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ABSTRACT  

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause 

of kidney failure. It is associated with progressive kidney cyst growth eventually leading to 

kidney failure in many patients. The standard clinical risk stratification tool uses estimated total 

kidney volume (eTKV) adjusted for height and age; however, it does not consider the complex 

interplay between demographic, imaging, or clinical features that may be pertinent. We explored 

whether a machine learning strategy that integrates clinical and imaging features may achieve a 

more accurate and reliable prediction of renal disease progression in ADPKD. Our study cohort 

consisted of 145 patients from the MUHC PKD clinic with a confirmed diagnosis of ADPKD 

and at least one magnetic resonance imaging (MRI) scan where manual segmentation was 

performed for total kidney volume (TKV) and total cyst volume. Our first aim was to compare 

eTKV with the manual segmented (i.e., ground truth) TKV. Pearson’s correlation coefficient 

between the TKVs was 0.96 (p<0.05). However, the Bland-Altman analysis displayed wide 

limits of agreement [-40.43%, 25.15%] and 25 patients (17.2%) with greater than or equal to a 

20% difference. In total, 24 patients (16.6%) were misclassified by one risk class. Of those, the 

clinically significant misclassifications that affect disease-modifying therapy were 8 (5.5%). For 

our second aim, we developed three different machine and deep learning models using clinical 

features and MRI slices as inputs for the outcome of rapid estimated glomerular filtration rate 

(eGFR) decline, defined as 4 mL/min/1.73m2 per year or greater. The weighted-average F1 

scores, a machine learning metric that measures the model's accuracy by combining precision 

and recall, from the random forest and support vector machine classifiers were 0.68 and 0.81, 

respectively. A deep-learning model provided the most accurate result with a weighted-average 

F1 score of 0.87 and true positive and true negative values of 0.93 and 0.80, respectively.  Our 
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study determined that risk stratification using eTKV is useful but can misclassify risk in many 

patients. A deep learning approach that integrates clinical information with MRI can successfully 

classify patients most at risk for renal progression. Our model needs to be further validated in 

external cohorts but offers the potential to better identify patients most at risk of renal 

progression with ADPKD.   
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ABSTRAIT 

La polykystose rénale autosomique dominante (PKRAD) est la cause monogénique la plus 

fréquente d'insuffisance rénale. Elle est associée à une croissance progressive des kystes rénaux 

conduisant éventuellement à une insuffisance rénale chez de nombreux patients. L'outil standard 

de stratification du risque clinique utilise le volume rénal total estimé (VTKe) ajusté en fonction 

de la taille et de l'âge ; cependant, il ne tient pas compte de l'interaction complexe entre les 

caractéristiques démographiques, d'imagerie ou cliniques qui peuvent être pertinentes. Nous 

avons exploré si une stratégie d'apprentissage automatique qui intègre des fonctionnalités 

cliniques et d'imagerie peut permettre une prédiction plus précise et fiable de la progression de la 

maladie rénale dans la PKRAD. Notre cohorte d'étude était composée de 145 patients de la 

clinique PKD du Centre Universitaire de Santé McGill (CUSM) avec un diagnostic confirmé de 

PKRAD et au moins d’une imagerie par résonance magnétique (IRM) où une segmentation 

manuelle a été effectuée pour le volume rénal total (VTK) et le volume total du kyste. Notre 

premier objectif était de comparer VTKe avec le VTK manuel segmenté (c'est-à-dire la vérité 

terrain). Le coefficient de corrélation de Pearson entre les VTK était de 0.96 (p<0.05). 

Cependant, l'analyse de Bland-Altman a montré de larges limites d'accord [-40.43%, 25.15%] et 

25 patients (17.2%) avec une différence supérieure ou égale à 20%. Au total, 24 patients (16.6%) 

ont été mal classés dans la classe d’un risque. Parmi eux, le taux des erreurs de classification 

cliniquement significatives affectant la thérapie modificatrice de la maladie était de 8 (5.5%).  

Pour notre deuxième objectif, nous avons développé trois modèles différents d'apprentissage 

automatique et profond en utilisant des caractéristiques cliniques et des tranches d'IRM comme 

entrées pour le résultat du déclin rapide du débit de filtration glomérulaire estimé (eGFR), défini 

comme 4 ml/min/1.73 m2 par an ou plus. Les scores F1 moyens pondérés, une métrique 
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d'apprentissage automatique qui mesure la précision du modèle en combinant précision et rappel, 

à partir des classificateurs de la forêt aléatoire et du vecteur de support étaient de 0.68 et 0.81, 

respectivement. Un modèle d'apprentissage en profondeur a fourni le résultat le plus précis avec 

un score F1 moyen pondéré de 0.87 et des valeurs vraies positives et vraies négatives de 0.93 et 

0.80, respectivement. Notre étude a déterminé que la stratification du risque à l'aide de le VTKe 

est utile, mais peut entraîner une mauvaise classification du risque chez de nombreux patients. 

Une approche d'apprentissage en profondeur qui intègre les informations cliniques à l'IRM peut 

classer avec succès les patients les plus à risque de progression rénale. Notre modèle doit être 

davantage validé dans des cohortes externes, mais offre le potentiel de mieux identifier les 

patients les plus à risque de progression rénale avec ADPKD. 
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1. INTRODUCTION  

1.1 Study Rationale   

Tolvaptan is a disease-modifying drug that has been proven to delay the onset of kidney failure 

in patients with autosomal dominant polycystic kidney disease (ADPKD).1 Due to the cost and 

side effects of the drug, only those who meet the criteria of being at high risk for disease 

progression are eligible for treatment. Therefore, correctly identifying patients most likely to 

progress is imperative to plan treatment and inform patients. The Mayo Imaging Classification 

(MIC) tool, the current prognostication tool, applies total kidney volume (TKV), height, and age 

to predict the disease progression in patients diagnosed with ADPKD.2 It plays an important role 

in helping clinicians determine whether the patient is eligible for tolvaptan therapy.3 However, 

we believe that including other clinical and imaging factors that are known or suspected to 

impact the disease progression of ADPKD can improve prediction and better identify which 

patients are most likely to progress.  

1.2 Objective  

The main objective of this study is to develop machine-learning models derived from different 

learning algorithms and incorporate various clinical and imaging features that the current 

predictive statistical model does not factor in. We aim to accurately classify whether a patient 

diagnosed with ADPKD will experience rapid disease progression by implementing machine 

learning. 

2. COMPREHENSIVE REVIEW OF RELEVANT LITERATURE  

2.1. Autosomal Dominant Polycystic Kidney Disease  

ADPKD is the most common inherited kidney disease, which affects an estimated one in 1000 

live births or approximately 12.5 million people worldwide.4 It is also the fourth leading cause of 
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end-stage kidney disease (ESKD). Approximately 50% of patients diagnosed with ADPKD reach 

ESKD by the age of 60 and require either dialysis treatment or kidney transplantation.4, 5 6, 7  

2.2. Normal Kidney 

Each kidney contains approximately a million nephrons, the kidney’s functional units, that work 

together to form a filtration system.8 In general, the blood drains through the capillaries between 

the afferent and efferent arterioles and into the glomeruli of the nephron.6 As the blood travels 

through the proximal tubule, ascending and descending loop of Henle, distal convoluted tubule, 

and the collecting duct, various ions, minerals, water, and waste products are reabsorbed and 

secreted, effectively achieving the balance mentioned previously. Subsequently, the collecting 

ducts from many nephrons converge into the renal papilla, followed by the renal pelvis, and 

finally drain into the ureter. The estimated glomerular filtration rate (eGFR) depends on the 

number of functioning nephrons.8 Therefore, kidney damage can directly lead to a decrease in 

eGFR, indicating worsening kidney function.  

2.3. Clinical Manifestations 

Kidney-related complications of ADPKD typically begin with the bilateral formation of kidney 

cysts and exponential growth in TKV and cystic burden.9 Unlike the normal kidneys, polycystic 

kidneys can weigh up to 30 pounds or 13 kg.7 Urologic complications involve acute and chronic 

pain, gross hematuria, cyst-related infection, recurrent urinary tract infection, and 

nephrolithiasis.9, 10 Over time, patients experience a decline in the eGFR.   

Hypertension, defined by blood pressure above 140/90 mmHg, is a common extrarenal 

complication that presents in approximately 50% of patients with ADPKD between the ages of 

20-34 years.9 Furthermore, more than 80% of adults with ADPKD present with liver cysts.11 
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Pancreatic cysts, cardiovascular disease, abdominal hernia, and intracranial aneurysm are other 

extrarenal manifestations of ADPKD.10  

2.4. Diagnosis  

2.4.1. Imaging Tools  

Ultrasonography (US) is the preferred diagnostic tool for ADPKD for its wide availability, low 

cost, and non-invasiveness.12, 13 However, it lacks precision and reproducibility, especially in 

patients with smaller cysts.3, 13, 14 US can only detect cysts of 10 mm or greater in diameter and is 

prone to inter-observer variability. In contrast, computed tomography (CT) and magnetic 

resonance imaging (MRI) offer higher resolution and can detect smaller cysts of 2-3 mm in 

diameter with higher sensitivity and specificity.15-17 Of the two, MRI is a safer diagnostic 

approach because CT exposes patients to radiation. Additionally, MRI can help diagnose 

ADPKD with 100% specificity and sensitivity in at-risk individuals between the ages of 16 and 

40 with more than ten kidney cysts and a family history.16 Therefore, MRI is considered the 

gold-standard modality in research studies.18 More specifically, T2-weighted MRI is 

recommended in patients with ADPKD for two reasons: 1) it does not require gadolinium, a 

potential risk factor for nephrogenic systemic fibrosis when using older gadolinium formulations, 

and 2) it provides better visualization and delineation of kidney tissues and cysts.19-21 However, 

MRI machines are not widely available in some centres, and imaging acquisition comes with a 

higher cost and longer acquisition time.22, 23  
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 Advantage Disadvantage  

Ultrasonography 1. Widely available  
2. Low cost 
3. Non-invasive 

1. Older ultrasound 
machines cannot detect 
cysts with a diameter 
smaller than 10 mm   

2. Prone to inter-observer 
variability  

3. Lacks precision and 
accuracy  

MRI  1. High sensitivity  
2. High resolution of 

kidney tissues and cysts  
3. Detects smaller cysts of 

2-3 mm in diameter  
4. Absence of radiation 

and nephrotoxic agents 
5. Precise, accurate, and 

reliable measurement 
of TKV  

1. Not widely available  
2. High cost  
3. Long acquisition time  

CT 1. High sensitivity  
2. Detects smaller cysts of 

2-3 mm in diameter  
3. Precise, accurate, and 

reliable measurement 
of TKV 

1. Exposure to radiation  

 

 

Table 1. Advantages and Disadvantages of Each Imaging Modality in ADPKD  

2.4.2. Diagnostic Guidelines  

In at-risk individuals with positive family history aged 15 to 39, the detection of at least three 

kidney cysts in both kidneys by US confirms the diagnosis of ADPKD.13 In those aged 40 to 59, 

two cysts in each kidney confirm the diagnosis. Finally, four or more cysts in each kidney 

confirm the diagnosis in those older than 60. For the remaining 10-15% of patients with negative 

or unknown family history, genetic tests, specialized consultations, and imaging are 

recommended to confirm the diagnosis of ADPKD while ruling out other cystic kidney 

diseases.24, 25  
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Patients can be diagnosed as either typical (Class 1) or atypical (Class 2) ADPKD based on the 

patterns of their cysts.26 Typical ADPKD cases are defined by the bilateral, symmetric 

distribution of kidney cysts and represent 90-95% of patients diagnosed with ADPKD.27 In 

contrast, atypical cases are characterized by irregular distribution of cysts: unilateral, segmental, 

asymmetric, lopsided, bilateral with unilateral atrophy, and bilateral with bilateral atrophy. They 

represent the remaining 5-10% of patients. Class 2 patients are generally categorized as slower 

progressors in eGFR decline than Class 1 patients.26 Imaging-based risk stratification tools have 

not been developed for patients with atypical or Class 2 ADPKD. Currently, criteria to formally 

differentiate the two classes have not been established. The absence of a standard classification 

method promotes subjective bias and can negatively impact clinical decision-making. 

2.5. Prognosis  

2.5.1. Factors Associated with Disease Progression  

The patient’s age of diagnosis, male sex, early-onset hypertension, urologic events (e.g., urinary 

tract infections, nephrolithiasis, and gross hematuria), left ventricular hypertrophy, hepatic cysts 

in women, and enlarged kidney volume are independent factors associated with worse kidney 

function in ADPKD.28 The type of ADPKD gene mutation (i.e., PKD1 truncating mutation vs. 

PKD1 non-truncating vs. PKD2) can also be a prognostic factor. However, genetic testing is not 

routinely performed or indicated and can be costly.29  

2.5.2. Prognostic Biomarkers  

As the size and the number of cysts progressively grow over time, the cysts compress the kidney 

parenchyma.30 Consequently, the proportion of healthy kidney tissue decreases, and kidney 

function diminishes. However, throughout the early stages of ADPKD, the remaining nephrons 

hyperfiltrate to compensate for the lost kidney function and maintain a clinically-standard level 
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of eGFR.31, 32 The eGFR only rapidly declines once the patient enters the late stage of ADPKD, 

eventually leading to ESKD and the need for dialysis treatment or kidney transplantation. Thus, 

even though eGFR is typically the absolute indicator of one’s kidney function, it can provide an 

insensitive representation of the patient’s kidney disease, especially during the early stages of 

ADPKD. 

The most important prognostic biomarker of ADPKD in clinical practice is the TKV.33, 34 TKV is 

a more reliable biomarker of ADPKD progression than eGFR because it continuously increases 

across all stages of ADPKD.31 The Consortium for Radiologic Imaging of Polycystic Kidney 

Disease (CRISP) study discovered a positive association between the baseline height-adjusted 

TKV (htTKV) at a given age and the rate of kidney and cyst enlargements.31 Moreover, the rates 

of TKV growth and eGFR decline were inversely correlated. The outcomes from the 14.5-year 

follow-up study of CRISP were consistent with previously-stated findings, providing strong 

evidence that htTKV is an independent prognostic biomarker in ADPKD.35 Additionally, they 

concluded that baseline TKV and the rate of TKV growth were strongly associated with the 

development of advanced stages of CKD.  

