

Homology functor,and it is both 

As a consequence of the properties of the homol functor, 

we t the fol results: (See [7] ) 

(0.9) t 
A BR---> c 0 

f r·e 
1 b b 

~ 
0 A'---> B' c t 

a commutative diagram over R,with the rows exact. Then, 

we get the following canonical exact sequence: 

Ker(f)--->Ker(g)--->Ker(h)--->Coker(f)---)Coker(g) 

---)Coker(h) 



For a given module AR,we 

of A to be an exact sequence 

fine a projective-resolution 

>p 'P ' 'P 'P ,o '0 · • • --- n ---.> n -1 ---/ · · · · · ---/ 1 --- ;> o---.> H ---- .> ) 
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where the P. are projective. We will s 
l 

larlly fine free and 

ions of A. In particular,we know that eve R-rnodule 

has a free (and hence project ) resolutions. 

Tor~(E,IVI) is def1ned to be the ft functor the 

functor E®JYl. Since,in neral,we are concernecl mainly Hith t 

f'unctor TE,then Tor (E,r-1) n comes t le der d functor of 

more tail,let ... --->Pn ..... -->P1 --->P0 --->RM--->O be 

a pro ct resolution of a (left) R.....,'Tiodu M,denoted by .E • 

f 
(P0 )-~->o ,denoted by E®.E. 

Let Hn(E®P) denote the homology-modules of E®P : 

i.e. Hn(E®P) = Ker(fn)/Im(fn+l). 

Then, 

(E®P),the left-derived functor of 

(0.10) There exists a natural isomorphism Tor~(E,M) 

5. Rings and Nodules of Quotients. 

Let R be a commutative r ,S a multiplic~ti 

Hi th lES and o~s. Let A be an R-rnodu 

a 

los:.:d set 

col ction of all formal quot ts - where aEA,sES. 
s 

Def an equiva:enca relation in JOVJ 



l . 

2. 

t t tèi , 

is an 

[ ~]] r~~~~ '"] + s ~l 

[a] [ra-J r - = --s s 

of these equiva nee c 

if VJe define 

= 

n::R 

As these operations are well defined,An is an 
0 

ses ( r.oted 

,cal d 

the There evidently exists - c2noni8al 

hornomcrphism A 

Cons ide 

AS , de fincd by a---> [ Îl 
R as a module over itsclf,we t 

Furt rmore, 

sm 

we can cons r 

which is known to 

If P is a prime 

then S=R-P is alw 

correspond modu 

of quotients is a 

can considered as an R" 
..::; 

ism f:A--->A', term 

' ct d'i d b·r .~ [u] - [r_C( .. · ~J. e , _ne J .:. S s - ..: ] 

t ~c )·rl . rl , ~ c or 0 • ·'f'R----_...> 'f'R ,ue~ 

s 
covariant and exact. 

al in R (in particular,a max 

d 

multlplicatlvely-closed,and we 

if VJe etc f :1.rlc 

s sn Re,-·· 
...; 

t, 

al), 

t 

of quotients by Ap. In such a case,t ring 

(i.e. with a ~nique maximal al). 

(0.11). IfE an RQ-module considered as an R-modu ,then the 
v 

cunon:Lcal f :E--...->Es ls an R ,-isomoro sm. 0 L 

e [ 7]) 
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(O.l2) If A,B are R-modules,then for every n)O,there is an 

R RS 
R3 -isomorphisrn [Torn (A, B)] S ~ Torn ( A3 ,B3 ) 

See [ 7] . 
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CHAPTER l 

1. Definition and Properties of Flat Modules. 

Let o--->l:-1'--->Rfvl--->I'Il"--->O be an exact sequence. We recall 

that for every objectER in the category ~R'the functor TE is a 

-exact functor. 

i.e . 

In general,T(f) is not a monomorphism,and wr:;; can not ident'i 

E®M' as a subgroup E®M. 

The following exarnple will il trate the above: 

LetE - the integers mod. n (n)l),cons 

Z-modu 

Let Yl=nZ - tr1e ideal gene d by n, conside 

Z-.11odule . 

Then, o ---> nZ i 

is not a monomorphism. 

For let zeZn®nZ,hence z 1 ®(ny.) 
i l 

But (l®i)z = ~1®(ny1 ) 
l 

~(x.n)®y. = 0 in zn. 
i l l 

This motiva s the notion of flatness. 

red as a right 

as a left 

DEFINITION: A module ER flat iff the functor TE is exact. 

ltJe de fine s imi 1 ly a flat left R-module. 

Before proceeding with the discussion of flat modules,we 

recall t \1 ER,Horn2 (E,Q/Z) (=E*) is exact and contravariant 

as a functor,and can be given a structure of a left R-module. 

The folJ characterization of flat modu s is very useful 

in prov many results concerning flatness. 
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PROPOSITION 1.1 ER is flat iff RE* is in ctive. 

ER is flat iff the functor TE is exact.i.e. any 

exact sequence o ---> M'-~->RlYJ, 
then o ---> E®M '-~~~>E®M is exact. 

Rec 1 the existance of a natural isomorphism (E®M)*~HomR(M,E*) 

we t the following commutative diagram: 

(E®M)* ---> (E®M')* ---> 0 

"' ~ 1 
i 

' 'il' \,-

HomR(M,E*)---)HomR(M',E*)---)0 , 

and t exactness of one row certainly impl s the exactness of 

t ot r. But this,in turn,implies the exactness of the functor 

FE*'which by (0.3) is exact iff E* is injective. 

PROPOSITION 1.2 ER is flat iff for every 

sts a canonical isomorphism E®I~EI. 

Suppose ER is flat,then for any 

ft 

al 

al RI' the re 

is exact. But under the natural isomorphism g:E®R---)E,the imaGe 

1®1 is clearily EI. 

Thus E®I~EI. 

Conversly, 

if E®I~EI,then o ---> E®I ---> E is exact,hence 

E*--->(E®I)*---> 0 is also exact. 

But (E®I)*~HomR(I,E*), ( by ( 0. 4)) 

hence Homfi(I,E*)---> o is exact for every RI. 
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But the exactness of the sequence implies that for every ideal 

RI,and every fEHomR(I,E*)., J xEE* :t f(r)=rx V rEI,a propertty 

which charac rizes inject module (0.5). 

n Hence E* is injective,and by prop .1.1, 

E is flat. 

COROLLARY 1.2 In the above proposition,it su 

only t finitely-generated {f-g) ft ideals. 

Proof: 

es to cons 

For suppose the result holds for every f RI. 

Let RJ be an arbitrary ideal and cons r l®i:E@J E®R. 

Let ZEE®J,z=ZX.~r. where xi ,r
1
.Eû and r 1 =o for all but fini ly 

i 1 1 

many i. 

r 

t I=LRr .. Then;by hypothesis, 
j_ 1 

ZX.®r.=O in E®I. 
i 1 1 

But 3 a canonical homomorphism E®I ---> E®J, thus 

i . e . 

L~.®r.=O in E®J. 
. l 1 
1 

l®i is a monomorphism (mono.) for every RI. 

