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Abstract

In this thesis, analytical and numerical aspects of the solution to the incompressible

Euler equations on a two-dimensional sphere using the Characteristic Mapping (CM)

method are presented. These equations dictate the time evolution of an incompressible,

inviscid fluid from a prescribed initial condition. Their non-linear nature produces

increasingly fine scales over time; posing a challenge for existing numerical methods. This

problem is broached using the CM method, which considers the numerical quantity of

interest to be the flow map generated by the fluid motion. The semigroup property of the

flow map, facilitating its own evolution by means of composition, is leveraged to capture

the fine scales manifest in the dynamics of the fluid. We begin with a presentation

of the vorticity-stream formulation of the incompressible Euler equations on a sphere,

from which the solution strategy is built. An implementation for solving the spherical

Poisson equation using the double Fourier sphere method is presented. Thereafter, the

CM method for linear transport on the 2-sphere is presented. The thesis is concluded

with a discussion of combining these two numerical methods for the solution of the

incompressible Euler equations.
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Abrégé

Dans cette thèse, les aspects analytiques et numériques du solution des équations

d’Euler incompressibles sur une sphère deux dimensionelles en utilisant la méthode

d’application des caractéristiques (AC) sont présentées. Ces équations dictent l’évolution

d’une fluide incompressible et non-visqueux d’une état initiale donné. La nature non-

linéaire de l’écoulement se produit des échelles fines dans la fluid au fil du temps; posant

des difficultés pour les méthodes numériques existantes. Cette problème est addressé

en utilisant la méthode AC, qui considère la quantité d’intéresse d’être l’application du

flot généré par la vitesse du fluide. La propriété semi-groupe de l’application du flot,

facilitant sa propre évolution par composition, est utilisée pour résoudre des échelles fines

inhérent aux dynamiques du fluide. On commence avec un présentation du vorticité-

courant formulation des équations d’Euler incompressibles sur une sphère, à laquelle notre

stratégie de solution est construite. Une implémentation de la double Fourier sphère pour

la solution de l’équation Poisson sphérique est présentée. Par la suite, la méthode AC

pour l’équation du transport linéaire sur la 2-sphère est présentée. La thèse se conclut

avec une discussion des aspects de combiner ces deux méthodes pour la solution des

équations d’Euler incompressibles.
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Chapter 1

Mathematical Framework

1.1 Introduction

In 1761, Leonhard Euler derived the equations of motion for an incompressible and

inviscid fluid [18]. To this day, these equations still pose a challenge in both pure and

applied mathematics. It remains an open question in fluid dynamics whether or not the

incompressible Euler equations in three dimensions develop a singularity in the vorticity

field in finite time. It has not been answered definitively whether the accumulation of the

vorticity exhibits a growth that is exponential or even double-exponential in time [25].

The presence of the fast growing vorticity field generates increasingly fine-scales in the

vorticity overtime; posing a challenge for their numerical solution.

The simulation of the incompressible Euler equations has great utility to the applied

scientist. Dynamical processes governed by fluid motion are ubiquitous in almost every

scientific discipline. Although idealized, Euler’s equations still provide insight into the

complex nature of continuum motion. In cosmology, the Euler-Poisson system, which cou-

ples the motion of an incompressible fluid transporting mass with gravitational attraction

is being used to better understand large-scale structure formation in the universe [50].

The simulation of Euler’s equations on a rotating sphere is used to better understand

the atmospheric dynamics on planets in our solar system [23]. A pressing application on

Earth, is their use as part of the shallow-water equations, which are currently used in

operational models for numerical weather prediction [33]. Overcoming computational

issues related to high-resolution simulations will allow applied scientists to better evaluate

error in their models of anthropogenic climate change [3], thereby permitting a more

reliable quantification of our impact on Earth’s atmosphere and climate [39].
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Motivated by these applications to problems involving spherical geometries, we con-

sider the numerical solution of the incompressible Euler equations on the 2-sphere. Due

to the lack of vortex-stretching in two-dimensions, the sup-norm of the gradient of the

vorticity can be bound by a double exponential in time [75], and thus does not exhibit

the same growth behaviour as in the three-dimensional case. Nevertheless, these still fast

growing gradients in two-dimensions still poses a challenge to the computational fluid

dynamics community.

We begin with a discussion of the mathematical framework for the problem on an

arbitrary compact Riemannian 2-manifold. Firstly, we provide a review of the properties of

flows of vector fields on smooth manifolds. Thereafter, a derivation of the incompressible

Euler equations on a compact Riemannian 2-manifold is presented. Finally, we discuss

the vorticity-stream formulation from which our numerical solution strategy is built.

1.2 Flows on bounded manifolds

A fundamental object to the Characteristic Mapping method is the flow map generated

by the velocity field. We begin by discussing some of the properties of flows on compact,

smooth manifolds, similar to the discussion found in [1]. Let the fluid domain, M , be

a Riemannian n-manifold, and let p ∈ M be a point on M . Consider local coordinate

charts (ϕi, Ui), i = 1, . . . , N , with open sets Ui ⊆M such that their union covers M and

that the transition maps ψi,j = ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) are differentiable

with smooth inverses. Local coordinates of p ∈ Ui will be denoted x = ϕi(p). Let

u : M × R→ TM , where TM is the tangent bundle of M , be a time-dependent vector

field on M , defining the time-evolution of the velocity field in the fluid. We begin by

studying the time-independent case, for u ∈ X(M), where X(M) is the set of all C∞

vector fields on M , and thereafter relating their properties to the time-dependent case.

Since a vector field assigns a tangent vector to every point p ∈M , we may consider the

curves on M whose tangent vectors coincide with the vector field.

Definition 1.1 (Integral curve). Let I ⊂ R be an open interval containing 0. The curve

γ : I →M , is called an integral curve of the vector field u ∈ X(M) at p ∈M if γ is the

solution to the initial value problem

(1.1)
dγ

dt
(t) = u(γ(t)), γ(0) = p, ∀t ∈ I

These curves define trajectories of a ’particle’ passively transported by the fluid. We

recall that a curve γ on M passing through p is defined as a map γ : I →M such that

2



γ ∈ C1(I;M), γ(0) = p. The map assigning to every p ∈ Ui the integral curve satisfying

1.1 is the local flow map of u in Ui. The existence and uniqueness of integral curves

and properties of the local flow map follow from considering the local representative

in coordinates of the solution curve and applying the Picard-Lindelöf theorem. Before

quantifying this proposition, we establish a uniqueness result.

Theorem 1.1 (Global uniqueness). Let γ1, γ2 be two integral curves of a vector field

u ∈ X(M) at a point p ∈M . Then γ1 = γ2 on the intersection of their domains.

Proof. We note that generally the local representatives, γ1, γ2 will lie in different coordi-

nate charts. Let I1, I2 ⊆ R such that 0 ∈ I1, I2, suppose γ1 : I1 →M and γ2 : I2 →M .

Denote I = I1 ∩ I2 and let J = {t ∈ I | γ1(t) = γ2(t)}, which is non-empty since the

integral curves agree at p ∈M , i.e. γ1(0) = γ2(0) = p. The set J is closed since γ1, γ2 are

continuous. We want to show that J is also open, and thus J = I. Considering the local

representatives of the integral curves, since they both satisfy 1.1, then by Picard-Lindelöf

we have that ∃ (−ε, ε) ∈ J . Let t ∈ J , then we have that γ1(t + s) and γ2(t + s) are

both integral curves at γ1(t) = γ2(t). Using Picard-Lindelöf once again, we have that ∃

(−δ(t), δ(t)) ∈ J where they agree, thus we have an open neighbourhood of every t ∈ J

that is contained in J .

Lemma 1.2. Let u ∈ X(M), U0 ∈M open, and Ic = (−c, c) where c > 0 is a constant

depending on the size of U0. Let X : U0 × Ic →M be the local flow map such that for

each p ∈ U0 and curve γ : Ic → M defined by Xt(p) = X(γ(0), t) = γ(t) is an integral

curve of u at p. Then for t, s such that t+ s ∈ Ic we have that,

(1.2)
Xt+s = Xt ◦Xs = Xs ◦Xt ,

X(·, 0) = idM ,

where idM is the identity map on M . Moreover, if U(t) = X(U0, t) and U(t)∩U0 6= ∅,

then X−t = X−1
t : U(−t) ∩ U0 → U0 ∩ U(t) is the inverse of X.

Proof. We have that Xt+s(γ) is the integral curve of u at p ∈M and by definition of X

we have that Xt(Xs(γ)) = Xt(γ(s)) which is also an integral curve at p. Therefore, by

1.1 we have that Xt(Xs(γ)) = Xt+s(γ). Moreover, we have that Xt+s(γ) = Xs+t(γ) =

(Xs ◦Xt) (γ). Since γ(0) = p we readily have X0(γ) = p ⇒ X0 = idM . The inverse

property then follows from noting Xt−t = Xt ◦X−t = X−t ◦Xt = idM .

Theorem 1.3 (Existence and uniqueness). Let u ∈ X(M), for every p ∈M there exists

a triple (U0, c,X) satisfying the properties of 1.2. Moreover, if (U ′0, c
′, X ′) and (U0, c,X)
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both satisfy the properties of 1.2 at p, then X = X ′ on (U0 ∩ U ′0)× (Ic ∩ Ic′) and X is a

smooth diffeomorphism.

Proof. Consider a point p ∈ U0 ∩U ′0, since X,X ′ are both local flow maps for u, we have

that X = X ′ on {p} × (Ic ∩ Ic′) and thus X = X ′ on (U0 ∩ U ′0)× (Ic ∩ Ic′) using 1.1.

Existence follows from using a local representative in Rn. Let (ϕi, Ui) be a chart on

M . Let p ∈ Ui, and let U0 ⊂ Ui open, since X is continuous ∃ b ∈ (0, c) and V0 ⊂ U0

where p ∈ V0 such that X(U0, (0, b)) ⊂ U0. Since the functions ϕi, by definition of a

chart, are smooth in an open neighbourhood around p ∈ Ui with smooth inverses, we

may relate 1.1 to the ordinary differential equation,

(1.3)
d

dt
(ϕi ◦ γ) (t) = u(ϕi ◦ γ, t) , (ϕi ◦ γ) (0) = ϕi(p)

By application of Picard-Lindelöf there is an open neighbourhood t ∈ (−ε, ε) on which

a unique solution to1.3 exists. Let u′ and X ′t be the local representatives of the velocity

field and the flow map respectively. Then the flow map itself can be defined by left

composition with φ−1
i , i.e.

(1.4) X : U0 × Ic →M ; (p, t) 7→ ϕ−1
i (X ′(ϕi(p), t))

Picard-Lindelöf gives us that ∃ an open neighbourhood U ′about ϕi(p) and an ε > 0

such that X ′t(ϕi(p), t) = (ϕi ◦ γ)(t) ∀t ∈ (−ε, ε), where (ϕi ◦ γ)(t) is the solution to 1.3.

We obtain V0 = ϕ−1
i (U ′) which is open since ϕ−1

i is continuous. Moreover, the local flow

map is a diffeomorphism since u′ is smooth and hence and it follows that the composition

X(p, t) = (ϕ−1
i ◦X ′)(φ(p), t) is also smooth with smooth inverse. By the properties of

1.2, Xt is a diffeomorphism with inverse X−t.

To extend these local considerations to global ones, for flow maps defined over the

entire manifold, we must use the notion of completeness. We suppose now that the

manifold M is a compact manifold. A vector field u ∈ X(M) is called complete if the

solution curves exist for all time.

Proposition 1.1. Every vector field on a compact manifold is complete.

Proof. Since M has compact support and u : M → TM , u has compact support. For

every p ∈M we can consider integral curves, γp(t) such that γ(0) = p. By the previous

existence and uniqueness theorems, there is an open neighbourhood Up of every p such

that γ(t) satisfies 1.1 for t ∈ (−ε(p), ε(p)). The collection of all such Up covers M and

since M is compact, there is a finite subcover Vε(p) of M . Since Vε(p) is finite, we take ε to
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be the smallest such ε(p) and thus γp(t) exists ∀t ∈ (−ε, ε). Now suppose there was some

p′ ∈M such that the interval of existence of the integral curve γp′(t), where γ(0) = p′

was finite; call the maximal solution time T . The point q = γp′(T ) ∈M , and since Vε(p)

covers M , we have that the curve γ̃p′(t) = γp′(T + t) is an integral curve with initial

condition γ̃p′(0) = q and exists for t ∈ (−ε, ε) by construction of Vε(p) which contradicts

T being the maximal solution time.

Having now established global existence and uniqueness of integral curves for a smooth

vector field u on a compact manifold M , we now wish to relate these notions to the

time-dependent case. We begin with the definition of a time-dependent flow.

Definition 1.2 (Time-dependent flow). For u ∈ X(M ;R), we define the vector the time-

dependent flow Xt,s : (M × R)×R→M×R is defined such that, X((γ(t), t), s) = (γ(s), s)

where (γ(s), s) is the integral curve satisfying the non-autonomous differential equation,

(1.5) γ̇(s) = u(γ(s), s), (γ(0), 0) = (p, t)

The flow property from before is replaced by the property Xt,s◦Xs,r = Xt,r and Xt,t = idM .

For fixed time s, Xt,s is the flow map for the vector field u(s) ∈ X(M).

