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Abstract 

The ability to measure plant traits in a fast, on-site, and cheap manner would be of benefit to plant 

breeders, growers, and consumers alike. Reliable on-farm experimentation requires accounting for 

multiple factors which affect the environment in which plants grow. In this research, two platforms 

were developed for measuring soil, weather, and crop data in an efficient manner. Methods for 

data processing, combining the output of these systems, were also implemented. This combination 

provides a novel framework that facilitates the creation of models to explain plant phenotypical 

traits. The overall objective of the research was to evaluate the viability of having the platforms 

work in tandem. The first objective was to develop a High-Throughput Plant Phenotyping (HTPP) 

platform. The proposed system was designed to be vehicle mounted and it was compared to a 

manual setup with similar capabilities. The second objective was to develop a Proximal Soil 

Sensing (PSS) platform. The design of the second system included the ability to open a borehole 

using a drill and deploying a hyperspectral probe to collect data. The third goal was to combine 

the data collected from both platforms. A process for predicting soil chemical properties based on 

soil spectral response was the first component of the combination process. This information could 

be interpolated across a field where the HTPP platform had measured the phenotypical and weather 

data for a crop of beans. The effect of the different factors was evaluated during the comparison 

of the different crop cultivars evaluated in the experiment. Overall, a complete data collection 

process for on-farm experimentation was based on the proposed platforms. The results of this work 

were the design of both a HTPP platform and a PSS platform, the implementation of similarity-

based regression for soil chemometrics, and the procedure for combining the factors of plant 

growth. Expanded adoption of these technologies would result in more frequent and convenient 

data collection surveys for different types of growers, plant breeders, and agronomists. The 
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availability of these data could be used to improve modelling techniques, allow for better farm 

management, and to provide automated solutions for the agricultural industry.   
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Résumé 

La capacité de mesurer les caractéristiques des plantes de manière rapide, sur place et économique 

profiterait aux sélectionneurs, producteurs ainsi qu’aux consommateurs. Afin de réaliser des essais 

à la ferme fiables, il est nécessaire de tenir en compte plusieurs facteurs qui affectent le milieu 

dans lequel la plante se développe. Dans la présente étude, deux plateformes ont été développées 

afin de mesurer les données du sol, des conditions météorologiques et des cultures de manière 

efficace. Des méthodes pour le traitement des données combinant les résultats de ces systèmes ont 

également été mises au point. La combinaison de ceux-ci fournit un nouveau cadre qui facilite la 

création de modèles pour expliquer les traits phénotypiques des plantes. L’objectif général de la 

présente étude était d’évaluer la viabilité des plateformes travaillant en tandem. Le premier objectif 

était de développer une plateforme de phénotypage des plantes à haut débit (High-Throughput 

Plant Phenotyping, HTPP). Le système proposé a été conçu pour être monté sur véhicule et a été 

comparé à une configuration manuelle avec des capacités similaires. Le deuxième objectif était de 

développer une plateforme de détection proximale des sols (Proximal Soil Sensing, PSS). La 

conception de ce système comprend la capacité de creuser un trou dans le sol pour la collecte des 

données à l’aide d’une perceuse. Le troisième but était de combiner les données récoltées des deux 

plateformes. Un processus de prédiction des propriétés chimiques du sol basé sur la réponse 

spectrale du sol a été le premier composant du processus de combinaison. Cette information peut 

ensuite être interpolée à travers un terrain où la plateforme HTPP aurait déjà mesuré les données 

phénotypiques et météorologiques pour des cultures d’haricots. L’effet des facteurs différentes a 

été évalué pendant la comparaison des différents cultivars de cultures évalués dans l'expérience. 

Dans l'ensemble, un processus complet de collecte de données pour l'expérimentation à la ferme 

était basé sur les plates-formes proposées. Les résultats de ce travail ont été la conception d'une 



VI 
 

plateforme HTPP, la conception d'une plateforme PSS, la mise en œuvre d'une régression basée 

sur la similarité pour la chimiométrie du sol et la procédure de combinaison des facteurs de 

croissance des plantes. L'adoption élargie de ces technologies se traduirait par des enquêtes de 

collecte de données plus fréquentes et plus pratiques pour différents types de cultivateurs, de 

sélectionneurs de plantes et d'agronomes. La disponibilité de ces données pourrait être utilisée pour 

améliorer les techniques de modélisation, parvenir à une meilleure gestion des exploitations 

agricoles et automatiser des solutions pour l'industrie agricole. 

  



VII 
 

Acknowledgements 

I deeply thank my supervisor, Dr. Viacheslav I. Adamchuk, for his support and trust. His guidance 

was invaluable. 

 

I highly appreciate the contributions of Gabriel Mangeat, Jacques Michiels, and Benjamin de 

Leener from ChrysaLabs Inc. especially with the materials and information associated with the 

studies documented in Chapters 4 and 5. 

 

I thank Dr. Valerio Hoyos Villegas for providing testing spaces and materials for the experiments 

documented in Chapters 3 and 5. I also thank Marc Samoisette and the staff at Emile A. Lods 

Agronomy Research Centre for facilitating logistics during the data collection process. 

 

 I thank Scott Manktelow for all the advice and help I received from him over the years. 

 

I acknowledge the contributions of the past and current Precision Agriculture and Sensor Systems 

(PASS) research team members Amanda Jacques Boatswain, Dr. Eko Leksono, Dr. Hsin-Hui 

Huang, Dr. Jaesung Park, Marie-Christine Marmette, Maxime Leclerc, Dr. Md Saifuzzaman, 

Mohamed Debbagh, Pierce Dias Carlson, among others, for being great friends and colleagues. I 

especially thank John Lan and Keenan Simpson for their help with fieldwork. I also thank Louis-

Jacques Bourdages for his help with manufacturing. 

 

I thank the members of comprehensive exam committee, Dr. Martina Stromvik, Dr. Valerio Hoyos 

Villegas, Dr. Vijaya Raghavan, and Dr. Zhiming Qi. I also thank Dr. Pierre Dutilleul, Dr. Martina 



VIII 
 

Stromvik, and Dr. Valerio Hoyos Villegas for being part of the supervisory committee during the 

academic program. 

 

This work is supported in part by funding provided by MITACS Accelerate program and the 

Canadian Foundation for Innovation under CFI Grant 36219 – “Accelerating innovations to adapt 

agro-environments to climate change: The Eastern Canadian Plant Phenotyping Platform”. 

  



IX 
 

Contributions of authors 

This dissertation consists of three manuscripts, of which the author was fully responsible for 

designing and building prototypes, synthesizing data, developing the conceptual framework and 

analytical approaches, including programming and data preparation/exploration, interpreting 

results, writing this dissertation and manuscripts, and presenting findings. However, this work 

could not have been achieved without the contribution of Dr. Viacheslav I. Adamchuk, the 

supervisor of this dissertation and the co-author of all manuscripts; Dr. Adamchuk provided 

scientific guidance, advice, and support in the development and reviewing of these manuscripts. 

 

Apart from that, Chapter 3 with the planned submission to Computers and Electronics in 

Agriculture was co-authored by Arlene Whitmore, John Lan, Dr. Martina Stromvik, and Dr. 

Valerio Hoyos Villegas. Arlene Whitmore, Dr. Martina Stromvik, Dr. Valerio Hoyos Villegas 

provided technical advice and support with materials. John Lan was instrumental in the assembly 

of the prototype and its field testing. Chapter 4 was co-authored by Benjamin de Leener, Gabriel 

Mangeat, and John Lan, and it is planned to be submitted to Biosystems Engineering. Benjamin de 

Leener and Gabriel Mangeat provided technical advice and support with materials. John Lan was 

instrumental in the assembly of the prototype and in its field testing. Chapter 5 with the planned 

submission to Precision Agriculture was co-authored by Benjamin de Leener, Gabriel Mangeat, 

and Dr. Valerio Hoyos Villegas. Benjamin de Leener and Gabriel Mangeat provided the dataset 

for training the prediction algorithm. Dr. Valerio Hoyos Villegas provided technical advice and 

support with materials.  

  



X 
 

Table of contents 

Abstract…………………………………………………………………………………. III 

Résumé…………………………………………………………………………………. V 

Acknowledgements…………………………………………………………………….. VII 

Contribution of authors…………………………………………………………………. IX 

Table of contents……………………………………………………………………….. X 

List of tables……………………………………………………………………………. XIII 

List of figures…………………………………………………………………………... XIV 

List of abbreviations and symbols……………………………………………………… XVII 

Chapter 1 Introduction…………………………………………………………………. 1 

1.1 General introduction……………………………………………………….. 1 

1.2 Statement of rationale……………………………………………………… 1 

1.3 Objective of the research…………………………………………………... 2 

Chapter 2 General literature review……………………………………………………. 3 

 2.1 High-Throughput Plant Phenotyping………………………………………. 3 

 2.2 Proximal Soil Sensing……………………………………………………… 6 

 2.3 Data processing……………………………………………………………. 8 

References for Chapter 2………………………………………………………………. 12 

Connecting text to Chapter 3…………………………………………………………... 17 

Chapter 3 Development of High-Throughput Plant Phenotyping platform…………… 18 

 Abstract………………………………………………………………………… 18 

 3.1 Introduction………………………………………………………………… 18 

 3.2 Materials and methods……………………………………………………… 21 



XI 
 

 3.3 Results and discussion……………………………………………………… 32 

 3.4 Conclusions………………………………………………………………… 47 

References for Chapter 3………………………………………………………………. 48 

Connecting text to Chapter 4…………………………………………………………… 50 

Chapter 4 Development of Proximal Soil Sensing platform…………………………… 51 

 Abstract………………………………………………………………………… 51 

 4.1 Introduction………………………………………………………………… 51 

 4.2 Materials and methods……………………………………………………… 54 

 4.3 Results and discussion……………………………………………………… 64 

 4.4 Conclusions………………………………………………………………… 68 

References for Chapter 4………………………………………………………………. 69 

Connecting text to Chapter 5…………………………………………………………… 70 

Chapter 5 Combined analysis of data collected from HTPP and PSS platforms………. 71 

 Abstract………………………………………………………………………… 71 

 5.1 Introduction………………………………………………………………… 71 

 5.2 Materials and methods……………………………………………………… 72 

 5.3 Results and discussion……………………………………………………… 81 

 5.4 Conclusions………………………………………………………………… 90 

References for Chapter 5…………………………………………………………….…. 92 

Chapter 6 Summary and general conclusions………………………………………….. 93 

 6.1 Summary…………………………………………………………………… 93 

 6.2 General conclusions………………………………………………………… 94 

Chapter 7 Contributions to knowledge and suggestions for future research…………… 95 



XII 
 

 7.1 Contributions to knowledge………………………………………………… 95 

 7.2 Suggestions for future research…………………………………………….. 95 

References……………………………………………………………………………… 97 

Appendices……………………………………………………………………………... 104  



XIII 
 

List of tables 

Table 3-1. Description of sensors included in platform….…………………………….. 22 

Table 3-2. Dates of data collection for first experiment……………………………….. 28 

Table 3-3. Dates of data collection for second experiment…………………………….. 29 

Table 5-1. Ranges of evaluated values for each soil property…………………………. 73 

Table 5-2. Transformations applied to soil spectra…………………………………….. 75 

Table 5-3. Dates of data collection for crop experiment……………………………….. 76 

Table 5-4. Prediction performance metrics for each chemical property……………….. 82 

Table 5-5. Variables selected for linear models of each phenotypical trait that maximized 

coefficient of determination across all dates………………………………….... 88 

  



XIV 
 

List of figures 

Figure 3-1. Block diagram of the HTPP platform……………………………………… 23 

Figure 3-2. Picture of handheld setup………..…………………………………………. 24 

Figure 3-3. CAD of conceptual design…………………………………………………. 25 

Figure 3-4. Picture of vehicle-mounted HTPP setup…………………………………… 26 

Figure 3-5. Screenshot of GUI (main window)………………………………………… 27 

Figure 3-6. Picture of typical plot………………………………………………………. 28 

Figure 3-7. Map of plot count…………………………………………………………... 30 

Figure 3-8. Map of the first treatment: plant density…………………………………… 30 

Figure 3-9. Map of the second treatment: row spacing………………………………… 31 

Figure 3-10. Histogram of replicates per bean variety/cultivar………………………… 31 

Figure 3-11. Daily average air temperature for dates of both experiments…………….. 32 

Figure 3-12. Map of NDRE for the first date…………………………………………… 33 

Figure 3-13. Probability density functions of NDRE by crop variety at the last date assuming 

normal distribution……………………………………………………………… 33 

Figure 3-14. Results of Tukey’s test for NDVI………………………………………… 34 

Figure 3-15. Results of Tukey’s test for CI…………………………………………….. 35 

Figure 3-16. Curve fitting of Knight Rider’s NDVI as a function of time in DAS…….. 36 

Figure 3-17. Results of Tukey’s test for yield among varieties………………………… 37 

Figure 3-18. Histogram of NDVI at last date for example plot with threshold between 

measurements assumed to be soil and measurements assumed to be plant tissue……… 38 

Figure 3-19. Map of NDRE at first date using maximum for aggregation…………….. 39 

Figure 3-20. Map of NDRE at last date using maximum for aggregation……………… 39 



XV 
 

Figure 3-21. Map of NDVI at first date using average for aggregation………………… 40 

Figure 3-22. Map of NDVI at last date using average for aggregation………………… 40 

Figure 3-23. Map of incident PAR at first date………………………………………… 41 

Figure 3-24. Map of incident PAR at last date…………………………………………. 41 

Figure 3-25. Map of air temperature at first date………………………………………. 42 

Figure 3-26. Histogram of yield………………………………………………………… 43 

Figure 3-27. Result of Tukey’s test for yield…………………………………………… 43 

Figure 3-28. Histograms of NDRE measurements for each date………………………. 44 

Figure 3-29. Histograms of CI measurements for each date…………………………… 44 

Figure 3-30. Evolution of phenotypical data per variety……………………………….. 45 

Figure 4-1. Picture of ChrysaLabs probe in prototype stage…………………………… 53 

Figure 4-2. Example of soil spectra measured by ChrysaLabs probe………………….. 53 

Figure 4-3. Screenshot of the finalized CAD of the PSS platform……………………... 55 

Figure 4-4. Picture of the finalized prototype………………………………………….. 57 

Figure 4-5. Picture of vehicle with prototype mounted………………………………… 57 

Figure 4-6. Pictures of tool connection steps…………………………………………… 59 

Figure 4-7. Pictures of tool disconnection steps………………………………………... 60 

Figure 4-8. Picture of the best-performing drill bit…………………………………….. 61 

Figure 4-9. Diagram of complete measurement cycle………………………………….. 62 

Figure 4-10. Map of soil sampling locations…………………………………………… 63 

Figure 4-11. Picture of hole arrangement………………………………………………. 63 

Figure 4-12. Map of Ca content in kg/ha for the shallow soil………………………….. 64 

Figure 4-13. Map of Ca content in kg/ha for the deep soil……………………………... 65 



XVI 
 

Figure 4-14. Map of organic matter content in % for the shallow soil…………………. 65 

Figure 4-15. Map of Al content in kg/ha for the deep soil……………………………… 66 

Figure 4-16. Subset of dataset showing normalized spectra in the visible range per depth 66 

Figure 5-1. Map of locations where plant and soil measurements were taken…………. 77 

Figure 5-2. Picture of hole arrangement………………………………………………… 77 

Figure 5-3. Map of the first treatment: plant density…………………………………… 78 

Figure 5-4. Map of the second treatment: row spacing………………………………… 78 

Figure 5-5. Diagram of variables used in models………………………………………. 80 

Figure 5-6. Histogram of replicates per bean variety/cultivar………………………….. 80 

Figure 5-7. Diagram describing data stages through the similarity-based procedure….. 81 

Figure 5-8. Comparison of RMSE values of CEC prediction for different methods…... 82 

Figure 5-9. Map of interpolated P content for shallow soil evaluated at locations of 

bean plots……………………………………………………………………….. 83 

Figure 5-10. Function fit for NDRE model on third date of data collection (August 24th) 84 

Figure 5-11. Residuals of NDRE model for third date of data collection (August 24th).. 84 

Figure 5-12. Result of Tukey’s test for yield without considering other factors……….. 85 

Figure 5-13. Result of Tukey’s test for yield residuals after considering other factors… 86 

Figure 5-14. Result of Tukey’s test for NDRE in the first date………………………… 86 

Figure 5-15. Result of Tukey’s test for NDRE in the last date…………………………. 87 

Figure 5-16. Effect sizes for CI on second date………………………………………… 89 

Figure 5-17. Effect sizes for Height on second date……………………………………. 90 

 

  



XVII 
 

List of abbreviations and symbols 

AI – Artificial Intelligence 

ANOVA – ANalysis Of VAriance 

ATR – Attenuated Total Reflectance 

CCC – Canopy Chlorophyll Content 

CEC – Cation Exchange Capacity  

CI – Chlorophyll Index 

DAS – Days After Seeding 

HTPP – High-Throughput Plant Phenotyping 

IDW – Inverse Distance Weighting 

LAI – Leaf Area Index 

LIDAR – LIght Detection And Ranging 

NDRE – Normalized Difference Red Edge 

index 

NDVI – Normalized Difference Vegetation 

Index 

NIR – Near InfraRed 

PA – Precision Agriculture 

PAR – Photosynthetically Active Radiation 

PSS – Proximal Soil Sensing 

QTL – Quantitative Trait Locus 

RGB – Red Green Blue 

SVR – Support Vector Regression 

UAV – Unmanned Aerial Vehicle 

VI – Vegetation Index 

Vis-NIR – Visible and Near InfraRed 

WSN – Wireless Sensor Network 

  



1 
 

CHAPTER 1 Introduction 

 

1.1 General introduction 

With an ever-increasing world population, crop production must increase both in yield and nutrient 

use efficiency to meet the world’s need for greater food production. . At the same time, climate 

change poses a threat to food security worldwide, by increasing the likelihood of events like floods 

and droughts. Many efforts are being made to confront these problems and move the agricultural 

industry forward. Precision Agriculture (PA), urban farming, and modern plant breeding have been 

developed to help growers meet current challenges. All of these strategies share a common need 

for data e.g. measurements of soil spatial variability in PA, concentration of hydroponic nutrients 

in urban farming, or any of the myriad plant traits considered in breeding programs.  