PROPOSITION 1. 3 (a) . 

right R-modules,and let 

{ b) . 

t < E1>iEI be an arbitrary family of 

E=ZE .. Then E is flat iff E. is flat V i. 
. 1 1 
1 ;J 

Let < E1,f1> be a directed-system of flat 

right R-modules. Then E !~~>Ei is flat, 
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Proof: 

(a). LE1 is flat iff (ZE.)*" is injective. 
i i l 

But,(o.7), (LE.)*~TIEt,and ilE! is inject 
i l i l i 

iff Et 
l 

is injective 

LI• v l. (0.6). 

i.e. iff Ei flat V i. 
(b). Recall that the direct-limit preserves exactness. (0.9) 

l&i v i.e. as o ---> E1®I Ei®R is exact~ ideal RI,and v i, 

hence o ---> lim ( 1\\IL.:---> !!.IE.>(Ei®R) is also exact. 

Furtbermore,the direct t commutes with the tensor-product. 

Hence, 

i.e. lim>(E.®I)=(limE.)®I Vi. 
--- l ---> l 

o ---> Ef,!I ---> E®R is exact \f RI 

i.e. Eis flat. 

Sorne Examples of Flat Modules: 

1. For any ring R,considered as a module over itself,is abviously 

flat. It fpllows,since every free module F isomorphic to a 

direct-sum of copies of R,and by propt; 1.3a,that every free modu 

is f t. 

2. More generally,every projective module PRis flat. 

i.e. since every projective module ls a direct-summand of sorne free 

module FR, the re exis ts a direct exact sequence 
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0 ct exact. hence, 0 ---> Pfi --->Ffi is 

i.e. Pfi is a direct-factor of the in ct modu 

itse injective {See[7]). But,by propÇ~l.l,t 

Ffi, and hence 

implies that 

PR is at. 

4. For any commutative ring R,we will show t t t ring of 

quotients RS is always a flat R-module. 

PROPOSITION 1.4 Let ER be flat,then Vr€R ~ r not a ht 

zero-diviser, the relation xr=O whePe x impl s t x o. 

Proof: 

Consider f:R ---> R defined by f(t)=tr tl t 

Then by hypothesis,f is mono.,and as E is at, 

1E®f:E®R ---> E®R is also mono. 

But E®RG:'!:E by the map x®r xr x , hence s an 

endomorphism x---)xr 

Thus xr=O implies that x o. 

recall that if R is an integ -domain,a module E is 

if the relation xr=O implies that x 0 or r=O. v 
n of the above prop. every flat module over an inte 1-d is 

torsi e . 

2. Flatness of Quotient-l\1odules. 

PROPOSITION 1.4 ER is flat iff for all exact sequences 
r ,~ 

o B CR_Q_> E ---> o,and for all left R-modu s RM,the 

sequence o ---> B®M f.!~> C®M ~®l> E®M ---> o is exact. 
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Proof: 

Suppose ER is flat and RM is arbitrary. Since eve 

module is an epimorphic of a e modu , J an exact 

sequence o , where Fis free ~nd K=Ker(p). 

Now consider t follow diagram: 

f®lK g~lK 
----> TC(K) ----> { K) 

{ i) 

The diagrarn is abviously commutative,and all the rows and columns 

are exact. 

Furthermore,as F free (and hence f ),f®lF is mono.,and 

as the tensor product is always right exact,g®lK is an epimorphisrn 

(epi.). But by (o.:;JLthis implies that:} a map d ~ 

Ker(TC(i)) r(TE(i))-':!->c r(TB(i)) oker(Tc(j)) 

oker(TE(i)) is exact. 

t as the map TB(p) is epi.,Coker(TB(i))=TB(N);und sj.milarily 

TC(p) and TE(p).However,the flatness of E implies that Ker( (i)) 

is null. 

1 .e. 0--->B®M--->C®M--->E®M---)0 is exact V RM. 
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Convers 

consider any exact sequence of t form o--->B--->C--->ER---)0 

in which C is (say free) . 

Let RM=R/I,where I is a f-g 

is exact. 

al.Then, 0--->I--->R--->R/I---)0 

Suhtituting K=I,F=R and M=R/I in the above diagram,thenJ a map 

d :t 
d f®lM 

Ker(lc~H)---)Ker(lE®i)---)B®l\1 ---...:.> C®Ivl is exact. 

But,by hypothesis,f®lM mono. and hence,Im(d) o,and furt rmore 

the ss of C implies that Ker(lc®i) o. 

i.e. 0--->Ker(lE®i) is exact,hence,Ker( ®i) o. 

i.e. lE®i:E0I--->E®R is mono. for every f-g ideal RI. 

Thus,ER is flat. 

PROPOSITION 1.5 Let o ,_!'__>ER_§._)E 11 --->0 be exact where 

E11 is flat. Then,E is flat iff E' is flat. 

Proof: 

Consider any monomorphism u:M'--->RM.Then we get the 

foilowing commutative diagram: 

E ' ®f"' ' E®M' E 11 ®M' 
1 

lE' ®u ll?®U 1 lE n ®U ..... 
1 
1 l 

>} f!llllM ~ g®lM "' 
E'®M ----> E~r11 ----> E 11 ~Ivl 

n 
Now,by prop.l.4,both f®lM' and f®lM are mono. 
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Furthermore,as E11 is flat,1E,®u is mono .. 

IfE is flat then 1E®u is mono.,and hence,(1E®u)o(f®1M) is 

also mono .. But by commutativity of the diagram,this implies 

that (f®1M)o(1E 1 ®u) is mono.,and therefore,1E 1 ®U is mono. for 

every monomorphism u. 

i.e. E' is flat. 

IfE' is flat,then the map 1E,®u is mono.,and it follows 

directly from the diagram that 1E®u is mono .. 

i.e. E is flat. 

From the above proposition,we can not conclude that a 

submodule of a flat module is flat. In fact,this is not generally 

true as can be seen by the fbllowing example: 

Let R=Z 4= <0,1,2,3)- the ring of integers mod4. 

Now,R is abviously flat as an R-module,but we will show that the 

ideal I=<0,2) is not flat. 

By propositon 1.2,I is flat iff I®I---)Ioi is an isomorphism. 

As Ioi=O it suffices to show that I®IfO 

Consider the map f:Ixi--->I defined by f(x,y)=2 if X=Y=2,and 

f(x,y)=O otherwise. Clearly, f is middle linear, and hence there 

must exist a Z-hornomorphism w:I®I--->I ~ w(x®y)=f(x,y). 

i.e. I®I can not be the trivial group, hence, I is not flat. 

We may also note that in the above proposition, the flatness 

of both E' andE does not imply that E" is flat. 
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For example, let R=Z and consider the exact sequence 

0--->nZ--->Z--->Z/nZ--->O n)1 

It wlll be shawn later that over Principal-ideal-demains 

(or more general , over Prufer doma ),a module is flat it 

is torsion-free. Hence, both Z and nZ are flat,but Z/nZ is not. 

The follow proposition gives both necessary and suffie 

condition for t f tness of E 11
• 

PROPOSITION 1.6 Let ER be an R-modu , andE' a subrnodu 

(i) If E/E' is flat, then for all ideals RI of R, 

E 'I :=E 'f\ E I ( * ) 

Conversly, 

t 

of E. 

(ii) IfE is flat,and for all (f-g) ideals RI (*) lds, 

then E/E' is flat. 

