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Abstract 

An increased use of models for measuring response styles is apparent in recent years with the 

multidimensional nominal response model (MNRM) as one prominent example. Inclusion of 

latent constructs representing extreme (ERS) or midpoint response style (MRS) often improves 

model fit according to information criteria. However, a test of absolute model fit is often not 

reported even though it could comprise an important piece of validity evidence. Limited 

information test statistics are candidates for this task, including the full (𝑀2), ordinal (𝑀2
∗), and 

mixed (𝐶2) statistics, which differ in whether additional collapsing of univariate or bivariate 

contingency tables is conducted. Such collapsing makes sense when item categories are ordinal, 

which may not hold under the MNRM. More generally, limited information test statistics have 

gone unevaluated under nominal data and non-ordinal latent trait models. We present a 

simulation study evaluating the performance of 𝑀2, 𝑀2
∗, and 𝐶2 with the MNRM. Manipulated 

conditions included sample size, presence and type of response style, and strength of item slopes 

on substantive and style dimensions. We found that 𝑀2 sometimes had inflated Type I error 

rates, 𝑀2
∗ always had little power, and 𝐶2 lacked power under some conditions. 𝑀2 and 𝐶2 may 

provide complementary and valuable information regarding model fit. 

 Keywords: model fit, limited-information test statistics, Likert-type items, 

multidimensional item response theory, nominal response model, response styles 
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1. Introduction 

One of the most popular ways to measure unobservable psychological constructs is to use 

a self-report questionnaire with Likert-type items. For example, participants may be asked to 

indicate levels of agreement to items on a 5-point scale (e.g. 0 = strongly disagree, 1 = disagree, 

2 = neutral, 3 = agree, 4 = strongly agree). Examples of constructs measured in this way include 

social support (Maurer, Mitchell, & Barbeite, 2002), personality traits (Goldberg, 1992; Paulhus 

& Vazire, 2007), and self-esteem (Tafarodi & Swann, 2001). However, responses to such items 

are seldom reflective of only the constructs of interest. One possible source of extraneous 

influence is known as a response style. In brief, response styles represent a preference for certain 

response options, and this preference may be unrelated to the target construct. Common response 

styles include extreme responding (ERS), whereby individuals preferentially select the endpoints 

of the scale (e.g. 0 or 4), and midpoint responding (MRS), whereby the middle category is often 

selected (e.g. 2; Baumgartner & Steenkamp, 2001; Paulhus, 1991). 

Although a number of sophisticated multidimensional item response theory (MIRT) 

models have recently emerged for response styles (e.g., Bockenholt, 2012, 2017; Jonas & 

Markon, 2018; Khorramdel & von Davier, 2014; Liu & Wang, 2019), important questions 

remain regarding model fit. In the present manuscript, we focus on the multidimensional nominal 

response model (MNRM) for response styles (Bolt & Newton, 2011; Falk & Cai, 2016; Falk & 

Ju, 2020). In our experience, use of the MNRM almost always results in better fit than standard 

models that omit style dimensions (e.g., generalized partial credit model; Muraki, 1992) 

according to information criteria such as AIC or BIC. However, statistical tests of overall model 

fit are rarely, if ever, reported for response style MIRT models. Traditional full-information test 

statistics such as Pearson’s 𝜒2 and the likelihood ratio statistic 𝐺2 exhibit poor performance with 
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IRT models in general, especially with long tests and/or polytomous items (i.e., more than 2 

categories per item). These statistics perform poorly due in part to sparseness in multi-way 

contingency tables among the items. Limited information test statistics, such as 𝑀2, 𝑀2
∗, and 𝐶2 

have been developed to address this problem (Cai & Hansen, 2013; Cai & Monroe, 2014; 

Maydeu-Olivares & Joe, 2005, 2006;), and additional supplementary information such as 

RMSEA and TLI are computable based on these tests (e.g., Cai & Monroe, 2014; Maydeu-

Olivares & Joe, 2014).1 Such tests and accompanying information may comprise an important 

piece of validity evidence for latent variable models in general (Markus & Borsboom, 2013), and 

are potential candidates for reporting alongside response style MIRT models. 

Unfortunately, there is a lack of recommendations regarding which limited information 

test statistic is most appropriate to use with response style MIRT models in general, and the 

MNRM in particular. To date, we are unaware of any previous research that has evaluated use of 

these test statistics based on either simulations or theoretical grounds with the response style 

MNRM, and even more generally with other response style models, the unconstrained nominal 

model or nominal data, or other non-ordinal latent trait models. Such comparisons are important 

because 𝑀2 may not always be computationally efficient nor perform well with polytomous 

items, yet 𝑀2
∗ and 𝐶2 may further collapse categories within items in a way that does not make 

sense for certain MNRM variants where ordinality may not hold. To complicate matters, choice 

of a different test statistic may provide a different picture of overall model fit. 

To illustrate this latter problem, consider results based on fitting several models with the 

MNRM to data (𝑁 = 803) from the Affective and Cognitive Measure of Empathy (ACME), 

 
1. In addition to sparsity, all such statistics may require numerical integration, which is feasible for 

models with few latent traits, but still problematic for models with many latent traits. 



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 5 
 

 

developed by Vachon and Lynam (2016). The ACME consists of three subscales, Affective 

Resonance (AR), Affective Dissonance (AD), and Cognitive Empathy (CE), and each subscale is 

composed of twelve 5-point Likert-type items. Broadly conceived, AR is designed to measure 

empathic concern and general compassion, AD captures inappropriate affect – e.g., taking 

pleasure in others’ pain – and CE is the ability to recognize and understand emotions in others. 

We followed a strategy that is not uncommon in test construction by examining each construct 

separately.2 For brevity and as the pattern of results was similar, we only report results for the 

AR subscale, with results for AD and CE presented in the Supplementary Materials. All analyses 

were run in flexMIRT® (Cai, 2017), and details of the MNRM and limited information test 

statistics will be presented in a later section.  

We established a baseline for model fit with an IRT model that includes only a dimension 

representing AR. We additionally considered the possibility that ERS (+ERS), MRS (+MRS), or 

both style constructs at once (+ERS+MRS) might be other plausible factors that could be added 

to improve fit. We fit all of these models with correlated factors and all items loading on 

substantive and style dimensions. As typically found by others (e.g., Falk & Cai, 2016; Falk & 

Ju, 2020), AIC showed improved model fit for both style factors (+ERS+MRS; Table 1). 

However, an inspection of 𝑀2, 𝑀2
∗, and 𝐶2, along with RMSEA and TLI, suggests that the test 

statistics disagree on the adequacy of model fit (Table 1). First, almost all models are rejected by 

the test statistics at the 𝛼 =  .05 level. However, for the three +ERS models, 𝑀2
∗ actually fails to 

reject the null. Second, 𝑀2
∗ cannot be computed for models with both style constructs 

(+ERS+MRS) as there are negative degrees of freedom. Finally, RMSEA and TLI provide 

 
2. We have retained all participants regardless of their standing on quality control checks. Our use of the 

subsequent models is mainly for illustrative purposes, and we do not make any firm substantive 

conclusions from the results of these analyses. 
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conflicting information across test statistics. 𝑀2 does not yield TLI values indicating good fit (>

.90) until both ERS and MRS are included in the model. However, TLI based on 𝐶2 looks better 

(≥ .95) with only one style construct in the model, and TLI based on 𝑀2
∗ looks good (≥ .98) 

with just the baseline model. In contrast, RMSEA suggests a different pattern of results, with 

worse fit when computed from 𝐶2 than from 𝑀2 or 𝑀2
∗. RMSEA based on 𝐶2 would suggest that 

there are more gains in fit if ERS is added than with MRS, yet the opposite sometimes holds true 

for RMSEA based on 𝑀2 or 𝑀2
∗. 

[Table 1 near here] 

 

The takeaway here is that 𝑀2, 𝑀2
∗, and 𝐶2 offer different conclusions regarding model fit 

in the presence of style constructs. This problem is compounded by the fact that the researcher 

lacks crucial guidelines with which to make an informed choice to follow one test statistic over 

another, as there is currently a dearth of knowledge about how 𝑀2, 𝑀2
∗, and 𝐶2 behave with 

response style MIRT models, particularly when not all dimensions assume ordered categories. If 

such behavior were known, it may be easier to know whether each test statistic is sensitive to 

misspecification of style constructs, and what type of model modification may be most 

warranted, if any. Furthermore, the quality of TLI and RMSEA may be dependent on an initial 

evaluation of the test statistics themselves. Our goal for this paper is to therefore compare the 

relative performance of limited information test statistics with such models. In what follows, we 

more fully discuss the MNRM in Section 2. We explain limited-information fit in conceptual and 

technical detail in Section 3, along with a literature review of previous theoretical and simulation 

research. In Sections 4 and 5, we present the methods and results of a simulation study to 

evaluate test statistic behavior in the presence of response styles. To conclude, we will discuss 

the main findings with consideration to applied research. 
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2. Multidimensional Nominal Response Model (MNRM) 

 The MNRM (Thissen, Cai, & Bock, 2010; Thissen & Cai, 2016) is a divide-by-total 

model based in part on the unidimensional nominal response model by Bock (1972). Numerous 

authors have now used and introduced the model as being useful for measuring response styles 

(e.g., Bolt & Johnson, 2009; Bolt, Lu, & Kim, 2014; Bolt & Newton, 2011; Falk & Cai, 2016; 

