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Abstract . 

Abstract 

~This thesls describes work done to mOlle the Robot Control·C llbrary, Reel, and ,ts 

undeflyinl Real T,me Control system, RTC, tlom a VAX/UNIX enVllonment to a multi­

microprocessor system, and to extend It to another robot, the Microbo Ecureuil. The task 

mcluded. desig",ng and implementlng an Interface between the Mlcrobo's JOint controllers 

and a Multibus system: solveng the robot's forward and mverse kmematlcs, des'gning a 

multl-microprocessor architecture whlch has the processml capablhty to support RC CL' s 

computatlonalload. redeslgnlng the RTC layer 50 that ,t runs under Inters ,RMX-86 real­

t,me mult,-tasklOg operatlOg system on the multi-processor system, and creat,"g a usable 

develop environ ment for RCCl users .It is shown that thls system IsJlexlble and 
1 

expandable. and opens the way to the Implementation of a multl-robot programmlnl and 

control envi nment for the McGill Ct1mputer Vision and Robotics laboratory. 

Résumé 

Cëtte thèse décrit le travail fait en vue de transporter une bibliothèque de programmes 
-.... 

de contrôle de robo~s écrits en '~ale C. RCCl t~obot Contral-C Library), ainsI que 

son système de support e'''temps réel. RTe iReal Tlme Control), de son environnement 

VAX/UNIX à un environnement de multi-microordmateurs et d'en étendre son usage à 

un autre robot. SOit l'Ecureuil de Mlcrobo les tâches à effectuer furent les sUivantes' 

la conception el la mise en oeuvre d'un interface entre les régulateurs d'articulations du 

M,crobo et le système Multibus de Intel: la détermination des modèles géométrtques ef 

cinématIQues directs et inverses, la conception d'une architecture multi-mlcroordlnateurs 

d'une pUissante suffisante pour supporter RCCl: reconcevoll le mveau RTe de façon à ce 

qu',l fonctionne avec le système d'explOitation en temps réel multl-tâches IRMX86 de Intel 

sur le système de multi-mlcroordinateurs; créer un environnement de travail adéquat pour 

les utilisateurs de RCCl Cette thèse montre que ce système est flexible, facile à étendre 
, 

et ouvre la voie à la mise en oeuvre d'un environnement,de programmatIon et de contrôle 

pour multl-robots au laboratoire de VISIon par ordinateur et de robotique de l'Université 

McGIII 
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Chlpter 1 Introduction 

J 1.1 Motivation 

As the pace of technology increases. the use of robots in manufacturing becomes more 

and more pervasive. Whereas 10 years ago a telephone set manufacturer. for example. 

cou Id confidently invest in hard automation equipment to produce consumer lelephones. 

nowadays that product might sigmficantly change form ~very year. The manufacturer is 

wise 'to invest in a robollcized fact~ry which can be quickly re-programmed to produce new 

models. even If al a slower rate than the hard-automated factory (Isbister 84) 
( 

Whereas the first industrial robots' were used for relatlvely simple and repetltive paint-, 

spraymg. weldlng. and "plck and place" kmds of tasks. mampulators may nowadays be 

used for comple" and precise assembly operations requi,ing sensory interaction Computer-
" . 

aided manufactunng techmques mean that product information is avadable throughout the 

deslgn/testjmanufacture/repair cycle. and it is desirable that a robot programming system 

bé able to take advantage of this Information to mmim}ze tedious on-line "teachlOg" time 

(Bonner and Shm 82). Modern robot workcells. moreover. may consist of several robots m 

addition to support machlnery. sensors. and vision systems. 

With the mcrease m the complexity of robotiçs systems and tasks co mes a need for 

robot programmlllg and control environments 10 which researchers can test new algorithms 

and control methods qUickly and easily One such environment is known as the Robot 

Control C library. or RCCl. and was mtroduced by Hayward and Paul (Hayward and Paul 

83) at Purdue University ln 1,983. The RCCL environment consists of two levels. a control 

. '" 



1 1 MotIVation 

le'vel. called the Real- T Ime Controt system or RT C. and the RCC l traJectory controller. 

which uses RTe as a substrate. ReC l was Implemented at Purdue for a PUMA 560 

manipulator connected to a VAX 780 minlcomputer running the Unix 4.2Bsd operating 

system This system has recently been installed and enhancedt ln the Computer VIsion 

and Robolles laboratory ICVaRl) ln the Department of Electrical Engineering at McGiII 
o 

Unaverslty ILloyd aS] for, a PUMA-260 robot connected to a VAX 750 minlcomputer agam 

. runnÎ"g UniX 4 2Bsd 

One of the drawbacks of this Implementation is the intensive real-tlme computation al 

load t.hat il Imposes on the multi-user VAX/Unix environ ment. Under some conditions 

the system may become unusable; and it is not possible to concurrently control a second 

manipulator for the same reason. 

ln this thesis. the above restrictions were addressed by re-Implementing the RTC/RCC L 

envlronment for another robot. the Microbo EcureUIl. us,"g a multl-microprocessor-based 

system The task included studying the baSIC feasibihty of usang a microprocessor to han­

die the floallng-point math IOvoived in the robot kinematlcs; deslgning and Implementing 

the hardware ta interface the Microbo's joint controllers lo ~icroprOcessor system bus. 
l 

solving the Microbo manlpulator's forward and Inverse kinematlcs and cod mg the resulting 

algorithms: designing a multi-microprocessor ar"chitecture which has the processing capabil­

ity to support ReeL's computationalload; redesi,ning the RTC layer 50 that It runs under .. 
!ntel' s iRMX-86 real-time multl-tasking operatm",system on the multi-processor system; 

and creatmg a usable development environ ment for ReCL users 

It IS shown that this system is flexible and expandable. and opens th~ way to the 

implementatlon of a multi-robot programmi"g and control environment. 

1.1.1 CVaRl Relearch Goal. 

One of the eVaRl research goals is to use multiple robots cooperatively. along, wlth 

VISion and force feedback. to Implement a robotles workeell Ultimately. a world model and 

database will be estabhshed which apphcatlon programs will aecess and modlfy as they 

work. Expert systems will mteract wlth the database to perform hlgh-Ievel task planning. 

~ RTC was ln this case renamed "RCI- . fOI' Robot Control Interface for slmplltlty we Will use the -RTC 
acronY,m for illi implementatlons of thl5 software 

2 
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1 1 MotIvatIon 

Research is qriented to.wards investigation of algorithms. control strategies 15tudenny and 

Bélanger 841, robot languages. da,tabase models. and toca' Area Networking [Freedman 

85). whlch are needed to construct a multl-robot workcell (Michaud. et al 85) The statùs 

of current research IS summanzed 10 \CVaRl' 85), 

An ellample task of the workceliis to InSpect and repalf hybnd tntegrated cirCUits The 

database will hold information concer",ng the dlmenslonality and possib'e faults of these 

circuits Because of the small dimensions involved. hlgh precision and fine control of robot 

motion are reqUired. along with the capacity tor various kinds of sensory feedback at the 

traJectory level ;y 

1.1.2 The Configur.tion of CV.Rl 

The lab currently con tains three mdustrial assembly robots: a Unimation Puma-260. a . "-

Mlcrobo-Castor Ecureuil. and an '",BM 7565. The first two robots are arranged in a workcell 

such that their workspaces overtap (see Figure 1.1). The Puma is an anthropomorphic 

robot wlth 6 degrees of freedom. and the Microbo a cylmdrical robot with 2 prismatlC and 

4 rotational~oints ln addition to t~e robots. there IS an x-y stage. hnear stagt\rotary stage. 

and force sensor. The viSion system interfaces with several types of cameras. Including 

CCD devlces which cano be mampulated by the robots. there is also a computer-controlled 

microscope These are connected to a Grinnell GMR-27 Image acqUisition system on a 

VAX-780 minicomputer. The Puma robot has a a Unlmation controller whlCh IS interfaced 

to a VAX-750 n'11Olcomputer 'vIa a high speed parallel hnk. ' The Microbo robot's Robot 
a 

Control Umt (RCU) controller is connected to an Intel System 31~ via a hlgh-speed bus 

adapter. The 'ntel ~ystem IS Multibus-based. and contains 80286/287 and 8086/87 (PU 

cards. hlgh speed memory. a W~chester disk. anâ a floppy disk ThiS system IS currently 

connected to the VAX-750 by il senallink. although we plan to eventually Înstall an Ethernet 

interface 

The two VAX computers are connected together. and to the rest of the McGili Electncal 

Engineering computmg resources. via an Ethernet link. Figure 1 2 shows the computer 

architecture of the workcell , 
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1 2 Extendlng RCCl to the Mlcrobo Robot 

1.1.3 - Hi.tory of Robot Control at CVaRl 

The Puma robot was origmally controlled using the VAl-l language /Untmatlon 82). 

which ran on the Unimatlon (lSI-l1j6502-based) controller Although VAl-l provided 

C~rtesian motion. It did not provlde more advanced features such as force control. sensor 

integratlon. host computer Interface. motIon interruption. or multl-robot capabilitles VAl­

Il /Unlmation 83] does provlde more functionality. but was stIll unsuitable. this will be 

descnbed in the survey of robot languages presented ln SectIon 1.3 As mentloned at 

the beginnlng of the introductIon. the Robot Control llbrary. RCCl. has recently been 

InstaUed for the Puma mantpulator RCCl executes on a VAX-750 under the UnIx 42Bsd 

operating system. and provides an excellent set of bas.c tools for develop,"g r.obot software 

at d.fTerent levels; It addresses most of the needs of CVaRl researchers. 
'.' 

The Microbo robot was controlled us mg the vendors IRl language [Dupont 84). running 

on the 8085-based RCU controller. The IRl language is even more primitive than VAl. 

allowing motion to be specified only ln Joint coordinate space. IRL. like VAL-1. does not 

permIt changmg the trajectory control algonthms IRl. In fact, does not even provide 

coordmated straight hne motIon The tndividual joint processors perform an acceleration 

and deceleratlon function which is combined with the joint servoing functlon, 

Thus. programmers wlshmg to develop coordlnated robot software had t'wo completely 

different envlfonments to deal with' the ReeL system runntng on the VAX. and the primitive 

IRL Interpreter runn,"g on an 8085-based controller. The initiai solution was to connect 
., 

the IRl controller to a VAX seriai line and wnte termmal emulation programs whlch sent 

IRL commands in the form of ascii strings to the controller at 9600 baud IMlchaud 85) 

Obviously. above and beyond the complete lack of features for trajectory control of the 

Microbo. there was no commonahty between the two envlronments. makmg It dlfflcult for 

programmers trymg ta coordmate the actions of the two robots and synchrontze events m 

the workspace A more powerful and integrated programming and control envIron ment was 

needed. and the obvlous step was to Investlgate ways of extending ReCl ta control th,e 

Mlcrobo 

1.2 Extending RCCl to the Microbo Robot 

A major drawback of the VAX-based RCel implementation is that the intensive real-

6 
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1 3 Robol ProgrammlO& and Control 

time computationalload consumes the major portion of the VAX's CPU tlme RCClls bUllt 

around an RTe control routine (the "setpolO!" functlon) whlch IS mterrupt-dnven by the 

robot at the sam pie rate (approxlmately 30 Hz) User programs cali RCCl routmes whlch 

ultimately place motion requests. In the form of position transforms. on a "motion request 

queue" The setpoint routine. which runs ln hlgh priorlty "kernel mode-. performs the real­

time computations whlch con vert the motion requests Into JOlOt angles These are then 

sent to the robot to actually implement the motion Although optimlzed. the computations"­

in volve lengthy matnx multiplications and tngonometric ca!culatlons in floatmg pOlOt. 

Measurements showed that our VAX-7S0. even with a floatmg point accelerator. can 

generally execute ReCl for the Puma robot at a sam pie rate of 30 Hz: under worst-case 

conditions. the rate must be decreased further. or the overall performance of the machme 

decreases unacceptably Obviously. then. the VAX-based RCCl configuration would not 

be capable of concùrrently handling the additional load of a second robot and mamtaming 

the required control frequency. As one of the goals of our research lab IS to develop a 

multi-robot system. this is a major limitation if we wlsh to use RCCl as a prQ8ramming 

tool. Replacing the VAX with a more powerful machine and more costly was not possible. 

so a new architecture was adopted. 

This thesls demonstrates that a reasonable alternative involves the use of a network 

of relatlvely powerful but mexpenslve microcomputers We deswbe an Implement.atton 

which supports the Microbo Ecureuil manipulator. using Intel 80286/80287 and 8086/8087 

microprocessors. 

1.3 Robot Programming and Control 

. Just about ail Robot Programming an.d Control Environments (RPCEs) may be seen to 

consÎst of two major parts a real-time control system. and a programming system ln sorne 

.RPCEs the two parts are independent. tn that the control system IS not user-programmable: 

this tends to be true of most vendor-supplied systems. Untmation's VAl-l IUnimation 82) 

is a typical example. Other systems (for example the RCCl/RTC environment) do allow 

the user to program the control level. 

The programming system represents the interface between the robot and the rest of 

the world. usually in the form of a teJ:tuallanguage or teach pendant. where input IS at the 
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1 3 Robot Programmtng and Control 

tasle planning level. less orten. the programmlng system IS red from the output of a more 

sophisticated task planner. whlch ~utomatlcally generates planning level statements glven 

a comprehensive world mo~1 and the task specification. 

We designate the \ontrol system as that part of the RPCE which dtrectly commands 

the robot' s jOtnt actuators ln order to maintatn the response of the manipulator accord lOg 

to goals set by a programmer. the control system must m general solve the so-called inverse 

plant problem. That IS. it must compute. as a functlon of tlme. the actuator signais requlred 

for the physlCal plant (robot) to behave ln the deslred way 

A survey of the Itterature reveals that researchers tend in general to focus their efforts 

in one of the two directions towards the programmabiltty aspect. or towards the control 

aspect The former IS the major Issue for those involved wlth turn-key robot systems which 

must be programmed by productlon-Ievel personnel. the control system IS embedded. and 

usually unchangeable. As a result. researc~ers tnvestigating control methods and algorithms 

often are forced to build theu own programmmg envlronments so that they can access the 

control level of these systems 

",In the following sections. we present d representative survey of the approaches that 

have been taken by robot language developers The important aspects of the resulting 

RPCE's are categorized and thelr advantages and disadvantages are descrlbed. An attempt 

is then made to syntheslze ideas from the vartous approaches. and sorne conclusions are 

drawn about the requirements of a good RPCE i 

1.3.1 A Survey of Robot Lanluagel 

The earliest RPCE's were Simple. non-textual teach-and-repeat systems programmers 
, 

used a teach pendant. Joystick or similar device to lead the robot through a senes of 

positions whlch could be recorded in terms of sets of Jornt angles The robot performed 

by moving in sequence through the memorized pOSitions. generally wlth some ktnd of Jornt 

interpol~ted motion. An eJtample of such a sy~tem was Cmemattl Milaeron's T3 (Cincinnati 

80). This approach still finds wlde use because of its inherent slmpliclty. production 

personnel have no difflculty teachtng the robot motions. Operations such as spot welding 

and palOt spray lOg. where the robot need simply repeat sequences with httle chance of 

trequent modification and liule e~vtronment~1 interaction are sUitable applications. The 

8 
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l J Robot Programmmg and (ontrol 

inadequacies of tllis a~proach. however. are easy to see 

deals badly wlth sItuatIons where there are very many points to be memoflzed or 

where the pOints are related ln a regular way (eg palletlzlng). 

- requires a very large number of intermedlate pOints be recorded to achieve a pre­

dlctable traJectory 

• 
- reqUires the robot to be taken otT-line in order to be programmed. 

no mtelratlon with external databases 

- no portabihty of programs between robots. 

- any change ln workspace configuration requires complete re-teaching. 

For the above reasons. and because one of the basic justifIcations for using a robot 

instead of hard automation equipment is to add flexibility and allow short economical 

production runs. there was an obvious need for textual robotics languages. In answer to 

these needs. robot manufacturers. industrial researchers and unlversities have come up with 

,a large array of languages. In [Bonner and Sil," 82]. robot languages are roughly classifled 

by level as follows. 

- task-onented (most sophlstlCated) 

- well-structured 

- primitive motion 

- pomt-to-point or jomt-Ievel (Ieast sophlsticated) 

We have already given one example of a pomt-to-point language (T3). Some others are 

FUNKY IGrossman 17]. RAPT [Popplestone. et al. 781 and ALFA (Wang 74). We note that 

. IRL. the vendor-supplied language for the C\(aRL Microbo robot. falls Into thls category. 

"These languages usually have an editlng mode that allows the msertlon or deletion of steps. 

There is only rarely provlSl,On for conditional branchmg. and there IS generally no effective 

otT-line programming mode MOlion is defined al the individual Jomt level only. and the 

9 

o 



l , 

1 3 Robot ProgrammlOg and (ontr~1 

control systems assoclated wlth these languages are often correspondmgly primitive. wlth 

no provision for Carteslan motion or force control 

Languages at the primitive mouon level begm 10 allow the user to descrtbe the robot 

a~d Its envlronment mathematlcally. solve the motion problem us mg algorithms expressed 

texlually. and apply the solution to the r~bot. These systems may mcorporat"e features such 

as subroutine capablhty. branchmg constructs. more sensor interaction. and the abihty to 

synchronlze wlth external events The programmer can speclfy motion at the mampulator 

level. sometimes ln terms of coordmate systems grounded in t,he workspace Some examples 

of languages at ~hls level are VAL. WAVE [Paul 771. and EMILY [Evans. et al 7.6). there 

are many ottTers 

Well-structured languages encompass the next step 10 sophistIcation. Structured con­

trol concepts. coordinate transformations. and complex data types such as vectors and 

frames are incorporated at the user level. We find the use of state variables. where the 

system autolTt~tlcally keeps track of Important aspects of the workspace (such as the 

earteslan position of the manipulator end-effector) Motion may be constramed ln terms 

of approaeh vectors. veloeity. duratlon. aeceleratlOn. and force Some of these languages 

have advanced sensor ..c~bility. even vIsion A pioneering example of thls level IS the 

AL/POINTY [MuJtaba and GoTctrflan 79) system. developed al the Stanford AI Laboratory. 

So";!e other systems of nole are PAL r:-akase 811 and IBM's AML [Taylor. et al 82) and 

AML/V [Lavin and Lieberman 82). agam. there are many others. 

Task-oneQted languages hlde the details of manipulator motion from the programmer. 

who can now concentrate on solving problems in terms of the Items bemg manipulated as 

opposed to the manlpulator itself Impliclt in thls approach is the use and mamtenance 

of a complex world model. whlch must be updated ln real tlme as actions take place. 

Such a database must maintam the geometrtcal relatlonshlps of parts wlthm assemblies. 

assemblies with other assemblies. assembhes with the world. and the mampulator wlth the 

wo". This IS a difflCult problem. IBM's AUTOPASS (Lleb$rman and Wesley 77) altempted 

this level of operation but apparently the work has been abandoned. Systems as abstract 

as thls reqUire the use of Artificial Intelltgence techmques to lOfer low-Ievel actions from the 

high-Ievel task specifications. Researehers such as Alaml [Alaml 84) are lookmg at LISP 

envlronments as being suitable for thls kmd of work. 
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2.3.2 Conclu.ion. from the Survey 

Sorne of the tOplCS that crop up again and agaln in the hterature of robot languages 

are. portabihty. modulanty. multl-robot capabihty. extensibihty. usability. efficlency. and the 

ability to deal wlth sensory mput The followin, discussion looks at each of these issues 

in turn. 

Portabihty IS 10 fact not often addressed by robot language deSigners. (perhaps due ln 

part tp vendor' s des.,e to restnct the freedom of the user once a robot has been purchased) 

A language that IS easily moved to a new robot or to a new computer and operatm, system 

will have a longer useful hfe than one which IS robot and machlne-speclflc Thls,phllosophy 

underlies the design of the RCCl envlfonmer;U. whlch has already been successfully ported 

to several machmes and robots Closely assoclated wlth the portablhty aspect IS modularity: 

a software system that is made up of a hlerarchy of well-deslgned modules can generally be 

ported to a new envlronment falrly easily, because the requlred changes may be encapsulated 

in just a few places 

Multl-robot workc.ells are becommg the rule rather than the exçeptlon. Often 10 the pasto 

a distinct controller was required per woMcell robot. and if these were of different genesls. 

communication was elther impossible or limlted to sImple yes/no signaling. Obvlously. 

systems are required whlCh allow several manipulators to be controlled in a unlfled manner 

The main approaches appear to be 

1. Concurrent programming languages Example: Al' s cobegin and coend constructs 

allow the programmer to specify that the execution of dltTerent sectIons of code 

.. be started concurrently. An ellent variable, whlch has tfe ~ame functionahty as an 

operat,"g system semaphore primitive. may be used to Jp!a, between the concurrent 
-" 

code sections and thus synchronrze events The attual scheduhng mechanrsm IS 

Imphcit. Al WIll simply run one process until 'r~IO~S. then go on to the next It IS 

critlcal to note that AL' s mOlle command blocks e~utlon of the caller. th us allow,"g 

other code to execute. 

