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Abstract

In this thesis a method based oa Green's second identity is de\'doped for

computing se\'eral orders of dcrh'ati\'Cs from finiic clement solutions \\'ilh Co

continuity. The intcgration by parts implicit in Green'5 theorem permits

numerical integration to replace numerical differentiation. This procedure is

initiall)' de\'eloped for harmonic functions, then extcnded to Poisson and

Helmholtz equations for a circular region. as \\'e11 as to harmonic potentials in

axi-symmetric coordinates. For the 2-D Laplace operator thrce other base rcgions

],:"'e been introduced: rectangle, sector of circle and sector of ring. The method is

numerically stable, position independent and \'er)' accurate. Its accuracy is thc

same as of original finite element solution, or e\'en better, \\'hen the point of

interest is not close to the edge of the base region. Treatment of singular

integrals is based on using the finite part integration concept. Integration

formulas are gi\'en. The method is \'erified with analytical functions, using

accurate values and finite elem~nt solutions. It is also applied in anisotropic

nonlinear magnetic material mode1ing.

Accurate computation of deri\'ath'cs from finite element solutions is an

important step in CAD postprocessing. Direct differentiation of basis functions is

inaccurate, Superconvergent methods give satisfactory results in gradient

calculation, but their accurac)' is position dependent and second or higher

deri\'atives are unreliable. \Vith the new technique it is possible to compute

deri....atives even where finite element solution itself has insufficient continuity,

e.g. finding second order derivatÏ\'es from Co continuous solutions.

-1-
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Résumé

Dans cette thèse, une méthode basée sur la deuxième identité de Green est

traitée. Cette approche permet de calculer les dérÏ\'ées d'ordre supérieur à partir

de solutions continues Co obtenus par la méthode des éléments finis.

L'intégration par parties, implicite dans le théorème de Green. permet de

remplacer la différentiation numérique par une intégration numérique. Cette

technique est d'abord développée pour les fonctioIl.s harmoniques. La méthode

est, dans un deuxième temps, élargie aussi bien aux équations de Poissons et de

Helmholtz pour une région circulaire qu'aux potentiels harmoniques dans un

système de coodonnées axisymétriques. Pour le cas des opérateurs de Laplace en

deux dimensions, trois autres fo=es élémentaires ont été examinées: le

rectangle, le secteur d'un cercle et le secteur d'un anneau. La méthode est

relativement stable, indépendante de la position et est trés précise. La précision

est la méme que cel1e de la résolution par éléments finis et est même meil1eure

au cas où le point considéré n'est pas proche de la région élémentaire.

L'approche, basée sur le concept de l'intégration par parties finies, a été

appliquée a:lX intégrales singuliéres. Les fo=ules d'intégration sont présentées.

La méthode a été vérififée à l'aide de fonctions analytiques en utilisant des

valeurs précises et des solutions obtenus par la technique des éléments finis. La

méthode est également utilisée pour la mode1lisation de matériaux magnétiques

anisotropique non linéaires.

Un calcul précis de dérivées à partir des solutions obtenues par les

éléments finis est un pas important pour l'étape d'e>.:ploitation des résultats en

CAO. La différentiation directe des fonctions de base conduit à des résultats

imprécis. La méthode de superconvergence pour le calcul du gradient donne une

solution satisfaisante; néanmoins les précisions dépendent de la position et les

dérivées d'ordre deux et supérieur ne sont pas fiables. Pour cette nouvelle

méthode, il est possible de calculer des dérivées même dans le cas où la solution

par les éléments finis présente une continuité insuffisante; par example, lorsqu'il

s'agit de trouver les dérivées d'ordre deux à partir de soiutions continus Co•

-n-
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Contributions to Original Knowlcdgc

(a) A general procedure for computation of high order ·krivatives from

approximate solutions of the Poisson and Helmholtz partial differ('ntial

equations is described and applied. The method is based on Green's second

identity;

(b) Derivatives of Green's functions and generalized Poisson kernd functions of

Laplacian differential operator are generated for ne\\' elementary shapes:

rectangle, sector of circle and sector of ring. The library of kernels for a

circle is extended with e:>.:pressions for the point on the boundary and a

ne\V, simpler, formula for the m, nth order derivative of the Poisson kernel;

(c) Generalized Poisson kernels for the Helmholtz differential operator in the

case of circle as a base region are derived, e.\:pressing the Green's function

as a sum of Bessel functions. Using this method it is possible to compute

derivatives of any order;

(d) A differentiation procedure for axisymmetric problems described by

Laplace's equation is deri\·ed. The method uses fundamental solutions for a

torus and a sphere on the axis of symmetry;

(e) The one-dimensional smoothing method of Zhu and Zienkiewicz is

generalized to two and three dimensions.

-m-
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CHAPTER 1

Introduction

The use of computationa1 electromagneties in the solution of problcms arising in

engineering design is common today. Modern design techniques offcr powcrful

tools that blend e1ectromagnetic field theory, numerica1 mathcmatics, and

computer graphies.

The finite e1ement method is a1most universa1ly used in its various forms

in detailed computer aided ana1ysis of electromagnetic problems. Ana1ysis

methods for e1ectromagneties problems are now considcred to he sufficiently

known (Chari and Silvester (1980), Lowther and Silvester (1986), Sabonnadière

and Coulomb (198i), Hoole (1989), Silvester and Ferrari (1990)), with numerica1

software a...·ailable. These methods provide the design engineer simulations and

solutions to problems of very high comple.-city, even to those not e.'pert in

numerica1 methods.

The process of computer aided design (CAD) using numerica1

approximation methods such as finite e1ement method (FEM) consists of three

main stages:

(a.) description of the problem, geometry definition, input of materia1 physica1

characteristies and definition of boundary conditions corresponding to the

physica1 problem. It is fol1owed by finite e1ement mesh generation. The set

of procedures doing aU these operations is usuaUy called a prc-processor;

(b) assembling and solving the resulting system of equationsj and

(c) C).-traction of physica1 results from the solver output, visua1ization and

graphica1 presentation of these results, as weU as manipulation of the

solution of a problem. These known as post-processing or post-solution

operations.

-1-



Software designers of modern c!ectromagnetic design and analysis systems

hase a wide choice of techniques and well established algorithms for the first two

phases. The third segment is the major part of any design system. This stage

may also be defined as the activity of converting mathematical solution into

engineering results.

•
(hop/er l Introduction

•

In post-processing, mathematical operations, such as differentiation,

Integration, and other, arithmetic, "ector or functional operations, may be

required. Ali of them are performed on finite element approximations, which are

usually constructed 50 t1at the potential solution is continuous elsewhere. But

since differentiation reduces the order of approximation and destroys continuity,

potential derivath'es are not continuous on the element edges. Aritbmetic

operations do not affect the finite element approximations, 50 long as the

problem of round-off error accumulation may be neglected. It is weIl known from

elementary numerical analysis that the formation of smalI differences should be

avoided, 50 differentiation is an error ·ampli~"Îng process (Lowther and Silvester

(1986)). Integration is generally an error-attenuating process, whicb smootL.es the

result. Difficulties may occur in contour Integration, if very sharp fluctuations of

the integrand are present.

1.1 Derivatives and postproccssing in CAD

In post-processing of pure finite element results, the crit:cal process is numerical

differentiation. Finding partial deri"ath'es of various orders is an error-prone

process, having a tendency to amplify the error in the original data because of

the oscilIatory nature of finite element solutions. It is well known that in the

finite element method a smalI error in an average may mean a huge point'\"Îse

error. The designer must keep in mind the reco=endation (Lowther and

Sih-ester (1986)) that differentiation operations on field quantities shocld be

avoided if possible, especialIy the computation of high order derivatives. This is

true for derivatives computed by direct differentiation of underlying basis

-2-
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functions. Such an operation is consiciered dangerous. yidding unrdiahll' r,'sults.

There are occasions in magnetic torque computation, wh."n ("'cn the sigu of the'

computcd \'ah:c is uot correct.

The continued popularity of the fini te clement method has led to

increasingly large amounts of attention among both engineers and

mathematicians being paid to the problem of assessing the quality of computcd

approximations. The techniques for finding derh'atives of approximate potentials

therefore play a key role in the design and construction of post-processiug

software for magnetics, as \\'ell as other ficlds in engineering.

In the process of electromagnetic design, rarely are designers of magnetic

de\'ices interested in potential values. Quantities of primary interest in design arc

usuilly related to derivath'es of the potential. These quantitics ma)' ha\'e global

character, as a total amount of flux, total force, etc. However, the distributions,

and the local "alues of field, flu.'C densities, stress intensity factors, displacements,

tempèratures, forces, torques, energy densities, field uniformities, may be the

primary concem of a design engineer. These post-pro~essing quantitics are to be

determined at points or along Iincs in two-dimensional problems, and over

surfaces· in three dimensions. Sorne examples \\'here accurate derivatives are

needed are: magnetic resonance imaging (MRI) system design, \\'here field

uniformity is the main design objective; high voltage insulation systems, \\'here

field values and their derivatives are required; computation of m'lgnetic forces

and modeling of anisotropie soft magnetic materials. Derh'atives are also used in

further computation procedures, as driving functions.

Another need for accurate differentiation arises in the error estimation

process, where the criterion is energy norm, closely related ta root·mean·square

error in fields or stresses, Error control is fundamental in all computational

mechanics. Its raIe is ta predict the mesh refinement necessary ta achieve the

desired accuracy, and ta achieve refinement in the most economical manner.

In Figure 1 the configuration of a typical MRI device is presented, It

consist of coils carrying direct current ta produce a field as uniform as possible

-3-



ow'r the r<'gion of interest. The llniformilY 10 he achie\'cd ShOllld be of order

10 -fi (Infolytica (1992)). A naive approach 1.0 achie\'e the necessary degree of

"ccllracy would he 1.0 use a dense mcsh or a high degrce of approximation.
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Introduction

•

Figure 1.1. Geometry of Magnetic Resonance Imaging coi! system. The
aim is to achieve uniform field over a central region.

Modern electromagnetic engineers must be familiar with the many

numerical methods available. E\'en aIter sclecting differentiation methods

carefully, a wide choice is still in hand. It is therefore of considerable interest to

the finite element software engineer to ha\'e guidclines for the tradeoffs between

accuracy and execution time that may be provided by the algorithms. Silvester

and Omeragié (1993a) gave a review of five differentiation methods from an

algorithmic point of view, 1.0 establish esti:uates for operation and e....aluation

counts. They described key results, and concluded with reco=endations on the

-4-
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circumsta:lces in which the several methods may find use.

1.2 Rcvicw of e.xisting diffcrcntiation mcthods

Introduction

•

The techniques for e\'aluating derivativcs fro:n numcrical approximatc solutions

in \'arious problems of mathematical physics may be grouped illto threc distinct

approaches: direct differentiation methods, smoothing mcthods bascd on

superconvergence properties, and methods based on intcgral transformations.

This section will deal with methods of computing the first derivatÏ\'e,

since most oi the articles referred t0 deal with that case. The problcm is always:

How to make use of the finite element approximation in a s1Litable approximation

of gradients. For finding higher order derÏ\'atÏ\'es, no systematic analysis appcars

in the literature. A two-step method proposed by Sohn and Heinrich (1990) sccks

the first derivative by global smoothing, then in a second step direct

differentiation of these results is performed. Since the global smoothing method

does not give particularly high accuracy of derivatives (Hinton aIld Campbell

(1974)) déspite its high cost, this method is less promising than might ha\'c been

hoped. Another alternative is using global smoothing again for second order

derivatives, as suggested by Zienkiewicz and Taylor (1989). This method is

computational1y C>o.-pensive, not necessarily giving high accuracy. The nature of

the approximation is such that it is not like1y to behave better than the global

smoothing used in gradient computations.

A brief survey of the mOre common derivative computation methods

follows.

1.2_1 Direct differentiation of finite e1ement functions

Direct differentiation methods are wide1y used in field visualization and in

smoothing computed results. These methods differ mainly in their treatment of

the derivative discontinuities that inevitably arise in piecewise-smooth

-5-



approximation. Among this group of methods, nodal a'·eraging of derÏ\·ati'·es on

simplex clements is probably the most often used. Although the idea of a'·eraging

is as old a.s the finite clement method itself, a complete error analysis on a

uniform finite element mesh was only achieved in the nineteen-eighties (Kfizek

and Neittaanmàki (1984), Le,·ine (1985), Goodse1l and \Vhiteman (1989)). A

natural extension of this method, the use of averages weighted by surface, angle

or (rarely) centroidal distance, is eommon in practiee and is applied in most of

the existing fini te element packages. Generally, smoothed gradients give pleasing

graphieal displays, but their numerical "alues may be no more aeeurate than

those obtained by direct differentiation of the finite e1ement solution.

Oeeasionally special e1ements, for example high-order elements with derivative

continuity (Wong and Cendes (1986), Tarnhuvud and Reiehert (1988)) are also

used, but not enough results have been reported to indieate the le"e1s of aeeuraey

obtainable. li, for example, the Morley triangle is used, where the derivative is

eontinuous at some special points, and for e1ements with derivative eontinuity

there is no evidence of impro\'ed results over elassica1 quadratie e1ements.

•
Chapter 1 Introduction

1.2.1.1 Straight diffcrcntiation

On each fini te e1ement, the approldmate potential solution ç, is known in terms

of the finite e1ement interpolation funetions (shape funetions) ai(x,y,z) and their

assoeiated nodal potentials, as

ç, =L: ç,(Pi)ai(x,y,Z) (1.1)

where {Pi 1 i =l, ...,M} is the set of nodes on a single finite e1ement. Derivatives

can be obtained by direct differentiation of the interpolation funetions. To

e\'a1uate the x-directed derivath'e, for example,

(1.2)

•
On triangular and te~rahedral e1ements, this work reduees to straightforward

matrix multiplication by the uni,·ersa1 matrices of the triangle (Silvester (19;8))

-6-



or tetrahedron (Silwster (19i2)). For brcvity. all the following will r,·f,'r 10

triangular clcments; bnt all statcmcnts made hcrc gc'neralize directly 10

tetrahedra. Using the chain rule, diffcrcntiation with rcspect to .r is replace,l hy

differentiaticns with respect to the local coordinatcs (1'(2'(3' on the trianglc.

Then

•
Ch.pter 1 ln:(,;)d;Jc:jon

(1.3)

where ]V is the dimensionality of the geometric problem space (i.e., ]V = 2 for

triangles). Xow Ô(k/éJx is mere1y a geometric constant (a scaling factor

multiplied by a direction cosine) that describes the element; in the litcrature of

simplex e1ements it is usually denoted by bk • Similarly ô(dôy =Ck' Thc

deriv~tive of an interpolation polynomial OIi is clearly a polynomial, of dcgree

lower by one; thus it can always be expressed as a linear combination of the

interpolation polynomials 01; themse1ves. Consequently,

where

•

There are ]V + l matrices n(k), but they are ro\\" and column permutations of

each other so only one need be stored in programs. These matrices have been

tabulated and are available for al! the commonly used orders of fini te element.

It should be noted that in this method al! the required information is

strictly local to a single e1ement. This fact, much more than any consideration of

operation counts, may be of significance in paralle1 processing applications.

1.2.1.2 Weighted avcrages

This method apparently was first applied to simplicial finite element meshes on a

pure1y intuitive basis. The fie1d values computed by direct differentiation for

first order e1ements are constant in each e1ement and discontinuous at

intere1ement boundaries. Weighted averaging of deri~'atives is used, so that the

x-derivative at node k is calculated by

-7-
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Introduction

(1.5)

where Ns is the number of surrounding clements. This procedure is applicable to

clements with the same material characteristics. Otherwise, coefficients W; must

be modified to take into account material property (permitti""ity, permeability,

etc.) values. Thrce different weighting criteria may be used: a) area of the

element, b) angle subtended at the node k, c) distance between the node and the

centroid of the element. The equivalent quantities in three dimensions are

volume, solid angle and centroidal distance.

This method was proposed on purely intuiti\'e grounds and justified

heuristically on the basis of its performance in practical problems. It is rather

crude, but it often results in surprisingly good approlcimations of the gradients,

compared to direct differentiation. Le...-ine (1985) first deri\'ed a complete error

analysis and proved that averaged results are superconvergent for a uniform

mesh. He expressed the ...-iew that a""eraging would also be beneficial on non·

uniform meshes, but gave no further analysis. Knzek and Neitta.anmàki (1984) as

well as Goodsell and \V'hiteman (1989) generalized this procedure, ...\-ith a

trea.tment of points on the boundary of the solution region, and at corners.

To be applied effectively, this method requires all derivatives and areas of

corresponding elements to be stored. The deri""ative at an arbitrary point can be

found from nodal derivati\'e ...·alues by

ô~ (ô~)(jX = ~ Qi(X,y,=) (jX , .
• •

(1.6)

•

requiring O(N +1) arithmetic operations per point where derivatives is to be

computed, in addition O((N +1)2) operations to compute Qi'

-8-
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1.2.2 Supcrconvergent methods

Introduction

•

The second group of techniques is bas,·,l on superconn'rg"llCl'. Sup,'rcollvergl'llcc'

is exhibition of exceptional rates of convergence of the approximatc solution at

certain points whose location is kno\\'n a priori. These points. sometimes rdcrrcd

to as "stress points" (Barlow (1976)). arc the Gaussian quadrature nodes for

quadrilateral isoparametric elements and Gaussian points on the edges of a

triangle. As the mesh is refined. the error at these points diminishcs much faster

than the global error. One can then reCO\'er derivatives of the solution through

extrapolation of the deri\'ati\'es themselves. There are many possible ways to

carry out this process. Kfizek and Neittaanmaki (1957) h.we giwn a

comprehensi\'e re\'iew, classification and a bibliography of 200 items of existing

superconvergent methods for differential and Integral equations. Global

smoothing (over the whole solution domain), which is in essence a reformulation

of finite e1ements, and. hcal smoothing (on each finite e1ement) (Hinton and

Campbell (19ï4), Zienkiewicz and Taylor (1959)) follo\\'ed by averaging of

derivati,'S are the two standard methods for accurate derivative computation.

Hinton a!ld Campbell (19ï4) have shown that global superconvergence does not

lead to better accuracy of the computcd derivatives, so global smoothing has not

been followed up extensive1y in this study. On the other hand, gradient recovery

by the approximation method of Zhu and Zienkiewicz (1990), a further

improvement of this method, gives very good accuracy for one-dimensional

problems. A two and three-dimensional extension of this method is included in

this thesis.

1.2.2.1 Points of exceptional accura.cy

The phenomenon of superCOll\'ergence may best be vie\\'ed (MacKinnon and

Carey (1959), Strang and Fix(19ï3)) in terms of c1assical error analysis based on

Taylor series e>..-pansions. The potential çi(:c) on a finite e1ement of order p, taken

to be one-dimensional for simplicity in discussion, is known to an accuracy of

order O(h.1'J. A Taylor series e.."pansion of the potential error '6 must then begin

with a term of arder p + 1:

-9-
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Correspondingly, the error éE(x) in field value E(x) is given by

Introduction

(Li)

Like any polynomial of order p, this elo.-pression can a1ways be rewritten so that

the leading term is the Legendre polynomial of order p, and the follo\\;ng terms

are of order p +1 or higher:

(1.9)

•

The Legendre polynomial of order p has p zeros within the clement, At its zeros,

the first term in (1.9) vanishes so the error in derivative cannot exceed O(hP + 1
).

1.2.2.2 Local smoothing of :finite clement results •

On second order, numerical1y integrated quadrilateral clements, local smoothing

as proposed b~' Hinton and Campbell (19i4) is so commonly used as to amount

to standard practice (Zienkie\\;cz and Taylor (1989)). This method is based on

the known fact that on a pth order element, the first deri....ative of the potential

function has exceptional accuracy at the p Gauss-Legendre points, i.e., at the

zeros of the Legendre polynomial of order p. In essence, the Hinton-Campbell

procedure is simply a bilinear extrapolation of the 2 x 2 Gaussian point values.

The smoothed function is obtained by a least squares fit, defined by the

computed derivati"es at the Gaussian points. If the smoothing shape function is

linear, the smoothed corner nodal gradient components ë1, ë:l, ë3, ë4 may be

obtained from the C),.-pression

-10-
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where er, err. errr, ell' are the gradients at Gaussian points. Gcncrally, for r, pth

order function e(ç) sampled at the p Gaussian points (where -1 ~ ç ~ 1), these

values uniquely define a smoothed function ë(ç) of order p - 1 that is a Icast

squares fit to e(ç),

(1.11)

•

Hinton and Campbell not-ed that the results at the centroid of an clement are of

exceptional accuracy, for this value is the arithrnetic mean of Gaussian point

values which are themselves of exceptional accuracy. However, gradients

computed using local smoothing are not unique at nodal points at clement edges.

Nodal averaging may be used at e1ement edges to secure uniqueness.

For higher order triangular e1ements (Andreev and Lazarov (1988)),

tangential derivatÏ\'es are supercon\'ergent at the Gaussian points of an element

edge. Gradients can be recovered by averaging extrapolated results at the nodal

points, and applying a similar procedure. Hawken, Townsend and Webster (1991)

averaged values of the gradients in adjoining e1ements at each mid-side node, and

calculated vertex node gradients as the averages of the nodal gradient

contributions evaluated at e1ements which share that node. Superconvergence on

triangular e1ements is also discussed by Moan (19ï4), who has shown that the

best derivative values are obtained where the function values of the orthogonal

polynomials of a given order are minimal. For second order e1ements, there are

-11-
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Introduction

(1.12)

•

and the t\\"o corresponding s)"mmetrically placed points. DerÏ\'ative values ma)"

he extrapolated from these values. Also, Lin Qun and Xi Jinchao (1985) pro\'ed

that there exist local a\'eraging operators which allo\\" reco\·ering the derivatives

under strong assumptions on the mesh regularit)". They showed how any domain

can be triangulated into uniform meshes, and ho\\' averaging techniques apply in

Ihat case (Lin and Zhu (1984), Ciarlet and Lions (1990)).

Gallagher and Nagtegaal (1989) stated that the process of smoothing adds

another le\'el of appro:"';mation. The smoothed iso-surfaces gi\·e a good graphical

impression cf the nature of solution, but no general statement can be made that

smoothing of discretized results gives a better or worse quantitatÏ\'e

representation of the e..'tact solution,

1:2,2,3 The one-dimcnsional smoothing algorithm of Zhu and Zicnkicwicz

This method is a least-squares fitting technique for deri\'ative reco\'ery, It is

proposed by Zhu and Zienkiewicz (1990) for one-dimensional problems. The)'

observed that O(p - 1) deri\'ative estimates could be impro\'ed by adding a term

proportional to the Legendre polynomial P p(x). AccuraCJ' at the points of

exceptional accuracy is unaffected, since the points of exceptional accuracy are

the zeros of P p(x); but enlargement of the approximating function space will

ine\'itably lead to impro\'ed accuracy elsewhere,

Zhu and Zienkiewicz constructed an impro\'ed approximation Ei to the

field in element i b)' taking

Ei = E i +aiPp(x) (13)

where E = - d9(x)fdx and the equation to he solved by finite element methods

is the one-dimensional Helmholtz equation ,,,hich often arises in the two-point
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boundary ,·alue problem.

1x(a(x)E(x)) + b(x)c;:i(x) = f(:r)·

In:roduction

(1-1 )

The unknown coefficient Qi in the ith clement is determined by minimizing the

squared residual of this equation.

(15)

where the integrations are taken o'·er clement i. This procedure readily yields

(16)

•

Nodal a,-eraging may again be applied at element nodes. Particularly if

numerical solution is required, the computational costs are higher than for

c~~ventional local smoothing; how much higher, depends on the order of

numerical quadrature. The second derh'ath'es have to be computed, increasing

the costs further. On the other hand, higher accuracy results than with simple

smootbing.

Tbis procedure uses only information local to a single element, so it

appea:rs wel! suited to implementation on parallcl computers.

Zhu and Zienkie\\"Ïcz expressed the "iew that this technique for field

impro'-ement could probably be generalized to two and three dimensions, but did

not suggest how tbis might he done. The method will be generalized to two and

three dimensions later on in tbis thesis.

To find bigher order derivatives Feuil1ebios (1990) derived an equi-distant

formula for numerical differentiation based on the classical Lagrange and

Hermite interpolation. This idea may he used and eventually extended to two

and three dimensional problems.
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1.2.3 Global smoothing

This procedure appIies the least-squares technique directly to gradients. Instead

of apploximating gradients by

E
_ " ÔQ;(x,y,=) .
- L;-- 8g 9;

the gradient components are interpolated by

(1.1i)

E- = 2: Q;(x.y,=)E; (1.18)

where E is the derÏ\'ati\"e in sorne specified direction g. Least squares

approximation, by minimization of the squared difference

~(EO) = Jn(EO - Û dn (1.19)

with respect to the Ci leads to the system of equations (Zienkiewicz and Taylor

(1989), Hinton and Campbell (19i4)).

Me=f

where

M··= J Q·Q·dn1) ni)

(1.20)

(1.21)

(1.22)

•
The metric M is often 'lumped' by structural anal~'sts, i.e., replaced by a

diagonal matrix ML constructed on heuristic grounds (Zienkiewicz, Villotte,

-14-
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Toyoshima and N'akazawa (1985). Zienkie\\'icz and Taylor (19$9)). Afler snch

diagonalization the solution is tri,·ia1.

Lumping may naturally lead to a loss of accuracy. The solution cau be improyed

by the iterative cleanup procedure

(1.24)

•

This technique unfortunately yields a large system of equations, so it is an

e.\.-pensive way of computing derivatives. Gh'cn that it is not consistently better

than simple local smoothing (Hinton and Campbell (19;4)), it is rardy uscd,

even though it may have advantages in two-dimcnsional interpolation.

1.2.4 Supcrconvergent techniques for rccovcry in crror estimation

Recently two new methods were developed for accurate deri"ative recovery from

finite clement solutions. The first one is a relath'ely simple superconvergent

patch recovery procedure by Zienkiewicz and Zhu (1992 .., 1992b). It is

reco=end by Zienkiewicz and Zhu as a post·processing technique in the fini te

clement method. The idea of the method is to use the derh'atives computed at

points of cxceptional accura.cy on the patch of fini te clements. Another approach

was presented by Ohtsubo and Kitamura (1990, 1992a, 1992b), who

implemented the idea. of Kelly (1984) in two and threc dimensional problcms.

They cxtended the existing idea. of adding the estim~.ted error to the original

solution, by applying certain additional conditions.

1.2.4.1 Zhu-Zienkiewicz supcrconvcrgent patch rccovcry procedure

This procedure uses a single and continuous polynomial expansion of the function

describing the derivatives. It is applied on a patch of clements surrounding the

-15-
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nodcs rtt whirh rcco"('ry is d(':--ireo. 11~i:1g the sup('rcon"crgent points.

If E i arc nodal dcri,"ati\"cs and Qi arc basis functions, t.hcn the smoothed

continuous gradient field may hc defincd as

E- =I: o;(x,y,=)E;"

The polynomial expansion is assumed

E- = pT aP ,

(1.25)

(1.26)

where P contains the polynomial terms, and a is the set of unknown parameters.

For example, for two-dimensional quadratic expansion,

(1.2i)

To determine the parameters a in pre\"ious expansion, a fit to the set of highly

accurate sampling points in an e1ement patch is perfo=ed by mimmizing the

~"pression

n 2
F(a) =E(E(Xi,Yi) - E;(x;,y;))

_=1

= t(E(Xi, Yi) - pT(Xi' Yi) ay.
i=1

(1.28)

Here (Xi' Yi) are coordinates of the group of sampling points, and n is the total

number of sampling points. After minimization of F(a), the matrix equation

•

Aa=b,

is obtained, where

n

A= I:P(Xi,Yi)pT(Xi,Yi)
.=1

and

-16-

n

b = I:P(Xi,Yi)E(Xi,Yi).
i=l

(1.29)

(1.30)



•
Chaptor l

:
1

!
1

i

+--.-1-.--+
1

. '

r::1~.r ~/ '
. / .'

l

Intr.,duction

•

Figure 1.2. Computation of superconvergent nodal values for linear and
quadratic triangular and rectangular e1ements. (.) - nodes where
derivatÏ\'es are determined by recovery procedure; (0) - fini te element
nodes; (6) -superconvergent nodes.

It should be noted that A is the same for all components of Ep, so only one

e\'aluation is necessary. After computing a, the recovered nodal values of E i are

ca1culated simply. Only nodes inside the patch are considered here. If anode is

conta.ined in se\'eral patches, it is recommended to use the average value. The

critica1 cases occur when the point of interest be10ngs to a corner element, so the

patch conta.ins one or two e1ements on1y.

