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Abstract '

" Abstract

“This thesis describes work done to miove the Robot Control-C Library. RCCL, and ns
undeflying Real Tl.me Control system. RTC, from a VAX/UNIX enwvironment to a multi- -
microprocessor system, and to extend 1t to another robot. the Microbo Ecureuil. The task
included. designing and implementing an interface between the Microbo’'s joint controllers
and a Multibus system: solving the robot’s forward and inverse kinematics. designing a
multi-microprocessor architecture which has the processing capability to support RCCL's
computational load. redesigning the RTC layer so that it runs under Intel's 1\RMX-86 real-

time multi-tasking operating system on the multi-processor system. and creating a usable

develop environment for RCCL users }lt is shown that this system s flexible and
expandable, and opens the way to the impiementation of a multi-robot programming and

control envitqnment for the McGill Computer Vision and Robotics Laboratory.

—

Résumeé

Cétte thése décrit le travail fat en vue de transporter une bibliothéque de programmes
de contrble de robots écrits en I%Jage C\.‘ RCCL USobot Control-C Library). ains1 que
son systeme de support eltemps réel, RTC {Real Time Control). de son environnement
VAX/UNIX a un environnement de multi-microordinateurs et d'en étendre son usage .
un autre robot. soit |'Ecureuit de Microbo Les taches a effectuer furent les suivantes
la conception et la mise en oeuvre d'un interface entre les régulateurs d'articulations du
Microbo et le systeme Multibus de Intel: la détermination des modéles géométnques et
cinématiques directs et inverses. la conception d 'une architecture multi-microordinateurs
d'une pu1ssan€e suffisante pour supporter RCCL: reconcevoir le niveau RTC de fagon 3 ce
qu’il fonctionne avec le systéeme d'exploitation en temps réel multi-taches IRMX86 de Intel
sur le systeme de multi-microordinateurs: créer un environnement de travall adéquat pou;
les utilisateurs de RCCL Cette thése montre que ce systéme est flexible, facile a étendre
et ouvre la voie a Ja mise en oeuvre d'un environm;ment de programmation et de contrdle
pour multi-robots au laboratoire de vision par ordinateur et de robotique de |I'Université
McGil
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Chapter 1 Introduction

1.1 Motivation

As the pace of technology increases. the use of robots in manufacturing becomes more
and more pervasive. Whereas 10 years ago a telephone set manufacturer. for example,
could confidently invest in hard automation equipment to produce consumer telephones,
nowadays that product might sigmficantly change form every year. The manufacturer is
wise'to invest in a roboticized factqry which can be quickly re-programmed to produce new
!models. even If at a slower rate than the hard-automated factory [Isbister 84]

Whereas the first industrial robots were used for relatively simple and repetitive paint- >
spraying, welding, and “pick and place” kinds of tasks. manipulators may nowadays be
used for complex and precise assembly operations requiring sensory interaction Computer-
aided manufactuning techmquesh mean that product information is available throughout the
design/test /manufacture/repair cycle. and it is desirable that a robot programming system
beé able to take advantage of this information to minimize tedious on-line “teaching™ time
[Bonner and Shin 82]. Modern robot workcells, moreover. may consist of several robots in
addition to support machinery, sensors, and vision systems.

" With the increase in the complexity of robotics systems and tasks comes a need for
robot programming and control environments in which researchers can test new algorithms
and control methods quickly and easily One such environment is known as the Robot
Control C Library, or RCCL. and was mtrodchd by Hayward and Paul [Hayward and Paul

83] at Purdue University in 1983. The RCCL environment consists of two levels. a control

+



08 'l 1 Motwation
level. called the Real- Time Con.trol system or RTC. and the RCCL trajectory controller,
which uses RTC as a substrate. RCCL was implemented at Purdue for a PUMA 560
manipulator connected to a VAX 780 minicomputer running the Unix 4.28sd operating
system This system has recently been installed and enhanced! in the Computer Vision
and Robotics Laboratory (CVaRL) in the Department of Electrical Engineering at McGill
University [i.loyd 85) for.a PUMA-260 robot connected to a \}AX 750 minicomputer again
_running Unix 4 2Bsd

One of the drawbacks of this implementation is the intensive real-time computational
load that it imposes on the multi-user VAX/Unix environment. Under some conditions
the system may become unusable: and it is not possible to concurrently control a second
mantipulator for the same reason. '

In this thesis. the above restrictions were addressed by re-implementing the RTC/RCCL
environment for another robot. the Microbo Ecureuil, using a multi-microprocessor-based
system The task included studying the basic feasibility of using a microprocessor to han-
die the floating-point math involved in the robot kinematics: designing and implementing
the hardware to interface the Microbo's joint controllers to\a\@icroprécessor system bus.
solving the Microbo manipulator's forward and inverse kinematu; and coding the resuiting
algorithms; designing a multi-microprocessor architecture which has the processing capabil-
ity to support RCCL's compufational load: redesigning the RTC layer so that it runs under
!ntel's iRMX-86 real-time muiti-tasking operating,system on the multi-processor system:
and creating a usable development environment for RCCL users

It 1s shown that this system is flexible and expandable. and opens the way to the

implementation of a multi-robot programming and control environment.

~

1.1.1 CVaRL Research Gosls

One of the CVaRL research goals is to use multiple robots cooperatively. along with
vision and force feedback, to implement a robotics workcell Ultimately. a world model and
database will be established which application programs will access and modify as they

work. Expert systems will interact with the database to perform high-level task planning.

* RTC was in this case renamed “RCI™ . for Robot Control Interface for simplicity  we will use the RTC
acronym for all implementations of this software

>



‘ 11 Motivation

Research is qriented towards investigation of algorithms, control strategies [Studenny and
Bélanger 84]. robot languages. database models. and [)ocal Area Networking [Freedman
85]. which are needed to construct a multi-robot workcell [Michaud. et al 85] The status

of current research 1s summarnized in [CVaRL 85).

An example task of the workcell 1s to ;nspect and repair hybnd integrated circuits The
database will hold information concerning the dimensionality and possible faults of these
crcuits Because of the small dimensions involved, high precision and fine control of robot
motion are required, along with the capacity for various kinds of sensory feedback at the

trajectory level b

1.1.2 The Configuration of CVaRL

The lab currently contains three mdustri‘al assembly robots: a Unimation Puma-260. a
Mncrobo—Casto\r Ecureuil. and an IBM 7565. The first two robots are arranged in a workcell .
such that their workspaces overfap (see Figure 1.1). The Puma is an anthropomorphic
robot with 6 degrees of freedom. and the Microbo a cylindrical robot with 2 prismatic and
:1 rotational]oints In addition to the robots. there 1s an x-y stage. linear stage\rotary stage.
and force sensor. The vision system interfaces with several types of cameras. including
CCD dewvices which can, be mampulated by the robots, there is also'a Eomputer—controlled
microscope These are connected to a Grinnell GMR-27 image acquisition system on a
VAX-780 minicomputer. The Puma robot has a a Urimation controller which 1s interfaced
to a VAX-750 minicomputer ”voua a high speed parallel ink. - The Microbo robot's Robot ‘
Control Unit (RCU) controller is connected to an intel System 310 via a high-speed bus
adapter. The Intel system 1s Multibus-based. and contains 80286/287 and 8086/87 CPU
cards. high speed memory. a Winchester disk. and a floppy disk This system i1s currently
connected to the VAX-750 by a senial link, although we plan to eventually install an Ethernet

interface

The two VAX computers are connected together. and to the rest of the McGill Electrical
Engineering computing resources, via an Ethernet link. Figure 12 shows the computer

architecture of the workcell
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12 Extending RCCL to the Microbo Robot
1.1.3 - History of Robot Control at CVaRL

The Puma robot was originally controlled using the VAL-1 language |[Unimation 82].
which ran on the Unimation (LSI-11/6502-based) controller Although VAL-1 provided
Cartesian motion. 1t did not provide more advanced features such as force control. sensor
integration, host computer interface. motion interruption, or multi-robot capabilities VAL-
Il [Unimation 83] does provide more functionality. but was still unsuitable, this will be
described in the survey of robot ianguages presented in Section 1.3 As mentioned at
the beginming of the introduction. the Robot Control Library, RCCL. has recently been
instalted for the Puma mampulator RCCL executes on a VAX-750 under the Unix 4 2Bsd
operating system. and provides an excellent set of basic tools for developing robot software

at different levels; it addresses most of the needs of CVaRL researchers.

»

The Microbo robot was controlled using the vendor’s IRL language [Dupont 84]. running
on the 8085-based RCU controlier. The IRL language is'even more primitive than VAL,
allowing motion to be specified only in joint coordinate space. IRL. like VAL-1. does not
permit changing the trajectory control algonthms IRL, in fact. does not even provide
coordinated straight line motion The individual joint processors perform an acceleration

and deceleration function which is combined with the joint servoing function.

Thus. programmers wishing to develop coordinated robot software had two completely
different environments to deal with: the RCCL system running on the VAX, and the primitive
IRL interpreter running on an 8085-based controller. The initial solution was to connect
the IRL controller to a VAX serial line and write terminal emulation programs which sent
IRL commands in the form of ascii strings to the controller at 9600 baud [Michaud 85]
Obviously. above and beyond the complete lack of features for trajectory control of the
Microbo, there was no commonality between the two environments, making it difficult for
programmers trying to coordinate the actions of the two robots and synchromze events in
the workspace A more powerful and integrated programming and control environment was
needed. and the obvious step was to investigate ways of extending RCCL to control the

.

Microbo

1.2 Extending RCCL to the Microbo Robot

A major drawback of the VAX-based RCCL implementation is that the intensive real-

at

6



13 Robot Programming and Control

time computational load consumes the major portion of the VAX's CPUtime RCCL 1s built
around an RTC control routine (the “setpoint” function) which is interrupt-driven by the
robot at the sample rate (approximately 30 Hz) User programs call RCCL routines which
ultimately place motion requests. in the form of position transforms. on a “motion request
queue” The setpoint routine, which runs in hugh prionty “kernel mode™, performs the real-
time computations which convert the motion requests into joint angles These are then
<&

sent to the robot to actually implement the motion Although optimized, the computations ~-

involve lengthy matrix multiplications and trigonometric calculations in floating point.

Measurements showed that our VAX-750. even with a floating point accelerator. can
generally execute RCCL for the Puma robot at a sample rate of 30 Hz: under worst-case
conditions, the rate must be decreased further, or the overall performance of the machine
decreases unacceptably Obviously. then. the VAX-basedl RCCL configuration would not
be capable of concurrently handling the additional load of a second robot and maintaning
the required control frequency. As one of the goals of our research lab i1s to develop a
muiti-robot system, this is a major limitation if we wish to use RCCL as a programming
tool. Replacing the VAX with a more povaferful machine and more costly was not possible.

s0 a new architecture was adopted.

This thesis demonstrates that a reasonable alternative involves the use of a network
of relatively powerful but tnexpensive microcomputers We describe an implementation

which supports the Microbo Ecureuil manipulator, using Intel 80286/80287 and 8086/8087

MICrOProcessors.

1.3 Robot Programming and Control

Just about all Robot Programming and Control Environments (RPCEs) may be seen to
consist of two major parts a real-time control system. and a programming system In some
RPCEs the two parts are independent, in that the control system is not user-programmable;
this tends to be true of most vendor-supplied systems, Unimation’s VAL-1 [Unimation 82]
is a typical example. Other systems (for example the RCCL/RTC environment) do allow

the user to program the control level.

The programming system represents the interface between the robot and the rest of

the world, usually in the form of a testual language or teach pendant, where input 1s at the

AN



13 Robot Programming and Control

task planning level. Less often, the programming system is fed from the output of a more
sophisticated task planner. which automatically generates plannang level statements given

a comprehensive world model and the task specification.

We designate the ﬁontrol system as that part of the RPCE which directly commands
the robot’s joint actuators In order to maintain the response of the maniﬁulator according
to goals set by a programmer. the control system must in general solve the so-called inverse
plant problem. That is, it must compute, as a function of time, the actuator signals required

for the physical plant (robot) to behave in the desired way

A survey of the literature reveals that researchers tend in general to focus their efforts
in one of the two directions towards the programmability aspect. or towards the control
aspect The former 1s the major 1ssue for those involved with turn-key robot systems which
must be programmed by production-level persannel, the control system i1s embedded, and
usually unchangeable. As a result, researchers investigating control methods and algorithms
often are forced to build their own programming environments so that they can access the

control level of these systems

n the following sections, we present a representative survey of the approaches that
have been taken by robot language developers The important aspects of the resuiting
RPCE's are categorized and their advantages and disadvantages are described. An attempt
is then made to synthesize ideas from the vanous approaches, and some conclusions are

drawn about the requirements of a good RPCE !

1.3.1 A Survey of Robot Languages

The earliest RPCE’s were simple, non-textual teach-and-repeat systems programmers
used a teach pendant, jO;StiCk or similar device to lead the robot through a seres of
positions which could be recorded in terms of sets of joint angles The robot performed
by moving in sequence through the memorized positions, generally with some kind of joint
interpoldted motion. An example of such a sy.r;tem was Cincinatts Milacron's T3 [Cincinnati
80]. This approach still finds wide use because of its inherent simplicity. production
personnel have no difficulty teaching the robot motions. Operations such as spot welding
and paint spraying. where the robot need simply repeat sequences with little chance of

frequent modification and little environmental interaction are suitable applications. The

- 8



13 Robot Programming and Control

inadequacies of this approach. however. are easy to see

— - deals badly with situations where there are very many points to be memorized or

where the points are related in a regular way (eg palletizing).

- requires a very large number of intermediate points be recorded to achieve a pre-

dictable trajectory
s
- requires the robot to be taken off-line in order to be programmed.
- no integration with external databases

- no portability of programs between robots.

t

any change in workspace configuration requires complete re-teaching. .

For the above reasons, and because one of the basic justifications for using a robot
instead of hard automation equipment is to add flexibility and allow short economical
pvoduction runs. there was an obvious need for textual robotics languages. In answer to
these needs. robot manufacturers, industrial researchers and universities have come up with
a large array of languages. In [Bonner and Shin 82]. robot languages are roughly classified

by level as follows.

task-orniented (most sophisticated)

well-structured

primitive motion

point-to-point or joint-level (least sophisticated)

We have already given one example of a point-to-point langua‘ge (T3). Some others are
FUNKY [Grossman 77]. RAPT [Popplestone. et al. 78] and ALFA [Wang 74]. We note that
"IRL. the vendor-supplied language for the CVaRL Microbo robot. falls into this category.
*These languages usually have an editing mode that allows the insertion or deletion of steps.
There is only rarely provision for conditional branching. and there i1s generally no effective

off-line programming mode Motion is defined at the individual joint level only. and the

9



13 Robot Programming and Contrql

control systems associated with these languages are often correspondingly primitive. with

no provision for Cartesian motion or force control

Languages at the primitive motion level begin to allow the user to describe the robot
and its environment mathematically. solve the motion problem using algorithms expressed
textually. and apply the solution to the robot. These systems may incorporate features such
as subroutine capability, branching constructs. more sensor interaction, and the ability to
synchronize with external events The programmer can specify motion at the manipulator
level, sometimes in terms of coordinate systems grounded in the workspace Some examples
of languages at this level are VAL, WAVE [Paul 77]. and EMILY [Evans. et al 76]. there

are many otlrers

Well-structured languages encompass the next step in sophistication. Structured con-
trol concepts, coordinate transformations. and complex data types such as vectors and
frames are incorporated at the user level. VGe find the use of state vanables. where the
system automatically keeps track of important aspects of the workspace (such as the
cartesian position of the manipulator end-effector) Motion may be constrained in terms
of approach vectors. velocity. duration, acceleration, and force Some of these languages
have advanced sensor capability. even vision A pioneering example of this level is the
AL/POINTY [Mujtaba and Goldman 79] system, developed at the Stanford Al Laboratory.
Some other systems of note are PAL [Takase 81] and IBM's AML [Taylor. et al 82] and
AML/V [Lavin and Lieberman 82]. again. there are many others.

Task-onepted languages hide the details of manipulator motion from the programmer.
who can now concentrate on solving problems in terms of the items being manipulated as
opposed to the manipulator itself Implicit in this approach is the use and maintenance
of a complex world model. which must be updated in real time as actions take place.
Such a database must maintain the geometrical relationships of parts within assemblies.
assemblies with other assemblies, assemblies with the world. and the manipulator with the
wogd. Thisis a difficult problem. IBM's AUTOPASS [Liebgrman and Wesley 77] attempted
this level of operation but apparently the work has been abandoned. Systems as abstract
as this require the use of Artificial Intelligence techniques to infer low-level actions from the
high-level task specifications. Researchers such as Alami [Alami 84] are looking at LISP

environments as being suitable for this kind of work.

10
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1.3.2 Conclusions from the Survey

Some of the topics that crop up again and agam in the hterature of robot languages
are. portability, modularity, multi-robot capability. extensibihty, usability. efficiency. and the
ability to deal with sensory input The following discussion looks at each of these issues

in turn.