2.5.3. Prognostic Imaging Tools 

MRI or CT scans can be used to measure the TKV and prognosticate ADPKD disease 

progression. However, most large research studies have resorted to MRI modality, likely due to 

its absence in radiation exposure.36 A repeat measurement every 1-2 years is sufficient in 

observing patient’s growth in TKV.  

Stereology or manual segmentation of the images is the gold-standard approach in research 

studies to determine ground truth manual segmented TKV (SegTKV). However, this approach is 

rarely used in clinical settings as it is labour- and time-intensive to complete the task (i.e., up to 
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50 minutes per analysis).15, 26, 37 For convenience, clinicians use the ellipsoid equation to 

calculate the estimated TKV (eTKV): Left or Right Kidney Volume = (π/6) × (Lcoronal + 

Lsagittal)/2 × W × D (L = maximum longitudinal length; W = maximum width perpendicular to L; 

D = maximum depth).26, 38 The lengths can be measured by a radiologist from the three 

orthogonal dimensions (sagittal, coronal, and axial planes) from CT or MRI scans (Figure 1).  

 

Figure 1. The orthogonal measurements of the maximal kidney a) coronal length, b) sagittal 

length, and c) width and depth using axial planes in an MRI scan. 

2.6. Classification of Risk 

The MIC tool, created by the Mayo Foundation for Medical Education and Research 

(https://www.mayo.edu/research/documents/pkd-center-adpkd-classification/doc-20094754), is 

currently the best predictive model that assesses disease progression in patients with typical 

(Class 1) ADPKD.39 The MIC tool stratifies patients into five subclasses (Class 1A-1E) based on 

their TKV (mL), height (m), and age (years). Classes 1A and 1B are considered slow progressors 

of ADPKD, and Classes 1C, 1D, and 1E are considered rapid progressors. Each class exhibits a 

unique linear path of annual rates of TKV growth (Table 2) and eGFR decline (Table 3). 

Although the MIC is not designed to predict the disease progression of atypical (Class 2) 

patients, they are generally at lower risk than typical (Class 1) patients.  
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 Predicted TKV slope (% per year) for both sex 

Class 1A <1.5 

Class 1B 1.5-3 

Class 1C 3-4.5 

Class 1D 4.5-6 

Class 1E >6 

 

Table 2. The Annual Rate of TKV Growth Stratified by Mayo Imaging Class26 

 Predicted eGFR slope for men 
(mL/min/1.73m2 per year) 

Predicted eGFR slope for women 
(mL/min/1.73m2 per year) 

Class 1A -0.23 0.03 

Class 1B -1.33 -1.13 

Class 1C -2.63 -2.43 

Class 1D -3.48 -3.29 

Class 1E -4.78 -4.58 

 

Table 3. The Annual Rate of eGFR Decline Stratified by Mayo Imaging Class and Sex26 

2.7. Limitations of the MIC 

The MIC tool utilizes the eTKV, calculated from the ellipsoid equation, to classify patients with 

ADPKD. However, the ellipsoid equation presents poor reproducibility and repeatability 

compared to the gold-standard manual segmentation approach because it assumes an elliptical 

growth of kidneys.40 However, in clinical settings, cystic kidney growth is highly irregular and 

unique to each patient.41 Furthermore, the ellipsoid equation only considers three orthogonal 

lengths from one to two image slices.42, 43 If the ellipsoid equation is used to calculate the TKV 
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of patients with exophytic cysts, the deformation in their kidneys’ shape can misrepresent the 

true axial measurements.44 The main clinical concern that could arise from inaccurate TKV 

measurements is the risk of misclassification and its impact on the decision to offer disease-

modifying therapy to a patient. 

The MIC tool also faces the issue of generalizability in specific patient populations. Despite its 

wide usage in clinical settings, it has not been formally validated in prospective clinical trials. 

Moreover, black patients and atypical (Class 2) patients were underrepresented in the study 

population used to design the predictive statistical model. Therefore, the MIC tool should be 

used with caution for patients who share these characteristics.26 

Finally, the MIC tool does not include other important demographic, imaging, and clinical 

features that have previously been described as independent risk factors of disease progression in 

ADPKD.28 Cyst distribution, size, and number are also examples of imaging features that have 

been hypothesized to influence a more rapid kidney function decline.45 Theoretically, cysts in the 

collecting duct, where many nephrons converge, could impair kidney function more than cysts in 

a single nephron.46 Likewise, cysts in the renal papilla, where collecting ducts drain, could 

further worsen kidney function. Understanding the renal outcomes in those with few large cysts 

or innumerable small cysts should provide important insights.45 However, these associations 

have not been formally studied to our knowledge.   

The limitations are also apparent in patients from the McGill University Health Centre (MUHC) 

PKD Clinic. Figure 2 displays an illustrative example describing three Class 1C female patients 

in the same decade for age and were followed for at least two years. According to the MIC tool, 

they are all projected to experience an annual increase in TKV by 3-4.5% per year and an annual 
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decrease in eGFR by -2.43 mL/min/1.73m2 per year. However, unlike the MIC prediction, their 

true clinical course deviates significantly from one another. 

Patient A presents with the highest TKV among the three, described by a dominant cyst in the 

left kidney and numerous smaller bilateral cysts. However, she has a well-preserved eGFR of 94 

mL/min/1.73m2 with no observed annual kidney function decline. The Class 2-like presentation 

of cysts and the relatively large proportion of healthy tissue on the right kidney may explain this 

phenomenon. However, there is no established study that confirms this hypothesis. 

Patients B and C share similar TKV and bilateral, symmetric distribution of innumerable small- 

and medium-sized cysts. Interestingly, Patient B has a much lower baseline eGFR than Patient C 

(59 mL/min/1.73m2 vs. 80 mL/min/1.73m2), yet Patient C demonstrated a worse kidney function 

outcome than Patient B (-9 mL/min/1.73m2 per year vs. -7 mL/min/1.73m2 per year). The older 

age and presence of liver cysts in Patient B may identify someone at risk of worsening renal 

function. The differences in clinical factors — not accounted for in the MIC model algorithm — 

such as race, obesity, diet, or past medical history (e.g., hematuria, nephrolithiasis, hypertension) 

and their potentially complex associations may also help explain the different annual eGFR 

decline observed in each patient.28 However, given that Patient C is younger than Patient B with 

a faster annual decline in eGFR, the kidney functions of the two patients may converge over 

time. 
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Figure 2. Unique Clinical Presentations of ADPKD in Patients from the MUHC PKD Clinic  

Many of these associations are speculative, but this clinical example highlights the limitations of 

the MIC tool and the need for a better predictive modelling tool. TKV, age, and height do not 

provide enough detail on patients’ progression of ADPKD. A prognostic tool that can consider 

various factors — in addition to the input variables of MIC — may improve the prediction of 

disease progression in ADPKD, pushing for more individualized patient care. 

2.8. Available Treatment  

2.8.1. Non-Pharmacological Interventions  

Hypertension is an independent risk factor for progression to ESKD.28, 47, 48 Therefore, blood 

pressure control is important for managing ADPKD. The current guidelines suggest restricting 

salt intake to a maximum of 5 g per day. The goal is to decrease the plasma osmolality level, 

inhibit the renin-angiotensin-aldosterone system (RAAS), and reduce vasopressin, the main 

driver of cyst proliferation.49, 50 A study illustrated a worsening eGFR of -0.11 mL/min/1.73m2  
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per year per 1 g of salt in both early- and late-stages of ADPKD.50 A post hoc analysis of the 

Halt Progression of Polycystic Kidney Disease (HALT-PKD) study also discovered an increase 

in TKV in early-stage ADPKD and a decrease in eGFR in late-stage ADPKD with higher salt 

intake.51 A systematic review, which included eight randomized clinical trials that compared two 

or more levels of salt intake, observed a significant decrease in systolic blood pressure, 

proteinuria, and adverse kidney outcomes when salt intake was restricted.52  

Other recommended lifestyle modifications involve lowering body mass index (BMI), 

transitioning to a healthy lifestyle (e.g., cardiovascular exercise) and diet, quitting smoking, and 

avoiding non-steroidal anti-inflammatory drugs.25, 53-55 However, there is limited evidence and 

their effects on the disease progression of ADPKD should be further examined.  

Increased water intake can reduce the recurrence of kidney stones. An animal study 

demonstrated a lower level of vasopressin and a delay in cyst proliferation with higher water 

intake.56, 57 However, the results from a human trial were not consistent with previous findings.58 

This could be attributed to the small sample size, challenges in achieving a much higher water 

intake, and a short study period. A long-term trial with a larger, more generalizable patient 

cohort and rigorous methodology is required to confirm any benefits of prescribed water therapy. 

High protein intake can induce hyperfiltration in the kidneys, increase the level of vasopressin, 

and worsen disease progression.59 A low protein diet of less than 1.3 g per kg of body mass per 

day is advised by the Kidney Disease Improving Global Outcomes (KDIGO), but these are not 

specific to those with ADPKD.60 Once the patient reaches an eGFR of 30 mL/min/1.73m2, 

further restriction in protein consumption (less than 0.8 g per kg of body mass) is advised. A 

randomized controlled trial demonstrated a faster decline in the eGFR in the first four months, 



 
 

14 

followed by a slower decline in those with moderate renal insufficiency when they maintained a 

low protein diet (0.58g per kg per day) and low blood pressure (mean arterial pressure of 125 

mmHg or less).61 However, compared to a low-protein diet, a very low-protein diet (0.28g per kg 

per day) had no significant effect on the renal progression of patients with severe renal 

insufficiency.  

Although there is increasing evidence that cyst growth in ADPKD may be associated with 

aerobic glycolysis, commonly seen in cancer cells, its effect on the disease progression is not 

well-established.62  

2.8.2. Pharmacological Interventions 

Hypertension can also be managed pharmacologically with renin-angiotensin-aldosterone-system 

inhibitors (RAASi). Hypertensive patients with ADPKD who are younger than 50 years with a 

preserved eGFR of greater than 60 mL/min/1.73m2 and without significant cardiovascular 

comorbidities can be prescribed either angiotensin-converting enzyme inhibitor (ACEi) or 

angiotensin receptor blocker (ARB).10 The HALT-PKD Study A, a double-blind, placebo-

controlled trial, demonstrated that strict blood pressure control (between 95/60 and 110/75 

mmHg) using ACEi or ARB reduced the annual rate of TKV increase by 1% but did not affect 

the annual rate of eGFR decrease.63 Moreover, strict blood pressure control lowered renal 

vascular resistance and reduced proteinuria. Patients did not experience significant improvement 

when prescribed a combination of ACEi and ARB. Thus, dual angiotensin blockade is not 

recommended. 

Tolvaptan, a selective arginine vasopressin type 2 receptor antagonist, is currently the only 

approved drug in North America that can slow the disease progression in ADPKD.64 Unlike 



 
 

15 

other pharmacological approaches, it directly suppresses the release of vasopressin into the 

distal nephrons, thereby reducing cyst proliferation in the kidneys and additional fluid 

secretion into existing cysts.65 Patients who receive tolvaptan therapy achieve a slower annual 

rate of growth in TKV and annual rates of eGFR and kidney function decline.66, 67 In the 

Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney 

Disease and Its Outcomes 3:4 (TEMPO 3:4) randomized, double-blinded placebo-controlled 

trial, patients with TKV greater or equal to 750 mL and creatinine clearance of 60 mL/min or 

more were enrolled for three years to test the efficacy of tolvaptan. Patients who received 

tolvaptan experienced an average annual rate of TKV increase of 2.7% compared to 5.5% in 

the placebo group.66 Moreover, the average annual rate of eGFR decline was -2.72 

mL/min/1.73m2 per year vs. -3.70 mL/min/1.73m2 per year in the intervention and placebo 

groups, respectively. Additionally, patients who were prescribed tolvaptan reported fewer 

incidents of kidney pain that generally requires medical attention and analgesic agents. 

The efficacy of tolvaptan in rapid progressors defined by the MIC tool became more evident 

in the post hoc analysis of the TEMPO 3:4 trial.2 When they excluded slow progressors, the 

annual rates of TKV growth (5.8% per year vs. 2.9% per year) and eGFR decline (-3.93 

mL/min/1.73m2 per year vs -2.78 mL/min/1.73m2 per year) were significantly lower in the 

tolvaptan group compared to the placebo group. Furthermore, the Replicating Evidence of 

Preserved Renal Function: An Investigation of Tolvaptan Safety and Efficacy in ADPKD 

(REPRISE) trial, a multicentre, placebo-controlled, double-blinded study, tested the efficacy 

and safety of tolvaptan in more advanced patients with eGFR between 25 and 65 

mL/min/1.73m2.67 After a year, the average annual rate of eGFR decline was lower in the 

tolvaptan group (-2.34 mL/min/1.73m2) than in the placebo group (-3.61 mL/min/1.73m2). It 
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is estimated that the onset of kidney failure can be delayed by an average of one year for 

every four years of tolvaptan treatment.64, 66 In other words, physicians can potentially delay 

the median age of ESKD onset by 6.5 years and increase the life expectancy of patients with 

advanced ADPKD by 2.6 years. Currently, tolvaptan therapy is considered the first line of 

drug treatment only for patients under 65 years old who are classified as rapid progressors 

(Classes 1C, 1D, or 1E) or show clear evidence of rapid eGFR decline.32, 49, 68  

While tolvaptan is efficacious in patients at risk of disease progression, it is also associated 

with significant aquaresis-related side effects such as thirst, polyuria, polydipsia, and 

pollakiuria.69 Moreover, patients must receive monthly liver enzyme level assessments to 

mitigate the risk of reversible drug-induced liver toxicity. The cost-effectiveness of tolvaptan, 

which costs up to $5760 (in 2010 US dollars) per patient, is also considered low compared to 

other therapeutic interventions.70 Ineligible patients are prescribed with RAASi with 

aggressive blood pressure management if they have hypertension and are recommended 

general non-pharmacological interventions. Therefore, if the rapid progressors can be better 

distinguished, tolvaptan therapy could be applied more appropriately, improving cost-

effectiveness and risk-benefit.  

mTOR inhibitors (e.g., sirolimus and everolimus) and somatostatin analogues (e.g., octreotide) 

have been shown to slow the annual rate of TKV increase but not improve the rate of eGFR 

decline in randomized clinical trials.71-74 However, KDIGO advises against the prescription of 

these drugs for treating ADPKD until longer clinical trials with larger sample sizes support 

previous findings.25 
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2.9. Risk Associated with the Current Prognostic Tool and Clinical Management  

Due to the differences in clinical management strategies between slow- and fast-progressors, 

accurate classification is imperative in patients with ADPKD.40 Although misclassifications can 

occur between all MIC classes from the clinical application of the ellipsoid equation, the 

misclassification between Class 1B and 1C poses the greatest concern as this threshold often 

triggers the decision to treat a patient. Misclassifying patients as Class 1B when their true MIC is 

Class 1C can delay the benefits they could receive from disease-modifying tolvaptan therapy. In 

contrast, misclassifying patients as Class 1C when their true MIC is Class 1B exposes them to a 

potential for unnecessary adverse events and adds emotional and financial burden to patients.69  

2.10. Current Literature on eTKV Calculation Using the Ellipsoid Equation  

A retrospective study by Shi et al. compared the TKV measurements and prognostic 

performances between the ellipsoid equation and manual segmentation approaches.40 308 

patients from the Toronto PKD clinic with confirmed diagnoses of typical ADPKD entered the 

study. Apart from the five patients with contrast-enhanced CT images, all patients possessed T2-

weighted MRI. Manual segmentation and axial measurement tasks were performed by a highly 

experienced radiologist in separate sittings while blinded from patient information.  

