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Abstract

First developed in the 1970s, variable selection plays a vital role in selecting the correct

inclusion of variables in a prediction model. From forward selection to penalized regres-

sion, a great number of approaches have been constructed within the frequentist frame-

work. More recently, Bayesian variable selection techniques have been developed and

gained popularity because of their ability to learn from prior knowledge and construct

credible intervals for the parameters without additional computations. However, the ap-

plication of the Bayesian techniques on data with missingness or spatial information have

been limited and the use of customizable programs such as JAGS and RStan are required.

In this thesis, we provide a comprehensive review of some commonly-used variable

selection methods, especially the Bayesian priors, and the comparisons of these methods

from past literature. We then apply the regularized Horseshoe prior to two epidemiologi-

cal datasets to investigate: (1) the random effect of health care regions and social-material

deprivation on the treatment decision for patients with aortic stenosis, and (2) the corre-

lations between epidemiological factors and HIV status obtained from a HIV self-testing

arm survey. The shrinkage prior is first applied to the AS treatment dataset from the In-

stitut national de santé publique du Québec (INSPQ). Spatial information is contained in

postal codes and treated as random effects with 0-1 adjacency matrix. We then analyze

the HIV data obtained from a quasi-randomized control trial to explore the risk factors of

human immunodeficiency virus (HIV) status. With missing values, we apply a Bayesian

hierarchical model for imputation and the shrinkage prior to drop irrelevant predictors.

At last, we provide our code and offer ideas for future research.
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Abrégé

Datant des années 1970, la sélection de variables joue un rôle important dans le développement

de modèles de prédiction. Un grand nombre d’approches ont été développé pour l’approche

fréquentiste, tel que la régression pénalisée. Récemment, la sélection de variables sous le

paradigme Bayésien a gagné en popularité, notamment dû à sa capacité à apprendre des

informations connues à priori et à construire des intervalles de crédibilité sans calculs

additionnels. Toutefois, lorsque les données sont corrélées spatialement ou manquantes,

l’utilisation de programmes personnalisables tels que JAGS et RSTAN est requise pour

analyser.

Dans cette thèse, une revue complète des distributions à priori couramment utilisées

sous le paradigme Bayésien pour la sélection de variables est présentée, ainsi que des

comparaisons de ces méthodes avec des études précédentes. Par la suite, elles sont ap-

pliquées lors d’une étude de cas épidémiologique où seront étudiés (1) l’effet de la région

et de la déprivation matérielle et sociale sur la décision relative au traitement de pa-

tients atteint de sténose aortique (SA) et (2) les déterminant du statut de VIH dérivé

d’une enquête d’autotests. La distribution de rétrécissement à priori est d’abord ap-

pliquée sur les données SA rendues disponibles par l’Institut national de santé publique

du Québec. L’information spatiale est traitée à l’aide d’un effet aléatoire ayant une matrice

de covariance à poids binaire. Subséquemment, les données sur le VIH sont analysées

pour explorer les possibles déterminants du statut de VIH. Nous appliquons un modèle

hiérarchique bayésien et le priori de rétrécissement afin de substituer les valeurs man-
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quantes et d’abandonner les variables impertinentes. Conséquemment, les codes utilisés

sont fournis ainsi que quelques idées de recherche future.
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Chapter 1

Introduction

1.1 Motivation

The idea of variable selection, first proposed in the 1970s, is to select the best subset of

variables that can explain the behaviour of a response variable (Lu and Lou, 2021). Espe-

cially in analyzing a high-dimensional dataset, variable selection procedures can remove

the redundant predictors and select only the relevant ones (Noorie and Afsari, 2020). Be-

sides, even for the low to medium dimensions, many variable selection methods have

been proven to successfully reduce the false positives caused by grouped effects or cor-

relations among predictors. Because of its wide application, researchers have proposed

numerous methods in recent years, from frequentist to Bayesian approaches.

Though various Bayesian variable selection priors are available, their application to

datasets with specific features, such as missing values or spatial information, is unclear

because of their complicated prior specification and coding process. The user-friendly

packages available today, such as brms, impute missing values only through multiple

imputations instead of a fully Bayesian imputation approach. Therefore, even with the

benefits brought by Bayesian methods, researchers do not have clear guidance on apply-

ing them to real problems.
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This thesis introduces current variable selection methods, addresses the steps in Bayesian

variable selection, and summarizes comparisons made by past researchers between fre-

quentist and Bayesian approaches from hyperparameter settings to model performances.

After the summarization, we provide a transparent application process for Bayesian vari-

able selection on real-world data. With an administrative dataset provided by the Insti-

tut national de santé publique du Québec (INSPQ) on patients with aortic stenosis, we

want to identify the relationships between group-level nonclinical factors and patients’

treatment decisions. For the data extracted from an HIV self-testing report submitted by

people at risk of HIV infection in South Africa, we intend to identify predictors associated

with HIV infection while imputing the missing values in the data.

1.2 Thesis structure

In chapter 2, we will go through some popular frequentist methods, including model se-

lection methods for data in low to medium dimensions and penalization methods like the

Ridge and the least absolute shrinkage and selection operator (Lasso) families. Following

that, we will describe the different working mechanisms of Bayesian methods, includ-

ing three types of priors: the spike-and-slab prior, the continuous shrinkage priors and

a prior that works as a continuous and discrete mixture. As part of the Bayesian infer-

ence process, the Markov chain Monte Carlo, the most crucial computing method in the

Bayesian world now, and the convergence diagnosis will be explained in detail. To end

this chapter, we will discuss the difference between frequentist and Bayesian approaches

in hyperparameter selection and summarize the comparison among variable selection

methods performed by Lu and Lou (2021), Celeux et al. (2012) and Piironen and Vehtari

(2017).

In Chapter 3, we will investigate the existence of social/economic inequality in the

treatment decisions of aortic stenosis patients by modelling the correlation between the

social/material status of a patient and his/her treatment received. Because the data are
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obtained from administrative data with medical records information, not all predictors

we extracted from it will be related to the treatment decisions. Therefore, with the belief

that only part of the predictors is valuable, we will perform variable selection in our

model. Based on the past literature, we will employ the shrinkage prior for variable

selection purposes in real data analysis because of its computing and coding advantage

compared to the spike-and-slab and ease of inference on the parameter of interest as a

Bayesian method (Lu and Lou, 2021; Piironen and Vehtari, 2017). By adding random

effects for a patient’s health region, we incorporate the spatial information in the data and

will explore whether inequality existed in treatment allocation due to regional differences

or social-material levels.

Moreover, with data collected from the self-monitoring reports, we will estimate the

correlation between biological information, education, financial situation, sexual behaviour

and the HIV status of participants in South Africa in Chapter 4. Since the data contains

missing values, we will impute them through a fully Bayesian approach. We will con-

struct a Bayesian hierarchical model that simultaneously imputes missing data and fits

the logistic regression model to estimate the log-odds ratios of predictors on HIV status.

Similar to the administrative data in the first case, the report contains all possible per-

sonal information and behaviour questions that may relate to the spread of HIV. There-

fore, among the predictors we collected, we assume the distribution of true predictors is

sparse and assign a regularized Horseshoe prior to these parameters (Piironen and Ve-

htari, 2017). In the end, we will discuss the meaning of each effect based on estimated

results.

Finally, in Chapter 5, we will conclude the contents of this thesis, summarize the re-

sults obtained from the analysis, and bring up ideas for potential research in the future.
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Chapter 2

Literature Review

This chapter goes through some of the commonly-used variable selection methods in the

frequentist and Bayesian approaches. We briefly review model selection methods and

penalized likelihood methods, followed by more detailed descriptions of the Bayesian

approaches. For a small to medium number of predictors, model selection can play the

role of variable selection. As the dimension of datasets grows, methods that directly pe-

nalize a likelihood were developed and thrived. Unlike the frequentist ways, the Bayesian

approach achieves variable selection by assigning certain priors to the regression coeffi-

cients with assumed sparsity level. We describe the structure of various priors that per-

form the variable selection and explain how we obtain the posterior distributions through

the Markov chain Monte Carlo. In the last part of this chapter, we discuss the difference

between frequentist and Bayesian approaches to selecting hyperparameter values and

summarize the comparison of the performance of these methods made by Lu and Lou

(2021) and Celeux et al. (2012).

For the following sections, we denote our model as

yi = α +X iβ + ϵi

for the ith observation, where yi is the continuous outcome, the predictor X i = (Xi,1, . . . , Xi,p)

is a vector of length p, β = (β1, . . . , βp) a vector of length p corresponding to the effect on

outcome both in the domain of Rp, and α the intercept corresponding to the value of yi
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given all predictors in X i equals zero. The error term ϵi ∼ N (0, σ2
0) for i = 1, . . . , n and

some positive σ0, where n is the number of observations. For the binary outcome yi, we

assume it follows a Bernoulli distribution and the probability of yi = 1 can be modelled

through a logistic regression:

yi ∼ Bernoulli(πi),

logit(πi) = α +X iβ + ϵi,

with α,β,X i, ϵi defined the same as above.

2.1 Traditional methods

For samples with a small to a medium number of predictors, the variable selection prob-

lem can be solved through a model selection that exhaustively searches through the com-

binations of predictors and chooses the best one based on a measure of fit (Heinze et al.,

2018). Some model selection algorithms include:

1. Forward Selection (FS): This method is named ”forward” since it starts with the

most significant parameter by ordering the p-values in each univariate regression

model. Repeatedly adding parameters into the model, it keeps the new parameter

if its p-value pnew > αcriteria for certain αcriteria corresponds to the desired confidence

level until no parameters can be added in.

2. Backward Elimination (BE): Starting by including all predictors in the model, the

backward elimination method repeatedly removes the most insignificant indepen-

dent parameter and re-estimates the model until all of the parameters left in the

model significantly contribute to the estimation. Though some statisticians prefer

BE to FS, it can be impossible to operate in complex situations (Heinze et al., 2018).

3. Augmented Backward Elimination: Based on BE, the Augmented BE calculates the

standardized change-in estimate, compares it to a fixed constant c0, and removes the

parameter if greater than c0 (Heinze et al., 2018). Change-in-estimate is the change

5



in β1, which equals to the change of the regression coefficient of Xi,1 by removing

Xi,2 from the model yi = α+ β1Xi,1 + β2Xi,2 + ϵi. Compared to BE, it selects a model

with more predictors and less bias.

4. Stepwise Selection: The selection is called stepwise forward if it starts with either

the null or stepwise backward if it starts with the full model. Stepwise selection it-

erates the FS and BE alternatively till no more parameters can be added or removed.

Though the stepwise selection has computational advantages, it still has high vari-

ability and often gives the local optimal solutions rather than global ones (Zou,

2006).

5. Best Subset Selection (BS): The BS approach generates a total of 2p candidate models

for p parameters (Heinze et al., 2018). In the selection process, each candidate model

is evaluated through estimation accuracy criteria like AIC, and the model with the

lowest score is chosen as the best model (Yuan and Lin, 2006).

The Akaike Information Criterion (AIC) is given by −2 logL(y|β̂) + 2k, with y the

vector of response variable, β̂ the estimated regression coefficients, L(·) representing

the likelihood function with β̂ and k is the number of parameters in the model,

is proposed to evaluate the ”expectation of the cross-validated log-likelihood” in

order to penalize the more complex model fit (Heinze et al., 2018). Unlike AIC, the

Bayesian Information Criterion (BIC) further penalizes the model by log(n), where n

is the sample size. Because of the additional penalization, BIC selects a model with

fewer predictors than AIC.

6. Bayes Factor (BF): Bayes Factor, the ratio of the marginal likelihood for two compet-

ing models, calculates evidence in favouring of a model. Given two models labeled

γs and γt, we write the Bayes Factor, Bs,t, as

Bs,t =
p(y|γs)

p(y|γt)
,

with p(y|γ) the likelihood. By the Bayes Theorem, we have
p(γs|y)
p(γt|y)

=
p(y|γs)

p(y|γt)

P (γs)

P (γt)
= Bs,t

P (γs)

P (γt)
,
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called the posterior odds. Different from the p-value, the Bayes factor does not reject

any null hypothesis but favours or disinclines the alternatively incorporated subset

of variables (Kass and Raftery, 1995). We generally interpret the level in favour of

model s by the value of Bs,t. When Bs,t > 10, we say that we strongly favour model

s (Kass and Raftery, 1995).

Though easily understood and implemented, the traditional variable selection meth-

ods are infeasible to compute when the number of predictors is large and impractical

for even a moderate number of factors because candidate models grow exponentially.

Moreover, they are highly variable because the evaluation criteria, for example, AIC, only

approximates the out-of-sample error in prediction but does not measure the actual error

(Gelman, 2022).

2.2 Penalized likelihood approaches

In order to apply variable selection in higher dimensions, statisticians developed meth-

ods that add penalization to each selected parameter to balance the bias and variance

produced. Unlike the model selection methods that exclude undesirable predictors, the

penalized approaches shrink these unnecessary ones close to or even equal zero. Because

the intercept in penalized likelihood approaches receives no penalization, for simplifica-

tion, we assume that the outcome variable in the regression model listed in this section is

centred and results in an intercept of zero.

2.2.1 The Ridge estimator

Derived from the least squares, the Ridge estimator implements a penalization based on

the square of the coefficient’s magnitude (NCSS, 2022). By adding a small positive value

λ2 to constrain the model from selecting redundant predictors, the Ridge estimator is
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expressed as:

β̂Ridge = argmin
β

(
n∑

i=1

(yi −X iβ)
2 + λ2β

′β

)
.

With the penalization, the Ridge estimator successfully generates estimates even if the

matrix X ′X is singular or nearly singular caused by multi-collinearity among predictors

(PSU, 2022). However, though it shrinks the estimates toward zero, none of the estimates

will equal zero. Therefore, the Ridge estimator cannot produce a parsimonious model

because it always includes all the predictors.

2.2.2 The Lasso estimator

Inheriting the idea of penalization, Tibshirani (1996) proposed a method called the Lasso

estimator, which applies a penalty term to the absolute magnitude of the coefficients. It is

defined as

β̂Lasso = argmin
β

(∑n
i=1 (yi −X iβ)

2 + λ1 ∥β∥1
)

where ∥β∥1 =
∑p

j=1 |βj| the standard l1 norm, which is also called the ”L-1” penalty. We

have λ1 the non-negative regularization parameter that controls the amount of shrinkage.

