
 

 

 

Dig-Limit Optimization in Open Pit Mines 

through Genetic Algorithms 

Julian Ramirez Ruiseco 

Thesis Prepared for the Degree of 

MASTERS OF ENGINEERING 

McGill University 

May 2016



P a g e  | i 

 

 
 

 

Abstract 

Dig-limit optimization is an operational decision-making problem that 

significantly affects the value of open-pit mining operations. Dig-limits, traditionally 

drawn by hand, classify practical ore and waste boundaries suiting equipment sizes 

in a bench. An optimization approach based on genetic algorithms (GAs) was 

developed to approximate optimal dig-limits on a bench, given grade control data, 

equipment constraints, and processing and mining costs. The GA proved to be 

both robust and flexible after testing multiple cases with a wide variety of 

applications and levels of difficulty. The success of the application of GAs to the 

dig-limit problem is outlined in two separate studies; a third study was carried out 

to show the flexibility of the GA, and its potential applications in equipment sizing.  
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Abstrait 

L’optimisation de la limite du creusage est un problème de prise de décisions 

opérationnelles qui affecte considérablement la valeur de l’exploitation de mines 

à ciel ouvert. Les limites de creusage - qui sont habituellement dessinées à la 

main - classifient les limites de la pratique du minerai et des déchets convenant à 

la taille des équipements sur un niveau. Une approche d’optimisation basée sur 

des algorithmes génétiques a été développée dans un but d’approximation des 

limites optimales du creusage sur un niveau, en tenant compte des données de 

contrôle de teneur, des contraintes des équipements ainsi que des coûts du 

traitement et de l’exploitation minière. Les algorithmes génétiques se sont avérés 

robustes et flexibles suite a des tests sur de nombreux cas ayant une grande 

variété d’applications et niveaux de difficulté. Le succès de l’application des 

algorithmes génétiques par rapport au problème de la limite du creusage a été 

présenté dans deux études différentes; une troisième étude a été menée afin de 

montrer la flexibilité des algorithmes génétiques, ainsi que leurs applications 

potentielles au dimensionnement des équipements.  
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1. Introduction 

1.1 Problem Statement 

Generating optimal dig-limits is a key factor in maximizing value for operating 

mines. Dig-limit generation being the definition of material destination zones in 

operational mine planning. Considerable research has been devoted to this topic 

over the past 25 years. As high-grade deposits have been depleted, 

operating/production costs and operational complexity have increased 

substantially. Whereas in the past, a mine could have two destinations with few 

metals, newer mines can have many destinations, each of which could comprise a 

large number of physical and chemical factors. Therefore, dig-limits are becoming 

more complex. Furthermore, the impact of misclassification has become more 

comprehensive: sending material to the incorrect destination could negatively 

affect the entire chemical process.  

Dig-limit generation methods fall into five general categories: hand-drawn, 

linear, heuristic, clustering, and meta-heuristic. These methods are traditionally 

carried out on grade control block models, which must be carefully generated in 

order to derive effective dig-limits. 

Traditionally, dig-limits have been generated using hand-drawn methods, 

which are highly subjective, do not optimize the profit directly, and tend to be 

highly inconsistent. Formulating dig-limits autonomously and optimally is a high-

priority task for the mining industry. The genetic algorithm (GA) approach seeks 
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to generate viable, mineable, and near-optimal dig-limits with a minimum of 

human intervention. 

1.2 Research Objectives 

This research aims to develop a new methodology for dig-limit generation using 

GAs. The algorithm optimizes the profitability of the deposit with the losses 

expected from deviation of an optimal mining layout. Tackling the dig-limit problem 

with GAs is expected to maintain suitable performance for highly complex problems 

that would be “NP-Hard” (i.e., at least as hard as any nondeterministic polynomial 

problem) using linear methods. By quantifying the profitability of each block in 

terms of processing, mining destination costs, and geological considerations, dig-

limits are optimized directly on the profitability instead of current indirect methods 

such as minimization of ore-loss. 

1.3 Originality and Success 

GAs have never been used to directly optimize the dig-limit problem. Existing 

methodologies either do not accurately generate diggable limits, do not directly 

optimize profit, or are NP-Hard for complex deposits. This application of the GA is 

original because of the formulation of the clustering problem. The cross method 

guarantees effective quantification of deviation from diggable shapes. 

Furthermore, the formulation of a GA for a 2-dimensional spatial problems is in 

itself new to the mining industry. 
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The resulting algorithm was shown to significantly outperform current industry 

methodologies, while exhibiting sufficiently low run times for the implementation 

of this tool in the industry. Due to ease of use and the relative flexibility of the 

meta-heuristic input parameters, the algorithm was shown to be effective for 

application beyond mine planning, such as fleet selectivity sizing. 

1.4 Social Impacts and Economic Benefits 

The mining industry has shifted considerably in the last 15 years:  

1) Higher complexity tools are being used for optimization and planning.  

2) Deposits are becoming more complex and difficult to plan.  

3) Formulation of mining problems using linear methods is increasingly 

becoming NP-Hard.  

4) Strategic planning has largely embraced meta-heuristic optimization 

algorithms.  

However, as strategic methods have become more complex, short-term 

planning methodology has gone largely unchanged. The planning burden lies 

squarely on the shoulders of the pit geologists, who are often ill-prepared to 

generate optimal and effective dig-limits. Application of this research is expected 

to improve the profitability of mines and place the dig-limit planning burden onto 

meta-heuristic algorithms, leaving pit geologists more time to plan adherence in 

the pit, while improving the overall quality of the plans. 



P a g e  | 4 

 

 
 

1.5 Thesis Organization 

Chapter 1 defines the problem and identifies original contributions to the field. 

Chapter 2 reviews existing methodologies and research for the short-term 

mining and dig-limit problem. 

Chapter 3 details the methodology carried out by the GA and the methodology 

used to code the program. 

Chapter 4 demonstrates how the algorithm outperforms traditional hand-drawn 

methods. 

Chapter 5 demonstrates the flexibility of the algorithm by carrying out a 5 

destination case with the use of a mining direction. 

Chapter 6 demonstrates the value of the GA dig-limit tool for quantifying the 

profitability differences between selectivity sizing in a mining operation with grade 

control data. 

Chapter 7 concludes the thesis by outlining the advantages of applying this 

methodology. 
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2. Literature Review 

2.1 Contextualization of Dig-Limit Problem 

Mining operations are planned at three levels: long-term (strategic), medium-

term (tactical) and short-term (operational). Long-term mine planning produces a 

“big picture” of the project at the managerial level. It helps to understand (a) 

whether the project is profitable, (b) how the project will evolve over time, and (c) 

what macro-economic sensitivities affect the project. Long-term planning aims to 

maximize the net present value (NPV) of a mining venture. Medium-term planning 

focuses on how the objectives of a long-term plan can be managed and explores 

how to maximize adherence to the long-term mining plan—given more complex 

objectives and more detailed information. For example, specific objectives related 

to marketing, production, or maintenance must be managed as medium-term 

plans. Short-term planning manages day-to-day performance of mining operation. 

Achieving targets defined by medium-term planning to a large extent depends 

upon short-term planning. In other words, short-term planning puts into practice 

the medium-term plan. Figure 1 summarizes the fundamental characteristics of 

long- to short-term mine planning at a typical mine.  
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Figure 1: Fundamentals of mine planning 

Long-term planning is based on long-term market forecasts and exploration 

drill holes. Medium-term planning uses higher detail forecasts and also takes 

advantage of historic operational knowledge in mine plan generation. Short-term 

planning uses blast-hole grade control information, which vastly improves 

understanding of the lithology of specific blasts, and must also work around the 

day-to-day difficulties related to mine operation.  

Although long-term planning aims to maximize NPV, it does not address how 

other activities (e.g., drilling, blasting, loading, and hauling) are realized; the NPV 

of long-term planning reflects a vague picture of the project. Furthermore, market 

or orebody characteristics may compel different objectives such as head grade 

Long-term 
Mine Planning

•Estimation/simulation obtained from exploration drilling data

•Large blocks for strategic model

•Senior management 

•Total value, vision, and mission of project

•No link to specific operations

•NPV maximization

Medium-term 
Mine Planning

•Definition of infrastructure developments to support long-term plan

•Directors or managers

•Link to spcific oprations (e.g. drilling, blasting, dewatering and equipment 
characteristics)

•Stockpile/pushback planning

•Forecasting and inventory management

Short-term 
Mine Planning

•Real grade obtained from blast hole data or estimation/simulation 

•Bench by bench and/or selective mining units

•Superintendent, production engineers, or supervisors

•Day-to-day implementation

•Technical feasibility

•Reconciliation
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control, maximizing equipment and capacity utilization, or minimizing grade 

fluctuation, possible losses by misclassification, dilution, or risk. If these objectives 

are accomplished, NPV will be maximized.  

In this scope, dig-limit optimization is an operational planning component 

because it is implemented daily on the grade control model. At the long-term 

planning level, an orebody is defined by a block model and the production time of 

each block is determined. These blocks are known as planning blocks. The 

information is generated by geostatistical estimation or simulation, based on 

exploration data. However, production is carried out on a bench-by-bench basis, 

focusing on a grade control block model derived from blast hole, and grade control 

drilling. During the operational stage, block-by-block production is impossible. 

Production units/clusters are much smaller than planning blocks and are known as 

selective mining units (SMUs). Another method not considered in this approach is 

to generate contour-line dig-limits from raw blast-hole data.  