The Bland-Altman analysis illustrated a mean percentage difference in TKV of only -0.6% 

between the two methods. However, the limits of agreement ranged between -20% and +20%, 

and 17 cases (5.5%) had a TKV difference of greater than 20%. Furthermore, 42 patients 

(13.6%) were misclassified when the ellipsoid equation was used. More importantly, seven and 

four patients were misclassified as Classes 1B and 1C, respectively. These findings suggest that 

the ellipsoid equation is inconsistent in accounting for certain irregularities in the cystic kidneys 

and directly contributes to the misclassification of patients.40 
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Demoulin et al. also compared the TKV measurement approaches in 140 patients with confirmed 

diagnoses of typical ADPKD from a clinic located in Brussels.43 Those who had undergone 

kidney failure or unilateral nephrectomy were excluded from the study. A junior and senior 

radiologist measured the axial lengths and segmented the kidneys of 53 and 140 patients, 

respectively, to assess reproducibility (inter-reader agreement). Subsequently, they each 

remeasured 10 and 22 patients’ kidneys to assess repeatability (intrareader agreement). However, 

only the measurements performed by the senior radiologist were used to assess misclassification.  

The Bland-Altman plot illustrated a mean percentage difference of 9.5% between the two 

measurements, with the limits of agreement between -10.4% and 29.4% for the junior 

radiologist. For the senior radiologist, the mean percentage difference was 6.9%, and the limit of 

agreement was between -12.0% and 25.7%. Although the average time to complete a TKV 

measurement using the ellipsoid equation was approximately 35 minutes faster, the repeatability 

and reproducibility were significantly greater for the manual segmentation approach. The 

repeatability coefficients for manual segmentation vs. the ellipsoid equation were 2.4% vs. 14% 

for the junior radiologist and 4.6% vs. 17% for the senior radiologist. The reproducibility 

coefficients between the two readers for manual segmentation and ellipsoid equation 

measurements were 6.7% and 15%, respectively. Further analyses illustrated that manual 

segmentation by a junior and a senior radiologist could detect changes in TKV of greater than 

6.6% and 3.5% in a patient with 95% confidence. Meanwhile, the orthogonal and eTKV 

measurements by a junior and senior radiologist can detect changes in TKV of greater than 22% 

and 19% in a patient with 95% confidence.43  
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There was generally a good agreement between the MIC using eTKV and SegTKV (intraclass 

coefficient = 0.924). However, the ellipsoid equation misclassified 21 out of the 140 patients 

(15%) by one risk class. Of those, eight were misclassified as Class 1B instead of Class 1C.43  

Even though the ellipsoid equation performs well in most cases, large discrepancies in certain 

cases and misclassifications should be minimized by exploring alternative approaches to measure 

TKV. Semi-automated or fully automated segmentations using machine learning could improve 

accuracy and precision.41, 75, 76 Future studies should also compare the two measurement 

approaches within their PKD clinic cohorts to externally validate the findings. Moreover, 

analyzing images with discrepancies of greater than 20% can be a future step to identifying any 

patterns the ellipsoid equation fails to capture.  

2.11. Alternative Conventional Models to Predict Disease Progression of ADPKD  

In 2017, Kline et al. applied image texture features from 122 T2-weighted MRIs from the CRISP 

study to predict whether patients with ADPKD will progress to chronic kidney disease (CKD) 

Stage 3A, 3B, and 30% decline in eGFR after eight years.45 The study chose entropy (degree of 

disorder within the kidney), correlation (grayscale value dependence of kidney voxels), and 

energy (a measure of tissue uniformity) from the nine image texture features to examine their 

predictive power, along with the traditional clinical variables (htTKV, age, and baseline eGFR); 

entropy signals randomness in cyst distribution; correlation illustrates the regions with similar 

appearances within the kidney; energy indicates the differences in cyst size and number.  

For CKD Stage 3A classification, entropy, correlation, and energy displayed the area under the 

receiver operating characteristic curve (AUROC) of 0.93, 0.72, and 0.80, respectively. For CKD 

Stage 3B classification, the AUROC were 0.86, 0.79, and 0.80. For classifying the 30% decrease 
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in eGFR, the AUROCs were 0.82, 0.69, and 0.75. The linear regression model of entropy, 

correlation, and energy with eGFR percentage change displayed slopes of -0.52, -0.43, and -

0.52.45  

When the three image texture features were added, the AUROC of the traditional model (htTKV, 

age, and baseline eGFR) for CKD Stage 3A classification improved from 0.86 to 0.94. For CKD 

Stage 3B classification, it improved from 0.90 to 0.96. For classifying the 30% decrease in 

eGFR, it improved from 0.75 to 0.85. Finally, multiple linear regression of the traditional 

biomarkers with eGFR percentage change obtained a Pearson’s correlation coefficient of -0.51. It 

improved to -0.70 when the image textures were added.45  

There are some limitations to this study. Since the image acquisition protocol is not standardized 

across clinics, and the model relies on image texture features relevant to image signal intensities, 

its performance may depend heavily on the quality of the image resolution. Moreover, the CRISP 

study cohort only includes patients under the age of 46 and is enriched with those considered to 

be at higher risk of disease progression. Therefore, this predictive model should be externally 

validated to test its generalizability.77 

In another study, McEwan et al. used patients from the placebo arm of the TEMPO 3:4 trial 

(N=484) to develop a predictive multivariable regression model.78 The model used age, gender, 

and baseline TKV to predict the disease progression until the patient reached 80 years old or 

ESKD, defined by eGFR less than 15 mL/min/1.73m2. The two equations in the model were 

fitted to annual changes in TKV +500 and eGFR +60 to avoid calculating the log of negative 

numbers. Moreover, the model’s uncertainty in prediction was calculated and incorporated into 
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the algorithm to mimic inter-patient variability since patients who share the same baseline 

characteristics may vary in their TKV and eGFR in real clinical settings.  

The model aggregated estimates from a hypothetical cohort of up to 10,000 patients. 

Subsequently, the model’s accuracy was externally validated on patient cohorts from the CRISP 

study, HALT-PKD A and B, and THIN studies, which included patients at various stages and 

severity of ADPKD. Finally, the model was tested on a hypothetical cohort that matched the 

baseline characteristics of the overall study population from the TEMPO 3:4 trial (N=1445). 

The statistical model predictions corresponded well with ground truth, although the 95% 

prediction intervals widened over time. The predictions were also consistent with the HALT-

PKD cohort. However, since the HALT-PKD B study consisted of rapid progressors, the eGFR 

decline prediction deviated in the final two years of the trial. In the same HALT-PKD cohort, the 

predictions were better when only those with baseline TKV of 1000-1500 mL were included. 

Similarly, the predictions matched well with the THIN database when compared against the sub-

populations with baseline TKV of 1500 mL.78 

The study illustrated that age had a modest impact on the onset age of ESKD when eGFR and 

TKV were the same.78 Sex positively correlated with TKV growth but was not statistically 

significant. Finally, as expected from previous studies, baseline TKV and current TKV were 

strong predictive risk factors for annual rates of TKV growth and eGFR decline, respectively.  

Even though the statistical model performed well, the study has some limitations. The TEMPO 

3:4 trial only included patients who were lower or equal to 50 years old with TKV greater or 

equal to 750 mL. Furthermore, a limited number of patients with baseline TKV of 750-850 mL 

were enrolled in the study. Therefore, if patients from the external cohort had TKV less than 850 

mL, the equation assumed the value of 850 mL. Similarly, the annual changes in TKV and eGFR 
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for patients older than 50 years old were assumed as the annual change at 50 years old. In 

addition, the time-varying covariate model may need to be explored to account for the effects of 

RAASi and tolvaptan on patients’ disease progression in HALT-PKD and TEMPO 3:4 studies, 

respectively.  

Nevertheless, the results from both studies suggest that the current biomarkers — htTKV, age, 

and baseline eGFR — are not enough to stratify all ADPKD patients into five subclasses and 

predict their disease progression. Both studies acknowledge that additional features, such as 

image features (e.g., cystic location and distribution) and clinical factors (e.g., hypertension 

history, polycystic liver disease, and family history) should be explored to assess their relevance 

in prediction.  

2.12. Proposed Solution 

So far, many individual clinical factors (e.g., early-onset hypertension and urologic events, sex, 

and age of diagnosis) and some image features (e.g., baseline TKV and image texture features) 

have been identified as factors affecting the renal progression of ADPKD.28 It would be 

interesting to examine how other imaging features (e.g., cyst distribution, size, load, 

composition, and location), which have been postulated but not confirmed, affect one’s disease 

progression.31, 45, 46 The interaction between demographics, imaging, and clinical variables can 

also be explored.  

Developing a machine learning model that can predict disease progression across the full 

spectrum of ADPKD by identifying important features and complex associations within the 

clinical variables and medical imaging could move practice towards a precision medicine 

approach. Furthermore, a more accurate classification of these patients may enrich clinical trials 

when studying new investigational treatments.   
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2.13. Machine Learning 

2.13.1. Introduction  

Humans are adept at deciphering information and creating associations from small datasets. 

However, the task becomes more challenging as the dataset becomes larger. Machine learning is 

a powerful tool that can process large, heterogenous datasets, discover, and learn complex 

relationships between various features, and ultimately outperform humans in a short period of 

time. 

Traditional machine learning models were initially designed to make decisions based on specific 

rule-based systems coded by the engineer.79 Now, they possess algorithms and architectures that 

allow them to generalize information and identify patterns throughout the training and validation 

steps.80 Predictive models can then apply the acquired knowledge and patterns on unseen data to 

accurately predict the outcomes of interest or label. The prediction tasks of machine learning 

involve classification, regression, and novelty detection.80, 81 In contrast, descriptive models 

simply gain knowledge from past data and understand complex relationships.80 There are four 

categories of machine learning approaches: supervised learning, unsupervised learning, semi-

supervised, and reinforcement learning.82  

2.13.2. Supervised Learning  

In supervised learning, the model uses a dataset with labelled input and its corresponding 

outcome of interest.80 Moreover, it is directly informed of the appointed task. The model is 

trained using either a classification or regression algorithm, depending on whether the outcome 

variable is categorical or continuous.83 In the testing stage, the model’s predictive performance is 

evaluated on unseen data from the test set.84 Linear and logistic regression, support vector 
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machine (SVM), K-nearest neighbours, naïve Bayes, decision tree, random forest (RF), and 

neural networks are common supervised learning approaches. 

SVM is a type of supervised learning algorithm used for classification.82 In SVM, a hyperplane, 

which is a solid line acting as the decision boundary, separates the classes in high-dimensional 

data, a dataset containing many features. The model’s performance is greatest when the margin 

between the hyperplane and the closest data points from each class is maximized. The 

hyperplane can be adjusted to maximize the margin and improve generalizability. However, the 

hyperplanes may not separate the two classes completely if the data contains noise and outliers. 

Soft-margin SVM approach can help mitigate this problem at the cost of a decrease in sensitivity 

and an increase in bias. SVMs can also linearly separate non-linear data by transforming the data 

into a higher dimensional space using kernel functions. The advantages of SVM are their ability 

to handle high-dimensional data and perform well with small datasets. However, it can be 

sensitive to the choice of kernel function and is computationally expensive for larger datasets. 

The decision tree approach classifies data points by splitting them into nodes, branches, and 

leaves based on their attributes.85 In other words, each decision tree path that each data takes can 

be understood as an if-then conditional statement. Decision trees are easily comprehensible and 

interpretable, require few data pre-processing and hyperparameter tuning compared to other 

approaches, can handle missing values, and are robust to outliers.82, 85 However, they do not 

perform well with imbalanced datasets, are sensitive to noise, and are susceptible to overfitting, 

especially with smaller datasets.82 

The RF approach independently grows many decision trees and uses an ensemble learning 

technique called bagging or bootstrap aggregation to make predictions.82 Bagging creates 
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random subsets of data and features with replacements from the training dataset.82, 86 The model 

is trained on these subsets and builds its decision trees. For regression tasks, it averages the 

results obtained from the trees.82 For classification tasks, it selects the majority vote. For these 

reasons, RF models can outperform a single decision tree, handle high-dimensional data, and 

mitigate the risk of overfitting. Furthermore, they can report and rank the importance of each 

input feature in carrying out the prediction task.87 

Neural networks and deep learning are supervised learning approaches inspired by the 

architecture of the human brain.82 Neural networks have input, hidden, and output layers that are 

analogous to dendrites, soma, a nucleus, and an axon in the neuron. The data in the input layer is 

processed throughout the hidden layer(s), and the results for the given input data are generated in 

the output layer. Widely used deep learning approaches are multi-layer perceptron (MLP), 

recurrent neural network (RNN), and convolutional neural network (CNN). For instance, MLP 

starts from the input layer and calculates the linear function according to the network parameters 

(e.g., weight and bias values). A non-linear function is subsequently applied to all neurons within 

the hidden layer, followed by the output layer. The parameters are constantly adjusted based on 

the loss function measured in each backpropagation and random iteration process. The training is 

complete once it satisfies the pre-determined criteria set by the developers and the model is ready 

for testing.  