It shrinks the coefficients towards 0 as λ1 increases, while shrinking coefficients to exact

0 if λ1 is sufficiently large. As an improvement of the traditional methods and Ridge

penalization, the Lasso obtains better prediction accuracy and simultaneously produces

shrinkage on a continuous scale and variable selection (Zou, 2006; Zou and Hastie, 2005).

However, the Lasso estimator is not always consistent in selection under certain situ-

ations. Because it is designed for individual-level variables selection, it often selects more

false-positive features (Zou and Hastie, 2005). Moreover, there are three specific scenarios

where the Lasso selection is limited:

1. When p > n, the Lasso selects no more than n variables before saturation. Further-

more, the performance of the Lasso relies on the bound value on the L-1 norm: λ1

needs to be smaller than a certain value in order to select more than n predictors

(Zou and Hastie, 2005);
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2. When the pairwise correlations among a group of variables are high, the Lasso tends

to select only one variable from the group, but not all;

3. Even for n > p, if predictors are highly correlated, empirical cases showed that the

prediction performance of the Lasso is even worse than the Ridge regression (Zou

and Hastie, 2005). The performance depends on how the factors are orthonormal-

ized. Different reparametrization will lead to a different set of selected variables

(Yuan and Lin, 2006).

Since the introduction of the Lasso to replace the traditional methods, many exten-

sions have been proposed to improve the Lasso estimator’s behaviour with various data

characteristics. Here we present three popular extensions to the original Lasso estimator.

2.2.3 The adaptive Lasso

To solve the inconsistency of the Lasso estimator, Zou (2006) proposed the ”adaptive

Lasso”, which uses adaptive weights ŵj = 1/|βj|γ for some γ > 0, to penalize coefficients

differently in the L-1 penalty. The adaptive Lasso has similar algorithm as the Lasso, but

uses a choice of λn varies with n:

β̂Adaptive = argmin
β

(
n∑

i=1

(yi −X iβ)
2 + λn

p∑
j=1

ŵj |βj|

)
.

Compared to the Lasso, the adaptive one ensures consistency in variable selection and

makes the estimates asymptotically normal (Zou, 2006). Nevertheless, the adaptive Lasso

is not perfect because it cannot provide consistent estimates when pn > n→ ∞.

2.2.4 The elastic net

As another extension of the Lasso, the elastic net is proposed by Zou and Hastie (2005)

to overcome the limitations mentioned above. Given some fixed (λ1, λ2), the elastic net

estimates are:

β̂EN = argmin
β

(
n∑

i=1

(yi −X iβ)
2 + λ2β

′β + λ1 ∥β∥1

)
.
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This estimator significantly improves prediction accuracy in high-dimensional cases

and reduces prediction error compared to the Lasso.

Moreover, the elastic net is proven to be successfully applied to correlated data be-

cause the regression coefficients of a group of highly-correlated predictors tend to be

close. Suppose that β̂ENiβ̂ENj > 0 for some j and k given our choice of λ1, λ2, we

define the difference between the coefficient paths of the jth and kth predictors, X ,j =

(X1,j, . . . , Xn,j) and X ,k = (X1,k, . . . , Xn,k), as

Dλ1,λ2(j, k) =
1

n

∣∣∣β̂ENj − β̂ENk

∣∣∣ ,
where | · | the absolute value. Then Dλ1,λ2(j, k) ≤ 1

λ2

√
2(1− ρ), with ρ the sample correla-

tion. Therefore, when X ,j,X ,k are highly correlated, Dλ1,λ2(j, k) is close to 0 and results

in a grouping effect during the variable selection.

2.2.5 The group Lasso

Suppose each sample has p predictors that can be grouped into J factors. Denoting X ,j =

(X ,1, . . . ,X ,pj) an n × pj matrix corresponding to the jth factor and βj a vector of length

pj with
∑J

j=1 pj = p, Yuan and Lin (2006) proposed the group Lasso to overcome the

Lasso estimator’s dependence on how each predictor X ,j is orthonormalized. Instead,

the group Lasso selects predictors based on the strength of groups of variables when

some of the input predictors are highly correlated.

For a vector η ∈ Rd, d ≥ 1, and K a symmetric d × d positive definite matrix, we

denote ∥η∥K = (η′Kη)1/2. Given K1, . . . ,KJ positive definite matrices, we define the

group Lasso estimates as

β̂group = argmin
β

(
1

2

J∑
j=1

n∑
i=1

(
yi −X i,jβj

)2
+ λg

J∑
j=1

∣∣βj

∣∣
Kj

)
,

with λg the penalty parameter and | · |Kj
denotes the Kth

j norm.

The group Lasso estimate is reduced to the Lasso when all Kj = Ipj , with Ipj the

identity matrix of pj rows. Among the many choices for the kernel matrices Kjs, Yuan
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and Lin (2006) chose to have Kj = pjIpj due to the advantage that group Lasso does not

depend on the form of predictors’ orthonormalization.

Compared to the ordinary least squares estimate, backward stepwise selections and

the Lasso, the group Lasso performs significantly better in terms of mean square error

and number of false positives with acceptable computation cost through least angle se-

lection (Efron et al., 2004) under different settings of interactions and co-linearity among

the input variable (Yuan and Lin, 2006).

2.3 Bayesian variable selection approaches

In the frequentist approach, it is proven that a penalized estimator provides the best value

even under the worst case with sparsity assumptions (Sridharan, 2018). However, as

Bayesians, we use posterior distributions to provide a probabilistic measure of uncer-

tainty. We would like to show that the entire posterior distribution concentrates on the

optimal values, i.e., the posterior probability assigned to a shrinking neighbourhood of

the true parameter value converges to 1 (Bhattacharya et al., 2015). Compared to the fre-

quentist approaches, a Bayesian approach provides inference on the parameter of interest

under a single framework.

2.3.1 Spike-and-slab priors

The spike-and-slab priors are used as a major method of Bayesian variable selection, with

the prior constructed by two components: a spike concentrated around zero that shrinks

minor effects towards zero, and a widespread slab that keeps the large values plausible.

After being proposed, it is considered a ”gold standard” for sparse Bayesian estimation

because of its flexibility in the choice of priors (Agarwal, 2016).
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The generic probability distribution function given by the spike-and-slab is in the form

of

p(β|δ) =
p∏

j=1

[δjΨ1(βj) + (1− δj)Ψ0(βj)] , (2.1)

where the slab Ψ1(·) represents some prior distribution and the spike Ψ0(·) is narrow

or fixed at zero (Bruinsma, 2019). The parameter vector δ = (δ1, . . . , δp) is the indicator

variable of either 1 or 0. If βj large, we have δj = 1, representing βj belongs to the slab, and

if βj equals zero or has very small magnitude, we have δj = 0, indicating βj is allocated to

the spike. A common choice for the hierarchical structure of the indicator δ is p(δj|ω) = ω,

with ω ∼ Beta(aω, bω) for some aω, bω > 0 or to have individual inclusion probability ωj for

each δj . The inclusion of a parameter is determined by the marginal posterior probability

of inclusion (MPPI) of the estimated δ̂. Therefore, variable j is selected if

P (δj = 1|β̂) ≥ 0.5.

Since we draw the posterior distribution through a Markov chain Monte Carlo (MCMC),

we calculate δ̂j for variable j with (Ročková and George, 2015)

δ̂j =
1

N

N∑
k=1

δ
(k)
j ,

where N stands for the number of iterations after burn-in in MCMC.

Among the numerous spike-and-slab priors modifications and variants, we introduce

three methods that have been proved and widely applied.

1. Stochastic search variable selection

In the stochastic search variable selection (SSVS), the spikes and slabs can be seen as a

mixture of normal distributions centred at zero (Malsiner-Walli and Wagner, 2011). For

each 1 ≤ j ≤ p,

βj|δj, τj ∼ N (0,Γ(δj)τ
2
j ),

where τ 2j is small but positive. Therefore, we have Γ(δj) = 1 if δj = 1, and Γ(δj) = r

otherwise; r is the variance ratio between the spike and the slab, with

r =
varspike(β)

varslab(β)
=
v0
v1

≪ 1

as we denote the variance of the spike as v0 and that of the slab as v1.
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2. Normal mixture of inverse-gamma

The SSVS is sensitive to the choice of hyperparameters r and τ , which are complex to tune

and often data-dependent. As a modified version of SSVS, Ishwaran and Rao (2005) in-

stead put the spike-and-slab prior on the variance of each Normal-distributed predictors,

such that

βj|ηj ∼ N (0, ηj),

ηj|v0, v1, a0, b0 ∼ (1− δj)IG(a0,
v0
b0
) + δjIG(a0,

v1
b0
),

δj|ωj ∼ Bernoulli(ωj),

is a mixture of inverse-gamma (IG) distributions for each j with some a0, b0 > 0 and some

probability distribution ω = (ω1, . . . , ωp). Due to the nature of spike-and-slab, we set v0

small but positive and v1 close to 1. The advantage of this normal mixture of inverse-

gamma prior is to keep the hyperparameters fixed rather than tuning for each dataset.

3. The Expectation-Maximization approach

The stochastic search algorithm in the spike-and-slab has been developed rapidly. Nev-

ertheless, its application on high-dimensional data still experiences difficulties. Ročková

and George (2014) proposed the Expectation-Maximization (EM) variable selection (EMVS)

to suit the high-dimensional settings, p > n, based on an EM algorithm that can find the

posterior modes and the candidate models in a fraction of time compared to the stochastic

search. Like the stochastic search variable selection process (SSVS), the EMVS introduced

the latent indicator variable δ, while for each δj from 1 to p, δj ∼ Bernoulli(θj) for some

probability distribution θ = (θ1, . . . , θp).

As described in the spike-and-slab priors, the variance v0 in the spike distribution

can be small but positive or zero in practice. The EM algorithm first applies a sequence

of positive v0 to find possible subsets and set v0 = 0 to evaluate those submodels. The

positive v0 allows a closed-form EM algorithm while providing a tendency for sparser

variable selection. For the variance of the slab, v1, Ročková and George (2014) suggested
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two options. It can either be fixed at a large value or treated as random to its prior p(v1)

for a heavy-tailed slab as the double exponential distribution. Like the spike-and-slab

variable selection, MPPI determines the inclusion of a variable.

Derived from the original SSVS prior, the EMVS can be extended to other priors with

the heavy-tailed slab distributions, such as the Cauchy. The performance of the EMVS

with the priors mentioned above heavily depends on the structure of the data. For ex-

ample, in densely connected networks with sparse predictive variables, the logistic prior

better balances the sparsity and group connection.

2.3.2 Shrinkage priors

Though the spike-and-slab prior is straightforward in interpreting variable selection, it

has a couple of disadvantages: 1. the result is sensitive to prior choices; 2. the prior is

computationally demanding. Even though the cost can be improved with expectation

propagation or variational inference, it still requires a substantial increase of analytical

work to derive the equations (Piironen and Vehtari, 2017).

A new category of priors, shrinkage priors, is proposed to overcome the shortcom-

ings of the spike-and-slab prior. The continuous shrinkage priors are easy to implement,

computationally efficient with tools like Stan, and provide the same or better results com-

pared to the spike-and-slab(Piironen and Vehtari, 2017). Among the various available

shrinkage priors, we present the following ones that have been proven with simulations

and applied mainly to high-dimensional data analysis.

1. The Laplace (double-exponential) prior

The Laplace prior can be seen as the Bayesian analogue of the Lasso. Park (2008) de-

veloped it because of the intention to interpret the Lasso estimates through a designated

prior distribution.
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Let us denote the distribution of yi as yi ∼ N (X iβ, σ
2). Through a Laplace prior

conditioned on σ2, the distribution of β can be expressed as (Tibshirani, 1996):

p(β | σ2) =

p∏
j=1

λ

2
√
σ2

exp(−λ |βj| /
√
σ2),

denoted as the Double Exponential (DE) distribution, with some λ > 0 to control the

amount of penalization. For σ2, we choose a non-informative scale-variant prior, such as

p(σ2) = 1/σ2.

We can write the hierarchical representation of the model with Laplace prior as

yi | Xi,β, σ
2 ∼ N (X iβ, σ

2),

βj ∼ DE(µ, σ/λ),

for each observation i (1 ≤ i ≤ n) and predictor j (1 ≤ j ≤ p) with some σ2 > 0. Similar

to the reason mentioned in the penalization methods section, we omit the intercept. As

an extension, Park (2008) mentioned the possibility to assign a Gamma prior on λ, i.e.,

λ ∼ Gamma(al, bl) with some al, bl > 0, for adjusting the value of λ.

Compared to the Lasso penalization, the Laplace prior automatically provides cred-

ible intervals and other estimates from the posterior and obtains more stable estimates

(Park, 2008). Though both methods are easy to implement, the Laplace prior is more

computationally intensive. However, when we switch to non-linear models, the differ-

ence in computation cost between the Lasso penalization and the Bayesian Laplace will

be reduced (Park, 2008).

2. The Horseshoe prior

Different from the Laplace prior that uses one parameter λ to determine the shrinkage

level of all coefficients, the Horseshoe prior shrinks the β through 2 parameters: a global

hyperparameter τ that shrinks all the coefficients towards zero, and local hyperparame-

ters λ = (λ1, . . . , λp) for j from 1 to p, which follows a heavy-tailed half-Cauchy prior, that

allow some βj to escape the shrinkage (Carvalho et al., 2010). We call this combination

the global-local shrinkage. Therefore, the Horseshoe resembles the spike-and-slab with
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an infinitely wide slab. Instead of assigning point mass at 0 or 1, the Horseshoe gives

continuous priors for λj , such that

βj | λj, τ ∼ N (0, τ 2λ2j),

λj ∼ C+(0, s2j),

where C+ represents the half-Cauchy distribution and s1, . . . , sp > 0. Here we assign τ

to follow a half-Cauchy distribution with scale equals 1, i.e., τ ∼ C+(0, 1). The sparsity

in Horseshoe prior is controlled by τ : large τ leads to little shrinkage, while τ close to 0

brings all parameters towards 0.

The effect of the global shrinkage parameter τ can be further illustrated through the

following equations. Given β̂j the maximum likelihood solution, we can approximate βj

by β̃j through

β̃j = (1− κj)β̂j ,

κj =
1

1+nσ−2τ2s2jλ
2
j
.

Then we can see that, when κj = 1 (τ 2λ2 close to zero), we have complete shrinkage to all

β and otherwise when κj = 0 (τ 2λ2 large), we apply no shrinkage at all.