2. Multi-tasktng programmmg envlronments. Application code IS divlded lOto concurrent 

programs. or tasks. whlch control difTerent mantpulators. Here. inter-task communi­

cation primitives are supplied by the operat,"g system to allow explic.t synchronlza-

11 
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tion and scheduhng of events The GEM (Sehwan. et al 85J system. for example. 

supplies primitives for message passmg between piograms run",ng eoncurrently on 

different processors ln (Valz. et al. 84) an Ada-based Implementation IS desCflbed: 

task synehronlzallon is done Imphcltly by the Ada run-time envlronment when proce­

dure ealls are made ln the Implementation descflbed ln the present thesls. we use the 

Intel IRMX-86 operatmg system's mal/box and semaphore primitives to synchroOlze 

tasks 

The clanty. slmphelty. and uOity of a programmmg language will have an Impact on 

Its practlcal usablhty An assoclated Issue IS whether It IS better ta ereate entlrely new 

languages. based loosely on lols of old languages. or ta embed new constructs ln an eXlstlng 

language There are arguments bath ways. Reel. for example. IS slmply a set of funetlon 

calls provlded for standard "C" language programs The advantages are clear: there IS 

a concise. predefined synlaJt that IS known to a wlde base of potentlal users. there IS a 

large array of development tools available. and the language is portable Insofar as there are 

cross-eompilers available for CI wide variety of target machmes. A major disadvantage is , 
that the syntax of a function cali may be less readable than the equivalent statement ln 

a specialized language. however ln providmg wlde functlonahty a speclalized language may 

beeome almost unusably eomplex The AL language wlth POINTY. with Ils assoclated 

on-Ime teaching facility. has over 300 different reserved words 

The efficlency of a language can be measured tWlce. dunng the creation of programs. 

and dunng thelr subsequent execution A compiled language Will execute faster than an 

mterpreted language. and produce more compact run-tlme eJtecutable code A compiler is 

not Ilmlted to a single pass. and th us has the abliity ta support rully structured code wlth 

forward references. separate compilation of modules. and ail the programmmg conventences 

that this entalls However. the development cycle reqUired ta produee worklng programs 

tends ta be longer. due to the associated compile. "nk. test. and debug cycle An mterpreted 

program IS often easler to debug unless the competmg compiled system has a real-tlme 

source level debugger 

Extenslbihty imphes that new features and capablhties can be added as necessary 

wlthout a complete overhaul of the system languages (such as ReeL) which are b~slcally 

subrbutlOe libranes on top of a standard programmin, language àre extensible slmply by 
1 
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addmg new functlons to the libraries The drawback 15 as before. that the syntax may 

become ,"consistent over disparate"functlons It IS also true. however. that to add features 

systematically to a specialized robot language requlres system-Ievel modlficatlons_ whereas 

ln the other case thls may be done at the user level The Unit Y of the speclalized language 

IS lost .. of course. by addmg features through the subrout,ne mechanism 

One of the major costs associated with workcell robotics.(a dnving force behmd much 

research) has been the elaborate hJtturmg requued so that the positions of parts which the 

manipulator deals with may be defmed preclse'y before operations be,IO_ If sensory-based 

systems can allow the run-tlme system to determme the exact positions of things. the 

need for fixtunng will obvlously decrease This IS Important because new f,xtures may be 

reqUired for every new part handled by the robot. whereas a sensory-based system need 

be installed only once. Mobile robots. of course. require comprehensive sensory abillty in 

or der to navigate m à changing or unknown environment. and 10 ail cases the question of 

safety for both human and robot reqUires sensing of some nature. 

Sensor technology 15 Improving 10 many areas Touch sensors have evolved from simple 
~ 

contact switches to large tactile arrays with good dynamlc resolution (Dario. et al 831. 

Vision systems. of course. have improved tremendously. and wlth the deve'opment of POW­

erful 32-bit mlcroprocessors and special-purpose silicon there has been a s'gnificant drop 

-in-tneir cost. Thus. viSion has become increasingly cost-effectlve for robollcs applications 

in the rea' world: the bin of part5 problem' IS now solvable in many cases. 

Force sens;ng /s an a priori reqUirement for systems whlch attempt to deal wlth ma­

nipulator dynamlcs. the control system needs a way of computm, the torques al the robot 

jomts ln order to compensate in real tlme for gravllational. mertlal. COJlolIs. and centrifugaI 

forces. This IS especlally true as Jomt velocltles mcrease. and simple k/nematlc models 

become unacceptably maccurate. RPCE's which allow programmers to speclfy compliance 

are another arena where force sens,"g IS required ln th/s case. the forces at the end-effector 

are of mterest. and much work has been done designmg wrist-mounted force sensors. 

Obvlously. then. it IS of overndm, Importance that an RPCE be fleXible enough to 

accommodate ex/sting and new sensory input systems. both at the controllevel and at the 

planning level. 
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1.4 Real-Time OperatÎng Systems 

An operating system generally provldes the followIOg servICes; 

Task schedullng 

- Memory management 

- Intertask communicatIon 

1/0 servIces 

A definttion of real-time operating system seems hard to pin down. Vàtious criteria 

have been proposed. but ail commentators seem to agree that such a system must allow 

programs to respond very quickly to external events How fast very quiclcly is. is of course 

application-dependent - for example. a system which must create a flicker-free raster vIdeo 

image can be said ta be real-time if it can keep up. Wiithout fail. with a frame rate of about 

30Hz. A system executing robot control software 15 real-time if it can execute the control 

algorithms. without fail. at sorne chosen sample rate (the rate at whlch the software reads 

the joint positions and adjusts the control signais to achieve the desired motIon). Typically. 

this rate is 1 kHz at the joint control level. and 10 to 100Hz at the path control level. The 

faster the sample rate. the finer the spatial control of the man/pulator and the higher the 

joint velocitles that the system can safely handle. 

A rea/-tlme computer operating system must also provlde programmers with the primi­

tives that they need to build real-time applications ln ICoie and Sundman 85). SIX require­

ments '" additIon to very fast response are listed: 

- support for creat,"g. deleting. and scheduling multiple independent software processes 

( tasks) 

- the ability to commuOicate (sendjrecelve data) asynchronously between tasks 

- provision for shan"g data between tasks 

- ability to synchronize the execution of multiple tasks 

- ability to synchronize task executldn wlth external events (tnterrupts) 

- an efficient 1/0 system which does not degrade system performance 

14 
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1.4.1 T •• k Scheduling 

Many difJerent~, scheduling philosophies have been used to achleve real-time response. 

some of these will be deseribed below. First. however. It IS instructive to dlscuss the 

concepts of tasles and tasle states. because these Will be key words ln the diSCUSSion of 

scheduhng to follow. 

First of ail. le1's define tasle A task (or process). frllm the pOint of vlew of the operatlng 

system. is a Unit of executable software. A task may request resourees from the operatlng 

system. for example memory. (PU tlme. 1/0 services. tlmmg services etc 

TYPlcally. a programmer links together his own application code wlth system co~e to' 

create a task. asslgns It a preorety relative to other tasks. loads it. and requests the operating 

system ~o execute It Tasks may also be Invoked by other tasks or by the operating system 

itself. 

Associated wlth each task IS a task state Although the names dlfTer from operating 

system to operating system. the state of a task can .roughly be described ,as either: running. 

asleep. ready. or idle. At any given moment ln time. there is only one run/mg task on the 

systerT\ (given that there IS a single (PU). A task which is in the running state IS aetually 

in control of the (P U 

A task in the asleep state has rellnquished control of the cpu. usuafly to walt for some 

event. for example a message from another task. or an external action. such as a key being 

pressed on a keyboard 

A task which is ready Will become the running task as soon the operatmg system 

recogOlzes that ItS pflorety IS hlgher than the pnority of the currently running task 

Finally. an id/e task IS one whlch IS potentially executable. perhaps even resident ln ' 

memory. but which has been removed from the operatln! system's IIst of tasKs to be 

executed The operatlng system scheduler can be thought of as the mechanesm whech 

manipulates the states of the tasks on the system. 

A tlme-slice scheduler allocates the cpu by check,"g the status of the vanous tasks in 

the system on a stnctly periodlc basis. a typical pereod might be 100 milhseconds Thus. 

each time slice is alloeated to a partlcular task. and thls allocation is always -reconsldered 

at the end of the sliee If the running task executes a system cë!" which involves walting for 
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• 
some event (e, for an 1/0 operation to finish). the operating system generally reallocates 

the CPU to another task imme<hately 

An event-driven scheduler responds to external events on an asynchronous basls. That 

is. the operatin, system pre-empts the currently run",ng task at the moment that a higher 

priority task becomes ready. For example. If the runnlng task goes to sleep to wall for 

something. (say 1/0 or a message from another task). the scheduler immedlately changes 

,the state of the hlghest pn~nity ready task to active 

Some schedulers work by pre-allocalmg the (PU to vanous tasks. In thls scheme. a 

task may reserve a given amount of cpu hme. at pre-determined future times. At those 

times. no matter what. the task is guaranteed to run without Interference. 

1 .... 2 The iRMX-86 Reel-Time Multi-Te,king Operetin, Sy.tem 

Inters iRMX-86 (Intel 84J was designed for use by OEM·s· as an e,tt,edded operating 

system for real-time applications. The system is configurable. In that the user need include 

only those system calls which he requires. In thls way th~ size and speed of the resulting 

system can be optimlzed The iRMX-86 scheduler is event-driven. 

iRMX-86 has the layering illustrated 10 Figure 1.3. The Nucleus lies at the core of the 

system. It performs the lask scheduling. mter-task communication. memory management. 

and interrupt management. The Basic 110 System or BIOS supports asynchronous 1/0 

operations on named. physical. and stream files. The Extended 1/0 System. or ElOS 

supports synchronous 1/0 and laglcal device connections The Unlversal Delfelopment 

Interface or UO/ IS a standard interface to the various supported high level languages 

The Human Interface or HI provides a development environ ment with a set of system 

commands to manipulate files. configure new systems. run compilers. text edltors. obJect 

librarian. linkage edltors. etc. The Application LOdder allows executable programs to be 

loaded from mass storage devices 

RMX-86 is an object-oriented operating system That is. the system supports a class 

of entltles whlch mclude jobs, tasks. mal/boxes. semaphores. regions. connections and 

segments Objects are crealed. deleted. and manipulated via system calls. and referred to 

• Original Equipment Manufacturers 
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1 , . 

,t> USER APPLICATIONS 

1 
~ 

Figure 1.3 The RMX-86 Operating System 

by their toJcens. whlch are the 'system's way of tagging and identlfymg them. New kinds of 

objects may be created by the user and Incorporated in the operating system. 

Ali obJects are created in the context of a job. which .s an environment characteflzed 
~ 

by a set of limits. These limlts allow restrictions to be placed on the number. type. and 

propertles of obJects that the system will create in response to system calls. For example. 

limits may be placed on memory allocation. maximum task priority. etc. Typically. a Job 

contains a set of tasks which perform related functions and communicate with each other: 

11 



1 4 Real- Tlme Operatlng Systems 

ln a multi-user development environrnent. for example. each user works wlthm a separate 

Job. whose initial task 15 the Human Interface' 5 Command Llne Interpreter When the 

user executes a system command (eg Iflvokes an editor). a chi/d Job of !hat user's job IS 

created by the Application Loader If the edltor crashes (for example because It runs out 

of memory) other user' s Jobs are not affected 
", 

A task jS an executable program whlch can be rn one of a set of finlte states. as shown 

Ifl}Flgùte,1.4_ The task ln the ready state whlch has the hlghest priorlty will become the 

r~ning t~sk_ Task scheduling 15 dvent-driven as opposed to tlme-shced That IS. once a 
~, f." 

"-"'.~ .. ./~1.J.. ~ 

task has control of the CPU. il ,'etains control until some event (the arrivai of an object 

ln a mailbox. an Interrupt occurring. a new task bemg created ___ ) occurs whlch causes 

another task with higher pnority to become ready-'-_dnce a task has been loaded and IS 

memory-resident. it is not swapped out to a mass storage device. 

A mai/box is a mechanism for passlng obJects between tasks. The tasks need not 

be in the same job, When the mailbox is created. it may be specified as havlng a F/FO 

or Priorit, mechanism. In the FIFO scheme. messages are simply retrieved l~a first-in. 

first-out manner. Otherwlse. messages are taken from the mailbox queue according to the 

relative priorities of the sending tasks. When.waiting for a message al a mailbox. a task 
.t' 

may elect to wait "forever" until a message arrives. or for a l=pecified amount of tlme The 

task is placed by the operatiAg system ln the as/eep state while waiting 

A semaphore is simllar to -a mailbox. but rather than allowing arbitrary tokens to 

be passed. only un;ts may be sent and received Semaphores are normally used as a 

synchronization mechanism between tasks. 

1.4.3 Unix 

Unix is a now hugely popular operating system from Bell labs (now ATT Bell labs) 

written by Thompson. Kernighan and Ritchie using the C programming language. It·was and 

still is an innovative approach to a multi-user program deveJopment environment. and has 

been ported to a great variety of tomputers. rangang from the Cray X-MP supercomputer 
1 

to the Intel 80286 microcomputer (Xe",x). There are many versions of t'Jnlx" CVaRL uses 

Unix 4.2Bsd from the University of Californla at Berkeley. 

Unix consists of.two parts. The kerne/. consisting of approximately 10.000 lines of C 
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. code and a few hundred lines of assembly code. and the utihties. which represent the other 

95% of the system. The kernel is flxed. but the utilitles can be ma~,pulated by users as 

they wish. UniX is a very "open" enVlronrnent: users. for example. are free to wnte the Ir 

own shell. or command interpreter. and source code IS available for the operating system 

and utlhtles 

Unix supports the idea of 1/0 redir~ction at the shell level. and allows users to pipe the 

output of one program to the input of another ThiS makes It very easy to build applications 

usmg fi/ters. which each perform sorne operation on a stream of data and then pass It to the 

next filter using a pipe Often. commands drawn from the very rich set of utilities formed 

into pipes can Îmmedlately accomphsh things that would otherwise reqwre new programs 

to be written. ThiS software reusabihty (Kernighan 84) is an Important aspect of Umx's 

popularity. 

The kernel controls process executlon. 110. swappmg. and scheduhng. Unix assumes 
, 

a virtua/ memory environ ment. and the only hmlt placed on the slze of user programs is 

the size of the virtual address space of the machine. The è1ata and text associated wlth 

a process is swapped to and from secondary memory as required. depending on how long 

the process has been resident. and how long other processes have been swapped out which 

want to be swapped back in. 

Unix has a time-slicing t scheduler which adjusts task (in Unix. process) priorities usmg. 

a mechanlsm whlch was basically designed to maxÎmize the system'~ response to multiple 

users typmg sporadically at keyboards User process priorities are adjusted accord lOg to 

t~clr recent ratio of compute time to real time consumed /Thompson 78). The effect of this 

is that if a process uses Its high pnority to hog the computer. its pnority drops. Similarly. 

low priority processes whlch have been Ignored for a long time have thelr priorities increased. 

Synchronjiation between processes IS do ne usmg signais. There IS no information 

assoclated wlth a signaI. except that It has happened. A signai can be lost. processes can 

block signais. and any after the flrst whlch consequently arrive are not queued untll the 

process unblocks that signal. Signais have no pnonty. most are pre-assigned. and there 

are only a fmite number. which varies wlth the UniX implementatlon. availablet . 

t The 4 2Bsd scheduler runs every 100 milhseconds 

f 4.2Bsd allows 32 signais 
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Processes are created wlth the {ork and exec mechanism A process whlch forks creates 

an exaèt copy of itself. but the chi Id process cannot share data w.th Its parent 

Reel-time Unix? 

It may be appreciated from the previo~s discussion that standard Unix has a very hmited 

appeal as a high-speed real-time operating system. due to the scheduling and signaling 

mecha0l5ms used. and the mability of processes to share data 

Auempts have been made to modify the Unix kernel to provide more support for real- -

lime applications Two examples are Masscomp's Real- Time Unix. or RTU. and Charles 

R,ver Data System's UNOS ln the latter. the enlire kernel was replaced. although users 

still operate usmg the Unix paradigm_ The basIC change made was to support the notion of 

multIple processes inside the kernel: tn standard Unix. there is only one. Masscomp's RTU 

tntroduced somethtng ca lied the Asynchronous System Trap or AS T This is a software 

interrupt that remedies the deficiencles of signais 

A major problem that has to be overcome IS to defeat the swapping mechanism. This 

was accomplished tn Masscomp's version of Unix (Cole and Sundman 851 by special system 

calls with which programmers can lock particular pages of memory into core ln order to 

implement Reel. the McGill eVaRl vèrsion of Berkeley Unix was simllarly modified 50 

that the memory assoc.ated with the real-time control process would not be swapped to 

disk. Memory locking is fairly dangerous. because deadlock problems can easily occur. 

programmers must carefully preca/culate the amount that they need. otherwise the system 

performance can be destroyed. 

Another problem ,"volves task synchronizatlon. Signais are a'poor mechantsm becausa" 

they are not prioritized and can be lost. AT&T's release of Unix (System V) tntroduced 

a semaphore primitive and also a rimitive which allows processes to share memory. the 

latter is normally impossible ln st~ndard Unix. . 
, 

Problems still rema;n '" deahnk with interrupts. providing asynchronous interprocess 

communication. and especiaUy prov.ding deterministlc task scheduling. There is al50 the 

basic problem that the kernel is not easily configurable. as opposed to systems hke RMX-

86 where system ,caUs can be included or excluded from the configuratIon on an as-needed 

basis_ 
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It must be concluded that for high-performance embedded real-time systems. UniX IS 

not a good cholCe. but as a multl-user program development envlfonment. It has no peer. 

1.5 Thesis Overview 

Chapter 2 !S a description and analysis of RTC. RCCl. and the Microbo mampulator 

The chapter beglOs with RTe. and describes the control paradlgm and the user interface 

Neltt the RCCL trajectory levells examined. and the chapter conclu des with a description of 

the Mlcrobo Ecureuil manipulator and Its RCU control Unit. In Chapter 3 the forward and 

inverse klnematics for the Microbo robot are denved. and an analysis of the computational 

complex'ty of the resulting solutions is presented. 

Chapter 4 describes the design and Implementation of the hardware and software which 

make up the RTC system for the Microbo robot. RTe. which originally ran under the 

Umx 42Bsd operatmg system on a VAX mmicomputer. was re-implemented usina a set 

of Intel microprocessor cards and the iRMX-86 real-time multi-tasking operating system 

There is also a list of the practical differences between the System 310 implementation of 

RTC/Reel and CVaRl's VAX version. 

Chapte, 5 summarizes the results of the research and looks ahead at future enhance­

ments of the RCCL control environment. 

Appendix A is a brief users guideto RTC/RCCl on the Intel System 310. concentrating 

on the practlcal aspects ,of booting the system. calibrat,"g the robot. compeling and hnking, 

RTC/Reel programs. etc 

Appendix B describes ln detail the commUnication protocol of the Mlcrobo jomt con­

trollers 

• 
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Chapter 2 RTC. Reel. and the Microbo Robot , 

RCCl. or the Robot Control C Library. is a library of functions and supporting data 
( 2.1 Introduction 

structures which allow applications programmers to crea te manipulator control programs 

using the C programming language (Kernighan and Ritchie 7,8). Motion is specified 10 ~) 

Cartesian coordinates. and homogeneous transforms are "used to specify positions and 

spatial, relatlonships between obJects in the robot world 

As shown ln Figure 2.1. RCCl runs on top of the Real Time Control layer. called 

RTC This is a substrate which programmers can use to write joint-Ievel control funetions 

(for example the RCel trajectory generator) which eltecute at sorne sample rate (typica/ly, 

10 to 100hz) in the background, while the user's plannmg level program executes in the 

foreground Interfaces are provided via which the indlvidual joints of the m-anipulator may 

be queried and controlled Cvntrol of associated hardware (for example gripper open/close) 

IS also provided, 

RTC may be thought of as a kmd of "robot operating system", It proYldes a standard­

ized interface to the robots. This IS .. nalogous to a computer ?perating system's provision 

of a standard interface to '/0 devices. with the added element of control over real-time 

aspects of the interface 

A full description of the user interface to RCCL and RTC appears in ILloyd 85] and 

[Hayward and Lloyd 85): this chapter presents just a synopsIs We concentrate here on the 
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Figure 2.1 ReCL and RTC 

robot interface to RTC and RCCl. as thls is central to our work. The chapter begins with 

a brief outline of the genesis of ReCl and RTC and the previous implementations. 