The alternative to this procedure is application of a 1east squares

procedure, and minimization of the functional

-17-
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(1.31)

whcre ns is the domain of the e1cment patch. In that case, the matrix A and

source b take the following forros:

and b =J P(x,y)E(x,y)dn.
!2s

(1.32)

Zhu and Zienkiewicz disco"ered that the application of this procedure does not

yield supercon"ergence of nodal \"alues for quô.dratic elements though

considerable impro\"ement of these results was noted. This phenomenon is still

being investigated. For quadratic elements, both quadrilateral and triangular,

they found that con\"ergence is two orders higher than normal. The term

uItraconvergen.ce is suggested for such a con\"ergenœ.

1.2.4.2 Application of self-cquilibrium conditions

This procedure is based on estimating the error and adding it to the original

finite element solution. Kelly (1984) first applied the idea. of estimating the error

from the gradient jump along the element boundaries. This is the error iriuced

by fini te element discretization. Application of the self-equilibrium condition

which has to be satisfied for each element J"Ïelds the induced 'equivalent sources'.

The error distribution in an element is CÀ-pressed using interpolation

functions one order higher than that of the finite element solution. That is how a

complete representation of the dominant error term is accomplished.

Consider the elasticity problem described by the follo\\"Ïng equation \\"Ïth

corresponding boundary condition:

•
'\7 . cr '\79) +f =0, in n,
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0=0

(W\7ç»'n=q

Introduction

where ç> is tne vector of displacements, Z is the clasticity tensor, (J' = (Z V'';:') is

the stress tensor, (W v ç» .n defines surface tractions and f is the body force. Let

~ be a finite element appro:dmation of the displaccmcnt. Theu the rcsidual ri for

the ith e1ement is given by

in ni' (1.33)

Multiplication by the virtual displacement '" and summing over the all clements

yields

(1.34)

where ni and ani are the ith domain and the e1ement boundary, respective1y.

Since the stresses are not continuous along the e1ement boundaries, the last term

in the right-hand side corresponds to traction discontinuities. Let these tractions

be viewed as equivalent boundary sources Pij; then

J \7'P.~\7~dn= J 'P·fdn- J 'P. rdn
f2 f2 n

+J 'P'q dT +I:J 'P' Pi;' dT,
af2 ij anij

where

(1.35)

Pij = (Ô'i - Ô'j)' ni

P,j =Ô'i • ni - q

(1.36)

(1.37)

•
ThEl. stress obtained by the finite e1ement method is denoted by Ô'. anF

corresponds to that part of the boundary with prescrlbed traction q. If the error
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of the approximate solution is ",rittcll as

then from equations (l.4S) and (1.51),

Introduction

(1.3S)

(1.39)

This equation says that the error e is the response to the residual ri in the

element and to the unbalanced tractions - Pij on the element bouodary. Now,

the finite element method may be applied to soh'e equation (1.39), and obtain

the error e. The domÏ::l.ant interpolation polynomial used is one degree higher

than that for q,. Equation (1.39) corresponds to a partial differential equation

(fV'e).n= -p,

in ni

on an,

(1.40)

(1.41)

where p, is a portion of P,j corresponding to the ith e1ement. The resulting fioite

e1ement equation for the e1ement i is

Me=! (1.42)

with standard fioite e1ement coefficient matrices. To find e, ,,-alues p, and r, are

determined 50 as to satisfy the self-equilibrium conditions. The normal stress

jump P,j must satisfy three conditions:

•

P,j = p, +Pj

J r,dn- J p,dr=o,n, an,

J r,x(x-xo)dn- J p,x(x-xo)dr=o,
n, an,

-20-
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where Xa is the position of an arhitrary point.

In:roduction

The process of allocating of the traction jump p consists of thr~e stag~so In

the first stage, initial allocation, the unbalanced traction is di\oided according to

the ratio of distances li and Ij from the clement boundary to the centroid of ~ach

element,

_ li
Pi= /.+/.Pij

• J

1·- J
Pj= /.+/.Pijo

• J
(1.46)

The second stage is undertaken, sa the tractions satisfy the balance of forces.

Nodal forces for each node Fm =(F"" F .)m are first computcd according to

F = J 0: ri d!2 - J o:PidT .
ai {)ai

(l.4i)

After that, the corrective nodal forces (LlF""LlF.)m are ·obtained from the

following conditions:

8

L(F",+ LlF",)m =0
m=l

8

L(F.+LlF.)m = o.
m=l

(1.48)

The final step is ta correct P sa as ta satisfy the moment equilibrium condition.

Since the moment of nodal forces around the centroid dacs not vanish, corrective

forces LlGm are applied ta satisfy the moment equation:

8 8
L(F+LlF)m x (Xm-Xc)+ LLlGmX (Xm-xc) = o.
m=l m=l

(1.49)

The source side for the finite clement expression is now known, sa it is possible

ta calculate the error on a finite clement. From the error, the stress solution can

he updated,

u=ü+Llu=ü-'fVe. (1.50)

• -21-
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•

Ohtsuho's and Kitamura's eXlwri('llce is that this method impro\'es the solution

if the stress docs not change too se\"l'rcly with respect to mesh size. A procedure

for implemclltation of the abo"e algol'ithm is bascd on a objec,i"e function and

il particular optimization technique dcfined in their papel'.

1.2.5 Function extraction methods

Babuska and Miller (1984 b, 1984c, 1984d) presented a generalized theory of

postprocessing fini te element solutions. They described a general approach to

a"eraging using an integral method with \'arious extraction functions, as well as

novel methods for a general region, with l'centrant corners treated through an

asymptotic expansion of known form. These Co,tractions can be performed on

boundary locations as well as in the interior of the domain of interest. The

important fact is that extractions d? not require a uniform mesh, i.e. there is no

mesh regularity pre-condition. They pro\'ed that the ma.\:Ïmal rate of

convergence is the square of the rate of the error in energy norm. BabuSka, •

Izadpanah and Szabo (1984a) and others, as well as Niu and Sheppard (1993)

applied the Babuska-Miller ideas to extract stresses for interior of a domain

(Babuska, Izadpanah and Szabo (1984a)) and at locations on the boundary (Niu

and Sheppard (1993)).

To this group of methods belongs also a procedure based on the

convolution method with Bramble-Schatz kernel (Bramble and Schatz (19i4)).

These kernels, or eJI."traction functions, are recursively defined two-dimensional B­

splines. This method is applicable to regions which can be decomposed into a

union of rectangles, where the basic integral formula can be decomposed into a

sum of analytically solvable integrals. It was eJI."tended by Louis (19i9) to non­

uniful"lll finite element meshes, but the resulting integrals are not analytically

soh'able and their numerical e\'aluation increases the computational costs of an

already quite eJI.-pensÎ\·e method. Some authors (Zienkie....icz and Zhu (1992a))

refer to e.'I."traction methods as of limited practical use o\\ing to high cost and
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complexity of implementalion.

1.2.6 Method bascd on Grccn's second identity

Introdu.:e;on

A new technique (Sih'ester (1991a)) has recently bcen added: differentiation

based on Green's second identity. It is useful for high precision derivative

ealculation. If the base region for Green's identity is ehosen 10 be a circle, then

for Laplaee's equation this method reduees to the Poisson integra! method. In

essence, this method applies integration by parts to substitute numerica!

integration, which is a stable proccss, for numerical differentiation. This Ilew

technique is more powerful than the older ones - it ean detel'mine derivatives of

high order - but it is relatively costly. The method may be c1assified as

belonging to the group of function extraction methods. In the special case of a

circle, the ~act Green's funetions and Poisson kernel functions and their

derivatives are used in computation of higher order derÎ\·atives.

Start from the c1assieal Poisson integral:

(1.51 )

where the Poisson kernel J(oo(P;Q) represents the interior normal derivative of

the Green's function,

J(oo(P; Q) = \lQG(P; Q) ·lnQ• (1.52)

•

Here and in the fol1owing, I nQ is the unit normal vector to an at the point

Q E an; G(P;Q) is the Green's funetion appropriate to the region n. As fully

detailed by Kellogg (196i), this formula permits finding the potential <Pp at any

interior point PEn, provided its values are known along the region boundary

an. Application of this method to arbitrarily shaped problem regions np hinges

on noting that the integration region 12 must be embedded in np , 12 ç;; np , but it
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may he of any cOll\"enient ,hape, e.g. a circular di,k of radius R for which the

Poisson kernc1 is known, Further direct differentiation (:\Iihklin (19ïO)) of the

Poisson integral yic1ds

(1.53)

where the m, mh extended Poisson kerne1 is given by

(1.54)

•

Any desired derivatÎ\'e of the potential 9 is thus obtainable by integration along

the contour an, e"en in fini te element solutions where the appro:l..-imate potential

may not possess a derh'ative of degree m, n. The derh'atives often have higher

accuracy than the approlcimate potential values, the integration process having

contributed to error averaging.

Computation of the m, nth derivative requires a contour integration,

which typically involves a q-point quadrature. Achieving quadrature precision of

degree k in D-dimensional problems requires approlcimate1y O(kD) quadrature

nodes. At each quadrature node the approlcimate potential 9p must be

evaluated, along with the appropriate Poisson kernel. The potential evaluation

requires approlcimate1y pD +1 multiplicative operations on a D-dimensional finite

element. Evaluation of a Poisson kernel amounts to the evaluation of a few

transcendents, mainly logarithms and trigonometric functions. The number t of

operations, typically a few dozen multiplications, varies a little with the indices

m, n but it is nearly independent of p. Thus the cost of finding a derivative value

is O(kDpD+lt). Typically, k =10, so the cost of differentiation in this fashion is

high but the accuracy is high also.

The main ad'-antages of this method are stability and accuracy, and the

ability to compute derivath'es of high order. In contrast to other integral

methods, kernels and their derivath'es are known analytically.

-24-



• ChJpter l

1.3 Thc objcctivc of this thcsis

In!r~dlJc:ion

This rcsearch contributes to the field of post"processing of nUlllerical

approximatc solutions such as finite clement solutions. The thl'sis ex tends the

methodology based on Green's second identity, to calculate derÎ\'atives frolll

finite elemeIlt solutions of Poisson and Helmholtz equations in two dimensions.

For Laplace's equation, derivatives are also obtained by differentiation of the

base solution in an a.\.;symmetric coordinate system. The objectÎ\'e includes

comparing the new method with existing methodologies for deri"ati"e

computation, and gÎ\;ng recommendations on the circumstances in which the

several methods may best Snd use.

The new method can be applied in ail areas where precise deri"ati"es are

needed, e.g., in magnetic material modeling; in high·,"oltage engineering to find

maximum field or its deri,"ative; in force and torque calculat.ion (first and second

order derivative of potential)i in electron ballistics and magnctic rcsonance

imaglng design (magnetic field uniformity criterion), etc.

1.3.1 Claims of originality

This thesis generalizes the Sih'ester differentiation method, originally restrictcd

to harmonic functions in the interior of a circular disk, to more general clliptic

differential operators and a wider range of base regions. It makes the following

original contributions:

(a) A general procedure for computation of high order derivatives from

approximate solutions of the Poisson and Helmholtz partial differcntial

equations is described and applied. The met!lod is based on Green's second

identitYi

(b) DerivatÏ\'es of Green's functions and generalized Poisson kernel functions of

Laplacian differential operator are generated for new elementary shapes:

• -~-
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•

rectangle. sector of circle and sector of ring. The library of kernels for a

circle is extendcd with cxprcssions for the point on the boundary and a

ncw, simpler, formula for thc m, nth ordcr dcrivath'c of the Poisson kerncl;

(c) Gencralized Poisson kernels for the Hclmholtz differential operator in the

case of circle as a base region are derh'ed, expressing the Green's function

as a sum of Bessel functions. Using this method it is possible to compute

derivatives of any order;

(d) A differentiation procedure for a...asymmetric problems described by

Laplace's equation is derived. The method uses fundamental solutions for a

torus and a sphere on the axis of symmetry;

(e) The one·dimensional smoothing method of Zhu and Zienkiewicz is

generalized to two and three dimensions.

1.4 Outline of the thesis

This thesis is organized in se~'en chapters as follows:

Chapter 2 gives a brief description of the proposed methodology.

Fundamental solutions for the Laplace, Poisson and Helmholtz equations in two

dimensions are presented, as weU as the solution of Laplace's equation in the r·z

coordinate system. Green's second identity and the differentiation fo=u1a based

on it are derived and discussed., together with the definition of Green's functions

and corresponding Poisson kernels. This chapter closes with a discussio.a of

implementation problems of the proposed methodology.

Generation of Green's funetions and Poisson kernels and their deri~'atives

are presented in Chapter 3. Various methods for construction of Green's

funetions for the Laplacian operator (v2) for different region shapes and the

Helmholtz operator (v2+ ,,2) for a circle as the elementary region are given.

Applicability of various forros of Green's funetions, as weU as methods of their

construction, are discussed. This chapter also deals with differentiation of base

solutions of boundary value problems, in cases where Green's second identity is
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not used.

Introduction

•

Validation of the method is gÎ\'en m Chapter ... Experiments with

analytically known functions for "arious kinds of base regions and problems are

presented. Error sensitivity was analyzed with particular care. The

differentiation formulae were tested using random error sensitivity analysis for all

four base regions. From these results conclusions were drawn about beha"ior and

numerical efficiency and characteristics of the new method.

Chapter 5 describes the treatment of singular and nearly singular

integrals. Singular curvilinear and surface integrals are e"aluated using the

specialized quadrature, based on the finite part integration concept. The

quadrature formulae were derived using Paget's approach. The evaluation of

nearly singular curvilinear integrals using various methods is discussed.

Chapter 6 generalizes the gradient reco,'ery procedure originally proposed

by Zhu and Zienkiewicz to two and three dimensional problems. This is an

element-wise method based on local smoothing which uses values of gradients at

superconvergent points to e"..trapolate results.

The results of applications to fini te element approximations are given in

Chapter ï. Computed results were compared to analytical solutions. Results were

also compared to some of the existing differentiation methods. Efficiency of the

new methods is Ïll,·estigated.

Chapter 8 gives a summary of characteristics of the new methods

presented in this dissertation. Computational performance and effectiveness

(advantages and disadvantages) of th'~ differentiation of finite element

approximation based on fundamental solution of boundary value problems are

discussed. Reco=endations are made for the use of various differentiation

methods, with a. comparison of characteristics, generalization and possible

extensions of the new method.
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Formulation of the proposed methodology

This chapter is intended to cover the mathematical fundamentals used in

formulation of the methodologies proposed in this thesis. The topics covered

include: definition of the problem, including fundamental solutions, Green's

second identity for the Laplace and Helmholtz operators, the basic differentiation

formula and the problems invoh·ed in application of the generalized Poisson

integral method.

The chapter begins with definitions and derh·ation of the basic formulas

used in this thesis. It continues with formulation of the proposed technique. Once

having established the fundamenta1s, attention turns to difficulties in

implementation of the method.

2.1 Fundamental solution of boundouy value problems

In the derh·ations and analyses developed in this thesis, only the first boundouy

....alue problem (the Dirichlet problem) is considered. The problem is to find the

function <ïl(x,y), satisfying the partial differential equation

!!>ç;(x, y) = - 9

subject to the boundouy conditions

ç(x,y) = f(x,y)

in n,

on an,

(2.1)

(2.2)

•
where !!> is a differential operator, the Laplaclan or Helmholtz's operator.
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Generally, fundamental solutions are obtained by separation of yariabll·s.

In this section. they are derh'ed for harmonic functions inside a circular disc and

a circular ring for two-dimensional problcms, and torus and a sph"re in

a.,isymmetric coordinate system. The expressions for fundamental solutions are

used to deri"e the influence function of a point source, i.e. to find the Green 's

function.

2.1.1 Application of Fourier series expansion for a. circular disk

The potential inside a cirele can be computed from known yalues on the

boundary, using the formula

<p(rp,6p) =~+ ,&c;r)' [a;cos(i6)+b;sin(i6)] (2.3)

where ai and bi are Fourier coefficients, which can be dcrh'ed from known

boundary values of the harmonic function f(6) using

ai = hJ f(6) cos(i6) d6
.t.'Ir an

bi = hJ f(6) sin(i6) d6
.t.'ll" an

(2.4)

(2.5)

•

The formula (2.3) may be derived using by separation of variables, by assuming

a function of the form <p(r,6):

<p(r,6) =R(r)e(6). (2.6)

Then the Laplace's equation in polar coordinates reduces to two simple

differential equations with known solutions.

The formula (2.3) is yalid for r ~ R, and in fact it is equivalent to the

Poisson integral. The advantage of this method is that (2.3) is regular for
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• Chapler 2 Formul.tion of the proposed methodology

rp= R.

A point source q is placed at Q(rQ,6Q), a point inside the circ1e of radius

R with the boundary potential fixed at zero, is considered. The potential at an

arbitrary point P(rp,6p) has to be determined, the solution is assumed to have

the same form as (2.3), which corresponds to the influence of the boundary, plus

the influence of q if there is no boundary:

(2.i)

where sQ is the distance betwcen P and Q, gi\'en by

(2.8)

The logarithmic term may be o:panded in a series, as follows:

f(~)n cosn(6:-6Q) logrQ for rQ > rp

-logsQ=
n=1 Q

(2.9)
~(~r cosn(6:-6Q) logrp for rQ < rp.

Using the condition that 4>(R,6) = 0, and after equating the coefficients of sinn6p

and cosn6p, A'n and En can be found:

(2.10)

(2.11)

Then the potential at the point P is

(2.12)

•
After the application of C>.-pansion (2.9), the following is obtained:
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. q R sQ q l' R" R~<;>(rp,8p ) = -,,=log-r-+;;-=lol;,lrp+-.- - 2rpy-cos(8p-8Q).
.t.To" Q _" ~ '"Q Q

(2.13)

Normal (radial) differentiation of the influence function of equation (2.13) with

respect to rQ, on the boundary, will gi\'e the Poisson kerud briefly describcd in

Chapter 1.

2.1.2 Fundamental solution for a circular ring

The influence of a unit charge placed inside the circular ring with the boundary

at zero potential will be deri\'ed in this subsection.

x

•
Figure 2.1. The geometry of a circular ring with inner and outer radii a
and b, \\-ith the source placed at point Q and the observation point P.
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The source q is located at point Q (TQ,8Q). The potential at the observation point

P is computed by assuming a solution of the forrn

'( 8) q 1 ·40 BOlÇl Tp, p = -zr. ogsQ+T+T OgTp

+ f{AnTP + ~.:' }coSn(8p - 8Q),
n=1 p

where the distance sQ is given by

(2.14)

(2.15)

The first terrn in eq:lation (2.14) represents a free space solution, while the

influence of the boundaries is given by the rernainder of the CÀ-pression (2.14).

Coefficients A'i and Bi are calculated using the condition that

9(a,8p ) =9(b,8p ) = 0 for058p~2r.. (2.16)

•

Using the CÀ-pansion (2.9), the conditions (2.16) may be written as

and

'(b 8 )-0- q ~(TQ)nCosn(8p-8Q) q l b
Çl , p - -zr.~ b n zr.0g

+~+~logb+ ~{Anbn + ~: }coSn(8p-8Q).

By equating the co=on terms, the following is obtained:

-32-

(2.17)

(2.18)



• Chapte,2

A b
n Bn _ q rÔ

n + bn - -2"7.nbn·

FormulJtion of the proposed method%gy

(2.19)

(2.20)

The coefficients for n > 0 can be readily obtained:

_ q l r~n _a2n

A'n - - "=nr" bon 2n
~.... Q -a

., b2n r 2nB = _ q a,n - Q
n finrQb'in_ a2n°

It is easy to prove that the leading coefficients are

qlogj'Q q
Ao = -;;<-1b loga + ;;<logrQ

og(i

qlogj'Q
Bo = ~--r--r.

log(i

Then, the final ~"pression for potential is

log.k.
4>(rp,lip)= -~logsQ +:i;;:~lo{: + ,$"logrQ

,t;7ï _l' log~ ,t;Tt'

(2.21 )

(2.22)

(2.23)

(2.24)

(2.25)

•

This ~"pression will be used in Chapter 3 for derivation of the Green's function

for sector of a circular ring. The solution of the boundary value problem for a

ring may be found in textbooks (Tyn M:\,"Ïnt (19i3), Mihklin (196i), Budak,

Samarskii and Tikhonov (1964)).
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2.1.3 Harmonie funetions in axisymmetrie eoordinatcs

The solution of the Dirichlet problcm for a torus and a sphere with the center on

the ::-axis is used in the differentiation procedure. In this sub-section the

fundamental solution is derh·ed.

2.1.3.1 Toms

Consider the toros of cross-sectional radius a, and radius 1 in r -:: coordinate

system. The geometry with all distances noted is gi\"en in Figure 2.2.

. z
1

r

•

Figure 2.2. Geometry of the toms

To obtain the fundamental solution, toroidal coordinates may be used. Toroidal

coordinates (a, Pl, 0:5 a < 00 and - 10 < P:5 10, are reJated to cylindrical
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coordinates (r.z) by

r - csinhoc
- coshoc - cosP

csillB
z = coshoc _ cosf:J'

Formul.JtÎon of the proposed methodoloSY

(2.26)

If the torus is defined by oc = ao. then

ccothao = l

c =~12_ a2 coshao = b·
(? ?-)_._1

Conversion from cylindrical to toroïdal coordinates may be done usillg the

following relationships:

Z2+ r2_ c2
cosf3 =~ , 2 ' ,

«r - c)" += )«r +c)" +=2)

sinf3 = 2cz ,
~«r - c)' + z2)«r +c)' + Z2)

z'+r'+c' .
cosha=~ "«r - c)' + z') «r +c)' +Z")

sinha = 2cr ,
~«r _ c)' + Z2) «r +c)' + z')

x'(a, (3) = cosha - cosf3 = 2c' .
~«r - cl' + z2)«r +c)' + z')

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

•

It is supposed that the fundamental solution of the Laplace's equation has the

following form (Lebedeev (1965»:

ç,(a,f3) = ~2cosha - 2cosf3 f: {Mncos(nf3) +N nsin(nf3) }Q...l/2 (cosha){2.33)
n=O

where Q...l/2(cosha) are Legendre functions of second kind of non-integral order.
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If J(j3) = 0(00.13) arc gi\'cn potclltial valucs on the boundary. then Equation

(2.33) becomes

f(j3) = ~2 coshoo - 2 cos{3 f: {.11ncos(n)) + Nnsin(n,3) }Qn.1/2 (cosllO'o). (2.34)
n=O

After multiplication, first by cos(n/3), and after that by sin(n,B) and integrating,

the following is obtained:

Then, the coefficients Mn and N n emerge as

M = l Jh f(f3)cos(nf3)' df3
n {:2r.Qn'1/2(Coshoco) _" ~2coshoco-2cos,B ,

The final expression is:

(2.36)

(2.3i)

(2.38)

9(oc,,B) =~2coshoc - 2cos,B f: {M'ncos(n,B) +N nsin(n,B)}Qn.l/2 (coshoc) {2.39)
n=O

By substituting

and (2.40)

•
Equation (2.39) may be transformed into

o(oc,[3) =X(oc,{3) f: {ancos(n{3)+bnsin(n,B) }Q...l/2(coshoc). (2.41)
n=O
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This is the base formula to be diffcl'<'nlialed in order 10 obtain <l<'l'i\"atiws from

an approximale solution.

2.1.3.2 Sphere with the center on z axis

The geometry of a sphere in r -;: coordinates, with the center 011 the ;:·a.xis is

shown in Figure 2.3. The radius of the sphere is R. The problelll is to find the

potential insiàe the sphere if its "alues on the boundary arc knowll .

• Z
1,
!.....~.

r

•

Figure 2.3. Geometry of the sphere with a center on the z-axis.

Suppose that the knov..n potential on the boundary of a sphere of radius R

has·the form (Lebedeev (1965))
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'"f(9) = L f,J',,(cos9),
n=O

(2.42)

",here P" ar~ Legendre funct:ons of n'h order. Then the coefficients f n are

fn = (n + 1) J: f(9)Pn(cos9)sin9d9.

The potential inside the sphere may be expressed as

(2.43)

(2.44)

•

Equ.üion (2.44) is the expression to be differentiated and used ln deri\"ati\"e

computation.

2.2 Mathematical background of the differcntiation method based on

Grccn's second idcntity

Like its earlier counterpart restricted to harmonie potcntials (Sih'ester (1991 a)),

the method de\"eloped in this thesis is based on Grecn's second idcntity. To find

deri\"ati\"es at some point P the potential problem is restated in integral ferm,

for a region in the neighborhood of P. An integration by parts thcn transfers the

differcntiation operator from the approximate solution (which is prone to

numerieal instability) to the Green's function, which is analytieally knowIl and

can therefore be differentiated without error. N'o numerieal differentiation of the

approximate solution </> is e\'er required, only integration.

2.2.1 Grccn's second idcntity

For two sufficicntly differcntiable funetions </> and 'If; in a simply eonneeted space

region Il with boundary ôIl, Grecn's second idcntity reads
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J (OY'~·-t!.·v'o)dn= ~ (ov(·-(·vo)dr.a· .. J 3D
(2A5)

Let 0 be some function of interest. and let 1." =G(P;Q). where G(P;Q) is tht'

Green's function for the simply connected rt'gion n \\'ith boundary an, ddint'd

for the Laplacian operator by;

y' [G(P;Q)] = -6(P;Q)

G(P;Q) =0

Then (2.45) becomes

in n

on an.
(2A6)

(2.4i)

This expression is weil established in potential thecry (Kellogg (196i), Sneddon

(195i)). The subscnpt.. Q is used as a reminder that the integral and differential

operators refer to coordinates of the source point Q.

If a function 6 is the solution of a boundary-value problem dcscribed by

the Poisson equatior.

Y~6= -g(Q), Q E.Q, (2.48)

subject to boundary conditions th. t render the solution unique, then Grccn's

identity takes the form

(2.49)

•
or

(2.50)

-39-



• (h,pter 2

wherc

Formu/OJ:Îon cf the proposcd methode/ogy

(2.51 )

Hcre I nQ dCllotcs the out,,"ard normal dcrivative to the boundary an at Q E an.

Derivatives of Op are then formally

am + n
, am + n J

8xm8yn9P = 8xm 8 yn gG(P;Q)g(Q)dnQ

- fa/\mn(P;Q)9QdT".
with

(2.53)

The integration and differentiation operations have been interchanged in the

bounda.-y integral term. This is admissible because the integral is convergent at

.all interior points P. Derivatives of any order can be eJ,.-pressed this way.

Differentiation of the surface integral term is treated separat.ely in the following

chapter. It needs special treatment, since the Green's function is singular at

P =Q. The formulas for differentiation of some specific integrals ,\;ll be deri"ed

analytically. For con'-enience, equation (2.52) is rewritten in the follo\\;ng form:

(2.54)

•

It is convenient to work ,\;th a region n of simple shape embedded \\;thin

the problem region no, rather than \\;th the original problem region itself_ The

development in the follo\\;ng chapter \\;ll focus on two-dimensional problems,

\\;th n being a circ1e, rectangle, sector of a circ1e and sector of a ring_ If the

simpl)--shaped region n is a circular disc of radius R, and if P is some interior

point of n, the appropriate Green's function is (Morse and Feshbach (1953),

Courant and Hilbert (1953)
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._ 1 RSQG(P.Q) - - .,_logj""T.
-" Q""/

and the Poisson kernel function I\oo(P;Q) is

Formu/J:ion of the propose;! methodo:cSY

(2.55)

(rQ=R). (2.56)

Here sQ is the distance between the obsen'ation point P(rp. Bp ) and the source

point Q (rQ, BQ), and SI represents the distance from P to point I(RZIrq. BQ)

image of Q with respect to a circle.

If 9(X,y) is harmonic in n, the first integral on the right of Equation

(2.52) vanishes and the potential "p is gi"en by the remaining contour integral,

the Poisson integral. This special case has already bccn treated in detail

(Silvester (1991a)). Because differentiation proceeds in the coordinates of P, it

affects the Poisson kernel but not the potential 9Q' Thus

(2.5ï)

An extensive catalog of the necessary

published by Silvester (1991 b).

kernel functions I\mn(P;Q) has been

2.2.2 Generalization to Helmholtz operator (\72 + ,,2)

Consider a Dirichlet problem described by the Helmholtz equation, subject to

appropriate boundary conditions:

•
9=f

-41-
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The Green's function C(P;Q) for the operator ID is defined by

ID [C(P; Q)] = - é(P; Q)

C(P;Q) = 0

in n

on ôn.
(2.60)

Multiplication by CCP; Q) of both sides of the equation (2.58), followed by

integration gives

(2.61)

Let Green's second identity be applied to the left side,

f {ÔC(P;Q)o _C(p'Q)Ô9Q}dr
an 8nQ . Q 'an Q'

then, since a property of the Green's function is

(2.63)

the final elI.-pression is

(2.64)

•

This elI.-pression is now used to effect high-accuracy derivative computation from

a numerical approximation method. Differentiating (2.64) under the integral

sign, if CCP, Q) does not have a strong singularity, an expression like (2.54) is

obtained:

(2.65)
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The derivative of (;, is thus obtained by differentiating the Grecn's function - a

stable process, sincc this function is kno\\"n anal~·tically - and by intl'grating the

approximate solution numerically. Thus, again the notoriously enor-prone

process of numerical differentiation has been replaced by numerical integration,

which is weil known to be much more stable.