2.13.3. Unsupervised Learning  

Unlike supervised learning models, unsupervised learning models work with unlabelled data that 

consists only of input variables. While supervised learning models receive target outputs and 

feedback (e.g., rewards and punishment) from the environment, unsupervised learning models 

are left to identify associations, learn features, label the inputs, and produce the output 
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independently.82, 88 Unsupervised learning approaches are mainly applied for association mining, 

clustering, and feature reduction tasks.89, 90 While the model’s autonomy helps identify hidden 

patterns within large, high-dimensional datasets, it may be less accurate than a supervised model. 

Moreover, it does not promise that the associations will be useful or related to the study. The 

main pitfall is the possibility of the Blackbox Effect. If the model grows too complex, it becomes 

impossible to identify the labels and weight added to each variable and understand the logic 

behind the results even if it performs well.91 K-means clustering and principal component 

analysis are examples of unsupervised learning approaches.  

2.13.4. Semi-supervised Learning 

Semi-supervised learning involves a mix of labelled and unlabelled input features, but most 

remain unlabelled.88 This approach is preferred when the data is large and unlabelled, but the 

labelling process requires expert knowledge or can be labour-intensive.90  

2.13.5. Reinforcement Learning  

Contrary to other machine learning models, a training dataset does not need to be provided 

externally for reinforcement learning models.82 Instead, it can create its own dataset during 

training, receive feedback from its environment, and optimize its performance via a trial-and-

error method. Although it reduces the time and labour involved in labelling data, this machine-

learning approach can only be applied in settings where numerous trial-and-error are acceptable 

without any major consequences.  

2.14. Stages of Machine Learning Model Development  

Initial data analyses and appropriate preprocessing steps are crucial for improving the model’s 

performance.82 Since most machine learning techniques cannot handle missing values, two 
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strategies can be applied: 1) data removal and 2) data imputation (e.g., mean, median, or mode). 

Typically, the latter method is preferred since the former method is only tolerable in large sample 

sizes.  

Cross-validation is a popular strategy that can prevent overfitting and improve the robustness of 

the model, especially with smaller datasets.92 More specifically, k-fold cross-validation is one 

commonly used in machine learning. The data sample with size n is randomized and divided into 

k subsets of equal size, where k can be any arbitrary number ranging from 2 to n-1.92 The first 

subset is set aside for testing, and the remaining k-1 subsets are used for training.93 The model’s 

performance on the test set is recorded. The steps are repeated k times until all subsets have been 

utilized once as a test set. All the results are averaged and recorded as a single performance 

metric of the model.  

High-dimensional data can bring challenges to building a high-performing model.82 If too many 

features are included in the model, it could increase the risk of overfitting, complexity, and 

interpretability of the model. Excluding features irrelevant to predicting the outcome or 

redundant will simplify the model and improve performance. Another technique to better handle 

high-dimensional data is through dimensionality reduction. Feature extraction and feature 

selection techniques can help lower the dimensions of the dataset while preserving the 

fundamental properties that contribute to the model’s accuracy. 

Class imbalance is another problem that can lead to poor generalizability, especially in the 

minority class.94 It is especially common in medical data and there is increasing evidence that 

current clinical models are disproportionately affecting specific populations in the minority 

groups.95, 96 A balanced training set is crucial for improving the performance and generalizability 
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of machine learning models.97 However, if an imbalanced dataset is inevitable due to various 

reasons, oversampling and undersampling techniques can be sought out to mediate this issue. 

Random oversampling will increase the sample size of the minority class by duplicating 

observations from the minority variable. However, it comes with the cost of increased training 

time, memory complexity, and the risk of overfitting. Meanwhile, undersampling decreases the 

number of samples from the majority class to level the sample sizes of both classes. However, 

undersampling can result in the loss of pertinent information and is not recommended for use in 

datasets with small sample sizes.82  

Normalization is an essential preprocessing step for datasets that consist of features with diverse 

scales, units of measurement, and range of values.98 Feature-based machine-learning approaches 

tend to place greater weight on features with greater numerical values throughout the training 

process and bias the final prediction. Hsu et al. highlighted the vast improvement in the SVM 

models’ performances when scaling was performed on real-world data on astroparticles, 

bioinformatics, and vehicles.99 The accuracies of the model improved from 75.2% to 96.9%, 

36% to 85.2%, and 4.88% to 87.8%, respectively. Scaling all features within a common range 

ensures equal numerical importance and reduction of bias in the model.100 It is important to 

understand that equal numerical importance does not equate to equal contribution to the model’s 

decision-making process. Log scaling, min-max scaling and Z-score scaling are examples of 

common normalization techniques.101 The min-max method scales the values to a fixed range 

between 0 and 1 and reduces the standard deviation. Meanwhile, Z-score scaling transforms the 

features to the standard normal distribution, where the mean is 0, and the standard deviation is 1.  

Once the data has been analyzed, cleaned, and preprocessed, it is randomly split into training, 

validation, and test sets. For smaller datasets, the conventional split ratio is 70% training, 15% 
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validation, and 15% test. The test set must be locked away until the training and validation stages 

are completed to mitigate bias.82 The model is first exposed to the training set. The model learns 

from this data and adjusts its internal parameters to minimize prediction error. After training, the 

quality of the model’s performance is evaluated on the validation set, and its performance is 

measured. If the model performed well on the training but poorly on the new, independent 

validation subset, it would be a sign of overfitting. In these cases, developers can make necessary 

adjustments. The validation step also provides the opportunity for hyperparameter tuning, which 

are steps to adjust parameters pre-determined by the developers and hence independent of the 

dataset and the model.82 Once the model prototypes are fully trained and validated, the best-

performing model from the validation step is selected based on the various performance metrics 

(e.g., accuracy, precision, recall, and F1 score).90 The selected model is tested on the testing set, 

which was previously locked away to avoid data leakage. The evaluation metrics obtained from 

this step will provide a rough estimate of the model’s performance and generalizability in the 

real world.  

2.15. Performance Evaluation Metrics in Machine Learning  

Various metric tools can be used to assess the machine learning model’s performance. Accuracy 

( !"	$	!%
!"	$	&"	$	!%	$	&%

) is one of the most commonly used metrics for evaluating categorical 

predictions.102 However, accuracy should be used with caution for imbalanced datasets as it may 

not be representative of the model’s true performance.103 For instance, if a model predicts all 

cases as “no disease” for a disease with very low prevalence, an accuracy of 99% overestimates 

its performance on the majority class while overlooking its true performance on the minority 

class. Another pitfall of accuracy is that it combines the model’s performance in predicting TP 

and TN rates rather than displaying its individual performance for each class.104 If one of the 
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rates is significantly lower than the other, only reporting the accuracy could obscure the model’s 

true performance. Therefore, sensitivity ( !"
!"	$	&%

) and specificity ( !%
!%	$	&"

) should be reported 

along with accuracy.  

Precision # !"
!"$&"

$, recall ( !"
!"$&%

), and F1 score (2 ∗ "'()*+*,-	∗	/()011
"'()*+*,-	$	/()011

= !"
!"	$	2.4(&"	$	&%)

), which 

is the harmonic mean of precision and recall, are widely used in machine learning studies. The 

F1 score is highest when recall and precision are equal to one another. However, presenting the 

F1 score alone may fail to interpret the true performance of the model because it focuses only on 

the true positives and obscures the discrepancy between recall and precision values.105 As a 

resolution, precision, recall, and confusion matrix, which illustrates the proportion of TP, TN, 

FP, and FN, can be presented with the F1 score. In cases of class-imbalanced data, a weighted-

average F1 score is a more reliable metric. It accounts for the ratio of the number of samples per 

class among the total number of samples, which is termed support.106 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	6𝑆𝑢𝑝𝑝𝑜𝑟𝑡*	 	× 	𝐹1	𝑆𝑐𝑜𝑟𝑒*

%

*78

	 

	𝑆𝑢𝑝𝑝𝑜𝑟𝑡* =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝐶𝑙𝑎𝑠𝑠	𝑖
𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒𝑠  

The AUROC, another commonly used metric, illustrates the trade-off between the TP rate and 

FP rate for each threshold value.107 Subsequently, the AUROC value will help visualize the 

sensitivity and specificity across all thresholds. Since the AUROC depends on TP and FP rates, it 

is insensitive to changes in class distribution. Therefore, while the accuracy, precision, and F1 

score are susceptible to change based on the class distributions of the training and testing set, the 
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AUROC may remain more robust. However, similar to F1 scores, AUROC also weighs equal 

importance on sensitivity and specificity for all problems, which may not always be the case.108 

2.16. Current Literature on Machine Learning and Predicting Outcome in ADPKD  

A comprehensive literature search of PubMed and Google Scholar was conducted. The keywords 

“autosomal dominant polycystic kidney disease”, “machine learning”, “automated”, “disease 

progression”, “prognosis”, and “prediction” were used in both “AND” and “OR” combinations. 

There was only one pre-print study on a machine learning predictive model in ADPKD at the 

time of writing this thesis. Similar to the image texture feature study by Kline et al., Raj et al. 

developed a model using the T2-weighted MRIs from the CRISP study (N=135). They 

established the same prediction criteria: whether the patient will reach CKD Stage 3A, 3B, and a 

30% decline in eGFR after eight years.109 In addition, the model predicted the CKD stage of each 

patient and the percentage decline in the eGFR after eight years. The model consisted of two 

networks: 1) Attention U-Net that automatically segments the kidneys from the MRI and 

calculates the htTKV (mL/m) by multiplying the number of segmented kidney voxels by the 

voxel volume (mm3) and dividing by the product of 1000 and the height of the patient (m) and 2) 

A two-part network of CNN and MLP that uses image segmentation, predicted htTKV, age, and 

baseline eGFR to predict the outcomes of patients.  

The training, validation, and testing data for the Attention U-Net were split into 70, 10, and 20 

subjects per fold in a 5-fold cross-validation. Early stopping was implemented to prevent 

overfitting. The network with the highest dice score, a metric that evaluates the similarity 

between automated and ground-truth manual segmentations, was selected. The training, 

validation, and testing data for the two-part network were split into 95, 13, and 27 subjects per 

fold in a 5-fold stratified cross-validation. Weighted F1 scores and AUROC evaluated the 
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classification performance while Pearson’s correlation coefficient and Bland-Altman plots 

evaluated the regression performance. 

The comparison between ground truth and predicted htTKV from the Attention U-Net displayed 

a Pearson’s correlation coefficient of 0.98 with a mean percentage difference of 13.47 ± 13.70%. 

In the two-part network, the AUROC for predicting whether a patient will reach CKD Stage 3A, 

3B, and 30% eGFR decline were 0.965, 0.960, and 0.952, which performed close to or better 

than the performance of the image texture feature statistical model developed by Kline et al.45 

Furthermore, the precision and recall ranged between 85-90% for each prediction criterion. The 

comparison between ground truth and predicted eGFR percent changes displayed a Pearson’s 

correlation coefficient of 0.81. The Bland-Altman analysis provided a mean percentage 

difference of 1.12 ± 15.58%, with most observations placed within the 95% confidence interval. 

Moreover, the model reached a weighted-average F1 score of 0.851 and AUROC of 0.972 in 

predicting the CKD stage for each patient after eight years. Finally, Raj et al. compared their 

model’s prediction of eGFR with the MIC tool and obtained Pearson’s correlation coefficients of 

0.86 and 0.64, respectively. The MIC tool underestimated the eGFR (bias of -1.76 

mL/min/1.73m2), while the machine learning model overestimated (bias of 1.18 

mL/min/1.73m2). The Bland-Altman analyses displayed a smaller 95% confidence interval for 

the machine learning model compared to the MIC tool (-26.87-+29.22 mL/min/1.73m2 vs. -

44.88-+41.37 mL/min/1.73m2). To summarize, the evaluation metrics indicate that the model is 

highly accurate and precise in both the automated segmentation and the prediction of the 

patient’s kidney function outcome after eight years.  

While the results look promising, the confusion matrix illustrated in the study suggests that the 

results may be unreliable (Figure 3). It includes the entire study population (N=135) rather than 
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stratifying them by training, validation, and testing subsets. Without knowledge of the exact 

number of TP and TN from the testing set, it becomes difficult to assess the model’s true 

performance on real-world data. For the same reason, the study does not mention whether the 

other numerical evaluation metrics are simply the mean from all subsets combined or solely from 

the testing set. 

 

Figure 3. The confusion matrix depicting the performance of the predictive model by Raj et al.109 

There are several other limitations. The study is a pre-print and has yet to be peer-reviewed. 

Therefore, the results should be accepted with caution. The study also only reports AUROC in 

predicting whether a patient will reach CKD Stage 3A, 3B, and 30% eGFR decline after eight 

years. Providing other metrics, such as the F1 score, accuracy, precision, and recall, would 

provide a more robust assessment of the model’s performance.110 Furthermore, the model should 

be externally validated using cohorts from other PKD clinics. The sample size of less than 150 is 

considered small in machine learning, and similar to the image texture study by Kline et al., there 

is a selection bias for the CRISP study cohort. As a future step, it would be interesting to test the 

model’s performance after adding other relevant clinical factors and cyst segmentations of the 

MRI. 
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There are other predictive machine learning models in the field of nephrology unrelated to 

ADPKD.111-113 However, ADPKD brings unique challenges to developing reliable machine 

learning models because of the irregularity in shape and growth of the cystic kidneys, 

composition of cysts, and extrarenal complications.76 Therefore, more studies are required to 

determine whether machine learning can outperform existing statistical models in predicting the 

disease progression of ADPKD .  

3. OBJECTIVE AND HYPOTHESIS  

3.1. Objective 

This is an exploratory study that aims to develop various machine learning models that may aid 

clinical decision-making in ADPKD and perform better than the current MIC tool in the future. 