 

In the present work, Chapter 1 introduces the rationale and goals of the research. Chapter 2 presents 

a literature review of topics related to each specific objective. Chapter 3 describes the design and 

testing of an HTPP platform that also can measure atmospheric properties. Chapter 4 describes the 

design and testing of a PSS platform with drilling capabilities. Chapter 5 illustrates an example 

procedure to combine the data collected from both platforms by building models that express the 

plant phenotypical traits in terms of measured factors of plant growth. Chapter 6 summarizes the 

results and presents the general conclusions of the work. Finally, Chapter 7 highlights 

contributions to the knowledge evidenced through the research. 

 

1.2 Statement of rationale 

On-farm experimentation plays a key role in many of the techniques currently being explored to 
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improve efficiency of agricultural processes. Data collection to power agricultural decision-makers 

consumes significant time and labour, especially in outdoor conditions. Remote sensing offers the 

possibility to reduce this work, but not with the same level of spatial resolution as proximal 

sensing. This is the reason why automating the data collection step, or at least parts of it, could 

increase efficiency and profits for growing operations. Analysis of plant growth incorporating 

factors of the plants’ environment like soil properties have been developed before, but there are no 

tools specifically meant to work together for the purpose of combined data collection as a set of 

mobile platforms. Finally, the fact that many of the products available on the market are based on 

similar technologies requiring a large investment which poses a key limitation to the adoption of 

technologies for proximal sensing. 

 

1.3 Objective of the research 

The ultimate goal of this research was to evaluate the viability of combining data about the crop 

and its environment gathered using semi-automated platforms. 

 

The specific objectives of this research are summarized as follows: 

1. To develop a High-Throughput Plant Phenotyping (HTPP) platform (Chapter 3). 

2. To develop a Proximal Soil Sensing (PSS) platform (Chapter 4). 

3. To analyze the data gathered from the developed platforms (Chapter 5). 
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CHAPTER 2 General literature review 

A review of the literature regarding each of the specific objectives is presented in this chapter. The 

review is not meant to be exhaustive, but rather illustrative of some of the main ideas pertaining 

to the development of the systems described in this work. A gap in knowledge related to the 

combined collection of data from mobile platforms for plants, atmosphere and soil was identified. 

 

2.1 High-Throughput Plant Phenotyping 

A HTPP platform is a system to measure plant traits. In combination with genomics, plant 

phenotyping can be used to find QTL (Quantitative Trait Loci) i.e. measured plant traits can be 

linked with sections of DNA sequences. Properties that are commonly measured by HTPP 

platforms are the architecture of seeds, roots, storage organs, leaves, fruits, flowers, and entire 

canopies; processes like biomass productivity, photosynthesis, transpiration or yield formation; 

specific functions of organs or systems; and tolerance to different types of stress (Pieruschka & 

Schurr, 2019). To achieve this, different types of sensors are used, either to obtain direct 

measurements of the desired traits or to produce intermediate values that relate to them. Some of 

the most prominent types of sensors in HTPP are: 

“•Infrared thermography and imagery to scan temperature profiles/transpiration 

•Fluorescent microscopy/spectroscopy to assess photosynthetic rates 

•3D reconstruction to assess plant growth rate and structure 

•Light detection and ranging (LIDAR) to measure growth rates 

•Magnetic resonance imaging and positron emission tomography to measure growth 

patterns, root/leaf physiology, water relations, and/or assimilate translocation properties 

•Canopy spectral reflectance for monitoring dynamic complex traits 
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•Nuclear magnetic resonance for monitoring the structure of tissues, mapping water 

movements, and monitoring sucrose allocation 

•Digital RGB imaging for recording data on various attributes of roots, shoots, leaves, 

seeds, and grains” 

 (Mir et al., 2019) 

 

In most cases, however, HTPP platforms rely on sensor fusion to provide more complex 

information than any particular individual sensor could. While this increases computational costs, 

it is generally preferred to overcommitting to one type of sensor. Given the focus on canopy 

measurements, distance sensors, multi- and hyper-spectral sensors, and cameras combined with 

computer vision algorithms were highlighted. These sensors are very practical for aboveground 

measurements.  

 

First, multispectral sensing refers to measuring the absorption or reflection of light at specific 

wavelengths, providing information about the physical and chemical properties of the plant tissue. 

Examples of this technology included the use of Vegetation Indexes, like NDVI, related to plant 

vigor or nitrogen uptake. Hyperspectral sensing takes this concept further by analyzing hundreds 

of different wavelengths. While hyperspectral sensors could provide more complex data, in 

general, it is less reliable and durable, as well as more expensive. However, the biggest difference 

is in terms of their signal-to-noise ratio, with multispectral sensors typically having higher values.  

 

Second, distance sensors like laser rangefinders and ultrasonic time-of-flight sensors are useful for 

determining the size and shape of the canopy, especially when multiple degrees of freedom are 
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considered. Tracking the morphology of the canopy allows for a greater understanding of the 

growth processes and more accurate yield monitoring. 

 

Cameras combined with computer vision software extract information from the color of the pixels 

and from the size and shape of the canopy, as was performed with distance sensors, especially 

when multiple cameras were used. Cameras are commonly affordable, with most of the cost related 

to the development of the image processing algorithm. This is also true for configurations with 

multiple cameras, where the computational cost of stereo-vision algorithms increased 

considerably.  

 

An important concern for the type of sensor to be used is the need to measure the environment as 

part of the experimental design of HTPP platforms. This includes measurements of air temperature, 

pressure and moisture, as well as other measurements such as solar irradiance. This process, 

sometimes referred to as envirotyping, provides environmental information that maintains the rigor 

of the experimental statistics, working as metadata for the data collection step. It could also be 

useful to test for robustness of plant performance under different environmental conditions (Mir 

et al., 2019).  

 

An additional component in the sensor category is Global Navigation Satellite System (GNSS). 

These are central to georeferencing the measurements taken, providing the ability to create maps 

of the field by the measured characteristics and to study the spatial relationship of the traits. 
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Different institutions and researchers have developed HTPP platforms, some of which are offered 

commercially e.g. LemnaTec, Phenokey, PhenoSpex, Photon System Instruments, Wiwam, and 

We Provide Solutions (Gehan & Kellogg, 2017)1. Companies may also offer HTPP as a service 

e.g. KeyGene’s PhenoFab. Despite the existence of these solutions, the adoption of HTPP 

platforms has not achieved its full potential. This is partly because most of the current offerings 

are focused on controlled environments, like greenhouses. Furthermore, as evidenced in the work 

of Reynolds et al. (2019), there are significant costs related to the implementation of phenotyping 

platforms. Despite the cost, even the phenotyping systems requiring the highest human/capital 

investments can have high cost-benefit when genetic gains are significantly boosted or when the 

achieved understanding of physiology and genetics of the breeding germplasm can be developed 

into novel, more accessible phenotyping assays, and potentially molecular markers for rapid 

screening (Reynolds et al., 2020). 

 

For HTPP platforms based on ground-vehicles, full or partial autonomous driving is a feature with 

great potential. This kind of tool could help reduce the workload of operators, while making the 

entire process faster and more efficient. Many implementations of autonomous navigation for 

HTPP platforms leverage local information, like crop rows, to improve the localization estimation 

of the platform (Schwarz et al., 2013).  

 

2.2 Proximal Soil Sensing 

PSS is an emerging area of technologies that enables the determination of physical and chemical  

 
1 Mention of a trade name, proprietary product, or company name is for presentation clarity and 

does not imply endorsement by the authors or McGill University, nor the exclusion of other 

products that may also be suitable. 
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soil characteristics when sensors are placed in proximity to the soil being tested. “Proximal Soil 

Sensing provides soil scientists with an effective approach that can be used to learn more about 

the soil and so improve management in terms of economic benefits to the farmer and reduced 

environmental impacts from farming activities” (Viscarra-Rossel & Adamchuk, 2013).  

 

The most common tools used in PSS are ground-penetrating radar, electromagnetic induction, and 

electrical resistivity, according to Adamchuk et al. (2017). In Adamchuk et al. (2018), some of the 

limitations of soil spectroscopy regarding the prediction of plant available soil nutrients are noted. 

Nonetheless, the authors recognize the technology’s potential. According to Viscarra-Rossel et al. 

(2011), in the past couple of decades, the use of spectroscopy in soil is rising due to its speed, low 

cost, and simplicity. Optical reflectance spectroscopy is mentioned as having potential for 

expanded use, especially in high-intensity surveys. There is interest from the industry in PSS 

platforms that use Vis-NIR (Visible and Near InfraRed) spectroscopy for soil mapping, as 

evidenced by the availability of OpticMapper and P4000 (Veris Technologies, Inc., Salinas, KS, 

USA), as well as SoilReader (SoilReader, Winnipeg, Canada) and the ChrysaLabs probe 

(ChrysaLabs, Inc., Montréal, Canada).  

 

Many applications of PSS include accessing below the superficial top layer to characterize the soil 

at different depths. A typical example would be the insertion of a probe connected to an EC-meter. 

For this, it is often desirable to have opened a hole before the probe goes in. Drilling is just one of 

the possible options to open holes in soil (Dainese & Ercoli Finzi, 2006). Though their application 

is in space, they chose a drill because of the ease of controlling depth and light-weight constraints, 

both desired attributes shared by a mobile platform for PSS. Ye et al. (2015) showed that the 
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geometric parameters of the auger drill bit can be optimized to reduce power consumption. A 

control loop in the motor driving the drill can be added to control variable rotational and 

penetration speeds and provide a robust response to changes in soil characteristics, like hardness 

and compaction (Olsson, Robertsson, & Johansson, 2015). Guaranteeing the straightness and 

smoothness of the walls of the hole is desirable, so that the stresses on the sensor probe and 

interruptions in the area of contact between the probe surface and the soil are minimized. 

 

2.3 Data processing 

Given the large amount of data that could become available when the technologies mentioned in 

the previous sections become mainstream, it is important to discuss the potential ways it could be 

used. In Ranjan et al. (2019), yield is predicted from a group of Vegetation Indexes (VIs) in relation 

to different management practices i.e. strip tillage and irrigation. In Tagarakis et al. (2019) crop 

yield is explained by soil and irrigation data through a crop growth model. This can be considered 

an example of on-farm experimentation with geo-referenced data (Piepho et al., 2011). The 

simultaneous evaluation of crop and soil data allows for better insight into the processes of plant 

growth, as in von Hebel et al. (2018), where the combined use of crop and soil data is reported to 

determine the effect of subsurface soil properties on plant performance by studying the Pearson 

correlation coefficient. 

 

Because the interpretation of soil spectroscopy is not necessarily straightforward, multivariate 

methods are frequently used to create prediction models (Carra et al., 2019). Examples of the 

mentioned methods related with Vis-NIR spectroscopy are found in Xu et al. (2018). With the 

recent advances in Artificial Intelligence and Machine Learning algorithms, more tools are 
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available to extract the information from different data sources. Many of these techniques when 

used for the prediction of chemical properties are covered by the discipline of chemometrics, which 

uses mathematical, statistical and computer applications to reveal the hidden information from 

chemical analyses (Barra et al., 2021). Organic matter, pH, P, K, Fe, Ca, Na, Mg, and CEC are 

some of the soil properties frequently reported in the literature of soil spectroscopy (Stenberg et 

al., 2010). 

 

Machine Learning methods are also used to model yield using as explanatory variables soil 

properties, environmental data, and a crop spectral measurement; multiple methods were 

compared, among others, counter-propagation artificial neural networks and support-vector 

machine, which produced accuracies of 0.89 and 0.95, respectively (Nyeki et al., 2019). This 

difference in performance, given the same datasets, is evidence that the selection of the analysis 

method is critical. Similarly, soil properties are used as explanatory variables to model the yield 

of a sugarcane field using a Random Forests technique (Sanches, Graziano Magalhaes, & 

Junqueira Franco, 2019). The way to move this idea further would be to make more accurate 

evaluations of treatments or varieties by differentiating accurately the effect of soil and weather 

on the plant phenotypical traits from the results of the studied treatment and its interactions with 

other factors.  

 

A model was built to predict yield and other crop traits using canopy cover estimated based on 

images from a digital camera (Hoyos-Villegas et al., 2014). The predictor variables in this model 

combine different measurement times, which shows how the relative importance of certain 

variables changes throughout the growing period. While not being measured, soil data is included 
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in the setup in the form of using different topsoil depths as the treatment that distinguishes different 

groups to represent variable soil water holding capacities, and thus, influenced crop water deficit 

stress. 

 

The previously mentioned studies use relatively simple models to describe the relationship 

between a set of properties of interest and certain predictor variables. These relationships are often 

limited in terms of exportability and ability to generalize. A more holistic approach is referred to 

as crop modelling, where the entirety of the plant processes is considered and simulated. APSIM 

(Holzworth et al., 2014) and DSSAT (Hoogenboom et al., 2019) are some examples of crop 

models. Soil and environmental data are crucial in this type of modelling where plant development 

uses information on moisture availability by simulating storage and movement of water in the root 

zone, based on soil physical properties (Kuang et al., 2012). It is possible to use the HTPP and 

PSS platforms mentioned in the previous sections to provide data for the crop models and 

inversely, to use the insight from the crop models to guide the behaviour of the platforms. 

 

Thus far, the reported literature discusses analysis performed as a step separate from the data 

collection. But it is also possible to consider real-time processing of crop information, for example, 

in the context of variable rate spraying, where the rate is adjusted based on canopy measurements 

(Zaman, Schumann, & Miller, 2005). There is the potential to improve the efficacy of this kind of 

implementation by integrating data about the initial nutrient content in the soil. Finally, during the 

data collection step, the gathered information can be used as it is being collected to prioritize 

scouting of regions of the field where more uncertainty has been detected. Examples are found in 

Liu, Crowe, & Roberge (2009), even if limited to the topography of the field, and Oger, Vismara, 
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& Tisseyre (2019), where the locations to collect yield samples were selected optimally based on 

NDVI measurements. A combination of these approaches would be ideal. 
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Connecting text to Chapter 3 

From the literature review, a knowledge gap was identified regarding the development of mobile 

platforms for combined data collection that can facilitate the process of building models of plant 

phenotypical traits. The necessity to combine phenotypical and environmental information to 

support on-farm experimentation was described in the previous chapter. Addressing this issue 

starts with the development of a HTPP platform. Chapter 3 is related to the first objective as listed 

in Chapter 1. In this chapter, the development of a mobile platform with hardware and software 

components is reported. Additionally, testing was conducted in comparison with a handheld unit. 

Initial design considerations were published at the conferences listed below and the final research 

findings are under preparation for a journal publication. 

 

R. Buelvas, V.I. Adamchuk, J. Lan, V. Hoyos-Villegas, A. Whitmore, & M. Stromvik. (2021). 

Evaluation of a quick-install rapid phenotyping system. Computers and Electronics in 
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V.I. Adamchuk, & R. Buelvas. (2020). Integration approach to proximal plant sensing. 

International Conference on Digital Technologies for Sustainable Crop Production. 
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quick-install rapid phenotyping system. 2019 ASABE Annual International Meeting. 

Boston, MA, USA. July 7-10, 2019 
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CHAPTER 3 Development of High-Throughput Plant Phenotyping platform 

 

Abstract 

In recent years, HTPP platforms have been developed and used in greenhouses and other controlled 

environments. Yet, the need remains for similar systems with the ability to take measurements of 

plant traits in open fields to become as accessible. This paper presents the design and evaluation 

for a phenotyping system aiming to address this issue. A combination of ultrasonic and 

multispectral measurements of the crop canopy with diverse measurements of environmental 

conditions allows for the collection and processing of field data at a relatively low cost. The 

combination of these features makes for a complete system with the goal of mapping crop status 

across a field. In a field experiment, it was found that the system could cover 5,400 m2/h, almost 

a 50-fold increase in throughput as compared with a manual setup with similar sensors. Proper use 

of this technology would support the study of plant responses to different treatments or stresses. 

