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Differentiation of Finite Element Approximations

Dzevet Omeragié



Abstract

In this thesis a method based on Green's second identity is developed for
computing several orders of derivatives from finite clement solutions with C°
continuity. The integration by parts implicit in Green's theorem permits
numerical integration to replace numerical differentiation. This procedure is
initially developed for harmonic functions, then extended to Poisson and
Helmholtz equations for a circular region, as well as to harmonic potentials in
axi-symmetric coordinates. For the 2-D Laplace operator three other base regions
have been introduced: rectangle, secior of circle and sector of ring. The method is
numerically stable, position independent and very accurate. Its accuracy is the
same as of original finite element solution, or even better, when the point of
interest is not close to the edge of the base region. Treatment of singular
integrals is based on using the finite part integration concept. Integration
formulas are given. The method is verified with analytical functions, using
accurate values and finite element solutions. It is also applied in anisotropic
nonlinear magnetic material modeling.

Accurate computation of derivatives from finite element solutions is an
important step in CAD postprocessing. Direct differentiation of basis functions is
inaccurate. Superconvergent methods give satisfactory results in gradient
calculation, but their accuracy is position dependent and second or higher
derivatives are unreliable. With the new technique it is possible to compute
derivatives even where finite element solution itself has insufficient continuity,
e.g. finding second order derivatives from C° continuous solutions.



Résume

Dans cette thése, une méthode basée sur la deuxiéme identité de Green est
traitée. Cette approche permet de calculer les dérivées d'ordre supérieur a partir
de solutions continues C°? obtenus par la méthode des éiémenis finis.
L'intégration par parties, implicite dans le théoréme de Green. permet de
remplacer la différentiation numérique par une intégration numérique. Cette
technique est d’abord développée pour les fonctions harmoniques. La méthode
est, dans un deuxiéme temps, élargie aussi bien aux équations de Poissons et de
Helmholtz pour une région circulaire qu’aux potentiels harmouiques dans un
systéme de coodonnées axisymétriques. Pour le cas des opérateurs de Laplace en
deux dimensions, trois autres formes élémentaires ont été examinees: le
rectangle, le secteur dun cercle et le secteur d'un anneau. La méthode est
relativement stable, indépendante de la position et est trés précise. La précision
est la méme que celle de la résolution par éléments finis et est méme meilleure
au cas ou le point considéré n’est pas proche de la région élémentaire.
L’approche, basée sur le concept de lintégration par parties finies, a été
appliquée aux intégrales singuliéres. Les formules d’intégration sont présentées.
La méthode a été vérififée a 'aide de fonctions analytiques en utilisant des
valeurs précises et des solutions obtenus par la technique des éléments finis. La
méthode est également utilisée pour la modellisation de matériaux magnétiques
anisotropique non linéaires.

Un calcul précis de dérivées & partir des solutions obtenves par les
éléments finis est un pas important pour l'étape d’exploitation des résultats en
CAOQO. La différentiation directe des fonctions de base conduit & des résultats
impreécis. La méthode de superconvergence pour le calcul du gradient donne une
solution satisfaisante; néanmoins les précisions dépendent de la position et les
dérivées d'ordre deux et supérieur ne sont pas fiables. Pour cette nouvelle
meéthode, 1l est possible de calculer des dérivées méme dans le cas od la solution
par les eéléments finis présente une continuité insuffisante; par example, lorsqu’il
s'agit de trouver les dérivées d’ordre deux & partir de soiutious continus C°.

——
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Contributions to Original Knowledge

A general procedure for computation of high order -lerivatives from
approximate solutions of the Poisson and Helmholtz partial differential

equations is described and applied. The method is based on Green’s second
identity;

Derivatives of Green’s functions and generalized Poisson kernel functions of
Laplacian differential operator are generated for new elementary shapes:
rectangle, sector of circle and sector of ring. The library of kernels for a
circle is extended with expressions for the point on the boundary and a

new, simpler, formula for the m,nth order derivative of the Poisson kernel;

Generalized Poisson kernels for the Helmholtz differential operator in the
case of circle as a base region are derived, expressing the Green's function
as a sum of Bessel functions. Using this method it is possible to compute
derivatives of any order;

A differentiation procedure for axisymmetric problems described by
Laplace’s equation is derived. The method uses fundamental solutions for a
torus and a sphere on the axis of symmetry;

The one-dimensional smoothing method of Zhu and Zienkiewicz is
generalized to two and three dimensions.
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CHAPTER 1
Introduction

The use of computational electromagnetics in the solution of problems arising in
engineering design is common today. Modern design techniques offer powerful

tools that blend electromagnetic field theory, numerical mathematics, and
computer graphics.

The finite element method is almost universally used in its various forms
in detailed computer aided analysis of electromagnetic problems. Analysis
methods for electromagnetics problems are now considered to be sufficiently
known (Chari and Silvester (1980), Lowther and Silvester (1986), Sabonnadiére
and Coulomb (1987), Hoole (1989), Silvester and Ferrari (1990)), with numerical
software available. These methods provide the design engineer simulations and

solutions to problems of very high complexity, even to those not expert in
numerical methods.

The process of computer aided design (CAD) using numerical
approximation methods such as finite element method (FEM) consists of three
main stages:

{a) description of the problem, geometry definition, input of material physical
characteristics and definition of boundary conditions corresponding to the
physical problem. It is followed by finite elernent mesh generation. The set
of procedures doing all these operations is usually called a pre-processor;

(b) assembling and solving the resulting system of equations; and

(¢) extraction of physical results from the solver output, visualization and
graphical presentation of these results, as well as manipulation of the
solution of a problem. These known as post-processing or post-solution
operations.
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Software designers of modern clectromagnetic design and analysis systems
have a wide choice of techniques and well established algorithms for the first two
phases. The third segment is the major part of any design system. This stage
may also be defined as the activity of converting mathematical solution inte
engineering results.

In post-processing, mathematical operations, such as differentiation,
integration, and other, arithmetic, vector or functional operations, may be
required. All of them are performed on finite element approximations, which are
usually constructed so that the potential solution is continuous elsewhere. But
since differentiation reduces the order of approximation and destroys continuity,
potential derivatives are not continuous on the elemeat edges. Arithmetic
operations do not affect the finite element approximations, so long as the
problem of round-off error accumulation may be neglected. It is well known from
elementary numerical analysis that the formation of small differences should be
avoided, so differentiation is an error-amplifving process (Lowther and Silvester
(1986)). Integration is generally an error-attenuating process, which smootles the
result. Difficulties may occur in contour integration, if very sharp fluctuations of
the integrand are present.

1.1 Denivatives and postprocessing in CAD

In post-processing of pure finite element results, the critical process is numerical
differentiation. Finding partial derivatives of various orders is an error-prone
process, having a tendency to amplify the error in the original data because of
the oscillatory nature of finite element solutions. It is well known that in the
finite element method 2 small error in an average may mean 2 huge pointwise
error. The designer must keep in mind the recommendation (Lowther and
Silvester (1986)) that differentiation operations on field quantities should be
avoided if possible, especially the computation of high order derivatives. This is
true for derivatives computed by direct differentiation of underlying basis
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functions. Such an operation is considered dangerous. vielding unreliable results.

There are occasions in magnetic torque computation, when even the sign of the
computed value is not correct.

The continued popularity of the finite clement method has led to
increasingly large amounts of attention among both engincers and
mathematicians being paid to the problem of assessing the quality of computed
approximations. The techniques for finding derivatives of approximate potentials
therefore play a2 key role in the design and conmstruction of post-processing
software for magnetics, as well as other ficlds in engineering.

In the process of electromagnetic design, rarely are designers of magnetic
devices interested in potential values. Quantities of primary interest in design are
usually related to derivatives of the potential. These quantities may have global
character, as a total amount of flux, total force, etc. However, the distributions,
and the local values of field, flux densities, stress intensity factors, displacements,
temperatures, forces, torques, energy densities, field uniformities, may be the
primary concern of a design engineer. These post-processing quantities are to be
determined at points or along lines in two-dimensional problems, and over
surfaces. in three dimensions. Some examples where accurate derivatives are
needed are: magnetic resonance imaging (MRI) system design, where field
uniformity is the main design objective; high voltage insulation systems, where
field values and their derivatives are required; computation of magnetic forces
and modeling of anisotropic soft magnetic materials. Derivatives are also used in
further computation procedures, as driving functions.

Another need for accurate differentiation arises in the error estimation
process, where the criterion is energy norm, closely related to root-mean-square
error in flelds or stresses. Error control is fundamental in all computational
mechanics. Its role is to predict the mesh refinement necessary to achieve the
desired accuracy, and to achieve refinement in the most economical manner,

. In Figure 1 the configuration of a typical MRI device is presented. It
consist of coils carrying direct current to produce a field as uniform as possible
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over the region of interest. The uniformity to be achieved should be of order
10 % (Infolytica (1992)). A naive approach to achieve the necessary degree of

accuracy would be to use a dense mesh or a high degree of approximation.

-
-

—
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Figure 1.1. Geometry of Magnetic Resonance Imaging coil system. The
aim is to achieve uniforn: field over a central region.

Modern electromagnetic engineers must be familiar with the many
numerical methods available. Even after selecting differentiation methods
carefully, a wide choice is still in hand. It is therefore of considerable interest to
the finite element software engineer to have guidelines for the tradeoffs between
accuracy and execution time that may be provided by the algorithms. Silvester
and Omeragi¢ (1993a) gave a review of five differentiation methods from an
algoritbmic point of view, to establish estimates for operation and evaluation
counts. They described key results, and concluded with recommendations on the

—4—
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circumstances in which the several methods may find use.
1.2 Review of existing differcntiation methods

The techniques for evaluating derivatives from numerical approximate solutions
in various problems of mathematical physics may be grouped into three distinct
approaches: direct differentiation methods, smoothing methods based on

superconvergence properties, and methods based on integral transformations.

This section will deal with methods of computing the first derivative,
since most of the articles referred to deal with that case. The problem is always:
How to make use of the finite element approzimation in a suitable approzimation
of gredients. For finding higher order derivatives, no systematic analysis appears
in the literature. A two-step method proposed by Sohn and Heinrich {1990) sccks
the first derivative by global smoothing, then in a second step direct
differentiation of these results is performed. Since the global smoothing method
does not give particularly high accuracy of derivatives (Hinton and Campbell
(1974)) despite its high cost, this method is less promising than might have been
hoped. Another alternative is using global smoothing again for second order
derivatives, as suggested by Zienkiewicz and Taylor (1989). This method is
computationally expensive, not necessarily giving high accuracy. The nature of
the approximation is such that it is not likely to behave better than the global
smoothing used in gradient computations.

A brief survey of the more common derivative computation methods
follows.

1.2.1 Direct differentiation of finite element functions
Direct differentiation methods are widely used in field wvisualization and in

smoothing computed results. These methods differ mainly in their treatment of
the derivative discontinuities that inevitably arise in piecewise-smooth

-5—
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approximation. Among this group of methods, nodal averaging of derivatives on
simplex elements is probably the most often used. Although the idea of averaging
is as old as the finite clement method itself, a complete error analysis on a
uniform finite element mesh was only achieved in the nineteen-eighties (Krizek
and Neittaanmiki (1984), Levine (1985), Goodsell and Whiteman (1989)). A
natural extension of this method, the use of averages weighted by surface, angle
or (rarely) centroidal distance, is common in practice and is applied in most of
the existing finite element packages. Generally, smoothed gradients give pleasing
graphical displays, but their numerical values may be no more accurate than
those obtained by direct differentiation of the finite element solution.
Occasionally special elements, for example high-order elements with derivative
continuity (Wong and Cendes (1986), Tarnhuvud and Reichert (1988)) are also
used, but not enough results have been reported to indicate the levels of accuracy
obtainable. If, for example, the Morley triangle is used, where the derivative is
continuous at some special points, and for elements with derivative continuity
there is no evidence of improved results over classical quadratic elements.

1.2.1.1 Straight differentiation

On each finite element, the approximate potential solution ¢ is known in terms
of the finite element interpolation functions (shape functions) e;(z,y,z) and their
associated nodal potentials, as

¢= Z t;')(P,-)O:.-(z,y,:) (1‘1)
where {P;|i=1,...,M} is the set of nodes on a single finite element. Derivatives

can be obtained by direct differentiation of the interpolation functions. To
evaluate the z-directed derivative, for example,

%g = Z é(P.) 60,-(:;3;,:) . (1.2)

On triangular and teirahedral elements, this work reduces to straightforward
matrix multiplication by the universal matrices of the triangle (Silvester (1978))

-6



Chapter 1 Introduction
or tetrahedron (Silvester (1972)). For brevity. all the following will refer to
triangular elements; but all statements made here generalize directly to
tetrahedra. Using the chain rule, differentiation with respect to r is replaced by

differentiaticns with respect to the local coordinates (,.(».(3. on the triangle.
Then

N+1
%é z P ) z 80 Clv(”a Ca)aai:

(1.3)

where N is the dimensionality of the geometric problem space (i.e., N =2 for
triangles). Now 8(,/0z is merely a geometric constant (a scaling factor
multiplied by a direction cosine) that describes the element; in the literature of
simplex elements it is usually denoted by b,. Similarly 9¢,/0y =¢;. The
derivative of an interpolation polynomial ¢; is clearly a polynomial, of degree
lower by one; thus it can always be expressed as a linear combination of the
interpolation polynomials ¢; themselves. Consequently,

Z(Z Zbk P o(P; ) where D{§) = E-g%:‘ |P-' (1.4)

There are N +1 matrices D), but they are row and column permutations of
each other so only one need be stored in programs. These matrices have been
tabulated and are available for all the commonly used orders of finite element.

It should be noted that in this method all the required information is
strictly local to a single element. This fact, much more than any consideration of
operation counts, may be of significance in parallel processing applications.

1.2.1.2 Weighted averages

This method apparently was first applied to simplicial finite element meshes on a
purely intuitive basis. The field values computed by direct differentiation for
first order elements are constant in each element and discontinuous at
interelement boundaries. Weighted averaging of derivatives is used, so that the
z-denivative at node kis calculated by
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e . i (1.3)

where N is the number of surrounding elements. This procedure is applicable to
elements with the same material characteristics. Otherwise, coefficients w; must
be modified to take into account material property (permittivity, permeability,
ctc.) values. Three different weightiﬁg criteria may be used: a) area of the
clement, b) angle subtended at the node k, ¢) distance between the node and the
centroid of the element. The equivalent quantities in three dimensions are
volume, solid angle and centroidal distance.

This method was proposed on purely intuitive grounds and justified
heuristically on the basis of its performance in practical problems. It is rather
crude, but it often results in surprisingly good approximations of the gradieats,
compared to direct differentiation. Levine (1985) first derived a complete error
analysis and proved that averaged results are superconvergent for a uniform
mesh. He expressed the view that averaging would also be beneficial on non-
uniform meshes, but gave no further analysis. Kfiek and Neittaanmiki (1984) as
well as Goodsell and Whiteman (1989) generalized this procedure, with a
treatment of points on the boundary of the solution region, and at corners.

To be applied effectively, this method requires all derivatives and areas of
corresponding elements to be stored. The derivative at an arbitrary point can be
found from nodal derivative values by

%-% a;(z,y,:)(g%)'_ . (16)

requiring O(NN + 1) arithmetic operations per point where derivatives is to be
computed, in addition O({XN 4 1)?) operations to compute a;.
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1.2.2 Supecrconvergent methods

The second group of techniques is based on superconvergence. Superconvergence
is exhibition of exceptional rates of convergence of the approximate solution at
certain points whose location is known a priori. These points, sometimes referred
to as “stress points® (Barlow (1976)). are the Gaussian quadrature nodes for
quadrilateral isoparametric elements and Gaussian points on the edges of a
triangle. As the mesh is refined, the error at these points diminishes much faster
than the global error. One can then recover derivatives of the solution through
extrapolation of the derivatives themselves. There are many possible ways to
carry out this process. Krfizek and Neittaanmaiki (1987) have given a
comprehensive review, classification and a bibliography of 200 items of existing
superconvergent methods for differential and integral cquations. Global
smoothing (over the whole solution domain), which is in essence a reformulation
of finite elements, and local smoothing (on each finite element) (Hinton and
Campbell (1974), Zienkiewicz and Taylor (1989)) followed by averaging of
derivati: s are the two standard methods for accurate derivative conmutation.
Hinton and Campbell (1974) have shown that global superconvergence does not
lead to better accuracy of the computed derivatives, so global smoothing has not
been followed up extensively in this study. On the other hand, gradient recovery
by the approximation method of Zhu and Zienkiewicz (1990), a further
improvement of this method, gives very good accuracy for one-dimensional
problems. A two and three-dimensional extension of this method is included in
this thesis.

1221 Points of exceptional accuracy

The phenomenon of superconvergence may best be viewed (MacKinrcon and
Carey (1989), Strang and Fix(1973)) in terms of classical error analysis based on
Taylor series expansions. The potential ¢(z) on a finite element of order p, taken
to be one-dimensional for simplicity in discussior, is known to an accuracy of

order O(h?). A Taylor series expansion of the potential error £, must then begin
with a term of order p + 1:
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cf) =k, oy —aglP ¥tk oz =2 TR (1.7)

Correspondingly, the error eg(z) in field valve E(z) is given by
eg(z)= —(p+ )k, 1z =z = (p+2)k, 1oz - TP+ (1.3}

Like any polynomial of order p, this expression can alwavs be rewritten so that
the leading term is the Legendre polynomial of order p, and the following terms
are of order p+1 or higher:

gg(z) = K P,(z—z0) + O(RP ). (1.9)

The Legendre polynomial of order p has p zeros within the element. At its zeros,
the first term in (1.9) vanishes so the error in derivative cannot exceed O(R?*+1).

1.2.2.2 Local smoothing of finite element results -

On second order, numerically integrated quadrilateral elements, local smoothing
as proposed by Hinton and Campbell (1974) is so commonly used as to amount
to standard practice (Zienkiewicz and Taylor (1989)). This method is based on
the known fact that on a pth order element, the first derivative of the potential
function has exceptional accuracy at the p Gauss-Legendre points, i.e., at the
zeros of the Legendre polynomial of order p. In essence, the Hinton-Campbell
procedure is simply a bilirear extrapolation of the 2 x2 Gaussian point values.
The smoothed function is obtained by a least squares fit, defined by the
computed derivatives at the Gaussian points. If the smoothing shape function is
linear, the smoothed corner nodal gradient components &, &, &, & may be
obtained from the expression

10—
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where ¢;, €;;. €111, €y are the gradients at Gaussian points. Generally, for = pth
order function e({) sampled at the p Gaussian points (where —1 < § €1), these
values uniquely define a smoothed function &(§) of order p—1 that is a least
squares fit to e(§),

&=3_ a6 . (1.11)
Hinton and Campbell noted that the results at the centroid of an element are of
exceptional accuracy, for this value is the arithmetic mean of Gaussian point
values which are themselves of exceptional accuracy. However, gradients
computed using local smoothing are not unique at nodal points at eclement edges.
Nodal averaging may be used at element edges to secure uniqueness.

For higher order triangular elements (Andreev and Lazarov (1988)),
tangential derivatives are superconvergent at the Gaussian points of an element
edge. Gradients can be recovered by averaging extrapolated results at the nodal
points, and applying a similar procedure. Hawken, Townsend and Webster (1991)
averaged values of the gradients in adjoining elements at each mid-side node, and
calculated vertex node gradients as the averages of the nodal gradient
contributions evaluated at elements which share that node. Superconvergence on
triangular elements is also discussed by Moan (1974), who has shown that the
best derivative values are obtained where the function values of the orthogonal
polynomials of a given order are minimal. For second order elements, there are

-11 -
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three points with local triangle coordinates:

21 27 27

and the two corresponding symmetrically placed points. Derivative values may
be extrapolated from these values. Also. Lin Qun and Xi Jinchao (1983) proved
that there exist local averaging operators which allow recovering the derivatives
under strong assumptions on the mesh regularity. They showed how any domain
can be triangulated into uniform meshes, and how averaging techniques apply in
that case {Lin and Zhu (1984), Ciarlet and Lioas (1990}).

Gallagher and Nagtegaal (1989) stated that the process of smoothing adds
another level of approximation. The smoothed iso-surfaces give a good graphical
impression cf the nature of solution, but no general statement can be made that
smoothing of discretized results gives a better or worse quantitative
representation of the exact solution.

172.2.3 The onc-dimensional smoothing algorithm of Zhu and Zienkiewicz

This method is a least-squares fitting technique for derivative recovery. It is
proposed by Zhu and Zienkiewicz (1990) for one-dimensional problems. They
observed that O(p — 1) derivative estimates could be improved by adding a term
proportional to the Legendre polynomial P (z). Accuracy at the points of
exceptional accuracy is unaffected, since the points of exceptional accuracy are
the zeros of P,(z); but enlargement of the approximating function space will
inevitably lead to improved accuracy elsewhere.

Zhu and Zienkiewicz constructed an improved approximation E} to the
field in element ¢ by taking

E:k = E'- =t cx,-Pp(a:) (13)

where £ = — dgé(z)/dr and the equation to be solved by finite element methods
is the one-dimensional Helmboltz equation which often arises in the two-point

—12—
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boundary value problem,

L (a(2) E(2)) + d(z)6(z) = f(2). (14)

The unknown coefficient a; in the ith clement is determined by minimizing the
squared residual of this equation,

where the integrations are taken over element 7. This procedure readily yields

J ,,.(fs(“f’»))(a%(af) +bo— f Yz
I (ery)) =

Nodal averaging may again be applied at element nodes. Particularly if
numerical solution is required, the computational costs are higher than for
conventional local smoothing; how much higher, depends on the order of
numerical quadrature. The second derivatives have to be computed, increasing
the costs further. On the other hand, higher accuracy results than with simple
smoothing.

(16)

This procedure uses only information local to a single element, so it
appears well suited to implementation on parallel computers.

Zhu and Zienkiewicz expressed the view that this technique for ficld
improvement could probably be generalized to two and three dimensions, but did
not suggest how this might be done. The method will be generalized to two and
three dimensions later on in this thesis.

To find higher order derivatives Feuillebios (1990) derived an equi-distant
formula for numerical differentiation based on the classical Lagrange and
Hermite interpolation. This idea may be used and eventually extended to two
and three dimensional problems.

-13-
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1.2.3 Global smoothing

This procedure applies the least-squares technique directly to gradients. Instead
of appioximating gradients by

E=Y Sz, (1.17)

the gradient components are interpolated by

E- = Z a;(z.y.2) E; (1.18)

where E is the derivative in some specified direction g. Least squares
approximation, by minimization of the squared difference

F(E") = jn(s- —Efdn (1.19)

with respect to the ¢; leads to the system of equations (Zienkiewicz and Taylor
(1989), Hinton and Campbell (1974)).

Me=1{ (1.20)
where
M= | oia;d (1.21)
fi= | (a,. Z%fi¢,-)dn. (1.22)
o\ 53

The metric M is often ‘lumped’ by structural analysts, i.e., replaced bj a
diagonal matrix My constructed on heuristic grounds (Zienkiewicz, Villotte,

—14—
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Toyoshima and Nakazawa (1983). Zienkicewicz and Taxlor (1989)). After such
diagonalization the solution is trivial,

e= M 'f, (1.23)

Lumping may naturally lead to a loss of accuracy. The solution can be improved
by the iterative cleanup procedure

e"=c""1=M;(Me* -1 -1). (1.24)

This technique unfortunately yvields a large system of equations, so it is an
expensive way of computing derivatives. Given that it is not consistently better
than simple local smoothing (Hinton and Campbell (1974)), it is rarely used,
even though it may have advantages in two-dimensional interpolation.

1.2.4 Superconvergent techniques for recovery in crror estimation

Recently two new methods were developed for accurate derivative recovery from
finite element solutions. The first one is a relatively simple superconvergent
patch recovery procedure by Zienkiewicz and Zhu (1992a, 1992b). It is
recommend by Zienkiewicz and Zhu as a post-processing technique in the finite
element method. The idea of the method is to use the derivatives computed at
points of exceptional accuracy on the patch of finite elements. Another approach
was presented by Ohtsubo and Kitamura (1990, 1992a, 1992b), who
implemented the idea of Kelly (1984) in two and three dimensional problems.
They extended the existing idea of adding the estimated error to the original
solution, by applying certain additional conditions.

1.2.4.1 Zhu-Zienkiewicz superconvergent patch recovery procedure
This procedure uses a single and continuous polynomial expansion of the function

describing the derivatives. It is applied on a patch of elements surrounding the
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nodes at which recovery is desired. nsing the superconvergent points.

If E; are nodal derivatives and o; are basis functions, then the smoothed

continueus gradient field may be defined as

E = Z az,y,2) E;. (1.25)

1
The polynomial expansion is assumed

E; =PTa, (1.26)

where P contains the polynomial terms, and a is the set of unknown parameters.
For example, for two-dimensional quadratic expansion,

P =[1,z,3,2% 23, "] - (1.27)
To determine the parameters a in previous expansion, a fit to the set of highly

accurate sampling points in an element patch is performed by minimizing the
expression

=

F(a) = Y- (Blzay) - B3z

-
i
'

(1.28)

EJ

= (E(:‘Ci, y,—) - PT(x:'s yi) a’). '

1

-
il

Here (z;,¥;) are coordinates of the group of sampling poiats, and n is the total
number of sampling points. After minimization of F(a), the matrix equation

Aa=b, (1.29)
is obtained, where

A= i Pz, v,) P¥(z;,%:) and b= i P(z;,y:) E(z: 3;)- (1.30)

=1 =1

—16-—
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Figure 1.2. Computation of superconvergent nodal values for linear and
quadratic triangular and rectangular elements. (e )-nodes where
derivatives are determined by recovery procedure; {o)—finite element
nodes; ( A ) —superconvergent nodes.

It should be noted that A is the same for all components of Ep, so only one
evaluation is necessary. After computing a, the recovered nodal values of E; are
calculated simply. Only nodes inside the patch are considered here. If a node is
contained in several patches, it is recommended to use the average value. The
critical cases occur when the point of interest belongs to a corner element, so the
patch contains one or two elements only.

The alternative to this procedure is application of a least squares
procedure, and minimization of the functional

—-17 =
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°S (1.31)

where {25 is the domain of the element patch. In that case, the matrix A and
source b take the following forms:

A= PayPlzy)d?  and b=[_PayEEnde  (132)
Qs Qs

Zhu and Zienkiewicz discovered that the application of this procedure does not
yield superconvergence of nodal values for quadratic elements though
considerable improvement of these results was noted. This phenomenon is still
being investigated. For quadratic elements, both quadrilateral and triangular,
they found that convergence is two orders higher than normal. The term
ultraconvergence is suggested for such a convergence.

1.2.4.2 Apvolication of self-equilibrium conditions

This procedure is based on estimating the error and adding it to the original
finite element solution. Kelly (1984) first applied the idea of estimating the error
from the gradient jump along the element boundaries. This is the error ir iuced
by finite element discretization. Application of the self-equilibrium condition
which has to be satisfied for each element yields the induced ‘equivalent sources’.

The error distribution in an element is expressed using interpolation
functions one order higher than that of the finite element solution. That is how a
complete representation of the dominant error term is accomplished.

Consider the elasticity problem described by the following equation with
corresponding boundary condition:

V-EVe)+f=0, in 22,

—18—
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6=20 on 812p.
EVe)-n=7 on 902¢.

where ¢ is the vector of displacements, T is the elasticity tensor, o = (€ V3) is
the stress tensor, (€ V¢)- n defines surface tractions and f is the body force. Let

& be a finite element approximation of the displacement. Then the residual r; for
the ith element is given by

r=V-EVE)+f in 2, (1.33)

Multiplication by the virtual displacement > and summing over the all elements
vields

5 J Q‘.ch-'? Vedf =

(1.34)

E{Jﬂ_so-fdﬂ— [ emdat] o v&)-dr},

where {2; and 9f2; are the ith domain and the element boundary, respectively.
Since the stresses are not continuous along the element boundaries, the last term
in the right-hand side corresponds to traction discontinuities. Let these tractions
be viewed as equivalent boundary sources p;;; then

ngga-? Véd = jg(p-fdrz— J.(;p-rdﬁ

(1.35)
+ -gdl'+ -p;;-dl,
Im‘"’ 7 .Zj:Jax?,-f pis
where
Pis (&a‘_&j)'"i on aﬂija (1.36)
py=68; =7 on df2p. (1.37)

The stress obtained by the finite element method is denoted by &. 992
corresponds to that part of the boundary with prescribed traction §. l the error

19—
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of the approximate solution is written as

e=¢—0, (1.38)
then from equations (1.48) and (1.31),

ng T Ved? = chp rdf2 ;jarz,.;’ pi;dl. (1.39)
This equation says that the error e is the response to the residual r; in the
element and to the unbalanced tractions — p;; on the element boundary. Now,
the finite element method may be applied to solve equation (1.39), and obtain
the error e. The dominant interpolation polynomial used is one degree higher
than that for ¢. Equation (1.39) corresponds to a partial differential equation

V-EVe)+r; =0 in £2; (1.40)
€ Ve)-n= —7p; on 912; (1.41)

where 7; is a portion of p;; corresponding to the ith element. The resulting finite
element equation for the element ¢ is

Me=f (1.42)
with standard finite element coefficient matrices. To find e, values p; and r; are

determined so as to satisfy the self-equilibrium conditions. The normal stress
jump p;; must satisfy three conditions:

Pi; =Pitp; (143)

rd-{ Bdr=o, 1.44
[ gran=[, .7 (1.44)
ja:-,-x (z—z,)d02 - Iagi'ﬁ,-x(z-zo)dl‘ =0, (1.45)
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where 7, is the position of an arbitrary point.