Proof: 

{i) Cons 
f' 

r 0--->E .!._:_ )E /E'---)0 where E/E' 

Now, for every al RI' 0---)RI-~->R is exact, hence, the di 

E'®I f®l ~ .. I g®l ·· c·~ _t4.,~ ----,? J:!, ') ®I 

1E,~i 1 lE®i lE/E'®i 

1 

"' f®l . ~ g®l y 
E '®R ----> E®R ----;>( E ') ®R 

is commutative, the rows are exact. 

Since E/E' is flat, lE/E'®i is mono., and by routine di 

chasing, we can show that 

t . 



l q 
" 

i.e. EI()E 1 = E 1 I ideal RI. 

(ii)Consider the exact sequence 0--->E'-.f:.->E-§.->E/E' 

where E is flat. Let RI be a f-g ideal, and denote E/E' byE". 

nee, 

E '.o.I f®l EIQ\I g%l> E"o.I )0. 1 't ~ ---> ~ --- ~ --- lS a ways exac . 

Flatness of E irnplies that E®If?'!::EI, and the image of E'®I 

under this canonical isomorphism is E'I, 

i.e. E"®I~EI/E'I. 

Therefore, (by proposit 1.2), E11 is f iff E 11 I=E;I/E'I. 

Now, E" consists of elements of the form (x.) 
i l 

where xi y> 

' .. i 

But Zg(x.) ~Zg(x 
i l i 

)=~g(xi) where XiEE 
l 

i.e. Eni=g(EI) =EI/EI(\ E 1 , hence, E" is flat iff EI/EI (\E 1 I/E 'I. 

But E 'IC Eif'\E 1 

i.e. E" is flat jff E 'I=EI(\ E' 

The ove proposition is now used to prove t another result 

flat module~ which ll be very use in ure pro 

As preliminaries, any and consider the exact 

sequence 

.E2cl1 :x: 

by 

re F is free with basis (f.), 
l 

can be written as Z f
1

r 1 i ~ 

the al :Z Rr .. 
. l 

rc r.=O 
l 

1 but flnite 
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.E ls f t, then (proposition 1.6) xeKilFix 

Conv,=.:rs 

ideal, and suppose that xeKIIFI. 

Clearly' Ix cI for every XEK nFI, and hence' K (\FI=KI. ( *) 

As F is e, it is flat, and since (*) is satisfied, E is a so 

flat ( 

then x k 1 1 

i tion 1. G). 

It llows from the corollary that if x 

re EK. 

Recall that, in neral, E®RM is in the category 

but if R is a commutative ring then .3:®Ri'-1 c3.n be cons 

, if we f r(x®y)=(xr)®y xeE, r 

s e that E and Mare both flat. Can we, 

' x f 
i 

z 

i' 

J :::; ' 

red ~s an 

c tl 

cJ tl1at E®J.Vl is a flat H-modu ? 2nsvrer is in t 

f'i 

Let 

we def 

ch 

In t, we pr~ve ~core general result. 

o rln3s, ER an R, 
l 

u1e 

can consider E®RM as a right 
1 

®y)r=xl( r) where xeE, ye~, reR
2

. 

c 

a 

u 



PROPOSITION 1. 7 S that ER is 
1 

21 

flat R1-module, 

RMR ls a flat 
1 2 

le, then E® M ls a flat ( 
R1 

) R,')-modu 
c;. 

Proof: 

Consider any exact sequence 

As MR ls flat, 0--->lVJ® N!--->lv'l® N is exact. 
2 R2, R2 

But, we can cons ft R1-modu 

nee, E®R(M®R~') ---->El (Ml N) is a mon ism. 
1 2 R1 R2 

But there is a trivial tifaction of E®R(~®RN) with $®RM)&RN. 
1 2 1 2 

j_ • e . 

Thus, E®RM is a flat R2 
1 

COROLLARY 1.7 Let R c ative, E 

Then, E®M is flat. 

Proof: 

M flat R-modu s. 

It is a direct consequence of the above proposition. 

As a final characterization of flatness in this chapter, we 

show that if ER is flat, then each linear re 

consequence of linear relations in R. 

ion ln E is a 
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If <ei>iEI and <ti ei are two finite families of e nts in 

E and R respect , such that L: e 1 t. =0, then J a fini te 
i l 

Proof: 

Suppose that ER is flat and let RI= ~ Rt 1 . 
l 

nts in R, 

Now, E®I==EI, and he nee, L:: e i t 
1 

=0 in EI implies that L:: e 
1
et

1 
=0 

i i 

in E®I. 

e with basis <u.). 
1

, then 
l lE 

0--->K-:1.->F-!->I--->0 is exact, where f( u.) t. Vi. 
l l 

Hence, 0--->E®K~!!.>E~F~~!)E®I--->O is exact. 

TheL:: ej®t. o in E®I implies that L: e.®U.EKer(l®f) Im(l®i). 
i - l i l l 

i.e. ~ e 1®u1 = Z x.®i(r.) for sorne xJ.EE, rJ. , where 
i j J J 

jEJ is a finite 

But as i(rj) ~ a j 1 u i for sorne a ji ER V j 
l 

As foi(r.)=O, this impl s that L: a .. t.=O \{jEJ. 
J i Jl l 

Furthermore, L:: e. ®u. L: x .®(L: aJ.i ui) = L:(L: x .a .. )®u .. 
i l l j J i i j J Jl l 

But, as F is e with basis u., the representation of E®F in 
l 

terms of the Z ei®ui is unique (0.2). 
i 
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he nee . e . "" L: x . a .. ViE I 
; l ·! J Jl 

J 

Conversly, 

let RI be any ideal, and suppose that Y= ~ ei~ti is in 
i 

Ker( f/J), where f/J:E®I--->EI. 

'rhen, by hypothes is, J f'amilie s <x j > j EJ, <a ji> j EJ, iE 1 and 

Z(Z x .a.i)®t. = 
1 • J J l 
~- J 

j 

i.e. Ker(f/J)=O, and hence E®I , which implies that E is flat. 



CHAPTER 2 

1 . Pre l·i minarie s 

and 

Given any ring R, we have seen that free===>projective 

1 Ris an integral-domain, flat= =>torsion-free. 

=>flat, 

In this chapter, we will deal with characteriz ions of classes 

of rings, for which sorne of the above implic ions are reversed. 

For example, what r are characterized by the properlty that 

every (right) modu is pro ctive? 

Finally, we look at the class of rings over which every module 

is flat. 

Be attempting to look at these questions, we need sorne 

further results regarding flatness. 

PROPOSITION 2 .1 t o--->K--->FR--->E---)0 be an exact sequence. l 

, the following are equivalent: 

(a). E is flat. 

(b) Given any UEK, J a homomorphism }6:F--->K ~ p(u)=u 

(c) ven any finite set <ui>i=l, .. ,n u 1 EK, 3- a 

homomorphism }6:F--->K with p(u.) \11. 
l 

Proof: 

k 
(a)==>(b). Let <xj>jEJ be a base for F, then for uEK, 

U= Z xj r 1 where r
1
.ER. 

i=l i -
k 

Let = Z Rr., then as E is 
i::::l 1 

at, uEKI . u 
k 

i.e. U= Z k1r., where k.EK. (proposition 1.6) 
i 1 l 1 

1. We use==> to denote "implies". 



De fine, 

{~(x, ) 
~:F-->K by Ji 

~(xj) :::: 0 

i=l, .. .,k 

Then, clearly, ~ satisfies the required properties. 