However, the Horseshoe prior has several deficiencies. There is a lack of clear expla-

nation on performing inference for τ , and the parameters far away from zero experience

no shrinkage. Though the ”no shrinkage” behaviour is often considered an advantage, it

can be harmful when the data parameters are only weakly identified, especially in logistic

regressions. Moreover, due to a Cauchy tail of the Horseshoe prior, the posterior means

sampled for the regression coefficients may vanish (Piironen and Vehtari, 2017).

3. The regularized Horseshoe prior

Three changes were proposed to overcome the problems in Horseshoe priors: (Piironen

and Vehtari, 2017)

1. introduce a concept of effective non-zero parameters: meff
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2. propose a generalization of the Horseshoe prior that allows specification of shrink-

age applied to the coefficients that are far away from zero

3. control the slab width by specifying the maximum effect of βj we expect to see.

With these changes, Piironen and Vehtari (2017) modified the Horseshoe prior and pro-

posed the regularized Horseshoe prior, which can be recognized as a continuous spike-

and-slab prior with finite slab width.

Its hierarchical structure is given as follow

βj | λj, τ, c ∼ N (0, τ 2λ̃2j),

λ̃j
2
=

c2λ2
j

c2+λ2
jτ

2 ,

λj ∼ C+(0, 1)

with c ≥ 0. When τ 2λ2 ≪ c2, the regularized Horseshoe approaches the original Horse-

shoe. When τ 2λ2 ≫ c2, the coefficient is far from zero and the prior of βj approaches

N (0, c2).

We can retain the original Horseshoe by a slight modification on λ̃2j as λ̃2j =
c2λ2

j

σ2

ns2
j

+c2+λ2
jτ

2
.

However, unless n or the hyperparameter c2 is very small, the additional term will be

small compared to c2. Therefore, it has little influence on the estimates. For the value of

c, a reasonable choice is c2 ∼ IG(ar, br), with ar, br > 0. With this choice, coefficients far

from 0 follows a Student-t distribution tv(0, s
2), and further prevents the mass of λ̃2j from

accumulating near zero.

For the global parameter τ , Piironen and Vehtari (2017) and others recommend using

a fully Bayesian inference rather than cross-validation. van der Pas et al. (2014) suggested

that, assuming the number of true non-zero coefficients exists and is denoted as ptrue, the

optimal choice of τ is τ = ptrue
n

. In general, we can assign τ to be fixed (=τ0), or to follow

a distribution (N+(0, τ 20 ), C+(0, τ 20 ), or C+(0, 1)), but the last prior will change the prior

imposed on meff according to the choice of σ or n. For τ0, a recommendation follows

τ0 = p0
p−p0

σ
n

, where p0 is the estimated number of non-zero predictors and usually set to

meff =
∑p

j=1(1− κj) in model fitting.
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2.3.3 Continuous shrinkage and discrete mixture

We say that the spike-and-slab prior is a mixture of discrete functions to evaluate sparse-

ness from a fully probabilistic point of view, and the penalization method optimizes con-

straints on a continuous scale. In order to benefit from both approaches, another group

of prior, called the shrinkage and discrete mixture prior, is developed to incorporate both

parts to simultaneously perform variable selection and parameter estimation. One repre-

sentative of this family is the spike-and-slab Lasso (SSL) prior proposed by Ročková and

George (2015).

To construct the SSL, Ročková and George (2015) replaced the slab Ψ1(βj) for each j in

(2.1) by

Ψ1(βj) =
λ1
2
exp(−λ1|βj|),

with λ1 small, and the spike Ψ0(βj) by

Ψ0(βj) =
λ0
2
exp(−λ0|βj|),

with λ0 large. Moreover, p(δ) is assigned an exchangeable prior of the form

p(δ|θ) =
p∏

j=1

θδj(1− θ)1−δj ,

where θ = P (δj = 1|θ) is the expected fraction of large βj prior to modelling. Finally, δ is

further marginalized such that the SSL prior can be treated as an independent product of

the Lasso mixtures, i.e.

p(β|θ) =
p∏

j=1

θΨ1(βj) + (1− θ)Ψ0(βj).

Compared to the original spike-and-slab priors and continuous shrinkage methods

like the Lasso (Tibshirani, 1996) and Horseshoe (Carvalho et al., 2010), these hierarchical

mixtures stand out for producing adaptive posteriors to potential sparsity, performing

automatic multiplicity adjustment and achieving Bayes factor consistency in p≫ n cases.

The simulation in the paper by Ročková and George (2015) shows that when θ follows a

Beta distribution (Beta(1, p)), which is close to the oracle value, the SSL prior can perform

variable selection without false positives or false negatives (Ročková and George, 2015).

Moreover, with this choice of θ, the model is outstanding in terms of true model discovery,
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and its insensitivity to the choice of λ0, λ1 makes the variable selection performance even

more encouraging.

2.3.4 Computation through MCMC

Computation difficulties for Bayesian methods have existed till late 80’s. Thanks to the

development of the MCMC, it is feasible to calculate medium to high dimensional inte-

grals that support computing the posterior distribution (Green et al., 2015).

MCMC is a computational method that generates samples β(i) in the ith iteration while

exploring the state space β using a Markov chain, such that it mimics the samples drawn

from the target distribution (Andrieu et al., 2003). Specifically, the Markov chain is a

stochastic process that the probability distribution of β at time i only depends on its dis-

tribution at time (i − 1) and is determined by an irreducible and aperiodic stochastic

transition matrix T , i.e,

p
(
β(i)|β(i−1), . . . ,β(1)

)
= T

(
β(i)|β(i−1)

)
.

1. Metropolis-Hastings (MH)

The most popular MCMC implementation is through the Metropolis-Hastings algorithm.

Denoting the invariant distribution as p(β) and the proposal distribution as q(β∗|β), the

MH algorithm samples a candidate value β∗ from q(β∗|β) and then accepts the new esti-

mate with a probability of A(β,β∗) = min(1, [p(β)q(β∗|β)]−1p(β∗)q(β|β∗)).

Several samplers are used in the MH algorithm. For example, in the ith iteration, the

independent sampler assumes q(β∗|β(i)) = q(β∗), and then the acceptance probability is

simplified to

A
(
β(i),β∗

)
= min

1,
p (β∗) q

(
β(i)
)

q (β∗) p
(
β(i)
)
.

As a beneficial property, the MH algorithm does not require normalizing the constant of

the target distribution and is easy to simulate several chains in parallel. However, the

algorithm’s efficientcy largely depends on the choice of proposal distribution: different
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choices of the proposal hyperparameters lead to different number of iterations required

for convergence.

The Gibbs sampler: A special case of the Metropolis-Hastings

If we define the proposal distribution by the conditional distributions of the joint

distribution assuming the conditional distribution in each iteration is tractable, we can

rewrite the proposal distribution as q
(
β∗|β(i)

)
= p

(
β∗
j |β

(i)
−j

)
. Let us denote the vector of

β without element βj as β−j = (β1, . . . , βj−1, βj+1, . . . βp) for j = 1, . . . , p. When β∗
−j = β

(i)
−j ,

the acceptance probability equals 1, and we call the sampler with the above assumption

a Gibbs sampler. With initial values set as β0
1 , . . . , β

0
p , the Gibbs sampler samples the vari-

ables iteratively in this algorithm: in iteration i,

β
(i+1)
j ∼ p

(
βj|β(i+1)

1 , β
(i+1)
2 , . . . , β

(i+1)
j−1 , β

(i)
j+1, . . . , β

(i)
p

)
.

2. Hamiltonian Monte Carlo (HMC)

As an alternative of the Metropolis-Hastings algorithm, Hamiltonian Monte Carlo has

gained its popularity in Bayesian computation for its efficiency in high-dimensional data.

It is incorporated in Stan, a programming language that simplifies the inference for Bayesian

models, as the sampling method (Green et al., 2015). As a member of the MCMC fam-

ily, HMC uses the derivatives of the density function being sampled to generate efficient

transitions spanning the posterior, to draw the Bayesian posterior (Stan, 2019).

Denote ρ the auxiliary momentum variables, the HMC draws from a joint density

p(ρ,β) = p(ρ|β)p(β),

where the auxiliary density is often chosen to be multivariate normal. i.e. ρ ∼ N (0,Σ),

with Σ set as the identity matrix or estimated from warm-up draws and optionally re-

stricted to a diagonal matrix in Stan.

Similar to the Metropolis-Hastings Algorithm, HMC applies a Metropolis acceptance

step. The acceptance probability equals to min(1, exp(H(ρ,β) − H(ρ∗,β∗))), if we define

H(ρ,β) = − log p(ρ,β) and ρ∗,β∗ the resulting state as the end of each iteration. Com-
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pared to the M-H, the HMC is more efficient since the distance between two consecutive

steps are larger and the generated points are more likely to be accepted Neal (2012).

The HMC includes three hyperparameters: the discretization time ϵ, the mass matrix

Σ−1, and the number of steps taken L. The sampling efficiency largely depends on these

values. For example, if L is too small, the trajectory traced out in each iteration will be too

short, and sampling will devolve to a random walk. When L is too large, the trajectory

will be too long and the algorithm will more steps than needed on each iteration (Stan,

2019). Fortunately, Stan offers automatic hyperparameters tuning during the warm-up

using the no-U-turn sampling (NUTS) algorithm (Hoffman and Gelman, 2014).

2.3.5 Convergence diagnostics

Convergence diagnosis is a critical step in Bayesian analysis. Here we briefly summarize

some statistics that used to determine the convergence of a MCMC.

Statistics based on a single chain

Considering the MCMC chain as a related time series, Geweke (1991) proposed a statistic,

denoted as Zn, to measure the autocorrelation between two averages gna and gnb
based

on the first na and last nb observations (Roy, 2019). For a MCMC with n iterations, the

Geweke statistic is expressed as (Geweke, 1991)

Zn = (gna − gnb
)
√
Ŝg(0)/na + Ŝg(0)/nb,

where Ŝg(0) is the estimated asymptotic variance of the average of all n observations.

Suggested by (Geweke, 1991), we can set na = 0.1n and nb = 0.5n.

Statistics based on multiple chains

Trace plot, a common graphical method, shows the movement of each Markov chain

around its state space (Roy, 2019). By looking at the traceplot, we consider the MCMC
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has converged if the traces from multiple chains (at least two chains) mixed well. How-

ever, trace convergence sometimes relies on objective opinions and the observation can

be exhausting for a large number of parameters.

To quantify the divergence between chains, Gelman and Rubin (1992) proposed the

Gelman-Rubin diagnostic, denoted as R to measure whether the chains achieve station-

arity by calculating the ratio of between-sequence variance, B/n, versus within-sequence

variance W . For a MCMC with n iterations and m chains, these variances are defined as

(Gelman and Rubin, 1992)

B/n = 1
m

∑m
j=1(ψ̄j· − ψ̄··)

2,

W = 1
m(n−1)

∑m
j=1

∑n
t=1(ψjt − ψ̄j·)

2,

where ψjt denotes the tth value of parameter ψ of the n iterations in chain j. The ratio R is

estimated by R̂ = V̂ /W , where V̂ = n−1
n
W+B

n
+ B

mn
, and then adjusted by multiplying d

d−2
,

with d the degree of freedom approximated by V̂ /varV̂ . Later, to correct the possibility of

negative d− 2 value, Brooks and Gelman (1998) changed the adjusting factor to d+3
d+1

.

Based on the Gelman-Rubin diagnostic, Brooks and Gelman (1998) proposed the mul-

tivariate form, and labeled it as Rp, estimated by

R̂p = argmax
a

a′V̂ ∗a
a′W ∗a

,

with V̂ ∗ and W ∗ the covariance matrix form of V̂ and W in the univariate measure. When

the MCMC reaches convergence, R̂ or R̂p is close to one, and we say the chains are di-

vergent if R̂ or R̂p large. Some commonly-used thresholds are 1.01, 1.05 and 1.1 (Roy,

2019).

2.3.6 Model evaluation and comparison

1. Predictive performance

In order to make comparison between models, we evaluate the predictive perfor-

mance of the models. For binary, it is common to compute the area under curve (AUC) for
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the discrimination ability of the model. AUC measures the area under the Receiver Oper-

ating Characteristics (ROC) curve that accounts for the relative change of the true positive

rate corresponding to the false positive rate, or vice-versa. In general, the closer the AUC

is to 1, the better the model’s discrimination. A perfect model, which is idealistic, gives

an AUC of 1, while the random guess comes with an AUC of 0.5.

For continuous outcome, the most popular measure is the mean square error (MSE) .

MSE calculates the distance between the predictive and the true values (Hyndman and

Koehler, 2006). For a sample with sample size n, MSE can be expressed as

MSE =
n∑

i=1

(ŷi − yi)
2/n,

with ŷi the predicted value of sample i and yi the observed value. Different from AUC,

RMSE measures from the prospective of calibration.

2. WAIC

Besides the predictive ability, we can compare models based on how well they fit the

input data. One of the popular measure of model’s goodness of fit is the Watanabe-Akaike

Information Criterion (WAIC) (Watanabe, 2010). It estimates the predictive loss through

the expression

WAIC = −2
n∑

i=1

(
log

∫
p(yi|β)ppost(β)dβ − varpost(log p(yi|β))

)
where

∑n
i=1 log

∫
p(yi|β)ppost(β)dβ is the log pointwise predictive density and can be ap-

proximate by
∑n

i=1

(
1
N

∑N
j=1 p(yj|β(j))

)
, N the number of iterations, through Monte Carlo

integration. The component varpost(log p(yi|β)) is the variance of the individual log pre-

dictive densities, which can be computed by the V N
j=1 log p(yi|β(j)), with V N

j=1 the sample

variance (Gelman et al., 2014). This calculation can be easily done once a sample from

the posterior distribution is available, even when the posterior distribution is not close to

Normal (Watanabe, 2018). In model comparisons, the model with smaller WAIC is better

and a difference as small as 3 to 5 is considered ”significant”.

Other than WAIC, we can also compare Bayesian models through the Bayes Factor,

which has been introduced in 2.1 for model selection purpose.
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2.4 Comparisons between variable selection methods

2.4.1 Hyperparameter tuning

As a key component for all variable selection methods, the values of the hyperparameter

in the frequentist approach affect the selection performance of the models. In contrast, hy-

perparameter values in the priors of Bayesian models affect how fast the MCMC reaches

convergence. In frequentist approaches, the amount of penalization is assigned by the re-

searcher and fixed. However, from the Bayesian perspective, we adjust hyperparameter

values in the distribution of the shrinkage term. Their values reflect our ideal penalization

or belief based on prior knowledge.