Portability 1s in fact not often addressed by robot language designers. (perhaps due in
part to vendor’s desire to restrict the freedom of the user once a robot has been purchased)
A language that 1s easily moved to a new robot or to a new computer and operating system
will have a longer useful life than one which 1s robot and machine-specific  This,philosophy
underlies the design of the RCCL environment. which has already been successfully ported
to several machines and robots Closely associated with the portability aspect is modularity:
a software system that is made up of a hierarchy of well-designed modules can generally be
ported to a new environment fairly easily, because the required changes may be encapsulated

in just a few places

Multi-robot workcells are becoming the rule rather than the exception. Often in the past.
a distinct controller was required per workcell robot. and if these were of different geness.
communication was either impossible or limited to simple yes/no signaling. Obviously.
systems are required which allow several manipulators to be controlled in a unified manner

The main approaches appear to be

1. Concurrent programming languages Example: Al's cobegin and coend constructs
allow the programmer to specify that the execution of different sections of code
. be started concurrently. An event vanable, which has st{m\same functionality as an

operating system semaphore primitive. may be used to al between the concurrent

A

code sections and thus synchronize events The aé(ual scheduling mechanism s
imphcit. AL will simply run one process until 1t_blo ks. then go on to the next It s
critical to note that AL's move command blocks egl‘ecutlon of the caller, thus allowing

other code to execute.

2. Multi-tasking programming environments. Application code I1s divided into concurrent
programs, or tasks. which control different manipulators. Here. inter-task communi-

cation primitives are supplied by the operating system to allow explicit synchroniza-

11



13 Robot Programming and Control

tion and scheduling of events The GEM [Schwan. et al 85] system. for example.
supplies primitives for message passing between pfograms running concurrently on
different processors In [Volz. et al. B4} an Ada-based implementation i1s descrbed:
task synchromization is done imphicitly by the Ada run-time environment when proce-
dure calls are made In the implementation described in the present thests, we use the
Intel IRMX-86 operating system’s mar/box and semaphore pnmitives to synchronize

tasks

The clanty. simphcity. and umty of a programming language will have an impact on
its practical usability An associated issue i1s whether 1t 1s better to create entirely new
languages. based loosely on lots of old languages. or to embed new constructs in an existing
language There are arguments both ways. RCCL. for example, 1s simply a set of function
calls provided for standard “C" language programs The advantages are clear: there Is
a concise, predefined syntax that i1s known to a wide base of potential users, there 1s a
large array of development tools available. and the language is portable insofar as there are
cross-compilers available for a wide variety of target machines. A major disadvantage is
fhat the syntax of a function call may be less readable than the equivalent statement in
a specialized language, however in providing wide functionality a specialized language may
become almost unusably complex The AL language with POINTY, with its associated

on-line teaching facility. has over 300 different reserved words

The efficiency of a language can be measured twice. during the creation of programs,
and duning therr subsequent execution A compiled language will execute faster than an
interpreted language. and produce more compact run-time executable code A compiler is
not imited to a single pass, and thus has the ability to support fully structured code with
forward references. separate compilation of modules. and all the programming conveniences
that this entails However, the development cycle required to produce working programs
tends to be longer, due to the associated compile. hnk, test. and debug cycle An mierpreted
program is often easter to debug unless the competing compiled system has a real-time

source level debugger

Extensibiity implies that new features and capabilities can be added as necessary
without a complete overhaul of the system Languages (such as RCCL) which are basically

subrbutine libraries on top of a standard programming language are extensible simply by
)

1 12



14 Real-Time Operating Systems

adding new functions to the libraries The drawback I1s as before, that the syntax may
become inconsistent over disparate’functions 1t is also true, however. that to add features
systematically to a specialized robot language requires system-level modifications. whereas
in the other case this may be done at the user level The unity of the specialized language

is lost, of course, by adding features through the subroutine mechanism

One of the major costs associated with workcell robotics.(a driving force behind much
research) has been the elaborate fixturing required so that the positions of parts which the
manipulator deals with may be defined precisely before operations begmn. If sensory-based
systems can allow the run-time system to determine the exact positions of things, the
need for fixturing will obviously decrease This 1s important because new fixtures may be
required for every new part handled by the robot. whereas a sensory-based system need
be installed only once. Mobile robots. of course, require comprehensive sensory ability in
order to navigate in a changing or unknown environment. and in all cases the question of

safety for both human and robot requires sensing of some nature.

Sensor technology I1s improving in many areas Touch sensors have evolved from simple
contact switches to large tactile arrays with good dynamic resolution [Dari":;.a et al 83]
Vision systems, of course. have improved tremendously. and with the development of pow-
erful 32-bit microprocessors and special-purpose silicon there has been a significant drop
-in-their cost. Thus. vision has become increasingly cost-effective for robotics appllcatlor{s

in the real world: the bin of parts problem 1s now solvable in many cases.

Force sensing 1s an a prion requirement for systems which attempt to deal with ma-
nipulator dynamics. the control system needs a way of computing the torques at the robot
joints in order to compensate in real time for gravitational. inertial. Coriolis. and centrifugal
forces. This 1s especially true as joint velocities increase. and simple kinematic models
become unacceptably maccurate. RPCE’s which allow programmers to specify compliance
are another arena where force sensing is required In this case, the forces at the end-effector

are of interest. and much work has been done designing wrist-mounted force sensors.

Obwviously. then, it 1s of overnding importance that an RPCE be flexible enough to
accommodate existing and new sensory input systems, both at the control level and at the

planning level.

13
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1.4 Real-Time Operating Systems

An operating system generally provides the following services:
- Task scheduling
- Memory management

Intertask communication

1/O services

A definition of real-time operating syste};v seems har:i to pin down. Various criteria
have been proposed, but all commentators seem to agree that such a system must allow
programs to respond very quickly to external events How fast very quickly is. is of course
application-dependent - for example. a system which must create a flicker-free raster video
image can be said to be real-time if it can keep up. without fail. with a frame rate of about
30Hz. A system executing robot control software is real-time if it can execute the control
algorithms. without fail. at some chosen sample rate (the rate at which the software reads
the joint positions and adjusts the control signals to achieve the desired motion). Typically,
this rate is 1 kHz at the joint control level, and 10 to 100Hz at the path control level. The
faster the sample rate, the finer the spatial control of the manipulator and the higher the

joint velocities that the system can safely handle.

A real-time computer operating system must also provide programmers with the primi-
tives that they need to build real-time applications In [Cole and Sundman 85]. six require-

ments in addition to very fast response are listed:

support for creating. deleting. and scheduling multiple independent software processes
( tasks) '

4

the ability to communicate (send/receive data) asynchronously between tasks

)

provision for sharing data between tasks

ability to synchronize the execution of multiple tasks

ability to synchronize task executidn with external events (interrupts)

an efficient 1/O system which does not degrade system performance

14
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1.4.1 Task Scheduling

Many different scheduling philosophies have been used to achieve real-time response,
some of these will be described below. First, however, it s instructive to discuss the
concepts of tasks and task states. because these will be key words in the discussion of

scheduling to follow.

First of all. let's define task A task (or process). frdm the point of view of the operating
system, is a unit of executable software. A task may request resources from the operating

system, for example memory, CPU time. 1/0O services. timing services etc

'

Typically. a programmer links together his own application code with system code to-
create a task. assigns it a priority relative to other tasks, loads it, and requests the operating
system to execute it Tasks may also be invoked by other tasks or by the operating system

itself. )

Associated with each task is a task state Although the names differ from operating
system to operating system. the state of a task can roughly be described as either: running.
asleep, ready. or idle. At any given moment in time, there is only one runn/mg task on the
system (given that there 1s a single CPU). A task which is in the running state 1s actually
in control of the CPU

A task in the as/eep state has relinquished control of the cpu. usually to wait for some
event, for example a message from another task, or an external action, such as a key being

pressed on a keyboard

A task which is ready will become the running task as soon the operating system

recognizes that its priority is higher than the priority of the currently running task

Finally. an idle task 1s one which 1s potentially executable, perhaps even resident in -
memory, but which has been removed from the operating system's hst of tasks to be
executed The operating system scheduler can be thought of as the mechanism which

manipulates the states of the tasks on the system.

A time-slice scheduler allocates the cpu by checking the status of the varnious tasks in
the system on a strictly periodic basis, a typical period might be 100 milliseconds Thus,
each time slice is allocated to a particular task, and this allocation is always reconsidered

at the end of the slice If the running task executes a system call which involves waiting for
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some event (eg for an |/O operation to f;nish). the operating system generally reallocates
the CPU to another task immediately 4

An event-driven scheduler responds to external events on an asynchronous basis. That
is, the operating system pre-empts the currently running task at the moment that a higher
priority task becomes ready. For example. if the running task goes to sleep to wait for
something. (say 1/O or a message from another task). the scheduler immediately changes
the state of the highest priority ready task to active

Some schedulers work by pre-allocating the CPU to various tasks. In this scheme. a
task may reserve a given amount of cpu time, at pre-determined future times. At those

times. no matter what, the task is guaranteed to run without interference.

1.4.2 The iRMX-86 Real-Time Muiti-Tasking Operating System

Intel’s iIRMX-86 [intel 84] was designed for use by OEM's" as an emfbedded operating
system for real-time apphcations. The system is configurable. in that the user need include
only those system calls which he requires. In this way th}'size and speed of the resulting
system can be optimized The iRMX-86 scheduler is event-driven.

iRMX-86 has the layering illustrated in Figure 1.3. The Nucleus lies at the core of the
system. It performs the task scheduling, inter-task communication, memory management,
and interrupt management. The Basic I/O System or BIOS supports asynchronous 1/0
operations on named. physical. and strean; files. The Extended //O System. or EIOS
supports synchronous /O and logical device connections The Universal Development
Interface or UDI 1s a standard interface to the various supported high level languages
The Human Interface or Hi provides a development environment with a set of system
commands to manipulate files, configure new systems. run compilers. text editors, object
librarian, linkage editors, etc. The Application Loader allows executable programs to be

a

loaded from mass storage devices
RMX-86 is an object-oriented operating system That is. the system supports a class
of entities which include jobs, tasks. mailboxes, semaphores, regions. connections and

segments Objects are created, deleted. and manipulated via system calls. and referred to

»

* Onginal Equipment Manufacturers
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USER APPLICATIONS
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Figure 1.3 The RMX-86 Operating System

by their tokens. which are the system’s way of tagging and identifying them. New kinds of

objects may be created by the user and incorporated in the operating system.

All objects are created in the context of a job. which is an environment characterized
by a set of limits. These limits allow restrictions to be placed on the number, type. and
properties of objects that the system will create in response to system calls. For example.
limits may be placed on memory allocation, maximum task priority. etc. Typically. a job

contains a set of tasks which perform related functions and communicate with each other.

17
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In a multi-user development environment. for exarhple. each user works within a separate
job. whose initial task i1s the Human Interface’'s Command Line Interpreter When the
user executes a system command (eg invokes an editor). a child job of that user's job is
created by the Application Loader If the editor crashes (for example because 1t runs out
of memory} other user’s jobs are not affected

A task s an execut;ble program which can be in one of a set of finite states. as shown
m»’fﬁéﬁ?& 1.4. The task in the ready state which has the highest prionty will become the

mngi sk. Task scheduling 1s ¢vent-driven as opposed to time-sliced That 1s. once a
tasT; has control of the CPU, it vetains control until some event (the arrival of an object
in a mailbox. an interrupt occurring. a new task being created...) occurs which causes
another task with higher priority to become read&s_-Q{nce a task has been loaded and 1s
memory-resident. it is not swapped out to a mass storage device.

A mailbox is a mechanism for passing objects between tasks. The tasks need not
be in the same job. When the mailbox is created. it may be specified as having a FIFO

or Priority mechanism. In the FIFO scheme. messages are simply retrieved in'a first-in,

* first-out manner. Otherwise, messages are taken from the mailbox queue according to the

relative priorities of the sending tasks. When.waiting for a message at a mailbox. a task
. I
may elect to wait “forever” until 2 message arrives, or for a specified amount of time The

task is placed by the operating system in the asleep state while waiting
A semaphore is similar to a mailbox, but rather than allowing arbitrary tokens to
be passed. only units may be sent and received Semaphores are normally used as a

s

synchronization mechanism between tasks.

1.4.3 Unix _ )

Unix is a now hugely popular operating system from Bell Labs (now ATT Bell Labs)
written by Thompson, Kernighan and Ritchie using the C programming language. It-was and
still is an innovative approach to a multi-user program development environment, and has
been ported to a great variety of computers, ranging fron'! the Cray X-MP supercomputér
to the intel 80286 microcomputer (Xenix), There are many versions of Unix, CVaRL uses

Unix 4.2Bsd from the University of California at Berkeley.

Unix consists of two parts. The kernel, consisting of approximately 10.000 lines of C
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Figure 1.4 RMX-86 Task States
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';ode and a few hundred lines of assembly code. and the utihties. which represent the other
95% of the system. The kernel is fixed, but the utilities can be manipulated by users as
they wish. Unix is a very “open™ environment; users. for example, are free to write therr
own shell, or command interpreter. and source code is available for the operating system
and utihities

Unix supports the idea of I/O redirection at the shell level. and allows users to pipe the
output of one program to the input of another This makes it very easy to build applications
using filters, which each perform some operation on a stream of data and then pass it to the
next filter using a pipe Often, commands drawn from the very rich set of utilities formed
into pipes can immediately accomplish things that would otherwise require new programs

to be written. This software reusability [Kernighan 84] is an important aspect of Unix’s
popularity. ) ‘

The kernel controls process execution, 1/O. swapping, and scheduling. Unix assumes
a virtual memory envn'ronment. and the only limit placed on the size of user programs is
the size of the virtual address space of the machine. The data and text associated with
a process is swapped to and from secondary memory as required, depending on how long
the process has been resident, and how long other processes have been swapped out which
want to be swapped back in.

Unix has a time—slicing* scheduler which adjusts task (in Unix. process) priorities using
a mechanism which was basically designed to maximize the system'§ response to multiple
users typing sporadically at keyboards User process Briotities are adjusted according to
thair recent ratio of compute time to real time consumed |[Thompson 78). The effect of this
is that if a process uses its high priority to hog the computer. its priority drops. Similarly.
low priority processes which have been ignored for a long time have their priorities increased.

Synchronization between processes 1s done using signals. There 1s no information
associated with a signal. except that it has happened. A signal can be lost, processes can
block signals, and any after the first which consequently arrive are not queued until the
process unblocks that signal. Signals have no priority. most are pre-assigned. and there

are only a finite number. which varies with the Unix implementation. available?.

t The 4 2Bsd scheduler runs every 100 milliseconds
! 4.2Bsd allows 32 signals
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Processes are created with the fork and exec mechanism A process which forks creates

an exact copy of itself. but the child process cannot share data with its parent

Real-time Unix?

It may be appreciated from the previous discussion that standard Unix has a very imited
appeal as a high-speed real-time operating system. due to the scheduling and signaling

mechanisms used, and the inability of processes to share data

Attempts have been made to modify the Unix kernel to provide more support for real-

time applications Two examples are Masscomp’s Real-Time Unix. or RTU. and Charles
River Data System’'s UNOS In the latter. the entire kernel was replaced, although users
still operate using the Unix paradigm. The basic change made was to support the notion of
multnplg processes inside the kernel; in standard Unix, there is only one. Masscomp’'s RTU
introduced something called the Asynchronous System Trap or AST This is a software

interrupt that remedies the deficiencies of signals

A major problem that has to be overcome is to defeat’the swapping mechanism. This
was accomplished in Masscomp's version of Unix [Cole and Sundman 85] by special system
calis with which programmers can lock particular pages of memory into core in order to
implement RCCL, the McGill CVaRL version of Berkeley Unix was similarly modified so
that the memory associated with the real-time control process would not be swapped to
disk. Memory locking is fairly dangerous, because deadlock problems can easily occur.
programmers must carefully precalculate the amount that they need. otherwise the system

performance can be destroyed.

Another problem involves task synchronization. Signals are a-poor mechanism because,
they are not prioritized and can be lost. AT&T's release of Unix (System V) introduced

ndard Unix.

a semaphore primitive and also a primitive which allows processes to share memory, the
latter is normally impossible in st{

Problems still remain 1n deahﬁk with interrupts. providing asynchronous interprocess
communication. and especially providing deterministic task scheduling. There is also the
basic problem that the kernel is not easily configurable, as opposed to systems hike RMX-
86 where system calls can be included or excluded from the configuration on an as-needed

basis.
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It must be concluded that for high-performance embedded real-time systems. Unix 1s

not a good choice, but as a multi-user program development environment. it has no peer.

1.5 Thesis Overview

Chapter 2 is a description and analysis of RTC. RCCL. and the Microbo manipulator
The chapter begins with RTC. and describes the control paradigm and the user interface
Next the RCCL trajectory level 1s examined. and the chapter concludes with a description of
the Microbo Ecureuil manipulator and its RCU control unit. In Chapter 3 the forward and
inverse kinematics for the Microbo robot are derived. and an analysis of the computational
complexity of the resulting solutions is presented.

Chapter 4 describes the design and implementation of the hardware and software which
make up the RTC system for the Microbo robot. RTC. which originally ran under the
Unix 4 2Bsd operating system on a VAX mmicomputer, was re-implemented using a set
of Intel microprocessor cards and the iRMX-86 real-time multi-tasking operating system
There is also a list of the practical differences between the System 310 implementation of
RTC/RCCL and CVaRL's VAX version.