During the operational stage, ore-waste classification based on planning blocks 

is not meaningful because mining equipment is large and cannot manage the 

production on a block-by-block basis, and even if a bench is mined on an SMU 

basis, the SMUs within the operation radius of equipment cannot be discerned. 

Significant dilution and loss problems will occur associated with low equipment 

selectivity. When a bench is blasted, all materials will be mixed such that blast-

hole information is no longer meaningful. However, methods exist to apply blast 

movements to block models, thereby improving dig-limit definition.  
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For the purpose of this study, it is assumed that input SMU models have had 

such transformations applied. Considering equipment selectivity, some SMUs 

identified as ore will be inevitably destined to waste dump and vice versa. For 

example, a high-grade SMU surrounded by four waste SMUs can be destined to 

waste dump because of low selectivity of equipment and high dilution associated 

with blasting.  

Figure 2 illustrates dig-limit problem: blue and red SMUs represent waste and 

ore, respectively, according to a cutoff grade (COG). As can be seen from this 

figure, there are waste patches within ore clusters in the south and ore patches 

within waste clusters in the north. Figure 2 represents the post-blast-movement 

block model. Had this blast-movement not been applied this ore, waste 

classification would not be meaningful because of mixing of materials. Therefore, 

in practice, a mining geologist determines practical ore-waste boundaries within a 

bench or blasting area.  
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Figure 2: Illustration of ore-waste discrimination based on (a) cutoff grade block model (b) dig-limit 

optimization and (c) a clustering size of 2 x 2 m blocks 

Dig-limits such as those shown in Figure 2 can be determined depending upon 

equipment maneuvering capability, and dilution and losses associated with drilling, 

blast design, and SMU grades. Thus, ore and waste contacts are reduced, thereby 

minimizing ore losses and dilution. In the case of separate ore and waste blasts, 

the dilution can be further minimized. In summary, in addition to grade or 

economic value of an SMU, grades or economic values of neighbouring SMUs 

should be also considered. 
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The interactions among medium-term planning, short-term planning, grade 

control modelling, and dig-limit generation must be clarified. Medium-term 

planning hands off a set of mining pushbacks, which defines how much material 

to remove from each level and zone of a mine. Short-term planning then generates 

a set of plans that include blast planning, equipment allocation, drainage, electric 

line movement (for electrohydraulic fleets), stockpile management, and blast 

drilling. During the blast drilling campaign, the material removed from the blast 

hole is sampled. These samples are then sent for laboratory analysis to determine 

various pertinent chemical and physical parameters. These parameters are then 

reported to short term planning, where they are compiled with the global position 

of the blast hole from which the sample was taken to create blast hole assays. 

These assays are then used via geostatistical methods (e.g., inverse power 

distance) to estimate the pertinent parameters for each block. This “grade control 

block-model” is then manipulated to reflect blast movement and reported to pit 

geology.  

Mining dig-limits drawn by hand are generated sequentially. As limits are 

defined and packets of material identified, the rest of the hand-drawn dig-limit is 

predisposed to follow the shape of earlier decisions. As a result—depending on the 

initial location of drawing and the initial best guess of the pit geologist—a dig-limit 

will differ each time it is drawn. Given such a high level of subjectivity, hand-drawn 

dig-limits are not repeatable and tend to be highly variable. The differing clustering 
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techniques innate to each pit geologist will result in reconciliation issues caused by 

inconsistent dilution.  

In light of the limits above, the tedious nature of developing hand-drawn dig-

limits, and the difficulty of properly exploring alternative solutions, this thesis 

designed an automatic dig-limit generator. SMU-by-SMU analysis of destination is 

an insufficiently refined solution, because the resulting dig-limit will not be 

operational. Therefore, the aim of this thesis is to generate dig-limits by taking 

into account the effective selectivity of the fleet for efficient mining of SMUs, while 

maximizing profitability and ensuring the results are more reproducible than hand-

drawn methods.   

2.2 Other Dig-Limit Optimizing Approaches 

Early methods of dig-limit design generated mining polygons directly from drill 

hole information, without carrying out a geostatistic estimation or simulation of 

the blast bench. Norrena and Deutsch (2001) also emphasized that geometric 

approaches such as triangulation or polygons have limitations: they ignore 

economics, uncertainty, and equipment size. Verly (2005) reviewed grade control 

modelling methods, focusing on the superiority of grade control block models for 

dig-limit design. By establishing that block models offer superior understanding of 

the nature of a deposit, the generation of dig-limits on these block models can be 

identified as best practice.  
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The quality of a dig-limit has been quantified using multiple approaches, such 

as enhanced metal recovery, which focuses on maximizing the amount of metal 

recoverable given the various hard constraints of the mine’s mineral processing 

and trucking capacity; minimum loss, which quantifies the amount of value in ore 

not processed by the mine; and maximum profit, which directly calculates the 

value of a dig-limit (Glacken, 1997; Isaaks, 1990; Richmond & Beasley, 2004b; 

Srivastava R.M, 1994). These methods only target the economic value of the 

destination of a perimeter (one piece of a dig-limit), and do not quantify the actual 

mineability of the proposed dig-limit design. However, they serve as the basis for 

dig-limit optimization tools. The method of quantifying deviation from diggability 

differs among solutions. 

Most dig-limit quantification methods are based on the concept of the marginal 

COG. Between each process and destination, there is a mineral content at which 

it becomes more profitable to assign a block to a different destination. Take for 

example the COG between waste and ore for a two-destination plant. A specific 

COG can be calculated and is termed the marginal COG between these two 

destinations (equation 1). 

     

Equation 1: Marginal cutoff grade equation (Verly, 2005). 
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Where 

 p: price 

 r: recovery factor 

 cm: mining cost per tonne 

 cp: Processing cost per tonne 

Other methods of deriving the optimal block destination involve the use of 

simulated block models and profit/loss functions. These functions optimize the 

destination based on the grade distribution curve of each block, and fall into two 

subsets: waste (equation 2) and ore (equation 3). Various applications of these 

equations serve as the basis for interpreting dig-limits. The loss functions quantify 

the value loss of improperly defining the destination of a block. Both of these 

equations would be applied to a given block, and the destination that yields the 

lowest loss would be selected as the optimal destination. 

 

Equation 2: Loss function for a block with a destination of waste (Verly, 2005). 
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Equation 3:Loss function for a block with a destination of ore (Verly, 2005). 

Profit functions are similar to the loss functions; however, they target the profit 

directly (e.g., equations 4 and 5). These equations directly calculate the 

profitability of each destination for a block, and form a logical basis for the grade 

control process.  

  

Equation 4: Profit function for a block with a destination of ore (Verly, 2005). 

 

Equation 5: Profit for a function with a destination of waste (Verly, 2005). 

All dig-limits are based on the size of the grade-control block model blocks, and 

the selectivity of the equipment used. The minimum SMU block size is a function 

of the drilling density and the selectivity is a function of the equipment size. Jara, 

Couble, Emery, Magri, and Ortiz (2006) analyzed the effects of different support 

sizes on mine planning, dilution, and equipment selection. As equipment becomes 



P a g e  | 15 

 

 
 

larger, the cost per tonne of material decreases; however, the ability to select 

smaller parcels of material to send to specific destinations is reduced. Larger 

equipment will incur lower mining costs per tonne; however larger equipment will 

be forced to misclassify more material to generate mineable limits. 

Accurately understanding mineralogy during grade control drilling contributes 

greatly to dilution and recovery. Dominy, Platten, Xie, and Minnitt (2010) 

investigated the effects of sampling on grade control. They emphasized the 

importance of (i) ore mineralogy and (ii) ore particle deportment, size, and 

distribution for an effective grade control campaign. These data are inputs to the 

grade control block model, the quality of which depends upon the drilling data 

quality. Similarly, Abzalov, Menzel, Wlasenko, and Phillips (2010) remarked that 

different data qualities and the spatial distributions of samples led to grade control 

errors. Thus all data used during grade control block model generation must be 

from a dataset of the same quality. Dominy and Platten (2012) pointed out that 

effective geological mapping and sampling increase performance of grade control, 

such that dilution is minimized and process recovery is maximized. In summary, in 

order to derive a representative grade control block model, sampling must be 

carefully managed using the same equipment and method for each borehole. The 

dataset derived from the boreholes must contain all data regarding grades, mineral 

types, zones, and geology. 

Traditional optimization methods have attempted to describe the short-term 

dig-limit problem in terms of a linear optimization; however (Gonzalez, 1982) 
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stipulated that the methodology is NP-Hard using existing technology. Multiple 

authors have recently formulated and solved the problem using mixed integer 

programming (MIP). (Weintraub, Pereira, & Schultz, 2008) proposed a two-stage 

mixed MIP process. The first stage identified groups of similar blocks and the 

second stage maximized the aggregation factor to guarantee mineability. 

However, mathematical comparisons to traditional methods were not provided. 

(Tabesh & Askari-Nasab, 2011) formulated the problem using mixed integer linear 

programming (MILP) to define hierarchichal clusters, and included multi-period 

optimization. The algorithm exploits similarity indexes to define the hierarchy of 

the optimal cluster for each block; the similarity parameters involve location, 

grade, rock type, and the desired mining cut shape. A Tabu search is then used to 

post-process and improve the solution. (Ben-Awuah & Askari-Nasab, 2011) solve 

the dig-limit problem using Mixed Integer Goal programming, whereby the goal 

equations act as hard constraints for the tonnage in each period. (Yavarzadeh, 

Abodallheisharif, & Neishabouri, 2014) implemented a MILP method that 

integrated mining direction and multi-period optimization. The method was based 

on the determination of “free faces”, which defined those blocks that were 

accessible by the mine. Furthermore, the approach guarantees tonnage and grade 

targets for each period. The algorithm did not attempt to solve the clustering 

problem. 

