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Abstract 

This thesis develops a computationally economic magnetic modelling system for three 

dimensional magnetostatic problems. An interactive mesh generator is developed to model 

geometries using irregular bricks which are finally divided into either tetrahedra or triangular 

prisms. A new algorithm is introduced for element resequencing to minimize wavefronts for 

the frontal solutions in O(mM N) comparisons where m. lvt and iV are. respectively, nodes 

in an element. number of nodes. and number of elements in a mesh. The algorithm which 

is tested on topologically different models also renumbers the nodes to reduce profiles and 

bandwidths of coefficient matrices and needs primary storage of 0(1). Two algorithms. 

one ·soft-failing' and the other 'fast converging and robust'. for solving systems of linear 

algebraic equations are developed by combining the advantages of the frontal and the 

preconditioned conjugate gradient algorithms. A scan conversion technique is implemented 

to plot the equipotentials on the planes derived from the mesh. The developed system is 

applied to a terminal box model. 



0 

0 

0 

Resume 

Cette these presente un approche integree et numeriquement economique a la solution 

de problemes de magnetostatique tridimensionnels. Un maillleur interactif a ete developpe 

afin de modeliser des geometries solides en utilisant des briques irregulieres qui sont elles­

memes formees de tetrahedres ou encore de prismes triangulaires. Un nouvel algorithme 

permettant de reordonner les elements afin de minimiser la largeur des fronts en vue dune 

solution frontale et n~kessitant O(m1\1N) comparaisons a ete developpe. lci. m. 1\1 et 

N representent respectivement le nombre de noeuds associes a un element. le nombre 

total de noeuds et le nombre total d' elements. Cet algorithme. qui ete valide sur des 

modeles de topologies variees permet a aussi de renumeroter les noeuds d'interpolation de 

maniere a reduire la largeur de bande et la ligne de ciel de la matrice globale. 11 requiert 

une quantite de memoire vive d'order 0(1). Deux algorithmes de resolution de systemes d' 

equations algebriques lineaires. I' un de type ... soft failing'' et r autre robuste et rapidement 

convergent ont ete developpes en combinant les avantages de la methode frontale et de 

la methode des gradients conjugues avec preconditionnement. Finalement. une technique 

dite de .. conversion par balayage'' a ete appliquee au tracage des equipotentielles sur des 

plans de coup. L' approche integree decrite ci-haut a ete appliquee a un modele de bornier 

a grande puissance. 
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Chapter 1 

Introduction 

1.1 General 

Modern power systems place stringent requirements on their basic generation and 
I 

transmission equipment with regard to economical. efficient. and reliable operation. These 

machines operate at high power densities and it is of the utmost importance that their 

performance characteristics are accurately predicted at the design stage so that final designs 

can be optimized. The accurate prediction of machine parameters such as reactances. power 

losses. heating of various components due to these losses. and the forces on the various 

structural parts of the machine requires a knowledge of the electromagnetic field distribution 

in the entire geometry. 

Over the last twenty five years the power densities in large turbogenerators have in­

creased. approximately. by a factor of four. while there has been no significant increase in 

physical size. This can be attributed to the utilization of materials with better magnetic and 

electric properties. better insulation systems, and more efficient cooling systems. However. 

this rapid growth in generating capacities has placed considerable demands on equipment 

designs. Issues which were once considered insignificant for small machines have surfaced 

as critical problems in large ones. e.g. the surface current distribution. associated losses 
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and forces on the walls of the terminal boxes of the turbogenerators and transformer tanks. 

end region fields in large machines. and forces on the windings and other structures. Sur­

face currents are induced on the walls of the terminal box because of the time varying fields 

established around the box by the load currents of several kilo-amps .. flowing through the 

terminals. 

Conventionally. field computations in magnetics have been performed using analytical 

and analogue methods. Application of these approaches was possible under simplified con­

ditions and for idealized geometries. For electromagnetic devices. the geometries involved 

were such that it was impossible to provide analytical solutions for a wide range of problems 

without considerable simplifications. With the advent of high speed computers. an era of 

numerical methods began which made feasible the solution of some of these electromag­

netic field problems. Earlier methods for the numerical solution of field problems employed 

either finite differences. integral equation methods. or variational methods. 

In the finite difference method the differential equation is replaced by a system of 

simultaneous algebraic equations which are derived by approximating the derivatives with 

respect to one or more of the variables by difference quotients. The method of finite 

differences has been extensively used in electromagnetic applications even though three 

disadvantages are commonly cited against it. The first one arises if curved boundaries are 

to be modelled with a rectangular mesh. This problem can be overcome by using graded 

meshes. which in turn introduce a large number of variables to be solved for and the cost 

of solution grows enormously. The second limitation concerns the need to specify the 

boundary conditions at material interfaces and the boundaries by a set of equations. Also. 

finite difference equations resulting from the discretization of regions consisting of different 

material properties often result in poor convergence when solved iteratively. even if suitable 

accelerating schemes are used. 

2 
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The integral equation method. on the other hand. is based on the fact that the field 

quantity at a point can be expressed as the sum of contributions from all sources. In 

this case only conducting regions are to be discretized. as opposed to the entire region 

in the case of differential method. thus there is considerable saving in the cost of input 

data preparation (it could be up to an order of magnitude). Nevertheless. integral equation 

methods result in unsymmetric and dense coefficient matrices. which not only have larger 

formation times but also the number of operations required to solve these linear or non­

linear equations is of the order of N 3. where N is the number of unknowns. 

The finite element method is a variational approach whose differential formulation fre­

quently results in symmetric positive definite sparse matrices which can be solved in rela­

tively fewer operations. Earlier engineering applications of the method were in the area of 

stress analysis but it was Silvester who first pioneered the FEM approach in electromag­

netics in the late sixties [137]. [144]. The finite element method permits easy modelling of 

curved and irregular geometries and detailed modelling for regions of high field intensity or 

of special interest. Furthermore. the standard formulations do not require imposition of ho­

mogeneous Neumann boundary conditions. as this occurs as a natural boundary condition 

in the formulation. 