Falk & Ju, 2020; Johnson & Bolt, 2010; Ju & Falk, 2019; Kieruj & Moors, 2013). To formally 

introduce notation, suppose that an item is polytomous with 𝐾 total categories indexed by 

0,1, … , 𝐾 − 1. The traceline for the MNRM for category k of the item can be written as follows 

using scalar notation:  

 𝑇(𝑘|𝜽) =
exp(𝑎1𝑠𝑘1𝜃1 + 𝑎2𝑠𝑘2𝜃2 + ⋯ + 𝑎𝐷𝑠𝑘𝐷𝜃𝐷 + 𝑐𝑘)

∑ exp(𝑎1𝑠𝑚1𝜃1 + 𝑎2𝑠𝑚2𝜃2 + ⋯ + 𝑎𝐷𝑠𝑚𝐷𝜃𝐷 + 𝑐𝑚)𝐾−1
𝑚=0

 (1) 

where 𝜃1, … , 𝜃𝐷 represent D latent constructs of interests, 𝑎1, … , 𝑎𝐷 are slopes for each 

dimension, 𝑠𝑘1, … , 𝑠𝑘𝐷 are scoring function values specific to category k and each dimension, 

and 𝑐𝑘 is a category specific intercept. In some parameterizations of the model (Falk & Cai, 

2016; Thissen et al., 2010; Thissen & Cai, 2016) and that implemented by flexMIRT® (Cai, 

2017) and used in this manuscript, the intercepts are not directly estimated: 𝒄 = 𝑻𝜸, where c is a 

K-length vector of intercepts, T is a 𝐾 × (𝐾 − 1) contrast matrix using a Fourier basis, and 𝜸 

contains 𝐾 − 1 parameters. Note that with the exception of the latent traits, all of the 

aforementioned parameters may vary across items (𝑗 = 1, … , 𝑛), whereas the values of the latent 

trait (if they were known) vary across study participants (𝑖 = 1, … , 𝑁). That is, we have omitted 

such subscripts for notational simplicity. Maximum marginal likelihood (MML) estimation is 

often used for estimating item parameters (Bock & Lieberman, 1970; Bock & Aitkin, 1981), 

which requires distributional assumptions for the latent traits. Here we assume multivariate 
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normality, 𝜽 ∼ 𝑁(𝝁, 𝚺), with a mean vector 𝝁 (usually fixed to all zero for single group models), 

and covariance matrix, 𝚺 (with the diagonal usually fixed to unity for identification). 

We denote 𝑌𝑖𝑗 a random variable for item j and participant i, and 𝑦𝑖𝑗 its observed response 

or realization. MIRT models estimated using MML in general can often be written in terms of 

the model-implied probability of a response pattern for all items, 𝒚𝑖 = [𝑦𝑖1 𝑦𝑖2 ⋯ 𝑦𝑖𝑛], 

 𝜋𝑖 = 𝜋(𝒚𝑖|𝝎) = ∫ 𝑓(𝒚𝑖|𝝎, 𝜽)𝜙(𝜽|𝝎, 𝚺)𝑑𝜽 (2) 

where 𝝎 is a vector of length 𝑣 that includes all free model parameters (both item parameters and 

covariances among latent dimensions). 𝜙(⋅) is the density function for the latent traits 

(multivariate normal in our application), and 𝑓(𝒚𝑖|𝝎, 𝜽) = ∏ 𝑃(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝜽, 𝝎)𝑛
𝑗=1  is the 

conditional probability mass function for the response pattern, which represents a product of 

relevant tracelines since 𝑃(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝜽, 𝝎) = ∏ 𝑇(𝑘|𝜃)1𝑘(𝑦𝑖𝑗)𝐾𝑗−1

𝑘=0  where 1𝑘(⋅) is an indicator 

function equal to one when its input is equal to k, and zero otherwise. In other words, if the 

model is correct, 𝜋𝑖 represents the probability of observing response pattern 𝒚𝑖. 

 The version of the MNRM in Equation 1 is most similar to that presented by Falk and 

colleagues (Falk & Cai, 2016; Falk & Ju, 2020). Additional constraints are often imposed for 

both identification of the model, and for defining substantive and style constructs. As discussed 

by Falk and Ju (2020), the parameterization and identification constraints may vary depending on 

the software used to estimate the model. Here, we focus primarily on the parameterization of 

scoring function values and slopes as available in flexMIRT® (Cai, 2017) and mirt (Chalmers, 

2012). In some recent applications of the MNRM (Bolt & Newton, 2011; Falk & Cai, 2016; 

Wetzel & Carstensen, 2017), and the approach taken in this manuscript, we fix the scoring 

functions to prespecified values that make sense based on substantive theory. This strategy is 

most easily seen when examining scoring function values for a single latent construct, but across 
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all categories for a single item. For instance, if the categories for an item and latent construct 

have ordinal scoring functions for dimension d and a 5-category item, [𝑠0𝑑  𝑠1𝑑  𝑠2𝑑  𝑠3𝑑  𝑠4𝑑  ] =

[0  1  2  3  4], then the relationship between the construct and the item is equivalent to that 

modeled by the generalized partial credit model (GPCM; Muraki, 1992). Such scoring function 

values are typically congruent with the substantive construct of interest when categories are 

assumed ordinal; an increase (or decrease) in the latent trait tends to result in a choice of a higher 

(or lower) category. With ERS, the scoring function values may be fixed such that the endpoint 

categories indicate a response towards one end of the latent trait, and the middle categories 

indicate a response towards the other end of the latent trait: [𝑠0𝑑  𝑠1𝑑  𝑠2𝑑  𝑠3𝑑  𝑠4𝑑  ] =

[1  0  0  0  1]. With MRS, a similar strategy is used, except the middle category has a “1” and the 

other categories have a zero scoring function value: [𝑠0𝑑  𝑠1𝑑  𝑠2𝑑  𝑠3𝑑  𝑠4𝑑  ] = [0  0  1  0  0]. It is 

also possible to estimate scoring function values (at least up until some identification constraints) 

as in the original nominal response model, so as to reveal how the categories are related to a 

latent construct. In such applications, for studying response styles it is often the case that a strong 

first dimension resembles the substantive trait, and a secondary dimension resembles ERS (Bolt 

& Johnson, 2010; Kieruj & Moors, 2013). 

In the case of fixed scoring function values, if slopes are constrained equal across items 

(or fixed to 1 with the variance of the relevant latent construct estimated), then the model 

becomes analogous to a partial credit model (Masters, 1982). Some authors have used this 

strategy for measuring substantive and style constructs such as ERS and MRS (e.g., Bolt & 

Newton, 2011; Wetzel & Carstensen, 2017). Falk and Cai (2016) showed how it is possible to 

instead freely estimate slopes across items for both style and substantive factors, but retain fixed 

scoring function values. That is, all 𝑎𝑑 that are of interest are freed parameters, yet all 𝑠𝑘𝑑 are 
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fixed to prespecified values depending on the dimension. It is even further possible in this latter 

setup to also estimate correlations among factors, even if all items load on all constructs, 

provided that scoring functions are not linearly dependent across latent dimensions. It is this 

latter approach that we used with the ACME data in the previous section to estimate models with 

a substantive trait only, and with combinations of ERS and MRS. 

As such models are relatively new within the methodology literature, circulation and use 

has primarily focused there, with fewer applications outside of this literature (cf. Schneider, 

2018; Stone, Schneider, Junghaenel, & Broderick, 2019). Potential applications have thus 

focused on adjustment of factor score estimates either on an observed score metric or latent 

metric (Bolt & Newton, 2011; Dowling, Bolt, Deng, & Li, 2016; Stone et al., 2019), the potential 

of style factors to distort across group item functioning (Bolt & Johnson, 2009), survey features 

that may elicit response styles (e.g., Kieruj & Moors, 2013), or applications to survey/study 

design (Adams, Bolt, Deng, Smith, & Baker, 2019). The potential consequences of fitting a 

misspecified MNRM in the context of response styles is thus difficult to ascertain due to a small 

research base, although previous simulation research has indicated that recovery of factor scores 

becomes slightly worse if relevant style factors are omitted (e.g., Falk & Cai, 2016), and 

differential item functioning may sometimes be obscured (e.g., Bolt & Johnson, 2009). 

Preliminary evidence thus far suggests that score estimates that are adjusted for style may have 

improved validity in some situations (e.g., Schneider, 2018). 

 Before moving on to limited information fit statistics in the context of the MNRM, we 

note that Tutz (2019) has argued that the partial credit version of the MNRM (implying also less 

restricted versions of the MNRM) do not represent ordinal latent trait models. This is most 

intuitively seen in how the scoring functions for constructs such as ERS and MRS are not in the 
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same order as the original categories (i.e., not monotonic), and do not match the order of the 

scoring function values for the main substantive dimension. This observation may become 

important when trying to form intuition about whether certain limited information fit statistics 

are more appropriate than others. 