Heuristic methods are custom algorithms that generate an approximate 

solution. (Busnach, Mehrez, & Sinuany-Stern, 1985) generated a heuristic 
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algorithm that used binary classification and block-by-block clustering punishments 

to approximate a solution. (Gershon, 1983) proposed a similar methodology 

involving the ability to partially mine blocks, and to use predefined boundaries as 

input to optimization. Allard, Armstrong, and Kleingeld (1994) proposed the use of 

morphological operators to find feasible dig-limits. Thus, a connectivity index could 

be established and diggable ore components could be found through simulation, 

combined with an appropriate morphological operator. Image processing was 

indicated as a research area to solve the dig-limit problem. In this case study, the 

authors noted that the two-morphological case generated better cleaning power 

than geostatistical simulations and was more applicable.  

Richmond and Beasley (2004b) developed a multi-objective model (i.e., 

maximize pay-off and minimize financial risk) governed by a weighting factor and 

solved by a local search heuristic for open pit optimization, such that ore losses 

and mining dilution are incorporated. In a separate study, Richmond and Beasley 

(2004a) generated a 2-dimensional floating cone algorithm that searched the 

solution by overlaying a search ellipsoid onto the block model. This search ellipsoid 

was defined based upon the dimensions of the mining equipment, and would 

delimit whether a specific window of material would improve profit. This 

methodology essentially redefined the dig-limit problem as a 2-dimensional mining 

pushback problem, using a well-known heuristic search algorithm that guaranteed 

mineability. This approach appeared to be based on a 2-dimensional case of the 

Lerchs-Grossman algorithm. Clustering falls into two primary categories. Partitional 
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clustering splits a large number of blocks into increasingly smaller mineable 

clusters. Hirearchical clustering begins with individual blocks, and creates clusters 

that increase in size until a steady state solution is reached.  

Tabesh & Askari-Nasab, 2013 applied an agglomerative hierarchical clustering 

algorithm, which creates clusters out of individual blocks, and larger clusters out 

of these clusters. Each iteration checks against a set of tonnage, period, and shape 

constraints when deciding whether to merge clusters. Weintraub et al. (2008) 

generated aggregates of similar blocks, and then optimized the destinations using 

MIP across the clusters. This method is of particular interest because of the high 

quality solutions generated, and the high speed at which clusters are interpreted. 

By generating clusters that are smaller than the desired dig-limit size, the algorithm 

can quickly search through these destinations using practically sized components, 

thereby reducing the search size for the MIP to a non-NP-Hard level. K-means 

clustering commonly forms the basis of the agglomerative hierarchical clustering 

algorithms; an explanation of the methodology for a spatial model was carried out 

by Alsabti, Ranka, and Singh (1997). Furthermore, this approach laid the 

groundwork for the implementation of cluster sizing for the k-means algorithm, 

which is used extensively for the dig-limit problem. 

Meta-heuristic algorithms carry out an approximation of a solution using some 

variation of a decision algorithm. The primary difference between heuristics and 

meta-heuristics is the acceptance methodology for changes. Meta-heuristic 

algorithms quantify the value of a change, and based upon the relative 
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improvement, assign a probability of acceptance. This probability can be non-0 for 

negative changes in value, which allows the procedure to accept changes that 

worsen the current solution, but allow the algorithm to search the solution space 

more fully. 

Norrena K (2001) pointed out that obtaining a smoothed image of a bench 

through consecutive implementation of erosion and dilation would not be sufficient 

because the ore value is ignored. The author proposed formulating the dig-limit 

problem as an optimization problem, solved by simulated annealing (SA). The 

primary problem with the use of meta-heuristics like SA is to find an initial solution 

and method-specific parameters.  Wilde (2015) proposed the feasibility grade 

control method, whereby the problem is expressed as profit maximization 

calculated as the sum of economic values of ore and waste SMUs. Wilde uses a 

predefined set of acceptable mining shapes that the algorithm uses to generate 

an optimal solution by plugging in these shapes and evaluating the relative value 

of the change. Whereas previous authors generated dig-limits using full-sized 

blocks that had a destination for the entire volume, Chad T. Neufeld (2003) defined 

dig-limits as a polygon, the shape of which does not have to conform to the 

regularized grid of the grade control block model. Using SA to manipulate the x 

and y positions of the points that make up the dig-limits, it is possible to generate 

a mineable and optimal dig-limit that can take specific portions of the target blocks. 

Furthermore, this method allows for definition of smoother edges than those 

generated by other methods. The primary drawback of this method is the necessity 
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for valid initial solutions that define the search ellipsoid of the algorithm, and must 

be of high quality and sufficiently varied to adequately optimize the dig-limit. This 

methodology would work well as a post-processing step for one of the algorithms 

described earlier. 

Shaw, Khosrowshahi, Richmond, McKevitt, and Godoy (2009) generated a 

methodology to implement a stochastic optimization method for generating dig-

limits. The heuristic method used is standard and has been outlined above. The 

novel portion of the interpretation was the inclusion of simulations into the process. 

By generating a separate dig-limit for each simulation of the grade-control block 

model, the authors could then generate a single, combined dig-limit. The authors 

also discussed the risk analysis advantages of such an approach, which could 

generate distribution curves for profit, grades, and physical parameters for each 

destination. The paper does not go so far as to propose a full stochastic 

optimization, and there is no mention of run times. The expectation is that since 

the dig-limits must be generated at least once for each simulation, then combined, 

the methodology could be lengthy. 

Recent advances have been made in the formulation of the dig-limit problem. 

For example Kumral (2015) formulated grade control as a quality control problem 

and determined material destinations through loss minimization. Isaaks (2015) 

added a minimum width constraint into dig-limit optimization. In this approach, 

SMUs are clustered so as to be compatible with equipment digging capability. 

Thus, the risk associated with misclassification through dig-limit design is 
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minimized. The SMUs identified as ore and waste through a grade control strategy 

and their grades are also used as input data. Grade control and dig-limit strategies 

can vary, depending on ore material heterogeneity and grade, commodity value, 

and the mining tradition of the enterprise.   

2.3 Equipment Sizing 

Equipment sizing is an intrinsic facet of the dig-limit problem. All literature 

reviewed thus far assumes a SMU size and clustering size. These constants, which 

form the basis of the grade control model, and the dig-line geometry are defined 

from the moment the mine is opened. SMUs have nothing to do with the size of 

the equipment, they are sized as a function of the geology and drill density of the 

deposit. The best practices scenario for sizing a SMU is to try various block sizes, 

and to fill these with grades using the nearest neighbor from drillhole data. The 

variograms of the SMU grades should be identical to those of the input drill holes. 

Finding the correct SMU size is a matter of trial and error, and should focus on 

attempting to find the smallest possible regularized size that will replicate the 

geostatistical distribution of the deposit. The clustering size is reflective of the 

equipment used; each shovel has a certain boom length and bucket size. These 

two parameters along with the class of shovel (i.e., retro, frontal, hydraulic, line, 

electro-hydraulic) will define the working size that a shovel must have to operate 

at capacity.  

Best practices as (Bozorgebrahimi, Hall, & Blackwell, 2003) take into account the 

desired productivity of the deposit and various parameters related to the 
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maintenance and downtimes of the equipment by size. Dilution is considered 

regarding the bench height; however, no analysis is carried out to define the 

impact of equipment size on the generation of dig-lines. Bozorgebrahimi et al. 

(2003) generated this line using a methodology such as best destination, and re-

blocked the initial deposit into larger SMUs based upon the equipment used 

Bozorgebrahimi, Hall, and Morin (2005); (Samanta, Sarkar, & Mukherjee, 2002) 

studied the parameters affecting equipment sizing extensively. These parameters 

are summarized in Figure 3

 

Figure 3: Variables of importance for equipment sizing  

Equipment 
Size 

Selection

Deposit and mine site 
characteristics

•Reserves

•Deposit geometry

•Grade hetoregenity

•Topography

•Rock and ground
characteristics

•Rock fragmentation

•Swelling

•Climate

•Water inflows

•Skilled worker availibility

Mine design 
characteristics

•Capacities

•Dilution

•Roadways and cycle
times

•Bench geometry

•Scheduling

•Cut-off grades

•Selectivity and dig-limits

Equipment 
characteristics

•Capital and operation
costs

•Design properties

•Reliability, avalibility,
maintainability and
safety

•Maching factor of fleet

•Gas emissions
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Bascetin (2004) included all factors related to pricing and productivity within a 

series of eigenvectors, to adequately optimize the exact equipment size that 

yielded the lowest cost per tonne. Extensive considerations included ramp angles, 

shovel and truck selection, maintenance, and useful life.  

Equipment selection methodology revolves primarily around the efficient and 

effective movement of blocks. Equipment is chosen based on the most profitable 

size considering a block-by-block dilution calculation. The impact of equipment size 

on internal dig-limits has not been a topic of extensive research. 
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2.4 Genetic Algorithms 

 A GA follows the principles of evolution and survival of the fittest to develop 

solutions for complex, non-linear, and multi-objective problems (Murata & 

Ishibuchi, 1995). The GA starts with a set of premade or random solutions to a 

problem, and then ranks these solutions based on how well they solve the 

objective function, also known as “fitness”. In this research, fitness refers to the 

profit of a feasible dig-limit in a bench minus a mineability deviation parameter. It 

will “breed” solutions together, randomly combining elements from two solutions. 