Over the last fifteen years. the use of the finite element method has grown consid­

erably and it has been applied to solve linear. non-linear. and eddy current problems in 

magnetostatics using two dimensional representations in the x y or r - z planes. Two 

dimensional solutions are easy to compute and are considered adequate for a wide range 

of field problems. There remains. however. a class of problems which is not amenable 

to two dimensional approximations of either the geometries or the fields. and needs three 

dimensional treatment. Two dimensional representations are inadequate if. for example. 

the effects of ventilating ducts and the end winding leakage fluxes are to be considered si-
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1.2 Finite Elements for Three Dimensional Problems 

multaneously. although some progress may be made by considering sets of two-dimensional 

solutions. 

1.2 Finite Elements for Three Dimensional Problems 

In general. solutions of field problems in two dimensions have been mostly obtained 

using a vector potential formulation which adequately treats regions containing sources and 

has only one component. i.e. it acts as a scalar. In three dimensions. however. there are 

various potential formulations. namely vector potential. total scalar potential. and hybrid 

formulations. which use a combination of the two potentials. These formulations arose 

due to the non-uniqueness of the vector potential alone and a requirement to reduce the 

number of degrees of freedom per node in order to make solutions feasible on the available 

computing hardware. 

The basic numerical techniques for three dimensional problems have been either integral 

methods or differential methods as finite differences have not been considered satisfactory 

for general problems. although a few successful attempts have been made by Muller and 

Wolff [113]. who employed a scalar potential representation for the magnetic field. and 

Carpenter [25}. [27J. who formulated the T - Q and A <t> methods for magnetostatics 

and eddy current problems. T and A are. respectively electric vector and magnetic vector 

potentials. whereas Q and <t> should be understood as magnetic scalar and electric scalar 

potentia Is. 

In this section. the major potential formulations currently in use will be discussed. 

These have been derived from Maxwell' s equations and the constituting relations and can 

be summarized in their differential form as follows. with reference to quasi-static fields: 
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1.2 Finite Elements for Three Dimensional Problems 

V X H =J 

VxE= 
as 
at 

V ·D =p 

The constituting relations are: 

B = J.tH 

J = uE 

Here: 

H is the magnetic field intensity vector. 

B is the magnetic flux density vector. 

E is the electric field intensity vector. 

0 is the electric flux density vector. 

(1.2.1) 

(1.2.2) 

(1.2.3) 

(1.2.4) 

(1.2.5) 

(1.2.6) 

(1.2.7) 
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1.2 Finite Elements for Three Dimensional Problems 

J is the electric current density vector. 

p is the electric charge density. 

J.! is the permeability of the magnetic material. 

g is the permittivity of the material. 

u is the conductivity of the material. 

1.2.1 Magnetic Vector Potential 

Choosing a vector potential function A such that 

B=V'xA (1.2.1.1) 

and substituting it in equation {1.2.1) with (1.2.5). one gets 

V' x vV' x A= J (1.2.1.2) 

where v = ~ . is the reluctivity of the magnetic material. Equation ( 1.2.1.2) is known as 

the magnetic vector potential formulation or the curl-curl equation for three dimensional 

magnetostatic field problems with a three component vector potential A. and a three com­

ponent source current density J. The energy related functional corresponding to (1.2.1.2). 

[36) is given by: 

3 

f = 'f. la v('il A; )2dfl - In v('il · A) 2dfl 2 la (J · A)dfl - j j (A x v'il x A) · ds 

-I lr (A· vV')A · ds +I I AvV' ·A· ds (1.2.1.3) 

The uniqueness of the vector potential solutions became a issue of controversy over the 

specification of \7 ·A. Mathematically. the uniqueness of a vector requires specification of 
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1.2 Finite Elements for Three Dimensional Problems 

the curl. divergence and some boundary conditions. Kotiuga and Silvester [87] and Chari. 

Silvester et al. (36] argued that the choice of the Coulomb gauge. i.e. divA = 0. guarantees 

the uniqueness of A. 

When V' ·A = 0 is substituted in {1.2.1.3) and the surface integrals are set to zero. 

the functional becomes: 

(1.2.1.4) 

which was used by Chari. Silvester et al. 

Damerdash et al. [45] argued against using the Coulomb gauge and instead suggested 

solving the equation (1.2.1.2) with V' ·A non-zero and setting the boundary value of A 

such that the surface integral of its normal component is zero. which will ensure V'· A - 0. 

Their functional is given below in (1.2.1.5). 

(1.2.1.5) 

which satisfies (1.2.9) with V'· A imposed. 

Coulomb (42] suggested that V'· A has to be used. and combines the energy functional 

given by (1.2.1.5) with the least square error functional for the divergence equation 

(1.2.1.6) 

and uses their sum 

(1.2.1. 7) 
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where v1 is a Lagrange multiplier . 

There have also been other attempts to find a solution to (1.2.1.2) with or without 

specifying vr ·A and good results have been reported. Many of these implicitly set divA 

by their choice of finite element trial functions. 

1.2.2 Scalar Potentials 

Simkin and Trowbridge [145) are the main advocates of the use of total scalar potential 

for three dimensional magnetostatic problems. as the scalar potential solution is always 

computationally cheaper than the three component vector potential. Besides. several for­

mulations can be developed by using a pair of scalar potentials and combining integral 

methods for linear regions with differential methods for permeable regions to further econ­

omize in the cost of solutions. 

The total scalar potential Q is defined for simply connected and source-free regions 

and is derived using (1.2.1) : 

(1.2.2.1) 

then. 

H = VQ (1.2.2.2) 

lt is often convenient to express the total field H. as a sum of fields due to source currents 

Hs and due to induced magnetization Hm. i.e. 

(1.2.2.3) 
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where Hs can be defined as: 

\7 X H8 = J (1.2.2.4) 

Equation (1.2.2.4) implies that 

\7 X Hm = 0 (1.2.2.5) 

then 

(1.2.2.6) 

The potential. 4>. is known as reduced scalar potential and is valid everywhere. 

Using equation (1.2.4). one gets 

I.e. 

(1.2.2.7) 

which is the main equation to be solved for. The reduced scalar potential forms the basis 

of algorithms for solving field problems which are reported in [78]. [147). [177]. [171). The 

choice of using the reduced scalar potential for a highly permeable region often leads to 

numerical problems. For example. one can write equation (1.2.5) inside the iron as: 

(1.2.2.8) 

If Hs and \7 4> are of the same order they may contribute to large errors in H. This 

difficulty of numerical cancellation has been overcome by using a combination of 4> and Q. 