The time-independent case encompasses the time-dependent case by the vector field

ũ as

(1.6) ũ(s, p) =

(
∂

∂s

∣∣∣∣
s

, u(s, p)

)
where the time-dependence has been parameterized. The vector field ũ can be seen as

a time-independent vector field on the larger manifold R ×M whose tangent space is

given by T(s,p)(R×M) ∼= TsR× TpM . This allows us to consider the integral curves 1.5

as a system of autonomous ordinary differential equations. Consequently, the flow of the

time-dependent vector field can be written as Xt(s, p) = (t+ s,Xt+s,s(p)), with inverse,

X−t(s, p) = (s − t,Xs−t,s(p)). If we restrict ourselves to time-dependent vector fields

which are also continuous in time, then on the product space, the flow Xt(s, p) enjoys

the same properties as in the time-independent case described above. Though, we are

not guaranteed global existence of integral curves on the product space since R×M is

no longer compact.

We will use the flow map and its inverse in the derivation of the incompressible Euler

equations. For integral quantities in the fluid domain such as mass and momentum, we

require the pull-back with respect to the flow map.
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Definition 1.3 (Pull-Back). Let f ∈ C∞(M) and let α be a k-form on M , that is

α ∈ Ωk(M). The pull-back of α by f , denoted f∗α is a k-form on M , for p ∈M is given

by

(1.7) (f∗α)p(v1, . . . , vk) = αf(p)(Tpf · v1, . . . , Tpf · vk)

The pull-back of a k-form and the Lie derivative of a k-form are related as follows,

Definition 1.4 (Lie derivative). Let α ∈ Ωk(M), u ∈ X(M ;R) then the Lie derivative

of α along u is given by,

(1.8) £u(t)α =
d

ds

∣∣∣∣
s=t

X∗s,tα

Using this definition and the definition of the pull-back, we have the following theorem

Theorem 1.4. Let α ∈ Ωk(M) and u ∈ X(M ;R) be with associated time-dependent

flow Xt,s : R× (R×M)→ R×M , then the following holds,

(1.9)
d

dt
X∗t,sα = X∗t,s£u(t)α

Proof. Using the definition 1.4, and the fact the Xt,t = idM , we have that,

(1.10)
d

dt
X∗t,sα =

d

dr

∣∣∣∣
r=s

(Xr,t ◦Xt,s)
∗ (α) = X∗t,s

(
d

dr

∣∣∣∣
r=t

X∗r,tα

)
= X∗t,s£u(t)(α)

The divergence of a vector field is defined using the Lie derivative, namely:

Definition 1.5 (Divergence). Let µ be the volume form on M induced by the metric

tensor. The unique function div(u) ∈ C∞(M), such that £u(µ) = div(u)µ is called the

divergence of u.

Incompressible fluid flow conserves the volume of any given region and is a consequence

of a divergence free velocity field. To observe this fact, let U0 ⊂M be a fixed region and

denote U(t) = X(U, t) the region flowing with the fluid. Let div(u)dµ = 0, where dµ is a

volume form on M . Then we have that

(1.11)

d

dt

∫
U(t)

dµ =

∫
U0

d

dt
X∗(dµ) =

∫
U0

X∗ (£udµ)

=

∫
U(t)

div(u)dµ = 0 ,

where we have used 1.4 and 1.5. Using this fact, we deduce

(1.12)

∫
U(t)

dµ =

∫
U0

X∗(dµ) =

∫
U0

det (∇X) dµ

=

∫
U0

dµ ⇐⇒ det (∇X) = 1 , ∀t ∈ R

that is, a divergence free-condition on the velocity field is equivalent to the condition

det (∇X) = 1 for all time.
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1.3 Incompressible Euler Equations

We present a derivation of the incompressible Euler on a compact Riemannian 2-

manifold M that is diffeomorphic to the 2-sphere. The equations of motion for an

incompressible, inviscid fluid follow from evoking conservation of mass and momentum

balance on a model of a continuum system defined by the fluid velocity, pressure, and den-

sity. If u denotes the fluid velocity, then the trajectory of a ’particle’ of the fluid that was

at x at time t = 0 is given by X(x(t), t), where X is the time-dependent flow map of the

velocity field. Let g : TpM ×TpM → R be the Riemannian metric defined on M . We note

that the volume form dµ on M , in local coordinates, is given by dµ =
√
|g|dx1∧ · · · ∧dxn

where |g| is the absolute value of the determinant of g. The Eulerian and Lagrangian

velocities are given by u(x, t) and Ẋ(x, t) = u(X(x, t), t) respectively. We see that the

fluid flow map and its inverse serve as a means of transformation between each frame of

reference.

A fundamental notion in continuum mechanics is the advection or transport of a

quantity under a given velocity field. Advected quantities may be passive; where they

are carried along by the fluid flow without interacting with it, or active; where they

dynamically interact with and change the medium in which they are being transported.

The former of these two cases is characterized by the following theorem,

Theorem 1.1 (Transport Theorem). Let M be a manifold equipped with volume form

dµ and let u ∈ X(M ;R) be a time-dependent vector field with flow map X : M ×R→M .

Let φ : M × R→ R be a scalar field and consider U ⊂M then we have

(1.13)
d

dt

∫
X(U,t)

φdµ =

∫
X(U,t)

(
∂φ

∂t
+ div(φu)

)
dµ

Proof. The proof follows directly from 1.4 and the definition of the divergence of u 1.5.

Namely, we have

(1.14)

d

dt

∫
X(U,t)

φdµ =

∫
U

d

dt
X∗ (φdµ) =

∫
U
X∗
(

£u(φdµ) +
∂φ

∂t
dµ

)
=

∫
U
X∗
(

(u(φ) + φdivu+
∂φ

∂t
)dµ

)
=

∫
X(U,t)

(
∂φ

∂t
+ div(φu)

)
dµ ,

which establishes the theorem.

We evoke the continuum assumption, and assume that the fluid’s mass can be

characterized by a smooth mass density function ρ : M × R→ R, such that the mass in
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a given region U ⊂M in the fluid domain is given by:

(1.15) m(U, t) =

∫
U
ρdµ

In the absence of sinks or sources, conservation of mass states that the mass of a fluid in

region U , transported with the flow, remains constant over time. More concretely, we

can show that the mass density obeys a continuity equation,

(1.16)
d

dt

∫
X(U,t)

ρdµ = 0⇒ ∂ρ

∂t
+ div(ρu) = 0 ,

by using 1.1 and the fact that ρ was assumed to be smooth. Having evoked conservation

of mass, we now consider Newton’s second law. Since the fluid has mass, it has a means

of transferring momentum within itself, described by some force. The Cauchy stress

tensor, σ encapsulates the forces of stress and strain acting on a region of the fluid. Let

U be an arbitrary region within the fluid, and denote by da the volume element induced

on ∂U . Then the internal forces of the fluid acting on U are given by,

(1.17) F =

∫
∂X(U,t)

σ(x, t) · n da .

An ideal fluid is defined such that the internal forces only act upon the normal direction

to the region U . The stress tensor then reduces to the form σi,j = −p(x, t)gi,j where p is

a scalar function called the pressure and gi,j is the inverse metric tensor. Noting that the

momentum density is given by the product of the velocity field with the mass density,

Newton’s II law for an ideal fluid in the absence of external forces, is given by,

(1.18)
d

dt

∫
X(U,t)

ρu dµ = −
∫
∂X(U,t)

p(x, t)n da

Using 1.5, 1.4, we can calculate the left hand side as

(1.19)

d

dt

∫
X(U,t)

ρ u dµ =

∫
U

d

dt
X∗(ρ u dµ) =

∫
X(U,t)

(
∂ρu

∂t
dµ+ £u(ρudµ)

)
=

∫
X(U,t)

(
u
∂ρ

∂t
+ ρ

∂u

∂t
+ £u(ρ)u+ ρ£u(u) + ρudivu

)
dµ

Then we observe that

(1.20)
u(
∂ρ

∂t
+ £u(ρ) + ρdivu) = u(

∂ρ

∂t
+ 〈dρ, u〉+ ρdivu)

= u(
∂ρ

∂t
+ div(ρu)) = 0 ,

by conservation of mass. Incorporating the incompressibility condition, we have that the

incompressible Euler’s equations for unknown vector field, density, and pressure, u, ρ, p
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respectively are given by

(1.21)

∂u

∂t
+ u · ∇u = −1

ρ
∇p ,

∂ρ

∂t
+ u · ∇ρ = 0 ,

div(u) = 0 ,

u(0, x) = u0 ,

where u0 is the initial condition. Hereafter, we assume that the fluid is homogeneous, that

is, ρ = ρ0 = const., which is absorbed into the pressure term. Although the density and

velocity have evolution equations, the pressure does not. The evolution of the pressure

is dictated by the divergence free condition on the velocity field. Indeed, taking the

divergence of the first equation, we get

(1.22) −∆p = div(u · ∇u).

Thus the pressure can be obtained by solving a Poisson equation in terms of the

velocity field at any given time. We will see that we need not solve for the pressure

explicitly if we use the vorticity stream-formulation of Euler’s equations. The equations

1.21 are not independent of the frame of reference. As we wish to utilize both the

Eulerian and Lagrangian frames of reference, we seek an expression that is invariant

under pull-back with the time-dependent flow induced by u. To achieve this we use

the isomorphism TpM ∼= T ∗pM induced by the metric tensor, since M is a Riemannian

manifold. Denoting the transformation (·)[ : TpM ∼= T ∗pM,u 7→ u[ = gi,juj , then the

time evolution of the 1-form velocity is then given by

(1.23)
∂u[

∂t
+∇uu[ = −dp .

Proposition 1.1. We have

(1.24) £uu
[ = ∇uu[ +

1

2
d(u[(u))

Proof. We will show this in coordinates, with vector components with raised indices and

covectors with lowered indices. We start with

(1.25)

∇uu[ +
1

2
d(u[(u)) = uj∂jui − Γkijuku

j +
1

2
∂i(gklu

kul)

= uj∂jui −
1

2
uluj (∂iglj + ∂jgli − ∂lgij) +

1

2
∂i(gklu

kul)

= uj∂jui −
1

2
uluj (∂iglj + ∂jgli − ∂lgij) +

1

2
∂i(gklu

kul) ,
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and then we can use the fact that

(1.26)

1

2
uluj (∂jgli − ∂lgij) = −1

2
ujul (∂lgji − ∂jgil)

⇒ 1

2
uluj (∂jgli − ∂lgij) = 0 .

Therefore, we obtain

(1.27)
∇uu[ +

1

2
d(u[(u)) = uj∂jui −

1

2
uluj∂iglj +

1

2
∂i(gkl)u

kul + gklu
k∂ju

i

= uj∂jui + ul∂ju
i =

(
£uu

[
)
i
,

establishing the claim.

Using 1.1 we get that 1.23 for the 1-form velocity u[ can be written as

(1.28)
∂u[

∂t
+ Luu[ = −d

(
p+

1

2
|u|2
)
.

The incompressibility condition for u[ and the definition of the divergence of a vector

field 1.5 yield

(1.29) divu = 0 ⇐⇒ δu[ = 0

1.4 Vorticity-Stream Formulation

Since the fluid does not possess any internal shear forces, rotational motion within the

fluid will persist over time without dissipation. Consequently, the integral of the velocity

1-form over a some closed loop, called circulation, in the fluid remains constant over

time. This can be seen as a statement of conservation of angular momentum adapted to

continuum motion. More concretely, let X be the time-dependent flow of u, and denote

by C(t) ∈M a closed contour carried along with the fluid. Then using 1.28 we infer

(1.30)

d

dt

∫
C(t)

u[ =

∫
C0

d

dt
X∗
(
u[
)

=

∫
C0

X∗

(
∂u[

∂t
+ Luu[

)

= −
∫
C(t)

d

(
p+

1

2
|u|2
)

= 0 ,

since the integral of an exact form over a closed loop is zero. Denoting by Σ, the surface

enclosed by the contour C, we have that

(1.31)

∫
C(t)

u[ =

∫
Σ(t)

du[ =

∫
Σ(t)

ω̃

by Stokes’ theorem, where we have defined the vorticity 2-form ω̃ = du[. Applying

conservation of circulation to 1.31 in terms of ω, we obtain

(1.32)
∂ω̃

∂t
+ Luω̃ = 0 ,

10



that is, the vorticity is Lie transported by the fluid velocity. From the two-form vorticity,

since M is two dimensional we can obtain a representative scalar using the Hodge-star

operator, that is, ω̃ = ∗ω ∈ Ω0(M). Since the vorticity ω is a scalar field in two

dimensions, 1.32 reduces to

(1.33)
∂ω

∂t
+ u · ∇ω = 0 .

We now seek to obtain the velocity field from known vorticity. By application of the Hodge

decomposition theorem [1], we have for any 1-form α on a two dimensional manifold

there exists Φ ∈ Ω0(M), ψ̃ ∈ Ω2(M), and ζ ∈ Ω1(M) harmonic, such that

(1.34) α = dΦ + δ(ψ̃) + ζ = dΦ− ∗dψ + ζ ,

where we have associated ψ̃ = ∗ψ for ψ ∈ Ω0(M) as done for the vorticity 2-form and

used the identity δ∗ = − ∗ d. Since M is diffeomorphic to S2, it is simply connected and

we have that the only harmonic 1-forms on M are 0 [1, 12]. Applying this to our 1-form

velocity u[, and using the metric tensor to map back onto the tangent bundle, we have

that,

(1.35) u = (u[)] = (dΦ)] − (∗dψ)] = ∇Φ +∇⊥ψ

Using the incompressibility condition, we have that div(u) = ∆Φ = 0. Considering

M = S2, then we have the following claim.

Proposition 1.1. If Φ : S2 → R is harmonic, then Φ = c where c ∈ R.