(b) >(a) . 
k 

Suppose that U= ~ xj 
i=l i 

~(u)= u. Then 

E K, and that } a ~: 

24 13 

Thus, E is flat. (corollary 1.6) 

To complete the proof, it suffices to show that (b)==>(c). 

We proceed by induction on n. 

If n=l, then the existance of~ is given by (b). 

Suppose, that there exists a map ~ for all rn< n, n)l. 

Consider u1 , ... ,un 

~n(un) un. 

u. E K, and 
l 

t ~n:F--->K be such that 

fine Vi= ui-~n(ui) for i=l, ... ,n-1 . 

Then, by the induction hypothesis,} ~· :F--->K, where ~'(v.) 
l 

i=l, •.. ,n-1. Now, define ~:F--->K by 

It is easily verified that ~ the desired properties. 
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We ucall that the direct-llmit of flat module is flat. We 

now show that, in fact, every module is a direct-limit of 

projective, and even free modules. With these results, the 

problem of over what rings is flat==)projective, is reduced to 

finding the class of rings over which the d ct-limit of projective 

modules is projective, and similari for free modules. 

PROPOSITION 2 .2A ER is flat iff it is the direct lmit of 

pro ctive modules. 

Proof: 

Over any ring R, projective==>flat, hence the direct-

limit of projectives is abvious flat. 

Conversly, 

suppose that ER is t, and consider the exact sequence 

0--->K--->FR--->E--->O where F free. 

Let < ,fi> be the direct-system of all f-g submodules K
1 

of K, ordered in the natural way, where ri are the canonical 

monomorphisms. 

K is abviously the li K __ ::::> i . 

Suppose that each Ki is nerated by <u. 1 ,u. 2 , ... ,u. ). 
l l lB. 

l 

But as E ls f t, \1 i,} f/Ji:F---)K. 7 rp. (ui )= 
l l j 

u_. j=l, ... ,s .. 
lj l 

(proposition 2.1). 

i.e. \li, Ki is a direct-summand ofF, 

=> K. is projective \1 i. 
l. 
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Bence, F= K.ll7R. V'i, where R.~ F/K. ar;d projective. 
l l l l 

Therefore, 

tem of projective modules, 

where F/K.< F/K. if KiCKj, and gi are the natural homomorphisms. 
l J 

i.e. Eisa d ct-limit of projective modules. 

PROPOSrriON 2 .2B ER lS flat i 

free modules. 

it is the direct-limit of 

Proof: 

By proposition 2.2A, E is a direct 

where Pi are projectives. 

Now, V i, J a free right R-module F 1 , ~- F 1 p. $Ql .. 
l 

We can thus, represent every P1 as a direct-limit of free modules 

as follows: 
7 C' 0' 6 il 0 12 °13 v F1---;>F1--->F1 ..... where Ker(g 1k)= Q1 k. 

i . e . 

P1 is (;_ direct 

Consider the < Fik>' ordered in the natural way. i.e. Fik< Fjl 

Define the maps hjl to be the canonical monomorphisms of pj 

into Fjl" 



l .e. 

hjl are def ;r the diagram 

is commutative \1/ j. 
Define the homomorphisms 'l (f,u • F 

Y-'ik' ik 

~~1 
1.k 

i .. (; . 

F 

Then, 

by the c J1' 

27 

ition 

< Fik'~i~> is a direct-system, as the maps are consis t. 

i.e . 

rtPS d.j l 
)Ujl.)Uik 

r . 
= h • f j . f ~ • g i" = rs l K 

It is also evident that the direct-limit of the Fik E. 

We can now proceed to the discuss the questions which were 

raised in the ginning of the chapter. 
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2. Domains over which Flat= Torsion-free. 

We recall that a ring R is a (right) semi-hereditar~ if every 

f-g ide IRis projective. 

DEFINITION: A ring R is c led a Prufer-domain iff R is a 

semi reditary integral-domain. 

We note that, over integral domains, a non-zero ideal is 

projective iff it is invertib We will now quote the following, 

well known characteriz ion of Prufer domains. (See[3]) 

Corollary 2.3: R is a Prufer domain iff every f-g, torsion-free 

R-module is projective. 

We can now give, a complete classification, of the domains 

over which flat=torsion-free. 

THEOREM 2.4: Every torsion-free module is flat iff Ris a 

Prufer domain. 

Proof: 

Suppose R is Prufer. 

Then, by the above corollary, every f-g, torsion-free R-module is 

pro je ct 

, eve torsion-free module is a direct=limit of torsion-

free modules, and hence, a direct imit of projectives. Since, a 

direct-limit of projectives is flat (proposition 2.2A), hence, 

every torsion-free module is flat. 

Conversly, 

suppose that torsion-free== at. 
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Hence, any f-g ideal IRis flat, since it is torsion-free. 

We will prove l r, that any f-g flat module over an integral-

domain is projective. i.e. every f-g lde IR is projectlve. 

==> R is a Prufer domain. 

2. Rings over which Flat=Brojective, and Flat=Free. 

We have already seen, that it suff~ces to look at the class 

of rings for which the direct imit of projective (or free) 

modules is projective (or free). 

Given a ring R, let JR denote its Jacobson radical. i.e. JR 

is the intersection of all maximal right ideals in R. 

DEFINITIONS: (1). An ideal I in a ring Ris (right) T-nilootent, 

if given any sequence <ai 

(2). A ring Ris semi-simple if JR=O. 

H. Baas (See[l]), in his paper on Finistic Dimension, proved 

the following: 

THEOREM 2. 5 The lowing are equivalent: 

(a). The direct-limit of projective right R-modu1es 

is projective. 

( b) . JR 

and Art inian . 

right T-ni otent and R/J is semi-simple 

(c)~ R satisfies the descend 

principal left idea 

chain condition on 



• 
30 

A ring R, satisfying any of the ove equivalences, is called 

(rlght) Perfect. We will attempt here to reproduce the proof of 

the above result, but proceed to discuss a subclass of the perfect 

rings, namely, those rings over which flat:::::free. 

The following results are due mainly to Gomorov (See[5]). 

THEOREM 2.6 In arder that all flat right modu sare free, 

it is necessary and sufficient that R is a local ring with a 

Proof: 

Assume at==>free. 

Lemma 1. ry element aER with a right inverse, has a 1eft 

inverse. 

Suppose ab=l, and consider the descending chain 
2 3 

Ra J Ra ~ Ra :::> •••• 

Since flat==>free (and hence t==>projective), by theorem 2.6, 

R satisfies the descending chain condition on princ 

i.e. anCRan+l for sorne n. 

==> an ran+l for some rER. 

hence, 

but then, 

(ra-l)anbn=O=(ra-l)(ab)n=ra-1 

i.e. ra=l, hence a has a ft inverse (and r=b). 

le ft als. 
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Lemme. 2 The non-invertible elements of R form a right T-

nilpotent ideal, if every non-invertib element is ni otent. 

For suppose that every non-inv~rtible is nilpotent. 

Let I be the set of all non-invertible elements. 

Clearly, 

if aEI, then arei ~rER. 