Hyperparameter tuning is the process of adjusting hyperparameter values for the

best performance using sample splitting. For hyperparameter tuning in the penalization

model, we search through the possible hyperparameter space and evaluate the model’s

performance through cross-validation (Pedregosa et al., 2011). Cross-validation (CV) is

the most commonly used method for model evaluation. It is the process of fitting the

model with part of the data and evaluating its performance with the data left. Data sam-

ples are generally split into a preset number of groups, denoted as k groups. Each time

one group of data is taken away from the population for evaluation, with the average of

the k performance scores as the final output (Brownlee, 2018). When k equals the sam-

ple size n, we call it the leave-one-out CV. Though not preferred for large data because

of its computation cost, it presents better prediction results, especially when the model

itself is misspecified (Shalizi, 2015). The model with the highest prediction accuracy or

the smallest mean squared error will be selected depending on the evaluation criteria.

This tuning method is called ”grid search” because it searches through all the possible

combinations of hyperparameter values (Brownlee, 2018). For example, in the elastic net

method, with two hyperparameters λ1 and λ2, the researcher picks a relatively small grid

of values of λ2. For each λ2, the other parameter (λ1) is tuned by tenfold CV (Zou and
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Hastie, 2005). Finally, the λ2 giving the smallest CV error is chosen. Even in the p ≫ n

setting, the computation cost grows linearly as p increases and is manageable.

As Bayesians, we assign values to hyperparameters in each prior based on our be-

lief in the sparsity level. A conservative strategy is to choose a set of hyperparameters

to construct a non-informative prior. Instead of searching for the ”optimal” values for

evaluating the hyperparameter values, Bayesian variable selection methods are often ex-

amined through a sensitivity analysis. It evaluates the model’s performance concerning

the changes in hyperparameter values if our prior belief vastly differs from the predictors’

actual sparsity level.

Furthermore, sensitivity analysis, also called the prior robustness diagnostics, has

global and local approaches (Roos et al., 2015). Like the grid search, local sensitivity anal-

ysis computes the posterior results for all options that fit the prior information, including

possible extreme values. The local approach focuses on a smaller scale but calculates the

rate of posterior change corresponding to the prior change. Because the global approach

is often impractical in applications, Gustafson and Wasserman (1995) recommended ap-

plying the local sensitivity analysis on Bayesian models.

Several frameworks of Bayesian robustness diagnostics have been developed. For ex-

ample, McCulloch (1989) studied the worst-case sensitivity by the principal eigenvalues

and Gustafson and Wasserman (1995) designed approaches that vary according to pos-

terior results. A recent formal approach proposed by Roos et al. (2015) handles both the

circular and worst-case analysis for complex Bayesian hierarchical models that are formed

by an appropriate generated grid for priors, and the values in the grid are used as inputs

for computing the marginal posterior density.

Though the formal sensitivity analysis has appreciable theoretical advances, because

of its complicated algorithms and obscure practices, many researchers apply the informal

approach in real-world cases. Steps of the informal approach include repetitively refit-

ting the model with varied hyperparameter inputs and evaluating the posteriors. For

example, when constructing a model with a spike-and-slab prior, we assign different sets
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of aω, bω values to adjust the assumed sparsity and τ 2 values to change the slab width.

Similarly, when applying the Horseshoe prior, we try different values of s2 and τ0 to con-

trol the shrinkage level and see the performance of the model under these values. For

the Laplace prior, when a Gamma prior is assigned to λ, we adjust the values of al, bl.

Otherwise, we can estimate the λ value that optimizes the model’s performance through

marginal maximum likelihood. We say the prior is robust if we do not observe extreme

differences from the posteriors. However, this strategy may be costly in time and not

reproducible.

2.4.2 Variable selection performance

Besides the predictive performance and goodness of fit, the performance of variable selec-

tion can also be evaluated from the following metrics: the probability of selecting correct

variables, which includes the sensitivity and specificity, stability of performance under

multi-collinearity, computation efficiency, and coverage, which is the probability that the

posteriors’ 95% credible intervals cover true effects.

Past researchers summarized the selection ability of both the frequentist and the Bayesian

methods through simulations. Celeux et al. (2012) compared the spike-and-slab priors

to the frequentist approaches like the Lasso estimator, the elastic net estimator and the

most traditional AIC and BIC selection criteria with limited training data. By looking

at the specificity, the spike-and-slab priors successfully avoided overfitting. Moreover,

they gave better prediction accuracy for sparse data with similar root mean squared error

(RMSE) for all methods tested.

In addition, Lu and Lou (2021) compared selected methods under the three variable

selection strategies categories: the stepwise selection, the spike-and-slab priors (the SSVS

and the normal mixture of inverse-gamma), and the shrinkage priors (the Bayesian Lasso,

the Horseshoe and its extension). Two settings were proposed by Lu and Lou (2021): the

sparse condition with 30% non-zero covariates and the extremely sparse condition with
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10% non-zero covariates. In each condition, the correlation ρ among covariates is set to

be 0 (independent covariates), 0.5 and 0.9. The dimension p varies from 20 to 60.

Under the low-dimension setting, all models have similar RMSE. However, the step-

wise selection tends to select more zero-effect variables than the Bayesian models. The

SSVS is sensitive to multi-collinearity within the spike-and-slab priors if dimensions are

large, especially when covariates are highly correlated (ρ = 0.9 scenario). Among all sce-

narios, the shrinkage priors are robust to the change of ρ and require less computation

time than the NMIG prior. Therefore, we will apply shrinkage prior to later case analyses

because of its interpretability, stability and efficiency. Moreover, among the Laplace, the

Horseshoe, and the regularized Horseshoe prior, Carvalho et al. (2010) showed the abil-

ity of the Horseshoe prior to avoid undershrinking noise and overshrinking signals over

the Laplace in sparse conditions. Furthermore, Piironen and Vehtari (2017) illustrated the

benefit of the regularized Horseshoe prior over the original Horseshoe prior through sim-

ulations: it gives the most satisfactory performance in recovering the true values of large

coefficients while shrinking the irrelevant ones.
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Chapter 3

Investigating the correlation between

non-clinical factors and aortic stenosis

treatments across health regions in

Quebec

3.1 Background

Aortic stenosis (AS) is a cardiovascular disease that occurs when the heart’s aortic valve

narrows (Clinic, 2021a). Patients diagnosed with severe AS need to repair or replace the

valve. Surgical aortic valve replacement (SAVR) is the historical and most prevalent treat-

ment plan among treatments. Though the techniques are mature, certain risks like infec-

tion and stroke accompany this open heart surgery (Johns Hopkins, 2022). Therefore,

an innovative transcatheter aortic valve replacement (TAVR) was developed in 2002 and

standardized in 2004 to expand the pool of potential candidates benefiting from this pro-

cedure (Cribier, 2012). Instead of performing a conventional surgical procedure, TAVR

generally uses a percutaneous approach and potentially decreases morbidity and mor-

tality rates, expanding the number of potential candidates (Clinic, 2021b). However, as
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with all advanced cardiac procedures, only a limited number of hospital cardio centers

are capable of this costly operation. Compared to the number of the traditional SAVR

performed each year, the capacity of TAVR operations all over Canada is still low (Asgar

et al., 2019).

In 2010, the Canadian Cardiovascular Society (CCS) began to develop a national qual-

ity reporting system, known as the Quality project, to reflect the quality of cardiac care

in Canada (Asgar et al., 2019). The quality of TAVR surgeries is included as part of its

mission. Despite the expansion of TAVR centers, the committee emphasized the trans-

parency of TAVR allocation with the same effort. With data collected from the National

Institute of Public Health, CSS attempts to ensure that the allocation of TAVR surgeries is

fair and that patients under particular health conditions have an equal chance to receive

the TAVR treatment.

In 2019, Wijeysundera et al. (2019) examined the wait time of TAVR across Canada

with a Cox proportional hazard model. This research showed that with increasing TAVR

capacity, overall, the average wait time increased from 107 days in 2014 to 135 days in

2016. Regional differences were also observed: patients from Newfoundland waited for

71.5 days, while those from Alberta waited for 213 days.

In addition, a few previous studies exploring the association between non-clinical fac-

tors and TAVR treatment decisions have been published in the United States (Damluji

et al., 2020; Nathan et al., 2021, 2022). These articles focused on the possible disparities of

TAVR and SAVR operation rates determined by the distance to medical resources, family

income, ethnicity and age. Published in 2020, Damluji et al. (2020) analyzed patients with

severe cardiovascular disease living in the State of Florida from 2011 to 2016. They found

that older patients in rural areas have lower TAVR operation rates and need longer travel

time to receive TAVR treatment. Even among those who received TAVR, rural patients

had higher mortality rates.

Nathan et al. (2021) focused on patients who lived in a metropolitan area where a

TAVR center existed between 2012 to 2018 in the US. Controlling for age and clinical
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comorbidities, they found that patients with higher family income and economic well-

being were more likely to start the TAVR program. In addition, the number of medicare

beneficiaries was higher for those patients. Inspired by his findings, Nathan et al. (2022)

continued to investigate inequalities in AS treatment decisions caused by race and ethnic-

ity differences. In studying patients in 25 metropolitan areas, Nathan et al. (2022) applied

a generalized linear model to conclude that zip code areas with more Black and Hispanic

patients have lower TAVR operation rates, as do areas with socioeconomic disadvantages.

Studies in the US show inequalities in income, residence, and ethnicity in the distribu-

tion of TAVR operations among patients requiring AS surgeries. However, as opposed to

the US mixed private and public health care system, Canada offers universal health care

to all its residents, which is supposed to ensure an unbiased treatment decision for all

medically deserving patients. Therefore, we propose testing for equities in TAVR accessi-

bility among Quebec patients and investigating any association with non-clinical factors.

Bergeron (2019) analyzed the epidemiology of aortic stenosis with Quebec provincial ad-

ministrative databases from 2002 to 2010. He observed that the incidence rates varied

across geographical regions. There were areas with low diagnostic rates but high SAVR

rates without prior patient-level epidemiological reasons. Based on these data, it was

deemed essential to investigate the possible role of geographical and social/economic

factors when exploring possible causal factors for a TAVR decision.

Through a logistic regression model, we explore the potential association between the

group/population-level factors and aortic stenosis for patients in Quebec using adminis-

trative data. Since the administrative dataset we used is not designed to find the critical

predictors of treatment decisions, not all predictors we have are related to the outcome.

To identify the important predictors, we apply the regularized Horseshoe prior (Piironen

and Vehtari, 2017) for variable selection and combine it with spatial models to include

all the information we could obtain from the data. For incorporating the spatial infor-

mation, we either specify the patients’ regions as random effects and assign the variance

of these regional effects a weight matrix based on their adjacency or calculate the short-
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Diagnosed with AS
26676

Do not Require Surgery
19086

Require Operation
8503

With invalid info
913

With complete info
7590

SAVR
6456

TAVR
1134

Figure 3.1: The identification process of our desired study cohort: the selection criterion

and the corresponding number of Quebec patients from 2011 to 2018

est distance between patients and TAVR centers as an additional predictor. Given the

complicated model structure, we estimate the parameters using Bayesian techniques to

avoid constructing p-values and calculate the probability of patients receiving the new

TAVR procedure with probability priors to reflect our beliefs (Hackenberger, 2019). In

this analysis, we adjust the effect of important clinical predictors on treatment decisions.

We focus on investigating whether a patient’s geographical region and social-economic

status determined his/her chance of receiving the more recent TAVR operation.

3.2 Methods

3.2.1 Data

Study cohort

The patients’ general information and medical records, including physician billings, diag-

nosis and hospitalization records, were provided by Institut national de santé publique du

Québec (Bergeron, 2019). These files were used to identify Quebec residents involved in

31



the Quebec Health Insurance Plan aged 45 years or older with a diagnosis of aortic steno-

sis and undergoing either a SAVR or TAVR procedure between January 1st, 2001 and June

31st, 2018. Patients undergoing AS surgeries were identified using ICD-9-CM (Interna-

tional Classification of Disease, 9th Revision, Clinical Modification) procedure codes and

ICD-10-CM (International Classification of Disease, 10th Revision, Clinical Modification)

procedure codes (Quan et al., 2005).

We selected patients who had received the treatment since 2011 (8503 in total) due to

limited data before this date as the new technology was not yet fully deployed across the

province. Seven thousand five hundred ninety patients with complete and valid records

for all predictors are selected as our study cohort. For each patient, non-clinical predictors

include age, sex, material and social deprivation index in quantile, CLSC, the regional

health center most closely associated with the residency area of the individual AS patient,

of visit and postal code. The age of the patients is available for each medical record.

Compared to the age at AS diagnosis, we believe their age at operation will be more

deterministic of the selected AS procedure. Among the available files are all physician

visits, hospital visits, and prescription drugs.

Following the Canadian Cardiovascular Society, we consider TAVR programs in hos-

pitals with existing cardiac surgery programs and performed over 10 TAVR procedures

over the past calendar year as a TAVR center (Asgar et al., 2019). By the end of 2018,

this results in six Quebec TAVR centers, including four centers in Montreal (Sacre Coeur

Hospital, McGill University Health Centre, The Centre Hospitalier de l’Université de

Montréal, Montreal Heart Institute), one in Quebec City (Quebec Heart and Lung Insti-

tute in Quebec) and one in Sherbrooke (Centre Hospitalier Universitaire de Sherbrooke).

While other centers have been operating long ago, the Sherbrooke TAVR center has been

operating only since March 2014 (Labelle et al., 2020).
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Location

Two variables in our dataset contain patient-level spatial information: the postal code

with only the first three digits, known as the Foward Sortation Area (FSA), and the CLSC

code, which represents the regional health service closet to the patient(CIUSSS and Cen-

tres, 2022). Based on the analysis given in previous papers and the variation in CLSC

during the treatment years, we choose to locate the patients to their 3-digits postal code.

Because the Quebec Government Health Ministry allocates funding according to Que-

bec Health regions, we naturally intend to explore the difference in TAVR operation rates

among those 17 regions (de la Santé et des Services sociaux, 2018). The rate of each region

is presented in Table 3.1. In order to account for regional dependencies, we applied a 0-1

neighborhood structure to account for adjacency, which is explained more in Section.5.2.2.

As the distance from the centroid of one patient’s 3-digit postal code address to the

closest TAVR center becomes a variable of interest, we also record the latitude and longi-

tude of the six TAVR centers for further measurements.