2.2 The GenesÎs of RTC/ReCl 

The RCCl/RTC system was originally written by Hayward al Purdue University (Hay­

ward and Paul 83). under the guidance of Paul. It supported a Puma-560 manipulator 

and ran on a VAX minicomputer runnmg Unix 4,2Bsd. rt may be noted that ReCl IS an 

Implementation of some of the ideas presented in Chapter 10 of (Paul 81) 

The software was brought to CVaRl in 1983. and has been installed and enhanced 

at CVaRl (Lloyd 851 ln this case a VAX-750 minicomputer again runnmg Umx 4.2Bsd 

supports the smaller Puma-260 mampulator. 

Both the original Purdue and McGiII implementations use a custom-designed FIFO 
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(First ln First Out) Interface between a dedlcated VAX parallel port and the Puma's Unlma­

t.on controller ThIs FIFO IS under the control of a a Unix 4.2Bsd device driver. and aJiows 

the high speed transfer of small blocks of data to and from the Puma's joint control/ers 

via the Unimatlon lSt-l1 processor When ReCL IS not runmng. the lSI-ll executes the 

native VAL-l Interpreter. The UntX devlce drtver has a special mode wherein It executes 

the user-speclfled RTC control functlons at high (system) prtOrtty Modifications must be 

made to the Unix kernel to prevent the operat,"g system scheduler from swapping RTC 

data areas ta dlsk. This would of course would be fatal to the real-time process·s ope
1

ratlon 

RCCl has also been ported to a 68000-based Unix system. This work was done 

at Hewlett-Packard in California by Hayward in 1984 Unfortunately. there IS no publIC 

reference for thls Implementation. but we do have the following detalls from a prtvate 

communication IHayward 86]. 

The target machIne was an HP-900j200 running HP-UX. the Hewlett-Packard versIon 

of Unix. The CPU was a Motorola 68000 microprocessor wlth 16k of fast cache memory, 

and the robot a Puma-560. Apparently the code was ported very easlly, but the sample 

rate could not be set faster than 9 Hz due to the mefflclency of the Interface to the math 
• 

co-proœssor. The trigonometrtc functlons were done using table lookup. The system 

fnterface was significantly difJerent from the VAX Implementation. where the real-time 

control functlons run inslde the Unix kernel as part of the device driver for the' Unimatlon 

controller ln this case the HP-UX scheduler was modtfled so as to run the control functlons 

as Um,x "signar routines CommunicatIon wlth the Ummation controller's lSI-l1 processor 

and th us the joint microprocessors was via an HP-lB parallelmterface. as opposed to the 

HFO interface used in the VAX implementatlons at Purdue and CVaRl bb 

2.3 RTC- Robot Real Time Control 

RTC gives C language programmers the abiltty to, develop robot Joint level control 
~ 

procedures. It does this by provlding 

a) a set of function calls via whlCh control algortthms (for example. the RCel trajectory 

controller) may be executed at hlgh pnority in the background. at the sample rale. 

b.) a set of data structures which reflect the state of the manipulator' s joints and whlch 

may be used to control them 
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,2.3.1 The RTe function calls 

The RTC user mterface conslsts of a set of procedures and data structures which are 

available to C programmers as a complle-tlme library. In what follows.' the procedure names 

are printed in typewri ter font 

- rte_openO mitiahzes the RTe system and crea tes the background control task whlch 

runs at the sample rate .. 
- rte .c,~ntrol 0 ;s the major componen.t of the real-tlme robot control The control 

task IS started which collects Information from the robot. and two user-specified control , 
\ 

functlons are actlvated Commands may be sent to the robot via global data, structures 

(described below) 

- rte .release () stops a control session and re-Imtlalizes the system for another one 

A parameter may be set to turn off arm power. 

- rte .close 0 termlnates the control sessIon and deletes the background control task. 
G 

A parameter may be set to turn off armopower. 

- print_rtc .errorO interprets the error codes which may be returned by the four 

above procedures. and pnnts an approprlate message The control procedures are 

.arbitrary: a programmer working at the RTC level may speClfy the entry pOlOtS of any 

two C language f!,lnctlons. with the restriction that they execute withan the chosen 

sample period ln 'the RCCl case there IS essentlally a single procedure- the traJectory 

controller"s "setpoanf" procedure 

2.3.2 The RTe d.ta structures 

The important global variables available to the RTC programmer are as fotlows 
, 

. the hoti structure reflects the state of the manipulator 

- the ehg structure IS the command request vehicW 

- the t.minete variable. if set by the user. will abort the control session If set by the 

system. it will contain information as to why the termanation occurred 

- the rte ...message variable allows the user to pass a st~ing to the user level from the 

control level. This may be used to provide error or status information. etc. 
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- the user Jlangup variable allows the user, to set up a "hangup" handler of hls choosmg 

This functlon is Invoked by the RTC system instead of the default handler when a 

"control-C is typed at the user's terminal dunng a control session. 

2.3.3 The RTe Control Paradigm 

Figure 22 illustrates the RTC control cycle. This must remain basically the -same for 

ail R T C Implementations. 

The system IS reset and enters the idle state via the rte _openO function cali The 

control functlons may then be actlvated by a cali to rte _control (). Once control 15 active. 

the followlng cycle 15 repeated once per sample period data is collected from the robot 

and the how" global data structure 15 updated The first user-speclfied control functlon 

is Invoked The chg data structure 15 examlned and approprlate commands are sent to 

the Joints The second user function is then executed. and the cycle repeats. A cali to 

rte _re leu. 0 will cause the system to re-enter the idle state. and rte _close 0 shuts 

down the RTe system. 

2.4 RCCL- The Robot Control C Library 

Reelis a manipulator control language. Implemented as a ct function library. Because 

Reel is not a language in Itself. application programs can take advantage of ail of the 

features.provlded by the host language and operat,"g system. for example flle 1/0 and user 

interaction The macro faclhtles of C ln partlcular help to ~vercome problems of syntax 

and presentation 

RCCl conslsts of two parts. a ~al-time trajectory function. called setpointO. and 

the main user program. which we refer to as the planning level program The planning level 

commuOlcates with the real-tlme function via a motion request queue in shared memory. 

and communtcates with it Indlrectly via RCCllibrary functions. 
o 

The real-tlme part of Reel uses the. RTe system described ln the prevlous sectlon-

setpoint 0 IS just an RT C control functlon. Although RTe is closely bound to the host 

t As long as calhng conventions are respected there IS ln fact no reason why the ReCl functlons may 
not be cal\ed trom other languages 
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1 

Figure 2.2 The RTe Control Paradigm 

operatmg system and the robot hardware. RCClls not; wlth the exception of the forward 

and Inverse kinematlc solutIons. Il is manipulator independent. 

Reel programs specify the motion of the manipulator using motion equations The 

elements of 5uch an equation are homogeneous transforms representing the relat.onshlps 
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.. 
between coordinates frames attached to objects in the robol' s world. 

2.4.1 Motion Equation. 

A dedlcated transform. T 6. represents the position of the end-effector with respect ta 

so~ convenient reference frame. For the Microbo robot. for example. T 6 ;~ taken with 

respect to the center of the base of the manlpulator If POS represents a desired position 

and orientation of the end-efJector. we can wnte 

T 6 = POS 

If we use a transform TOOL to represent a tool attached to the end-effector and 
., C -' .. 

GRASP to represent the grasping position for an obJect 08J that IS on a con veyer CONV. 

we have 

T 6 TOOl = CONV OBJ GRASP 

RCCl can now solve 

T6 = CONV OBJ GRASP TOOl-1 

Transforms such as aDJ are known as constant transforms: they do not change during 

program executlon RCel also allows tlarb or (unctionally defined transforms whlch are re­

ë~aluated every sample period: for instance. the CONV transform might thus represent a 

moving con veyer belt. By allowing an arbitrary funetion to be associated with a transform, 

ReCl can cause thé manipulator ta track movlng obJects or ta react to arbitrary se~sory 
" information at run-lime. A third type of transform. the ho/d transform. if mod,fied by the 

user level program al run t,me. will be re-evaluated when the corresponding motIon begms 

Position equatlons are created using the makepositionO function The fU/letlOn's 

parameters are pOinters to the transforms whieh make up the left and right-hand sides of 

the equatlon Run-time ol/erhead IS miOlmlzed by pre-multlplying any adjacent constant 

transforms. and the. function !eturns a pOlOter to the result. which IS a dynamie data 

structure 

Transforms may be created and modlfled using an extensive fam"y of functlon calls 

The baSIC ones are gentr _rot O. gentr _ trsl 0 and newtrans (). The first two dynam­

ically create constant transforms involvlng. respectlvely. a rotation and translation. The 

third function allows t~e creation of functionally defined or ho/d transforms. 
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The pointer returned by makepoai tionO may consequently.be used as the parameter 

in moveO function caUs. to cause manipulator motion satisfying the position equatlon 

This is described below 

2.4.2 
...... , 

The Trajectory Generator 

Under RCCl. manlpulator motion IS specified as a seriés of path segments'Iinear ln 

either the joint coordinate space Uoint mode) or Cartesian space (Cartes;an mode). 

Each move 0 cali queues a motion request packet for the real-time setpointO trajec­

tory generator to service. then immediately returns control to the user program (see Figure 

2.3). This 'has the advantage that the serviclng of the motion request proceeds ln parallel 

wlth the main program. Expliclt synchronizatlon mechanisms are supplied to coordinate 

the two levels. 1 e to let the plannmg level know when a the traJectory level has completed 

the path segment associated with a particular motion request 

ln Carteslan mode. the joint angles are contro"ed such that the coordinate frame at­

tached to the tool moves along straight Imes in Cartesian space. The makepoaitionO , 
function in thls case takes an additional argument to specify. whlch transformation ln the 

equation 15 to be taken as the tooltransform. In this mode. the motion equation 15 re-solved 

each sample perlod during the motion segment. and the joint angles computed uSlng the 

Inverse kinematlc formulations. This Carteslan mode imposes a heavy computational load 

on the system, but the path of the tool tir.=' simple and predictable It should be also 

be noted that as the manipulator passes hrough any slngularltles. Joint rates may become 

'infinite' 
1 

ln jOint mode, the position equatlon IS solved once at the beg,"ning of the motion for 

the fmal set of jOint angles. Intermedlate values are then linearly interpolated durlng the 

motion uSlOg the initiai and final values This ,has the advantages that a) joint velocitles 

are limited only by the indivldual joint maxlmumAs. and b) manlpulé?tor degeneracles do not 

cause a problem The obvious disadvantage. of course. is that the path of the tool tip '15 

not predictable ln Carteslan space, 

When the motion request queue holds several motion request packets, the RCCl tra­

jectory generator performs a transition between the motion segments to prevent veloclty 
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and acceleration discontinuities. The boundary conditions reqUire that a quartlC polynomial 

be fitted between the adjacent hnear seg",ents (PauI8l) ..... 

Each pa th segment is th us characterized by 

- a trajectory mode. elther earteslan or JOint. (the setmodO function). ( _ p 

- a positiofJ to move to (the makeposi~ion{) function). ' 

- a velocity which may be specifled directly ln terms of rotational and translatlonal speed. 

or as a segment duration (the' setvelO and settimeO funetions). 

- a tTmsition ti"",. ~hich i. .'urarlOn of the transition to. the next ''!IIme".t ·Jhe lIJ 
settime 0 function). ( -

i 

2.4.3 ReeL Programming 

We present here a sample RCCl program by way of iIIustrating the preceding discussion. 

This program for the Microbo robot has been tested iJnd is stored in /tccl/ex/washer.c on 

the System 310 For a more complete description of the Reel user' interface the reader is 

referred to the ReeL Useis Ma!ltlsl [H,aywarctand Ùoyd 85] 

waaher .C: tne window washer- program. , 
robot moves. with ,~adually increasing 
translational and rotational velocity. 
through 4 points arranged in a rectangle 
in the yz plane. .The tool tip ia maintained 
,orthogonal to the plane. 

linclude "recl.hw 

linclude "rte .h" 
,. the basic rccl include file -, 
". "the basic rte include file ., 

main 0 
{ 

TRSF_PTR b. c. d. e; 
POS_PTR pl. p2. p3, p4; 
int tyel : 100; 
int rvel = 100; 
int i; .. ' (:' 

,.-- translations !rom robot or1g1n to 4 corners --~/ 
,.;,,- rotation 80 tobl pointing toward. ~ --*/ \. 
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b a: gentr_rot(IIB". 325.0. 160.0. 300.0., xunit. 180.) . 
,c a: gentr_rot("C". 326.0. -160,.0. 300.0. xunit. 180.); 
d à gentr_rot("D" • 326.0.-160.0. 260.0. xunit, 180.); 
e • gentr_rot("E". 326.0. 160.0. 260.0. xunit. 180.) ; 

/".-- corresponding position equations --*/ 
pl = makepo8ition("Pl". te. EQ. b. TL. te); 
p2 • makeposition("P2". te. EQ. c. TL. te); 
p3 '"' makeposition("P3". te. EQ. d. TL. te); 
p4 = makepo8ition("P4". t6. EQ. e. TL. t6); 

if (rccl_open (o. 0» /*-- start the RCCl control session --*/ 
{ print_rtc_error(rtc_error. 0); 

exit( -1) ; 

} ~--, 
if (reel_control (» . /*-- start the trajectory generato~ --*/ 
(print_rtc_errorCrtc_error. 0); 

exit( -1); . 

} 

setvel(tvel. rvel); 

move (park) ; 
waitfer (park->end); 
mov.Cpl) ; 
waitfer(pl->.nd); 

setmod('c') ; 
for (i=O; i<3; i++) 

{ printf("velocity Xd. 
move(p2); 
move(p3) ; 
move(p4) ;' 
lIlove (pl) ; 
tvel += 6; 
rvel += 10; 
• etvel(tvel. rvel)~ 

} 

waltfer (completed); 

setmod ( • j . ) ; 
~ove (park) ; 
waitfer (park->end); 

/.-- set trans, rot velocities --*/ 

. 
/*-- move to the park position --*/ 

" /+-- and stop there --*/ 
1'''-- move to pl --*/ 
/*,- and stop there --*/ 

/*-- cartesian mode --*/ 

%d\n" . tvel. rvel) ; 
/*-- move ta p2 --*/ 
/*-- move to p3 --*/ 
/*-- move to p4 --./ 
/*-- move to pl --., 
/*-- faster ... --./ 

/*-- wait for queue to empty --*/ 

/*-- back to joint mode --*/ 
/*-- move to the park position --*/ 
/*-- wait ti~l done --*/ 
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if (reel_close (0» /*-- terminate control session --*/ 
{ print_rte_error(rte_error. 0); 

exit{-l) ; 
} 

} 

This program .. arts by crealing four conslanl translorms, { b. c. t.: and wriling 

the assoclated position equations for { pl. p2. p3. p4 }. These positions correspond 

to the corners of a "window" 10 the y-z (vertical) plane The tool is rotated about the 

x-axi~ so as to pomt towards the table. In thls way It will be J>hyslcally possible for the 
f 

manlpulator to move 50 as to maintalO orientation 

The (reel_openO and recl_eontrolO c\.lIs mltlallze and then start up the Reel 

control jesslon. Il may be noted that these two functions eventually Just cali rte _open () 

and rte _cohtrol () We neJtt set the transfatlonal and rotational velocities. specif,ed 

in mm/sec and degrees/sec. and move to the predefined park position The waitforO 

primitive allows us to synchronize with the end of this motion. We slmilarly move the robot 

to the pl position. At this point we can change to Cartes,an mode usmg the setlllod() 

cali. and begm the forO loop. ThiS loop will m fact execute as quickly as the motion 

requests are queued The wai tf or (c omplet.d) cali will delay the program until the. 

motion request queue has emptled. We flOally restore joint mode (it 15 not possible to 

move ln Cartes,an mode From p4 to park) and close the control session 

2.5 The Microbo Robot 

The Microbo EcureUIl manipulator (Figure 24) is a SWlss-made 6 degree-of-freedom 

cylindr,cal robot designed for assembly tasks. It is mstalled ln the McGill CVaRL robot 

workcell alongs.de a Puma-260 mampulator. such that t~ workspaces of the two robots 

overlap. 

The vendor-supplied "RCU" controller 15 shown in Figure 2 5 Each of the JOlOts .5 

drlven bv a D.e servo motor connected to a current amplifier. whlch .s m turn controll~d by 

a d.gital-to-analog converter JOint pos.t.on {eedback is via incrementai opt.cal encoders 

The RCU controller has the hlerarch.cal deSign typlcal of contemporary industrial con­

trollers. with a processor for each joint. supervlsed by a coordinating master wh.ch may 
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be programmed by the user using the IRl Interpreted language which IS resident 10 ROM 
, 

(Read-Only Memory). The master processor also controls a te~ch pendant. an audio-

cassette tape machine for program storage. a video terminal and a printer. The system 

supports up to 8 jomts. 10 addition to the 6 robot joints. there is a rotary stage and a hnear 

stage These are not currentl, belng used. and are not supported by the RTe system 

CVaRl's Interest 10 the Mlcrobo Wët~ spurred by thls manlpulator's stated capablhty 

for very fine motion. especlally wlth the two pnsmatic joints This may be seen from the 

following table whlch shows physlcal motion per JOint encoder count For companson. we 

mclude the corresponding f4gures for CVaRl's Puma-260 maOlpulator 

Encoder Resolution 

Joint Microbo Puma-260 . 
1 0.0031° 0.0770° 

2 00020·mm 0.0051° 

3 0.0013 mm 0.0084° 
~ .~ 

4 0.0041° 0.0103° 

5 0.0056° 0.0114° 

6 0.0182° 0.0142° 

It may be seen that the Microbo is theoretlcally capable of much finer motion increments 

than the Puma: It will be shawn. however. that the vendor's control algorithms negate this 

advantage under actual working condition..> 

2.5.1 Controller Hardware 

\ The master processor IS an 8085-based smgle-card computer. On-board ROM is used 

for the IRL language interpreter. and statie RAM (Random Aeeess Memory) for non-volatile 

storage of programs and data This eard is connected ta two busses: a 16-blt/8-bit 
, 

address/data bus (the Cl bus) and an Input/output bus (the C2 bus). The latter 15 

used for mt/rfacmg with the teach pendant and a VAX hosto while the former allows ttils. 

proeessor to control the 8 Joint proeessors via their memory-mapped control registers This 

Interface IS diseussed beJow. 
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The joint processors are.ldentical and independent Each is an Intel 8085-based smgle­

card computer with the joant control software stored an ROM. There are d,gltal mpùts for the 

incremental joint encoder. and an analog output wh,ch ,s routed to the appropriate power 

amplifier. wh,ch has a max,mum current capaCity dependmg on the jomt's requlrement 

The Joint processors and master processor share a comman address and data bus whlch IS 

used for commUnication Each JOl9t processor has a sWltch-selectable address on the bus 

whlch detlnes the location of a set of 8-bit control. status. and data regl!ters. These are 

used by the mas ter processor to query and control the jOints The communication protocol 

is always initlated by the mas ter processor It involves checking the status reglster before 

each read or wflte to the command or data reglster ta determme that the Joi,.t processOJ 

.5 ready to recelve or send data. For example. the.sequence reqUlred to fetch the 16 b.ts 

of encoder data 15 as follows' 

1 Read the status reglster unt" an InpUl buffer empty condition is md'caled. 

2 Write the "read position" command code lOto lhe command reglsler. 

3 Read the statu5 register until an output buffer full condItion '5 indlCated. 

4. Read the data reglster. which contams the t"st byte of the two byte encoder pOSition. 

S Wa,t untll the status register aga," ind.cates that the output buffer .5 full 

6. Read ~he second byte of the encoder position from the data register 

A slmilar protoeol IS used to send data. for example a target posltton or a veloclty. ta 

a jOint Each 16-blt data exchange of this type can thus be seen ta reqUire SIX reglster 

reads or writes. conslsting of a read/wrlte sequence to send the command followed by two 

readjread or read/wntes to fetch or send the data A more complete deScription of ttleJomt 
1 

commUnicatIon mcJudmg definitlons of the register bIt patterns and a command dlctlonary. 

is presented ln Append", B. 