Upon taking the divergence of equation (1.2.2.2) i.e. 
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1.2 Finite Elements for Three Dimensional Problems 

-v . ~'-vn = o (1.2.2.9) 

a non-linear Laplace. equation is obtained. 

The current sources are introduced either by taking suitable cuts 'to make the total 

scalar potential. n. single valued or using the combination of n and 4> together. 

For the sake of illustration. consider a problem domain consisting of two regions. m 

which region 1 has no sources. while region 2 has sources. Then region 1 can be expressed 

by n and region 2 by 4>. The interface conditions of continuity of Bnormal and Htangential 

can be used to take care of any discontinuities in the potentials at the interfaces. i.e. 

(1.2.2.10) 

and 

(1.2.2.11) 

where Hsn and Hst are the normal and tangential components of Hs. Hst is related to n 

and 4> by the following relation: 

(1.2.2.12) 

which defines a potential jump condition at any point on the surface. The 3D program 

package TOSCA [146] has been developed using these two potentials. 

10 
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1.2.3 Integral Equations 

Integral equation formulations based on the total scalar potential. Q, and the reduced 

scalar potential. <i>. have also been developed and used to solve 30 problems by Simkin and 

Trowbridge (147]. Armstrong et al. [5]. These have been derived from equation (1.2.2.3) 

from which H can directly be represented in integral form: 

(1.2.3.1) 

where R is the distance between the source point r' and the field point r and M is the 

induced volume magnetization and is defined by: 

or. 

B 
M=--H 

J.LO 

M = X H = (J.L - 1) H 

(1.2.3.2) 

(1.2.3.3) 

where x is the magnetic susceptibility . As Hs is the field due to the prescribed currents 

J. it can be directly found from 

H s = ~ { J x ( r - r') dO 
411" lo lr- r'i3 (1.2.3.4) 

Using equations (1.2.3.1) and (1.2.3.2.). along with (1.2.2.6). the expression for total 

scalar potential is obtained : 

11 
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0= (1.2.3.5) 

where ifJs is the scalar potential from prescribed currents and is related to Q by 

Q = 4> + <Ps {1.2.3.6) 

The application of Green· s theorem to equation (1.2.3.5) results in the integral equation 

for n. i.e. 

(1.2.3.7) 

where r is the surface of volume Q. For a typical three dimensional problem discretized by 

finite elements the difference in the cost of the solution by integral and differential methods 

[148) are summarized below. 

Operation Differential 

Matrix Set up n2 n 

' Equation Solution n2.7 nlog(n) or n1.5 

I Field Evaluation n 1 

i N fold symmetry t N 1 

From this table it is obvious why the differential formulations are preferred over integral 

ones. 

The T- 0 and A- 4> formulations of Carpenter [25) for calculating the magnetic field 

and eddy currents have been used to solve a host of practical field problems. including the 
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analysis of end-region fields in large turbogenerators. These formulations. especially the 

T- Q have been used extensively for eddy current computations in three dimensions. lt is 

appropriate. therefore to discuss these formulations in the next section. where the current 

state of the art in 3D eddy current computations is reviewed. 

1.3 Eddy Current Computations in Three Dimensions 

In the past. eddy currents in electromagnetic devices were computed by analytical or 

analogue techniques using certain approximations to the material properties and simplifi­

cations in the geometries involved. These analytical methods proved inadequate for the 

treatment of the complex geometries associated with electrical machines. and this led to 

the development of numerical methods for engineering solutions to eddy current problems 

in linear as well non-linear media. However. applications were restricted to two dimensional 

representations of the geometries only. With the advent of new computers with powerful 

processors and large memories. three dimensional problems are now beginning to be solved. 

True three dimensional solutions. however. are still rare because the memory and time re­

quirements for practical problems are prohibitive. New numerical formulations are being 

developed under certain approximations so that real problems can be solved within existing 

computi·ng resources. These formulations have been developed. or are being developed, for 

specialized classes of problems. thus leading to a number of different formulations. Though 

these techniques provide meaningful solutions to these particular classes of problems. they 

are inadequate in treating most general problems and there has not. as yet. emerged a sin­

gle technique which can handle a variety of problems. The recently published formulations 

[50]. [122]. [125] look promising but have yet to be demonstrated on a variety of practical 

problems. 

Finite differences have been tried extensively both in one and two dimensions but their 

13 
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use in three dimensions has been severely limited. Integral equation methods have also 

been investigated by several authors [12}. [163]. [13) and used to solve a host of practical 

problems. Despite several attractive features. discussed earlier. integral methods are not 

currently being favoured over differential methods because of the high cost involved in the 

solution of the resulting asymmetric and totally dense system of equations. 

Instead of reviewing the entire literature on three dimensional eddy current computa­

tions. a task which has already been undertaken by several authors. namely Brown [14]. 

Wolff (172]. and extensive bibliography by Lari and Turner [88]. some prominent current 

techniques will be discussed. 

1.3.1 The T- 0 and A- <b Methods 

In the work of Carpenter [25] are to be found the origins ofT 0 and A - <b methods. 

both of which have found extensive use in industrial applications. particularly the T - 0 

method. The A - <b formulation has not been used to the same extent because of the 

difficulties in the treatment of interface conditions between conducting and non-conducting 

regions. Besides. A has three components to be solved for in all the regions. in addition 

to d> for conductors. On the other hand. the T- 0 method has the attraction that T is only 

solved for in conducting regions as it is either constant or zero in non-conducting regions. 

For the general case of three current components. two components ofT are sufficient. and 

for regions where current flows on planes. only one component ofT is needed. 

The electric vector potential T is defined as: 

V'xT=J (1.3.1.1) 

which is related to H by the following expression 

14 
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1.3 Eddy Current Computations in Three Dimen.;ions 

H = T- 'VO (1.3.1.2) 

where 0 is the magnetic scalar potential. Use of (1.2.2) and {1.2.5) along with (1.3.1.1) 

and (1.3.1.2) finally lead to 

1 a 
'V X -'V X T =- -(J.LT- J.L'VO) 

a at (1.3.1.3} 

Maxwell's equation (1.2.4) with equation (1.3.1.2) gives rise to 

(1.3.1.4) 

Despite several advantages. the possibility of cancellation between T and 'VO in con­

ducting regions exists. 