2.2.3 Formulations for the Helmholtz equation

In approÀ;mate derivative computation for the Helmholtz equation, two different

procedures are available:

(a) rewriting the Helmholtz equation to resemble the Poisson equation,

(b) treating it analogously to Laplace's equation, but with an appropriate

Green's function.

Case (a) will be treated first. The inhomogeneous Helmholtz equation can

be rewritten by transposing the ,,29 term to the right:

(2.66)

This reformulation does not, contrary to appearances, put an unknown quantity

on the right. It is supposed from the outset that the Helmholtz equation has

already been $Oh'ed (approximately), so that 9 is already knO\\'ll as accurately as

it ever ,,;11 be. Specializing the above version of Green's second identity (2.45) to

this case,

(2.67)

•
Here GL(P;Q) and I<L(P;Q) are the Green's function of the Laplacian operator

and the Poisson kernel function, respectively. In general, for the general m,nIA
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dcri\'11.ti\'c of 0,

Formu/:Jtion of the propose:! methodofoSY

whcrc

(2.69)

and GLmn(P;Q) will be defined in the following chapter.

The second approach is to use the Green's function for the Helmholtz

operator GH (Tyn Myint (19ï3)). Analogously to the Laplace's equation

problem, the m,n'h derivath'e is now gh'en by

where the generalized kernels are defined similarly, by

am + n
GHmn(P;Q) = amxanyGH(P;Q) ,

am + n ,
KHmn(P;Q) = amxan/~H(P;Q).

(2.ïO)

(2.ïl)

(2.ï2)

E>qnession (2.ïl) is valid only if GHmn(P; Q) has a non-singular form. In the

homogeneous case (g =0), only the boundary integral needs to be evaluated,

(2.ï3)

•

Using this formulation, deri~'ath'es of any order may be computed. This

contrasts with the first formulation where, for good theoretical reasons, only the

first two orders of derivative are available. Because the surface integral term has

disappeared, far fewer integration points will be required for comparable

accuracy, so computing times, accuracy, or both, can be e>.."Pected to improve.
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•

2.3 Problcms in implcmcntation of the modified Poisson iutcgral mcthod

Three principal groups of problems need to be solved. bcfore applying thcsc

methods to approximate results of finite clcment analysis:

Derivation of Green's functions. generalized Poisson kcruels and thcir

.derivatives. },.1so, generation of expressions for differentiating the

fundamental solution of the boundary value problems based on separation of

variables. Doing this manually is a very difficult task, e"cn to find the first

and secondorder derivath·es. \Vith the help of symbolic packages like

MATHE~!ATICA, Maple or Derh'e this job can bc done successfully.

Evaluation of singular surface integrals and singular and nearly singular

curvilinear integrals. The singularity arising in these problcms is 'hard', so it

. is necessary to make some additional assumptions in order to evaluate these

integrals. Also, the solution of nearly singular intcgrals is not standard. The

specialized quadrature formulas need to be adapted for the general case.

Verification of the methods. This includes not only the analytical

verification, but also checking the error amplification when methods are

applied to data containing numerical error.

In the following chapters the problems mentioned abo"e will be analyzed, and

ways to overcome difficulties will b~ proposed and verified.

2.4 Concluding remarks

New methods of computing derivatives from approximate solutions of the

Poisson and Helmholtz equations are presented. They are based on Green's

second identity.
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•

For the Helmholtz ('quation th('re are t""O methods of derivative

computation. One uses the Gre('n's functions for the Laplacian operator,

essentiall)" "ie,,"ing solutions of the Helmholtz equation as equi"alent to solutions

of the Poisson equation; the other employs Green's functions appropriate to the

Helmholtz operator. The second approach is particularly attractive for

differentiating solutions of the homogeneous Helmholtz equation. It is capable of

computing derivatives of any order, instead of only up to the second order using

the Poisson equation approach, and it is computationally more economic than

the first technique.

Deri"ati"es of harmonic fUllctions in a."dsymmetric coordinates can be

obtained by differentiation of the fundamental solution of the boundary value

problems for a torus and a sphere.
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CHAPTER3

Generation of Grcen's function and Poisson kcrncls :wd their derivativcs

In this chapter attention turns from the general mathematical formulation 1.0

generation of kernels and their derivatives, differentiation of the fundal1lental

solutions of boundary value problems, differentiation of the surface integrals and

special cases when the observation point is close to the region edge or on its "dge.

The chapter is divided into four sections. The first one deals with the generation

of Green's functions and Poisson kernels for Laplacian and Helmholtz operators,

the second describes the differentiation of fundamental solutions of the boundary

value problem, and the last two discuss the near boundary case and treatment of

surface integrals.

3.1 Construction of Green's functions

The existence of a Green's function is equivalent to the existence of a unique

solution of the boundary value problem for the differential equation (2.46) with

the corresponding boundary conditions. G(P; Q) denotes the influence of a point

source, placed at Q, at the obsCI"\'ation point P.

3.1.1 Methods of generating Green's functions

The Green's function of the region n bounded by an has the following

properties:

(a) For each P,Q E n, it can be represented in the forro
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G(P;Q) = g(P;Q) +1(P;Q).

Green·s and Poisson kernel functions

(3.1)

whcre function g(P;Q) is the fundamcntal solution for a frce space, and

1'(P; Q) is a harmonie function, represcnting the influence of the boundary;

(b) The function G(P;Q) is harmonie and continuous at all points PEn except

at P = Q, where it tends to + 00. It satisfies prescribed boundarl'

conditions, i.e. G(PjQ) =0 for Q E ôn.

(c) It satisfies the symmetry condition

G(PjQ) = G(Q;P)

which is the another eJ..'Pression for physical reciprocity.

(3.2)

•

(d) Bl' definition, it satisfies the Poisson equation in a generalized sense for each

QEn, so it might be interpreted as a Coulomb potential generated inside

the conducting surface ôn at the point Q.

In this section three methods of construction of Green's functions will be

brief1l' described.

3.1.1.1 Mcthod of images

Method of images, or method of ref1ection (Vladimirov (19ï1)) is the most

effective wal' of constructing a Green's function for a region having a sufficientll'

wide sj-mmetry group. It is based on two fundamental laws of ref1ection, known

from e1ementary e1ectrostatics theory (Atkin (1962), Weber (1950), Van Blade1

(1985) Kellogg (196ï)). The method describcs the induced charge in e1ectrostatics

or a ref1ected wave in acoustics. This fact is used to determine the function

")'(PjQ). The solutions mal' he obtained bl' means of inversion from a plane and

in a sphere, or in the case of two-dimensional problems, inversion in a c:ircle.

If the point Q lies in (zQ,YQ,zQ), then its image from a plane Z = 0 is a
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point J with coordinates (-xQ'YQ.=Q)' The Ene source at Q(xQ.!lQl has an image

at J( - xQ. YQ). Then the Green's function. which represents the influence at the

observation point P of a unit charge at Q for two-dimensional probl<'ms is

G(P'Q) - 1 1 (xp+xQ)'+(YP-YQ?
_ -n::og ( )" ( )"
, <;7. xp-xQ -+ YP-YQ-

(3.3)
1 1 sr

=2- ogs-,
" Q

where sQ and Sr are distances from the observation point P to a source placed at

Q and to its image J.

An inversion mapping about a circle of radius R carrie the point J, the

image of Q(rQ,6Q), to the polar coordinates (R'Irq, 6Q). The point Q and l are

said to be symmetric with respect to circular surface an. This is a one-to-one

mapping of the exterior of a circle (or sphere, in 3D) into the interior of a cir,cle

n. The Kelvin transformation (Kellogg (196i), Courant and Hilbert (1953)) of a

function ~(r, 6) is defined as

• R (R2
)~ (r,6) =r~ r,6 . (3.4)

The Kel,,-in inversion theorem may be given a quasi-physical interpretation, that

the potential at point r inside the region n is given by the equation

R (R2
)~(r,6) = ~0(r,6) -r90 r,6 ,

where ~o(r) is the free space potential.

The Green's function is supposed to have the form

G(P;Q) = -)...logsQ + J.=logsr +c,
~1i ~iï

(3.5)

(3.6)

•
where sQ and sr are again distances between the observation point P and the
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source point Q and its image J. The constant c is detcrmincd from the condition

that G(P;Q) becomes zero on the boundary an, i.e.

(3.i)

giving

(3.8)

Then the G~een's funetion will become

(3.9)

•

3.1.1.2 Conformai mapping

Let the function z=z«()=:t(~,1])+jY(~,1]) conformally map a domain A. of the

(-plane into n of the z-plane. The correspondence is one to one. If u(:t, y) is a

harmonic function, then function ù(~,1]) =u(:t(~,1]),y(~,1])) is harmonic in .1.

Conformai mapping transforms the harmonic function into another harmonie

function, and a Dirichlet or Neumann problem into another Dirichlet or

Neumann problem (Kantoro..;ch (1964), Spiegel (1981), Morse and Feshbach

(1953)).

The solutions to the Dirichlet problems for the circle and circular anulus

are presented in Chapter 2. Thus if the conformai mapping of a given domain

into a circle or circular ring is knO\\"D., then it is possible to find solutions to the

Dirichlet problem for that domain.

Some standard transformations are:

(a) A hill-plane is transformed into a circle by a bilinear transformation;

(b) The e>.:terior of an ellipse is mapped into a circle by the transformation

-50-



• Ch.pte,3 Green's and Poisson kernd (unctions

==a(+~;
(c) A polygon is mapped on to a circle using a Schwartz-Christoffd

transformation;

(d) The annular domain between two circumferc'nces is mapPl'd on t.o a circular

annulus with the aid of a bilïnear transformation;

(e) The annular region between two confocal ellipses can he mal'l'ed on to a

circular anulus with == a( +~,

The Green's function is related 1.0 the conformai mal' of the domain n
into a unit circ1e. If the analytic function (= I(x + jy) mal's the domain n
conformally onto a unit circ1e in (-plane, in such a way that point Q gocs into

the origin, then

G(PjQ) = -.l::log1 I(x+jy) 1.<r. (3.10)

•

is the Green's function belonging 1.0 n. Generally: any simply conncctcd boundcd

domain 'with piecew:se smooth boundaries, according 1.0 Riemann's fundamental

theorem of geometric function theory (Courant and Hilbert (1953)) may be

conformally :napped (Gibbs (1958)).

3.1.1.3 Eigenfunctions expansion mcthod

In practice, the precise solutions using the eigenfunction method arc available for

separable coordinate systems only. They allow the separation of partial

differential equation in terms of coordinates, resulting in a set of ordinary

differential equations 'with sorne separation constants. Solutions of the ordinary

differential equations satisfying the boundaIj conditions are called

eigenfu.nctions, and values of separation constants allo"..ing il. arc eigenvalues.

Suppose that ,a function t/J satisfies the equation

(3.11)
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for a glvcn diffcrcntial opcrator ~. \\'hcre p is continuous ovcr the domain of

intcrcst n. Then, if ç is not idcntically cqual to zcro. it is called an

cigcnfunction, and the number >. is called an eigenvalue. Two eigenfunctions

corrcsponding to differcnt cigcll\'alues are orthogonal. A sequence of

cigcnfunctions is able to represent an arbitraI)' function with an arbitrary

boundary conditions.

The e:l:pansioll of Green '5 function is limited by the ease with which

cigenfunctions can be determined (Morse and Feshbach (1953)). If the

eigcnfunctions arc ,pmn and corresponding eigenvalues arc "mn' they satisfy thc

following cquation:

"\72l/Jmn + h:~n tPmn = o. (3.12)

For eigenfunctions t{J(P), the Green's functions are assumed to be of the following

form:

(3.13)

After introducing this e"."pansion into the equation (3.12), the form of Green's

function c:l."pansion for the Helmholtz operator is obtained

(3.14)

•

Consider the rectangular region 0::::; x ::::; a, 0::::; y ::::; b, where function <p

satisfies the Poisson equation

The method of separation of ~·a.riables is applied to obtain the eigenfunctions and

Green's function. The form of eigenfunction is assumed
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tNx.y) = X(x) Y(y).

Substitution of (3.16) into (3.15) yiclds

Green's ôJnd Poisson kernel (unctions

(3.16)

(3.1 i)

Since X and Y satisfy homogeneous boundary conditions. they are found 10 be

v () , . :;mx..'\. m X = .."'1 m sln-a -

(3.18)

Y () B . =y
n Y = msm-b-'

Then

Thus the eigenfunctions are

1 ·-mx·hnY,,, =sm" sm­.,. mn "ëi'""" b'

(3.19)

(3.20)

Then using (3.14) Green's function is found as

• ioilU'P • To'ny p . nmxQ . iinYQ
4 sm-a-sm-b-sln-a-sm-b-

G(P'Q) - ~ -----;--':;---:;;------'''-
, - ab:;2~ (r:::)' +(~)2 (3.21)

•

The alternate, but equivalent method is based on c"..pansion of solution as

a double Fourier series

(3.22)
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Exp;lIlsion of the source function g(x.y) in a Fourier series gi\"es

( ) '" P . 7.mx • 7.ny9 x,y = L mnsln-a-sm-b-'
"l, n

where

(3.23)

(3.24)

Then. after inserting both e:-.:pansions into the equation (3.15). the potential

becorncs

.1. '" Pmn • 7.mXp • 7.nyp
"'p = L..... sm-a-sm--
. ",.n(~r +(~y b

where

• flTnXp • 'ftnyp • ï."mXQ • imYQ
4 sm-a-sm-b-sm-a-sm-b-

G(P; Q) =""""""bI: -----..-~.--;:----"--
a7.*m,n (~r+(~)2

is tht: Green's function.

(3.25)

(3.26)

(3.2i)

•

3.1.1.4 Applicability of various forms of Grœn's funetion

Theoretically, it is possible to generate a Green's function using conformal

mappillg for a \\;de \'ariety of regions, but praetical realization in"olves \'cry

difficult problems, such as e\'aluation and differentiation of the resulting

CÀ-pressions. There are some con\'entional methods (Kantorovich (1964)) as well

as universal programs for e\'aluation of Schwarz-Christoffel transformations for a

general n·sided polygon (Trefethen (1980)), but these are approximate. The
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•

Green's functions generated arc approximalC and difficult [0 diffcH'lltialc.

The typical example is a triangle. The Sch\\'arz-Chri"offd transformation

in"olves incomplete Beta functions, or in the best easc dliptie illtcgra1s of lhc

third kind. In the case of a rcctangle Jacobian elliplic inkgrals ha,'c to hc

evaluated. The resulting expressions are difficult to c"aluatc, and thcir

differentiatien is also relatively cOI:lplex.

The method of eigenfunction expansion for a circle and rcctanglc sccms

attractive for both operators (Laplacian and Helmholtz operator), but the

summation and differentiation operators are not always commutative. The

resulting series are slowly con"ergent, e,'en to rcco\'er potcntial funetion.

Experience shows that the first order derivativc for Helmholtz operator can be

hardly recovered with satisfactory accuracy.

The imaging method to construct a Green's funclions is recommended for

use whenever possible, because of the simplicity of its application. By mirroring

from a plane and a circle a system of images may be constructed, There are still

open questions, For exarnple, it would be desirable to find a way how to organize

imaging for triangle, a very important and attractive region.

3.1.2 Construction of Grcen's functions and Poisson kcrncls

for e1emenlary shapes

It is convenient to work with a region n of simple shape embedded within the

problem region no, rather than with the original problem region itself. The

following development will focus on two-dimensional problems with n ç; no' The

elementary regions for which Green's functions and extended Poisson kernels

were generated are: circle, rectangle, sector of circle and sector of ring.
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3.1.2.1 Circle

The simply·shapcd rcgion n is takcn as a circular dise of radius R. If P is somc

intcrior point of n, as in Figure 3.1. the appropriate Grecn's function is (Courant

and Hilbet (1953))

1 RSQ
G(P;Q) = - 2r.logrQsl (23)

where sQ is the distance from the obser\"ation point P to the source point Q, and

SI represents the distance from P to the image of Q with respect to the circle,

i.e., to the point l located at (R2IrQ, !JQ). Here and in the following, rp and rQ

are the radial positions of points P and Q respecti\"ely. From tbis Green's

function, the con\"entional Poisson kemel Koo(P;Q) immediately follows as

(rQ =R). (29)

•

An extensive catalog of the necessary kemel functions Kmn(P;Q) has been

published by Silvester (1991 b). The list of kemels up to tbird order together

with an example of a MATHEMATICA program is gi\"en in Appendix 1.
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x

Figure 3.1. Images on the circle. Potential at point P depends on the
loca.tio:l of source Q and its image l relatÏ\·e to the circular boundary.

In order to simplify the integration process, integration is performed in

(sQ,a) instead of the (rQ,8Q) coordinate system

dnQ= sQdsQda. (3.30)

Integration with respect to sQ is performed from 0 to S m.J..a), while the angle a

takes values from 0 to 2 r.. From Figure 3.1 it is easy to \"erify that

•
r~ =ry,+s~+2rpsQcosa
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rQcos(Bp - BQ) = sQcoso +rp

(3.33)

(3.34)

(3.35)

Using these new integration variables, the order of singularity of the surface

integrals is reduced by one.

3.1.2.2 Rectangular rcgion

.y
,

i
, ,

1 1 1
1 ! !--- , ,

· 1
1 i

,
• • • •

1
1 1
1 1--"i- l i ,

1 i 1
1• 1 • • • 1 •,

1 1 11 ,

i ~~}j~~ S,
1

• • 1
• 11 ,

1

/S.
1~

1

-J-- • • 1
1

x

•

• i

Figure 3.2. Method of images applied to solve Dirichlet problem on the
rectangle

-58-



• Chapte,3 Gr~en's ~nd Poisson kernel functions

Using the method of images, as shown in Figure 3.2. the Grecn's function is

00 00

G(P;Q) = L L Gmn(P;Q),
m=l n=l

where

(3.36)

G (P'Q) =llog S:!mnS.mn • (3.3i)
mn' 2 7.' ':;:1n1n~3mn

The extended Poisson kernel function is the normal derivatÏ\'e of the Green's

function on the boundary, taken with respect to the Q coordinates.

For x = 0 and x = a, the normal derivative of the m,nth Grcen's function

term is

BGmn BGm" (2 )( 1 1)---an- = 7iXQ = xQ + ma + x p ~m" - $;lm"

+"'(XQ +2ma - xp)(:;-L-:;-L).4mn lmn

(3.38)

For y =0 and y =b, the normal deri\'ative of the m,n'h Green's function term is

BGm" BGm" ( 2b )( 1 1)~=-.;--= YQ+ n +yp s--::=-on 0YO <Cmn -.,)mn

+(YQ +2nb - YP)(:J.=-:;-L).mn lmn

(3.39)

•

The symbolic analysis package MATHEMATICA was used to generate

derivatives of these kernels. They are tabulated in Appendix 2.

3.1.2.3 Sector of circle of angle r / m

The sector of circle element is restricted to an angle r./m, where m is any integer

since only these angles allow the application of method of images.
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x

l,.

\
"
\

.y

i

13,

13

Figure 3.3. Method of images applied to soh'e Dirichlet problem on the
sector of a cirele of radius R and angle;;lm.

The organization of imaging is illustrated in Figure 3.3, where two set of images

are obtained. The first are (2 m - 1) images from the sides, and the second set is

their images mirrored on the cirele, making the total number of images 4m - l.

Then, the Green'5 function formula may be found by summing all their

influences,

l m (rQsr rQS .,)G(P;Q) = l);: L log • -log 1.
- ,••=1 RSQi RsQi,

(3.40)

m

:EGi(P;Q)
i=1

(3.41)

•
where distances S are giyen b)'
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The normal derh'ati\"e on the sides (IIQ = 0 and IIQ = 1~1 ) is

aGi 1 aGi rp( 1 R2
) • ( • ')'l')~=r;;~=~ --.."..,. smllp-IIQ -(t-1)"-.on Q06" 4. ~2 . r" ".... 1IZ-Q 'Q. Q'i.

For the arc the Poisson kcrnel functions become

(3A2)

(3.-13)

(3A-1 )

(3.45)

(3.46)

•

aGi_aGi_r~-r~( 1 1) (3.4i)
an-arQ - hrQ sb. -~ .

AU kernels are generated using the MATHEMATICA s)'Illbolic package, and

tabulated in Appendix 3.

3.1.2.4 Sector of ring with angle r/m
The ring-shaped sector as element used in accurate deri\"ath'e computation is

also restricted to an angle 'l'lm. Only these angles allow the application of

method of images.
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.y
1

1

Green's and Poisson kernd (unctions

\ /

'Q. \. '"'-- -_// ~6

'Q~ ..

x

•

Figure 3.4. The geometry of the sector of a circular ring of inner and
outer radii a and b, and angle;:lm.

The base geometry is illustrated on Figure 3.4. Again, two sets of images are

obtained. The first corresponds to images from the circular boundary, and the

second are (2m -1) images from the sides. The first set is infinite as can be seen

from the fundamental solution for a circular ring, derived in Chapter 2. The

Green's function may be found by Sllmmjng al! the influences. Since the number

of positive and negative sources is in balance, the term

log bro r
--blog : + logrQ
loga .
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will vanish. Then the Green's funclion is

Green's Jnd Poisson ~erne1 funer ions

on ( <. '" {r~"-(j~"" b~" - r~" "}1 "QI'.) Q rp Q u.. 11

G(P;Q) =:J= L: log ~Q' - - L b-.!.n . :':n rU + b:':u '.:11 ,." r"
-" i=l 1 n=l - a Q - li P Q

sinn(8p - (i - 1)~) sinnllQ )
X 1L

m

='LG;(P;Q)
i=l

where distances s are given by

The normal derh'ative on the sid~ 8Q =aand 8Q =iit is

aGi _ 1 ôGi 1
~- -rQa8Q 8

Q
=O

aGi _ 1 aGi 1
an2 -7'Qa8Q 8 _ ..

Q-;n

where

aGi _ r p r Q{Sin(8p - 8Q - (i-1)~) sin(8p +8Q - (i -1)~)}
~- --n.::- 2 + 2o"a ~"ir SQi SQi'

(3..1S)

(3..19)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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For the arc, the Poi,son kerncl funclions becomc

ôG, ôG 1'- .
~-arQ b

rQ=

where

Green's and Poisson kernel (unctions

(3.55)

(3.56)

•

(3.5i)

{

, , n , , }
1 oc r-n a-nr bon r ... n '"In ....p - Q - p u"· .:!;; .+ f.rQ ~ b2n _ a'inrp - b'in _ a2n rprQ smn(6p - (t-l)"'fiï)slnn6Q•

The convergence of the series in these CÀ-pressions for the kernels is dependent on

the position of the observation point P. AIl J-ernels are generated using the

MATHEMATICA symbolic package, and tabulated in Appendix 4.

3.1.3 Generation of Green's functions for Helmholtz operator (v2+ ,,2)

A circle is taken to be the base region used in accurate derivative computation of

solutions of the Helmholtz equation. In the classical literature of mathematical

physics (Tyn Myint (19i3), Mihklin (196i» there are three standard ways of

deriving the Green's function for an arbitrary region. The first is CÀ-pansion of the

Green's function as a formal sum of eigenfunctions, analogous to the Laplacia::!.

operator case. Eigenfunction CÀ-pansions yield slowly convergent series, which do

not give a satisfactory accuracy unless a very large number of terms is included.

After differentiation convergence is slow, e\'en for the zeroth derivative, and

worse for higher deri\·atives. In second approach, the fo=

G(P;Q) =,'(P;Q) + h(P;Q) is assumed for the Green's function, where ï(P;Q) is
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•

a fundamelltal solution and h(P:Q) takes l'arc of the bouudary comlitions

G(P;Q) has to satisfy. The resulting expl'cssions arc l'ather complicated. with

coefficients expressed in tel'll1S of illtt'grals of Bcssel funetions of the secontl kind.

Yi' The most suitable appears to be an approach bast'd on solution of the

homogeneous equation with appropriate boundary conditions. Then, the Green's

function is expanded as a sum of Besse! functions of the first kind, J;,

Î
!

Figure 3.5. The base geometry. P is the observation point, and Q is the
source point.

For the circular region shown in Figure 3.5, with Q as the source point

and P the observation point, the influence of a unit source is (Tyn Myint (1973))

GH(P;Q) = :EbJi(k"7"p)cos[i(9p- 9Q)],
i
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(3.58)

= Le; [J,(krp)Y;(kR) - Y,(hp)J;(kR)] cos[i(8p - 8Q)J, rp > rQ

and

(3.59)

(3.60)

~i = 2, i=O (3.60)

l ·40= , t r .

The Poisson kernel function is defined as the normal derh'ative of the Green's

function,

(3.62)

Since rp < R in the present case (i.e., the observation point P is always inside

the circle of integration), the kerne1 function takes the form

00

I\H(P;Q) = La;Ji(h:rp)cos[i(8p-8Q))
i=O

where

(3.63)

(3.64)

•

This series converges comparatÏ\'e1y fast, at any rate fast enough to be

computationally practical. The kerne1s KHmn(P;Q) and GHmn(P;Q) are also

derived using the MATHEMATICA package. They are tabulated in Appendix 5.
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3.2 Differcntiation of fundamcntal solutions of boundary value problcms

3.2.1 Mcthod bascd on Fourier series expansion

The potential inside the circle can be computed from known values on the

boundary, using the formula

4>(rp,6p) = ~+ ~(~)' [a,cos(i6)+b;sin(i6)] (3.65)

where a; and b; are Fourier coefficients derived from known boundary ,·alues of

the harmonic function j(6), given in Chapter 2. Then the mth order deri'·atives

of 4> may be calculated as

a 00 (. + )1 ( )'m • _ 1 t m. rp . . .
~(r,6) -'"Il"' ~ i! 1f [a;+mcos('6p)+b,+mSlll('6p)],

a ~:a ç,(rp,6p) = im f(i+'lm)!(~);[a;+m sin(i6p) -b;+mcos(i6p)].
:z: y .=0 t. .ct

Other derivatives may be obtained from these two,

(3.66)

(3.6i)

for 2k ~ m,

for 2k < m.

(3.68)

(3.69)

•

This method is equivalent to the Poisson integral method (Tyn Myint

(19i3)). It gives exacdy the same results for a number of samples equal to the

number of integration points if point P is not close to the edge (rp < 0.8).

Otherwise, the Poisson integral method becomes unstable, and convergence of

Fourier series is slower, because the convergence factor (rp/R) comes close to l.

In practical applications this method yiclds better results, but it is more error

sensitive. It is necessa.ry to know the nature of the solution, and to take an
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adequate nlllnber of samples. because the influence of higher harmonics. becomes

large and affects the accuracy.

The Fourier series expansion may also be used to e"aluate the boundary

integral in (2.65) if the function analyzed is not harmonic. This fact will be used

in differentiating the Poisson equation solution.

3.2.2 Differentiation of harmonic functions in axïsymmetric coorclinatcs

The solution of the Dirichlet problem for a torus and a sphere \\;th the center on

the :-axis is used in the procedure of differentiation.

3.2.2.1 TortlS

In Chapter 2, the C)"l'ression for the potential inside the torus for known

boundary values is derived as

ç,(a,{3) =x(a,{3) f: {ancos(n{3) +bnsin(n{3) }Qn.l/2(cosha).
n=O

(3. iD)

Coefficients an and bn, toroidal coorclinatcs (a, {3) and function x(a, {3) are

C)"l'lained and given in Chapter 2.

Knowing the deri"ath'e formula for the Legendre functions of nonintegral

order,

and other derivatives used,

(3.il)

•

8{3 sinhasin,8
a;= c

8a coshacos,8 -1
a;= - c
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Dx(o:,;3) = _sinhocos,3(0 3)
Dr 2c \"

.;.,D-,-,\(,,0.;.,,,)":") =
D:

Derivatives in the r and : directions may he found,

o(cr,{3) sinho:cos,8 '( I~)' \(0,,8)D = - ') <p 0:, i' -r c xr _c (3.73)

{-sinho:sin,8~ n{ -ansin(n,3)+ bncos(n,8)}Qn,'/2(Cosho:) +

1- coshacos{3~ ( l '{ ,}
si!lha L..J n +:ï) ancos(n,3) + bnsm(n,B) Q"+1/2(cosho) +

n=O

1- coshacos{3 00. l){ }}si!lha cosha~ ln +:ï ancos(n,8)+bnsin(n;3) Q""/2(cosho) ,

ç,(cr,{3)
ch

cosha sin{3 .( {3) + x(a, {3)
- 2c <p cr, C x

{( -1 + co~hacos{3)~ n{ - ansin(n{3) + bncos(n,B)}Qn"/2 (cosha)

- sin{3 f: (n + ~){anCOs(n,8) + bnsin(n{3)}Qn+l/2 (cosha) +
n=O

coshasin{3~ (n +t){ancos(n.B) + bnsin(n{3)}Qn.,/2 (COSha)}.