3.2. Study Aims and Hypotheses 

Aim 1: Compare the TKV measured from the ground-truth manual segmentation to the eTKV 

obtained from the ellipsoid equation. 

Hypothesis 1: Discordances between estimated and ground truth TKV result in misclassification 

in MIC, justifying the need for a different approach to estimate the TKV. 

Aim 2a: Develop a machine learning model that utilizes clinical features to classify the rate of 

eGFR decline across the full spectrum of patients with ADPKD. 

Hypothesis 2a: A machine learning approach that includes clinical features will classify the rate 

of eGFR decline in patients with ADPKD.  

Aim 2b: Develop a deep learning model that utilizes MRI and clinical features to classify the 

rate of eGFR decline across a spectrum of patients with ADPKD.  

Hypothesis 2b: Adding the MRI, along with clinical features, will perform better than the 

machine learning models that only use clinical features.   
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4. METHODS 

The MUHC Research Ethics Board approved this retrospective cohort study without the need for 

individual patient consent (Project Number: 2022-8080).  

4.1. Study Cohort  

The study participants were derived from the MUHC PKD clinic. The MUHC PKD clinic, which 

opened in 2015, accepts referrals from primary care physicians and specialists. Patients are seen 

by one of two nephrologists who have expertise in PKD. All patients followed in the clinic were 

screened for eligibility. Patients over the age of 15 with a confirmed diagnosis of ADPKD and 

readily extractable coronal-cut abdominal MRI in Digital Imaging and Communications in 

Medicine (DICOM) format between December 1, 2015 and November 1, 2022 were included in 

the study. Patients who had transitioned to dialysis or transplantation clinics in the past due to 

ESKD were also included if they had a baseline MRI prior to starting kidney replacement 

therapies. Patients with suspected but unconfirmed diagnoses of ADPKD or who had other forms 

of imaging (e.g., US or CT) were excluded. Patients also required a minimum follow-up time of 

1 year or at least three creatinine values.  

4.2. Variables of Interest for Machine Learning   

Continuous input variables for the model included age at the event of baseline MRI, BMI, the 

period under tolvaptan therapy, htSegTKV, eGFR (± 6 months from baseline MRI), systolic 

blood pressure (SBP), diastolic blood pressure (DBP), and manual segmented cyst volume.  

Categorical input variables included sex, family history of ADPKD, tolvaptan treatment at any 

point in time, and diabetes and smoking statuses. 
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The binary output was whether the patient is a rapid or non-rapid progressor, indicated by their 

annual rate of eGFR decline. Patients with an annual rate below -4 mL/min/1.73m2 per year were 

considered rapid progressors, and vice versa.  

While the definition of rapid progression using MIC class is consistent across the Asian, 

European, and North American consensus (Class 1C, 1D, or 1E), its definition using the rate of 

eGFR decline is not.3 For instance, while the Canadian expert consensus defines rapid 

progressors as patients with -2.5mL/min/1.73m2 per year or greater, the PBS Australian 

consensus uses the threshold of -5mL/min/1.73m2 per year or greater. Therefore, using the 

approximate average between the variable range of clinical threshold values (-4mL/min/1.73m2 

per year) was most appropriate.  

4.3. Clinical Data Collection and Imaging Information Extraction  

Patients’ clinical and imaging information was extracted, between their time of baseline MRI to 

November 1, 2022 from Oacis, the MUHC’s electronic medical record system. Only the clinical 

information from lab tests available to the nephrologists from the MUHC was recorded. For 

patients who had already transitioned to ESKD, data was recorded until the initiation of dialysis 

or transplantation or death or loss to follow-up. 

The shortest time interval between two consecutive lab reports was three months to avoid 

capturing cases of acute kidney injury. If more than one lab test was done within that interval, 

the serum creatinine and urine albumin-to-creatinine ratio values closest to the previous test 

values were recorded.  

The period under tolvaptan therapy in months was calculated by subtracting the treatment 

discontinuation date from the initiation date. However, if the patient was still under tolvaptan 



 
 

37 

treatment by the study end date, their most recent clinical lab date replaced the discontinuation 

date in approximating the number of months on tolvaptan therapy.  

We applied the three orthogonal axes of the kidneys, previously recorded by the designated 

radiologist at the MUHC, to the ellipsoid equation to calculate the eTKV. If the values were 

unavailable or were discrepant between the progress note and the imaging report, a senior 

radiologist (Dr. Reinhold) repeated the measurements while remaining blinded. The eTKV and 

SegtTKV were each used to obtain two separate MIC tool classes.  

We used the CKD-Epi equation, which considers sex, age, race, and serum creatinine, to 

calculate patients’ eGFR.114 This study was initiated prior to the race variable being dropped 

from the refit CKD-Epi study equation. We used Python (version 3.8.8.) to calculate the annual 

rate of eGFR decline. The np.polyfit() code fits the dates of clinical lab findings and eGFR 

within the polynomial function. We then multiplied 365 days per year to the slope, which was 

the daily rate of eGFR decline, to calculate the annual eGFR decline. Since eGFR can vary based 

on patients’ nutrition, diet, and hydration on the lab test day, the annual rate of eGFR decline was 

calculated only for patients with three or more serum creatinine values. If the patient had less 

than three serum creatinine measurements, they were only included in Aim 1 of the study. 

4.4. Clinical MRI Image Extraction 

All MRIs meeting the study’s inclusion criteria between December 1, 2015 and November 1, 

2022 were extracted as DICOM files for manual segmentation. The extracted DICOM files were 

stripped of identifiers, anonymized, and coded (e.g., PKD1, PKD2…). If a patient had follow-up 

images, they were coded as PKD1a, PKD1b, and onwards. The patients could only be identified 
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using the Picture Archiving and Communications Systems (PACS) number or accession number 

of the images. The data scientists were not provided with these identifiers.  

The extracted MRI scans were performed at three hospitals affiliated with the MUHC: Royal 

Victoria Hospital (RVH), Montreal General Hospital (MGH), and Lachine Hospital (LH). At the 

RVH, 1.5-T GE Signa Artist and 3.0-T Siemens Skyra scanners were used. The acquisition 

matrices were 288x224 and 256x256, respectively. The MRI images were reconstructed to 

512x512 for the 1.5-T GE Signa Artist scanner. The GE and Siemens scanners reported 

bandwidths of 325Hz per pixel and 700Hz per pixel, respectively. At the MGH, 1.5-T GE Signa 

Artist was used. The acquisition matrices were 320x192 but were reconstructed to 512x512. The 

bandwidth was reported to be 325Hz per pixel. At the LH, 1.5-T Siemens Aera was used. The 

acquisition matrices were 256x256. The bandwidth was reported to be 700Hz per pixel.  

The MRI was performed with the following parameters for all scanners: T2-weighted Half-

Fourier Acquisition Single-Shot Turbo Spin Echo Imaging (HASTE)/ Single-Shot Fast Spin-

Echo (SSFSE), 90º flip angle, 90-100ms echo time, and 2000ms repetition time.  

4.5. Manual Segmentation 

The coronal T2-weighted HASTE/SSFSE images were manually segmented by the M.Sc. 

candidate after appropriate training from a radiologist (Dr. Reinhold) using a commercially-

available 3D Slicer image computing software (versions 4.11.20210226 and 5.1.0) and Wacom 

Intuos Wireless Graphic Tablet (10.4” x 7.8”), a free-hand drawing tool. Two separate 

segmentation files were created for each MRI case. The first segmentation outlined the kidney 

parenchyma and included exophytic cysts. The kidney pelvis and hilar vascular structures 

outside of the parenchyma were excluded. The second segmentation outlined only kidney cysts. 

Hemorrhagic, calcified, fluid-filled, and exophytic cysts were included in the cyst segmentation. 
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The segmentations were revised and corrected a few months after completion to avoid human 

error and improve the quality of the segmentation task. Ambiguous cases were adjudicated by 

the project supervisors, an experienced radiologist (Dr. Reinhold) and a nephrologist (Dr. Alam) 

with experience in ADPKD imaging. The final segmentations were saved in nearly raw raster 

data (.Nrrd) format. 

The SegTKV and cyst volume were computed using the Segmentation Statistics tool pre-

installed in the 3D Slicer program. The tool multiplied the voxel volume — obtained by the 

image spacing — by the number of segmented kidney voxels to calculate the SegTKV in cm3. 

The height-adjusted manual segmented TKV (htSegTKV) was obtained by dividing the SegTKV 

in mL by the patient’s height in metres. 

4.6. Computer Features  

Apple M2 with 8GB of RAM and 256GB disk was used to calculate the annual eGFR decline on 

R Studio Version 2022.12.0+353. Intel Core TM i7-7700 with 8GB of RAM and 238GB disk was 

used to train, validate, and test machine learning models on the clinical features. For developing 

the deep learning model, the NVIDIA Tesla V100S PCle GPU, featuring 32GB of VRAM, and 

an Intel® Xeon® Gold 5220 CPU at 2.20GHz, was used. We used the PyTorch 1.10.1+CU102 

framework in Python 3.8. to implement the pipeline and develop the model. The Albumentation 

package was used for image augmentation.115  

4.7. Data Pre-Processing  

The output, the annual rate of eGFR decline, was simplified into a binary class: rapid and non-

rapid progressors. The absence of documentation in patients’ progress notes for family history, 

hypertension, nephrolithiasis, and smoking status was assumed to be negative. Missing height 



 
 

40 

was imputed as the average of all female or male heights, depending on the patient’s sex. 

Missing SBP and DBP were imputed using the mode of all patients to avoid bias from outliers. 

Missing BMI was imputed as the average value since it followed a normal distribution. Patients 

on tolvaptan for three months or less were assumed to be non-takers. For patients without an 

eGFR within the six months of baseline imaging, any eGFR closest to the baseline MRI date and 

similar to the remaining eGFR values was used.  

For the clinical model, Z-score normalization (sklearn.preprocessing.StandardScaler on Python) 

was used on time on tolvaptan treatment, age, htSegTKV, eGFR, SBP, DBP, cyst volume, and 

BMI. For the deep model, we normalized all clinical features individually to map all the features 

to the same range of 0 and 1. 

We alleviated the complexity of processing volumetric 3D MRI images by sampling three key 

2D image slices to represent the patient’s MRI. For each patient, we extracted the 2D MRI slice 

with the largest manual segmentation area, n, and its two neighbouring slices, n-1 and n+1. The 

equation 𝐼 = 9:;*-(9)
;0<(9):;*-	(9)

, where I is the image slice, was used to normalize and map I’s pixel 

intensities to a range of 0 and 1; min (I) and max (I) calculated the minimum and maximum pixel 

intensity from the image slice. Moreover, the corresponding 2D mask and patient clinical 

features were saved along with the extracted 2D slices. It is worth noting that the clinical features 

are consistent across the three 2D slices as they pertain to the same patient. By employing this 

strategy, the sample size tripled the original sample size.  

Data augmentation techniques, such as padding, resizing, and normalization transformations 

were applied to our training, validation, and test sets while an extensive list of pixel-level (color) 

and spatial-level transformations were only applied to the images in the training set. These 

implementations further increased the variation of our small dataset and assisted the model with 
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more training samples. This would decrease the chance of overfitting and increase the deep 

model’s generalizability and robustness. 

To avoid any information leak in our data processing pipeline for the deep model, we utilized a 

group-based stratified random splitting approach to divide the dataset into train:validation:test 

subsets.  

4.8. Machine Learning Model Development  

4.8.1. Clinical Model  

The clinical model applied clinical and imaging variables as the input to categorize patients as 

rapid or non-rapid progressors. Two different models were implemented using the RF and SVM 

Linear Kernel approaches. The model with the higher evaluation metric was chosen as the final 

model and compared against the deep model.  

5-fold cross-validation was performed, and the train:validation:test split was 80:10:10 per fold in 

both model techniques. There was no hyperparameter tuning during the validation stage. For 

each technique, 10 models of the same hyperparameters were trained independently with random 

subsets of the split data. After each model had the opportunity to tune the parameters in the 

validation stage, they were all tested on the same 10% of the unseen data. The performance 

metrics among the 10 models were averaged for reporting purposes, but the best-performing 

model was selected as the final model.  

4.8.2. Deep Model Architecture  

Our deep model classifier consisted of three components: 1) EfficientNet-b2, 2) FuseNet, and 3) 

Classifier (Figure 4). We used the pre-trained EfficientNet-b2 model (listed as 2DExNet in 

Figure 4) as our feature extractor to extract 1000 features from the MRI slices.116 This entirely 

pre-trained model with its fully connected layer was used without making any modifications to 
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its architecture. Additionally, the FuseNet model performed the feature fusion to generate 15 

new features from the input clinical features. The FuseNet architecture was composed of three 

fully connected layers with neuron sizes of 15, 32, and 15, respectively. The feature maps from 

the two aforementioned models were concatenated and fed as input to the final Classifier, which 

consisted of three fully connected layers with neuron sizes 1015, 256, and 2, respectively. This 

approach effectively combines information from both the MRI and clinical features and 

accurately classifies the patient as either a rapid or non-rapid progressor.  

The train:validation:test subset ratio was 63%:17%:20%. We trained the model for 50 epochs 

using the Adam optimizer with a learning rate of 1E-4 and a batch size of 32. The 

ExponentialLR scheduler with a gamma size of 9E-1 was employed to adjust the learning rate. 

Cross Entropy Loss was used to calculate the loss function throughout training. The model’s 

performance was assessed on the validation subset during each training epoch by calculating the 

accuracy, precision, recall, and F1 scores. During validation, early stopping was employed to 

avoid overfitting and the model that produced the highest F1 score was chosen as the best-

performing model for testing. During the testing stage, the final prediction label for each patient 

was determined by taking the majority vote between the predicted labels for the three 2D MRI 

slices (n-1, n, n+1) extracted from each patient, and considered as the final patient class label.  
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Figure 4. The architecture of the deep learning model for processing 2D images (2DExNet), their 

corresponding clinical features (FuseNet), and the classifier to categorize patients as either rapid 

or non-rapid progressors. 