3. Limited Information Test Statistics 

3.1  Overview of Limited-Information Testing 

One approach to adjudicating overall model fit, adopted by full-information test statistics 

such as Pearson’s 𝑋2 and the likelihood ratio 𝐺2 is to compare model-implied probabilities of for 

all possible response patterns to corresponding proportions observed in the actual data. For n 

polytomous items with 𝐾𝑗 response categories for item j, let the model-implied multinomial 

response pattern probabilities under MML estimation be denoted �̂� = (�̂�1, … , �̂�𝐶)′, and the 

corresponding observed proportions be denoted �̂� = (�̂�1, … , �̂�𝐶)′, where 𝐶 = ∏ 𝐾𝑗
𝑛
𝑗=1 . Since 

these probabilities (or proportions) must sum to 1, there are 𝐶 − 1 independent probabilities or 

proportions that could be used for model testing. Intuitively, a well-fitting model is one in which 

the model-implied probabilities for the response patterns closely match the observed proportions. 

However, when there are many items, many categories, or both, accurately constructing a 

well-calibrated test statistic is challenging due to sparseness (Cai & Hansen, 2013; Maydeu-

Olivares & Joe, 2006). Take for example any of the ACME subscales with 12 Likert-type items, 

each with five response options. In such a case, there are 512 (or more than 244 million) cells in 

the full contingency table, which means nearly all of the cells (or observed proportions) remain 

empty assuming a realistic sample size 𝑁. In this situation, full-information test statistics 

typically have poorly-calibrated Type I error rates, and thus have limited utility for evaluating 

IRT models (Maydeu-Olivares & Joe, 2005). A related challenge is computational in nature: 



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 12 
 

 

computing all 𝐶 of the probabilities for the full contingency table, as required for Pearson’s 𝑋2, 

can be impractical. 

Limited-information statistics address these challenges by using lower-order probabilities 

and proportions (i.e., first-order, second-order, etc.), as lower-order marginal tables will 

necessarily be better-filled than the full multiway table. Thus, limited-information statistics are 

less impacted by sparseness. To date, the most popular limited-information statistics, such as 𝑀2, 

use first- and second-order margins. An example of these sub-tables for two items from the 

ACME AR subscale (see Introduction Section) is presented in Table 2. As with full-information 

statistics, intuitively, a well-fitting model is one in which the model-implied probabilities closely 

match the observed proportions. Furthermore, in many practical settings, the number of first and 

second-order cells will be small compared to 𝐶. For example, for any of the ACME subscales, 

there are approximately 3,400 cells in the collection of first and second-order tables. As a result, 

limited-information statistics can be much less computationally demanding than full-information 

statistics. 

[Table 2 near here] 

 The limited-information statistics 𝑀2, 𝑀2
∗, and 𝐶2 all use up to second-order marginal 

tables (hence, the subscript of 2), but differ in how the probabilities and proportions are 

compared. For 𝑀2 (Maydeu-Olivares & Joe, 2005), a full set of mathematically independent 

first- and second-order model-implied probabilities is compared to the corresponding set of 

sample proportions. This set is obtained by excluding the probabilities with response categories 

of 0. For example, in Table 2, the shaded cells are not used to calculate 𝑀2. Thus, 𝑀2 relies on 

𝑞1 = ∑ (𝐾𝑗 − 1)𝑛
𝑗=1  mathematically independent first-order quantities and 𝑞2 =

∑ ∑ (𝐾𝑗 − 1)(𝐾𝑗′ − 1)𝑛
𝑗′=𝑗+1

𝑛−1
𝑗=1  mathematically independent second-order quantities. 
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Though the lower-order tables used in 𝑀2 will necessarily be better-filled than the full 

multiway table, the bivariate contingency tables may still exhibit sparseness with polytomous 

items. Cai and Hansen (2013) reasoned that when items are designed to measure the same 

primary construct, the responses are expected to have a positive relationship due to the influence 

of a common latent variable. So, it is expected that some observed response combinations will be 

common, while others may be rare. Returning to Table 2, the sample proportions are greater 

along the diagonal, and lower or even zero elsewhere, especially for response pairs that are 

inconsistent (e.g., category 4 on item 6, and category 1 on item 5).3 Despite the sample size (𝑁 =

803), the observed frequency is less than five for nine of the 25 bivariate cells. This problem will 

be exacerbated when items have large loadings (or slopes) on the common latent trait, and/or 

items have many categories. In a simulation study, Cai and Hansen (2013) found that Type I 

error rates for 𝑀2 can be too small when items are polytomous. Moreover, when the numbers of 

items and categories are large, 𝑀2 can still be slow to compute. 

 A strategy to address this shortcoming is to collapse or summarize the lower-order tables 

used in 𝑀2, thereby avoiding sparseness. For 𝑀2
∗ (Cai & Hansen, 2013; see also Joe & Maydeu-

Olivares, 2010), the first-order probabilities and proportions are summarized using item means as 

follows: 

 

�̂�𝑗 = ∑ 𝑘�̂�𝑗
(𝑘)

;   𝑚𝑗 = ∑ 𝑘𝑝𝑗
(𝑘)

𝐾𝑗−1

𝑘=0

,

𝐾𝑗−1

𝑘=0

 

(2) 

where �̂�𝑗
(𝑘)

 and 𝑝𝑗
(𝑘)

 refer to the model-implied probability and observed proportion, 

respectively, for item j and category k (e.g., see Table 2). So, whereas 𝑀2 relies on 𝑞1 

 
3. If items differ greatly in overall difficulty, these high frequencies may not cluster along the diagonal, 

but will still have a similar pattern where category pairs further toward at least one of the off-diagonals 

will have the lowest frequencies. 
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independent first-order probabilities, 𝑀2
∗ relies on only 𝑟1 = 𝑛 item means. For 𝑀2

∗, the second-

order probabilities and proportions are similarly summarized, using the items scores to calculate 

item-pair moments as follows: 

 

�̂�𝑗𝑗′ = ∑ ∑ 𝑘𝑘′�̂�
𝑗𝑗′

(𝑘𝑘′)

𝐾
𝑗′−1

𝑘′=0

𝐾𝑗−1

𝑘=0

;   𝑚𝑗𝑗′ = ∑ ∑ 𝑘𝑘′𝑝
𝑗𝑗′

(𝑘𝑘′)

𝐾
𝑗′−1

𝑘′=0

𝐾𝑗−1

𝑘=0

, 

(3) 

where �̂�
𝑗𝑗′

(𝑘𝑘′)
 and 𝑝

𝑗𝑗′

(𝑘𝑘′)
 are the model-implied probability and observed proportion, respectively, 

for item 𝑗 with category 𝑘, and item 𝑗′ with category 𝑘′ (e.g., see Table 2). Whereas 𝑀2 relies on 

𝑞2 independent second-order probabilities, 𝑀2
∗ relies on 𝑟2 = 𝑛(𝑛 − 1)/2 item-pair moments. As 

an example, Table 3 presents the item means and item-pair moment for the two example items in 

Table 2. Also, note that when the numbers of items and categories are large, 𝑀2
∗ will be faster to 

compute than 𝑀2. 

[Table 3 near here] 

 Another statistic that avoids the potential sparseness in the bivariate contingency tables 

for polytomous items is 𝐶2 (Cai & Monroe, 2014; Monroe & Cai, 2015). This statistic can be 

considered a mixed, or hybrid, version of 𝑀2 and 𝑀2
∗. Like 𝑀2

∗, 𝐶2 uses the 𝑟2 item-pair moments 

to avoid sparseness. However, Cai and Monroe (2014) reasoned that sparseness rarely affects 

univariate tables, and therefore summarizing these tables using item means, as done for 𝑀2
∗, is 

likely unnecessary and could result in lower power. Instead, 𝐶2 relies on the 𝑞1 independent first-

order probabilities, just like 𝑀2. An advantage of 𝐶2 over 𝑀2
∗ is that for some combinations of 

numbers of items and categories, the latter statistic does not have positive degrees of freedom, 

and cannot be used for testing. For a summary of information regarding these statistics and 

information available to each, see Table 4. 

[Table 4 near here] 
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3.2 Definitions of Limited-Information Test Statistics 

 Next, we present equations for the family of limited-information test statistics (Joe & 

Maydeu-Olivares, 2010), and present 𝑀2, 𝑀2
∗, and 𝐶2 as special cases of this family. Let 𝐋𝜂 be an 

𝑠 × 𝐶 reduction matrix that defines how the full contingency table is collapsed; that is, 𝐋𝜂 

defines the particular limited-information statistic. For examples of 𝐋𝜂 leading to 𝑀2 and 𝑀2
∗, see 

Cai and Hansen (pp. 253-257, 2013). Then, let �̂� = 𝐋𝜂�̂� be the 𝑠-length vector of summaries of 

the model-implied probabilities (e.g., the independent first- and second-order probabilities) and 

let 𝒉 = 𝐋𝜂𝒑 be the corresponding sample statistics. The limited-information quadratic form test 

statistic is 

 𝑄𝜂 = 𝑁(𝒉 − �̂�)′�̂�𝜂(𝒉 − �̂�). (4) 

with weight matrix 

 𝚼𝜂 = 𝚵𝜂
−1 − 𝚵𝜂

−1𝚫𝜂(𝚫𝜂
′ 𝚵𝜂

−1𝚫𝜂)
−1

𝚫𝜂
′ 𝚵𝜂

−1 (5) 

evaluated at the MML estimates �̂�. In this last equation, 𝚵𝜂 denotes 𝑁 times the asymptotic 

covariance matrix of 𝒉, and 𝚫𝜂 denotes the matrix of derivatives of 𝜼 with respect to 𝝎. If two 

conditions related to 𝐋𝜂 are satisfied,4 then the asymptotic null distribution of 𝑄𝜂 is 𝜒2 with 𝑠 −

𝑣 degrees of freedom. 