Solutions with greater fitness resulting from the mixing of the genes of the parents 

have an improved breeding probability. The breeding creates a new set of solutions 

called a “population”. In other words, two solutions are perturbed or reconfigured, 

thereby generating a new solution. The generation of new feasible dig-limits 

through perturbation is made by genetic operators. This “generation cycle” 

continues until an objective has been reached or a predefined number of 

generations have elapsed. A GA searches the possible solution space by 

manipulating how children are created and survive to breed. The search is widened 

further by introducing genetic mutations, which occur randomly in the generation 

of children. If the mutations increase the fitness, the probability of survival 

improves, and the possibility of the new shape being disseminated throughout the 

rest of the population increases (Albuquerque & Mazza, 2001).  

Like all meta-heuristic searches, a GA may get caught in local maxima. When 

this happens in a GA, it is referred to as an early or premature convergence 
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(Chatterjee & Bhattacherjee, 2011; Pandey, Chaudhary, & Mehrotra, 2014; Xu, 

Zhang, Zeng, & Chan, 2015). Avoiding local maxima is handled by adjusting the 

mutation rate and creating a predator that is less selective about killing lower 

fitness solutions. This approach reduces the pressures homogenizing the 

population, allowing for longer and more complete searches of the solution set 

(Thierens & Goldberg, 1994). There are several structural ways to avoid early 

convergence in GAs (Poli, 2001; Whitley, Rana, & Heckendorn, 1999): (a) the use 

of a varied initial population; (b) introduction of mutations to populations; and (c) 

splitting the population into sub-populations that are rarely bred together. For the 

purpose of this study, only a single population was considered. The GA employed 

high mutation probabilities, varied initial solutions, and careful calibration of the 

predator strength to minimize premature convergence. 

This thesis presents a dig-limit optimization approach based on GA using 

MATLAB. In the next chapter, the methodology is introduced. Then, application of 

the algorithm on a nickel deposit consisting of a single level is demonstrated. 

Finally, the flexibility of the algorithm is tested by applying various useful features, 

such as mining direction, and multi-element, multi-destination, and selectivity 

sizing to show the robustness of the approach.  
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3. Methodology 

A formulation of the GA methodology for dig-limit optimization has been 

implemented specifically for the mining industry.  

3.1 Mining Context 

In the formulation developed in this research, each feasible dig-limit is treated 

as a “chromosome” or “solution” and each SMU is treated as a “gene”. Each SMU 

contains information on nickel grade and destination. The initial destinations for 

the first generation are a mix of totally random solutions and optimal destination 

considering free selection. This combination of first-generation input dig-limits 

defines a clear direction of optimization, while maintaining a large search radius 

for the algorithm. The destinations will be bred and mutated until the value is 

optimized and the corresponding mineable dig-limit is created. 

3.2 Steps 

The algorithm developed follows the following steps (Figure 4). 
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Figure 4: GA loop used in dig-limits optimization 

1. The first generation population is randomly generated, consisting of a set 

of feasible dig-limits. These are generated autonomously and do not require 

intervention by the user.   

2. To contextualize the following description, each dig-limit is a “parent” and 

each parent is composed of SMU destinations or “genes”. Breeding 

combines two random parents to make a new child solution. The genes are 

selected at random from either parent solution, with a 0.5 probability per 

gene to be drawn from each parent. There is no mechanism to guarantee 

that an equal proportion of genes will be contributed by each parent. The 
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breeding process in this case will triple the new population, creating three 

children for each parent.  

3. A child solution is a new dig-limit created from the SMU destinations of the 

two selected parent solutions. The inserted mutation will follow the 

clustering size to avoid the creation of unfavorable changes, as interpreted 

by the clustering size of the mining equipment. The child schedules in early 

generations are very likely to receive a mutation, whereas those of later 

generations are not. The mutation randomly selects a position to insert a 

line of blocks equal in width or height to that of the clustering size. In this 

case, a mutation can be either be 3x1 blocks, or 1x3 blocks. Since the 

mutation respects clustering size and all blocks are assigned the same 

randomly chosen destination, the probability of generating valid mutations 

is increased.  

4. The “preparer” function analyzes the neighbours of each block and assigns 

a clustering deviation based on the respect given to the clustering size. 

Perimeter clusters that do not have sufficient widths are assigned an 

incremental punishment, which is later transformed into fitness deviation 

by the quantifier. 

5. The quantifier asses the economic value of the block, as well as clustering 

deviation. By reducing both optimization targets to a single number, a single 

variable predator can be used to select the surviving members of a 
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schedule. This single value is the fitness, which is the profitability of the 

dig-limit minus the diggability deviations. 

6. The predator uses a weighted roulette wheel selection method. The set of 

feasible dig-limits are ranked from best to worst fitness, where each inferior 

schedule is slightly more likely to be selected than its predecessor. A 

selective predator will have a strength increase between each successive 

evolution, thereby killing schedules of lower fitness more consistently. A 

less selective predator increases the probability less drastically, killing 

schedules with lesser discrimination. The predator strength begins as a low 

value, and is linearly increased over the course of the GA. This guarantees 

a degree of flexibility at the beginning of the meta-heuristic search and 

eventually forcing convergence. 

3.3 Fitness (Objective) Function 

To evaluate the fitness of each dig-limit, the profit from each block is computed 

and penalties from clustering problems are then applied. The clustering problems 

are quantified as the deviation from the correct clustering size. A general clustering 

approach is illustrated in Figure 5. It is important to understand that using the 4-

direction clustering method should not yield any deviation penalty unless a dig-

limit specifically violates clustering constraints. This directional check is difficult to 

implement with linear methods, since the clustering penalty generated in each 

direction is a function of whether the clustering is respected in the opposite 
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direction. This reason and those related to run times justify avoiding exact 

methods to formulate this optimization problem.  

 

Figure 5: Corner clustering case. 3 x 3 m blocks 

3.4 Optimization Model in Linear Form 

The general formulation of the dig-limit optimization is calculated by the 

following equations, presented as an approximation of the genetic method. The 

objective is to maximize profit under the constraint that SMUs falling into 

directional search radius should be sent to the same destination, and thus 

∑ ∑ ∑ 𝑃𝑥𝑦𝑑  𝑏𝑥𝑦𝑑

𝐷

𝑑=1

𝑦_𝑚𝑎𝑥

𝑦=1

𝑥_𝑚𝑎𝑥

𝑥=1

 

Subject to:  

a. All SMUs must be produced and sent to a destination: 
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∑ 𝑏𝑥𝑦𝑑

𝐷

𝑑=1

= 1         𝑥 = 1, … 𝑥_𝑚𝑎𝑥 𝑎𝑛𝑑   𝑦 = 1, …  𝑦_𝑚𝑎𝑥 

b. SMUs located northwest of the SMU under consideration are sent to the 

same location: 

𝑏𝑥𝑦𝑑  =  𝑏(𝑥−𝑘)(𝑦−𝑙)𝑑    

𝑑 = 1, … , 𝐷;  𝑥 = 1, … , 𝑥_𝑚𝑎𝑥;  𝑦 = 1, … , 𝑦_𝑚𝑎𝑥;  𝑘 = 1, … , 𝑋𝐷𝑖𝑟 𝑎𝑛𝑑 𝑙 = 1, … , 𝑌𝐷𝑖𝑟 

c. SMUs located northeast of the SMU under consideration are sent to the same 

location: 

𝑏𝑥𝑦𝑑  =  𝑏(𝑥−𝑘)(𝑦+𝑙)𝑑    

𝑑 = 1, … , 𝐷;  𝑥 = 1, … , 𝑥_𝑚𝑎𝑥;  𝑦 = 1, … , 𝑦_𝑚𝑎𝑥;  𝑘 = 1, … , 𝑋𝐷𝑖𝑟 𝑎𝑛𝑑 𝑙 = 1, … , 𝑌𝐷𝑖𝑟 

d. SMUs located southwest of the SMU under consideration are sent to the 

same location: 

𝑏𝑥𝑦𝑑  =  𝑏(𝑥+𝑘)(𝑦−𝑙)𝑑    

𝑑 = 1, … , 𝐷;  𝑥 = 1, … , 𝑥_𝑚𝑎𝑥;  𝑦 = 1, … , 𝑦_𝑚𝑎𝑥;  𝑘 = 1, … , 𝑋𝐷𝑖𝑟 𝑎𝑛𝑑 𝑙 = 1, … , 𝑌𝐷𝑖𝑟 

e. SMUs located southeast of the SMU under consideration are sent to the 

same location: 

𝑏𝑥𝑦𝑑  =  𝑏(𝑥+𝑘)(𝑦+𝑙)𝑑    

𝑑 = 1, … , 𝐷;  𝑥 = 1, … , 𝑥_𝑚𝑎𝑥;  𝑦 = 1, … , 𝑦_𝑚𝑎𝑥;  𝑘 = 1, … , 𝑋𝐷𝑖𝑟 𝑎𝑛𝑑 𝑙 = 1, … , 𝑌𝐷𝑖𝑟 
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f. Binary variable: 

𝑏𝑥𝑦𝑑 = {
1  𝑖𝑓 𝑆𝑀𝑈 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑥, 𝑦 𝑖𝑠 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑑
0                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where P is profit obtained by sending the SMU positioned at x and y coordinates 

to destination d; D is the number of destinations; x_max is the number of SMUs 

in x-direction of the bench; y_max is the number of SMUs in y-direction of the 

bench; XDir is the number of SMUs corresponding to the equipment operation 

radius in x-direction; and YDir is the number of SMUs corresponding to the 

equipment operation radius in the y-direction. This directional check constraint is 

added into the objective function in the form of a clustering penalty, which is 

basically Lagrengian parameterization. This is used to reduce computational time 

and facilitate the GA formulation.     