(3.74)

The fo=ulas for higher derivatÏ\'es of harmonic functions in the axisymmetric

coordinate system are derived and tabulated in Appendix 6.

3,2,2,2 Sphere with the center on z axis

To obtain derivatÏ\'cs the fundamental solution of the Dirichlet problem for a

sphere of radius R, given in the previous chapter, is differentiated. The potential

inside the sphere may be expressed as

ç,(p,lI) = ~fn(~)" Pn(cosll), (3,75)
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Knowing th;.t

Green's iJnd Poisson kernel f:.mctions

ô';'(p. Bl
Ôp

Ô,;,(p, B)
aB

1f. jfj(~)j-l Pj(cosB),
3=0

~ f. j fj(~)J{cos BPj(cos B) - Pj.l(cosB)}.
sm j=O

(3. ï6)

(3.H)

and that derÏ\'atives are

8t/> 8t/>. 18t/>or =apsmB +P8ëcos B•

8t/> ÔO 180 .
(f; =apcosB -P8ësmB•

(3.ïS)

(3.ï9)

it can he proved that the general m,nth derivati\'e of a harmonic function is

8m+ nt/>
lrpanz

(3.S0)

•

3.3 Derivatives of harmonic nmctions if point P is close to or on the edge

Formulas and forms of Poisson kernel nmctions to deal with specific cases when

point P (where the derivative is ta he computed) is close ta the edge or it is

right on the edge are derived in this section.

3.3.1 Rcgularization of the Poisson keme1s for the circle

In order ta reduce the arder of singularity of the surface integrals, the variables

are changed. The same transformation may oe performed on the boundary

-ïO-
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integral. Instead of the polar coordinat es (r.8) the coordinate system (s.a) is

used, where S = sQ' and 0 is the angle measl!red frorn the line PO to line PQ.

The geornetry is shown in Figure 3.1. This "ariable transformation yidds a more

natmaI and suitable form of kernels. Then. the general forrn of Tllth order

modified Poisson kernels is

[{m.O(P;Q) = ::-R,:l+ l{r
2

-; R
2
cos(ma +m8p ) + rcos((m -1)0 + m8p )}(3.81)

[{m-l,l(P;Q) = ::-R,:l+l {r
2

-: R\in(mo + m8p ) + rsin((m -1)0 + m8p )} (3.82)

[{m.2k,2k(P;Q) =(-I)"l{m.o(P;Q)

K m-2k•1 ,2k+l(P;Q) = (-1)" K m.1,t(P;Q)

for 2k:5 m

for2k<m

(3.83)

(3.84)

In that case dr = sdo, so the degree of denominator for the mth deri\'ati\'e is

reduced to m. For rp = R it is the order of singularity, since

2R. (3.85)

•

Using this modification, the nature of the quadrature is changed. If the edge is

approached, the sa.mpling points are concentrated closer to the observation point

P. Equi-a quadrature yields a non-uniform distribution of integration points on

the perlmeter of the circle. Before, sa.mpling points were equi-spa.ced, while now

the quadrature points are concentrated closer to the obser\'ation point.

-ï1-
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•

Figure 3.6. Accuracy of ô2flôx2 derivative, for different positions of the
observation point. Results obtained using modified kernels ~ x) and
using standard formula (0). The test function is f(x,y) = x y - xy3,
8P = 20·. 300 point quadrature ,,"as used.

Kernels defined in this way are more natural and consistent with respect

to the original definition of the Fourier transform1 (Bôcher (1906), Kellog

(196ï)), since the Poisson integral is equivalent to Fouri~ series ~"Pansion

solution of boundary value problems on the circular disk. Numerical ~"Periments

confirm this. Figure 3.6 presents the results obtained using the conventional

approach and by modified integration. Exact values of an analytical function

were used in all ~"Periments.

l BOc:her gave an e1egant interpretation of the Poisson integral:
If we imagine th.t .t e.ch point of the unit cirele the value les) .t that point h.s been marked,
then the value F(r,l') at any point P within the circle is equal to the .ver.ge of these values aS
they would be read of by an observer at P who tours with uniform angular velocity and who is
situated in a refracting medium which causes the r.ys of light re.ching his eye to t.ke the form of
circu/ar ~rcs orthogonal ta the unit c;rcle.
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The problem with the aboye approach is that the information useJ in

computation of deriyatiyes has an increasingly local character as the bonndary is

approached, so the beI:eficial effect of a\"Craging is lost. !nstead of dat a in the

broader region being a\'eraged, more local data are uscd. This implics that the

numerical error in the region close to the point of interest is amplificd. Error

sensitiyity of this formulation, if applied to finite clement resnlts is incrcascd.

3.3.2 Point P on the edge - normal derivative on the boundary

To deriye directional deriyatiyes of the kernels, one may start from the

azimuthal and radial deriyatÏ\'es,

(3.86)

(3.8i)

Theo, first order kernels, corresponding to :z; and y directional derivatives, may

he obtained from the azimuthal and radial derivatives,

•

If point Pis on the edg~, rp = R,

~ 8p -8QsQ=R 2(l-cos(8p-8Q))=2Rsin 2 '

and since

R2 2
lim -r =2R
r-R SQ ,

8Q-8p

-73-
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azimuthal and radial derivativcs of the Poisson kcrncls arc

(3.92)

(3.93)

If 6p = 6Q, a dcrh'ed radial kernel has a second order singularity. It is obvious

that the azimuthal derivative kernel has an irregular form. It is not possible to

find that deri,'ative of a harmonie function from known potentials if the point of

interest P is on the edge_ This is consistent with the mathematical physics

theory (Miranda (1970)),

In order to compute a first order derivath-e on the edge in an arbitrary

direction the theory of distributions may be applied (Stakgold (1979», The

fundamental assumption of the theory of distributions is the following:

f ô]{oodT f}" Ô9QdT~Q~ Q = - \00"""8 Q'an OUp an OUp

Then, the directional derivative is

After substitutions

(3.94)

(3.95)

ÔTp 6;;-=cos p,
ozp

(3,96)

•

and using the property of the Poisson integral for the point on the edge

ôt/>p _ sin6p Ô9p 6 f '" ôl(oo dT
~ - -.,.-;--.;;;- - cos P 'i'Q"""'- Q'oz p o6p an orp

-74-
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Here 89p/8Bp is computcd using some other mcthod. Tlms. from thc' potc'mia!

known on the boundary of the region. using thc modificd Poisson integra!

method, on!y thc radial deri\"atÏ\'e can bc found

(3.98)

Because dTQ =RdBQ, the last C).-pression rcduces to

The last integral has a strong (secc.n..! order) singularity. It cannot bc sol\"cd

using classical methods, and requires s~)ecial treatment.

3.4 Treatment of the surface integral

In the general case where the source funetion g(Q) does Ilot vanish, aH terms in

Equation (2.65) must be considered. In other words, the surface integral

contribution must be eomputed as weH as the Poisson integral over its boundary.

Point P is located \vithin the circle, so the integral kernel becomes singular at

P = Q. Hence this caleulation is computationally somewhat more diffieult than

the boundary integration required for harmonie funetions. With the boundary

integral term absent, finding any derivatÏ\'e requires evaluation of the integral

(3.100)

•

It is tempting to assume that the differentiation and integration operators on the

right eo=ute; but this assumption eannot be made without investigation. The

first few values of m and n, whieh are in any case the most important, will

therefore be developed in detail.

Two specifie cases are treated separately. The first arises when the
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observation point P, where the deri\'ati\'e is to be computed, is an interior point

of the circle. The case whcn point P is on the boundary nccds a scparatc

analysis, sincc kcrnels takc a diffcrent form.

3.4.1 Diffcrcntiation of surface integral tcrm for an intcrior point P

To begin, the apparently trivial case m =n =0 is important. The integral kernel

G(Pj Q) is singular, having a pole at P =Q. Howe\'er, this singularity is weak,

(3.101)

so the potential ç, is known to exist for any bounded and piecewise continuous

source function g(P). The first derivatives, m +n = l, are dealt with ne:l:t, by

direct differentiation. Differentiating with respect to (say) x,

aG(P;Q) =a (_ 1 10gRsQ)= _1 (XP-XQax ax 27. Tçp] 27. sb
Xp - X])

2 •
s]

(3.102)

The two terms in parentheses may be interpreted as projections of the distance­

vectors sQ and S] onto the x-aJds. Thus

where O<Q and CIl] represent the angles between x·axis and the distance vectors sQ

and S] respectively. The second te= in parentheses is obvionsly regular, because

the image l is always outside the circle, 1s]1 > O. The first is singular at sQ = O.

However, this singularity is integrable,

(3.104)

•
To continue, let second dcrivatives he fo=ed in the same manner.
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Differentiating formall)" with respect to I.

Green's :Jnd Poisson kernd (unctions

82 G(P'Q) = 1 (_ cos2(0] + 111') , cos2(oQ + 111'))
8 2 , "= ~,. " .

x ~.. sI SQ
(3.105)

This formal differentiation of the kerncl alone leads directly to an l'l'pression for

829p/8x2 if, and only if, the differentiation and integration operators can be

exchanged in (3.100). In this case they do not commute. Differentiation under

the integral sign is not allowed in the singular integral. It is, howc\'cr,

permissible in the second term, so that '

82~ = _lJ 8 cos(Cl:~+lIp) (Q)df1
8x· 2r. D8x "'] 9 Q

1 8 J cos(Cl:Q+llp ) (Q)df1+ 2r.8x!? "'Q 9 'Q'

(3.106)

Fortunately, all is not lost; a second derivative in weak form (Mikhlin (1965)) is

still obtainable. The rightmost integral may be transformed, integrating by parts

(3.10i)

The rightmcst integral is readily e\'aluated, for

(3.108)

so that

(3.109)

•
According ta Mikhlin (1965), this operation is r,ermi~~ible wherever the source

density g(Q) satimes the Lipschitz condition

-7i-
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Ig(P) - g(Q) 1 < 1\ 1sQ 1 p.

Green's and Poisson kernel (unctions

(3.110)

with p > O. This condition lS likc!y ta be met ln any practical case. After

collecting tcrms the result is

(3.111)

By an interchange of coordinates, there immediately results

(3.112)

The cross derh'ative is simpler ta deal with. Its general fonn is

82
• - J8

2
G(P;Q) (Q) dn

axay'i>P - n f);r:ay 9 Q
(3.113)

(P) f COS(ClQ +Op)sin(ClQ +Op) dI'
+9 an sQ Q'

where the final integral evaluates ta zero. Hence

(3.114)

As a matter of notational con\'enience, let kernel functions J mn(P; Q) be defined,

analogously to ]{mn(P; Q) for the boundary integration:

(3.115)

•

For m +n < 2, these kernels are simply the formal derh'atives of the Green's

function. For m +n = 2 (but m #: n), they need to be augmented by the delta

function e5(P - Q), so as to pro,,-ïde the added g(P) term. The values of such

kernel functions appear in Appendix 1.
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3.4.2 Diffcrcntiation of surface integra.! for point on the eùge

If the obscnation point P is on the bOllndary, the first ,1cri\'ali\"l' of the Gn'l'n's

function with respect t.o x is

aG( 'Q) _ cos9p ( 2 Rcosa'Q)-= P, -?='" 1 + sQox ","rr.ll,.

with c1early integrable singularity,

lim J cos Cl:Q
P_Q D sQ dflQ < 00.

(3.116)

(3.11ï)

To obtain a second derÏ\'atÏ\'e in wcak form (:'-Iihklin (1965). one has to procced

as follows:

•

Knowing

the rightmost integra.! becomes

This integral reduces to

-ï9-
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and the finitl expression is

éJ f f éJ
2
G(P;Q) 0" Jw(P;Q)g(Q) df?Q = éJ ". g(Q)df?Q - cos·Bpg(P).

uX n n x·

Similarly for the mixed derivatÏ\'e,

ô f sQ+2RcosO"Q (Q) df? = 1 f (Q) ô sQ+2RcosO"Qdf?ay n 2r.RsQ 9 Q 2r.R ng ay 'Q Q

(3.120)

(3.121 )

•

+ (p)cosBp ! sQ+2RcosO"QôsQdT.
9 2r. ran "Q ay Q

Since

ÔSQ .ay= -sm(O"Q+9p ),

the rightmost integral is readily evaluated,

! sQ +2RcosO"Q ôSQ dT __ ! sQ +2RcosO"Q . ( B ) dTran $Q ay Q - ran $Q Slll O"Q + p Q'

This integral reduces to

and after substitution in (3.121), the final ell:pression is

ô J J (P'Q) (Q) df? =J ô
2
G(P;Q) (Q)df? _ sin29p (P).ay n 10 , 9 Q n 8x8y 9 Q 2 9

Using an analogous procedure for ô2jôi, the result is

-80-
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CHAPTER4

Validation of the method

An extensi\'e senes of numerical experiments was performcd to vcrify the

theories and to explore the precision achie"able with the mcthods proposed in

the previous chapter.

4.1 Numcrical expcrimcnts with Poisson equation solutions

The objecti\'e of this section is to establish the validity of the mcthod. The

e>...perimcnts were con5n<>d to two dimensions, with the region n a circular disk

of unit (normalized) radius, a rectangular region, a sector of a circle and a sector

of ring.

4.1.1 Results using exact values of a test-function

4.1.1.1 Experimcnts with a circular disk

Except in the first set of e>.lleriments, the number of quadrature nodcs \Vas taken

large enough to ensure negligible integration error. Computing times \Vere thus at

times quite long, but this approach en,;ures that the conclusions arc unaffected

by the choice of integration method.

The first run of experiments sought to establish a technique of numerical

integration satisfactory for the remaining tests. To integrate, a local coordinate

sj'stem was established, centered on point P. Product quadrature formulae were

used, 'with Gaussian integration in the ra..:ial direction, circular quadrature in the

azimuthal direction (Davis and Rabinowitz (1984), Krylov (1962)). In the radial
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direction. quadrature nodes were placed at apprcpriatdy scakd points on radial

lines from P to the perimeter of n. The analytically known function

(with \,2,;, = 12xy) (.1.1 )

•

was differentiated using the method described in section 2.2.1, the contOllr

integral of Equation (2.65) being in all cases e"aluated with "ery high precision

so as to suppress any error. Figures 4.1 and 4.2 show how accurac)' ·of computed

deri....ati....es changes if quadrature formulae of ....arious precision Ic"c1s in the

radial and azimuthal directions arc used. In Figure 4.3 the relath'e error in

computed èeri....ati....e 8f d8y is gi"en for "arious radial positions of the

observation points P, obtained using the four specifie numbers of quadrature

nodes in azimuthal direction. Accuracy impro....es in much the expected fashioll

as the number of quadrature nodes grows, until it is limited by machine

precision. These tests establish beyond doubt that the method works, and that

roughly 100 quadrature nodes in the azimuthal direction, about 9 or 10 radially,

suffice to ensure that full floating-point precision (o....er 10 significant figures) is

reached. All succeeding e~.-periments employed significantly more nodcs, so as to

guarantee absence of quadrature error.
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Figure 4.1. Derivatives Ôfl/ÔY ( +), ô2ft/ôxôy (x) and ô2fl/ÔX2 (0)
of fl(X,y) = x3y + xy3, for quadrature formulae of varj"Ïng precision in
radial direction .
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Figure 4_2_ Derivatives 8fl/8y (+), 82fl/8x8y (x) and 82f1/8x2 (0)
of fl(X,y) = x3y + :xy3, for quadrature formulae of ,oarying precision in
azimuthal direction .
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Figure 4.3. Relative error in derÏ\'atÏ\'e 818y of fl(X,y) = x3 y+xy3, for
30 ( +), 100 ( x), 300 (0) and 1000 (8) integration points in 8 direction.

The beha~"Ïor of accuracy in e~-aluation of the curvilinear term was

analyzed in detail when harmonie functions were treated (Sih-ester (1991 al). In

order to test the algorithm for evaluation of the surface integral alone,

e"..periments were performed using a test function vanishing on the boundary of a

circle:

Ten-point Gaussian quadrature was used in the radial direction in numerical

e~-aluation of all surface integrals.
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Figure 4050 Error in second derivative as a function of quadrature
preci~ion, for e\°aluations at r = 008 R, 000' 0099 Ro

It should be noted that the method proposed here is stable in the interior

of the circular region, but loses precision near the bounding circleo To illustrate,

Figure 4.4 shows the relative error in the second derivatives 82<t>18x8y and

82<t>18x2 at \"arious points Po Within the central portion of the circle, say

r :::;; 00ï5R, the integrals are entirely stable and no difference in accuracy is

obsen'ed when P is movedo For placements near the circular edge, the error

rises. That this is not intrinsic in the mathematical method, but an artifact

resulting !rom quadratures, is demonstrated by Figure 405: accuracj' is reco\"ered

b:r increasing the precision of numerical integration.
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4.1.1.2 Expcrimcnts with a rcctanglllar rcgion

The second set of numerica1 expcriments was donc using" rectangle as the region

for which the derivatives wcre extractcd. Rcsults wcre obtained using the

harmonie function

(-1.3)

•
o
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relali<e x - coordinale

Figure 4.6. Derivatives ôjôx (+), ô2jôx2 (x) and éfjôxôy2 (0), of
f3(X,y)=x3y _ xy3.

•
Derivatives up to third order were computed using the exact values of the

function f3(x,y) on the boundary. Ten-point Gaussian quadrature was used in
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•

numerical computation of the boundary integral. Figure 4.6 demonstrates the

accuracy of the a1gorithm. The precisi":1 is stable in the interior of the rectangle,

while in the region near the houndary, 15% of dimension of the rectangle, the

accllracy is poor. Experiments undertaken using the Poisson equation solution

fl(x,y) behave similarly to the case of a circular disk.

4.1.1.3 Expcriments with a scctor of circie

Numerical results for the sector of a circ1e as the base region were obtained using

the harmonie funetion f3(X,y). Since the quadrature becomes more complicated

in tbis case, adaptive quadrature was used. Results shown in Figure 4.i confirrn

the correctness of the derÏ\'ed formulas. DerÏ\'atives are obtained using the seetor

with angle 9 =30·, along the line ",ith the angular eoordinate 9p = 10·, ",hile the

radial eoordinate "'as varied.
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4.1.1.4 Experiments with a sector of ring

To test the chara.cteristics of a seetor of a ring as the base element from whieh

derivatives are extra.cted, again the harmonie funetion f 3(X, y) was used. Results

are obtained using adaptive Gauss·Kronrod quadrature on both linear and

circu1ar parts.
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Figure 4.8. Relative error in derhoathoes for sector of ring using adapth·e
quadrature; Ôf3/8x (+), 82f3/.8y2 (0) and 82f3/8xôy (0). Results are
obtained using f3(X,y)=?y - xy3, with 9p = 20'.
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Figure 4.9. Relath'e error in derh'ath'es for sector of ring using adaptive
quadrature; Ôf3/ÔX (+), ô2f3/Ôy2 (0) and ô2f3/ÔXÔY (0). The radial
position was constant at r p =1.;.

The results shown in Figures 4.; and 4.8 confirm that the derived

formulas are correct, and that computed derivatives are stable inside the sector

of ring, while the accuracy is reduced on approaching the boundary. Derivatives

were computed using the sector of a ring with angle 9 =45' and inner aIid outer

radii Ri =1.0 and Ro =2.0, respecth·e1y. Derivatives from Figure 4.7 were

obtained along the line with the angular coordinate 9p = 20', while the radial

coordinate was varied. Results shown in Figure 4.8 were obtained along the arc

\Vith constant radial position rp =2.;.
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4.1.2 Errol' amplification :walysis

V,lid,tion of the method

tl·~ YJ"J

iie!:jïve ;lOtenlial errer

•

Tlw main praetieal \·aluc of diffcrcntiation sehemes sueh as dcseribed here is in

eomputing derivati\·cs of funetions 9 whose values are known only

approximately. Thus, having established that the seheme works, it is next of

intercst ta determine how sensitive the results are ta erraI' in the funetion 9.

~·l~. =

~.,

~.,-!Bf-r-rTTT,.",..--.--rT="-...,....,...,.,.=--''-'''=""......,.....,...,..".,,,j
~.,

Figure 4.10. Relative erraI' in derivatives 89/8y (+), 824>/8y2 (x),
8if>/8x (0); ,;. = (x2+y2)(R2- x2- y2)/ftl. The potential if> contains
random erraI' ("white noise").

For this purpose, a potential function tjJ was differentiated after corruption by the

introduction of random error. A random number generator with unifo= error

distribution was used, so that the averagè error in 4> remains zero. The measure

of stability of the method is error amplification, defined as
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E l
'fi' (Error ir. result) - (Average error in data)

rror amp 1 Ica tian = (A . d) .verage error ln ara
(H)

•

Typical results appear in Figures ...9 - ...12. wh<'re poklltial W,," "u<'\"<'""i\"<'ly

corrupted in the sixth significant figure, then the fifth. and "0 on lmlil only one

correct significant figure sur\"i\"ed. For deri\"ati"es computed from a cirde and

shown on Figure 4.9, the error amplitude in the deri\"atÎ\'e is essentially 1inear

with error in the function. It is noteworthy, howe\"er, that the error in deri\"ati\"e

is not larger than the error introduced in the function; qui te the contrary. the

ccmputed deri\"ati\"es contain one morc \"alid signific:trlt figure than the potential

itself! In other words, this differentiation process improt1c'< result". contrary ta

most numerical differentiation processes which are weil known ta dcgradc them.

Results obtained for the other three elementary rcgions ha\"e similar

characteristics, e.,cept that for the third order deri\"ati\"e the accuracy of results

is lower than the accuracy of the original data.
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Figure 4.11. Error amglification in derh'atives e.\,"tracted from a
rectangle, Ôf3/ÔY (+), 8-f3/8x2 (x), B3f3/8x28y (0). Results obtained
using function f3(X,y)=x3y - xy3 and adaptive quadrature.
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--l
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Figure 4.12. Error amplification in derivath'es extracted from a sector of
circ1e, ôfa/ôx (+), ô2f~/ôy2 ~x), aafa/ôxôy2 (0). Results obtained
using function fa(x,y)=x y - xy and adapth'e quadrature.
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Figure 4.13. Error amplification in derh'ath'es eX1.racted from a sector of
a ring, Ôf3/ÔX (+), Ô'l..3/ÔXÔy (0), ô2f3/ôl (0). Results obtained
using function f3(X,y)=x y - xy3 and adapth'e quadrature.

It is unclear whether a uniform error distribution is an adequate mode1 for

most numerical methods. For the finite element method, and sorne related least­

squares methods, it may not be. Such techniques tend to be much more tolerant

of small errors than large ones and therefore may weil produce quasi-Gaussian

rather than uniform error distributions in many problems. It is therefore fair to

say that the figures given in this section demonstrate the error-attenuating

property of the present method, but do not prove that this is necessarily a good

way of post-processing finite element solutions. Tests \\;th true finite e1ement

solutions are therefore warranted.
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•

4.2 Expcrim=tal n:sults with solutions of the Helmholtz equation

To test both methods described in scction 2.2.3, thc Tl\I Il and Tl\I31 modcs of a

rectangular waveguide were analyzcd. The terms mcthod Land mcthod H are

used to denote techniques of using the Grcen's function for the Laplaeian

operator and for the Helmholtz vperator, respeëth·c1y.

To e\'aluate the differentiation kernels of the Helmholtz opcrator 20 tcrms

of the summation were used; this number appeared to gi\"e more than adcquatc

con\'ergence in all cases. Relative error results for the second deri"ati,'c of the

TM" mode function are presented in Figure 4.13. Results wcre obtaincd along a

line inclined al. an angle of 'lS· to the x-a.,is, and by changing the numbcr of

terms in e....aluation of kernel function. For the case analyzed, j tcrms in the

summation is enough to obtain 10 -8 or better relath'e error.
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•

Figure 4.14. .Relative error in second derivative as a function of position
and number of terms in Green's function.

4.2.1 Tests against the exact solution

Figure 4.14 shows results for the TMu waveguide mode, with derivatives

computed from point ,·alues of the exact solution. Results are shown for

derivatives up to second order, which is the highest theoretically possible, using

method L; and up to third order using method H. The solution was differentiated

along a line inclined at an angle of 25· to the x-axis, using the circle of radius

R = 1 as the region of integration. From Figure 4.14 it is obvious that method L

yields poor accuracy for rlR> O.s. In the case of method H, the computed

derivative values are not quite so position-dependent as for method L, and useful

rcsults are obtained even when the observation point P is fairly close to the edge

-99-



• Chapt., 4 V~/jd.J:ion of the method

•

of the circle. At points near the middle of the int<'gr.. tion r,'gion. d<'rivati,""s of

high accuracy are clearly obtainable,

n'

n'~ 0

n~

n'~., 0

il! nl . 0
0

'" n'~
0

.~ 0

~
• 0

0 •

nl
• 0 0

0 0 0 Q0 i ~ ~ ~
0 0 0

~x x x X x x x x • • x x x
1')09 0 • •

• •0 •0 0 c 0 a • ;; ~ 0 0 0
n' 0

6
1)"1,

. • . • ~ •.
n' . •

0.00 o,~ 020 Q.lll 0.40 Q.\O 010 0,70 OJlll O!ll too

reiative ci:lcnct (rIR)

Figure 4.15. Comparison with analytic results: Relative error in
derivatives. Using Green's functions for the Helmholtz operator: 8/8y
(x), 829/8x2 (*), êf34>18x8y2 (0); using Green's functions for the
Laplacian operator: 89/ày (+), 829/8x2 (0).

Ail results were obtained using 180 quadrature nodes in azimuthal direction, and

8 radially. E"..perimentally it was confirmed that this order of quadrature is

enough to ensure sufficient accuracy. In evaluation of the Bessel functions in

method H, an algorithm with 10 - 8 relative error was used. That is why method

H results achieved a maximum of nine significant digits.
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4.2.2 Error scnsitivity tests

V.lid.tion of the me/hod

•

To obtain the error amplification results the same function was used as

previously, but this time containing a random error. The goal is to estimate how

sensitive are differentiation methods when results are known approximately. A

uniform error distribution was used in analysis to contaminate the function.

Although this approach is not perfect, it gi\'es an idea of error beha,,;or of the

results obtained from numerical approximation methods using thé proposed

algorithms.

In Figure 4.15 derivatives obtained using the function with error are

presented. The ma.'<imum le\'el of function error was 10 -3. The radial position of

the observation point was changed. The first derivatives obtained with both

methods are of similar sensith·ity. The second derivative obtained using method

H is less position dependent than the one obtained using method L. For

rIR < 0.4 the computed third deri\'ath'e contains an error of the same order as

the error in original function.
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•

Figure 4.16. Error sensitivity results: Relative error in function was
10 -3. Using Green's functions for the Helmholtz operator: ôifJ/ôx (x),
ô2ifJ/ôxôy (*), f)3t/J/ÔXÔII.2 (0); using Green's functions for the Laplacian
operator: ôt/J/ôx ( + ), Ô"9/ÔXÔY (0).

4.3 Tests of procedure for axisymmetric problem derivativcs

4.3.1 Numerical efliciency

The two e1ementary shapes used for extraction of derivati"es from a solution of

Laplace's equation in axisymmetric coordinates are tested using the same

procedures.

Figures 4.1ï and 4.18 show the accuracy of derivati"es extracted from a

-102-



• (h,pter 4 V,lid,tion of the method

lorus and a sphere. The harmonie funelion o(r.~) used in bath cases was

Ç;(r,~) = x3y _ xy3. (4.5)

~..

•

~
k-

w 0 g
• , • ,

~
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F • . x x
C • xx. . .• • . •.

r

• , , , , •~'O

M ~ ~ ~ u ~ ~ u ~ ~ W

~=:l toon:tnc:le r/R
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Figure 4.17. Comparison with analytic results: Relative error in
derÏ\'atives extracted from a torus, potential 4>( +), ô/ôr (x), ô4>/ôz
(0), ô24>/ôr2 (0).

•

The torus has radius l =2.0, cross·sectional radius a =1.0 and it is positioned at

z = 1.0. Derivatives were computed along the radius, at an angle 9p = 10· to the

r-axis. Although double precision was used, the accuracy does not exceed 10 - 9.