Proof. Using the fact that Φ is smooth, that spherical harmonics form a complete

orthonormal basis for L2(S2) [66]. Furthermore, spherical harmonics Y m
` (x) are eigen-

functions of the Laplace-Beltrami operator on the sphere, with eigenvalues −`(` + 1),

and we have

(1.36)

−∆Φ =
∞∑
`=0

∑̀
m=−`

Φ̂`,m`(`+ 1)Y m
` (x) = 0

⇒ Φ̂`,m = 0 ∀` 6= 0⇒ Φ =
1

2

√
1

π
,

We get that u = ∇⊥ψ and we call ψ the stream function. Using the 1-form velocity

again, we have

(1.37) ω = ∗ ∗ ω = ∗ω̃ = ∗(du[) = − ∗ d(∗dψ) = −∆ψ ,
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recognizing ∗d(∗d) = ∆ as the Laplace-Beltrami operator for scalar functions on M . The

solution of 1.37 will determine the stream function up to a constant, and thus we have to

impose a condition on the mean. Altogether, the velocity is related to the vorticity as,

(1.38)
ω = −∆ψ,

∫
S2
∗ψ = 0 ,

u = ∇⊥ψ .

The vorticity-stream formulation allows us to obtain the solution to 1.21 by solving

the following simpler system of partial differential equations

(1.39)

∂ω

∂t
+ u · ∇ω = 0 ,

−∇⊥∆−1ω = u ,

div(u) = 0 ,

u(x, 0) = u0(x) .

In forthcoming chapters we will discuss the numerical solution of 1.39. In particular, we

will employ the double Fourier sphere method to the Poisson equation for the stream

function with vorticity as forcing function. The transport equation for the vorticity

is solved using the characteristic mapping method. In the last chapter we investigate

aspects of combining both the double Fourier sphere and characteristic mapping methods

to solve Euler’s equations 1.21 using the vorticity-stream formulation 1.39.
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Chapter 2

Double Fourier Sphere

2.1 Introduction

In this chapter we discuss the numerical solution of the Poisson equation on the

two-dimensional sphere, hereafter ’the sphere’, using an approximation by bivariate

Fourier series. Since the sphere is a compact domain without boundary, it provides an

ideal setting for function approximation using global basis functions. A natural basis for

the representation of a function defined on S2 are spherical harmonics. These functions

form a complete and orthonormal basis for L2(S2) and are eigenfunctions of the spherical

Laplacian. Due to these desirable properties, fast algorithms for the spherical harmonic

transform have received a significant amount of attention [51,57,64, 65]. However, there

is an associated O(N2) precomputational cost inherent in these algorithms, where N is

the number of grid points. Although their efficiency is applicable for many situations, for

the solution of PDEs using pseudospectral methods which leverage both the spectral and

spatial representations of the function, this can set limitations on the use of adaptive

discretizations and on practical solution times at high resolutions. We instead consider

an alternative approach using a bivariate Fourier series representation of a function on

the sphere.

The double Fourier sphere utilizes an extension of the standard spherical coordinate

system defined by the coordinates (λ, θ) ∈ [−π, π] × [0, π], where λ is the azimuthal

angle, and θ is the polar angle. The extension results in a function that is 2π-periodic in

both directions, lending to its representation as a bivariate Fourier series. The forward

and inverse transforms can then be performed with O(N log N) operations using existing

highly optimized algorithms [14,22] , making the implementation relatively simple and

parallelizable.

We present a review of the double Fourier sphere technique, its algorithmic imple-
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mentation and numerical tests for the solution of the Poisson equation on the sphere. As

an additional test of the capabilities of our implementation, we also consider the solution

of the heat and Allen-Cahn equations on the sphere.

2.2 Double Fourier sphere method

A doubly periodic representation of a function on the sphere can be achieved by

stacking the standard spherical coordinate map with a reflected version over one of the

poles which is then translated (rotated) by π along the azimuth. An example of this

mapping is given in figure 2.1. Denote by S2 the boundary of the unit ball in R3 using

the regular Euclidean metric. Let x ∈ R3 with ||x|| = 1, be parameterized using the

standard spherical coordinate system where (λ, θ) ∈ [−π, π] × [0, π] are the azimuthal

and polar angles such that θ = 0 is the ’north pole’ at the point (x, y, z) = (0, 0, 1). We

note that in this domain the map ϕ−1 : [−π, π]× [0, π]→ S2 is not a bijection since at

the poles, all azimuthal angles correspond to the same point. Nevertheless, consider the

function u ◦ ϕ−1 : [−π, π]× [0, π]→ R. Tts doubly periodic extension, denoted by ũ is

given as:

(2.1) ũ(λ, θ) =


u(λ, θ) for (λ, θ) ∈ [−π, π]× [0, π] ,

u(λ+ π,−θ) for (λ, θ) ∈ [−π, 0]× [π, 0] ,

u(λ− π,−θ) for (λ, θ) ∈ [0, π]× [−π, 0] .

The resulting extended function is now doubly periodic in both directions and single

valued at the poles. The original function can then be recovered via restriction of ũ(λ, θ)

to (λ, θ) ∈ [−π, π] × [0, π]. Consider now a uniform partition of the extended domain,

corresponding to two regular latitude-longitude grids on the sphere, with grid points

(λp, θq) defined by,

(2.2) λq = −π + (q − 1)
2π

n
, 1 ≤ q ≤ n, θp = −π + (p− 1)

2π

m
, 1 ≤ p ≤ m.

A uniformly sampled function on this grid admits a bivariate Fourier series of the form

(2.3) ũ(λ, θ) ≈
m/2∑

j=−m/2

n/2∑
k=−n/2

ûjke
ijθeikλ ,

with the corresponding Fourier coefficients defined by

(2.4) ûjk =
1

nm

m∑
p=1

n∑
q=1

ũ(λ, θ)e−ijθpe−ikλq .
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Figure 2.1: Depiction of the mapping given by (2.1) for a function on the sphere. Each pole is

associated with a single point.

We note that since each pole is represented as an entire line in this extended domain,

not all smooth functions on this extended domain will correspond to a smooth function

on the sphere [63]. This correspondence can be ensured by requiring that ũ(λ, 0) = uN

and ũ(λ,−π) = ũ(λ, π) = uS ∀λ ∈ [−π, π] where uN , uS ∈ R. Note that

(2.5)

ũ(λ,±π) =

m/2∑
j=−m/2

n/2∑
k=−n/2

ûjke
±iπjeikλ

=

m/2∑
j=−m/2

n/2∑
k=−n/2

ûjk(−1)jeikλ

=

n/2∑
k=−n/2
k 6=0

eikλ
m/2∑

j=−m/2

(−1)j ûjk +

m/2∑
j=−m/2

(−1)j ûj0.

Since the second sum is a constant, independent of λ, we obtain the condition

(2.6)

m/2∑
j=−m/2

(−1)j ûj,k = 0, |k| ≥ 1.

ensuring that the function is single valued at the south pole. Similarly, the condition at

the north pole is given by,

(2.7)

m/2∑
j=−m/2

ûj,k = 0, |k| ≥ 1.
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Together these two conditions form the pole conditions for a function represented in the

form 2.3. We note that the pole conditions are not explicitly enforced in the method and

thus instead provide a means of evaluation of our numerics.

The use of this approach has seen many different iterations before arriving at this

most recent form as given in [38]. The origin of the bivariate Fourier series for spectral

analysis on the sphere comes from the work of Merilees [37] and was also developed and

studied by Orzag [46] around the same time. A form of the method, as proposed by

Orzag, which was further expanded upon by Yee in [73], uses an expansion of the form

(2.8) u(λ, θ) =
∞∑

m=−∞

∞∑
`=0

û`,me
−imλ [(1− s) cos(`θ) + s sin(`θ)] ,

where the spectral coefficients are given by

(2.9) û`,m =


c

4π2

∫ π

0

∫ π

π
u(λ, θ)eimλ cos(`θ) dλdθ form even ,

c

4π2

∫ π

0

∫ π

π
u(λ, θ)eimλ sin(`θ)dλdθ form odd .

for c = 1 if ` = 0 and c = 2 otherwise. As outlined in [13], basis functions of this form

were not seen as suitable to solve advection equations on the sphere since it was necessary

to impose a constraint on the even latitudinal wavenumbers, in order to satisfy the pole

conditions. Furthermore, these functions do not avoid the singularity that can arise in

the numerical solution of Poisson’s equation on the sphere, as we will see in the following

section. This necessitates the use of an interior grid that does not include the poles. To

remedy the need for such constraints, Cheong [13] proposed to use basis functions that

satisfy the pole conditions inherently. The expansion is given by

(2.10) u(λ, θ) =

n/2∑
k=−n/2

uj(θ)e
ikλ ,

for the coefficients function,

(2.11)



u0(θ) =

N−1∑
k=0

ûj,0 cos(kθ) for j = 0 ,

uj(θ) =

N−1∑
k=0

ûj,k sin(kθ) for odd j ,

uj(θ) =

N−1∑
k=0

ûj,k sin(θ) sin(kθ) for j even (6= 0) ,
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and the spectral coefficients are given by

(2.12)



ûj,k =
b

N

N−1∑
p=0

uj(θp) cos(kθp/N) for j = 0 ,

ûj,k =
c

N

N−1∑
p=0

uj(θp) sin(kθp/N) for odd j ,

ûj,k =
c

N

N−1∑
p=0

(uj(θp)/ sin(θp)) sin(kθp/N) for j even (6= 0) ,

where b = 1 for j = 0 and b = 2 otherwise, c = 1 for j = N and c = 2 otherwise. When

solving the spherical Poisson equation using these basis functions, the use of interior

grids is still necessary. Furthermore, for both of these representations, the solution

requires the solution of multiple algebraic equations which depend on the the parity of

the wavenumbers. We found that the method given by [38] provided a more simplistic

approach for solving the spherical Poisson equation while imposing the least amount of

constraints on the solution procedure and computational domain.

2.3 Numerical Implementation

In this section we outline the numerical implementation of the double Fourier sphere

method for the solution of partial differential equations on the sphere. In particular,

we demonstrate that issues related to the defining differential operators in the spherical

coordinate system can be alleviated by considering the discretized differential operators

as acting on the coefficient space. It is well known that operations in the standard

spherical coordinate system, such as differentiation in the azimuthal direction, suffer

from coordinate singularities at the poles. Issues pertaining to these singularities at the

poles are broadly referred to as the ’pole-problem’. Many of these problems arise from

the necessity of evaluating trigonometric terms arising in differential operators defined

in this coordinate system. We demonstrate how the use of a algebraic representations

of the necessary differential operators on the space of coefficients lead to bounded and

well-defined expression. Where many analytic representations of certain operators in

physical space suffer from coordinate singularities, their algebraic representation in the

coefficient space does not.

2.3.1 Operations in Frequency Space

Issues related to the use of the spherical coordinate system, such as the oversampling

of grid points near the poles and the inherent coordinate singularity are broadly referred
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to as the ’pole-problem’. Numerous methods for addressing this problem have been

presented and analyzed in the past five decades, cf. [7,16,56,68,69] and references therein.

The inevitability of computational issues in the numerical solution of a PDE on the

sphere when using a regular latitude-longitude coordinate system is undisputed. Though

the cause is still the same, often the remedy of an issue related to the pole will be problem

specific.

Although the issues related to use of rectangular grids in the spherical coordinate

parametric space may be aplenty, there are still many desirable properties. For our

purposes, these are a simple data structure facilitating optimally local, tensor-product

interpolation techniques and the fact that we can obtain a uniform grid in the (λ, θ)

parametric space. The latter of which allows for the use of the discrete fast Fourier

transform. Furthermore, when represented as a bivariate Fourier series, many issues

related to differentiating a function in spherical coordinates can be alleviated. We explain

this fact by way of an example, considering the spherical Poisson equation

(2.13) ∆u = uθθ +
cos(θ) sin(θ)

sin2(θ)
uθ +

1

sin2(θ)
uφφ = f ,

for some forcing function f : S2 → R. In the standard spherical coordinate system, and

in the extended one we have defined, the spherical Poisson operator has a coordinate

singularity at the poles. Using the trigonometric multiplication matrices defined in

Appendix A, the discrete Laplace operator, L , can be expressed using the Kronecker

product,

(2.14) L = In ⊗ (D(2)
m + T−1

sin2Tcos sinDm) + D(2)
n ⊗T−1

sin2 .

The resultant discrete spherical Laplace operator is a block diagonal matrix whose

individual blocks are non-singular. Each block possesses a sparsity pattern which admits

a linear-cost inversion. As previously noted, in order to obtain a unique solution, we must

also impose a condition on the mean of the function. The constant shift that can appear

in the solution of (2.13) manifests itself as a non-zero dimension of the nullspace for the

n/2 + 1 block of L, corresponding to the wavenumber n = 0. This can be remedied by
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replacing the m/2 + 1 row of this block by the discretized mean, given by

(2.15)

∫∫
S2
u(λ, θ) sin(θ)dλdθ ≈

m/2∑
j=−m/2

n/2∑
k=−n/2

ûjk

∫ π

0
sin(θ)eijθdθ

∫ π

−π
eikλdλ

= 2π

m/2∑
j=−m/2

ûjk

∫ π

0
sin(θ)eijθdθ + 2

m/2∑
j=−m/2

n/2∑
k=−n/2

ûjk
sin(kπ)

k

∫ π

0
sin(θ)eijθdθ

= 2π

m/2∑
j=−m/2

ûjk
1

2i

(
eiπ(j+1) − 1

i(j + 1)
− eiπ(j−1) − 1

i(j − 1)

)
= 2π

m/2∑
j=−m/2

ûj0
1 + eijπ

1− j2
= 0 .