3.5 Formulation 

This GA formulation includes a Lagrangian multiplier for clustering penalty. 

Given this application of the GA, the predator operates solely on the fitness, which 

therefore includes the clustering deviation parameter as part of the fitness 

optimization function. 

𝑴𝑨𝑿(𝑫𝒊𝒈 − 𝑳𝒊𝒎𝒊𝒕 𝑭𝒊𝒕𝒏𝒆𝒔𝒔)

= ∑ ∑ 𝑆𝑀𝑈_𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑥,𝑦

𝑦_𝑚𝑎𝑥

𝑦=1

− 𝑆𝑀𝑈_𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝐶𝑜𝑠𝑡𝑥,𝑦

𝑥_𝑚𝑎𝑥

𝑥=1

− 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔_𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑥,𝑦  

𝑺𝑴𝑼_𝑹𝒆𝒗𝒆𝒏𝒖𝒆𝒙,𝒚 = 𝑁𝑖𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑙𝑒 𝑥,𝑦 ∗ 𝑃𝑟𝑖𝑐𝑒 
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𝑺𝑴𝑼_𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈_𝑪𝒐𝒔𝒕𝒙,𝒚 =  𝑓(𝑥)𝑥,𝑦 = {
0, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 = 𝑊𝑎𝑠𝑡𝑒

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 = 𝑂𝑟𝑒
 

𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈_𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝒙,𝒚 = ∑ ∑ 𝑓(𝑥)𝑥,𝑦 =𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
1

𝑑4
𝑑1

{
𝑆𝑀𝑈𝑥,𝑦 == 𝑆𝑀𝑈𝑡𝑎𝑟𝑔𝑒𝑡, 𝑥 = 0

𝑆𝑀𝑈𝑥,𝑦 ! = 𝑆𝑀𝑈𝑡𝑎𝑟𝑔𝑒𝑡, 𝑥 = 1
  

 The clustering calculation is only carried out in the opposite direction from 

neighboring SMUs of a different class. 

 d represents the potential check directions defined as north, east, south, 
and west. 

 𝑑𝑛=1→4 

o 𝑑1= SMUs on the x+ direction 

o 𝑑2= SMUs on the x– direction 

o 𝑑3= SMUs on the y+ direction 

o 𝑑4= SMUs on the y– direction 

 When iterating from 1 to cluster size, if a value returns as 1, all further 
values in that direction are also 1. 

 Example: 

 

  

The formulation of the fitness function outlined above is highly flexible. The 

algorithm can optimize any number of destinations for any number of optimization 

grades and parameters. Given that the profit of a block is a function of its type, 

destination, and grades, an equation can be made to represent the potential values 
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of the block. These values form the basis of the optimization algorithm; in fact the 

values could be pre-calculated to further optimize the running time of the GA. 

Furthermore, the search distances d1..4 are variable, which represents the 

capability to define a mining direction and apply different mining geometry. 

Tonnage targets are easily implemented by manipulating the equations within the 

quantification function: the tonnage of blocks to each destination can simply be 

summed while calculating the other variables, and then punished if the tonnages 

deviate from targets.  

  



P a g e  | 35 

 

 
 

4 Case Study I: Dig-limit optimization through GA 

A case study was carried out to demonstrate the performance of dig-limit 

optimization by the GA relative to the hand-drawn method.  

4.1 Economic Model 

The GA was run for 25 iterations using the following input parameters. All dollar 

values are Canadian dollars. 

 Mineral Value = $1.333/lb. 

 SMU Revenue = recoverable nickel × mineral value. 

o The recoverable nickel amount is the post-recovery quantity of nickel 

in each SMU. This was specified to obscure the data source. 

 SMU processing cost = $30 (for ore) and $0 (for waste). 

 Mining cost is set to 0 for this case study, but is flexible and variable within 

the algorithm. 

 Recovery = the recovery applied to SMU grades. In other words, grades are 

recoverable grades. 

 Clustering size = 3 x 3 SMUs 

 Clustering penalty (Lagrangian multiplier) = $8 per unit of deviation from 

regularized clusters. This value should be very high to avoid any unfeasible 

solution to guarantee diggability at all points, without making it the only 

optimization parameter of note. 

 Predator strength: constant strength of 1.01 

 Mutation probability: linearly scaled from 0.2 to 0 by generation. 

The parameters attributed to the GA are the following. 

 Cluster size: Clusters are measured by the number of SMUs of the same 

destination in one direction. The directions are the four directly neighboring 

SMUs in plan view. 
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 Population size: Determining the size of population requires careful 

balancing. Too small a population could guide the GA to poor solutions from 

an insufficient search radius, whereas too large a population will expend 

too much computing power on each generation, yielding impractically long 

runtimes. There must be enough members in the population to provide 

diverse chromosomes while maintaining reasonable computation times.  

o  Population sizing: 600 parents. These breed up to 1,800 children 

before being culled by the predator. 

 Free selection solutions: Inserting free selection solutions to the initial 

population improve runtimes. However, too many will narrow the 

searchable solution set and result in convergence to local-maxima. A total 

of 5% of the initial population was used as free selection solutions.  

 Predator strength: This is the discrimination level at which the predator 

selects the weaker solutions for death. It is set at a value of 1.01. 

 Mutation probability: A high mutation probability will cause more mutations 

to occur in the solutions. This will increase the amount of the solution set 

explored, but will make it more difficult for generations to converge on a 

solution. Exploring the solution set early is ideal in a GA. However, in later 

generations as the final solution is being refined, the mutations are ideal. 

To achieve this, a downward linear scaling mutation probability was used.   

o Mutation probability selection: A mutation line was selected through 

trial and error. The mutation linearly decreases from 0.2 to 0 at 

generation 700.  

A nickel bench was used to test the performance of the GA. There are two 

destinations (processing and waste dump) for a single ore type. It was assumed 

that no stockpiling or blending was being carried out. Each destination type has 

an associated production cost and recovery for each destination. The GA was run 

on a dataset of 3,150 SMUs, the grade of which can be seen in Figure 6. 
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Figure 6: Ni grades of grade control block model 

Given grades that range from 1 to 65 lb of nickel per tonne and a processing 

cost per tonne of $30, the COG is derived as follows. 

𝐶𝑂𝐺 =
𝑃𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑃𝑀𝑖𝑛𝑒𝑟𝑎𝑙
=

$30

$1.333
= 22.51 𝑙𝑏/𝑡𝑜𝑛𝑛𝑒 

Figure 7 displays the COG classification of each SMU, which can also be 

interpreted as the free-selection destinations. Since Ni grades are recoverable, it 

is not necessary to use the recovery. 
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Figure 7: Cutoff grade model 

4.2 Results 

A set of 25 solutions was generated using the GA, and compared to describe 

the sensitivity of the solutions generated. The optimal dig-limit generated can be 

found in Figure 14. 

From comparison to the COG model, it appears that the dig-limits closely 

followed the expected limits based on COG boundaries, while respecting mining 

clustering constraints. Some clustering deviations occurred along the perimeter of 

the bench: these are unavoidable and are caused by the geometry of the deposit. 

Typically, only internal clustering can be completely avoided, whereas border 

clustering can only be minimized. 
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Figure 8: Best dig-limit found by genetic algorithm 

4.3 Solution Paths of Multiple Iterations 

The development of the dig-limits over 400 generations can be seen in Figure 

9, which displays the most fit dig-limit per generation. The dig-limit from the first 

generation is the free selection solution from the COG model. While profitable, this 

dig-limit is not operational because of severe clustering issues. Generation 100 

shows that internal SMUs between waste and ore zones have been homogenized, 

but clustering issues exist on perimeter SMUs between different destinations. By 

generation 200, almost all of the clustering issues on SMUs between classes have 

been eliminated. At generation 300, clustering issues have been resolved, but 

when compared to the free selection solution, there are some zones where 

misclassification occurs. By generation 400, the full discrimination of waste 

between ore SMUs in zone A has been correctly identified (Figure 9). 
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Figure 9: Evolution of the solution 

Further analysis of generational fitness and profit development can be seen in 

Figure 10, which shows the best solutions per generation. Profits generated by 

feasible solutions are generally lower than profits COG-based solutions, because a 

solution obeying model constraints is more important. Once reasonable boundaries 

have been selected within the population, the optimal solution is then found by 

optimizing material recovery, while maintaining diggable limits. The result of this 

process can be identified as the rebound in profit between generations 100 and 

400. Furthermore, a comparison between generations 200 and 400 within Figure 
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9 shows that—while generation 200 exhibits strong clustering—the highest value 

dig-limit boundary has not been located. 