Chapter 5 summarizes the results of the research and looks ahead at future enhance-
ments of the RCCL control environment. ‘

Appendix A is a brief user's guide to RTC/RCCL on the Intel System 310, concentrating
on the practical aspects.of booting the system, calibrating the robot. compiling and linking,
RTC/RCCL programs. etc

Appendix B describes in detail the commumcation protocol of the Microbo joint con-

trollers
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Chapter 2 RTC, RCCl:. and the Microbo Robot

-

2.1 l_ntroduction

RCCL. or the Robot Control C Library. is a library of functions and supporting data
structures which allow applications programmers to create manipulator control programs
using the C programming language [Kernighan and Ritchie 78]. Motion is specified in
Cartesian coordinates. and homogeneous transforms are‘used to specify positions and

spatial relationships between objects in the robot worid

As shown in Figure 2.1, RCCL runs on top of the Real Time Control layer. called
RTC This is a substrate which programmers can use to write joint-level control functions
(for example the RCCL trajectory generator) which execute at some sample rate (typically.
10 to 100hz) in the background. while the user’s planning level program executes in the
foreground Interfaces are provided via which the individual joints of the manipulator may
be queried and controlled Cantrol of associated hardware (for example gripper open /close)
is also provided.

RTC may be thought of as a kind of “robot operating system’ . it provides a standard-
ized interface to the robots. This 1s analogous to a computer sperating system’s provision
of a standard interface to 1/O devices. with the added element of control over real-time
aspects of the interface

A full description of the user interface to RCCL and RTC appears in |[Lloyd 85] and

[Hayward and Lioyd 85]: this chapter presents just a synopsis We concentrate here on the

<
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Figure 2.1 RCCL and RTC

robot interface to RTC and RCCL. as this is central to our work. The chapter begins with

a brief outline of the genesis of RCCL and RTC and the previous implementations.

2.2 The Genesis of RTC/RCCL

The RCCL/RTC system was originally written by Hayward at Purdue University |Hay-
ward and Paul 83]. under the guidance of Paul. It supported a Puma-560 manipulator
and ran on a VAX minicomputer running Unix 42Bsd. [t may be noted that RCCL s an
implementation of some of the ideas presented in Chapter 10 of [Paul 81)

The software was brought to CVaRL in 1983. and has been installed and enhanced
at CVaRL [Lloyd 85] In this case a VAX-750 minicomputer again running Unix 4.2Bsd
supports tt;e smaller Puma-260 manipulator.

Both the original Purdue and McGill implementations use a custom-designed FIFO

]
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(First In First Out) interface between a dedicated VAX parallel port and the Puma’s Unima-
tion controller This FIFO 1s under the control of a a Unix 4.2Bsd device driver. and allows
the high speed transfer of small blocks of data to and from the Puma’s joint controllers
via the Unimation LS1-11 processor When RCCL is not running, the LSI-11 executes the
native VAL-1 interpreter. The Unix device driver has a special mode wherein it executes
the user-specified RTC control functions at high (system) prionty Modifications must be
made to the Unix kernel to prevent the operating system scheduler from swapping RTC
data areas to disk. This would of course woult‘i be fatal to the real-time process’s operation

RCCL has also been ported to a 68000-based Unix system. This work was done
at Hewlett-Packard in California by Hayward in 1984 Unfortunately. there is no public
reference for this implementation. but we do have the following detals from a private
communication [Hayward 86).

The target machine was an HP-900/200 running HP- U X, the Hewlett-Packard version
of Unix. The CPU was a Motorola 68000 microprocessor with 16k of fast cache memory,
and the robot a Puma-560. Apparently the code was ported very easily, but the sample
rate could not be set faster than 9 Hz due to the inefficiency of the interface to the math
co-processor. The trigonometric fUnCtIO;IS were done using table lookup. The system
tnterface was significantly different from the VAX implementation. where the real-time
control functions run inside the Unix kernel as part of the device driver for the Unimation
controller In this case the HP-UX scheduler was modified so as to run the control functions
as Unix “signal” routines Communication with the Unimation controller's LSI-11 processor
and thus the joint MICroprocessors was via an HP-IB parallel interface, as opposed to the

FIF O interface used in the VAX implementations at Purdue and CVaRL bb

2.3 RTC- Robot Real Time Control

RTC gives C language programmers the ability to develop robot joint level control
procedures. It does this by providing ’
a ) a set of function calls via which control algorithms (for example. the RCCL trajectory
controller) may be executed at high priority in the background. at the sample rate.
b.) a set of data structures which reflect the state of the manipulator’s joints and which

may be used to controf them
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2.3.1 The RTC function calis

-

The RTC user interface consists of a set of procedures and data structures which are

available to C programmers as a compile-time library. In what follows. the procedure names

are printed in typewriter font

/ -

rtc.open() initializes the RTC system and creates the background control task which

runs at the sample rate
[N
rtc_ce\ntrol() ts the major component of the real-time robot control The control

task is started which collects information from the robot. and two user-specified control
}

functions are activated Commands may be sent to the robot via global data structures

(described below)

rtc.release() stops a control session and re-initializes the system for another one

A parameter may be set to turn off arm power.
rtc_close() terminates the control session and deletes the background control task.
A parameter may be set to turn off arm.power.

print_rtc_error() interprets the error codes which may be returned by the four

above procedures. and prints an appropnate message The control procedures are

arbitrary: a programmer working at the RTC level may specify the entry points of any

two C language functions, with the restriction that they execute within the chosen
sample period Inthe RCCL case there is essentially a single procedure- the trajectory

controller's “setpoint” procedure ¢

2.3.2 The RTC data structures

The important global variables available to the RTC programmer are as follows
the hoW structure reflects the state of the manipulator
the chg structure 1s the command request vehicle’

the terminate variable, if set by the user, will abort the control session If set by the

system, it will contain information as to why the termination occurred

the rtc_message variable allows the user to pass a string to the user level from the

control level. This may be used to provide error or status information, etc.
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- the user_hangup variable allows the user to set up a "hangup” handler of his choosing
This function is invoked by the RTC system instead of the default handler when a

“control-C” is typed at the user’s terminal during a control session.

2.3.3 The RTC Control Paradigm

Figure 2 2 illustrates the RTC control cycle. This must remain basically the ‘same for
all RTC implementations. 4

The system 1s reset and enters the idle state via the rtc _open() function call The
control functions may then be activated by a call to rtc_control (). Once control is active,
the following cycle 1s repeated once per sample period data is collected from the robot
and the how'global data 'structure 1s updated The first user-specified control function
is nvoked The chg data structure i1s examined and appropriate commands are sent to
the joints The second user function is then executed, and the cycle repeats. A call to
rtc.release() will cause the system to re-enter the idle state, and rtc_close() shuts

down the RTC system.

2.4 RCCL- The Robot Control C Library

RCCL 1s a manipulator control language. implemented as a C* function library. Because
RCCL is not a language in itself. application programs can take advantage of all of 'the
. features provided by the host language and operating system, for example file /O and user
interaction The macro facilities of C in particular help to overcome problems of syntax
and presentation ‘

RCCL consists of two parts. a real-time trajectory function. called setpoint(). and
the main user program, which we refer to as the planning level program The planning level
communicates with the real-time function via a motion request queue in shared memory,
and communicates with it indirectly via RCCL library functions.

The real-time part of RCCL uses the RTC sysotem described in the previous section-
setpoint () 1s just an RT C control function. Although RTC is closely bound to the host

! As long as calling conventions are respected there is in fact no reason why the RCCL functions may
not be call/ed from other languages
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Figure 2.2 The RTC Control Paradigm

operating system and the robot hardware, RCCL is not; with the exception of the forward

and inverse kinematic solutions, it is manipulator independent.

-
v

RCCL programs specify the motion of the manipulator using motion equations The

elements of such an equation are homogeneous transforms representing the relationships
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between coordinates frames attached to objects in the robot’s world.

2.4.1 Motion Equations

A dedicated transform. Tg. represents the position of the end-effector with respect to
some convenient reference frame. For the Microbo robot. for example. Tg js taken with
respect to the center of the base of the manipulator f POS represents a desired position

and orientation of the end-effector. we can wnte
T5 = POS

if we use a transform TOOL to represent a tool attached to the end-effector and
GRASP to represent the grasping position for an object OB J that is on a conveyer CON\;.

we have
T TOOL = CONV OBIJ GRASP

RCCL can now solve
T = CONV OBJGRASP TOOL™!

Transforms such as OBJ are known as constant transforms; they do not change during
program execution RCCL also allows varb or functionally defined transforms which are re-
evaluated every sample period: for instance, the CONV transform might thus represent a
moving conveyer belt. By allowing an arbitrary function to be associated with a transform,
RCCL can cause the manipulator to track moving objects or to react to arbitrary sensory
information at run-time. A third type of transfor;n. the hold transform. if modified by the
user level program at run time. will be re-evalvated when the corresponding motion begins

Position equations are creaied using the makeposition() function The function's
parameters are pointers to the transforms which make up the left and right-hand sides of
the equation Run-time overhead 1s mimmized by pre-multiplying any adjacent constant
transforms. and the function returns a pointer to the result. which 1s a dynaniic data
structure

Transforms may be created and modified using an extensive family of function calls
The basic ones are gentr.rot (), gentr._trsl() and newtrans(). The first two dynam-
ically create constant transforms involving, respectively, a rotation and translation. The

third function allows the creation of functionally defined or hold transforms.
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[N

The pointer returned by makeposition() may consequently be used as the parameter
in move() function calls. to cause manipulator motion satisfying the position equation

2

This is described below

24.2 The Trajecto?} Generator

i

Under RCCL. manspulator motion 1s specified as a seriés of path segments linear n

either the joint coordinate space (joint mode) or Cartesian space ( Cartesian mode).

B

Each move () call queues a motion request packet for the real-time setpoint() trajec-
tory generator to service. then immediately returns control to the user program (see Figure
2.3). This has the advantage that the servicing of the motion request proceeds in parallel
with the main program. Explicit synchronization mechanisms are supplied to coordinate

the two levels. 1e to let the planning level know when a the trajectory level has completed

the path segment associated with a particular motion request

In Cartesian mode, the joint angles are controlled such that the coordinate frame at-
tached to the tool moves along straight lines in Cartesian space. T!\e makeposition()
function in this case takes an additional argument to specify which transformation in the
equationis to be taken as the ool transform. In this mode. the motion equation Is re-solved
each sample period during the motion segment. and the joint angles computed using the
inverse kinematic formulations. This Cartesian mode imposes a heavy computational load
on the system, but the path of the tool tip | simple and predictable It should be also
be noted that as the manipulator passes fhrough any singularities. joint rates may become

‘infinite’ l

In joint mode, the position equation 1s solved once at the beginning of the motion for
the final set of joint angles. lmerme&sate values are then linearly interpolated dunng the
motion using the initial and final values This has the advantages that aj joint velocities
are limited only by the indivdual joint maximums. and b) manipulator degeneracies do not
cause a problem The obvious disadvantage. of course, is that the path of the tool tip ‘s

not predictable in Cartesian space.

When the motion request queue holds several motion request packets, the RCCL tra-

jectory generator performs a transition between the motion segments to prevent velocity
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24 RCCL- The Robot Controt C Library
\ .

and acceleration discontinuities. The boundary conditions require that a quartic polynomial
be fitted between the adjacent linear segments [Paul 81).
Each path segment is thus characterized by

- a trajectory mode. etther Cartesian or joint (the setmod () function). [ 7

3

a position to move to (the makeposition() function).

a velocity which may be specified directly in terms of rotational and translational speed.

or as a segment duration (the setvel() and settime() functions).

a transition time. which is t@uration of the transition to the next segment “fthe &g

settime () function).

!
243 RCCL Programming

We present here a sample RCCL program by way of illustrating the precedin.g discussion.
This program for the Microbo robot has been tested and is stored in /%ccl/ex/washer.c on
the System 310 For a more coniplete description of the RCCL user interface the reader is
referred to the RCCL User's Manus! [Hayward-and Lioyd 85]

</ .
washer.é, the window washer- program.

robot moves, with gradwally increasing
translational and rotational velocity,
through 4 points arranged in a rectangle
in the yz plane. [The tool tip is maintained
orthogonal to the plane.

*/ :

#include "rccl.h® /* the basic rccl include file »/

#include "rtc.h" /* the basic rtc include file */

main()

{

TRSF_PTR b, ¢, d, e;
POS_PTR p1. p2. p3. pd:

int tvel = 100; .
int rvel = 100; B o
int i; v e ) ‘

/*-- translations from robot origin to 4 corners ---/
/+-- rotation so tool pointing towards table Sl AN
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if (rccl_open (0O, 0))

/*-- start the

24 RCCL- The Robot Control C Library

= gentr_rot("B", 325.0, 160.0, 300.0, xunit, 180.),

b

€ = gentr_rot("C", 325.0,-150.0, 300.0, xunit, 180.);

d = gentr_rot("D", 325.0,-150.0, 250.0, xunit, 180.);

e = gentr_rot("E", 325.0, 150.0, 250.0, xunit, 180.):

/*-- corresponding position equations --*/ o

pl = makeposition("Pi1", t€, EQ, b, TL, t6):

p2 = makeposition("P2", t6, EQ, ¢, TL, t6):

p3 = makeposition("P3", t6, EQ., d. TL, t6);

p4 = makeposition("P4", t6, EQ, e, TL, t6):

{ print_rtc_error(rtc_error, 0):

exit(-1);
) I

if (rccl_control ()) . /x-- start the trajectory generator --*/

exit(-1); -’
}

setvel(tvel, rvel);

move (park) ;

waitfor (park->end);
move (p1); )
waitfor(pi->end);

setmod('c');
for (i=0; i<3; ie+)
{ printf("velocity %d,
move(p2) ;
move(p3) ;
. move(pd) ;'
move(pl);
tvel += b;
rvel += 10;
setvel(tvel, rvel);

}
b

waitfor (completed):
setmod('j');
move (park) ;
waitfor (park->end);

set trans, rot velocities --*/
/*-- move to the park positioﬁ --%/
/*-- and stop there -/
/%-- move to pi ' -+
/*=- and stop there --%/
/*-- cartesian mode --%/
%d\n", tvel, rvel): .
/%-- move to p2 --%/
/*-- move to p3 --»/
/*-- move to p4 -/
/*-- move to pl --%/
/+-- faster... ~ i
/*-- wait for queue to empty --*/
/*-- back to joint mode “=x/
/*-- move to the park position --*/
/*-- wait till done --%/

*

{ print_rtc_error(rtc_error, 0);

RCCL control session --%/

~
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25 The Microbo Robot

if (rccl_close (0)) /*-- terminate control session --*/
{ print_rtc_error(rtc_error, 0);

exit{(-1);
}

}

This program starts by creating four constant transforms, { b, ¢, (’: and writing
the associated position equations for { pt, p2, p3. p4 }. These positions correspond
to the corners of a “window” in the y-z (vertical) plane The tool is rotated about the
x-axis so as to point towards the table. In this way it will be physically possible for the
manipulator to move so as to maintain ornentation

The (rccl open() and rccl control() cslls imtialize and then start up the RCCL
control gession. it may be noted that these two functions eventually just call rtc_open()
and rtc_control() We next set the translational and rotational velocities. specified
in mm/sec and degrees/sec. and move to the predefined park position The waitfor()
primitive allows us to synchronize with the end of this motion. We similarly move the robot
to the p1 position. At this point we can change to Cartesian mode using the setmod()
call, and begin the for() loop. This loop will in fact execute as quickly as the motion
requests are queued The waitfor (completed) call will delay the program until the
motion request queue has emptied. We finally restore joint mode (it 1s not possible to

move in Cartesian mode from p4 to park) and close the control session

2.5 The Microbo Robot

The Microbo Ecureull manipulator (Figure 2 4) is a Swiss-made 6 degree-of-freedom
cylindrical robot designed for assembly tasks. It is mnstalled in the McGill CVaRL robot
workcell alongside a Puma-260 manipulator, such that the workspaces of the two robots
overlap.

The vendor-supplied "RCU” controller 1s shown in Figure 25 Each of the joints 1s
driven by a D.C servo motor connected to a current amplifier. which 1s in turn controlled by
a dlgital-to--analog converter Jont position feedback is via incremental optical encoders

The RCU controller has the hierarchical design typical of contemporary industrial con-

trollers. with a processor for each joint, supervised by a coordinating master which may

u



25 The Microbo Robot

Figure 2.4 The Microbo Ecureuil Robot
S

35



25 The Microbo Robot

—_——

M\)\*u‘h\ls
Mu\k.;s
P\dﬂf\u
7 :
Cl bus
‘ Towt . IRL CPO
see %*vp“lr
*b 45 *
] - : C2 b
4 e W,
¥6 [J -/ J;t
000
% Tnput
] Qyenera) - ¥ t
Rurese Card
i O \n‘\ﬁs__%
“ 3 .
s / \O?*é::_m et
™ <—
N Rl
-~ \ ?‘“‘“‘ Couvd
[ bﬂ’qw’(s‘_"
[ ]
| e ERER—— §
|
Figure 2.5 The Microbo RCU Controller
3o




¥/\ 25 The Microbo Robot

be programmed by the user using the IRL interpreted language which 1s resident in ROM
(Read-Only Memory). The ma;ter processor also controls a teach pendant, an audio-
cassette tape machine for program storage. a video terminal and a printer. The system
supports up to 8 joints, 1n addition to the 6 robot joints, there is a rotary stage and a linear

stage These are not currently being used. and are not supported by the RTC system

CVaRL's interest in the Microbo was spurred by this manipulator’s stated capability
for very fine motion, especially with the two prismatic joints This may be seen from the
following table which shows physical motion per joint encoder count For comparison, we

include the corresponding figures for CVaRL's Puma-260 manmipulator

Encoder Resolution
. Joint Microbo Puma-260

1 0.0031° 0.0770°

2 0 0020-mm 0.0051°

3 0.0013 mm 0.0084°

4 0.0041° 0.0103° |

5 0.0055° 0.0114° -
6 0.0182° 0.0142°

It may be seen that the Microbo is theoretically capable of much finer motion increments
than the Puma: 1t will be shown, however, that the vendor’s control algorithms negate this

advantage under actual working condition .