The source of error is evaluation of Legendre's functions of nonintegral order,

which is based on recursive computation from elliptic integrals of the first and

second kinds. To compute elliptic integrals the AGM - arithmetic-geometnc

method was used (Spanier and Oldham (19Si)). The accuracy of the algonthm is

not position dependent.
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Figure 4.18. Comparison with analytic results: Relative crror in
derivatives extracted from a s'p'here, potential o( +), Ô/ ôr (x),
ô24Jjôrôz (0), Ô2ç,/ÔZ2 (*), ô3ç,/ôr-ôz (0).

A second sequence of tests was performed using a sphere as the base region. It is

located at z. =2.0, and has radius R =1.0. Derivatives are computed along the

radius at the angle t/J =40· with respect to z·axis. Accuracy of the computed

derivatives is position dependent. As it can be seen from the Figure 4.18,

derivatives computed for rp/R;::: 0.8 have poor accuracy.

4.3.2 Error sensitivity

•
A procedure identical to that described in 4.1.2 and 4.2.2 is used to obtain the

error amplification results for a torus and sphere. The same function ç,(r,z) was
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uscd. but this timc contammg a uniform random error. These tests were

performed with the aim to estimate the beha"iour and robustness of the method

when applied to an approximate solution.

Figure 4.19 shows the error anlplification results obtained using the same

torus as before. Derivatives are computed at point P with radial distance p =0.2,

and angular coordinate ep = 10·. The results show much the same accuracy as

that of potentials when the first derivath'e is computed, and that 1-2 significant

digits are lost in the case of second derh'ative computation.

c
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!
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(1'" 0-3

~elr:lj,.t ~ror in dcl.a
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o"

Figure 4.19. Error sensitivity results: derivativf'.5 extracted !rom a torus:
ÔtP/ôr (x), ôtP/ô= (0), ô29/ôr2 (0) .
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li' Il")

;elclive errQr in dola

•

Results obtained using the sphcre arc prescnted in Figure 4.20. It shows

the error amplification results of dcri\'ativcs computcd at point P with radial

distance p = 0.2, and angular coordinate t1J p = 40'. Thc pcrformances of sphcre

are better than those of torus. The crror amplification is ncgatÎ\·c. mcaning that

the computed derivatives ha\'e better accuracy than the potcntia.!.
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Figure 4.20. Error sensitivity results: derivatives extracted from a
sphere: potentials ç;( +), 89/éJr (x), 829/8:;2 (0), éJ39/8r2éJ:; (0) .
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CHAPTER5

Evaluation of singular and ncar-singuIar intcgrals

In Chapter 3 differentiation of singular integrals is treated in detail. It is shown

that the surface integrals are always singular. Variable transformations ma)"

reduce the order of singularity by one. \Vhen the method is applied to first

derivative calculation the singularity in the surface integral is eliminated. In the

case of second derÏ\'atives, the singularity is 'strong', but it may be reduced to

order l/s. One way to evaluate these integrals, described in Chapter 4, is

ignoring singularit)" (Davis and Rabinowitz (1984)) with increased number of

quadrature nodes. As the boundary of the region is approached, the nurnber of

quadrature nodes has to be increased, as shown in Chapter 4, otherwise the error

is large.

The curvilinear term becomes singular when the observation point is right

on the edge of a region. If the point of interest is close to the region edge, the

results are also very sensitive to the number of quadrature nodes used (Sih'ester

(1991 a)). Unfortunately, practical problems often requires the values of

derivatives on some surface, or along a boundary. This corresponds to evaluating

singular and near-singular integrals. So it is necessary to make the methodology

of accurate derivative computation efficient by appl);ng robust methods of

evaluating these integrals.

In this Chapter the finite part integration concept is presented and used

to compute singular integrals, both surface and cun;linear (Ioakimidis (1985),

Ioakimidis and Pitta (1988), Kutt (19ï5), Paget (1981 a and 1981b), Da,;s and

Rabino\\;tz (1984)). The method is based on analytic continuation of the analytic

function whicb is the solution of the convergent singuIar integral (Ninham

(1966)), by taking only the finite part of the divergent integral.

Application of ,-arious methods for evaluation of near-singular cun;linear
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integrals is discussed. Although it is possible to gelll'r:>tl' l'ffil"Ïl':lt 'l',allratlll"l'

formula, after application to approximate solution the)' 1>ec0111<' ill,'fficil'llt.

5.1 Finite Part Integrals

The way of manipulating divergent integrals to obtain correct results is

sometimes not weil understood (Ninham (1966)), Ninham (1966) prcsclltcd a

method of interpretation of a class of dh'ergent integral, dcaling with integrands

continuous over the integration interval except at a finite numbcr of algcbraic

singularities. This approach is the basis for the fini te part integration theory

(Kutt (19i5), Paget (1981a and 1981 b), Ioakimidis and Pitta (1988)),

5.1.1 Analytic continuation and definition

Consider the integral

l(f ) - Jb w(x)f(x)d
,m - ( _lm Xa x- ....

(5.1)

where m is a positive constant, w(x) is a weight function integrable on [a,b], If s

does not belong to [a, b], this type of integral behaves as a regular integral. In the

case that s belongs to [a,b] and m;:: 1, the integral dh'erges and is not solvable

analytically. Theo. this integral may be considered as the analytic continuation of

the function l(f, m) to the region m < 1. It has a meaning in generalized function

theory (Nïnham (1966)),

(5.2)

•
where H(x) is the step function.

These integrals are called finite part integrals, or Hadamard finite parts of
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the di\'erg('ut intcgral. ("sllally the symhol f or f is llscd 1.0 rcprescnt those

integrals. The first symbol is used for the gcncrali=cd principal value intcgra1, if

the integral exists in a Cauchy principal \'alue sense. as a natural extension of

the Cauchy principal value of the integral (Kutt (19i5)). The second symbol is

used to label general finite part integrals, and may also be defined as

dm fb w(x)f(x)d _ 11 b w(x)f(x) d
d m X ~ x-m. T ( _ )m + 1 X

S a a X S
(5.3)

where the integral on the left side denotes the Cauchy principal value of the

integral. These integrals satisfy the usual rules of Riemann integration theory, as

to integration by parts and transformation of variables.

The fundamental finite part integral 1(1, m) is defined by

if m= 1
if m;fl' (5.4)

If m < 1, the finite part integral coincidE'.5 with the regular integral. If the

function f(x) is m times differentiable and m;:: 1, then the general finite part

integral may be dclined as (Paget (1981a))

(5.5)

•

The formula (5.5) is obtained using the m-term Taylor series eJl:pansion of f(x).

5.1.2 Quadrature formulae for finite part integrals

Formulae for calculation of finite part integrals may be divided into three major

groups: (t) equidistant quadrature formulae (Kutt (19i5)), (ii) Gaussian-type

quadrature formulae (Kutt (19i5)), Tsamasph)"tos and Dimou (1990)) and (iii)
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conlputational proc('dllrl'~ hél:-'CÙ on lllodificatioll (If the :-:t;lul!;\nl Ga11:,,:-:iall

quadrature (Paget (1981a and 1981b)).

Kutt (19;5) first deri"ed quadrature formulae for finitc part intcgrals. He

used two approaches. The first is the equidistant formula. and the second is a

Gaussian-type specialized quadrature formula. The equidistant quadrature

formula is of the following type:

(5.6)

•

where w\m) are the weights at n equispaced points Xi E [a, b1and cIno) are the

coefficients for the (m -1)-th derivative of fat the origin. The accuracy depends

on the nature of the integrand and the length of the integration interva!. The

weights \"ary in sign and their ,-alues increase with the number of intcgration

points and the order of singularity. The consequence of this property is reduced

accuracy..

The second method uses generated orthogonal polynomials. It is

considered the con"entional finite part integration. A quadrature formula for the

fjrst order singularity is published in the standard boundary clement textbook

(Brebbia (1984)). Quadrature nodes are found in usual way, as zeros of

orthogonal polynornials, as weil as the weights, using the standard formula.

Ioakirnidis and Pitta (1988) derÏ\'ed a universal procedure of generating

orthogonal polynornials for fini te path integrals. They are expressible as linear

combinations of successi\"e shifted Legendre polynomials. In the case of a first

order singularity one root of the orthogonal polynomials is outside the integration

domain, and for higher order some of zeros are complex. Tsamasphyros and

Dimou (1990) proved these properties of zeros of orthogonal polynomials.

The method used in this thesis belongs to a third group. There are two

approaches derived from conventional Gaussian quadrature methods (Paget

(1981 a, 1981 b), Hunter (19i2)). One may be characterized as an adaption of the

quadrature rule for Cauchy principal \"alue integrals (Hunter (19ï2), Paget

(1981a)). The general formula has the following form (Paget (1981a)):
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1(f,2) = :t Jl;,nf(x;,".: + .!l..(q,,(S))f(S) + qn(s) f'(s) + Rn(f;s). (5.i)
;=1 (:r;,,, - s)" ds Pn(S) Pn(S)

For problcms of normal dcri\'ati\'e computation, the term qn(s)fp.(s) is

analytically known and eqllal to zero. Then, this method corre~ponds to ignoring

Il.e singularity. In practical application of this formula instead of f(x; .•), most

oftcn f(x;,") - f(s) is used. The second method will be described in the folJowing

section. It gi\'es a general procedure for deri\'ation of quadrature rules of

arbitrary order. Both methods are compared later in this chapter.

5.1.3 Generation of quadrature fo=ula.e

If pk(x) are orthogonal polynomials with respect

then an n-point Gaussian rule gives

J
+1 "

w(x)f(x)dx = L P;."/(x;,").
-1 i=l

to the weight function w(x),

(5.8)

A numerical solution of the finite part integral is supposed to ha\'e the fo=

f 1 w(x)f(x) "
lU,>') = >. dx = L wi,"f(Xi,"),

o X i=l
(5.9)

where Xi," are the abscissas of the n'À order Gaussian quadrature. The weights

Wi," of the quadrature formula (5.9) may be obtained from the original weights

Pi," corresponding to the non-singular case using the formula

(5.10)

where hk is the leading term of the orthogonal polynomial Pk' The coefficients

b(>') are moments defined by
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•

The universal tool for deri\'ing quadrature rules of finite part integrals from the

corresponding regular integrals is defined by the last three expressions. Pagd

(1981 b) also gave an upper bound for the remainder term of the quadrature rule.

The ad\"antage of this method is that the abscissas are always in the

domain of integration, although the weights change sign. When Gaussian

quadrature is applied, negath"e or complex roots of orthogonal polynomials

appear. In the case of an equidistant formula there is no closed form algorithm

comparable to the one described abo\·e. Another advantage of Paget's method is

its simplicity of application and the existence of general expressions for

coefficients of the quadrature formulae. These features make the approach

presented here attractive, especially in conjunction with symbolic algebra

packages like MATHEMATICA (Sih"ester (1992)).

In the singular surface integral, the singularity is of first order if the

second order derivative is to be computed. Thus the Gauss-Legendre quadrature

form,.]a is modified to obtain the quadrature formula for tms finite part integral.

The curvilinear integral for the normal derivative on the edge contains a second

order singularity of type (sinO)-2, where integration is performed with respect to

the polar coordinate O. In that case the weights of the Gauss-Chebyshev formula

(Davis and Rabinowitz (1984)) are to be modified. In both cases evaluation of

the modified weights is straightforward.

5.2 Computation of near-singular ÏDtegra1s

Accurate computation of near-singular integra1s is the most difficult problem in

the process of computing derivatives using the methodology based on Gl'een's

second identity. What makes tms problem complicated is the fact that the fiDite

e1ement solution is approximate" The consequence is that error in potentia1s

obtained using the fiDite e1ement solver is amplified, 50 the local error determines

the error in computed derivatives.
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The c1assieal methods for computing thcse integrals are bascd on the

Taylor series expansion of a distribution funetion, or one part of it. The number

of terms in the expansion depends of the nature of the integrand. It has to be

done around pl, the point on the boundary closest to the observation point P.

Beeause only the approximate potentials are known the only improvement is to

use 9Q - 9p" instead of 9Q in formula (2.65),

am + n9p ! !
fJmx8ny - Jan(9Q - 9p') Kmn(P: Q)drQ- 9p' JanI(mn(P;Q)drQ

+ JJn gQJmn(PiQ)dnQ.

(12)

•

The second integral is equal to zero, exeept for m = n = 0, when it is 1. The

conventional equidistant Gaussian quadrature formula for a circle KlJ·lov (1962),

which corresponds to a Gauss·Chebyshe\· quadrature formula, is usually applied

to evaluate these integrals. This simple method does not j;eld a much better

accuracy, compared to the standard formula. This technique can be applied

together \\;th regularization of the Poisson kernel, described in section 3.3.1 of

this thesis. The alternath'e Fourier series e~..pansion method is slowly convergent,

and not efficient. Another conventional method often used is a kind of adaptive

quadrature with repeated subdivision. In that case the information used is more

local, so the a\'eraging over a \\;de domain is lost.

5.2.1 Generation of specialized Gaussian quadrature formulae

The existing algorithm developed by Sih'ester (1990) was used to compute the

Gaussian quadrature weights and nodes. This algorithm is suitable for integrands

\\;th a rapid variation of the weight function w(x). The required number of

operations is O(N3) for an N'k order quadrature.

H the weight function w(x) is gi\'en, then it is possible to find weights Wj

and nodes xj, such that
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(5.13)

is e.-.:act if J(x) is a polynomial of degree (2N -1) or lower. N'odes Xj arc the

zeros of N orthogonal polynomials Pj generated with respect to wcight !L'(x). The

weights Wj can be computed by

N-' P}(x;)
Wj =I: Jb -

;=0 .w(x)p}(x)dx
(5.14)

•

The complete procedure of generating orthogonal polynomials, their factoring, as

weil as computing the weights is gi'-en in Sih-ester's paper (Sih'ester (1990)).

This method may be e.-.:tended by application of parametrizcd Gaussian

quadrature (Lutz (1992)). The specialized Gaussian quadrature formulae can be

derived for a finite number of normalized radial positions of the observation

point P, since the corresponding integrals may be rewritten to a form

independent of Op, the angular coordinate of point P. The generated Gaussian

points and weights are now considered as functions of relative radial position.

After generation of the sets of abscissas and weights for various orders of

quadrai.ure and various positions of the observation point the interpolation has to

be done. Cubic Lagrangian polynomials are usually used in the interpolation

process (Lutz(1992)).

Specialized quadrature formulae were generated for first and second order

Poisson kemels. Their accuracy is high when applied to exact values of

potentials. But, application of the method to finite element solution does not

yield a satisfactory results. Again, the information used is local, and the local

error is amplified, since the ratio of generated weights is very high ( - 103
) for

rlR> 0.9.
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5.3 Computational verification of the qt:adrature mdhods

Fer illustration of all the methods considered, a sequence of tests has bccn donc.

They cover both cascs, curvilincar singular intcgrals in the normal derivative

computation and singular surface intcgrals arising in second order derivative

calculation.

5.3.1 Normal dcrivative computation using the Poisson integral mcthod

This group of results consists of two subsets. First, calculations were done using

exact analytical harmonie function ,·alues. To test error sensiti...;ty of the

method, data were corrupted with random error. Tests were done using the

harmonie fU:letion

(5.15)
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Figure 5.1. Accuracy of normal derivath'e for different numbcr of
quadrature nodes used. Resu1ts obtained using finite part intcgrals (0),
Fourier series C)..-pansion <*) and by ignoring the singularity ( x ).

A comparative analysis llsing al! the a...·ailable methods is prescnted in

Figures 5.1 and 5.2. Figure 5.1 shows ho\\" accuracy of the calculated normal

derivative depends on the number of quadrature nodes, or numbcr of samples

used. The case of using finite part integrals and resu1ts obtaincd by ignoring the

singularity, which corresponds to the second concept of fini te part integration

used by Paget (1981 b), and standard boundary e1ement practice (Sladek and

Sladek (1992)) is presented.
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•

Figure 5.2. A comparath'e analysis. Normal derivath'e obtained using:

Figure 5.2 shows the accuracy of computed derivatives for different azimuthal

positions of the obser...ation point. It may be seen that both finite part

integration approaches give good results. But this anal)'sis does not lead directly

to finite element applications. First, the error sensiti...ity of the method, since it

is intended to be applied to approximate solutions must be investigated. A

uniform random error generator was used to corrupt exact data. The measure of

stability of the method is error amplification, defined by (4.4).
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Evaluation or singu/:Jf :md neJf.singu/:u Întegr.,,/s

,;....--------------------,

•

Figure 5.3. Error sensitivity results. Error amplification for differcnt
average error in potential data. Poisson integral method with Paget's
finite part integration (0), Fourier series method (*) and ignoring
singularity ( x ).

Figure 5.3 gives error sensitivity as a function of average error in data. 300 point

quadrature was used in these tests. This is the highest order for which

quadrature formula is derived. Despite the fact that the number of samples is not

too high, the results illustrate the stability of methods used in computation of

normal derivatives. The finite part integration technique based on modification

of Gaussian quadrature rule proposed by Paget had up to ten times better

accuracy than the ignoring singularity method, except for two cases. Fourier

series results were obtained using 1024 samples. Using the lower order expansion

ga\·e poor results.
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5.3.2 SecoIld dcrivative of the PoissoIl equatioIl solutioIl

To analyze the efficieIlcy of Paget's formulae for fiIlite part iIltegratioIl iIl this

case tests were performed with exact fUIlction ,·alues. The functions used in

numerical experiments are

(5.16)

(5.1i)

Function f2(X,y) was chosen to eliminate the error in boundary integral

computation. Since a circle of radius R = 1 was used as a base region, this

function vanishes on its edges. So al! derivatives are computed using the domain

integral onl;. Function fl(X,y) represents the general case when both iategrals

must be computed.
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Figure 5.4. Derivative ô2f2/ÔXÔY (x) and ô2f2/Ôy2 (0) for differcnt
number of quadrature nodes in s direction. Derivatives are computed at
P (rp = 0.4, Op =20').

Two cases are typical, "'hen point of observation P is on the edge and

when it is an interior point of the cirde.

The results in Figure 5.4 show the behavior of relative error in the

computed derivatÏ\'e ô2f2/ÔXÔy for different numbcrs of quadrature nodes in the

s direction. These results were obtained using the function f2(X,y) on a cirde of

radius R = 1, centered at (0,0). DerivatÏ\'es were computed for rp = 0.4,

Op =20'. From the results presented it is dear that a four-point quadrature

formula gives satisfactory results, compared to the ten nodes used earlier. From

now on, the four-node finite part integration is used. Figure 5.5 presents the

beha~-jor of those methods as the radial position is ~·aried. The fini te part
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1

•

integration is seen to he stahle e'·cn whcn the point P is cltO,c to the eelge. The

accuracy decreases for r / R > 0.92. Results presented in Chapter 4 of this thesis

showed that accurac}" is rapidly decreasing for r / R > O.S. 50 the fini te part

integration reduced two to three times the order of quadrature, and has

significantly increased the region where the accuracy of computed derivatives is

satisfactory.

ri ..---------------------,
.'
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•.,i­
..2r
é...
.-s
é
..7

.·B

..9

···F::::::===~=_,J.
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,aôoI Ost",,, 'IR

F"q:,ure 5.5. Accuracy of computed derivative 82f 2/8x8y (x) and
8 f2/8y2 (0) when radial position is varied. Finite part integration \Vith
4 nodes is used.
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Figure 5.6. Results of computed cP1Il8x2 (x) and 82/218x2 (0) for
point P on the edge, for various angular position. Curvilinear integral
was computed using the Fourier series e:\:pansion.

Figure 5.6 shows results of computed 82/2/8x2 for point P on tl;.e cdgc, for

various angular positions. Results are gi\'en for both functions 12 and 13. Four

point finite part integration was used in s-direction, with 90 points taken in :.}­

direction. The CUI\-ilinear integral term was computed using a Fourier series

e:\:pansion. The total error is influenced by both terms, but results show a

satisfactory accuracy.
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5.4 Conc!uding remarks

Evaluation of singulôJf ~nd neaf.singu/ar integrals

•

The COllcept of fillite part integration appears to be effective for evaluation of

singular illtegrals arising in the differentiation method based on Green's second

identity. Computational experiments confirm that the application of finite part

integrati0",l yields satisfactory accuracy in both normal derivati\Oe computation

on harmonic functions and the singular surface integrals involved in second

derÏ\°ative computation of the Poisson equation solution. Using this approach the

order of quadrature is significantly reduced.

Ali known formulation for e\°aluation of near-singular integrals have high

error sensiti\Oity. Since in most practical problerns only approldmate solution is

known, it is not possible to achieve the same accuracy of derivatives as for

interior points.
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Gradient rccovcry by local smoothing of finitc clement solutions

The best traditional methods for differentiation on fini te element IUcshes rcly on

the phenomenon of superconvcrgence. The local smoothing proposed by Hinton

and Campbell (19ï4) is a widely accepted method for accurate deri\'atiye

computation, and it is refered to here as the conventional local smoothi71.g. It

amounts in essence to bilinear extrapolation of gradients sampled at 2 x 2 Gauss­

Legendre integration points. An analogous procedure may be applied to threc­

dimensional brick elements.

Gradient recoyery as discussed in this Chapter is a generalization of a

particularly attractiye local smoothing method proposed by Zhu and Zienkiewicz

(1990) for one-dimensional problcrns. They showed that the method has O(p + 1)

con\'ergence in· one-dimensional problcrns, where p is the order of finite clement

approximation. These techniques deal with one element at a time and appear to

lend themselves weil to parallel computation, although this point has as ~'et bcen

insufficiently eÀ-plored.

6.1 The fundamental equations

The discussion in this chapter is restricted to the scalar Helmholtz equation,

though it cau clearly be C"--tended to some other differential equations as weIl.

Suppose an approximate solution <fi has bccn found to a boundary value problem

whose differential equation is

•
infl

-124-

(6.1)



• Ch.plu 6 GrOJdient recovery by local smoothing

with appropriate boundary conditions on an. This is a slightly generalized form

of the scalar Helmholtz equation, where ,,= ,,(x,y,z) and ,,2 = ,,2(X,y,Z) are

permitted to vary in space. The field, defined in the usual fashioll as

E= -grad9

consequently satisfies

(6.2)

(6.3)

In practical computation the approximation cf> is known, not the exact potential

9. The study presented in this Chapter concentrates on the ~iadient of their

difference, V(9 - <f», which represents the error in the computed field.

6.2 Taylor series analysis of errer

The approach of MacKinnon and Carey (1989) will be followed in derivation of

an error analysis using the Taylor series. The three-dimensional case is presented,

since it is the most general.

In finite element analysis the problem domain is first discretized and a set

of appro),:imating functions Qi(Çl,Ç2,Ç3), usually e>..-pressed in local coordinates Çi,

is selected. The potential is then given the elementwise approximation

N
<f> =L: Q;(Çl,Ç2,Ç3)c/>i ,

i
(6.4)

•

where cf>i are nodal values of the potential function (degrees of freedom) on a

finite element, and N is the number of degrees of freedom. The field component

Bk' i.e., the directional deri"ative in direction Çk of a finite element solution 4>,
may be obtained by direct differentiation as
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(G.5)

MacKinnon and Carey (1989) used a Taylor series expansioll of the pU!<'lltial <> tu

derive an expression for Ek • Their formula will now be cxtclldcd to thrt'c

dimensions. li k = 1, and the field is evaluated at point (Çl,Ç2,Ç3)' thcn

(G.6)

where

(6.ï)

•

For second order clements, p = 2, (6.6) takes the form

~ ôCr; 1 ~ r-If. ôCr;«Ô)3}~t/J ~ç, Â ôCr;(S;)(S;)(SÔ)
E1=- 4-~4>;+3!?--~4-8[; Qj ô<~+8< 8< 8< 2,.,8[; l 2 3

• QC;l J =Il. ~1 ~J ~1 \.2 ~3. "1
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since coefficients corresponding to second-order terms are zero, as weil as almost

all of third order. Equating all coefficients to zero, a system of simultaneous

equations results, whose solution yields the positions of points where the

derivative values are exact, provided a third-order polynomial approximation is

used. The results are the same for both serendipity-type and Cartesian product

elements. For the derivative in the ç! direction, they are planes ç! = ± IjfJ. In
the other two directions there are two other, corresponding, sets of planes.

6.3 Derivation for the two-dimensional problem

For the two-dimensional case, a four-parameter least-squares fit can be

constructed by taking Legendre polynomials in the ç and 1] directions:

Here ç,1] E [ -1,1] are local coordinates on the parent rectangular e1ement, while

x and y are global coordinates. The residual whose square must be minimized is

now

(6.11)

•
Squarïng and substituting, lengthy expressions result..These can be made more

readily comprehensible by defining the 'lLncorrected residual r. as
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o ."-0 - g. (6.12)

In terms of the local coordinatcs,

(6.13)

and similarly for r;. For bre\"ity in the de"elopment, dcfine the combincd

derivative terms

(6.14)

On substitution of (6.14), the residuals assume the relath'ely short forms

(6.15)

(6.16)

The smoothed residual may now be ",ritten in terms of the unsmoothed one as

•

r; =re +Ql{D~~~(EPp(Ç))+D~~Pp(ç)~}

+Q2{D~~ir,(EP1'(11)) +D~~Pp(I1)~}

+Q3{D~~~(EPp(ç))+D~~Pp(ç)~}
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+o.{Doo J1}( € Pp(1})) +D~oPp(1}) g~}.

Collccting tcrms,

4

r;=rc+LO'iI\i
i = 1

whcre

Gradient recovery by local smoothing

(6.18)

El =Pp{Ç)(Du~+ D{o~)+ D~~fP~{Ç) =Pp(~)xl + D~~eP~(~) (6.19)

E 2= P p(1}) (Du~+ D{"~)+ D~"eP~(I/) = P1'(1/) XI +D~"€P~(I/) (6.20)

](3 =Pp{Ç)(D""~+ D{"~)+ D~"eP~(~) =Pp(Ç)X2 +D{"€P~(Ç) (6.21)

](4 =P1'(1/)(D""~+ D{"~)+ D""fP~(I/) =Pp(I/)X2 + D""€P~(I/) (6.22)
•

In the important special case where the material property € is uniform in each

element, the functions ](i simplify to

](1 =D{{€P~(Ç) (6.23)

](2 =D~"€P~(I/) (6.24)

](3 =D{"€P~(Ç) (6.25)

](4 =D""€P~(I/)' (6.26)

To find "alues for the set of four parameters {ai 1i = l, ..., 4}, the squared

residual is now minimized,

•
Vi.
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This requirement leads to four simu1tancous equations,

(6.28)

for i = l, 2, 3, 4. Here J represents the Jacobian of the coordinate transformation

(which may be of the isoparametric type) that maps the square parent clemcnt

into a quadrilateral; det(J) is the determinant of J. Thcse four simultancous

equations are readily soh'ed numcrically for any gi\"en transformation.

In the \'ery restricted, but \'ery important, case of transformation onto a

rectangle, the final system of four equations may be written as

SI oS:! SI S2 D{{QI J:~J :~rr;'~(Ç)dçd'l

D{~Q2 r 1r 1

oS:! SI oS:! SI -1 _lreP~('1)dçd'l
l (6.29)- -~

D{~Q3 ririSI oS:! SI oS:! -1 _/cP~(ç)dçd'l

oS:! SI oS:! SI D~~Q4 J::J ::rcP~('1)dçd'l

where

(6.30)

(6.31)

•
are constants for any given p, The solution of this system of four equations can

he found analytica1ly as
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(6.32)

(6.33)

In Table 6.1 "alues of $} and $2 for p:5 6 are shown.

Table 61. .
p 1 2 3 4 5 6

$, 4 12 24 40 60 84

$., 4 0 4 0 4 0

Note that for p = 1 coefficients are equal, SI = S:/, so

(6.34)

For p = 2, the coefficients are

(6.35)

(6.36)

•
This procedure is entirely local to an element and therefore does not lead to

unique "alues at nodes located on element interfaces. In practice, the difference
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is rarely large, indeed it can sen'e as an indicator of thl' 'jllality "f ,1iffer'·llti;lti"ll.

If desired, the con\'entional procedure of a\"Craging nodal fields call be applil"!.

6.4 Gencralization of the local smoothing of gradients to thrcc dimensions

6.4.1 Binton-Campbell conventionalloca1 smoothing

The commonly used local smoothing method of gradients is one proposed by

Hinton and C?.mpbell (19i5) (also Zienkiewicz and Taylor (1989)). ln the

standard 20-noded quadratic brick e1ement, the local smoothillg is a trilinear

extrapolation from the 2 x 2 x 2 Gaussian point \·alues. It can be shown that the

smoothed corner nodal field values may be obtained using supercon\'ergent point

values El'" E V11l from the C).-pression

È1 a b c b b c d C El

È2 b a b c c b c d Err

È3 c b a b d c b C E11l

È4 b c b a c d c b E IV
- (G.3i)

Ès 1 b c d c a b c b Ev

Ès c b c d b a b c EI'1

È, d c b c c b a b E vrr

Ès c d c b b c b a E V11l
..J

where a, b, c, d are numeric coefficients gh'en by

•
a 5+3.J3

4
b= _l+.J3

4 '
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1-,)3
c= --4-'

GrJdjent recovery by JOCJ/ smoothing

(6.33)

Gcncrally, for the pth order function E(~) in the inten'al -1:5 ~:5 l, "alues

sampled at the p Gaussian points uniquely define a function È(~) of order p-1.