2.4 Numerical Tests

In this section we provide tests of the implementation for the solution of some

particular partial differential equations on the sphere. We begin by testing the method

to solve the Poisson equation for various forcing functions containing different scales.

Though this was the primary intention of developing an implementation of the double

Fourier sphere method as a means of obtaining the stream function from the vorticity,

we additionally consider the solution of the Heat and Allen-Cahn equations. For these

equations, a spatial discretization using a Fourier series results in a system of stiff ordinary

differential equations in the coefficients. Since the discrete Laplace operator present in

both these equations admits linear cost inversion, implicit time-marching method can be

implemented efficiently. These supplementary results serve to test the flexibility of the

implementation and indicate some other possible future directions of investigation.

In order to assess the accuracy of the numerical implementation, we evaluate the

error in the numerical solution compared to the known analytic one in the norms

(2.16)

‖f(λi, θj , t)‖`∞(Ω) = max
i,j
{|f(λi, θj , t)|} ,

‖f(λi, θj , t)‖`2(Ω) =

 N∑
i

N∑
j

f(λi, θj , t)
2∆λ∆θ sin(θj)

1/2

,

where ∆λ,∆θ are the grid spacings in the azimuthal and polar directions respectively

and (λi, θj) for i, j = 1, . . . , N are the grid points within the computational domain.

Furthermore, to assess if the numerical solution remains single-valued at the poles, we

calculate the error in the pole condition as

(2.17) P = max

max
k 6=0

∣∣∣∣∣∣
m/2∑

j=−m/2

ûj,k

∣∣∣∣∣∣
 ,max

k 6=0

∣∣∣∣∣∣
m/2∑

j=−m/2

(−1)j ûj,k

∣∣∣∣∣∣
 .
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2.4.1 Poisson Equation

We consider the family of forcing functions in the form

(2.18) f(λ, θ) = `(`+ 1) sin`(θ) cos(`λ) + (`+ 1)(`+ 2) cos(θ) sin`(θ) cos(`λ).

The resulting exact solution of (2.13) is given by

(2.19) uexact(λ, θ) = − sin`(θ) cos(`λ)− cos(θ) sin`(θ) cos(`λ)

Figure 2.2: Left: Convergence plots in both norms for a forcing function with ` = 24, 64. Right:

Error in both norms and the pole condition for various values of ` from 4 to 64. The error was

computed on an equally spaced grid of size 2π/256.

It was found that our numerics agreed very well for the error but were approximately

on the O(105) higher in the values of the pole condition for all values of ` than those

reported in [38]. We deem this is due to round-off error, as their values reported are

lower than the machine precision for which these calculations were performed.

2.4.2 Heat Equation

It was found in [46], that time marching methods using the half-range cosine and

sine series converged to the incorrect solution if the pole conditions were not imposed

explicitly. We provide a brief investigation of the capabilities of our implementation to

perform time-stepping. For the numerical solution of the heat equation, we consider a

second-order Crank-Nicolson time-stepping method, given by,

(2.20)
un+1 − un

∆t
=

1

2

(
Lun+1 + Lun

)
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where L is given by 2.14. The numerical test we consider, is the heat equation with a

simplifying thermal diffusivity. Namely, we consider

(2.21) ut =
1

`(`+ 1)
∆u , u(0, λ, θ) = Y m

` (λ, θ) ,

whose exact solution is given by

(2.22) u(t, λ, θ) = e−tY m
` (λ, θ).

The results of the numerical test are depicted in 2.3. It was found that the implementation

produces the expected second-order accuracy globally in time and the pole condition was

satisfied to high accuracy for all step sizes.

Figure 2.3: Left : Convergence in time plots in both norms. Right: Pole condition. The error

was computed on a spatial grid of 128× 128 points.

2.4.3 Allen-Cahn Equation

The Allen-Cahn equation is a non-linear reaction-diffusion equation, first derived as

describing phase separation in iron alloys [4]. The equation is given by

(2.23) ut = ε∆u+ u− u3 ,

where ε << 1 is a constant. The non-linearity is the result of a double-well potential

and solutions exhibit equilibria for u = ±1. We consider a first-order in time operator

splitting scheme as a time-marching method [32]. We first compute an intermediate

solution, v, to the heat equation with thermal diffusivity ε and then solve the ordinary

differential equation

(2.24)
dv

dt
= v − v3, v(0) = v0 ,
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whose analytic solution is given by

(2.25) v(t) =
v0√

e−2t − v2
0(e−2t − 1)

.

If we compute the intermediate solution using an implicit Euler step, the time-marching

scheme is given by

(2.26)
v = (I − ε∆tL)−1un ,

un+1 =
v√

e−2t − v2(e−2t − 1)
.

As initial condition we consider the following function from [38]:

(2.27) u0(λ, θ) = cos(cosh(5 sin(θ) cos(θ) cos(λ))− 10 sin(θ) sin(λ)) .

Figure 2.4: Depiction of the solution of the Allen-Cahn equation at times t = 0, 2, 5, 10.

The numerical solution exhibits the stable equilibria expected analytically. The ability

of our implementation to perform time-stepping for partial differential equations whose

resulting ordinary differential equations in coefficient space offers a promising direction

of research. An analysis of other algorithms to perform time-stepping on the Fourier

coefficients in highly-oscillatory systems could be an interesting avenue to explore. Further

numerical experiments and analysis of the method in its present form are warranted and

the subject of current research.
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Chapter 3

The Characteristic Mapping

Method for Linear Transport on a

Sphere

3.1 Background

The numerical solution of the transport equation on the sphere plays an essential

role in many geophysical applications. For example, the advection of a scalar field

such as temperature or chemical concentration on the globe is fundamental to global

atmospheric modeling. The efficient transport of quantities containing multiple scales

or with poor regularity remains a challenge. In the context of tracer species transport,

multiple quantities are advected over long periods of time, carrying inherently subgrid

information with them [62]. Computational costs associated with these simulations at

high resolutions can often be limiting [49].

The evolution of the advected quantity may be viewed from either the Eulerian or

Lagrangian perspectives. Often, numerical methods for the solution of the advection

equation will take a hybrid approach, leveraging the added benefits of both of these

frameworks. In the Eulerian framework the relevant quantities are discretized on a static

grid, allowing for ease of access to the solution and an easily parallelizable implementation.

Without the use of highly refined meshes, sub-grid features in the solution can be lost,

resulting in numerical dissipation. In order to avoid the added computational cost due to

uniform mesh refinement, adaptive techniques can be used to resolve finer features [8,21].

Furthermore, Eulerian schemes suffer from restrictive time-stepping constraints imposed

by the Courant-Friedrichs-Levy condition. Lagrangian schemes alleviate these constraints
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by considering grid points which follow particles trajectories in the flow. The resulting

solutions are generally less prone to numerical dissipation and have better stability

properties [58]. A well-known difficulty arising in these schemes is that a well-ordered set

of grid points will become increasingly disordered over time [48, 67]. This can lead to

sampling issues for the evolution of the advected quantity. To overcome this difficulty

the use of frequent remapping or remeshing steps is often needed. One approach to avoid

excessive mesh distortion is to consider a remeshing step at regular time intervals, such

as in [5, 6, 35, 45]. In practice, remeshing can be computed directly by introducing a new

set of ordered particles on the mesh and interpolating from the previous trajectories.

Another, more recent approach, considers interpolating the inverse flow-map for the

Lagrangian trajectories and then resampling the initial advected quantity [9–11].

The semi-Lagrangian (SL) approach is to maintain the representation of the advected

quantity on a fixed Eulerian grid while discretizing the evolution from the Lagrangian

frame. Related approaches include the Arbitrary Lagrangian-Eulerian method [27],

particle-mesh methods [15], and more recent hybrid schemes [28,54,72]. There are also

conservative SL frameworks, which have seen successful application for transport on

the sphere [26, 30]. Level-set methods offer another popular SL scheme for the linear

advection of sets and surfaces [47]. In these methods, characteristics are traced back

in time and the advected quantity is updated via interpolation on an Eulerian grid.

Higher order accuracy can be generated within the level-set framework by additionally

transporting gradient information of the solution [44, 53]. For quantities containing

sub-grid features or for sets with poor regularity, the transport of gradient information

is infeasible. Recently, this problem was addressed by Mercier et al. [36] for the linear

transport of arbitrary sets in a two and three dimensional periodic domain. This method

is based on the work of Kohno and Nave [29] and has recently been applied for the

two-dimensional incompressible Euler equations by Yin et al. [74]. In this chapter, these

insights are applied for linear advection in a two dimensional spherical geometry.

We present an implementation of the Characteristic Mapping (CM) method for the

numerical solution of the linear transport equation on the two-dimensional sphere. For

the linear transport equation, the flow map generated by the advecting velocity field

and the definition of the initial condition contain all information needed for its solution.

The CM method dissociates these two quantities by considering the numerical quantity

of interest in the advection scheme to be the flow map itself. Analytically, the map

satisfies a vector valued advection equation for the same velocity field. Its solution yields
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a function which maps a given arrival point along the characteristics back in time t, to

its departure point. The map itself possesses a semigroup structure which facilitates its

own evolution via composition. Numerically, we leverage this property using the built-in

interpolation structure of the Gradient-Augmented Level Set (GALS) method [44]. Due

to the resulting functional definition the evolution of the advected quantity is then readily

given by the pullback of the initial condition by the numerically computed map, thus

avoiding the necessity to ever be discretized.

Once computed, the backward characteristic map for a given velocity field allows

for the evolution of multiple quantities simultaneously via composition. The accurate

tracking of the locations of these quantities is determined by the accuracy for which the

map is computed. Nevertheless, since the initial condition is never discretized, the method

possesses the capability of transporting arbitrarily fine features via simple evaluation

with the map. As a result, the method is able to attain exponential resolution in linear

computation time.

This chapter is organized as follows. We begin with the mathematical formulation of

the CM method for the solution of the linear advection equation on the two-dimensional

sphere. Thereafter, we describe the numerical implementation, outlining the spatial

discretization via Hermite cubic interpolation along with the time evolution using the

GALS method. We then present numerical tests of the method for four standard test

cases involving a variety of flow environments, as given in [42]. Finally, we conclude with

a presentation of the unique features of the method by a ’zoom-in’ on the solution for

the transport of a multi-scale function and a fractal set in a complex flow environment.

3.2 Mathematical Framework

In this section we outline the mathematical framework for the CM method for linear

advection on the two dimensional sphere. We seek the evolution of a time-dependent scalar

field φ : S2 × R→ R, whose evolution is dictated by a known time-dependent velocity

field, u : S2 × R→ TS2. We will denote x · y = g(x, y) where g = 〈·, ·〉 : TS2 × TS2 → R

is the standard Riemannian metric on the 2-sphere. Let γ(t) be an integral curve of u.

The advection equation in strong form is given by

(3.1)
d

dt
φ(γ(t), t) = ∂tφ+ u(γ(t), t) · ∇S2φ(γ(t), t) = 0, φ(x, 0) = φ0(x) .

Here the gradient at p ∈ S2 is given by

(3.2) ∇pφ = gi,j∂jφ
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Since S2 is a Riemannian manifold, we express the volume form in local coordinates

(x1, x2) as dµ =
√
|g|dx1 ∧ dx2. Let X : S2 ×R→ S2 be the time-dependent flow map of

the velocity field and let U0 ⊆M be a fixed reference configuration in the fluid domain.

From the Transport Theorem 1.1 of Chapter 1, and noting that X has a smooth inverse,

we deduce that

(3.3)

d

dt

∫
X(U0,t)

φdµ = 0

⇒
∫
X(U0,t)

φ(x, t) dµ =

∫
U0

φ(x, 0)dµ

=

∫
X(U0,t)

X−1∗ (φ(x, 0)dµ) =

∫
X(U0,t)

φ0 ◦X−1det
(
∇X−1

)
dµ .

Since U0 is arbitrary and φ is well-defined everywhere in S2, we obtain the solution to

3.1 as

(3.4) φ(x, t) = φ(X−1(x, t), 0)det
(
∇X−1(x, t)

)
.

We see explicitly that the evolution of φ is determined its initial condition and the

inverse of the flow map X−1, called the backward characteristic map, generated by

the advecting velocity field. The CM method leverages this insight by considering the

numerical quantity of interest to be the inverse flow map X−1 rather than the advected

quantity φ. Due to the definition of the flow map, we have that along the integral curves

γ(t) of u,

(3.5) X−1(γ(t), t) = γ(0).

Taking the total derivative with respect to time of 3.5, we see that X−1 also satisfies a

vector-valued advection equation for the same velocity field where the initial condition is

the identity map, i.e.,

(3.6)

d

dt
X−1 = ∂tX

−1 +∇uX−1 = 0 ,

X−1
0 = idS2 .

The semigroup structure of the flow map, and its inverse, discussed in Chapter 1,

facilitates the evolution of the flow map via composition. Indeed, if we consider a partition

of the time interval into m subdivisions [τi, τi+1] ⊂ [0, T ] for i ∈ {0, 1, . . . ,m− 1}, where

T is some final integration time, then we can consider the evolution of the backward

characteristic map, denoted in each subinterval by X [τi+1,τi], as the solution to

(3.7)
∂tX [τi+1,τi] + 〈u,∇S2X [τi+1,τi]〉 = 0 for t ∈ [τi, τi+1] ,

X [τi+1,τi](x, ti) = x .
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Using the semigroup property of the flow, we obtain the global solution operator by

composition of each sub-map, that is,

(3.8) X [t,0](x, t) = X [τ1,0] ◦X [τ1,τ2] · · · ◦X [t,τm](x, t).

We note that this property of the backward characteristic map is independent of the

partition, and thus allows for the adaptive decomposition of the flow in time.