2.5.2 Controller Software 

The IRL Interpreter 

IRl. a BASIC-like mterpreted language. is the "endor-supplied software which eJtecutes 

on the Intel 8085-based master processor deseribed above. Il is fairly prlmitl"e. provldmg 

basically a one-to-one correspondence with Jotnt-Ievel commands. Programs are entered 
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via a CRf terminal and may be stored' on cassette tape and printed on a line pnnter 

A teach pendant allows the user to move each of the robot JOints separately and store 

resultmg positions as sets of encoder counts The language was speclflca"y designed for 

the Microbo Ecureuil mampulator's RCU controller and is bound closely to the hardware. 

Il It wrltten ln 8085 assembly language 

Motion commands do not block an IRL program. the MTARGET command simply sends 

single. asynehronou5. jOlnt-level "set target" commands to the appropn3te jOint pr9cessors 

The programmer may optlonally delay untll the requested target has been reached by uSlng 

the MWAIT commando whlch causes the IRL processor to poli the joint(s) wlth "get JOint 

status" quenes unt" the approprlate bits are found set. It may be seen that a basIc 

weakness of the IRL system IS the lack synchronlzation between joints. whlc~ means that 

the path of the end effector IS unpredictable for motions involving more than a single JOint 

Aiso. because Joint targets may only be specified in terms of encoder counts or via positions 

memorlzed using the teach pendant. it IS impossible to compute positions off-hne or from 

a program and then predict the resultlng trajectory IRL programs work exclusively ln the 

robot' S joint coordlnate system and not in any Cartesian coordinate frame which can be 

related to the workspace 

The Joint-Ievel Pa th Control Algorithm 

Under normal operation. the Microbo joint controlters accept target. Ifelocity. and ae­

c~/eratlon commands. The JOint control algorithm uses the latter two values to control 

the trajectory when moving the jl>lnt to the target position. When the target IS reached 

(wlthm a few encoder counts). the control law changes and the JOint servos to maintam 

t,bIS position. 

The control algorithm executlng on the Joint processors thus combines a primitive tr3-

Jectory control wlth a JOint servo functlOn We note that except for the command protocol. 

the operation of the JOint controller IS not well-specifled by the vendor. the explanatlon 

glven here IS based to a large extent on observation of the jOints' charactenstlcs F .gure 
~ 

2 6 IS an educated guess at the block dlagram 

. When approachlng the target position trom afar. the JOint controller IS sa.d to be. 

using the vendor's terminology. In the "dynamic regulation zone" The jOint .s accelerated 

(using Ils acceleralion setting) untll il reaches its velocity setting. It continues at th.s 
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Filure 2.6 Microbo Joint Controller Block Diagram 

velocity until it approaches the target position. then decelerates. It 15 then said to be m the 

"static regulation zone" At this point. the acceleration term is ignored. and the trajectory 

calculation is based solely on the velocity term See Figure 2.7 

We introduce the followmg notation . 

Xn is the target position for the nth sample Instant 

Xn - 1 is the prevlous target position 

a is the (signed) acceleratlon 

v is the (slgned) veloclty 

f::.t is the jomt's 5ample period (1 msec) 

G is the proportlOnal gain 

X p is the current measured position 

é 15 the posltlonal error. je. IIXn - 1 - Xpll 

\ , 
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1 Ficure 2.7 Mic:robo Joint·level Patlt Control 

fil 
J (dyn) is the dynamlc integral term 

J (.'tat) is the statle mtegral term 

The vendor specifies th8following equatlon for the "dynamic regulation zone" 

Xn = Xn - 1 + a L,t
2 + G E + J (dyn) 

We interpret the third term to be proportion al path control. servoing based on the 

prevlous target position. The second term 15 the change ln position due to acceleration 

over the samp/e period. This 15 the traJectory control term. The fourth term is possibly , 
error compensation due to the proportional path control. 

ln the "static regulation zone". the followmg "controllaw·· 15 used 

'. 
" X n = Xn - 1 + v 6t + f (stat) 

~1 
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25 The MlCrobo Robot 

The trajectory control term is now based on veloclty rather than acceleration. and the 

proportional gain term disappears. 

Unfortunately. thls scheme as Implemented by the vendor appears to have senous 

design f1aws. It seems that the servo;ng. and thus the stlnness of the jOint. IS affected by 

the acceleratlon and veloclty seUtngs When the last veloclty and acceleration sent to a 

joint are small. the JOint loses ItS stlffness. and falls to malntain ils position under even 

the most neghgible load conditions when stopped Also. because there is no proportlonal 

control term ln the "static zone". the Integral term domlnates and the JOints may exhlbit 

severely underdamped response when subjected to a small sustained force. 

Work Are .. 

The precision of some of the Microbo Joints (1 and 3) IS such that the encoder word 

size (16 bits or 65535 counts) 15 too small to cover the full physical range of the joint. To 

overcome this. the vendor elected to Implement "work areas" Under thls scheme. if the 

encoder value is greater than 50000 or less th an 15535. the joint will accept a "change work 

area" commando The resul!,is that the current encoder setting is adjusted 50000 counts 

downwards or upwards by the joint con troUer 1115 up to the IRl programmer to keep track 

of which zones the joints are in: and of course It is Impossible to move from the intenor of 

one zone to the mtenor of another wlthout stopplng tn the "transition zone". and sendmg 

the appropriate command to cause the jOint processor to change work areas 
r 

It seems that addlng another byte to the encoder word size would have been a far better 

solution from the IRl programmer's point of view Work areaS. aS Will be seen in chapter 

4. complicate the RTC implementat/on somewhat. and hmit the veJocitles of the affected 

jOints when they are under (synchronous) control of the RCel trajectory generator 
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Chapter 3 Microbo Kinematics for ReeL 

3.1 Introduction 

Mapping the coordinate space defined by the joints of a manipulator into a rtesian 

space is known as the (orward kinemat;c problem. Conversely. the Inverse #Cine 

lem Involves determtning the joint variables correspond,"g to a 

defined in Cartesian space of the manipulator's end efTector 

This chapter beglns wlth a review of the necessary mathematical backgroun We flrst 

estabhsh the mathematlcal nomenclature thal will be used ln the rest of the thesls. and 

then d,scuss the use of homogeneous .. X .. transforms ln representmg the transformatIon 

between coordlnate frames assoclated·with the links of a seriai hnk manipulator We then 

present and apply an algorithm to estabhsh a coordinate system at each "nk. and from 

thls obtam the forward kinematic solution. This is. followed by a denvation of the inverse 

kinematics. Note that JOlOts 2 and 3 of this mampulator are pnsmatlc whlle the rema,","g 

Joints are rotatlonal. A summary of the computattonal requlrements of the kmematlcs IS 

then presented. as this mformation was reqUired during the deSign of the RTC system to 

establish the CPU power reqUired for a real-lime Implementation, 
" 

3.2 Mathematical Background 

4 X 1 veclors wIll be identlfied uSlOg bold face lower case. as in 8. .. X .. matrices will 

be shown in 'bold face upper case. for example A. First and second derivatives. usually 
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3 2 MathematlCal B~Ckground /""'" 

corresponding to velocity and acceleration. will use dot notations. as ln q and q Douing 

also may be applied to vectors. Components maklng up a vector will be enclosed ln curly 

brackets. for example q = {Ql,Q2,Q3,Q4,QS,Q6}' The transpose of a vector or malnx 15 

i~dicated wlth a superscnpt as 10 .T or AT The use of a precedmg superscnpt mdicates 

that a vector or transform IS defmed wlth respect to some coordinate frame. for example. 

BAB. are a matnx and vector defined wlth respect to coordinale frame B 0 

The following notation may be used to more compactly represent sines and cosines' 

St ::I! smdl • CI = cos 91 , SI) = 51081 + sin 8]' and CI} = cos 91 + cos 8)' 
0' 

3.2.t Homogeneou5 Transform. 

The representatlon of an n-component vector by an (n + 1 }-component vector is 

known as the homogeneous coordinate representation. For example. the vector p == 

{Px,py,pz} become5 p = {wpz,Wpy,Wpz,w}. The mapping from p back to p is then 

p = {wPx / w, WPy / w, Wpz / w}. It may be seen thal there ~s no unique representalion for 

the vector p. but that if w is uOIty. then the homogeneous cOOfdinat-es are Identical to the 

physlCal coordinates. 

Say we attach an orthonormal coerdinate frame F to a ngld body in space and Wish 
~ 

to locate a point lA F wlth respect to a reference frame G If p is a vector representing 

the translation of the origin of G 10 the origm of F. and R IS a 3 X 3 rotation matr;" 

representmg the rotation of F wlth respect 10 G 

Oz ax) 
Oy ay 

Oz az 

(3.1) c, 

then Il may be shown (see for example (Lee 82)) that by using homogeneous c()Ordmales 

a point f in frame F has coordinales ln G oblamed using 

Ox ax PX) 
Oy aIl py Ff 
Oz az Pz 
001 

(3.2) 

The above result is known as a homogeneous transform. and is especially useful ln 

representing the transformation between frames associated with each hnk of a robot ma­

nipulator. The four columns of the matri" are usually referred to as the n. o. a and p 
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Figure 3.1 The n 0 a and p Vectors 

3 2 Mathematlcal Background 

vectors. and can beJhought of in terms of representing- a frame attached to a manlpulator 

end effector. This is shown in Figure 3.1 The p vector locates the origin of the frame (a 

translation). The other thret! vectors are unit vectors. and the first. a. may be thought of 
• 

as representing ,the direction from wldch the hand'would approach an object. The 0 then , 

specifies orientation of the hand. from finger to finger The normal or n vector completes 

a tight-handed coordinate system: n is the cross-product of 0 and a 

n=oxa 

The result of multiplying two homogeneous transforms is another homogeneous trans­

form: transform equations can be simplified by pre or post-multiplying both sides b~ the 
\ 

same transform. For example. if we' have 

XA=BCD 

., 

1 

• 

-, 

1 

1 

1" 
1 
! 
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3 3 Defining the Coordtnate System 

wè can post multiply both sides by 

---,-~ -because thr: product of a tiansform and ItS inverse is the identlty tfallsfO,rm 

3.3 Defining the Coordinate System 
~ 

'Denavit and Hartenberg IDenavit and Hartenberg 55) established a convention in which 

an orthonormal right-handed coordinate frame is associated wlth each link of a seriallink 

manipu/ator. The transformatIon between frames ln consecutive links is done us,", ho­

. moge,neous, transforms known as A matnces. Each A mat ri x depends on (our geometric 

quantitiéS. 4 1 , ~. (JI' and 0:,. as'S~iated wlth the link. Either dt or 9t vanes and is known as 
, 

the joint variable. Thiirep~sentation 15 sufficient for any 'Seriai IInk man;pu/ator conslst-

ing of prismatic and revolute Joints. and leads to a straightforward solution for the forward 

kinematics of a manipulator. 

ln ILee 82]. an algorithm i5 given for systématically establishing the A. matriçes. The­

method is as follows. where unit vectors alonl the Z"YI an~ z; alles are shown as Ka. YI 

and". Please refer to Figure 3.2. , . . , 
1. Estab/is~ a right-handed orthonormal coordinale frame (zod/O,ZO) at the base of the 

manipulator. _,th ZO Iying along the alUS ,of Joint 1. 

2. For each i,1 = 1, ... N establish th~ Jomt coordlnate frame 

2.1 Align" with tne axis of motton of Joint 1 + 1 
~ 

2.2 Locate the ongin of the a-th coordlnate system at the In~ersection of the Zr and 

ZI-1 axes. or at the intersectIon of the common normals between the ~ and zl-l 

axes and the ZI aXIs 

2.3 Assign XI accordlng to the cross product of the z, and Z,-1 axes or along their 

common normal if they are parallel '" IS the correspond,", unit vector 

2.4 Assign Y. as the vector cross product of ~ and "'. 

3. For each " t = 1, ... N find .the Joint and link parameters 

3.1 dt is the distanc~ from the origm of the (a-1 )-th coordmate frame to the intersec.tlon 

of the Z,_\ axis and XI' measured alonl %,-1 axis. dt is the Joint variable for 

prismatlc joints. 
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3.3 Oehniqg the Coordinat System 
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Fi.ure 3.2 O.vit-Hartenberg link Parameters 
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3 4 Determmmg the A MatrICes 

3.2 a t is the distance from the intersection of the zl-l axiS and Xl to the onl/O of the' 

Hh coordmate system, measured along the x, aXIs. 

1.3 91 IS the angle of rotation from XI _ 1 to x" measured counterclockwlse around zl-1 . 

8, 15 the jOint variable for rotary jo/Ots 

3.4 Q, IS the angle of rotation trom the z'-1 axis to ZI' measured counterclockwlse 

around Xl 

US,"I thls algonthm. we obtain the coordmate system for the Microbo illustrated 10 

figure 3.3. Note that the direction of the z axis in steps 1 and 2.1 may be chosen arbltrarily. 

for eumple. zo has been chosen pointlng upwards though the opposite direction would also 

have been a vahd cholte 

3.4 Detèrmining the A Matrices 

As shown ln (Lee 82]. by multlplying together homogeneous transforms representing. 

respectlvely. a rotation 8, about the 2'-1 axis. a translation of ~ along the 21 -1 alllS. a 

translation of a, along the XI axiS. and a rotation of 0, about the x, aXIs. the following . 
general forms may be derived for the A matrices 

('MI, - sin 9, cos 0, sin 0, sin 0, a,c~', ) 
Al = sin Dt COS 8, cos 0, - cos 8, SIOO, a,sinO, 

(revolute joint) (3.3) 
0 sin 0, cos 0, dt 
0 0 0 1 

c· s
, 

- Sin 8, cos Q, , 510 8, sin 0, 

n A _ sinB, cose, cos al - C05 01 SIR 01 
(pflsmatic jOint) (3.4) 

t - 0 Sin 01 COS 0, 

0 0 0 

where dt, al' (),. and 0, are the jOint parameters 

8y observation of Figure 3.3. the link parameters for the Microbo are 
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34 Determinmf, the A Matrices 

.. Microbo link Parameter Value. 

i Joint t i dl 1 (JI 1 al al 1 . 
1 1 0 (JI 1 0° 0 

~-

1 2 d2 90° l 90° 0 

3 1 d3 
Ot,~ , Oc 0 1 1 1 

i 

1 
1 4 0 (J4 90° 0 

5 1 0 (JS 1 90° 0 

L_6_~ 0 (J6 1 0° 0 - ...L 

• .. 
and the jOint variables are {Bt, d2, d3,6",8s , 86} 

Substitutmg the values from the table into the formulae above. we gei ~e following A 

matrices for the M,crobo Ecureuil - / 

C' 
-51 

o 0) 
A t = 51 Cl o 0 

(3.5) , 0 0 1 0 ) 
0 0 o 1 

(~ 
0 1 

~) A2 = 0 0 
(J.6) 

t 0 
0 0 

A
3 =Ü 

0 0 

d~ ) 1 0 
(3.7) 

0 1 
0 0 

C' 
0 8" 

n 54 0 -C4 
' .. 

A4= 
0 1 0 

(3.8) 

0 0 0 

c 
0 Ss 

D AS= S5 0 -Cs (3.9) 
0 1 0 
0 0 0 

( C, 
-S6 0 

D 
S6 C6 0 

(3.10) A6 = ~ 0 1 
0 0 
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3 5 Forwird Klnematlcs 

3.5 Forward Kinematics 

The transform which relates the base of the robot (thé {Xo. yo. ZO} coordmate system) 

to a frame attached t~ the last link of the manipulator is know·n as the T 6 transform It IS 

obtamed by multiplYlOg together the A matnces 
, 
i 
\ T-6 = A1A2A3A4ASA6 
'\ , 

Usmg the notation introduced earher JO this chapter we have 

T 6 = (:: :: :: :: ) 
Rz Oz az pz 
o 0 0 t 

Equatmg the terms of the result of (3 11) with (3.12) we get 

3.5.1 

nz = C1C6 SS - StCS .. S6 + C 4 CSC6) 

nll = Cl (S .. S6 + C ... CSC6) + C6 S I SS 

nz = CSC6 5 .. - C"S6 

OZ = - SI (C6 S• - C .. CsS6) - CISS56 

011 = C1(C6 S .. -- C .. CSSs) - 51 S SS6 

OZ = - C5S"S6 - C .. C6 

a%:: - C .. StSS - CtCS 

ail :: CIC"SS - CSS1 

C1z = 8455 

Pz = Cld3 

( Pli = d351 

Pz = d2 

Computltional Complexity of the r::o",ard Solution 

(3.11) 

(3.12) 

Because n. 0, • defines an orthogonal system. there is sorne redundancy of mformation 

because each vector is the cross product of the other two. 5uch a cross product reqUlres 

SI 
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3 6 Inverse KlRematics 

6 multiplications and 3 additIons or subtractlons. so It is most efficient in this case to 

determine o. • and p and then do n = 0 X.. The required calculatlons are then 30 . 

multiplications. 13 additIons or subtractlons. and 4 sets of sine and cosme operations 

3.6 Inverse Kinematics 

Given the terms of (3.12). which corresponds to a positIon and orientation of the 

mantpulator end effector. the mverse kmematlc problem IS to find the joint variables. 

It can be seen that (3.12) ylelds a set of 1~ simultaneous equattons. but that not ail 

are ln a Simple enough form to be useful Using the method described m IPauIS!}. we can 

obtam up to 60 addltional simultaneous equatlons by successlvely post-rnultaplym& (3 1 t) 

by Aï 1 through AS1 This results in a series of 5 matnx equahtles of the form 

where 

A- 1 A-Ir' u \-1' . . 1 6 = 1 (3.13) 

Elements on the' rilht of (3.13) are functlons of the variables of joints 1 thr~ugh 6. 

while elements on the left are in terms of n .O.'.p and the Joint variables 1 through ,- 1 

If we examine equatlons with increastng values of l, we may solve for each joint variable m 

terms of prevlously solved variables. 

The atln2 form of the inverse tangent function IS particularly useful here. It salves for 

81 liven an equatton of the form 

sin(6)/c05(8) = /1/ /2 

which has the solution 

8, = atan2(Jl, /2) 

Thus we look for pairs of equations where the nght hand sides may be divided to yield a 

simitar form. 

ExammlOg the terms of the colùmn vettor· plO (3.12). we have 

(3.14) 
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36 Inyerse Kmemallcs 

whic~ immediately gi)'es us 

By inspection. we have 

also. squarml and adding both sides of tire farst two equatlon~ of (3.14) gives us 

Because of the geometry of the robot. dl is constralned to the posItive square root value 

If we conslder (3.13) with 1 = 4 we have 

whlch. if we equate the third column on elther side. yields 

We can solve for '4 by applying the atan2() stratagem to the second and thlfd rows Note 

that there is a 1800 phase shirt when 55 15 negative. and a singulaflty (no solution) when 

55 is zero. Physically. this singularity corresponds to JOlOt5 4 and 6 belng in alignment. and 

one way to deal with this when codlng a c~puter algorithm IS simply to use the previous 

value of 84' Note that for the M,crobo robot. uSlOg the cqordlnate system that has been 

deflned. the range of Joint 5 is approJumately - If /2 ;> 85 > - 311' /2. ThiS means that the 

only si~gula"ty physically possible IS at 65 = - 71'. and glves us the followmg solution for 

8" 

84 = atan2(az, ayCl - arSt) 
4 , . 
= a13n2(az, ayCt - arSt) + 11" 

1 
To solve for joint 5. we Ose (3.13) with 1 = 5 

(ls > - 11" 

8S < -11" 

(3.15) 
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36 Inverse KIOematIC5 

which lives us 

( 

azS" :~l(~~:C~ a X S1
)) = (_S~~5) 

(allC I -- ax S I)S4 - a zC4 

o 
We can divade the second row by the flfst to·y.eld an atan() solution for for 8s 

6S = atan2(az S4 + C"la yC1 - arS}). - (a ySI + arCtl) 

Finally. for Joint 6. we use (3.13) with 1 = 6 

A -1A-lA-1A-lA-IT U 
5 " 3 2 1 6= 6 

where equating the second columns gives us 

( 

10ySl + C1
0

x )S5 + CS(Oz
S

4 + C,,(C1
0

y 
- OxS

dJ ) = ( -~oS66) 
(Cloy - OzSI)S4 - C"oz = 

102 5" + C4(C. 0y - O;rSl)JSs - CS(OyS. + Clor ) 

o _. 
We then dlvide the first row by the second and use atan2() whlch lives 

86 = atan2( - ((oySt + C10x)SS + Cslozs" + C4(Cl Oy - OrSl)]), 

(Clo y - 0%51)54 - C"oz) 

3.6.1 Computation.1 Complexity of the Inverse Solution 

The inverse kinematics requires 4 sets of sine and cosme. 4 atan2·s. 22 multiplies. 13 

additions or subtract.ons. and 1 square root 

We summarize the computatlonal compleJuty of the Microbo forward and Inverse klne­

maties in the following table. figures for the Puma-260 (Lloyd 85) are Included fol' compar­

ison. It can be ~een that the Mlerobo kinemat.cs are far simpler than the Puma·s. 