This function represents a least squares fit to E(~). Now, the field at any point

can be computed as

(6.39)

Since the fields at nodal points computed using local smoothing are not unique,

nodal a"erages may be calculated. 1t should be noted that the field "alue at the

center of an element is equal to the arithmetic mean of its "alues at the

supercoD\'ergent points, and therefore has exceptional accuracy.

6.4.2 Derivation of extended Zhu-Zienkiewicz method for 3-D problems

Analogously to two-dimensional problems, a nine-parameter least-squares fit will

be used here. For pth order clements, the least-squares fit can be constructed by

taking the pth order Legendre polynomials in the ~1' ~2 and ~3 directions,

3

Ei =E; +L Q;jPl'(~j) ,
j=l

i = 1,2,3 (6.40)

Here e1,e2,e3E [-1,1] are local coordinates on the parent isoparametric brick

clement, x, y and =are global coordinates. The residual whose square must be

minimized is now

•

• _ B(EE;) B(EE;) ô(eE;)
r.- CJx + CJy + CJz ,,2ç,_g,

and the corresponding uncorrected residual is
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Here E:r, E. and E. are the field componcllts,

Ô · 3 Ô· Ô. 3 BeE.= - 0= - L <;J '-;= LE. '-i.- a= i=18[;8: ;=1 '8=

In terms of the local coordinates,

Gradient recoverx by /oc.J/ smoo:hjnS

(6.42)

(6A3)

(6A-l )

(6A5)

(6.46)

and a similar ~"pression obtains for re' For brevity in the dC\'clopmcnt, the

combined derivative terms are dcfined:

(6.4i)

After substitution of (6.4il, thc residuals assume the following forms:

(6.48)

(6.49)

•

The smoothed residual may no\\" be written in terms of the unsmootbed one as

(6.50)
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or c:quh,.,lC:l1tiy as

This c-'l:pression can be written in the a1ternath'e form

9

r; = re+ L,;!oli
i=1

~vhere

(G.51)

(G.52)

(G.53)

(6.54)

'3(j -1) +k ="'jk • k = 1,2,3 (6.55)

k = 1,2,3 (6.56)

If the material property E is uniform in each clement, the functions J{i become

(6.5ï)

In order to find values for the set of nine parameters ,,, the squared residual is

minimized,

'of i. (6.58)

•
For i = 1, this requirement takes the detailed form
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(6.59)

where J represents the Jacobian of the coordinate transformation (l',,""ibly. but

not necessarily. isoparametric) that maps the square parent denk'nt int" a

quadrilateral, and det(J) is the detcrminant of J. After performing minimizatiün

with respect to all nine Î'i' the final result is a system of nine silllult;U1"oU"

equations:

"'m··.,·=h,L.." IJ iJ 1"

j

Here

and

6.4.3 Brick clements and homogcncous lincar matcrials

(6.(0)

(6.61)

(6.62)

In the highly restricted, but \"ery important, case c.f transformation onto a brick,

the final system of nine equations may be reduced to

SI ~ ~ /31 hl

~ SI ~ P2 = 1 h2-3'f

~ ~ SI /33 h3

(6.63)
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\\' IH'rc

Gr:Jdient recovery by local smoothing

(6.64)

(6.65)

(6.66)

•

The solution is gi\"en by

(SI +S:!)h1- S:!(h2+h3)
3E (SI - S:!)(SI + 2S:!)

/3.= _(St+s:!)h2-~(hl+~)
• 3E (SI - S:!)(SI + 2S:!)
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(6.74 )

In the case of second arder clements. '<1 = 24 and .<~ = O. 50

(6.75)

•

For p =3, S1 =46 and ~ =8, the coefficients are

This procedure is entire1y local to a single element. Consequently, it docs not

lead to unique values at nodes located on e1ement interfaces. If unique values are

desired, the conventional procedure of averaging nodal fields can be applied. A

significant advantage of this process, on the other hand, is that only local data

need he accessed, so this scheme is particularly attractive for parallel

computation on machines \\;th distributed memory.
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Application to finitc clement method

Tests were performed to verify that the methods developed in this thesis can be

reliably applied to finite element solutions. The examples cover the t\Vo­

dimensional case, \Vith the application of al! elementary regions, comparative

analysis of differentiation methods in t\Vo dimensions, application of e;,tended

Zhu-Zienkie\Vicz gradient reco'·ery method, differentiation of Helmholtz equation

solutions, and application to a."(jsymmetric problems. An application of the

method to anisotropie magnetic material modeling \Vas published by Silvester

and Omeragié and is presented in Appendix 7.

Ali tests \Vere perfo=ed using single precision arithmetic, i.e., with 32-bit

word length using the IEEE floating point notation. Few (if any) of the results

obtained are of sufficient precision, or sufficiently sensitive to roundoff error, for

word-length to be a signjficant factor.

7.1 Application to two-dimensional cases

To verify that the differentiation method described is applicable to finit" element

solutions, Poisson's equation \Vas solved in a square region. The source function

\Vas taken to be constant \Vithin each element, its value gi,oen by

•

g(x, y) =-lJ12xy an (x,y) E nk
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Figure 7.1. Circular integration contour embedded in first·order finite
element mesh. Potentials on the contour are obtained by using the
finite element interpolation functions.

where A k is the area of element nk ; it appro>..;mates to a distribution of 12xy

oYer each triangle. This source function corresponds to a potential function

(ï.2)

•

Solution was carried out \\;th first·order triangular elements, with the square

o<x $ 2, 0 $ y $ 2 uniformly subdh·ided, as indicated in Figure ï.l. Various

derivatives of the resulting solution were then computed, the circular contour for

integration having a radius of 0.9 and being centered at (1,1). The behavior of

computed derivatives extracted !rom the 200 triangular element mesh is shown

in Figure ï.2. Results are presented for derivatives afdax, afday and a2fl/ax2,
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•

wh<'1l radial positioll inside the circle IS changed. bllt with the coordinate

constant at 9p = 20°. Results appear in Figure ï.3, for a range of mesh sizes,

cxpressed as the number of clement edges along the edge of the square. It is

worth noting that the potential value is improved by nearly an order of

magnitude, and that the error in derivative values is smaller than the error in

the potential.
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Figure 72. Relative error in FEM potential Il (0), derivative ôl1/ô:r:
(+), ôltlôy (x) and ô211/Ô:r:2 (0) .
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Application to FEAl

•

Figure 7.3. Relative error in potential f, (0), derivative ôf,/ôy (+)
and ô2f,/ôxôy (0) with finite elements. Enor decreases with number
of e1ements along the square.

The accuracy of computed deri'·ath·es in a rectangular region is shown in

Figures 7.4-7.6. Results are obtained for the square 0::;; x,y ::;; 1, along the line

y = 0.6. The aceuracJ· of finite element solution and derivatives obtained using

direct differentiation are shown in Figure 7.4. The first derivative results have

reduced accuracy, compared to results obtained using a circle, but still, aceuracy

is better than that of original fini te element derivatives obtained using direct

differentiation. Figure 7.5 shows the results for a harmonie funetion, while Figure

7.6 displays the results for a Poisson equation solution.
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Figure 7.6. Relative error in derivatives using the function fl(X,y) ­
the finite element solution (.), 8fd8x ( +), 8fdôy (x) and ôfdôx2

(0)

Derivatives obtained using the two circular sectors are presented in

Figures i.i and i.S. The sectors are centered at (1,1). The first has the angle

8 =30· and the second is a semi-circ1e (8 =ISO·). In both cases the radial position

was varied, while the angular coordinate of the observation point \Vas 8p =10·.

The accuracy of results is low for rp/R =:; 0.3, while outside that region computed

derivatives ha~'e the same accuracy as the finite element calculated potentials.
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7.2 Comparative study of diffcrcntiation mcthods

•

This section reports the results of an el>.-perimental study in \Vhich the various

available methods \Vere employed to calculate derivatives of several approximate

harmonie functions on different classes of mesh. The first series of tests employed

quadrilateral elements of second order, and t\Vo test funetions: a cubie harmonie

polynomial and a logarithmie funetion. A second test series used the same

funetions, but on triangular meshes up to fourth order. In the third sequence of

tests, the field in a deep parallel-sided electrie machine slot \Vas anal:rzed. In
each test, the funetion \Vas first approximated by eomputing a finite element
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solution to the Dirichlet probkm. with known function vahws pTl'scribt'tl on the

boundary of the region. The eomputed derivatiw values arc thercfore the

approximate derÎ\'atÎ\'es of a fin itc clcmcnt "l'proximation, not llll'rdy

approximate derivatÎ\'es of an exaer1y known funetion. Eaeh kst series invol\'ed

a \'ariety of meshes and applied alI the differentiation techniques rcasonably

applicable to eaeh mesh type. The results shown in the folIowing may be taken

as representative.

In the first test series using quadrilateral meshes. both local smoothing

methods \Vere compared with the Poisson integral method and \Vith direct

differentiation. Global smoothing was not treated sinre other workers ha\'e found

its performance no better than that of local smoothing (Hinton and Campbell

(19i4), Zienkiewiez and Taylor (1989). The eubie harmonie polynomial hp(x,y)

\Vas se1eeted as typieal of smooth, bounded solutions that fini te clement methods

ordinarily approximale very weIl,

(i.3)

The second funetion ht(x,y) is also harmonie, but being a singular transeendental

funetion, places greater demands on aIl differentiation schemes:

h,(x,y) = log((1 +x]2 + (1 +yf) (iA)

•

The polynomial hl' ean be e."i:pressed exaetly on third and higher order fini te

elements, but not on e1ements of second order. The transeendental function h,

cannot be represented exaetly on any eonventional finite e1ement mesh.

The second series of tests, on triangular e1ements up to fourth order, used

the saIne harmonie funetions as for the quadrilateral case, thus providing direct

eomparison. For triangular e1ements there is no generally aeeepted

supereon\'ergent local smoothing method analogous to that of Hinton and

Campbell (19i4) for quadrilaterals. Howe\'er, any local smoothing method \Vould

require derivath'e values from sueh supereonvergent points in order to

-148-



• Ch.pte, 7 Applic.lion 10 FEM

•

extrapolate sllloother! results. Consequently, global smoothing was used instead

of local. For the same reason, results obtained by the Poisson integral method

wcre compared iustcad of values at superconvergent points. Since the Poisson

integral method is capable of finding higher as weil as first derh'atives, values of

several higher order derivatives obtained by direct differentiation of the finite

e1ement solution were compared \\"ith results obtained by the Poisson integral

method.

In the third test, the field in a deep parallel-sided electric machine slot

was analyzed. Here the result is analytically known but not exactly computable

by any fini te e1ement method. This problem includes a singular field point,

where no numerical method can be expected to yield a result of high accuracy;

howe"er, results at points not far from the singularity can be compared usefully.

An irregular simplical mesh was used, in order to compare the effectiveness of

'averaging' based on the Poisson integral, and local weighted averages.

7.2.1 Second-order quadriIateral elements

Tests on quadrilateral elements used both functions hp and hl' The region

modeled was the square 0 :::; x,Y :s 2. Derivatives were computed a10ng a line of

length 0.9, beginning at the point (1,1), i.e., at the center of the square. For the

Poisson integral method, the circular contour of integration was centered on (1,1)

with a radius of 0.9. The element matrices were computed by nurnerical

integration in the manner usual for second-order isoparametric quadrilaterals.

Five-point Gaussian quadratures were used, and their adequacy was tested by

comparing with quadratures of higher degree. For the meshes used, the error

caused b)' fi"e-point quadrature appeared to be substantially smaller than

differentiation error, and may therefore be considered negligible.
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Figure 7.9. Finite element meshes, Poisson integral method circle, and
lines along which deri\'ati\"es were computed

Two of the meshes for which analyses were carried out appear in Figure

7.9. The same figure also shows lines along which derivatives were computed, as

well as the circular contour of integration used in the Poisson integral method.

Derivative values computed for the polynomial hl' <;xe shown in Figures 7.10 and

7.11, along a line at 45· to the axes. This is the direction with best accuracy for

the smoothing methods, and also for direct differentiation, because the line

crosses two superconvergence points in each element, as well as its centroid

which is a point of high precision for local smoothing methods. Indeed the special

nature of these points is clearly e,"ident in the graphs, with error falling

drastically at and near each point of superconvergence. By way of contrast,

Figure 7.12 shows computed results along a line at 35· to the axes, for the

function hl' using an S x S element mesh. This line traverses no points of

exceptional accuracy, as is clearly visible from the much smoother behavior of

the error cur\°es, and the quite naturally higher error.
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Figure 7.10. Derivative in :r direction; function hl' - 4 x 4 mesh,
direction 45"; (+) Poisson integral, (x) direct method, (0) Zhu­
Zienkiewicz and (0) local smoothing method
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Figure 7.11. Derivative in x direction; function hl' - S X S rnesh,
direction 45°; (+) Poisson integral, (x) direct rnethod, (0) Zhu­
Zienkiewicz and (0) local smoothing method
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Figure 7.12. Derivative in x direction; function hp - 8 x 8 mesh,
direction 35"; (+) Poisson integral, (x) direct method, (0) Zhu­
Zienkiewicz and (0) local smoothing method

These results may perhaps be summarized by saying that the derivatives

obtained with the extended Zhu·Zienkiewicz method are better than the classical

local smoothing results, but either way the accuracy is strongly position­

dependent. For the polynomial function hp the two local smoothing methods are

of almost equal accuracy, and significantly better than direct differentiation of

the e1ement functions. This is to oe eJl:pected, however, for the derivatives of a

cubic pol:l'nomial are quadratic functions so that error should be exactly zp.ro

(aside from any roundoff and quadrature erroIS) at the points of

superconvergence. The results of Figure ;.13, obtained on a 4x4 mesh for the

transcendental function h, along a line at 35" to the axes, are less kind to the

local smoothing techniques. In fact these :t:\ethods give no visible improvement
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over direct differentiation rcslllts follo\\"cd by classical local smoothing. On thc

other hand, the extended Zhu-Zicllkic\\"icz mcthod pro\'idcs up to two additional

correct significant figures in this morc dcmandillg «·st.

o•é

ft' .
000 00

.
OJO 0Jl) 0.<0 OlO 060 0.10 OBC Q.9ll

,00:. 'sl"'d'/R)

llXI

Figure 7.13. Derivative in :z: direction; function
direction 35·; (+) Poisson integral, (x) direct
Zienkiewicz and (0) local smoothing method

h.. on 4 x 4 mesh,
method, (0) Zhu-

•

The results shown in Figures ï.12 and ï.13 coufirm the stability,

reliability and high a.ccuracy of the Poisson integral method. The

superconvergence-based methods are seen to yield very good results nca.r the

points of exceptional accuracy, but elsewhere their accuracy is much worse.

Nevertheless, the derivatives obtained are often much better than those resulting

from direct differentiation, and rarely worse. The Poisson integral method

provides a predictably high accuracy, with error rising near the integration

contour but low at ail interior points. Except near the points of
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•

Sl1pCrCOll\'ergence, this method yidds the highest accuracy and the highest

predictability, but at the highest computing cost. In all methods, accuracy

impro\'cs substantially \Vith mesh rcfinement, as it should.

7.2.2 Triangular clements

Triangular fini te clement meshes up to fourth order were used in the second

series of tests. Again the two harmonie funetions hp and ht were modeled by

solving Laplacc's equation with the correct funetion values along the boundary

nodes of a square region similar to that of Figure 7.9. Sorne typieal derivath'e

valut>s at Gaussian (superconvergent) points c!osest to the center of the region

are shown in Tables 7.1 and 7.2. Superconvergent points for tangential

derivatives along triangle edges of \'arious orders are shown in Figure 7.14. The

mesh density was changed for the \'arious orders of finite element so as to keep

the total number of mesh points roughly constant. These results eonfirm that

supercoQ\'ergenee is obtained at the Gaussian points for the tangential field

eomponent, but not for the normal derivative, which is calculated \Vith much

poorer accuracy. As would be C),.-pected, supereonvergence provides less

improvement for the transcendental function ht than for the harmonie

polynomial hp• For the transcendental funetion ht the Poisson integral method

provides e\'en better aeeuracy than superconvergence pro\'Îdes for the tangential

derivatÎ\'e at Gaussian points.
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/ •

•

Figure 7.14. Position of superconvergent points ("') for tangcntial
derivative on triang~es of various orders
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Table 7.1

Percentage error in derivatives at s'lLperconvergent points
on triangular e1ements, of polynomial hp = x y - xy3

•

l"umbe Order of element p
of cie- Mcthod
ments 1 2 3 4

2 Poisson intg 14. 1.1 0.03i 0.0009
Direct dirr 4.3 0.0001 0.0000 0.0000

4 Poisson intg 4.5 0.083 0.0003 0.0008
Direct dirr Li 0.0000 0.0000 0.0004

8 Poisson intg 1.3 0.0090 0.0009 0.0003
Direct dirr 0.56 0.0003 0.0002 0.0052

16 Poisson intg 0.35 0.0001 0.0004 0.0003
Direct dirr 0.16 0.0004 0.0064 0.0051

Numbe Order of element p
of ele- Method
ments 1 2 3 4

2 Poisson intg 21. 1.9 0.0002 0.0003
Direct dirr 633. Si. 4.5 0.0006

4 Poisson intg i.1 0.06i 0.0004 0.0003
Direct dirr 141. 15. 0.56 0.0003

8 Poisson intg 1.6 0.009 0.0003 0.0008
Direct dirr 52. 4.0 0.069 0.0048

16 Poisson intg 0.39 0.001 0.0010 0.0009
Direct dirr 22. 1.0 0.0009 0.0048
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Table 7.2

Percentage error in derivativcs at supcrco7/.l'crgcnt poinL< on
triangular elemenL<, of function h, = log[(l + .rP+ (1 + yF]

•

(a) ah,fax

Numbe Order of clement p
of cIe- Method
ments l 2 3 4

2 Poisson intS 0.128 0.43 0.011 0.0046
Direct diff 2.10 0.52 0.19 0.00;4

4 Poisson intg 0.189 0.013 0.0006 0.0006
Dirce: diff 0.54 0.068 0.024 0.0024

8 Poisson intS 0.06;9 0.0001 0.0004 0.0003
Direct diff 0.14 0.0094 0.0034 0.0031

16 Poisson intg 0.027 0.0002 0.0001 0.0003
Direct diff 0.032 0.003; 0.0043 0.0001

(b) aht/ôy

Numbe Order of clement p
of cIe- Method
ments 1 2 3 4

2 Poisson intS 0.64 0.31 0.0067 0.0048
Direct diff 32. 0.13 0.98 0.068

4 Poisson intS 0.15 0.011 0.0015 0.0011
Direct diff 15. 0.46 0.14 0.0054

8 Poisson intS 0.061 0.0003 0.0010 0.0009
Direct diff 7.0 0.19 0.012 0.015

16 Poisson in:g 0.024 0.0009 0.0021 0.0009
Direct diff 3.3 0.056 0.021 0.016
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Comparative reslllts are givcn in Figures ï.15 and ;.16 for regular meshes

of 32 and 123 second order triangular e1ements (square subdivisions of 4 x4 and

S x 3 clements), the derivati,'cs having been computed by global smoothing,

dircct differentiation, and the Poisson integral method. The test function was hp ,

and results were computed along a line through the center of the square and at

20· to the x axis. The results obtained for with the transcendental function h,
were quite similar. They clearly demonstrate the superior accuracy of the Poisson

integral method, and show that the global smoothing method does not have high

accurac)' despite its relatively high computational cost.

•

c

o o

1000-'11 0.l0 0.<0 D.lO ~6Il ~70 cm D.lCI

rodiol c1s1,,",. ('IR)

04'+-..,--..,--.--.-_,.-_,.-_;----,,----,_--1
Oll! 0.0

Figure 7.15. Derivative in x direction for function hp using 4 x 4 mesh of
second order elements, direction 20·; (+) Poisson integral, (x) direct
differentiation, (0) global smoothing results
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•

Figure 7.16. Deri"ative in :z: direction for function hp using S x S mcsh of
second order elements, direction 20·; (+) Poisson integral, (x) direct
differentiation, (0) global smoothing results

For deri\'ati"es higher than the first, the Poisson integral method is

clearly superlor. Table ï.4 presents the error in computed deri"atives, up to third

order, for the polynomial function hp , evaluated at the point r = 0.3, 9 = 20·,

relative to the center point (1,1). Elements up to fourth order were used, and the

total number of degrees of freedom was similar in al! cases. From the results

presented for quadrilateral meshes in Table 2, where even at superconvergent

points the Poisson integral method gave the most accurate first derivatives, one

would again e~.-pect this method to perform wel!. This e~.-pectation is borne out

by the resu1ts presented in Table ï.4, where the stability and high accuracy of

the Poisson integral method are evident. Further, its accuracy is neither

dependent on the element order, nor on the position of the point of interest, nor

even on the order of deri"ative.
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Ta.ble 7.3

•

Percentage error in higher de7"ivatives 9[;i]' of 0 = il p =x3y - xl,

o[;iJ = fi + io/ôx;ôyi

Order of element p
Derivative Method

2 3 4

9[00] Poisson intg 0.0006 0.0027 0.0026
Direct diff. 0.023 0.0050 0.0014

9[10J Poisson intg 0.0023 0.0007 0.0007
Direct diff. 0.11 0.0059 0.0010

9[01] Poisson intg 0.0044 0.0012 0.0013
Direct diff. 0.24 0.015 0.0011

4>[20J Poisson intg 0.0021 0.0008 0.0010
Direct diff. 3.2 0.3T 0.0005

9[11] Poisson intE 0.013 0.0090 0.0088
Direct diff. 5.8 0.53 0.0021

9[02J Poisson intg 0.0021 0.0009 0.0010
Direct diff. 2.2 0.043 0.0002

4>[30] Poisson in~g 0.0001 0.0041 0.0046
Direct diff. 9.29 0.0097

9(21) Poisson intg 0.016 0.0079 O.OOïï
Direct diff. 4.0 0.027

9[12) Poisson intg 0.0001 0.0041 0.0046
Direct diff. 1.8 0.010

9[03J Poisson intg 0.016 0.0079 0.0077
Direct diff. 2.5 0.034
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7.2.3 Non-uniform triangular mesh

Application ta FEM

•

The third series of tests employed a nommiform first·or<l..r triangulaI' m('sh.

applied to the fields in an infinitcly deep electric machine slot. While this

problem embodies most of the characteristics that arisl' in many problems of

applied clectromagnetics (e.g., it inc1udes a field singularity). it is still

analytically solvable even though "cry complicated. A typical mcsh used to solvc

this problem appears in Figure 7.17.

, "
"" \/ 1 • • ,

l, l' \ .' /
, ,

l ," 1
1 1 l ' j

l ' 1"
• "1,'
1 1 l "

1 1. "".,1
1 i 1

Figure 7.17. Finite clement mesh used for infinite slot example

Sînce the practical result most often required in sucb a problem is the air-gap

flux density, Figure 7.18 shows values of the vertical derivative of potential A,

i.e., ôA/ôy, evaluated at the levcl y =0.7 x gap-width. This derivative \Vas
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•

COlllptlt<·d III two ways. First. (lir<:>ct diff<:>rentiation was used. followed bv

averaging at nod<:>s, and second. by means of the Poisson integral method. Nodal

a"erages were weighted by clement area in the first process. The Poisson integral

technique was applied to a sequence of circular contours 50 chosen that the

derivative was always evaluated at the center of the circle. From Figure ï.1S it is

evident that the weighted averaging process yields useful accuracy and gives

re5ults of acceptable smoothness. The Poisson integral approach gives better

accuracy and smoother results, but it is more el'pensive in computer time.

DO
3•

D·4

D·J" 3

" J~

.~

~

"

'1D'\
100 1.'0 1<0 ,~ ISO 2!1O 2..'0 2.'0 2.iO 2.SO J!IO

• (cm)

Figure 7.18. Derivative in y direction for infinite depth slotj (+) Poisson
integral, ( x ) direct differentiation method, (0) weighted averages
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7.3 Tests of procedures dealing with singular integrals

App/icotion to FEM

The procedures deri"ed for e\'aluation of singular intégraIs aré applied to rl'su1t.s

of the finite clement '.l.Dalysis. Tests presented in this section COIl'éspond to finité

part integration, covering the case of curvilinear singular intégrals in the normal

derivative computation and singular surface intcgrals arising in second order

derh'ath'e calculation.

7.3.1 The normal derivative computation using the Poisson integral method

Tests were done using the harmonie function

(7.5)

•

• Figure 7.19 compares results obtained using the Poisson integral method

employing 50 - point finite part integration with derivatives obtained using direct

differentiation method and standard Poisson integral method, without special

treatment of singularity using ISO quadrature nodes. It shows the accuracy of the

normal deri\'ath'e computed along the perimeter of a circ1e of radius R =O.S,

centered at point (La, 0.9). Potential results arc obtained using a uniform

triangular mesh of 20 X 20 !inear clements over the region 0:5 x, y :5 2.

Derivatives computed using Paget's method of evaluating the Poisson integral

are of the same order of accuracy as the original finite element solution, with at

most one significant digit lost. Compared to results obtained by ignoring the

singularity, Paget's approach gives consistently better results, with up to 50

times smaller error. As it is e:\.-pected, direct differentiation yielded poor accuracy

of the normcl gradient.
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Figure 7.19. Accuracy of normal derh'ative computed along the
perimeter of the circle of radius R = O.S, centered at point (1.0,0.9).
Function fl(X,y) used. Poisson inte&1'al method '\;th Paget's :licite part
integration (0), FEM potentials (x) and direct differentiation (0) and
standard Poisson integral (ignoring singularity) (*).

. 7.3.2 Second order derivative of the Poisson equation solution

To examine the ef:ficiency of Paget's formulae for :licite part integration when

applied to approximate results, simulations were done ,\;th "alues of functions

• -~-
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•

obtained after solving the boundary "alue prob1cm using the fini te clement

method. The function f2(X,y) was chosen in such a way as to climinate the error

in boundary integral computation. Since a circle of radius R = 1 was used as a

base region, this function vanishes on its edge. Consequent!y all derivatives arc

computed using the domain integral only. Function fl(x,y) represents the

general case when both integrals must be computed.

Results of analysis are shown in Figure ï.20. They are obtained using a

uniform mesh of 200 linear triangles on the region 0 $ x, y $ 2. A circle of radius

R = O.ï is centered at (1.2,1.1). The radial position is changed, while the angle is

fixed at Op = 20·. The main source of error in surface integral computation is

approximation of the source function by its average "alue O\'er each element. In

order to estimate the influence this approximation of the source function a

second test was performed, this time using the exact value of the source function,

which is usually known in practical problems. Computed derivatives ·have the

same or even better accuracy than finite e!ement results. Note that it is not

possible to compute second derivative from first order finite element

approximations by direct differentiation.

The results of analyzing the case when the point P is on the edge of the

cirele are given in Figure ï .21. They are obtained using a mesh of 200 second

order finite elements to mode! the function f2(X,y) in the domain -1 $ x,y $1.

Results were extracted from a cirele of radius R = 1 centered on (0,0). Again, the

source of error is piece\\;se approximation of the source function. In this case the

cun;linear integral is ignored, so the error in results is due to surface integral

computation only.
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~1 .... --,
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~'l,+-_,...,--r--,....-~---,--.,-----,r--,.--,---l

0.00 o.~

Figure 7.20. Computed derivati\·es ô2f2/ÔXÔY when the radial position
is changed, while angle is fixed at 6p =20". Function f 2(x, y) is
approximated using 200 quadratic triangles. FEM potentials (x),
Poisson integral method with Paget's finite path integration (0), and
results using the exact ~'alues of the source function (*).
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!Il20o
czimul.hal (oo:dinale

Figure 7.21. Computed derivatives 8212/8x2 for point P on the edge,
angular position changed. Results extracted from the circle of radius
R = 1.0 centered at (0.,0.). Function f2(X,y) is approximated using 200
triangles. Poisson integral method with Paget's finite part integratioD
(0), and finite clement differentiation (0).
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7.4 Application to axisymmetric problems

Application to FEM

•

The method of differentiatiating approximations to the harmonie functions in

axisymmetric coordinate system is treated in Chapter 3, and its verification in

Chapter 4. Tests with results obtained using the finite clement soh·er are

presented in this section.

. z

r

Figure 7.22. Contours of a torus and a sphere embedded in first-order
finite element mesh, used in differentiation of potentials obtained by
using the finite element interpolation functions.
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An analyticall:: known function

f(r,:) = ,1 ,
~(1+r)- + (1+:)-

Appfjc.Jt;on to FEM

(8)

•

was approximated by means of a finite clement solution, with functioll \'a!ue

prescribed on the boundary of the region. Linear triangular clemt'llts were uscd.