The process of allocating of the traction jump p consists of three stages. In
the first stage, initial allocation, the unbalanced traction is divided according to

the ratio of distances /; and I; from the clement boundary to the centroid of each
element,

- l; - l; ‘
pi= mpsj Pi= 'liTJ[:Pii- (1.46)

The second stage is undertaken, so the tractions satisfy the balance of forces.
Nodal forces for each node F,, = (F, F,),, are first computed according to

F= Iq‘a-r;dﬁ— Jmaﬁ;dr. (1.47)

After that, the corrective nodal forces (AF,,AF ), are obtained from the
following conditions:

B 8
Y (Fe+ AF,),, =0 S (F, +AF ) =0. (1.48)
m=1 m=1

The final step is to correct 7 so as to satisfy the moment equilibrium condition.
Since the moment of nodal forces around the centroid does not vanish, corrective
forces AG,, are applied to satisfy the moment equation:

i(F+AF)mx(zm—zc)+ iAGmx(:cm—:cc) =0. (1.49)
m=1

m=1

The source side for the finite element expression is now known, so it is possible

to calculate the error on a finite element. From the error, the stress solution can
be updated,

o=+Aoc=06—T Ve. (1.50)
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Ohtsubo’s and Kitamura’s experience is that this method improves the solution
if the stress does not change too severely with respect to mesh size. A procedure
for implementation of the above algorithm is based on a cbjeciive function and

a particular optimization technique defined in their paper.

1.2.5 Function extraction methods

Babuska and Miller (1954b, 19S4¢, 1984d) presented a generalized theory of
postprocessing finite element solutions. They described a general approach to
averaging using an integral method with various extraction functions, as well as
novel methods for a general region, with reentrant corners treated through an
asymptotic expansion of known form. These extractions can be performed on
boundary locations as well as in the interior of the domain of interest. The
important fact is that extractions do not require a uniform mesh, i.e. there is no
mesh regularity pre-condition. They proved that the maximal rate of
convergence is the square of the rate of the error in energy norm. Babuska,
Jzadpanah and Szabo (19842) and others, as well as Niu and Sheppard (1993)
applied the Babuska-Miller ideas to extract stresses for interior of a domain
(Babuska, Izadpanab and Szabo (19S84a)) and at locations on the boundary (Niu
and Sheppard (1993)).

To this group of methods belongs also a procedure based on the
convolution method with Bramble-Schatz kernel (Bramble and Schatz (1974)).
These kernels, or extraction functions, are recursively defined two-dimensional B-
splines. This method is applicable to regions whick can be decomposed into a
union of rectangles, where the basic integral formula can be decomposed into a
sum of analytically solvable integrals. It was extended by Louis {1979) to non-
uniform finite element meshes, but the resulting integrals are not analytically
solvable and their numerical evaluation increases the computational costs of an
already quite expensive method. Some authors (Zienkiewicz and Zhu (19922))
refer to extraction methods as of limited practical use owing to high cost and
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complexity of implementation.

1.2.6 Mcthod bascd on Green’s sccond identity

A new technique (Silvester (1991a)) has recently been added: differentiation
based on Green’s second identity. It is useful for high precision derivative
calculation. If the base region for Green's identity is chosen to be a circle, then
for Laplace’s equation this method reduces to the Poisson integral method. In
essence, this method applies integration by parts to substitute numerical
integration, which is a stable process, for numerical differentiation. This new
technique is more powerful than the older ones — it can determine derivatives of
high order — but it is relatively costly. The method may be classified as
belonging to the group of function extraction methods. In the special case of a
circle, the =xact Green's functions and Poisson kernel functions and their
derivatives are used in computation of higher order derivatives.

Start from the classical Poisson integral: ’
¢p =, KaulPiQ) éq dSq (151)

where the Poisson kernel Kyo(P;Q) represents the interior normal derivative of
the Green’s function,

K(P;Q) = VoG(P;Q) 1og. (152)

Here and in the following, an is the unit normal vector to 92 at the point
Q € 812; G(P;Q) is the Green's function appropriate to the region f2. As fully
detailed by Kellogg (1967), this formula permits finding the potential ¢p at any
interior point P € 2, provided its values are known along the region boundary
0f2. Application of this method to arbitrarily shaped problem regions 2, hinges
on noting that the integration region {2 must be embedded in £2,,, 2C 2,, but it
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may be of any convenient shape. ¢.g. a circular disk of radius R for which the
Poisson kernel is known. Further direct differentiation {Mihklin (1970)) of the
Poisson integral yields

+ 4
aﬂl I‘IOP

e =9, baFmPiQ)dSe, (1.53)

where the m,nth extended Poisson kernel is given by
K oun(P;Q) = 22 Vo G(P;Q) - 1 154
Vel P3Q) = gy VoG (Pi Q) - Ing- (1.54)

Any desired derivative of the potential ¢ is thus obtainable by integration along
the contour 342, even in finite element solutions where the approximate potential
may not possess a derivative of degree m.n. The derivatives often have higher
accuracy than the approximate potential values, the integration process having
contributed to error averaging.

Computation of the m,nth derivative requires a contour integration,
which typically involves a ¢g-pPoint quadrature. Achieving quadrature precision of
degree k in D-dimensional problems requires approximately O(kP) quadrature
nodes. At each quadrature node the approximate potential ép must be
evaluated, along with the appropriate Poisson kernel. The potential evaluation
requires approximately p?+?! multiplicative operations on a D-dimensional finite
element. Evaluation of a Poisson kernel amounts to the evaluation of a few
transcendents, mainly logarithms and trigonometric functions. The number ¢ of
operations, typically a few dozen multiplications, varies a little with the indices
m,n but it is nearly independent of p. Thus the cost of finding a derivative value
is O(kPpP 1), Typically, k = 10, so the cost of differentiation in this fashion is
high but the accuracy is high also.

The main advantages of this method are stability and accuracy, and the
ability to compute derivatives of high order. In contrast to other integral
methods, kernels and their derivatives are known analytically.
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1.3 The objective of this thesis

This rescarch contributes to the feld of post-processing of numerical
approximate solutions such as finite element solutions. The thesis extends the
methodology based on Green's second identity, to calculate derivatives from
finite element solutions of Poisson and Helmholtz equations in two dimensions.
For Laplace’s equation, derivatives are also obtained by differentiation of the
base solution in an axisymmetric coordinate system. The objective includes
comparing the new method with existing methodologies for derivative
computation, and giving recommendations on the circumstances in which the
several methods may best find use.

The new method can be applied in all areas where precise derivatives are
needed, e.g., in magnetic material modeling; in high-voltage engineering to find
maximum field or its derivative; in force and torque calculation (first and second
order derivative of potential); in electron ballistics and magnetic resonance
imaging design (magnetic field uniformity criterion), etc.

1.3.1 Claims of orniginality

This thesis generalizes the Silvester differentiation method, originally restricted
to harmonic functions in the interior of a circular disk, to more general elliptic
differential operators and a wider range of base regions. It makes the following
original contributions:

(@) A general procedure for computation of high order derivatives from
approximate solutions of the Poisson and Helmbholtz partial differential
equations is described and applied. The method is based on Green’s second
identity;

() Derivatives of Green’s functions and generalized Poisson kernel functions of

Laplacian differential operator are generated for new clementary shapes:
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rectangle. sector of circle and sector of ring. The library of kernels for a
circle 1s extended with expressions for the point on the boundary and a
new, simpler, formula for the m,nth order derivative of the Poisson kernel;

(¢) Generalized Poisson kernels for the Helmholtz differential operator in the
case of circle as a base region are derived, expressing the Green’s function
as a sum of Bessel functions. Using this method it is possible to compute
derivatives of any order;

(d) A differentiation procedure for axisymmetric problems described by
Laplace’s equation is derived. The method uses fundamental solutions for a
torus and a sphere on the axis of symmetry;

(¢) The one-dimensional smoothing method of Zhu and Zienkiewicz is
generalized to two and three dimensions.

1.4 OQutline of the thesis

This thesis is organized in seven chapters as follows:

Chapter 2 gives a brief description of the proposed methodology.
Fundamental solutions for the Laplace, Poisson and Helmholtz equations in two
dimensions are presented, as well as the solution of Laplace’s equation in the r-z
coordinate system. Green’s second identity and the differentiation formula based
on it are derived and discussed, together with the definition of Green’s functions
and corresponding Poisson kernels. This chapter closes with a discussion of
implementation problems of the proposed methodology.

Generation of Green’s functions and Poisson kernels and their derivatives
are presented in Chapter 3. Various methods for comstruction of Green’s
functions for the Laplacian operator (v2) for different region shapes and the
Helmholtz operator (V2+x%) for a circle as the elementary region are given.
Applicability of various forms of Green’s functions, as well as methods of their
construction, are discussed. This chapter also deals with differentiation of base
solutions of boundary value problems, in cases where Green’s second identity is
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not used.

Validation of the method is given in Chapter 4. Experiments with
analytically known functions for various kinds of base regions and problems are
presented. Error sensitivity was analyzed with particular care. The
differentiation formulae were tested using random error sensitivity analysis for all
four base regions. From these results conclusions were drawn about behavior and
numerical efficiency and characteristics of the new method.

Chapter 5 describes the treatment of singular and nearly singular
integrals. Singular curvilinear and surface integrals are evaluated using the
specialized quadrature, based on the finite part integration concept. The
quadrature formulae were derived using Paget’s approach. The evaluation of

nearly singular curvilinear integrals using various methods is discussed.

Chapter 6 generalizes the gradient recovery procedure originally proposed
by Zhu and Zienkiewicz to two and three dimensional problems. This is an
element-wise method based on local smoothing which uses values of gradients at
superconvergent points to extrapolate results.

The results of applications to finite element approximations are given in
Chapter 7. Computed results were compared to analytical solutions. Results were

also compared to some of the existing differentiation methods. Efficiency of the
new methods is investigated.

Chapter 8 gives a summary of characteristics of the new methods
presented in this dissertation. Computational performance and effectiveness
{(advantages and disadvantages) of thz differentiation of finite element
approximation based on fundamental solution of boundary value problems are
discussed. Recommendations are made for the use of various differentiation

methods, with a comparison of characteristics, generalization and possible
extensions of the new method.



CHAPTER 2
Formaulation of the proposed methodology

This chapter is intended to cover the mathematical fundamentals used in
formulation of the methodologies proposed in this thesis. - The topics covered
include: definition of the problem, including fundamental solutions, Green's
second identity for the Laplace and Helmholtz operators, the basic differentiation
formula and the problems involved in application of the generalized Poisson
integral method.

The chapter begins with definitions and derivation of the basic formulas
used in this thesis. It continues with formulation of the proposed technique. Once
having established the fundamentals, attention turns to difficulties in
implementation of the method.

2.1 Fundamental solution of boundary value problems
In the derivations and analyses developed in this thesis, only the first boundary
value problem (the Dirichlet problem) is considered. The problem is to find the
function &(z,y), satisfying the partial differential equation

Dé(z,y)= —g in 2, (2.1)
subject to the boundary conditions

é(z,y) = f(zy) on 912, (2.2)

where D is a differential operator, the Laplacian or Helmholtz’s operator.
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Generally, fundamental solutions are obtained by scparation of variables.
In this section, they are derived for harmonic functions inside a circular dise and
a circular ring for two-dimensional problems, and torus and a sphere in
axisymmetric coordinate system. The expressions for fundamental solutions are

used to derive the influence function of a point source, i.e. to find the Green's
function.

2.1.1 Application of Fourier series expansion for a circular disk

The potential inside a circle can be computed from known values on the
boundary, using the formula

¢(rpfp) = -§-+ E( ) [a cos(i8) + b; sm(:e)] (2.3)

where @; and b; are Fourier coefficients, which can be derived from known
boundary values of the harmonic function f(f) using

=§1;j F(8) cos(i8)d8 (2.4)
=§1;J F(8)sin(i8)d8 (2.5)

The formula (2.3) may be derived using by separation of variables, by assuming
a function of the form ¢(r, 8):

é(r,0) = R(r)E(6). (2.6)

Then the Laplace’s equation in polar coordinates reduces to two simple
differential equations with known solutions.

The formula (2.3) is valid for r < R, and in fact it is equivalent to the
Poisson integral. The advantage of this method is that (2.3) is regular for
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T'P=R.

A point source ¢ is placed at Q(rg,8p). a point inside the circle of radius
R with the boundary potential fixed at zero, is considered. The potential at an
arbitrary point P(rp,6p) has to be determined, the solution is assumed to have
the same form as (2.3), which corresponds to the influence of the boundary, plus
the influence of g if there is no boundary:

S(rp0p) = —sklogsg+ 32+ 3 r3( A,cosnbp + B,sinndp), @2.7)
- n=1
where s is the distance between P and @, given by

§

=r1p+75H — 2rprgcos(fp — Gy). (2.8)

0

The logarithmic term may be expanded in a series, as follows:

e rrp\" cosn(fp—6p)
1 ;(?‘3) —_n_—].OgT'Q fOI TQ > Tp 0g
TIBRT o rro\" cosn(8p - B) (29)
‘;(?—P) —-——ﬁ———logrp for T'Q <T‘P.

Using the condition that ¢(R,8) =0, and after equating the coefficients of sinnfp
and cosnfp, A, and B, can be found:

A= :{n(%) cosnfq (2.10)
B, = :_‘,n(%:) sinnfq. (2.11)

Then the potential at the point P is

Olrrdp) = = slogsg - 3 (g8) e=e) (212

After the application of expansion (2.9), the following is obtained:
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R SQ
TQ

' - 4
$(rp8p) = = 5log -i—;;;log\lr;;-i-% — 2rp B cos(8p — Bo). (2.13)

Normal (radial) differentiation of the influence function of equation (2.13) with

respect to 7o, on the boundary, will give the Poisson kernel briefly described in
Chapter 1.

2.1.2 Fundamental solution for a circular ring

The influence of a unit charge placed inside the circular ring with the boundary
at zero potential will be derived in this subsection.

Figure 2.1. The geometry of a circular ring with inner and outer radii a
and b, with the source placed at point Q and the observation point P.
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The source ¢ is located at point Q (rg,85). The potential at the observation peint
P 1s computed by assuming a solution of the form

é(rp,0p)= — i%long +% + -'gglogrp

+ Z{A Tp + E-}cosn(ep - o),
n=1

(2.14)
where the distance sg is given by

sg=Th+1H — 2rprocos(fp—by). (2.13)

The first term in equation (2.14) represents a free space solution, while the

influence of the boundaries is given by the remainder of the expression (2.14)
Coefficients A; and B; are calculated using the condition that

&(a,6p) = 6(b,8p) =0 for 0 < 6, <2r. (2.16)

Using the expansion (2.9), the conditions (2.16) may be written as

, ] ncosn{fp—4
Q(a,9p)=0=§%;2(%) cosnp—bo)

2.17)
+-}°+Tloga + Z{A " + E.r}cosn(gp = 6g)

- Qg';log To

n=1
and

$(b,05) = 0= oL )":j(ro) cosn(fp—bq) _ — Llogh

LAo B

(2.18)
5t Slogh + Z{A " +

B, }cosn(ﬂp—ﬂo).

By equating the common terms, the following is obtained
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n o Ba q a"
.4-na + [ = - :-5 :nara (2-19)
n Bn P q TB D]
Al’lb + - - ﬁw (- -0)

—-_9 1 rQn a*" a0
A= -t (2.21)

= —a- g2 b —rg 2.92
Bl‘l -rnrab_n a‘:n (- --)

It 1s easy to prove that the leading coefficients are

locr_b_

Ag=—-3212 Rloga + Slogrg (2.23)

Then, the final expression for potential is
log b
é(rp,8p) = —23— 0g Sg +7,——b—10g =+ i——logrQ

(2.25)

g Z{TQ —d2"rp X b"""—"'Q azn }cosn(ﬂp—aq).

This expression will be used in Chapter 3 for derivation of the Green’s function
for sector of a circular ring. The solution of the boundary value problem for a
ring may be found in textbooks (Tyn Myint (1973), Mihklin (1967), Budak,
Samarskii and Tikhonov (1964)).
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2.1.3 Harmonic functions in axisymmoectric coordinates
The solution of the Dirichlet problem for a torus and a sphere with the center on

the sz-axis is used in the differentiation procedure. In this sub-section the

fundamental solution is derived.

2.1.3.1 Torus
Consider the torus of cross-sectional radius a, and radius ! in r—=z coordinate

system. The geometry with all distances noted is given in Figure 2.2.

A

d
\§
C

Figure 2.2. Geometry of the torus

To obtain the fundamental solution, toroidal coordinates may be used. Toroidal
coordinates (a,8), 0<a<oo and —=< B <7, are related to cylindrical
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coordinates (r.z) by

— . csinher . ___csin8 (2.26)
cosha — cosf3 ~ = cosha ~ cosg” -
If the torus is defined by a = ay. then
= c_ _
ccothay =1 Smbag = ¢
(2.27)
c=A*-a* cosha, = é

Conversion from c¢ylindrical to toroidal coordinates may be done using the
following relationships:

_ JEIIE S

cosf = N =cfF +28)((r+ef +2°) (2.25)
A 2cz D .

BN (s e e g 22)

_ 24+r24cf

cosha = =T T N (2.30)
ha = 2er |

B (s o) #3)

x*(e, B) = cosha — cosf = 2¢ . (2.32)

(= +2%)((r + ) +27)

It is supposed that the fundamental solution of the Laplace’s equation has the
following form (Lebedeev (19635)):

é(a, B) = 2cosha — 2cosf i {M ncos{(nf)+ N, sin(nﬂ)}Qﬂ_, s2(cosha) {2.33)

n=0

where @, ;/»(cosha) are Legendre functions of second kind of non-integral order.
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If f(B)=d(ag.B) are given potential values on the boundary, then Equation
(2.33) becomes

f(B) = {2coshay — 2cos3 i {Mn cos(n3) + .\"nsin(nﬁ)}Qn_u._. (coshay).(2.34)
n=0

After multiplication, first by cos(nj3), and after that by sin(nf) and integrating,
the following is obtained:

F(B) = i {M acos(nd)+ N, cos(nﬁ)}(,?ﬂ_1 /2 (coshexg) (2.35)

2coshag—2cosf %
(s

Then, the coefficients A, and N, emerge as

_ 1 [ +7 f{3) ‘

Mo=35 7 Q. j2{coshey) J -= [Pcoshap—2cosp (2.30)
_ 1 [+x _ f(B)cos(nB) -

Mu=3 % Qpa/z(coshag) | - = [2cosha, — 2cosh *, (237)
- 1 += _ f(B)sin(nB)

No= 27 Q,,., /2 (coshar) J. = J2coshag — 2¢0sP ap. (238)

The final expression is:

$(a. B) = \Bcosha —2¢osB 3., { Mcos(nf) + N, sin(n$)} Q... s (coshe) (2.39)
n=0

By substituting
M, _N. o
a, = ﬁ- and bn = E, (4.40)
Equation (2.39) may be transformed into
e, 8) =x(e,8) ) { a, cos(nB) + b, sin(nB) }Qn-l J2(cosha). (2.41)
n=0
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This is the base formula to be differentiated in order to obtain derivatives from
an approxhmate solution.

2.1.3.2 Sphere with the center on = axis

The geometry of a sphere in r — > coordinates, with the center on the z-axis is
shown in Figure 2.3. The radius of the sphere is R. The problem is to find the
potential inside the sphere if its values on the boundary are known.

) :
/
| % P .
|
1

\ R

Figure 2.3. Geometry of the sphere with a center on the z-axis.

éuppose that the known potential on the boundary of a sphere of radius R
has the form (Lebedeev (1965))
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f(6) = 3" £ P{cosb), 0<6<w (2.42)

n=0

where P,, are Legendre functions of n™ order. Then the coefficients f, are
fo=(n+1) JO F(8) P (cos8)sin8df. (2.43)

The potential inside the sphere may be expressed as

$o.01= 3 7.(%) Palcost). (2.44)

n=0

Equation (2.44) is the expression to be differentiated and used in derivative
computation.

22 Mathematical background of the differentiation method based on

Green’s second identity .
Like its earlier counterpart restricted to harmonic potentials (Silvester (1991 2)),
the method developed in this thesis is based on Green’s second identity. To find
derivatives at some point P the potential problem is restated in integral form,
for a region in the neighborhood of P. An integration by parts then transfers the
differentiation operator from the approximate solution (which is prome to
numerical instability) to the Green’s function, which is analytically known and
can therefore be differentiated without error. No numerical differentiation of the
approximate solution ¢ is ever required, only integration.

2.2.1 Green'’s second identity

For two sufficiently differentiable functions ¢ and ¥ in a simply connected space
region {2 with boundary 812, Green's second identity reads
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AVE LR UA S 1= V-1 Ve . 2.45
jﬂ(o = V) d c}aﬂ(o\‘f, CVo)dr (2.15)
Let ¢ be some function of interest, and let & = G(P:Q). where G(P:Q) is the
Green’s function for the simply connected region 2 with boundary 92, defined

for the Laplacian operator by:

VGP;Q)] = - §(P;Q) in 0
{2.46)
G(P:Q)=0 on 912.
Then (2.45) becomes
¢ = — [ G(PiQ)VE6 d2%— §, S(Q)VeG(P;Q)dT . (247)

This expression is well established in potential theory (Kellogg (1967), Sneddon
(1957)). The subscript. @ is used as a reminder that the integral and differential
operators refer to coordinates of the source point Q.

If a function ¢ is the solution of a boundary-value problem described by
the Poisson equatior

Vié = —g(Q), Qeo, (2.45)

subject to boundary conditions th:t render the solution unique, then Green's
identity takes the form

ér= [ G(PiQ)9(Q) d% - §, ¢aVoG(PiQ)d (2.49)

or

6p = [ G(PIQ9(Q)df% - §, Kool PiQ)badlg (2:50)
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where
Kool PiQ) =1,q° VoG PQ) . (2.51)

Here 1,4 denotes the outward normal derivative to the boundary 912 at Q € 912
Derivatives of ¢p are then formally

Lnor = g | CPiQ)9(Q)d%
(2.52)
- §  Emn(PiQ)6qd ¢,
with
K ol PiQ) = s VoG(P1Q) 1 (2:53)

The integration and differentiation operations bave been interchanged in the
boundary integral term. This is admissible because the integral is convergent at
all interior points P. Derivatives of any order can be expressed this way.
Differentiation of the surface integral term is treated separately in the following
chapter. It needs special treatment, since the Green’s function is singular at
P = Q. The formulas for differentiation of some specific integrals will be derived
analytically. For convenience, equation (2.52) is rewritten in the following form:
Lomor= |

I PiQ)9(@) d%— § . Kna(PiQ)6qdTo- (2:54)

It is convenient to work with a region £ of simple shape embedded within
the problem region (2;, rather than with the original problem region itself. The _
development in the following chapter will focus on two-dimensional problems,
with 2 being a circle, rectangle, sector of a circle and sector of a ring. If the
simply-shaped region {2 is a circular disc of radius R, and if P is some interior
point of 2, the appropriate Green’s function is (Morse and Feshbach (1953),
Courant and Hilbert (1953)
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Rs
G(P:Q)= — §1:—._logrqb$, (2.55)

and the Poisson kernel function Ryo( P;Q) is

e

£2 2
KoPiQ) = =2~ Q% P (ro=R). (2.56)

Here sq is the distance between the observation point P(rp. §p) and the source

point Q (rg. fg), and &; represents the distance from P to point I(R*[rq, 6,)
image of @7 with respect to a circle.

If ¢(z,y) is harmonic in £, the first integral on the right of Equation
(2.52) vanishes and the potential ¢ is given by the remaining contour integral,
the Poisson integral. This special case has already been treated in detail
(Silvester (19912)). Because differentiation proceeds in the coordinates of P, it
affects the Poisson kernel but not the potential ¢o. Thus

am-i-n ,

2rgtp = = §, Kna(PiQ)éqdSe. (257)

An extensive catalog of the necessary kernel functions K, .(P;Q) has been
published by Silvester (1991Db).

2.2.2 Generalization to Helmholtz operator (V2 + x?)

Consider a Dirichlet problem described by the Helmholtz equation, subject to
appropriate boundary conditions:

Do = (V:+K%)p==g in 2 (2.58)

o=f on 90. (2.59)
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The Green’s function G(P: Q) for the operator D is defined by

D(G(P;Q)] = - 4(P;Q) in 2
(2.60)
G(P;Q)=0 on 1.

Multiplication by G{P;Q) of both sides of the equation (2.58), followed by

integration gives

[[ SP:@lscate= [ [ G(P:Q)gqd2g (2.61)

Let Green’s second identity be applied to the left side,

HQ{SD[G(P;Q)] b9~ G(P;Q)gq}df2% =

(2.62)
then, since a property of the Green’s function is
[[ oleE:@Needoq= —¢s (2.63)
the final expression is
¢p=[ [ G(PiQ)g0d2%~ [, K (PiQ)fodle. (264)

This expression is now used to effect high-accuracy derivative computation from
a numerical approximation method. Differentiating (2.64) under the integral
sign, if G(P,Q) does not have a strong singularity, an expression like (2.54) is
obtained:

men | am-l-nG P; gn+r K P;Q =
Fgyte= || Lreeeany-§, T 8ED rar, s
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The derivative of ¢ is thus obtained by differentiating the Green's function — a
stable process, sinice this function is known analvtically — and by integrating the
approximate solution numerically. Thus, again the notoriously error-prone
process of numerical differentiation has been replaced by numerical integration,
which is well known to be much more stable.

2.2.3 Formulations for the Helmholtz equation

In approximate derivative computation for the Helmholtz cquation, two different
procedures are available:

(@) rewriting the Helmholtz equation to resemble the Poisson equation,

(b) treating it analogously to Laplace’s equation, but with an appropriate
Green'’s function.

Case (a) will be treated first. The inhomogeneous Helmholtz equation can
be rewritten by transposing the x%¢ term to the right:

V2= —(g+#29) (2.66)

This reformulation does not, contrary to appearances, put an unknown quantity
on the right. It is supposed from the outset that the Helmholtz equation has
already been solved (approximately), so that ¢ is already known as accurately as

it ever will be. Specializing the above version of Green’s second identity (2.45) to
this case,

op= J’ IQGL(P;Q) (gQ + }czéq) d.QQ - §891{L(‘P’Q)¢erQ (2-67)

Here G(P;Q) and K (P;Q) are the Green’s function of the Laplacian operator
and the Poisson kernel function, respectively. In general, for the general m,n*
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derivative of &,

mén ey ) Py
Frgzor = | | CrmlPiQ)lsg+x%60)d% = § . K 1unPiQ)Sod g (26)

where

K 1mnl PiQ) = gz Kol P5Q) (2.69)

and Gp,..{P;Q) will be defined in the following chapter.

The second approach is to use the Green’s function for the Helmholtz
operator Gy (Tyn Myint (1973)). Arnalogously to the Laplace’s equation
problem, the m,n® derivative is now given by

gmEn Lo _ . — - -0V 7
597 = | [ [CrmalPiQ)90d% = §, K rme PiQ)60dle-  (2:70)

where the generalized kernels are defined similarly, by

Crtmn(PiQ) = ez Gu(PiQ), (2.71)
K runP;Q) = e K (P Q). (2.72)

Expression (2.71) is valid only if Gp,..(P;@Q) has a non-singular form. In the
homogeneous case (g = 0), only the boundary integral needs to be evaluated,

m<$n

g r = — § g f Hma(PiQ)60dTo (2.73)

Using this formulation, derivatives of any order may be computed. This
contrasts with the first formulation where, for good theoretical reasons, only the
first two orders of derivative are available. Because the surface integral term has
disappeared, far fewer integration points will be required for comparable
accuracy, so computing times, accuracy, or both, can be expected to improve.
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2.3 Problems in implementation of the modificd Poisson integral method

Three principal groups of problems need to be solved. before applyving these
methods to approximate results of finite clement analysis:

— Derivation of Green’s functions, generalized Poisson kernels and their
‘derivatives. ‘lso, generation of expressions for differentiating the
fundamental solution of the boundary value problems based on separation of
variables. Doing this manually is a very difficult task, even to find the first
and second order derivatives. With the help of symbolic packages like
MATHEMATICA, Maple or Derive this job can be done successfully.