 

Keywords: Multispectral, Phenotyping, Sensing, Ultrasonic, Vegetation Index 

 

3.1 Introduction 

The main advantage of HTPP compared to other phenotyping approaches is the potential to 

increase the resolution of the data, both in spatial and temporal terms. By acquiring information 

about plant traits with higher spatial resolutions, it is possible to better understand within-field 

variability and move the focus to individual plants or even individual plant organs rather than 

entire canopies. The increased temporal resolution offers the possibility to study time interval‐

specific QTL and other time-dependant phenomena (Knoch et al., 2020). This concern for spatial 

and temporal resolution is also evidenced in the selection of the platform where plant phenotyping 
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takes place. While many works like Rossi et al. (2020) focus on HTPP platforms for controlled 

environments, there are also others using the HTPP perspective for outdoor use based on fixed and 

mobile structures. This includes ground-vehicles, UAVs, cable-mounted systems, or combinations 

of them (Mir et al., 2019). 

 

Plant breeding is a possible area where a system like the one proposed could provide benefits. This 

is a context where providing a framework for the screening and selection of different crop varieties 

is key in plant breeding programs. Developments in HTPP to quantitatively measure key traits will 

increase accuracy of the selection process while reducing costs. The increment in through-put can 

also be used to increment the size of the breeding program to enable higher selection intensity, 

another factor in the genetic gain per time as defined in Equation (3-1), where Rt is the genetic 

gain per time, i is the selection intensity, r is the selection accuracy, σA is the genetic variability, 

and y is the number of years per cycle (Araus et al., 2018). 

𝑅𝑡 =
𝑖𝑟𝜎𝐴

𝑦
 (3 − 1) 

Inclusion of weather data in on-farm experimentation is a step to reduce the effect that factors 

other than the genome have on measured plant traits, referred to as envirotyping. In the breeding 

context, this approach could help speed up variety commercialization by increasing selection 

accuracy, improving multienvironmental trials, and optimizing variety evaluation (Xu et al., 

2017). Envirotyping is particularly desirable thanks to its benefits for the comparison of multi-year 

experiments and helps with the generalization potential of the experimental results. The most 

common types of sensing systems for this purpose rely on fixed structures, either as a weather 

station placed in a central location or as Wireless Sensor Networks (WSN) which can cover a wide 

area (Reynolds et al., 2019). With the former, spatial variability of atmospheric conditions within 
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the field is not taken into account, and with the latter, the installation cost scales up with the area 

covered as more nodes are required in the network. An economical alternative is to have a mobile 

platform which can take this type of environmental measurements, potentially complemented by 

a weather station. 

 

HTPP platforms based on ground vehicles typically mount the sensors directly in the front or rear 

of the vehicle. This creates a problem whereby the vehicle is meant to be driven through, or above, 

the planted plots. This could be challenging even at the early stage of crops for several reasons i.e. 

the soil could be damaged by the vehicle, the status of the rows might not be appropriate for 

efficient vehicle circulation. Lateral booms reaching over the plots from a vehicle driven all-

weather traffic lanes is one option to overcome this (Andrade-Sanchez et al., 2014). In other words, 

to limit the vehicle to dedicated lanes and use a lateral boom that stretches over the crops.  

 

The goal of this project was to design a HTPP platform for use in field conditions. The system 

should be able to take canopy measurements from different types of crops at an early stage and is 

based on the quick-install concept (Pouliot, 2016), so that users could mount the system on a 

vehicle they already own and unmount it if they need the vehicle for a different operation involving 

other attachments. The original design considerations were presented in further detail in Buelvas 

et al. (2019). 

 

A system that combines phenotyping and envirotyping allows for the collection of data and 

provides a context at the same time. This moves the process a step closer to the ultimate goal of 

equipping all kind of growers with a tool for rapid, non-destructive, reliable, and affordable 
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assessment of their crops. In this work, such a system is proposed and evaluated in a field planted 

with dry beans (Phaseolus vulgaris). The application of HTPP in beans and pulses is not typically 

found in the literature (Yang et al., 2020). 

 

3.2 Materials and methods 

 

3.2.1 Electronic subsystem 

The sensors included in the HTPP platform were: 

• 6 multispectral sensors ACS-435 (Holland Scientific, Lincoln, NE, USA) 

• 6 ultrasonic sensors ToughSonic 14 (Senix, Hinesburg, VT, USA) 

• 2 RGB cameras C525 (Logitech, Lausanne, Switzerland) 

• 2 environmental sensors DAS43X (Holland Scientific, Lincoln, NE, USA) 

• 1 GNSS unit 19X (Garmin Ltd., Olathe, KS, USA)  

 

Except for the GNSS unit, the set of sensors was divided in two identical halves, one for each side 

of the HTPP platform. Some of their parameters are described in Table 3-1. Besides the already 

mentioned sensors, other components in this subsystem were a laptop computer as the control 

terminal, two 8-Port USB to Serial Hubs (StarTech.com Ltd, London, ON, Canada), and two 

power banks of 20,000 mAh. The power banks, serial hubs, and their connectors were located 

inside plastic enclosures for additional protection. The computer ran the Graphical User Interface 

(GUI) for the operator to monitor and adjust the behavior of the system. The serial hubs are 

required to facilitate the connections of the previously mentioned sensors to the terminal. Figure 

3-1 illustrates the connections between the different electronic components of the HTPP. 
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Table 3-1. Description of sensors included in platform 
P

ar
am

et
er

s 

6
7
0
n
m

 r
ed

 m
ea

su
re

m
en

t 
b
an

d
 

7
3
0
n
m

 r
ed

-e
d
g

e 
m

ea
su

re
m

en
t 

b
an

d
 

7
8
0
n
m

 N
IR

 m
ea

su
re

m
en

t 
b
an

d
s 

~
4
0
° 

b
y
 ~

1
0
° 

fi
el

d
 o

f 
v
ie

w
 

 0
.1

m
-4

.3
m

 o
p
er

at
in

g
 r

an
g
e 

0
.2

%
 o

f 
ra

n
g

e 
re

p
ea

ta
b
il

it
y

 

7
2
0
p
 r

es
o
lu

ti
o
n

 

3
0
fp

s 

6
8
° 

fi
el

d
 o

f 
v
ie

w
 

±
0
.3

°C
 a

ir
 t

em
p
er

at
u
re

 a
cc

u
ra

cy
 

±
4
%

 F
S

 r
el

at
iv

e 
h
u
m

id
it

y
 a

cc
u
ra

cy
 

±
1
.5

%
 F

S
 a

tm
o
sp

h
er

ic
 p

re
ss

u
re

 a
cc

u
ra

cy
 

 N
M

E
A

 0
1
8
3

 f
o
rm

at
 

<
1
5
m

 G
P

S
 p

o
si

ti
o
n
 a

cc
u
ra

cy
 

M
ea

su
re

d
 v

ar
ia

b
le

s 

N
D

V
I,

 N
D

R
E

, 
C

I*
, 
p

ro
x

y
 L

A
I,

 p
ro

x
y
 C

C
C

, 
p
ro

x
y
 d

is
ta

n
ce

, 

R
ed

, 
R

ed
-E

d
g
e,

 a
n
d
 N

IR
 

 *
: 

C
o
m

p
u
te

d
 f

ro
m

 R
ed

-E
d
g
e 

an
d
 N

IR
  

D
is

ta
n
ce

 

V
id

eo
 

U
p
w

el
li

n
g
 P

A
R

, 
D

o
w

n
w

el
li

n
g
 P

A
R

, 
C

an
o
p
y
 t

em
p
er

at
u
re

, 

A
ir

 t
em

p
er

at
u
re

, 
R

el
at

iv
e 

h
u
m

id
it

y
, 

an
d
 A

tm
o
sp

h
er

ic
 

p
re

ss
u
re

 

L
o
n
g
it

u
d
e,

 L
at

it
u
d
e,

 A
lt

it
u
d
e,

 S
p
ee

d
, 

an
d
 H

ea
d
in

g
 

S
en

so
r 

ty
p
e 

M
u
lt

is
p
ec

tr
al

 

U
lt

ra
so

n
ic

 

C
am

er
a 

E
n
v
ir

o
n
m

en
ta

l 

G
N

S
S

 



23 
 

 
Figure 3-1. Block diagram of the HTPP platform 

A handheld version of the system with a subset of its components was made at an earlier stage 

with a multispectral sensor, an ultrasonic sensor, a power bank, and a tablet Yuma 2 (Trimble Inc., 

Sunnyvale, CA, USA) with its GPS receiver. This handheld setup was used both to prototype the 

operation of the HTPP platform and to compare ergonomic performance. One difference between 

this setup and the vehicle-mounted HTPP platform is that for the multispectral sensor, the older 

model ACS-430 (Holland Scientific, Lincoln, NE, USA) was used rather than the ACS-435. Both 

models measure reflectance at 3 bands: NIR, Red-Edge, and Red, as well as two VIs: NDVI and 

NDRE, shown in Equations (3-2) and (3-3), respectively. The ACS-435 also provides proxy 

Distance, proxy LAI (Leaf Area Index), and proxy CCC (Canopy Chlorophyll Content). In both 

cases an additional VI was computed: CI (Chlorophyll Index), as defined by Equation (3-4). 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (3 − 2) 

𝑁𝐷𝑅𝐸 =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 (3 − 3) 

𝐶𝐼 =  
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒
− 1 (3 − 4) 



24 
 

NDVI is relevant because it is the VI with the most widespread usage. NDRE is a similar measure 

that helps overcome problems with saturation at late phenological stages, one of the shortcomings 

of NDVI. While both NDVI and NDRE are popular for their general-purpose applicability, CI was 

chosen as a more focused VI to complement the other two, which correlates with total chlorophyll 

content of the leaves. 

 

The properties measured by the environmental sensor DAS43X were air temperature, air humidity, 

atmospheric pressure, incident Photosynthetically Active Radiation (PAR), and reflected PAR. 

The ultrasonic sensor measured distance between itself and the target canopy, which can then used 

to compute plant height. 

 

3.2.2 Mechanical subsystem 

A handheld version of the HTPP platform with a subset of the components was built at an earlier 

stage to compare the ergonomic performance. The basic structure imitates a staff with the sensor 

near the top. Figure 3-2 illustrates this handheld setup. 

 
Figure 3-2. Picture of handheld setup 
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Figure 3-3 illustrates the concept of the system mounted on a sprayer boom attached to an 

agricultural vehicle. The CAD model of the tractor was provided by Marko Voigtländer and that 

of the sprayer by Shaffic Ssenyimba through GrabCAD (GrabCAD, Inc., Cambridge, MA, USA). 

The mechanical design was made using Autodesk Inventor 2018 (Autodesk, Inc., San Rafael, CA, 

USA). 

 
Figure 3-3. CAD of conceptual design 

 

For the vehicle-mounted setup, the main structural component of the mechanical subsystem is a 

bar clamp with two swivel pads on each jaw pivot to grip nearly any shape. This provides 

confidence in the mounting capabilities of the brackets on different types of vehicles or on sprayer 

booms without prior knowledge of their exact geometry. Sensing units can be mounted on each 

side of the sprayer boom or similar toolbar using aluminum L-brackets bolted to the bar clamp. 

 

The vehicle, a Gator 850D XUV (John Deere, Moline, IL, USA), was equipped with a custom 

horizontal beam, made by mounting aluminum bars with steel L-brackets to its trunk, so that they 

could extend 1.5 m to the sides of the vehicle. A steel thread connected to the furthermost end of 
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the beam was used to keep the beam bars straight. A small winch was used to tighten the steel 

thread. 3D printed brackets were made to attach cameras to the top corners of the frame of the 

Gator, as well as the GNSS antenna. Figure 3-4 shows a picture of the system. 

 
Figure 3-4. Picture of vehicle-mounted HTPP setup 

 

3.2.3 Software subsystem 

A Python (Python Software Foundation, Beaverton, OR, USA) script relying on open-source 

libraries was made to locally log the measurements from all sensors into text files and display the 

UI. Within it, there is information for the operator about the sensors that are connected, a map 

tracking the location of the vehicle, video streaming of the cameras, and real-time plots of the 

sensor readings. A bar of tabs was used to change between the plots of the several measured 

variables. Certain settings could be modified, like the spacing between the sensors and it offered 

the ability to disengage any subset of the sensors. Figure 3-5 shows a screenshot of the main 

window. The handheld version of the platform ran a preliminary version of the same code with 

reduced functionalities. 
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Figure 3-5. Screenshot of GUI (main window) 

 

3.2.4 Experimental design 

A first experiment with the handheld system took place during the summer 2019. The plants were 

sown on June 21st, 2019 at the Emile A. Lods Agronomy Research Center of Macdonald Campus, 

McGill University, divided in 22 plots, arranged in a grid of 2 by 11. 11 different bean 

varieties/cultivars (Phaseolus vulgaris) were grown, with 2 replicates for each. The varieties were 

Apex, Argosy, Calmant, Compass, Dresden, Knight Rider, Majesty, Mast, Nautica, Red Rider, 

and Sheek. In each plot, there were 4 crop rows. Measurements were taken on each plot on the 

dates listed in Table 3-2, including a geo-reference and a timestamp. For each plot and date, 8 

locations were selected as spread out as possible to collect the data. All plots were exposed to the 

same management practices and were the same size (4.5 m by 1.5 m, for an area of 6.75 m2). The 

plants were harvested on October 7th, 2019 and the grain yield was measured. Finally, Figure 3-6 

shows a picture of the typical plots used in the experiments. 
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Table 3-2. Dates of data collection for first experiment 

Date Days After Seeding Start time End time 

July 5th, 2019 14 12:31 14:12 

July 25th, 2019 34 16:07 17:32 

August 20th, 2019 60 14:20 16:05 

September 18th, 2019 89 13:03 14:43 

 

 
Figure 3-6. Picture of typical plot 

 

A second experiment with the vehicle-mounted HTPP platform was performed during the summer 

2020. This time, plants were sown on June 1st, 2020 divided among 242 plots, arranged in a grid 

of 11 x 22. This experiment took place in a different field of the Emile A. Lods Agronomy 

Research Center of Macdonald Campus, McGill University. Thirty-six different bean varieties 

were grown, and two different treatments were applied: row spacing being either 22 in. (559 mm) 

or 30 in. (762 mm), and the plant density 10,000 plants/acre (~24,700 plants/ha) or 15,000 

plants/acre (~37,100 plants/ha). Again, all plots were the same size (5 m by 3 m, for a total area of 

15 m2) and included 4 crop rows within. While collection of data started on July 28th, 2020, the 
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first set of dates for surveying was dedicated to fine-tuning some of the system parameters. Table 

3-3 illustrates the dates of data collection that were used for the analysis. On these dates, the 

vehicle-mounted HTPP platform would drive through the alleys between plots as close to a 

constant speed of 0.8 m/s as was possible for the operator and collect measurements on-the-go 

from each side. The sampling rate was 165 Hz, so a new sensor reading was processed every 6 

minutes. Cameras were set to record at about 3 fps. The plants were harvested on October 6th, 2020 

and the grain yield was measured. For each plot, only the 2 innermost crop rows were counted for 

the yield measurement. 

Table 3-3. Dates of data collection for second experiment 

Date Days After Seeding Start time End time 

August 17th, 2020 77 13:04 13:49 

August 20th, 2020 80 15:47 16:28 

August 24th, 2020 84 12:49 13:29 

August 27th, 2020 87 14:27 15:10 

August 31st, 2020 91 13:32 14:13 

September 3rd, 2020 94 15:35 16:15 

 

Figure 3-7 illustrates the location of each plot in the field. Figures 3-8 and 3-9 show the applied 

treatments in terms of management practices. Figure 3-10 illustrates the number of plots that were 

assigned to each crop variety. This histogram shows that most varieties only have 1 or 2 replicates, 

while a few have more than 10. As shown in the figure, a split was made along that line into two 

datasets A and B. Only the 9 varieties in dataset B were used to perform statistical analysis, in 

order not to have big differences in the number of observations.  

 

For both experiments, the data was saved as text files, which were parsed to comma-separated 

values file format by a Python script and then imported to MATLAB (MathWorks, Natick, MA, 

USA) for additional processing. 
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Figure 3-7. Map of plot count 

 

 
Figure 3-8. Map of the first treatment: plant density 

 



31 
 

 
Figure 3-9. Map of the second treatment: row spacing 

 

 
Figure 3-10. Histogram of replicates per bean variety/cultivar 
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As part of the exploratory data analysis, descriptive statistics were computed, assumption of 

normal distribution evaluated, and repeated measures ANOVA and Tukey’s tests performed. The 

public records of a nearby weather station operated by Environment and Climate Change Canada 

at coordinates 45°25'38" N, 73°55'45" W (about 700 m away from the locations of both fields) 

were referenced. Figure 3-11 shows that both experiments were conducted under similar weather 

conditions.  

 
Figure 3-11. Daily average air temperature for dates of both experiments 

 

3.3 Results and discussion 

 

3.3.1 Handheld experiment 

Figure 3-12 shows a map of NDRE points over a satellite image of the field as an illustration of 

the spatial variability of the measurements. Figure 3-13 illustrates the probability distribution of 

each variety for a given date under the assumption that they are normally distributed. From this 

plot, it is hard to tell which type of bean is the best variety, but it is possible to say that Nautica, 

Sheek, and Compass are underperforming compared to the rest. The results of ANOVA with 
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repeated measurements over time are shown in Appendix 4. This latter test shows that both time 

and the interaction between the variety and time are significant for all the evaluated VIs. When 

considering the variety as a discrete factor that explains variability in the measured plant traits, its 

effect varies with time. 