Similarly. the A - 4> formulation results from the defining equations for the magnetic 

vector potential A. i.e. equation (1.2.1.1). and 

a A 
E=---'V</> at 

where 4> is the electric scalar potential. 

(1.3.1.5) 

The use of Maxwell's equation (1.2.1) and the constitutive relations (1.2.5). (1.2.7) 

together with (1.2.1.1) and (1.3.1.5) leads to 

a A 
a( at 

1 
'V</>)='Vx -'VxA 

J.L 

The equation which couples both potentials is derived using 

(1.3.1.6) 

15 



0 

c 

1.3 Eddy Current Computations in Three Dimensions 

l.e 

or 

v .J = 0 

a A v · J = v · a E = v · {a(- - v <;6)} = 0 at 

a A 
V· aV</>- -v ·(a-) at 

(1.3.1.7) 

(1.3.1.8) 

The uniqueness of the solution is guaranteed for the A - 4> formulation by imposing 

v ·A = 0. and similarly for the T - Q formulation by imposing v · J = 0. Nevertheless. 

there is still considerable discussion concerning uniqueness. much of which can be found 

in the published in the literature (14}. 

Most of the two potential formulations have their roots in either the T- Q or the A- 4> 

method and these other variants will be discussed now. 

1.3.2 R- Q Formulation 

As discussed earlier. in the T Q method it is difficult to handle the interface conditions 

because the normal component ofT is not continuous. This issue may be resolved by using 

an alternate approach [13). The vector R can be defined as 

H = R- vn (1.3.2.1) 

for conducting region n1. where Q is the magnetic scalar potential. Using Maxwell's 

equations (1.2.1) and {1.2.2) with equation (1.3.2.1). 
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1.3 Eddy Current Computations in Three Dimensions 

V'xH=V'xR 

or 

uE =V x R 

which. upon taking the curl of both sides becomes 

(1.3.2.2) 

Use of V· B = 0. with (1.3.2.1) leads to 

V · JtH -:- V · Jt(R - VQ) (1.3.2.3) 

For the non-conducting region n2. which encloses the conducting region flt. the mag­

netic scalar potential is defined as 

H =-VQ (1.3.2.4) 

which. when used with (1.2.4). reduces to 

(1.3.2.5) 

The interface conditions are derived from the continuity of the normal component of B 

and the tangential component of H and can be written as: 

(1.3.2.6) 

and 

(1.3.2.7) 
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1.3 Eddy Current Computations in Three Dimensions 

This technique has been tested against analytical solutions and experimental results 

and provides correct solutions. Nevertheless. the possibility of cancellation in H = R 'VQ 

still exists. 

lt has become clear by now that for eddy current problems conducting regions require 

two potentials, i.e. one vector with three components and one scalar to ensure that the 

solution is unique. In most engineering applications. the conducting region forms a major 

part of the discretized domain. and four degrees of freedom per node in this region may 

finally lead to a system of algebraic equations whose solution can become very demanding 

on the computing resources. lt is, therefore. preferable to have a smaller number of variables 

without sacrificing the accuracy by making suitable approximations. Recently. three new 

formulations have been described which all have one goal in common. i.e. reducing the 

number of variables per node in the conducting regions. These are the results of the work 

done by Emson and Simkin [50]. Polak et' al. [125] and Pillsbury [122]. 

1.3.3 The Emson and Simkin Formulation 

In this approach a new variable is defined. a vector potential A* . which is the com­

bination of a vector potential and an electric scalar potential for the conducting regions. 

Non-conducting regions are treated by a magnetic scalar potential. lt has been derived as 

follows: 

The vector potential A is defined such that 

B=V'xA (1.2.1.1) 

then 

(1.3.1.5) 

These two equations. together with Maxwell's equation (1.2.1) lead to 
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1.3 Eddy Current Computations in Three Dimensions 

1 aA 
V'x-V'xA=-a(a +V'<t>) 

~ t 
(1.3.3.1) 

The new vector potential is defined as 

(1.3.3.2) . 

which. when substituted in (1.3.3.1) leads to 

1 * aA* \7 x -\7 x A - -a--
~ at (1.3.3.3) 

The equation (1.3.3.3) has a unique solution with the conductivity gauge 

\7 · aA* = 0 (1.3.3.4) 

For non-conducting regions. the magnetic scalar potential fl defined in equation (1.3.2.4) 

is used and the governing is (1.3.2.5). 

1.3.4 The Polak et al. Formulation 

In this formulation the domain of analysis is divided into three parts: 

(1) Region I containing driving sources. 

(2) Region 11 containing materials with high permeability. 

(3) Region Ill where a ::j:. 0 and eddy currents are expected to flow. 

So. the corresponding governing equations are: for region I. 

\7 ·~(V <Pm+ He)= 0 (1.3.4.1) 

where He is the field from the prescribed currents and can be calculated explicitly. using 

Biot-Savart's Law. The scalar potential <Pm is defined as 
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1.3 Eddy Current Computations in Three Dimensions 

Hm -V</>m (1.3.4.2) 

·which is governed by 

Hm = H He (1.3.4.3) 

For region 11. the main equation is 

(1.3.4.4) 

with 

H = - v(</>c </>m) (1.3.4.5) 

where 

(1.3.4.6) 

The potential 4> f. <I> m and <l>e are obtained as follows. The equation 

V X He= J (1.3.4.7) 

is solved for the entire region by replacing magnetic materials by air. The solution He 

has the property that for regions. where J = 0. H c - v <be and for the regions involving 

magnetic parts with {J = 0). H is given by (1.3.4.5). The potential </> f defined for highly 

permeable regions H = v rp f for ( J 0) is related to other potentia Is by (1.3.4.6). 

For region Ill. the main equation is 

1 BA v x -v x A= -a-
~ at (1.3.4.8) 

This formulation has been tried on the test problems used by Emson and Simkin and 

good correlation has been obtained. Nonetheless. it needs to be applied to a wide range of 

problems before its validity can really be established. 
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1.3 Eddy Current Computations in Three Dimensions 

1.3.5 The Pillsbury Formulation 

The formulation proposed by Pillsbury uses two potentials. a magnetic vector potential 

A and a total magnetic scalar potential 0. The electric scalar potential is required for 

the conducting regions to maintain the uniqueness of A. The main advantages of this 

formulation are 

(a) that the final system of equations is symmetric. and 

(b) that it can be used for magnetostatic problems as well. 