— Evaluation of singular surface integrals and singular and nearly singular

curvilinear integrals. The singularity arising in these problems is ‘hard’, so it

" is necessary to make some additional assumptions in order to evaluate these

integrals. Also, the solution of nearly singular integrals is not standard. The
specialized quadrature formulas need to be a.dai')ted for the general case.

— Verification of the methods. This includes not only the analytical
verification, but also checking the error amplification when methods are
applied to data containing numerical error.

In the following chapters the problems mentioned above will be analyzed, and
ways to overcome difficulties will be proposed and verified.

2.4 Concluding remarks

New methods of computing derivatives from approximate solutions of the

Poisson and Helmholtz equations are presented. They are based on Green's
second identity.
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For the Helmboltz equation there are two methods of derivative
computation. One uses the Green's functions for the Laplacian operator,
essentially viewing solutions of the Helmholtz equation as equivalent to solutions
of the Poisson equation; the other employs Green’s functions appropriate to the
Helmholtz operator. The second approach is particularly attractive for
differentiating solutions of the homogeneous Helmholtz equation. It is capable of
computing derivatives of any order, instead of only up to the second order using
the Poisson equation approach, and it is computationally more economic than
the first technique.

Derivatives of harmonic functions in axisymmetric coordinates can be
obtained by differentiation of the fundamental solution of the boundary value
problems for a torus and a sphere.
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CHAPTER 3

Genceration of Green’s function and Poisson kernels and their derivatives

In this chapter attention turns from the gencral mathematical formulation to
generation of kernels and their derivatives, differcntiation of the fundamental
solutions of boundary value problems, differentiation of the surface integrals and
special cases when the observation point is close to the region edge or on its edge.
The chapter is divided into four sections. The first one deals with the gencration
of Green’s functions and Poisson kernels for Laplacian and Helmholtz operators,
the second describes the differentiation of fundamental solutions of the boundary

value problem, and the last two discuss the near boundary case and trecatment of
surface integrals.

-

3.1 Construction of Green’s functions

The existence of a Green’s function is equivalent to the existence of a unique
solution of the boundary value problem for the differential equation (2.46) with
the corresponding boundary conditions. G(P;Q) denotes the influence of a point
source, placed at @, at the observation point P.

3.1.1 Methods of generating Green’s functions

The Green's function of the region 2 bounded by 92 has the following
properties:

(a) For each P,Q € £2, it can be represented in the form
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G(P:Q) = g(P;Q) + (P Q). (3.1)

where function ¢(P;Q) is the fundamental solution for a frece space, and
+(P; Q) is a harmonic function, representing the influence of the boundary;

(b) The function G(P;Q) is harmonic and continuous at all points P € £2 except
at P=@, where it tends to +oco. It satisfies prescribed boundary
conditions, i.e. G(P;Q) =0 for Q € 952

{c) It satisfies the symmetry condition
G(P;Q) = G(&; P) (3.2)

which is the another expression for physical reciprocity.

(d) By definition, it satisfies the Poisson equation in a generalized sense for each
Q € 12, so it might be interpreted as a Coulomb potential generated inside
the conducting surface 912 at the point @.

In this section three methods of construction of Green’s functions will be
briefly described.

3.1.1.1 Method of images

Method of images, or method of reflection (Vladimirov (1971)) is the most
effective way of constructing a Green’s function for a region having a sufficiently
wide symmetry group. It is based on two fundamental laws of reflection, known
from elementary electrostatics theory (Atkin (1962), Weber (1950), Van Bladel
(2985) Kellogg (1967)). The method describes the induced charge in electrostatics
or a reflected wave in acoustics. This fact is used to determine the function
4(P; Q). The solutions may be obtained by means of inversion from a plane and
in a sphere, or in the case of two-dimensional problems, inversion in a circle.

If the point @ lies in (zg,¥g,20), then its image from a plane z=01is 2
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point I with coordinates ( — zq.¥g, 2g). The line source at Q(rg.¥g) has an image
at J{ —zo.yq). Then the Green's function, which represents the influence at the
observation point P of a unit charge at Q for two-dimensional problems is

(xp + $Q)2 + (yP - yQ):
P;Q) = 5=1 : :
G(P:;:Q) 5 Og\(mp_zq)"l' (vp—vo)

(3.3)
s
= -2-1‘—710g-5é,

where sg and s; are distances from the observation point P to a source placed at
Q and to its image 1.

An inversion mapping about a circle of radius R carrie the point I, the
image of Q(rq,8p), to the polar coordinates (R*/rq,8q). The point Q and I are
said to be symmetric with respect to circular surface 2. This is a one-to-one
mapping of the exterior of a circle (or sphere, in 3D) into the interior of a circle
2. The Kelvin transformation (Kellogg (1967), Courant and Hilbert (1953)) of a
function ¢(r,d) is defined as

¢7(r,0) = Bo(Z6). (3.4)

The Kelvin inversion theorem may be given a quasi-physical interpretation, that
the potential at point r inside the region {2 is given by the equation

é(r': 0) = éO(ra 9) - '§'¢0(_I12'—22 8)1 (35)

where ¢y(x) is the free space potential.

The Green’s function is supposed to have the form
G(P;Q)= — é%l_-logsq + i-lglogs 1€, (3.6)

where sg and s; are again distances between the observation point P and the
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source point @ and its image I. The constant ¢ is determined from the condition
that G(P; Q) becomes zero on the boundary 912, i.c.

- 4—17.:10g(R2 + 15 —2Rrqcos(8p — BQ))

(3.7)
+5= log(R' —.- - 2-—cos(9 P— GQ)) =0,

" E. )

Then the Green’s function will become

G(P;Q) = 5-log RQ—S’ (3.9)

3.1.1.2 Conformal mapping

Let the function z = =({) = z(&,7) + jy(é,n) conformally map a domain A of the
{-plane into 2 of the z-plane. The correspondence is one to one. If u(z,y) is a
harmonic function, then function #(é,n) = u(z(&,7),y(§,n)) is harmonic in A.
Conformal mapping transforms the harmonic function into another harmonic
function, and a Dirichlet or Neumann problem into another Dirichlet or
Neumann problem (Kantorovich (1964), Spiegel (1981), Morse and Feshbach
(1953)).

The solutions to the Dirichlet problems for the circle and circular anulus
are presented in Chapter 2. Thus if the conformal mapping of a given domain
into a circle or circular ring is known, then it is possible to find solutions to the
Dirichlet problem for that domain.

Some standard transformations are:
(@) A bhalf-plane is transformed into a circle by a bilinear transformation;
() The exterior of an ellipse is mapped into a circle by the transformation
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z=a(+ %:

() A polygon is mapped on to a circle using a Schwartz-Christoffel
transformation;

(d) The annular domain between two circumferences s mapped on to a circular
annulus with the aid of a bilinear transformation;

(¢) The annular region between two confocal ellipses can be mapped on to a

circular anulus with s =a(+ b,

¢

‘The Green’s function is related to the conformal map of the domain 2
into a unit circle. If the analytic function { = f(z + jy) maps the domain 2
conformally onto a unit circle in {~plane, in such a way that point Q gocs into
the origin, then

G(P;Q) = —5-log| fla+ jy) | (3.10)

is the Green’s function belonging to f2. Generally, any simply connected bounded
domain with piecewise smooth boundaries, according to Riemann’s fundamental
theoremn of geometric function theory {Courant and Hilbert (1953)) may be
conformally mapped (Gibbs (1958)).

3.1.1.3 Eigenfunctions expansion method

In practice, the precise solutions using the eigenfunction method are available for
separable coordinate systems only. They allow the separation of partial
differential equation in terms of coordinates, resulting in a set of ordirnary
differential equations with some separation constants. Solutions of the ordinary
differential equations satisfying the boundary conditions are called
eigenfunctions, and values of separation constants allowing it are eigenvalues.

Suppose that a function i satisfies the equation

Dp+App =0, (3.11)
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for a given differential operator 9. where p is continuous over the domain of
interest £2. Then, if ¢ is not identically equal to zero, it is called an
cigenfunction, and the number X is called an eigenvalue. Two eigenfunctions
corresponding to different cigenvalues are orthogonal. A sequence of
cigenfunctions is able to represent an arbitrary function with an arbitrary
boundary conditions.

The expansiorn of Green’s function is limited by the ease with which
eigenfunctions can be determined (Morse and Feshbach (1933)). If the
eigenfunctions are v,,, and corresponding eigenvalues are x,,,, they satisfy the
following equation:

V2 ean + Koan Pun = 0. (3.12)

For eigenfunctions 3(P), the Green's functions are assumed to be of the following
form:

¢P = mzn Amn‘d’mn(P)' (313)

After introducing this expansion into the equation (3.12), the form of Green’s
function expansion for the Helmholtz operator is obtained

. — ¢mn(P)¢mn(Q)
Ay P | ) N

Consider the rectangular region 0 <z <a, 0 <y <5, where function ¢
satisfies the Poisson equation

V= —g. (3.15)

The method of separation of variables is applied to obtain the eigenfunctions and
Green's function. The form of eigenfunction is assumed
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Yz.y) = X(z) Y(y). (3.16)
Substitution of (3.16) into (3.13) yields
XM ea’X =0
{3.17)
Y4 (=X =0.

Since X and Y satisfy homogeneous boundary conditions. they are found to be

Xon(z) = A, sin®FE

(3.18)

Y. y)=B sm—:y
Then

K= 7.'(%;;4-%;) a=T= (3.19)
Thus the eigenfunctions are

Poun = sm%smTy (3.20)
Then using (3.14) Green's function is found as

. TMITp . *nYp . "MIg . TNY,
(P:Q) = - ;,;2 :L:‘ sin——z—Fsin A 2sin~——2sin a Q (3.21)

2 2
BED
The alternate, but equivalent method is based on expansion of solution as

a double Fourier series

ép= Z AmsmTPsin_?P (3.22)
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Expansion of the source function g{z.y) in a Fourier scries gives

glz,y) = Z P, sinZ0L Z"rsm:?- (3.23)
where
a b . "mzg . wNY,
P,.= ﬁ;[odzq Jog(:cq,yq)sm 7 " in" Qd'yQ (3.24)

Then, after inserting both expansions into the equation (3.15), the potential

becomes
Pon . "MIp . “NYp o=
¢P=;; — ot sin—g—-sin—p (3.23)

(7) +(3)
a b
= ["dzq [ G(PiQ)godva. (3.26)
where
sinm P TYp . 'm-"’o MY

sin——=sin.
b )

sin
b

GPiQ) ==Y (3.27)

o BEn]

is the Green’s function.

3.1.1.4 Applicability of various forms of Green’s function

Theoretically, it is possible to generate a Green's function using conformal
mapping for a wide variety of regions, but practical realization involves very
difficult problems, such as evaluation and differentiation of the resulting
expressions. There are some conventional methods (Xantorovich (1964)) as well
as universal programs for evaluation of Schwarz-Christoffel transformations for a
general n-sided polygon (Trefethen (1980)), but these are approximate. The
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Green’s functions generated are approximate and difficult 1o differentiate.

The typical example is a triangle. The Schwarz-Christoffel transformation
involves incomplete Beta functions, or in the best case elliptic integrals of the
third kind. In the case of a rectangle Jacobian elliptic integrals have to be
evaluated. The resulting expressions are difficult to cvaluate, and thuir
differentiaticn is also relatively complex.

The method of eigenfunction expansion for a circle and rcctangle seems
attractive for both operators {Laplacian and Helmholiz operator), but the
summation and differentiation operators are not always commutative. The
resulting series are slowly convergent, even to recover potential function.
Experience shows that the first order derivative for Helmholtz operator can be
hardly recovered with satisfactory accuracy.

The imaging method to construct a Green’s functions is recommended for
use whenever possible, because of the simplicity of its application. By mirroring
from a plane and a circle a system of images may be constructed. There are still
open questions. For example, it would be desirable to find a way how to organize
imaging for triangle, a very important and attractive region.

3.1.2 Construction of Green’s functions and Poisson kernels
for elementary shapes

It is convenient to work with a region 2 of simple shape embedded within the
problem region 2, rather than with the original problem region itself. The
following development will focus on two-dimensional problems with 2 C §2,. The
elementary regions for which Green’s functions and extended Poisson kernels

were generated are: circle, rectangle, sector of circle and sector of ring.
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3.1.2.1 Cizcle
The simply-shaped region 12 is taken as a circular disc of radius R. If P is some

interior point of £2, as in Figure 3.1. the appropriate Green’s function is (Courant
and Hilbet (1933))

R
G(P;Q) = — i logrerdt (2)

where sg is the distance from the observation point P to the source point @, and
s; represents the distance from P to the image of @ with respect to the circle,
i.e., to the point I located at (R*/rg, 6p). Here and in the following, rp and rq
are the radial positions of points P and Q respectively. From this Green's
function, the conventional Poisson kernel Ky(P; Q) immediately follows as

bl el
Ta—Tp

Koo PiQ) = — (ro=R)- (29)

sq

An extensive catalog of the mecessary kernel functions K,,.(P;Q) has been
published by Silvester (1991b). The list of kernels up to third order together
with an example of 2a MATHEMATICA program is given in Appendix 1.
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Figure 3.1. Images on the circle. Potential at point P depends on the
location of source @ and its image I relative to the circular boundary.

In order to simplify the integration process, integration is performed in
S0, @) instead of the (rp,0p) coordinate system
Q @vQ

d.QQ = SQdSQdQ’. (3.30)

Integration with respect to sq is performed from 0 to S, {a), while the angle o
takes values from 0 to 27. From Figure 3.1 it is easy to verify that

S meda) = R? — r% sin’a — rpcosa (3.31)

Ty =rp+sh+2rpsgcosa (3.32)
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ros; = \(R* = 1p)(R* =% — 2rpsgcosa) +rhsp (3.33)
rqcos(8p —8g) = sgcosa +7p (3.34)
rosin(fp — 8g) = sgsina. (3.35)

Using these new integration variables, the order of singularity of the surface
integrals is reduced by ore.

3.1.2.2 Rectangular region

e ° ® x
§
. . i ° ° °

Figure 3.2. Method of ir.ages applied to solve Dirichlet problem on the
rectangle :
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Using the method of images, as shown in Figure 3.2, the Green's function is

G(P;Q) = Z E G P; Q) (3.36)
m=1 n=1
where
G unl P5Q) = log-gimmsma., (3.37)

The extended Poisson kernel function is the normal derivative of the Green’s
function on the boundary, taken with respect to the QQ coordinates.

For 2 =0 and z = ¢, the normal derivative of the m,nth Green’s function
term is

3Gy _ 9Cumn _ 11
on - Ozq (aq-+2me+ 3?)(3?.;:‘ sam,.)

- 1 1
+ (zQ +2ma-— IP)(P““‘" - —bxmn)'

For y =0 and y = b, the normal derivative of the m,n* Green’s function term is

(3.38)

aGmn aGmn

- +onb4 (;_,_1_)
En ayQ (yQ y‘P) mn S3mn (3 39)
+(vo+2n0-3r) ok )

The symbolic analysis package MATHEMATICA was used to generate
derivatives of these kernels. They are tabulated in Appendix 2.

3.1.2.3 Sector of circle of angle x/m
The sector of circle element is restricted to an angle x/m, where m is any integer
since only these angles allow the application of method of images.
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Figure 3.3. Method of images applied to selve Dirichlet problem on the
sector of a circle of radius R and angle =/m.

The organization of imaging is illustrated in Figure 3.3, where two set of images
are obtained. The first are (2m — 1) images from the sides, and the second set is
their images mirrored on the circle, making the total number of images 4m — 1.
Then, the Green’s function formula may be found by summing all their

influences,

G(P;Q)= §1— f: (log%

i=1

m SQ‘ Sri

"‘2—'2 og-.Ile

where distances s are given by

Q s.h
E-R—(—?;) (3.40)
ZG (P;Q) (3.41)
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Soi =TP+TH — :).TPTQCOS(GP—BQ—(i—l)%’—:f-) (3.42)

&, = r‘—;,+if.; — 2rprocos(fp — g - (- 1)3Z) (3.43)
Q

Spp=Tp+rH — 2rpchos(9p +8p—(1— l)g,,—’f-) (3.44)

s";‘.,=r§>+§a; ~ 2rprocos(fp + 0g— (i—1)2Z (3.45)

The normal derivative on the sides (g =0and §5 =7 ) is

aG,‘ aGI 2 . . L
_ﬁ:?laaa_q,:fﬁe(% 5 )sm(e,,—eq-(z-n%ﬂ). (3.46)

2 2
T"QS“

For the arc the Poisson kernel functions become

6G,-_6G,-_T'2Q—T‘§o(1 1 )

gn ~ drg  27rg STQE_

(3.47)

=
SQ'-I

All kernels are generated using the MATHEMATICA symbolic package, and
tabulated in Appendix 3.

3.1.2.4 Sector of ring with angle /m
The ring-shaped sector as element used in accurate derivative computation is

also restricted to an angle w/m. Only these angles allow the application of
method of images.
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Figure 3.4. The geometry of the sector of a circular ring of inner and
outer radii a and b, and angle =/m.

The base geometry is illustrated on Figure 3.4. Again, two sets of images are
obtained. The first corresponds to images from the circular boundary, and the
second are (2m —1) images from the sides. The first set is infinite as can be seen
from the fundamental solution for a circular ring, derived in Chapter 2. The
Green’s function may be found by summing all the influences. Since the number

of positive and negative sources is in balance, the term

log:2

Q T

.y 10;—&3 + logrg
8a
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will vanish. Then the Green's function is

- _ — an H b n _ -u *n
G(P;Q) = %Z(log - '>Y‘{ a r, +__ a____}
i=]

b..u - .,n r b_“ _n Il}l-.rlQl
sinn(Gp —(i- 1)%%) sinnfq (3.43)
Sl Vi)
=36PQ) (3.49)
=1
where distances s are given by
sh=rh+7h — 2rprqeos(fp— o= (i—1)3E) (3.50)
sho =Th+1h — 2rprocos(Bp + 6o - (i—1)3F). (3.51)
The normal derivative on the sides 8p=0and §g =7 is
aG; 1 aG; <
= - ! (3.52)
3_ 3_Q 6Q =0
9G; _ 1 9G;
i - 139G, 3.53
B =t |, . (3.53)
Q=m
where
8G;  rprofsin(8p—8p—(i— 1)%5-) sm(e,,-;-aq (i-1)2F)
30, 2% z"
@ \ Qi S (3.54)
+1 i il "_aﬁﬂrp + b g a smn(ﬁ (:—1) )cosn@ .
-7?“1 b2n_a2nrQ b?n_a.n R '1 P~ Q
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For the arcs the Poisson kernel functions become

dG, 0G;

= — 3.55
In, drg ro=a (3.35)
JG; 0G <

= ! (3.36)
a?‘ WQ‘ ro=b
where
. 9= , o~
oG, T'Q—TPCOS(GP—GQ—(?—].)L;T%)—'T'Q"‘T'PCOS(GP'*'GQ'“(I“-I):;#)
drq 27 27 spy
, (3.57)
—a®"rg L .
= ,.Q Z,{b'“ — rs -7 —a}‘:" r‘,:;r,.}smn(GP (i— 1)-,-,-{-) sinnfy.

The convergence of the series in these expressions for the kernels is dependent on
the position of the observation point P. All kernels are generated using the
MATHEMATICA symbolic package, and tabulated in Appendix 4.

3.1.3 Generation of Green’s functions for Helmholtz operator (V% 4 &%)

A circle is taken to be the base region used in accurate derivative computation of
solutions of the Helmholtz equation. In the classical literature of mathematical
physics (Tyn Myint (1973), Mihklin (1967)) there are three standard ways of
deriving the Green'’s function for an arbitrary region. The first is expansion of the
Green’s function as a formal sum of eigenfunctions, analogous to the Laplacian
operator case. Eigenfunction expansions vield slowly convergent series, which do
not give a satisfactory accuracy unless a very large number of terms is included.
After differentiation convergence is slow, even for the zeroth derivative, and
worse for higher derivatives. In second approach, the form
G(P:Q) = +(P;Q) + h(P;Q) is assumed for the Green’s function, where v(P;Q) is
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a fundamental solution and I{P:Q) takes care of the boundary conditions
G(P;Q) has to satisfy. The resulting expressions are rather complicated, with
coefficients expressed in terms of integrals of Bessel functions of the second kind,
Y., The most suitable appears to be an approach based on solution of the
homogeneous equation with appropriate boundary conditions. Then, the Green's

function is expanded as a sum of Bessel functions of the first kind, J,.

Figure 3.5. The base geometry. P is the observation point, and @ is the
source point.

For the circular region shown in Figure 3.5, with Q as the source point
and P the observation point, the influence of a unit source is (Tyn Myint (1973))

Gu(P;Q) = 3_b;J (krp)cos(i(fp — b)), rp<To
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(3.58)
= Sl krp)Y (kR) = ¥ (krp) I (kR)]cosli(8p — o)l 75> 7o
whete '
b‘- = ._Tle—,{}’l(qu) - T])i:((f—}};))-fl(qu)}, T'p < T‘Q (3-59)
J.'(k?' )
¢ = §E;J_.-(kQR_) (3.60)
and
6 =2, 1=0 (3.60)
=1, t# 0.

The Poisson kernel function is defined as the normal derivative of the Green’s
function,

Kpi0) - R0 2650

(3.62)
T‘Q - R

Since rp < R in the present case (i.e., the observation point P is always inside
the circle of integration), the kernel function takes the form

Kn(PiQ) = 3~ a:J (krp)cosli9p = Bo)] (3.63)
where
;= 2.’;_{}’ +1(kR) — %JH 1(L-R)}. (3.64)

This series converges comparatively fast, at any rate fast enough to be
computationally practical. The kernels Ky, (P;Q) 2nd Gyn.(P;Q) are also
derived using the MATHEMATICA package. They are tabulated in Appeadix 3.
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3.2 Differentiation of fundamental solutions of boundary value problems
3.2.1 Mecthod based on Fouricr series expansion

The potential inside the circle can be computed from known values on the
boundary, using the formula

o(rp.bp) = 2+ f(’-ﬁ) [a;c08(i6) + b;sin(i6)] (3.65)

where a; and b; are Fourier coefficients derived from known boundary values of

the harmonic function f(8), given in Chapter 2. Then the mth order derivatives
of ¢ may be calculated as

LL6(r6) = B z‘;(f -*;_!m)!(%»)' [6:4mc0S(i87) + biymsin(i8p)],  (3.66)

az—ﬂ—:af(rp,ep) = 2= St m) (:.’r%) [@i4mSIn(ifp) = bigmcos(iBp)].  (3.67)

]
1=0 (2

Other derivatives may be obtained from these two,

a_zntai'marfﬁé(’”m 8p) =(-1) aa_.clmé(r. 8) for 2k < m, (3.68)
az,.-z,f{“ e e fp) = (= 1) gﬂn—,—@é(rm 8p) for 2k <m. (3.69)

This method is equivalent to the Poisson integral method (Tyn Myint
(1973)). It gives exactly the same results for a number of samples equal to the
number of integration points if point P is not close to the edge (rp <0.8).
Otherwise, the Poisson integral method becomes unstable, and convergence of
Fourier series is slower, because the convergence factor (rp/R) comes close to 1.
In practical applications this method yields better results, but it is more error
sensitive. It is necessary to know the nature of the soluticn, and to take an
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I4

adequate nuinber of samples. because the influence of higher harmonics. becomes

large and affects the accuracy.

The Fourier scries expansion may also be used to evaluate the boundary
integral in (2.65) if the function analyzed is not harmonic. This fact will be used

in differentiating the Poisson equation solution.

3.2.2 Differeatiation of barmonic functions in axdsymmetric coordinates

The solution of the Dirichlet problem for a torus and a sphere with the center on
the =-axis is used in the procedure of differentiation.

3.2.2.1 Torus
In Chapter 2, the expression for the potential inside the torus for known
boundary values is derived as

8(e8) = X(@,8) ) { ancos(n8) + bysin(nB) } Q. (cosher). (3.70)

Coefficients e, and b,, toroidal coordinates (a,8) and function x(a,B) are
explained and given in Chapter 2.

Knowing the derivative formula for the Legendre functions of nonintegral
order,

8Qn1/2(8) _m+3
Q ‘;gz( )=;_-1 (Qus1/2(8) = 6Qura(8)), (3.71)

and other derivatives used,

df _ sinhasing 08 _ coshacosf—1
- < = <
%% - _ cosha cgsﬂ -1 _g% _ sinhasinf (3.72)
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Ix(a, 3 sinha cos,3 J 2 oshasing .,
l(ar )_ _sin g: 33 (0. 3) \(aci ) _ l‘_?(- B3 (ol d).

Derivatives in the r and = directions may be found.

ole, B8 ) smha cos,@ 5)
or ole8) + *

(3.73)

{— sinhasinf Z n{— a,sin(nJd) + b, cos(n3 }Qn 172(cosha) +

n=0

1- csc.:;l;?;cosﬂ 'gj( _1; {a,,cos(ﬂ,3) + b, sin(n3) }Q,m,.. cosha) +

1 — coshacosf

o cosha i (n + %){ancos(nﬂ) +b, sin(n,’.‘»’)}Q"_U2 (cosha-)},

n=0

éle,B) _ coshasmﬁ &(c,8) + XA x(e,8)

= (3.74)

{( — 1+ coshacosf) ) n{ — a,sin(nf) + b, cos(n3) }Qn 172 (cosha)

n=0

—sinf Z (n + :;){a cos(n3) + b, sin(nB) }Q,,,,_, j2(cosha) +

n=0

n=0

coshasing z (n +3 ){a,, cos(n3) + b, sin(nﬁ)} Quajz (cosha)}.

The formulas for higher derivatives of harmonic functions in the axisymmetric
coordinate system are derived and tabulated in Appendix 6.

3.2.2.2 Sphere with the center on z axis

To obtain derivatives the fundamental solution of the Dirichlet problem for a
sphere of radius R, given in the previous chapter, is differentiated. The potential
inside the sphere may be expressed as

50.8)= 3 1) Palcos). (3.75)
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Knowing that

a¢g; 92%2 f-(-j%)J ' P(cosé (3.76)
3‘55;,9) smaz f (%)J{COSBP cos8) PJ,I(cosé’)} (3.77)

and that derivatives are

3¢ _ 9% _
5= 3—5 ind + pa—cosﬂ (3.78)
%% %o_ sé —-—a—smﬁ (3.79)

it can be proved that the general m,nth derivative of a harmonic function is

gming - (J+m-rn)' pY
dmpd"z R’"""‘sxn"‘ﬁ Z fj"""'*'"(R) %

" {z( () 05" Pysm. k(cc:se)}

k=0

(3.80)

3.3 Derivatives of harmonic functions if point P is close to or on the edge
Formulas and forms of Poisson Lkernel functions to deal with specific cases when
point P (where the derivative is to be computed) is close to the edge or it is
right on the edge are derived in this section.

3.3.1 Regularization of the Poisson kernels for the circle

In order to reduce the order of singularity of the surface integrals, the variables
are changed. The same transformation may be performed on the boundary
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integral. Instead of the polar coordinates (r.8) the coordinate system (s.a) is
used, where s = s, and « is the angle measured from the line PO to line PQ.
The geometry is shown in Figure 3.1. This variable transformation vields a more
natural and suitable form of kernels. Then. the genecral form of mth order
modified Poisson kernels is

K,oP:Q) = rRT”!' — {"2 = chos(ma +m8p)+ reos((m—1)a+ map)}(B.Sl)

K 1 1(P;Q) = :rR?"!‘ = 1{’3 - s sin(ma + m@p) + rsin{(m — 1)a + mGF)} (3.82)

Kot PiQ) = (= 1)} K o P;Q) for 2k < m (3.83)
Km-zk-l.zkﬂ(P;Q) = ( - I)E Km-:.l(P§Q) for 2k <m (3-34)

In that case dI' = sde, so the degree of denominator for the mth derivative is
reduced to m. For rp = R it is the order of singularity, since
. R:-r% _ i
r}:ER - =2R. (3.85)

bq—8p

Using this modification, the nature of the quadrature is changed. If the edge is
approached, the sampling points are concentrated closer to the observation point
P. Equi-o quadrature yields a non-uniform distribution of integration points on
the perimeter of the circle. Before, sampling points were equi-spaced, while now
the quadrature points are concentrated closer to the observation point.
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Figure 3.6. Accuracy of 3°f/0z? derivative, for different pos1t10ns of the
observation point. Results obtained using modified kernels (x) and
using standard formula (o). The test function is f(z,y)=z"y—z°,
8p = 20°. 300 point quadrature swas used.