 

Figure 10: Fitness progression 

4.4 Sensitivity Analysis  

Statistical analysis of 25 runs carried out to model the distribution of the 

solution fitness showed that the results of the GA are reliable (Figure 11). The 

range of the fitness value is small and weighted towards the upper limit. This 

shows that, although the GA process does not always reproduce the same solution, 

it approximates the optimal solution with a high degree of consistency. 
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Figure 11: Statistical distribution of 25 solutions 

To further explore the variability between the dig-limits, the worst, median, 

and best solutions were visualized in Figure 12, Figure 14, and Figure 8, 

respectively. The differences among these solutions appear to be in two zones, 

identified as zones 2 and 3 in Figure 12. The best solution closely follows the 

median solution for zone 2 and 3, but differs in zone 1. Each zone is well clustered; 

therefore the variation in fitness results from profitability considerations. Hence, 

these questionable zones are local-maxima, which have trapped the solution due 

to clustering considerations.   
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Figure 12: Median (top) and worst (bottom) GA dig-limit from 25 runs 

4.5 Comparison to Hand-Drawn Results  

A dig-limit was hand-drawn to compare with GA dig-limits. A comparison of 

benchmarks between worst, median, and best GA dig-limits generated by both 

methods shows that the GA outperforms the hand-drawn method (Table 1).   
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Table 1: Profitability analysis between four models of dig-limits 

Results Hand-drawn Worst Median Best 

Fitness 6,832.00 7,518.36 7,568.67 7,575.49 

Profit 7,832 7,854 7,825 7,832 

Number of SMUs 

Misclassified to Waste 
65 80 87 89 

Number of SMUs 

Misclassified to Ore 
65 66 71 69 

Number of Ore SMUs 798 774 772 768 

Average Ore Grade 29.87 30.12 30.11 30.16 

 

A key factor to understand from the analysis in Table 1 is that hand drawing 

dig-limits focuses on optimizing the proper SMU by SMU classification. Indeed, 

based on COG classification, the hand-drawn dig-limit sends more SMUs to the 

correct location. However, by viewing profit and fitness, the GA is clearly able to 

reproduce similar profits while creating more diggable limits. Visually comparing 

the optimal dig-limit generated with GA (Figure 14) with the dig-limit drawn by 

hand (Figure 13) indicates that the GA dig-limit is smoother, and contains far fewer 

clustering deviations. Particular improvement can be seen in the bench perimeter, 



P a g e  | 45 

 

 
 

where the GA minimized deviation. By comparison, hand drawing focused primarily 

on internal boundaries. 

 

Figure 13: Hand-drawn dig-limit 

 

Figure 14: Best GA dig-limit 

Ore 
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4.6 Discussion 

In this chapter, a dig-limit optimization based on a GA was presented such that 

near optimal dig-limits were created from random and automatically generated 

initial solutions. The methodology outlined eliminates the necessity for the user to 

hand draw initial solutions for the algorithm. The GA generated mineable ore and 

waste boundaries by focusing on SMU clustering and generating practical dig-

limits. It did this while maximizing profitability within the dig-limits and improving 

the average grade of mined material to the ore stream. The GA outperformed the 

hand-drawn dig-limits. With additional constraints not considered here—such as 

grade targeting or geological risk—the GA is likely to outperform hand-drawn 

limits, although run-times are expected to lengthen.  
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5. Case Study II: Directional Mining Dig-Limits with Sub-Blocking 

A key flexibility necessary from a dig-limit generation perspective is the ability 

to define mining directions. A mining dig-limit with a direction is defined as one 

where the geometry is larger perpendicular to the mining direction, than parallel 

to it (Figure 15). Shovels operate perpendicular to the mining direction, carrying 

out “pushbacks” within the digging zone. As the shovels near the end of one dig-

limit, they either move forward, double back, or move into new material with a 

new destination. Mining direction flexibility is of particular importance when using 

frontal and electrohydraulic shovels, because of the increased ease with which 

these shovels move parallel to the mining wall. This case study seeks to guarantee 

that the GA works as expected in a highly variable, poly-destination, multi-element 

deposit, while respecting the mining direction. 

 

Figure 15: Mining direction dig-limit geometry 
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5.1 Economic Model 

The case study deposit is an iron mine with five destinations and the target 

grades outlined in Table 2. Each of the five potential destinations have strict and 

complex grade target constraints, making this a high difficulty dig-limit to draw by 

hand. Table 3 outlines the specific mining parameters that must be respected. The 

grade-control block model comprises 5 x 5 x 5m blocks. Therefore, clustering 

applied to this deposit will be 5 x 2 blocks, with the greater length perpendicular 

to the mining direction (south–north). 

Table 2: Target grades 

Material Type Fe(%) SiO2(%) Al2O3(%) 

Direct-shipping iron 
ore (DSO) 55 <14 2 

SP1 - High Silica >40 >15 <2.5 

SP2 - High Alumina >45 <10 >4 

SP3 - Low Grade 30 >20 3 

Waste - - - 
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Table 3: Mining parameters 

 

The grade control block model was generated through a set of sample drill-

holes (Figure 16) overlaid upon the GA-generated dig-limits. These drill holes came 

from an operational iron mine: the information was provided directly from the 

operation and reflects a highly realistic scenario, based on an existing deposit and 

machinery. The grade control model details can be found in Figure 17, to Figure 

20. The complexity of the grade distribution is of particular importance for this 

deposit because of the sheer number of possible destinations and the importance 

of not deviating from targets. Any stockpile deviations can result in massive losses 

to the mine and could harm client relationships. Therefore, the highest priority 

optimization factor is maintaining chemical targets. 
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Figure 16: General view of the target blast 

Figure 17 displays the iron grade distribution within the bench. There are three 

high-grade iron pockets, with medium- and low-grade iron situated between them. 

The high variability of the grades, ranging from 66.9 to 6.3% iron, adds 

considerable complexity to the issue. Classifying purely by best destination, while 

giving priority to the ore clusters, could result in a low-grade block being taken. If 

a block with 6.3% iron content is mined, the total profit for that cluster will be 

reduced severely.  
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Figure 17: Fe grade distribution within the blast 

The silica grade distribution is relatively homogeneous within the interior of the 

deposit, with only some high silica blocks in the very center (Figure 18). However, 

the perimeter of the bench contains multiple high silica blocks. The silica content 

must be carefully controlled, particularly to the direct-shipping iron ore (DSO) 

option. It appears that low silica grade blocks have above average iron grades. 

Therefore, many of the high silica blocks will be classified as waste. 



P a g e  | 52 

 

 
 

 

Figure 18: SiO2 grade distribution within the blast 

The AlO2 grade is inversely related to iron grade (Figure 19). This is particularly 

apparent in the low-grade blocks that divide the center of the bench. Alumina 

blocks may be sent to the high alumina stockpile, but are considerably less valuable 

than the DSO and high silica blocks. Therefore, the alumina sent to each of the 

stockpiles must be maximized, without exceeding targets. The rest of the material 

must be sent to the alumina stockpile. 
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Figure 19:  Al2O3 grade distribution within the blast 

Figure 20 displays how partial blocks are handled by the algorithm. The block 

model that is fed into the GA must be regularized and maintain full-sized blocks. 

However, some of the north-west blocks have partial tonnages. This is reflected 

directly in the density, instead of maintaining a fill factor. These wall blocks must 

be mined with care to maintain the integrity and design expected from the pit wall. 

Furthermore, high silica blocks are very high density, while DSO blocks tend to be 

less dense. 
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Figure 20: Density distribution across the input bench. 

Once the grade-control block model was generated and the grades were 

determined, it was possible to evaluate the value of each destination based on the 

grades. The profit of each block was calculated as shown in Equation 6. The 

deviation punishment factor was applied on a per tonne basis, this factor ensures 

that the GA respects the chemical constraints of the destination of each block. This 

factor must be scaled sufficiently high that the blocks are not sent to the wrong 

location, but sufficiently low to ensure that the GA retains some flexibility when 

misclassifying will improve the recovery by a large margin. Please note that there 

is no processing cost associated with the profit equation. This mine is a DSO Iron 
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mine, and therefore only incurs mining costs which include all costs related to 

development, blasting, mining, trucking, handling, shipping to port, and sale. 

Equation 6: Profit of an iron block 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ (𝑉𝑎𝑙𝑢𝑒(𝑏𝑦 𝑡𝑦𝑝𝑒) − 𝐶𝑜𝑠𝑡𝑚𝑖𝑛𝑖𝑛𝑔 − 500

∗ 𝑑𝑒𝑣(𝐴𝑙, 𝑆𝑖𝑂2, 𝐹𝑒)) 

Table 4 displays the market value of each tonne of material for each 

destination. Clearly the DSO commands a much higher value due to its desirable 

physical and chemical properties. Thus, if no deviation penalty was applied, the 

optimizer would simply assign all ore to the DSO destination.  

Table 4: Price per tonne by destination 

Material Type Value (USD/Tonne Fe) 

DSO 56 

SP1 - High Silica 42 

SP2 - High Alumina 28 

SP3 - Low Grade 14 

Waste 0 

 

5.2 Meta-Heuristic Genetic Algorithm Parameters 

A complete explanation of the GA parameters can be found in Section 4.2. 

 Cluster Size: 5 x 2 with longer side perpendicular to the mining direction. 

 Population Size: 1500 parents breeding 4500 children 

 Free Selection Solutions: 80% 
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 Predator Strength: 1.005 scaling up to 1.01 

 Mutation Probability: .2 scaling down to 0. 

5.3 Preliminary Results 

Simple inspection of the free selection optimal destination of each block (Figure 

21) can lead the reader to conclude that this particular dig-limit is difficult to draw, 

due to the waste pocket layout and the apparent –45-degree angle of the grade 

continuity. Furthermore, the level itself is quite narrow, making it difficult to define 

where to place the destination boundaries, while still respecting the defined 

equipment clustering size. 