 For 𝑀2, let 𝜼1 be the vector of all linearly independent first- and second-order model-

implied probabilities, and let 𝒉1 be the vector of corresponding sample statistics. In this case, 

𝑠 = 𝑞1 + 𝑞2, and 𝐋𝜂1
 is defined such that 𝜼1 = 𝐋𝜂1

𝝅 and 𝒉1 = 𝐋𝜂1
𝒑. Then, 𝑀2 is defined as  

 𝑀2 = 𝑁(𝒉1 − �̂�1)′�̂�𝜂1
(𝒉1 − �̂�1), (6) 

 

4. To establish the asymptotic distribution for the family, it is necessary that: 1) 𝐋𝜂 has full row 

rank, 𝑠, and 𝟏𝐶
′  is not in its row span; and 2) 𝚫𝜂 has full column rank, 𝑣 (p. 396, Joe & Maydeu-

Olivares, 2010). 



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 16 
 

 

with �̂�𝜂1
 calculated as in Equation 5, using 𝐋𝜂1

. The degrees of freedom for 𝑀2 is 𝑞1 + 𝑞2 − 𝑣. 

 For 𝑀2
∗, let 𝜼2 be the vector of all item-means and item-pair moments, and let 𝒉2 be the 

vector of corresponding sample statistics. In this case, 𝑠 = 𝑟1 + 𝑟2, and 𝐋𝜂2
 is defined such that 

𝜼2 = 𝐋𝜂2
𝝅 and 𝒉2 = 𝐋𝜂2

𝒑. Then, 𝑀2
∗ is defined as  

 𝑀2
∗ = 𝑁(𝒉𝟐 − �̂�𝟐)′�̂�𝜂2

(𝒉𝟐 − �̂�𝟐), (7) 

with �̂�𝜂2
 calculated as in Equation 5, using 𝐋𝜂2

. The degrees of freedom for 𝑀2
∗ is 𝑟1 + 𝑟2 − 𝑣. 

 Finally, for 𝐶2, let 𝜼3 be the vector of all linearly independent first-order probabilities and 

item-pair moments, and let 𝒉3 be the vector of corresponding sample statistics. In this case,  𝑠 =

𝑞1 + 𝑟2, and 𝐋𝜂3
 is defined such that 𝜼3 = 𝐋𝜂3

𝝅 and 𝒉3 = 𝐋𝜂3
𝒑. Then, 𝐶2 is defined as  

 𝐶2 = 𝑁(𝒉3 − �̂�3)′�̂�𝜂3
(𝒉3 − �̂�3), (8) 

with �̂�𝜂3
 calculated as in Equation 5, using 𝐋𝜂3

. The degrees of freedom for 𝐶2 is 𝑞1 + 𝑟2 − 𝑣. 

3.3  Previous Studies Comparing 𝑴𝟐, 𝑴𝟐
∗ , and 𝑪𝟐 

There are very few previous simulation studies that have examined all three of the limited 

information test statistics simultaneously. In fact, we are aware of only a comparison of 𝑀2 and 

𝑀2
∗ (Cai & Hansen, 2013), an evaluation of 𝐶2 albeit using a different estimation approach 

(Monroe & Cai, 2015), and a small study comparing all three by Cai and Monroe (2014). In the 

latter study, the three test statistics were evaluated with a 4, 6, or 8 item test at a single sample 

size (𝑁 =  500). Unidimensional graded response models (Samejima, 1969) were fit to data 

from a unidimensional true model in order to study Type I error rates, and to data from the same 

model with an additional small substantive factor in order to study power. Across these previous 

studies, 𝑀2 tended to have inaccurate Type I error rates (often lower than expected) – a trend that 

appears to exacerbate with more items. 𝐶2 and 𝑀2
∗ tended to maintain better Type I error rates, 

and 𝐶2 has been shown to have higher power than both 𝑀2 and 𝑀2
∗. In addition, sometimes 𝑀2

∗ 
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has nonpositive degrees of freedom with questionnaires with few items, limiting its general 

utility and suggesting that perhaps the first- and second-order margins have been collapsed too 

far. 

Note that the weights (indices 𝑘 and 𝑘′ in the summations in Equations 2 and 3) that 

reduce first- and second-order elements are ordinal and the same as the scoring function values 

for substantive dimensions under the MNRM as described in Section 2. Equivalently, these are 

also the scoring function values under the GPCM, which has been described as an ordinal latent 

trait model (Tutz, 2019). Indeed, in describing 𝑀2
∗, Maydeu-Olivares (2013) repeatedly refers to 

the test statistic as one for ordinal data: “… it only makes sense to use means and cross-products, 

and, therefore 𝑀𝑜𝑟𝑑, when the item categories are ordered (hence its name)” (p. 81; where 𝑀𝑜𝑟𝑑 

is notation for 𝑀2
∗). 𝐶2 makes similar assumptions when reducing second-order information. We 

may then wonder about the appropriateness of 𝐶2 and 𝑀2
∗ for response style MIRT models that 

have been argued to not be ordinal, and in which the order of the categories (and scoring 

function) differs for constructs such as ERS and MRS. There is nothing wrong with the 

underlying statistical theory in reducing first- or second-order information and such test statistics 

would be expected to maintain nominal Type I error rates (Joe & Maydeu-Olivares, 2010), yet 

previous research with 𝑀2
∗ and 𝐶2 indicates that sometimes there is diminished power if too 

much information is lost due to collapsing (Cai & Monroe, 2014). 

To our knowledge, relative test statistic performance remains unknown and untested on 

response style MIRT models. But this issue seems important given our review of the literature 

and the realization that some of the collapsing under 𝐶2 and 𝑀2
∗ may result in a loss of 

information that may adversely affect the performance of these statistics. In what follows, we 

conduct a Monte Carlo simulation study to evaluate the utility of limited-information test 
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statistics across varying conditions – sample size, strength of loadings, presence or absence of 

response styles – and offer researchers some clarity about which test statistic is most appropriate 

when modeling substantive constructs and response style traits simultaneously, in the context of 

Likert-scale measurement tools. 

4. Method 

Data were generated from one of three models: 1) unidimensional GPCM (a single 

substantive dimension; Model 1); 2) bidimensional model with substantive dimension (GPCM) 

and ERS (Model 2); and 3) bidimensional model with GPCM and MRS (Model 3). For each 

bidimensional model, we assumed uncorrelated substantive and response style factors, as 

previous investigations have often found these to be weakly related (e.g., Falk & Cai, 2016). The 

size of slope parameters was manipulated on a per-dimension basis such that all weak/strong and 

substantive/style combinations were satisfied. This resulted in two additional conditions for 

Model 1 (weak, strong) and four conditions for each of Models 2 and 3 (weak/weak, 

weak/strong, strong/weak, strong/strong). The idea behind varying slope strengths was twofold. 

First, we predicted that strong loadings on the substantive dimension may result in more 

sparseness in the bivariate contingency tables, as stronger loadings imply increased inter-item 

correlation and thus second-order marginal frequencies that cluster more closely around the 

bivariate diagonal. Second, stronger loadings on the response style factor may result in 

categories that are more severely out of order than would otherwise be true with weaker slopes. 

Each generating model produced data for N = 500 and N = 1000 subjects, and included twelve 5-

category items across all conditions. In total then, there were then 20 unique data generation 

conditions, and we simulated 1000 replications per condition.   
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Item parameters for data generation were chosen in accordance with published item 

parameters in the MNRM context (Falk & Cai, 2016) and parameter estimates extracted from 

real Likert-scale data (Vachon & Lynam, 2016). Our objective here was to select a set of 

parameters that offers good coverage of the substantive latent trait and some slope and intercept 

variability across items. To avoid items so extreme that the marginal probability of any given 

response fell too low (defined as .05 or smaller) or had unrealistic looking response functions, 

we changed intercept parameters slightly when the substantive dimension had strong versus 

weak slopes. For the substantive dimension, half of the items had a slope of 1 and the remaining 

1.2, whereas with weak slopes these values were .55 or .75.5 For style factors (ERS or MRS), 

items were split into four groups with .45, .60, .55, or .65 for weak slope conditions and 1.2, 

1.35, 1.3, or 1.4 for strong slope conditions. See Table 5 for an example of the strong/strong 

condition with Models 2 and 3, and Supplementary Materials for the remaining data-generating 

parameters. 

[Table 5 near here] 

All three types of data-generating models were crossed with the same three types of fitted 

models. When combined with the 20 data generating conditions, this yields 60 different unique 

cells under which to evaluate the performance of the test statistics, or 60,000 fitted models. 

When the true model is fit to the data, we evaluate Type I error rates. Technically, fitting Models 

2 or 3 to data from Model 1 also evaluates Type I error rates as Model 1 is nested within these 

other two models. When the unidimensional GPCM (Model 1) is fit to either of the 

 

5. Despite what appear to be slightly small standardized loadings for these items (e.g., Table 5; 

computed using flexMIRT®), the strong and weak conditions for the unidimensional model and a 

standard normal latent trait correspond to marginal reliabilities of .91 and .84, respectively. The 

information provided for style factors is expected to be less since the effective number of 

categories per item is fewer (e.g., see also Falk & Ju, 2020). 
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bidimensional models (Models 2 or 3), we can evaluate power to detect omitted style factors. 