Kernels defined in this way are more natural and consistent with respect
to the original definition of the Fourier transform! (Bdcher (1906), Kellog
(1967)), since the Poisson integral is equivalent to Fourier series expansion
solution of boundary value problems on the circular disk. Numerical experiments
confirm this. Figure 3.6 presents the results obtained using the conventional
approach and by modified integration. Exact values of an apalytical function
were used in all experiments.

1Bacher gave an elegant interpretation of the Poisson integral:
If we imagine that at each point of the unit circle the value f(s) at that point has been marked,
then the value F(r,p) at any point P within the circle is equal to the average of these values as
they would be read of by an observer at P who tours with uniform angular velocity and who is
situated in a refracting medium which causes the rays of light reaching his eye to take the form of
circular arcs orthogonal to the unit circle.
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The problem with the above approach is that the information used in
computation of derivatives has an increasingly local character as the boundary is
approached, so the bereficial effect of averaging is lost. Instcad of data in the
broader region being averaged, more local data are used. This implies that the
numerical error in the region close to the point of interest is amplified. Error

sensitivity of this formulation, if applied to finite clement results is increased.

3.3.2 Pomnt P on the edge - normal derivative on the boundary

To derive directional derivatives of the kernels, one may start from the
azimuthal and radial derivatives,

- R2 - 2 -
3%;1\00(?; Q)= — xsgprpsm(ep-sq), (3.86)
a v _ 2Rrp—(R*+r})cos(8p - 85) -
%I{W(P, Q) - WS‘&, . (3.81)

Then, first order kernels, corresponding to z and y directional derivatives, may
be obtained from the azimuthal and radial derivatives,

- . _ 61{00 39;; aI{QQ arp
KrwlPiQ) = Fg 522t Brp 222 . (3.88)

. _ aKooaap aI\.’oo an
I{OX(P’Q) - 69,: ayp+ an ayp. (3.89)

If point P is on the edge, rp =R,

8p—8
sg=R\2(1 = cos(fp — b)) = 2 Rsin——2, ‘ (3.90)
and since
. R2 — 1"2 _
Lm £l =2R, (3.91)
BQ—-G P
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azimuthal and radial derivatives of the Polsson kernels are

& . . _ 0 fOl‘ ap # 9Q

70- Keo PiQ) = {oo for 62 b (3.92)
8k (pO)e — 1

9y ol =~ e~ (3.93)

If 8p=0g, a derived radial kernel has 2 second order singularity. It is obvious
that the azimuthal derivative kernel has an irregular form. It is not possible to
find that derivative of a harmonic function from known potentials if the point of
interest P is on the edge. This is consistent with the mathematical physics
theory (Miranda (1970)).

In order to compute a first order derivative on the edge in an arbitrary
direction the theory of distributions may be applied (Stakgold (1979)). The
fundamental assumption of the theory of distributions is the following:

aI\oo 3¢ ’
¢ Pogemdlo= - $ safog5eile (3.94)

Then, the directional derivative is

d -
P = daKu(PiQ)dlg
_ _98p 9%q ,. arp 0Ky
= §a:230_p1\°° dFQ a— §6.Q Q—a-r; dPQ (395)

After substitutions

08 sind ar
Fi: -5 6:::; = cosfp, (3.96)

and using the property of the Poisson integral for the point on the edge

d¢ sinfp 3 9K -
=TT agp —cosbp 3g69¢° Brp 0L (397)

— T4 —



Chapter 3 Green's and Poisson kernel functions

Here 0¢p/08p is computed using some other method. Thus, from the potential
known on the boundary of the region. using the modified Poisson integral
method, only the radial derivative can be found

a¢P — - aI\oo _ 1 , 1
o i;an P ars FQ—47:'R2§anaqsin"'[(9p—GQ)/Q] e (3.98)

Because dI'g = Rdfg, the last expression reduces to

9p _ 1 _[*+=, 1 _
ar MJ -=QQSin2[(9p— GQ)IEI dbg. (3.99)

The last integral has a strong (secvnd order} singularity. It cannot be solved
using classical methods, and requires s»ecial treatment.

3.4 Treatment of the surface integral

In the general case where the source function g(Q) does rot vanish, all terms in
Equation (2.65) must be considered. In other words, the surface integral
contribution must be computed as well as the Poisson integral over its boundary.
Point P is located within the circle, so the integral kernel becomes singular at
P = Q. Hence this calculation is computationally somewhat more difficult than
the boundary integration required for harmonic functions. With the boundary
integral term absent, finding any derivative requires evaluation of the integral

am-]-n am+n

83"‘6y"¢” d="oy" I QG(P 1Q)9(Q) d02,. (3.100)

It is tempting to assume that the differentiation and integration operators on the
right commute; but this assumption cannot be made without investigation. The

first few values of m and n, which are in any case the most important, will
therefore be developed in detail.

Two specific cases are treated separately. The first arises when the
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observation point P, where the derivative is to be computed, is an interior point
of the circle. The case when point P is on the boundary needs a separate

analysis, since kernels take a different form.

3.4.1 Differentiation of surface integral term for an interior point P

To begin, the apparently trivial case m = n = 0 is important. The integral kernel
G{P;Q) is singular, having a pole at P = Q. However, this singularity is weak,

gl_{anQG(P; Q) d2g < 0, (3.101)

so the potential ¢ is known to exist for any bounded and piecewise continuous
source function g(P). The first derivatives, m+n =1, are dealt with next, by
direct differentiation. Differentiating with respect to (say) z,

3 mpn0f_1, BsQ\__ ifzp—2g zp—=z

The two terms in parentheses may be interpreted as projections of the distance:
vectors sg and s; onto the z-axis. Thus

8 mipen 1(lz"50 1 -s;\_ 1 {cos(ag+8p) cos(e;+8p)
BEG(P,Q)—E;(—SE— P )— '.7( 3 - 57 (3.103)

where g and o; represent the angles between z-axis and the distance vectors sq
and s; respectively. The second term in parentheses is obviously regular, because
the image I is always outside the circle, |s;| > 0. The first is singular at so = 0.
However, this singularity is integrable,

BEm Cos g
P—'QJ.QTdQQ <. (3.104)

To continue, let second derivatives be formed in the same manner.
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Chapter 3 Green's and Poisson kernel functions

Differentiating formally with respect to .

E—G(P'Q)= 1{ cos2 (0;79p)+c052(oq+9,:) (3.105)
az‘_’ ) * " ~I sé . .
This formal differentiation of the kernel alone leads directly to an expression for

8°6p /82" if, and only if, the differentiation and integration operators can be
exchanged in (3.100). In this case they do not commute. Differentiation under
the integral sign is not allowed in the singular integral. It is, however,
permissible in the second term, so that"

(3.106)

cos(ag + 0
v A2 0t yg)an,.

Fortunately, all is not lost; a second derivative in weak form (Mikhlin (1963)) is
still obtainable. The rightmost integral may be transformed, integrating by parts

EQJQCOS(QQ+9P)9(Q) d'QQ=J 4(Q) ) cos(aQ+9P)dQQ

z Q °Q
(3.107)
COS(C\'Q + ap) aSQ
+ Q(P)%Q—sa— 77 PO
The rightmest integral is readily evaluated, for
29 - —cos(aq+65) (3.108)
so that
cos(arg + 8p) 3.sQ cos*(ag +0p) _ 1
3€a.rz P 2245, §ag dSq= -1. (3.109)

Q

According to Mikhlin (1965), this operation is nernu..*nble wherever the source
density g(Q) satisfies the Lipschitz condition
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Chapter 3 Green's and Poisson kernel functions

| 9(P) = g(Q}| <K |sql?. (3.110)

with p>0. This condition is likely to be met in any practical case. After
collecting terms the result is

& J 0°G(P;Q)

= | ;a7 9(Q) d2—%9(P) . (3.111)

329 =

By an interchange of coordinates, there immediately results

& _J J*G(P:Q)

= 7, -1 . 112
ay‘.‘QP 0 ayz Q(Q) dpQ ;gg(P) (3 11 )

The cross derivative is simpler to deal with. Its general form is

3270~ | aaz_g_g;_cz) 9(Q) df2q
+¢(P) 3_QCOS(QQ +§ pg ;in(aQ +8p) drq(’3.113)
where the final integral evaluates to zero. Hence
sz =] ni%;_mg@ . (3.114)

As a matter of notational convenience, let kernel functions J,,.(P; Q) be defined,
apalogously to K,.,(P;Q) for the boundary integration:

am+n

Zrge9r = | el PiQ)9(Q)d%. (3.115)

For m+n <2, these kernels are simply the formal derivatives of the Green’s
function. For m +n =2 (but m # n), they need to be augmented by the delta

function §(P - @), so as to provide the added g(P) term. The values of such
kernel functions appear in Appendix 1.
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Chapter 3 Green's and Paisson Aernel functions

3.4.2 Diffcrentiation of surface integral for point on the edge

If the observation point P is on the boundary, the first derivative of the Green's
function with respect to z is

c059 2 Rcosag
E—G(P Q)= P(l +T) (3.116)

with clearly integrable singularity,

}‘jnoj 0, <o (3.117)

To obtain a second derivative in weak form (Mihklin (1963). one has to proceed
as follows:

sg+2Rcos g 5 So+2Rcosag
35[ o 27Rsq 9(Q) dl2g= —g_[ Q(Q) %
(3.118)
cosBP sg +2Rcosagpdsg
+ 9P R0 gl
Knowing
%%= ~cos(agtép) (3.119)

the rightmost integral becomes

sq+2Rcosag dsg
$ 50 ar

so+2Rcos«,
S0 Bz Q= jgag 2 7 Qcos(aQ+8P)dfq.
This integral reduces to

- §892coszaqcosﬁpdch = —2xcosfp



Chapter 3 Green's and Poissen kernel functions

and the final expression is

I*G(P;Q)

d . =
2| 1uPiQQ de= [ ;=55

9(Q)d2g —cos?8pg(P).  (3.120)

Similarly for the mixed derivative,

ki 2Rcosc
aa_yjﬂsq ?.'.‘.’R(;OQS QQ (Q) d-QQ —EJ‘ Q(Q) a SQ'I" QdQ

R (3.121)
(P)cosﬂp §393Q + 2:3:05 Qg aa.s;dra-

Since

% = —sin(ag+6p), (3.122)
the rightmost integral is readily evaluated,

§an¢q + 2.icos aQ %SQ dlg= - aqu + 2{1:05 @ (6 +05)dTg.
This integral reduces to

- §692coszaqsin9pdaq = —27sinfp, (3.123)

and after substitution in (3.121), the final expression is

2] 7Pi@o(Q dg= |, TEED gQan, - LFegp). (129

Using an analogous procedure for 3°/9y?, the result is

2 R
£ [, 7uP@a(Q do= [ TG 0(Q)a0e—sin?pg(P).  (3125)
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CHAPTER 4
Validation of the method

An extensive series of numerical experiments was performed to verify the

theories and to explore the precision achievable with the methods proposed in
the previous chapter.

4.1 Numerical experiments with Poisson equation solutions

The objective of this section is to establish the wvalidity of the method. The
experiments were confined to two dimensions, with the region 2 a circular disk

of unit (normalized) radius, a rectangular region, a sector of a circle and a sector
of ring.

4.1.1 Results using exact values of a test-function

4.1.1.1 Experiments with a circular disk
Except in the first set of experiments, the number of quadrature nodes was taken
large enough to ensure negligible integration error. Computing times were thus at

times quite long, but this approach ensures that the conclusions are unaffected
by the choice of integration method.

The first run of experiments sought to establish a technique of numerical
integration satisfactory for the remaining tests. To integrate, a local coordinate
system was established, centered on point P. Product quadrature formulae were
used, with Gaussian integration in the radial direction, circular quadrature in the
azimuthal direction (Davis and Rabinowitz (1984), Krylov (1962})). In the radial
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Chapter 4 Validation of the method
direction. quadrature nodes were placed at apprepriately scaled points on radial
lines from P to the perimeter of 2. The analytically known function

flzy) =Ly +o®  (with V36 =12xy) (4.1)

was differentiated using the method described in section 2.2.1, the contonr
integral of Equation (2.65) being in all cases evaluated with very high precision
0 as to suppress any error. Figures 4.1 and 4.2 show how accuracy of computed
derivatives changes if quadrature formulae of various precision levels in the
radial and azimuthal directions are used. In Figure 4.3 the relative error in
computed derivative Jf,/8y is given for various radial positions of the
observation points P, obtained using the four specific numbers of quadrature
nodes in azimuthal direction. Accuracy improves in much the expected fashion
as the number of quadrature nodes grows, until it is limited by machine
precision. These tests establish beyond doubt that the method works, and that
roughly 100 quadrature nodes in the azimuthal direction, about 9 or 10 radially,
suffice to ensure that full floating-point precision (over 10 significant figures) is
reached. All succeeding experiments employed significantly more nodes, so as to
guarantee absence of quadrature error.
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Figure 4.1 Den\'a.tnes 8f1/3y (+), 8°f1/9z8y (x) and 3*f,/8z* (O)
of fi(z,y) =2y + 3%, for quadrature formulae of varying precision in
radial direction.
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The behavior of accuracy in evaluation of the curvilinear term was
analyzed in detail when harmonic functions were treated (Silvester (1991a)). In
order to test the algorithm for evaluation of the surface integral alone,
experiments were performed using a test function vanishing on the boundary of a
circle:

falzy) = (2 +4°) (R —2* - ")/ R*. (4.2)

Ten-point Gaussian quadrature was used in the radial direction in numerical
evaluation of all surface integrals.
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- 86—



Chapter 4 Validation of the method

Dettedhe pebilice enece

5 X hL) 4 45 5
Roda! quadeclire nodes

(=]
w
= -
[+ 3
=]

Figure 4.5. Error in second derivative as a function of quadrature
precision, for evaluations at r =0.8R, ..., 0.99 R.

It should be noted that the method proposed here is stable in the interior
of the circular region, but loses precision near the bounding circle. To illustrate,
Figure 4.4 shows the relative error in the second derivatives 8°¢/8zdy and
0°¢/8z* at various points P. Within the central portion of the circle, say
r < 0.75R, the integrals are entirely stable and no difference in accuracy is
observed when P is moved. For placements near the circular edge, the error
rises. That this is not intrinsic in the mathematical method, but an artifact
resulting from quadratures, is demonstrated by Figure 4.5: accuracy is recovered
by increasing the precision of numerical integration.
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4.1.1.2 Expcriments with a rectangular region
The second set of numerical experiments was done using a rectangle as the region

for which the derivatives were extracted. Results were obtained using the
bharmonic function

falz,y) =2y — 2. (+.3)
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Figure 4.6. Derivatives 3/9z (+), & /90z* (x) and 8%/8z0y* (D), of
fa(z.y)=zy — 2y

Derivatives up to third order were computed using the exact values of the

function f,(z,y) on the boundary. Ten-point Gaussian quadrature was used in
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numerical computation of the boundary integral. Figure 4.6 demonstrates the
accuracy of the algorithm. The precisien is stable in the interior of the rectangle,
while in the region ncar the boundary, 15% of dimension of the rectangle, the
accuracy is poor. Experiments undertaken using the Poisson equation solution
fi(z,y) behave similarly to the case of a circular disk.

4.1.1.3 Experiments with a sector of circle

Numerical results for the sector of a circle as the base region were obtained using
the harmonic function fi(z,y). Since the quadrature becomes more complicated
in this case, adaptive quadrature was used. Results shown in Figure 4.7 confirm
the correctness of the derived formulas. Derivatives are obtained using the sector
with angle § = 30°, along the line with the angular coordinate p = 10°, while the
radial coordinate was varied.
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4.1.14 Experiments with a sector of ring
To test the characteristics of a sector of a ring as the base element from which
derivatives are extracted, again the harmonic function f;(z,y) was used. Results

are obtained using adaptive Gauss-Kronrod quadrature on both linear and
circular parts.
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The results shown in Figures 4.7 and 4.8 confirm that the derived
formulas are correct, and that computed derivatives are stable inside the sector
of ring, while the accuracy is reduced on approaching the boundary. Derivatives
were computed using the sector of a ring with angle § = 45° and inner and outer
radii R;=1.0 and R, =20, respectively. Derivatives from Figure 4.7 were
obtained along the line with the angular coordinate §p = 20°, while the radial
coordinate was varied. Results shown in Figure 4.8 were obtained along the arc
with constant radial position rp = 2.7.
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Chapter 4 Validation of the method

4.1.2 Error amplification analysis

The main practical value of differentiation schemes such as described here is in
computing derivatives of functions ¢ whose values are known only
approximately. Thus, having established that the scheme works, it is next of

interest to determine how sensitive the results are to error in the function o.
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Figure 4.10. Relative error in derivatives d¢/dy (+), 8°¢/3y* (%),
3¢/0z (O); ¢=(z*+y*)(R*—z*—y*)/R'. The potential ¢ contains
random error (“white noise”).

For this purpose, a potential function ¢ was differentiated after corruption by the
introduction of random error. A random number generator with uniform error
distribution was used, so that the average error in ¢ remains zero. The measure
of stability of the method is error amplification, defined as
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(Error in result) — (Average error in data)

Error amplification = 3
P (Average error in data)

(4.4)

Typical results appear in Figures 1.9-4.12. where potential was successively
corrupted in the sixth significant figure, then the fifth, and so on uutil enly onc
correct significant figure survived. For derivatives computed from a circle and
shown on Figure 4.9, the error amplitude in the derivative is essentially linear
with error in the function. It is noteworthy, however, that the error in derivative
is not larger than the error introduced in the function; quite the contrary, the
ccmputed derivatives contain one more valid significant figure than the potential
itself! In other words, this differentiation process improves results, contrary to

most numerical differentiation processes which are well known to degrade them.

Results obtained for the other three elementary regions have similar
characteristics, except that for the third order derivative the accuracy of results
is lower than the accuracy of the original data.
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Validation of the method
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Figure 4.12. Error amplification in denva.tnes extracted from a scctor of
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It is unclear whether a uniform error distribution is an adequate model for
most numerical methods. For the finite element method, and some related least-
squares methods, it may not be. Such techniques tend to be much more tolerant
of small errors than large ones and therefore may well produce quasi-Gaussian
rather than uniform error distributions in many problems. It is therefore fair to
say that the figures given in this section demonstrate the error-attenuating
property of the present method, but do not prove that this is necessarily a good
way of post-processing finite element solutions. Tests with true finite element
solutions are therefore warranted.
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4.2 Expcrimcatal results with solutions of the Helinholtz cquation

To test both methods described in section 2.2.3, the TM,, and TMj;, modes of a
rectangular waveguide were analyzed. The terms method L and mcthod H are
used to denote techniques of using the Green’s function for the Laplacian
operator and for the Helmholtz operator, respectively,

To evaluate the differentiation kernels of the Helmholtz operator 20 terms
of the summation were used; this number appeared to give more than adequate
convergence in all cases. Relative error results for the sccond derivative of the
TM,, mode function are presented in Figure 4.13. Results were obtained along a
line inclined at an angle of 18’ to the z-axis, and by changing the number of
terms in evaluation of kernel function. For the case analyzed, 7 terms in the
summation is enough to obtain 10 =% or better relative error.
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Figure 4.14. Relative error in second derivative as a function of position
and number of terms in Green’s function.

4.2.1 Tests against the exact solution

Figure 4.14 shows results for the TM,, waveguide mode, with derivatives
computed from point values of the exact solution. Results are shown for
derivatives up to second order, which is the highest theoretically possible, using
method L; and up to third order using method H. The solution was differentiated
along a line inclined at an angle of 25° to the z-axds, using the circle of radius
R =1 as the region of integration. From Figure 4.14 it is obvious that method L
yields poor accuracy for r/R>0.8. In the case of method H, the computed
derivative values are not quite so position-dependent as for method L, and useful

results are obtained even when the observation point P is fairly close to the edge
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of the circle. At points near the middle of the integration region. derivatives of
high accuracy are clearly obtainable.
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Figure 4.15. Comparison with analytic results: Relative error in
derivatives. Using Green’s functions for the Helmholtz operator: d/dy
(x), 8%°¢/8z* (x), 8°¢/0z0y* (0); using Green’s functions for the
Laplacian operator: 8¢/dy ( + ), 8*¢/dz* (D).

All results were obtained using 180 quadrature nodes in azimuthal direction, and
8 radially. Experimentally it was confirmed that this order of quadrature is
enough to ensure sufficient accuracy. In evaluation of the Bessel functions in
method H, an algorithm with 10~ % relative error was used. That is why method
H results achieved 2 maximum of nine significant digits.
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4.2.2 Error scositivity tests

To obtain the error amplification results the same function was used as
previously, but this time containing a random error. The goal is to estimate how
sensitive are differentiation methods when results are known approximately. A
uniform error distribution was used In analysis to contaminate the function.
Although this approach is not perfect, it gives an idea of error behavior of the
results obtzined from numerical approximation methods using the proposed
algorithms.

In Figure 4.15 derivatives obtained using the function with error are
presented. The maximum level of function error was 10 ~3. The radial position of
the observation point was changed. The first derivatives obtained with both
methods are of similar sensitivity. The second derivative obtained using method
H is less position dependent than the onme obtained using method L. For
r/R < 0.4 the computed third derivative contains an error of the same order as
the error in original function.
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4.3 Tests of procedure for axisymmetric problem derivatives

4.3.1 Numericzal eficdency

The two elementary shapes used for extraction of derivatives from a solution of

Laplace’s equation in axisymmetric coordinates are tested using the same
procedures.

Figures 4.17 and 4.18 show the accuracy of derivatives extracted from a
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torus and a sphere. The harmonic function ofr.z) used in both cases was

é(r,z) = LBy —xy°. (+.3)
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Figure 4.17. Comparison with analytic results: Relative error in
derivatives extracted from a torus, potential ¢(+), 8/dr (x), 9¢/0=
(D), 8%¢/ar? (o).

The torus has radius [ = 2.0, cross-sectional radius a = 1.0 and it is positioned at
= = 1.0. Derivatives were computed along the radius, at an angle §p = 10° to the
r-axis. Although double precision was used, the accuracy does not exceed 10~3.
The source of error is evaluation of Legendre’s functions of nonintegral order,
which is based on recursive computation from elliptic integrals of the first and
second kinds. To compute elliptic integrals the AGM — arithmetic-geometric
method was used (Spanier and Oldham (1987)). The accuracy of the algorithm is
not position dependent.
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Figure 4.18. Comparison with analytic results: Relative error in
derivatives extracted from a sphere, potential &(+), djor (x),
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A second sequence of tests was performed using a sphere as the base region. It is
located at z, = 2.0, and has radius R = 1.0. Derivatives are computed along the
radius at the angle ¥ =40° with respect to s-axis. Accuracy of the computed
derivatives is position dependent. As it can be seen from the Figure 4.18,
derivatives computed for rp/R = 0.8 have poor accuracy.

4.3.2 Error sensitivity

A procedure identical to that deseribed in 4.1.2 and 4.2.2 is used to obtain the
error amplification results for a torus and sphere. The same function ¢(r,z) was
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Chapter 4 Validation of the method

used, but this time containing a uniform random error. These tests were
performed with the aim to estimate the behaviour and robustness of the method

when applied to an approximate solution.

Figure 4.19 shows the error amplification results obtained using the same
torus as before. Derivatives are computed at point P with radial distance p = 0.2,
and angular coordinate 8p = 10°. The results show much the same accuracy as
that of potentials when the first derivative is computed, and that 1-2 significant

digits are lost in the case of second derivative computation.
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Figure 4.19. Error sensitivity results: derivatives extracted from a torus:

8¢/8r (x), 84/0= (1), 8°¢/dr* (o).
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Chapter 4 Validation of the method

Results obtained using the sphere are presented in Figure 4.20. It shows
the error amplification results of derivatives computed at point P with radial
distance p = 0.2, and angular coordinate ¥’p = 40". The performances of sphere
are better than those of torus. The error amplification is negative, meaning that
the computed derivatives have better accuracy than the potential,

0 =
‘00 =
r o
§ B .
= =
'g- L °
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2 7 " s
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Figure 4.20. Error semsitivity results: derivatives extracted from a

sphere: potentials &( + ), d¢/ar (x), 8%¢/8z* (D), &°6/8r*d= (o).
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CHAPTER 5
Evaluation of singular and pear-singular integrals

In Chapter 3 differentiation of singular integrals is treated in detail. It is shown
that the surface integrals are always singular. Variable transformations may
reduce the order of singularity by one. When the method is applied to first
derivative calculation the singularity in the surface integral is eliminated. In the
case of second derivatives, the singularity is ‘strong’, but it may be reduced to
order 1/s. One way to evaluate these integrals, described in Chapter 4, is
ignoring singularity (Davis and Rabinowitz (19S84)) with increased number of
quadrature nodes. As the boundary of the region is approached, the number of
quadrature nodes has to be increased, as shown in Chapter 4, otherwise the error
is large.

The curvilinear term becomes singular when the observation point is right
on the edge of a region. If the point of interest is close to the region edge, the
results are also very sensitive to the number of quadrature nodes used (Silvester
(1991a)). Unfortunately, practical problems often requires the wvalues of
derivatives on some surface, or along a boundary. This corresponds to evaluating
singular and near-singular integrals. So it is necessary to make the methodology
of accurate derivative computation efficient by applying robust methods of
evaluating these integrals.

in this Chapter the finite part integration concept is presented and used
to compute singular integrals, both surface and curvilinear (lIoakimidis (1985),
Ioakimidis and Pitta (1988), Kutt (1975), Paget (19S1a and 1981b), Davis and
Rabinowitz (1984)). The method is based on analytic continuation of the analytic
function which is the solution of the convergent singular integral (Ninham
(1966)), by taking only the finite part of the divergent integral.

Application of various methods for evaluation of near-singular curvilinear
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Chapter 5 Evaluation of singular and pear-singular integrals
integrals is discussed. Although it is possible to generate efficient quadrature

formula, after application to approximate solution they become inefficient.

5.1 Finite Part Integrals

The way of manipulating divergent integrals to obtain correct results is
sometimes not well understood (Ninham (1966)). Ninham (1966) presented a
method of interpretation of a class of divergent integral, dealing with integrands
continuous over the integration interval except at a finite number of algebraic
singularities. This approach is the basis for the finite part integration theory
(Eutt (1973), Paget (1981 a and 1981b), Ioakimidis and Pitta (1988)).

5.1.1 Analytic continuation and definition
Consider the integral

1(fm) = [ H2le) (5.1)
a (:1: - “‘)

where m is a positive constant, w(z) is 2 weight function integrable on [a,d). If s

does not belong to [a,b], this type of integral behaves as a regular integral. In the

case that s belongs to [a,b] and m 2 1, the integral diverges and is not solvable

analytically. Then this integral may be considered as the analytic continuation of

the function I(f,m) to the region m < 1. It has a meaning in generalized function
theory (Ninham (1966)),

Ydr _ (¥ HE)-H(Q-2), _ 1 .
R S =

where H(z) is the step function.

These integrals are called finite part integrals, or Hadamard finite parts of
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Chapter 5 Evaluation of singular and near-singular integrals

the divergent integral. Usually the symbol I oor £ is used to represent those
integrals. The first symbol is used for the generalized principal value integral, if
the integral exists in a Cauchy principal value sense, as a natural extension of
the Cauchy principal value of the integral {Kutt {1973)). The second symbol is
used to label general finite part integrals, and may also be defined as

LN GGG P AT

4], "= Tale=om

(5.3)

where the integral on the left side denotes the Cauchy principal value of the
integral. These integrals satisfy the usual rules of Riemann integration theory, as

to integration by parts and transformation of variables.

The fundamental finite part integral I{1,m) is defined by

! .
= -mg.=) 0 if m
I(l,m)—%oz dz—{ (1-m)=t i

K m <1, the finite part integral coincides with the regular integral. If the
function f(z) is m times differentiable and m > 1, then the general finite part
integral may be dcfined as (Paget (1981a))

% f,,. dz = ———

I (5.4)

Sk

i 5w - S -2 )
(3.5)
- Io In(z) f™(z) dz}.

The formula (5.5) is obtained using the m-term Taylor series expansion of f(z).