In al! cases the test region was the cylinder 0 ::; r,::: :S 2. In the results prescntcd

here, the mesh density in the region of interest was \'aried, and results arc shown

for the new method based on differentiation of the fundamenta! solution of

boundary value problem; they are comparcd with rcsults from direct

differentiation. Figure ï.22 shows the fini te element mesh and a torus and a

sphere embedded in the mesh as used in computation of derivatives. Also shown

in Figure ï.22 are lines along which the partial derivative in the :::-dircction and

the derivative 82f /8r2 were computed. In the torus the line makcs an angle

9 = 20' with the r-axis, and for the sphere 1/J = 40' with the :::-axis.
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Figure 7.23. Relative error in results e.,tracted from the torus, using the
50 fini te element solution: error in ôo/ôr (x), ô6/ô;; (0) and Ô29/Ô;;2
(*) using the ne\\" method, error in ô6/ôr obtained using direct
differentiation (0); original finite element solution ( +).
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Figure 7.24. Re1ath'e error in results extracted from the sphere, using
the 50 finite clement solution: error in a~/ar (x), a~/a:: (0) and
a2~/a::2 <*) using the ne\\" method, error in a~/ar obtained using direct
differe:ltiation (0); original finite element solution ( +).

Figures Î.23 and Î.24 present the error in computed derivatives using a uniform

mesh of 50 finite e1ements. First order derivative results are significantly

improved compared to the direct differentiation technique. First order

derivatives eJl:tracted from the sphere have the same accuracy as the original

finite e1ement results, and not more than one significant digit is lost in the

second derivath·e. Derivatives extracted from the toros have poorer accuracy,

but they are still much better than the direct differentiation results. Figures Î.25

and Î.26 give the results with 200 finite elements, i.e. with doubled discretization

in both directions. The results have the same behavior as in the previous cases.
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Figure 7.25. Relative error in results extracted from the torus, using the
200 finite element solution: error in 89/8r (x), 89/8: (0) and 829/fJ:2

(*) using the new method, error in 8t/>/8r obtained using direct
differentiation (0); original finite element solution ( +).
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Figure 7.26. Relative error in results e.'i:tracted from the sphcre, using
the 200 finite e1ement solution: error in ô4J/ôr (x), ôZ4J/ô:z (*) and
ff3</J/ôrôzz (0) using the new method, error in ôrf>/ôr obtaincd using
direct differentiation (0); original finite e1ement solution ( +).
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7.5 Thrcc dimcnsionallocal smoothing rcsults

Applic.tion to FEM

Extensive computational tests have now been performed to compare the

pcrformance of thc generalizcd Zhu-Zienkiewicz method with con\'cntional local

smoothing and with direct differentiation of the finite element solution. Two test

cases were used, in which an analytically known function was approximated by

means of a finite element solution, with function value prescribed on the

boundary of the region. Tests were carried out using the functions

(9)

and

(10)

•

Both functions are harmonie. As in the two-!limensional case, similar accuracy

may be expected for functions satisfying the Poisson and Helmholtz equations.

The first function fl is a cubic polynomial, so the generalized Zhu·Zienkiewicz

method should produce first derivatÏ\'es exact at the Gaussian points.
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1 1

I~I

T

1

Figure 7.27. Finite element discretization with lines along which
derh·atives were computed

Second order numerically integrated brick elements were used in the tests,

and reduced integration \Vas employed (Zlamal (1978), Zienkiewicz and Taylor

(1989)). In all cases the test region was the cube 0 S x,y,:: S 2, as shown in

Figure 7.27. In this figure, directions along which derivatives were computed arc

also shown. The segments are:

segment startinJ! point end point

•

a

b

c

(1,1,1)

(1,1.211482,1.211482)

(1.,1.25,1.3)
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•

The directions are chosen in such a \Vay as to coyer three typical cases. Segment

a is the main diagonal of an element. It contains two superconvergent points and

the clement center, which has exceptional accuracy in the 2-D case (the

derivative there is the arithmetic mean of superconvergent values), so it is the

best direction for conventional Hinton-Campbcll local smoothing. Segment b

contains two superconvergent points. An arbitrary direction is chosen for

segment c, to illustrate the practical situation where no supercoU\'ergent points

occur along the desired direction. In all tests the results gh'en refer to the partial

derivative in the x direction, i.e. 89/8x. In the test cases this coincides with one

of the local axes. Various mesh densities were used in the problem region, and

results are shown for all three differentiation methods.

The first set of results, shown in Figures ï .28-ï .30, corresponds to the

function fl(X,y,Z). It bears out the eJ>.llectations about behavior of recovered

derivatives that might reasonably be based on the theoretical arguments

presented ahove. Figure ï .28 shows that along the main diagonal both local

smoothing methods reach the maximal accuracy possible for the single-precision

calculations used in tests. From Figure ï .29 it is clear that there is no

improvement of accuracy when classical local smoothing is used. The results

presented in Figure ï.30 show that in the Hinton-Campbcll type of local

smoothing, the correction of derivatives may actually go in the wrong direction.

From all results shown, it is clear that a superior accuracy (exact approximation)

is obtainable by computing gradients using the generalized Zhu-Zienkiewicz

method.
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•

Figure 7.28. Derivative in x direction along the line a; function 1
-2x2x2; (.) potential, (x) direct differentiation, (0) Zhu-Zienkiewicz
and (0) local smoothing method
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Figure 7.29. Derivative in x direction along the line b; function 1
- 2 x 2 x 2; (.) potential, (x) direct differentiation, (0) Zhu·Zienkiewicz
and (0) local smoothing method
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•

Figure 7.30. Derivative in x direction along the line c; function 1
- 2 x 2 x 2 mesh; (.) potential, (x) direct differentiation, (0) Zhu­
Zienkiewicz and (0) local smoothing method

The second set of results is obtained using the function f2(X,y,::), which is

harmonie but not polynomial. Since this function is not a third-order polynomial,

the results are not necessarily optimal at the same (Gauss-Legendre) points. The

consequence is that local smoothing constructed using both methods is not quite

50 good as in the first (polynomial) case. The results are seen to be better than

obtainable by direct differentiation and conventional local smoothing, but the

improvement is not consistent. Figures 7.31-7.33 sho'... results of analysis for

segments a, b, c respectively, using the 2 x 2 x 2 finite element mesh. Results for

the 4x4x4 mesh, on an arbitraI)" segment c, are given in Figure 7.34. In this

case, potential results are more accurate than in the pre';ous one; the generalized

Zhu-Zienkie\\;cz method shows better performance than local smoothing. Of
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·'mrse. better derivath'es result from nwsh rdinenwnt. an expectation fully

borne out by Figures ;.33 and ;.34.

l!O 2JXl120 1Jl) HO 150. 1SO no 18)

..s4--.,..--r----.--r--,--.,..--r----.---r---1
100

Figure 7.31. Derivative in x direction along the line a: function 2 on
2x2x2 mesh. (*) potential, (x) direct differentiation, (0) Zhu·
Zienkiev;i.cz and (0) local smoothing method.
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~o-,- .,

•

Figure 7.32. Derivath'e in x direction along the line b: funetion 2 on
2 x 2 x 2 mesh. (.) potential, ( x ) direct differentiation, (0) Zhu­
Zienkiewicz and (0) local smoothing method.
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•

Figure 7.33. Deri~'ative in x direction along the line c: function 2 on
2 x 2 x 2 mesh. (.) potential, (x) direct differentiation, (0) Zhu­
Zienkiewicz and (0) local smoothing method.
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Figure 7.34. Deri"ati\'e in x direction along the line c: function 2 on
4 x 4 x 4 mesh. (•) potential, ( x ) direct differentiation, (0) Zhu­
Zienkiewicz and (0) local smoothing method.
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7.6 Diffcrcntiation of the Helmholtz cquation solution

.4pplicJtion to FEM

•

Both methods describcd in section 2.2.3 were tested Ilsing a wdl·known analytic

solution: the T~111 and TM31 modes of a rectangular wa\·cguidc. In thc following.

the term mcthod L denotes the technique of using the Green's function for thc

Laplacian operator, while method His the method using the Green's function for

the Helmholtz operator.

Again, as in Chapter 4 the differentiation kernels of the Helmholtz

operator were evaluated using 20 terms of the summation in the tests reported

here.

A square waveguide was analyzed, i.e., the Helmholtz equation was soh'ed

in a square region of side length ../2. Uniform meshes of triangular elements were

used to subàÎ'\"Îde the region. For the TMll mode results shown here, a mesh of

200 first-order elements was used, while the results reported for the TM31 mode

relate to a mesh of 32 third-order finite elements. Various derivatives of the

resulting solutions were computed. In Figure i.35 a circular integration contour

embedded in the first-order finite element mesh is shown. The center of the circle

is at the point (0.i5,0.i5); the radius of the circle is O.i.
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l, ,'-, 1

l ,,:

Applic.tion to FEM

•

Figure 7.35. First order finite e1ement mesh \\;th a circle used in
accurate derivath'e computation.

Vertical derivatives (i.e., 8ç,18y) computed for the TMll mode using the

mesh described are shown in Figure ï .36. Both methods have approximate1y the

same accuracy for rlR < 0.ï5. No loss of precision results from differentiation; as

can be seen from Figure ï .36, the derivatives actually ha\'c better accuracy than

the finite e1ement solution itself. Figure ï.3ï presents the results of the

corresponding computation using method H. Nea.r the middle of the circle of

integration, riR < 0.5, the second derivatives have about the same accuracy as

the approximate solution function. For third derivatives, the high-precision

region is smaller, about riR < 0.2. It should be noted that a first-order finite

e1ement solution does not even possess a second or higher derivative, yet the

difierentiation methods correctly recover derivative information even in this case.
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Figure 7.36. Relative derivative error of TMV)"llode from finite element
solution: original finite element solution ( +); in 89/8y using method L
(0), method H ( x ), direct differentiation (*).
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Figure 7.37. Relative error in TMll mode, usin~ Helmholtz operator
k~rnels: original finite ;lement solution ( +); 89/ y (x), 829/8x8y (0),
8-9/aX2 (*), éN/ax8y· (0).

Results for the TM31 mode appear in Figures ï.38 and ï.39. Again, the

results obtained by the two methods have similar accuracy characteristics for the

first and second derivatives: the error in derivath·e values is of the same order as

the error in the finite element solution. For the cubic elements used to obtain

Figures ï.38 and ï.39, a third method can be used: direct differentiation of the

finite element functions themselves. Compared to this direct differentiation, the

high-accuracy methods yield at least one, often two, additional correct significant

digits in the first derivative 8if>/8y, and up to three more significant digits for the

second derivative 829/ax2. The second derivath·e values obtained by direct

differentiation are barely useful. \x.-1ûle third derivatives can in principle be
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•

computed. they are 50 inaccurate as to he llscless for any l'raclir,,] pnrl'os<'.
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Figure 7.38. Relati'\"e error of TM31 mode, using third order mesh:
original finite element solution (+); in 8<>/8y using method L (0),
method H ( x ), finite element differentiation (*).
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Figure 7.39. Relative error of TM31 mode, using third c:,.:i.er mesh:
original finite element solution (+); in Ô2,p/ÔX2 using method L (0),
method H ( x ), finite element differentiation (*).

7.7 Concluding remarks

A11 the methods studied are useful in some circumstances for computing first

derivath'es; higher derivatives are accurately produced only by the modified

Poisson integral technique. In general, the high-accuracy methods are also

computationally costly. Howe\'er the converse is not true.

The proposed methods based on Green's second identity appear to be

stable, reliable and highly accurate. Their accuracy is substantial1y independent

of position; it dcgrades near boundaries but accuracy can in any case be traded

-190-



• Ch.;ter 7

•

for computing time. This is the only method capable of fillllill~ hi~h·llnkr

derÏ\·atives. Its disadvantage is relatÏ\·ely high computing l'ost.

The extended Zhu-Zienkiewicz method pro,·ides better accurac)" alld

reliability than conventional local smoothing of fini te e!l'ment. solutions. hs

accuracy is still position-dependent. but less so than the conventional local

smoothing method_

Two methods are applied to computing derÏ\-atÏ\·es from fini te element

solutions of the Helmholtz equation, both based on Green's second identity. One

uses the Green's functions for the Laplacian operator, essentially ,oiewing

solutions of the Helmholtz equation as equh-alent to solutions of the Poisson

equation; the othe, employs Green's functions appropriate to the Helmholtz

operatoro The second approach is particularly attractive for differentiating

solutions of the homogeneous Helmholtz equation_ It is capable of computing

derh-atives of any order, instead of only up to the second order using the Poisson

equation approach, and it is computationa1ly more economie than the first

technique_ It uses integral kernels based on Bessel funetion series, and the use of

optimized polynomials or Padé approximations may further improve the

computational economy of this method without affecting its accuracy_
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CHAPTERS

Conclusions

The objective of this work has been to develop efficient and reliable methods for

high-precision derivative computation from finite element solutions. A

formulation based on Green's second identity, using a fundamental solution,

meets this goal. The Green's functions and generalized Poisson kernel function

deri,·atives required for this method were derh·ed in this thesis for the Laplacian

operator on the circle, sector of circle, rectangle and sector of ring. Corresponding

functions were also deri'·ed for the Helmholtz operator using a circle as the base

domain. The method \Vas evaluated and validated using se'·eral test problems

,,:ith analytica1 solutions, \Vith results containing random error and \\;th real

finite element solutions. A sequence of tests was carried out to cover typica1 and

special cases.

To treat special cases invoh;ng singularities, sucb as the normal

derivath'e on the edge, the finite part integration concept \Vas used. Novel

quadrature techniques based on finite part integration were deri,·ed.

Two and three-dimensional generalizations of the Zhu-Zienkie\\;cz method

of gradient recovery are also ne\V in this thesis. They are applied to numerica1ly

integrated quadrilateral and brick elements. These methods are compared to the

conventional local smoothing method, and are included in comparative analysis

of the various differentiation methods.

8.1 Characteristics of the generalized Poisson integraJ method

This method relies on fundamental solutions of boundary "alue problems for

se"eral cases and elementary regions. The work in this thesis has been restricted
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•

to scalar problems described by the Laplace. Poisson and Helmholtz equations.

Computational experiments confirm its superior accuracy compared to other

methods. In fact this is the only methoJ capable of filHling high·onler ,Ieri\"ati\"es

with high accuracy.

The proposed method has a negative error amplification. It is not

sensitive to data error nor to random obscn'ational error. The sequence of tests

performed using results with uniformly distributed random error shows that the

accuracy of computed deri.-ati\"es is usually higher than the data accuracy.

Two \"ery important ad.-antages of the new method are its stability and

reliability_ Results of computation are not position dependent as they are using

other methods_ Results are best at interior points of the base region. Accuracy is

redu::ed near boundaries, but in predictable manner.

Two methods of computing deri\"ati.·es from finite element solutions of

the Helmholtz equation in two dimensions are presented and compared. One uses

the Green's function for the Laplacian operator, essentially viewing solutions of

the Helmholtz equation as equh-alent to.solutions of the Poisson equation; the

other emplcys Green's functions appropriate to the Helmholtz operator_ The

second approach is particularly attracth'e for differentiating solutions of the

homogeneous Helmholtz equation. It is capable of computing derivatives of any

order, instead of only up to second order using the Poisson equation approach.

The model for axisymmetric problems described b)- Laplace's cquation

using a torus and a sphere as base regions is shown to be computationally

efficient, but less effecth-e than for the two-dimensional problems. The main

difficulty is evaluation of Green's function.

The principal disadvantage of the method is its relatively high

computational cost_
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8.2 Charactcristics of the gcocralir.cd Zhu-Zicnkiewicz method

Conc/usions

•

This mcthod appears, on both lheorelical and experimental grounds, to provide

beller accuracy and reliabilit)· than conventional local smooth.:ng of finite

clement solutions. In common \Vith the local smoothing method, its accuracy is

position-dependent.

Because this method constructs a smoothed approldmation from the

Gaussian integration points, its accuracy is essentially dependent on the accuracy

of potential values at these points. The advantages of this method include high

accuracy, locality of data, and simplicity in application. Computing costs are

relatively low, since all arithmetic operations are strictly local to a finite

e1ement.

8.3 Results of comparative analysis

The new method and the new generalization of the Zhu-Zienkiewicz method, are

compared \Vith four other differentiation methods co=only used in

postprocessing of finite e1ement results. The results of the comparative analysis

and tests described in thesis are summarized in Table S.l. AlI the methods are

useful in some circumstances for computing first derïvatives. Where first

derïvative values of moderate accuracy are required, the conventional \Veighted

average method appears to produce acceptable resul~s. The superconvergent

smoothing mel!lods, based on e.'''trapolation or interpolation from the results at

points of exceptional accuracy, produce better results than direct differentiation,

but their accuracy is strongly position dependent and restricted to first

derïvatives.
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Table S.1.

Summary of charactcri..<tics: Five approximate differentiatian lIl<,thocL.

Conclusions

•

Method Costs Position Accuracy
dcpcndcncc

direct differentiation low YC$ low

weighted averages low yes good

local smoothing moderate yes good

extended Zhu-Zienkiewicz moderate yes very good

global smoothing high yes good

Poisson integral high no excellent

S.4 Further work

The generalized Poisson integral method proposed here has grcat potential for

further development. The following directions are suggested:

1) Extension to three dimensional problems.

2) Application to vector problems.

3) Optimization of existing algorithms. Eventual use of Padé approximations

may further impro'-e the computational economy of integral kemels bascd on

Bessel function series.

4) Analyze the possibility of computing third order dcrivatives from Poisson

equation solutions.

5) Paralle1isation of the method.
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Poisson kcro.cIs and surface integral kcro.cIs for a circular region

Let the point P be located at (xp,yp) = (rp,8p), within a circle of radius R.

Similarly, let Q be at (xQ,YQ) or (rQ,8Q). Theo. the image l of source point Q
have coordinates (x],Yr) or (R2jrQ,8Q). Distances from the observation point P

to the source Q and its image l, and thcir dcrivatives are

(AU)

(A1.2)

(A1.3)

(Al.4)

-cos(or+8p)

R2

YP-;>YQ
sr

Q = -sin(or+8p)

(A1.5)

(A1.6)

The first tee. Poisson kemel functions are:

(Al.7)

•
- t.'~Q{~cos(OQ+8p) - ~ cos8p}
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Appendix 1 Kernds (or .1 circ/e

_ 4SQ",SQy(r1> - r~) - 2sQ(SQ",yp +SQ_Xp)
- ;;-rQs~

= - *~QÜ~ sin(2crQ+ 28p ) - :~sin(crQ + 28p )}

(:\1.9)

(A1.10)

(A1.11)

(1- 4S~y)(r1>- r~) - s~ HSQ",sQYP
irrQsQ

(A1.12)

24S~",(r1> - r~) + 6SQ",(2r~ - 2r1> + S~r) + 6sQxp - 24S~rsQxp
= - 5

;;-rQSQ

= -*~QÜ~COS(3crQ+38p)-:~COS(2crQ+38p)} (A1.13)

(A1.14)
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• Appendix 1 Kerne/s (or a d,cie

(AU5)

24S~.(r~- rb) +6SQ.(2rb - 2r~+sb,,) +6sQyp - 24 sb. SQYP
= - 5

üTQSQ

= f.'~Q{C: sin(3aQ + 311p ) - r:sin(2aQ + 3I1p )} (AU6)
SQ SQ

The following general formulae are \'alid:

and

Km.2k.2k(P;Q) = (_1)1: Km.o(PjQ)

Km.21-1.2k+1(P;Q) =(_1)1: Km.1.1(PjQ)
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The surface illtegra1 kemcls for pro<1ucillg the first fi"c deri"ati,"('s of a pot('utia!

function are as follows:
• Appendix l

J (P'Q) = 1 (COS(OQ+9p)
10' 27r ~Q

COS(01 + 9p ))
<'1

Kerne1s (or.J circ!e

(A1.20)

(A1.21 )

J (P'Q) = 1 (sin(<l'9+ 9p) Sin(Q1+ 9p))
01' 2i=:SQ ~l

(A1.22)

J (p. Q) _ 1 (COS(20Q+29p)
20' -2i S2

Q

J (P'Q) = 1 (sin (2oQ+ 29p)
11' 2-r. \ sb

(A1.23)

(A1.24)

•

J (P'Q) = 1 (COS(201,+29p) cos(2<l'~.+29p))_lé(P_Q)
02' 2r..- s- 2

'1 Q
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• Appendix 1 Kerne/s (or a circ1e

To generate aboye kerncls. a simple routine ~IATHE"IATICA may be used:

1\00[x_.y_] :=-.5/(l'i R) cl[x,y]/sq[x,y]"2
JOO[x_.y_] := .5/Pi (Log[rq/R] + Log[si[x,y]/sq[x,y]])

Derivative[l,O][cl][x_,y_] := -2 y
Derivative[O,l][cl][x_,y_] := -2 x

Derivative[l,O][sq][,,-.y_] := Sqx[x,y]
Derivative[O,l][sq][x_,y_] := Sqy[x,y]
Derivative[l,O][Sqx][x_,y_] := Sqy[x,y]"2/sq[x,y]
Derivative[O,l][Sqx][,,-,y_] := - Sqx[x.y] Sqy[x,y]/sq[x,y]
Derivative[l,O][Sqy][x_,y_] := - Sqx[x,y] Sqy[x,y]/sq[x,y]
Derivative[O,l][Sqy][x-,y_] := Sqx[x,y]-2/sq[x,y]

Derivative[l,O][si][x_,y_] := Six[x,y]
Derivative[O,l][si][x_,y_] := Siy[x,y]
Derivative[l,O][Six][x_,y_] := Siy[x,y]-2/si[x,y]
Derivative[O,l][Six][x-,y_] := - Six[x,y] Siy[x,y]/si[x,y]
Derivative[l,O][Siy][x-,y_] := - Six[x,y] Siy[x,y]/si[x,y]
Derivative[O,l][Siy][x-,y_] := Six[x,y]-2/si[x,y]

I\[,,-,y_~m-,n_] := D[I\OO[x,y], {x,m}, {y,n}]
J[x-,y_,m-,n_] := D[JOO[x,y], {x,m}, {y,n}]

Then, a kernel 1(32 can be founded by entering

l\[x,~',3,2]
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• Appendix: l Kerne1s for il ci,de

Second ord~ kcrncls if observation point is on the edge of a circle

For point P(rp,8p) on the edge of a circle of radius R, first and second order

Green's kernels are gïven by the following formulas. The source point is

Q(rQ,8Q). Expressions for sQ and Ct are gi\'en in section 3.1.2.1.

J (P'Q) = (sQ+2RcosCtQ)(sQcos28p+2Rsin28psinCtQ)
20 , 2-R2-.. ~Q

J (P'Q) = (sQ +2RcosCtQ)(sQsin28p - 2Rcos28psinCtQ)
11 , 27.R2sQ

_ sinq8pc5(P _ Q)

(A1.26)

(A1.2i)

(A1.28)

(A1.29)

(SQ +2RcosCtQ) (sQ cos28p +2R sin28psinCtQ)
27. R2sQ

(A1.30)
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APPENDIX 2

Extcnded Poisson kcrncIs and surface integral kcrncls for a reetangular region

Let P placed at (xp,yp) be an observation point within a rectangle of sides aand

b. Similarly, let Q be at (xQ,YQ). Then the system of images is shown in Chapter

3 (section 3.1.2.2). The Green's function for a rectangle has the following form:

00 00

G(P;Q) =L L Gmn(P;Q),
m=l n=1

where

G (P;Q) = 1 Log S2mn~4mn
mn 21r SImA :i:lmn

For brevity, introduce the symbols:

XQm =xQ+2ma

YQn =YQ+2nb

sim" =(xQm - xpj2 + (YQn - ypj2

~mn =(xQm +Xp)2 +(YQn - ypj2

s5mn = (xQm +xpj2 + (YQn +yp)2

s~mn = (xQm - xpj2 + (YQn + yp)2

(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.6)

(A2.7)

(A2.8)

•

The m, nth terms in Po;sson kernel function which corresponds to sides x = 0 and

x =a (with '- ' sign on front of al! e.'\.-pressions) are

l(::oomn =ir.{(XQm +Xp)(+--+) + (xQm -XP)(~_+-)l (A2.9)
~mn S3mn 4mn SImn If
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Appendix 2 Kernefs for;J rect;,ngul.Jf region

J" - 2 {1 (1" ( )'(1 , 1))\Xl0mn -7fYPYQn ..2 ..2 - - IQm + Xp ...2 T--:zr-
"':!rnn"3,nn "'!,UIU 'JIIIII

(.-\2.10)

+ 1 (1?( )'( Il))}.. .. -- xQrn-XP -,.-+~
Simn S4mn Sim" S4mn

'" 2 {(XQm+XP)(? (YQn-YP YQn+YP) )I\zolmn = r,YQn 2 2 -YP, <2 +1
SZmn 53mn S:!mn "3mn

(:\2.11)

(:\2.12)

{
XQm+XP( 2( 1 1 1) (1 1))2 2 4(xQm+ x p) -.-+ 2 2 +-.- -3 -2-+:;-
SimnS3mn Simn ~mn 53mn Simn Simn S3mn

XQm - XP( ( )2( 1 1 1) (1 ' 1))}2 2 4 XQm-XP .-+. 2 +-.- -3 ~T-2-
Slmn S4mn S:mn S4mnSimn 54mn Simn S4mn

(A2.13)

{
1 (( + )2(SY (YQn+YP+ YP _YQn-YP)2 2 XQm Xp p. 2 2 •

Simn53mn Simn Simn Simn Simn

1 (( )2(S (YQn +YP YP+ 2 2 XQm-Xp YP • + 2 2
~mn~~ ~mn ~mn~mn
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J o 4
\ro:mm = 1fYQn

Kernels (or a rectangular region

(A2.14)

(YQn -.;p)(;Qn + yp))
~2mnS3mn

__l l_)_?(YQn + YP
2 ~ - ~

S2mn SJmn Sjmn

YQ ....-YP))
S2mn

1 1) ?(YQn +YP YQn - YP))}
-~-~ --" 4

Simn S4mn S4mn SImn

(YQn - rp)(~Qn + yp))
Slmn S4mn

•

The m, nth term in Poisson kerncl function corresponding to sides y = 0 and

y =b (with ' - ' sign on front of ail e.."pressions) are

[( _ 2:z: {(YQn+YP)(2X (XQm-XP XQm+XP)+l)
ylOmn - 7ff QmJ .::2 p S2 .J

......smn ""4mn 4mn "'.;smn

(A2.16)

+(YQn-YP)(2 (XQm+XP XQm-XP)_l)}2 2 xp 2 ...
slmnS2mn S2mn simn

(A2.17)
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• Appendix 2 Kerne/s ror ~ rectOJnSU/Jf resion

(A2.18)

(.ro", -.?)(~o", +.rpl)
"'~hlln ~""hlln

(:ro", -<;p)~~Q'" + :rp ))

"lmu":;:nul

1 1) ?(XQrn+XP--'---2- -- ,
Simn oS:!mn S2mn

(A2.19)

{
l' ( )2(S (XQrn + Xp Xp2 2 YQn +YP Xp • + 2 '

S3mn 54mn 53mn 53mn S4mn

+1 2 2) 2x (XQrn+XP XQrn-XP))
-~-~ - P 2 - ••

S3mn 54mn 53mn 54mn

1 (( )2( (XQrn +Xp Xp+ 2 2 YQn-YP SXp 4 + 2 •
SlmnS2mn Simn Slmn S2mn

2 2 ) (XQrn+XP+1-~--2- -2xp "':";;"2-=-
Slmn Simn 52mn

(A2.20)

•

{
YOn+YP(4(Y +y)2(_1_+ 1 +_1_)_3(_1_+ 1))

2 OnP4 22. 2 ~
~mnS3mn 54mn 5 4mn 53mn 53mn S4mn 53mn

Yon-YP( ( )2( 1 1 1) (11))}2 2 4 YQn-YP -4-+ 2 2 +-4- -3 ~+~
SlmnSimn Stmn SlmnS2mn Sinan Slmn Simn
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The rn, nth tcrm in surface intcgra! kemels:

Kernels (or ~ rectangular region

(A2.21)

JOlmn=i:r.{(YQn-YP)«,1 - <2
1

)+(YQn+YP)(s,1 -i )1
"'1 mn .. 2mn 4mn ~;jmn If

(A2.22)

(A2.23)

+ (XQm +XP?i- (YQn +YP),2
S3mn

(A2.24)

(XQm -Xp)2
i
- (YQn +YP?}-~Ô(P- Q)

S4mn -

J
1llnn

=~{(XQm - Xp}(YQn - yp) + (XQm +Xj(YQn - yp?
SImn mn

(A2.25)

+ (XQm +Xpj(YQn + yp) + (XQm -xP)(YQn + yp)}
Simn S4mn

(A2.26)

_ (XQm +";P?i- (YQn +yp)2 + (XQm -xP?i- (YQn +YP?}_l Ô(p_Q)
S3mn S4mn 2
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Extcnded Po'sson kcmcls for a scctor of circle of angle 'Irlm

The Green's function for a sector of cirde of angle ""Im are given in section

3.1.2.3. Let P placed at (xp,yp) or (rp,9p) is the observation point, within a

sector of cÏt'de of radius R. Similarly, let the source point Q be at (xQ,YQ) or

(rQ,9Q), then the system of images is presented in Figure 3.3. The Green's

function for a sector of cirde has the fol1owing form:

(:\3.1)

1 11\ $Qi' SIi="...- "log,; ".,~ L..- ["_Q'
- Il i=1 1 1

where dist,iUlces s are given by

m

2:G;(P;Q)
i=1

(:\3.2)

.51; =r1>+ ~4 - 2rprQcos(9p - 9Q - (i -1) ~,î)
rQ

.5~;' =r1>+r~ - 2rprQcos(9p +9Q - (i -1)~)

For brevity, symbols are defined

(:\3.3)

(A3.4)

(A3.5)

(A3.6)

(A3.7)
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• Appendi)( 3 Kernels (or a sector of cÎrcle

The ith tcrm of Poisson kernc1s corresponcling to sicles (BQ = 0 ancl BQ = ;;, ) of

t.he scctor are

'" _ 1 ( )( 1 R
2

1 ).l\Oooi-rQitypXQi-XPYQi 2-22
sQi rQ sli

(A3.9)

(A3.10)

(A3.11)

(A3.12)

(A3.13)

(A3.14)

SQi:(S~~: - S~iV»)
SQi

(A3.15)
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8 (R~Sr (5S~I' -S~I )1\ . = (y x . _ x y.) , 'V or 'V
8211 rQ *" P QI P QI ~ 4

rQ Sn

J\ernds for .3 sector of cirâe

(:\3.16)

SQ;v(5S~;r - Sb;v))
SQi

(A3.1i)

•

I<: .= 24 (y x .-x y .)(R2 SliV(S1iv- S1ir)
803. 'i"Q1f P Q. P Q. ~ s1i

Note that kerne1s for side BQ =..lm ha\"e the '

eJ--pressions.
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• Appendix 3 Kernels (or" sector of eïrcle

Poisson kernels corresponding 10 arc rQ = R (0 ~ 9Q~ 1~' ) may be obtained from

Poisson kernels for a circular disc, pl'esented in Appendix 1. It is easy to pro\"e

that the ijth order kernel will be

(A3.19)

Using the SarDe reasoning, the surface integral kernels are obtainable from

kernels for a circular dise, also presented in Appendix 1. The formula for ijth

derivative kernel is

(A3.20)

•

Also, like in the cases of circle and rectangle, the term - ~c5(PiQ) should be'

included in e>,:pressions for J 20 and J02'
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Ext=ded Poisson kernels and surface integral kcrncls

for a seetor of ring of angle 1r/ m

Let the point P be located at (xp,yp) = (rp,Op), within a sector of ring of inner

and outer radii a and b, respectively and angle 1r/m. Similarly, let QI be at

(xQ,YQ) or (rQ,OQ). Let the image QI' of source point Q have coordinates

(xQ, -YQ) or (rQ, - OQ). There are (m -1) pairs of images Q; and Q;., i = 2...m.