Also to evaluate power with an incorrectly specified style factor, we fit Model 2 to data 

generated with Model 3, and vice versa. Scoring functions were fixed to prespecified values for 

all dimensions under true and estimated models and are the same as mentioned earlier in this 

manuscript: substantive factor [0  1  2  3  4], ERS [1  0  0  0  1], and MRS [0  0  1  0  0]. 

Correlations between constructs were fixed to zero. 

All models were fit using flexMIRT® (Cai, 2017) with rectangular quadrature with 49 

equally spaced points between -6 and 6 for each latent dimension. Models were estimated using 

maximum marginal likelihood with the Expectation-Maximization algorithm (EM-MML; Bock 

& Aitkin, 1981). To strike a balance between computational time and precision of convergence, 

we set the maximum number of E-step iterations to 2000 and the convergence criteria for the E-

step and M-step to 1 x 10-4 and 1 x 10-9, respectively.  

Our theoretical expectations were as follows. With larger sample sizes, Type I error under 

the null distribution will approach nominal rates, and power under the alternative will improve. 

Under the null, a well calibrated test statistic should be approximately chi-square distributed with 

a mean equal to its degrees of freedom (df), and variance equal to twice the df (Agresti, 1996). 

This is likely not always the case for 𝑀2 (Cai & Hansen, 2013; Cai & Monroe, 2014). We 

believe that 𝑀2 may exhibit poor performance in terms of both Type I error and power when 

substantive loadings are strong, as this condition is likely to induce more sparseness in the 

second-order margins. In turn, 𝑀2
∗ may perform well when substantive loadings are strong. 

However, 𝑀2
∗ may have little power to detect a misspecified model as the ordinality assumption 

about the categories is not met with data from Models 2 and 3. Finally, 𝐶2 may provide a good 
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compromise among the three limited-information fit measures as bivariate sparseness is reduced 

due to collapsing, yet some information from univariate margins is retained. 

5. Results 

5.1 Type I Error 

 All but 6 fitted models converged in under 2,000 iterations and results from models that 

did not converge were omitted from our results. In what follows, we present Type I error results 

involving only Models 1 and 2, as results with Model 3 – both as a data generating model and 

fitted model – were similar (see Supplementary Materials for full results). While we follow Cai 

and Monroe (2014) and report Type I error rates at three different alpha levels (α = .01, .05, .10), 

we only discuss accuracy at α = .05 because patterns are similar across all levels. When the true 

model was fit to the data and substantive slopes were weak, accurate rejection rates persisted 

across all three fit statistics and both samples sizes. For example, Type I error ranged from .036 

to .06 under Model 1 (Table 6), and between .035 and .063 under Model 2 (Table 7). When 

substantive slopes were strong, 𝑀2 exhibited inflated rejection rates. For example, at N = 500 

rejection rates were as high as .10 or .11 under all strong substantive slope conditions. Rejection 

rates improved with a larger sample, but still ranged from .068 to .087. In contrast, 𝑀2
∗ and 𝐶2 

maintained better Type I error rates (between .041 and .062) at both sample size conditions and 

when substantive slopes were strong. A comparison of the empirical means and variances of 𝑀2, 

𝑀2
∗, and 𝐶2 reveals that the distribution of 𝑀2 appears to have greater variance than the chi-

square reference distribution, and this was especially true at N = 500 with strong substantive 

slopes, where it tended to be greater than 3 times the degrees of freedom. When fitting Models 2 

or 3 to data from Model 1, a similar pattern of results was observed as already described, with 



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 22 
 

 

one exception. In particular, Type I error rates for 𝑀2 tended to fall below nominal rates (.024 

and .026) with weak substantive dimensions and at N = 1,000 (See Supplementary Materials). 

[Table 6 near here] 

[Table 7 near here] 

5.2 Power 

For models investigating power, all but 3 converged in under 2,000 iterations. We discuss 

two types of misspecification starting with an omitted style factor when Model 1 (a 

unidimensional GPCM) was fit to data from Model 2 (Table 8) or Model 3 (Table 9), which 

represent bidimensional models with ERS and MRS, respectively. Overall, 𝑀2 had the highest 

power to detect model misspecification and this pattern held across all studied conditions. But, 

recall that since 𝑀2 is less well-calibrated under the null, added care should be taken when 

evaluating 𝑀2 for power. It stands out that 𝑀2
∗ exhibited extremely low power across these 

conditions (ranging from .017 to .085), indicating an unsatisfactory capacity to flag 

misspecification. Although it might be expected that power to detect misspecification would 

increase with sample size and when style slopes are strong – indicating a greater misspecification 

– this pattern only held for 𝑀2 and 𝐶2. For example, considering only conditions where 

substantive slopes are strong, rejection rates of 𝐶2 were .130 (N = 500) and .213 (N = 1000) 

when ERS slopes were weak, as compared to .986 (N = 500) and 1.000 (N = 1000) when ERS 

slopes were strong. 

Given weak power by 𝑀2
∗, we focus more closely on the relative performance of 𝐶2 and 

𝑀2. 𝐶2 had better power than 𝑀2
∗, but not as good as 𝑀2. For example, in the case of weak 

substantive and weak ERS slopes with N = 1000 observations, the rejection rate of 𝑀2 (.830) at 

the α = .05 level was almost eight times greater than that of 𝐶2 (.112). In the case of weak 
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substantive and weak MRS slopes with N = 1000 subjects, a similar relationship was observed. 

When response style slopes were strong, 𝑀2 again exhibited higher power than 𝐶2, but the gap 

between the test statistics was smaller. In only one such case (weak substantive slopes, strong 

MRS slopes, and N = 500 subjects) was the rejection rate of 𝑀2 (1.000) more than two times 

greater than that of 𝐶2 (.307). The power of 𝐶2 improved quickly as sample size doubled. In fact, 

given larger sample sizes, weaker substantive slopes, and stronger ERS slopes, 𝐶2 (.945) had 

nearly as much power as 𝑀2 (1.000) to detect model misfit. A parallel statement, however, 

cannot be made in the case of the MRS model; 𝐶2 power (.521) actually remained low as 

compared to 𝑀2 (1.000). In fact, power for 𝐶2 was generally higher given Model 2 (ERS) as 

compared to Model 3 (MRS), yet this pattern did not hold for 𝑀2. 

[Table 8 near here] 

 

[Table 9 near here] 

 

In addition, we also evaluated power under an incorrectly specified response style 

dimension. That is, we examined power when Model 3 was fit to Model 2 data (Table 10) and 

vice versa (Table 11). Once again, 𝑀2
∗ had very low power across all conditions; its highest 

rejection rate was .068 (when substantive slopes were weak, ERS slopes were strong, and N = 

500). Moreover, 𝑀2 behavior closely paralleled its performance under the previous 

misspecification. The general pattern for 𝑀2 was high power that increased with response style 

slope strength as well as sample size, and decreased as substantive slopes grew stronger. Also, 

just as in the previous misspecification, the lowest rejection rate for 𝑀2 (.309) emerged when 

substantive slopes were strong, response style slopes were weak, and N = 500. 𝐶2, in contrast, 

performed arguably worse in detecting an incorrectly specified style factor. The highest rejection 

rate for 𝐶2 was a meager .183 (when substantive and ERS slopes were strong and N = 500), and 
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𝐶2 never exhibited a rejection rate higher than one-third the size of the corresponding 𝑀2 rate. 

Furthermore, while in the earlier power analysis, 𝐶2 power always increased with an increase in 

sample size, this was not always the case in the currently examined conditions. For example, 

when Model 3 was fit to Model 2 (Table 10) and substantive and style dimensions were both 

strong, power dropped from .183 to .137 as sample size increased from N = 500 to N = 1000. 

[Table 10 near here] 

 

[Table 11 near here] 

 

We note that interpretations regarding RMSEA in response style MIRT models should be 

made with caution, as guiding principles for RMSEA in MIRT in general are few and may not be 

akin to those followed in other contexts. Because RMSEA indices depend on the specific test 

statistic of interest, fit assessment based on different test statistics may be governed by different 

criteria, thereby making interpretation not so straightforward. To our knowledge, the literature 

offers minimal guidance on this matter for 𝑀2 when data are polytomous, and almost none for 

𝑀2
∗ and 𝐶2. For 𝑀2, Maydeu-Olivares and Joe (2014) show that RMSEA behavior is primarily 

affected by the number of categories, so that as the number of categories increases, the RMSEA 

value decreases. It is suggested, therefore, that a cutoff criterion for excellent fit can be adapted 

from the criterion for binary data (.05), such that the relevant criterion becomes . 05/(𝐾 − 1), 

where 𝐾 is the number of categories. No similar cutoff criteria have been offered in this context 

for 𝑀2
∗ and 𝐶2.  

These challenges comprise a substantial barrier when considering the utility of RMSEA 

as a tool for evaluating the comparative performance of 𝑀2, 𝑀2
∗, and 𝐶2 in this study. We 

nevertheless include, for reference, mean RMSEA values in Tables 8 through 11 to assess per 

degree of freedom error of approximation (e.g., Cai & Monroe, 2014). If in the case of 𝑀2, one 
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were to follow the rule set forth by Maydeu-Olivares and Joe (2014), only when response style 

slopes were weak did mean RMSEA values incorrectly suggest excellent fit (< .0125). Results 

for 𝑀2
∗ and 𝐶2 cannot be measured against a cutoff criterion, but are comparable to those found 

in previous simulation research (Cai & Monroe, 2014). Even given misspecification under which 

a response style factor is excluded, mean RMSEA values remained low. For 𝑀2
∗ and 𝐶2, mean 

RMSEA values tended to decrease slightly at larger sample sizes, suggesting convergence to 

population RMSEA values that are somewhat smaller.  