The problem of numerical cancellation in various formulations is totally avoided. This 

has been accomplished through the imposition of the continuity requirements of the normal 

component of flux density and the tangential components of field intensity. 

The problem region 0 is subdivided into two regions. region Ot containing sources and 

conducting parts and region 02 containing everything else. The A has been defined from 

V x B. which. with the Coulomb gauge. results in a unique solution governed by 

1 BA 
V x -V x A == -u(- +V <b) 

~ at (1.3.3.1) 

with E defined by equation (1.3.1.5). The scalar potential equation is the same as that 

derived by any other formulation and can be rewritten as 

H = -VO (1.3.2.4) 

and 

V ·~VO =0 (1.3.2.5) 

The interface conditions are: 
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n· B =0 

n x H =0 

n .J = 0 

nxE=O 

1.4 The Terminal Box- A Practical Problem 

Having discussed the issues involved with the numerical computations of eddy currents 

in three dimensions. and the importance of approximations in such computations in the 

context of current state of the art in the field. the terminal box problem can now be 

considered. 

1.4 The Terminal Box- A Practical Problem 

Fabricated of highly permeable sheet steel. a terminal box looks like a box through which 

the output terminals of the generator pass from the casing (Fig. 1.1). The magnitude of 

the currents flowing through these terminals is of the order of several kilo-amperes and 

when these currents continuously flow through the conductors strong magnetic fields are 

established in and around the box. These fields are time varying and induce eddy currents 

on the conducting magnetic surfaces such as the walls of the box. as well as the non­

magnetic parts. The presence of eddy currents results in localized heating of the iron 

parts. In addition. the mechanical forces between conductors could become large enough 

to exert pressures on the box support structure such that it may need to be redesigned. 

Knowledge of the fields is required in the determination of the surface currents and with 

these two quantities known. a host of other additional quantities such as forces and surface 

impedances can be evaluated. 
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Figure 1.1 A turbogenerator with the termmal box 
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1 4 The Terminal Box- A Practical· Problem 

1.4.1 General Considerations 

A cursory look at the geometry of the terminal box shown in Fig 1.1 reveals the non­

existence of any translational symmetry. which could be exploited to reduce it from a three 

dimensional to an approximate two dimensional form. Owing to the complexity of the 

geometry of the terminal box. there does not seem to be any possibility of finding an 

analytical solution: only a numerical solution will model the problem and that. too. may 

require approximations and idealizations in the geometry. 

Simplification is not only required for the geometries involved but also for the phe­

nomena being analyzed. A significant reduction in computational cost is achieved if the 

function modelling it is chosen with the physics of the problem in consideration. In the 

context of the terminal box. the phenomenon being modelled is the magnetic field. which 

is more often than not solved in terms of potentials. 

The finite element solution of a field problem is obtained by passing it through three 

distinct. sequential phases. all of which are interlinked. These phases are: 

(i) Pre-processing: which includes the modelling and the discretization of the geome­

try and the definition of the problem in terms of boundary conditions and source 

specifications. 

(ii) Analysis: which includes formation of the coefficient matrix and the solution of a 

system of algebraic equations. 

(iii) Post-processing: which is concerned with the evaluation of desired parameters and 

may involve graphic displays. 

Each phase forms a basic unit. although changes in the first phase affect the subsequent 

phases. for example the choice of element types. i.e. triangular. tetrahedral or prism. and 

their order of approximation. affects the second and third phases. In the next sections. 
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1.4 The Terminal Box- A Practical Problem 

these three phases will be described particularly in the view of the terminal box and each 

of them will then be treated. in generaL in subsequent chapters. 

1.4.2 Which Potential ? 

The choice of a potential function is governed by two fundamental requirements: one is 

that it should be able to model the fields without sacrificing any accuracy and the second is 

that it should offer computational savings in terms of reducing the number of unknowns to 

be solved for. The choice of the magnetic vector potential A is most natural for problems 

with translational or rotational symmetry. as it is assumed to have only one component 

and may be treated as a scalar. The same thing is not true in three dimensions. For eddy 

current problems at least a pair of potentials is required to treat the prescribed currents. 

the conducting regions and the free space. As discussed earlier this pair may be either 

magnetic vector potential with one electric scalar potential or an electric vector potential 

with a magnetic scalar potential or total scalar potential with reduced scalar potential. 

A scalar potential. though it has advantages in terms of computational costs. is in­

adequate to model the general volume distribution of sources because it is non-unique. 

However. using Carpenter's example of magnetic shells [30]; it can be shown to be unique 

under the assumptions that the volume distributions of the induced sources are surface 

distributions. For most of the engineering problems involving ferro-magnetic materials. this 

assumption is not far from reality. as the skin depth of the field for these materials is 

less than a millimeter at power frequencies. Moreover. non-uniqueness due to the sources 

carrying prescribed currents can be removed by taking suitable cuts through the geometry 

(146]. 

The solution of the linear algebraic equations resulting from the use of a two potential 

formulation. i.e four degrees of freedom per node for the conducting region. may well be 
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1.4 The Terminal Box- A Practical Problem 

higher by an order of magnitude when compared to the total magnetic scalar potential 

formulation and may thus need a main-frame computer because of memory and time re­

quirements. Three dimensional problems invariably result in large systems of equations. of 

the order of several thousands. even when there is only one degree of freedom per node. 

Solutions of these equations on small machines. in general. are not possible using conven­

tional techniques because of limitations in address space and slower numerical processing. 

Nevertheless. the solution of large three dimensional problems can be made possible on 

machines of reasonably small storage if new algorithms are developed and suitable data­

structures are employed. 

1.4.3 Pre-Processing - Mesh Generation in Three Dimensions 

The pre-processing phase consists of modelling and the· discretization with finite el­

ements of the geometric domain in which the solution is sought. There are two basic 

approaches currently in use. In the first approach. the entire geometric model is produced 

with the help of analytic functions. e.g. surface and solid modelling in a CAD j CAM sys­

tem. and then automatic triangulation of the domain using suitable elements. The other 

approach. which is more common. consists of building the model element by element. by 

synthesis. Several distinct parts can be meshed separately and then finally joined together. 