For brevity, introduce

•

Ber> {r2n +a2n rQn b2n , r2n on}CIl _ "'n _ n P + T P a-
;Il - --- n ") ") n fi •lirp rprQ b'in _ énrp bon _ a-n rprQ

Then, second derivatives of .An and ':Iln are given by
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• Kerne/s (or a sector or ring

•

The CrePIl's fnlletioll will take the form

G(p"Q) __1 ~(I sQ;' _?~ Sillll(Bp -"'";)SinnBQ )
, - 2 L...- og s· - L...-.A.. IL

Ti ,::::1 QI 11=1

m

= I:G;(P;Q)
i=1

where

W" - (i _1)2r.• - Til.

Then, the Poisson kemels corresponding to sides BQ =0 and BQ = iÎï are:

YQ"' rpsin(Bp+BQ-wi)(xp-xQ,,)+ . + •
2-r ,2 -s'

~I Q ,:tQi' " Qi'

cosBp ~ •
+7.7'Q !=l ensllln(Bp - Wi) cos nBQ•
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[(SOli =
XQ; + rpsin(lI p -IIQ - ",,;)(yP - YQ;)

2iirQS~i ï:"SQi

XQ;. + rpsin(lI p +IIQ- :.:;)(yP - YQ,')

2 7i r QS~i' ii sai'

Kernels for il secto' of rins

(A4.14)

•

+rprQsin(lIp +IIQ - W;) - 2YQ;' (Xp - XQ;.)

iirQSQi'

cos211p ~(n2.A. e ). (II ) Il+ 'itrprQ L.., rp ft - ft Sinn p - W; cosn Q
n=l
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+XQi·(Xp - XQi·) - YQi'(YP - YQi')

h'TQSQi,

cos26p ~ (1 )
- f.tprQ L..Jn rp.Ân -en cosn(6p-wi)cosn6Q

n=l

Kerne/s (or il sector of ring

•

+rprQsin(6p +6Q- Wi) - 2xQi• (YP-YQi')

irrQsQi,
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For the arcs the Poisson kerncl functiolls become

K~rneJs for .l sector of ring

rQ - rpcos(9p - 9Q - w;)
- ?_ ..2

-~. ~Qi

(A4.18)

-fr Ï:Snsinn(9p-wi)sinn9Q'
n=1

". XQi
1\ o' = 2rI 1 ?-r S-" Q Qi

(A4.19)

cos9p ~"" . (9 )' 9
-~ LJ ~nSlnn P-Wi 51nn Q"

n=1

(A4.20)

•

YQi' +[rpcos(9p +9Q - w;) - rQ](Yp - YQ;')
2'hrQsQi, ïrSQi,
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. n 00smllp "'CIl . .(n .. ).' n
-~ L.." ;,u"Sl1171 Up-_I slnnuQ"

Q n=1

Kerne/s (or a secto' of ring

](r20i =
rprQcos(Bp - BQ - ....i) - rb + 2XQi(Xp - XQi)

ï.rQsQi
(A4.21)

+rprQcos(Bp+BQ - L.:i) - rb +2xQi•(xp - xQi.)
7."rQsQi,

4 [rpcos(Bp +BQ - Wi) - rQ](xp - xQif
~

;: SQi'

sin2Bp f'-. (1) .r.rprQ L-- n rp':Sn - ".Dn cosn(Bp - wi)smnBQ
n=l

cos2Bp f'-.(n2
"" CIl ). (n )' n-1trprQ~ rp~n - ~n SInn up - Wi Slnnt1Q

(A4.22)

•

+4 [rpcos(Bp - BQ - L.:i) - ;Q](xP - XQi)(YP - YQi)
7iSQi
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,'''9 ~.., ')
>Ill_ P ",("-en C'> )" 9 .)" 9?rprQL... rp~n- ~n ~1l111( P- .....·i ~11171 Q

n=1

Kernels ror,) sector of ,:ns

!\ro2i = (:\4,23)

•

+4 [Tpcos(9p - 9Q - ~;) - TQ](Yp - YQf

ii SQi

+TpTQcos(9p + 9Q - "'i) - T~ +2YQi' (yP - YQ;')

ï.'rQsQi,

cos29p ~(n2en C'> ). (9 )' 9+ itfpTQ L.., rp'-On - ;Un Sinn p - Wi sinn Q
n=l
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The surface intcgral kcrncls arc gi"cn by:

Kerne/s (or a sector of ring

(A4.24)

Xp - xQi'

= 2;r SQi'

Xp-XQ;

2"'S~i
(A4.25)

cos8p Loo 1... (8 J' D--..- -\" sIOn p-w· smn"Q
Il TLni·

n=1

(A4.26)

'8 00
smp,",l .. · (8 J' 8
-~ L.Jn""'nS1nn P-Wi sInn Q_

n=1

J~Oi

. ~

(xp - xQ;.)" - (yP - YQ;')

21isQi,
(A4.2i)
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_.4
~. -=-Qi

(rp - rQi,)(yp - YQi')
_ ,4
1• .....Qi'

Kerne/s (or .1 sector of ring

(A4.2$)

sin28p~(nÂ le)' (8 )' 81rrp L.-J rp n-ü n SInn P-Wi Slnn Q
n=1

• •
(Xp - XQi,)" - (yP - YQi')"

- 21iSQi,
(Xp - xQf - (yP - yQf

27.' SQi
(A4,29)

•

sin28p~(1 ) )' 8+ r.rp ~ rpÂn-en cosn(8p-Wi smn Q
• n:1
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Extcndcd Poisson kcrncls for the Helmholtz opcrator on a circular region

The Poisson kernels required for deriyative evaluation are lengthy; their

algebraic derivation is both tedious and error-prone. Kernel functions were

therefore determined by means of a symbolic algebra package, and the results are

recorded here for future reference. Let the point P be located at

(xp,yp) =(rp,8p) within a circle of radius R. Similarly, let Q be at (R,8p). Then

the boundary integral kernels for producing the deri~-atÏ\-es up to third order are

as fo11ows. Introduce, for brevity,

f (m + n) _ (ICrp)jJ ( _ )
I,i - Tp+n 1+; t\.Tp • (5_1)

(Note that i and j are summation indices, not imaginary units.) With this

abbreYiation,

•

00

KH(PjQ) = I:adi.Ocos[i8p-i8Q1
i=O

KHlO(P;Q) =f:ai{ - fi.lcos8pcos[i8p-i8Q]
1=0

+ifi.Ocos[(i -1) 8p - i 8ol}

K H01 (P;Q) =f:ai{ - fi.lsin8pcos[i8p-i(0)
i=O
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}\er..,e!s (or Hdmhoft: oper:Jtor• Appendix 5

1\H~O(P; Q) = .~Oa.{(h~cos~9p - (i + 1) J•. ,)cos[i 91' - i9d

+ i( - J." + (i - 1) hu)cos[(i - 2) 91' - i9Q]}

1\Hn(P;Q) = i~Oai{fi.2COS9pSin9pCOS[i9p - i9Q]

+ i(ti'1 - (i -1)fi'O)sin[(i - 2) 9p- i9q]}

J{ H02(P;Q) =i~oai{(ti.2sin29p - (i + 1) fi. 1)cos[i91' - i9Q]

+ i(ti'1 - (i -1) fi.O)cos[(i - 2) 9p- i9q]}

[(H30(P;Q) =i~oai{( - hSCOS29p+ (i +3) fi. 2) cos9pcos[i9p - i8Q]

+ i(fi.2COS28p - (i+2) fi.1)Cos[(i -1) 81' - i8Q]

(.-\5.5)

(.-\5.6)

•

+ i(ti.2 - (i -1) fi.1)cos8pcos[(i - 2) 81' - i8Q]

+ iCi -1)( - fi,1 + (i - 2) fi.O)cos[(i - 3) 81' - i8Q]} (A5.8)

[(m1(P;Q) = i~oai{( - hSCOS28p+ (i +1) fi. 2) sin8pcos[i8p - i8Q]

+i(- fi.2cos28p+ifi,1)sin[(i-l)8p-i8Q]

+ i(fi.2 - (i -1) fi.1)sin8pcos[(i - 2) 81' - i8Q]

+ iCi -1)(ti'1 - (i - 2)f;.o)sin[(i - 3) 81' - i8Q]} (A5.9)
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J{ndP; Q) = .~oa.{( - fi,3sin28 p + (i + 1) f.,z) cos8pcos[i8p - i8Q]

+ i(J.,zsinz8p - if;,I)Cos[(i -1) 8p - i8Q]

• Appendix 5 Kerne/s (or Helmholtz operator

+ i( - hz + (i -1) f •. I)cos8pcos[(i - 2) 8p - i8Q]

+ i(i -1)(h 1 - (i - 2) f •. o)cos[(i - 3) 8p - i8Q]} (M.IO)

J{H03(P;Q) = .~oai{( -fi.3sin28p+(i+3)f•. z)sin8pcos[i8p-i8d

+ i( - fi.2sinz8p + (i+2) fi.l)sin[(i -1) 8p - i8Q]

+i( - h2+(i -.1)fi.l)sin8pcos[(i - 2)8p - i8d

+i(i-l)(-hl +(i-2)fi.o)sin[(i-3)8p -i8Q]} (A5.11)

The coefficients ai are given by

(A5.12)
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APPENDIX 6 "

FomlUlac for diffcrClltiation of harmonic fUIlction in axisymmclric coordinatcs

Differentiation (ormulae (or a torus

The base formula for poteo.tial inside the torus givi.:n by

4>(0:,13) =x.(o:,f3) f {ancos(nf3) +bnsin(nf3) }Qn.I/,(cosha),
"=0

may be rewritten as foUows:

00

.p(o:,f3) =x.(o:,f3) L: .An(f3) Qn'1/2 (cosha).
n=O

(:\6.1)

(:\6.2)

Functions X(o:,f3) and Qn-1/2 are defined in Chapter 3 (section 3.2.2.1), as weU as

coefficients an and bn and toroidal coordinates.

If function S(f3) is defined by

(A6.3)

•

then deri\'atÏ\'es v.;th respect to toroidal coordinates are

a4>~f3) ~~~h~):t(n +~).An(f3)Qn+l/2 (cosho:)

X(O:,f3){ ~ ()Q (- 'o.h cosho: LJ n.An 13 n.1/2 cosho:)
51 cr n=O

cosho:cosf3 -1 ~ .A h }
- 2 (cosho: -cosf3)~ n(f3)Qn.I/2(cos 0:)
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D1J(o,(3) 1 f'-
8(3 = ;':(0,/3) ~71GJl,Ja)Q""/1(Cosho)• Appendix 6 Di({erentiJtion in axisymmetric coardinates

(:\6.5)

x(0, (3) sin;3 00

- 2 (cosho - cos(3) t; .A.n ((3) Qn.l/1 (cosho)

(:\6.6)

- h ~ p"t(n+À).A.n((3)Qn+I/2(COSha)}
cos a cos n=O ~

2cosha - COS{3) f'- .A. h
cosha-cosp ~n n({3)Qn.I/2(COS a)

4(cos~~~~os{3)2)~ .A.n({3) Qn-I/2 (cosha)}

•

x(a,{3)f'- ( 1)
sinha ~ n n+ 2 GJln({3)Qn+l/2(cosha)

+ x(a, {3){C?nhsha "t n(n +~)GJln(.8)Qn_I/2(cosha)
SI Ct n=O

sinha ~ n GJl ({3) Q (COSha)}
- 2 (cosha - cos(3)~ n n-I/2
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• Appendix 6 Differenciation in :Jxisymmetric coordjn.Jtes

\(o.i3)sinp "" 1 .
+ 2sinho (cosho _ cosp) ;,(n + :ÙAn(!3)Qn+'/1 (cosho)

+ X(o. ,8) { coshosin,8 ~ .A (1) Q ( 1 )
2si~ho -(cosho-cos,8) ~n ni n.l/~ COSlO

coshocos.8 -1 ~ }+2(h .BJ'î L.,., .A"(;3)Q".I/~ (cosho)cos 0 - cos "=0

Ô~9(0:, ;3) = X(a,.8) sin.8 ~ ~ (.8) Q • (cosho:)
ô,8i cosha - cosp~" ",1/_

00

- x(a,;3) L: n2.A"(,8)Q"'1/2 (cosha)
n=O

- -41(1- ( ~inh2a .8?) f: .A"(.8)Q".1/~ (cosho).
cos a - cos "=0

Using eJ,.-pressions from 3.2.2.1

(A6.S)

ô,8 sinhasin.8
'8r= c

ôa cosha cos.8 - 1
'8r= - c

ôX(a,.8) sinha cos.8 ( .8)
8r = - 2c X a,

ô.8 coshacos.8 -1a;; = C

ôa sinhasin/3a;;= - c

ÔX(a,.8) coshasin.8 ( a)
8z = - 2c X a,1' .

•

derivatives with respect to r and z may be found as
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• Appendix 6 Di{(erentiation in Jxisymmetric coordinates

sinhacos;3 '( ;3) + ;.:(a,;3)
= - 2c 9 a, c x

{ - sinhasin;3~ n{ - ansin(n;3) + bncos(n;3)}Qn_I/2 (cosha) +

(A6_9)

1 - cosha cos;3 f'- ( 1){ -}-nh L.. n+ 2 ancos(n;3)+bnsm(n;3) Qn+Ii;:(cosha) +
51 0' n=O

1- coshacos;3 f'- ( 1){ .} }. h cosha L.. n +:; an cos(n;3) + bn sm(nj3) Qn-I/2 (cosha) ,
SIn Q n=O-

ôt/J(a,j3) _ ôt/J(a,;3)ôa +ôt/J(a,j3)ôj3
8: - 8a a; 8;3 az

coshasin;3 '( Q) + x(a,j3)
2c 9 a,jJ C x (A6.10)

{( -1 + coshacosj3)~ n{ - ansin(n;3) + bncos(n;3)}Qn_l/2 (cosha:)

- sinj3 f: (n +~){ancos(nj3)+ bnsin(nj3)}Qn+l/2(cosha) +
n=O

cosha:sinj3~ (n + ~){ancos(n;3) + bnSin(nj3)}Qn-I/2(COSha:)}.

The second oIder derivatives may be found as

-226-•
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• Appendix 6 Differenti.Jtion in Jxisj'mmetric coordin.Jtes

(.-\6.12)

(A6.13)

•

Differentiation formula for a sphere with the center on z axis

The genera1 m,nth derivative of a harmonie function at point (p, z) is

ôm+nq, _ 1 00 (j+m+n)! (P)j
amplJn:: - Rm+nsinmll ~ j! Jj+m+n 'Il x

{~( -l)k(ï:) coskll Pj+m.k(cosll) }.

Coefficients f; are given in Chapter 3 (section 3.2.2.2).

-22;-
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APPENDIX 7

Application to modcling of anisotropie soft magnctic matcrials

The paper 'Differentiation algorithms for soft magnetic material models' by P.P.

Silvester and D. Omeragié was prescnted at 1993. Intemational ~Iagnetics

,Conference (INTERMAG '93), which was held April 13 -16, 1993. in Stockholm,

Sweeden. It will be published in IEEE Transaction on Magnetics, Vol. 31.

•
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• Differentiation algorithms for soft magnetic material models

Peter P. Silvester and Dzevat Omeragié
Department of Eleetrieal Engineering. MeGill Uni"ersi!)'

3480 Uni"ersity Street, ~Iontreal. Canada H3A 2A j

The kemel functions J mn have becn tabulated [2) and

am + n
Kmn(P;Q) lJBm lJB" VQG(P;Q). (6)

: y

(5)

(4)

J/mn(P;Q)T(B(Q»d.l2Q

_.J: wQKmn(P;Q).dSQ•Jan

where G(PôQ) is the Green's function for some region
.l2 that embeds the point P. To find derivativcs of w,
equation (4) is differentiatcd. In this proe..., the diff..
rentiation operator is applicd to the Green's function
G(P;Q) and its gradient VQG(P;Q), functions analy­
tically known for sorne simple regions .l2. Thus

lJm+nwp

lJB'''lJB'': ~

ln effect, numcrical differentiation is here replaccd by
analytie differentiation and numerical integration. This
proc... is so stable that the source term T(B(Q» may
he computed by a simple finite-diffcrenee algorithm
from the stored energy density. Numerical evaluation of
the singular surface intcgral in (5) is computationally
fairly costly. However, the precision of this method is
largely independent of the ordcr of derivative.

ln car;y development of this differentiation tech·
nique, a ci:de was uscd as the ictegration region fl.

as first derh'ati"es, the bcst a"ailable method (indeed
the ooly one to ~'ie1d suffidently accurate second dcri\'a·
tivcs) is the Poisson integral technique of Sil"""ter and
Omeragié [2]. To employ this method, the encrgy
density w is dirrerentiated twice:

~. .
~+ lJ'w = ~(B). (3)
lJB 2 aB 2

: y

A similar development applics to eocner~' density w'.
The source term ~(B) = tr(v;;'), the trace of the
incremental reluctivity t~nsor of the material, is
obtained from the cxperimentally known values of w.
The differentiation methods for solutions of the Poisson
equation are then directly applicable to weB) of (3).
Applying Green's second identity to the solution yiclds

wp = - JnG(P;Q) T(B(Q»d.l2Q

• _.J: wQVQG(P;Q)'dSQJan

Manuscript rcccived February lS, 1993. Worx supporte<! b)'

the ='=&turla! Sciences alld Engineering Rc.carch Councll. Canada...

INTRODUCTION

Of the various methods available for numerical
modeling of soft magnetic matcrial properties, the Most
economic foi data storage was described by Silvester
and Gupta [1]. They showed that the stored energy
dcnsity wand coenergy density vi are given by

w' = J: B(lI) .c\H; w= J: R(B) •dB. (1)

ConsequenUy, the field R can be recovered from stored
values of energy density, a scalar, by differentiation in
a spaee defined by the flux density components:

"'-V -1 lJw 1 lJw 1 lJw ()
... - SW - :aB:+ 'aB,+ :aB:' 2

An analogous expression is readily obtained for B as
the gradient of coenergy density, B =VHW'. It thus
suffices to store eithcr weB) or vI(R), and to form
gradients with respect to the components of B or R as
needed. This requires an accurate method of differen­
tiating numerically stored data. The present paper
gives two algorithrns and shows briefly what levels of
accuracy are required in ordcr to recovcr fields reliably,
as guidance to experimentalists as weil as analysts.

A b.trocf - Anisotropie soft matcrials are fully
dcscribcd by mapping the stored cnergy or eocnergy
dcnsity ovcr the spac:e of flux dcnsity or magnctic field
componcnts. This method requires accuratc numerical
ditrercntiation' and reliable data. Two algorithms are
describcd; one is fast and suitable for starting Newton
itcratiollll, the othcr is more cœUy but yields accuratc
second derivatives. Current laboratory techniques are
sullicicntly accuratc but measuremcnts must he spread
ovcr the coordinat< spac:e so that numerous points lie in
the multidimcnsional knee region of the matcrial.

DIFFERENTIATION BY POISSON KERNELS

The energy-based materlal model requires a
differentiation algorithm of good quality. Because the
usual form of Newton iteration requires second as weil

•



(9)

•

•

1I0Wt'VtOr, for mngnetic mat l'Cial models the rl-ctangle is
prefcrrt.·d, for il a110\\'8 direct use of data tabulatl-d on a
rtOct;mgular grid. The Green'5 function for a rectangle is
,,·;,<liI)· obt;,illed by the method of images:

1 ~ ~ s:!mn s4mn
G(P;Q) =" L.- L.- log • •• (i)

-it'm=ln=l lmn 3rnn

where skmn (k=I,2.3,4) are distances from the
observation point P to images of the source point Q in
cell (m,n) of the reetangular grid.

OIFFERENTIATION SY LOCAL SMOOTHING

A second, computationally chcaper, method for
linding derivatives is a local smoothing technique based
on that of Zhu and Zienkiewicz [3]. Let the B,.-Bv
plane he subdivided into rectangular cells. A four·para.
meter least.squares li t cao he constructed on e"ery cell
of the space, by Laking approximate deri"ati"es (e.g.,
by a differencing technique) and improving them by
adding Legendre polynomials Pl'(B) in both directions:

H; = (:;,.)+QI Pl'(B,.)+Q2 Pl'(Bv) (8)

and similarly for H;. Here p is the order of approxi­
mation, H; the improved derivative value. To find
values for the set of four parameters {Qi 1i = l, .•., 4},
the squared residual is minimized,

8 JJ(8(H;) 8(H;) )28Qi as;+-mç-T(B) dB:dBv=O.

S.
This method cao only produee first derivatives with rca­
sonable aceuracy. It is fast, but it only provides subqua­
dratie eon"ergence of Newton iterations. It may be
attractive at the start of a Newton process whcre the
convergence rate is anyway poor [4]. Sinee its flXed
point is independent of second derivatives, Newton ilera­
tion still converges to the right solution, even if slowly.

ERROR SENSlTIVlTY

Numerieal differentiation is usually eonsidcred an
error-sensitive process, in which data errar is magnified.
A major conccrn is thcrefore the accuracy to which
energy density maps must be measured and stored. To
explore this question, errar was deliberately introduced
into the energy map of a hypothetical magnetic
matcrial, one whase properties are generally similar to
a real e1ectrical shcet steel but have an exact, analy­
tieally known, forro. This material is characterized by

An cqual-energy contour map for such a material

appenrs in Fig. l, for the pararnclcr values used in
much of the subsequent error study: Pl = 1.000,
0'1 = 3.000, P2 = 10.000, 0'2 = 2.000, P3 = - 1.000. Ils
surface is roughly parabolic DCar the origin, as might. he
expected. The knee region of its B-H eharacteristic
corresponds to a rapid change in slope of the energy
surface ncar the upper and right edges of the map.

Fig. J. Egual-eneTgy contours used in eTTor·
propagation studies, plotted in B,.-Bv plane.

Assuming that the measurement procedure contri­
butes negligible systematic error, the data used in com­
puting fields cao be Laken to eonsist of the energy den·
sity given by (10) plus some random error. Computa­
tional cxpcriments wcre thcreforc carried out, in which
randomly distributed errar (white noise) of known
amplitude was added 10 the energy density of (10), and
the errar in field was correlated with the error in the
stored energy density w.

The performance of the Poisson kernel
differentiation method is graphically depicted in Fig. 2.
What is plotted here is the errar amplification, i.e., the
ratio of peak error in the derivative 10 peak errar in the
energy density data. As may be seen, the error in
derivative values is actually loweT than the data error;
that is to say, the Poisson kernel differentiation method
attenuates data errar rather than enhancing it. Plots
are shown for two cases: 8w/8BoJ! (lower trend line and
points marked +) and 82w/8B,. (upper curve and D).
Both derivatives are more accurate than the data, by
about a full significaot figure. The apparent downward
trend of derivative error with inereasing data errar is
probably not of significance, givcn the seatter of data
points in Fig. 2•

Error bchavior of the local srnoothing method has
becn investigated in detail and the results will be repor­
ted elsewhere. It is significaotly better than divided dif·
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•

•

fl'renee interpolation, but still yields much larger error
than the Poisson kernol technique.
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Fig. !. Error amplification by the Poisson
kernel differentiation process.

DATA REQUIREMENTS

Energy density plots for magnetic materials are
rare; experimental data are usually presented as sets of
scalar B-H curves in various directions. These do not
aIwa~'S correlate weil with eaeh other, and sometimes
hide those features of the ..,...B map that the anaI~'St

finds most valuabie. Righ experimental "Ccuraey aIone
does not yield usable energy maps; experiments need to
be guided by the computationai model that will eventu­
aIly use the results. To illustrate, Fig. 3 shows the
measured energy density distribution of a typical trans­
former steel. Although the experiment was conducted
with great car< and excellent equipment, the resulting
plot is unsatisfactory for the models discussed here. The
unexpected cusps and rough patches in it appear to
result from a sparsity of data points in crïtical areas.

The measurements for Fig. 3 were taken as a fami­
Iy of curves in five well-spaced radial directions. This
material exhibits anisotropy ranging from about 3:1 to
more than 10:1, so that radiallines in the B.,-Bv plane
intersect ~ergy contours at smaii angles. Interpo­
lation in the directions of steepest descent is therefore
unreliable. Unfortunately, it isjust there that high accu­
racy is needed! The authors believe that a similar num­
ber of data points (a total of about 200) would he ade­
quate if they were (1) distributed aIong contour and gra­
dient lines, i.e., roughly following the shape of the
energy map, (2) concentrated in areas of rapid change
of gradient. The latter correspond to the \cnee region
(region of rapid change of curvature) of a scalar B-H
cun·e. At issue here is not the experimenters' skill or
care. On the contrary, present measurement techniques

sccm adequate to the ta.__k. and t~'pkal q\lantili,~ uf
data appcar $urtident; il is rather that in the abSl'nCl" of
a c1ear computational model. the l'xlll'rimcntali~t

cannot know in wh3t rl'gions dat.a should hl' ('oIU"l'n­

trated. Ail COnlments made here are inlended ta hdp in
this respect.

Fig. 3. Energy surface for anisotropic sh«t,
roughened by poor placemcnt of data points.

CONCLUSIONS

The stored energy density representation of
magnetic materiai properties, when coupied with
differentiation methods based on Poisson kernels, yields
numerically stable interpolation of multidimensional
B-H characteristies without undue requir.ments on
accuracy of the underlying numerical data.
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