 
Figure 3-12. Map of NDRE for the first date 

 
Figure 3-13. Probability density functions of NDRE by crop variety at the last date assuming 

normal distribution 
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Figures 3-14 to 3-15 go further by applying Tukey’s test for each date to determine the differences 

between varieties which are statistically significant. This was done separately for each of the 

measured phenotypical variables, and the plots show NDVI and CI as examples. The error bars 

indicate the confidence intervals, and when they do not overlap, the differences are statistically 

significant. Frequently, it is possible to find such differences among the best and worst performing 

varieties for specific dates. Another important insight is that all VIs will generally agree on ranking 

the varieties from highest to lowest for the same date. 

 

Using a model is a way of addressing the different responses through time. Given the limited 

number of points, a quadratic polynomial function was chosen. The models were fitted for each 

pair of variety and VI, in the form described by Equation (3-5), where 𝜃 represents the set of 

parameters a, b, and c, which depend on the variety, and 𝜀 is the random error for each observation. 

𝑉𝐼 = 𝑓(𝑡; 𝜃(𝑣𝑎𝑟𝑖𝑒𝑡𝑦)) + 𝜀 = 𝑎 ∗ 𝑡2 + 𝑏 ∗ 𝑡 + 𝑐 + 𝜀 (3 − 5) 

 
Figure 3-14. Results of Tukey’s test for NDVI 
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Figure 3-15. Results of Tukey’s test for CI 

 

The results of the regressions showed that all but one of the varieties had coefficients of 

determination above 0.7 when fitted with the previously mentioned model, with the values ranging 

from 0.62 to 0.90 and average of 0.78. Also, all the parameters were found to be statistically 

significant with 95% confidence intervals. Figure 3-16 shows an example of one of these, for the 

case of the NDVI of the Knight Rider variety. Nonetheless, there is large unexplained variance 

among samples of the same date. 

 

Using the model, it is possible to compare the varieties by their highest value, denoted P, computed 

in terms of the parameters according to Equation (3-6), given that the function is a concave 

parabola. Another interesting metric is a growth rate computed as the highest value P divided by 

the time it takes to reach the peak, as described by Equation (3-7), in this case denoted R. Given 

that during the regression, each parameter was found along with a 95% confidence interval, the 
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confidence interval values can be used to find the standard error of P and R, using the propagation 

of error equations (3-8) and (3-9). 

 
Figure 3-16. Curve fitting of Knight Rider’s NDVI as a function of time in DAS 
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Appendix 5 summarizes these findings for NDRE, but similar behavior was found for NDVI and 

CI. While it would be possible to classify Calmant, Knight Rider, Apex, and Red Rider as over-

performing; Sheek and Compass as under-performing; and the rest as average, there is no specific 
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variety that has a statistically significant dominance over the others for the entire time domain in 

this dataset. 

 

In terms of yield, there were no significant differences among varieties, as evidenced by the results 

of Tukey’s test, as shown in Figure 3-17. This test was done after a one-way ANOVA where the 

variety was the only explanatory factor. The plot only shows 9 out of the 11 varieties because for 

the other two (Red Rider and Calmant) at least one of the replicates could not be harvested as a 

result of decay.  

 
Figure 3-17. Results of Tukey’s test for yield among varieties 

 

3.3.2 Vehicle-mounted experiment 

As mentioned before, only the 9 varieties with more than 10 replicates were used to perform the 

statistical analysis. The measurements from the DAS43X sensor were aggregated by averaging 

over the plots. For the multispectral and ultrasonic sensor, it was important to reduce the effect of 
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soil patches inevitably measured inside the field of view of the sensor given the spacing between 

the crop rows. Because of this, the phenotypical data was aggregated per plot by two methods: (1) 

finding the maximum and (2) calculating the mean of the values above a certain threshold, found 

through analyzing the histograms of the readings and using the principle of Otsu’s method to find 

the optimal threshold. This was a result of the histogram showing a bimodal distribution, assumed 

to be the sum of two normal distributions: one below the threshold for soil and one above it for 

plant tissue, as depicted in Figure 3-18. Finally, Figures 3-19 to 3-25 present some of the properties 

mapped by the system. For a few plots, no phenotypical data was available, either because the 

plants sown there were removed at an earlier date or because they were inaccessible to the HTPP 

platform because some structures had to be avoided. 

 
Figure 3-18. Histogram of NDVI at last date for example plot with threshold between 

measurements assumed to be soil and measurements assumed to be plant tissue  
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Figure 3-19. Map of NDRE at first date using maximum for aggregation 

 

 
Figure 3-20. Map of NDRE at last date using maximum for aggregation 
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Figure 3-21. Map of NDVI at first date using average for aggregation 

 

 
Figure 3-22. Map of NDVI at last date using average for aggregation 
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Figure 3-23. Map of incident PAR at first date 

 

 
Figure 3-24. Map of incident PAR at last date 
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Figure 3-25. Map of air temperature at first date 

 

When calculating the yield, beans that had suffered from mold by harvest time or that were the 

result of cross-contamination were filtered out. By eliminating those, the values of grain yield were 

comparatively smaller than those of the first experiment, as shown by the histogram in Figure 26 

and the results of the Tukey’s test in Figure 27. Similarly, Figures 3-28 and 3-29 show the 

histograms for NDRE and CI across all the dates. For these figures, only the values aggregated by 

the average method are shown but follow a similar trend as the maximum values. Finally, Figure 

3-30 displays the average behaviour of the variables across time per variety, along with the 

standard deviation. In general, the values of the measured variables decreased as time passed, as 

expected given the overall trend seen in the first experiment and the phenological stage of the crop 

around these dates. 
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 Figure 3-26. Histogram of yield 

 

 
Figure 3-27. Result of Tukey’s test for yield 

 



44 
 

 
Figure 3-28. Histograms of NDRE measurements for each date 

 

 
Figure 3-29. Histograms of CI measurements for each date 
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Figure 3-30. Evolution of phenotypical data per variety 
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3.3.3 Comparison 

The average duration of the data collection for the first experiment with the handheld setup was 

just above 1.5 hours, for a field size of 150 m2. The rate being 100 m2/h. With the vehicle-mounted 

HTPP platform, the average time was slightly more than 45 min, for a field of size 3,600 m2. 

Consequently, the rate was 5,400 m2/h, more than 50 times faster, even with the low travel speed 

of the vehicle as it scanned the field.  

 

The ability to include the environmental sensors and the cameras, as well as increased comfort for 

the operator is also an advantage. On the other hand, it is easier for an operator with the handheld 

setup to reach inner parts of the plots, as they can walk more safely between crop rows when that 

would be too risky for the vehicle. As a result of this, while the 8 measured locations within a plot 

represent about 10% of the area of the plot, they are distributed all around the possible surfaces 

and as such, could be a more representative sample of the population. Instead, for the vehicle-

mounted HTPP platform, the covered area represents almost 40% of the plot’s surface, with the 

caveat that it is concentrated near the edges of the plot closest to the alleys where driving is 

possible. The vehicle-mounted platform offers more consistent distancing between the sensors and 

the target i.e. the top of the canopy, at the cost of increased vibrations from the vehicle’s engine.  

 

While the system was tested in a light-weight utility vehicle, an interesting approach to consider 

would be to mount it in a high-clearance vehicle, which would allow access to more areas of the 

field. There is a trend towards this type of vehicle in similar scenarios. An additional consideration 

is the potential for this system to be mounted on an autonomous vehicle that can be driven without 

an operator. In such a scenario, the system could monitor the field continuously. 
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3.4 Conclusions 

Both the ultrasonic and multispectral sensors provide information about crop status. The height 

measured from the ultrasonic sensor is an important parameter of crop architectonics by itself. 

Some breeding techniques have been used to adjust the height of certain crops to better match with 

the range covered by combine harvesters. Height can be related with canopy volume. The different 

VIs measured are less frequently used as traits by themselves, but they can relate with multiple 

other properties like plant vigor and canopy coverage. The combination of both types of sensors 

could be used as an example to improve the prediction of biomass, where the height relates with 

the volume of the canopy and the VIs with the density of the canopy. 

 

The proposed vehicle-mounted HTPP platform provides the ability to map phenotypical and 

environmental data across a field in an efficient manner. Crop modelling techniques can benefit 

from the availability of such data at multiple scales. Comparison against the handheld setup shows 

that both options have strengths and drawbacks, as mentioned in Section 3.3.3, and ultimately it 

will depend on many factors such as field size and the goal of the experiment to determine if the 

investment in a HTPP platform can be justified. Nonetheless, the ideas presented in this work serve 

as progress towards low-cost HTPP platforms. Further research is required to leverage the video 

recorded from the cameras, a potential resource underutilized in this work, to extract additional 

plant traits. 
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Connecting text to Chapter 4 

 

Chapter 4 is related to the second objective of this study listed in Chapter 1. In the previous chapter, 

the development of an HTPP platform which also allowed for envirotyping was evaluated. A 

natural extension of this approach would be to include soil information to get as close as possible 

to completely characterizing the environment in which the plant expresses its phenotype. The 

following chapter aims to address that by developing a PSS platform based on Vis-NIR 

spectroscopy, a technique that allows soil spectra to relate to a wide array of soil physical and 

chemical properties. Results obtained from this project were partially reported and published as a 

conference meeting paper listed below and the final research findings are under preparation for a 

journal publication. 

 

R. Buelvas, V.I. Adamchuk, J. Lan, B. de Leener, & G. Mangeat. (2021). Evaluation of a semi-

automated in-situ soil sensor using Vis-NIR spectroscopy. Biosystems Engineering. (To be 

submitted) 

 

R. Buelvas, V.I. Adamchuk, B. de Leener, & G. Mangeat. (2020). Development of a semi-

automated in-situ soil sensor using Vis-NIR spectroscopy. 2020 ASABE Annual 

International Meeting. Omaha, MA, USA. July 12-15, 2020 
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CHAPTER 4 Development of Proximal Soil Sensing platform 

 

Abstract 

Soil spectroscopy technology has great potential for PSS. In particular when combined with the 

automation required for on-the-spot sampling and a platform capable of controlling measurement 

depth. The present work evaluates the development of a soil sensor system, equipped with a 

vertical drill to facilitate the collection of depth-specific measurements. The ChrysaLabs probe 

performs Vis-NIR spectroscopy in situ with 360° optical integration. The ability of the user to 

command complete measurement cycles from inside the vehicle’s cabin improves the ergonomics 

and logistics of data collection surveys. The results showed the system was able to collect 

measurements at 4 depths with an average time of 3 min per measurement. Proper use of this 

technology would support the adoption of technologies for real-time determination of spatially 

variable soil characteristics. 

 

Keywords: Automation, On-the-spot sampling, Proximal Soil Sensing, Vis-NIR spectroscopy. 

 

4.1 Introduction 

PSS offers an alternative to traditional soil lab analysis which allows for in situ and real-time 

measurements. According to (Nocita et al., 2015), the overall accuracy of soil spectroscopy 

applications might be improved by obtaining soil data in more locations, at different times, and at 

various depths. The last component of multi-depth measurements is a key difference with remote 

sensing, a complementary approach which has also seen growth in recent times. Currently, 

acquiring soil measurements over large areas can be a long and tedious task. In this context, 
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automating data collection has the potential to increase efficiency and affordability of high-density 

soil sensing. Many other challenges make in-situ soil analysis impracticable for non-experienced 

users e.g. inserting a soil probe into the soil can be difficult under certain conditions.  

 

ChrysaLabs (ChrysaLabs Inc., Montréal, Canada) has developed and patented a portable optical 

probe that improves the signal-to-noise ratio (SNR) of in situ soil spectroscopy. The technology 

consists of a tubular light collector combined with a Vis-NIR spectrometer and LEDs, which 

readily provides instantaneous analysis of soil minerals and characteristics. This sensor provides 

hyperspectral readings that can be related with the soil physical or chemical properties like organic 

matter or nitrogen content. Given its fragile structure, however, it requires a hole to be opened in 

the soil beforehand. 

 

The system should be able to take on-the-spot soil measurements at controlled depths by inserting 

the ChrysaLabs Probe, depicted in Figure 4-1. The design of this system would be similar to that 

of the soil analyzer in Adamchuk, Dhawale, & Rene-Laforest (2014). Low vibrations are 

particularly desired to guarantee the straightness of the hole, thus, ensuring that the stresses on the 

sensor probe and interruptions in the area of contact between the probe surface and the soil are 

minimized. Finally, the system can be quickly mounted and dismounted on many suitable, 

commercially available, agricultural vehicles. 

 

Figure 4-2 shows the graph of example soil spectra collected with the ChrysaLabs probe from 240 

locations. Multiple processing methods use this kind of data as input to predict soil chemical 
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properties, like pH or the concentrations of P, K, or Ca, as well as physical properties like soil 

texture (Stenberg et al., 2010). 

 
Figure 4-1. Picture of ChrysaLabs probe in prototype stage 

 

 
Figure 4-2. Example of a portion of soil spectral response measured by ChrysaLabs probe 
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The objective of this research was to design, build, and evaluate a system with the characteristics 

mentioned above. The combination of these features makes for a soil mapping system that could 

benefit growers and agronomists. 

 

4.2 Materials and methods 

 

4.2.1 Platform development 

The ChrysaLabs probe has a built-in hyperspectral sensor which measures light reflected from the 

soil through a circular window. The measurement bands cover visible and near-infrared segments 

of the light spectrum. The sensor is encased in a metallic probe. One way to open the required 

borehole is to use a vertical drill with a soil auger, which can be automated and mounted on a 

vehicle. A linear actuator can be used to push both the drill and the probe into the soil, allowing 

for precise depth control. To use only one linear actuator for both operations, a tool-change 

mechanism is required, so that the drill or the probe to link and unlink from the linear actuator. 

Part of this mechanism requires a mobile tool holder which can select which tool to use next and 

to place it close to the linear actuator. A third tool was added, a smooth rod working as a press, to 

expand the hole opened by the drill to its final dimension. 

 

The CAD design of the system is presented in Figure 4-3. The parts in orange were custom 

manufactured by laser cutting and metal bending, while the other components were commercially 

available. The main frame was welded, and the rest of the components were bolted together into 

the assembly. A simplified version was built first to test the drilling capabilities without having to 

worry about the probe itself. The hole should have at least a 1 in. (25.4 mm) diameter and 100 mm 
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depth, though greater depths are desirable. There is a guide to ensure the alignment of the vertical 

axis near the bottom of the structure. A solenoid was used to hold the tool in place once inserted 

into the connector. The electronics were placed inside an enclosure at the middle height of the 

central beam. The frame was arranged in an L-shape with a foot that fits into a standard 2 in. 

(50.8 mm) vehicle hitch and is assembled from square steel beams. 

 
Figure 4-3. Screenshot of the finalized CAD of the PSS platform  

 

The linear actuator used in this system was a PA-17 (Progressive Automations, Inc., Richmond, 

Canada) with a stroke of 24 in. (610 mm), with an integrated absolute encoder. The motor and 

gearbox for the drill were RS550 and P61S-4444 (BaneBots LLC, Loveland, CO, USA). The 

vehicle used with the prototype was a Suzuki Grand Vitara (Suzuki Motor Corporation, 
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Hamamatsu, Japan). The slider mechanism was built around a T-slotted rail (Servocity LLC, 

Winfield, KA, USA), with an outer U-channel surrounding the rail and sliding through it with the 

support of mini V-wheels. This slider mechanism was driven by a PA-14P linear actuator 

(Progressive Automations, Inc., Richmond, Canada) with a stroke of 18 in. (457 mm). Tool holders 

were added with fixed spacing. 

 

The prototype was connected to the probe by USB and could transmit the sensor readings by Wi-

Fi using the smartphone app of ChrysaLabs. This communication does not require an Internet 

connection. The prototype was controlled by commands sent through Bluetooth from the same 

smartphone using the Serial Bluetooth Terminal v1.12 app (Kai Morich, Hockenheim, Germany). 

A Raspberry Pi 3 Model B (Raspberry Pi Foundation, Cambridge, UK) received the Bluetooth 

commands and responded by performing the associated task as defined by the Python script. In 

most cases, tasks required communication with the motor drivers, Roboclaw 2x15A Motor 

Controller (Basic Micro, Temecula, CA, USA) (e.g., adjusting motor speeds). One of the motor 

drivers was connected to both the horizontal and vertical linear actuator, the other motor driver 

controlled the drill and the solenoid. The linear actuators have an integrated absolute encoder for 

position feedback and the drill motor has an external current sensor for feedback. The motor drivers 

themselves have current sensors for all its ports, but the external current sensor was added to the 

drill because the higher resolution was desired. The current sensor interfaced with the Raspberry 

Pi by an Analog-to-Digital Converter ADS1115 (Zhiwei Robotics Corp, Shanghai, China). All the 

electronics were powered from the vehicle’s battery via a cigarette lighter adapter. A DC-DC 

converter was required to step down the voltage to 5V for the power supply of the smaller 

electronic components. An emergency stop button was added in case of an emergency and two 
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relays are used to safely disengage the power supply when it is pressed. Figures 4-4 and 4-5 show 

pictures of the finalized prototype.  