Since the solution to 3.6 is independent of the solution to 3.1, the method does not

depend on the initial condition, i.e., 3.4 holds for all initial conditions φ0(x) that are

well-defined on the domain. The regularity or even the definition of the initial condition

thus bears no constraint on its transport. This opens the possibility of advecting multiple

quantities, arbitrary sets, and even fractal ones, with the use of a single backward

characteristic map for a given flow.

3.2.1 Computational domain

In congruence with the computational domain taken for the solution of the stream

function, we compute the solution on the ”doubled-up” regular latitude-longitude coordi-

nate system used in Chapter 2. We recall, the extended solution φ̃, resulting from the

transformation 2.1, should be 2π-periodic in both directions and single-valued along each

pole. The true solution φ can be recovered via restriction to (λ, θ) ∈ [−π, π]× [0, π]. If φ

is a solution to 3.1 then its extension solves

(3.9) ∂tφ̃+∇ũφ̃ = 0, φ̃(x, 0) = φ̃0(x) ,

where ũ = (ũλ, ũθ)
T is the extension of the advecting velocity given by

(3.10) ũ(λ, θ) =


(uλ(λ, θ), uθ(λ, θ))

T for (λ, θ) ∈ [−π, π]× [0, π] ,

(uλ(λ+ π,−θ),−uθ(λ+ π,−θ))T for (λ, θ) ∈ [−π, 0]× [−π, 0] ,

(uλ(λ− π,−θ),−uθ(λ− π,−θ))T for (λ, θ) ∈ [0, π]× [−π, 0] ,

resulting in a consistent solution on both coordinate charts of the sphere. The necessity of

the transformation 3.10 can be understood by considering the transformation as applied

to the Helmholtz-Hodge decomposition of a vector field tangent to the surface of the

sphere. We write the vector field, u, as the sum

(3.11) u = ∇S2f + n̂×∇S2ψ ,
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where n̂ is the unit normal to the sphere and f, ψ : S2 → R. The transformed velocity ũ

is obtained by first applying the extension of f and ψ in the spherical coordinate system

then taking the gradient and surface curl respectively of each transformed function.

Were u to be irrotational, then the transformation 3.10 follows readily from application

of the chain rule to the transformed potential f̃ . In the case that u is solenoidal, the

transformation follows from application of the chain rule on the extended domain and

the fact that the orientation changes. Thus, although the component ∇ψ̃ is rotated

by π/2, the unit normal acquires an additional minus sign, resulting in a consistent

transformation to the case when the field is irrotational.

Since the stream function is obtained as the solution of the Poisson equation with

vorticity as forcing function using the double Fourier sphere method, we find it advanta-

geous to also phrase the advection part of the solution strategy on this extended domain.

Although, we will see how issues related to the coordinate system limit the scope of

velocity fields we may consider. In the following chapter we address this issue and offer

possible solutions. The use of the extended domain also facilitates a tensor-product

interpolation approach used in the Gradient-Augmented Level Set (GALS) method to

solve the linear advection equation.

3.3 Numerical Framework

In this section we present the numerical framework for the GALS and CM methods.

We begin with a description of the spatial discretization using Hermite cubic interpolation

as in [44,53,74], outlining the relevant modifications needed for the sphere. Thereafter,

we explain how the spatial interpolation and time integration are incorporated to evolve

the backward characteristic map within the GALS framework along with additional

details on the computational implementation.

3.3.1 Gradient-Augmented Level Set Method

The GALS method falls under the class of semi-Lagrangian methods for the numerical

solution of the advection equation. It employs an advect-and-project strategy, where the

temporal evolution of the numerical quantity of interest is evolved in the Lagrangian frame

and then projected back, using a suitable interpolation operator, onto a static Eulerian

grid [44]. The method is part of a more general class of numerical methods, referred

to as jet schemes [53], where derivative information, along with the function values,

are additionally transported to obtain higher-order accuracy. Unlike ENO/WENO
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schemes [34, 55], which use wide stencils along each coordinate direction to achieve

higher-order accuracy, jet schemes use localized stencils whose evaluation is facilitated

by interpolation. A key ingredient of the GALS method is an optimally local update

procedure achieved in the projection step by using information from a single adjacent

cell for function values and derivatives. We begin by describing the spatial discretization

of the backward characteristic map using Hermite cubics. Thereafter, we explain how

gradient information is transported during the time integration to achieve a scheme that

is globally third-order accurate.

3.3.2 Spatial Discretization

The spatial discretization of the backward characteristic map is performed using

Hermite cubic interpolation. Techniques for interpolation on the 2-sphere have been the

subject of extensive study (cf. [19]). We employ a cell-based interpolation directly on the

(λ, θ) parametric space on a rectangular grid, similar to the construction of [71]. The use

of a rectangular grid allows for a tensor product spline approach [17,52]. Here we consider,

a tensor product of Hermite cubics. Let Ω denote our computational domain, taken as

an uniform partition of the doubled-up coordinate chart (λ, θ) ∈ [−π, π]× [−π, π]. Let

the gridpoints ϕi,j = (λi, θj) be defined by

(3.12) λi = −π + i
2π

N
, θj = −π + j

2π

N
for i, j ∈ {0, . . . , N − 1}.

Let Ci,j be a cell within the partition with corners ϕi,j , ϕi+1,j , ϕi,j+1 and ϕi+1,j+1. The

space of Hermite cubics on Ω, denoted VΩ, is a subspace of C1(Ω) functions which are

bicubic in each cell with continuous normal derivatives and smooth tangential derivative

on cell boundaries. The local interpolation operator HΩ[f ] : C1(Ω)→ VΩ, is defined such

that

(3.13) Dαf(ϕi,j) = DαHΩ[f ](ϕi,j) ∀ϕi,j ∈ Ω ,

for multi-index α part of the index set α ∈ {(1, 0), (0, 1), (1, 1)} . In one dimension, if we

consider the vertex set i ∈ {0, 1}, then the basis functions satisfying the properties of an

Hermite interpolant are given by

(3.14) Hα
i (x) =



f(x) for i = 0, α = 0 ,

f(1− x) for i = 1, α = 0 ,

g(x) for i = 0, α = 1 ,

−g(1− x) for i = 0, α = 1 ,
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where f(x) = 1−3x2 +2x2 and g(x) = x(1−x)2. The 2D basis functions are then defined

in each cell Ci,j in the extended computational domain (λ, θ) ∈ [−π, π]2 via translation

and scaling as

(3.15) Hα
i,j(λ, θ) = Hα1

i

(
λ− λi,j

∆λi

)
Hα2
j

(
θ − θi,j

∆θj

)
∆φα1∆θα2

The local interpolating polynomial for a point ϕ lying within the cell Ci,j , is then given

by

(3.16) HΩ[f ](ϕ) =
∑
i,j

∑
α

fαi,jH
α
i,j

(
ϕ

∆ϕ

)
∆ϕα ,

where fαi,j are the values of the function, its partial and mixed partial derivatives in the

cell Ci,j . We now investigate some of the approximation properties of the interpolant.

Lemma 3.1. Denote δu the error in quantity u and let the data fαi,j in 3.16 be known

to O(h4−|α|) for multi-index α ∈ {(1, 0), (0, 1), (1, 1)} and h being the maximum grid

spacing. Then the error in HΩ[f ](λ, θ) is given by

(3.17) δHΩ[f ](ϕ) =
∑
i,j

∑
α

δfαi,jH
α
i,j

(
ϕ

∆ϕ

)
∆ϕα

and have that the error δ (DαHΩ[f ](ϕ)) = O(h4−|α|).

Proof. Every fα is multiplied by ∆ϕα increasing the order accuracy by h|α|, similarly for

every derivative DαH the order of accuracy decreases due to the scaling by ∆ϕ by at

least O(h−|α|).

Theorem 3.2. Let f ∈ C4(Ω), and the data fαi,j in 3.16 be known to order h4−|α|, where

h is the spacing of the largest cell. Then the L∞(Ω) error can be bounded as

(3.18) ‖f −HΩ[f ]‖L∞(Ω) ≤ c
∥∥D4f

∥∥
L∞(Ω)

h4 .

Proof. Let G(x) be the Taylor polynomial of order three for f centred at the point

ϕ0 ∈ Ci,j . By Taylor’s theorem, for all φ ∈ Ci,j , we have

(3.19) Dαf(ϕ) = DαG(ϕ) +O(h4−|α|) ,

yielding,

(3.20)
‖f −HΩ[f ]‖L∞(Ω) ≤ ‖f −G‖L∞(Ω) + ‖G−HΩ[f ]‖L∞(Ω)

= O(h4) + ‖G−HΩ[f ]‖L∞(Ω) .

By construction, since G approximates the data fαi,j at the vertices to O(h4−α) we

have that G(ϕ) and HΩ[f ](ϕ) are related by Lemma 3.1 and thus |G−HΩ[f ]| = O(h4)

∀ϕ ∈ Ci,j .
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Since this holds in any particular cell, the approximation error also holds over the

whole space. The order of accuracy in L2(S2) is then readily obtained by noting,

(3.21) ‖f −HΩ[f ]‖2L2(S2) =

∫ π

0

∫ π

−π
|f −HΩ[f ]|2 sin(θ)dλ dθ ≤ 4π ‖f −HΩ[f ]‖2L∞(Ω) ,

(3.22) ⇒ ‖f −HΩ[f ]‖L2(S2) ≤ Ch
4

We note that the condition on f ∈ C4(Ω) can be relaxed in regularity but will not be

needed for our purposes. Since we only require an accuracy of O(h4−|α|) for the values

of Dαf(λi, θj) it suffices to use approximate values. The GALS method exploits this

property to transport derivative information at the grid points up to order of accuracy

required. The approximation is of the derivative information is performed using a 4-point

ε-difference stencil about each grid point. The approximated values of fαi,j are given by

(3.23)

f0,0
i,j =

1

4
(f(λi + ε, θj − ε) + f(λi − ε, θj − ε) + f(λi + ε, θj + ε) + f(λi − ε, θj + ε))

f1,0
i,j =

1

4ε
(f(λi + ε, θj − ε)− f(λi − ε, θj − ε) + f(λi + ε, θj + ε)− f(λi − ε, θj + ε))

f0,1
i,j =

1

4ε
(f(λi + ε, θj + ε)− f(λi + ε, θj − ε) + f(λi − ε, θj + ε)− f(λi − ε, θj − ε))

f1,1
i,j =

1

4ε2
(f(λi + ε, θj + ε)− f(λi + ε, θj − ε)− f(λi − ε, θj + ε) + f(λi − ε, θj − ε))

To quantify the order of approximation obtained in 3.23 by using a Taylor series expansion

to second-order, we must first determine expressions for the gradient and Hessian matrix

in the spherical coordinate system. If we consider S ⊂ R3 and take the restriction of the

Euclidean metric in R3, ds2 = dx2 + dy2 + dz2, to the unit sphere, we obtain the metric

(3.24) ds2 = sin2(θ)dλ2 + dθ2

For any point p ∈ S2 away from the poles, if we denote the the unit tangent vectors in

the direction of increasing longitude and latitude as eλ, eθ respectively, then we have

(3.25) ∂λ = sin(θ)eλ, ∂θ = eθ .

Thus {∂λ/ sin(θ), ∂θ} form an orthonormal basis for the tangent plane TpS2. The gradient

of the local representative of a function f : S2 → R in the spherical coordinate system is

given by

(3.26) ∇S2f(λ, θ) =

[
1

sin(θ)
∂λf, ∂θf

]T
.

31



Generally, the Hessian matrix of a C2 function f on a Riemannian manifold, with

local coordinates x is

(3.27) Hess(f) =

(
∂2f

∂xi∂xj
− Γki,j

∂f

∂xk

)
dxi ⊗ dxj ,

where the Christoffel symbols are given by

(3.28) Γki,j =
∂ei
∂xj

gklel.

Using the Riemannian metric on the sphere and the expressions 3.25, we have

(3.29) Hess(f) =

∂λλf + cos(θ) sin(θ)∂θf ∂λθf − cos(θ)
sin(θ)∂λf

∂λθf − cos(θ)
sin(θ)∂λf ∂θθf

 .
Thus the Taylor expansion of a smooth function f on the sphere about a point ϕ̄ away

from the poles is

(3.30)

f(ϕ) = f(ϕ̄) + ∇f |ϕ̄ · (ϕ− ϕ̄) +
1

2
(ϕ− ϕ̄)T Hess(f)|ϕ̄ (ϕ− ϕ̄) +O((ϕ− ϕ̄)3)

= f(ϕ̄) +
1

sin(θ̄)
∂λf |ϕ̄ (λ− λ̄) + ∂θf |ϕ̄ (θ − θ̄)

+

(
∂λθf |ϕ̄ −

cos(θ̄)

sin(θ̄)
∂λf |ϕ̄

)
(θ − θ̄)(λ− λ̄) +O((ϕ− ϕ̄)2).