4.9. Statistical Analysis 

The statistical calculations were made using Excel, Version 16.74 (Microsoft Corporation 2023) 

and R Studio Version 2022.12.0+353. A p-value less than or equal to 0.05 was considered 

statistically significant. The descriptive statistics were expressed as mean ± standard deviation 

(SD) or median and interquartile range for continuous variables and frequency in percentage for 

categorical variables. The independent samples t-test and chi-square test were performed to 

compare the baseline characteristics between rapid and non-rapid progressors in the Aim 2 study 

cohort. The independent samples t-test and chi-square test were also performed to compare the 

annual rate of eGFR decline and the proportion of rapid progressors, respectively, for each MIC 

class.  

A correlation plot and Pearson’s correlation coefficient were used to illustrate and assess the 

concordance between htSegTKV and height-adjusted estimated TKV (hteTKV). Moreover, a 

confusion matrix was used to compare the misclassifications in MIC between the ground-truth 
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manual segmentation and the ellipsoid equation. Finally, a Giavarina plot was created to analyze 

the bias between the mean percentage differences between htSegTKV and hteTKV and evaluate 

the agreement between the two values.  

For the RF approach, the accuracy, precision, recall, F1 score, AUROC, and feature importance 

from the test set were reported to evaluate the models’ abilities to classify patients correctly. For 

the SVM approach, the accuracy, precision, recall, and F1 score from the test set were reported. 

Note that we used the weighted average of these four metrics for all models. For the deep 

learning model, the accuracy, precision, recall, F1 score, and AUROC from the aggregated labels 

of the test set were reported. Furthermore, the confusion matrices from both the validation and 

test subsets were presented.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 F
𝑇𝑃

𝑇𝑃 + 𝐹𝑃H 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 F
𝑇𝑃

𝑇𝑃 + 𝐹𝑁H 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∗ 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃	 + 	0.5(𝐹𝑃	 + 	𝐹𝑁) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	6𝑆𝑢𝑝𝑝𝑜𝑟𝑡*	 	× 	𝐹1	𝑆𝑐𝑜𝑟𝑒*

-7=

*78

	 

	𝑆𝑢𝑝𝑝𝑜𝑟𝑡* =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝐶𝑙𝑎𝑠𝑠	𝑖
𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒𝑠  

5. RESULTS 
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5.1. Study Participant Characteristics 

231 patients were registered in the MUHC PKD clinic (Figure 5). Of those, 38 patients with 

currently undiagnosed/unconfirmed diagnoses of ADPKD, 37 patients with no MRI or restricted 

access, and 11 patients with MRI performed at a non-MUHC institution were excluded from the 

study. Of the eligible 145 patients, 25 patients had less than three serum creatinine values and 

were excluded from the second aim of the study. Therefore, 145 patients and 120 patients were 

included in the study’s first (Manual Segmentation vs. Ellipsoid Equation) and second aims 

(Machine Learning Model), respectively. A total of 229 MRI images (145 baseline and 84 

follow-up images) were extracted. However, two follow-up MRI were excluded during manual 

segmentation due to low resolution, leaving a total of 145 baseline and 82 follow-up images for 

analysis in the study.  
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Figure 5. Enrollment, Exclusion, and Inclusion Based on Screening Criteria 
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Table 4 illustrates the baseline characteristics of the MUHC PKD clinic (N=231), Aim 1 patient 

cohort (N=145), and Aim 2 patient cohort (N=120). In the Aim 1 patient cohort, the htSegTKV 

and hteTKV were 865.0 mL [490.3-1306.6] and 773.5 mL [435.6-1244.4]. Two patients had 

missing height values; consequently, their heights were imputed to calculate htSegTKV and 

hteTKV. For the Aim 1 study, the MIC using SegTKV was as follows: Class 1A (N=11), Class 

1B (N=27), Class 1C (N=56), Class 1D (N=32), Class 1E (N=15), Class 2 (N=2). the MIC using 

eTKV was as follows: Class 1A (N=14), Class 1B (N=32), Class 1C (N=54), Class 1D (N=27), 

Class 1E (N=14), Class 2 (N=2). 

The mean age of patients from Aim 2 patients was 46.3 ± 14.2 years. 73.3% had a family history 

of ADPKD, and 79.2% were diagnosed with hypertension. The median htSegTKV and hteTKV 

were 939.5 mL [542.0-1372.5] and 852.5 mL [481.7-1273.4], respectively. One patient had a 

missing height value; once again, the height was imputed to calculate htSegTKV and hteTKV. 

The manual segmented cyst volume was 960.6 mL [390.7-1606.1]. For the Aim 2 study, the MIC 

using htSegTKV was as follows: Class 1A (N=10), Class 1B (N=20), Class 1C (N=48), Class 1D 

(N=27), Class 1E (N=12), Class 2 (N=2). The MIC using hteTKV was as follows: Class 1A 

(N=12), Class 1B (N=23), Class 1C (N=47), Class 1D (N=24), Class 1E (N=11), Class 2 (N=2). 

The baseline eGFR was 67.3 mL/min/1.73m2 [45.1-98.5], and the annual rate of eGFR decline 

was -3.44 mL/min/1.73m2 per year [-5.42--1.65]. Of the 120 patients, 50 patients were classified 

as rapid progressors and 70 patients were classified as non-rapid progressors.  

Table 5 describes the baseline characteristics of the Aim 2 patient cohort stratified by disease 

progression. In rapid progressors, the mean age was 48.4 ± 13.4 years. 72.0% had a family 

history of ADPKD, and  96.0% were diagnosed with hypertension. The median htSegTKV and 

hteTKV were 1185.5 mL [939.5-1637.9] and 1136.0 mL [834.7-1418.5]. The manual segmented 
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cyst volume was 1305.7 mL [960.1-2095.0]. The MIC using htSegTKV was as follows: Class 

1A (N=0), Class 1B (N=5), Class 1C (N=20), Class 1D (N=16), Class 1E (N=7), Class 2 (N=1). 

The MIC using hteTKV was as follows: Class 1A (N=0), Class 1B (N=6), Class 1C (N=22), 

Class 1D (N=14), Class 1E (N=6), Class 2 (N=1). The baseline eGFR was 57.8 mL/min/1.73m2 

[43.8-75.1], and the annual rate of eGFR decline was -5.79 mL/min/1.73m2 per year [-4.60--

7.36]. In non-rapid progressors, the mean age was 44.8 ± 14.6 years. 74.3% had a family history 

of ADPKD, and  67.1% were diagnosed with hypertension. The median htSegTKV and hteTKV 

were 653.8 mL [384.3-1092.9] and 601.4 mL [351.8-1033.5]. The manual segmented cyst 

volume was 475.7 mL [186.0-1418.4]. The MIC using htSegTKV was as follows: Class 1A 

(N=10), Class 1B (N=15), Class 1C (N=28), Class 1D (N=11), Class 1E (N=5), Class 2 (N=1). 

The MIC using hteTKV was as follows: Class 1A (N=12), Class 1B (N=17), Class 1C (N=25), 

Class 1D (N=10), Class 1E (N=5), Class 2 (N=1). The baseline eGFR was 82.7 mL/min/1.73m2 

[47.0-106.8], and the annual rate of eGFR decline was -3.45 mL/min/1.73m2 per year [-3.00--

0.88]. The differences in hypertension, polycystic liver disease, RAASi, tolvaptan at any given 

time, time on tolvaptan, SegTKV, eTKV, cyst volume, htSegTKV, hteTKV, htSegTKV MIC 

Class 1A and Class 1D, hteTKV MIC Class 1A, eGFR, and the annual rate of eGFR decline 

between rapid and non-rapid progressors were statistically significant.  

Table 6 further describes the Aim 2 patients’ observed annual rate of eGFR decline and the 

proportion of rapid progressors in each MIC class. A negative correlation was found between 

each MIC and the annual rate of eGFR decline. When stratified using hteTKV, the annual rate of 

eGFR decline and proportion of rapid progressors in each MIC class was as follows: Class 1A (-

0.98 mL/min/1.73m2 per year, 0.0%), Class 1B (-2.94 mL/min/1.73m2 per year, 26.0%), Class 

1C (-3.87 mL/min/1.73m2 per year, 47.9%), Class 1D (-4.46 mL/min/1.73m2 per year, 58.3%), 
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Class 1E (-6.47 mL/min/1.73m2 per year, 54.5%), and Class 2 (-2.42 mL/min/1.73m2 per year, 

50.0%). When stratified using htSegTKV, the annual rate of eGFR decline and proportion of 

rapid progressors in each MIC class was as follows: Class 1A (-1.43 mL/min/1.73m2 per year, 

0.0%), Class 1B (-2.46 mL/min/1.73m2 per year, 25.0%), Class 1C (-3.40 mL/min/1.73m2 per 

year, 42.9%), Class 1D (-4.44 mL/min/1.73m2 per year, 59.3%), Class 1E (-5.33 mL/min/1.73m2 

per year, 58.3%), and Class 2 (-2.42 mL/min/1.73m2 per year, 50.0%). There was no statistically 

significant difference between patients in each class for both the annual rate of eGFR decline and 

the proportion of rapid progressors.  
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 PKD Clinic 
(N=231) 

Study-Eligible 
Patients 
(N=145) 

Model 
Development 

(N=120) 

DEMOGRAPHICS    

Age at baseline MRI (years)  44.8 ± 14.7  46.3 ± 14.2 

Missing, n (%)  0 (0.0) 0 (0.0) 

Male, n (%) 122 (52.8) 67 (46.2) 54 (45.0) 

Missing, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 

Non-Black, n (%) 221 (95.7) 138 (95.2) 114 (95.0) 

Missing, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 

Family History, n (%) 154 (67.0) 108 (74.5) 88 (73.3) 

Missing, n (%) 1 (0.4) 0 (0.0) 0 (0.0) 

COMORBIDITIES AND 
CLINICAL VARIABLES 

   

Hypertension, n (%) 155 (67.4) 103 (71.0) 95 (79.2) 

Missing, n (%) 1 (0.4) 0 (0.0) 0 (0.0) 

Hypertension before the age of 
35, (%) 

74 (32.2) 46 (31.7) 42 (35.0) 

Missing, n (%) 1 (0.4) 0 (0.0) 0 (0.0) 

Urologic Event before the age of 
35, n (%) 

56 (24.5) 35 (24.1) 30 (25.0) 

Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Nephrolithiasis, n (%) 28 (12.2) 16 (11.0) 13 (10.8) 

Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Polycystic Liver Disease, n (%) 153 (66.8) 109 (75.2) 93 (77.5) 

Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Intracranial Aneurysm, n (%) 15 (6.6) 9 (6.2) 8 (6.7) 
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Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Renin-Angiotensin-Aldosterone-
System Inhibitor, n (%) 

131 (57.2) 90 (62.1) 83 (69.2) 

Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Systolic Blood Pressure (mmHg)  121 [113-130] 122 [115-132] 

Missing, n (%)  9 (6.2) 7 (5.8) 

Diastolic Blood Pressure 
(mmHg) 

 78 [72-83] 80 [72-84] 

Missing, n (%)  9 (6.2) 7 (5.8) 

Tolvaptan at any given time, n 
(%) 

74 (32.2) 65 (44.8) 63 (52.5) 

Missing, n (%) 1 (0.4) 0 (0.0) 0 (0.0) 

Time on Tolvaptan (months)   42.3 ± 24.5 43.7 ± 24.0 

Missing, n (%)  0 (0.0) 0 (0.0) 

Body Mass Index, (kg/m2)  26.6 [23.6-30.3] 26.6 [24.0-
31.3] 

Missing, n (%)   27 (18.6) 25 (20.8) 

Diagnosis of Diabetes, n (%) 17 (7.4) 9 (6.21) 9 (7.5) 

Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Smoking Status, n (%)    

  Non-Smoker 180 (78.6) 116 (80.0) 97 (80.8) 

  Smoker 35 (15.3) 21 (14.5) 17 (14.2) 

  Ex-Smoker 14 (6.1) 7 (4.8) 6 (5.0) 

  Missing, n (%) 2 (0.8) 0 (0.0) 0 (0.0) 

Height (m)  1.70 [1.64-1.78] 1.70 [1.64-
1.78] 

Missing, n (%)  2 (1.4) 1 (0.8) 

MRI MEASUREMENTS    
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Manual-Segmented TKV (mL)   1435.8 [819.4-
2284.7] 

1576.1 [921.4-
2381.0] 

Missing, n (%)  0 (0.0) 0 (0.0) 

Estimated TKV   1272.0 [746.0-
2145.1] 

1397.0 [821.0-
2178.6] 

Missing, n (%)  0 (0.0) 0 (0.0) 

Cyst Volume (mL)  882.9 [329.2-
1503.0] 

960.6 [390.7-
1606.1] 

Missing, n (%)  0 (0.0) 0 (0.0) 

Height-adjusted Manual-
Segmented TKV (mL) 

 865.0 [490.3-
1306.6] 

939.5 [542.0-
1372.5] 

Missing, n (%)  2 (1.4) 1 (0.8) 

Height-adjusted Estimated TKV 
(mL) 

 773.5 [435.6-
1244.4] 

852.5 [481.7-
1273.4] 

Missing, n (%)  2 (1.4) 1 (0.8) 

Mayo Imaging Class Using 
Manual-Segmented TKV, n (%) 

   

Class 1A, n (%)  11 (7.6) 10 (8.3) 

Class 1B, n (%)  27 (18.6) 20 (16.7) 

Class 1C, n (%)  56 (38.6) 48 (40) 

Class 1D, n (%)  32 (22.1) 27 (22.5) 

Class 1E, n (%)  15 (10.3) 12 (10.0) 

Class 2, n (%)  2 (1.4) 2 (1.7) 

Missing, n (%)  2 (1.4) 1 (0.8) 

Mayo Imaging Class Using 
Estimated TKV, n (%) 

   

Class 1A, n (%)  14 (9.7) 12 (10.0) 

Class 1B, n (%)  32 (22.1) 23 (19.2) 

Class 1C, n (%)  54 (37.2) 47 (39.2) 



 
 

53 

Class 1D, n (%)  27 (18.6) 24 (20.0) 

Class 1E, n (%)  14 (9.7) 11 (9.2) 

Class 2, n (%)  2 (1.4) 2 (1.7) 

Missing, n (%)  2 (1.4) 1 (0.8) 

RENAL OUTCOME    

eGFR (ml/min/1.73m2)  76.5 [45.7-
106.9] 

67.3 [45.1-
98.5] 