Suppose that a,bei, then we show that a+bei. For assume the 

contrary, 

then } ceR ~ (a+-b)c=1 

but as a is nilpotent, 1 a minimum n :r an=O 

==> an-1 (a+b)c=an-1 

n-1 
= > a be 

but as bce:I, it follows that 1-bc invertible 

n-1 , a o, which cont icts minimality of· n. 

Therefore, IR, the set of all non-invertible elements, is an ideal 

in R, and hence, automatlcally the unique maximal ideal. 

i.e. IR=JR the Jacobson radical. 

By theorem 2.5, IR ls T-nilpotent. 

have reduced the proof;how, to prov that every non-

invert le element is nilpotent. 

Let 2 be any non-invertible element, and assume that it is 

not nilpotent. Let Ji,R be a 

where I is arbitrary. 

e module th basis rx 1 I' 
" E 



Let G be the free submodule F 

Then, G is a proper submodule of F. For assume that F=GJ 

n 
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==> x 1 = Z z.r1 = x 1 r 1+ x2 (r2 -ar1 )+ ... +xn(rn- arn_1 ) 
i=l ~ -

But, as x
1 

form a base, 

> r 1 =1 and r 1 

Also, 

i-l a i=l,~ .. ,n 

= 0 ==> 
n-1 n aa = a = o 

i.e. ais nilpotent. 

Cont iction. 

Let Gn deno the free modu 

Then, 

- -F/G is n 
e, with basL:; 

l
,x 

2
, .... , whcre xl. are t~~c; 

+- n+ 

s x
1

, tmder the 

But, 

F/G 

i.e. F/G is a direct-limit of 

ts flat, and 

but t. 
l 

nee, free. 

s t 

pj_morphism F--->F'/G . n 

e ule , and by 

basis. 

Gr the ma.p 

k-i ) :J. r. . 
1 

othesis, 

/G ~ 



k-i Let b= Z :1 r. 
l 

i 

now, tk+-l.= Z v .w. , where ltJ .ER. 
J J J j 

hence, v1= (Z vjwj)b ==> l=w1b , and by lemma l , 
j 

==> w b=l=bw 
l l 

Furthermore, 

but, 

hence, 

but 

==> a is invertible 

Contradiction. 

i.e. every non-invertible element is nilpotent, hence, by lemma 

2; wc have the necessary condition. 

Conversly, 

suppose tha.t R ls 2. local ring with a right T-nllpotent 

maximal jdeal. Then (theorem 2.5), every flat right module is 

projective. But over a. local rin0, by the W'2ll-kr:own result of I. 

KEplanski, every projective module is free. 



l.e.. ve1,~:/ f r t1t rnod11le is +:'ree. 

7 Il 
.._)•j-_ 

4. Rings over which the Jirect-Product of Flat Modules is Flat. 

itrary of r::_:.d; 

ri;ht R-modu s, then E== 2 E. is also flat. 
l 

s immediate 
1 

suggests another prob m, i.e., For 01hat class rings is IlE. 
l i 

al flat?. This question was answered by S. Chase (See[1]), 

and we reproduce here oàwe of its main results. 

DEFINITION: A module AR is finitely-related if';} an exact 

sequence 0 re F 1s e' bath K 

F ai'e te nerated, 

COROLLARY 2.7 rv v fini ly-rel d flat modu is pro ct hre. 

Suppose is fini ly-related, n 1 an exact sequence 

o---->K--->F--->E---)0 , where K is 

Let <u .. >
1
• _ 1 n generate K. Since E is flat,]- a map )?}:F---)K, 

l - ' ••• ' 

~( )==u.Vi. 
l 

(proposition 2.1) 

i.e. the ove sequence is split-exact, 

===> E is a direct-sumrnand of F, and hence, pro ctiv 

We come now, to the main theorem. 



THEOREM 2. 7 The direct-product of any family of flat right 

R-modules is flat iff every ft ideal RI is te ly:-:-re lated. 

Proof: 

Suppose that the direct-product of flat modules is flat. 

r 
Let RI be any f-g ideal. i.e. l= L: Ru. 

i=l l 

Let RF be with basis (x1 , ... ,xr), and cons 

sequence 

Now, 

keK, t R(k) be a copy of the ring R. 

hence, 

r 

Let A.= il R(k) 
R kEK 

f(k)= L (k)u1= 0 
1=1 r 

t aj= <aJ.(k)>keK' then L: a.u.= o 
i=l l l 

By hypothesis, A is flat, 

r the exact 

hence (proposition 1.8), J b
1

, .•. ,bne A, <m
1 

.). 
1 

in R 
J J.= , ••• ,n 

and j =l' · · ·, r 

Now, 

r 
L m .. aj= 0, 

. 1 lJ J= 

r 

n 
a.::::; L b. mi . 

J 1=1 l J 

let z 1 = L m .. x. E F i<.n 
J=l lJ J 

(*) 



But, 

n 
a .(k)= Z b. (k)mij j=1, ... ,r 

J i 1 l 

r r n 
k z a.(k)x.= Z( .z

1
b 1 (k)miJ.)xJ. 

j 1 J J j=1 l= 

n r 
= Z b . ( k ) ( Z rn. .x . ) 

-· 1 l . 1 lJ J l= J= 

n 
= Z b. (k)z. 

i=1 l l 

i.e. z 1 ,z 2, ... ,zn generate K. 

=>RI is finitely-related. 

Conversly, 

36 

suppose that every f-g ft ideal is finitely-re1ated. 

We quo te the following lemma wi thout proof ( See [2]) : 

Lemma: Let Rf/1 be a finitely-related modu -' E > an 
' " i iei' 

arbitrary family of right R-rnodules. Then, the canonlcal 

homomorphism 

( TI Ei)®M ---> ll(E.®M) 
lei iei 1 

is an isomorphism. 

Assuming the lemma, let E1 be flat tfiei, and hence, for every 

ideal RJ' 
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hence, ~(Ei®J) _!_~ ll(E.®R) is mono. 
l i l 

But, by hypothesis, J is finitely-related. Thus, we have 

ll(E.®J) f 
~(Ef) . l ---> 

l 

l 
(ilE. )®J g (TIE 1 )®R ---> 

i l i 

Evidently, g is also mono. for every al 

==> ~ E1 is flat. 
l 

The class of rings over which every 

related, can be completely given by an 

ization. In fact, S.Chase proved the 

THEOREM 2. 8 R is a ring :T every 

(proposition 1.2) 

(le ) ideal is fini te ly 

al-t oritic character-

ft ideal finitely-

re ted iff V aER, the ideal of all 1eft zero-divlsors of a is f-g, 

the intersection of any f-g ideals is again f-g. 

We will not give a proof here, but give few examples of rings 

which satisfy the above. We note that in view of the theorem, if 

R is an integral-domain, then the d ct-product of any farnily of 

f t right R-modules is flat i the intersection of any two f 

ft ideals is again f-g. 
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EXJ'>,MPLES: 

(a) . ft-Noetherian rings, as clearly, every le ft 

module is finitely-related. 

( b) • ft semi-heredit rings. 

For let RI be any f-g ideal, and hence, projective. 

Thus, Jan exact sequence 

o--->K--->RF--->I---.>0, where F ls free and f-g. 

But, F~Kœi 

==> K is 

i.e. RI is f itely-related. 

( c ) • K [X
1

, X2 , •.• ] the ring of polynomials over a field. 