Due to finite-precision arithmetic used in the evaluations of the expressions in 3.23, an

error due to round-off will be incurred for each of the stencils points. Using double-

precision floating point numbers, the numerical precision, denoted δ, for which a number

can be computed is 2−52 ≈ 2.22 × 10−16. To observe the effect of round-off error on

the precision of the derivatives, we consider a Taylor expansion of f(λ, θ) about a point

(λi, θj) away from the poles, evaluating at the epsilon difference stencil points. For the

value of f1,0
i,j , this yields

(3.31)

f1,0
i,j = ∇f |ϕi,j

· ((ε+ δ)/ε, δ/ε)T +O(ε2)

=
1

sin(θj)
∂λf(ϕi,j) +

(
1

sin(θj)
∂λf(ϕi,j) + ∂θf(ϕi,j)

)
δ

ε
+O(ε2) ,

and this holds analogously for f0,1
i,j . For the mixed partial derivatives, which we denote

Hess(f)1,1, noting that for each evaluation δ is not necessarily the same, we have

(3.32)

f1,1
i,j ≈

1

4ε2
Hess(f)1,1(ϕi,j) [(ε+ δ)(ε+ δ)− 2(ε+ δ)(−ε+ δ) + (ε+ δ)(−ε+ δ)]

+
1

4ε2

(
1

sin(θj)
∂λf |ϕi,j

4δ + ∂θf(ϕi,j)4δ

)
+O(ε2)

= Hess(f)1,1(ϕi,j)

(
1 +

δ

ε
+
δ2

ε2

)
+

(
1

sin(θj)
∂λf(ϕi,j) + ∂θf(ϕi,j)

)
δ

ε2
+O(ε2)
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We see that the truncation error decreases asymptotically to ε2 yet the error due to

round-off increases proportionally to 1/ε for the gradient and 1/ε2 for the mixed partial

derivatives. This bears constraints on preserving the correct order of accuracy in the

derivative information for the Hermite interpolant. Namely, in order to remain consistent

with the O(h4) in the local truncation error in the Hermite interpolation one must choose

ε appropriately. To retain an O(h3) accuracy in the gradient values, one could scale

ε ∝ h3/2 whereas for the mixed partial derivatives require ε ∝ h. Yet, if the scaling is

implemented, the round-off error will increase. In practice, we take ε = 10−5, setting an

’effective numerical precision’ to be approximately δε ≈ 10−11.

If we additionally require that the velocity field have vanishing azimuthal derivative

at the poles, then the approximation properties still hold. A global parameterization

using only the basis vectors eλ, eθ for more general vector fields on the surface of the

sphere, will not suffice due to their degeneracy at the poles. For linear advection,

the coordinate singularity manifests itself as a difficulty when calculating Lagrangian

particles trajectories near the poles. The coordinate singularity inherent in the spherical

coordinate system has been the subject of extensive study notably in the atmospheric

modelling community [56,59–61]. Presently, the problem is often circumvented by instead

performing the trajectory computations in the Cartesian system as done in [11, 54].

The velocity fields that we consider in the forthcoming numerical tests vanish at the

poles and the resulting flows can thus be well-represented as a C1(Ω) function in the

standard spherical coordinate system. In the forthcoming chapter, we offer some possible

alternatives to circumvent the issues related to the spherical coordinate system.

3.3.3 Time Evolution

In the spherical coordinate system, the advection equation is given by

(3.33) ∂tφ+
uλ

sin(θ)
∂λφ+ ∂θφ = 0 .

The characteristic (integral) curves, γ(t) = (λ(t), θ(t))T , are given by

(3.34)

dλ

dt
=
uλ(γ(t), t)

sin(θ)
,

dθ

dt
= uθ(γ(t), t) ,

γ(0) = γ0 .

The solution is obtained using 3.4 by approximating the backward characteristic map

using a finite amount of integral curves γi,j . Each iteration tn 7→ tn+1 introduces a set
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of Lagrangian particles at the grid points, that is, γi,j(tn) = ϕi,j , whose trajectories

are computed backwards in time using a globally third-order Runge-Kutta integration

scheme. Introducing the particles at the grid points at each time step allows us to

maintain a representation of the map on the fixed Eulerian grid. The values obtained

from these trajectories serve to update the global inverse flow map via composition with

the previous map at the endpoint of the trajectories; a discrete analogue of 3.8. In order

for this process to be iterated, we must project back onto the space of Hermite cubics

after evaluation, obtaining a map which can once again be evaluated at an arbitrary

point.

Let χi(x, t) denote the projection of X−1
i (x, t) onto the space of Hermite cubics.

Then each time step of the CM method is summarized as follows:

(3.35)
Ψ = ϕ+

∫ tn

tn+1

Gũ(γ(s), s)ds ,

χi(ϕ, t) = HΩ[χi ◦ (Ψ, tn)] ,

(3.36) χ[tn+1,0](x, t) = χ[tn,0] ◦ χ[tn+1,tn](x, t).

where G is the matrix given by

(3.37) G =

 1
| sin(θ)| 0

0 1

 .
We note that the absolute value accounts for the use of the negative values for θ in

the doubled up coordinate chart preserving the positivity of the metric.

In order to implement the projection step, gradient and mixed partial derivative

information must be transported along with the function values. This is accomplished

by additionally introducing Lagrangian particles in a 4-point ε-difference stencil at the

grid points and integrating for their footpoints. The map is evaluated at the location

of the footpoints and the derivative information is updated using the stencils 3.23.

Additionally, the footpoint of the grid point itself is solved for, determining the cell in

which the footpoints from the stencil are evaluated. If the stencil point lands outside

the cell in which the grid point lands, then the basis functions are simply extended

outside to accommodate. Since the integration scheme is of matching order in local

truncation error to the Hermite interpolation, the transported ε-difference stencil retains

the order of accuracy required by 3.1, and maintains a O(h4) accurate interpolant. The

implementation of the algorithm is summarized in algorithm 1 1.
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Algorithm 1: Characteristic Mapping Method

Input: u, [0, t1, . . . , T ], ε,Ω = [ϕi,j ]

Output : χ

Initialization: χ0 ← HΩ[χ]([ϕi,j ]) = id, t = 0

while t < T do

y = [ϕi,j ± ε] % initialize stencil points and grid point

[Ψi,j ± ε]t ← RK3(u, t,∆t, y)

[Dαχi,j ]t ←χ([Ψi,j ± ε]t) according to 3.23

χ[t,0] ← HΩ[[Dαχi,j ]t]

t ← t+ ∆t

end

return [t,0]

The numerical computation of 3.35 incurs two errors in each step; an O(∆t4) error

due to the local truncation error in the time-integration and an O(∆t2∆x2) due to the

projection step. As previously noted, for the ε-difference stencilling, if we neglect the

error due to round-off then the error scales quadratically in the distance between the

point of evaluation and the nearest grid point. For each of the grid points, the evaluation

χi ◦(Ψ, tn) for the projection step occurs at foot points O(∆t) away and a distance O(∆x)

away from the nearest grid point, resulting in the O(∆t2∆x2) accuracy [36]. Globally,

the method is third-order accurate, with error given by

(3.38) Global error for GALS = O(T∆t3) +O(T∆t∆x2) .

In the forthcoming sections we present convergence tests for our implementation of the CM

method for linear advection on the sphere. We affirm the aforementioned approximation

properties of the method using a standard test cases for the transport equation on the

sphere. Thereafter, we demonstrate its ability to resolve arbitrarily fine features in the

solution along with the capacity to advect arbitrary sets.

3.4 Numerical Tests

In this section we present convergence tests for the numerical solution of 3.1 and

3.6 using the CM method. These test cases follow a standard test case suite for linear

transport on the sphere as outlined in [41,42] involving linear and non-linear flows.
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3.4.1 Initial Conditions

In what follows, for consistency with the literature, we define (λ, θ) ∈ [0, 2π] ×

[−π/2, π/2] and the corresponding components of the advecting velocity field are denoted

by u and v. All of the flows, with the exception of test case 2, are designed such that the

initial condition returns to itself after a predetermined amount of time. In the following

tests we consider two different initial conditions. The first of which is two symmetrically

located cosine-bells, defined by

(3.39) hi(λ, θ) =


1
2 [1 + cos(πri/r)] if ri < r ,

0 otherwise ,

where r = 1/2 is taken to be the base radius of each cosine bell and ri = ri(λ, θ) is the

great-circle distance from the centre of the bell, given by

(3.40) ri(λ, θ) = arccos(sin θi sin θ + cos θi cos θ cos(λ− λi)) ,

with (λi, θi) being the location of the centre of the bell. The initial condition is then

given by

(3.41) φ(λ, θ) = b+ h1(λ, θ) + h2(λ, θ) ,

where b = 0.1 and the centres of each bell are located at (λ1, θ1) = (π/6, 0) and

(λ2, θ2) = (−π/6, 0). The second condition we consider is two slotted cylinders, defined

by

(3.42) φ(λ, θ) =



1 if ri ≤ r and |λ− λi| ≥ r/6 for i = 1, 2 ,

1 if ri ≤ r and |λ− λ1| < r/6 and θ − θ1 < − 5
12r ,

1 if ri ≤ r and |λ− λ2| < r/6 and θ − θ2 >
5
12r ,

0.1 otherwise .

.

This initial quantity is designed to assess the shape-preserving properties of the

method. We assess the accuracy of the method by computing the error in the following

norms

(3.43)

‖f(λi, θj , t)‖`∞(Ω) = max
i,j
{|f(λi, θj , t)|} ,

‖f(λi, θj , t)‖`2(Ω) =

 N∑
i

N∑
j

f(λi, θj , t)
2∆λ∆θ sin(θj)

1/2

,

where ∆λ and ∆θ are the grid spacings in the azimuthal and polar directions respectively

and (λi, θj) for i, j = 1, . . . , N are grid points within the computational domain.
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Figure 3.1: Cosine bell and slotted cylinder initial conditions

3.4.2 Test Case 1: Solid Body Rotation

The first test case we consider is the solid body rotation as described in [70] for

a rotation axis aligned with the north pole. The advecting velocity field and stream

function are given by

(3.44)

u1 = u0 cos θ ,

v1 = 0 ,

ψ1 = −u0 sin θ ,

where the coefficient u0 is chosen to be 2π such that one full rotation corresponds to a

final integration time of t = 1 units. We note that variants of this test consider rotation

about axes that are not aligned with the pole. If the poles of the coordinate system are

not aligned with the axis of rotation, then the advecting velocity field will be multi-valued

there. To remedy the inevitable error this will cause by working in the coordinate system,

one can change the coordinate system to one in which the poles are aligned with the axis

of rotation [41]. The backward characteristic map is given analytically by

(3.45) χ(λ, θ, t) = (λ− 2πt, θ) .

In this instance, since the exact backward characteristic map is a linear function, the

approximation via an Hermite cubic is exact to within numerical precision. Consequently,

the dominant contribution to the error is due to round-off which is dictated by the

ε-difference stencil. Typically, the contribution due to the stencilling is much less than

the error incurred by the discretization of the flow but in this test using a linear and one

dimensional flow, the two errors are approximately the same magnitude. Since at every
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Figure 3.2: Error in solution (a) for the cosine-bell and χλ map (b) for test case 1 for a final time

T = 1 and T = 5. The error in the numerical solution for the slotted cylinder is not included

since it is identically zero.

step we redefine an Hermite interpolant for the flow-map using the stencil, we expect the

error to increase with the number of time steps. Figure 3.10 depicts the accumulation of

the round-off error in the ε-difference stencils as the number of time-steps increases.

3.4.3 Test Case 2: Static Vortex

For the second test case we consider a deformational flow consisting of two steady

circular vortices with antipodal centres, as described in [41]. Since the vortices are

generated symmetrically on the sphere, we need only consider one vortex. Denoting

ρ = ρ0 cos(θ), the radial distance from the centre of the vortex, the angular velocity in

dimensionless units is given by

(3.46) ω(θ) =


2π
T

3
√

3
2ρ sech2(ρ) tanh(ρ) if ρ 6= 0 ,

0 if ρ = 0.

The analytic backward characteristic map is now given by χ(λ, θ, t) = (λ − wr(θ)t, θ).

The velocity components are then written as

(3.47)
u(λ, θ) = ω(θ) [sin(θc) cos(θ)− cos(θc) cos(λ− λc) sin(θ)] ,

v(λ, θ) = ω(θ) [cos(θc) sin(λ− λc)] ,
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where (λc, θc) is the position of the centre of the vortex. The solution for all time is given

by

(3.48) φ(λ, θ, t) = 1− tanh
[ρ

5
sin(λ− ω(θ)t)

]
,

where the coefficients 1/5 along with ρ0 = 3 are chosen so that the deformation in the

flow is smooth [40,43].

The static vortex test consists of a flow which now depends non-linearly on the

latitudinal coordinate. Thus the flow map will not be represented exactly using a

bivariate third order polynomial. We note that the computations are only performed on

the displacement map, that is, we need only consider the displacement of the map from

the identity map. Since the flow in the latitudinal direction is the identity map for this

test case, the displacement is identically zero for all time. The map is thus represented

exactly and we encounter no round-off error in the latitudinal direction.

Figure 3.3: Depiction of the numerical solution for test case 2 at times t = 0, 1, 5 . View is taken

top down with the centre being the north pole.

Since the computational domain represents the north pole as an entire line, we do not

include the north pole as a point on our grid. This prevents the advection of what should

be a point as a line across the domain during the numerical solution. Nevertheless, the

characteristic map is indeed defined at the poles, and allowed to be multi-valued. Since

the initial condition itself is not multi-valued at the poles, the pullback of the initial

condition via the backward characteristic map will not be multi-valued.
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Figure 3.4: Error in solution and the χλ map for test case 2 for a final time T = 1, 5

3.4.4 Test Case 3: Non-Divergent Flow

The next test cases present flows which are now non-linear in both directions. The

first of which is a divergence free flow as given in [42], in the form

(3.49)

u2(λ, θ, t) = k sin2(λ) sin(2θ) cos(πt/T ) ,

v2(λ, θ, t) = k sin(2λ) cos(θ) cos(πt/T ) ,

ψ2(λ, θ, t) = k sin2(λ) cos2(θ) cos(πt/T ) .