 
Figure 4-4. Picture of the finalized prototype 

 

 
Figure 4-5. Picture of vehicle with prototype mounted 
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The sliding mechanism for tool change followed these steps for connecting the tool to the vertical 

linear actuator:  

(1) The vertical linear actuator was extended so that the slot of the connector and the top 

end of the tool were at the same level.  

(2) The horizontal linear actuator was extended and inserted the tool into the slot of the 

connector. 

(3) The solenoid was activated, pushing a pin inside a notch at the top end of the tool, to 

hold it inside the connector.  

(4) The vertical linear actuator was retracted and pulled the tool up, so the hook that 

attached it to the sliding mechanism could now make contact on a segment with a 

smaller radius, loosening the spring.  

(5) The horizontal linear actuator was retracted, and the tool detached from the hook and 

remained connected to the vertical linear actuator.  

(6) The solenoid was deactivated to prevent overheating, while the tool remained 

connected given the geometry of the slot.  

 

This process is illustrated in Figure 4-6. After this, the vertical linear actuator could extend or 

retract freely to insert the tool in the ground and use it. The sliding mechanism was constrained to 

a small movement range while the vertical linear actuator was extended with a tool attached, to 

prevent self-collision. All the tools were mounted by standard top ends and holders to facilitate 

this process. 
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Figure 4-6. Pictures depicting steps for tool connection 
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Once the system finished using a certain tool and needed to return it to its support, the process 

was:  

(1) The vertical linear actuator was retracted so that the tool was at the same level as the hook.  

(2) The horizontal linear actuator was extended and pushed into the receiving end of the tool 

until it clicked into place surrounded by the hook.  

(3) The horizontal linear actuator was retracted and because the tool was held by the hook, it 

remained attached to it. 

The linear actuator could then be retracted and the sliding mechanism moved to the next tool and 

the process was repeated for each tool, at every location. All the tools can be easily replaced, if 

necessary. 

  

 
Figure 4-7. Pictures depicting steps for tool disconnection 
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A first test was done with multiple types of drill bits mounted on a hand drill. The candidate drill 

bits were: Twist Drill, SDS Bit, Flat Bit, Ship Auger, and Soil Auger. The criteria used was the 

cleanliness of the hole and the relative ease of use with the hand drill. From the evaluated drill bits, 

the one that seemed to work best was a Ship Auger type, normally used for wood applications, 

depicted in Figure 4-8. This type of drill bit produced the cleanest hole. The voltage and current 

ratings of the hand drill were later used to select the motor. 

 
Figure 4-8. Picture of the best-performing drill bit 

 

Finally, Figure 4-9 illustrates the measurement cycle timeline. The total measurement time per 

location was about 12 minutes. In that time, 4 measurements were performed at 4 different depths 

of 50, 70, 90, and 110 mm. The maximum current required was 8 A, but only when the drill motor 

and the vertical linear actuator were operating at the same time. 

 

4.2.2 Experimental design 

Soil samples were collected with a generic soil sampler (JMC, Clements Associates Inc., Newton, 

Indiana, USA) and with the prototype PSS platform in three fields of the Emile A. Lods Agronomy 

Research Center of Macdonald Campus, McGill University. In each of the fields, six locations 

were measured, as shown in Figure 4-10. At each location, the prototype PSS platform collected 
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the spectral response of the soil at four different depths, by placing the middle of the probe’s 

window at 50, 70, 90, and 110 mm below the surface level. Then, four more holes were made with 

the soil sampler to the sides of the original hole made by the PSS platform, as illustrated by Figure 

4-11. The soil cores collected by the soil sampler were divided into shallow (between surface level 

and 152 mm) and deep (between 152 mm and 305 mm), stored in soil bags and labelled for later 

standard laboratory analysis. The soil sampling was done on October 23rd and 24th, 2020. The 

laboratory analysis was performed on October 29th, 2020 by A & L Labs (A & L Canada 

Laboratories, Inc., London, ON, Canada). Maps were made with ArcGIS Online (ESRI, Redlands, 

CA, USA). 

 
Figure 4-9. Diagram of complete measurement cycle 

 

Time (s)
Vertical linear 

actuator

Horizontal 

linear actuator 

& Solenoid

Drill motor Sensor probe Raspberry Pi Current (A)

45 Select drill 2

65 3

85 Drill 8

135 Retract 4

205 Select press 2

225 3

245 5

285 Retract 3.5

355 Select probe 2

375 Extend 3

440 Measure 1

445 Extend 3

510 Measure 1

515 Extend 3

580 Measure 1

585 Extend 3

650 Measure 1

690 Retract 3

715 Return probe 2

Process

Extend

Extend
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Figure 4-10. Map of soil sampling locations 

 

 
Figure 4-11. Picture of hole arrangement 
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4.3 Results and discussion 

Mounting and dismounting the system from the vehicle was found to be an easy operation for two 

people. All the measurements were georeferenced and Figures 4-12 to 4-15 show maps of the soil 

attributes measured by the lab analysis at those locations, which confirms soil variability both 

between and within the fields. The properties measured were organic matter content, P, K, Mg, 

Ca, Na, Al, K/Mg ratio, water pH, buffer pH, Cation Exchange Capacity (CEC), and percentages 

of saturation for P, K, Mg, Ca, Na, Al, and H. The previously mentioned variability is reflected in 

the spectral response of the soil, illustrated by Figure 4-16. For each of the depths, a subset of the 

raw spectra collected from the visible channel of the probe in the range from 435 nm to 694 nm is 

shown. Following the previously described procedures, it is possible to build a dataset of soil 

spectra and target attributes to predict soil attributes. Different processing and modelling 

techniques can then be used to find the appropriate relationships between them.  

 
Figure 4-12. Map of Ca content in kg/ha for the shallow soil 
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Figure 4-13. Map of Ca content in kg/ha for the deep soil 

 

 
Figure 4-14. Map of organic matter content in % for the shallow soil 
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Figure 4-15. Map of Al content in kg/ha for the deep soil 

 

 
Figure 4-16. Subset of dataset showing normalized spectra in the visible range per depth 
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Considering the nature of the system as a prototype, the sensor probe of the PSS platform was 

missing certain features i.e. complete sealing from moisture. Because of this, the sensor readings 

had biases. The maximum depth for a hole opened with the PSS platform was 230 mm. While the 

duration of the measurement cycle was 12 minutes per location, it is no longer than what would 

be required for a traditional soil sampling setup. However, it is worth considering that 

measurements are being taken at four different depths, which would average about 3 minutes per 

sensor reading including all the operations of opening the borehole. That is without including the 

fact that once proper prediction models have been trained for the target soil properties, it is possible 

to obtain the information about the soil attributes in real-time, without the need to send the samples 

to a laboratory. The system could be further sped up by replacing some of the linear actuators with 

similar overall power but different gear ratios, making them faster at the price of a reduced 

maximum load. The linear actuators chosen in this design were deliberately over-dimensioned as 

a safety factor in case it was found more force was required, but for the vertical linear actuator, it 

was found that only about 300 lbs (1,300 N) were ever needed, even at peak load. As a reference, 

the vertical linear actuator was rated for a maximum load of 850 lbs (3,800 N). With that 

adjustment, the time for the complete measurement cycle could easily be reduced to less than 

10 min. The same would hold true for the horizontal linear actuator. 

 

The increased spatial resolution followed by precise control of the depth at which measurements 

are taken is also an advantage, as 3D soil mapping could be realized with this technology. Another 

consideration is the comfort of the operator, who could collect all the data from inside the cabin of 

the vehicle without being exposed to excessive sun when it is hot or wind chill when it is cold. 

Finally, it is possible to mount this system on an autonomous vehicle to minimize downtime.  
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4.4 Conclusions 

The proposed PSS platform provides the ability to map soil data across fields at controlled depths. 

Successful completion of drilling and probe insertion was achieved. The system collected 

measurements with an average time of 3 min per measurement at multiple depths. The design of 

the platform had considerations of weight, power, and size constraints. Soil modelling techniques 

can benefit from the ability to acquire this data in an efficient manner. The advantages of this 

system in terms of ergonomics and multi-depth positioning provide an alternative to promote the 

adoption of PSS technologies, especially in the context of low-cost platforms. Further research is 

required to integrate prediction models into the measurement cycle to provide complete in situ and 

real-time soil analysis. 
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Connecting text to Chapter 5 

 

Chapter 5 is related to the third objective of this study listed in Chapter 1. The previous chapter 

presented the development of a PSS platform to complement the HTPP platform described in 

Chapter 3. The following chapter proposes a technique for relating the soil spectral response with 

the soil chemical properties and then discusses the combination of the data from both platforms 

with the aim of providing benefits with on-farm experimentation. The results of this project were 

prepared in a manuscript for the journal listed below. 

 

R. Buelvas, V.I. Adamchuk, V. Hoyos-Villegas, G. Mangeat, & B. de Leener. (2021). 

Combination of phenotyping and envirotyping as a tool to assess bean growth and yield. 

Precision Agriculture. (To be submitted) 
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CHAPTER 5 Combined analysis of data collected from HTPP and PSS platforms 

 

Abstract 

The implementation of a novel similarity-based prediction algorithm was used to find models 

describing the relationship between soil spectroscopy and the soil chemical properties. 

Coefficients of determination around 0.5 were achieved. A dataset was assembled from the 

measurements of HTPP and PSS platforms. The effects of soil and weather factors were considered 

during the evaluation of bean varieties by physical traits. The proposed framework for on-farm 

experimentation could be beneficial for growers, plant breeders, and the agricultural industry as a 

whole.  

 

Keywords: Chemometrics, Data analysis, Modelling, Plants, Spectroscopy, Soil 

 

5.1 Introduction 

Plant phenotype is produced as the result of the combined effect of the plant’s genome, the 

management practices used, and the environment to which the plant must adapt (Kanso et al., 

2020). When designing on-farm experiments, the cultivars of the plants and the treatments to be 

applied are known beforehand. However, spatial and temporal variability in weather and soil 

conditions have to be accounted for during the experiment. Randomized designs are used to 

minimize the effect such factors could play in the analyzed variables, but as the complexity of 

experimental design increases, the number of replicates required scales up as well. An alternative 

approach is to measure and characterize the environmental variables across the experiment and 

subtract their effect from that of other factors of plant growth, allowing for better comparisons 
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(Reynolds et al., 2020). This approach is better suited for compounding data collected from 

multiple experiments, in different years and geographical locations, to build plant models that 

generalize under diverse scenarios. Collecting the data required to feed the training of the 

algorithms to build models in the most efficient way is a current topic of research, as well as finding 

the best techniques for extracting information from the raw data (Coppens et al., 2017). Multiple 

techniques are used for analyzing data in the agricultural context, including modern and complex 

methods applying Artificial Intelligence (AI). A method of this type was used in Shinde (2017) to 

optimize fertilizer applications. 

 

In this research, a data workflow was proposed for comparing different cultivars in terms of certain 

physical traits while considering environmental factors. The starting point is the type of data 

collected from the HTPP and PSS platforms developed in Chapters 3 and 4. Finding models that 

relate soil spectral response with its chemical properties is key to this process. 

 

5.2 Materials and methods 

 

5.2.1 Prediction of soil chemical properties 

The similarity method presented in Shinde (2017) is based on Equations (5-1) to (5-3). 

𝜆𝑗,𝑢 = ∏ (1 − 𝛿𝜆𝑘 |
𝑥𝑘,𝑗 − 𝑥𝑘,𝑢

𝑥𝑘,𝑚𝑎𝑥 − 𝑥𝑘,𝑚𝑖𝑛
|)

𝑞𝐾

𝑘=1

 (5 − 1) 

𝜀𝑖,𝑗 = (𝑌𝑖 − 𝑌𝑗)𝜆𝑗  (5 − 2) 
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𝑝(𝑌𝑖) =

𝑒
−

(0−𝑎𝑣𝑔(𝜀𝑖))
2

2∗𝑠𝑡𝑑(𝜀𝑖)

√2𝜋 ∗ 𝑠𝑡𝑑(𝜀𝑖)

∑
𝑒

−
(0−𝑎𝑣𝑔(𝜀𝑖))

2

2∗𝑠𝑡𝑑(𝜀𝑖)

√2𝜋 ∗ 𝑠𝑡𝑑(𝜀𝑖)
𝑁
𝑖=1

 (5 − 3) 

In the above equations, 𝜆 are the similarity coefficients among the observations and 𝜀 is the 

estimated error for a possible value 𝑌𝑖. Bringing these general equations to the context of 

chemometrics, the feature 𝑥𝑘 would correspond to the spectral response of the soil at specific 

wavelengths and K the total number of such features in the bandwidth. The values of 𝑌𝑖 would be 

all the possible values that the chemical property in question could take e.g. 1 to 14 in the case of 

pH. 𝑝(𝑌𝑖) is the probability that 𝑌𝑖 has 0 error i.e. meaning it is the correct prediction. The result 

of this process is a probability distribution which covers all possible values of the target variable. 

To make this computation practical, a predefined range and resolution must be chosen for 

candidate values, 𝑌𝑖. Table 5-1 lists the ranges considered for the soil properties in the dataset. For 

all properties, the resolution was chosen so that 400 values were evaluated in the range. Finally, 

an individual prediction can be chosen by finding the center of mass of the probability density 

function or by choosing the value at which the peak probability is found. 

Table 5-1. Ranges of evaluated values for each soil property 

Soil property Minimum value Maximum value 

Water pH 3 11 

Buffer pH 3 11 

Organic matter 0 8 

P 3 500 

K 30 1800 

Ca 100 17500 

Mg 30 2500 

Al 200 1800 

CEC 5 50 

P-Al 0.0002 1 
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Because different types of transformations and pre-processing could be applied to the soil spectral 

response, Equation (5-1) was replaced by Equation (5-4), where the Kth root is evaluated to make 

the values of 𝜆 independent of the number of features evaluated. This makes the formula akin to a 

geometrical mean. The values of q and 𝛿𝜆𝑘 are considered hyperparameters of the method.  

𝜆𝑗,𝑢 = √∏ (1 − 𝛿𝜆𝑘 |
𝑥𝑘,𝑗 − 𝑥𝑘,𝑢

𝑥𝑘,𝑚𝑎𝑥 − 𝑥𝑘,𝑚𝑖𝑛
|)

𝑞𝐾

𝑘=1

𝐾

= ∏ (1 − 𝛿𝜆𝑘 |
𝑥𝑘,𝑗 − 𝑥𝑘,𝑢

𝑥𝑘,𝑚𝑎𝑥 − 𝑥𝑘,𝑚𝑖𝑛
|)

𝑞/𝐾𝐾

𝑘=1

 (5 − 4) 

An implementation of this algorithm was done by creating a class whose parents are BaseEstimator 

and RegressorMixin from scikit-learn (Pedregosa et al., 2011). This allows compatibility with 

other functions of the library to facilitate its use. A tool to draw different profiles of 𝛿𝜆𝑘 was also 

created. Multiple types of transformations were applied and evaluated with the regression method, 

as indicated by Table 5-2. The parameters q and 𝛿𝜆𝑘 were optimized by grid search among a list 

of predefined values. 

 

The proposed regression method was trained with data collected in 2019 using the ChrysaLabs 

probe (ChrysaLabs, Inc., Montréal, QC, Canada) for the soil spectral response and traditional 

laboratory analysis for the target chemical properties. The dataset included measurements of water 

pH, buffer pH, organic matter, P, K, Ca, Mg, Al, P/Al ratio, and CEC for 240 locations from 7 

different fields. The data was collected by manually opening a borehole and inserting the probe. 

10-fold cross-validation was used and the coefficients of determination and RMSE values were 

used as performance metrics. Other methods, including linear regression, Support Vector 

Regression (SVR), and random forests, were also used with this dataset for comparison.. 
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Table 5-2. Transformations applied to soil spectra 

Transformation name Description 

Normalization Apply linear rescaling to the range [0,1] 

Standardization Subtract average and divide by standard deviation 

Power transformation Apply Yeo-Johnson method (Yeo & Johnson, 2000) 

Filtering Apply Savitzky-Golay filter 

Differentiation Compute numeric derivation 

Differentiation & Division Compute numeric derivation and divide by original signal 

Detrend Remove linear trend along axis from data 

Log Apply natural logarithm 

Root Apply square root 

FFT Apply 1-D discrete Fourier transform 

Square Elevate to the power of 2 

Inverse Elevate to the power of -1 

PCA 
Reduce to first n principal components. Evaluated values of n 

included 5, 7, 9, and 11 

Function concatenation 

Serial combination of other transformation methods. For 

example, normalize the original spectra and then detrend the 

normalized spectra 

Vector concatenation 

Parallel combination of other transformation methods. For 

example, normalize the original spectra, detrend the original 

spectra, and then create a new vector with both 

 

5.2.2 Comparison of crop varieties 

Plant data was collected with the vehicle-mounted HTPP platform developed in Chapter 3 during 

the summer 2020. Thirty-six different bean (Phaseolus vulgaris) varieties/cultivars were sown on 

June 1st, 2020 divided among 242 plots, arranged in a grid of 11 x 22. This experiment took place 

in a field of the Emile A. Lods Agronomy Research Center of Macdonald Campus, McGill 

University. All plots were the same size (5 m by 3 m, for a total area of 15 m2) and included 4 crop 

rows. Data started to be collected on July 28th, 2020, the first set of dates for surveying was 

dedicated to fine-tune some of the system parameters. Table 5-3 illustrates the dates of data 

collection that were used for the analysis. On these dates, the vehicle-mounted HTPP platform 

would drive through the alleys in between plots as close to a constant speed of 0.8 m/s as possible 

for the operator to collect measurements on-the-go from each side. The variables measured 
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included NDRE, NDVI, CI, and height. The plants were harvested on October 6th, 2020 and the 

grain yield was measured. For each plot, only the 2 innermost crop rows were counted for the yield 

measurement.  