K inematic Solution CompleJlÏly 

1 
i 

ladd/sub 1 mu't sqrt , 
Mlcrobo forward 30 1 13 1 

! Puma-260 (orward 59 ! 29 
-: Microbo inverse 

1 

22 13 1 1 
1 

Puma- 260 Inverse 1 64 1 
1 

42 2 

( 

atan2 

~ 

4 

7 

l­
I 

sin+c~ 

4 ! 
---' 

6 : 
~ 

4 1 

---' 

6 1 , • J 
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Chapte,4 RTe System Desig" and rmplementation ' 

4.1 Introduction 

The user interface and operation of RTC was described in Chapter 2. In the present 

chapter we dlscuss the design of a new RTe system for the Microbo robot. We begin by 

enumeratlOg the constraints which were placed upon the Implementation. We proceed with 

a general discussion of the basic design alternatives that were open to us A feasibility 

study includes performance projections based on the kmematic analys'ïs of the prevlous 

chapter. and the design and testing of an interface to the Mlcrobo's joint contro/lers The 

chapter concludes wlth a description of the resulting RTC Implementation 

4.2 Design Constraints 

The design of RTe for the Mlcrobo robot was constramed by the folJowmg requirements. 

1 Retain compatiblhty with the eJllstlng CVaRL VAX/Puma version of RTe. from the 

application programmer s pOint of vlew Beyond the obvlous benefits of standardizatlon. 

lhis would alJow us to use the robot-tndependent RCCl hbrary code wlthout sIgntficant 

change 
, 0" 

2 Achleve a useful sample r~te (the IOltial goal was 28 mllhseconds f) when run",", the 

• 

ReeL traJectory generator as the control functlon This is important for smooth ,and 

precise motion of the mampulator . 

The default sample period for the VAX/Puma implementatlon 15 currently set to S6 milhseconds 
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4 3 General Considerations 

3 MaintalO and enhance the robot-independent aspects of the syst~m as far as pOSSIble 

This slmpWles extensions for other new 'obots 

4 Avold modifications to the ellsting Mlcrobo RCU unit so that users can continue to 
.......... 

use the IRl system and the robot whlle RTC/RCCl development is underway. as weil 

as afterwards 

5. Use the existlng vendor-supplied Jomt controller software (10 EPROM*) This IS the 

other aspect of ensuring IRl compatibllity after RTC installation The constralOt IS 

also a funetion of an almost complete lack of documentation for the joint control/er 

hardware and software. and a lack of the appropnate development tools to enstall new 

Joint-Ievel code 

6. Use an avallable Intel "System 310" as a basls for the ImplementatIon Th,s Multlbus­

based system IS comprised of an Intel 80286/287-based single board computer. a'20 

Mbyte Winchester disk plus Slinch f10ppy disk. 896k of RAM. and fr~ slots for ad­

ditional Multibus boards. Extra CPU power is available 10 the form of an 8086/8087-

based single board computer with 256k of on-boa.rd RAM. whlCh may be booted from 

an 8 Inch floppy disk unit controlled by ,n Intel iSBC-208 tloppy dlsk controller The 

system runs the Intel iRMX-86 operatlng system. and provides a reasonable software 

development envlfonment. A native C compiler is available. 

4.3 General Considerations 

The major computatJonalload on an RTC system running RCCl is impose<! by the real­

time control functions. It may thus be Séen that the t!rst constraint hsted above IS ideally 

satlsfied If we execute tl'le RTC eontrdl funetlOns on a separate microprocessor system. but 

retain the VAX/Unix development and executlon envlfonment 

The VAX and this mlcroprocessor would then need to communteate al the rate that 

motion or synchroRlzatlon requests are generated by the user. Smee an RCel motIon 

request IS of the order of a hundred bytes. the communicatIon between the VAX and the 

micro need not be very fast. ThiS scheme would appear to be extensIble to multIple robots. 

wlth one RTe processor per robot. and the sengle VAX running ReCl user programs. 

t Electrically Programmilble Read Ooly Memory 
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• 3 General (ons,d!ratlons 

Synchronization between robots would be possible either by addlng a robot parameter to -
the approprlate ReCL calls to .dentlfy a part.cular robot. or by having separate Reel 

libraries for the varlOUS robots 

It should be remembered that the motIon equatlons created at the RCeL user level 

are solved ln real t.me by setpomt(). an RTC cont,ol funct.on. when a move(J statement 

is' executed This Impltes that the RTe and ReeL tevels both need access to the hnked . . 
list structure which represents the motton equatlon Unfortunately. the VAX and Intel 

conventions for stonng floatmg POint numbers dlffer ~. so in addition to the problem of 

creating a data area concurrently accessible from both machines. we have the problem of 

changlOg data formats al a low level. 

There are several addltlonal dlfflcultles wlth thls scheme. the flrst of whlch mvolves the 

case of "functlana'" RCel mollon transforms. 1 e. those that are not constant but ,"volve 

some functlon of time or of sensor data ln the first case. where the transforms are slmply 

functlons of tlme. it should be possittle to execute them on the microprocessor system. glven 

real-lime dock functionahty. the second case impltes more comp'ex commUnicatIon between 

the VAX and the microprocessor system to map sensor information between machines "f 

sensors are tnterfaced to the VAX). / 

A practical problem whlch arose at the tlme this work began was the lack of approprlate 

VAX/Unix-based cross-development tools 10 create and download executable code to the 

microprocessor system ThIs meant that the RTC system and any control functlons would 

have to be edltel;i. compiled. and linked on the microprocessor system. obvlously. for the 

ReCL trajeCtory generator this need only be done once. but functlonal "transforms and 

would be ruled out. and the VAX user would lose the abihty to' use RTC by Itself Also. 

source code for the librafles whlch make up the Intel IRMX operattng system was not 

available. meaning that a major portion of the RTC support code development would have 

to be done on the System 310 anyway 

The conclusion was that It is deslrable. but Impractlcal. to decompose the Reel user 

level on the VAX and move the executlon of the control functlon to a separate processor 

The, alternatIve solution IS to port the entlfe RCel/RTe envlfonment to the Intel 

mlcroprocessor system Since RCCl and ItS RTe control functtons are wntten 10 C. and a 

~-~---

t Int,~1 uses tl,t 1 E E E standard DEC doesn't 
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"" Feaslbihty Study 

,) 

compiler was a,vailable for the,System 310. this seemed emlnently possIble, The problem 

could now be decomposed into the followlng steps, 

1. design and Implement an Interface between the Mlcrobo JOint controllers and the System 

310, 

2 design a microprocessor system based around the System 310 whlch could support the 

computatlonal and communication load Imposed by RCCl and the Microbo robot. 

3. design and Implement a new versIon of RTC usmg the Intel iRMX-86 operatmg system. 

4. port the RCCL library to the System 310 

5 test and evaluate the resulttng RTC/RCel system, 

4.4 Feasibility Study 

This section describes preliminary work done to verity that the Microbo system was 
1 

a sUitable target for RCCL/RTC, and that the In~el microprocessor system outlined above 

was capable of sahsfying the imposed restraints. 

4.4. t Execution Time eltimatel 

ln order to determine whether the Intel 80286/80287 microprocessor chip set had the 

processmg power requlfed to support RCCl. some "bali-park" estimates were made. as 

follows 

the performance of the RCCllmplementatlon for the Puma-260 manipulator running 

on a VAX 750 wlth floattng p~int acc~lerator was measured ILloyd 851 in ter';'s of the 

CPU time taken by the RTC control routine un der VëUlOUS conditions. These results are 4-

summarized ln the followlng table, where It should be noted that ln Cartesian mode. the 

(orward and inverse kinematlcs must be computed every cycle. In joint mode. however. the 

inverse kmemallcs need be computed Just al the begsnnmg and end of each moi Ion segment. 

inteffTledlate values are interpolated dunng consecutive cycles If the -sample perlod .IS set 

to 28 milliseconds, Il may be seen that under worst-case conditions the VAX will spend 

over 70% of the time availabl~ between sampling Instants inside the ReCl control routine, 

whlch leads to unacceptably poor overall performance for other users_ The solution was 
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to ose a 56 millisecond sample penod: for the Puma manipulator. this dOes not appear ta 

cause notlceable performance degradation . 
1 1 

\ ' 
1 CPU Time per Cycle for VAX/Puma Impl~mentation : 

Trajectory Mode Time per Cycle 1 

Joint Mode 12.0 msec 

Cartesian Mode 155 msec 

, (art~sjan plus 2 functional transforms 20.0 msec 

Keeping thls mformatlon in mind. we look at the computational compleJtlty of the 

forward and inversr kinematics of the Mlcrobo ln comparison to the Puma. summarized as 

follows (t~is table is repeated from Chapter 3) . 

Kinematic Solution Complexity 

Micr~bo forward ' 30 1 13 

mult : addjsub: sqrt atan2 . sin+cos', 

4 
1 1 

, Puma-260 forward 59 1 29 6 

Microbo inverse 22 13 1 4 

Puma-260 inversê 64 42 2 6 

From the above we "'yan see that the Puma solutions are about twice as complex a~ 

those for the Microbo. 

Next. we IOQk at the floating point perform~nce of a VAX-750 with floatmg point 

accelerator (FPA) versus a 6 MHz Intel 80286 with a 5 MHz 80287 math coprocessor. T.he' 

table below includes results using both the vendor-supphed math libraries and a. set of math 

functions written in 8086/8087 assembler language by the author' 

t The Intel-supplied math library is very inefficient. apparently. liUle use .as made of the 80287 s 8-element 
floating point stllc;k 
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Fioating Point Performance (tlme ln ,",sec) w _______ " 

80286/80287 VAX-750 w/FPA --- 6 < 
Sin (C hbrary) 2500 230 

) 

("'" 

----- ----
cos (C library) ,,2500 230 

s,"+cos (assembler) 540 

atan2 (C library) 2900 310 

atan'2 (assembler) 1 420 

, 4x4 transform muillply 1 2300 250 

multiply (reg-reg) 19.5 2.4 

multipty (mem-mem) 22.5 14.6 
'\ 

From the table It can be seen that the 80287 coprocessor provld~s the 80286 system 

wlth slmilar p~ofmance to the VAX for tngonometric calculations in assembler. but thal 

float,"g pOint multlphcation is almost an order of magnitude slower We note also the 

benchmarks done by Hinnant IHrnnant 84) uSlOg the "Sieve of Eratosthenes". which is 

representallve of non-Roaling pornt operatIons. These results showed the Intel processo{ 

achieving about 35% of VAX-750 speed 

The 80281 do es no~ directly execule the sme or cosine funclions but instead provldes 
, , 

a tang~t functlon whlch talres as mput an angle (J and leaves y and x on the floatlOg pOint 

stack. Sln(O) and cos(') may then be computed using yi V";'2 + y2 and xlJ x 2 + y2 

From this It may be sèen that once the sine has been computed. the cosme result IS 

obtajned with one additional dlvide operation ThiS techmque was used in the author's 

assembly language implementatlon of the san + cosO functlon 

To summanze. the Microbo kmematics are about half as complex as those for the 

Puma. and the 80286/80287 processor has an overall performance of about .0% of a VAX-

750 doing a mlx of math and tngonometry We therefore estlmate that the Intel system WIll 

take about the same tlme to execute the RCel traJectory control functlon for the M,crobo 

as the VAX does for the Puma Assuming slmllar overhead to commumcate wlth the Jomt 

control.lers. we should be able to achleve a 28 mtlhsecond sample rate 10 Joint mode. but 

may be forced to use a slower rate ln Cartesian mode It will be necessary to use the 

assembly-Ianguage versions of the tngonometric functlons as the correspondlng calls ln the 

standard C math library are unacceptably slow. 
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4.4.2 Force Sen.ina 

The VAX/Puma Implementatlon of RCCL computes JOlOt torques based on the assump­

tlon that these are linear(y proportIon al to the JOlOt motor currenU There IS a sensmg 

reslstor ln senes w.th each of the Jomt motors. and the resultmg voltage IS filtered and sent 

to the Input of'.n analog-to-dlgltal computer The Inverse Jacobean matnx le; used to map 

'the forces from JOint space to Carteslan space As has been shown ln ILloyd 851. even the 
i 

relatlvely low stalle fnctlon terms of the Puma-260 robot contnbute major uncertalnt.es to 

the determmatlOn JOint torques The correspondtng fncl.on of most of the Mlcrobo JOtnts 

is. by observation. at least an or der of magnitude h.gher. and rules out thls method entlrely 

Mounttng torque transducers dtrectly on the JOint shahs would not overcome th.s problem 

The preferred solution would be to use a wnst-mounted force sensor Preferably. thls force 

sensor would be "mtelhgent" that IS. It would map the forces .t detected orUo a carteslan 

coordlnate system attached to the wnst We can thm transform forces to the tool tlp 

where 

This is of course computatlonally far less expenslve than computmg the forces at the 

tool tip {rom the motor currents via the Inverse Jacoblan transformation. and ehmlnates 

the problems of stalle fnctton Compensation would have to be made. of course. for gravit y 

loadmg due ta changes tn th~ confIguration of the wnst 

,4.4.3 The Interface to the Joint Controllers 

The 'RCCL traJe<:tory generator assumes synch,onous control over the JOInts That IS 

the path of the end effector 15 controlled by breaklng motion up mto segments of equal 

tlme durat.on and repeatedly computmg and speclfytng setpomts. or target POSlt.ons m 

J~lnt space Each JOlOt must therefore servo from setpoint to setpomt by computtng the 

veloelty and acceleratlon reqUlred so as to smoothly reach the new setpotnt at the end of 

each sample period The JOints must not decelerate as they reach the setpomt rather. they 

should assume that the veloelty WIll remam the same during the next segment Stlffness 
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dunng motion and whlle al ,est must be mamtained We note m passing that the Puma s 

Ummatlon cOlltroller has the JOlOt-level mlcroprocessors uecutlng a PID:based (Propor­

tlonal. Integral. Derivative) control algonthm whlch satlsfles the above reqUirements The 

detalls are propnelary 'nformation of UOimatlon 

ln the chapter descnbmg the M,crobo robot. we examlOed the JOlOt controllers. thelr 

communication protocol. and the control algonthm that they Implement We saw that as 

programmed by the vendor. the JOints assume asynchronous control There IS no notion of 

a sample rate. and thus thelr veloclty and a~celeratlon must be set exphettly Addltlonally , 

some of the JOints have more th an one work area. slOce the word slze of the JOlOt encoder 
1 

15 insufflClent to cover the entlre physlcal range of the jOlOt ln order for these JOlOt'5 to 

lravel from one work area to the next. a special command must be sent to exphCltly cause 

a change of work area 

If we wish to control the Mlcrobo jomts ln a synchronous manner wlthout reprogram­

min' the cbntroller EPROMs. we must venfy that we ar~ able to 

- mterrupt and commUnicate w.th the JOlOt processors as fast as every 28 milliseconds f 

wlthout dlsruptm, the JOlOt servomg. 

- accurately control jomt velocltles. 

- defeat the JOlOt-level traJectory cont~ol. 

- deal wlth the work area problem 
• 1 

The Muitibui Adapter Card 

ln order to communlcate at hlgh speed wlth the Mlcrobo JOint controllers. an mterface 

was deslgned whlch maps a logltal segment of the Cl bus lOto the 1/0 space of the 

Multlbus ln thls way the JOint procesSQr-s' control and data reglsters may be dlfectly 

accessed by a processor on the Multlbus The Multlbus 1/0 space rather than address 5pace 

was used because the full 1 Megabyte Multlbus address space 15 requlfed for contlguous 

RAM and ROM memory 

Figure 4 1 shows the Multlbus Adapte~ card It resldes on the Multlbus. wlth a fiat 

cable connectlon to the RCU Cl bus The cable 15 shlelded and hmlted ln length to about 

'l Tnls rate IS a nlstorlul artlfact of the Puma ImplementatIon We (ontlnue to use the 7 H 28 scheme 
10 mamtaln compatlblhly Wlth Reel funetlon calls whlch deal wlth the umpte rate 

62 

1 
1 



4. Feaslblhty Study 

l 

" . 
. (\ 

" 

~Olb/ \111:: ... 0 r 

'th.M • .J "'''Mu/' u~t. 
~~\ MMtl)' 

t.. 
rt:LlU 

~"Lb "bn~~1 
't..AI'.ILI L~\c... 

\-\DL bAI 
1l.ua\\IUS. 

\ 

~ 
~ 

A't:J~-" ~td.S. 
I\W 

~ 
~ 

L..--

J, 

LIY\t.. 

~ 't:>r-,j~ 
Ao-AI5 

• • 

-

! 

txb-t:>':f , L't\~ ~- 't)~ , 
..... 

'~"I\(b.j~ 

, , 
t 

-. 
Fiaure ~.J Th~ Mult.bus Adap~er (ard 

63 



• t 

4 -

... 