 

Figure 21: Free selection optimal destination 
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Figure 22 displays the hand-drawn limit generated by a pit geologist. Please 

consider zones 1 and 2. Zone 1 did not adequately respect the clustering size, 

generating block clusters of 4 rather than 5. From inspection of the free selection 

block model, it is easy to determine why the pit geologist defined this boundary: 

the clustering deviation is small and the geometry of that zone of the deposit lends 

itself well to this boundary location. Zone 2 is also of interest because the pit 

geologist chose to assign as many blocks as possible to the correct destination 

(high silica). However, multiple waste blocks that were of low Fe grade were 

included in this dig-limit, as seen in Figure 17. In general, this dig-limit is highly 

representative of the “correct colors in correct baskets” methodology.  
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Figure 22: Hand drawn dig-limit 

The dig-limits generated by the GA (Figure 23) are largely similar to those 

shown in Figure 22. However, considerable differences exist in zones 1 and 2. In 

zone 1, where the pit geologist assumed that incurring the mining deviation 

penalty was justified, the GA instead chose to respect the mining widths 

completely. In zone 2, the GA completely departed from any possible decision that 

could be inferred from the optimal destination of each block. Note in Figure 21 

that zone 2 is a combination of waste and high-silica; however, when clustering, 

the algorithm defined the zone as low-grade ore. This decision eluded the geologist 

1 

2 
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drawing the comparative dig-limit and makes logical sense. The GA deviated from 

the target geometry less often, generated lower complexity dig-limits, and made 

decisions based on mathematics and optimal solutions, as opposed to the color 

classification method displayed by the hand-drawn solution. In a production 

environment, the GA would require fewer flags to denote the dig-limit and would 

be considerably easier to mine while classifying strategically rather than tactically.  

 

Figure 23: Genetic algorithm 
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It should be noted that the hand-drawn solution will nearly always outperform 

the GA when comparing the resulting grades per destination, and the number of 

misclassified blocks (Table 5 and Table 6). However, the purpose of dig-limits is 

to generate the most profitable and mineable design, while adhering to the 

geometric and chemical constraints imposed by the mining equipment and 

processing facilities used by the mine. The GA outperformed the hand-drawn limits 

by approximately 2.5% in terms of profitability (Table 7). 

As expected, the hand-drawn perimeter tends to more closely replicate the 

grades from the free selection solution, particularly the material sent to the waste 

dump (  
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Table 5). These deviations are due to the profit-driven optimization method. 

The purpose of dig-limits is not to replicate free selection, but to generate the 

most profitable perimeter, while respecting all constraints.   
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Table 5: Grade parameter comparison 

Destination Grades(%) Mineral Free Selection Hand-Drawn Genetic Algorithm 

DSO Fe 55.07 54.5 54.04 

  Al 2.13 2.12 2.11 

  SiO2 13.83 13.61 13.4 

SP1 - High Silica Fe 44.11 42.34 47.53 

  Al 2.53 2.82 2.36 

  SiO2 19.04 17.76 19.54 

SP2 - High Alumina Fe 49.11 49.43 48.53 

  Al 3.85 3.71 3.95 

  SiO2 9.17 10.13 9.85 

SP3 - Low Grade Fe 32.64 39.79 26.94 

  Al 2.86 2.35 4.31 

  SiO2 23.74 22.72 22.84 

Waste Dump Fe 21.42 22.11 24.45 

  Al 4.3 4.24 3.88 

  SiO2 12.66 13.15 13.65 

 

Table 6 confirms the known tendencies of the algorithm. More blocks are 

misclassified by the GA than the hand-drawn approach. 

Table 6: Number of misclassified blocks 

Misclassified (# of Blocks) Free Selection Hand Drawn Genetic Algorithm 

DSO 0 54 59 

SP1 - High Silica 0 58 66 

SP2 - High Alumina 0 4 16 

SP3 - Low Grade 0 28 40 

Waste 0 24 26 
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The GA outperformed the hand-drawn algorithm significantly in terms of profit 

(Table 7). By optimizing grade mixing and the layout of mining boundaries, the GA 

will always outperform the hand-drawn case, particularly if there are time limits 

placed upon the pit geologist, or if the bench is of high complexity such as the one 

outlined in this case study. 

Table 7: Economic results of hand-drawn vs. GA methods 

Result Cutoff Grade Hand Drawn Genetic Algorithm 

Profit 3.15 M 2.8 M 2.9M 

Percent Recovered 100% 90.80% 93% 

 

5.4 Discussion 

This case study built upon the methods outlined in Chapter 4: a similar 

methodology and algorithm was used. However, the case study considered five 

destinations and three grades for optimization and the algorithm tested directional 

mining design. In general, the case study demonstrates the feasibility of the GA 

for defining dig-limits for highly complex problems. The GA outperformed the 

hand-drawn method in speed, flexibility, diggability, and profitability. The case 

study conclusively shows that meta-heuristics can indeed be used for the dig-limit 

problem, and should be considered for large-scale application in the mining 

industry. 
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6. Case Study III: Selectivity Sizing for multi-destination, multi-rock and multi-

metal deposits using genetic algorithms 

As outlined in Chapter 2.3, the dilution to equipment size relationship used to 

optimize the equipment size is based solely on the bench height. No existing 

publications attempt to relate the clustering size of the dig-limits to the possible 

profit derived from the deposit. The case study presented here will show that the 

correlation between profitability and selectivity size is non-linear. Furthermore, size 

selectivity appears to have threshold clustering sizes, above which the relative 

profitability severely drops. Therefore, this case study will show that the dig-limit 

problem should be considered during equipment sizing and is of considerable 

importance regarding the ultimate profitability and operability of a mining 

operation. In order to standardize the process and ensure that the dig-limits are 

adequately drawn and consistent, a GA was used to generate all dig-limits. 

6.1 Economic Model  

Three potential destinations and two types of ore contain two economic 

minerals (Table 8). The sulphides are refractory and cannot be processed using 

leaching. The gold in the sulphide is not recoverable when sent to the mill. 

Leaching will only recover copper for both mineral types. This highly complex 

economic model is of particular interest: the ability to adequately discriminate 

between the ore types and waste will often be the difference between recovering 

nothing and generating a high degree of profitability. Thus adequate selectivity is 
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of particular importance, since the misclassification of blocks can generate extreme 

losses, or exclude blocks with high profit.  

Table 8: Economic model for the baseline case (4 x 4 clusters) 

Material Selling Price         

Gold 37.71 $/g         

Copper 4578 $/tonne         

            

  Detail Leach Mill Waste Units 

All Materials Mining Cost 9 10 8 $/tonne 

Processing Details Detail Mill Leach Waste Units 

Oxide 

Base Processing Cost 6 2.55 0 $/tonne 

Cost Increase per Au 
gram 0 0 0 $/g 

Cost Increase per Cu 
tonne 180 190 0 $/tonne 

Recovery Au 0.8 0 0 fraction 

Recovery Cu 4.4*Cu (%) 0.65 0 fraction 

Processing Cost Detail Mill Leach Waste Units 

 Sulphide  

Base Processing Cost 3 2.55 0 $/tonne 

Cost Increase per Au 
gram 0 0 0 $/g 

Cost Increase per Cu 
tonne 190 190 0 $/tonne 

Recovery Au 0 0 0 fraction 

Recovery Cu 0.65 0 0 fraction 

 

A high degree of variability is evident between oxide and sulphide boundaries 

(Figure 24). Due to the disorganized quality of the sulphide oxide boundaries, hand 

drawing the dig-limits is highly difficult. Furthermore, the degree of selectivity 

necessary to classify this material by type can be roughly 20 or 30 m (2 or 3 

blocks). This case study will show that this visual inspection differs greatly from 

the optimal sizing necessary to derive maximum profit from this deposit. 
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Figure 24: Material type (Waste, Oxide,Sulphide) distribution within the bench 

The oxides appear to hold a greater quantity of gold than the sulphides (Figure 

25). Furthermore, the gold grade is primarily contained in two pockets in the north 

and south portions of the deposit. These pockets have high-grade centers and 

exhibit decreasing grades moving away from the center. Large areas of the deposit 

have near 0 grade, indicating large variability and strong boundaries for the 

material type. 
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Figure 25: Au grade distribution within the bench 

Copper does not appear to be significantly related to either sulphide or oxide 

(Figure 26); however, the highest grade pockets in this bench are oxide blocks. 

The waste blocks have low copper and gold grades. There appears to be little 

correlation between gold and copper grades in this bench. Furthermore, the 

continuity of the mineralization is fairly clear at a near north–south angle. Some 

high-grade blocks can be found in near the center of the mineralization. Note the 

large sections of the bench with near 0 copper grades.  
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Figure 26: Cu grade distribution within the bench 

In summary, the gold and copper grades for this deposit do not appear to be 

correlated. Copper oxides of high grade are ideally processed using leaching, 

whereas high-grade gold concentrations are ideally processed with a mill. Low-

grade oxides are optimally processed using leaching. Sulphides of moderate and 

high grades are best sent to the mill, while low-grade sulphides should be classified 

as waste. Large portions of the deposit have near 0 gold and copper grades, which 

must be adequately classified to incur minimal processing losses. 
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6.2 Preliminary Results 

Dig-limits were generated at various selectivity sizes using an automated dig-

limit algorithm, which guaranteed clustering and maximized profitability. The 

purpose of this execution was to determine the profitability at each selectivity size, 

while respecting mining geometry. The goal was to accurately quantify the impact 

of mining equipment on the profitability of a mine, while considering the difficulties 

of adhering to the required geometry. 

As equipment size grew, the complexity of blasting, planning, and hauling 

decreased. The mining costs at each selectivity size therefore decreased 

geometrically (Figure 27). The mine was originally designed to use equipment with 

a selectivity size of 40 m. The mining costs for each block were scaled with a factor 

of approximately 0.75, with some variation due to the variable number of blocks 

to each destination (Table 9).  