Table 5-3. Dates of data collection for crop experiment 

Date Days After Seeding 

August 17th, 2020 77 

August 20th, 2020 80 

August 24th, 2020 84 

August 27th, 2020 87 

August 31st, 2020 91 

September 3rd, 2020 94 

 

Soil samples were collected with a generic soil sampler (JMC, Clements Associates Inc., Newton, 

Indiana, USA) and with the prototype PSS platform developed in Chapter 4 in the same field of 

the Emile A. Lods Agronomy Research Center of Macdonald Campus, McGill University where 

the beans had been planted. Six locations were measured, as shown in Figure 5-1. At each location, 

the prototype PSS platform collected the spectral response of the soil at four different depths, by 

placing the middle of the probe’s window at 50, 70, 90, and 110 mm below the surface level. Then, 

four more holes were made with the soil sampler to the sides of the original hole made by the PSS 

platform, as illustrated by Figure 5-2. The soil cores, collected by the soil sampler, were divided 

into shallow (between surface level and 152 mm) and deep (between 152 mm and 305 mm), stored 

in soil bags and labelled for later, standard laboratory analysis. The soil sampling was done on 

October 23rd and 24th, 2020. The laboratory analysis was performed on October 29th, 2020 by A & 

L Labs (A & L Canada Laboratories Inc., London, ON, Canada) and measured organic matter 

content, P, K, Mg, Ca, Na, Al, K/Mg ratio, water pH, buffer pH, Cation Exchange Capacity (CEC), 

and percentages of saturation for P, K, Mg, Ca, Na, Al, and H. Maps were made with ArcGIS 

Online (ESRI, Redlands, CA, USA). The measurements from those six locations were interpolated 
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using Inverse Distance Weighting (IDW). The values were then evaluated for all the center 

locations of the plots where beans were planted. 

 
Figure 5-1. Map of locations where plant and soil measurements were taken 

 

 
Figure 5-2. Picture of hole arrangement 
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For the plots where beans were planted, two different treatments were applied: row spacing being 

either 22 in. (559 mm) or 30 in. (762 mm), and the plant density 10,000 plants/acre (~24,700 

plants/ha) or 15,000 plants/acre (~37,100 plants/ha). The distribution of the treatments is shown 

in Figure 5-3 and 5-4. 

 
Figure 5-3. Map of the first treatment: plant density 

 

 
Figure 5-4. Map of the second treatment: row spacing 
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For processing, linear models were built where the phenotypical data for each of the measurement 

dates plus the yield were the dependent variable and the management practices, soil, and measured 

weather factors, as shown in Figure 5-5, were independent variables. Each linear model was 

iteratively evaluated by adding new variables, one at a time out of the set of predictors. The 

coefficient of determination was evaluated for each date and then averaged across all dates. The 

models which maximized the coefficient of determination for all six dates were chosen as a way 

to prevent overfitting for specific dates. The weather variables were considered in four ways:  

(a) Only the weather data of the same date as the phenotypical data was used. 

(b) Only the weather data of the previous measured date as the phenotypical data was used. 

(c) The average of all weather data until the same date as the phenotypical data was used. 

(d) The average of all weather data until the previous measured date as the phenotypical data 

was used. 

 

For the first date of measurements, since there are no previous days, only method (a) was used. 

Once the best models were found, the residuals were computed by subtracting the predicted value 

from the actual value. Then a one-way ANOVA was performed with the variety as the explanatory 

factor. Tukey’s test was performed to evaluate the effect of the varieties on the residuals. Only 

those varieties with more than 10 replicates, labelled as Dataset B in Figure 5-6, were considered 

in the statistical analysis. 
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Figure 5-5. Diagram of variables used in models 

 

 
Figure 5-6. Histogram of replicates per bean variety/cultivar 
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5.3 Results and discussion 

 

5.3.1 Prediction of soil chemical properties 

Figure 5-7 shows the process that a single point goes through in the prediction process when the 

similarity-based procedure is used. While a single prediction is produced at the end, the probability 

distribution itself contains other information which might be relevant for decision-making.  

 

Figure 5-7. Diagram describing data stages through the similarity-based procedure 

 

Figure 5-8 shows, in the case of CEC prediction, the RMSE of different supervised learning 

methods, including the similarity-based procedure proposed. For each, the best-performing feature 

transformations were used. Table 5-4 illustrates the best results for each of the measured soil 

properties by using both the similarity-based procedure and the best of the other methods. 
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Figure 5-8. Comparison of RMSE values of CEC prediction for different methods 

 

Table 5-4. Prediction performance metrics for each chemical property 

 Similarity Other methods 

Property R2 RMSE Method R2 RMSE 

Water pH 0.43 0.42 Bayesian Ridge 0.50 0.39 

Buffer pH 0.41 0.32 SVR 0.40 0.32 

organic matter, % 0.45 0.85 Bayesian Ridge 0.50 0.81 

P, ppm 0.59 50.1 Bayesian Ridge 0.50 55.5 

K, ppm 0.37 199 Bayesian Ridge 0.49 178 

Ca, ppm 0.49 2170 Bayesian Ridge 0.63 1845 

Mg, ppm 0.61 332 SVR 0.63 322 

Al, ppm 0.20 148 Bayesian Ridge 0.36 132 

P-Al 0.49 0.074 Bayesian Ridge 0.40 0.081 

CEC, mg eq./100 g 0.60 4.44 Bayesian Ridge 0.48 5.09 

 

While in some cases, as for P and CEC, the proposed algorithm performs better than the other 

methods evaluated, in others it underperforms, as for K and Ca. Overall, it is in the same order of 

magnitude and might be considered a valuable addition to the toolset of supervised learning 

algorithms. A limiting factor to the performance of the similarity-based procedure is the 
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performance when few points with similar features are in the dataset. This results in the algorithm 

are especially susceptible to unbalanced training data. 

 

5.3.2 Comparison of crop varieties 

Figure 5-9 shows an example of the interpolated soil properties for the case of P content. Using 

NDRE as an example, Figures 5-10 illustrates the regression fit with the environmental and 

managerial data. Figure 5-11 shows the residuals in terms of the NDRE model built from 

environmental and managerial data. The residuals would later be used as the input for the ANOVA 

and Tukey’s tests. As this is still an intermediate step, it will not be necessarily randomly 

distributed. 

 
Figure 5-9. Map of interpolated P content for shallow soil evaluated at locations of bean plots 
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Figure 5-10. Function fit for NDRE model on third date of data collection (August 24th) 

 

 
Figure 5-11. Residuals of NDRE model for third date of data collection (August 24th) 
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Figures 5-12 and 5-13 compare the effect of the variety on the yield before and after considering 

the effect of environmental and managerial factors. While there are many similarities between the 

two cases, a key difference is that the Blackbeard variety went from 4th to 2nd place after 

considering the additional factors. Following a similar procedure, Figures 5-14 and 5-15 show the 

results of the Tukey’s test for NDRE for the first and last dates of data collection. Additional dates 

are shown in Appendices 6 to 9. Other properties followed a similar trend. When comparing the 

results of the effect of the variety on yield against the effect of the variety on other phenotypical 

traits, like the VIs, Blackbeard performed above average in general, but it was a source of 

discrepancy between the yield and VIs. Only by evaluating with a holistic view that includes the 

additional factors is it possible to realize that there is more agreement between both perspectives. 

 
Figure 5-12. Result of Tukey’s test for yield without considering other factors 
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Figure 5-13. Result of Tukey’s test for yield residuals after considering other factors 

 

 
Figure 5-14. Result of Tukey’s test for NDRE in the first date 
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Figure 5-15. Result of Tukey’s test for NDRE in the last date 

 

Table 5-5 recounts which variables were selected in the iterative process to build the linear models 

to provide the best fit, following the procedure described in Section 5.2.2. For the weather factors, 

the number in between brackets identifies the approach used to leverage the fact that the variables 

had been measured multiple times. The first approach of just using the information from the same 

date as the target phenotypical variable was the best performing option in most cases. For certain 

dates, the previous measurement date provided an even better prediction, but as mentioned before, 

only the best performing option across all dates was selected. Only in the case of Height was it 

found that some of the other approaches worked best for all dates. Shallow organic matter was 

found in all models, confirming it as a variable that consistently has explanatory power. The same 

can be said about air temperature and PAR, which are key atmospheric variables, included in all 

the built models. More than these results, though, is the procedure to obtain this type of information 

that must be highlighted as a tool for future experiments in the field. 
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Table 5-5. Variables selected for linear models of each phenotypical trait that maximized coefficient 

of determination across all dates 

Dependant variable Independent variables 

NDRE 

Shallow organic matter 

Deep Na 

Air temperature [1] 

Incident PAR [1] 

Reflected PAR [1] 

Variety 

NDVI 

Shallow organic matter 

Deep Na 

Deep Mg 

Air temperature [1] 

Incident PAR [1] 

Reflected PAR [1] 

Variety 

CI 

Shallow organic matter 

Deep Na 

Deep Mg 

Air temperature [1] 

Incident PAR [1] 

Reflected PAR [1] 

Row spacing 

Variety 

Height 

Shallow organic matter 

Deep Ca 

Air temperature [3] 

Incident PAR [1] 

Reflected PAR [2] 

Row spacing 

Variety 

Yield 

Shallow organic matter 

Shallow Ca 

Air temperature [1] 

Incident PAR [1] 

Reflected PAR [1] 

Row spacing 

Variety 

 

Figures 5-16 and 5-17 compare the effect sizes of the groups of explanatory variables for CI and 

Height on the second date. The component labelled as Error could be further reduced by the 

inclusion of some of the properties not directly considered, like soil moisture, which was not 

included in this analysis as it was not included in the standard laboratory analysis for reference. 
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While interaction factors among the current variables were evaluated, none were found to be 

significant in this dataset, so they were removed. Not in all cases, the management practices were 

significant. In general, the trend was that the error diminished with time, as it was possible to 

explain a larger portion of the variability in the plant traits through the evaluated factors. However, 

it was accompanied by a less significant portion of the total effect size due to the variety 

component. 

 
Figure 5-16. Effect sizes for CI on second date 
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Figure 5-17. Effect sizes for Height on second date 

 

5.4 Conclusions 

Data processing methods were evaluated to combine soil spectral information, weather and plant 

phenotypical data to inform a comparison among a selection of cultivars. The application of 

chemometrics for predicting soil chemical properties from the soil spectral information as an 

intermediate step in the process is useful to provide insight into properties of interest for growers 

and to increase interpretability of analysis. The proposed methods had a decent performance, 

achieving coefficients of determination comparable to other regressors evaluated in the same 
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dataset (around 0.5). It is expected that the evaluation of the algorithm with larger datasets would 

provide even better results.  

 

More complex techniques could benefit as well from the general workflow discussed in this work, 

enabled by the availability of data gathered with mobile platforms. The holistic analysis allows for 

models to be built to serve as tools to evaluate effect sizes or relative importance of different factors 

of plant growth. Combining shallow and deep measurements of soil properties proved effective in 

explaining variability of the phenotypical traits in terms of environmental conditions. The central 

role of organic matter, air temperature, and incident PAR in the plant processes is evidenced by 

their relevance in the feature selection step of the model building. Between 50% and 75% of the 

variability in the phenotypical variables was explained by the linear models built including 

between 6 and 8 explanatory variables related to the environmental, managerial, and genetic 

factors of plant growth. Further research is required to evaluate this framework with more types of 

crops and in different geographical locations. 
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CHAPTER 6 Summary and general conclusions 

 

6.1 Summary 

This research was conducted to improve the efficiency of the data collection process for on-farm 

experimentation. There is a need to address this issue as the collection of plant phenotypical data 

is considered a bottleneck in scenarios of crop modelling, breeding, and on-farm experimentation. 

Progress in the understanding of genetic and environmental interactions depends on having access 

to large amounts of data, which would be too costly or time-consuming to compile using traditional 

methods. Novel platforms were developed for HTPP and PSS intended to operate in tandem, 

featuring modularity and designs that aim to facilitate the adoption of these kinds of tools. 

Additionally, a workflow of the data acquired from these platforms was evaluated to highlight the 

potential benefits of the technology. 

 

In the first study, an HTPP platform was designed and evaluated. The system was capable of 

collecting on-the-go measurements from the aboveground plant canopy, as well as weather data. 

The sampling rate allowed for dense mapping of plant traits across a field and the GUI was easy 

to operate. 

 

In the second study, a PSS platform was designed and evaluated. The prototype allowed for a drill 

to open a borehole and then insert a sensor probe inside the opened hole. The probe would then 

collect readings of the soil spectral response. The user is then able to collect on-the-spot 

measurements operating the system from the vehicle’s cabin. 
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In the third study, the data collected from both platforms was combined. The process started by 

using a similarity-based method to convert the spectral data from the PSS platform to the soil 

chemical properties. Later, linear models were built using the environmental variables to predict 

phenotypical data and then the residuals were tested to determine the effect the variety/cultivar 

had on them. 

 

6.2 General conclusions 

The combination of both platforms developed in this work along with the data processing 

techniques that were evaluated are an important research phase for extracting greater benefits from 

on-farm experimentation. The features of those systems show potential to improve the efficiency 

of data collection and represent a step towards automated field scouting. For example, the HTPP 

platform offers the ability to map fields covering 5400 m2/h. The PSS platform can collect depth-

specific measurements with an average measurement time of 3 min per depth at each location. 

With both systems improving the ergonomics for the operator, there is potential for more ambitious 

experimental designs when using these tools. The methodology presented in this thesis 

successfully collected and delivered valuable information for additional agronomical studies. 

Further research is required to extend these concepts to other crops and types of experiments. 
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CHAPTER 7 Contributions to knowledge and suggestions for future research 

 

7.1 Contributions to knowledge 

This dissertation contributes to the development of mapping sensor systems for crops, weather, 

and soil. The research resulted in the following contributions to knowledge: 

1. A design for a quick-install HTPP platform for on-the-go measurements of plant 

canopy and weather in outdoor environments. 

2. A design for a PSS platform for on-the-spot depth-specific measurements of soil 

spectral response directly in the field with drilling and tool-change capabilities. 

3. An implementation of a similarity-based regression algorithm for the prediction of soil 

chemical properties based on the soil spectral response, with explicit probability 

distribution output for improved interpretability of results. 

4. A framework for combining genetic, phenotypical, managerial and environmental 

factors of plant growth in the context of on-farm experimentation, combining and 

processing the data from both mobile platforms developed throughout this work. 

 

7.2 Suggestions for future research 

Future work for both sensing platforms should focus on collecting more evaluation data in different 

field conditions. The following areas of further research were identified throughout this 

dissertation work: 

1. Multi-year experiments where the same crop varieties are evaluated. This would allow 

for the computation of validation errors for predictions made from the models built 

from the data collected by the platforms.   
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2. More crop species need to be examined with different dynamics, like leafy greens and 

potatoes. This would confirm or negate the applicability of the developed systems for 

different types of growing operations. 

3. Non-linear and interaction models should be included in the comparison of crop 

varieties. This would allow for models to be built with better performance in terms of 

a larger portion of the variability in the phenotypical traits to be explained.  