.... Feas.b.hty Study 

l meter due to the fln.te current source capabihty of the bus draver chIps Sance one of the 

desIgn conSlraants was that the IRL processor remaan resldent ln the system. the adapter 

card asserts the IRL CPU:s 8085 hold Input and walts for the appropraate hold acknowledge 

(HOLDA) sIgnai before takan, control of the RCU Cl bus Once thls low-Ievel handshakmg 

has taken place. the IRl processor's bus dravers are assured to be trr-stated and the adapter 

can safely drive the Cl bus The connectlon to the~ hold and hold acknowledge signais of 

the IRL processor. whlCh was the only modIfICatIon made to that cardo has no effect on 

the operation or the ca rd except when the Multlbus adapter IS present and actIve. and thus 

5atlsftes the constraJOt noted above 

The tlmang of the bus Interface 15 shown ln Figure 4 2 The sequence IS IOltlated by 

the addre5s decoder detectan, a vahd address ln conJunctlon wlth the Multlbus IOWR/ or 

IORD/ SIgnais ThiS Inltlates the HOLOsignal onto the Cl bus The conJunctlon of HOLO 

and the resultang HOLOA from the IRL CPU then enables the adapter card's bus dravers to 

place an address onto the Cl bus. and IOlllate the acknowledge tIming The bldlrectlonal 

data bus drtvers are enabled ln one d.rectlon or the other dependanK on whether th.s IS a 

read or write cycle We use a shlft reglster clocked by the Multlbus CCLOCK SIgnai t~ 

generate the Multlbus XACK/ SIgnai after a delay of 5 docks. or about 1 microsecond 

The XACK/ s.gnal causes the Multlbus master to remove the IOWR/ or IORD/ SIgnai and 

the cycle ends 

We note that the adapter ca rd currently does not control the RCU C2 bus. whlch 

contalns the anterface to the RCU power control relays. teach pendant. and other 1/0 

devlces We therefore rel y on the 1 R L proce5sor to power up the robot and control the 

teach pendant However. th.s tle to IRl 15 h.dden from the user by the ReCl teach 

program. In thls way. the RCCl programmmg envtronment 15 malntaaned for the MlCrobo 

robot (as descrabed ln Appendlll A) 

Communieating at the Sample Rate 

. The d.scusslon an Chapter 2 concernlOg the Mlcrobo RCU showed that each JOlOt 

controller appears as a set of reglsters an the address space of the Cl bus We re.terate 

that every tlme a data or command reglster 15 read or wrrtten. the approprlate statu5 

reglster must farst be read to venfy that the JOJOt controller IS ready ta recelve or send the 

data (If not. the status reglster must be pdftrd untll the appropnate state 15 JOdlcated) We 
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__________ -_. __ .,. ___ • _____________ ~_ .. ______ . ___ ~_ L_ 

Filure 4.2 Multlbus Interhee Timing 

cali each such handshakmg sequence a communication exchange A tYPlCal command wlth 

Its 2 bytes of data th us reqUires 6 bus eJlchanges 2 for the command byte and 2 for each 

data byte 

Every commu~t~n exchange mvobes interruptmg t~e JOint controller from ItS tra­

Jectory or servo contro unctlon Before synchronous control can be consldered. we must 

conflrm that the JOint controllers can wlthstand bemg tnterrupted at the deslfed 28 mllhsec­

ond rate We also need to measure the average duratlon of typlcal RTe communecatlon 

<.\ 
\ 
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sequences 

A test program was wrltten whlCh used the bus adapter described above mstalled ln 

the Intel System 310 Usmg the .RMX-86 operatlOg system. a real-t.me task was crealed 

wh,ct, sent three commands to each jOlOt every 28 m.lhseconds The f.rst command was 
o 

a query for the current encoder value, the next was the command to set a pos.t.on target. 

and the fmal commeand was to set the jOint veloc.ty To begm wlth the new target for each 

JOint was sIm ply set to the current encoder value and the veloc.ty set lo a medlan value 

The program was executed on the ISBC 286/10 processor and Il was conftrmed that the , 
mampulator responded by gOlng lOto "zero gravit y" mode 1 e If placed by hand lOto sorne 

configuration It would stay there The stlffness due to the jomt position servomg was still 

present. of course 

This test confrrmed the operation of the bus adapter and the v.ablilty of synduonous 

communICation w.th the JOints at the rate reqUired by RCC l W,th SIX JOints, three com­

mands per JOint. and SIX bus exchanges per commando we have at least 108 bus reglster 

reads or wntes per sample peflod OSCilloscope analysls showed that the average tlme 

requtred for each bus uchange wlth a JOlOt mlcroprocessor IS about 7S m.croseconds 

ThIS glves a total tlme of 108 ~ 075 or approxlmately 8 mllhseconds to mteract wlth the 

mampulator JOints 

Synchronou. Control of the Microbo Joints 

Because It was ImpractlCal to re-program the JOint processors. we were constramed to 

fmd a way of us,"g them "as 15" The prevlous expemnent had sriown that we could send 

targets and velootles to the JOints every 28 mllhseconds wlthout d,sruptmg the" baSIC 

operation Our neltt task was to demonstrate that we could establash manlpulator-Ievel 

traJectory control and achleve reasonably smoolh motion 

As deswbed ln Chapter 2. the RCCl traJectory generator operates ln an open-Ioop 

manner. RTe assumes jomt-Ievel posItion control ThiS control IS expected t,o honour 

position setpomts generated at the sample rate such that targets are reached e~actly at 

the end of each perlod 

Refe~g to Figure 2 7 Il ~ay be seen that If we slmply send un-edlted position 

requeKs to the Mfcrobo Jomt controllers. then as we approach the "stat,," zone dunng 
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each motion. the jomt's bUilt-1O traJectory control algorlthm will cause deceleratlon. and 

the resultlOg motion Will exhlbit very hlgh Vibration at the traJectory sample frequency 

A solution ,s to have the JOlOts "follow" position targets whlch rema," far enough away 

from the current poslhon so that the deceleratlon phase IS never entered and exerCise 

control via veloclty commands 

ThIs scheme was evaluated. uSlOg the ,RMX-86 operatlOg system. wlth the real-lime 

test system shown ln Figure 4 3 An RMX mallbox was used to queue a set of motion 

requests to an mterrupt-dr,ven "robot task" The latter servlced one such request each 

sample penod by computlOg a target and veloclty and sendlOg the appropnate commands 

to the 10lOt processors. whlle,keeplOg trace rec,ords of actual and requested positions The 

malO program created the sefles of motion requests usmg simple InterpolatIon 

The actual jOlOt target X and veloCity V to send to the JOint each RTC sample perlod 

were computed as follows. where Xd(,m'(d IS the position to be reached at the end of the 

next sample penod. _X m IS the last measured JOint pOSition. and K IS the appropnate 

..-conversl~n factor (deflned by the vendor) 

x = Xdc3Jred + (-X,dc:lU'ed - Xml 

\l = Ir X l' Xde~lrtd - X m , 

The resulting motion of the mampulator was reasonably smooth. and Judged to be 

lood enoJah to proceed with an Implementation of the full RTC layer Us,"g the eXlstl~g 
Joint conlrollers and thls scheme 

Dealina with Work Are •• 

. 
A fmal Issue concerned the Microbo JOlOtS' "work areas" (deswbed ln Chapter 2) It 

",as deslrable thal RTe programmers be able to spec/fy arb/trary posItIon targets wlthout 

havmg to conslder whether a change of work area was requ.,e,~ Us,"g the test system 

descnbed above. vaflous algonthms were trted The one whlch seemed to work most rehably 

mvolved usm8 two encoder cou nt "thresholds" and assoCiated 'transition zones" 

Refe"mg to Figure 4 4, when the actual encoder positIon of a JOlOt passes an upper or 

lower threshold. it IS deemed to be '" a "transition zone". and a command to change work 

areas 15 automatically sent to the joint contraller The thresholds are set such that there 
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Figure 4.3 Test System 

15. some hysteresls. otherwlse the system oscIlla tes T,s scheme contlnuously malntams l 

the JOint lOS Ide the most approprtate work area. bott\lwhen it IS ln motion due to RTe 

posItIon setpotnts. and when It IS -beln~ manually moved (for example. In "zero gravIt y" 

mode durlng teachlng) The only restrtctlon 15 that If the JOlOt speed become5 too hlgh. we 

may pass ail the way through the tran5~tlon zone between samples. and the encoder may 

then "wrap around" undetected As the sample penod IS Increased. the problem becomes 

more sertous 

Jomt 3 has the ftnest resolutlon (see Table tn SectIon 2 5) and therefore represents the 

worst case Refernng to Figure 44. we see that the lower threshold IS 7450 counts. and 

the upper threshold IS 57550 counts (The hysteresls IS thus 57550 - (7450 + 500(0) = 
lOOcounts.) The lower transition zone IS 7450 counts whtle the upper zone IS 65535 

57550 = 7985counts. so the lower zone represents the more dangerous case 
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Figure 4.4 Work Aru Thresholds 

Now. uSlng a 56 mliitsecond sample penod and jOint '3's encqder resolution of 0.0013 

c:'::t. we get a Itmlt of 
7450 'X 0.0013 = 173 mm 

0.056 sec 

whlch represents a performance limitation· For a 28 mllhsecond samphng penod thls IS 

relaxed to 346 7(7. whlch poses no problems 

Some communication and computatlonal overhead IS added using thls scheme. becaus,.e 

we must check the encoder value agalOst two hmlts each sample perlod. and possibly 

send an addltlonal command to each JOint Smce the "change work area" command has . , 

no assoClated data. It reQ.ulres Just two commUnication exchanges 1075 mllliseconds) to 

check the status ,eglster and sent the command ln the worst case (ail jotnts slmultaneously 

changtng work areas) thls adds up to 6 .1< 2 x 0.075 or about 1 ml'hsecond fo,.6 jOlOts 

Summery 

~~r fe.,s,~ihty study has shown that the commUnication overhead for 6 Mlcrobo JOints 

The maximum speed speclhed by the vendor for thl5 JOint 15 apprOltlmately 200 mm/sec 
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under RTC position controlls apprOlumately 8 mllhseconds The worst-case cost of check­

mg for and adJustmg work areas is 1 mllhsecond 

Usmg prOJ&tlons based on VAX versus 80286j287 performance and the relative com­

ple.llity of the kmematlCs of the two robots. we eshmated that the Intel mlCroprocessor 

would take appro.ll.mately the same ttme as the VAX. 20 mllhs&onds. to e.llecute the RCCl 

setpolnt functlon ln Cartes.an mode w.th 2 functronal transforms 

A sample perrod of 56 milliseconds seems to Impose an unreasonable hmlt on the 

ma.llimum veloc.ty of JOlOt 3 due to "work area" problems. but If we use a 28 mllhsecond 

sample perlod. Jornt commUnication overhead then represénts a sertous reductlon of the 

tlme avallable Considerlng that we must leave a reasonable proportion of the CPU to run 

the plannlOg-level program and the operatlOg system. we conclude that an Intel 80286/287 

processor IS sufflclent for traJectory control alone. but InSUfflclent to Implement the JOlOt 

communication as weil 

4.5 The RTe Implementation 

4.5.1 Overview 

-~ 
The solution taken was to Implement the RTC system using twQ, microprocessors. an 

Intel 158C-286/10 and IS8C-86/30 The 86/30 I_S dedlcated to the Interface wlth the robot 

J010t controllers. lOc.ludtng the "work area" overhead The 286/10 IS ded.cated to executtng 

the RTe control functlons and planning level program Communication between the two 

processors IS vIa the RTe chg and how data structures whlCh are located ln dual-port 

memory on the 86/30 The system .5 shown dlagrammattcally ln Figure 45 

Both processors use the IRMX-86 operatlOg system descrtbed ln Chapter 1 The 86/30 

runs a mlnlmally conftgured version ~hlCh IOciudes Just the Nucleus and a smgle user Job 

contalOlOg the robot commUOIcatlon tasks The 286/10 runs a fully conflgured version 

of the operatmg system. Includmg the Human Interface. Application loader. UOIversal 

Development l,~terface. E.Iltended 1/0 System. Basic 1/0 System. and System Debugger 

The RTC and ~CCL hbrartes along wlth a full complement of software devel~pment tools 

. reslde on a Winchester dlsk controlled by the 286/10,. Users may thus edit. compile. hnk 

and load thelr RCel or RTe programs from a video termmal connected lo thls processor 
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An objective of th'is implementatlon :was to achleve concurrency between the robot 

communication and the execution of the RfC control functlon. as ~oon as the setpolOt 

information 15 avallable from one processor. the communtcatlon task on the other can begtn 

ta interpret .t. -send approp;.ate commands ta the jOlOts. and gather state mformatlon from 

the JOints Meanwhile. the flfst processor can compute the ne"t setpoint. 
t 

4.5.2 Task Architecture 

The tssk arch.tecture of the RTC implementat,on is shown in Figure 4.6. and the timing 

may be seen ln F 'gure 4.7_ The followlng discussion refers to these two figures. 

The communication task on the 86/30 processor. whlCh is automatlCally created b~the 
'> 

operating system when the processor boots up. ,nitiahzes a hardware tlmer such that an 

Interrupt occurs every RTC sample period. The task is subsequently iflvok~d each time the . , 
interrupt IS slgnaled. and checks the current state of the RTC system by looking,at a status 

. ~ 

flag in shared m'emdry If there IS no RTe control sessIon active. the task does nothmg 

Otherwlse .• t communicates with the robot jOints ta gather the current mampulator state 
, 

information (the how data structure). and then tnterrupts the 286/30 processor. 

When a user program makes an rtc_openO cali. an RTC control task .s created on 

the 286/10 processor ThiS task flfst m,t.ahzes the RTe' system. bas.cally by clearing the 

appropnate flags tn the fields of the how and ehg data structures 

~n rte _ e ont roI 0 cali causes thls task to set the status flag m shared memory for 

the 86/30 commUnication task The control task then wa.ts for the tnterrupt trom the 

COmmUniCatIon task_ The occurrence of the interrupt indicates that the how mformatlon 

str~cture has been 'updated. that It may be copled to local memory. and that the tlfst RTe 

control functlon (ft) may be executed After the function calI. the control task Signais 

the commUnication task ustng the status nag 10 shared memory. and the chg structure .5 

cop,ed trom shared memory ta 86/30 local memory The communication task, Immed.ately 

s'gnals back the control task via the status flag 

The communICation task then proceeds to process the ehg tnf&mation by 'generatmg 

appropnate MlCrobo Joint commands. whlle the RTC control task concurrently exe~utes 

the second RTe control functlon (f2) such as tht: ~CCl ··setpo.nt" functlon. At this point 
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/ 4 ~ The RTe Implementation 

the èycle repeats. the commUnication task walts for another timer interrupt and the control 

tas~ wa.ts for the "how data ready" mterrupt 

The prtontles of the control and communtcatlon tasks are relatively hlgh. smce these 

are iR'MX-86 mterrupt tasks. the task pnorlty is a functlon of the (prtorltlzed) hardware 

Interrupt level ThiS was selected ln bath cases ta be hlgher than that accorded to ail other 

devices (eg the console devlce' on the SBC 286/10) We thus guarantee that the tasks 

will atways be IOvoked wlth minimum latency 

Limit Checking and Error Handling 

The robot communication task on the 86/30 handles ail hmit checkmg and error han­

dltng RTC~ control programs set the checktng mode of the system via the chg data 

structure The robot commUnlcat.on task. accord.ng ta the flags whlch are currently set. 

checks for observed position out of range. target position odt of range. observed veloclty 

out of range. target veloclty out of range. JOint cahbrated. etc If a hmlt IS exceeded. or a 

looked-for condition reached. a correspondlOg flag IS set m the ho~ data structut'è 

The robot cOmmuntcatlon task also checks for taslc problems sucl'1 as loss cf robot 

power. communtcatlon error while talking to a jotnt. etc Agam. flags are set ln the hOIN 

s~ructure accordmg ta the error 

The RTe contr~ task checks the flags m the hOIN ~tructure once each cycle. and the 

control sesSion I~ termtnated (control task de1eted) If an error IS detected As ellplatned 

above. the control task has hlgher prtOrtty than that accorded ta any other 1/0 tasks on 

the S~C 286/10. sa It cannat do console '/0 We therefore use the concept of a watchdog 

task to handle termlnatlons ThIS IS do ne as follows 

When the control task 15 created by the rte _openO cali. an addltlonal task. called ,. 

the \~atchdog task. IS created ThiS task creates an IRMX-86 semaphore. and then sim ply 

walts at the semaphore for a umt It IS the control task's responslbtlity ta send a Unit once 

each control cycle If the untt does not arrive wlthm the approprtate pertod. the watchdcg 

task wakes up and looks at the state of the system 

Dependlng on the error condition. the robot may be powered down ln any Cclse. the 

control task IS deleted. an approprlate error message IS sent to the user's console. and ~he 

rtc cal/lOg program (an ,RMX-86 Job) is termmated 
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The user can tngger a simllar sequence via the "control-(" key, durmg an RTe control 

session It 15 bound to a special handler whlch gracefully termlnates the session 

The teach() Function 

One prerequlslte for a useful robot programmlOg envlronment 15 a way of "teachlOg' 

robot positions usm& a teach pendant ln the Reel environment. It IS useful to have a 

teach () functlon whlch allows the robot to be moved under teach pendant or keyboard 

control. t~en returns the correspondlng T 6 transform The latter may then be saved 10 a 

database or used ln ReeL motion equations wlthm the calhng program 

Lloyd. 10 hls Implementatton of RTC/ReeL for the Puma mampulator. wrote a teach 

functlon whlch dealt dlrectly wlth the UOimatlon controller' s teach pendant (Hayward and 

Lloyd 85] ln the present case, the IRL Interpreter provldes the basls of the Mlcroba teach 

pendant program 

Because the 808S·ba5ed IRL processor remams resldent 10 the RCU. It was possible to 

Incorpora te It lOto our ImplementatIOn by connectlng the IRl console port to a senal port 

on the 86/30 processor The teach fllnchon. ca lied from tl':~ context of an Reel program 

runntng on the 286/10 processor. Just suspends the current RTe control sessIOn Then. 

US mg a field ln the chg data structure. It causes the appropnate command strlOg to be 

sent to the IRL Interpreter via the senal port ThiS actlvates the IRL teach program The 

robot may then be moved under control of the Re U teach pendant When thls mode IS 

termmated. the IRL teach program IS IOterrupted the T6 transform computed. and the 

RTe control s"ësS'rërifésu""R! • 

The teach functlon also mcorporates a "zero gravit y" mode, such that the mampulator 

may be pushed lOto a desired configuration, and the correspondmg transform computed and 

returned to the calhng program (This corresponds m utthty to the Puma' s "zero gravit y" 

mode) 

Porting the Reel Library 

Once the RTC system descnbed above was up and run",ng. the RCCllibrary could be 

ported to the RMX system. The only prerequlslte was to code the Microbo forward and 

inverse kinematlCs. verify them. and replace the appropnate modules in the library Glven 

the results of Chapter 3. thl~ was falrly stralghtrorward. 
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A s.mple file transfer progr~ (discu~sed ln Append." B) was wntten under Un." • 2Bsd 

to transfer ftles from the ,!!,-X to the System 310 over a senal hRe. and the approppate 

sources were then recompî'Îed usmg the RMX ut.htles The only mod.f.cat.ons whlCh ~ad to 

be made were due to the slrghtly d.fferent pathname syntaxes of the two operat,"g systems 

(RMX-86 and Umx) The assembler-language math and tngonometnc functlons (SlO+COS 

atan2. etc) dlscussed ln Section 4 4 l replaced the correspondlng standard C functlons 10 

the hbrary 

4.5.3 Performance 

Once the RCCl Ilbrary was compiled and IOstalled on the Intel system. a sUite of 

test program. was wntten These were su.tably mod.fied versions of e".stmg appropnate 

RCCl pr.ograms whlch had been wntten for the Puma (Because the M.crobo IS a cyhndncal 

robot. .t s workspace IS conslderably dlfTerent from the Puma' s') These conflrmed that the 

system functloned as expected. and that ail of the supported t ReCL funct.on calls worked 

correctly Motion was reasonably smooth. although there was sorne Vibration wh,ch was 

aU"buted to the MlCrobo' s JOint controllers' poor performance 

The CPU tlme consumed by the RCC control functlon was measured under vanous 

conditions. and the results are shown belo 

4.5.4 Summary of Departures from the VAX/Puma Implementation 

4.5.4.1 RTe 

, 
The .RMX-86-based version of RTC has the same general functlonahty as the VAX 

version. the user Interface IS baslcally unchanged. both 10 terms of the functlon calls and 

the data structures 

The internai Implementation. however. IS qUite dlfferent. due to a} the dlITerent oper­

atlOg systems underlYlng the two versions. b) the d.ffer.ent robots ~nd cl the dual-CPU 

- ---,.. - - - -- - -

As dlscussed in Section 4 4 2 compliance-related calls are not currently supported due 10 the lack of 
appropnate force senslng 
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nature of the the mlcroprocessor-based system ln order to muease efflclency. some func­

tlonallty. for example con\l~rSlon of encoder values to RTe range values. has been moved 

, to "the second (86/30) CPU 

The how and ehg data structures are shghtly dlfferent. the user should look at theu 

deftnltlons ln Irec l/h/rtc h One baSIC change whlch will be noted IS that the user of 

the M,crobo robot no longer deals wlth encoder counts: both chg and how speclfy JOint 

positions 10 terms of range values The latter coordlnates express the JOint variables such 

1 th;t'l"iéy are zero at the joint minimum. and tncrease 50 that the maximum range value IS 

\.xhe range of the JOlOt. elther ln mlllimeters (jOints 2. 3) or...radlans (ail others) 

Speclflcally. It should be noted that the chg, Lmotion vali structure element. wh,ch 

IS used to send pOSition setpolnts to the Joint mlcroprocessors. has b~n ~Iaced by 

chg Lmotion[i] . valir and IS a float as opposed to an i~t field as used on the VAX 

.5;h'lIlarly, the how ,pos elements are now float mstead of int r,~lues 

The ehg LlIIotion[d. set field supports 3 operations 

- POS : simply causes the pOSItion specified to be translated to an encoder value and 

sent to the jOint 

- POSVEL : causes the system to compute velocltles. acceleratlons. and encoder targets 

such that the speCifled p~sltlon becomes the target posItion for the next sample perlod 

- STOPCAL : causes the JOint to be stopped and sent tOitS mechaOlcal calibration position 

(via the jotnt-Ievel calibratl,On command) 

The CUR command IS not supported. due to lack of direct control of the DIA converters • 

on the Microbo JOint controllers The present J0ln't controller firmware does support "read 

tnstantaneous current" and "set maximum current" commands, but the traJectory algoflthm 

IS sulI operatlve. so that these commands élre of no practlcal use ln terms of RTC current 

control requirements 

As would be expecte<t. the error messages rettfrned by RTe are generally dlfTerent from 

the messages of the VAX/Puma Implementation ln particular, there are two functlons 

pfint-rtc .error() and print terminate code () whlch have been re-Implemented to 

prlnt approp~,ate error messages strmgs o~dout devlce These functlons are found m 

/rccl/rtc/prterror .c. and the error code de~,t"ons are found ln Irccl/h/errors.h 

As has been noted ln Chapter 4. the VAX and Intel floatlng pOint bmary formats are 
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dlflerent. Intel uses the 1 E E.E standard. DEC doesn"t This has no Impact on the current 

Implementation 

..5 .•. 2 RCCL 

The MlCrobo Implementation of RCCl supports ail functlons except those deahng wlth 

comphance or force The RCCL hbrary was ported baslcally unchanged. except where com· 

piler IOcompatlbilltles were encountered One such problem was that the 80286 processor 

15 a 16-blt machine. so that the C int type IS 16 bIts as opposed to 32 bIts on the VAX 

This does not cause any problems as long as programmers remember to use the long lnt 

type where reQUlred leg the termina te global vélrlable) 

The setpoint () control functlon was modlhed to work wlth the new chg and how 

itructures. and the force-related code was removed 

Some of the mathematlcal functlons,were re-wriUen 10 80286/80287 assembly language. 

and the correspondrng C functions were removed from the IIbrary They are aine 08 () • 

atan2(). crosa O. dot (). hypot (). iov.rtO. reduceO. and trmult() Note that 

sincos () had been prevlously been Implemented as a C macro These functlons may be 
~ 

found ln /recl/math/ 

4.5 .•. 3 Robot Calibration 

Each of the Mlcrobo' s JOints has a mechameal calibration positIOn. when the JOlOt 
1 

controller recelves a "cahbrate" command It Will seek thls pOSItion Assoclated wlth the 

command IS a t6-blt value. thls becomes the encoder value at the calibration position 

The values used ln the present RTe Implementation are those onglnally used by the IRL 

system. and are deflOed 10 the free Ifhfconstants. c program 

The ratios of encoder counts to JOint mbtlon was first taken from the vendor' s speClfl' 

catIons. but these proved to be mostly Incorrect Measurem"'énts were then taken and the . , 
correct· values Incorporated . 