2.5.1 Controller Hardware

The master processor 1s an 8085-based single-card computer. On-board ROM is used
for the IRL language interpreter. and static RAM (Random Access Memory) for non-volatile
storage of programs and data This card is connected to two busses: a 16-bit/8-bit
address/data bus (the C1 bus) and an input/output bus (the C2 bus). The latter 1s
used for mte'rfacmg with the teach pendant and a VAX host. while the former allows this,
processor to control the 8 joint processors via their memory-mapped control registers This

interface i1s discussed below.
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25 The Microbo Robot

The joint processors are_identical and independent Each is an Intel 8085-based single-
card computer with the joint control software stored in ROM. There are dlgatal inputs for the
incremental joint encoder, and an analog output which 1s routed to the appropriate power
amplifier, which has a maximum current capacity depending on the joint's requirement
The joint processors and master processor share a common address and data bus which s
used for communication Each Joipt processor has a switch-selectable address on the bus
which defines the location of a set of 8-bit control. status. and data registers. These are
used by the master processor to query and control the joints The communication protocol
is always iniilated by the master processor It involves checking the status register before
each read or write to the command or data register to deterrmine that the joint processor
1s ready to receive or send data. For example, the. sequence required to fetch the 16 bits

of encoder data s as follows:
1 Read the status register until an input buffer empty condition is indicated.
Write the “read position” command code into the command register.
Read the status register until an output buffer full condition 1s indicated.
Read the data register, which contains the first byte of the two byte encoder position.

Wait until the status register again indicates that the output buffer s full

O e w N

Read the second byte of the encoder position from the data register

A similar protocol 1s used to send data. for example a target position or a velocity. to
a joint Each 16-bit data exchange of this type can thus be seen to require six register
reads or writes. consisting of a read/write sequence to send the command followed by two
read/read or read/wnites to fetch or send the data A more complete description of the joint
communication including definitions of the register bit patgerns and a command dictionary,

is presented in Appendix B.
2.5.2 Controller Software

The IRL Interpreter

IRL. a BASIC-like interpreted language. is the vendor-supplied software which executes
on the Intel 8085-based master processor described above. It is fairly primitive, providing

basically a one-to-one correspondence with joint-level commands. Programs are entered
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via a CRT terminal and may be stored-on cassette tape and printed on a line printer
A teach pendant allows the user to move each of the robot joints separately and store
resulting positions as sets of encoder counts The language was specifically designed for
the Microbo Ecureull manipulator's RCU controller and is bound closely to the hardware.
It 1t written in 8085 assembly language

Motion commands do not block an IRL program. the MTARGET command simply sends
single, asynchronous. joint-level “set target” commands to the appropriate joint processors
The programmer may optionally delay until the requested target has been reached by using
the MWAIT command. which causes the IRL processor to poll the joint(s) with “get joint
status” quenes until the appropriate bits are found set. It may be seen that a basic
weakness of the IRL system is the lack synchronjzation between joints. which means that
the path of the end effector 1s unpredictable for motions involving more than a single joint
Also. because joint targets may only be specified in terms of encoder counts or via positions
memorized using the teach pendant, it i1s impossible to compute positions off-line or from
a program and then predict the resulting trajectory IRL programs work exclusively in the
robot’s joint coordinate system and not in any Cartesian coordinate frame which can be

related to the workspace
The Joint-level Path Control Algorithm

Under normal operation. the Microbo joint controllers accept target. velocity. and ac-
ctleration commands. The joint control algorithm uses the latter tv;o values to control
the trajectory when moving the joint to the target position. When the target 1s reached
(within a few encoder counts). the control law changes and the jont servos to maintan
this position.

The control algorithm executing on the joint processors thus combines a primitive tra-
jectory control with a joint servo function We note that except for the command protocol.
the operation of the joint controller 1s not well-specified by the vendor. the expl;natnon
given here 1s based to a large extent on observation of the joints’ .charactenstucs Figure
2 6 1s an educated guess at the block diagram

. When approaching the target position from afar. the joint controller 1s said to be.
using the vendor's terminology. in the “dynamic regulation zone”™ The joint 1s accelerated

(using 1ts acceleration setting) until it reaches its velocity setting. [t continues at this
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velocity until it approaches the target position, then decelerates. It 1s then said to be in the

“static regulation zone” At this point, the acceleration term is ignored, and the trajectory

calculation is based solely on the velocity term See Figure 2.7
We introduce the following notation -
Xn is the target position for the nth sample instant
X, 1 is the previous target position
a is the (signed) acceleration
v is the (signed) velocity
At is the joint's sample period (1 msec)
G is the proportional gain
Xp is the current measured position

€ 1s the positional error. ie. || X, 3 — Xpl|
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oot
J (dyn) is the dynamic integral term
J (stat) is the static integral term

The vendor specifies th® following equation for the “dynamic regulation zone" °
xnzxn_,+aAt2+ce+/(dyn)

We interpret the third term to be proportional path control, servoing based on the
previous target position. The second term is the change in position due to acceleration
over the sample period. This 1s the trajectory control term.‘The fourth term is possibly
error compensation due to the proportional path control.

In the “static regulation zone” . the following “control law™ ts used

. Xp = X,,_1+vAt+/(stat)
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25 The Microbo Robot

The trajectory control term is now based on velocity rather than acceleration. and the
proportional gain term disappears. |

Unfortunately. this scheme as implemented by the vendor appears to have serious
design flaws. It seems that the servoing. and thus the stiffness of the joint. 1s affected by
the acceleration and velocity settings When the last velocity and acceleration sent to a
joint are small, the jont loses its stiffness. and fails to maintain its position under even
the most neghgible load conditions when stopped Also. because there is no proportional
control term in the “static zone”, the integral term dominates and the joints may exhibit

severely underdamped response when subjected to a small sustained force.

Work Areas

The precision of some of the Microbo joints (1 and 3) 1s such that the encoder word
size (16 bits or 65535 counts) i1s too small to cover the full physical range of the joint. To
overcome this, the vendor elected to implement "work areas” Under this scheme. if the
encoder value is greater than 50000 or less than 15535, the joint will accept a “change work
area” command. The result is that the current encoder setting is adjusted 50000 counts
downwards or upwards by the joint controller It is up to the IRL programmer to keep track
of which zones the joints are in: and of course it is impossible to move from the internor of
one zone to the interior of another without stopping in the “transition zone”, and sending
the appropriate command to cause the joint processor to change work areas

It seems that adding anot’het byte to the encoder word size would have been a far better
solution from the IRL programmer’s point of view Work areas. as will be seen in chapter
4, complicate the RTC implementation somewhat. and imit the velocities of the affected

joints when they are under (synchronous) control of the RCCL trajectory generator
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Chapter 3 ‘ Microbo Kinematics for RCCL

3.1 introduction

Mapping the coordinate space defined by the joints of a manipulator into a
space is known as the forward kinematic problem. Conversely, the /nverse kine
lem involves determuning the joint variables correspéndmg to a position and onentation
defined in Cartesian space of the m?nipulator's end effector
We first

establish the mathematical nomenclature that will be used in the rest of the thesis, and

This chapter begins with a review of the necessary mathematical backgroun

then discuss the use of homogeneous 4 X 4 transforms in representing the transformation
between coordinate frames associated.with the links of a serial ink manipulator We then
present and apply an algorithm to establish a coordinate system at each link. and from
this obtain the forward kinematic solution. This is followed by a derivation of the inverse
kinematics. Note that joints 2 and 3 of this manipulator are prismatic while the remaining
Joints are rotational. A summary of the computational requirements of the kinematics 1s
then presented. as this information was required during the design of the RTC system to

establish the CPU power required for a real-time implementation.

&

3.2 ~ Mathematical Background

4 X 1 vectors will be identified using bold face lower case. as in a. 4 X 4 matrices will

be shown in 'béld face upper case, for example A. First and second derivatives, usually



L1

corresponding to velocity and acceleration. will use dot notations. as in ¢ and ¢ Dotting
also may be applied to vectors. Components making up a vector will be enclosed in curly
brackets. for example q = {¢1,97.93.94.95,96}- The transpose of a vector or matrix I1s
indicated with a superscript as in aT or AT The use of a preceding superscript indicates
that a vector or transform 1s defined with respect to some coordinate frame, for example,
BA Ba are a matnix and vector defined with respect to coordinate frame B °

The following notation may be used to more compactly represent sines and cosines
S, = sn¥,. C, = cos§,. 5, = sinb, +sinb,. and C,, = cos ¥, + cos9,. -

o

)

3.2.1 Homogeneous Transforms

The representation of an n-component vector by an (n + 1)-component vector is
known as the homogeneous coordinate representation. For example. the vector p =
{pz,py,p:} becomes p = {wpz,wpy, wp,,w}. The mapping from p back to p is then
p = {wpz/w,wpy/w, wp,/w}. It may be seen that there is no unique representation for
the vector . but that if w is unity, then the homogeneous éoo«dinates are identical to the
physical coordinates.

Say we attach an orthonormal coerdinate frame F to a n\gud body in space and wish
to locate a point i F with respect to a reference frame G If p is a vector representing
the translation of the origin of G to the origm of F. and R s a 3 X 3 rotation matrix

representing the rotation of F with respect to G

Pz nr 0z 0
Pp=|p R=1\|ny o uay R 5 )
Pz n; oz @a;

then it may be shown (see for example [Lee 82]) that by using homogeneous coordinates

a point f in frame F has coordinates in G obtained using .

nzr Oz ar Px

Gp= | % % Py} Fy (3.2)
n 0z 6z Pp:
0 0 0 1

The above result is known as a homogeneous transform, and is especially useful in
representing the transformation between frames associated with each link of a robot ma-

nipulator. The four columns of the matrix are usually referred to as the n, o. a and p
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Figure 3.1 Then o a and p Vectors

vectors, and can be Jhought of in terms of fepresentmga frame attached to a manipulator
end effector. This is shown in Figure 3.1 The p vector locates the origin of the frame (a
translation). The other three vectors are unit vectors, and the first. a. may be thought of
as representing the direction from which the hand'would approach an object. The o then
specifies orientation of the hand. from finger to finger The normal or n vector completes

a right-handed coordinate system: n is the cross-product of o and a .

n=oxa

The result of multiplying two homogeneous transforms is another homogeneous trans-
form: transform equations can be simplified by pre or post-multiplying both sides by the

same transform. For example. if we have

XA=BCD




3 3 Defining the Coordinate System

.
. FAN
we can post multiply both sides by \

X=BCDA™! »

"7 because the product of a transform and its inverse is the identity transform

“ - -

3.3 Defining the Coordinate System

) . =
‘Denavit and Hartenberg [Denavit and Hartenberg 55] established a convention in which

an orthonormal right-handed coordinate frame is associated with each link of a serial link
manipulator. The transformation between frames in consecutive links is done using ho-
"mogeneous_transforms known as A matrices. Each A matrix depends on four geometric
quantities, a,. d,. ,. and a,. ass:iciated with the link. Either d, or §, vanies and is known as
the joint variable. Thisreptesentation llS sufficient for any ‘derial ink manipulator consist-
ing of prismatic and revolute joints. and leads to a straightforward solution for the forward
kinematics of a manipulator. ‘ . t
in [Lee 82}. an algorithm is given for sy/ste‘matically establishing the A matrices. The
method is as follows, where unit vectors along the z,,y, and 2, axes are shown as x,.y,
and z,. Please refer to Figure 3.2. )
1. Establish a right.-handed orthonormal coordinate frame (zg,¥p.29) at the base of the
- manipulator, with zy lying along the axis of joint 1. ‘
2. For each i,1 = 1,..N establish the joint coordinate frame
, .o 2.1 Align z, with the axis of motion of joint, 141
’ 2.2 Locate the orgin of the 1-th coordinate system at the intersection of the z, and
2z,_1 axes. or at the intersection of the common normals between the z, and z,_,
axes and the 2, axis
5 ' 2.3 Assign z, according to the c}oss product of the 2, and z_; axes or along their

common normal if they are parallel x, 1s the corresponding unit vector
. . 2J.4 Assign y, as the vector cross product of z, and x,. | )
3. For each 1,1 = 1,...N find the joint and link parameters
3.1 d, is the distance from the origin of the (z ;1)-th coordinate frame to the intersection
of the z,_y axis and z,, measured along z,_; axis. d, is the joint variable for

prismatic joints.
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34 Determinng the A Matnces

3.2 q, is the distance from the intersection of the z,_; axis and z, to the onigin of the *

t-th coordinate system, measured along the z, axis.

3.3 8, 1s the angle of rotation from z, _4 to z,. measured counterclockwise around z, _;.

6, 1s the joint vanable for rotary joints

3.4 a, 1s the angle of rotation from the z,_; axis to z,. measured counterclockwise

around r,

Using this algonthm.l we obtain the coordinate system for the Microbo illustrated in
Figure 3.3. Note that the direction of the z axis in steps 1 and 2.1 may be chosen arbitrarily.
for example, z; has been chosen pointing upwards though the opposite direction would also

have been a valid choice

»

3.4 Determining the A Matrices

As shown in |Lee 82], by multiplying together homogeneous transforms representing.
respectively. a rotation §, about the 2, _{ axis. a translation of d, along the z, _y axis, a
translation of a, along the z, axis. and a rotation of a, about the z, axis, the following

- general forms may be derived for the A matrices

cosf, ~—sind, cosa, sinfsina, a cosé,
A = sind, cos 0.' cosa, — COs f}, sina, a, sinb, (revolute joint)  (3.3)
0 sina, | €os a d,
0 ’ 0 0 1
cosfd, —snf cosa, _sinfsina, O
sind, cosf cosa, —cosb,sina, O .
A = ‘ ! ‘ ! ' 34
. 0 sn e, cos d, (pnismatic jont)  (3.4)
o 0 0 0 1

where d,, a,. §,. and a, are the joint parameters
By observation of Figure 3.3, the link parameters for the Microbo are
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Figure 3.3 Coordinate Systent for the Microbo
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34 Determining the A Matrices

Microbo Link Parameter Values
Joint: | & | 8, | aq a,

1 | 0o | 6 !0 | 0 -

2 d | 90° | 90° | 0 ‘
! 3 L dy | 0° | 0 0
L4 o | 8 [ 9%° | o

5 | 0 | 6 (9° | 0

6 - 0| 8 ' 0 | 0

and the jont variables are~{01, dy,d3.04,05, 6}

Substituting the values from the table into the formulae above. we get the following A

matrices for the Microbo Ecureuil

C; -5, 00
| s cp 0o
WA“ 0 0 10
0 0 0 1
00 1 0
A_(1ooo\
27101 0 d
\0 0 0 1)
(10 0 0)
A_|01 00
3=]o o0 1 ¢
. \0 0 0 1
(Ch 0 Sy 0)
A_| S0 -Coo
‘*“lo1 o o
\o o o0 1)
(Cso Sy 0\‘
A_| S50 -Coo
5“1 o 1 0
\ o o 1)
(C(,-SGOO
S Ce¢ 0 O
. As=10o o0 10
\o 0o o0 1/

;

Py

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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N

3.5 Forward Kinematics

The transform which relates the base of the robot (the {zq, vy, 29} coordinate system)
to a frame attached to the last link of the manipulator is known as the Tg transform s

obtained by multiplying together the A matnices

t §
\ Te = AjAA3AAgAg (3.11)

A

Using the notation introduced earher in this chapter we have
Ny Oz 04z Pz
n, oy o
Te=|"™ % % Py (3.12)
Ry 0y 0; P

0 0 0 1
Equating the terms of the result of (3 11) with (3.12) we get

ny = C1C¢Ss - S1(SaSe + C4CsCs)
ny = Cy(S4Ss + CaCsCe) + CS1s
ns = CsCeSs - C4S6

oz = - 51(CeSy — C4CsSg) — C1S55g
oy = Cy{CeSy ~ C4CsS6) - 515555
0; = - Cg545¢ - CaCé

ar = - CyS515y - C4Cy

a, = C1C4Ss - Cs S,

g; = 5435

pz = Cyd;
‘ py = d35;

p: = dy

3.5.1 Computational Complexity of the (o\r)m'd Solution

Because n, o, a defines an orthogonal system. there is some redundancy of information

because each vector is the cross product of the other two. Such a cross product requires

® . 51 °
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36 Inverse Kinematics

6 multiplications and 3 additions or subtractions, so it is most efficient in this case to
determine 0. 8 and p and then do n = o X a. The required calculations are then 30

multiphcations. 13 additions or subtractions. and 4 sets of sine and cosine operations

3.6 Inverse Kinematics

Given the terms of (3.12), which corresponds to a position and orentation of the

mamipulator end effector. the inverse kinematic problem is to find the joint variables.

it can be seen that (3.12) yields a set of 12 simultaneous equations, but that not all
are in a simple enough form to be useful Using the method described in [Paul 81]. we can
obtain up to 60 additional simultaneous equations by successively post-multiplying (3 11)

by A;‘ through Agl This results in a series of 5 matrix equalities of the form
AT AT =y, (313)

where
U, =A ---Ag t>1

Elements on the right of (3.13) are functions of the variables of joints 1 through 6.
while elements on the left are in terms of n.0.a.p and the joint variables 1 through - 1
If we examine equations with increasing values of 1, we may solve for each joint variable in
terms of previously soived va\riables. \

The atan2 form of the inverse tangent function s particularly useful here. It solves for

4, given an equation of the form \
sin(6)/cos(8) = f1/f2

which has the solution
8, = atan2(f1,12)

Thus we look for paus of equations where the nght hand sides may be divided to yield a

similar form.