5.1.2 Quadrature formulae for finite part integrals
Formulae for calculation of finite part integrals may be divided into three major

groups: (i) equidistant quadrature formulae (Kutt (1973)), (i) Gaussian-type
quadrature formulae (Kutt (1975)), Tsamasphyros and Dimou (1990)) and (i)
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Chapter 5 Evaluation of singular and near-singular integrals

computational procedures based on modification of the standard Gaunssian
quadrature (Paget (1981a and 1981b)).

Kutt (1975) first derived quadrature formulae for finite part integrals. He
used two approaches. The first is the cquidistant formula, and the sccond is a

Gaussian-tvpe specialized quadrature formula. The ecquidistant quadrature
formula is of the following type:

& ™ mylog|b—a | .
(p=epm $= Sz 4 orBglimel 56

.‘gz (m-~-1) (5:6)
where w{™ are the weights at n equispaced points z; € [a,] and ¢{™ are the
coefficients for the (m — 1)-th derivative of f at the origin. The accuracy depends
on the nature of the integrand and the length of the integration interval. The
weights vary in sign and their values increase with the number of integration

points and the order of singularity. The consequence of this property is reduced
accuracy.

The second method uses generated orthogonal polynomials. It is
considered the conventional finite part integration. A quadrature formula for the
first order singularity is published in the standard boundary element textbook
(Brebbia (1984)). Quadrature nodes are found in usual way, as zeros of
orthogonal polynomials, as well as the weights, using the standard formula.
Toakimidis and Pitta (1988) derived a universal procedure of generating
orthogonal polynomials for finite path integrals. They are expressible as lincar
combinations of successive shifted Legendre polynomials. In the case of a first
order singularity one root of the orthogonal polynomials is outside the integration
domain, and for higher order some of zeros are complex. Tsamasphyros and
Dimou (1990} proved these properties of zeros of orthogonal polynomials.

The method used in this thesis belongs to a third group. There are two
approaches derived from conventional Gaussian quadrature methods (Paget
(1981a, 1981b), Hunter (1972)). One may be characterized as an adaption of the
quadrature rule for Cauchy principal value integrals (Hunter (1972), Paget
(1981a)). The general formula has the following form (Paget (1981 2)):
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Chapter 5 Evaluation of singular and near-singular integrals

' ") QH("“) er(s) » . = -
172)= 3 et 460 28 g e ri. )

For problems of normal derivative computation, the term g¢.(s)/p.(s) is
analytically known and equal to zero. Then, this method corresponds to ignoring
the singularity. In practical application of this formula instead of f(z; ,), most
often f(z; ) — f(s) is used. The second method will be described in the following
section. It gives a general procedure for derivation of quadrature rules of
arbitrary order. Both methods are compared later in this chapter.

5.1.3 Geancration of quadrature formulae

If p,(z) are orthogonal polynomials with respect to the weight function w(z),
then an n-point Gaussian rule gives

+1 n
| w@f@ds= 3 maflaa) (58)
- i=1
A numerical solution of the finite part integral is supposed to have the form
1 n
10 =4 e = 3w, (i), (59)
1=1

where z;, are the abscissas of the n® order Gaussian quadrature. The weights
w; , of the quadrature formula (5.9) may be obtained from the original weights
;o corresponding to the non-singular case using the formula

W) = tin 5o BT alzs ), (5.10)

k=0

where k; is the leading term of the orthogonal polynomial p,. The coefficients
b(A) are moments defined by

1
b()) = jE 2T 2e-1)dz, k=1,.n—-L1 (5.11)
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Chapter 5 Evaluation of singular and near-singular integrals

The universal tool for deriving quadrature rules of finite part integrals from the
corresponding regular integrals is defined by the last three expressions. Paget

(1981D) also gave an upper bound for the remainder term of the quadrature rule.

The advantage of this method is that the abscissas are always in the
domain of integration, although the weights change sign. When Gaussian
quadrature is applied, negative or complex roots of orthogonal polynomials
appear. In the case of an equidistant formula there is no closed form algorithm
comparable to the one described above. Another advantage of Paget's method is
its simplicity of application and the existence of general expressions for
coefficients of the quadrature formulae. These features make the approach
presented here attractive, especially in conjunction with symbolic algebra
packages like MATHEMATICA (Silvester (1992)).

In the singular surface integral, the singularity is of first order if the
second order derivative is to be computed. Thus the Gauss-Legendre quadrature
formyla is modified to obtain the quadrature formula for this finite part integral.
The curvilinear integral for the normal derivative on the edge contains a second
order singularity of type (sind) ™2, where integration is performed with respect to
the polar coordinate 8. In that case the weights of the Gauss-Chebyshev formula
(Davis and Rabinowitz (1984)) are to be modified. In both cases evaluation of
the modified weights is straightforward.

5.2 Computation of near-singular integrals

Accurate computation of near-singular integrals is the most difficult problem in
the process of computing derivatives using the methodology based on Green’s
second identity. What makes this problem complicated is the fact that the finite
element solution is approximate. The consequence is that error in potentials
obtained using the finite element solver is amplified, so the local error determines
the error in computed derivatives.
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Chapter 5 Evaluation of singular and near-singular integrals

The classical methods for computing these integrals are based on the
Taylor series expansion of a distribution function, or one part of it. The number
of terms in the expansion depends of the nature of the integrand. It has to be
done around P’, the point on the boundary closest to the observation point P.
Because only the approximate potentials are known the only improvement is to
use ¢q — ¢ pr, instead of ¢g in formula (2.63),

™+, o A
Tare = — $ 000 Sp) K P:Q)dlg = ép § | KmnlPiQ)dTg "
1

+ [ [, 97 melPiQ)d%.

The second integral is equal to zero, except for m =n =0, when it is 1. The
conventional equidistant Gaussian quadrature formula for a circle Krylov (1962),
which corresponds to a Gauss-Chebyshev quadrature formula, is usually applied
to evaluate these integrals. This simple method does not yield a much better
accuracy, compared to the standard formula. This technique can be applied
together with regularization of the Poisson kernel, described in section 3.3.1 of
this thesis. The alternative Fourier series expansion method is slowly convergent,
and not efficient. Another conventional method often used is a kind of adaptive
quadrature with repeated subdivision. In that case the information used is more
local, so the averaging over a wide domain is lost.

5.2.1 Generation of specialized Gaussian quadrature formulae

The existing algorithm developed by Silvester (1990) was used to compute the
Gaussian quadrature weights and nodes. This algorithm is suitable for integrands
with a rapid variation of the weight function w(z). The required number of
operations is O(V3) for an N* order quadrature.

If the weight function w(z) is given, then it is possible to find weights w;
and nodes z;, such that
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Chapter 5 Evaluation of singular and near-singular integrals

wa(r)f(:c)dz:= iwjf(:z:j) {3.13)
a =1

is exact if f(z) is a polynomial of degree (2.V —1) or lower. Nodes r; are the
zeros of IV orthogonal polynomials p; generated with respect to weight w(z). The
weights w; can be computed by

&l pi(z) _
i=0 Jiw(z) Piz)dz

(5.14)

The complete procedure of generating orthogonal polynomials, their factoring, as
well as computing the weights is given in Silvester’s paper (Silvester {1990)).

This method may be extended by application of parametrized Gaussian
quadrature (Lutz (1992)). The specialized Gaussian quadrature formulae can be
derived for a finite number of normalized radial positions of the observation
point P, since the corresponding integrals may be rewritten to a form
independent of 8p, the angular coordinate of point P. The generated Gaussian
points and weights are now considered as functions of relative radial position.
After generation of the sets of abscissas and weights for various orders of
quadrature and various positions of the observation point the interpolation has to

be done. Cubic Lagrangian polynomials are usually used in the interpolation
process (Lutz(1992)).

Specialized quadrature formulae were generated for first and second order
Poisson kernels. Their accuracy is high when applied to exact values of
potentials. But, application of the method to finite element solution does not
yield a satisfactory results. Again, the information used is local, and the local
error is amplified, since the ratio of generated weights is very high (~ 10%) for
/R > 039.
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Chapter 5 Evaluation of singular and near-singular integrals
5.3 Computational venfication of the quadrature methods

Fer illustration of all the methods considered, a sequence of tests has been done.
They cover both cases, curvilinear singular integrals in the normal derivative

computation and singular surface integrals arising in second order derivative

calculation.

5.3.1 Normal derivative computation using the Poisson integral method

This group of results consists of two subsets. First, calculations were done using
exact analytical harmonic function values. To test error semsitivity of the
method, data were corrupted with random error. Tests were done using the

harmonic function

falzy) =y -z’ (5.13)
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Figure 5.1. Accuracy of normal derivative for different number of
quadrature nodes used. Results obtained using finite part integrals (o),
Fourier series expansion (*) and by ignoring the singularity ( x ).

A comparative analysis using all the available methods is presented in
Figures 5.1 and 5.2. Figure 5.1 shows how accuracy of the calculated normal
derivative depends on the number of quadrature nodes, or number of samples
used. The case of using finite part integrals and results obtained by ignoring the
singularity, which corresponds to the second concept of finite part integration
used by Paget (1981b), and standard boundary element practice (Sladek and
Sladek (1992)) is presented.
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Figure 5.2. A comparative analysis. Normal derivative obtained using:

Figure 5.2 shows the accuracy of computed derivatives for different azimuthal
positions of the observation point. It may be seen that both finite part
integration approaches give good results. But this analysis does not lead directly
to finite element applications. First, the error sensitivity of the method, since it
is intended to be applied to approximate solutions must be investigated. A
uniform random error generator was used to corrupt exact data. The measure of
stability of the method is error amplification, defined by (4.4).
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Figure 5.3. Error sensitivity results. Error amplification for different
average error in potential data. Poisson integral method with Paget’s
finite part integration (o), Fourier series method (*) and ignoring
singularity (x ).

Figure 5.3 gives error sensitivity as a function of average error in data. 300 point
quadrature was used in these tests. This is the highest order for which
quadrature formula is derived. Despite the fact that the number of samples is not
too high, the results illustrate the stability of methods used in computation of
normal derivatives. The finite part integration technique based on modification
of Gaussian quadrature rule proposed by Paget had up to ten times better
accuracy than the ignoring singularity method, except for two cases. Fourier

series results were obtained using 1024 samples. Using the lower order expansion
| gave poor results.
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Chapter 5 Evaluation of singular and near-singular integrals

5.3.2 Sccond derivative of the Poisson equation solution

To analyze the efficiency of Paget’s formulae for finite part integration in this
case tests were performed with exact function values. The functions used in

numerical experiments are
iz y) =2y + 2y, (5.16)
Fazy) = (2 +¥*)(1 — 2% - ). (5.17)

Function fiz,y) was chosen to eliminate the error in boundary integral
computation. Since a circle of radius R=1 was used as a base region, this
function vanishes on its edges. So all derivatives are computed using the domain
integral only. Function f,(z,y) represents the general case when both iutegrals
must be computed.
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Figure 5.4. Derivative 8f,/9z3y (x) and 8%f,/dy* (0) for different
number of quadrature nodes in s direction. Derivatives are computed at
P (f‘_p = 0.4, ap = 20').

Two cases are typical, when point of observation P is on the edge and
when it is an interior point of the circle.

The results in Figure 5.4 show the behavior of relative error in the
computed derivative 9%f,/31dy for different numbers of quadrature nodes in the
s direction. These results were obtained using the function f,(z,¥) on a circle of
radius R=1, centered at (0,0). Derivatives were computed for rp=10.4,
6p =20". From the results presented it is clear that a four-point quadrature
formula gives satisfactory results, compared to the ten nodes used earlier. From
now on, the four-node finite part integration is used. Figure 5.5 presents the
behavior of those methods as the radial position is varied. The finite part
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Chapter 5 Evaluation of singular and near-singular integrals

integration is scen to be stable even when the point P is close to the edge. The
accuracy decreases for r/R > 0.92. Results presented in Chapter 4 of this thesis
showed that accuracy is rapidly decrecasing for r/R > 0.8. So the finite part
integration reduced two to three times the order of quadrature, and has

significantly increased the region where the accuracy of computed derivatives is
satisfactory.
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Figure 5.5. Accuracy of computed derivative 3°f,/8zdy (x) and
8*fa/0y? (o) when radial position is varied. Finite part integration with
4 nodes is used.
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Figure 5.6. Results of computed 8°f,/dz* (x)} and 8°f,/8z" (o) for
point P on the edge, for various angular position. Curvilinear integral
was computed using the Fourier series expansion.

Figure 5.6 shows results of computed 9°f,/8z° for point P on thz edge, for
various angular positions. Results are given for both functions f, and f,. Four
point finite part integration was used in s-direction, with 90 points taken in -
direction. The curvilinear integral term was computed using a Fourier series
expansion. The total error is influenced by both terms, but results show a
satisfactory accuracy.
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5.4 Concluding remarks

The concept of finite part integration appears to be effective for evaluation of
singular integrals arising in the differentiation method based on Green's second
identity. Computational experiments confirin that the application of finite part
integratica vields satisfactory accuracy in both normal derivative computation
on harmonic functions and the singular surface integrals involved in second
derivative computation of the Poisson equation solution. Using this approach the
order of quadrature is significantly reduced.

All known formulation for evaluation of near-singular integrals have high
error sensitivity. Since in most practical problems only approximate solution is
known, it is not possible to achieve the same accuracy of derivatives as for
interior points.
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CHAPTER 6
Gradicnt recovery by local smoothing of finite clement solutions

The best traditional methods for differentiation on finite element meshes rely on
the phenomenon of superconvergence. The local smoothing proposed by Hinton
and Campbell (1974) is a widely accepted method for accurate derivative
computation, and it is refered to here as the conventionel local smoothing. It
amounts in esseance to bilinear extrapolation of gradients sampled at 2 x 2 Gauss-

Legendre integration points. An analogous procedure may be applied to three-
dimensional brick elements.

Gradient recovery as discussed in this Chapter is a generalization of a
particularly attractive local smoothing method proposed by Zhu and Zienkiewicz
(1990) for one-dimensional problems. They showed that the method has O(p +1)
convergence in one-dimensional problems, where p is the order of finite clement
approximation. These techniques deal with one element at a time and appear to
lend themselves well to parallel computation, although this point has as yet been
insufficiently explored.

6.1 The fundamental equations

The discussion in this chapter is restricted to the scalar Helmboltz equation,
though it can clearly be extended to some other differential equations as well.
Suppose an approximate solution ¢ has been found to a boundary value problem

whose differential equation is

div(egradd) +x%¢= —g inf2 (6.1)
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Chapter 6 Gradient recovery by local smoothing

with appropriate boundary conditions on 32, This is a slightly generalized form
of the scalar Helmholtz equation, where € =¢(z,y,z) and &° = &*(z,y,z) are
permitted to vary in space. The field, defined in the usual fashion as

= —gradg (6.2)
consequently satisfies
div(¢E) — %4 = g. (6.3)

In practical computation the approximation ¢ is known, not the exact potential
é. The study presented in this Chapter concentrates on the giadient of their
difference, V(@ — ¢), which represents the error in the computed field.

6.2 Taylor series analysis of error

The approach of MacKinnon and Carey {1989) will be followed in derivation of
an error analysis using the Taylor series. The three-dimensional case is presented,
since it is the most general.

In finite element analysis the problem domain is first discretized and a set
of approximating functions a;(£;,£,,£3), usually expressed in local coordinates &;,
is selected. The potential is then given the elementwise approximation

‘\Y
¢= 3 aiénénbs)d:, (6.4)
where ¢; are nodal values of the potential function (degrees of freedom) on a
finite element, and NV is the number of degrees of freedom. The field component
E,, i.e., the directional derivative in direction £, of a finite element solution ¢,
may be obtained by direct differentiation as
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9o X aai(‘s ~.E':sc ) : -
Ek= —BE = 2 #O;. (6.0)

MacKinnon and Carey (1989) used a Taylor scries expansion of the potential é to
derive an expression for E;. Their formula will now be extended to three
dimensions. If ¥ =1, and the field is evaluated at point (;,¢5, &), then
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where

=&—§; (6.7)

For second order elements, p = 2, (6.6) takes the form

_ Ry +1 3 1' 163¢ & da;
E1——23£_1¢- '3";1 316€3+a§1352353 ' '5—(5 )(65)(63)
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FPo - 0a;
5 l
85,8532661( )+ 05329?1(

i 3532 (82)°(65) + a&aﬁsgaﬁ(«sa)(és)wow ) (6.9)

since cocfficients corresponding to second-order terms are zero, as well as almost
all of third order. Equating all coefficients to zero, a system of simultaneous
equations results, whose solution ylelds the positions of points where the
derivative values are exact, provided a third-order polynomial approximation is
used. The results are the same for both serendipity-type and Cartesian product
clements. For the derivative in the £ direction, they are planes £, = £1/43. In
the other two directions there are two other, corresponding, sets of planes.

6.3 Derivation for the two-dimensional problem

For the two-dimensional case, a four-parameter least-squares fit can be
constructed by taking Legendre polynomials in the £ and 7 directions:

Ef =E¢+ oy Py(€) + a2 Pln) (6.9)
E: = E_ + a3 P(£) + oy P,(n). (6.10)

Here £,7 €[ —1,1] are local coordinates on the parent rectangular element, while
z and y are global coordinates. The residual whose square must be minimized is
now

= a(gf-) + a(gf D) —K2d—g. (6.11)

Squaring and substituting, lengthy expressions result. These can be made more
readily comprehensible by defining the uncorrected residual r, as
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d(E,) O(E) ..
= (zx ). (ay ey, (6.12)

In terms of the local coordinates,
AeEQ) JroeY | (0|, AeEQ) J(anY | (an)
=T3¢ {(32) o) (T o (az) "”(33)

O(eEy) | HeEQ| [ocdn , 9Eam| _ .
+{ g€ + dn }{azax-*-?b—

o—g (6.13)

and similarly for r.. For brevity in the development, define the combined
derivative terms

pe=(3)+(5)

2
Dy = (%) +(%) . (6.14)
0on , 00 -
Den =5zt Ty

On substitution of (6.14), the residuals assume the relatively short forms

= Dfﬂg&) D Q%f—) + Ds,,{a(g?;) + a(gfz)} —g-g,  (615)

8(eE;) 4D 9(e¢E,) D. {a(e E,) 3(635)}“ K2 —g. (6.16)

Te = DEE 3 nn 3’7 + af + ar’
The smoothed residual may now be written in terms of the unsmoothed one as
= D2 (eP D, P,(¢)%e
Te Te + o, EEFE(E p(&))'l' fnt p ‘f)FT]
2] . de
reDu(en.0) D2 o

+ao{ D, 2 P(6))+ Do P65
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+o4{D g_(ep () + Dey Pyn )g-f.}

Collecting terms,

ri=rot Y oK, (6.18)

A6 DeeGe+ Derl )+ Dece PYE = PyE)xa + Deee P(6)  (619)
Ky=P,n (DE ¢+ D2 )-z-Ds,,eP’() Pn)x: + Dege Pin)  (6.20)

Ky=P,&)(D + Dene PL(E) = P(E) Xz + Dene PL(€)  (6.21)

K= Pp(’?)(Dvmg— + D 3—) + Do Py(n) = Py(n) X2+ Done Pil)  (6:22)

-

In the important special case where the material property ¢ is uniform in each
element, the functions K; simplify to

Ky = Deec PL€) (6.23)
Ky = De,eP'n) (6.24)
K3 = DepePy£) (6.25)
K,=D,,ePn). (6.26)

To find values for the set of four parameters {¢;|i=1, . . ., 4}, the squared
residual is now minimized,

3%] I(r;)’dzdy =0, Vi (6.27)

<
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This requirement leads to four simultancous equations,

1 1
zj‘”j TR R det(J) dedna; = — j ¥ [ r. K,det(3)dédn (6.28)
3 -1J =1 -1J) -1

for 1 =1, 2, 3, 4. Here J represents the Jacobian of the coordinate transformation
(which may be of the isoparametric type) that maps the square parent clement
into a quadrilateral; det(J) is the determinant of J. These four simultancous

equations are readily solved numerically for any given transformation.

In the very restricted, but very important, case of transformation onto a
rectangle, the final system of four equations may be written as

-.sl S 0§ sg_—D&a: —.'t:"jr‘ﬂ(g)dfdn
& & & & |Dee) | [T [T rpmden

= - 6.29
6 & s u (Dae [ repyig)dedn -
. & S s ||Dge _-f::_rP’(n)dﬁdn

where

a= [T [T (Puo)dean=2 " (Pye)) de (6:30)
a= [ e0 Py dsdn= {[ 7! Pyerae] (6:31)

are constants for any given p. The solution of this system of four equations can
be found analytically as
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Deeoy = Doz =

1 [ [t s [T P d‘d} 6.32
e(s,z—s:f){slJ-lj-xrcpp(g)dEdn SZJ.-I,[ 1r°PP(n) san ( )

Depoy = Dppag =

- —"'"“‘e(s;-l_ sg){sl [T repymagdn—s | * +:rcP;,(§)d£dn} (6.33)

In Table 6.1 values of s, and s, for p <6 are shown.

Table 6.1.
p 1 2 3 4 9 6
& 4 12 24 40 60 84
s 4 0 4 0 4 0
Note that for p =1 coefficients are equal, s, = s, 50
$10 41
Decy = D3 = Dy =Dy = —% j J r dédn (6.34)
=-1J =1
For p = 2, the coefficients are
_ 1 +1 {41 ; -
Degoy = Deyey = 1 I-J IR AGLEY (6.35)
+1{+1
De,02 = Dypa = 35 J _J " r Pyn)dgdn (6.36)

This procedure is entirely local to an element and therefore does not lead to
unique values at nodes located on element interfaces. In practice, the difference
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is rarely large, indeed it can serve as an indicator of the quality of differentiation.

If desired, the conventional procedure of averaging nodal fields can be applied.

6.4 Generalization of the local smoothing of gradients to three dimensions
6.4.1 Hinton-Campbell conventional local smoothing

The commonly used local smoothing method of gradients is one proposed by
Hinton and Campbell (1975) (also Zienkiewicz and Taylor (1989)). In the
standard 20-noded quadratic brick element, the local smoothing is a trilinear
extrapolation from the 2x2 x 2 Gaussian point values. It can be shown that the
smoothed corner ncdal field values may be obtained using superconvergent point
values E;... By from the expression

E, a b ¢ b b ¢ d ¢ E, ]
E, b a b ¢ ¢ b ¢ d En
By ¢c b a b d ¢ b ¢ || Ep
E, b ¢ b a ¢ d ¢ b Ew
] = (6.37)
s b ¢ d ¢ a b ¢ b Ey
Es c b ¢ d b a b ¢ Ey
E. d ¢ b ¢ ¢ b e b Evy
i Eq 1L c d ¢ b b ¢ b a _E i |

where a,d,¢c, d are numeric coefficients given by

=3 +3B p= _1+\3
- 4 2 - 4 ]
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(6.38)

T
=

_5=33
, d =2

o
f
1
“‘i

Generally, for the pth order function E(£) in the interval —1< £ <1, values
sampled at the p Gaussian points uniquely define a function E(€) of order p—1.
This function represents a least squares fit to E(£). Now, the field at any point

can be computed as

- 8 - :
E=3% af6,686)E:. (6.39)
i=1
Since the fields at nodal points computed using local smoothing are not unique,
nodal averages may be calculated. It should be noted that the field value at the
center of an element is equal to the arithmetic mean of its values at the
superconvergent points, and therefore has exceptional accuracy.

6.4.2 Derivation of extended Zhu-Zienkiewicz method for 3-D problems

Analogously to two-dimensional problems, a nine-parameter least-squares fit will
be used here. For pth order elements, the least-squares fit can be constructed by
taking the pth order Legendre polynomials in the £, &, and £; directions,

3
E:‘ = E.+ z QIJPP(EJ) ’ i= 1,2,3 (6.40)
L
Here £;,62,63 €[ —1,1] are local coordinates on the parent isoparametric brick
element, r, y and = are global coordinates. The residual whose square must be
minimized is now

. O(eE7) O(eE]) 0O(eE7)
rc=_(f,:.’I )4 (ay")+ (gz-)—n-gs—g, (6.41)

and the corresponding uncorrected residual is
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8(¢E,) OJ(¢E,)) J(¢E.
T'¢= (BI1)+ (Byy)+ (5:-)—-"\"0—'{}. (642)

Here E,, £, and E, are the ficld components,

3 ¢ 3 e,
Bo=-= -3 82%-yr%s (6.43)
_ 08 0008 g 05
By= %= ;3? y —.-;E' dy’ (0.44)
_ _9o _ 9698 _ & p 98 .
B=-%= -._;333?_;5,.3? (6.45)
In terms of the local coordinates,
. & & 0(eE}) [ag,0¢; | 0¢,0¢; | 9L,8¢; -
o iU R

and a similar expression obtains for r,. For brevity in the development, the
combined derivative terms are defined:

After substitution of (6.47), the residuals assume the following forms:

r = '_z::l J;D;,.%gﬂ —K6—g. (6.49)

The smoothed residual may now be written in terms of the unsmoothed one as

r: =Te+ i i D'J 5'{ Z aJ"PP(Ek } (6-50)
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3 2 3 3
=r.+y > D %{TQJLP (&) } > ZDUOJ,P' (6.51)
r=13=1 k=1 i=1;=1
or cquivalently as
3
=T, +EP,,(£L Z ,kZD,, +eZP(§)ZD,, ;i (6.52)
=1 i=1 i=1 l i=1
3 3 ' -
=r Z=: ; { (k) 'ng.,az + GDL-,'Pp(.E:.-)} (6.33)
This expression can be written in the alternative form
S
=r Z (6.54)
where
Tsi-1+k = Xk - £k=1,2,3 (655)
3
Kajonyer=Pyee) S D,.,.% +eDy; P& k=1,2,3 (6.56)
i=1 t

If the material property ¢ is uniform in each element, the functions K; become

K1y 46 =€ Dr PLE) (6.57)

In order to find values for the set of nine parameters «;, the squared residual is
minimized,

E%‘J | J(r;)zdxdy dz =0, Vi (6.58)
v

<

For i = 1, this requirement takes the detailed form

9
Sl s s

i=1 -1
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(6.59)
U RIF+1
= - I j r Iy det(3) dé,deads, .

-1 -1Jd =1
where J represents the Jacobian of the coordinate transformation (possibly. but
not necessarily, isoparametric) that maps the square parent element into a
quadrilateral, and det(J) is the determinant of J. After performing minimization
with respect to all nine +;, the final result is a system of nine simultancous
equations:

2= (6.60)
J
Here
my; = j fzj i:j t:I\.',-I\.'J-det(J) d¢,dé.dEs, (6.61)
and
+10 411 +1
. = . e -
& .[-1,[ -1.[ -1T°I\'det(J) d6,d&;d¢s (6.62)

6.4.3 Brick clements and homogencous lincar materials

In the highly restricted, but very important, case cf translormation unto a brick,
the final system of nine equations may be reduced to

S S & 131T hy
2 8 s || B |=-35 ke (6.63)
S 8 0§ B3 hy

. o — o vl
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81 =Dy ay = Dyjpay = Dizay (6.64)
B2 = Dyyoqy = Dpyoy = Dygag, (6.65)
B3 = Dizyegy = Dygaaz = Dygags (6.66)
a= [T T (P dendendes =4 [ T (Pyte)) ag (6.67)
(HIL 1+, , +1_, 2
w= |0 T Pe) Pedadgds =2 [ T Puerac] (6.68)
m= [T T Pye) derdendes (6.69)
b= [T T T Pl dededss (6.70)
b= [T T e Pies)deidendes (6.71)
The solution is given by
_ (st s)hy —sa(ha 4 by) .
B e - s 25 (612
By= - (81 2 )ha — 55 (hy + g) (6.73)

3e (s — a2)(s; + 2s,)
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(814 82} hg = sa(By + 1) -
[ o e = - G- 4
s e (s — ) (s +25,) (6.74)
In the case of second order clements, 5, = 24 and s, = 0, s0
1 +1(+1(+1 ' -
Bi= - | T T T rePuedgdtads, (6.73)
For p =3, s; =46 and s, = 8, the coefficients are
[ F1[+2f+1 = ’ ! ’ -
o= —gdy [ T T T r {50 Py - S(Py&) + Po&n))}aidende,  (6.70)
LI AT , , —
Bo= g [T T r {50 Pyen) - s(Pi) + P& )}e6ndedsy  (6.7)
1 SRR L N U , -
Bs= —gdye | T T[T r{50 Pates) — S(PY(E) + PiEn) )} dEdendts  (6.75)

This procedure is entirely local to a single element. Consequently, it does not
lead to unique values at nodes located on element interfaces. If unique values are
desired, the conventional procedure of averaging nodal fields can be applied. A
significant advantage of this process, on the other hand, is that only local data
need be accessed, so this scheme is particularly attractive for parallel
computation on machines with distributed memory.
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CHAPTER 7
Application to finite clement method

Tests were performed to verify that the methods developed in this thesis can be
reliably applied to finite element solutions. The examples cover the two-
dimensional case, with the application of all elementary regions, comparative
analysis of differentiation methods in two dimensions, application of extended
Zhu-Zienkiewicz gradient recovery method, differentiation of Helmholtz equation
solutions, and application to axisymmetric problems. An application of the
method to anisotropic magnetic material modeling was published by Silvester
and Omeragi¢ and is presented in Appendix 7.