As wlth the VAX Implementation. the constants program contalns ail the baSIC robot 

constants calibration pOSItIons. JOint ranges. encoder counts per range unIt. etc Compll­

mg. loadmg. and executlOg thls program results ln the cre~tlon of a C IOc/ude ( h) flle ln 

the VAX/Puma case thls was cal/ed pwnadata .h. It IS now ca lied mierobodata. h ThiS 
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f.le may then be IOcluded wherever the co~stants are needed 

The M.crobo maOlpulator may thus be callbrated via chg structure command5 the set 

flag should be set to STOPCAL. and the how statue word polled untll AU JOINTS 15 

detected At thls pOlOt the correspondlng range values may be read from the how struct 

A calibration program. called calib. eXlsts to do the M,crobo calibration The source 

code for thls program may be found ln /rccl/control/calib.c Note that the encoder 

calibration values are IOternat to the .SSC 86/30 CPU's code. they are not sent from the 

RtC level 

".5.4.4 The Teach Funct;on 

As dlscussed ln Chapter 4. a teachO functlon was wnUen which makes use of the 

IRlteach .program and the MlCrobo's teach pendant 

The calling protocol of teach() 15 Identlcal to the VAX/Puma Implementation. there 

are also teach_po8 (). teach t6() and teach angles () functlons whlch cali the baSIC 

teach functlon 10 d.fTerent ways The source code for these 15 ln /rcc:l/teach 

The actual operation of the M.crobo teach functlon 15 dlfTerent from the VAX/Puma 

version. Il 15 simpler and more re5tnctlve 

The name "zero gravit y" 15 perhaps a ml51eadtng term. there 15 no gravit y correction 
, ' 

The JOints are merely servoed to theu observed posilion The pnsmatlC jOints are treated 

dlfTerently ln that IOtegratlon 15 turned ofr at the jOlOt level and the veloclty and accelerallon 

these jOlOts 15 set to zero. for ail other. JOlOtS. the veloClty and acceleratlon are set to 5mall 

values 

The teach functlon has the followmg commands 

Z . Enter "zero gravit y" mode l he current JOint parameters are saved. and a the appro­

prtate RTC control functlon 15 used 

" z EXit zero gravit y mode 

m Move JOint us mg keyboard The program Will query for a jOtnt number and a target 

position (m RCel coord,"ates~ 

p Enter teach pendant mode The current control session 15 suspended. and the IRl 

teach program takes over control of the robot User5 should consult the IRL manual 
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entry under "TEACH" Control may be returned ta the RT C system by typmg any 

charaete, Ifol1owed by a camage return) 

xd, Examine pOSition. degree coordlnates The current positions of the SIX JOints' are fetched 

and dlsplayed on the console. en Unlts of degrees or mllhmeters The coordlnate system 

IS as defmed ln Chapter 3 of th.s thes.s. see the constants c for more Information 

Ar' Examme pOSitIOn. radian coordlnates Simllar to the above. but (oordlnates are radians 

or mllhmeters 

xR' Examine poslt.on. range coordinates As above. but values are ln range (oordlnates 

zero at the joint"s minimum. and ellpressed ln rad.ans and m.lllmeters . 
~ 

X ' Examine motor parameters The Microbo JOlOt controller parameters for the reQuested 

jOlOt are dlsp'ayed IAppendlll B) 

h . Open hand There a,e two relays to open/close the hand. are operated 10 an "exclusive 

or" manner 

" 
H Close hand As above 

• EXit teach funellon, 

~ Prlnt menu of allallable commands 
""f 

".5 .•. 5 The Databaae Utility 

ThiS operates ellactly ~s does Hayward's ongmallmplementatlon. except that the max­

Imum length of the "name" string IS now 32 character5 (was 16) Also, the configuration 

field of the TRSF structure IS now saved ln the databa5e The database program sources 

may be found !n /reel/db/ the main module 15 /rcc1/db/dbot, c An example program 

whlch uses the database funellons IS /rccl/db/test db c 

•. 5 .•. 6 Exaltlple RTe Programs 

A number of example programs ~t the RTe leve" may be found m /rccl/coAtroll 

These are Iisted below 

calib . c ThiS I~ the calibration program 

limp. (: ThiS ""mps" the robot JOints by turnm, off the Mlcrobo's arm power relay 
r 

marah. c Puts robot ln 'zero grav.ty·· mode 
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report.c Repeatedly reports the current JOint positions. In degrees/mliitmeters 
'1 

test. c A general-pur pose test prog;arri to send commands to the mdlvldual robot JOInts. uSlng 

the chg structure Most commands normally affect a single Jotnt. the default .s tnlt.ally 

JOlOt 1. and may be changed USlO' the "J' eommand test mcludes code to set the 

JOlOtS' so-cilll~d "motor parameters" (Appendlll. B) The avallable commands are 

a set JOint accelerat.on 

f set JOInt veloclty factor 

h open hand. 

H close hand 

\ -set JOint number for subsequent commands. 

k set jOint dynamlc mtegral 

" 
~! K set JOint statle Integral 

m move JOint to target at current velocity 

M servo jo/Ot to target. compute velocity 

0 output bit dear 

0 output bit set 

P power off robot. 

p power on robot 

q qUIt 

r set sample rate 

8 stop Joint at present POSitIon. 

\' set JOint velo~lty. 
\ 

V set statle zone JOlOt veloe.ty. 

y. examine poslt.on 

X examme motor parameters 

Z set statlc zone size 

? : ptlnt menu of aV~Ilable commands 
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----- ------ - -----~------- - -- --

Tr.jectory ~ode Time per Cycle 
---- ------....._~- --- --~ --..., 

JOint Mode 180 msec: 
--~----~--- ----- -- - ---------

Carteslan Mode 255 msec: 

___ ~~rteslan plus~ 2 functlonal transforms 335 msec: 

As predicted by the feaslbihty study. ReCL "JOlOt mode" will run successfully us mg 

a 28 mllhsecond sample penod. but "trajectory mode" timing is marginai al thls rate. 

as not enough of the CPU 15 avadable to run the main user program and take care of 

system overhead ln thls case. a new robot mterrupt may arrive be~re the previous one 

has bt!en servlCed The operatrng system Will detect thls and abort the RTe task (wlth an 
, ~ 

appropnate error message) A 56 mllhsecond sample penod IS thus required ln thls case, 
r 

ln addItIon to the standard tests, a multl-robot demo program (Figure 4 8) was wfltten 

by eVaRL researchers (Freedman, et al 85) This had both the Puma and MlCrobo 

robots. each under control of ReeL. cooperat'"' to IOspect and reparr a small CIrcUIt 

, board ,CommunicatIon bet'ween the Intel 5ystem 310 and the VAX network was vIa a 

seriai hnk This test successfully exercised a good portion of the Reel library, 

-
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51 Evaluation of the RCCL/RTC Pro"rammlng Envlronmcnl 

Chapter 5 Summary and Conclusions 

ThIS thesis has descnbed an implementation of the RTe/ReCl robot programmmg 
• 

and control environ ment for a M,crobo Ecureuil manipulator The system is based on ~ set . l 
of Intel mlcroprocessors. resident on a Multlbus. connected ~Ia a custom-butlt bu~ Interface 

to the M,crobo's RCU control unit 

ln this final chapter we evaluate the utlhty and performance of our implementation. and 

discuss possible future enhancements. 

-5.1 Evaluation of the RCel/RTC Programming Environment 

The RTe/Reel envlronment provldes progtammers wlth a flexible set of tools for robot 

programmmg. The RTe layer allows users to wnte basIc manipulator control progr,ams 

(eg "zer.o gravit y" and "teach" functlons) by provlding easlly used mechanisms to access 

the JOint level of the control hlerarchy The ReCL functlon library. using RTC. provldes 

Carteslan path control uSlng the notions of homogeneous transforms and motion equatlons 

T'he ReCl "motion request queue" allows concurrency between the plannmg level and the 

control lèvel. though the programmer must be careful to expltcltly synchromze the two 

levels uSlng the mechanlsms provlded ReeL. as claimed. proved to be easlly transportable 

to a dlfferent CPU. computer architecture. and manipulator 

Programmmg expenence. such as the multHobot demo descnbed ln Chapter 4. has 

shown that ReCl is really quite a low-Ievellanguage For applications where programmers 

wlsh to be relleved of more of the detalls of path planmng . a hlgher-Ievel user mterface to 

RCCl might be.,provlded '!"lp'ementlng an -intelligent task planner uSlng a language such 

f' . • 
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as PRO LOG or LISP IS eventually planned as a CVaRL proJect. thls Idea was ongmally 

suggested ln IHayward and Pa~1 83} but to our knowledge has not been followed up 

" 5.2 RCel as a Multi-Robot Control Environment 

A·, baslè Issue addressed by thls work was rhe prOVISion of a untform programming 

envlronment for the CVaRl robots VJle can now control both the Puma and the Mlcrobo . 
ustng RCCL. Dut developtng code on th~ Intel System 310 under RMX IS defmitely more 

patnful than on the VAX under Unlx,4 2Bsd Ideally. ail code development should be done 

on the VAX. and the resulting executable files downtoaded and executed on the Intel system 
, 

Cross-development tools do eXIst. for example thf! "Amsterdam Compiler KIf" IKeizer 851. 

whteh would allow thls An assoclated Issue IS the commUntcatlon "nk between the VAX 

and the Intel system The current solution is a 9600 baud sertal Itnk This IS reasonable for 

transferrtng source files. but would be msufflcient to transfer' an RCel executable Image. 

whu;h tYPlcally exceeds 100.000 bytes of code and data ~ 
yf ." ,; 

Extendlng the eXIsttng CVaRl Ethernet to the System 310 IS possible usipg the Intel 

iSXM-552 Ethernet Communtcatlon board and INA-960 Transport Software This package 

supports the ISO Transport protocol to level 4 (Transport layerr and 15 avallable for the 
• 

RMX-86jSystem 310 environ ment ThiS would provlde a 10 Mblt/second transfer rate. 

and would allow RMX tasks to communtcate wlth UntX processes. for example via RMX 

mai/boxes at one end and UntX sockets at the other The requislte hardwa(e has been 

acqulred and a project IS currently underway at CVaRl to Implement the Ethernet Itnk It 

is noted that the iNA-960 Network Management layer also Includes a "boot server·:. thls 

would permIt cf6wnloadtng and boottng processors over the Ethernet 

Given the network support descrtbed above. multl-robot programs cou Id be wntten as 

sets of processes whlch communlcated over the network for purposes of synchrontzatlon 

The practlcality of thlS scheme has already been demonstrated by the multl-robot demo' 

described ln Chapter 4 Ultimately. It may be deslrable to be able to control multiple ma-

, nipulators from a single ReCl appltcatlon program, thls Imphes modlfYlng_ RCCL functlOn 

calls to take a robot Identifier as an addltlonal parameter (This IS the solution used '" 

~ Because of the use of C tnclude' hies ail RCCL library funetlons whether or not aetually called are 
Included ln the hnked ReCL executable module 
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S 3 hecutlon Speed Improvements 

the AL system IMuJtaba and Goldman 79). a~d I~ considered m (Lloyd 85)) This 15 an 

Important area for further rese-arch. 

() <Q, 5.3" Execution Speed Improvem~nts 
. . 

As seen m Chapter 4. the 80286/80287 CPU's major computational bottleneck is not 

~ trigonometnc calculatlons (sme. cosme. atan2) but floating point multiplication and divl-
o 

" sion: CVaRl's VAX-750 wlth its Floattng POint Accelerator does a 32-blt floatmg pomt 

multiply in 28 ITucroseconds versus the Intel 802&7'5 19.5 mlcrosècoflds. When RCel I~ 

operatmg m Carteslan mode. the motion equatlon is re-solved every sample perlod. depend-, 
ing on the makeup of the equatlon and the types of transforms tnvolved. the number of 

mul!,phcations varIes Constant transforms are pre-multiphed together wherever possIble 

to optlmlze run-tlme executton TYPlcally. transform multiphcations are a major component 

of the computatlonal overhe.ad. takihg a.pout as much time (on the Intel hardware) as the 

combmed forward and Inverse kmematlcs 
,. -

t! One way of Increasmg the perfprmance of the mlcroprocessor-based Implementatton 

w~uld be simply to upgrade the 80287 co-processor from the curre~ MH~ part to 8 MHz. 

and slmllarly replace the 5 MHz 80286 with a lOMH2; version. Th,s should result in a 33% 

speed Increase ln floattng pOInt math perfor~ and a larger overall mcrease ln executton . 
speed . At thls CPU dock rate. performance would be hmlted by memory access tlme 

-
A more dramatle Improvement would mvolve a~mg a~ array processor to the System 

310. several are currently avallable for the Multlbus INumerix 85) This should result ln an 

order of magnitude Increase m the performance of transform multiplications. and inverSIons 

From the results of Chapter 4. we see that the communicatIon task (on the ISBC-

86/30) currently is busy durtng about 8 milliseconds of' evety con~rol cycle. whlle the 
.... . 

Rcel "trajectory generator may use 25 5 mllhseconds There IS a major Imbalance here. 
e 

and It seems that another optIon would be to move the forward and Inverse klnematlcs 

from the 158C-286/10 to the 158C-86/30 ThiS would involve changing the how and chg 

data ,structures to mcl.ude the T 6 transform ln thls wpy the Rcel trajectory generator 

ne~d ~ot compute the forward kmematlcs at the beginOlng of each control cycle. It could 

sim ply copy the current value of T 6 from the how structu~ JO shared memory ~imilëlrly. 

after a target T 6 has b~en computed. thls can be copled lOto th, chg struèture and the 
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appropnate fJag set. The ISBC 86/30 commUnication task (now a "communlcatlon and 

kinematiçs" task) would then ellecute the Inverse kinematlc solution to ftnd the appropnate 

Joint variables This scheme should redress the present executlon-tlme Imbalance between 

the two processors. and allow RCel to use a faster samplmg rate 

It IS recognlzed that in "Jomt" mode the trajectory generator. at the begtnnlng of a path 

segment. would still have to perform the Inverse kmematlCs to compute the jomt variables 
\ 

for the endpolOt of the segment. This is because IOtermedlate setpomts ln thls mode are 

mterpolated between Jomt values computed for the start and end pomts of the seg~ent 

5.4 Upgrading The Microbo Joint Controllers 

'-- As we have seen. the Mlcrobo jomt con troll ers . algonthm 15 inappr~prlate for the RCCl 

approac,h It needs to be re-deslgned 50 as to provlde a better match with RTC reqUlre­

ments We relterate that the baSIC change would be to an algorithm that expects to 'be 

driven synchronously at the RTC sam pie rate with pOSition setpoints A PID-based con-

trol scheme. as Implemented by Unlmatlon for the PUMA 260, woul~ 5eem to be more 

ap.propriate. although thls 15 an interestmg area for research. 

An Improvement to be m"ade during any future re-Implementation would be to ehminate 

the vendor's "work area" sc he me entirely This could be dc.ne simply by increasmg the 

word slze used to store encoder values trom the current 16 bits to 24 bits (18 bits are 

actually needed) 

A current project at CVaRL involves modlfying one of the Jomt controllers by replacmg 

some~f Its ROM wlth RAM. and replacing the, current hrmware with a simple momtor that 

allows thls RAM to be downloaded via the Multibus ln thls way new control algonthms 

may be compiled on the VAX using 8085 cross-dev~lopment tools. then downloaded and 

executed at the joint level. 

5.5 Conclusions 
" 

This thesis has described the deSign and successful illlplementatlon of the Robot CQn­

trol C Library. RCCL. and ItS underlying Real Time Control system. RTC, for the Mlcrobo 

~' Ecureuil industnal robot. us mg a multi-microprocessor system. The de;ign was based on a 

/' 
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5 5 ConclusIons 

prevlous implementatlon of RCCl/RTC for the Puma 260 rÇ)bot and a VAX/UNIX enViron; .-

ment The task included' deslgn;ng and Implementing an interface betwèen the Microbo s 

jOlOt controllers and a .~ultlbus system. the Intel System 3tO: solving the robot's forward 

and Inverse kmematlcs. destgmng a multî-mlcroprocessor architecture. based on the Intel 

80286/.87 and 8086/87. whîch had the processlng capabilîty to support RCCL's computa­

tionalload. re-deslgnlng the RTC tayer to run under Inters IRMX-86 real-time multl-taskang 

operat,"g syostem. and creattng a usable development environment'for RCCL users. It was 

shawn that thîs system IS flexible and expandable. and opens the way to the Impl~men-

talion of a multl-robot programming and control envlronment for the McG,1I UOIversÎty's 

Computer Vision and Robotics laboratory . 

... 
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Appendix A. Creating and Running Microbo Reel and RTe 
Programs 

This appendlx 15 mtended as bflef. mformal gUIde for those wlshmg to create and 

execute RCCl or RTe programs for the Mlc'obo Robot 

We presuppose that the reader has a worklOg knowledge of the C pr9grammmg lan­

guag~For more complete informatIon on the user IOterface to the IRMX-86 operatmg sys­

tem. the reader should refer to "IRMX-86 IntroductIon and Operator's Reference Manual" 

Intel publicatIon number 146194-001 For more tnformatlOn about the varlous compllers 

hnkers. edltors. etc the reader IS referred to the approprlate Intel manuals 

The hardware referred to ln thls Appendlx conslsts of the Mlcrobo EcureUIl robot and 

Its RCU control Unit. connected via a bus Interface to an Intel System 286/310 runnlng the 

IRMX-86 operatlng system The System 310 ha~. In addItIOn to the standard 286-10 CPU 

cardo an addltlonal processor ln the form of an ISBC 86/30 ln additIon to the standard 

5 1/4 Inch fi oppy and 20Mbyte Winchester dlsk. there 15 an ISBC 208 f10ppy controller 

connected to an 8-/Och floppy dlsk drive The latter IS used for boottng the 86/30 CPU 

A.t Notation 

This font shows mate rial typed by yo~ or tpe system. The symbol "-" IS 

used to denote the CTRl key Terminale each command Input wlth the RETURN key. 