4. Manual measurements of plant biomass by early harvesting of sections of the field as 

an additional ground truth measurement should be performed. This would allow an 

extension of the models to additional plant phenotypical traits that are of interest for 

growers.  
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Appendices 

 

Appendix 1. Code snippet of MainWindow class for HTPP UI 

 

1. """ Display main window """   
2.    
3. # Author: Roberto Buelvas   
4.    
5. from datetime import datetime   
6. import time   
7. import math   
8. import os   
9.    
10. import numpy as np   
11. import wx   
12.    
13. from .sensors import SensorHandler, setupGPSProjection, variables   
14. from .ports_dialog import PortsDialog, devices   
15. from .plot_notebook import Map, Plot, PlotNotebook   
16. from .layout_dialog import LayoutDialog   
17. from .cameras import CameraFrame   
18.    
19.    
20. class MainWindow(wx.Frame):   
21.     """ Class to define main window  
22.   
23.     This class both creates the main window of the UI and controls the  
24.     operations that are done within it.  
25.   
26.     Attr:  
27.         cfg (wx.ConfigBase): Settings are saved in here, which creates a file  
28.             in a hidden folder to store values. These values are kept if the  
29.             program stops running and even if the computers turns off. It uses  
30.             a key-value system similar to dictionaries  
31.         btn_connect (wx.ToggleButton): Button to toggle connect/disconnect  
32.         btn_start (wx.ToggleButton): Button to toggle start/stop reading every second  
33.         btn_test (wx.ToggleButton): Button to toggle in and out of 'Test Mode'  
34.         btn_measure (wx.Button): Button to take a single set of readings  
35.         logText (wx.TextCtrl): Control where information is logged  
36.         timer (wx.Timer): Object to call a function periodically  
37.         sensor_handler (SensorHandler): Object to control multiple sensors at once  
38.         camera_frame (CameraFrame): Secondary frame to display video from cameras  
39.         mapPanel (Plot): Panel containing the Figure where the map is drawn  
40.         axes (dict): Dict to hold the Axes for each measured variables. Keys  
41.             are of the format 'mL1/NDVI' or 'gR/Latitude'. Used to create the  
42.             plots  
43.         labels (list): List of all possible labels of the style mL1 or gR given  
44.             the number of scaling sensors  
45.         last_record (list): List showing positions in the text log where each  
46.             set of measurements ends. Used to erase the last set of values from  
47.             the log text  
48.         num_readings (int): Stores how many sets of measurements have been taken  
49.             in the current survey. Set back to 0 when log text is cleared or  
50.             exported to file  
51.     """   
52.    
53.     def __init__(self, *args, **kwargs):   
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54.         """ Create new window """   
55.         super(MainWindow, self).__init__(*args, **kwargs)   
56.         self.cfg = wx.Config("HTPPconfig")   
57.         self.cfg.WriteBool("notEmpty", True)   
58.         self.labels = self.updateLabels()   
59.         self.axes = {}   
60.         self.reset()   
61.         self.initUI()   
62.         self.sensor_handler = None   
63.         self.updateSensorHandler()   
64.         self.camera_frame = None   
65.         self.updateCameraFrame()   
66.         self.camera_frame.Bind(wx.EVT_CLOSE, self.OnCameraClose)   
67.         self.timer = wx.Timer(self, wx.Window.NewControlId())   
68.         self.Bind(wx.EVT_TIMER, self.OnUpdate, id=self.timer.GetId())   
69.         self.Bind(wx.EVT_CLOSE, self.OnClose)   
70.    
71.     def initUI(self):   
72.         """ Define window elements """   
73.         # Toolbar   
74.         menubar = wx.MenuBar()   
75.    
76.         fileMenu = wx.Menu()   
77.         newmi = wx.MenuItem(fileMenu, wx.ID_NEW, "&New")   
78.         fileMenu.Append(newmi)   
79.         self.Bind(wx.EVT_MENU, self.OnNew, newmi)   
80.         savemi = wx.MenuItem(fileMenu, wx.ID_SAVE, "&Save")   
81.         fileMenu.Append(savemi)   
82.         self.Bind(wx.EVT_MENU, self.OnSave, savemi)   
83.         fileMenu.AppendSeparator()   
84.         qmi = wx.MenuItem(fileMenu, wx.ID_EXIT, "&Quit")   
85.         fileMenu.Append(qmi)   
86.         self.Bind(wx.EVT_MENU, self.OnQuit, qmi)   
87.         menubar.Append(fileMenu, "&File")   
88.    
89.         settingsMenu = wx.Menu()   
90.         portsmi = wx.MenuItem(settingsMenu, wx.ID_PREFERENCES, "&Ports")   
91.         settingsMenu.Append(portsmi)   
92.         self.Bind(wx.EVT_MENU, self.OnPorts, portsmi)   
93.         layoutmi = wx.MenuItem(settingsMenu, wx.ID_ANY, "&Layout")   
94.         settingsMenu.Append(layoutmi)   
95.         self.Bind(wx.EVT_MENU, self.OnLayout, layoutmi)   
96.         clearmi = wx.MenuItem(settingsMenu, wx.ID_ANY, "&Clear")   
97.         settingsMenu.Append(clearmi)   
98.         self.Bind(wx.EVT_MENU, self.OnClear, clearmi)   
99.         menubar.Append(settingsMenu, "&Settings")   
100.    
101.         viewMenu = wx.Menu()   
102.         self.camerami = viewMenu.AppendCheckItem(wx.ID_ANY, "&Camera")   
103.         self.Bind(wx.EVT_MENU, self.OnCamera, self.camerami)   
104.         menubar.Append(viewMenu, "&View")   
105.    
106.         helpMenu = wx.Menu()   
107.         aboutmi = wx.MenuItem(helpMenu, wx.ID_ABOUT, "&About")   
108.         helpMenu.Append(aboutmi)   
109.         self.Bind(wx.EVT_MENU, self.OnAbout, aboutmi)   
110.         menubar.Append(helpMenu, "&Help")   
111.    
112.         self.SetMenuBar(menubar)   
113.    
114.         # Window   
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115.         backgroundPanel = wx.Panel(self)   
116.         backgroundPanel.SetBackgroundColour("#ededed")   
117.    
118.         font = wx.SystemSettings.GetFont(wx.SYS_SYSTEM_FONT)   
119.         font.SetPointSize(9)   
120.    
121.         outerBox = wx.BoxSizer(wx.HORIZONTAL)   
122.    
123.         leftBox = wx.BoxSizer(wx.VERTICAL)   
124.         st1 = wx.StaticText(backgroundPanel, label="Map:")   
125.         self.mapPanel = Map(backgroundPanel)   
126.         st2 = wx.StaticText(backgroundPanel, label="Log:")   
127.         self.logText = wx.TextCtrl(   
128.             backgroundPanel, style=wx.TE_MULTILINE | wx.TE_READONLY   
129.         )   
130.         self.logSettings()   
131.         leftBox.Add(st1, proportion=0, flag=wx.ALL)   
132.         leftBox.Add(self.mapPanel, wx.ID_ANY, wx.EXPAND | wx.ALL, 20)   
133.         leftBox.Add(st2, proportion=0, flag=wx.ALL)   
134.         leftBox.Add(self.logText, wx.ID_ANY, wx.EXPAND | wx.ALL, 20)   
135.    
136.         middleBox = wx.BoxSizer(wx.VERTICAL)   
137.         st3 = wx.StaticText(backgroundPanel, label="Plot:")   
138.         self.plotter = PlotNotebook(backgroundPanel)   
139.         num_sensors = self.cfg.ReadInt("numSensors", 1)   
140.         for device_name in variables.keys():   
141.             variable_names = variables[device_name]   
142.             scaling = devices[device_name][1]   
143.             for name in variable_names:   
144.                 self.plotter.add(name, device_name, scaling, num_sensors)   
145.    
146.         middleBox.Add(st3, proportion=0, flag=wx.ALL)   
147.         middleBox.Add(self.plotter, proportion=7, flag=wx.EXPAND | wx.ALL, borde

r=20)   
148.    
149.         rightBox = wx.BoxSizer(wx.VERTICAL)   
150.         self.btn_connect = wx.ToggleButton(backgroundPanel, label="Connect")   
151.         self.btn_start = wx.ToggleButton(backgroundPanel, label="Start")   
152.         self.btn_start.Disable()   
153.         self.btn_test = wx.ToggleButton(backgroundPanel, label="Test Mode")   
154.         self.btn_measure = wx.Button(backgroundPanel, label="Measure")   
155.         self.btn_measure.Disable()   
156.         btn_erase = wx.Button(backgroundPanel, label="Erase")   
157.         self.btn_connect.Bind(wx.EVT_TOGGLEBUTTON, self.OnConnect)   
158.         self.btn_start.Bind(wx.EVT_TOGGLEBUTTON, self.OnStart)   
159.         self.btn_measure.Bind(wx.EVT_BUTTON, self.OnUpdate)   
160.         btn_erase.Bind(wx.EVT_BUTTON, self.OnErase)   
161.         rightBox.Add(self.btn_connect, proportion=1, flag=wx.EXPAND | wx.ALL, bo

rder=20)   
162.         rightBox.Add(self.btn_start, proportion=1, flag=wx.EXPAND | wx.ALL, bord

er=20)   
163.         rightBox.Add(self.btn_test, proportion=1, flag=wx.EXPAND | wx.ALL, borde

r=20)   
164.         rightBox.Add(self.btn_measure, proportion=1, flag=wx.EXPAND | wx.ALL, bo

rder=20)   
165.         rightBox.Add(btn_erase, proportion=1, flag=wx.EXPAND | wx.ALL, border=20

)   
166.    
167.         outerBox.Add(leftBox, proportion=2, flag=wx.EXPAND | wx.ALL, border=20) 
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168.         outerBox.Add(middleBox, proportion=3, flag=wx.EXPAND | wx.ALL, border=20
)   

169.         outerBox.Add(rightBox, proportion=1, flag=wx.EXPAND | wx.ALL, border=20)
   

170.         backgroundPanel.SetSizer(outerBox)   
171.    
172.         self.Maximize()   
173.         self.SetTitle("High-Throughput Plant Phenotyping Platform")   
174.         self.Centre()   
175.    
176.     def OnClose(self, e):   
177.         """ Response to close event  
178.           
179.         Make sure to disconnect from all sensors and camera before exiting  
180.         """   
181.         self.sensor_handler.closeAll()   
182.         self.camera_frame.close()   
183.         self.DestroyLater()   
184.    
185.     def OnNew(self, e):   
186.         """ Toolbar option to reset log without saving """   
187.         confirmDiag = wx.MessageDialog(   
188.             None,   
189.             ("Are you sure you want to clear " + "the log?"),   
190.             "Question",   
191.             (wx.YES_NO | wx.NO_DEFAULT | wx.ICON_QUESTION),   
192.         )   
193.         dialogFlag = confirmDiag.ShowModal()   
194.         if dialogFlag == wx.ID_YES:   
195.             self.logText.SetValue("")   
196.             self.logSettings()   
197.             num_sensors = self.cfg.ReadInt("numSensors", 1)   
198.             self.plotter.reset(num_sensors)   
199.             self.mapPanel.clear()   
200.             self.mapPanel.refresh([])   
201.             self.reset()   
202.    
203.     def OnSave(self, e):   
204.         """ Toolbar option to save and reset log """   
205.         rootName = "data/HTPPLogFile" + datetime.now().strftime("%Y-%m-

%d") + "X"   
206.         i = 1   
207.         while os.path.isfile(rootName + str(i) + ".txt"):   
208.             i += 1   
209.         finalFilename = rootName + str(i) + ".txt"   
210.         self.logText.SaveFile(finalFilename)   
211.         self.logText.SetValue("")   
212.         self.logSettings()   
213.         num_sensors = self.cfg.ReadInt("numSensors", 1)   
214.         self.plotter.reset(num_sensors)   
215.         self.mapPanel.clear()   
216.         self.mapPanel.refresh([])   
217.         self.reset()   
218.    
219.     def OnQuit(self, e):   
220.         """ Toolbar option to exit application """   
221.         self.Close()   
222.    
223.     def OnCamera(self, e):   
224.         """ Show or hide camera frame depeding on checkable menu item """   
225.         self.camera_frame.Show(self.camerami.IsChecked())   
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226.    
227.     def OnCameraClose(self, e):   
228.         """ Safely close camera frame """   
229.         self.camerami.Check(False)   
230.         self.updateCameraFrame()   
231.    
232.     def OnAbout(self, e):   
233.         """ Toolbar option to show About dialog """   
234.         wx.MessageBox(   
235.             (   
236.                 "High-Throughput Plant Phenotyping Platform \n"   
237.                 "Made by Roberto Buelvas\n"   
238.                 "McGill University, 2020\n"   
239.                 "Version 0.1\n"   
240.             ),   
241.             "About",   
242.             wx.OK | wx.ICON_INFORMATION,   
243.         )   
244.    
245.     def OnPorts(self, e):   
246.         """ Toolbar option to open ports dialog window """   
247.         pDialog = PortsDialog(self, self.cfg)   
248.         dialogFlag = pDialog.ShowModal()   
249.         if dialogFlag == wx.ID_OK:   
250.             results = pDialog.getSettings()   
251.             num_sensors = results.ReadInt("numSensors", 1)   
252.             self.cfg.WriteInt("numSensors", num_sensors)   
253.             self.labels = self.updateLabels()   
254.             for label in self.labels:   
255.                 self.cfg.WriteBool(   
256.                     "connected" + label, results.ReadBool("connected" + label)   
257.                 )   
258.                 self.cfg.Write("port" + label, results.Read("port" + label))   
259.             self.updateSensorHandler()   
260.             self.updateCameraFrame()   
261.             self.logSettings()   
262.             self.plotter.reset(num_sensors)   
263.         pDialog.Destroy()   
264.    
265.     def OnLayout(self, e):   
266.         """ Toolbar option to open ports dialog window """   
267.         lDialog = LayoutDialog(self, self.cfg)   
268.         dialogFlag = lDialog.ShowModal()   
269.         if dialogFlag == wx.ID_OK:   
270.             results = lDialog.getSettings()   
271.             settings_list = lDialog.getSettingsList()   
272.             for setting_key in settings_list:   
273.                 if setting_key[0] == "D":   
274.                     self.cfg.WriteFloat(setting_key, results.ReadFloat(setting_k

ey))   
275.                 if setting_key[0] == "I":   
276.                     self.cfg.WriteInt(setting_key, results.ReadInt(setting_key))

   
277.             self.logSettings()   
278.         condition = False   
279.         if condition:   
280.             wx.MessageBox(   
281.                 "The dimensions in Layout have not been properly set",   
282.                 "Empty port",   
283.                 wx.OK | wx.ICON_WARNING,   
284.             )   
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285.         lDialog.Destroy()   
286.    
287.     def OnClear(self, e):   
288.         """ Toolbar option to clear all settings  
289.   
290.         This removes every entry from the attribute cfg, except for a dummy  
291.         entry 'notEmpty' to prevent the ConfigBase of being entirerly empty,  
292.         which causes it to crash.  
293.         Not to be confounded with the method reset(), which resets  
294.         some other attributes whose values are only relevant for the current  
295.         survey  
296.         """   
297.         confirmDiag = wx.MessageDialog(   
298.             None,   
299.             ("Are you sure you want to clear " + "the settings?"),   
300.             "Question",   
301.             (wx.YES_NO | wx.NO_DEFAULT | wx.ICON_QUESTION),   
302.         )   
303.         dialogFlag = confirmDiag.ShowModal()   
304.         if dialogFlag == wx.ID_YES:   
305.             all_config_keys = []   
306.             more, value, index = self.cfg.GetFirstEntry()   
307.             while more:   
308.                 all_config_keys.append(value)   
309.                 more, value, index = self.cfg.GetNextEntry(index)   
310.             all_config_keys.remove("notEmpty")   
311.             for key in all_config_keys:   
312.                 self.cfg.DeleteEntry(key)   
313.    
314.     def OnConnect(self, e):   
315.         """ Toggle button action to connect/disconnect from sensors  
316.   
317.         When in 'Test Mode', it simulates a first GPS reading to compute the pro

jection  
318.         constants  
319.         Start and Measure buttons are only enabled if connected  
320.         Test button is only enabled if disconnected   
321.         """   
322.         btn = e.GetEventObject()   
323.         is_pressed = btn.GetValue()   
324.         is_test_mode = self.btn_test.GetValue()   
325.         if is_test_mode:   
326.             if is_pressed:   
327.                 for label in self.labels:   
328.                     if (label[0] == "g") and self.cfg.ReadBool(   
329.                         "connected" + label, False   
330.                     ):   
331.                         reading = [-73.939830, 45.423804, 45, 1, 10]   
332.                         self.sensor_handler.GPS_constants = setupGPSProjection(r

eading)   
333.                 btn.SetLabelText("Disconnect")   
334.             else:   
335.                 btn.SetLabelText("Connect")   
336.         else:   
337.             if is_pressed:   
338.                 success = self.sensor_handler.openAll()   
339.                 if success:   
340.                     btn.SetLabelText("Disconnect")   
341.                     self.btn_start.Enable(is_pressed)   
342.                     self.btn_measure.Enable(is_pressed)   
343.                     self.btn_test.Enable(not is_pressed)   



110 
 

344.                 else:   
345.                     wx.MessageBox(   
346.                         "At least one port has not been properly set up",   
347.                         "Empty port",   
348.                         wx.OK | wx.ICON_WARNING,   
349.                     )   
350.                     btn.SetValue(False)   
351.             else:   
352.                 self.sensor_handler.closeAll()   
353.                 btn.SetLabelText("Connect")   
354.         self.btn_start.Enable(is_pressed)   
355.         self.btn_measure.Enable(is_pressed)   
356.         self.btn_test.Enable(not is_pressed)   
357.    
358.     def OnStart(self, e):   
359.         """ Button action to take measurements periodically  
360.   
361.         When clicked for the first time, it will start the timer. When clicked a

gain,  
362.         it will stop it.  
363.         """   
364.         btn = e.GetEventObject()   
365.         is_pressed = btn.GetValue()   
366.         if is_pressed:   
367.             self.timer.Start(300.0)   
368.             btn.SetLabelText("Stop")   
369.         else:   
370.             self.timer.Stop()   
371.             btn.SetLabelText("Start")   
372.         self.btn_connect.Enable(not is_pressed)   
373.         self.btn_measure.Enable(not is_pressed)   
374.         self.btn_test.Enable(not is_pressed)   
375.    
376.     def OnErase(self, e):   
377.         """ Button action to delete last measurement from log text """   
378.         if self.logText.GetValue() != "":   
379.             lastPosition = self.logText.GetLastPosition()   
380.             self.logText.Remove(self.last_record[-1], lastPosition)   
381.             if len(self.last_record) > 1:   
382.                 del self.last_record[-1]   
383.    
384.     def OnUpdate(self, e):   
385.         """ Updates UI by getting new sensor data  
386.   
387.         This is a general method that calls the more specific ones if necessary  
388.         """   
389.         is_test_mode = self.btn_test.GetValue()   
390.         self.last_record.append(self.logText.GetLastPosition())   
391.         self.logText.AppendText("*****" + str(self.num_readings) + "*****\n")   
392.         if is_test_mode:   
393.             for label in self.labels:   
394.                 if self.cfg.ReadBool("connected" + label, False):   
395.                     reading = self.sensor_handler.simulate(   
396.                         label, self.num_readings, self.cfg   
397.                     )   
398.                     if label[0] == "g":   
399.                         self.updateMap(reading, label)   
400.                     self.updateLog(reading, label)   
401.                     self.updatePlot(reading, label)   
402.         else:   
403.             for label in self.labels:   
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404.                 reading = self.sensor_handler.read(label, self.num_readings, sel
f.cfg)   