All tests were performed using single precision arithmetic, i.e., with 32-bit
word length using the IEEE floating point notation. Few (if any) of the results
obtained are of sufficient precision, or sufficiently sensitive to roundoff error, for
word-length to be a significant factor.

7.1 Application to two-dimensional cases
To verify that the differentiation method described is applicable to finite element
solutions, Poisson’s equation was solved in a square region. The source function

was taken to be constant within each element, its value given by

o(my)= -4 [12zydr (my)en M
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Figure 7.1. Circular integration contour embedded in first-order finite
element mesh. Potentials on the contour are obtained by using the
finite element interpolation functions.

where A, is the area of element {2;; it approximates to a distribution of 12zy
over each triangle. This source function corresponds to a potential function

filz,y) = 2y + 23, (7.2)

Solution was carried out with first-order triangular elements, with the square
0<z<2, 0Ly <2 uniformly subdivided, as indicated in Figure 7.1. Various
derivatives of the resulting solution were then computed, the circular contour for
integration having 2 radius of 0.9 and being centered at (1,1). The behavior of
computed derivatives extracted from the 200 triangular element mesh is shown
in Figure 7.2. Results are presented for derivatives df,/9z, 8f,/0y and &*f,/8z?,
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when radial position inside the circle is changed. but with the coordinate
constant at 8p = 20°. Results appear in Figure 7.3, for a range of mesh sizes,
expressed as the number of clement edges along the edge of the square. It is
worth noting that the potential value is improved by nearly an order of
magnitude, and that the error in derivative values is smaller than the error in

the potential.

0
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:i Q ?
- g g
g - - g & Q E E 8 o & °
.18 - x 2 Q o 3
= Ll ° o - © x> 8o
E 3 - - - X E
&= x
] ° e - e 4
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Figure 7.2. Relative error in FEM potential f, (0), derivative df,/dz

(+), 8f,/08y (x) and 8%f,/02* (O).
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Figure 7.3. Relative error in potential f, (O), derivative @f,/dy (+)
and 8%f,/8z9y (o) with finite elements. Error decreases with number
of elements along the square.

The accuracy of computed derivatives in a rectangular region is shown in
Figures 7.4-7.6. Results are obtained for the square 0 £ z,y €1, along the line
y = 0.6. The accuracy of finite element solution and derivatives obtained using
direct differentiation are shown in Figure 7.4. The first derivative results have
reduced accuracy, compared to results obtained using a circle, but still, accuracy
is better than that of origiral finite element derivatives obtained using direct
differentiation. Figure 7.5 shows the results for a harmonic function, while Figure
7.6 displays the results for a Poisson equation solution.
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Figure 7.5. Relative error in derivatives of harmonic function obtained
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Figure 7.6. Relative error in derivatives using the function fy(z,y) —
t(&h;z finite element solution (W), 8f,/8z (+), 8f,/8y (x) and 8f,/82*
(9]

Derivatives obtained using the two circular sectors are presented in
Figures 7.7 and 7.8. The sectors are centered at (1,1). The first has the angle
8 = 30" and the second is a semi-circle (§ = 180°). In both cases the radial position
was varied, while the angular coordinate of the observation point was 8p = 10"
The accuracy of results is low for rp/R < 0.3, while outside that region computed
derivatives have the same accuracy as the finite element calculated potentials.
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7.2 Comparative study of differcntiation methods

This section reports the results of an experimental study in which the various
available methods were employed to calculate derivatives of several approximate
harmonric functions on different classes of mesh. The first series of tests employed
quadrilateral elements of second order, and two test functions: a cubic harmonic
polynomial and a logarithmic function. A second test series used the same
functions, but on triangular meshes up to fourth order. In the third sequence of
tests, the field in a deep parallel-sided electric machine slot was analyzed. In
each test, the function was first approximated by computing a finite element
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solution to the Dirichlet problem, with known function values preseribed on the
boundary of the region. The computed derivative values are therefore the
approximate derivatives of a finide clement approrimation, not merely
approximate derivatives of an exactly known function. Each test series involved
a variety of meshes and applied all the differentiation techniques reasonably

applicable to each mesh type. The results shown in the following may be taken
as representative.

In the first test series using quadrilateral meshes. both local smoothing
methods were compared with the Poisson integral method and with direct
differentiation. Global smoothing was not trcated since other workers have found
its performance no better than that of local smoothing (Hinton and Campbell
(1974), Zienkiewicz and Taylor (1989). The cubic harmonic polynomial & (z,y)
was selected as typical of smooth, bounded solutions that finite clement methods
ordinarily approximate very well,

h(z,y) = 2y — 2. (7.3)
The second function h,(z,y) is also harmonic, but being a singular transcendental
function, places greater demands on all differentiation schemes:

hi(,y) = log( (1 +2) +(1+3)) (7.4)

The polynomial h, can be expressed exactly on third and higher order finite
elements, but not on elements of second order. The transcendental function &,

cannot be represented exactly on any conventional finite element mesh.

The second series of tests, on triangular elements up to fourth order, used
the same harmonic functions as for the quadrilateral case, thus providing direct
comparison. For triangular elements there is no generally accepted
superconvergent local smoothing method analogous to that of Hinton and
Campbell (1974) for quadrilaterals. However, any local smoothing method would
require derivative values from such superconvergent points in order to
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extrapolate smoothed results. Consequently, global smoothing was used instead
of local. Tor the same reason, results obtained by the Poisson integral method
were compared instead of values at superconvergent points. Since the Poisson
integral method is capable of finding higher as well as first derivatives, values of
several higher order derivatives obtained by direct differentiation of the finite
element solution were compared with results obtained by the Poisson integral
method.

In the third test, the field in a deep parallel-sided electric machine slot
was analyzed. Here the result is analytically known but not exactly computable
by any finite element method. This problem includes a singular field point,
where no numerical method can be expected to yield a result of high accuracy;
however, results at points not far from the singularity can be compared usefully.
An irregular simplical mesh was used, in order to compare the effectiveness of
‘averaging’ based on the Poisson integral, and local weighted averages.

7.2.1 Second-order quadrilateral elements

Tests on quadrilateral elements used both functions k, and hk,. The region
modeled was the square 0 € z,y £2. Derivatives were computed along a line of
length 0.9, beginning at the point (1,1), i.e., at the center of the square. For the
Poisson integral method, the circular contour of integration was centered on (1,1)
with a radius of 0.9. The element matrices were computed by numerical
integration in the manner usual for second-order isoparametric quadrilaterals.
Five-point Gaussian quadratures were used, and their adequacy was tested by
comparing with quadratures of higher degree. For the meshes used, the error
caused by five-point quadrature appeared to be substantially smaller than
differentiation error, and may therefore be considered negligible.
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Figure 7.9. Finite element meshes, Poisson integral method circle, and
lines along which derivatives were computed

Two of the meshes for which analyses were carried out appear in Figure
7.9. The same figure also shows lines along which derivatives were computed, as
well as the circular contour of integration used in the Poisson integral method.
Derivative values computed for the polynomial k, ure shown in Figures 7.10 and
7.11, along a line at 45" to the axes. This is the direction with best accuracy for
the smoothing methods, and also for direct differentiation, because the line
crosses two superconvergence points in each element, as well as its centroid
which is a point of high precision for local smoothing methods. Indeed the special
nature of these points is clearly evident in the graphs, with error falling
drastically at and near each point of superconvergence. By way of contrast,
Figure 7.12 shows computed results along a line at 35" to the axes, for the
function %, using an 8x8 element mesh. This line traverses no points of
exceptional accuracy, as is clearly visible from the much smoother behavior of
the error curves, and the quite naturally higher error.
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These results may perhaps be summarized by saying that the derivatives
obtained with the extended Zhu-Zienkiewicz method are better than the classical
local smoothing results, but either way the accuracy is strongly position-
dependent. For the polynomial function %, the two local smoothing methods are
of almost equal accuracy, and significantly better than direct differentiation of
the element functions. This is to be expected, however, for the derivatives of a
cubic polynomial are quadratic functions so that error should be exactly zero
(aside from any roundoff and quadrature errors) at the points of
superconvergence. The results of Figure 7.13, obtained on 2 4x4 mesh for the
transcendental function A, along a line at 35° to the axes, are less kind to the
local smoothing techniques. In fact these methods give no visible improvement
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over direct differentiation results followed by classical local smoothing. On the
other hand, the extended Zhu-Zienkiewicz method provides up to two additional

correct significant figures in this more demanding test.
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Figure 7.13. Derivative in z direction; function h, on 4x4 mesh,
direction 35" (+) Poisson integral, (x) direct method, (0) Zhu-
Zienkiewicz and {0) local smoothing method

The results shown in Figures 7.12 and 7.13 coufirm the stability,
reliability and high accuracy of the Poisson integral method. The
superconvergence-based methods are seen to yield very good results near the
points of exceptional accuracy, but elsewhere their accuracy is much worse.
Nevertheless, the derivatives obtained are often much better than those resulting
from direct differentiation, and rarely worse. The Poisson integral method
provides a predictably high accuracy, with error rising near the integration
contour but low at all interior points. Except near the points of
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superconvergence, this method yields the highest accuracy and the highest
predictability, but at the highest computing cost. In all methods, accuracy

improves substantially with mesh refinement, as it should.

7.2.2 Triangular clements

Triangular finite element meshes up to fourth order were used in the second
serics of tests. Again the two harmonic functions k, and k, were modeled by
solving Laplace’s equation with the correct function values along the boundary
nodes of a square region similar to that of Figure 7.9. Some typical derivative
values at Gaussian {superconvergent) points closest to the center of the region
are shown in Tables 7.1 and 7.2. Superconvergent points for tangential
derivatives along triangle edges of various orders are shown in Figure 7.14. The
mesh density was changed for the various orders of finite element so as to keep
the total number of mesh points roughly constant. These results confirm that
superconvergence is obtained at the Gaussian points for the tangential field
component, but not for the normal derivative, which is calculated with much
poorer accuracy. As would be expected, superconvergence provides less
improvement for the transcendental function h, than for the harmonic
polynomial h,. For the transcendental function k, the Poisson integral method
provides even better accuracy than superconvergence provides for the tangential
derivative at Gaussian points. ‘
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Table 7.1

Percentage error in derivatives at superconvergent points
on triangular elements, of polynomial h, = z°y — Y3

(a) ahp/ oz
Numbe} Order of element p
of ele-{ Method
ments 1 2 3 4
2 | Poisson intg| 14. 1.1 0.037 0.0009
Direct diff 4.3 0.0001 0.0000 0.0000
4 | Poisson intgl 4.5 0.083 0.0003 0.0008
Direct diff 1.7 0.0000 0.0000 0.0004
8 | Poisson intg] 1.3 0.0090 0.0009 0.0003
Direct diff 0.56 0.0003 0.0002 0.0052
16 | Poissonintgl 0.35 0.0001 0.0004 0.0003
Direct diff 0.16 0.0004 0.0064 0.0031
(t) Bk, /3y
Numbep Order of element p
of ele-| Method
ments 1 2 3 4
2 | Poisson intg| 21%. 1.9 0.0002 0.0003
Direct diffl | 633. 57. 4.5 0.0006
4 | Poisson intg 7.1 0.067 0.0004 0.0003
Direct diff 141. 15. 0.56 0.0003
8 | Poisson intg 1.6 0.009 0.0003 0.0008
Direct diff 52. 4.0 0.069 0.0048
16 | Poisson intg 0.39 0.001 0.0010 0.0009
Direct diff 22, 1.0 0.0008 0.0048
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Table 7.2

Percentage error in derivatives et superconvergent points on
triangular elements, of function Iy =log[(1 + ] + (1 + y)?]

(a) Oh,/Oz

Numbet Order of element p
of ele-| Method
ments 1 2 .3 4
2 | Poisson intg] 0.123 0.43 0.011 0.0046
Direct diff | 2.10 0.52 0.19 0.0074
4 | Poisson intgl 0.189 0.013 0.0006 0.0006
Direc: diff | 0.354 0.06G8 0.024 0.0024

8 | Poisson intg] 0.0679 0.0001 0.0004 0.0003
Direct diff | 0.14 0.0094 0.0034 0.0031

16 | Poisson intgi 0.027 0.0002 0.0001 0.0003
Direct diff | 0.032 0.0037 0.0043 0.0001

(5) Ok, [y
Numbe\' Order of element p
of ele-| Method
ments 1 2 3 4
2 | Poisson intg] 0.64 0.31 0.0067 0.0048
Direct diff | 32. 0.13 0.98 0.068
4 | Poisson intg] 0.15 0.011 0.0015 0.0011
Direct diff | 15. 0.46 0.14 0.0054
8 | Poissonintgl 0.061 0.0003 0.0010 0.0009
Direct diff 7.0 0.19 0.012 0.015
16 | Poisson intgl 0.024 0.0009 0.0021 0.0009
Direct diff 3.3 0.056 0.02t 0.016
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Comparative results are given in Figures 7.15 and 7.16 for regular meshes
of 32 and 128 sccond order triangular elements (square subdivisions of 4x4 and
$x8 clements), the derivatives having been computed by global smoothing,
direct differentiation, and the Poisson integral method. The test function was h,,
and results were computed along a line through the center of the square and at
20° to the z axis. The results obtained for with the transcendental function h,
were quite similar. They clearly demonstrate the superior accuracy of the Poisson
integral method, and show that the global smoothing method does not have high
accuracy despite its relatively high computational cost.
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Figure 7.15. Derivative in z direction for function A, using 4 x 4 mesh of
second order elements, direction 20% (+) Poisson integral, (x) direct
differentiation, (D) global smoothing results

—159 -



Chapter 7 Application to FEM

G

s
P G WTYITY e W R
+*

6-

L]
X
Df

reiRice eticd
o
¢!
1]
+

-
+

6-
t

il Y -
a2 ha"S

6‘
wundPs g
+
+

=
g.t.l..u

T 1 1] i 1 1 )

03 [+2] 05 060 0 030 0% 100
rodial dstonce {r/R)

8

Figure 7.16. Derivative in z direction for function %, using 8 x 8 mesh of
second order elements, direction 20% (+) Poisson integral, (x) direct
differentiation, (O) global smoothing results

For derivatives higher than the first, the Poisson integral method is
clearly superior. Table 7.4 presents the error in computed derivatives, up to third
order, for the polynomial function h,, evaluated ai the point r=0.3, § =20’,
relative to the center point (1,1). Elements up to fourth order were used, and the
total number of degrees of freedom was similar in all cases. From the results
presented for quadrilateral meshes in Table 2, where even at superconvergent
points the Poisson integral method gave the most accurate first derivatives, one
would again expect this method to perform well. This expectation is borne out
by the results presented in Table 7.4, where the stability and high accuracy of
the Poisson integral method are evident. Further, its accuracy is neither
dependent on the elemeat order, nor on the position of the point of interest, nor
even on the order of derivative.
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Table 7.3
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Percentage error in higher derivatives ¢y, of 0 =1h, = By — 1P,

é[lj] = ai + "O'/ax’ay"

Order of element p
Derivative| Method
2 3 4
43[00] Poisson intg] 0.0006 0.0027 0.0026
Direct diff. | 0.023 0.0050 0.0014
é[w] Poisson intg| 0.0023 0.0007 0.0007
Direct diff. 0.11 0.0059 0.0010
Do) Poisson intg] 0.0044 0.0012 0.0013
Direct diff. | 0.24 0.015 0.0011
¢[2°] Poisson intg] 0.0021 0.0008 0.0010
Direct diff. | 3.2 0.37 0.0005
Sy | Poissonintg 0.013 | 0.00%0 | 0.0088
Direct diff. | 5.8 0.53 0.0021
Plo2) Poisson intg| 0.0021 0.0009 0.0010
Direct diff. | 2.2 0.043 0.0002
¢[3°] Poisson intgl 0.0001 0.0041 0.0046
Direct diff. 9.29 0.0087
¢[21] Poisson intg| 0.016 0.0079 0.0077
Direct diff. 4.0 0.027
Ph2) Poisson intg] 0.0001 0.0041 0.0046
Direct diff. 1.8 0.010
¢I°31 Poisson intg] 0.016 0.0079 0.0077
Direct diff. 2.5 0.034
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7.2.3 Non-uniform triangular mesh

The third series of tests employed a nonuniform first-order triangular mesh,
applied to the fields in an infinitely decp electric machine slot. While this
problem embodies most of the characteristics that arise in many problems of
applied eclectromagnetics (e.g., it includes a ficld singularity). it is still
analytically solvable even though very complicated. A typical mesh used to solve
this problem appears in Figure 7.17.
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Figure 7.17. Finite element mesh used for infinite slot example

Since the practical result most often required in such a problem is the air-gap
flux density, Figure 7.18 shows values of the vertical derivative of potential A,
i.e., 8A/0y, evaluated at the level y =0.7 X gap-width. This derivative was
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computed in two wavs. First, direct differentiation was used, followed by
averaging at nodes, and second, by means of the Poisson integral method. Nodal
averages were weighted by element area in the first process. The Poisson integral
technique was applied to a sequence of circular contours so chosen that the
derivative was always evaluated at the center of the circle. From Figure 7.1S it is
cvident that the weighted averaging process yields useful accuracy and gives
results of acceptable smoothness. The Poisson integral approach gives better

accuracy and smoother results, but it is more expensive in computer time.
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Figure 7.18. Derivative in y direction for infinite depth slot; (+) Poisson
integral, (x ) direct differentiation method, (O) weighted averages
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7.3 Tests of procedures dealing with singular integrals

The procedures derived for evaluation of singular integrals are applied to results
of the finite element inalysis. Tests presented in this section correspond to finite
part integration, covering the case of curvilinear singular integrals in the normal
derivative computation and singular surface integrals arising in second order
derivative calculation.

7.3.1 The normal derivative computation using the Poisson integral method

Tests were done using the harmonic function
Falmy) =2y -z (7.5)

Figure 7.19 compares results obtained using the Poisson integral method
employing 30 — point finite part integration with derivatives obtained using direct
differentiation method and standard Poisson integral method, without special
treatment of singularity using 180 quadrature nodes. It shows the accuracy of the
normal derivative computed along the perimeter of a circle of radius R=0.8,
centered at point (1.0,0.9). Potential results are obtained using a uniform
triangular mesh of 20Xx20 linear elements over the region 0<zy<2.
Derivatives computed using Paget’s method of evaluating the Poisson integral
are of the same order of accuracy as the original finite element solution, with at
most one significant digit lost. Compared to results obtained by ignoring the
singularity, Paget’s approach gives consistently better results, with up to 350
times smaller error. As it is expected, direct differentiation yielded poor accuracy
of the normezl gradient.
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Figure 7.19. Accuracy of normal derivative computed along the
perimeter of the circle of radius R =0.8, centered at point (1.0,0.9).
Function flé:r,y) used. Poisson integral method with Paget’s finite part
integration (o), FEM potentials (x ) and direct differentiation (D) and
standard Poisson integral (ignoring singularity) (*).

7.3.2 Second order derivative of the Poisson equation solution

To examine the efficiency of Paget’s formulae for finite part integration when
applied to approximate results, simulations were done with values of functions

Frmy)=2y+zp, (7.6)

falz,y) = (2% + )1 -2 - 37), (7.7)
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obtained after solving the boundary value problem using the finite element
method. The function fa(z,y) was chosen in such a way as to eliminate the error
in boundary integral computation. Since a circle of radius R =1 was used as a
base region, this function vanishes on its edge. Consequently all derivatives are
computed using the domain integral only. Function f,(z,y) represents the
general case when both integrals must be computed.

Results of analysis are shown in Figure 7.20. They are obtained using a
uniform mesh of 200 linear triangles on the region 0 < z,y < 2. A circle of radius
R = 0.7 is centered at (1.2,1.1). The radial position is changed, while the angle is
fixed at 8p =20". The main source of error in surface integral computation is
approximation of the source function by its average value over each element. In
order to estimate the influence this approximation of the source function a
second test was performed, this time using the exact value of the source function,
which is usvally known in practical problems. Computed derivatives-have the
same or even better accuracy than finite element results. Note that it is not
possible to compute second derivative from first order finite element
approximations by direct differentiation.

The results of analyzing the case when the point P is on the edge of the
circle are given in Figure 7.21. They are obtained using a mesh of 200 second
order finite elements to model the function f,(z,y) in the domain -1 <L z,y < 1.
Results were extracted from a circle of radius R =1 centered on (0,0). Again, the
source of error is piecewise approximation of the source function. In this case the

curvilinear integral is ignored, so the error in results is due to surface integral
computation only.
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Figure 7.20. Computed derivatives 8%f,/0z8y when the radial position
is changed, while angle is fixed at 8p=20". Function f.(z,y) is
approximated using 200 quadratic triangles. FEM potentials (x),
Poisson integral method with Paget’s finite path integration (o), and
results using the exact values of the source function ().
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Figure 7.21. Computed derivatives 8°f,/9z° for point P on the edge,
angular position changed. Results extracted from the circle of radius
R =1.0 centered at (0.,0.). Function f,(z,y) is approximated using 200
triangles. Poisson integral method with Paget’s finite part integration
(o), and finite element differentiation (O).
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7.4 Application to axasymmectric problems

The mcthod of differentiatiating approximations to the harmonic functions in
axisymmetric coordinate system is treated in Chapter 3, and its verification in
Chapter 4. Tests with results obtained using the finite element solver are
presented in this section.
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Figure 7.22. Contours of a torus and a sphere embedded in first-order
finite element mesh, used in differentiation of potentials obtained by
using the finite element interpolation functions.
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An analytically known function

) = 1 s

0= ey )
was approximated by means of a finite clement solution, with function value
prescribed on the boundary of the region. Linear triangular elements were used.
In all cases the test region was the cylinder 0 € 7,z < 2. In the results presented
here, the mesh density in the region of interest was varied, and results are shown
for the new method based on differentiation of the fundamental solution of
boundarv value problem; they are compared with results from direct
differentiation. Figure 7.22 shows the finite element mesh and a torus and a
sphere embedded in the mesh as used in computation of derivatives. Also shown
in Figure 7.22 are lines along which the partial derivative in the z-direction and
the derivative §°f/8r° were computed. In the torus the line makes an angle
8 = 20° with the r—axis, and for the sphere 1) = 40" with the z-axis.
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Figure 7.23. Relative error in results extracted from the torus, using the
50 finite element solution: error in 8¢/0r (x), 89/dz (o) and 8°$/8z?
(*) using the new method, error in 9¢/dr obtained using direct
differentiation (O); original finite element solution (+ ).
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Figure 7.24. Relative error in results extracted from the sphere, using
the 50 finite €lement solution: error in 8¢/8r (x), 8¢/0z (o) and
8%4/3=% () using the new method, error in d¢/dr obtained using direct
differeatiation (0); original finite element solution { + ).

Figures 7.23 and 7.24 present the error in computed derivatives using 2 uniform
mesh of 350 finite elements. First order derivative results are significantly
improved compared to the direct differentiation technique. First order
derivatives extracted from the sphere have the same accuracy as the original
finite element results, and not more than one significant digit is lost in the
second derivative. Derivatives extracted from the torus have poorer accuracy,
but they are still much better than the direct differentiation results. Figures 7.25
and 7.26 give the results with 200 finite elements, i.e. with doubled discretization
in both directions. The results have the same behavior as in the previous cases.
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7.5 Three dimensional local smoothing results

Extensive computational tests have now been performed to compare the
performance of the generalized Zhu-Zienkiewicz method with conventional local
smoothing and with direct differentiation of the finite element solution. Two test
cases were used, in which an analytically known function was approximated by
means of a finite element solution, with function value prescribed on the
boundary of the region. Tests were carried out using the functions

filz.yz)=zyz+22 4+ -3z +y) (9)
and

rz)= 1 .
falrz) N(I+z)? + (1+y)F + (1+2)? (10)

Both functions are harmonic. As in the two-dimensional case, similar accuracy
may be expected for functions satisfying the Poisson and Helmholtz equations.
The first function f, is a cubic polynomial, so the generalized Zhu-Zienkiewicz
method should produce first derivatives exact at the Gaussian points.
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-

Figure 7.27. Finite element discretization with lines along which
derivatives were computed

Second order numerically integrated brick elements were used in the tests,
and reduced integration was emploved (Zlamal (1978), Zienkiewicz and Taylor
(1989)). In all cases the test region was the cube 0 <z,y,2<2, as shown in

Figure 7.27. In this figure, directions along which derivatives were computed are
also shown. The segments are:

segment starting point end point
(1,1,1) (2,2,2)
b (1,1.211482,1.211482) (2,1.211482,1.211482)
¢ (1.,1.25,1.3) (2.,1.75,1.8)
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The directions are chosen in such a way as to cover three typical cases. Segment
¢ is the main diagonal of an element. It contains two superconvergent points and
the element center, which has exceptional accuracy in the 2-D case (the
derivztive there is the arithmetic mean of superconvergent values), so it is the
best direction for conventional Hinton-Campbell local smoothing. Segment b
contains two superconvergent points. An arbitrary direction is chosen for
segment ¢, to illustrate the practical situation where no superconvergent points
occur along the desired direction. In all tests the results given refer to the partial
derivative in the z direction, i.e. 3¢/0z. In the test cases this coincides with one
of the local axes. Various mesh densities were used in the problem region, and
results are shown for all three differentiation methods.

The first set of results, shown in Figures 7.28-7.30, corresponds to the
function f,(z,y,z). It bears out the expectations about behavior of recovered
derivatives that might reasonably be based on the theoretical arguments
presented ahove. Figure 7.28 shows that along the main diagonal both local
smoothing methods reach the maximal accuracy possible for the single-precision
calculations used in tests. From Figure 7.29 it is clear that there is no
improvement of accuracy when classical local smoothing is used. The results
preseated in Figure 7.30 show that in the Hinton-Campbell type of local
smoothing, the correction of derivatives may actually go in the wrong direction.
From all results shown, it is clear that a superior accuracy (exact approximation)
is obtainable by computing gradients using the generalized Zhu-Zienkiewicz
method.
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Figure 7.28. Derivative in z direction along the lne a; function 1
—2x2x2; (») potential, (x) direct differentiation, (o) Zhu-Zienkiewicz

and (0) local smoothing method
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Figure 7.30. Derivative in z direction along the line ¢; function 1
—2x2x2 mesh; (+) potential, (x) direct differentiation, (¢) Zhu-
Zienkiewicz and (O) local smoothing method

The second set of results is obtaired using the function f,(z,y,2), which is
harmonic but not polynomial. Since this function is not a third-order polynomial,
the results are not necessarily optimal at the same (Gauss-Legendre) points. The
consequence is that local smoothing constructed using both methods is not quite
so good as in the first (polynomial) case. The results are seen to be better than
obtainable by direct differentiation and conventional local smoothing, but the
improvement is not consistent. Figures 7.31-7.33 show results of analysis for
segments a, b, ¢ respectively, using the 2x2x 2 finite element mesh. Results for
the 4x4 x4 mesh, on an arbitrary segment c, are given in Figure 7.34. In this
case, potential results are more accurate than in the previous one; the generalized
Zhu-Ziepkiewicz method shows better performance than local smoothing. Of
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~ourse, better derivatives result from mesh refinement., an expectation fully

borne out by Figures 7.33 and 7.34.
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Figure 7.31. Derivative in z direction along the line a: function 2 on
2x2x2 mesh. (») potential, (x)} direct differentiation, (o) Zhu-
Zienkiewicz and (0) local smoothing method.
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7.6 Differentiation of the Helmholtz equation solution

Both methods described in section 2.2.3 were tested using a well-known analytic
solution: the TM;, and TM,; modes of a rectangular waveguide. In the following,
the term mecthod L denotes the technique of using the Green’s function for the

Laplacian operator, while method H is the method using the Green’s function for
the Helmholiz operator.

Again, as in Chapter 4 the differentiation kernels of the Helmholtz

operator were evaluated using 20 terms of the summation in the tests reported
here.