The first approach. though very promising in 20 is yet to be fully exploited in three dimen­

sions. as automatic triangulation with well shaped elements. with little or no user control. 

sometimes becomes difficult. On the other hand. the second approach makes the task of 

mesh generation easier as the user has full control while building the mesh and. therefore. 

can define the elements and refine the mesh as desired: but display is difficult. 

The terminal box has a very complicated geometry and is designed to house the output 

terminals of the generator. The presence of bent conductors. fastners. holes. etc. add to 
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the complexity of the box shape. The entire model will consist of interior structural details 

of the box with the air. fastners. ribs. etc .. and the conductors coming out of the box along 

with the surrounding air outside the box. The facilities to model the box in its entirety 

possibly do not exist and. therefore. approximations have to be made by considering the 

fact that ribs. fastners and the associated holes form a very small part of the entire problem 

region and their effect on overall accuracy of the solution can be considered insignificant. 

In any case this is a preliminary study of the box and will not be used directly for the 

terminal box design in its present form. hence certain liberties can be taken in simplifying 

the geometry. In this form. the problem region will still be comprised of the walls of the 

box. the air inside and outside of the box. and the current carrying conductors. 

Tetrahedral elements offer both geometric flexibility in modelling almost any shape 

and faster matrix assembly times as well. and are well-suited to model the air both inside 

and outside the box. But they are not particularly suited to model the comparatively 

thin walls of the box as they not only result in poorly shaped elements. but also require 

a large number of elements. Triangular prisms can avoid both of these problems. and 

are compatible with tetrahedra. In order to be able to model the terminal box geometry. 

therefore. a three dimensional mesh generator is required which has in its element library 

at least two different kind of elements. i.e. triangular prisms and tetrahedra. 

There are quite a number of powerful. commercially available mesh generators which 

can be used to model the terminal box geometry: but. first. they are very expensive to buy. 

and second, they only run on main frames or super minis such as the Digital Equipment's 

VAX. These two constraints pave the way for the development of an interactive three 

dimensional mesh generator which has triangular prisms and tetrahedra as the basic mesh 

building elements and runs on machines with finite memories. in the range of 28 Kbytes to 

3/4 Megabytes. such as PDP-11. Perq. Codata and similar machines. 
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1.4.4 Solution of the Algebraic Equations 

The second phase in the solution of a problem is known as the analysis phase. Here the 

coefficient matrix is formed and the resulting equations are solved. As discussed earlier. 

three dimensional regions have a large number of variables and as a result lead to large 

sparse matrices. The time required to solve these equations is considerable and far exceeds 

the time required for mesh generation and post-processing. Both the memory requirements 

and the execution time are at stake and the chosen method should offer a reasonable 

compromise. More often than not. the number of equations cannot be reduced without 

sacrifices in the accuracy of the solution. This in turn places a stringent requirement on 

computer memory. In almost any reasonably sized problem the analyst is faced with this 

situation. The only possible cure is to use or develop memory-economic algorithms which 

trade memory for time. 

Direct methods such as Gaussian elimination. and iterative methods such as Gauss­

Seidel. SOR and conjugate gradients are the basic family of methods which may be used for 

solving large sparse systems of equations. For large sparse matrices. iterative methods are 

very competitive and are preferred over direct methods because they require less storage 

(no fill-ins). and the use of a good starting solution vector can be made to speed up 

convergence. Secondly. iterative methods are considered to be self-correcting from round­

off errors as they use the original coefficient matrix in obtaining the solution and the matrix 

is preserved throughout the solution. 

1.4.4.1 Frontal Method 

One of the major difficulties limiting the size of the problem to be solved is the need 

to hold the entire coefficient matrix in core during the matrix formation phase. Irons (76]. 

who circumvented this difficulty by a technique widely known as the frontal method. avoids 
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the formation of complete matrix at one time. Instead a frontwidth (!) by frontwidth 

submatrix is stored in core. Variables are eliminated as soon as their last occurrence is 

noticed while forming the matrix. and the rows or columns corresponding to these variables 

are transferred on-to a back-up disk. As the only space requirement is 0(/2) rather than 
2 

O(N2). where f is O(N1). larger problems can be solved even on smaller machines. 

provided these machines have large backup disks and enough core to store ! 2 elements. 

The efficiency of the frontal algorithm. however. is critically dependent on how the elements 

of the mesh are sequenced. Otherwise. it may lose to a good band solver. 

1.4.4.2 The Element Sorting and Node Renumbering 

The frontwidth of a mesh is defined in terms of the number of active variables while the 

current variable is being processed. lt is not at all unusual to encounter three dimensional 

problems where f may be several hundreds or thousands. and it is increasingly important to 

develop algorithms which can minimize the frontwidths of meshes. lt will not only facilitate 

the solution of problems with large frontwidths. but also make the execution of a frontal 

solver efficient. There currently exist algorithms which perform the element sorting in the 

same memory space as that required by frontal solvers. 

Node renumbering schemes are conventionally used to reduce the bandwidth of the 

resulting matrices. so that fill-in in the profile during matrix factorization can be reduced. 

Node renumbering schemes are basically profile minimization procedures and are frequently 

used with solution algorithm. For the frontal solution technique. node renumbering is not 

as important as the element resequencing. lt has been observed. however. that a good 

element sorting algorithm also indirectly induces a good node renumbering. 

Fill-in in the factorized matrix may be reduced by a reduction in the bandwidth. but 

fill-in inside the band cannot be avoided. For problems having bandwidths in the several 
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hundreds. the amount of fill-in can be enormous. lt is the amount of fill-in within the 

band that makes the solution of equations expensive both in terms of time and space and 

therefore plays a decisive role in the selection of a solution algorithm on machines of limited 

core. 

A new element sorting algorithm has been developed in this thesis which works analo­

gous to a Gaussian elimination and could be termed as a natural resequencing algorithm. 

lt is a one-step. memory economic algorithm which also renumbers the nodes in the same 

pass. 