(i). If the number of inde rminants is flnite, then Ris Noethe an. 

(ii). If the number is infini , then R is an integral-:domain, with 

the property that the intersection of any two f-g ideals is 

0 

5. Rings over which every Module is Flat. 

DEFINITION: A ring R is regular if 'y' rER, } a ER .!'>- rar= r. 

PROPOSITION 2. 9 Every ht R-module 1s at iff R is a re 

ring. 

Note: /As t concept of larity is t c , we can conclude 

that all ft R-modules are also flat. 

Proof: 

Suppose that every right R-modu is flat. 
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consider the sequence 

0---)rR--->R---/R/rR---)0. 

Now, as R/rR is flat 

==> rR()I= rR for any left ideal RI (proposition l.C). 

Let RI=Hr, then 

rR f\Rr= rRr 

==> r= rar for sorne a 

i.e. Ris regular. 

Conversly, 

suppose that R is regular. 

It is well-known, that over regular rings, every f-g ideal is 

principal . Let AR be any module. 

conslc:ter o--->K--->F R---;..A---/0 

It suffices to show th2t \l UEK, UEKI (proposition 1.6) 
u 

s:ince Iu is f-,; 'v'uEK, it is princirJal. i.e. lu= Rr l'or sorne r. 

now, uc:K ==> U=fr for somc:: fEF 

but, r= rar for sorne aER. 

l.e. U= frar= uar E KI 
u 

==>Ais flat. 

REI'v1ARK: WE will sho'lr later, that R is regular iff every cyclic 

module ls flat. 
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CHAPTER 3 

1. Faithfully-Flat Modules 

DEFINITION: [}, module ER is faithfull:I-flat (f-flat) if E 

is f t, and for all E®l\1=0 = 

PROPOSITION 

RM' E# EM. 

Proof: 

Suppose 

3.1 ER is f-fl iff for all maximal left ideals 

th at E is t, ~hen as R/M#o => E®R/Mfo . 

but E®R/M~E/EM 

i.e. EfEM~ 

Conversly, 

every ideal RifR, is contained in some maximal ideal Rf\1. 

hence, EfEM ==> EfEI . 

i.e. E®R/I (~E/EI) f 0 

i,e. ali cyclic modules R/I~p, E®R/ o. 

Now, if RN is an arbitrary, non-trlv l module, it contains 

a cycllc submodule N'. But as E is flat, we can identify E®N' 

as a subgroup of E®N. 

hence, as E®N'fo ==> E®NfO. 

(a). It lows from the ove proposition, that the direct-

sum of t modules is also f-flat. In particular, as R is 

ev tly f-flat as a module over itself, it follows that every 
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free module is lat. We will show now, that the same is not 

true for projective modules. In fact, if every projective modu 

over Ris f-flat t n R contains no non-triv l idempotent. 

i.e. suppose t t e-fO,l is idempotent, then Re being a direct-

summand of R, is projective. 

But Re®(l-e) 0 as xe®(l-e)y = xe 2®(1-e)y 

= xe ®e ( 1-e ) y = 0 

(b). If R is a Principal-Ideal-Domain, i t follows that ER is 

f-~lat iff it is torsion-free, and E-fEp for any prime element p. 

In particu , Q is not f-flat Z-modu However, we can 

show this direct , for consider 

ZE.Q®Zm m)l 

then, z ~ xiroyi , xiE.Q yi 

mxi xi V 
but, Xi®Yi= -rn ®yi= rn ®myi = 0 i. 

(c), If R is a loc ring, then eve flat module is lat. 

This follows from the proposition, for if M is the unique maximal 

ideal, and E ls , then EM=E ==> E=O. 

PROPOSITION 3.2 Let 0--->E '--->ER "---)0 be exact. n 

ifE' andE" are flat, and one of them is f-flat, then E is o 

f-flat. 

Proof: 
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by proposition 1.5, E is flat. 

As E" is flat, then for any RM' 0--->E'®M---)E®M--->E"®M--->O 

is exact (proposition 1.4). 

Now, if E®M=O, then E'®M and E"®M are both the trivial groups. 

but, as one of E' andE" is t, ==> M=O 

i.e. E is f-flat. 

2. Flatness in terms of the Tor. Functor, and Homological Dimension. 

t R be a fixed ring. Recall, that the functor Tor~(ER;RM) 

is the ft-deived functor of E®RM. In particular, keeping ER 

fixed, then Torn(E, .) is the left-derived functor of TE( .):R~~-->~z 

defined by TE(M)=E®M 1 

vie also recall that 1 a natural isomorphism Tor 0 (E,M)~E®J1!1, 
hence given any exact sequence o---)fvl'--->RM--->M"---)0, we get 

the llowing rived, exact sequence: 

... ---)Tor2 (E,M" )---)Tor
1 

(E,M' )---)Tor1 (E,fv1)---)Tor
1 

(E,M") 

®M '---)E®M---)E®M" 

We can now relate the flatness of E with t Tor. functor. 

PROPOSITION 3.3 The followlng are equivalent: 

(a) . ER is flat. 

( b) . for alJ le ft R-{l'lodule M, V n)O, Torn(E,M)=O. 

( c ) . for all le ft R-module M, Tor
1

(EjM)=0 

( d) . for all le ft ideals I of R, Tor1 (E,R/I)=O 
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Proof: 

(a) ,>(b). Let RM be arbitrary, and cons r the free 

resolution M, ... --->Fn 

flat, 

---> ... ---)F 0 

(F) 

since E 

®F --->E®F 
1
---) ... ---)E®F0---,>E®M---)O is exact. n n-

but, Tor (E,M) is isomorphic to the homology modules of the n 

complex (F); and as (F) is an exact sequence, Hn(E®F)=O Vn>O 

then: 

hence, 

i . e . Tor (E,M) o for n)O. n 

(b)= Ac)="'>(d) l. 

(d) Aa). Constder any f-g ideal RI' 

o--->I--->R--->R/I--->0 is exact. 

Tor1 (E,R/I)---)E®I---)E®R is exQct. 

but Tor1 (E,R/I)=0, 

i.e. E®I---)E®R is mono. V1 f-e RI 

==> E is flat. 

DEFINITIONS: ( 1) . AR orojective dimension - n, and de d 

by dimAR=n) if} a projective resolution A of length n, where 

n is minimum. 

Otherwise, we denote dimAR ae 

w ~~e=a~k_-d~i~m~e~n~s=i~o~n~~n, and denoted 



• w .dimAR=nJ if J a flat resolution 

is minimum. 

A of le th n, where n 

( 3) . De the right global dimension of R 

(g.dimRR) as the sup d 
AR 

4 

(4). Define the weak right global dimension of R 

(w. .dimRR) as sup w .dimAR 
AR 

As customary, t (weak) dimension of the trivial module is 

noted by -1. 

fore we proceed, we ne the following relavent result, 

which we only state as a theorem. 

THE OREfVi 3 • 4 Tor (E,M)~H (E®P), where _P is a flat resolution n n -

of 

i.e. this theorem states t t, in ef ct, t~ c Tor ('=<' ~:1) 
n "'' 

it suffices to consider the f'la.t rescJuticms of M, her 

thcn t pro je ct ones. With this result, we are now abl to 

prove t llowing: 

PROPOSITICN 3.5 The following are equiva nt: 

(il) • \'!. i:nAR~n 
~' 

(c). Given 

Proof: 

exact s nee o --->· .. 