A square waveguide was analyzed, i.e., the Helmholtz equation was solved
in a square region of side length = /2. Uniform meshes of triangular elements were
used to subdivide the region. For the TM,; mode results shown here, a mesh of
200 first-order elements was used, while the results reported for the TM,, mode
relate to a mesh of 32 third-order finite elements. Various derivatives of the
resulting solutions were computed. In Figure 7.35 a circular integration contour
embedded in the first-order finite element mesh is shown. The center of the circle
is at the point (0.75,0.75); the radius of the circle is 0.7.
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Figure 7.35. First order finite element mesh with a circle used in
accurate derivative computation.

Vertical derivatives (i.e., 3¢/8y) computed for the TM,; mode using the
mesh described are shown in Figure 7.36. Both methods have approximately the
same accuracy for r/R < 0.75. No loss of precision results from differentiation; as
can be seen from Figure 7.36, the derivatives actually have better accuracy than
the finite element solution itself. Figure T7.37 presents the results of the
corresponding computation using method H. Near the middle of the circle of
integration, r/R < 0.5, the second derivatives have about the same accuracy as
the approximate solution function. For third derivatives, the high-precision
region is smaller, about r/R < 0.2. It should be noted that a first-order finite
element solution does not even possess a second or higher derivative, yet the
differentiation methods correctly recover derivative information even in this case.
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Figure 7.36. Relative derivative error of TM;, mode from finite element
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(0), method H {x), direct differentiation (*).
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Figure 7. 37. Relative error in TM,; mode, usmg Helmholtz operator
kernels: original finite element solutmn (+); 9¢/3y (x), 8°¢/8z8y (O),
8°4/dz* (), 8°¢/0z0y* (o).

Results for the TMj; mode appear in Figures 7.38 and 7.39. Again, the
results obtained by the two methods have similar accuraéy characteristics for the
first and second derivatives: the error in derivative values is of the same order as
the error in the finite element solution. For the cubic elements used to obtain
Figures 7.38 and 7.39, a third method can be used: direct differentiation of the
finite element functions themselves. Compared to this direct differentiation, the
high-accuracy methods yield at least one, often two, additional correct significant
digits in the first derivative 8¢/3y, and up to three more significant digits for the
second derivative 8°¢/9z%. The second derivative values obtained by direct
differentiation are barely useful. While third derivatives can in principle be
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computed. they are so inaccurate as to be useless for any practical purpose.
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Figure 7.38. Relative error of TM;, mode, using third order mesh:
original finite element solution (+); in J¢/dy using method L (Q),
method H (x ), finite element differentiation (%).
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original finite element solution (+); in 8%°¢/dz? using method L (D), .
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7.7 Concluding remarks

All the methods studied are useful in some circumstances for coraputing first
derivatives; higher derivatives are accurately produced only by the modified
Poisson integral technique. In general, the high-accuracy methods are alse
computationally costly. However the converse is not true.

The proposed methods based on Green’s second identity appear to be
stable, reliable and highly accurate. Their accuracy is substantially independent
of position; it degrades near boundaries but accuracy can in any case be traded
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for computing time. This is the only method capable of finding high-order

derivatives. Its disadvantage is relatively high computing cost.

The extended Zhu-Zienkiewicz method provides better accuracy and
reliability than conventional local smoothing of finite clement solutions, Its

accuracy is still position-dependent, but less so than the conventional local
smoothing method.

Two methods are applied to computing derivatives from finite clement
solutions of the Helmholtz equation, both based on Green’s sccond identity. One
uses the Green’s functions for the Laplacian operator, essentially viewing
solutions of the Helmholtz equation as equivalent to solutions of the Poisson
equation; the other employs Green's functions appropriate to the Helmholtz
operator. The second approach is particularly attractive for differentiating
solutions of the homogeneous Helmholtz equation. It is capable of computing
derivatives of any order, instead of only up to the second order using the Poisson
equation approach, and it is computationally more economic than the first
technique. It uses integral kernels based on Bessel function series, and the use of
optimized polynomials or Padé approximations may further improve the
computational economy of this method without affecting its accuracy.
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Conclusions

The objective of this work has been to develop efficient and reliable methods for
high-precision derivative computation from finite element solutions. A
formulation based on Green’s second identity, using a fundamental solution,
meets this goal. The Green’s functions and generalized Poisson kernel function
derivatives required for this method were derived in this thesis for the Laplacian
operator on the circle, sector of circle, rectangle and sector of ring. Corresponding
functions were also derived for the Helmholtz operator using a circle as the base
domain. The method was evaluated and validated using several test problems
with analytical solutions, with results containing random error and with real
finite element solutions. A sequence of tests was carried out to cover typical and
special cases.

To treat special cases involving singularities, such as the normal
derivative on the edge, the finite part integration concept was used. Novel
quadrature techniques based on finite part integration were derived.

Two and three-dimensional generalizations of the Zhu-Zienkiewicz method
of gradient recovery are also new in this thesis. They are applied to numerically
integrated quadrilateral and brick elements. These methods are compared to the
conventional local smoothing method, and are included in comparative analysis
of the various differentiation methods.

8.1 Characteristics of the generalized Poisson integral method

This method relies on fundamental solutions of boundary value problems for
several cases and elementary regions. The work in this thesis has been restricted
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to scalar problems described by the Laplace. Poisson and Helmholtz equations.
Computational experiments confirm its superior accuracy compared to other

methods. In fact this is the only method capable of finding high-order derivatives
with high accuracy.

The proposed method has a negative error amplification. It is not
sensitive to data error nor to random obscrvational error. The sequence of tests
performed using results with uniformly distributed random error shows that the

accuracy of computed derivatives is usually higher than the data accuracy.

Two very important advantages of the new method are its stability and
reliability. Results of computation are not position dependent as they are using
other methods. Results are best at interior points of the base region. Accuracy is
reduced near boundaries, but in predictable manner.

Two methods of computing derivatives from finite clement solutions of
the Helmholtz equation in two dimensions are presented and compared. One uses
the Green’s function for the Laplacian operator, essentially viewing solutions of
the Helmholtz equation as equivalent to.solutions of the Poisson equation; the
other emplcys Green’s functions appropriate to the Helmholtz operator. The
second approach is particularly attractive for differentiating solutions of the
homogeneous Helmholtz equation. It is capable of computing derivatives of any
order, instead of only up to second order using the Poisson equation approach.

The model for axisymmetric problems described by Laplace’s equation
using a torus and a sphere as base regions is shown to be computationally
efficient, but less effective than for the two-dimensional problems. The main
difficulty is evaluation of Green’s function.

The principal disadvantage of the method is its relatively bhigh
computational cost.
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8.2 Characteristics of the generalized Zhu-Zienkiewicz method

This mecthod appears, on both theoretical and experimental grounds, to provide
better accuracy and reliability than conventional local smoothing of finite
clement solutions. In common with the local smoothing method, its accuracy is

position-dependent.

Because this method constructs a smoothed approximation from the
Gaussian integration points, its accuracy is essentially dependent on the accuracy
of potential values at these points. The advantages of this method include high
accuracy, locality of data, and simplicity in application. Computing costs are
relatively low, since all arithmetic operations are strictly local to a finite
clement.

8.3 Results of comparative analysis

The new method and the new generalization of the Zhu-Zienkiewicz method, are
compared with four other differentiation methods commonly wused in
postprocessing of finite element results. The results of the comparative analysis
and tests described in thesis are summarized in Table S.1. All the methods are
useful in some circumstances for computing first derivatives. Where first
derivative values of moderate accuracy are required, the conventional weighted
average method appears to produce acceptable resulis. The superconvergent
smoothing methods, based on extrapolation or interpolation from the results at
points of exceptional accuracy, produce better results than direct differentiation,
but their accuracy is strongly position dependent and restricted to first
derivatives.
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Table 8.1.

Summary of characteristics: Five approzimate differentiation methods

Cenclusions

Method Costs Position Accuracy
dependence

direct differentiation low yes low
weighted averages low yes good
local smoothing moderate yes good
extended Zhu-Zienkiewicz moderate yes very good
global smoothing high yes good
Poisson integral high no cxcellent

8.4 Further work

The generalized Poisson integral method proposed here has great potential for
further development. The following directions are suggested:

1} Extension to three dimensional problems.

2) Application to vector problems.

3) Optimization of existing algorithms. Eventual use of Padé approximations
may further improve the computational economy of integral kernels based on

Bessel function series.

4) Analyze the possibility of computing third order derivatives from Poisson

equation solutions.

5) Parallelisation of the method.
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APPENDIX 1

Poisson kernels and surface integral kernels for 2 circular region

Let the point P be located at (zp,yp) =(rp,8p), within a circle of radius R.
Similarly, let @ be at (zq,yq) or (rg,fg). Then the image I of source point Q
have coordinates (z;,y;) or (R*/rq,8g). Distances from the observation point P
to the source Q and its image I, and their derivatives are

shH= rgp+r6—2rprocos(9P~9Q) (ALl)
s3= r?p+%§—2r},%cos(ﬁp—9q) (Al.2)
Sq== g:i =220 = —cos(agthp) (AL3)
Soy = g:—i =239 _sin(agtop) (AL4)
_B
Sp.= aa::; = zP; Zr _ - sfgxq = —cos{as+6p) (Al.5)
Os; _yp—yr T %szq .
Sty=gy, =" =5 —= —sin(as+fp) (AL6)

The first ten Poisson kernel functions are:

2 _ 2
Q= L T~ ___ 1 ¢
Koo(PiQ) = —5 e % - Teg (AL.7)

SoTp =S, (1 —12
I{IO = Q=P Q,(rp rQ) = —s:%r czcos(aQ+9_p)—rTP COSGP (AI.S)
Q ;g SQ

R'TQ.S%
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Squp— So,{rp —r¢ 2
Ky = q¥p — Qy(;,P Cl = I,Q{ =sin(ag +8,) ——-\1119, l (AL.9)
] TQ.SQ Q J
N (1-455)(p—rd)—s5+4Saz502p
I‘-:O == 1
‘ETT‘QSQ
= "‘"-‘T?-Q{_COS(?Q’QTQGP)——ECOS(QQ'*“)GP)} (AL1.10)
SQ - *Q

_450.50,(rh—15) — -*Q(SQxyP+szxP)
Ky, =

0 T'QSQ
= —-ﬁ%é{—s:n(2aq+2ﬁp)—-—q—sm(aQ+29_p)} (Al.11)
_ (1 45 y)(rp—rq)—sQ+45Q,szp
Koy =
® TQ.SQ
=“2q{-——cos(2ao+2ﬂp) :Tpcos(aq+2ep)} (A1.12)
Q
Ko = 24853 (ro—15) + 650215 —2rp + s}.) + 659Tp— 24 5h. 59Tp
o = TTQSH
= —"?.Q{ Qcos(3o:Q+39P)——Qcos(2aQ+39p)} (Al.13)
K 2452QxSQ”(T‘f:—T2Q)+2SQy(2T2Q—2T2p+35=)
21 =7

7TQS0
SSQ:,SQyP + IGSQ:SQFSQ:L‘P— 28Qyp
TT‘QSQ

—?‘%—{%sinﬁaq +38p) - Bsin(2aq + 39,.)} (Al.14)
Q SQ SQ

I
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245058, (rp—18) +254.(2r5 — 2rp + 53,

1l

K,

T.Y'QSE
 +85%,502p + 1650, Souoyp — 250zp
' ‘.TTQ-SSQ
_ 6 ) TP os(?
=z Scos{3 g+ 38p) — =rcos(2ag + 36p) (A1.15)
s Q
K - 245%9(7-}’ - T'zQ) + SSQy(QTEQ - 2?‘2;: + Séz) -+ GSQyP - 245:{3”8(‘)3@:
0 TTQSH
=?%6{-C-:-sin(3aq+39p) —r—fsin(2aQ+39_p)} (A1.16)
SQ 0a)

The following general formulae are valid:

I{m.O(P; Q) =
(A1.17)

ml  [R*—r} ;
TFRsGTI S cos(mag + mfp) — r peos({m — L)ag + mbp)

I{m-l,l(P; Q) =

mt [RE=rd . _ (A1.18)
- WRSé‘". | % sin(mag + mép) — rpsin((m — 1)ag + map)}

and

K2k 2ilP3 Q) = (= 1) K. o(P; Q) for 2k < m, (A1.19)
Kook126:(PiQ) = (1) K 02 (P; Q) for 2k < m.
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The surface integral kernels for producing the first five derivatives of a potential
function are as follows:

Rs
JooPiQ) = — g logrr: (A1.20)

7. (P:0) = 1 cos(aQ-i-Bp)_cos(aI-i-Gp))
1 ’ -

s g 7 (A1.21)
8 ‘
Jo(P:0) =§1:(sm(aq+ P) sm(a;l-i- 9;.)) (A1.22

cos 2aQ +26p)  cos(2a; +26p)

57

Jzo(P Q =

4~

)-%5(}) -Q) (A1.23)

1 sm(2ocq+29p _ sin(2a; +26p) Log

In(P;Q) = T:r\ 3 T - (Al.24)
2 20 cos(2ap + 26

Joa(P;Q) =21—,,(°°S( “;;' p) _ ol ;’Q P))—%é(P—Q) (A1.25)
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To gencrate above kernels, a simple routine MATHEMATICA may be used:

KOO[x_.y_] :=-.5/(Pi R) cl[x.¥]/sq[x,y] 2

JOO[x_.y_-] := .5/Pi (Log[rq/R] + Leg[si[x,y]/sq[x.¥1])
Derivative[1.0][ecl][x_,y_] = -2 ¥
Derivative[0,1][cl][x_.y-] := -2 x
Derivative[1,0][sq]{x_.¥v-] := Sqx[x,y]
Derivative[0,1][sq]{x_.¥.] = Sav[x,¥]

Derivative[1,0][Sqx][x—_.¥-] :
Derivative[0,1][Sqx][x_,v-] :
Derivative[1,0][Sqy][x_.¥-] :
Derivative[0,1][Sqv][x—.¥-] :

Sqyfx,¥1"2/sq[x,¥]
- Sqx[x.y] Sqv[x.y1/sq[x,y]
~ Sqx[x.y] Sqv{x.v]/sq[x,y]
Sqx[x,¥]"2/sq[x,y]

Derivative[1,0][si][x—,¥=] := Six[x,¥]
Derivative[0,1][si][x_,v~] := Siy[x.v]
Derivative[1,0][Six][x—_.¥=-] := Siy[x,y] 2/si[x.y]
Derivative[0,1][Six][x_,y_] := - Six[x.y] Siy[x,y]/si[x,y]
Derivative[1,0][Siy][x—,y~] := - Six[x,y] Siy[x,y]/si[x,y]
Derivative[0,1][Siy][x_.v—] := Six[x,y]1"2/si[x,v]

oo

K[K—sy—§m—,n—

] KOO[x,y], {x,m}, {Y:n}J
J[x..sy—’LQH—]

[
[JOO[X,Y]! {x,m}, {st}]

-
-
.
-

[ )

Then, 2 kernel K5, can be founded by entering

K{x,¥.3.2]
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Second order kernels if observation point is on the edge of a circle

For point P(rp,8p) on the edge of a circle of radius R, first and second order
Green’s kernels are given by the following formulas. The source point is

Q(rg.8¢q)- Expressions for sg and « are given in section 3.1.2.1.

T1o(P;Q) = %%(SQ +2Rcosag) (AL.26)
Jou(F;Q) = -25:1—12%(34, + 2R cosag) (A1.27)
v _ (8o + 2R cosag) (sgcos28p + 2Rsin28psinag)
J20(P:Q)_ Q?RZSQ
(A1.28)
. —cos?8p8(P-Q)
(80 +2Rcosag)(sqsin28p — 2R cos28 psinag)
JII(P? Q) - 2‘4'-‘R25Q
 op (A1.29)
sin
~$2225(p - Q)
(s + 2R costg) (50 €0s28p + 2R sin28 psineg)
Joo P;Q) = — 2 2 Q2szsQ 2
(A1.30)

—~sin?8p6(P - Q)
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Extended Poisson kernels and surface integral kernels for a rectangular region
Let P placed at (zp,yp) be an observation point within a rectangle of sides aand

b. Similarly, let Q be at (z4,yo). Then the system of images is shown in Chapter
3 (section 3.1.2.2). The Green’s function for a rectangle has the following form:

G(P;Q) = X_:l Z:: Gmnl(P;Q)s (A2.1)
where
1 32mn34mn
Gan(P5Q) = Q;LO Srmn S (A2.2)

For brevity, introduce the symbols:

Tqm = Ig+2ma (A2.3)
Yon = yo +2nd (A2.4)
Smn = (Tom = =) + (Yon ~ ¥p)° (A2.5)
S3mn = (Tom +2p)* + (Yo = ¥p)° (A2.6)
Gmn = (Tom +2p)* + (Ygn + ¥p) (A2.7)
Simn = (Tom — zp)* + (Yon + yp)’ (A2.8)

The m,nth terms in Po'sson kernel function which corresponds to sides z = 0 and
z = a (with ’ -’ sign on front of all expressions) are

K zo0mn = ,_}E{(xq,,. +2p) (31— - -11—) + (Tom — Zp) (Eii - 11—)} (A2.9)

mn mn slmn
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- 2
K riomn = ':'_.-'yP yQ"{'-'—I"-‘-_(l (‘er + IP) (__ T 1 ))

s s
2mn “3mn it Jrnn

(A2.10)
-i-n—--—-l—..x,—:c)( +1))}
slmns-lmn( ( Qn F Slmn Simn
IQm T 7% Yon—Yp _Yon + yp
Kzoimn = %an{(—?—T‘TL)(?- yP( 9 .29 )+ 1)
$3mn SBmn c"rrm ‘-Smn
(A2.11)
(me zP)[ an +¥p an Yp
2yp -1
slmnhimn \ ‘-hrm "Inm
Kzoomn = %yPan (A2.12)

TQm+ Tp ( 1 1 1 ) ( 1 1 ))
22 P 4 (2gm 2 + + 3|+
{Szmn&mn( (2qm + 2’ S mnSamn - Samn)  \Bm  Saran

_ Zom - — 1 L) :‘1 P
ﬁ-_(4 ('tQm zP) (S mn T3 s4Imn S1mn + s:mn) 3(8;"“‘ N 83"‘“))}

$1mn sdmn

Ka11mn = 29gn (A2.13)
1 Yont+Yp Yp Yon—¥p
=51 (Zom + zp)*| S¥p ( + - )
{szmnSamn (( am +2)’ ( S SamnSamm Semn
2 2 Yor + ¥p an —¥p
1o e 2o ( ))
$2mn ssmn) yp 33mn 32mn

+y Yon—Vp
+ T—Tl (zgm=2zp)*{Syp yQ" Et yp2 -2
8 sl mn s4mn ‘slmn

$1mn sdmn 4mn
+1 _12_ - _52_) —2yp (an +yp anz_ yp))}
Simn  Stmn 84!1'"\ Simn
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K ro2mn = £Ygn (A2.14)

Tom T Zp 4 (yon + yp) | (Won—ve) (von-— ¥p)(¥on + yp)
P L N S S 33

33mn $2mn ‘Simn‘samn
1 1 ) ,,(yon-‘ryp yqn-yp)
- =2 -~ ) - a
$mn  $3mn $3mn S2mn

Zom = IP(4 yp((an +yp)’ + o= ) (on—yr)¥on+ yp))

4 2
sdmn S1mn F1mnSimn

1 1) o(yqﬁyp yqn—yp))}
Efrm': ‘sfrnn Sdimrl slmn

The m,nth term in Poisson kerncl function corresponding to sides y =10 and

2 2
S1mn S4mn

y = b (with ’ - sign on front of all expressions) are

Aymn-ﬁ—{(yqn ) (g2 )+(yq,,—yp)(-%——11—)} (A2.15)

Simn s3mn S$2mn lmn

n

n Tom—Tp ZTomTZ
I{ylomn = %sz{Tq"(yQ yp)(2 P( Q F_ Qm P) + 1)

sSmn “dmn 34mn 53mn
(A2.16)
(an yp) f (:er +2zp Tom—<2 P) )}
+ : -— -1
slmns2mn \ Somn Simn
K yomn = 52> ¢Qm{;4r1—ﬁ—(1 —2(ygn+yp) (?_ + -sg——))
mn vomn 4mn mn,
(A2.17)

+ T—T—(l —2(ygn—yp) (;lf—'l' -’-—'))}

S1mn $2mn mn S‘hﬂn
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Appendix 2 Kernels for a rectangular region

Ky'.’Ornn = '.:LI“'IQm (A2.18)

{an + ¥p (4 ((er + IP)Z (er - yP)2 ('er b ‘I.P)(er + IP))
5 = Ip + - m )

1 1

ae ae 5 3 - .=
“3mnSi{mn S3mn ~dmn Sdmin Sdmn

1 1 .)(IQm + Tp Tom—Ip
- 2 -= 2 ]
S3mn Symn, S3mn Sdmn

-
-

('TQm - ‘rP)(IQm + ‘TP)
o < Si - ) 5

ad ]
S
amn S1mnT2mn

Yon— Yp (4IP((me + zp)’? + (zgm—zp)

=
S1imn Samn Imn

__.l___l_)_g(IQm-i-IP_IQ’“ —IP))}
Stmn  S3mn S3mn Stmn
Ky =2 A2.19
Y11 = FTQm (A2.19)
) Zom + ZTp T Tom—2Tp
{Tl'i—((yqn +yp) (3 -'L‘P( 2 AR i L. )
3mnS4mn 3mn $3mn Simn ‘i-imn
9 2 Tom+Tp Tom—Zp
+1- -T—)-zzp( ~Zam ))
53mn Simn ngn 'S-Tmn
1 2 Zom *Ip Tp Iom = Ip
slmnsgmn(( Qn P) d ngn S'I,mn $2mn S':m,,
+1- 2 __2 )_gxp(QO'i'IP_sz“zP))}
Simn s‘gmn ‘s%mn s?mn
K yoomn = $TpTam (A2.20)

an+yp(4 2( 1 1 1 ) ( 1,1 ))
P L ) + + -3 +
{ 4mn3§mn ( ? d s:mn sﬁmnsgmn ngn simn ngn

_an_yP(4(an_yP)2(41 RS W )_3(21 ! ))}

2 4
$1mnS2mn $1mn NmnS2mn S2m S$tmn S2mn
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Appendix 2

Kernels for a rectangular region

The m,nth term in surface integral kernels:

JDOmn =

men =

JOlmn=

J 20mn =

+

Jnmn -

+

Jozmn =

s log Rmntimn (42.21)

Flmn ¥3mn

Ry

.{(zom-zp)(;.;l——s—;..l—)+(rqn.+xp}(%—— A )} (42.22)

«=TNnn mn

g;{(yo,.-yp)(; - )+(yqn+yp)(=1——-s§“-;)} (42.23)

2 2 b
Imn 2mn Simn

»
-

bX

1 {(sz —zp)’ = (You = ¥p) - (Tgm + Zp)* = (You — ¥p)
Stmn Shenn

(A2.24)
('ran + IP)Z_ (an + yP)'z _ (sz - z}’)2 — (an + yJ"")2

}—{;a(P—Q)

B3
‘53mn SZmn

hl
-

1 {(‘-’Qm —zp}(Yon—¥p) + (zom + ZP)(Yon — ¥P)

¥ 3¥mu s%mn
(A2.25)
(IQm + zP) (an + y.P) + (IQm - IP) (an + yP)
2mn S:Izmn
1 [ (zgm—2p) —(¥oa—yp) , (Zom+zp)’ — (¥ou —vp)’
27|~ T i e
(A2.26)
Y 2 2 2
(‘er + ":P)s% (an + yP) + (IQm ‘.r'.P)S2 (an + yP) } _ %6(.? _ Q)
mn 4dmn
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APPENDIX 3

Extended Poisson kernels for a sector of drcle of angle n/m

The Green's function for a sector of circle of angle =/m are given in section
3.1.2.3. Let P placed at {zp,yp) or (rp,0p) is the observation point, within a
sector of circle of radius R. Similarly, let the source point Q be at (zq,yq) or
(ro.80), then the system of images is presented in Figure 3.3. The Green's
function for a sector of circle has the following form:

m Tos; Tns Y
G(P;Q) =5= 2 (logfs—; - logﬁé;) (A3.1)
m $ '-13 i ket
=3z 2 W85G = L GUPQ) (A3.2)

where distances s are given by

shi=rh+ry — 2rprocos(fp — Oy — (i -~ 1)27) (A3.3)
s};:r}+—§2§— 2?‘?TQCOS(9P—6Q—(£—1)—%-‘;‘{- (A3.4)
Sgi =Th+TH — 2rPchos(9P+8Q—(i— 1)%) (A3.5)
N =r§;+% — 2rprocos(fp+ 8o = (i~ 1)2F) (A3.6)

For brevity, symbols are defined

Ip—Ig;

Y¥p—¥Yaqi -
Sqiz =—sgr— Saiy =g (A3.7)
R2 2
Ip —;.TIQ' ¥p _%yQ|
Stz =——357 Stiy=—%57— (A3.8)



Appendix 3 Kernels for a sector of circle

The ith term of Poisson kernels corresponding to sides (8o =0 and 65 = 7= ) of

the sector are

K gooi = rq. TSR YPToi— TPV (-1—-- e ) (A3.9)

2
SQ‘

. r2S Soiz 2
I\ami=ro.. rom(YpToi— ZrYQi) "’ Q )-yQ;(%f—-Ey-%j) (A3.10)

Ln

L4 2 : S N 2
Kgoyi = rox (vpzoi — zp¥oi)| Bomit =228 | 4yl L £ L (A3.11)
? R i SQi : i

o2 oy 358iz = Sty _ R235%i:— STy
Kygooi = FQT(ypro. -'CP.?!Q.)( 3?.? .' 7'20 o
+ 4y SQt‘: _R? Ste (A3.12)
Yai —‘;g:'_ TQ S
=S SqizSqiy _ R*S1::51:
Ko =ryzypzqi— 3?3&;:;)( QS’&;Q - 2 Sk :
S N R-S“ (A3.13)
+oa{ -5
I{ ' = 2 (y T —IpY ) 3520‘”'_52!: R23SIIV l!:
fo2i — TR \IPQi PYQi 35 ) r2Q Sh
Sqiy_ R2Sriy (A3.14)
4%"( SQi —?5 St

- 2S::S,= Ii S,:_.S‘: :
1\630!. 24 (yPIQ:_-""qu. (R i ( I y) Qi ( Q Qy))

St SQ.
(A3.15)

35%i:— Saiy, _ R235%i ST
+6yq.-( = "-.:% 18}. Iy)
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Appendix 3 Kernels for a sector of circle

-3
-

- 25, (555, — 53, Soi (383, —S3,
Koni= CS)(yP'TQN"'-Tqu,)(P 13y (957 Tiy) _2qiy( Qi Qw))

"h Qn

+ lﬁyo.’(so.-xso;y R"Shrshu) (A3.16)

e —— ol
r "
Q .s‘&,.- To st;

+2yq.' 35%::— Shiy _ R?35%:—Sh,
T‘QT-' 34 . T2 s-i_
Qi Q I

- -S, DS.: SI S'as2lx S‘
1\9125 = “Tow .(szQ|—Ipr,)(R ! y( ! { H) Qiy ( Fa) u))

sh qQ'

+ 16yqif SqizSoiy _ stli:'sfiy)

9 A3.17
T\ e (340

o+ 2yQ:(352Qiy— ‘5%1:: R"3S!m S?i:)
Ii

TQ® soi r‘Q s

2513y (Shy = S%ie) _ Sain (Shiy = Shie
Ksosi=%é-..=(ypzq. -'rpr.)(R zi “' I )_ Qi qu_ Q ))

T st S0
(A3.18)

T'Q?u' 4

+ 63{2:‘ 352Qt'y - SzQi:_ R235"';'-y - S}i:
8?;:.' ”zq S

Note that kernels for side o= w/m have the '—’ sign in front of above
expressions.
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Appendix 3 Kernels for a sector of circle

Poisson kernels corresponding to arc ro = R (0 <8, < #7 ) may be obtained from
Poisson kernels for a circular disc, presented in Appendix 1. It is easy to prove
that the 7jth order kernel will be

Kr.',‘("P, 6piro,b0) = (A3.19)
2 {Ki:("m 8pireu0g + (n— 1)FE) = Kirp,8pirg, — 6o +(n - 1)—,%)}.

Using the same reasoning, the surface integral kernels are obtainable from
kernels for a circular disc, also presented in Appendix 1. The formula for ijth
derivative kernel is

Ji5(rp8pir0.00) = (A3.20)

Z {J"J(r'p’ Opi T GQ +(n— 1)%7"-1::) - J:‘J ) BP'; T — 9Q +(n— 1)'2??‘?)}

n=1

Also, like in the cases of circle and rectangle, the term —%S(P; Q) should be-
included in expressions for Jyo and Jg,.
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APPENDIX 4

Extcnded Poisson kernels and surface integral kernels
for a scctor of ring of angle 7/m

Let the point P be located at (zp,yp) = {rp,8p), within a sector of ring of inner
and outer radii ¢ and b, respectively and angle =/m. Similarly, let @, be at
(zoyyq) or (ro,0p). Let the image @, of source point Q have coordinates
(zgy ~yq) or (rg, —8p). There are (m ~1) pairs of images Q; and Q,, i = 2.m.