6. Discussion 

In this simulation study, we evaluated the relative performance of limited-information test 

statistics 𝑀2, 𝑀2
∗, and 𝐶2 in the context of the MNRM and response styles. While 𝑀2

∗ and 𝐶2 

showed good calibration under the null across most conditions, 𝑀2 exhibited inflated Type I 

error rates when substantive slopes were strong. 𝑀2 always had higher power than the other test 

statistics; its power often approached one except when response style slopes were weak and 

sample size was smaller. Power to detect model misspecification was close to zero for 𝑀2
∗ given 

all conditions and misspecifications. As for 𝐶2, when misspecification under a larger sample size 

and strong substantive slopes concerned an omitted response style factor with strong slopes, 

power levels were close to those of 𝑀2; otherwise, 𝐶2 had lower power. 

 To integrate these findings with previous simulations, while the lack of calibration of 𝑀2 

under null conditions is known, the gains in power of 𝑀2 over other limited information test 

statistics represents a novel finding. Indeed, previous research has often found that 𝐶2 and 𝑀2
∗ 

have higher power than 𝑀2 to detect omitted residual dependencies or specific factors of a 

bifactor model (Cai & Hansen, 2013; Cai & Monroe, 2014). Similarly to Cai and Monroe (2014), 

we also found that 𝐶2 had greater power than 𝑀2
∗. Our findings on the higher power of 𝑀2 are 
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most likely attributable to a loss of information that occurs when categories are assumed ordinal 

and are collapsed in univariate and/or bivariate contingency tables under 𝐶2 and 𝑀2
∗. Apparently 

𝐶2 retains enough information in univariate tables (only bivariate tables are collapsed) to still 

detect omitted and sometimes misspecified response style factors, yet such information is 

completely lost under 𝑀2
∗.  

 In making recommendations for practical use, it is important to note that limited 

information test statistics are overall tests of fit and may not necessarily allow us to pinpoint the 

source of model misfit. However, given that the test statistics appear sensitive to different kinds 

of misspecifications, it may be prudent to recommend computation and interpretation of at least 

𝑀2 and 𝐶2. We reflect on this issue in the context of the initially presented empirical example 

(Table 1). In our simulations, 𝑀2
∗ lacked power and may run out of degrees of freedom with short 

tests (Cai & Monroe, 2014). Although 𝑀2
∗ may still retain some power to detect misspecified 

substantive dimensions (e.g., Cai & Hansen, 2013), 𝐶2 may best it in power for these kinds of 

misspecifications (Cai & Monroe, 2014). It is thus difficult to make sense of the pattern of results 

for 𝑀2
∗ in the empirical example (i.e., rejection of the unidimensional model, but not the MRS 

model), and it may be more worthwhile to instead interpret 𝑀2 and 𝐶2. Given that 𝐶2 is more 

powerful to detect misspecifications with substantive dimensions (Cai & Monroe, 2014), but 𝑀2 

is more sensitive to response style misspecification (this manuscript), it may be informative 

when only one test statistic rejects the model as this may be suggesting a particular kind of 

misspecification. If both reject the model, as is the case with the empirical example, it is more 

difficult to determine the source of misspecification as it could be misspecification of either style 

and/or substantive dimensions. 



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 27 
 

 

Two caveats to preference for reporting both 𝑀2 and 𝐶2 are noted. Although 𝑀2 

experienced some inflated Type I error in our simulations, such rates improve with an increase in 

sample size and may eventually reach nominal levels, even with strong substantive slopes. In 

addition, 𝑀2 is known to be slower to compute than 𝐶2, especially when there are many items 

and categories. Thus, 𝑀2 may be computationally infeasible for a long test, and 𝐶2 may then be 

the most appropriate fallback option despite its limitations. 

Above all, substantive theory should also be considered if no model fits the data and the 

researcher wishes to engage in some model modification to find a better fitting model. In the 

original ACME paper (Vachon & Lynam, 2016), all substantive constructs were modeled 

simultaneously and as independent clusters using a limited information estimation approach, and 

additional factors representing positively and negatively worded items were added as method 

factors. Thus, other theoretically plausible models could be considered. If the research question 

concerns more direct comparisons of alternative response style models, overall fit still provides 

valuable information, though tests of non-nested models for MIRT models are recently emerging 

and may be further studied for their use with the MNRM and other polytomous MIRT models 

(Freeman, 2016; Schneider, Chalmers, Debelak, & Merkle, 2019). Still the researcher may wish 

to know whether other fit indices such as RMSE and TLI are providing any information about 

the size of misfit, despite rejection of the models by 𝑀2 and 𝐶2. 

In reflecting on RMSEA, little guidance is available regarding interpretation in the case 

of limited information test statistics with polytomous data, whether ordinal or nominal. We note 

that this fit index is based on the test statistics themselves and may depend substantially on the 

number of response categories per item. Our research adds to the literature suggesting that these 

indices may require different interpretations across 𝑀2-, 𝑀2
∗-, and 𝐶2-based model fit evaluation 
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(Maydeu-Olivares & Joe, 2014; Monroe & Cai, 2015). While a cutoff for close fit has been 

suggested for RMSEA based on 𝑀2, no absolute cutoff criterion has emerged for 𝑀2
∗ and 𝐶2, as 

patterns of performance have been found to be inconsistent across varied numbers of items and 

categories. As such, the RMSEA values we present were included primarily for reference. While 

one might be tempted to say that for 𝑀2
∗ and 𝐶2 the studied models represented minor 

misspecifications, it may be that RMSEA values for these test statistics should be evaluated with 

more stringency and the adjusted 𝑀2-based cutoff of .0125 may be too large to use as a rule of 

thumb. Additional studies are needed before RMSEA values across 𝑀2, 𝑀2
∗, and 𝐶2 can be 

adequately compared, and before better recommendations can be made. 

Additional work on other fit indices could be used to supplement limited information test 

statistics. We did not investigate the performance of TLI as computed by flexMIRT® as this 

would require additional computations (i.e., estimation of a null model). TLI falls under a class 

of fit indices (which includes CFI), borrowed from the broader structural equation modeling 

literature, where the fitted model is implicitly compared to a more restricted null model (or other, 

usually poorly fitting model; for a review, see Bentler, 2008). In addition, residual-based fit 

indices (under which standardized root mean square residuals, or SRMR, falls) could also be 

further developed. For computation of SRMR, while under the assumption of ordinal latent trait 

models it may be possible to compute both an observed and model-implied correlation matrix 

among underling variables (e.g., Maydeu-Olivares, 2015), this approach may not work for items 

with nominal or unordered categories as it is unclear how observed (polychoric) correlations can 

be computed without some ordinality assumption for the items’ categories. Future research may 

instead draw inspiration on prior work in which residuals of bivariate contingency tables are used 

with nominal data in order to provide descriptive measures of model fit (e.g., Bacher, 1995). 
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While our findings represent new knowledge in the area of MIRT model fit assessment, 

additional questions and limitations remain. First, trends in performance across different sample 

sizes may become more readily evident with more than two sample size conditions. Of particular 

interest may be whether 𝐶2 reaches adequate power at larger sample sizes when the type of 

response style factor is misspecified. Second, although we may expect the Type I calibration of 

𝑀2 to get worse with more items and categories, the impact on power is somewhat unpredictable. 

Still, we would expect a similar pattern of relative performance across test statistics. Next, we 

also do not know how these statistics behave when univariate frequencies are low (< .05) and 

when categories are collapsed prior to estimation in order to accommodate such cases. However, 

presumably 𝑀2 and 𝐶2 will be equally vulnerable to such sparseness. In addition, we only 

evaluated test statistic performance for models of at most two dimensions. This study design 

choice was based mainly on computational considerations, and we await advances in accurate 

computation of limited information test statistics for higher dimensional models. The correlation 

between response style and substantive factors was zero in the data generating models. However, 

we have no reason to believe that this limits the generalizability of the findings.6 Finally, the full 

range of possible misspecifications that can be reasonably detected by limited information test 

statistics is largely unknown. Thus, while we focus primarily on misspecification of style and 

substantive dimensions in our recommendations, we do not know whether limited information 

test statistics can detect various forms of local dependence (e.g., Liu & Thissen, 2014), omitted 

 
6. In support of this claim, we computed model-implied probabilities for all 510 response patterns for a 

10-item (5 categories per item), two-factor (substantive + ERS) model with a .3 correlation among latent 

dimensions. As an example, fitting alternative misspecified models (a single substantive dimension) to 

these model-implied proportions typically yielded near zero test statistics for 𝑀2
∗, even if a wildly inflated 

sample size was specified for the fitted model (e.g., close to 1 million). This strategy was deemed not 

appropriate for the 12-item measures in our empirical example and simulation study, as doing 

computations on 512 patterns was too RAM and processor intensive. 
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cross-loadings (e.g., Falk & Monroe, 2018), nonnormal latent trait distributions (Li & Cai, 2018), 

incorrectly ordered categories (Preston, Reise, Cai, & Hays, 2011), and so on.  