Social-economic factor

We evaluate the social-economic status of a patient using the social and material depri-

vation indexes provided in the National Household Survey (Gamache et al., 2019). While

social deprivation is defined as the fragility of the social network, from family to com-

munity, the NHS describes material deprivation as a lack of access to daily goods and

amenities (Pampalon et al., 2012). Both are measured from six perspectives for the popu-

lation aged 15 years and over:

1. The proportion of the population without a high school diploma or equivalent;

2. The proportion of unemployment;

3. The average income;

4. The proportion of living alone;
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5. The proportion of divorced, separated or widowed;

6. The proportion of single-parent families;

The deprivation level is indicated as quantiles from 1 to 5, with 1 the most privileged and

5 the most deprived.

In addition to the score among the six perspectives, both deprivation indexes are com-

puted based on the smallest area units, the dissemination areas, defined from the Cana-

dian censuses (Gamache et al., 2019). Each dissemination area can be linked to specific

postal codes and contains residents with relatively homogeneous social-economic condi-

tions, which means that the index of a patient solely depends on his or her address (Pam-

palon et al., 2012). Besides the two separate deprivation indices included, a combined

deprivation index is available with a different suggested way of grouping. In general,

metropolitan areas are less deprived of material status but more deprived of social status

due to increased social isolation and the varied living conditions of residents.

The measurement and calculation of the deprivation index are performed by INSPQ

and transmitted to us for research purposes. In our analysis, we use the quantiles of

both deprivation indexes and treat them as factors rather than continuous variables in

our logistic regression.

Clinical variables

To measure patients’ disease severity, we considered the following parameters: Charlson

score, other cardiac diagnoses, number of hospital visits, and number of drugs taken

from their first AS diagnosis to TAVR / SAVR surgery. We believe that combining these

measurements will give us a good appreciation of the patient’s health status at the time

of the decision for the aortic valve intervention.

Charlson score, or the Charlson comorbidities, is a measurement tool to evaluate the

burden of disease or case-mix administrative data (Quan et al., 2011). It includes 17 co-
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morbidities1 and has been shown to stratify patients according to overall disease severity

reliably. To calculate the Charlson score for each patient, we extract the corresponding

code of disease from the ICD-9-CM and sum the presence of each comorbidity concern-

ing their coefficient index. Other than the comorbidities mentioned in the Charlson score,

the presence of hypertension is also critical for evaluating patients with aortic stenosis.

In addition to the information extracted from the ICD-9-CM records, the number of

hospitalization and the number of drugs reflects the general health status of each patient.

No matter the length of stay, we count a hospitalization record as one visit and the bill for

a new medication as one drug. We do not assign weights to repeated medications in our

model.

Invalid values

Invalid values exist in the administrative data transmitted to us. For the CLSC variable

and postal code, unidentifiable addresses are found for 54 patients. Though not officially

specified, these addresses cluster in military bases or around the border. Invalid quantiles

of zero also appear in the social-economic factors. One hundred and one patients have

the quantile ”zero” in at least one of the deprivation indexes, consisting of 1.2% of the

population. According to the explanation provided by INSPQ, the quantile is zero for two

possible reasons (Hamel and Gamache, 2020). It is recorded as ”zero” as a placeholder

because neither the index quantiles were associated with the complete 6-digits postal code

nor they were collected from institutions or collective houses. The earlier the operation,

the more invalid quantiles we will find in the second situation.

Because we have no available information to impute the invalid values and the pro-

portion of missingness is small, we decide to drop the patients with invalid values and

apply the statistical analysis to the complete cases exclusively.

1The 17 comorbidities include: myocardial infarction, congestive heart failure, peripheral vascular dis-
ease, cerebrovascular disease, dementia, chronic pulmonary disease, rheumatologic disease, peptic ulcer
disease, mild liver disease, diabetes without chronic complications, diabetes with chronic complications,
hemiplegia or paraplegia, renal disease, any malignancy, moderate or severe liver disease, solid metastatic
tumour and AIDS/HIV (Quan et al., 2005).
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3.2.2 Statistical analysis

In this section, we introduce three models to estimate the effect of a patient’s residence on

his/her treatment decision. The first two models use the patient’s health care region to

represent the spatial effect. Model 1 treats regions as normally distributed random effects,

while model 2 further estimates the regional effects of a specific region by adjusting its

means and variances based on its neighbouring regions. In the last approach, we calcu-

lated the shortest distance from a patient’s address to the closest TAVR center and treated

it as a continuous predictor.

Baseline model

We denote the total number of patients as N and let i = 1, . . . , N . For patient i, we

construct a logistic regression without spatial information as our baseline model for the

treatment decision outcome, yi, as

yi ∼ Bernoulli(πi),

logit(πi) = α + ageiβ1 + sexiβ2 + socialiβ3 +materialiβ4 + clinicaliβclinical, (3.1)

where πi is the probability for patient i to receive TAVR operation. We use sexi = 1 to

denote female patients, agei to denote the age of patient centered at 73, sociali,materiali

to denote the social and material deprivation index in quantiles, and the vector clinicali

of length 11 to include all the clinical factors like Charlson score, number of emergency

visit, hospitalization, diagnosis of other cardiac disease, and number of drugs taken. The

intercept α, which follows a standard Normal distribution, α ∼ N (0, 1), represents the

baseline log-odds for a 73 years-old male patient in the 3rd quantile for both deprivation

index with a Charlon’s score of 3.2.

Random effects model

Because the health care region a patient belongs can affect the specialist accessibility and

hospital transfer between regions, we add the regions into the baseline model as a ran-
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dom effect, denoted as ϕk, where k = 1, . . . , 17 representing the region number patient i

registered. The model is expressed as:

yi ∼ Bernoulli(πi),

logit(πi) = α + ϕk + ageiβ1 + sexiβ2 + socialiβ3 +materialiβ4 + clinicaliβclinical, (3.2)

with all notations same as those in Eq. 3.1, except for the spatial effect ϕk. We further as-

sume the random effects of all regions follow the same distribution, assign ϕk ∼ N (0, σ2
ϕ)

for k = 1, . . . , 17, and set σ2
ϕ = 1 for a non-informative prior distribution.

Contiguous neighbours model

Region Population TAVR rate
Bas-Saint-Laurent 262 0.176

Saguenay-Lac-Saint-Jean 230 0.113
Capitale-Nationale 552 0.255

Mauricie 198 0.162
Estrie 674 0.139

Montreal 1231 0.219
Outaouais 33 0.091

Abitibi-Temiscamingue 100 0.100
Cote-Nord 74 0.162

Nord-du-Quebec 14 0.071
Gaspesie-lles-de-la-Madeleine 129 0.147

Chaudiere-Appalaches 300 0.230
Laval 300 0.163

Lanaudiere 382 0.139
Laurentides 438 0.121
Monteregie 1020 0.116

Centre-du-Quebec 209 0.158

Table 3.1: Distribution of patients in 17 health care regions, recorded from 2011 to June,

2018

Based on the random effects model, we intend to study the possible correlation be-

tween regions based on their locations. In general, residents in neighbouring regions

have similar opportunities to receive TAVR interventions, as shown in Table 3.1. The

Outaouais district has an exceptionally negative effect because residents needing TAVR
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from Outaouais are not limited to receiving medical care in Quebec. Those patients who

received aortic stenosis treatments in TAVR centers in Ottawa, Ontario, are not captured

by the Quebec Health Database. Based on this observation, we model the spatial infor-

mation with a binary adjacency weight matrix (Banerjee et al., 2015).

Based on the FSA, for all patients registered in the health care region k, we assumed

they share the same regional ϕk, and the logistic regression model is the same as described

in Eq. 3.2. We assumed that the difference of regional effects between neighbour regions

would be smaller, where region k and k∗ were neighbours if any part of the two borders is

connected, marked as ωk,k∗ = 1. Otherwise, we have ωk,k∗ = 0. Therefore, given a region

k, the total number of neighbours it has is computed as dk =
∑17

k∗=1,k∗ ̸=k ωk,k∗ .

We assign ϕk a prior distribution of

ϕk ∼ N

(∑17
k∗=1,k∗ ̸=k ωk,k∗ϕk∗

dk
,
σ2

dk

)
,

with some σ2 > 0. Here we assign σ2 = 1 for a non-informative choice.

Continuous distance model

In addition to modelling the regional difference as random effects, inspired by the re-

search of Damluji et al. (2020), we alternatively interpreted the spatial information by

measuring the distance between a patient and TAVR centers. The model can be described

as

yi ∼ Bernoulli(πi),

logit(πi) = α + distanceiβdis + ageiβ1 + sexiβ2 + socialiβ3 +materialiβ4 + clinicaliβclinical,

(3.3)
with α, β1 to βclinical the same as described in model 1. Furthermore, instead of measuring

the regional effects, we use a continuous predictor distancei to represent the log of the

distance between the centroid of the patient i’s address and the nearest TAVR center and

let βdis be the effect coefficient corresponding to log-distance. Thus, if patient i lived close

to TAVR hospitals, distancei is small, with the log-odds of 1 unit increase in the log of

distance equals βdis.
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Shrinkage prior

Because the AS data are administrative, we extract as many predictors as possible and

try to identify the relationships between some predictors and the AS treatment decision.

Thus, given that not all predictors we extracted from the dataset are helpful, we add the

Bayesian shrinkage prior to our proposed spatial models to select the truly important pre-

dictors among all available information. In addition, the social and material deprivation

indexes relate to a patient’s location; the correlation among Charlson score, hospitaliza-

tion, drug intake, and cardiac disease diagnosis is positive. From the comparisons in Lu

and Lou (2021), the shrinkage priors help to distinguish the individual effect of each pre-

dictor when there exist correlations among predictors. As discussed and showed through

simulations in Piironen and Vehtari (2017), the regularized Horseshoe prior reaches con-

vergence the quickest and generates the most consistent estimation for variable selection

purposes compared to the Laplace and the Horseshoe prior. Therefore, we apply the reg-

ularized Horseshoe prior to filter out the redundant predictors and to reduce the bias

caused by collinearity.

With notations of the distributions and hyperparameters the same as explained in

Chapter 2.3.2, the prior we put on all βs in Eq. 3.1, Eq. 3.2 and Eq. 3.3 can be expressed

as:

βj ∼ N (0, τ 2λ̃2j)

λ̃2j =
c2λ2

j

c2+c2λ2
j

where

λj ∼ C+(0, 1),

c2 ∼ IG(ν
2
, ν
2
s2),

τ ∼ C+(0, τ0).

The idea of the regularized Horseshoe prior is to shrink all βs to 0 by a global parameter

τ , which follows a half-Cauchy distribution, while allowing some of β to escape from the

shrinkage by adding a local parameter λ̃. For parameter j, when λ̃j small, βj concentrated
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around 0, and when λ̃j large, βj is estimated with large values. The additional level of λ

and c2 bound the maximum magnitude of the estimated β and prevent the large values

from going to infinity. According to the recommendations made by Piironen and Vehtari

(2017), the values of the hyperparameters are set by ν = 20, s2 = 4 and τ0 = 0.001.

3.2.3 Model selection

All models are implemented through Hamiltonian Monte Carlo in RStanwith four chains

of 3000 iterations each, and the adaptive delta equals 0.95 as recommended in the user

manual (Stan, 2019).

We compare the performance of the models above using the Brier score to evaluate

model’s prediction performance. Measuring from the prospective of calibration, Brier

score calculates the distance between the predictive and the true values (Goldstein-Greenwood,

2021). It can be expressed as

Brier =

√√√√ N∑
i=1

(π̂i − yi)2/N,

the square root of the averaged squared difference between the predicted probability of

receiving TAVR and the actual operation performed for each patient. The predicted prob-

ability of patient i to receive TAVR is denoted as π̂i, and the actual operation patient i

received is denoted as yi.

In addition to the prediction performance, we use the widely applicable information

criteria (WAIC), which estimates the predictive loss, to compare the goodness of fit for

the models. In general, the model with a smaller WAIC should be selected because it

preserves more information and thus has better performance. We also present the time

that each model takes to complete 3000 iterations for reference.

After checking the convergence of all models through the reported R̂ scores and tra-

ceplots of all estimated parameters, we summarize the values of these different criteria

in Table 3.2. We found that the contiguous neighbour model has smaller Brier score and

WAIC while finishing the MCMC with moderate computation cost. Therefore, we con-
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clude that the region where a patient lives gives a better representation of this AS dataset’s

spatial information. Hence, we study the estimates obtained from the contiguous neigh-

bour model and make further analysis.

Computation Time(s) Brier Score WAIC(SE)
Baseline Model 8078 0.0932 4729.5(108.4)

Random Effects Model 9078 0.0917 4710.6(103.3)
Contiguous Neighbours Model 9232 0.0917 4704.0(102.5)

Continuous Distance Model 8114 0.0926 4727.6(102.7)

Table 3.2: Comparison of spatial model performance with the regularized Horseshoe

prior

3.3 Results

3.3.1 Descriptive analysis

Characteristics Mean (SD) Percentage (N)
Sex / 33.6% (2250)

Age at Surgery 73.1 (8.8) /
Wait time (day) 356.0 (831.6) /
Distance (km) 80.2 (134.9) /
Charlson Score 3.2 (2.8) /
Hospitalization 1.7 (1.4) /

Drugs Intake 10.3 (16.1) /
TAVR Operation Rate / 18.1% (1374)

Table 3.3: Baseline characteristics of patients

Among the 7590 patients who received AS operations from January 1st, 2011, to June

30th, 2018, 5042 were male, 2548 were female, and 18.1% patients were selected for TAVR

operations. Based on the means and standard deviations of the predictors in Table 3.3, the

population largely varies in social and economic status and experiences different levels

of disease severity. On average, a patient received an AS operation one year after their

first diagnosis and 91.4% of the patients went through hospitalization during their wait
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Quantile Population TAVR/k Wait Time Age Charlson Female(%)
Social 1st 1396 136 379.7 (843.4) 72.6 (8.7) 3.03 (2.76) 0.322

2nd 1550 145 382.3 (874.4) 72.8 (8.6) 3.20 (2.78) 0.292
3rd 1616 147 420.3 (918.0) 73.3 (8.8) 3.14 (2.81) 0.302
4th 1578 161 405.8 (908.2) 73.9 (8.6) 3.30 (2.83) 0.350
5th 1450 157 399.0 (867.1) 72.8 (9.3) 3.32 (2.82) 0.417

Material 1st 1262 159 346.4 (822.8) 74.3 (8.6) 2.87 (2.67) 0.330
2nd 1378 158 415.2 (908.8) 73.6 (8.6) 3.13 (2.84) 0.304
3rd 1607 156 426.1 (924.7) 73.3 (8.4) 3.36 (2.81) 0.330
4th 1686 135 403.6 (882.4) 72.5 (8.9) 3.21 (2.78) 0.354
5th 1657 144 389.9 (869.3) 72.3 (9.4) 3.34 (2.85) 0.353

Table 3.4: Patients’ characteristics grouped by their social-material deprivation index.