Examining the terms of the column vector- p in (3.12). we have

pr = Cid3, py=Sydy, and p;=d, ' (3.14)
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36 Inverse Kinematics

which immediately gives us

8y = atan2(py. p:)

By inspection, we have

d2=pz

also, squaring and adding both sides of the first two equations of (3.14) gives us

dy=\/p2 +p

Because of the geometry of the robot. dj is constrained to the positive square root value

If we consider (3.13) with 1 = 4 we have

—1p-1p 19 _

which, if we equate the third column on either side, yields

aySy +2;Cy ~Cyg,

ayCy —a:Sy | _ | CaSs

;’: LhLe G SaSs
o 0

We can solve for 8, by applying the atan2() stratagem to the second and third rows Note
that there is a 180° phase shift when S5 1s negative. and a singulanty (no solution) when
S is zero. Physically, this singularity corresponds to joints 4 and 6 being in alignment, and
one way to deal with this when coding a c?gpputer algorithm 1s simply to use the previous
value of 8. Note that for the Microbo rabot. using the coordinate system that has been

defined. the range of joint 5 is approxtmaiely ~7/2 > 8¢ > —3m /2. This means that the

only singulanty physically possible 1s at 65 = -7, and gives us the following solution for
8,

0‘ = atan2(a,, ayC, - a,Si) 05 >-n

= atan2(a;, ayCy - a,s,)'+ 1 Og < -1

/
To solve for joint 5, we use (3.13) with : =5

AVYAIATA 1T = g (3.15)
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which gives us

a; Sy + Cy(ayCy — a:5y) Sg,

a, Sy + a;Cy | Cs
(ayCy - az51)Si- a-Cy |~ | 0
0 0

We can divide the second row by the first to'yield an atan() solution for for s
0 = atan2(a, Sy + CylayCy - a;51). —(aySy + ¢;Cy))
Finally. for joint 6. we use (3.13) with: = 6
AATATIA T AT = g

where equating the second columns gives us

(Oysl + C101)55 + CslozS4 + C4(Cloy — Ozsl)] —55
(CIOy - 0151)54 - C‘Oz _ CG
[0:S4 + Ca{Cyroy — 0:51)]S5 — CsloySy + Cyoy) 0
0 0

We then divide the first row by the second and use atan2() which gives
8 = atan2( - ((0ySy + C10:)S5 + Cslo.Sa + C4(Cpoy - 02 59)]),

(Croy — 0:51) Sy - Cq02) .

3.6.1 Computational Complexity of the Inverse Solution

The inverse kinematics requires 4 sets of sine and cosine, 4 atan2’s, 22 multiplies, 13
additions or subtractions. and 1 square root

We summarize the computational complexity of the Microbo forward and inverse kine-
matics in the following table. figures for the Puma-260 [Lloyd 85] are included for compar-

ison. It can be seen that the Microbo kinematics are far simpler than the Puma's.

Kinematic Solution Complexity 1

| mult | add/sub| sqrt atan? sin+cc_>§_i
Microbo forward 30 13 . 4 ‘
Puma-260 forward 5 ° 29 6 B
Microbo inverse @ 22 | 13 1 4 4
Puma-260 inverse | 64 | 42 2 7 6 |
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Chapter 4 RTC System Design and l”mplemeniatiod

4.1 Introduction

1]

The user interface and operation of RTC was described in Chapter 2. In the present
chapter we discuss the design of a new RTC system for the Microbo robot. We begin by
enumerating the constraints which were placed upon the implementation. We proceed with
a general discussion of the basic design alternatives that were open to us A feasibility
study includes performance projections based on the kinematic analys’is of the previous
chapter, and the design and testing of an interface to the Microbo’s joint controllers The

chapter concludes with a description of the resulting RTC implementation

4.2 Design Constraints

c »

The design of RTC for the Microbo robot was constramed by the following requirements.
1 Retain compatibility with the existing CVaRL VAX/Puma version of RTC, from the
application programmer’s point of view Beyond the obvious benefits of standardization,
this would allow us to use the robot-independent RCCL hibrary code without significant
change
2 Achieve a useful sample r:‘at'e (the itial goal was 28 mlllusecond'ﬁ) when running th;
RCCL trajectory generator as the control function This ts important for smooth.and

precise motion of the manipulator. .

* The default sample period for the VAX/Puma implementation 1s currently set to 56 miliiseconds



43 General Considerations

3 Maintain and enhance the robot-independent aspects of the systdm as far as possible
This sampl‘fues extensions for other new fobots &

4 Avoid modifications to the existing Microbo RCU unit so that users can continue to
use the IRL system and the roll;;t while RTC/RCCL development is underway, as well
as afterwards -

5. Use the existing vendor-supplied joint controller software (in EPROM‘) This s the
other aspect of ensuring IRL compatibility after RTC installation The constraint i1s
also a function of an almost complete lack of documentation for the joint controller
hardware and software. and a lack of the appropriate development tools to install new
Joint-level code

6. Use an available Intel “System 310" as a basis for the implementation This Multibus-
based system s comprised of an Intel 80286/287-based single board computer. a'20
Mbyte Winchester disk plus S%Bnch floppy disk, 896k of RAM. and free slots for ad-
ditional Multibus boards. Extra CPU power is available in the form of an 8086 /8087-
based single board computer with 256k of on-boasyd RAM. which may be booted from
an 8 inch floppy disk unit controlled by an Intel iISBC-208 floppy disk controller The
system runs the Intel iRMX-86 operating system, and provides a reasonable software

development environment. A native C compiler is available.

4.3 General Considerations

The major computational load on an RTC system running RCCL is imposed by the real-
time control functions. It may thus be seen that the first constraint listed above 1s ideally
satisfied if we execute the RTC control functions on a separate microprocessor system, but
retain the VAX/Unix development and execution environment

The VAX and this microprocessor would then need to communicate at the rate that
motion or synchronization requests are generated by the user. Since an RCCL motion
request 1s of the order of a hundred bytes, the communication between the VAX and the
micro need not be very fast. This scheme would appear to be extensible to multiple robots.

with one RTC processor per robot. and the single VAX running RCCL user programs.
I8

t Electrically Programmable Read Only Memory
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43 General Considerations

Synchronization between robots would be possible either by adding a‘robol parameter to
the appropriate RCCL calls to identify a particular robot. or by having separate RCCL
libraries for the various robots '

it should be remembered that the motion equations created at the RCCL user level
are solved in real time by setpoint(). an RTC control function, when a move() statement
is executed This imphes that the RTC and RCCL levels both need access tovthe linked
list structure which repvesents’ the motion equation Unfortunately, the VAX and Intel
conventions for storing floating point numbers differ’. so in addition to the problem of
creating a data area concurrently accessible from both machines. we have the problem of
changing data formats at a low level.

There are several additional difficulties with this scheme, the first of which involves the
case of “functional” RCCL motion transforms. 1e. those that are not constant but involve
some function of time or of sensor data In the first case. where the transforms are simply
functions of time. it should be possible to execute them on the microprocessor system. given
real-time clock functionality. the second case implies more complex communication between
the VAX and the microprocessor system to map sensor information between machines (if
sensors are interfaced to the VAX).

A practical problem which arose at the ime this work began was the lack of appropnate
VAX/Unix-based cross-development tools to create and download executable code to the
microprocessotr system This meant that the RTC system and any control functions would
have to be edited. compiled. and linked on the microprocessor system, obwviously, for the
RCCL tragectory generator this need only be done once. but functional transforms and
would be ruled out. and the VAX user would lose the ability to use RTC by itself Also,
source code for the libraries which make up the Intel 1RMX operating system was not
available. meaning that a major portion of the RTC support code development would have
to be done on the System 310 anyway

The conclusion was that it is desirable, but impractical, to decompose the RCCL user

level on the VAX and move the execution of the control function to a separate processor

The alternative solution 1s to port the entire RCCL/RTC environment to the Intel

MICIOPIOCessor sysi.em Since RCCL and its RTC controt functions are writtenin C. and a

——— —

t intel uses the | E E E standard DEC doesn't
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compiler was available for the.System 310, this seemed eminently possible. The problem

could now be decomposed into the following steps.
1. design and implement an interface between the Microbo joint controllers and the System
}10.
2 design a microprocessor system based around the System 310 which could support the
computational and communication toad mposed by RCCL and the Microbo robot.
3. design and implement a new version of RTC using the Intel iRMX-86 operating system,
4. port the RCCL library to the System 310 |

5 test and evaluate the resulting RTC/RCCL system.

N

4.4 Feasibility Study

a

This section describes preliminary work done to verify that the Microbo system was
a suitable target for RCCL/RTC, and that the Intel microprocessor system outlined above

was capable of satisfying the imposed restraints.

[y

. 4.4.1 Execution Time Estimates

2

in order to determine whether the Intel 80286/80287 microprocessor chip set had the
processing power required to support RCCL. some "bali-park™ estimates were made. as

follows

The performance of the RCCL implementation for the Puma-260 manipulator running
on @ VAX 750 with floating point accelerator was measured [Lloyd 85] in terms of the
CPU time taken by the RTC control routine under vanous conditions. The_se results are

summarized in the following table, where it should be noted that in Cartesian mode. the

forward and inverse kinematics must bé computed every cycle. In joint mode. however, the

inverse kinematics need be computed just at the beginning and end of each motion segment.
intermediate values are interpolated during consecutive cycles If the 'sample period.s set
to 28 milliseconds. it may be seen that under worst-case conditions the VAX will spend
over 70% of the time available between sampling 1nstants inside the RCCL control routine.

which leads to unacceptably poor overall performance for other users. The solution was
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to use a 56 millisecond sample period: for the Puma manipulator. this does not appear to

cause noticeable performance degradation ,
9

LCPU Time per Cycle for VAX /Puma lmplgmentatﬁ

o Trajectory Mode i Time per Cycle !
- Joint Mode l - 12.0 msec j

. Cartesian Mode 155 msec

Cartesian plus 2 functional transforms 200 msec |

Keeping this information in mind. we look at the computational complexity of the

forward and inverse kinematics of the Microbo in comparison to the Puma, summarized as

4

follows (this table is repeated from Chapter 3) -

| . Kinematic Solution Complexity ;
' mult ;add/sub‘ st | atan2 ' sintcos’ .
. Microbo forward - 30 | 13 ! |4

T

" Puma-260 forward | 59 2 : 6
~ Microbo inverse | 22 13 1 0 4 4
Puma-260 inverse | 64 42 2 | f 6

From the above we )an see that the Puma solutions are about twice as complex a$
those for the Microbo. - ’
Next. we logk at the floating point performance of a VAX-750 with floating point
accelerator (FPA) versus a 6 MHz Intel 80286 with a 5 MHz 80287 math coprocessor. The"
table below includes results using both the vendor-supplied math libraries and a set of math

-

functions written in 8086,/8087 assembler language by the author’

-

- S

t The Intel-supplied math library is very inefficient. apparently. little use was made of the 80287 s 8-element

floating point stack N

g - 59
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Floating Point Performance (time in usec)

4 4 Feasibilty Study

9

80286/80287 VAX-750 w/FPA

“ sin (C lbrary) ' ~ 2500 N 230 -
cos (C library) . 2500 230
sin+cos (assembler) 540
atan2 (C library) 2900 310
atan2 (assembler) | 420 )
. 4x4 transform multiply 2300 250
multiply (reg-reg) 195 24
" multiply (mem-mem) 225 14.6

*

From the table it can be seen that the 80287 coprocessor provides the 80286 system
with similar pe/rformance to the VAX for trigonometric calculations in assembler. but that
floating point multiphcation is almost an order of magnitude slower We note also the

benchmarks done by Hinnant [Hinnant 84] using the “Sieve of Eratosthenes”. which is

representative of non-floating point operations. These results showed the Intel processor

achieving about 35% of VAX-750 speed

The 80287 does no! directly execute the sine or cosine functions but instead provides
a tangtht function which takes as input an angle 6 and leaves y‘and z on the f;oatmg point
stack. Sin(f0) and cos(f) may then be computed using y/\/1?2—+7 and z/\/m
From this it may be seen that once the sine has been computed. the cosine result 1s
obtained with one additional divide operation This technique was used in the author's
assembly language implementation of the sin + cos() function )

To summarize. the Microbo kinematics are about half as complex as those for the
Puma, and the 80286/80287 processor has an overall performance of about 40% of a VAX-
750 doing a mix of math and trigonometry We therefore estimate that the intel system will
take about the same time to execute the RCCL trajectory control function for the Microbo
as the VAX does for the Puma Assuming similar overhead to communicate with the joint
controllers. we should be able to achieve a 28 millisecond sample rate in joint mode. but
may be forced to use a slower rate in Cartesian mode It will be necessary to use the
assembly-language versions of the trigonometric functions as the corresponding calls in the

standard C math library are unacceptably slow.
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4.4.2 Force Sensing

The VAX/Puma implementation of RCCL computes joint torques based on the assump-
tion that these are linearfly proportional to the joint motor currents There 1s a sensing
resistor in senes with each of the joint motors. and the resulting voltage 1s filtered and sent
to the input of an analog-to-digital computer The inverse Jacobean matrix 1s used to map
”th? forces from joint space to Cartesian space As has been shown in [Lloyd 85]. even the
relatively low static friction terms of the Puma-260 robot contnibute major uncertainties to
the determination joint torques The corresponding friction of most of the Microbo joints
is. by observation, at least an order of magnitude higher, and rules out this method entirely
Mounting torque transducers directly on the joint shafts would not overcome this problem
The preferred solution would be to use a wrnist-mounted force sensor Preferably. this force
sensor would be “intelligent” that 1s. it would map the forces it detected orito a cartesian

coordinate system attached to the wnst We can then transform forces to the tool tip

using
. 0 B 5
Feo = (B 0)
where
CsCq  SsCq  Se
B=| -CsS -555 Ce

This is of course computationally far less expensive than computing the forces at the
tool tip from the motor currents via the inverse Jacobian transformation. and eliminates
the problems of static fiction Compensation would have to be made. of course. for grawity

loading due to changes in the configuration of the wnst

. 8.4.3 The Interface to the Joint Controllers

~ The RCCL trajectory generator assumes synchronous control over the joints That 1s
the ';)ath of the end effector is controlied by breaking motion up into segments of equal
time duration and repeatedly computing and\ specifying setpoints, or target positions in
joint space Each joint must therefore servo from setpoint to setpoint by computing the
velocity and acceleration required so as to smoothly reach the new setpoint at the end of
each sample period The joints must not decelerate as they reach the setpoint rather, they
should assume that the velocity will remain the same during the next segment Stiffness

o

St
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during motion and while at rest must be maintained We note in passing that the Puma s
Unimation controller has the joint-level microprocessors executing a PID-based (Propor-
tional. Integral. Denvative) control algonthm which satisfies the above requirements The
details are propnietary information of Unimation

In the chapter describing the Microbo robot. we examined the joint controllers. the
communication protocol. and the control algonthm that they implement We saw that as
programmed by the vendor. the joints assume asynchronous conltrol There 1s no notion of
a sample rate, and thus their velocity and acceleration must be set exphatly Additionally .
some of the joints have more than one work area. since the word size of the joint encoder
1s insufficient to cover the entire physical range of the joint In order for these joints to
travel from one work area to the next, a special command must be sent to explicitly cause
a éhange of work area

If we wish to control the Microbo joints in a synchronous manner without reprogram-

ming the controller EPROMSs, we must venfy that we are able to

interrupt and communicate with the joint processors as fast as every 28 milliseconds?
without disrupting the joint servoing,
- accurately control joint velocities,

defeat the jownt-level trajectory control.