4..2 Starting Up The RMX System 

1 (onnect a lermmal to the secondary RS232 port (J21). and then turn the power on 

2 As soon as you start to see a few .. "," s . type U. This wIll trlgger a self-check As saon 

as you see the system prqmpt "INPUT l'' type -C 

3 Move the terminai to the pnmary port (J20) (unless there IS another terminai avallable) 

and walt for the RMX system to boot up Vou must type ln the date and tlme (after 

the . DATE." and "TIME· .. prompts) 50 that ail your work wlth fIles will be properly 

tlmestamped Here IS the date format dd month year. for example 4 dec 85 

4 Get out the 8 Inch floppy dlsk marked "86/30 boot disk·· from the plastIC BASF storage 

case ln the tool cupboard (The cupboard should normally be locked. sa you mlght 
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need to flnd someone wlth a key ) 

5 Turn on the upper 8 mch external"dlsk drive IwhlCh will actually tum on the lower one 

too)': and then Insert the boot dlsk mto the lower dnve 

6 Move the terminai back to the 'secondary port, and type b : dO' ~630 Now walt for 

a system message Irke )(X)(x = robot task token' Remove the boot dlsk and then 

power off the dlsk drives 

7 Disconnect the terminaI. and connect the Mlcrobo to the same secondary port of the 

RMX system, through an RS-232 Inverter 

8 Power up the Mlcrobo from the front panel of the robot controller 

9 Type calib to cahbrate the Microbo Note that the -l'calibratlon" posItion IS not the 

rccl "park" position 

A.3 How To Transfer Files To/From The RMX System 

WARNING The RMX system only allocates 14 characters for a filename plus Its extension. Take 

note of your nammg convention. smce foo c (5 characters) becomes foo.obj (7 

characters) wh en compiled ("translated". In Intelspeak) 

1 Set up the UNIX ahases for rmxcom, rmxput, and rm.xget ln your .cshrc flle 

2. Dlsconnect the pnmary terminai (CU20) and connect the RMX system to the TTY02 

port on (URL Y (whlch has no getty) You need ta use an INVERTING cable to do 

thls 

3 Type rmxcom to establish communication wlth the RMX system You can check the 

l!Ok by typmg. say. dir for a look at the dlfectory 

4 To SENFftle foo.bar to the RMX system 

(a) Type rmxput 

(b ) Type f 00 ba.r after the prompt / 

(c) Type RETURll after the next prompt. unless you want ta use a dlfTerent fllename on 

the RMX system The f,le Will now be echoed at your termmal as the downloadmg 

takes place 

5 To GET a flle foo bar from the RMX system. Just use rmxget and follow the prompts 

as for sendlng a flle (see prevlous step). 
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A.4 Some Notès About The RMX System Editor "Aedit" 

WARNING ThIs edltor. unhke EMACS. IS nddled wlth "modes' It IS menu-~rlven. and really not 

too hard to learn wlth a command "ne at the bottom of the screen 

1 Start up the edltor by typmg aedit filename The default "macro hie" (aedlt mac) IS 

currently a cap y of "tv1924 mac' . whlch means that the edltor works for the TeJevldeo 

924 Ta use It wlth a TeJelildeo 950. type aedit hlename mr(tv960.mac) 

2 Your very hrst command ought to be ~G to properly Imt.allze the edltor for the TVI 

924 or 950 termmal types 

3 Thanks' to thls author. the edltar now resembles our or EMACS (albelt ln a tembly 

superflClal wayl) Here are a few commands to get you started 

~c = set tabs. IOdent. Y.ew~ne. etc . 
~c = cancel the current command 

AF = forward char 

~B = backward char ~ .. 
~Xf '= Jump fo,ward ward 

~Xb = Jump baekward word 

~N = next Ime 

-p = prevlous line 

'~D = delete char 

-K = delete ta end of line ~ 

-y = undelete (a la yank from kilt butTer) 

~A = go to begmnmg of hne .i ,. 
~E = end of Ime 

-v = serail 1 screen down 

-x = macro eltecute 

4 And" here are a few true blue~editor commands 

1 = enter "lOsert" mode. ta add stufT after deletions 

ESC = return to the command mode 
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q = enter "quIt" mode From here. type u to update your frle on disk. l to look at 

(visit) a new flle. a to leave the edltor. 

5 For more detalls (deOlals1 ). see the Intelspeak "AEDIT" manual. 

A.S How To Backup Your Files On Fioppy Disk 

WAR N 1 NG A 5 1/4 lOch floppy dlskette only holds 360 Kbytes Before you begrn. delete ail 

unnecessary files such as BAK. lST. MP1. OBJ. and ESPECIALLY the executable 

Images 

1 Acqulre (beg. borrow) a 5 1/4 lOch soft-sectored unformated double-slded double­

denslty 48 tpl floppy diskette 

2 losert the dlskette lOto the dnve on the RMX system 

3 Type attachdevice wmfdxO as . fdO: If thls falls. pull out the dlskette. re-Insert 

Il. and try agam. 

4 Type format fdO. to format the diskette This WIll take a few moments 

5 Type backup /foo/bar over . fdO: to save ail files and dlrectones wlth the robt 

Ifoo/bar 

6 When the system asks the quèstion about "Mount Backup Volume" (Intelspeak) Just 

type y (you agree) 

7 When you get the "Backup Complete" message. type detachdevice fdO: and re-

move- the dlskette l'''.r 

A.6 How To Compile A Program Called foo.( 

1 Flrst prepare a cc csd flle Note that you must use the Intel "LARGE" compilation 

mode\. and that the C mterface Ilbranes used ln the Imk step are currently only avallable 

for thls option The standard submlt flle looks "ke thls 
c86 tO.c large verbose lnclude(!lncl) include Urccl/h/) to ~O ob] 

13 2 To actually compile (··translate". In Intelspeak) the frle type submit cc(foo) ThiS 

will create a flle called foo ob] ln your local dlrectory (Unfortonately. RMX does not 

provlde somethrng Irke the UNIX makefile. 50 l1's up to VOU to keep tra~ of your 

own changes l 
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A.7 How To link Ail Vour Programs And Create An Executable RCCllmage 

WA~NING Llnklng under RMX IS a slow slow process. Be patient! 
1 Flrst prepare a flle to direct the "nklng called. I;ay. lnk. c sd If your programs were 

called fooi obj. foo2 obj. and fo03 obj. ânlJ you wanted the executable Image to 
be c.alled foo. then your flle would look hke th,s 

link 86 Il 
fool obj. Il 
foo2 . obj. Il 
foo3 obj ... 
Ilib/cc86/1qmain obj. Il 
Irec l/liblrccl.lib. Il 
'/recl/lib/rtc lib. le 
Irec l/lib/microbo.l i b • .te 
Irecl/lib/math.lib. Il 
Ilib/cc86/ios .lib. le 
Ilib/ce86/nucleus lib. " 
Ilib/cc86/1clib lib. Il 
Irmx86/lib/large.lib. " 
Irmx86/lib/rpifl.lib. Il 
/nx86/hb/eplfl.lib. ·Il 
/lib/ndp87/8087 lib Il 
to foo " 
map bind segsize(stack("3000h). memory(8000h) Il 
melllpoo l (8000h .OFFOOOh) 

Note that the order of Items ln the link IIst is Important: if thls IS vlolated. unresolved 

variables errors Will result 

2 To actually perform the hnk step. type submit Ink (assumlng that your hnk submit 

flle 15 c.alled Ink esd) 

A.8 How To Run An Executable Image Called foo 

1 Bnng the panic button of the mlcrobo near the terminai 

2 Power on the mlcrobo by pressing the green ("l") button on the front of the orange 

RCU controller The green hght should come on 

3 Type calib You ought to see the yellow lamp on the RCU c.ontroller box hght up. and 
/-

the program Will echo cahbrat~on lnl t~ated. and then calibration successfuL 

If there IS a tlmeout problem. Just try typlOg call.b agalO. If th,s perslsts. check ail 

hoses. electncal paraphernaha. etc whlch mlght be hlOdermg the movement of some 

of the robot JOints If the yellow hght does not come on. make sure that the Mlcrobo's 
/ 

seriai lme IS connected to the RMX box via the ,"verter. 

4 Type foo (and cross your fmgers l ) 
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A.O ,Notes on Configuring the iRMX·86 Operating System for RTe 

The iRMX·86 operating system must be reconflgured 10 order to support the RTe sys­

tem The Intel Interactive Configuration Utlhty (KU) uses definition files to s,tore syste,m 

configurations; the appropriate files are /rccl/def /'I"mX286. def and /rcc l/def 18630 .~ef. 

The fifst descr~bes the configuration for the 286/10 processor. and the second IS for the 

86/30 processor. The user is referred to the "IRMX-86 Installation and Configuration 

Guide". Intel publication number 146548-001. for mformatlon on the IC U. 

The 286/10 configuration is different from the standard configuration 10 that memory 

between 3000:0 and 3100:0 is r~served for an '/0 user job. called createtask IThis job 

consists of a single task that IS used indirectly to create the high-pnorlty RTC interrupt 

task. The task walts for an obJect to be catalogued in the obJect dlrectory of the root 

job under the name "task". It takes this to be a data structure (segment) containing 

information about an RMX task. and creates ,the task.] 

The 86/30 configuration is a simple system consisting of just the Nucleus and a single 

user Job ThiS user Job contains the robot communication task The appropriate source fi/es 

are m the /rcc'l/mic/ dlrectory. the communication task IS Ircc/mie/robot task. c 
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Appendix '.lB. ' Microbo Joint Controller Command Protocol 

B.l General 

~" 
The reader should note tl1at there were several mistakes ln the documentatIon supplied 

by the vendor The Information presented here has ail been verlfled expertmentally How­

ever. there IS mueh that remalOs obscure about the exact operation of the jOlOt controllers 

The (up to 8) joint processors, communicate with the master processor vIa three eight­

bit reglsters, These are memory-m~pped onto the Ct bus The base àddtess of the registers 

15 jtmper-selectable on each joint processor card The manufacturer' 5 seUIOgs have not ' • 

be.en changed. and are currently set 50 that jOint 0 base address is 5800H. jOint 1 is 5802H. 

etc 

- the data register is readjwrite. located a,t the base addréss, 

the commandregister is write only, 10càtflP al the base address +1 
0, 

the status reglster 15 read only. also located at base address+ 1 

It 5hould be noted the command and 51atus registers are in fact the same. We malnlain 

the distinction 51mply to remain cO,nslstent with the documentation provided ~ the vendor 

Thus the commUnicatIon reglsters for each JOint take up 2 consecutive locations ln the 
f 

address space of the bus. and the 8 joints then take up 16 consecutive locations 

These addresses are mapped Into the 1/0 space of the System 310 via the Multlbus 

Adapter Cardo The mappmg is also switch selectable. but is also currently set to 5800H, 

Thu5 reading and writing the" reglsters" of the various joint controllers may be""done using 
o 

"IN reg 1 58xxH" or "OUT 68xxH 1 reg" if wrlting ln Intel ASM86 assembler language. 

for example. 

.r 

B.2 'Communication Protoé'ol 

Ali communication between the master and the joint micros must observe the hand­

shaking defined by two bits ln the status register 

bit 0' OBF (output buffer full) indlcates that the Joint micro's output buffer 15 full and 15 

ready to be read by the toaster, 
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bit 1 IBE ~mput bufFer full) Indlcates that the JOint "!,,icro's input buffer is full and may not 

be written by the ~aster (slave busy) 

Communication consists of the master sendmg a byte to the command reglster, sorne­

tlmes followed by readtng or wrltlng one or more bytes in the data register The handshaklng 

must be obse~ved for every command send and every data byte read or written. 

Note that the Joint micros are mterrupted by commands. they do not return to the servo 

control functlon unul a command has been completely executed It IS therefore Important 

not ta interrupt the jOint micros tao often (i e more than every 3 msec) and to execute 

the communication as quickly as possible 

Upon Inlttalization of the JOtnt controllers. ail motor parameters. including those asso­

clated wlth veloclty and acceleration. are set to the vendor's default values However, the 

actual veloclty and acceleration of robot motions are contolled via another set of commands 

which interact with certain Mlcrobot registers dlrectly, The velocity increments are 1/32 

radians/second: the default value is 32. hence 1 rad/sec, The acceleratton Increments are 

1/4 radians/second/second. the default value is 1. hence 1/4 rad/sec/sec, 

B.3 Command Summary 

COMMAND = 008 
read DATA bit 

bit 
bit 
bit 
bit 
bit 

COMMArlD = 028 
read DATA 
read DATA 
COMMAND = 04H 
read DATA 
read DATA 
COMMAND = 068 
read DATA 
read DATA 
COMMAND = 08H 
nad DATA 
nad DATA 
COMMArlD :: OAH 
r'ead DATA 
read DATA 
COMMAl1D = OCH 
write DATA 
write DATA 
COMMAUD = OEH 
write DATA 
write DATA 

GET JOINT STATUS 6 ok- in position or within zone of tolerance 
1 ini tialized 
2 fault during motion or initialization 
5 phase error (simultaneous transition on both encopers) 
6 encoder error 
7 user-specified tolerance mode "on" 

GET CURRENT TARGET POSITION 
low byte of word containing current target position 
high byte of worç 

GET CURRENT POSITION 
low byte of word containing current position 
high byte of word 

GET CURRENT ACCELERATION 
byte containing acceleration low byte 
byte containing acceleration high byte 

GET CURRENT VELCOCITY 
byte containing velocity low byte 
byte containing ve~ocity high byte 

GET CURRENT TOLERANCE 
byte containing tolerance low byte 
byte containing tolerance high byte 

, SET TARGET POSITION 
low byte of word containing target position 
high byte of word containing target position 

byte 1 
byte 2 

SET MOTOR PARAMETERS 
proportion~l gain value 
initialization speed setting 

• 
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write DATA 
write DATA 
write DATA 
write DATA 
write DATA 
write DATA 
write DATA 
write DATA' 
write DATA 
write DATA 
write DATA 
write DATA 
wri t.e DATA" 
write DATA 
COMMAND = 12" write DAT 
write DATA ' 
COMMA ND = li" write DAT 
write DATA 
COMMAND = liH 
write DAT 

write DATA 
COMMA ND = 16H 

COMMAND = 18H 

COMMAND = lAH 

COMMA ND = lCH 
write DATA 
write DATA 

byte 3 
byte 4 
byte 5 
byte 6 
byte 7 
byte 8 
byte 9 
byte 10 
byte 11 
byte 12 
byte 13 
byte 14 
byte 15 
byte 16 

" 
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sensor error tolerance 
size of static regulation zone 
maximum speed/256 
dynamic integrat~on constant 
static ~ntegratlon constant 
static speed setting 
motor resistance/thermal capacity 
1.0/thermal resistance 
maximum tempe rature 
gravit y compensation parameter 
inertial parameter 
viscous ~riction parameter 
dry friction parameter 
maximum acceleration/4 
SET MAXIMUM ACCELERATION 

low byte of acceleration ~alue 
high byte of acceleration value 

SET MAXIMUM SPEED 
low byte of speed value 
high byte of speed value 

SET TOLERANCE VALUE 
~aximum difference between target position and 
eurrent position within which the' 'ok'" bit will b~ 
set to "1". low order byte 
high order byte 

SET TOLERANCE MODE ON 
tolerance will now be whatever i8 specified by the 
user via command 14H (see above) 

SET TOLERANCE MODE OFF 
toleranee will be +/- 1 encoder value 

INITIATE STAND-BY MODE 
The joint micro halts aft!r thia command is executed. 
thi8 is the default state after the system is powered 
on. To exit from this state, the joint m~cro must 
either receive an initialization command, or if 
initialized, r~cqive a position commando 

INITIALIZE 
10w byte of "initialize" position 
high byte of "initia1ize" position 
Th~ joint micro will move the joint to the meehanical 
initial position. then assign to this position the 
"initialize" value sent via the data register. 

STOP (SET TARGET TO CURRENT POSITION) COMMAND lEH 
COMMAND = 22H 
write DATA 

SET POINTER FOR ACCESS To JOINT MICRO RAM 
low byte of an address in the ram'of the joint micro. 

write DATA high byte of the address. The default value of this 
pointer is the location of the software version 
number. 

COMM4ND = 24H WRlTE BYTE IN JOINT MICRO RAM 
read DATA byte will contain the value of the byte pointed to by 

the pointer set up by command 22H. (see above) 
COMMAND = 26H READ BYTE IN JOINT MICRO RAM 
write DATA byte should contain a value to be written to the joint 

COMMAND '" 28H 

micro's ram in the location pointed to by the pointer 
set up by command 22H. (see above) 

CHANGE WORK AREA 
requests a change of work area 

COMMAND : 2AH READ SPEED FACTOR 
read DATA byte will contain the current speed factor. 

, 
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COMMAND = 2CH 
write DATA WRITE SPEED FACTOR , 

byte should contain the desired speed factor. 
COMMAND = 'XH .read DA READ WORD IN JOINT MICRO RAM 

byte will contain the value of the low byte of the word 
pointed to by tne pointer set up by command 228. 
(see above) 

read 

COMMAND 

DATA 

= 3~H 

byte will contain the value of the high byte of the word 
pointed to by the pointer set up by command 228. 

write DAT WRITE WORD IN JOINT MICRO RAM 
byte should contain a value to be written to the joint 
micro's ram in the locatio~ pointed to by the pointer 
set up by command 22H. (see above) 

write DATA . byte should contain a value to be wI:,itt.en to the next 
location 

8.4 Writing Programs ta Talk ta the Joint Controllen 

~ 

The recommended way ta do this IS to use the RTe. system. however. if the chg 

structure do es not provide the support required. the following C-callable functlons are 

available, they will run on any 86-family Multibos master if the Mlcrobo bus adapter ca rd 
/ 

is plugged into the bus 

These functlons are in the RMx lirsrary "/rccl/lib/microbo.lib", the error definition 

macros ~re ln "/rccJ/hjmlcrobo.h' The "udl.h" header IS the standard include flle for 

RMX C programs, It defines things like byte and word 

Ta send a command byte ta a Microbo joint controller 

Usage: 

Inputs, 

'include <udi.h> 
int put_cmd( joint, command ); 
int joint; 
byte command; 

int joint The jOint number (Ils the flrst JOint). 
1 

int command The command byte. 

Outputs function returns 0 If everythmg ok, otherwlse: 
. 

LTIMEOULCMD: ~imed out attempting to send command to joint. 

LlNVALJNT .CMD: invalid jOint number. 
,# 
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To send a data byte to a Microbo joint controUer 

Ulale. 
'include <udl.h> 
int put_dat( joint, data ): 
int joint; 
byte data: 

int joint. The joint number (1 is the first joint). 

int data: The data byte to send. _____ J 
Outputs. funetlon returns 0 if everythmg ok. otherwise 

LTIMEOUT .PUT timed out attemptmg to send data to joint. 

To read a data byte from a Microbo joinl con troUer 

Usale: 

Inpull: 

'-......-­

Iinclude.<ud1.h> 
int get_dat( joint, data ); 
int joint; 
byte *data; 

int joint The jOlOt number (1 is the {Irst Joint). 

b~e .. data POinter to a one byte butTer to put data in. 

Outputs: funetton returns 0 if everything ok. otherwise. 

LTiMEOUT .GET· timed out waiting for data from joint. 

Exemple 

The following example illustrates the usage of the above commands. 
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/-----------McGill.Computer-Vision-and-Robotics-Laboratory----------, 
NAME: 

FUNCTION: 

" 
USAGE: 

'" 
i< AUTHOR: 
Of DATE: 

set.acc.c 
procedure to send an acceleration 
controller. 
returns 0 if no errors; otherwise 
put.cmd() and put_date); 

int 'set.acC< joint. acc ); 
int joint; 
word acc: 
don kossman 
25 aug 85 

to a microbo joint 

pasaea errora from 

~--·-----NcGill-Computer-Vision-and-Robotics-Laboratory-------•. */ 
'inc1ude <udi .h> /'. 
'inc1ude "microbo.h'" .. • 
int set.acc(jnt. acc) 
int jnt; 
word ace; 

{ 
byte *8cc.10. 

*acc.hi: 
int sts; 
acc.lo = Iracc: 
acc.hi = &cc.lo+1; 

.. , 

if (sts • put.cmd(jnt. REG.SET.ACC» 1'" the "acceleration" cmd */ 
{ return ( sts ); 
} 

} 

_sts ,- put_dat(jnt. *acc.10); 
sts 1= put.dat(jnt. *acc.hi); 
return( 'Bts ); 

1* send acce1eration byte 1 *1 
, 1" send acceleration byte 2 */ 

1* completion status code */ 
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