--->E 0 

at,then X is necessarily flat. 



(a)==>(b). t E he a flat resolution of AR. 

( the ore m 3 • 4 ) 

But, as w .dimAR~ n, we can choose E ~ Pk=O V k>n. 

i.e. Tork(A,M)=o'v/k>h. 

n, 

(b)==>(c). Let be a flat resolution A, ::md put 

f;.. ::::Im(E. ---)E. 
1

). We t n get the fu1 ow 
l l l-

exact sequences: 

th:i.s, :i.n 

ne , 

0--->A 
2 

0 

1--->!'1.1---)0 

0---)A --->E --->A n-1 n-2 n--2 

0----)X--->E --->A ---/0 
n-1 n-1 

exact sequences: 

0 
n--1 

( 
'

f.I) ---·-'/0 

0---->Tor (A I•';) --·->Tor ( · 3 n-2' · 2 

-1 J ;,; ) ( y • ) A;h 



(c)==>(a). Trlvi~l 

PROPOSITION 3. f3 Let 0----->E 1 ------>En---->E "----)0 be exJ.c t, 

whcre E ls fJ:....t. Thcn, 1:1 .dirnE"~ l+- w .d1mE1 , Furtherwore, equal:ity 

holds if E" is not flat. 

Proof: 

Suppose E" is not flat. i.e. w .dlmE" )0. 

Now, ror n)O und any RM, we have 

0----)Torn+l (E" ,IvJ)-----)Torn(E 1 ,~l)---··--)0. J;;; exact. 

i.e. Tor (E" .JVi)~Tur (E 1 M) 
n+l · n ' 

hence, by the previous proposition, 

==/ \'1 .dimE"= l+W .cJimE 1 

Furthcrmore, if E 1
' is flJt, then E 1 is ulso flat, &nd the insqu&l!ty 

is trlvially satisfied. 

It ls vrell-lmcw:;1 (Sce[7]), that ::_;.dira RR= sup clim CR' where 

CR ran;;es over all uclic modules. As the main re:::.;ult of thl;3 

section, we will prove thut the same is truc for the weak globaJ 

dir:1cnsion of R. 

:i .e. w .g .dlm RR sup v1.dim 1\R' whcre the AR arc cyclic. 
J'..R 

The theorem is the consequence of the followins lemma: 



LEMMA 3.7: t < Ai ei be a family submodules of a 

module ER' where (r,,) is a well-ordered set, and the Ai 

satisfy the following: 

(1). A1=o, and A.c A. for i~j. 
l J 

( 2). If j is a limi t-ordinal, then A.=\._/ A .. 
J i<j 1 

Then, if 

Proof: 

(3). w.dim(A1 ~1 /Ai)~n \liei. 

AR= UA., ==.> w .dim A 4 n. 
iei 1 

We proceed by induction on n. 

Suppose n=O. 

We show that Ai is flat \;1 iei. 

Now, is flat, and as w.dim(A2 /A1 )=0,==> A2 is flat. 

suppose that A. is flat Vi< j. 
l 

(i). if j is not a limit-ord al, then 

O--->Aj_1 ---)Aj--->Aj/Aj_1 --->0 is exact. 

but, both Aj-l and Aj/Aj-l are flat, 

flat. 

(ii) . j is a limit-ordinal, then 

A.= llm>A., 
J --- l 

i<j 

i.e . A1 is flat V iei. 

but Ji.=lJA. = lim>A. 
iEI 1 --- 1 

hence, Aj is at. 

hence, A is flat, and w.dim A = o 

47 
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Proceeding with the tion hypothes , assume that the 

lemma is true for all rn< n, n)O. 

Let FR be the free modu generated by the non-zero e nts 

of A. 

Let be the free modu:..es generated by the non-zero e ments 

of A .• 
l 

cons r the epimorphism f:F--->A defined in the natural way. 

Let K=Ker(f), then , by restricting the domain off, we get 

maps Fi with kerne K.= F.(\K. 
l l 

Hence, we t the foll commutative d 

0 0 0 
1 1 

' i 1 'l' .. 
0 ---> K.---> ---> A.--) 0 

,l l, 
' 1 

,~ ~~ 

0 Ki+l--> Fi+l---> Ai+l 0 

0 0 

~ -;. 

0 0 0 

The columns are exact, the upper two rows ure exact, and t 

bottom row is an o-sequence. However, by 

we conc that 0---)K. /K. ---'·F. /F. ] +1 l / l+l l 

exact V iEI. 

ine diagram-c s 

/A.---)0 is 2lso +l l 

Now, F. 1 /F. is free, thus flat. It follows (proposition 3.6) 
l+ l 

(K. 1 /K. )& n-1. 
l+ l ' 



Th-is implies that we can use the induction hypothesis onU K., 
. l 
l 

as cle~rly· < K > satisfy the postulates of the lemma. 
a. ' ) j_ iEI 

But, L/ K.="-/(F_.(\K)= (L}F.)flK= FÎ\K = K 
. l . l . l 
l l l 

==> w .dim A < n-l. 

Furthermore) 

0--->K--->F--->A--->O is exact. 

Reapplying proposition 3.6) 

w.dim A~ l + w.dim K 

<;: l + (n-l) 

THEOREM 3. 7 w .g .cHm R,., 
i"L 

sup w .dlm J\'R where A range::::> over all 
~A .L 

cyc Li c ri;;ht R-module :::,. 

Proof: 

Trivi~lly) sup w.dlm AR' w.g.dim RR 
A 

\__1 
Assume now) that v cyclic module A, w.dim A' n 

We will show that for an arbitrary ER) w.dim E 'n 

Jet <x 1 >. 1 generate E, and well-order the s8t I. 
lE 

D) 0. 

De fine the submodule A. as the one seneratecl by <x.> 1< j. 
J l 

Clectrly) <A.). I the conditions of the l~mr~ and a 0 r 'A ]_ ]_ E ~- c Ld 1 :_" J ~ • 0 r·~ i t-l 1 .. ~j 

is cyclic (gencrated by the natural image of xi), then by hypothesls 
1 

w.d1m(A1+1 /A1 ) ~ n \çli. 



But, E=UA., hence, by the lemma, 
i l 

w .di.m E ~ n 

COROLLARY 3.7 A ring Ris re lar iff every cyclic right 

(left) module is fl 

3. Weak Dimensions of Noetherian Rings, and Rim;s of Q.uotlents. 

Before proceeding these o lmportant examp s, we make the 

]::_ow observation rczard weak g al dim2nsion of R, 

which is u consequence of the symmet pr rties of the Tor. 

functor. 

Recall that w.dim AR' n iff Torn+l(A,M)=J for all RM. 

Similarily, w .dimRfVl ~ n iff Tor 1 (A,M) TI+ 0 for all 

Now, let both A and M vary. Suppose that sup w.dim AR< n, 

then Tor n+l takes only the null values, and conversly. Hence, 

by the above symmetry of Torn+l' we conclude that sup w.dimRM ~ n. 

i.e. ft weak global dimension= right weak global dimension, 

and it is denoted simply by w.g.dim R. 