¥

deal with the work area problem

The Multibus Adapter Card

In order to communicate at hugh speed with the Microbo joint controllers. an interface
was designed which maps a logical segment of the C1 bus into the 1/O space of the
Multibus  In this way the joint processars’ control and data registers may be directly
accessed by a processor on the Muitibus  The Multibus 1/ O space rather than address space
was used because the full 1 Megabyte Multibus address space 1s required for contiguous
RAM and ROM memory

Figure 4 1 shows the Multibus Adapte{ card It resides on the Multibus. with a flat

cable connection to the RCU C1 bus The cable is shielded and hmited in length to about

! Thus rate 1s a histoncal artifact of the Puma implementation We continue to use the 7 14 28 scheme
to maintain compatibiity with RCCL function calls which deal with the sample rate
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Figure 4.1 The Multibus Adapter Card
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1 meter due to the finite current source capability of the bus driver chips  Since one of the
design constraints was that the IRL processor remain resident in the system. the adapter
card asserts the IRL CPU’s 8085 ho/d input and watts for the appropnate hold acknowledge
(HOLDA) signal before taking control of the RCU C1 bus Once this low-level handshaking
has taken place. the IRL processor’'s bus drivers are assured to be tri-stated and the adapter
can safely drive the C1 bus The connection to the hold and hold acknowledge signals of
the IRL processor. which was the only modification made to that card. has no effect on
the operation of the card except when the Multibus adapter 1s present and active, and thus
satishies the constraint noted above

The timing of the bus interface 1s shown in Figure 4 2 The sequence 1s iitiated by
the address decoder detecting a valid address in conjunction with the Multibus JIOWR/ or
IORD/ signals This initiates the HOL D signal onto the C1 bus The conjunction of HOLD
and the resulting HOLDA from the IRL CPU then enables the adapter card’s bus drivers to
place an address onto the C1 bus, and initiate the acknowledge timing The bidirectional
data bus drivers are enabled in one direction or the other depending on whether this 1s a
read or write cycle We use a shift register clocked by the Multibus CCLOCK signal to
generate the Multibus XACK/ signal after a delay of 5 clocks. or about 1 microsecond
The XACK/ signal causes the Multibus master to remove the IOWR/ or IORD/ signal and
the cycle end's )

We note that the adapter card currently does not control the RCU C2 bus. which
contains the interface to the RCU power control relays. teach pendant. and other |/O
devices We therefore rely on the IRL processor to power up the robot and control the
teach pendant However, this tie to IRL i1s hidden from the user by the RCCL teach
program, in this way, the RCCL programming environment 1s maintained for the Microbo

robot (as described in Appendix A)

Communicating at the Sample Rate !

kY
\

"The discussion 1in Chapter 2 concerming the Microbo RCU showed that each joint
controller éppears as a set of registers in the address space of the C1 bus We reiterate
that every time a data or command register 1s read or wnitten, the appropnate status
register must first be read to venfy that the joint controller is ready to receive or send the

data (if not. the status register must be pdlt¥d until the appropriate state 1s indicated) We

v
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Figure 4.2 Multibus Interface Timing -

call each such handshaking sequence a communication exchange A typical command with
its 2 bytes of data thus requires 6 bus exchanges 2 for the command byte and 2 for each
data byte

Every commupication exchange involres interrupting tlhe Joint controller from its tra-
jectory of servo cc%t'ra‘lunctlon Before synchronous control can be considered. we must
confirm that the joint controllers can withstand being interrupted at the desired 28 milhsec-

ond rate We also need to measure the average duration of typical RTC communication
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sequences

A test program was written which used the bus ad~apter described above installed n
the Intel System 310 Using the lRMX:86 operating system. a real-time task was created
which sent three commands to each joint every 28 miliseconds The first command was
F qugvy for the current encoder value. the next was the command to set a position target,
and the final com'mrand was to set the joint veloaity To begin with the new target for each
joint was simply set to the current encoder value and the velocity set to a median value
The program was executed on the'ISBC 286/10 processor and it was confirmed that the
manipulator responded by going into “zero gravity” made 1 e f placed by hand into some
configuration 1t would stay there The stiffness due to the joint position servoing was still

present. of course

~

This test confirmed the operation of the bus adapter and the viability of synchronous
communication with the joints at the rate required by RCCL With six joints, three com-
mands per joint. and six bﬁs exchanges per command. we have at least 108 bus register
reads or writes per sample period Oscilloscope analysis showed that the average time
required for each bus exchange with a joint microprocessor 1s about 75 microseconds
This gives a total time of 108 » 075 or approximately 8 milliseconds to interact with the

manipulator joints »

Synchronous Controf of the Microbo Joints

Because it was impractical to re-program the joint processors. we were constramed to
find a way of using them “as 1s” The previous experiment had shown that we could send
targets and velocities to the joints every 28 milhseconds without disrupting their basic
operation Our next task was to demonstrate that we could establish mampulator-level

trajectory control and achieve reasonably smooth motion

As described in Chapter 2. the RCCL trajectory generator operates in an open-loop
manner. RTC assumes joint-level position control  This control 1s expected to honour
position setpoints generated at the sample rate such that targets are reached exactly at

the end of each penod

Re{feyﬂg to Figure 27 1t may be seen that if we simply send un-edited position

requedts to the Microbo joint controllers, then as we approach the “static” zone during
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each motion. the joint's built-in trajectory control algonthm will cause deceleration. and
the resulting motion will exhibit very high vibration at the trajectory sample frequency

A solution is to have the joints “follow™ position targets which remain far enough away
from the current position so that the deceleration phase 1s never entered and exercise
control via velocity commands

This s;:heme was evaluated. using the \RMX-86 operating system. with the real-time
test system shown in Figure 4 3 An RMX mailbox was used to queue a set of motion
requests to an interrupt-driven “robot task™ The latter serviced one such request each
sample period by computing a target and velocity and sending the appropriate commands
to the joint processors. while keeping trace records of actual and requested positions The
main program created the senes of motion requests using simple interpolation

The actual joint target X and velocity V' to send to the joint each RTC sample penod
were computed as follows. where Xy, ,,,.4 's the position to be reached at the end of the

next sample period. X, i1s the last measured joint position. and K 1s the appropnate

~conversion factor (defined by the vendor)

X = Xdc.nrcd + (X\dc:nrcd - Xm)
V= k x rxdcs:rcd - Xm,

The resulting motion of the manipulator was reasonably smooth, and judged to be
good enm};h to proceed with an implementation of the full RTC layer using the existing

joint controllers and this scheme

Dealing with Work Areas

A final 1ssue concerned the Microbo joints’ “work areas” (described in Chapter 2) It
was desirable that RTC programmers be able to specify arbitrary position targets without
having to consider whether a change of work area was required Using the test system
described above. various algorithms were tried The one which seemed to work most reliably
involved using two encoder count “thresholds” and associated "transition zones”

Referring 1o Figure 4 4. when the actual encoder position of a joint passes an upper or
lower threshold. it 1s deemed to be in a “transition zone” . and a command to change work

areas 1s automatically sent to the joint controlier The thresholds are set such that there
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is some hysteresis, otherwise the system oscillates Thus scheme continuously maintains:
the joint inside the most appropriate work area. botﬁzvhen it 1s 1in motion due to RTC
position setpoints. and when 1t 1s being manually moved (for example. in “zero gravity”
mode during teaching) The only restriction s that if the joint speed becomes too high. we
may pass all the way through the transition zone between samples, and the encoder may
then “wrap around” undetected As the sample period Is increased. the problem becomes

more serious

Joint 3 has the finest resolution (see Table i Section 2 5) and therefore represents the
worst case Referring to Figure 4 4, we see that the lower threshold 1s 7450 counts. and
the upper threshold 1s 57550 counts (The hysteresis is thus 57550 - (7450 + 50000) =
100counts.) The lower transition zone 1s 7450 counts while the upper zone 1s 65535

57550 = 7985counts. so the lower zone represents the more dangerous case

.
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Figure 4.4 Work Area Thresholds

Now. using a 56 millisecond sample period and joint 3's encoder resolution of 0.0013

mm
“ouni- We get a it of

7450 x 00013 173™™
| 0.056 - sec
which represents a performance hmitation’ For a 28 milhsecond samphing period this 1s

relaxed to 346 7' which poses no problems

Some communication and computational overhead 1s added using this scheme, because
we must check the encoder value against two limits each sample period. and possibly
send an additional command to each joint Since the “"change work area” command has
no associated data. it requires just ~two commumcation exchanges { 075 mllhsecbnds) to
check the status register and sent the command In the worst case (all joints simultaneously

changing work areas) this adds up to 6 x 2 x 0.075 or about 1 milhisecond for.6 joints

Summary

Our feyﬂbihty study has shown that the communication overhead for 6 Microbo joints

— e

* The maximum speed specified by the vendor for this joint 15 approxtmately'm{) mm/sec
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under RTC position control 1s approximately 8 mithseconds The worst-case cost of check-
ing for and adjusting work areas is 1 millisecond

Using projections based on VAX versus 80286/287 performance and the relative com-
plexity of the linematics of the two robots, we estimated that the Intel microprocessor
would take approximately the same time as the VAX. 20 milliseconds. to execute the RCCL
setpoint function in Cartesian mode with 2 functional transforms ‘

A sample period of 56 milliseconds seems to impose an unreasonable hmit on the
maximum velocity of joint 3 due to “work area” problems. but f we use a 28 milisecond
sample period. joint communication overhead then represents a serious reduction of the
time avallable Considering that we must leave a reasonable proportion of the CPU to run
the planning-level program and the operating system. we conclude that an Intel 80286/287
processor 1s sufficient for trajectory control alone. but insufficient to implement the joint

»
communication as well

4.5 The RTC Implementation

Z
N/

’

4.5.1 Overview

—

The solution taken was to implement the RTC system using twq microprocessors, an
Intel 1SBC-286/10 and 1SBC-86/30 The 86/30 15 dedicated to the interface with the robot
joint controllers, including the “work area” overhead The 286/101s dedicated to executing
the RTC control functions and planning level program Com;nuntcatoon between the two
processors is via the RTC chg and how data structures which are located in dual-port
memory on the 86/30 The system is shown diagrammatically in Figure 4 5

Both processors use the IRMX-86 operating system described in Chapter 1 fhe 86/30
runs a mimimally configured version which includes just the Nucleus and a single user job
contaiming the robot communication tasks The 286/10 runs a fully configured version
of the operating system, mclludmg the Human Interface. Application Loader. Universal
Development Interface. Extended 1/O System. Basic 1/O System, and System Debugger
The RTC and éCCL Ibrares along with a full complement of software development tools
_reside on a Winchester disk controlled by the 286/10 . Users may thus edit. compile. hnk
and I?ad their RCCL or RTC programs from a video terminal connected to this processor

. ‘ ’ 70
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* 45 The RTC Implementation

An objective of this implementation was to achieve concurrency between the robot
Al \ communication and the execution of the RTC control function. as soon as the setpoint
information 1s available from one processor. the communication task on the other can b’egm
to interpret 1t, send appropr]ate commands l<; the joints, and gather state information from

\ the joints Meanwhile, the first processor can compute the next setpoint.

4.5.2 Task Architecture

The task architecture of the RTC implementation is shown in Figure 46 and the timing '

may be seen in Figure 4.7. The following discussion refers to these two figures.

° The commumc\)ation task on the 86/30 processor. which is automatically created by the
operating system when the processor boots up, initialhzes a hardware timer such that an
interrupt occurs every RTC sample period. The task is subsequently invoked each time the
interrupt 1s signaled. and checks the current state of the RTC systerﬁ by lor;kingcat a status

‘ ﬂég in shared memory If there 1s no RTC control session active. the task does nothing
Otherwise. it communicates with the robot joints to gather the current mampulator state

information (the how data structure). and then interrupts the 286/30 processor.

When a user program makes an rtc.open() call. an RTC control task i1s created on
4 . the 286/10 processor This task first initiahzes the RTC system. basically by clearing the

. appropriate flags in the fields of the how and chg data s;tructures

An rtc_control() call causes this task to set the status flag in shared memory for
the 86/30 communication task The control task then waits for the interrupt from the
communication task. The occurrence of the interrupt indicates that the how information
structure has been updated. that it may be copied to local memory. and that the first RTC
control function (f1) may be executed After the function call. the control task signals
the commumcation task using the status flag in shared memory. and the chg structure is
R copied from sha.red memory to 86/30 local memory The communication task immediately

signals back the control task via the status flag

The communication task then proceeds to process the chg inférmation by generating
. appropriate Microbo joint commands, while the RTC control task concurrently executes

the second RTC control function (f2) such as the RCCL “setpoint™ function. At this point

C ’ 12
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the i:ycle repeats. the communication task waits for another timer interrupt and the control

task waits for the "how data ready” interrupt

The prionties of the control and communication tasks are relatively high. since these
are iRMX-86 snterrupt tasks. the task prionty is a function of the (prionitized) hardware
intersrupt level This was selected n both cases to be higher than that accorded to all other
devices (eg the console device on the SBC 286/10) We thus guarantee that the tasks

will always be invoked with minimum latency

Limit Checking and Error Handling

The robot communication task on the 86/30 handles all limit checking and error han-
ding RTCvcontrol programs set the checking mode of the system via the chg data
structure The robot communication task, according to the flags which are currently set.
checks for observed position out of range. target position out of range. observed velocity
out of range. target velocity out of range, joint calibrated. etc If a limit 1s exceeded. or a

looked-for condition reached. a corresponding flag 1s set in the hos data structure

The robot communication task also checks for t)asm problems such as loss of robot
power. communication error while talking to a joint, etc Again, flags are set in the how

structure according to the error

The RTC contral task checks the flags in the how structure once each cycle. and the
control session 1s terminated (control task de'eted) if an error 1s detected As explained
above. the control task has higher priority than that accorded to any other 1/O tasks on
the SBC 286/10. so it cannot do console I1/O We therefore use the concept of a watchdog

task to handle terminations This i1s done as follows

When the control task i1s created by the rtc_open() call. an additional task, called
the watchdog task. s created This task creates an IRMX-86 semaphore. and then simply
waits at the semaphore for a unst It s the control task's responsibility to send a unit once
each control cycle If the unit does not arrive within the appropriate period. the watchdcg
task wakes up and looks at the state of the system

Depending on the error condition, the robot may be powered down In any case. the
control task 1s deleted. an appropnate error message Is sent to the user’s console, and the

°

rtc calling program (an 1IRMX-86 yob) is terminated
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45 The RTC Implementation

The user can trigger 3 similar sequence via the “control-C” key. dunng an RTC control

session it 1s bound to a special handler which gracefully terminates the session
The teach() Function

One prerequtsite for a useful robot programming environment 1s a way of “teaching’
robot positions using a teach pendant In the RCCL environment. 1t i1s useful to have a
teach() function which allows the robot to be moved under teach pendant or keyboard
control. then returns the corresponding T¢ transform The latter may then be saved in a
database or used in RCCL motion equations within the calling program

Lioyd. in hus implementation of RTC/RCCL for the Puma manipulator. wrote a teach
function which dealt directly with the Unimation controller's teach pendant [Hayward and
Lioyd 85] In the present case. the IRL interpreter provides the basis of the Microbo teach
pendant program

Because the 8085-based IRL processor lremams resideng in the RCU., it was possible to
" incorporate it into our implementation by connecting the IRL console port to a senal port
on the 86/30 processor The teach function. called from the context of an RCCL program
runming on the 286/10 proéessor. just suspends the current RTC control session Then.
using a field in the chg data structure. 1t causes the appropriate command string to be
sent to the |IRL interpreter via the senal port This activates the IRL teach program The
robot may then be moved under control of the RCU teach pendant When this mode 1s
terminated. the |RL teach program is interrupted the Ty transform computed. and the
RTC control session Tesyfifig=—==— -

The teach function also incorporates a “zero gravity” mode. such that the manipulator
may be pushed into a desired configuration. and the corresponding transform computed and
returned to the calling program ({This corresponds in utility to the Puma's “zero gravity”

mode )
Porting the RCCL Library

Once the RTC system descnbed above was up and running, the RCCL library could be
ported to the RMX system. The only prerequisite was to code the Microbo forward and
inverse kinematics. verify them, and replace the appropriate modules in the library Given

the results of Chapter 3, this was fairly straightforward.

16
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A simple file transfer progra}(-n (discu;sed in Appendix B) was written under Unix 4 2Bsd
to transfer files from the \}KX to the System 310 over a serial line. and the appropnate
sources were then recomp’u{ied using the RMX utihties The only modifications which had to
be made were due to the slightly different pathname syntaxes of the two operating systems
(RMX-86 and Unix) The assembler-language math and tnigonometnc functions (sin+cos
atan2, etc)/duscussed in Section 4 4 1 replaced the corresponding standard C functions in

the library

4.5.3 Performance .

Once the RCCL hbrary was compiled and installed on the Intel system, a suite of
test programs; was wrtten These were suitably modified versions of existing appropriate
RCCL programs which had been written for the Puma (Because the Microbois a cylindncal
robot, 1t s workspace 1s considerably different from the Puma’s*) These confirmed that the
system functioned as expected. and that all of the supported’ RCCL function calls worked
correctly Motion was reasonably smooth, although there was some vibration which was
attributed to the Microbo’s joint controllers’ poor performance

The CPU time consumed by the RCCL/ control function was measured under vanous

conditions, and the results are shown belo
454 Suinmary of Departures from the VAX /Puma Implementation

4541 RTC

The 1RMX-86-based version of RTC has the same ger“eral functionality as the VAX
version, the user interface 1s bgsncally unchanged. both in terms of the function calls and
the data structures

The internal implementation. however, 1s quite different, due to a) the different oper-

ating systems underlying the two versions, b) the different robots and c) the dual-CPU

o

————m = —e -

* As discussed in Section 4 4 2 compliance-related calls are not currently supported due to the lack of
approprniate force sensing
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' 45 The RTC Implementation

nature of the the microprocessor-based system In order to increase efficiency. some func-
. tionahty. for example conversion of encoder values to RTC range values. has been moved
. " to the second (86/30) CPU

’

The how and chg data structures are shghtly different. the user should look at their
defimtions 1n /rccl/h/rtc h One basic change which will be noted is that the user of
the Microbo robot no longer deals with encoder counts; both chg and how specify joint
positions in terms of range values The latter coordinates express the joint vanables such
th ey are zero at the joint minimum,. and increase so that the maximum range value 1s

ﬁge of the joint. either in millimeters (joints 2. 3) orwradians (all others)

Specifically, it should be noted that the chg.i motion vali structure element. which
1s used to send position setpoints to the joint microprocessors. has been replaced by
chg i motion{i] .valir and 1s a f1oat as opposed to an int field as used on the VAX

Similarly. the how . pos elements are now float instead of int yalues
; The chg i motion(i] .set field supports 3 operations -

- POS : simply causes the position specified to be translated to an encoder value and

sent to the joint

- POSVEL : causes the system to compute velocities, accelerations, and encoder targets

such that the specified position becomes the target position for the next sample period

- STOPCAL : causes the joint to be stopped and sent to its mechanical calibration position

(via the joint-level calibration command)

The CUR command s not supported. due to lack of direct control of the D/A converters *
on the Microbo joint controllers The present joint controller firmware does support “read
instantaneous current” and “set maximum current” commands. but the trajectory algorithm
1s still operative, so that these commands are of no practical use in terms of RTC current