  Missing, n (%)  10 (6.9) 0 (0.0) 

Annual Rate of eGFR Decline 
(ml/min/1.73m2 per year) 

 -3.45 [-5.42--
1.65] 

-3.44 [-5.42--
1.65] 

  Missing, n (%)  25 (17.2) 0 (0.0) 
Table 4. Baseline Characteristics of Patients from the MUHC PKD Clinic, Study Aim 1, and 

Study Aim 2 (Left to Right). Plus-minus values are means±SD. Square bracket values are 

median [1st quartile-3rd quartile].   
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 Rapid 
Progressors  

(N=50) 

Non-Rapid 
Progressors 

(N=70) 

p-value  

DEMOGRAPHICS     

Age at baseline MRI (years) 48.4±13.4 44.8±14.6 0.17 

Missing, n (%) 0 (0.0) 0 (0.0)  

Male, n (%) 25 (50.0) 41 (58.6) 0.35 

Missing, n (%) 0 (0.0) 0 (0.0)  

Non-Black, n (%) 47 (94.0) 67 (95.7) 0.68 

Missing, n (%) 0 (0.0) 0 (0.0)  

Family History, n (%) 36 (72.0) 52 (74.3) 0.78 

Missing, n (%) 0 (0.0) 0 (0.0)  

COMORBIDITIES AND 
CLINICAL VARIABLES  

   

Hypertension, n (%) 48 (96.0) 47 (67.1) <0.001 

Missing, n (%) 0 (0.0) 0 (0.0)  

Hypertension before the age of 
35, (%) 

22 (44.0) 20 (28.6) 0.08 

Missing, n (%) 0 (0.0) 0 (0.0)  

Urologic Event before the age of 
35, n (%) 

16 (32.0) 14 (20.0) 0.14 

Missing, n (%) 0 (0.0) 0 (0.0)  

Nephrolithiasis, n (%) 6 (12.0) 7 (10.0) 0.73 

Missing, n (%) 0 (0.0) 0 (0.0)  

Polycystic Liver Disease, n (%) 46 (92.0) 47 (67.1) <0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  

Intracranial Aneurysm, n (%) 6 (12.0) 2 (2.9) 0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  
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Renin-Angiotensin-Aldosterone-
System Inhibitor, n (%) 

43 (86.0) 40 (57.1) <0.001 

Missing, n (%) 0 (0.0) 0 (0.0)  

Systolic Blood Pressure (mmHg) 123 [115-131] 122 [115-132] 0.58 

Missing, n (%) 2 (4.0) 5 (7.1)  

Diastolic Blood Pressure 
(mmHg) 

80 [73-84] 78 [72-84] 0.68 

Missing, n (%) 2 (4.0) 5 (7.1)  

Tolvaptan at any given time, n 
(%) 

35 (70.0) 28 (40.0) <0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  

Time on Tolvaptan (months)  33.0±29.5 15.7 ± 24.9 <0.001 

Missing, n (%) 0 (0.0) 0 (0.0)  

Body Mass Index (kg/m2) 26.0 [23.6-29.8] 26.9 [24.3-31.2]  0.59 

Missing, n (%)  9 (18.0) 16 (22.9)  

Diagnosis of Diabetes, n (%) 4 (8.0) 5 (7.1) 0.85 

Missing, n (%) 0 (0.0) 0 (0.0)  

Smoking Status, n (%)    

  Non-Smoker 40 (80.0) 57 (81.4) 0.85 

  Smoker 10 (20.0) 7 (10.0) 0.12 

  Ex-Smoker 0 (0.0) 6 (8.6) 0.03 

  Missing, n (%) 0 (0.0) 0 (0.0)  

Height (m) 1.68 [1.64-1.78] 1.70 [1.64-1.77] 0.74 

Missing, n (%) 1 (2.0) 0 (0.0)  

MRI MEASUREMENTS     

Manual-Segmented TKV (mL) 2008.5 [1569.4-
2757.9] 

1117.3 [642.7-
1909.6] 

<0.001 

Missing, n (%) 0 (0.0) 0 (0.0)  
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Estimated TKV (mL) 1946.6 [1350.3-
2582.0] 

1012.4 [598.4-
1832.7] 

<0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  

Cyst Volume (mL) 1305.7 [960.1-
2095.0] 

475.7 [186.0-
1418.4] 

<0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  

Height-adjusted Manual-
Segmented TKV (mL) 

1185.5 [939.5-
1637.9] 

653.8 [384.3-
1092.9] 

<0.001 

Missing, n (%) 1 (2.0) 0 (0.0)  

Height-adjusted Estimated TKV 
(mL) 

1136.0 [834.7-
1418.5] 

601.4 [351.8-
1033.5] 

<0.05 

Missing, n (%) 1 (2.0) 0 (0.0)  

Mayo Imaging Class Using 
Manual-Segmented TKV, n (%) 

   

  Class 1A, n (%) 0 (0.0) 10 (14.3) <0.05 

  Class 1B, n (%) 5 (10.0) 15 (21.4) 0.10 

  Class 1C, n (%) 20 (40.0) 28 (40.0) 1.00 

  Class 1D, n (%) 16 (32.0) 11 (15.7) <0.05 

  Class 1E, n (%) 7 (14.0) 5 (7.1) 0.22 

  Class 2, n (%) 1 (2.0) 1 (1.4) 0.80 

  Missing, n (%) 1 (2.0) 0 (0.0)  

Mayo Imaging Class Using 
Estimated TKV, n (%) 

   

Class 1A, n (%) 0 (0.0) 12 (17.1) <0.05 

  Class 1B, n (%) 6 (12.0) 17 (24.3) 0.10 

  Class 1C, n (%) 22 (44.0) 25 (35.7) 0.36 

  Class 1D, n (%) 14 (28.0) 10 (14.3) 0.07 

  Class 1E, n (%) 6 (12.0) 5 (7.1) 0.36 

  Class 2, n (%) 1 (2.0) 1 (1.4) 0.80 
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  Missing, n (%) 1 (2.0) 0 (0.0)  

RENAL OUTCOME    

eGFR (ml/min/1.73m2) 57.8 [43.8-75.1] 82.7 [47.0-
106.8] 

<0.05 

Missing, n (%) 0 (0.0) 0 (0.0)  

Annual Rate of eGFR Decline 
(ml/min/1.73m2 per year) 

-5.79 [-4.60--
7.36] 

-3.45 [-3.00--
0.88] 

<0.001 

Missing, n (%) 0 (0.0) 0 (0.0)  
Table 5. Baseline Characteristics of Rapid Progressors and Non-Rapid Progressors from Aim 2. 

Plus-minus values are means±SD. Square bracket values are median [1st quartile-3rd quartile].   

 Annual eGFR 
Decline (Height-

Adjusted 
Estimated 

TKV) 
(mL/min/1.73m2 

per year) 
(N = 120) 

Annual eGFR 
Decline (Height-

Adjusted 
Manual-

Segmented 
TKV) 

(mL/min/1.73m2 
per year) 
(N = 120) 

p-
value 

Rapid 
Progressors 

(Height-
Adjusted 
Estimated 
TKV), n 

(%) 

Rapid 
Progressors 

(Height-
Adjusted 
Manual-

Segmented 
TKV), n (%) 

p-
value 

Class 
1A  

-0.98 [-3.35--
0.45] 

-1.43 [-3.35--
0.45] 

0.97 0, (0.0) 0, (0.0)  

Class 
1B  

-2.94 [-4.40--
0.98] 

-2.46 [-4.40--
0.84] 

0.94 6, (26.0) 5 (25.0) 0.86 

Class 
1C  

-3.87 [-5.20--
1.65] 

-3.40 [-5.20--
1.65] 

0.79 23 (47.9) 21 (42.9) 0.44 

Class 
1D  

-4.46 [-7.60--
2.70] 

-4.44 [-6.60--
2.70] 

0.96 14 (58.3) 16 (59.3) 0.88 

Class 
1E  

-6.47 [-8.55--
2.68] 

-5.33 [-8.55--
3.24] 

0.70 6 (54.5) 7 (58.3) 0.55 

Class 
2  

-2.42 [-7.41-
2.57] 

-2.42 [-7.41-
2.57] 

1.00 1 (50.0) 1 (50.0) 1.00 

Table 6. Annual Rates of eGFR Decline and Proportion of Rapid Progressors Within Each Mayo 

Imaging Class Using eTKV and manually segmented TKV. Square bracket values are median 

[1st quartile-3rd quartile].   
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5.2. Manual Kidney and Cyst Segmentations of MRI Images  

Figure 6 displays an example of the manual segmentation tasks. It highlights the irregularity and 

diversity of kidney size, cystic burden, and disease progression among patients with ADPKD. 

The green label outlines the kidney parenchyma, while the red label outlines only the cysts. The 

Class 1A (TKV=370 mL) patient presents with a symmetrical bilateral distribution of 

innumerable small cysts with a few medium-sized cysts. Meanwhile, the Class 1D patient 

(TKV=5503 mL) exhibits a symmetrical bilateral distribution of larger kidney cysts that replace 

most of the kidney parenchyma. In contrast, the Class 2 patient (2247.4 mL) presents with much 

larger cysts, but similar in number, in the left kidney relative to the right kidney. Furthermore, 

the annual eGFR decline is unique to each patient (-2.19 mL/min/1.73m2 per year vs. -6.60 

mL/min/1.73m2 per year vs. 2.57 mL/min/1.73m2 per year). 
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Figure 6. Mayo Imaging Class, TKV, and Annual Rate of eGFR Decline, and MRI 

Segmentations. The green label outlines the kidney parenchyma, while the red label outlines only 

the cysts. 
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5.3. Aim 1: Manual Segmentation vs. Ellipsoid Equation  

Pearson’s correlation coefficient of 0.96 (p<0.05) indicated a high concordance between 

htSegTKV and hteTKV with few outliers (Figure 7). The Giavarina Plot reported a mean 

percentage difference of -7.64% between hteTKV and htSegTKV (Figure 8). However, the limits 

of agreement were between -40.43% and +25.15%, with six cases outside of the 95% confidence 

interval. Moreover, 25 patients (17.2%) had greater or equal to 20% absolute difference between 

hteTKV and htSegTKV. Both the Giavarina Plot and confusion matrix illustrated that the 

ellipsoid equation underestimates the kidney volume at lower volumes and could overestimate at 

higher volumes compared to manual segmentation.  

The confusion matrix displayed 24 misclassifications (16.6%) within one risk class between the 

ellipsoid equation and manual segmentation approaches (Figure 9). Of those, most 

misclassifications lie between Class 1C and Class 1D. The ellipsoid equation method 

misclassified two Class 1C patients as Class 1D and eight Class 1D patients as Class 1C. 

Moreover, the ellipsoid equation misclassified eight Class 1C patients (33.3% of all 

misclassifications) as Class 1B. The htSegTKV classified 27 (18.6%) and 56 (38.6%) patients in 

Classes 1B and 1C, respectively. Meanwhile, hteTKV classified 32 (22.1%) and 54 (37.2%) 

patients in Classes 1B and 1C.  

Of the 25 patients (17%) who exhibited ≥ 20% difference between the two measures, 23 patients 

possessed irregular kidney shapes due to large exophytic cysts. Figure 10 provides an example of 

two patients within the study cohort of similar age and htSegTKV. It is important to note that 

both patients possess dominant exophytic cysts. The percentage difference between the two 

kidney measurements is 57.1% for the leftmost patient. According to the MIC tool and the 

eTKV, this patient is classified as Class 1B, which predicts an annual rate of eGFR decline of -
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1.33 mL/min/1.73m2 per year.26 In contrast, when htSegTKV is used, the patient is classified as 

Class 1C, which predicts an annual eGFR decline of -2.63 mL/min/1.73m2 per year. The 

patient’s clinical data from the progress note indicates their true eGFR decline as -2.94 

mL/min/1.73m2 per year. Although the rightmost patient also possesses numerous large 

exophytic cysts, the percentage difference for the rightmost patient in the kidney measurements 

is only 1.5%. Moreover, the patient is classified correctly, and the annual eGFR decline of 

prediction and ground truth are similar in value.  

 

 

Figure 7. Linear Regression Analysis Comparing the Height-Adjusted Segmented TKV from 

Manual Segmentation with Height-Adjusted eTKV from the Ellipsoid Equation   
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Figure 8. Giavarina Plot Comparing the Height-Adjusted Segmented TKV with Height-Adjusted 

eTKV 
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Figure 9. Confusion Matrix Highlighting the Misclassifications Resulting from the Use of the 

Ellipsoid Equation 

 

 

Figure 10. Inconsistency in the Ellipsoid Equation is Observed in Two Patients with Similar Age, 

Height-Adjusted TKV, and Identical Mayo Imaging Class 
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5.4. Aim 2: Machine Learning Model Performance 

5.4.1. Random Forest Approach Using Only Clinical Variables  

Before normalizing the data, the RF model predicted the rate of disease progression with 

accuracy and AUROC of 0.64 and 0.72 on the testing set. The precision, recall, and F1 score 

were 0.75, 0.62, and 0.67. However, after normalization, the accuracy and AUROC improved to 

0.65 and 0.73. The precision, recall, and F1 score improved to 0.76, 0.63, and 0.68. The top six 

features were hypertension history, whether the patient was on tolvaptan, the time of tolvaptan 

treatment, htSegTKV, cyst volume, and baseline eGFR.  

5.4.2. Support Vector Machine Approach Using Only Clinical Variables  

Before normalization, the SVM model displayed an accuracy, precision, recall, and F1 score of 

0.54, 0.69, 0.54, and 0.52, respectively, on the testing set. After normalization, all values 

improved to 0.81.  

5.4.3. Deep Learning Approach Using Clinical Variables and Imaging Features  

The best-performing model obtained accuracy, precision, recall, and F1 score of 0.84, 0.85, 0.84, 

and 0.85, respectively, on the validation set. The TP, TN, FP, and FN values were 0.85, 0.92, 

0.08, and 0.15, respectively (Figure 11). 