For brevity, introduce

_ r'..'Qn - g®n T‘?: b‘zn - TS‘ an
'Aﬂ - b — a‘.’.n?g p2n — gon 1‘?: ra
e A, _ n [T a® Pt gam
arp TP \|pn — aang bon — gin rPTQ‘
_ 13«4.._ 1 r:;:u_a2nt§- _ b'..‘n_rzpn az"
) aT'Q TTQ |pn — gon S BP_gin r;rs

_9B._ »n {2“+02"r3+ "y a‘"}

b2n Zn;:g bR gtn Ty Ta

Then, second derivatives of A, and B, are given by

4 1
an —T'P n T-Pc“
5B _n? 1
% =15 315
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Kernels for a sector of ring

Appendix 4

The Green's fanction will take the form

m sinn(6 sinné -
G(P;Q)=2—117-Z(Iog 25, Sl Q) (A7)
1=l n=1
= ZG,-(P;Q) (A4.8)
=1
where
w;=(I— l) &= (A4.9)
spi=rp+rH — 2rprocos(fp— g —w;) (A4.10)
Shy = rp+1hH — 2rprocos(fp +8g + ;) (A4.11)
Then, the Poisson kernels corresponding to sides 85 = 0 and 6, = 75 are
K aG TPT'QISIII(GP - 9Q -_w, ) sm(GP -+ GQ - w,-)
\8003 aeq = 20‘ l S%l' ssi,
(A4.12)
- %: i"{n sinn(fp — w;}cosnbg.
n=1
- Yai rpsin(fp — 0g - w;){zp — 24:)
Kori = ..rQ = z ?_ 3 g (A4.13)
"TQS0i A SQ"
+ yo‘-t T'pSin(ap + eq -— w,-) (3P - 270‘-:)
277‘0 qul-f 7840‘-0

;;‘I:Taf—zn.A cosn(fp — w;)cosnfy

E;%E > C,.sinn(fp — w;)cosnq.

n=l
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Appendix 4 Kernels for a sector of ring

To; rpsin{fp ~ 8o — ;) (yp — voi)
Keoi = — +

T >y (At.14)

__ Zoe Tesin(fp+8p—wi)(yp—you)
27rg .s"él., :s“Qi.

cosf cosbp

5T Zn.A cosn(fp — w;)cosnfy

+§f=.]3,:9—}3 > C.sinn(fp — w;)cosnfy.

n=1

rprosin(fp — 0o —w;) — 2y0:(zp — zo;)
Kooy =

—s (A4.15)

4rpsin(fp — 8 —w;) (zp— zq:)
w S'é,'

Tprosin(fp + 8g — wi) — 2ygu (zp — z4;)
-+ g
' Q Q"'

4rpsin(p +8g — w;)(zp — :..r',;?'.,)2

.-..sg...

%‘%ﬁ% Zn(——.ﬂ. -C )cosn(e p— w;)cosnbg

n=1

f:‘c:_s;?f_g Z(n A, —C )s1nn(8p — w;)cosnby

$Q;(IP = Toi) — Yqi (.UP — ¥qi)
wTQ $4Q,‘

K = (A4.16)
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Appendix 4 Kernels for a sector of ring

_4rpsin{fp — b~ w;) (zp — 20:) (yp — yai)
??S%,‘

+ -'rq."(zP = Tgu) = yq."(yP = You)
wTQ Sal-t

4rpsin(fp + 0g — wid{zp — 24:) (¥P — Yoir)
w sgit

cos28p & 11
—#TpTg n=ln(FF-,.An - Cn)cosn(ap — w;)cosnby

sin28p & 1,2 .
+ 77575 3 (Fohn = Ca)sinn(8p — w)cosnd
Ky, = L2resinle =g —wi) = 220:(yp = vo) (AL.17)

T Sa;

_4rpsin(fp — 8o —wi) (yp - yQi)2
‘:TS%;

reTo sin{fp + 9Q - w,‘) - ?--TQ," (yP - yQ;")
+ )

_ 4rpsin(fp +8g — ;) (yp — yq.")z
Trsgl-f

sin2fp 2=
- :.-rprg ;n(-,%;in - C,,)cosn(G p—w;)cosnfg

cos28p & rn? .
- TS n:l(?'F-An - C,,)smn(é‘ p—w;) cosnby
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Appendix 4 Kernels for a sector of ring

For the arcs the Poisson kernel functions become

- aG.'
K g = o
TQ—T'PCOS(gp—GQ Ll-’) rQ—rpcos(GP-i-eQ—u. ) (‘\4 18)
2 M SQ' 2 " ._Q ) :
1 o0
- Z:I‘.B,, sinn(fp — w;) sinnfg.
n=
- IQ.‘ [T'p COS(GP - 9Q - w,-) -_— T'Q] (.'L'p haet .'L'Q.')
Koo = ST S oy (A4.19)
PAary Q Ql f Q'
_ IQ‘-! [TPCOS(GP'*‘GQ—‘ w;) —T'Q](x‘p"" xQ'-o)
2 ers'lQ'.. r.'.s“Q'..
+ ‘?11;9_2 > nB, cosn(fp ~ w;)sinnfy
n=1
cosfp & . .
- =5 QP nz=:1 D, sinn(fp — w;) sinndy.
Yoi [rpcos(8p —8g = w;) — 7ol (¥p — ¥qi)
Koo =2?T‘Q52¢_ —5 (A4.20)
i Qi
___Yor [rpcos(fp +6g—w;) — rq] (yp— yQ.--)
2TTQ Sé‘-: ‘:TS"Q‘-:
D0
- %:?;L,% > nB, cosn(fp — w;)sinnfg

n=1
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Appendix 4 Kernels for a sector of ring

.. 8 ~5 . .
- bJJAnT'QP E%II s ”(ep - '-'|) s TEGQ.

n=1

) rprocos(fp —8p— ;) =15 + 2zp,(zp — Tp;)
Kpagi = =2 2 ersa-Q 2 Q (A4.21)

+ 4[rpcos(fp — g — wi) = Tol(zp — 2q:)°
(]
“TSQE

N rprecos(fp + 8 — ) =14 + 224, (zp — 24y)

- 4
4 T'Q SQ.-I

4[rpcos(8p +8g—w;) —rol(zp— :zQ'.,)2

J]
" SQI"

sin2fp & .
- 'ﬁ“iﬁ% Z:l n(-,-.IFEBn - ‘J),,) cosn(fp — w;)sinnfq

cos28p & 12 . .
- Wg HZ:IGEFEB,, - ?Dn)smn(ﬂp - w;)sinnby

Koy = — Yoilzp— Iq:)r'l' Zqi (yp —yai) (A4.22)
0 QSQ.‘

+ 4[rpcos(fp — 6 — w;) = rol(zp — 20} (¥ — Yai)
® Sg;

+ You (xp— ""'Q.") +Zgp (yp— yQ.")
wTQ SE;'

_ 4[rpcos(8p + 8 — w;) —rol(zp ~ 2oi) (¥ — ¥oi)
78S,
Qi

cos28p = .
+ Wg };n(-,%sa,, - ‘.D,,)cosn(ﬂ p — w;)sinnbg

- 216 —



Appendix 4

Ko

Kernels for a sector of ring

sin26 . .
—= T"P’"g Z(”P‘.B,, D )\111::(9;; — @, )sinnfg

TpTg COS(BP - BQ - (-‘-‘") - Té -+ 2ng(yP - le)
WT‘QS"Q;

(A4.23)

+ 4[rpcos(fp — 8 — wi) —ro](yp — I«'Q:‘)2
-l
" ‘Qt

N rprqcos(fp + 8o — ;) =g+ 2¥gy (¥p — You)
WT‘QS.‘Qit
4[rpcos(9p+9Q w;) —rqllyp— yo.)
[ SQ 1

sin28 P

+ nTpTQ

Z (.T.._‘.’B -9 )cosn(ap — w;)sinnfy

n=1

l)
+ %%_gg _1(7—2-‘53,; - ‘.TJ,,)sinn(B p—w;)sinnfy
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Agppendix 4

The surface integral kernels are given by:

Soit ] iinsmn(ep w;)sinnfg

Kernels for a sector of ring

Tooi = 3710856 — % 2 n (Ad.24)
_IPp—Tor Ip—ITg; .
J10i o squ.. 27 st (A4.23)
+32%2 $* 4, cosn(Bp — w)sinnt,
n=1
02 16 Gian(6p — wy)sinnf,.
n=l
_¥p—Yor YP—Yoi
Joi = 2 z's:é,l.. 2nsh; (A4.26)
COSBP 75 O Ancosn(fp —w;)sinnfy
n=1
smGP Z C,sinn(fp — w;)sinnby.
n=1
(= ’ P (zp—2gs) — (¥~ You)
Jo. =P zoi) — (yp~yai) _ZFp—Zoy Yp— Yo (A2.27)
201 - 2:34Q|‘ 27‘_54Qi' SAT.
sm..ﬂp Z( )cosn(ﬂ p— w;)sinndq
_ cos26 . .
- pP ;( %Cn)smn(G p—w)sinnbg — %G(P; Q)
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J _(zp—xpi)(yp— Yoi) (7p— IQ:"){yP - yo.")
14 — o3 - -
I Q' L Q'l
cos26 .
T2 (k= Co)cosn(Fp — wi)sinnd
sin20p &= . .
- "'TPP ;(?%An - }TC“)Slnn(Gp —w;)sinnfg
(‘tP - .T.. ) (yP yQ: )- (IP = le) (yP le)
JOZi = 2_‘.\'5_' > Q
sin26
L T‘PP ;( rlp.iln ¢ )cosn(B p— w;)sinnfg
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APPENDIX 5

Extended Poisson kerncls for the Helmholtz operator on a circular region

The Poisson kernels required for derivative evaluation are lengthy; their
algebraic derivation is both tedious and error-prone. Kernel functions were
therefore determined by means of a symbolic algebra package, and the results are
recorded here for future reference. Let the point P be located at
(zp,yp) = (rp,8p) within a circle of radius R. Similarly, let @ be at (R,8p). Then
the boundary integral kernels for producing the derivatives up to third order are
as follows. Introduce, for brevity,

o VI
fS",' )= (T;;i)n Ji s j(8p). (5.1)

(Note that { and j are summation indices, not imaginary units.) With this
abbreviation,

Ku(P;Q) = S a; fi ocosifp — i8] (A45.2)
=0

KmolP;Q) = z d.-{ — fiacosfpcos[ifp — i8]

i=0

4if;qcos[(i—1)6p— iaQ]} (A5.3)

Kya(P;Q) = id.‘{— fiqsinfpcos[ifp —i6g)
i=0

—if; ocos|(i— 1)ap_faq]} (A5.4)
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Appendix 5 Kernels for Helmholtz operator

KpolPiQ) = 3 ai{(f,-.zcos=9p = (i+1) fi)coslif — i)
=0

+i( = fia+ (= 1) fro)cos|(i - 2) 6, — "901} (A5.5)

Kgn(P:Q)= i ﬂ.-{f.-_g costpsinfpcos(ifp — i8]
i=0

+i(fia = —1) fio)sinl(i—2)6p - faQ]} (A5.6)

KpoP;Q) = _ioa.'{(f i2sin®dp — (i +1) f ,)cos[i 8p—i8g)

on
-1
[—

+i(fs -(i-1)fi.o)¢°5[(i—f’-)ep—f9cﬂ} (4.

K 12o(P;Q) = f: a,.{( — fia¢08%0p + (i +3) f:2) cosfpcos(ifp — i8g]
1i=0
+i(f:,2¢05%0p — (i+2) £, )cos((i — 1) 8p — i8]
+i(fi.2— (i—1) fi.1)cosfpcos](i —2) 6p — i6g)

+i(i = 1)( = iy + (i =2) £ o)cosl(i ~ 3) 0 - fsql} (A5.8)

I{HZI(P; Q) = i a,-{( - f£'3C0529p + (i + 1) f,'.z) SinapCOS[i 9}5 - I'GQ]
i=0
+i( = fi2¢05%0p +i fi 1 )sin[(i — 1)8p — i8]
+i(f;a— (1) fi,)sin6pcos|(i — 2) 8 — i6g]

+4(i = 1)(fia — (- 2) fi0)sinl(i - 3)6p - iGQ]} (A5.9)
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Appendix § Kernels for Helmholtz operator

Kina{P;Q) = ‘ioa'{( i38in%8p + (i +1) f; )cosﬁpcos[zap— 180)
-;-z(f,gsm 8p—1if, )cos[(i—l)ap—iﬁo]
+z( fia+ (=11 1)C056PC05[(2—2)9P—19Q]

#ili=1)far =2 fao)eosl~)8p i8]} (35.0)

K 5os(P;Q) = ; a'{( 35i0%0p + (i 4 3) £ ») sinb p coslifp — 6]
+i( = f125in%8p + (1 +2) f1,1)sin[(i — 1) 8p — 16g)
+i( = fi2+(i—1) fi1)sindpcos|(i — 2) 6 — 6]
+i(i—1)( = fia+(i—2) fi o)sinl(i - 3)6p— ieQ]} (A5.11)
The coefficients q; are given by

=g fvinitr - TR, m) (45.12)
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APPENDIX 6

Formulae for differentiation of harmonic function in axisymmetric coordinates

Differentiation formulae for a torus
The base formula for potential inside the torus given by

8(0,8) = x(08) 3 { ancos(nf) + bysin(nB) } Q. (coshe), (46.1)

may be rewritten as follows:

8(0,8) = x(8) 3 £u(B)Quypa(coshe). (A6.2)

Functions .x(a, B) and Qy,.,/, are defined in Chapter 3 (section 3.2.2.1), as well as
coefficients a, and b, and toroidal coordinates.

If function B(B) is defined by

2,(6) = } %P = - asin(nh) + bcos(nf), (A63)

-

then derivatives with respect to toroidal coordinates are

aé(atz, sE:hi) z (n + ) a(8) Qg1 /2 (coshar)

§1(nhi){°°5ha > 2 A(B)Qpy2(cosha) (A6.4)

n=0

coshacosf—1 &

" 2(cosha— cosf3) Z An(8)Qnrp2 (COSha)}

n=0
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Appendix 6 Differentiation in axisymmetric coordinates

aé)TU.E—'B—) = X(aa ﬁ) io nc'Bn(.B)Qn.]/: (COShO)
) (A6.5)
"3 (éﬁ:hf = B) i; An(B) Q2 (cosher)
2 [="=]
e > (r+ )+ 3)48) Qs (cosba) (A6.6)

- x(a, ,8){2—‘%‘% i (n + %)(n + %)Jtn(ﬁ) Q4172 (cosha)

C
sinh®a =4
—m2(""'%)An(ﬁ)Qn.i.l,g(cosha)}

+ x(e, 5){%’;%;—3 > n* Ap(8) Qn.yj2(coshe)

-

cosh?e _ 2cosha —cosf | &
+ (2 sinh’a  cosha — cosfB ngon A (8)Qpa /2 (cosha)

3cosh’ar _ 1 _ sinh?a co .
¥ (4 sinh’e 2 4(cosha— cosﬁ)z) nz=0 Aa(B)Qnzyz(cos Q)}

TG XA S (14 3)30(6) Quacosi) (a67)

+ x(e, B){%&% i n(n + %)EB,,(ﬁ) Qn.1/2(cosha)

n=0

T2 (cosiizl%cosﬁ) f: 7 B,(8)Qn f2 (COShG)}

n=0
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M2t (4 1Y A (8)Q, 45 cosha)

2sinha{cosha — cosg) &

i n An(B) Q.12 (cosha)

" (cosha — cos3) =

+ x(«, 8) coshasing
2sinhe

+ cosha cosf — 7 3 z A ﬁ)Q“/.,(cosha)}

2(cosha — cos [3

*¢(e,8) _ )sinf
as5° coshcr ~cos3 &= z Q1 /2 (cosha)
= X(@,8) 3 1 A4(8) Quua cother) (AG.S)

- -1-(1 sinh’e ) E AB) Qa2 (cosha).

(cosha — cosB)*

Using expressions from 3.2.2.1

s sinhasinf 98 _ coshacosf—1
3_ = - a = <
o _  coshacosf—1 : da _  sinhasinf
o € 3? - ¢
ax(c;, B) __ sinha;:osB (e B) 3x(at':"- ﬁ) coshasmB (@ ).

derivatives with respect to r and z may be found as



Appendix 6 Differentiation in axisymmetric coordinates

08(0,8) _ 6(0,8)gq , 36(,3)08
or ~  Oa Oor a8 or

sinhacosﬁé(a,ﬁ) + X(C:';ﬁ)x (A6.9)

- T 2¢
{ —sinhasinf3 f: n{ —a,sin(nf) + b, <:os(nﬁ)}Q,,_I j2(coshar) +
n=0

1- c;;?;“’sﬁ }: ( ){a cos(nB) +b Sm(ﬂﬂ)}Qn-n sz {cosher) +

1 — cosha cosf cosha i (n + :l;){a,, cos(n3) +b, sin(nﬁ)} Q2 (cosho:)},

sinha =

9¢(e,B) _ 9(e:5) oo 982 F) %ﬁ

s =" %a 6:T 0P
_ cosho:csinﬁ (e, 8) + x{e, B) « (A6.10)
{( 1 + coshacosf) z n{— a,sin(nB) + b,cos(nf }Q,, 1/2 (cosher)
n=0
—sinf nz_;(n + ){a cos(nf) + b,sin(nf8 }Qn-{-l j2(cosher) +
coshasinB E (n + %-){a,, cos(nf) + b,,sin(rq(:?)}t;,),,_1 /2 (cosha:)}.
n=0
The second order derivatives may be found as
*é(e,B) _ 9%, B)(a 96(,8) 5% , 59°¢( B) 5098
I T \?ﬁ) * 50 a7 2 3208 oror
(A6.11) .

L P(e,8)(98Y | 88(euB) 5%
a8~ \or 98 o
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¢(a,8) 32¢(a.,3)aa.a__a ddé(a.8) 524 azé(aﬁoaﬁ
drdz = do* Ir oz da Ordz" Badd Or 0:
(AG.12)
L 09(e,8)0808 , 96(0.0) 9% 0°¢(a.5)9q 03
0p* oro:z 88 Ord:" Gald3 O=0r
8°9(c,8) _ 0°6(c8)(aar) + 30 B) g | 480(e,8) 9008
9:° 8 \3: da 92~ 9adB 0:0:
(AG.13)
L Fo(,8)(38Y |, 06(0.8)5%3
BEERCE 98 8z
Differentiation formula for a sphere with the center on z axis
The general m,nth derivative of a harmonic function at point (p,z) is
am+ng ji+m + n pY
pdz R""“":'lsm"'a z s k f-""""""(R) % (AG.14)

=0

{ ‘;( 1) ( )cos‘ﬁ Pjim. L(cos&)}

Coefficients f; are given in Chapter 3 (section 3.2.2.2).
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APPENDIX 7

Application to modcling of anisotropic soft magnetic materials

The paper ‘Differentiation algorithms for soft magnetic material models’ by P.P.
Silvester and D. Omeragié was presented at 1993. International Magnetics
Conference (INTERMAG '93), which was held April 13 -16, 1993. in Stockholm,
Sweeden. It will be published in IEEE Transaction on Magnetics, Vol. 31.
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Differentiation algorithms for soft magnetic material models

Peter P. Silvester and Dzevat Omeragié
Department of Electrical Engineering, McGill University
3480 University Street, Montreal, Canada H3A 2AT

Abstract — Anisotropic soft materials are fully
described by mapping the stored energy or cocnergy
density over the space of flux density or magnetic field
componcnts. This method requires accurate numerical
differentiation' and reliable data. Two algorithms are
described; one is fast and suitable for starting Newion
iterations, the other is more costly but yields accurate
sccond derivatives. Current laboratory techniques are
sufbciently accurate but measurements must be spread
over the coordinate space so that numerous points lie in
the multidimensional knee region of the material.

INTRODUCTION

Of the various methods available for numerical
modeling of soft magnetic material properties, the most
cconomic for data storage was described by Silvester
and Gupta [1}. They showed that the stored energy
density w and coenergy density w' are given by

' = I:{ B(H)-dH; w= I: H(B)-dB. (1)

Consequently, the field H can be recovered from stored
values of energy density, a scalar, by differentiation in
a space defined by the flux density components:

An analogous expression is rea.d:ly obta.med for B as
the gradient of coenergy density, B=Vyuw'. It thus
suffices to store either w(B) or w/(H), and to form
gradients with respect to the components of B or H as
needed. This requires an accurate method of differen-
tiating numerically stored data. The present paper
gives two algorithms and shows briefly what levels of
accuracy are required in order to recover fields reliably,
as guidance to experimentalists as well as analysts.

DIFFERENTIATION BY PO1SSON KERNELS

The energy-based material model requires a
differentiation algorithm of good quality. Because the
usual form of Newton iteration requires second as well

Manuscript received February 15, 1993. Work supported by
the Natural Sciences and Engineering Research Council, Canada.

as first derivatives, the best available method (indeed
the only one to yield sufficiently accurate second deriva-
tives) is the Poisson integral technique of Silvester and

Omeragi¢ [2]. To employ this method, the energy
density w is differentiated twice:
8 w , 8w
+—==r(B 3
3B_: 68 (B)- )

A similar de\.clopmcnt applies to coencrgy density w'.
The source term 7(B)=tr(s,), the trace of the
incremental reluctivity tensor of the material, is
obtained from the experimentally known values of w.
The differentiation methods for solutions of the Poisson
equation are then directly applicable to w(B) of (3).
Applying Green's second identity to the solution yields

wp= - [ _G(PQI(B(@)ang “
T - ugVeG(Pi)-asg

where G(P;Q) is the Green’s function for some region
£2 that embeds the point P. To find derivatives of w,
equation (4) is differentiated. In this process, the diffe
rentiation operator is applied to the Green's function
G(P;Q) and its gradient ¥ G(P,Q), functions analy-
tically known for some su‘nple regions £2. Thus

am-l-n

W= J nJmn(P;Q)T(B(Q))d'QQ

- § 8QWQ Kmn(.P;Q) . dSQ .

The kerne! functions J,,,, have been tabulated (2] and

Kl P10) = G5 VG (PiQ). (%)

In effect, numerical differentiation is here replaced by
analytic differentiation and numerical integration. This
process is so stable that the source term 7{B(Q)) may
be computed by a simple finite-difference algorithm
from the stored energy density. Numerical evaluation of
the singular surface integral in (5) is computationally
fairly costly. However, the precision of this methoed is
largely independent of the order of derivative,

In ecariy development of this differentiation tech-
nique, a ciccle was used as the integration region 2.



However, for magnetic material models the rectangle is
preferred, for it allows direet use of data tabulated on a
rectangular grid. The Green's function for a rectangle is
readily obtained by the method of images:

G(P:Q) = _,,_r Z Z log ~2mn Smn_ b-mnsdmn ‘ 7

3
m=1ns lmn~3mn

where sy, (k=1,2,34) are distances from the
observation point P to images of the source point @ in
cell (m,n) of the rectangular grid.

DIFFERENTIATION BY LOCAL SMOOTHING

A second, computationally cheaper, method for
finding derivatives is a local smoothing technique based
on that of Zhu and Zienkiewicz [3]. Let the B-B,
plane be subdivided into rectangular cells. A four-para-
meter least-squares fit can be constructed on every cell
of the space, by taking approximate derivatives (e.g.,
by a differencing technique) and improving them by
adding Legendre polynomials P_{B) ir both directions:

= (ff )t el Bt 8)  ©®

and similarly for H[. Here p is the order of approxi-
mation, H3 the |mproved derivative value. To find
values for the set of four parameters {e;[i=1, ...,, 4},
the squared residual is minimized,

a(Hz) | 8, ’
%LI(%—J -é—-)- r(B)) dB.dB,=0. (9)
[

This method can only produce first derivatives with rea-
sonable accuracy. It is fast, but it only provides subqua-
dratic convergence of Newton iterations. It may be
attractive at the start of a Newton process where the
convergence rate is anyway poor [4]. Since its fixed
point is independent of second derivatives, Newton itera-
tion still converges to the right solution, even if slowly.

ERROR SENSITIVITY

Numerical differentiation is usually considered an
error-sensitive process, in which data error is magnified.
A major concern is therefore the accuracy to which
energy density maps must be measured and stored. To
explore this question, error was deliberately introduced
into the energy map of a hypothetical magnetic
material, one whose properties are generally similar to
a real electrical sheet steel but have an exact, analy-
tically known, form. This material is characterized by

w=py exp(B2 + a,B )+ p-.(B‘ + 0282) +p3 (10)

An cqual-energy contour map for such a material

appears in Fig. 1, for the parameter values used in
much of the subsequent ecrror study: p, =1.000,
o, =3.000, p, =10.000, g, =2.000, p3 = —1.000. Its
surface is roughly parabolic ncar the origin, as might be
expected. The knee region of its B-H characteristic
corresponds to a rapid change in slope of the encrgy
surface near the upper and right edges of the map.

1
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Fig. 1. Equal-energy conlours used in error.
propagetlion studies, plotted in B____—Bv plane.

Assuming that the measurement procedure contri-
butes negligible systematic error, the data used in com-
puting fields can be taken to consist of the energy den-
sity given by (10) plus some random error. Computa-
tional experiments were therefore carried out, in which
randomly distributed error (white noise) of known
amplitude was added to the energy density of (10), and
the error in field was correlated with the error in the
stored energy density w.

The performance of the Poisson kernel
differentiation method is graphically depicted in Fig. 2.
What is plotted here is the ervor emplification, i.e., the
ratio of peak error in the derivative to peak error in the
energy density data. As may be seen, the error in
derivative values is actually lower than the data error;
that is to say, the Poisson kernel differentiation method
attenuates data error rather than enhancing it. Plots
are shown for two cases: §w/8B,, (lower trend line and
points marked ) and 82w/8.Bzv (upper curve and DO).
Both derivatives are more accurate than the data, by
about a full significant figure. The apparent downward
trend of derivative error with increasing data error is
probably not of significance, given the scatter of data
points in Fig. 2.

Error behavior of the local smoothing method has
been investigated in detail and the results will be repor-
ted elsewhere. It is significantly better than divided dif



ference interpolation, but still yields much larger error
than the Poisson kernel technique.
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Fig. £. Error amplification by the Poisson
kernel differentiation process.

DATA REQUIREMENTS

Energy density plots for magnetic materials are
rare; experimental data are usually presented as sets of
scalar B~H curves in various directions. These do not
always correlate well with each other, and sometimes
hide those features of the w—B map that the analyst
finds most valuable. High experimental accuracy alone
does not yield usable energy maps; experiments need to
be guided by the computational model that will eventu-
ally use the results. To illustrate, Fig. 3 shows the
measured energy density distribution of a typical trans-
former steel. Although the experiment was conducted
with great care and excellent equipment, the resulting
plot is unsatisfactory for the models discussed here. The
unexpected cusps and rough patches in it appear to
result from a sparsity of data points in critical areas.

The measurements for Fig. 3 were taken as a fami-
ly of curves in five well-spaced radial directions. This
material exhibits anisotropy ranging from about 3:1 to
more than 10:1, so that radial lines in the B_~B, plane
intersect iso-emergy contours at small angles. Interpo-
lation in the directions of steepest descent is therefore
unreliable. Unfortunately, it is just there that high accu-
racy is needed! The authors believe that a similar num-
ber of data points (a total of about 200) would be ade-
quate if they were (1) distributed along contour and gra-
dient lines, i.e., roughly following the shape of the
energy map, (2) concentrated in areas of rapid change
of gradient. The latter correspond to the knee region
(region of rapid change of curvature) of a scalar B-H
curve. At issue here is not the experimenters’ skill or
care. On the contrary, present measurement techniques

seem adequate to the task, and typical quantities of
data appear sufficient; it is rather that in the absence of
a clear computational model, the experimentalist
cannot know in what regions data should be concen-
trated. All comments made here are intended to help in
this respect.

w(Ete.Op)
400 600

200

Fig. 3. Energy surface for anisotropic sheet,
roughened by poor placemcnt of data points.

CONCLUSIONS

The stored energy density representation of
magnetic material properties, when coupled with
differentiation methods based on Poisson kernels, yields
numerically stable interpolation of multidimensional
B-H characteristics without undue requirements on
accuracy of the underlying numerical data.
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