.

control requirements

As would be expected: the error messages retarned by RTC are generally different from
the messages of the VAX/Puma implementation In particular. there are two functions
pfint-rtc-error() and print terminate code() which have been re-implemented to
print appropriate error messages strings orrrhe.nt\d‘out device These functions are found in

/recl/rte /‘prt,error.c. and the error code definitions are found in /rccl/h/errors.h

‘ As has been noted in Chapter 4, t};e VAX and Intel floating point binary formats are

18
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different. Intel uses the | E E.E standard, DEC doesn't This has no impact on the current

implementation

4542 RCCL

~

The Microbo implementation of RCCL su&ports all functions except those dealing with
compliance or force The RCCL hibrary was ported basically unchanged. except where com-
piler mcomba\mbilotles were encountered One such problem was that the 80286 processor
1s a 16-bit machine. so that the C int type is 16 bits as opposed to 32 bits on the VAX
This does not cause any problems as long as programmers remember to use the long 1nt

type where required (eg the terminate global vanable)

The setpoint () control function was modihed to work with the new chg and how

gtructures, and the force-related code was removed

Some of the mathematical functions.were re-written i1n 80286 /80287 assembly language.
and the corresponding C functions were removed from the hbrary They are sincos(),
atan2(), crosa(), dot(). hypot(), invert()., reduce(). andtrmult() Note that
sincos () had been previously been implemented as a C macro These functions may be

found in /rccl/math/ ©

4.5.4.3 Robot Calibration

‘Each of the Microbo’s joints has a mechamcal cahbration position. when the joint
controlier receives a “cahbrate” command it will seek this position Associated with the
command 1s a 16-bit value. this becomes the encoder value at the calibration position
The values used in the present RTC implementation are those onginally used by the IRL
system, and are defined in the /rccl/h/constants.c program

The ratios of encoder counts to joint motion was first taken from the vendor's specihi-
cations. but these proved to be mostly incorrect Measurem‘!hts\ were then taken and the
correct. values incorporated

As with the VAX implementation. the constants program contains all the basic robot
constants calibration positions, joint ranges. encoder counts per range unit. etc  Compil-
ing. loading. and executing this program results in the creation of a C include ( h) file In

the VAX/Puma case this was called pumadata.h, it 1s now called microbodata . h This
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45 The RTC Implementation

file may then be included wherever the constants are needed

FThe Microbo manipulator may thus be calibrated via chg structure commands the set
flag should be set to STOPCAL. and the how status word polled until ALL JOINTS 1s
detected At this point the corresponding range values may be read from the how struct
A calibration program. called calib. exists to do the Microbo calibration The source
code for this program may be found in /rccl/control/calib.c Note that the encoder
calibration values are internal to the 1SBC 86/30 CPU’s code. they are not sent from the

RTC level

4.544 The Teach Function

As discussed in Chapter 4, a teach() function was wntten which makes use of the
IRL teach -program and the Microbo’s teach pendant

The calling protc;coi of teach() 1s identical to the VAX/Puma implementation. there
are also teach.pos(). teach t6() and teach angles () functions which call the basic

teach function in different ways The source code for these s in /rccl/teach

The actual operation of the Microbo teach function 1s different from the VAX/Puma
version, it 1s simpler and more restrictive

The name “zero gravity” 1s perhaps a misleading term. there is no gravity correction
The joints are merely servoed to their observed position The prismatic jomts’are treated
differently in that integration s turned off at the joint level and the velocity and acceleration
these joints Is set to zero. for all other joints, the velocity and acceleration are set to small

values ;

The teach function has the following commands

Z - Enter "zero grawity” mode 1he current joint parameters are saved, and a the appro-

priate RTC control function s used

z . Exit zero gravity mode

m  Move joint using keyboard The program will query for a joint number and a target

position (in RCCL coordinates)

p Enter teach pendant mode The current control session is suspended. and the IRL

teach program takes over control of the robot Users should consult the IRL manual
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entry under “TEACH” Control may be returned to the RTC system by typing any

character (followed by a carnage return)

xd. Examine position, degree coordinates The current positions of the six joints are fetched
and displayed on the console, in units of degrees or rilimeters The coordinate system

1s as defined in Chapter 3 of this thesis, see the constants c for more information

xr' Exarmune position, radian coordinates Similar to the above. but coordinates are radians

or millimeters

xR- Examine position. range coordinates As above, but values are in range coordinates

zero at the joint's mimmum, and expressed in radians and millimeters

X . Examine motor parameters The Microbo joint controller parameters for the requested

jont are displayed {(Appendix B)

h . Open hand There are two relays to open/close the hand, are operated in an “exclusive

or’ manner .
H : Close hand As above »
e ' Exit teach funcuon,

M_,{Pnnt menu of available commands

4545 The Database Utility -

This operates exactly as does Hayward's onginal implementation, except that the max-
imum length of the “name” strning s now 32 characters (was 16) Alsa, the configuration
field of the TRSF structure 1s now saved in the database The database program sources
may be found in /rccl/db/ the main module 1s /rccl/db/dbot .c  An example program

which uses the database functions 1s /rccl/db/test db ¢

4546 Exanple RTC Programs

A number of example programs at the RTC level may be found in /rccl/cor\trol/

These are listed below
calib.c This 1g the calibration program
limp.<¢ Thns\"hmps" the robot joints By turning off the Microbo’s arm power relay

[
marsh.c Puts robot in ‘zero gravity” mode
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report.c Repeatedly reports the current joint positions, in degrees/millimeters
9

test.c A general-purpose test program to send commands to the individual robot joints, using

the chg structure Most commands normally affect a single joint. the default s imtially
joint 1. and may be changed using the "y’ command test includes code to set the

joints” so-called "motor parameters” (Appendix B) The available commands are

a : set joint acceleration o

f . set joint veloaty factor

h . open hand.

H - close hand ‘ N

j - set jont number‘ for subsequent comman:s.

k . set jont dynamic integral

K : set jomtﬁstatac integral

m : move joint to target at current velocity

M : servo joint to target. compute velocity '

o : output bit clear

0 : output bit set ’ .
p : power off robot. g

P - power on robot

q qunt

r : set sample rate

8 : stop joint at qresent position. . °

v : set joint velogity.

V : set stauc zone joint velocity.

¥ . examine position

X . exam;ne motor parameters ;
z : set static zone size

? : ptint menu of available commands
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r ?
. CPU Time per Cycl:;'c; Intel 286/Mlcrobo lmplen;entauon
. \_ - Trajectory Mode ___Time per ( Cyclev
. Joint Mode_“m.—* o .__,“—3 8 ~0_- msec
o _Cartesmn lGode_m o o -—2—;3 5 msec .
) - Cartesian plus, 2 functional transforms B 335 msec ‘

As predicted by the feasibihty study. RCCL “joint mode” will run successfully using
a 28 milhsecond sample period. but “trajectory mode” timing is marginal at this rate,
’ as not enough of the CPU is avalable to run the main user program and take care of
system overhead In this case. a new robot interrupt may arrive befipre the previous one
has been serviced The operating system will detect this and abort the RTC task (with an

appropnate error message) A 56 rmlhsecond sample period ts thus requured in this case,
In addmon to the standard tests, a multi-robot demo program (Figure 4 8) was written
. ' by CVaRL researchers [‘Freedman, et al 85] This had both the Puma and Microbo
robots, each under control of RCCL. cooperating to inspect and repair a small circuit
board Commuhication between the Intel System 310 and the VAX network was via a

. serial ink This test successfully exercised a good portion of the RCCL library
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Chapter 5 -~ ‘ Surﬁmary and Conclusions ’

/

This thesis has descibed an implementation of the RTC/RCCL robot programming
and~control environment for a Microbo Ecureuil manipulator The system is based on 2 set
of Intel microprocessors. resident on a Multibus. connected via a custom-built bus interface
to the Microbo’s RCU control unit _

In ghis final chapter we evaluate the utiity and performance of our implementation. and
discuss possible future enhancements. . )

' L
5.1 Evaluation of the RCCL /RTC Programming Environment

The RTC/RCCL environment provides programmers with a flexible set of tools for robot
programmung. The RTC layer allows users to wnte basic manipulator control programs

(eg “zero grawity™ and “teach” functions) by providing easily used mechanisms to access

" the joint level of the control hierarchy The RCCL function library, using RTC, provides

Cartesian path control using the notions of homogeneous transforms and motion equations

The RCCL "motion request queue” allows concurrency between the planning level and the

" control level. though the programmer must be careful to explicitly synchronize the two

levels using the mechanisms provided RCCL, as claimed. proved to be easily transportable
to a different CPU. computer architecture, and manipulator

Programming experience, such as the multi-robot demo described in Chapter 4. has
shown that RCCL is really quite a low-level language For apphcations where programmers
wish to be relieved of more of the details of path plannming . a higher-level user interface to

RCCL might be provided Implementing an 4ntelligent task planner using a language such
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as PROLOG or LISP is eventually planned as a CVaRL project. this idea was onginally

suggested in |[Hayward and Paul 83} but to our knowledge has not been followed up

\

5.2 RCCL as a Multi-Robot Control Environment

A-basic 1ssue addressed by this work was the provision of a uniform programming
environment for the CVaRL robots We can now control both the Puma and the Microbo
t;smg RCCL. but developing code on the Intel System 310 under RMX 1s definitely more
painful than on the VAX under Unix, 4 2Bsd Ideally, all code development should be done
on the VAX. and the resulting executable files downloaded and executed on the Intel system
Cross-development tools do exist. for example the "Amsterdam Compiler Kit” [keazer 85].
which would allow this An associated tssue 1s the communication link between the VAX
and the Intel systern The current solution is 3 9600 baud senal link This 1s reasonable for
transferring source files. but would be insufficient to transfer'an RCCL executable image.
which typically exceeds 100.000 bytes of code and data’

‘:Extendmg the existing CVaRL Ethernet to the System 310 1s possible usipg the Intel
iSXM-552 Ethernet Communication board and 1NA-960 Transport Software This package
supports the ISO Transport protocol to level 4 (Transport Layer) and i1s available for the
RMX-86/System 310 environment This would provide a 10 Mbat/se::ond transfer rate, ,
and would allow RMX tasks to communicate with Unix processes. for example via RMX
mailboxes at one end and Unix sockets at the other The requisite hardware has been
acquired and a project i1s currently underway at CVaRL to implement the Ethernet hink |t
is noted that the INA-960 Network Management layer also includes a “boot server™. this
would permit ddwnloading and booting processors over the Ethernet

Given the network support described above, multi-robot programs could be written as
sets of processes which communicated over the network for purposes of synchronization
The practicality of this scheme has already been demonstrated by the muiti-robot demo®
described in Chapter 4 Ultimately. it may be desirable to be able to control multiple ma-
nipulators from a single RCCL application program. this implies modifying RCCL function

calls to take a robot identifier as an additional parameter (This i1s the solution used in

* Because of the use of C include files all RCCL library functions whether or not actually called are
included in the inked RCCL executable module )
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the AL system [Mujtaba and Goldman 79]. and is considered in [Lloyd 85] ) This 15 an

important area for further research.

v

5.3 Execution Speed Improvements

»

As seen in Chapter 4. the 80286/36287 CPU's major. computational bottleneck is not
trigonometric calculations (sine. cosine. atan2) but floating point multiplication and divi-
sion: CVaRL's VAX-750 with its Floating Point Accelerator does a 32-bit floating point
multiply in 2 8 microseconds versus the Intel 80287's 19.5 microseconds. When RCCL 14
operating in CartesuaJn mode, the motion equation is ;e-solved every sample period, depend-
ing on the n;akeup of the equation and the types of transforms involved, the number of

multiphcations vanes Constant transforms are pre-multiphed together wherever possible

to optimize run-time execution Typically. transform multiplications are a major component

of the computational overhead. taking about as much time (on the Intel hardware) as the -

s

combined forward and inverse kinematics
+ ~—

5 One way of increasing the perfprmance of the microprocessor-based implementation
would be simply to upgrade the 80287 co-processor from the current 6 MHz part to 8 MHz,
and similarly replace the 5 MHz 80286 with a IOMHz version. This should result in a 33%
speed increase in floating point math performaqce;and a larger overall increase 1n execution

-

speed . At this CPU clock rate. performance would be hmited by memory access time

A more dramatic improvement would involve adglng an array processor to the System
310. several are currently available for the Multibus [Numerix 85] This should result 1n an

order of magnitude increase in the performance of transform multiplications. and inversions

From the results of Chapter 4. we see that the communication task (on the 1SBC- '
86/30) currently is busy during about 8 milliseconds of every control cycle. while the '
RCCL -trajectory generator may use 25 5 miliseconds There 1s a major .lmbalance here,
and 1t seems that another ;ptlon would be to move the forward and inverse kinematics
from the |SBC-286/10 to the 1SBC-86/30 This would involve changing the how and chg
data ’structures to mclyde the Tg transform In this way the RCCL trajectory generator
need not compute the forward kinematics at the beginning of each control cycle. it could
simply copy the current value of Tg from the how structurg in shared memory Similarly.

after a target Tg has b¥en computed. this can be copied into thg chg structure and the

z
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appropriate flag set. The 1SBC 86/30 communication task (now a “communication and
kinematigs” task) would then execute the inverse kinematic solution to find the appropriate
yoint variables This scheme should redress the present execution-time imbalance between

the two processors, and allow RCCL to use a faster sampling rate

It 1s recognized that in “Jjoint” mode the trajectory generator. at the beginmng of a path

segment, would still have to perform the inverse kinematics to compute the joint variables
i

for the endpoint of the segment. This is because intermediate setpoints in this mode are

interpolated between joint values computed for the start and end pomnts of the segment

5.4 Upgrading The Microbo Joint Controllers

As we have seen. the Microbo joint controllers’ algorilthm is inappropriate for the RCCL i
approac!‘n It. needs to be re-designed so as to provide a better match with RTC require-
ments We reiterate that the basic change would be to an algorithm that expects to be
driven synchronously at the RTC sample rate with position setpoints A PID-based con-
trol scheme. as implemented by Unimation for the PUMA 260. would seem to be more

appropriate, although this i1s an interesting area for research.

An improvement to be made during any future re-implementation would be to eliminate
the vendor's “work area” scheme entirely This could be done simply by increasing the
word size used to store encoder values from the current 16 bits to 24 bits (18 bits are
actually needed)

A current project at CVaRL involves modifying one of the joint controllers by replacing
some’of its ROM with RAM, and replacing the current firmware with a simple momitor that
allows this RAM to be downloaded via the Multibus In this way new control algonthms
may be compiled on the VAX using 8085 cross-development tools, then downloaded and

executed at the joint level.

-

5.5 Conclusions

This thesis has described the design and successful implementation of the Robot Con'-
trol C Library, RCCL. and its underlying Real Time Controf system. RTC, for the Microbo

Ecureuil industnal robot. using a multi-microprocessor system. The design was based on a
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previous implementation of RCCL /RTC for the Puma 260 robot and a VAX/UNIX environ;
ment The task included’ designing and implementing an interface betwéen fhe Microbo s‘
jomt- controllers and a Multibus system. the Intel System 310: solving the robot's forward
and nverse kinematics, designing a multi-microprocessor architecture. based on the Intel
80286787 and 8086/87. which had the processing capability to support RCCL's computa-
tional load. re-designing the RT C layer to run under Intel’'s iIRMX-86 real-time mult-tasking
operating system. and creating a usable development environment for RCCL users. It was
shown that this system 1s flexible and expandable. and opens the way to the implemen-
tation of a multi-robot programming and control environment for the McGill University's

a

Computer Vision and Robotics Laboratory.