1.4.4.3 Preconditioned Conjugate Gradients 

As has been discussed above. iterative methods which preserve the sparsity of the ma­

trix and have a fast guaranteed convergence are considered to be better than direct methods 

on current computing hardware. and the conjugate gradient method is the most favoured 

of them. lt can be considered as a semi-iterative method: in principle it is an iterative 

f!1ethod, but it has the basic characteristic of direct methods in the sense that. apart from 

round-off errors. the solution is achieved in no more than N steps. for N equations. lt has 

been shown [128). that the solution could converge in very much less than the upper bound 

of N iterations if the eigenvalues of the coefficient matrix are clustered with many close to 

unity. This is possible by preconditioning the system of equations with an easily derived 

approximate inverse to the coefficient matrix. 

One of the well known preconditioned conjugate gradient methods. ICCG(O). uses an 

incomplete Cholesky decompose as a preconditioning matrix [101]. The preconditioning ma­

trix is computed by retaining the same sparsity pattern in the decompose as the coefficient 

matrix had. This algorithm has the convergence characteristics of 0( VN). determined 

experimentally. 
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A new algorithm. which combines the frontal method for assembling the coefficient 

matrix and its factorization and the preconditioned conjugate gradient algorithm ICCG(O) 

for solving the equations. was recently developed [112] and has the basic characteristics of 

both algorithms. The new algorithm has the advantage of modifying the 'incompleteness' 

of the decomposition to use as much memory as is available. lt behaves as a 'soft-failing' 

algorithm in which memory is traded-off against solution time. 

The convergence of iterative methods for symmetric positive definite matrices depends 

on the condition number of the coefficient matrix. The condition number is defined as 

the ratio ( 1max ). i.e. the ratio of largest and smallest eigenvalues. The basic ICCG(O) 
mtn 

method. in which all the fill-in entries are discarded. results in a preconditioned matrix whose 

eigenvalues are not very close and their condition number is large. The condition number of 

preconditioned system of equations could be improved if the Cholesky factor Lis computed 

by keeping exact equality between the elements of the matrices (LLT} and A. Moreover. by 

maintaining row sum equality. the effect of round-off errors in matrix decomposition can also 

be suppressed and this matrix is a better approximation to the complete Cholesky factor. 

When this modified preconditioning matrix is used with the conjugate gradient algorithm 

for the system of equations assembled using the frontal method. faster convergence is 

achieved when compared to the 'soft-failing' algorithm. 

1.4.5 Post-Processing 

This is the phase in which the validity of the solution is examined and the required 

output quantities are computed. There is a growing tendency among CAD analysts to 

examine the validity of numerical computations by looking at the plots of the solution. 

before any further post-processing is performed. The display of the potentials and field 

distributions by means of contours is well established in two dimensions. However. its 
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logical extension into three dimensions is somewhat complicated. Difficulties arise due to 

the limitations of display devices in displaying three dimensional fields or objects onto two 

dimensional screens. Even if the plots can be displayed. it is often not easy to comprehend 

them since a perspective view of the plots of scalar field is provided over the geometrical 

model. The general convention is to .provide plots of these fields or potentials on a plane 

cutting through the discretized geometry. These plots are both comprehensible and easy 

to produce. The plots of potentials or the field on a number of cut-planes provide detailed 

distribution of the potential or the field in the domain of analysis. 

From the point of view of the terminal box. the most important quantities which must 

be derived from the analysis are the graphical representation of equipotential contours of 

the scalar potential on the wall surfaces and the numerical estimates of losses and forces. 

These plots will provide a description of the eddy current distribution and their surface 

concentrations. 

1.5 Original Contributions 

To the best of the author· s knowledge. the following are the original contributions 

contained in this thesis: 

(1) Development of a methodology for the approximate analysis of turbogenerator ter­

minal boxes and related housings. in three dimensions. using magnetic scalar po­

tential only. developed under the following approximations: 

(a) regions carrying prescribed currents occupy so little space 

that these can be excluded from the domain of analysis and 

are replaced by boundary conditions; 
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(b) the depth of penetration .of the magnetic field in ferromag­

netic sheets is so low that the eddy currents flowing in them 

may be treated as surface currents. 

(2) Development of two preconditioned conjugate gradient frontal solvers for three 

dimensional electromagnetic field problems to solve the large sparse system of 

linear algebraic equations on machines of limited address spaces: 

(a) a 'soft-failing· algorithm in which memory is traded off against 

solution time by modifying the "incompleteness· of the de­

composition: 

(b) a robust and fast converging algorithm which can handle 

several regions of high contrasting material properties by 

employing a modified preconditioning matrix. 

(3) Development of an interactive mesh generator using irregular hexahedral bricks to 

model three dimensional geometries with a choice of discretization of the region 

either by first or second order·tetrahedral elements or triangular prism elements to 

run on small machines such as PDP-11. Perq. or Codata systems. 

(5) Development of a new memory-economic element and node sorting algorithm for 

the reduction of frontwidths for the frontal solutions and the minimization of profile 

and bandwidths of the resulting matrices. designed to run on small machines. 

(6) Development of a three dimensional analysis system running on a mini-computer 

using (2). (3). (5) and (8). 

(7) Analysis of a turbogenerator terminal box model using the developed system and 

the display of equipotential contours. 
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(8) Improvements in a contour plotting algorithm which is based on a scan-conversion 

technique for geometries modelled either by tetrahedra or triangular prisms. 

1.6 Thesis Organization 

The prominent numerical approaches for the solution of three dimensional magneto­

static or eddy current problems have been reviewed in Chapter I. These are based mostly 

on two potential formulations. one vector and the other scalar. The problem of the ter­

minal box is introduced and is subsequently examined for its pre-processing. analysis and 

post-processing requirements. These requirements have been particularly addressed from 

the point of view of memory economy. 

In Chapter 11 the mathematical formulation of the terminal box analysis is developed 

in terms of a magnetic scalar potential alone on the assumption that the current carrying 

conductors occupy comparatively little space. and the eddy currents. which flow on the 

ferromagnetic walls of the box. have a small skin depth. i.e. are surface currents. Element 

matrices. both Dirichlet and Metric. for tetrahedra compatible sheet elements (triangular 

prisms) for the scalar HQimholtz equation are derived. 