It remains to be seen whether these results generalize to other types of scoring function 

values (Falk & Cai, 2016), the fully unconstrained nominal model, other response style MIRT 

models (e.g., Bockenholt, 2012, 2017; Thissen-Roe & Thissen, 2013), or more generally to other 

non-ordinal latent trait models. For example, it is possible that for some items, certain adjacent 

categories on the substantive dimension are either out of order or effectively indistinguishable by 

participants, which could also be modeled with the MNRM (Preston et al., 2011). Based on the 

present results, we would expect that 𝑀2 would have higher power than 𝐶2 and 𝑀2
∗ to detect such 

misspecifications. We have no theoretical reason to expect a different pattern of results as all 

such models violate ordinality as defined by Tutz (2019). That is, 𝑀2
∗ is expected to lose power 

to detect misspecification under such models, and we would generally expect a similar relative 

performance between 𝑀2 and 𝐶2. 
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Table 1. Model Fit Results for ACME Affective Resonance (AR) Data. 

 

 

  

Model Statistic df Value p RMSEA TLI AIC 

AR 𝑀2 1044 7656 0.0001 0.09 0.68 20445 

AR+ERS 𝑀2 1031 4572 0.0001 0.07 0.83 19564 

AR+MRS 𝑀2 1031 3742 0.0001 0.06 0.87 19362 

AR+ERS+MRS 𝑀2 1017 2125 0.0001 0.04 0.95 18617 

AR 𝐶2 54 689 0.0001 0.12 0.91 20445 

AR+ERS 𝐶2 41 196 0.0001 0.07 0.97 19564 

AR+MRS 𝐶2 41 337 0.0001 0.09 0.95 19362 

AR+ERS+MRS 𝐶2 27 97 0.0001 0.06 0.98 18617 

AR 𝑀2
∗ 18 152 0.0001 0.10 0.97 20445 

AR+ERS 𝑀2
∗ 5 9 0.0920 0.03 1.00 19564 

AR+MRS 𝑀2
∗ 5 16 0.0058 0.05 0.99 19362 

AR+ERS+MRS 𝑀2
∗ neg      



TEST STATISTICS FOR RESPONSE STYLE MIRT MODELS 40 
 

 

Table 2. Bivariate Observed (and Expected) Marginal Proportions for Items 5 and 6 of the 

Affective Resonance Subscale 

 
  Item 6 Response Category Marginal 

Proportion 

for Item 5   0 1 2 3 4 

It
em

 5
 R

es
p
o

n
se

 C
at

eg
o

ry
 

  

0 .315 (.290) .085 (.117) .021 (.030) .007 (.004) .001 (.001) .430 (.442) 

1 .110 (.133) .168 (.117) .030 (.057) .017 (.013) 0 (.003) .325 (.322) 

2 .019 (.032) .034 (.052) .097 (.043) .015 (.016) 0 (.005) .164 (.148) 

3 .005 (.006) .020 (.015) .020 (.020) .012 (.012) .005 (.006) .062 (.060) 

4 .001 (.001) .002 (.004) .005 (.008) .001 (.008) .009 (.007) .019 (.027) 

Marginal 

Proportion for 

Item 6 

.450 (.461) .309 (.305) .173 (.158) .054 (.053) .015 (.022)  
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Table 3. Reduced Univariate and Bivariate Sample Proportions (Model-Implied Probabilities) for 

Items 5 and 6 of Affective Resonance Example 

 

 Item 6 Mean for Item 5 

Item 5 1.38 (1.33) .915 (.908) 

Mean for Item 6 .875 (.869)  

Note: The reduced bivariate statistic is an item-pair moment. 
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Table 4. Summary of Available Information for Limited Information Test Statistics 

 

                Statistic 

 𝑀2 𝑀2
∗ 𝐶2 

1st Order Collapsed? No Yes No 

2nd Order Collapsed? No Yes Yes 

1st Order Info 
∑(𝐾𝑗 − 1)

𝑛

𝑗=1

 𝑛 ∑(𝐾𝑗 − 1)

𝑛

𝑗=1

 

2nd Order Info 

∑ ∑ (𝐾𝑗 − 1)(𝐾ℎ − 1)

𝑛

ℎ=𝑗+1

𝑛−1

𝑗=1

 𝑛(𝑛 − 1)/2 𝑛(𝑛 − 1)/2 

1st Order Info, Equal K 𝑛(𝐾 − 1) 𝑛 𝑛(𝐾 − 1) 

2nd Order Info, Equal K (𝑛(𝑛 − 1)/2)(𝐾 − 1)2 𝑛(𝑛 − 1)/2 𝑛(𝑛 − 1)/2 

flexMIRT® keyword 𝑀2 = “Full” 𝑀2
∗ = “Ordinal” 𝐶2 = “Mixed” 
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Table 5. Parameters for the Model 2 and Model 3 Generating Model with Strong Substantive 

Slopes and Strong Response Style Slopes 

 

Item i 
Intercept Contrasts 

 
Slopes  

Standardized 

Loadings 

𝛾𝑖1 𝛾𝑖2
 𝛾𝑖3 𝛾𝑖4

  𝛼𝑖𝑆𝑈 𝛼𝑖𝑅𝑆  𝜆𝑖𝑆𝑈 𝜆𝑖𝑅𝑆 

1  1.00 1.25 0.15 -0.10  1.00 1.20  0.43 0.52 

2 -1.00 1.00 0.20 -0.10  1.00 1.20  0.43 0.52 

3  0.00 1.50 0.25  0.10  1.00 1.20  0.43 0.52 

4  1.00 1.25 0.15 -0.10  1.00 1.35  0.42 0.56 

5 -1.00 1.00 0.20 -0.10  1.00 1.35  0.42 0.56 

6  0.00 1.50 0.25  0.10  1.00 1.35  0.42 0.56 

7  1.00 1.25 0.15 -0.10  1.20 1.30  0.49 0.53 

8 -1.00 1.00 0.20 -0.10  1.20 1.30  0.49 0.53 

9  0.00 1.50 0.25  0.10  1.20 1.30  0.49 0.53 

10  1.00 1.25 0.15 -0.10  1.20 1.40  0.48 0.56 

11 -1.00 1.00 0.20 -0.10  1.20 1.40  0.48 0.56 

12  0.00 1.50 0.25  0.10  1.20 1.40  0.48 0.56 
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Table 6. Simulation Results: Null Conditions, Model 1 

 

Slopes N Statistic df Mean Variance α = .01 α = .05 α = .10 RMSEA 

weak 500 

𝑀2 1044 1046.895 2090.264 0.013 0.058 0.111 0.004 

𝑀2
∗ 18 17.987 38.557 0.013 0.054 0.106 0.010 

𝐶2 54 53.989 105.860 0.012 0.051 0.094 0.008 

weak 1000 

𝑀2 1044 1042.556 2042.875 0.010 0.036 0.094 0.003 

𝑀2
∗ 18 18.330 39.924 0.014 0.059 0.108 0.008 

𝐶2 54 54.243 118.535 0.017 0.060 0.109 0.006 

strong 500 

𝑀2 1044 1044.372 3752.639 0.052 0.103 0.134 0.004 

𝑀2
∗ 18 17.916 35.583 0.012 0.047 0.096 0.010 

𝐶2 54 53.700 105.105 0.010 0.050 0.092 0.008 

strong 1000 

𝑀2 1044 1044.074 3176.634 0.032 0.087 0.151 0.003 

𝑀2
∗ 18 18.012 36.706 0.008 0.053 0.106 0.007 

𝐶2 54 53.860 115.562 0.011 0.046 0.105 0.005 
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Table 7. Simulation Results: Null Conditions, Model 2 

 

Slopes N Statistic df Mean Variance α = .01 α = .05 α = .10 RMSEA 

weak, 

weak 
500 

𝑀2 1032 1033.673 2055.547 0.013 0.058 0.105 0.004 

𝑀2
∗ 6 5.914 11.484 0.007 0.042 0.090 0.012 

𝐶2 42 41.949 79.910 0.011 0.035 0.088 0.008 

weak, 

weak 
1000 

𝑀2 1032 1033.069 2095.982 0.007 0.055 0.103 0.003 

𝑀2
∗ 6 5.968 11.660 0.007 0.050 0.097 0.009 

𝐶2 42 42.340 89.237 0.012 0.063 0.111 0.006 

weak, 

strong 
500 

𝑀2 1032 1035.963 1964.880 0.016 0.058 0.119 0.004 

𝑀2
∗ 6 5.869 10.292 0.004 0.041 0.087 0.012 

𝐶2 42 41.978 89.878 0.010 0.055 0.099 0.008 

weak, 

strong 
1000 

𝑀2 1032 1033.992 2090.545 0.012 0.052 0.113 0.003 

𝑀2
∗ 6 5.956 11.499 0.007 0.050 0.096 0.008 

𝐶2 42 42.282 84.212 0.005 0.053 0.106 0.006 

strong, 

weak 
500 

𝑀2 1032 1030.175 3644.616 0.046 0.108 0.151 0.004 

𝑀2
∗ 6 5.942 11.454 0.006 0.049 0.089 0.012 

𝐶2 42 41.575 80.007 0.010 0.043 0.084 0.008 

strong, 

weak 
1000 

𝑀2 1032 1032.383 2604.663 0.020 0.079 0.140 0.003 

𝑀2
∗ 6 5.998 13.236 0.010 0.062 0.101 0.009 

𝐶2 42 42.253 86.293 0.009 0.056 0.108 0.006 

strong, 

strong 
500 

𝑀2 1032 1031.336 3540.547 0.044 0.100 0.165 0.004 

𝑀2
∗ 6 5.870 11.549 0.009 0.041 0.092 0.012 

𝐶2 42 41.561 83.146 0.015 0.044 0.083 0.008 

strong, 

strong 
1000 

𝑀2 1032 1031.753 2540.759 0.018 0.068 0.126 0.003 

𝑀2
∗ 6 5.928 10.879 0.004 0.046 0.103 0.008 

𝐶2 42 42.494 84.620 0.006 0.052 0.097 0.006 

Note. Strength of slopes for the substantive dimension is listed first in each condition, followed 

by strength of slopes for the response style dimension. 
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Table 8. Simulation Results: Power, Model 1 Fitted to Model 2 Data 