As a trivial consequence of the definition, we note that over 

any ring R, w.g.dim R { g.dim RR 

(A). Let R be a right Noetherian ring. 
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PROPOSITION 3.8 For any f-g modu AR' w.dim A = dim A. 

Proof: 

It suffices to show that dim A' w.dim A, as the reverse 

inequality is abviously true. 

Let AR be f-g, and assume that w.dim A~ n. Then, ~ a flat 

resolution o--->Pn--->Pn_1---) .... --->P0--->A--->O, where the 

Pi are f-g and flat. 

But, as R is right noetherian, every right module is finitely 

related, and every fini ly-related flat module is projective 

(corollary 2.7). 

i.e. Pi i=O,l, ... ,n are project s. 

==> dim A~ w.dim A. 

COROLLARY 3.8 If R is right-noetherian, then v1.g .dl.m R = g .dimRR. 

Proof: 

Agal.n, it is sufficient to prove that g.dim RR' w.g.dim R. 

suppose that AR l.s cyclic, then 

he nee, 

dim A = w.dim A~ w.g.dim R 

sup dim A~ w.g.dim R, where 
A 

cyclic modules. 

i.e. g.dim RR ~ w.g.dim R 

(propositl.on 3.8) 

ranges over all 
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(B). Let R be a commutative ring. 

We rec l that for every multiplicatively-closed set S, the 

fined by S(A)=As is an exact functor 

into the category of R
3

-modules, where R
3 

denotes the ring of 

quotients. Furthermore, Jr an R
3

-isomorphism 

RS R 
Torn+l(A3 ,B3 )~[Torn+l(A,B)J 3 

PROPOSITION 3. 9 Over any commutative ring R, w .g .dim R
3 

$,Ç w.g.dim R. 

Proof: 

Assume that w.g.dim R n n~ o. 

Let A,B be arbitrary R
3

-modules. It suffices to show that 

Rs 
Tor 

1
(A,B) o. n+ 

A can be regarded as an R-module if we define ra=[f}a \{rER, aEA, 

and similarily for B. 

R 
hence, Torn+l(A,B)=O 

but, 
RS R 

Tor 1 (A~,B8 )~[Tor 1
(A,B)]

3 n+ 0 n+ (by 0.12) 

But as an R3 4nodule, A~A3 , and simllarily for B 

Rs 
thus, Torn+l(A,B)=O, ==> w.g.dim RS~ n 

(by 0.11) 
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PROPOSITION 3.10 Let A be an R-module, then 

Proof': 

Assume w.dim AR= n, then we show that any 

R
3

-module B, 

Now, B can considered as an R-module, hence, 

But B and B
3 

are isomorphic as R
3

-modules, 

Rs 
i.e Torn+1 (A3 ,B3 ) o 

COROLLARY 3.10 If E is a flat R-module, then 

R
3

-module. 

Proof: 

E flat > w.dim ER~ 0 

is a flat 

(proposition 3.10) 
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4. Finitel,y-Generated Flat Modules over Integral-Domains. 

As a final application, we will prove t every f-g f t 

module over an inte 1-domain is jective. We first prove 

the following result, which is interest in itself: 

t R be a al ring and M its unique maximal ideal, then 

THEOREM 3.11 Eve flat modu over a local ring R is 

Proof: 

Let ER be 

minimal set of 3enerators forE. Cons r the exact sequence 

wherc; F is free with basis (x 1 , ... , ), f(x
1

)=u
1 

\7' i, K=Ker(f). 

m 
) t k , then k= ~ x.a. 

• 1 ], 1 
1=~ 

a. ER. 
l 

but s 

1 

Bence, &.eM ~ 1. Fors 
l 

a_. is invertlb1c .• 
]_0 

of ( a. ) . .L , , v-1 h h con t 
1 lt-J.o 

f(l<:)=O, > 
'" til 

2: U,3 .• =0. 
. 1 J. ]_ 
J.= 

ose that a. iM for some i
0

. Then, 
Jo 

0.. Jn t2 x"l:.l 
lo 

ts the min lity of (a1 )j_. 

he nee, K C FIJl. 

As before, we denote 
m 

Ik= L: Ra._, t s Ik is f-g v· kEK. 
. l ] 
1 ~ 

(proposition 1.6) 

1. I have not seen in the literature a proof of the above result 

chis as short and direct as the one presented here. 

1 

1 e . 



rn 
==> k= z k.él. 

i l l l 
for sorne k.EK. 

l 

but u. s K C FM, 

==>k.= .m .. 
1 j J lJ 

he nee, 

.:S x .(L: m .. a.) 
. J i lJ 1 
J 

rn 
but k= Z x.a., a~d ince x. 

. l J J J J= 

c; basis, 

1 .e. Ik C Ikf'1 vkEK. 
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"' \...../J' . => 2.= ""'mj .2. v 
J l .J l 

1Jtlt, JS is fini te J.y-genera d, = > Ik=O V k 

Hence, o, and E~F 

j .c. E is a free R--modu 

Let R be DOW 2D ln te ornain. Denote 

of quo nts, whe re S=< rn 1 O,fER). '-. in u 

r of t s . 

We note that for cvery torsion-fre 

E s t le 

Rr t cerre p 
.L 

le E, E CE,.,, and hencc;, 
0 

a set~ of e nts is 1 ari dent in E ifn t y arc J 

I:et E f flat over :::m ln l ln IL 

l al 1\lf 3 an l'lJ n, V max 

Proof: 



Vr<l, is a f-;; fl 

is clways ocal, hcnce, l."' R ... -frr:>P ( t cr"'r" 7 11) . ~ ' ' ~ ~ •.::. ,, .;; . - ) 
f<~ 

e e e 
, ( - 1,-2 , ... , _n) whc re el' 

s 1 82 s 
s. ER-lVI. But, as :3 • 

1 l 
- n 

are rtiblc, ==> e 1 ,e 2 , ... ,en also forma base 

.Sxtcnt t 

E ver R. As E is flat, and 

e.= 
J. 

nee, tors:Lon 

r .. ' 
l,J 

8 . . 
li 

<) 

e, 

t f= II s. , , t 
·i -r l~l 

lt follows that Er is 
---) u 

asis ( '"' E' P ) ""'1'~2'''''~n 

THEOREr.r; 3.12 Eve flat ovcr an inte 

R is project 

or's 

:Ln 

t P*=< f/Er is Rr-free). by the abovc lcmma, 

ls not cont d in any max l ideal, hcnce, the al 

gene d by P* is R. 

==> } a fini 

t Il Rf. , then B is faithfully-flat H-module, as evident 
i l 

Bf'l~B for maximal ideal M (proposition 3.1) 

3.10) 



P,s RCB, and Bis f-flat, hence, E is flnitely-related 

R-module if B®RE is a i te ly-re 1 d B--module ( See [ 2] ) . 

But, t 
n 

map f:B®RE ---> TI E 
i==l 

defined by 
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is a B-isomorphism. Furthermore, each Ef. is f-g, free Rf. -module, 
l l 

and hence, pro ctive 

But every 

n 
n E 

i=l 

n n 
=> n Er is f-g, projective over rr Rf . 

i=l i i l i 

, projective module finitely-related. i.e. 

lated B-module, 

> E is fini ly-related R--module. 

But, every finitely-rela d flat modu is project 

(proposition 2.7). 

i.e. E is a projective R-rnodule. 
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