Includes summary of the TAVR operation rate followed by their wait time, age, Charlson’s

score and sex. Continuous variables are presented as mean(sd).

time. Females (18.1%) had a higher proportion of TAVR operations compared to males

(13.3%), with shorter waiting times on average (333.9 days for females compared to 367.1

for males). In general, female patients are older (74.1 vs 72.6 years old), more deprived

in social (45% in quantile 4 or 5 vs 37% in quantile 4 or 5) and material status (24% in

quantile 4 or 5 vs 22% in quantile 4 or 5), and have slightly more severe health conditions

with higher Charlson scores (3.52 vs 3.10) and more drugs intake (11.7 vs 9.7).

Without adjusting for other factors, patients who are privileged in material and de-

prived of social status are more likely to receive TAVR treatment even if they are healthier

and younger. As analyzed in Section 5.2.2, these areas with higher TAVR rates are likely

to be close to the metropolitan area, which means that these patients are close to the TAVR

centers.

3.3.2 Estimates from the model

We then use the contiguous neighbour model described in Section 3.2 to analyze the effect

of each predictor on the type of valve replacement operation. With four chains running

in parallel through Rstan, the model takes 9232 seconds to complete. We checked the R̂

values and traceplots to ensure the model converged. The traceplots for two predictors,
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Figure 3.2: Posterior means and 95% credible intervals of the predictors’ log-odds ratio

sampled from the contiguous neighbors model.

age at surgery and coronary heart disease are presented in Figure 3.7 in Appendix 3.6.

We obtain the mean and 95% credible intervals base on the posterior samples drawn from

the Hamiltonian Monte Carlo, presented in Figure 3.2.

Based on estimation, clinical factors play a significant role in treatment decisions, as

we hypothesized. Patients with higher Charlson scores are selected for TAVR surgeries

because of their health conditions. For each new drug a patient intakes, the odds of TAVR

increase by 3.3%. From the first AS diagnosis to operation, the odds of patients selected

for TAVR increase by 7.0% for each hospitalization record. Our estimates on other fac-

tors match the observation obtained from the descriptive analysis. Older patients receive

TAVR, with an odds of 1.140 times per year younger. Adjusting for age, sex and clinical

variables, fewer male patients receive TAVR. The odds for a male are 0.644 times that for

a female.

The estimated regional effect is shown in Figure 3.3 for the remote regions in the north

and Figure 3.4 for the more concentrated regions in the south of Quebec. The plots clearly
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Figure 3.3: Posterior mean of spatial effect for the remote regions. A region in red has a

negative log-odds ratio, representing a lower odds and lower probability for patients in

this region to receive TAVR. The spatial effects of regions in grey are plotted in Figure 3.4.

show that the patients in the metropolitan area, especially Quebec City and Montreal, are

more inclined to be selected for the TAVR operation and less favourable for the remote

regions. The result offers an interesting finding: while patients from Outaouais have op-

tions to receive TAVR in hospitals in Ontario, compared to those living in Montreal and

Quebec City, patients in the surrounding areas are significantly less likely to have TAVR,

even compared to the patients living in very remote areas. Distance to the medical centers

alone no longer explains this phenomenon. However, these data cannot adequately in-

vestigate other possibilities, including unequal distribution of medical resources among

healthcare regions assigned by the province. The exact effect sizes and their 95% CI can

be found in Table 3.5 in Appendix 3.6.

Compared to the sex and patients’ locations, social and material status have minor

effects on the treatment decision. The most positive log-odds ratio of these effects is

0.037 for patients in the second material quantile, and the most negative effect is -0.044
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Figure 3.4: Posterior mean of spatial effect for the center regions. A region in red has a

negative log-odds ratio, representing a lower odds and lower probability for patients in

this region to receive TAVR, and a region in blue has a positive log-odds ratio, represent-

ing a higher odds and higher probability to receive TAVR.

(in the log-odds ratio) for patients in the fifth material quantile. Nevertheless, the effect

sizes of these deprivation indexes show a clear trend: patients in the second quantile of

both indexes have the most priority in receiving TAVR, followed by quantile 1 (the least

deprived residents), quantile 3, quantile 4, and the most deprived residents in the fifth

quantile. Though not significant, we can still find some inequalities caused by the lack of

social-economic access. Worth to notice that the credible interval for material status level

5 (the most deprived) patients is particularly wide. One reason for such phenomenon

is the heterogeneity in this population: patients in this category have extreme variety in

living conditions, consisting of ones from metropolitan areas and ones from very remote

regions of Quebec, as shown in Figure 3.6. The exact effect sizes and credible intervals

can be found in Table 3.6 and Table 3.7.
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3.4 Discussion

This paper analyzes the effect of clinical and non-clinical factors on AS treatment deci-

sions. We accounted for disease severity from the available clinical variables using the

Charlson scores while being aware that potential residual confounding variables are un-

observed. Though not the first research to study the equity of medical resource allocation,

we are the first to solve problems brought about by multi-collinearity. Given the nature of

administrative data, we collect more information than required and thus apply the reg-

ularized shrinkage prior for selecting the related predictors while dropping the useless

ones. Moreover, to model the spatial information in the dataset, we apply a conditional

autoregressive prior with a 0-1 neighbourhood structure on the region-specific effect and

measure the distance between patients and the closest TAVR centers. Compared to the

models applied in previous research, our model successfully incorporates spatial struc-

ture into the regression model and presents an inclusive evaluation of patient’s health

conditions. Other than the clinical determinants, we identify the effect of patients’ resi-

dence and interpret the effect of social-economic class concerning distance.

3.4.1 Limitations

Our analysis experienced four types of limitation:

1. Spatial confoundings: As we explore the estimates of covariates’ effects on the out-

come, the existence of collinearity between spatial information and covariates like

social/material status may make the estimates biased. In this analysis, we ignored

the possible spatial confoundings in our model. Looking at the estimates generated

by the model without spatial effects and the contiguous neighbours model, though

most effects are close, for coronary heart disease, social status quantile 2, and mate-

rial status quantile 5, their corresponding effects are doubled, tripled or diminished

to zero. Therefore, we can reduce the bias caused by spatial confoundings with more

sophisticated spatial models.
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2. Selection bias:

Because we only selected the patients who received either the SAVR or TAVR oper-

ations, not all eligible patients could be assessed. For example, the AS operations

performed on male patients since 2011 take 66% of the total, which exceeds the

proportion of male patients diagnosed with AS (57%). Thus, comparing the two

proportions, we observe that more male patients were selected for AS operations.

Without evidence to prove that male AS patients are more severe, our analysis will

be more convincing if we could first study the association between sex and opera-

tion selections.

3. Model accuracy limited by residual confoundings:

As mentioned in previous US research, the race and ethnicity of the patients have

been shown to be associated with the treatment decision. A limitation of this project

is the absence of race, ethnicity and nationality data. As the only correlated pre-

dictor, the location of the patients is not fully adequate to explain the difference in

TAVR rates observed in our dataset. Moreover, because of the characteristics of the

administrative dataset, we do not have the details of the diagnosis, which means it

is impossible to know whether patients are selected for surgery based on particular

symptoms. We can only generate surrogate measures for severity.

4. Information bias:

The last limitation of this research is the unrecoverable invalid values in the dataset.

With mistakes in collecting patients’ postal codes and matching the social/material

deprivation index, the quantiles of 102 patients could not be found or imputed with

other predictors. Though we assumed the invalid values existed at random, we

can never validate this assumption, and thus may cause bias in our estimation by

simply removing these samples.
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3.4.2 Future work

As described in the limitations, one possible future work direction is incorporating other

spatial models designed to solve the biases caused by spatial confoundings. For example,

one model we could use is the Spatial+ model proposed by Dupont et al. (2022), which

reduces the collinearity by replacing the covariates with their regressed residuals. To

apply the Spatial+ idea in our Bayesian model, we can refer to the construction of the joint

hierarchical model proposed by Michal et al. (2022), which extends the Spatial+ model to

a Bayesian setting.

Another direction for future work is to incorporate more longitudinal predictors. The

current model does not consider the variation in patients’ address and social-economic

quantiles since their first diagnosis. The value of predictors we include in our analysis

is based on the latest update at the surgery. Including the time-related information will

help us to differentiate patients based on their wait times and investigate effects brought

by the change of social/material status or the health regions.

Finally, an improvement could be made if the INSPQ provides information on the

relation between hospitals’ establishment numbers and their regions and functionality.

We want to add a grouping effect based on the hospitals a patient visited, which will help

us evaluate the distribution of specific medical resources among hospitals. The group can

either be based on the hospital’s functionality as a general, research or long-term hospital

or based on the location and size of the hospital.

3.5 Conclusion

This research applies a Bayesian shrinkage model to explore the effect of clinical and

non-clinical predictors on the valve replacement operation a patient received, with the

regional information as random effects modelled through a binary adjacency variance

structure for patients diagnosed with aortic stenosis from 2011 to 2018. Based on the

estimates, severe patients with older age, more hospitalization records and ischemic heart
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disease at the surgery are considered to encounter more risks for the traditional open

heart operation plans. Despite clinical determinants, female patients in Quebec have a

significantly higher chance of receiving TAVR treatment. Compared to social and material

deprivation status, the healthcare region a patient belongs to has a strong correlation with

the treatment decision. These findings emphasize the necessity of extra care for patients

residing in remote regions and the importance of establishments for more comprehensive

hospitals outside of the metropolitan areas.

3.6 Appendix

Region Log-odds ratio mean 95% CI
Bas-Saint-Laurent -0.369 [-0.678,-0.067]

Saguenay-Lac-Saint-Jean -0.517 [-0.833,-0.209]
Capitale-Nationale 0.0.446 [0.156,0.739]

Mauricie -0.380 [-0.694,0.075]
Estrie -0.863 [-1.135,-0.577]

Montreal 0.192 [-0.119,0.485]
Outaouais -0.320 [-0.704,0.065]

Abitibi-Temiscamingue -0.569 [-0.954,-0.209]
Cote-Nord -0.400 [-0.733,-0.078]

Nord-du-Quebec -0.406 [-0.782,-0.059]
Gaspesie-lles-de-la-Madeleine -0.774 [-1.064,-0.478]

Chaudiere-Appalaches -0.133 [-0.439,0.137]
Laval -0.310 [-0.619,-0.016]

Lanaudiere -0.388 [-0.690,-0.096]
Laurentides -0.616 [-0.901,-0.335]
Monteregie -0.645 [-0.917,-0.369]

Centre-du-Quebec -0.946 [-0.723,-0.193]

Table 3.5: The posterior mean of spatial effect for 17 health care regions in log-odds ratio.

49



Log-odds ratio Mean 95% Credible Intervals
social 2nd 0.030 [-0.063,0.187]
social 3rd -0.025 [-0.176,0.064]
social 4th 0.002 [-0.093,0.102]
social 5th -0.022 [-0.169,0.065]

material 2nd 0.037 [-0.046,0.218]
material 3rd -0.010 [-0.129,0.074]
material 4th -0.019 [-0.152,0.066]
material 5th -0.044 [-0.749,0.277]

Table 3.6: Estimated log-odds ratios of social and material deprivation index quantiles on

the treatment decision

Predictor Log-odds ratio mean 95% CI
Sex -0.263 [-0.439,-0.068]
Age 0.142 [0.131,0.153]

Charlson score 0.086 [0.055,0.116]
Hospitalization 0.139 [0.067,0.211]

Drugs Intake -0.015 [-0.019,-0.011]
Unique Drugs 0.040 [0.033,0.047]
Hypertension -0.018 [-0.065,0.013]

Pulmonary HD 0.001 [-0.060,0.061]
Ischemic HD 0.037 [0.002,0.071]
Coronary HD -0.075 [-0.161,0.005]

Artery HD -0.005 [-0.085,0.061]
Other HD 0.026 [0.004,0.047]

Table 3.7: Estimated log-odds ratios on patients with cardio diseases on the treatment

decision. HD represents ”heart disease”.
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Figure 3.5: Distribution of log(D) with respect to social deprivation index quantiles,

where D is the distance between a patient and the closest TAVR center
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Figure 3.6: Distribution of log(D) with respect to material deprivation index quantiles,

where D is the distance between a patient and the closest TAVR center
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disease with four chains run in parallel. The x-axis shows the iteration number and the

y-axis records the sample values.
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Chapter 4

Exploring factors correlated with HIV

infection through variable selection

4.1 Introduction

HIV, the human immunodeficiency virus, attacks the human immune system and cannot

be effectively cured. Most people get HIV by sex or through the repeated use of injection

equipment, as the virus transmits through body fluid (CDC, 2021), but can only know

their diagnosis through testing. HIV testing provides benefits like early diagnosis and

treatment initiation, prevents the transmission of HIV between partners, and prolongs

the lifespan of infected patients (WHO and UNAIDS, 2017). However, in South Africa,

the country with the largest population of HIV-infected patients, the prevalence of in-

person HIV testing is impeded by the lack of healthcare facilities and social factors such

as discrimination (Strauss et al., 2015). In order to provide individuals who had difficulty

coming to clinics opportunities to evaluate their risk of HIV, a self-testing mobile applica-

tion called HIVSmart! was developed (Janssen et al., 2019). This app is designed to help

users monitor their health conditions by answering a series of questions, which are then

uploaded to an online database.
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Since self-testing through a model app was an innovative approach, previous studies

tried to show that the self-testing procedure brought benefits in early diagnosis and il-

lustrated its convenience compared to other forms of a health tracker. Regan et al. (2013)

performed analysis on the performance of self-testing to show that frequent reporting

reduced HIV infections and helped the treatment of HIV. Pai et al. (2021) showed that

the digital self-reporting HIV test submitted on the app could monitor an individual’s

health condition in the same way as the conventional tests. Though proven to provide

the same benefits as the traditional tests, the self-testing approach will only be beneficial

if we can find the relationship between the sexual behaviour questions, the personal back-

ground information and the HIV status. Therefore, by conducting regular self-reporting,

epidemiologists can warn people with specific answers about their risk of being infected

with the estimated effects.