The advecting field is designed such that the initial condition returns to its original

position at time t = T . Since the advected scalar field travels along the same flow lines in

reverse after t = T/2, there is a possibility for cancellation of error. This can be avoided

by considering a background flow that rotates the deforming field such that one full

rotation coincides with the time it takes for a trajectory to return back to its starting

point [42]. The effective velocity field and stream function are given by

(3.50)

u3(λ, θ, t) = k sin2(λ− 2πt/T ) sin(2θ) cos(πt/T ) + 2π cos(θ)/T

v3(λ, θ, t) = k sin(2(λ− 2πt/T )) cos(θ) cos(πt/T )

ψ3(λ, θ, t) = k sin2(λ− 2πt/T ) cos2(θ) cos(πt/T )− 2π sin(θ)/T

The results of this test with and without a background flow are depicted in Figure 3.5.

Due to the non-linearity of the flow in both directions, the numerical solution is not
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significantly affected by the round-off error in the epsilon derivative. We thus observe

the theoretically expected convergence rate for both flows.

Figure 3.5: Error in solution without (a) and with (b) background flow at T = 1, 5 .

Figure 3.6: Depiction of the numerical solution for the cosine-bell and slotted cylinder with an

advecting field 3.50 at times t = 1, 2.5, 5.
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3.4.5 Test Case 4: Divergent flow

As a final numerical test we consider a divergent flow, in the form

(3.51)
u(λ, θ, t) = − sin2(λ/2) sin(2θ) cos2(θ) cos(πt/T )

v(λ, θ, t) =
1

2
sin(λ) cos3(θ) cos(πt/T )

Since the flow is no longer divergence free, the compressibility of the map is incorporated

by multiplication of the initial condition by the determinant of the Jacobian of the map

at time t. This quantity measures the deformation of the volume element due to the

compressibility of the flow and can be computed directly from the Hermite basis functions.

The effect of the divergence in the flow, is observed in Figure 3.7, where the domain

can be seen to be stretching. For the slotted cylinder this is most apparent, where the

solution takes values in between its piecewise constant initial values.

Figure 3.7: Depiction of the numerical solution for test case 4 at times t = 1, 2.5, 5 .

3.5 Arbitrary Set Advection and Subgrid Resolution

In this section we demonstrate two unique features of the CM method: the ability to

advect arbitrary sets and subgrid resolution. Since the solution is given by the pullback

of the initial condition by the backward characteristic map, the method has the ability

to represent the transport of an initial condition up to the precision for which the initial

condition is known. In the idealized cases considered, the initial conditions are given
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Figure 3.8: Error in solution for test case 4 for a final time T = 1 and T = 5 in the `∞ and `2

norms without any remapping steps.

analytically and therefore arbitrarily fine features can be represented in the solution.

Moreover, since the deformational map is defined everywhere in space, we can ’zoom-in’

on the solution at any point in time by evaluating the map on the region, thus achieving

exponential resolution in linear computation time. We depict this unique feature of the

method with a zoom-in on the numerical solution for an initial condition possessing

multiple scales smaller than the numerical grid for which the computation is performed

on. Thereafter we demonstrate the advection of the Mandelbrot set as defined on the

sphere. This serves to emphasize the capacity to transport arbitrarily defined quantities

along with offering a depiction of a drift in the map at scales proportional to the L∞

error for the advection of a smooth function or the map itself.

In order to illustrate the capacity of the method to represent fine-features in the

advected quantity, we consider an initial condition of the form

(3.52) φ(λ, θ) = cos(10λ) sin(10θ)− cos(100λ) sin(100θ) + 0.1 cos(1000λ) sin(1000θ) .

The advecting velocity field is taken to be a linear combination of 3.47 and 3.49 up

to a solution time of t = 5. The computations are performed on a grid of size 2562 and

the time steps are of size ∆t = 1/100. We showcase a gradual zoom on the solution

to the point (λ0, θ0) = (0.75999, 1.15) up to a window width of 2−13 in the final frame.

As a consequence of the functional definition of the characteristic map, each image is

generated with the same number of sample points, taken to be 20002. We generate high

resolution images within the domain up to a zoom on a window of size. Fine features

that cannot be represented by the images depicting larger scales become increasingly
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resolved.

Figure 3.9: Initial condition 3.52 and the numerical solution at t = T/2.

The Mandelbrot set on the sphere is generated via stereographic projection with a

cap of arclength 10−9 at the north pole. The south pole of the projection is taken to be

(−0.235125, 0.827215) and the axes are then scaled by a factor of 4× 10−5. The velocity

field is taken to be 3.50 with the final solution time T = 5. We demonstrate a gradual

zoom on a window depicted in Figure 3.11 up to a frame size of 2−12 for the solution

at times t = 0 and t = 5. Based on the results in Figure 3.5, we expect to observe a

discrepancy between in the initial condition and the final solution at a window width of

10−3.
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Figure 3.10: Zoom in on the final frame up to a window size of 2−13.
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Figure 3.11: Top: Advection of the Mandelbrot set on the sphere under the velocity field 3.50.

Bottom: Zoom on window depicted at times t = 0 (top row) and t = 5 (bottom row) up to a

width of 2−12.
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Chapter 4

Aspects of the Implementation for

Nonlinear Advection on a Sphere

In this concluding chapter, we investigate how to combine the double Fourier sphere

method with our implementation of the CM method for linear advection on the sphere

to solve the incompressible Euler equations. We discuss the limitations of using a tensor

product approach to build a C1(S2) interpolant of ψ on the sphere. Furthermore, through

numerical experimentation we investigate some alternative representations of the velocity

field and the one-step map.

It is apparent that a representation of the velocity field with one coordinate chart

will not suffice. For all the flows considered in the previous chapter, the velocity field left

the poles unmoved. Since the coordinate singularity coincided with a zero of the velocity

field, we were able to consider the use of a single coordinate chart. Consequently, the

representation of the backward characteristic map in a single chart was also permissible.

In principle to test the flexibility of a method, one could consider more general test formu-

lations for linear advection, such as test cases 1 and 2 along an arbitrary axis of rotation

passing through the origin of the embedded sphere. Moreover, one could even consider

cases with prescribed motion of the poles, as in [41]. Maintaining a representation in a

single coordinate chart is thus a matter of implementing a (time-dependent) coordinate

transformation. One could then solve for the transport equation in a co-moving frame of

reference. When the dynamics of the velocity are to be computed, as in the case of the

incompressible Euler equations, these techniques could be cumbersome. Furthermore,

these formulations still do not permit transport for velocity fields which are non-zero at

the poles in their respective coordinate systems.
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Global parameterizations of a vector field tangent to the surface of the sphere using

only two coordinates will always suffer from a coordinate singularity. It is natural to

instead define the velocity field either locally, using two or more coordinate charts, or

globally, as embedded in R3. Both of these choices present different considerations for

the discretization of the stream function and the local and global characteristic maps.

Given our solution strategy, we find it illustrative to consider first how the definition of

the stream function constrains the discretization of the velocity field. Using the extended

coordinate map, the stream function admits the representation,

(4.1) ψ̃(λ, θ) = −F−1{∆−1F{ω̃(λ, θ)}}

for (λ, θ) ∈ [−π, π]× [−π, π], where F represent the Fourier transform. To use the discrete

Fourier transform, we require that the computational grid be evenly spaced, constraining

our grid points to be equiangular in (λ, θ). The next step in the solution strategy is to

project ψ into a piecewise polynomial space using a suitable projection operator defined

with respect to some partition, Ω, of S2. We note that, in theory, we have sufficient

flexibility when choosing the vertices, {xi}Ni=1 ∈ S2 of the partition. In practice, it is

computationally favourable to take the vertices to be the same grid on which the discrete

Fourier transform was performed. This is due to the fact that away from the grid points

the function requires N operations to evaluate.

Before considering how to construct Ω and the interpolation operator, we consider

the following problem: Given points {xi}Ni=1 and data Dβψ(xi), where the multiindex β

is defined in terms of an index set I, with |β| ≤ 2, construct a function ξ: S2 → R such

that

(4.2) Dβξ(xi) = Dβψ(xi) ∀β ∈ I, ∀i = 1, . . . N.

The definition as the data must come from the double Fourier series representation of ψ,

thus we must quantify to what extent we can obtain gradient information for a function

on sphere in this coordinate system. We consider S2 as embedded in R3. Denoting

ϕ : R3 → [−π, π]× [0, π] and the coordinate chart x : R3 → S2 being the restriction of

(x, y, z) ∈ R3 to x2 + y2 + z2 = 1, let the coordinate representation of ψ be given by

ψ ◦ x ◦ ϕ−1. The gradient in the Cartesian coordinate system is then given by

(4.3)

∇ψ =

[
− sin(λ)

sin(θ)

∂ψ

∂λ
+ cos(λ) cos(θ)

∂ψ

∂θ
,
cos(λ)

sin(θ)

∂ψ

∂λ
+ sin(λ) cos(θ)

∂ψ

∂θ
,− sin(θ)

∂ψ

∂θ

]
Although these expressions contain unbounded terms in space, their operation in

Fourier space is well-defined [63] if the grid spacing is taken using an even number of
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points, see Appendix 4. As a preliminary numerical test, we validate this consideration

by solving the Poisson equation for a function whose azimuthal derivative in the spherical

coordinate system is multi-valued at the poles and then projecting onto its gradient in

Cartesian space at the grid points. Consider the Poisson equation

(4.4) −∆ψ = ω ,

with ψ given by the spherical harmonic,

(4.5) Y −1
1 (λ, θ) =

1

2

√
3

π
e−iλ sin(θ) ,

whose Cartesian gradient is given by

(4.6) ∇Y −1
1 (x, y, z) =

1

2r3

√
3

π

[
ixy + y2 + z2,−i(x2 − ixy + z2),−z(x− iy)

]T
.

We evaluate the error at the grid points, expecting the error to be at numerical precision

for all grid spacings, the results are depicted in Figure 4.1. We note that the error grows

due to oversampling issues, since the spherical harmonic 4.5 has a low wave number and

is well-represented using only a small number of gridpoints.

The ability to obtain derivative information in R3 using the expression 4.3 in frequency

space offers significant flexibility for the choice of projection of ψ onto an interpolation

space. Namely, we may choose from a variety of well-established interpolation schemes

on the sphere [20]. From the grid points, we could partition the sphere using spherical

triangles and employ a local spline interpolation method on each element. For this

purpose we could then use C1 quintic elements or C1 cubic elements on the Clough-

Tocher split, which a certain way of partitioning each spherical triangle [2]. Each of

these methods requires information not solely on the grid points but along the edges

of each triangle, which could compromise the optimal locality. There exists also radial

basis functions as local interpolants. These have been successsfully implemented for

the linear advection equation on the sphere [54]. An investigation into alternative local

interpolation techniques will be a direction of future research, as we wish to use the

method for other Riemannian 2-manifolds.

For our current purposes, we seek to quantify the conditions needed to project gradient

and mixed partial derivative information onto a rectangular grid on the sphere such that

the resulting function is C1(S2) using a tensor-product of Hermite cubics. The expression

4.3 will be well-defined for functions ψ such that ∂θψ is single-valued at the poles, and ∂λψ

vanishes. Using the expansion of the extended function ψ̃, we can determine conditions
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Figure 4.1: Left: Error at the grid points for the solution 4.4. Right: Visualization of Cartesian

gradient data obtained form ψ using 4.3.
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for which these are satisfied. Indeed, since ψ̃ satisfies the pole conditions, we have that,

(4.7)

∂λψ̃(λ,±π) =
∞∑

j=−∞

∞∑
k=−∞

ˆ̃
ψj,k(ik)eikλeij±π

=
∞∑

k=−∞
(ik)eikλ

∞∑
j=−∞

ˆ̃
ψj,k(−1)j = 0

and this holds analogously at θ = 0. For the derivative in the θ direction, we have that

(4.8)

∂θψ̃(λ,±π) =

∞∑
j=−∞

∞∑
k=−∞

ˆ̃
ψj,k(ij)e

ikλeij±π

=

∞∑
k=−∞
k 6=0

eikλ
∞∑

j=−∞

ˆ̃
ψj,k(ij)(−1)j +

∞∑
j=−∞

ˆ̃
ψj,0(ij)(−1)j

=
∞∑

k=−∞
k 6=0

eikλ
∞∑

j=−∞

ˆ̃
ψj,k(ij)(−1)j + C

Since ψ̃ is real-valued, we have that ψ̂−j,k = ψ̂j,k ∀j > 0 (for notational purposes we drop

the tilde). Therefore we get that

(4.9)

∞∑
j=−∞

ˆ̃
ψj,k(ij)(−1)j =

∞∑
j=0

(−1)j
(

(ij)
ˆ̃
ψj,k − (ij)

ˆ̃
ψ−j,k

)
=
∞∑
j=0

(−1)j+1jIm(
ˆ̃
ψjk)

Using this fact, and that for (λ, θ) ∈ [0, π]× [0, π], ψ(λ, θ) = ψ̃(λ, θ) = ψ(λ− π,−θ),

we obtain another property the Fourier coefficients,

(4.10) ψ(λ− π,−θ)− ψ(λ, θ) =

∞∑
j=−∞

∞∑
k=−∞

eikλeijθ(
ˆ̃
ψ−jk(−1)k − ˆ̃

ψjk) = 0 ,

and therefore
ˆ̃
ψ−jk = (−1)k

ˆ̃
ψjk ∀j, k. Yet, since ψ̂−j,k = ψ̂j,k ∀j > 0, we get that

(4.11)
Re

ˆ̃
ψjk = 0 ∀k odd ,

Im
ˆ̃
ψjk = 0 ∀k even .