 

Slopes N Statistic df α = .01 α = .05 α = .10 RMSEA 

weak, 

weak 
500 

𝑀2 1044 0.221 0.418 0.545 0.010 

𝑀2
∗ 18 0.012 0.049 0.098 0.010 

𝐶2 54 0.022 0.098 0.171 0.011 

weak, 

weak 
1000 

𝑀2 1044 0.655 0.830 0.896 0.010 

𝑀2
∗ 18 0.007 0.065 0.108 0.008 

𝐶2 54 0.035 0.112 0.193 0.008 

weak, 

strong 
500 

𝑀2 1044 1.000 1.000 1.000 0.045 

𝑀2
∗ 18 0.017 0.068 0.137 0.012 

𝐶2 54 0.491 0.699 0.791 0.030 

weak, 

strong 
1000 

𝑀2 1044 1.000 1.000 1.000 0.046 

𝑀2
∗ 18 0.020 0.085 0.141 0.009 

𝐶2 54 0.862 0.945 0.975 0.029 

strong, 

weak 
500 

𝑀2 1044 0.188 0.365 0.472 0.010 

𝑀2
∗ 18 0.006 0.031 0.071 0.009 

𝐶2 54 0.045 0.130 0.207 0.012 

strong, 

weak 
1000 

𝑀2 1044 0.648 0.824 0.893 0.010 

𝑀2
∗ 18 0.009 0.046 0.088 0.006 

𝐶2 54 0.077 0.213 0.335 0.012 

strong, 

strong 
500 

𝑀2 1044 1.000 1.000 1.000 0.046 

𝑀2
∗ 18 0.004 0.020 0.045 0.006 

𝐶2 54 0.960 0.986 0.994 0.049 

strong, 

strong 
1000 

𝑀2 1044 1.000 1.000 1.000 0.048 

𝑀2
∗ 18 0.001 0.017 0.046 0.005 

𝐶2 54 1.000 1.000 1.000 0.049 

Note. Strength of slopes for the substantive dimension is listed first in 

each condition, followed by strength of slopes for the response style 

dimension. 
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Table 9. Simulation Results: Power, Model 1 Fitted to Model 3 Data 

 

Slopes N Statistic df α = .01 α = .05 α = .10 RMSEA 

weak, 

weak 
500 

𝑀2 1044 0.361 0.601 0.714 0.012 

𝑀2
∗ 18 0.014 0.068 0.126 0.011 

𝐶2 54 0.014 0.052 0.122 0.008 

weak, 

weak 
1000 

𝑀2 1044 0.873 0.964 0.975 0.012 

𝑀2
∗ 18 0.020 0.053 0.111 0.007 

𝐶2 54 0.020 0.078 0.140 0.006 

weak, 

strong 
500 

𝑀2 1044 1.000 1.000 1.000 0.052 

𝑀2
∗ 18 0.027 0.080 0.141 0.012 

𝐶2 54 0.113 0.307 0.425 0.018 

weak, 

strong 
1000 

𝑀2 1044 1.000 1.000 1.000 0.051 

𝑀2
∗ 18 0.018 0.069 0.129 0.008 

𝐶2 54 0.297 0.521 0.641 0.018 

strong, 

weak 
500 

𝑀2 1044 0.176 0.319 0.437 0.009 

𝑀2
∗ 18 0.010 0.051 0.095 0.009 

𝐶2 54 0.011 0.061 0.107 0.008 

strong, 

weak 
1000 

𝑀2 1044 0.526 0.753 0.829 0.010 

𝑀2
∗ 18 0.007 0.042 0.084 0.007 

𝐶2 54 0.011 0.064 0.128 0.006 

strong, 

strong 
500 

𝑀2 1044 1.000 1.000 1.000 0.046 

𝑀2
∗ 18 0.005 0.032 0.065 0.008 

𝐶2 54 0.373 0.598 0.724 0.027 

strong, 

strong 
1000 

𝑀2 1044 1.000 1.000 1.000 0.046 

𝑀2
∗ 18 0.004 0.036 0.070 0.006 

𝐶2 54 0.819 0.917 0.953 0.028 

Note. Strength of slopes for the substantive dimension is listed first in 

each condition, followed by strength of slopes for the response style 

dimension. 
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Table 10. Simulation Results: Power, Model 3 Fitted to Model 2 

 

Slopes N Statistic df α = .01 α = .05 α = .10 RMSEA 

weak, 

weak 
500 

𝑀2 1032 0.185 0.382 0.497 0.010 

𝑀2
∗ 6 0.013 0.056 0.100 0.012 

𝐶2 42 0.011 0.067 0.147 0.010 

weak, 

weak 
1000 

𝑀2 1032 0.619 0.795 0.877 0.010 

𝑀2
∗ 6 0.009 0.052 0.107 0.009 

𝐶2 42 0.025 0.085 0.146 0.007 

weak, 

strong 
500 

𝑀2 1032 1.000 1.000 1.000 0.045 

𝑀2
∗ 6 0.015 0.068 0.131 0.014 

𝐶2 42 0.054 0.168 0.267 0.014 

weak, 

strong 
1000 

𝑀2 1032 1.000 1.000 1.000 0.044 

𝑀2
∗ 6 0.019 0.062 0.112 0.010 

𝐶2 42 0.036 0.129 0.223 0.010 

strong, 

weak 
500 

𝑀2 1032 0.174 0.333 0.442 0.009 

𝑀2
∗ 6 0.009 0.042 0.100 0.012 

𝐶2 42 0.024 0.086 0.149 0.011 

strong, 

weak 
1000 

𝑀2 1032 0.605 0.793 0.872 0.010 

𝑀2
∗ 6 0.009 0.045 0.094 0.009 

𝐶2 42 0.042 0.135 0.224 0.009 

strong, 

strong 
500 

𝑀2 1032 1.000 1.000 1.000 0.045 

𝑀2
∗ 6 0.005 0.028 0.043 0.008 

𝐶2 42 0.106 0.183 0.265 0.015 

strong, 

strong 
1000 

𝑀2 1032 1.000 1.000 1.000 0.046 

𝑀2
∗ 6 0.003 0.023 0.062 0.006 

𝐶2 42 0.052 0.137 0.205 0.008 

Note. Strength of slopes for the substantive dimension is listed first in 

each condition, followed by strength of slopes for the response style 

dimension. 
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Table 11. Simulation Results: Power, Model 2 Fitted to Model 3 

 

Slopes N Statistic df α = .01 α = .05 α = .10 RMSEA 

weak, 

weak 
500 

𝑀2 1032 0.326 0.561 0.670 0.012 

𝑀2
∗ 6 0.013 0.040 0.089 0.012 

𝐶2 42 0.009 0.054 0.120 0.009 

weak, 

weak 
1000 

𝑀2 1032 0.845 0.950 0.974 0.011 

𝑀2
∗ 6 0.015 0.060 0.096 0.009 

𝐶2 42 0.015 0.066 0.119 0.006 

weak, 

strong 
500 

𝑀2 1032 1.000 1.000 1.000 0.051 

𝑀2
∗ 6 0.015 0.058 0.112 0.013 

𝐶2 42 0.021 0.102 0.164 0.011 

weak, 

strong 
1000 

𝑀2 1032 1.000 1.000 1.000 0.050 

𝑀2
∗ 6 0.009 0.047 0.099 0.009 

𝐶2 42 0.017 0.084 0.149 0.007 

strong, 

weak 
500 

𝑀2 1032 0.184 0.309 0.420 0.009 

𝑀2
∗ 6 0.012 0.048 0.086 0.012 

𝐶2 42 0.011 0.041 0.102 0.008 

strong, 

weak 
1000 

𝑀2 1032 0.499 0.729 0.814 0.010 

𝑀2
∗ 6 0.009 0.046 0.095 0.009 

𝐶2 42 0.011 0.050 0.100 0.006 

strong, 

strong 
500 

𝑀2 1032 1.000 1.000 1.000 0.044 

𝑀2
∗ 6 0.012 0.035 0.084 0.012 

𝐶2 42 0.011 0.045 0.086 0.008 

strong, 

strong 
1000 

𝑀2 1032 1.000 1.000 1.000 0.044 

𝑀2
∗ 6 0.003 0.034 0.077 0.008 

𝐶2 42 0.007 0.052 0.095 0.005 

Note. Strength of slopes for the substantive dimension is listed first in 

each condition, followed by strength of slopes for the response style 

dimension. 

 