»
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1 Creating and Runming Microbo RCCL and RTC Programs

Appendix A. Creating and Running Microbo RCCL and RTC

4 Programs .

N This appendix 1s intended as brnef, informal guide for thase wishing to create and
execute RCCL or RTC programs for the Microbo Robot
We presuppose that the reader has a working knowledge of the C programming lan-
guag%For more complete information on the user interfate to the iIRMX-86 operating sys-
tem, the reader should refer to ""IRMX-86 Introduction and Operator’'s Reference Manual”
Intel publication number 146194-001 For more information about the various compilers
hinkers. editors, etc the reader is referred to the appropnate Intel manuals
The hardware referred to in this Appendix consists of the Microbo Ecurewl robot and
1its RCU control unit. connected via a bus interface to an Intel System 286/310 running the
IRMX-86 operating system The System 310 has, in addition to the standard 286-10 CPU
- card, an additional processor in the form of an (SBC 86/30 In addition to the standard
5 1/4 inch floppy and 20Mbyte winchester disk. there 1s an 1SBC 208 floppy controller
connected to an 8-inch floppy disk drive The latter 1s used for booting the 86/30 CPU
¢

A.1 Notation

This font shows material typed by you or the system. The symbol "™ s
used to denote the CTRL key Terminate each command input with the RETURN key,

. A.2 Starting Up The RMX System

1 Connect a termnal to the secondary RS232 port (J21). and then turn the power on

2 As soon as you start to see a few “="s . type U. This will tngger a self-check As soon
as you see the system prompt "INPUT I” type ~C

. 3 Move the termnal to the primary port (J20) (unless there s another termunal available)

and wait for the RMX system to boot up You must type in the date and time (after
the "'DATE.” and "TIME- ~prompts) so that all your work with files will be properly
timestamped Here is the date format dd month year. for example 4 dec 85

4 Get out the 8 inch floppy disk marked “86/30 boot disk™ from the plastic BASF storage

case in the tool cupboard (The cupboard should normally be locked. so you mught
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1 Creating and Running Microbo RCCL and RTC Programs

need to find someone with a key )

Turn on the upper 8 inch external”disk drive {which will actually turn on the lower one
too): and then insert the boot disk into the lower drive

Move the terminal back to the secondary port. and type b :af0:8630 Now wat for
a system message ltke xxxx = robot task token Remove the boot disk and then
power off the disk drives A

Disconnect the terminal, and connect the Microbo to the same secondary port of the
RMX system, through an RS-232 inverter

Power up the Microbo from the front panel of the robot cor;troller

Type calib to calibrate the Microbo Note that the “calibration” position 1s not the

rccl “park” position

A.3 How To Transfer Files To/From The RMX System

The RMX system only allocates 14 characters for a filename plus its extension. Take

note of your naming convention. since foo ¢ (5 characters) becomes foo.obj (7

characters) when compiled (“translated”. in Intelspeak)

Set up the UNIX aliases for rmxcom. rmxput. and rmxget in your .cshrc file

Disconnect the pnmary terminal (€J20) and connect the RMX system to the TTY02

port on CURLY (which has no getty) You need to use an INVERTING cable to do

this © '

Type rmxcom to establish communication with the RMX system You can check the

hink by typing. say. dir for a look at the directory

To SEN}D’; file foo.bar to the RMX system

(a) Type rmxput

(b) Type foo bar after the prompt

(c) Type RETURN after the next prompt. unless you want to use a different filename on
the RMX system The file will now be echoed at your terminal as the downloading
takes place

To GET a file foo bar from the RMX system. just use raxget and follow the prompts

as for sending a file (see previous step).
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A.4 Some Notes About The RMX System Editor “Aedit”

114
FY

WARNING This editor. unhike EMACS. is nddled with “modes’ It 1s menu-dnven. and really not

too hard to fearn with a command hne at the bottom of the screen

1 Start up the editor by typing aedit filename The default “macro file” (aedit mac)is

. currently a copy of "tvi924 mac’' . which means that the editor works for the Televideo

924 To use it with a Televideo 950, type aedit filename mr (tv950.mac)

2 Your very fust command ought to be "G to properly intialize the editor for the TV!

924 or 950 termunal types

3 Thanks to this author. the editor now resembles our ol EMACS (albert 1n a terribly

superficial way!) Here are a few commands to get you started

“G
-C
“F
"B
“Xf
~Xb
“N
“P
D
“K
Y
“A
"E
~v

~X

= set tabs. indent, viewjine, etc
= cancel the current corr:mand
= forward char

= backward char “ : 2
= Jump forward word

= Jump backward word

= next line

= previous line

= delete char

= delete to end of line ¢

= undelete (a la yank from kill buffer)

go to beginning of line g

end of hine

H

scroll 1 screen down

= macro execute

4 And here are a few true blueteditor commands

ESC

= enter "insert” mode, to add stuff after deletions

= return to the command mode
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q = enter “quit” mode From here, type u to update your file on disk. 1 to look at

(visit) a new file. a to leave the editor,

5 For more details {demals7). see the Intelspeak "AEDIT" manual.

A.5 How To Backup Your Files On Floppy Disk .

WARNING A 5 1/4 inch floppy diskette only holds 360 Kbytes Before you begin, delete all
unnecessary files such as BAK, LST. MP1, OBJ. and ESPECIALLY the executable

images

1 Acquire (beg. borrow) a 5 1/4 inch soft-sectored unformated double-sided double- .

density 48 tp: floppy diskette

2 Insert the diskette into the drive on the RMX system

3 Type attachdevice wmfdx0 as .fd0: If this fails, pull out the diskette. re-insert
it. and try again.

4 \Type format £d0. to format the diskette This will take a few moments

5 Type backup /foo/bar over .fd0: to save all files and directories with the robt
/foo/bar

6 When the system asks the quéstion about "Mount Backup Volume” (lIntelspeak) just
type y (you agree) '

7 When you get the "Backup Complete” message. type detachdevice fdO: and re-
move the diskette Ka

A.6 How To Compile A Program Called foo.c

@

1 Fust prepare a cc csad file Note that you must use the Intel "LARGE" compilation
model. and that the C interface hibraries used in the link step are currently only available
for this option The standard submt file looks hke this

c86 %0.c large verbose include(/inc¢/) include (/rccl/h/) to %O ob)
@ 2 To actually compile ( “translate”. in Intelspeak) the file type submit cc(foo) This
will create a file called foo ob) in your local directory (Unfortunately. RMX does not
provide something ke the UNIX makefile. soit's up to YOU to keep track of your

own changes!
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Aj How To Link All Your Programs And Create An Executable RCCL Image

WARNING Linking under RMX 1s a slow slow process. Be patient!

1 Fust prepare a file to direct the linking called. say. lnk.csd If your programs were
called fool obj. foo2 obj. and foo3 obj. and you wanted the executable 1mage to
be called foo. then your file would look hike this

link 86 &

fool obj, &

foo2.0bj, &

foo3 obj, & !

/1ib/cc86/1gmain obj, &
. /rccl/lib/rccl.lib, &
frcel/lib/rte 1lib, &
{rccl/lib/microbo.1lib, &
/rccl/lib/math.1lib, &
/lib/ccB6/ios.1lib, &
/1ib/ccBB/nucleus 1ib, &
° /lib/ccB6/1¢clidb lib, &
/rmx86/1ib/large.lib, &
/rmx86/1ib/rpifl.1ib. &
/rmx86/11b/epifl.lib, -&
/1ib/ndp87/8087 1lib &

to foo &
map bind segsize(stack(+3000h), memory(8000h)) &

. mempool(8000h,0FFOOON)

v

Note that the order of items n the link list is important; if this 1s violated, unresolved

varjables errors will result
2 To actually perform the link step. type submit lnk (assuming that your ink submit
file 1s called 1nk csd)

-~

A.83 How To Run An Executable Image Called foo

1 Brning the panic button of the microbo near the terminal
2 Po;iver on the microbo by pressing the green (“I”}) button on the front of the orange
! RCU controller The green hight should come on
3 Type calib You ought to see the yellow lamp on the RCU controller box hight up. and
the program will echo calibration initiated., and then calibratﬁion succe.ssful.
If there 1s a timeout problem, just try typing calab again. If this persists, check all
. hoses. electrical paraphernalia. etc which might be hindering the movement of some

of the robot joints If the yellow hght does not come on, make sure that the Microbo's

/

serial line 1s connected to the RMX box via the inverter,

4 Type foo (and cross your fingers!)

/
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A.9 Notes on Configuring the iRMX-86 Operating System for RTC

The iIRMX-86 operating system must be reconfigured in order to support the RTC sys-
tem The Intel Interactive Configuration Utiity (ICU) uses definition files to store system
configurations; the appropriate files are /rccl/def /rnx286.def and /rcc 1/def/8630.g;f.
The fibrst describes the configuration for the 286/10 processor, and the second is for the
86/30 processor. The user is referred to the "IRMX-86 Installation and Configuration

> Guide”, Intel publication number 146548-001. for information on the ICU.

The 286/10 configuration is different from the standard configuration 1n that memory
between 3000:0 and 3100:0 is reserved for an 1 /0O user job. called createtask [This job
consists of a single task that 1s used indirectly to create the high-pnornity RTC interrupt
task. The task waits for an object to be catalogued in the object directory of the root
job under the name “task™. [t takes this to be a data structure (segment) containing
information about an RMX task, and creates the task.)

The 86/30 configuration is a simple system consisting of just the Nucleus and a single
user job This user job contains the robot communication task The appropriate source files

are n the /recl/mic/ directory. the communication task i1s /rcc/mic/robot tagk.c

e
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2 Microbo Jomt Controller Command Protocol

Appendix‘B. Microbo Joint Controlier Command Protocol

w

B.1 General

B £ "
The reader should note that there were several mistakes in the documentation supplied

by the vendor The information presented here has all been verified experimentally How-

ever. there 1s much that remains obscure about the exact operation of the joint controllers

The (up to 8) joint processors communicate with the master processor via three eight-
bit registers. Theseare memory-moa/pped onto the C1 bus The base address of the regisiers
1S j’i’]mper-selectable on each joint processor card The manufacturer’'s settings have not
been changed. and are currently set so that joint O base address is 5800H. joint 1 is 5802H,
etc

- the data register is read/write. located at the base address, .

- the command register is write only, located at the base address +1 T
<

e

- the status register 1s read only. also located at base address+1

it should be noted the command and status registers are in fact the same. We maintain
the distinction simply to remain consistent with the documentation provided py the vendor
Thus the communication regusteré for each joint take up 2 consecutive locations in the

3
address space of the bus. and the 8 joints then take up 16 consecutive locations

These addresses are mapped into the 1/0 space of the System 310 via the Multibus
Adapter Card. The mapping is also switch selectable. but is also currently set to 5800H.

Thus reading and writing the' registers of the various joint controllers may be~done using '

"IN reg, 58xxH" or "OUT 58xxH, reg” if wnting in Intel ASM86 assembler language.

for example.

B.2 ‘Communication Protocol ,

i

All communication between the master and the joint micros must observe the hand-
shaking defined by two bits in the status register '
bit 0 OBF (output buffer full) indicates that the joint micro’s output buffer 1s full and is

ready to be read by the master. w -
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bit1 IBE input b;ﬂer full) indicates that the joint micro's input buffer is full and may not
( be written by the master (slave busy) ]

Communication consists of the master sending a byte to the command register. some-
" uimes followed by reading or writing one or more bytes in the data register The handshaking
must be observed for every command send and every data byte read or written.

Note that the joint micros are interrupted by commands. they do not return to the servo
control function untit a command has been completely executed It 1s therefore important
" not to interrupt the joint micros too often (ie more than every 3 msec) and to execute
the communication as quickly as possible

Upon initialization of the joint controllers. all motor parameters, including those asso-
ciated with veloaity and acceleration, are set to the vendor's default values However. the
actual velocity and acceleration of robot motions are contolled via another set of commands
which interact with certain Microbot registers directly. The velocity incrementsuare 1/32
radians /second; the default value is 32, hence 1 rad/sec. The acceleration increments are

' 1/4 radians/second/second, the default value is 1, hence 1/4 rad/sec/sec.

B.3 Command Summary

COMMAND = OOH GET JOINT STATUS

read DATA bit § ok- in position or within zone of tolerance -
bit initialized
bit fault during motion or initialization
bit & phase error (simultaneous transition on both encoders)
bit 6 encoder error -

bit 7 user-specified tolerance mode ‘‘on’

COMMAND = fﬂ GET CURRENT TARGET POSITION

read DAT low byte of word containing current target position
read DATA  high byte of word

COMMAND = 04H GET CURRENT POSITION

read DAT low byte of word containing current position -
read DATA  high byte of word

COMMAND = O?H . . GET CURRENT ACCELERATION

read DAT byte containing acceleration low byte

read DATA  byte containing acceleration high byte
COMMAND = Ogﬂ GET CURRENT VELCDCITY
read DAT byte containing velocity low byte

read DATA  byte containing velocity high byte

COMMAND OAH .. GET CURRENT TOLERANCE

read DATA byte containing tolerance low byte ¢
read DATA  byte céntaining tolerance high byte

COMMAND = %EH . SET TARGET POSITION .

write DA low byte of word containing target position

write DATA  high byte of word containing target position

COMMAND = OEH SET MOTOR PARAMETERS
write  DAT byte 1 proportional gain value
write DATA  byte 2 " initialization speed setting
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write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA
write DATA

write DATA
write DATA
COMMAND = 12H
write DAT

write DATA:
COMMAND = IzH
write DAT

write DATA

COMMAND = 12

write DAT

write DATA

COMMAND = 16H
COMMAND = 18H
COMMAND = 1AH
COMMAND = 31CH
write DATE

write DATA

COMMAND = 1EH
COMMAND = 23H
write DAT

write DATA

COMMAND = 24H
readA DATﬁ

COMMAND = 26H
write AT?
COMMAND = 28H
COMMAND = 2AH
read DATA

2  Microbo Joint Controller Command Protocol

;.

byte 3 sensor error tolerance

byte 4 size of static regulation zone
byte 8 maximum speed/256

byte 6 dynamic integration constant
byte 7 static integration constant
byte 8 static speed setting

byte 9 motor resistance/thermal capacity
byte 10 1.0/thermal resistance

byte 11 maximum temperature

byte 12 gravity compensation parameter
byte 13 inertial parameter

byte 14 viscous friction parameter .
byte 15 . dry friction parameter

byte 16 maximum acceleration/4

v

SET MAXIMUM ACCELERATION
low byte of acceleration value .

high byte of acceleration value
SET MAXIMUM SPEED

low byte of speed value

high byte of speed value

. SET TOLERANCE VALUE .
paximum difference between target position and

current position within which the *‘*ok"’ bit will be
set to '‘1'', low order byte
high order byte

SET TOLERANCE MODE ON
tolerance will now be whatever is specified by the

user via command 14H (see above)
SET TOLERANCE MGDE OFF
tolerance will be +/- 1 encoder value

, . INITIATE STAND-BY MODE .
The joint micro halts after this command is executed.

this is the default state after the system is powered
on. To exit from this state, the joint micro must
either receive an initialization command, or if
initialized, receive a position command.

INITIALIZE
low byte of ‘‘initialize’’ position
high byte of ‘‘initialize’’ position
The® joint micro will move the joint to the mechanical
initial position, then assign to this position the
‘*initialize’’ value sent via the data register.

STOP (SET TARGET TO CURRENT POSITION)

SET POINTER FDR ACCESS TP JOINT MICRO RAM
low byte of an address in the ram of the joint micro.

high byte of the address. The default value of this
peointer is the location of the software version

ber.
bR WRITE BYTE IN JOINT MICRO RAM
byte will contain the value of the byte pointed to by

the pointer set up by command 22H. (see above)

READ BYTE IN JOINT MICRO RAM .
byte should contain a value to be written to the joint

micro’'s ram in the location pointed to by the pointer
set up by command 22H. (see above)

CHANGE WORK AREA
requests a change of work area

READ SPEED FACTOR
byte will contain the current speed factor.

«
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COMMAND = 2CH WRITE SPEED FACTOR ,

write DATA byte should contain the desired speed factor.

COMMAND = %EH READ WORD IN JOINT MICRO RAM

read DA byte will contain the value of the low byte of the word

pointed to by the pointer set up by command 22H.
(see above)

read DATA  byte will contain the value of the high byte of the word
pointed to by the pointer set up by command 22H. .

COMMAND = 30H WRITE WORD_IN JOINT MICRO RAM .
write DAT byte should contain a value to be written to the joint

micro's ram in the locatiom pointed to by the pointer
set up by command 22H. (see above)

write DATA . byte should contain a value to be written to the next
location

1

B.4 Writing Programs to Talk to the Joint Controllers

The recommended way to do this 1s to use the RTC.system. however, if the chg
™ structure does not provide the support required. the following C-callable functions are
available, they will run on/any 86-family Multibus master if the Microbo bus adapter card :

is plugged into the bus

These functions are in the RMX library “/rccl/lib/microbo.lib”, the error definition
macros are in "/rccl/h/microbo.h”  The “udi.h” header 1s the standard include file for

RMX C programs. it defines things like byte and word

To send a command byte to a Microbo joint controller

Usage:
#include <udi.h>
int put_cmd( joint, command ):
int joint;
byte command; .
Inputs.
- int joint The joint nur?ber (1 1s the first joint).

int command The command byte.
Outputs function returns 0 if everything ok, otherwise:
L.TIMEOUT_CMD: tfmed out attempting to send command to joint.

LINVAL_INT_CMD: invalid joint number.
&
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To send a data byte to a Microbo joint controller

4 Usage.

A

#include <udi.h>

int put_dat( joint, data ):
int joint;

byte data;

int joint. The joint number (1 is the first joint).
int data' The data byte to send. __ )
Outputs. function returns 0 if everything ok. otherwise

L’ L.TIMEOUT .PUT timed out attempting to send data to joint.

To read a data byte from a Microbo joint controller

Usage: ~
¥include, <udi.h>
- int get_dat( joint, data ); . \
: int joint;
byte sdata; ) ) ’
Inputs:

int joint The jont number (1 is the first joint).
byte ~data Pointer to a one byte buffer to put data in.
Outputs: function returns 0 if everything ok. otherwise.

' ' L.TIMEOUT GET" timed out waiting for data from joint.
Example

The following example illustrates the usage of the above commands.



2 Microbo Joint Controller Command Protocol

[r=meemmeee McGill-Computer-Vision-and-Robotics-Laboratory---------- ,

~  NAME: set_acc.c

= FUNCTION: procedure to send an acceleration to a microbo joint

= controller.

= returns O if no errors; otherwise passes errors from

« put_cmd() and put_dat();

- USAGE: int 'set_acc( joint, acc );

» int joint;

x word acc;

*  AUTHOR: don kossman

= DATE: 25 aug 85

¥mmmemee- McGill-Computer-Vision-and-Robotics-Laboratory--------- */

#include <udi.h> )
#include "microbo.h"
int set_acc(jnt, acc)
int jnt;

word acc;

-

byte *acc_lo,
*acc_hi;
int sts;
acc_lo = &acc;
ace_hi = acc_lo+l;
if (sts = put_cmd(jnt, REG_SET_ACC)) /~
; return( sts );

.sts = put_dat(jnt, *acc_lo); I
sts |= put_dat(jnt, *acc_hi); e
return( sts }; /*

the "acceleration" cmd */

send acceleration byte 1 */
send acceleration byte 2 */
completion status code */
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