405.                 if reading is not None:   
406.                     if label[0] == "g":   
407.                         self.updateMap(reading, label)   
408.                     self.updateLog(reading, label)   
409.                     self.updatePlot(reading, label)   
410.         self.num_readings += 1   
411.    
412.     def updateLog(self, some_value, label):   
413.         """ Update log text after receiving new sensor data """   
414.         if some_value is not None:   
415.             ts = datetime.now().strftime("%H:%M:%S.%f")   
416.             value_text = []   
417.             if label[0] == "g":   
418.                 for value in some_value:   
419.                     value_text.append(str(value))   
420.             else:   
421.                 for value in some_value:   
422.                     value_text.append(str(np.round(value, 4)))   
423.             self.logText.AppendText(   
424.                 (label + ";" + ts + ";" + ",".join(value_text) + "\n")   
425.             )   
426.    
427.     def updatePlot(self, some_value, label):   
428.         """ Updates plots after receiving new sensor data  
429.   
430.         Instead of appending new points to a pre-existing plot, everytime a new  
431.         point arrives, a new plot is created next to it. Because it is made to  
432.         match in color and style, it looks as if everything was connected.  
433.         However, because of this way of updating the plots, the legends need to  
434.         be created manually.  
435.         Besides creating new plots, this method updates the attribute  
436.         previous_measurements  
437.         """   
438.         sensor_type = label[0]   
439.         measured_properties = variables[sensor_type]   
440.         for i, measured_property in enumerate(measured_properties):   
441.             self.plotter.update(some_value[i], label, measured_property)   
442.    
443.     def updateMap(self, some_value, label):   
444.         """ Update map after receiving new sensor data  
445.   
446.         Place a marker in the locations of the map where the vehicle and  
447.         the sensors are (except the GPS receiver itself).  
448.         It uses the Settings from the Layout dialog to calculate relative  
449.         positions and convert from the world coordinate system to that of the  
450.         vehicle (or vice-versa)  
451.         The first set of readings doesn't produce changes in the plot because  
452.         at least two measurements are required to compute the heading, which  
453.         in turn is required to know how to orient the sensor markers  
454.         """   
455.         if (self.num_readings > 0) and (not any(np.isnan(some_value[[2, 7, 8]]))

):   
456.             vehicle_x = some_value[7]   
457.             vehicle_y = some_value[8]   
458.             heading_radians = math.pi * some_value[2] / 180   
459.             line_list = []   
460.             line_list.append(self.mapPanel.ax.plot(vehicle_x, vehicle_y, "bs")[0

])   
461.             for label in self.labels:   
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462.                 if (label[0] != "g") and self.cfg.ReadBool("connected" + label, 
False):   

463.                     if label[0] == "u":   
464.                         color = "y"   
465.                         db = self.cfg.ReadFloat("DB1") / 100   
466.                     else:   
467.                         color = "r"   
468.                         db = (self.cfg.ReadFloat("DB1") + self.cfg.ReadFloat("DB

2")) / 100   
469.                     if label[0] == "e":   
470.                         color = "g"   
471.                         index = self.cfg.ReadInt("IE" + label[1])   
472.                         accumulator = 0   
473.                         for i in range(index):   
474.                             accumulator += self.cfg.ReadFloat("D" + label[1] + s

tr(i + 1))   
475.                         if label[1] == "L":   
476.                             ds = -1 * accumulator / 100   
477.                         else:   
478.                             ds = accumulator / 100   
479.                         ds += self.cfg.ReadFloat("DE" + label[1]) / 100   
480.                     else:   
481.                         accumulator = 0   
482.                         for i in range(int(label[2])):   
483.                             accumulator += self.cfg.ReadFloat("D" + label[1] + s

tr(i + 1))   
484.                         if label[1] == "L":   
485.                             ds = -1 * accumulator / 100   
486.                         else:   
487.                             ds = accumulator / 100   
488.                     sensor_x = (   
489.                         vehicle_x   
490.                         + ds * math.sin(heading_radians)   
491.                         - db * math.cos(heading_radians)   
492.                     )   
493.                     sensor_y = (   
494.                         vehicle_y   
495.                         - ds * math.cos(heading_radians)   
496.                         - db * math.sin(heading_radians)   
497.                     )   
498.                     # line_list.append(   
499.                     #     self.mapPanel.ax.plot(   
500.                     #         sensor_x,   
501.                     #         sensor_y,   
502.                     #         marker="P",   
503.                     #         color=color,   
504.                     #         markerfacecolor=color,   
505.                     #     )[0]   
506.                     # )   
507.             self.mapPanel.refresh(line_list)   
508.             line_list = []   
509.    
510.     def logSettings(self):   
511.         """ Append settings to log """   
512.         self.logText.AppendText("**************Settings-

Start**************\n")   
513.         more, value, index = self.cfg.GetFirstEntry()   
514.         while more:   
515.             initial = value[0]   
516.             if value != "notEmpty":   
517.                 if (initial == "I") or (initial == "n"):   
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518.                     property = str(self.cfg.ReadInt(value))   
519.                 if initial == "D":   
520.                     property = str(self.cfg.ReadFloat(value))   
521.                 if initial == "c":   
522.                     property = str(self.cfg.ReadBool(value))   
523.                 if initial == "p":   
524.                     property = self.cfg.Read(value)   
525.                 self.logText.AppendText("{" + value + ": " + property + "}\n")   
526.             more, value, index = self.cfg.GetNextEntry(index)   
527.         self.logText.AppendText("**************Settings-

End****************\n")   
528.    
529.     def updateLabels(self):   
530.         """ Produces list of sensor labels  
531.   
532.         Since many methods need to iterate over all the labels, it is handy to  
533.         have the attribute labels to keep them available. This method is used  
534.         to update the value of labels whenever the number of sensors changes  
535.         """   
536.         num_sensors = self.cfg.ReadInt("numSensors", 1)   
537.         labels = []   
538.         device_tuples = list(devices.values())   
539.         for device_tuple in device_tuples:   
540.             name = device_tuple[0]   
541.             scaling = device_tuple[1]   
542.             initial = name[0].lower()   
543.             if scaling:   
544.                 for i in range(num_sensors):   
545.                     labels.append(initial + "L" + str(i + 1))   
546.                 for i in range(num_sensors):   
547.                     labels.append(initial + "R" + str(i + 1))   
548.             else:   
549.                 labels.append(initial + "L")   
550.                 labels.append(initial + "R")   
551.         return labels   
552.    
553.     def updateSensorHandler(self):   
554.         """ Create sensor handler and populate it by adding serial sensors """   
555.         if self.sensor_handler is not None:   
556.             self.sensor_handler.closeAll()   
557.         self.sensor_handler = SensorHandler()   
558.         for label in self.labels:   
559.             is_connected = self.cfg.ReadBool("connected" + label, False)   
560.             port = self.cfg.Read("port" + label, "")   
561.             if is_connected and (port != ""):   
562.                 self.sensor_handler.add(port, label)   
563.    
564.     def updateCameraFrame(self):   
565.         """ Format camera ports as a list ready to be used as CameraFrame's inpu

t """   
566.         if self.camera_frame is not None:   
567.             self.camera_frame.close()   
568.         camera_ports = [None, None]   
569.         if self.cfg.ReadBool("connectedcL", False):   
570.             camera_ports[0] = int(self.cfg.Read("portcL", ""))   
571.         if self.cfg.ReadBool("connectedcR", False):   
572.             camera_ports[1] = int(self.cfg.Read("portcR", ""))   
573.         self.camera_frame = CameraFrame(self, camera_ports)   
574.         self.camera_frame.Show(self.camerami.IsChecked())   
575.    
576.     def reset(self):   
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577.         """ Reset the values of attributes any time a new survey starts """   
578.         self.labels = self.updateLabels()   
579.         self.num_readings = 0   
580.         self.last_record = [0]   
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Appendix 2. Code snippet of statistical analysis of residuals 

%%  

close all hidden; 

clearvars; 

clc; 

%% Get the data 

total_traits = load('../data/totalTraits.mat').total_traits; 

yieldModel = load('../data/yieldModels.mat').YieldMEModel; 

phenoModels = load('../data/RegressionModels.mat'); 

pheno_properties = phenoModels.pheno_properties; 

model_results = phenoModels.results; 

dates = {'08_17', '08_20', '08_24', '08_27', '08_31', '09_03'}; 

DAS = [77, 80, 84, 87, 91, 94]; 

 

%% Do Tukey's with residuals for yield 

% Yield ~ Variety 

variety = total_traits.Variety; 

row_spacing = total_traits.RowSpacing; 

density = total_traits.Density_plants_acre_; 

yield = total_traits.Yield_ton_ha_; 

[p,tbl,stats] = anova1(yield,variety, 'off'); 

fig = figure(); 

[tk, m, ~, gnames] = multcompare(stats); 

%% 

ax=gca; 

means = zeros(11,1); 

confidence_intervals = zeros(11,1);  

for j=1:11 

    means(j) = (ax.Children(2*j-1).XData(2)+ax.Children(2*j-1).XData(1))/2; 

    confidence_intervals(j) = (ax.Children(2*j-1).XData(2)-ax.Children(2*j-

1).XData(1))/2; 

end 

close(fig); 

tukey_table = table(means); 

tukey_table.ci = confidence_intervals; 

tukey_table.variety = gnames(11:-1:1); 

tukey_table = sortrows(tukey_table, 'means', 'descend'); 

fig = makeTukeyPlot(tukey_table, 'Yield [ton/ha]'); 

saveas(fig, '../data/final_plots/FinalTukeyYield.png'); 

close(fig); 

%% 

 

% Yield - Environment - Management ~ Variety 

estimated_yield = yieldModel.predictFcn(total_traits); 

residual_yield = yield - estimated_yield; 

[p,tbl,stats] = anova1(residual_yield,variety); 

fig = figure(); 

[tk, m, ~, gnames] = multcompare(stats); 

ax=gca; 

means = zeros(11,1); 

confidence_intervals = zeros(11,1);  
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for j=1:11 

    means(j) = (ax.Children(2*j-1).XData(2)+ax.Children(2*j-1).XData(1))/2; 

    confidence_intervals(j) = (ax.Children(2*j-1).XData(2)-ax.Children(2*j-

1).XData(1))/2; 

end 

close(fig); 

tukey_table = table(means); 

tukey_table.ci = confidence_intervals; 

tukey_table.variety = gnames(11:-1:1); 

tukey_table = sortrows(tukey_table, 'means', 'descend'); 

fig = makeTukeyPlot(tukey_table, 'Effect of variety on Yield'); 

saveas(fig, '../data/final_plots/FinalTukeyYieldFull.png'); 

close(fig); 

es_environment = 0.14; 

es_management = 0.05; 

es_genome = (tbl{2,2}/tbl{4,2})*(1-es_environment-es_management); 

fig = makeEffectSizePie(es_genome, es_management, es_environment, 'Effect 

sizes on Yield'); 

saveas(fig, ['../data/final_plots/FinalPieYield.png']); 

close(fig); 

 

% Yield ~ Variety + Management 

% varnames = {'Variety';'RowSpacing';'Density'}; 

% [tbl,chi,p,factorvals] = crosstab(variety, row_spacing, density); 

% [p2,tbl2,stats2,terms2] = anovan(yield,{variety row_spacing, 

density},3,3,varnames); 

% fig = figure(); 

% tk2 = multcompare(stats2); 

 

% Yield - Environment ~ Variety + Management 

% [p3,tbl3,stats3,terms3] = anovan(residual_yield,{variety row_spacing, 

density},3,3,varnames); 

% fig = figure(); 

% tk3 = multcompare(stats3, 'Dimension', 1); 

% fig = figure(); 

% tk3 = multcompare(stats3, 'Dimension', 2); 

% fig = figure(); 

% tk3 = multcompare(stats3, 'Dimension', 3); 

 

%% Phenotyping data 

% Phenotype - Env - Management* ~ Variety 

for property_index=1:length(pheno_properties) 

    ranova_tbl = table(); 

    for date_index=1:6 

        model = model_results{property_index}.Models{2, date_index}; 

        predictors = model_results{property_index}.Predictors{2, date_index}; 

        estimated = predict(model, total_traits(:, predictors)); 

        residual = 

total_traits.([pheno_properties{property_index},dates{date_index}]) - 

estimated; 

        ranova_tbl.(['m',num2str(date_index)]) = residual; 

        %[p,tbl,stats,terms] = anovan(residual,{variety row_spacing 

density},1,3,varnames); 
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        [p,tbl,stats] = anova1(residual,variety, 'off'); 

        fig = figure(); 

        [tk, m, ~, gnames] = multcompare(stats); 

        ax=gca; 

        means = zeros(11,1); 

        confidence_intervals = zeros(11,1);  

        for j=1:11 

            means(j) = (ax.Children(2*j-1).XData(2)+ax.Children(2*j-

1).XData(1))/2; 

            confidence_intervals(j) = (ax.Children(2*j-1).XData(2)-

ax.Children(2*j-1).XData(1))/2; 

        end 

        close(fig); 

        tukey_table = table(means); 

        tukey_table.ci = confidence_intervals; 

        tukey_table.variety = gnames(11:-1:1); 

        tukey_table = sortrows(tukey_table, 'means', 'descend'); 

        fig = makeTukeyPlot(tukey_table, ['Effect of variety on 

',pheno_properties{property_index},dates{date_index}]); 

        saveas(fig, 

['../data/final_plots/FinalTukey',pheno_properties{property_index},dates{date

_index},'.png']); 

        close(fig); 

        es_environment = model_results{property_index}.Rsquared(118, 

date_index); 

        [~, best_management_index] = 

max(sum(model_results{property_index}.Rsquared(118:121, :), 2)); 

        es_management = model_results{property_index}.Rsquared(117 + 

best_management_index, date_index) - es_environment; 

        if es_management < 0 

            es_management = 0; 

        end 

        es_genome = (tbl{2,2}/tbl{4,2})*(1-es_environment-es_management); 

        fig = makeEffectSizePie(es_genome, es_management, es_environment, 

['Effect sizes on ',pheno_properties{property_index},dates{date_index}]); 

        saveas(fig, 

['../data/final_plots/FinalPie',pheno_properties{property_index},dates{date_i

ndex},'.png']); 

        close(fig); 

    end 

    ranova_tbl.Variety = variety; 

    rm = fitrm(ranova_tbl, 'm1-m6 ~ Variety','WithinDesign',DAS); 

    ranova_result=ranova(rm); 

    disp([pheno_properties{property_index},dates{date_index}]); 

    disp(ranova_result); 

end 
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Appendix 3. Drawing of tool connector part 

 

 
*: Units in mm 
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Appendix 4. Results of repeated measurements ANOVA 
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Appendix 5. Ranking of varieties according to NDRE’s highest value in the model 

 

Variety P 

Lower 

confidence 

bound 

Upper 

confidence 

bound 

R 

Lower 

confidence 

bound 

Upper 

confidence 

bound 

Calmant 0.300 0.176 0.424 0.00552 0.00415 0.00689 

Knight 

Rider 
0.286 0.196 0.375 0.00505 0.00407 0.00603 

Apex 0.285 0.195 0.375 0.00541 0.00436 0.00646 

Red Rider 0.283 0.166 0.401 0.00522 0.00401 0.00643 

Dresden 0.268 0.178 0.359 0.00500 0.00395 0.00604 

Majesty 0.268 0.138 0.397 0.00488 0.00353 0.00624 

Argosy 0.265 0.158 0.373 0.00494 0.00371 0.00617 

Nautica 0.258 0.177 0.339 0.00498 0.00402 0.00594 

Mast 0.254 0.150 0.358 0.00472 0.00350 0.00595 

Sheek 0.244 0.155 0.332 0.00472 0.00368 0.00575 

Compass 0.231 0.144 0.318 0.00449 0.00351 0.00547 
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Appendix 6. Result of Tukey’s test for NDRE in the second date 
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Appendix 7. Result of Tukey’s test for NDRE in the third date 
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Appendix 8. Result of Tukey’s test for NDRE in the fourth date 
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Appendix 9. Result of Tukey’s test for NDRE in the fifth date 

 

 