Table 9: Profit and mining cost vs. cluster size 

Cluster Size 
Mining Cost 

($) 
Pre_scaling Mining Cost 

($) Relative Price 
Post Scaling Profit 

($) 

10 15,668,250 19,284,000 7 26,317,050 

20 4,265,556 19,195,000 2 28,807,944 

30 3,204,000 19,224,000 1.5 29,240,200 

40 2,385,750 19,086,000 1.13 29,260,350 

50 1,782,094 19,009,000 0.84 29,727,506 

60 1,347,680 19,167,000 0.63 30,307,520 

70 1,016,402 19,274,000 0.47 30,355,298 

80 760,245 19,222,000 0.36 29,555,655 

90 550,873 18,571,000 0.27 24,470,977 
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Figure 27: Mining cost vs clustering size 

The number of blocks sent to the mill decreased as selectivity size increased 

(Figure 28). Since the cost of milling material is much higher, and the relative 

downsides also more severe regarding the processing of sulphides, it makes 

economic sense to blend the mill materials into the leach destination. Furthermore, 

at approximately a clustering size of 80, the capability of discriminating between 

waste and leach blocks became severely impaired. In terms of replicating the 

optimal number of blocks per destination as shown by the free selection solution, 

the original clustering size chosen by the mining staff best replicated the results. 

Lastly, there were no constraints regarding the tonnage to each destination, this 

could be implemented if necessary. 
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Figure 28: Blocks per destination by clustering size 

Given the various selectivity sizes and mining costs, it became possible to 

execute the GA such that the dig-limits were optimized using the aforementioned 

inputs. The resulting profits at each selectivity size are outlined in Figure 29. 

Upsizing the equipment from a selectivity of 10 m to a selectivity of 70 m 

considerably improved profits. However, increasing the selectivity size past 70 m 

caused a steep decline in profit, reducing potential earnings by approximately 

$0.5m USD compared to the selectivity size and equipment chosen by the owner. 

It is clear that mining equipment can only be upscaled to a certain point before 

the loss in selectivity begins to outweigh the cost benefits of larger equipment. 

The profitability did not change appreciably between selectivity sizes of 3 x 3 blocks 

(30mx30m) and 4 x 4 blocks (40mx40m). The selectivity sizing reached a soft 

breakpoint, where the geometry of the deposit did not lend itself well to the 40 x 
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40 m selectivity sizing (Figure 28). This is particularly worrisome given that the 

mine in question was designed to make use of this equipment size. At the 40 x 

40m selectivity size, a disproportionate number of blocks are sent to waste; many 

of these blocks were removed from the leach destination. 

 

Figure 29: Profit vs. clustering size 

 

6.3 Comparison Between Clustering Sizes 

When clustering size is manipulated, the overall geometry and strategy can 
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a mine plan. If similar financial results can be obtained while significantly reducing 

the complexity of the solution, the lower difficulty solution is preferable. This notion 

is of particular importance when comparing the various dig-limits generated by 

manipulating the selectivity size. In addition to lowering per tonne operational 

costs involved in direct mining activities (blasting, loading, hauling, dumping), 

indirect costs are also significantly reduced. For example, fleet management 

complexity is reduced due to the use of a smaller fleet for the same output. 

Alternatively, a similarly sized fleet with higher throughput could be used, which 

could increase the NPV because of discounting. The smaller surface area of 

material boundaries between destinations considerably reduces the number of dig-

limit flags that must be placed in the bench. 

The free selection dig-limit is presented in Figure 30. As mentioned previously, 

the optimal block destination occurs in small block clusters (1 to 4 blocks) and can 

be classified as highly irregular.  
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Figure 30: Free selection dig-limits 

Within a dig-limit generated by using a clustering size of 20 x 20 m, some 

deviations are observed due to the clustering deviation chosen (Figure 31). The 

highly selective nature of this selectivity size means that the punishment applied 

to the deviation was outweighed by the improvement of deviating from mining 

geometry in several portions of the deposit. 
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Figure 31: 20 x 20 m clustering dig-limits 

In the 30 m clustering case, there are no clustering deviations and the dig-limit 

is by and large a reflection of the free selection case (Figure 32). Note the 

reduction of mining limits compared to the 20 m selectivity dig-limit. This tendency 

will continue as the selectivity size is increased. 
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Figure 32: 30 x 30 m clustering dig-limits 

The 40 m clustering case differs considerably from other dig-limits in the upper 

right quadrant of the deposit (Figure 33). The selectivity is sufficiently small to 

allow for the collection of all smaller ore packets, though sufficiently unselective 

to allow the deposit to differentiate out the waste packets, as was done by the 30 

m selectivity. There is now a grand total of 12 mining packets, down from 15 in 

the 30 m selectivity case. 
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Figure 33: 40 x 40 m clustering dig-limits 

Previously identified trends continue with the 50 m clustering size (Figure 34). 

With only 10 mining packets in total, the solution has become simple compared to 

the lower selectivity dig-limits. At this point, block mixing is becoming a major 

factor. Mathematical optimization allows for this to be done in a way that maintains 

and indeed improves profit compared to the 40 m selectivity. 
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Figure 34: 50 x 50 m clustering dig-limits 

For the 60 x 60 m dig-limits—maintaining 10 mining packets—the primary 

differences involve the removal of the waste packet in the upper right quadrant 

(Figure 35). Furthermore, as the dig-limits become larger, more waste from zone 

1 will need to be sent to leaching. 
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Figure 35: 60 x 60 m clustering dig-limits 

The 70 m selectivity dig-limit is far more profitable than smaller selectivity sizes 

(Figure 36). Most of the interior and upper portions of the bench do not resemble 

the free-selection model. However, it is clear from the profit curves that the cost 

reductions associated with selectivity size increases outweigh the misclassification 

errors. 

1 
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Figure 36: 70 x 70 m clustering dig-limits 

All selectivity has been removed from the entire south side of the deposit in 

the 80 m and 90 m selectivity sizes (Figure 37 and Figure 38, respectively). 

Furthermore, the waste packets on the left are now well into the sulphide material. 

A great deal of mill material is being classified as leach. Overall the dig-limits are 

becoming very simple, but too much selectivity has been lost. 
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Figure 37: 80 x 80 m clustering dig-limits 
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Figure 38: 90 x 90 m clustering dig-limits 

6.4 Discussion 

The selectivity sizing problem is complicated by the time-intensive nature of 

generating potential dig-limits for each scenario. This case study outlines a 

methodology for testing variable selectivity sizes, and presents the results that 

could be derived from these tests. It is clear that the selectivity sizing to 

profitability relationships are non-linear, and appear to have severe breakpoints.  
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For the purpose of this study, the selectivity size of 70 m was chosen. The size 

yielded only 9 digging zones, considerably reducing both the operational and 

mining complexity. Furthermore, the profitability was improved compared to the 

selectivity size chosen by the mine.  

Several assumptions were made when calculating the cost reductions from 

upsizing the mining equipment, specifically the cost reductions were estimated to 

be constant for each size reduction. In addition, the bench height was not modified 

to reflect the equipment size changes. Future work could focus on integrating 

these changes into the model and further developing the modified cost models to 

better reflect the costs associated with each equipment selectivity size. Finally, 

directional mining limits—as outlined in the previous case study—could be 

implemented.  
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7. Conclusion and recommendations 

Generation of mining dig-limits has been an integral part of open pit mining 

since the advent of modern blasting techniques. Though many aspects of mining 

and mine planning have improved, dig-limit generation techniques have gone 

largely unchanged. Due to the ever-increasing complexity of new deposits, mineral 

processing and mining approaches have likewise become more complex. Thus, 

modern dig-limits require consideration of more information to identify the best 

classification for an ever increasing number of destinations. The hand-drawn 

method of dig-limit generation continues to become increasingly inadequate: 

better solutions methods are needed. Improvements in the fields of computer 

science and non-linear optimization have provided a solution for the mining 

industry. Employing such techniques will result in more consistent, easier to 

operate, and ultimately more profitable mines. 

This thesis outlined the generation, use, and potential applications of an 

automated dig-limit generation algorithm using GAs. The research conducted thus 

far indicates the efficacy and quality of the solutions generated. Furthermore, the 

dig-limits generated by the GAs are both more profitable and more operational to 

those drawn by hand. 

GAs are well suited to the dig-limit problem, due to its sheer magnitude. Linear 

alternatives that guarantee optimality have been shown to be NP-Hard. Other 

meta-heuristic methods applied to the dig-limit problem present poor results, 

require too much computation time, or require high-quality initial solutions. The 
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methodology outlined in this thesis does not exhibit these shortcomings, and 

performs well. 

The high flexibility of the proposed GA approach allows for multiple forms of 

constraints. Global constraints can be applied during the quantification step of each 

iteration. Indeed, case studies were carried out to demonstrate that this approach 

can handle multiple destinations, multiple properties, mining direction, variable 

clustering size, and grade mixing.  

Future work on this topic could involve the integration of post-processing methods 

using meta-heuristic tools such as SA to account for the mining of multiple benches 

at once and tackle the problem of grade mixing. Other applications could include 

generation of strategic mine plans, which would require the optimization of 

potentially millions of blocks. Thus, future improvements could also include the 

reimplementation of the algorithm in a compute optimized environment, running 

on C++. The potential for cloud computing for this method is highly attractive, 

particularly if the code is formulated for the use of Graphics Processing Unit 

optimized computing. Ultimately, GAs are a guided brute force approach: the more 

computing power applied to solve the problem, the better will be the ultimate 

solutions. 
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