However, the presence of missing values in the self-testing data complicates the es-

timation of the HIV infection determinants. Unlike traditional HIV testing, because the

self-testing reports could be done without the monitoring of medical professionals, they

usually contained missing values due to technical malfunctions. For example, answers

on certain questionnaire pages accidentally could not be uploaded to the database. More-

over, it is possible that participants refused or forgot to answer some questions and

hence generated missing values. The previous studies about the self-testing data anal-

ysis dropped all observations with missing values and only analyzed the complete ones,

which may cause the estimates to be biased. Therefore, we intend to improve the estima-

tion by imputing these missing values based on non-informative prior distributions and

taking the uncertainty of missingness into account.

In this analysis, we employ a Bayesian hierarchical model that can impute the missing

values, especially for multiple variables, and analyze the effects of the predictors, such

as sexual behaviours, based on the HIV data collected through the self-testing app simul-

taneously. Because of the foreseen level of the sparsity of significant predictors among

the available information in the questionnaire, we decide to apply the variable selection
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method for analysis. For the three predictors containing missing values, we assume all

missing and observed samples of each predictor come from the same distribution and

impute the missing values through a Beta-Bernoulli distribution. For the categories with

insufficient information due to their small sample sizes or the small number of HIV-

infected participants, we either combine these categories when the resulting category is

still meaningful or provide explanations for such a phenomenon and propose further re-

search strategies.

We construct the chapter as follows: in Section 4.2, we present a summary of the pre-

dictors: questions the self-reporting app asked, the importance the predictors played in

HIV infection and their distribution. Then, in Section 4.3, considering the missingness

in our dataset, we describe how the fully Bayesian approach imputes the values and list

the missing variables in our HIV dataset. The hierarchical model that simultaneously im-

putes the missing values and estimates the predictors’ effects is presented in Section 4.5.2.

We assign the regularized Horseshoe prior to all the estimates of predictors with a spar-

sity assumption. After constructing the model, we present the result with a descriptive

analysis of the predictors and their posterior distributions generated by the model. Fi-

nally, we discuss the social and epidemiological meaning behind these numerical results

and conclude our findings.

4.2 Study cohort

The study was conducted in Capetown, South Africa, from January 2017 to June 2018 and

used convenience sampling for recruiting participants. All the participants were 18 years

or older, with unknown HIV status at self-reporting. As owners of an Android/Apple

smartphone, the participants answered the questions for the self-report testing using the

app HIVSmart!.

Participants were asked to respond to a list of questions in the app. Janssen et al.

(2019) collected the answers and named the predictor of interest in each question. The
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details of the predictors, including the question in the report, available answers and their

distributions, are presented in Table 4.1. It is worth noting that there are only two answer

options, male and female, for the gender question. Therefore, the gender variable here

actually represents the ”biological sex”. However, to be consistent with the questionnaire,

we will refer this variable as ”gender” in our statistical analysis.

Followed by the background information and health condition, the questionnaire in

HIVSmart! asked about the sexual behaviours of the participants. The behaviours were

listed in a sequence, and the participants were asked to select all applied descriptions.

Therefore, Pai et al. (2021) recorded a checked box as ”Yes” and an unchecked box as

”No”. The questions and answers are shown in Table 4.2.

In this study, we consider the HIV status of the participants as our response variable.

The participants were tested for HIV after completing their self-reporting test on the app.

We denote HIV positive as 1 and negative as 0. Among the 1535 participants, 137 of them

were confirmed with HIV.
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Predictor Question Type # of Yes(%)
sex active You are sexually active. categorical 1223 (79.67)

current partner Your current partner is your husband or wife. binary 429 (27.95)
without condom I have had sex without a condom binary 937 (61.04)
with many ppl I have had sex with multiple partners. binary 167 (10.88)
with sexworker I have had sex with a commercial sex worker. binary 21 (1.37)
with HIV ppl I have had sex with an HIV-infected partner. binary 42 (2.74)
with alcohol I have had sex under the influence of alcohol. binary 73 (4.76)
with drugs I have had sex under the influence of drugs. binary 32 (2.08)

abstain I do not wish to answer. binary 58 (3.78)

Table 4.2: Summary of sexual behaviours based on the action in the past six months

4.3 Missingness and missing data

When we observe missing values in our data, prior to handling them, it is crucial to

understand why the data are missing. Here we summarize three general reasons for

missingness (Rubin, 1976):

Missing completely at random (MCAR)

We say a variable is missing completely at random if the probability of missing is the same

for every observation. For example, if an answer in an online questionnaire is missing

because of an internet speed problem in the uploading process, we can treat it as MCAR.

Missing at random (MAR)

In a more general setting than MCAR, variables are missing at random if the probability

of missing depends only on other observed variables, such as measurements taken by a

piece of traditional equipment are more likely to be missing compared to that taken by an

innovated equipment. However, measurements taken with the same equipment have the

same probability of missing.

58



Missing not at random (MNAR)

(a) Missingness depends on unobserved variables

Sometimes the missing values of a variable for some observations exist because of

other values that have not been recorded or available for imputing or modelling

(Gelman and Hill, 2006). For example, participants born in more conservative or

religious families are less likely to answer questions about sexual orientation or im-

moral sexual behaviours.

(b) Missingness depends on the value itself

The probability of missing depends on the value of the missing variables. For ex-

ample, people might be reluctant to answer questions related to income, especially

if they are extremely rich or poor.

4.4 Missing data imputation approach

When one or more predictors contain missing values, we need to remove, directly impute

or impute through modelling. Here we present some popular approaches among the

various imputation methods available nowadays.

4.4.1 The frequentist approaches

Methods for dealing with missing data

1. Discard the missing data:

The easiest way is to throw away samples with missing values. Removing the miss-

ing variables does not cause any bias when the data are missing completely at ran-

dom. Furthermore, even with missing at random data, it is reasonable to remove

the missing variables as long as we ensure that there is no unmeasured variable

that affects the probability of missingness. However, when data are missing not
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at random, discarding the missing values will introduce bias in the estimation of

predicting variables’ effects on the response.

2. Single imputation:

This approach fills in the values of missing inputs to obtain a complete data set.

Some commonly used methods are ”mean imputation”, which imputes by the mean

of the observed values, ”last value carried forward” , which imputes by the last

observed value for this sample in longitudinal data analysis, ”indicator variables for

missingness”, which impute as an additional category, exclusively for unordered

categorical variable, and simple random imputation, which impute each missing

value by a randomly sampled observed value (Gelman and Hill, 2006).

3. Model through regression:

We can use the individual-level information to impute the missing values through a

multiple regression model by treating the variable with missingness as the outcome.

We fit the model with the complete cases and then use the estimated coefficients to

impute the missing observations. With the missing at random assumption, we can

model the missing variables through univariate/multivariate regressions depend-

ing on the number of variables with missing values. However, for data missing not

at random, imputation through regressions will lead to a biased estimation of the

predictors’ effects on the outcome.

4. Multiple imputation:

In addition to the approaches mentioned above, multiple imputation (MI) is often

applied to missing data problems. Briefly, multiple imputation is a method similar

to ”model through regression” but generates multiple datasets and analyzes each

dataset using a regression model. The results obtained from these analyses are av-

eraged as the imputed values (Van Buuren, 2018). Among all the approaches, the

multiple imputation approach has gained popularity in dealing with missing data

problems. It accounts for statistical uncertainty compared to single imputation, re-
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quires fewer missing data mechanism assumptions compared to the complete-case

analysis, and applies to more types of models than the maximum likelihood ap-

proach (Azur et al., 2011).

Though generally, multiple imputation is less biased, it is not powerful at all times

(Van Buuren, 2018). There are cases where other methods outperform. For example,

when the complete-data model is a regression between the outcome y and predic-

tors X , and only y contains missing values, the multiple imputation is equivalent

to complete-case analysis.

4.4.2 The fully Bayesian approach for ignorable missingness

The fully Bayesian approach treats missing values as parameters for prediction. As sug-

gested by Ma and Chen (2018), it is performed through four steps: 1) proposing the re-

sponse model (missing data distribution if needed), 2) constructing the prior distribution,

3) calculating the posterior through MCMC and 4) performing a sensitivity analysis due

to the inability of knowing the true missing mechanism.

Generally, we denote the predictors with missing values as X = (X(1),X(0)), with

(1) the observed and (0) the missing part, the corresponding response as y = (y(1),y(0)),

and N1 the number of observed samples. With the predictors’ effects δ on response and

parametrization coefficients ∆ on the distribution of X , we write their joint posterior

distribution as (Ma and Chen, 2018)

p(δ,∆|X(1),y(1),y(0), N(1)) ∝
∫
X(0)

f(y|X, δ)f(X(0)|X(1),∆)dX(0)π(∆, δ),

where f(y|X, δ) represents the response model, f(X(0)|X(1),∆) the missing data distri-

bution, and π(∆, δ) is the assigned prior distribution.

Assuming the missing data mechanism is ignorable, which means either MCAR or

MAR, we have all values exchangeable, i.e., no matter the values are observed or missing,

they follow the same distribution (McElreath, 2016). Therefore, for continuous variable
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Figure 4.1: Missing data pattern plot: complete cases are painted blue and missing cases

are red. The predictors’ names are listed on the top, and the number of missing values

in each predictor is at the bottom. Each row represents one combination of missing vari-

ables: the number on the left denotes how many samples have these variable missing,

with the number on the right counts for how many variables are missing.

X = (X(1),X(0)), we assign its distribution as

X(1) ∼ N (f(·), σ2),

X(0) ∼ N (f(·), σ2), (4.1)

where we denote the mean of X as f(·), contributed by some corresponding related co-

variates and the coefficient ∆, and set σ2 > 0. For binary or count missing values, we

change the distribution in (4.1) to Bernoulli or Multinomial distributions.

4.4.3 Missingness in HIV data

For this HIV self-reporting dataset, we found 81 participants had all sexual behaviour an-

swers missing from the missing pattern plot (Figure 4.1). Based on the analysis provided

by Janssen et al. (2019), the phenomenon that all sexual-behaviour answers are missing
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at the same time is very likely due to the malfunction of the self-testing app. With almost

one-third of the predictors missing for a single sample, imputing all missing values, ei-

ther through regression models or distributions inferred from the observed values, will

induce estimation bias and variance in the imputation process. Moreover, without any

sexual behaviour answers available, which played a critical role in the infection of HIV, it

is impossible to recover all behaviours for one participant and the relationship between

these behaviours and HIV prevalence. Therefore, we assume that the app malfunction

happened completely at random and excluded participants with all sexual behaviour an-

swers missing.

After removing the 81 samples with all sexual behaviour response missing, we only

have gender, current partner and sex active containing missing values. Due to its nature

as a self-identifying report, a third option, ”Abstain”, is available as an answer other than

”Yes” and ”No” for participants to select for some questions. To respect all participants’

will, we do not consider these ”Abstain” answers as missing. For gender, only 1 out

of 1535 samples is missing while 64 responses of current partner and 11 responses of

sex active are missing. For each variable, we assume all 1437 values, including both the

observed and the missing values, are samples of the same distribution. For example, for

gender, we have the following hierarchical structure:

genderi ∼ Bernoulli(pgender),

pgender ∼ Beta(a0g, b0g),

for i = 1, . . . , n and n denotes the sample size. We set a0g = 1, b0g = 1 for a non-informative

prior. We assign the same distribution to current partner and sex active with partneri ∼

Bernoulli(ppartner) and activei ∼ Bernoulli(pactive). Each of the probability ppartner and pactive

follows a Beta distribution with a0p = b0p = a0a = b0a = 1. When constructing the model,

we estimate these probabilities while integrating out the missing ones in the outcome

regression model.
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4.5 Method

As discussed above, the existence of missing values complicates our analysis. Further-

more, assuming that not all predictors we extracted from the report are helpful, we need

to use variable selection techniques to recover the true effects of significant predictors

while dropping the others. Therefore, to better analyze the HIV data, we need a model

that considers the uncertainty brought by missing values and efficiently performs vari-

able selection in the model fitting process.

In this section, we employ a Bayesian hierarchical model that simultaneously esti-

mates the predictors’ coefficients β and imputes missing values to fulfill all requirements.

4.5.1 Notations

We denote the HIV test result of all participants as y with size n. Let yi = 1 if the HIV sta-

tus of participant i is positive and yi = 0 otherwise. The categorical predictors in our HIV

data are first transformed into dummy variables and then combined with other binary or

continuous predictors. The categorical data we transformed in the HIV self-report test-

ing analysis includes: level of monthly income, clinical sites, residential area, and all

questions with ”Abstain” option. Let J denotes the number of predictors, including the

transferred dummy variables, in the HIV dataset. The matrix of all predictors is denoted

as X = (Xcom,Xgender,Xactive,Xpartner), with Xcom a n× (J − 3) matrix of complete vari-

ables, and Xgender, Xactive, Xpartner the columns of predictors with missing values. The

distributions of all missing predictors are described in Eq. 4.4.3.

4.5.2 Model

To model the effect of predictors on the dichotomous response y (HIV status), we establish

a logistic regression. For participant i, we build our model as:

yi ∼ Bernoulli(πi),

logit(πi) = X iβ + α,
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where the coefficients β = (βobs, βgender, . . . , βpartner) correspond to the effect of the pre-

dictors on the HIV status. Specifically, we use βobs, a vector of length J − 3, to represent

the coefficients of the complete predictors. Furthermore, after centering the continuous

variables on their mean values, we use α to denote the baseline odds for male patient at

the age of 28.23, who lived in Klipfontein, answered ”No” to all the questions, filled in

the report in the Gugulethu clinic and had a monthly income below 3000 in the prediction

model. We run the model with 4 chains in parallel through Rstan. Each chain contains

3000 iterations, with the first 1500 set as burn-in and target average acceptance probability

set to 0.95.

We draw inference from the joint posterior of all parameters’ distributions, β, α, in the

model, and the structure can be expressed as

π(β, α|y,X) ∝ π(y|β,X, α)π(β, α)

with the right hand side equals to the likelihood times the prior. Furthermore, we con-

struct the prior as the product of prior distributions of the parameters in the model (Golchi

et al., 2022):

π(β, α) = π(β)π(α),

with α assumed to follow a standard Normal distribution, i.e. α ∼ N (0, 1),

Because we believe the distribution of truly influential predictors is sparse and the

correlation among them could be high, we decided to assign a continuous shrinkage

prior to the coefficients corresponding to all the predictors. As illustrated by Piironen

and Vehtari (2017), compared to the Laplace prior and Horseshoe prior, the regularized

Horseshoe reaches convergence more quickly in more conditions and shrinks the large

value in the regression. Therefore, we apply the regularized Horseshoe prior to each βj

in β for variable selection. The structure of prior is described in Section 2.3.2 with the

hyperparameters set at the default values: ν = 20, s2 = 4 and τ0 = 0.001.
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4.6 Result

Among the 1437 participants used in the analysis, 7.9% of them tested HIV positive. The

background information and answers to economic questions showed the potential risks

of delayed HIV diagnosis, and the optimistic employment, income and housing condi-

tions of the participants. With only 35% employed, 44% of our sample lived in a hostel

or informal dwelling, and 77% of them had a monthly income of 3000 rand or less. These

participants, who struggled to survive, lacked the ability to monitor their health condi-

tions. Moreover, most participants did not show awareness of protective actions in sexual

behaviours. Among the 1223 sexually active participants, 937 of them did not use con-

doms, and 167 had sex with multiple partners. These discouraged behaviours further

increased their exposure to HIV and accelerated the prevalence of HIV.