The same model obtained the accuracy, precision, recall, F1 score, and AUROC (Figure 12) of 

0.88, 0.88, 0.88, 0.87, and 0.86 on the testing set. The TP, TN, FP, and FN values were 0.93, 

0.80, 0.20, and 0.07, respectively (Figure 13). 
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Figure 11. Confusion matrix comparing the predicted classification of rapid and non-rapid 

progressors from ground-truth in the validation set (N=61). 
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Figure 12. AUROC graph comparing the TP rate with the FP rate from the deep learning model 

in the test set. 
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Figure 13. Confusion matrix comparing the predicted classification of rapid and non-rapid 

progressors from ground-truth in the test set (N=72). 

6. DISCUSSION 

Our study first compared the accuracy of the ellipsoid equation against the gold-standard manual 

segmentation to justify the need for a novel approach to estimate TKV. We then developed three 
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classification machine learning models. The first two models incorporated clinical variables with 

the traditional predictive biomarkers (htSegTKV, age, and height). The third model used both the 

baseline MRI and clinical variables. We examined their performances in classifying whether the 

patient will progress below or above the annual rate of eGFR decline of -4 mL/min/1.73m2 per 

year.  

6.1. Baseline Characteristics  

The study-eligible patients from our MUHC PKD clinic had mean baseline age of 44.8 ± 14.7 

years and a median BMI of 26.6 kg/m2 [23.6-30.3] (Table 4). Furthermore, the median SegTKV, 

total cyst volume, and eGFR were 1435.8 mL [819.4-2284.7], 882.9 mL [329.2-1503.0], and 

76.4 mL/min/1.73m2, respectively. In contrast, the CRISP study cohort had a mean baseline age 

of 33.8 ± 8.9 years and a mean BMI of 25.9 ± 5.2 kg/m2.31, 77 Their mean SegTKV, total cyst 

volume, and eGFR were 1076 ± 670 mL, 534±529 mL, and 98.2 ± 24.9 mL. The baseline 

characteristics of our study cohort were older than the CRISP cohort with larger kidney volumes 

and lower eGFR. 

Recently, Yu et al. developed a long-term trajectory statistical model for each decade of age and 

MIC using the 14-year data from the CRISP dataset (Table 7).117 The model was further 

validated using the HALT-PKD dataset (N=558). Our cohort’s annual eGFR decline closely 

matched the 40-50 years decade group in the long-term model.  
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 Annual Rate of eGFR Decline (mL/min/1.73m2 per year) 

 20-30 yrs 30-40 yrs 40-50 yrs 50-60 yrs 

Class 1A 0.77 -0.63 -2.03 -3.42 

Class 1B 0.21 -1.19 -2.58 -3.98 

Class 1C -0.52 -1.92 -3.32 -4.71 

Class 1D -1.97 -3.37 -4.77 -6.16 

Class 1E -3.25 -4.65 -6.05  

Class 2 NA NA NA NA 

Table 7. Long-term trajectory statistical model for each decade of age and MIC using the 14-year 

data from the CRISP dataset.3 

6.2. Manual Segmentation vs. Ellipsoid Equation 

Our results were consistent with the findings from the comparative study conducted by Shi et al. 

and Demoulin et al.40, 43 Although the eTKV and SegTKV correlated well, the ellipsoid equation 

tended to underestimate the true TKV and large limits of agreement were observed. In both 

studies, 3.6% and 5.7% of the patients, respectively, were misclassified as either Class 1B or 

Class 1C. Similarly, 8 of 145 patients (5.5%) in our study cohort were misclassified as Class 1B.  

This is concerning because Class 1C is the threshold that determines a patient’s eligibility for 

tolvaptan treatment. If patients are misclassified as Class 1B, it could delay the initiation of 

tolvaptan therapy, and patients may experience more rapid growth in the cystic kidneys, rapid 

decline in eGFR, and earlier onset of kidney failure.3, 40, 66, 67 Conversely, if patients are 

misclassified as Class 1C and prescribed tolvaptan, they may experience a lower quality of life 
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from the unnecessary side effects and cost of tolvaptan. Therefore, minimizing the classification 

error will improve patient care and management of ADPKD. 

Although the ellipsoid approach was efficient and generally reliable for calculating the TKV, our 

analysis of the MRI scans of the 25 patients with ≥ 20% difference between the two 

measurement approaches highlighted the lack of precision and accuracy in a minority of patients 

with exophytic cysts. Figure 10 illustrates two patients with similar ages, htSegTKV, large 

exophytic cysts, and irregular kidney shapes. However, the percentage difference between the 

two measurements was 1.5% for one patient and more than 50% for the other. Moreover, despite 

the similarity in ground-truth MIC (Class 1C), age, and htSegTKV, they experienced different 

rates of annual eGFR decline. Patients from the MUHC PKD clinic with large discrepancies 

between the two measurement approaches generally possessed large exophytic cysts. Our finding 

is consistent with the study findings by O’Neill et al.118 Since the ellipsoid equation applies the 

orthogonal measurements from the mid-slice of the MRI scan, it fails to capture the shape 

irregularities secondary to cysts seen in other MRI slices. Although the ellipsoid equation is 

time-efficient and accurate, these limitations result in avoidable misclassifications in MIC and 

bring concerns to the accuracy of current clinical decision-making.  

Resorting to manual segmentation for patients who exhibit large exophytic cysts or irregular 

kidney shapes may be the short-term solution to minimizing the number of misclassifications. 

However, further studies should examine the impact of exophytic cysts on one’s kidney disease 

progression relative to cysts located within the kidney tissue. Understanding whether they should 

be included in the TKV calculation will aid in determining if an alternative approach should be 

explored for the small cohort exhibiting irregular cyst growth. These findings should be 

accounted for while exploring new prognostic tools. Applying machine learning is a practical 
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approach that could be explored to identify the associations between these factors less visible to 

the human eyes or conventional statistical models.  

6.3. Machine Learning Models  

6.3.1. Clinical Model  

We first included only the clinical features to assess the predictive performance of the machine 

learning models. Since our dataset was high-dimensional relative to its sample size, it was most 

appropriate to explore the RF and SVM approaches. Before normalization, the RF model 

performed better than the SVM model. However, after normalization, the SVM model’s 

performance surpassed that of the RF model. As well, the precision and accuracy became similar 

in value after normalization for the SVM model, indicating a more reliable predictive 

performance.  

Before normalization, the continuous variables, such as htSegTKV, cyst volume, SBP, DBP, 

time on tolvaptan, and BMI, were expressed in a wide range of units and values. As expected, 

normalizing the input features to a common range and reducing numerical bias improved the 

SVM model’s classification performance.119 However, the same was not observed because RF 

classifiers are tree-based algorithms that produce the output based on majority votes.82 In other 

words, the differences in values and scales across features do not significantly affect the RF 

model’s performance regardless of feature normalization. 

Although the RF model performed worse than the SVM, the feature importance obtained from 

the RF model still aids us in deducing the possible logic behind the model. Since the MUHC 

PKD clinic had an average baseline eGFR of -67.3 mL/min/1.73m2 [45.1-98.5],  we could 

deduce that most patients exhibited more renal progression than typical early-stage patients. 

Although the RF approach does not provide information on the exact weight each feature has in 
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the classification task, the statistically significant difference in the baseline eGFR between rapid 

and non-rapid progressors may indicate that it helped the model to better classify rapid 

progressors.42 In contrast, the model may have performed worse in classifying those in the earlier 

stages with more steady eGFR, which could explain the lower evaluation metric scores. 

Hypertension is a well-established independent risk factor for TKV increase in ADPKD and 

progression to ESKD, even in non-ADPKD patients.28, 120 If the patient is diagnosed with 

hypertension before the age of 35, the risk of early onset of ESKD increases.28 There was also a 

statisticallly significant difference in the hypertension history between the two groups. 

Therefore,  we could speculate that understanding the patient’s hypertension history may be 

helping the model classify patients. History of tolvaptan at any given time and time on tolvaptan 

followed as the third and fourth significant features, respectively. Since tolvaptan is 

recommended to high-risk patients determined by the MIC criteria, the model may have 

identified fast-progressing patients as those who have taken tolvaptan longer.1 However, it is also 

important to note that not all patients at Class 1C or higher take tolvaptan. In our study cohort, 25 

out of 82 patients at Class 1C or higher are not taking tolvaptan for various reasons. Therefore, it 

is important to assess how the model will classify patients from an external cohort where criteria 

for tolvaptan prescribing may be different. Interestingly, baseline htSegTKV, the important 

prognostic biomarker for ADPKD, was the fifth significant feature. Cyst volume was the final 

feature that contributed to the model’s prediction. Many studies speculate the importance of cysts 

in determining the disease progression, but only a few studies have examined its impact.31, 121 

This may be because cyst segmentations are time-consuming and laborious.76 Although Lee et al. 

observed a correlation of r=-0.60 between cyst volume and creatine clearance, the sample size 

was only 56 patients.121 Furthermore, King et al. discovered a relationship between cyst volumes 
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and the slope of eGFR decline, but only nine patients were studied.122 The CRISP study 

discovered the direct correlation between the change in TKV and cyst volume and the 

relationship between TKV and eGFR decline. Although this implies a potential relationship 

between cyst volume and eGFR decline, it has not been explored directly. Therefore, the effect 

of cyst volume on disease progression should be explored further in other ADPKD cohorts. 

6.3.2. Deep Model 

Our deep learning model provided more promising results than the RF and SVM models which 

only included clinical features. The features extracted from the MRI may have provided the 

model with additional information and patterns concerning the irregular shapes of the cystic 

kidneys and the distributions of cysts. Furthermore, despite our small sample size in the training 

set, there is no evidence of overfitting due to the high accuracy, precision, recall, and F1 scores 

between 0.85 and 0.90 obtained in both validation and testing sets. According to the confusion 

matrix from the testing phase, the model learned to distinguish rapid progressors more accurately 

than non-rapid progressors despite having more non-rapid progressors (N=70) than rapid 

progressors (N=50)  in the total sample size. Similar to the previous two models, we speculate 

that clinical features that are unique to rapid progressors, such as the history of tolvaptan at any 

given time and time on tolvaptan, may have positively contributed to the model accuracy in 

identifying rapid progressors more easily.  

We cannot compare our model’s performance with the prognostic model developed by Raj et al. 

because it combines the number of TP, TN, FP, and FN from the training, validation, and testing 

subsets altogether.109 Moreover, our deep learning model cannot be compared with the MIC tool 

as it is a regression model.  
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Although our study contained a small number of patients, a common limitation in clinical deep-

learning models, our model performed well without overfitting. This may be attributed to a few 

strategies employed during pre-processing and model training stages: 1) Simplifying the 3D 

images into the largest segmentation 2D slice and its two neighbouring slices for each patient 

resolved the issue of small sample size while preserving highly informative features relevant to 

the image textures. 2) The pixel-level and spatial-level transformations applied to the images 

diversified the images observed by the model during training and validation, which helped with 

generalizability. 3) The strategy of aggregating the model prediction for three slices chosen from 

the same patient’s MRI scan improved the robustness of our model. 

6.4. Strengths  

Our study explores a novel field of incorporating machine learning in classifying disease 

progression in well-characterized, carefully followed patients with ADPKD. It is the first to 

develop a deep model that incorporates the MRI and many clinical features, not limited to the 

traditional variables used in the MIC tool, to predict the disease progression of ADPKD. We 

clearly illustrate that including MRI enhances the model’s predictive performance in machine 

learning and the power of deep learning approaches.   

6.5. Limitations  

Our study contains several limitations. The main issue that emerges with all deep learning 

models is the Blackbox Effect.91 Although our model performed well, we cannot fully decipher 

which imaging features were extracted from the EfficientNet-b2 model and what associations 

were identified between and within the clinical and imaging features in finalizing prediction.   

To mitigate the issue of small sample size, we augmented our dataset and discretized the 

continuous output feature, the annual eGFR decline, into a binary class. Although this step 



 
 

75 

simplified and optimized the learning process of the model, important information can be lost, 

explanatory power may diminish, and non-linear relationships may be concealed.123 For instance, 

the distances between individuals with similar renal function decline and those with distinct renal 

function decline will be viewed as the same by the model.124, 125 Finally, the cut-off points used 

in discretization are arbitrary.123 The discrepancies that arise across various studies can challenge 

the ability to compare the performances of the machine learning models, as seen previously.  

Although the output feature was well-balanced, some input features (e.g., history of 

hypertension, and family history) were imbalanced. However, this is the inevitable nature of 

medical data and will always bring bias in developing a machine-learning model.126  

As with any cohort study, there are also clinical limitations. The MUHC PKD clinic is a referral 

clinic and may only generalize to select ADPKD populations. For instance, our study cohort 

mainly consists of patients who are non-Black. Therefore, our model may be less generalizable 

toward Black patients. Moreover, since higher-risk patients are usually referred to a specialty 

clinic for therapy, this cohort will likely still identify those who are more eligible for tolvaptan 

therapy. Given that the follow-up time of patients was less than 10 years, future studies could 

train the model using well-characterized patients who have been followed at the clinic for at least 

10 years. The availability and access to MRI tests may also create bias when the model is 

generalized. MRI is expensive, and some regions or communities may have limited access. A 

more generalizable model can be developed for other imaging modalities, such as CT and US.  

7. FUTURE STEPS  

Despite using an available and well-characterized cohort from the MUHC PKD clinic, a separate 

external validation cohort should be identified to further assess the performance of our deep 

learning model.  
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Given that TKV increases more consistently throughout the disease than eGFR, it would be 

interesting to compare the model’s performance with our deep learning model using the annual 

rate of eGFR decline. Our study was not able to develop a separate deep-learning model that 

predicts the annual increase in htSegTKV because our PKD clinic lacked patients with at least 

two MRI images. Again, this may be feasible if other cohorts are identified, or longer follow-up 

is available from the MUHC PKD clinic cohort. 

8. CONCLUSIONS  

In conclusion, our deep model successfully classified the severity of disease progression in 

patients with ADPKD by integrating clinical information and MRI. We incorporated MRI image 

features that a conventional statistical model cannot account for by implementing a deep learning 

approach. Furthermore, we identified the inconsistency in the eTKV calculation from the 

ellipsoid equation approach and its impact on MIC misclassification. Our study justifies the need 

for a better prognostic tool and provides evidence that deep learning has the potential to predict 

disease progression better than the conventional MIC risk classification tool, which can help to 

individualize and improve patient care and the clinical management of ADPKD in the future.  
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