Thus we can derive a condition on the single-valuedness of the θ derivative at the poles

as

(4.12)
∞∑
j=0

(−1)j+1jIm(ψjk) =
∞∑
j=0

jIm(ψjk) = 0 ∀k odd .

It should be noted that we can use these arguments straightforwardly to show that if

4.12 holds, then the mixed partial derivatives will be bounded and single valued at the

poles as well.
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As a numerical test, we consider an approximation of the Cartesian gradient on the

sphere using the Hermite cubic constructed using the tensor-product technique. Away

from the poles we may approximate the gradient values using 4.3. Due to finite-precision

arithmetic, and the asymptotic behaviour of sin and cos near the poles, differences on

the order of 10−8 cannot be resolved. Regardless, we approximate the Cartesian gradient

for values within this range using only two cells, namely,

(4.13)
∇f |(0,0,1) ≈ lim

h→0

(
ψ(0, h)− ψ(0, 0)

h
,
ψ(π/2, h)− ψ(π/2, 0)

h
, 0

)
=
(
∂θHΩ[f ]|(0,0), ∂θHΩ[f ]|(π/2,0), 0

)
and similarly at the South pole, we obtain,

(4.14) ∇f |(0,0,−1) ≈
(
−∂θHΩ[f ]|(0,π), ∂θHΩ[f ]|(π/2,π), 0

)
.

As a numerical test we consider interpolating 4.5 using the aforementioned procedure.

The sup-norm error in the function value and gradient are approximated by evaluating at

106 points. The results are depicted in Figure 4.2, where we observe the expected order

of convergence using the proposed method of approximation.

Figure 4.2: Left: Approximation of the L∞(S2) error sampled on a grid of size 10002. Error

in the function value and the Cartesian gradient are given. Right: Visualization of Cartesian

gradient data obtained form the Hermite interpolation ψ.
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Although the tensor-product interpolation technique has been demonstrated to be

sufficient for the stream-function, the same behaviour is not expected for the backward-

characteristic map. Indeed, it was observed in our numerical experiments that the map

could become multi-valued at the poles using a mapping of the sphere to a rectangle. As

we wish to approximate a diffeomorphism on the sphere, we find it desirable that our

computational domain for the backward-characteristic map also be diffeomorphic to the

sphere. We thus consider the feasibility of an alternative representation of the backward

characteristic map.

We consider the problem of solving for the integral curves for the embedding S2 ⊂ R3.

Let x ∈ R3 such that ‖x‖ = 1. The integral curves of the velocity field as obtained from

the stream function ψ = ψ(x(λ, θ)) satisfy the differential equation

(4.15) ẋ(t) = u(x(t), t) = x×∇ψ ,

where ∇ is the regular gradient in Cartesian coordinates. Since u ∈ TS2 the motion should

be constrained to the surface of the sphere, i.e. ‖x(t)‖ = 1 for all time. Numerically, this

constraint will not be satisfied when approximating 4.15 in Cartesian coordinates without

explicitly enforcing it. We consider parameterizing the motion using rotation matrices,

(4.16) Λ ∈ SO(3) =
{
M ∈ R3×3 |MTM = I, det(M) = 1

}
such that x(t) = Λ(t)x0. This parameterization can be seen as transforming into the

moving frame of the Lagrangian particle on the surface of the sphere, whose trajectory

begins at x0. Indeed, in the moving frame of reference, the particle’s motion is character-

ized by the entire sphere rotating. This action is naturally represented using elements of

SO(3). We consider the ’hat-map’, allowing us to map to the Lie algebra so(3) of SO(3),

which is the set of skew-symmetric matrices. The hat map ·̂ : R3 → so(3) acts on x ∈ R3

(4.17) x 7→


0 −x3 x2

x3 0 −x1

−x2 x1 0


such that for y ∈ R3,

(4.18) x× y = x̂y .

Thus, for an initial point xi ∈ R3, ‖x‖ = 1, the evolution of xi governed by 4.15 can be
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determined by the following differential equation on SO(3),

(4.19)
ẋ(t) = Λ̇(t)xi = Λxi ×∇ψ(x(λ, θ), t)

= −∇ψ̂(x(λ, θ), t)(t)x0 .

Letting ∇ψ̂(x(λ, θ), t) = Ω(Λ(t)x0, t), we obtain the following differential equation on

SO(3),

(4.20) Λ̇(t) = −Ω(Λ(t)x0, t)Λ(t).

As a proof of concept, we consider the solution of 4 using a velocity field defined from

a Hermite interpolation of the stream function on the sphere and an RK3 integration

scheme on R3×3 for the coefficients of Λ. We consider the stream function,

(4.21) ψ(λ, θ) = 2π(cos(θ) cos(α)− cos(λ) sin(θ) sin(α)) ,

whose velocity field defines a solid body rotation about an axis an angle α away from the

north pole in the direction of the −x-axis [70]. We consider velocity fields defined for the

stream function 4.21 for α = π/4, π/2, depicted in Figure 4.3. We consider convergence

tests for the solution of 4 at 100 staggered points on the sphere to a final integration

time of T = 1, corresponding to one full rotation. The error is computed as the `∞ error

at the grid points. Convergence in time is evaluated using a velocity field defined from

the Hermite interpolant of ψ on a 1000× 1000 grid points. The convergence in space is

evaluated successively refined grid for the Hermite interpolant and a time step of size

∆t = 1/300. The results of the numerical test are depicted in Figure 4.4.

Although we have not provided estimates for the expected rate of convergence, we

remark that we do not expect to observe to the same convergence for an RK3 integration

scheme for elements Λ ∈ SO(3). Indeed, using a simple Euler step,

(4.22)
Λn+1 − Λn

∆t
= Ω(Λnx0, t

n)Λn ,

we observe that,

(4.23)
(
Λn+1

)T (
Λn+1

)T
= I + ∆t2 (Λn)T (ΩΩT )nΛn /∈ SO(3).

where we have used the skew-symmetry property of Ω to cancel the first order terms.

Since, RK3 uses a convex combination of Euler steps and Λ acts multiplicatively on

x0 throughout the time integration, we do not expect the same order of convergence.

Furthermore, the fact that Λ leaves the group can introduce non-linearities in the

differential equation we seek to solve, leading to possible issues with consistency [31].
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Figure 4.3: Left: Velocity field resulting from 4.21 with α = π/4. Right: Velocity field resulting

from 4.21 with α = π/2.

Figure 4.4: Left: Convergence in space for the solution to 4.20 using the velocities fields depicted

in 4.3. Right: Convergence in time.
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Further analysis of methods to will need be done in order to accurately quantify the

convergence seen in 4.4. A direction of research in the immediate future will be to use

the techniques of geometric integration to solve in order to preserve the group property

through the integration. It would be interesting to couple a geometric integration

scheme, with the interpolation techniques in [24] for functions taking value in SO(3) or

in the space of unit quaternions using Cayley-Klein parameters. This would provide a

means of evolving a characteristic map taking values in the Lie groups SO(3) or SU(2).

These considerations would offer a novel numerical method for the incompressible Euler

equations and present a wealth of interesting research directions to explore further.
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Conclusion and Outlook

This thesis serves to provide a framework for the solution of the incompressible Euler

equations on a two dimensional sphere using the Characteristic Mapping method. We

have discussed the vorticity-stream formulation of Euler’s equations on a sphere, upon

which the solution strategy was built. An implementation to solve for the stream function

using the spherical Poisson equation, with vorticity as forcing function, using the Double

Fourier Sphere method was presented and tested. We then detailed an implementation

of the CM method for the solution of the linear advection equation on a sphere. Our

numerics were tested against a series of canonical test cases and the method’s ability

to advect arbitrary sets and obtain arbitrary resolution were highlighted. The thesis

concluded with an investigation into combining these two numerical methods in order to

solve the incompressible Euler equations on a sphere.

Difficulties relating to the spherical geometry have been demonstrated to be alleviated

by considering the evolution of the one-step map in the space of special orthogonal

matrices. Furthermore, it was shown that the definition of the stream-function on

a rectangular domain was not restrictive. We demonstrated that this allowed for a

high-order approximation of the velocity field in a Cartesian coordinate system. The

significant amount of flexibility identified when combining these two numerical methods

will ultimately be narrowed down by considerations of efficiency and accuracy. The

immediate next steps for this research are to investigate the approximation properties

of Lie group integrators and interpolation techniques for functions taking values in the

space of unit quaternions or special orthogonal matrices.
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Appendix A: Fourier

multiplication matrices

In this appendix we give the construction of the matrices representing certain operators

acting on frequency space. Furthermore, we seek to determine when these matrices are

singular, as we will often require their inverses. As an initial motivation, we first consider

the construction of the matrices representing the partial differential operators. Since

most FFT codes hold the coefficients in a form of

(4.24) û =

(
ûn/2

2
+
û−n/2

2
= û−n/2, û−n/2+1, . . . , ûn/2−1

)
,

a naive application of Fourier differentiation will not result in the first element being zero,

but would rather yield a (in/2)einφ mode. To remedy this issue and make the operation

of differentiation more systematic, we first project the coefficient vector into a space

with n+ 1 modes, multiply with the Fourier differentiation matrix on the n+ 1 modes

and then project back to a space with n modes once more. The whole operation can be

expressed as the product of three matrices,

(4.25) Dn = QDn+1P

where P is given by

(4.26) P =



1
2

1

. . .

1

1
2 0


,

the Fourier differentiation matrix is given by

(4.27) Dn+1 = diag((−in/2,−i(n/2 + 1), . . . , i(n/2− 1)))
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and Q by

(4.28) Q =


1 1

1

. . .

1 0

 .

The matrix representation of multiplication by trigonometric functions uses a similar

approach as for the differentiation matrices, by first projecting into a larger space of

coefficients. We first note that

(4.29) sin2(θ) =
1

2
− 1

4
e−2iθ − 1

4
e2iθ ,

and

(4.30) cos(θ) sin(θ) = − i
4
e2iθ +

i

4
e−2iθ.

Thus multiplying by these functions has the effect of increasing the length of Fourier

representation by four, increasing the number of frequencies initially present in the

function they are multiplying. The matrix, Msin2 , describing the multiplication is given

by

(4.31) Msin2 =



1
2 0 −1

4

0 1
2 0 −1

4

−1
4 0

. . .
. . .

. . .

−1
4

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

4

. . .
. . .

. . . 0

−1
4 0 1

2


,

and similarly, the matrix Msin cos is given by

(4.32) Msin cos =



0 0 − i
4

0 0 0 − i
4

i
4 0

. . .
. . .

. . .

i
4

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . − i

4

. . .
. . .

. . . 0

i
4 0 0


.
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The full multiplication matrices are then expressed as

(4.33) Tf = QMf [:, k : m+ 1 + 2]P ,

where f is the corresponding trigonometric function we seek to represent, and k is the

number of added modes needed to represent the multiplication. We have used a notation

for slicing consistent with NumPy arrays for the matrix M. The matrix Q, for k = 2, is

instead given by

(4.34) Q =


0 0 1 1 0 0

1

. . .

1 0 0 0

 .

We now seek to establish when the matrices Tf can be inverted. In particular, since for

the Laplacian and gradient only a 1/ sin2(θ) and 1/ sin(θ) are needed, we only focus on

the invertibility of their respective coefficient multiplication matrix representations. For

Msin(θ)

(4.35) Msin =
i

2



0 1

−1 0 1

. . .
. . .

. . .

. . .
. . . 0 1

−1 0


.

We recognize this as a tridiagonal Toeplitz matrix, whose eigenvalues are given by

λ` = cos(π`/(m+ 1) which are non zero for m even.

The matrix Tsin2(θ) is given by

(4.36) Tsin2 =



1
2 0 −1

4 −1
4 0

0 1
2 0 −1

4

−1
8 0

. . .
. . .

. . .

−1
4

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

4

−1
8 −1

4

. . . 1
2 0

0 . . . . . . · · · −1
4 0 1

2


.

In order to observe the non-singularity of the matrix Tsin2(θ), we note that the matrix can

be brought into a lower triangular form by reducing all entries along the second upper
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diagonal, with all non-zero entries along the diagonal. The reduced matrix, denoted A, is

almost triangular with non-zero (1, n−1) entry being−1/4. Writing A = B+uvT , whereB

is lower triangular, u = [i/2, 0, . . . , 0], and v = [0, . . . , i/2, 0], we get that det(Tsin2(θ)) =

det(A) = det
(
B + uvT

)
= (1 + vTB−1u)det(B) = (1 − [B−1](n−1,1)/4)det(B). The

diagonal of the matrix B is given by diag(B) = [−9/2m/2+6, 3/8, 3/8, . . . , 3/8, 1/2]. Note

that [B−1](n−1,1) = (detB)−1[CT ](n−1,1) = (detB)−1[CT ](n−1,1) = (detB)−1[C](1,n−1)

where C is the cofactor matrix of B . The result [B−1](n−1,1) 6= 4 was verified numerically.

We note that an explicit formula for this entry can be derived using only the reduced

matrix A. Write the triangular matrix as B = D(I + D−1N) where D is a diagonal

matrix and N is a strictly lower triangular matrix with zeroes along the diagonal. Using

the fact that Nn = 0, factoring the polynomial 1− tn = (1− t)(1 + t+ t2 + · · · tn−1), and

evaluating at t = −D−1N , the inverse of B is given by

(4.37) B−1 = (I +D−1N)−1D−1 = D−1 +

n−1∑
k=0

(−1)k
(
D−1N

)k
D−1

and thus,

(4.38) [B−1](n−1,1) =

n−1∑
k=1

(−1)keTn−1

(
D−1N

)k
D−1e1 .
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