4.6.1 Inference from model

To ensure the convergence of our model, we checked the R̂ and the traceplots for the

posteriors. With all R̂ < 1.05 and traceplots indicating that all chains mixed well, we

summarized the mean and 95% credible intervals of the estimated β and plotted in Figure

4.2. The posterior summaries can be found in Table 4.3 in 4.8. We also present the traceplot

of two predictors with wide credible intervals, bisexual orientation and comorbidities,

to show that the widths of these intervals are not due to lack of convergence in Figure4.4

as an example.

Estimated from the hierarchical model, we found a few predictors strongly associated

with the HIV status of the participants. Though not statistically significant based on their

95% credible intervals, 45.2% more participants who finished the report in the Langa clinic

tested HIV positive. Participants who had sex with one or more HIV-infected person is

1.14 times more likely to have HIV. On the other hand, those who checked their HIV status

regularly had lower infection risk: participants who had a negative test result within

the past six months were 47.3% less likely to be HIV positive at the time of the report,
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Figure 4.2: Posterior summaries of the estimated effects of predictors on HIV status in the

form of log-odds ratios. Solid circles denote the posterior means and bars denote the 95%

credible intervals of the posteriors’ distributions.

and 41.3% and 53.8% fewer people with a post-secondary degree or comorbidities, such

as diabetes and hypertension, were diagnosed with HIV. We find a strong association

between one’s gender and HIV status. Compared with males, 31.7% fewer females were

HIV-infected. Finally, from the estimates, the correlation between age or monthly income

and HIV infection is negligible.

4.6.2 Problem in estimated credible intervals

As shown from descriptive analysis, the proportion of HIV-infected participants is small.

Therefore, for some categories with only a few participants involved, it is possible to have

a wide credible interval due to insufficient information.

Among the variables with wide 95% credible intervals, the ”Abstain” category for

drug injection, exposed to HIV infection, and sexual active questions obtain large cred-

ible intervals because of the limited number of participants we have. Because we can-

not determine the condition of these participants or make any assumptions about their
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preferred answers, we leave them as a separate category and stay cautious about these

estimates. An ideal solution to prevent these low-observed categories is to remove the

”Abstain” option from these anonymized reports.

For predictor comorbidities, postsecondary education and clinic site Lange, we ob-

served wide credible intervals together with strong negative or positive effects. We as-

sume these intervals are caused by the variability among participants who answered

”Yes” to the above questions: these participants belong to different categories in both ob-

served predictors, such as income and employment, and possibly unobserved predictors,

like health conditions and social classes. However, with the strong effects and almost sig-

nificant credible intervals, we were confident in the direction of their correlation to HIV

infection.

Besides, most sexual behaviour questions have a small proportion of ”Yes” responses

from participants with few positive HIV test results. Therefore, the samples for these

minority behaviours are not representative enough, and we combined the answers to

these unprotected sexual activity questions into one variable named unsafe sex. Hence,

if one participant, denoted as participant i, has had sex with many people (10.88%) or

with sex-worker (1.37%) or with HIV-infected person (2.74%) or under the influence of

drug or alcohol (4.76% / 2.08%), we record unsafei = 1 and 0 otherwise.

With such a combination, we have 20.4% participants who experienced at least one

unsecured sexual activity, and 33 were HIV positive, which is more representative of the

population. We reran the model with the combined categories; its estimation is shown in

Figure 4.3. We found that people with risky sexual experiences had a 7.8% higher chance

to be HIV-infected, showing the harm of such behaviours.

4.7 Discussion

In this research, we investigated the relationship among personal background, living

conditions, sexual behaviours and HIV infection with self-testing reports submitted by
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Figure 4.3: Posterior summaries of the estimated effects of predictors on HIV status in the

form of log-odds ratios, with risky sexual behaviours combined into the ”unsafe sex” cat-

egory. Solid circles denote the posterior means and bars denote the 95% credible intervals

of the posteriors’ distributions.

participants through the mobile app HIVSmart! in South Africa. The data we collected

showed that the participants were generally young, poor, uneducated and without enough

caution regarding the protections in sexual behaviours. Impeded by the doubtful living

conditions, more participants without regular health checking are HIV positive, and so

do those with unsafe sexual experience, especially if they ever had sex with sex workers

or HIV-infected persons.

Followed by the descriptive results, we dealt with the missing value problems in this

research. Because of the nature of the self-testing report, we do not consider ”Abstain”

answers as missing but keep all of them. We observed a sequence of missingness overall

sexual behaviour questions for 81 participants caused possibly by the app malfunction.

Without any related information, imputation for these missing variables can be biased

and largely varied. Therefore, we assumed the malfunction happened completely at ran-

69



dom and removed these samples. For the three missing variables left, we imputed each

variable with missing values in a fully Bayesian way.

In order to model the outcome variable, we applied a Bayesian hierarchical model to

impute the missing values simultaneously and to estimate the effect of predictors on the

HIV result. Through summarizing the posterior means and credible intervals, our re-

search identifies factors related to the infection of HIV. In general, participants who had

earned a post-secondary degree, had comorbidities, or had sex with their wives or hus-

bands were less exposed to HIV infection, and so were those who had another HIV test

within six months. Conversely, more participants who had sex without condoms or other

unsafe sexual behaviour, especially among HIV-infected people, were HIV positive. Sur-

prisingly, the information about sexual orientation and living regions did not reflect on

the risk of HIV infection. It is worth noting that many more participants who filled in

the report in the clinic at Langa clinic were HIV positive, which requires a further inves-

tigation of the social and economic environment around that clinic to find a reasonable

explanation.

The limitation of our model is the unidentifiable missing pattern for the sexual be-

haviour questions. Though we assumed the missingness of the series of sexual behaviour

answers was missing at random due to a malfunction of the app, we did not know and

could not know the true missing mechanism. Because it is possible that some people

were unwilling to answer questions related to their sexual activities and left these an-

swers blank, discarding these values may bring bias to our estimation. Furthermore, im-

putation would introduce variance because of the large proportion of missingness on one

sample. There is no perfect solution to balance the bias and the variance with currently

available information.

4.8 Appendix
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the sample values.
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Predictor Log-odds ratio Mean 95% Credible Intervals
Weltevreden site 0.019 [-0.286,0.386]

Langa site 0.373 [-0.031,0.964]
age 0.001 [-0.019,0.020]
TB 0.003 [-0.345,0.357]

Postsec education -0.533 [-1.243,0.017]
Dwelling 0.256 [-0.043,0.701]

Comorbidities -0.773 [-2.463,0.071]
Employment -0.031 [-0.318,0.171]

Gender -0.382 [-0.888,0.014]
monthly income 2 -0.033 [-0.573,0.372]
monthly income 3 -0.013 [-0.513,0.418]

Mitchells plain 0.037 [-0.241,0.374]
Western District -0.014 [-0.418.0.306]

HIV tested -0.640 [-1.081,-0.178]
Inject drugs 0.017 [-0.323,0.413]

Inject drugs abstain -0.196 [-1.495,0.302]
HIV exposed 0.239 [-0.092,0.865]

HIV exposed abstain -0.044 [-0.653,0.357]
Bisexual 0.094 [-0.262,0.769]

Homosexual -0.041 [-0.494,0.279]
Abstain sexual orientation -0.066 [-0.445,0.163]

Sex active -0.021 [-0.319,0.247]
Current partner -0.662 [-1.248,-0.036]

Sex without condom -0.013 [-0.255,0.208]
With many people 0.123 [-0.146,0.688]

With sexworker -0.149 [-1.422,0.344]
With HIV-infected ppl 0.751 [-0.042,1.757]

With alcohol -0.400 [-1.930,0.144]
With drugs -0.216 [-1.736,0.268]

Abstain sex question 0.109 [-0.245,0.745]

Table 4.3: Estimated log-odds ratios of predictors in HIV data
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Chapter 5

Conclusion

In this thesis, we summarize the current variable selection methods from model selec-

tion to lasso penalization, followed by the Bayesian methods, such as the spike-and-slab

priors, the shrinkage priors, and the discrete-continuous mixture prior. After describing

the benefits of the shrinkage priors in convergence and uncertainty measurement dis-

cussed in comparisons from previous literature, we apply the Bayesian shrinkage priors,

especially the regularized Horseshoe prior, for variable selection on two epidemiological

datasets. Because the medical resource allocation was historically related to the health

region a patient belonged to, for the aortic stenosis data, we use a spatial model that es-

timated the regional differences, together with the regularized shrinkage prior applied

to parameters’ coefficients in the logistic regression model. Then, for the self-reporting

HIV data, we introduce the fully Bayesian data imputation method into the model fitting

to deal with the missing values by constructing a hierarchical model that simultaneously

performs the imputation and estimation.

Performance of the Bayesian variable selection methods

Because the model selection methods in neither the frequentist nor Bayesian approach are

feasible for the high-dimensional dataset, we mainly summarize the working mechanism

of the Lasso family, the spike-and-slab priors and the shrinkage priors. According to the

73



comparison performed by Lu and Lou (2021) and Celeux et al. (2012), the spike-and-slab

priors have higher specificity and RMSE than the Lasso methods. The shrinkage priors

further avoid model overfitting and are more robust to the change of correlation structure

and sparsity levels than the spike-and-slab priors. Moreover, the shrinkage priors are rel-

atively computationally efficient among the high-dimensional Bayesian variable selection

methods. As illustrated in Piironen and Vehtari (2017), among the shrinkage priors, the

regularized Horseshoe prior outperforms in recovering the parameters with large values.

Therefore, we choose to apply it for the variable selection purpose.

Aortic stenosis treatment data

In the first data analysis, we apply the regularized Horseshoe prior to the aortic stenosis

dataset to investigate the potential inequalities caused by differences in health regions

and social-material status on patients’ treatment decisions. The regional information is

modelled as random effects through a binary adjacency variance structure and added to

the logistic regression that predicted the treatment. Estimates show that older patients

with severe diseases were assigned to the new TAVR treatment, and so were patients

who were female or lived in metropolitan areas. The results highlight us the necessity of

resource allocation to remote health regions and patients deprived of material and social

perspectives.

HIV self-reporting data

Next, we use the variable selection method to find the association between participants’

living background, sexual behaviours and HIV infection with data collected from self-

reporting HIV testing in South Africa. With the assumption that the missing mechanisms

for all variables are ignorable, we assign a Beta-Bernoulli distribution to each binary miss-

ing variable. We integrate them out within the Bayesian hierarchical structure that fits the

outcome logistic regression model. We identify a positive correlation between partici-

pants who finished the report in the Langa clinic, had sex with HIV-infected partners and
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HIV status. Conversely, regular health check, obtaining a post-secondary degree and be-

ing female is related to a lower probability of HIV infection. Due to the limited number

of HIV participants in some answer categories, though converged, the credible intervals

of some predictors are wide. We solve this issue by combining categories or providing a

reasonable interpretation of this phenomenon.

5.1 Future direction

Despite the advantage in interpretation and inference, the Bayesian methods suffer from

extensive computation costs, especially in high-dimensional applications. Researchers

have been working on the reduction of computation time. For example, INLA, the inte-

grated nested Laplace approximation proposed by Rustand et al. (2021), is an alternative

to other computation methods like the MCMC, with an advantage in speed and easy to

apply in R. In the future, we will try to replace the MCMC with INLA to generate poste-

rior samples to infer predictors on higher-dimension datasets.

Moreover, in the aortic stenosis data analysis, we focus on identifying the possible

correlation between non-clinical factors and the treatment decision among all information

provided by the administrative data. Aware of the existence of spatial information in the

analysis, we add basic spatial models into the variable selection procedure. Nevertheless,

the spatial effects can be modified to solve the problem caused by spatial confoundings.

As mentioned in Section 3.4.2, in the future, we will combine the Spatial+ model proposed

by Dupont et al. (2022) with the shrinkage priors to reduce bias caused by the collinearity

between predictors and spatial factors.

Finally, the results presented between the predictors and the outcome in this thesis are

correlations, not causation. Our model can have more impact in clinical settings if we can

establish causal relationships between variables. Different from the residuals in regres-

sion, the background factor, though obtained from the same equation, will better reflect

reality if we have specific knowledge based on the data (Pearl, 2010). Besides, to make
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causal assumptions, we will note their causal relationships, use a graphical model, and

show causality through arrows with direction. Nevertheless, difficulty existed because

we only have observations rather than experiments. Therefore, performing the counter-

factual analysis, especially for one predictor, we will incorporate additional methods like

the propensity score model.

Code Availability

The code for the two real data applications can be found at https://github.com/

JanetteFu/Thesis_data_application. Each file contains the code used to con-

struct model and a small artificial data for illustration. Follow the Read me file for in-

structions on the purpose and use of each file.
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connaissances, État de pratique. https://www.inspq.qc.ca/sites/default/

files/publications/2351_communaute_pratique_outil_pertinent_

resume_connaissance.pdf, 2020.

82

https://ccs.ca/publications/
https://publications.msss.gouv.qc.ca/msss/fichiers/2008/08-906-01.pdf
https://publications.msss.gouv.qc.ca/msss/fichiers/2008/08-906-01.pdf
https://www.inspq.qc.ca/sites/default/files/publications/2351_communaute_pratique_outil_pertinent_resume_connaissance.pdf
https://www.inspq.qc.ca/sites/default/files/publications/2351_communaute_pratique_outil_pertinent_resume_connaissance.pdf
https://www.inspq.qc.ca/sites/default/files/publications/2351_communaute_pratique_outil_pertinent_resume_connaissance.pdf


Integrated University Health CIUSSS and Social Services Centres. Local commu-

nity services centres (CLSCs). https://santemontreal.qc.ca/en/public/

montreals-institutions-at-a-glance/clscs/, 2022. [Online; accessed

01.18.2022].
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