A survey of the state of the art in the field of mesh generation in three dimensions is 

presented in Chapter Ill. A brief survey of commercially available 30 mesh generators in 

mechanics as well as magnetics is given and basic techniques are highlighted. Finally. the 

need to develop a mesh generator and its distinct features are presented. Results in the 

form of a few discretized geometries are also included. 

In Chapter IV a new algorithm of element and node sorting for frontal solutions is 

developed. The importance of element resequencing for the reduction of frontwidths of 
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the meshes and the effects of bandwidth reduction due to node labelling techniques are 

presented. The new algorithm is a memory economic. one step algorithm in which both 

the element and the node sorting are done in the same pass. The performance results of 

the algorithm when tested extensively on various topologically different three dimensional 

geometries are also summarized. 

Chapter V is concerned with the preconditioned conjugate gradient method and its 

combination with the frontal algorithm. which in turn. led to the development of two 

preconditioned conjugate gradient frontal methods. One of the attractive features of the 

first algorithm is its ·soft-fail' nature. while the second algorithm is fast and robust. Both 

incomplete Cholesky preconditioned conjugate gradient algorithms are discussed and their 

performances are compared. 

In Chapter VI post-processing aspects of a finite element solution are presented. Dif­

ficulties encountered in post-processing solutions on three dimensional geometries are 

touched upon and a scan-conversion technique for plotting the scalar potential contours on 

user defined planes is presented. The technique is then applied on to a terminal box model. 

Chapter VII presents and relevant conclusions with regard to solving a three dimensional 

problem on machines of limited memories are made in the light of a terminal box. Areas 

which need furthur exploration in relation to the terminal box are discussed. This chapter 

is followed by References and Appendices. 
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Chapter 2 

Mathematical Formulation 

2.1 Introduction 

In general. eddy current problems in electromagnetic devices have been solved using 

analytical techniques. analog techniques. and numerical techniques. Most of these methods 

are restricted to a one component solution of the eddy currents. which is orthogonal to the 

problem geometry. both in one and two dimensions. In many applications. this approach 

to the treatment of eddy currents is inadequate. and a true three dimensional analysis is 

required. This is not only computationally very expensive but the computed field distri­

bution is very difficult to comprehend. Under these circumstances. numerical solutions of 

three dimensional eddy current problems are obtained under simplifying assumptions and 

approximations with regard to the phenomenon itself and the geometries involved. In this 

chapter an approximate method for finding the eddy current distribution on box shape ge­

ometries, fabricated from ferromagnetic plates. is presented. The formulation. in terms of 

magnetic scalar potential. is developed under the following assumptions: 

(1) The eddy currents are restricted to surface currents. 

(2) The permeability of iron sheet is very high. 

(3) The source region is very small as compared to the total domain of analysis and 

thus the sources may be considered as filamentary in nature. 
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2.2 The Scalar Potential Equation 

(4) The field due to eddy currents is very small. 

There are two cases which are of interest for the terminal box analysis: 

(a) Strong eddy currents flowing on the wall surfaces of the box preventing flux pene­

tration into the iron. 

(b) Moderate currents flowing on the wall surfaces. 

2.2 The Scalar Potential Equation 

For all the current-free regions. except the current carrying conductors and the box 

walls. the vector H is irrotational. i.e. 

Y"xH=O 

Therefore. H can be written as. 

H = -V"Q 

Where 0 is the magnetic scalar potential. Making use of constitutive relation 

B = p,H 

one can write 

B = -p,(\70) 

Since the V· B is always zero. (2.2.4) can be written as 

(2.2.1) 

(2.2.2) 

(1.2.6) 

(2.2.4) 

(2.2.5) 
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2.3 Boundary Conditions 

which is a non linear La place· s equation. Basically. La place· s equation has to be solved 

in linear as well as ferromagnetic media subject to suitable boundary conditions. which 

are to be derived from the physical model of the terminal box. The first set of boundary 

conditions are those which arise due to current carrying conductors. The second set of 

boundary conditions originate from the wall surfaces and depend on the magnitude of the 

eddy currents flowing in thetn and the material properties. 

2.3 Boundary Conditions 

In the following. the boundary conditions arising due to current carrying conductors 

and those arising due to the material properties of sheet iron and the magnitude of the 

eddy currents will be discussed. 

2.3.1 Current Carrying Conductors 

lt is reasonable to assume that the current carrying conductors inside the terminal 

box are thin and infinitely long. The assumption of thinness reduces the source region in 

the domain of analysis. as these wires may be totally excluded and treated as boundary 

conditions. If it is assumed that. when balanced. three phase currents are flowing through 

the conductors. there cannot be any magnetic flux lines linking all three conductors: the 

line integral of the field must vanish 

f H ·ds = 0 (2.3.1.1) 

around any path which encloses either all three conductors or none. 

The scalar potential is definable for the whole region provided that suitable cuts are 

established which prevent a circuit from being closed in such a manner as to link a current. 
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2.3 Boundary Conditions 

Fig 2.1 depicts three conductors carrying three phase balanced currents. The lines joining 

the middle conductor with the one on the left and the other on the right are the imaginary 

barriers. Thus. at points lying on either side and infinitely close to the barrier. the values 

of Q differ by the current enclosed. I. There is thus a discontinuity in the potential which 

is defined as 

(2.3.1.2) 

2.3.2 Heavy Eddy Currents Flowing on the Walls 

If strong eddy currents flow on the metal parts of the terminal box. the surface eddy 

currents will prevent flux penetration into the metal. Heavy eddy currents also imply that 

the conductivity of the walls is very high and that the walls form Neumann boundaries for 

the scalar potential. i.e the field is tangential. The mathematical description of this case 

in terms of field quantities would be 

(a) H and B are zero inside the iron. 

(b) H = VQ 

(c) J 5 = n x H = -n x: VQ 

(d) The normal component of B should be zero. i.e .. 

Le. 

n · B = n · VQ = 0 

an =O 
an 

(2.3.2.1) 

(2.3.2.2) 

39 



2.3 Boundary Conditions 
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Figure 2.1 Terminals with the barrier 
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2.3 Boundary Conditions 

This interface condition is implemented as .. a natural boundary condition in the finite 

element approach being used. 

2.3.3 The Walls Carry Eddy Currents of Finite Magnitude 

This is the general case which can be described as: 

(a) conductivity of iron. a is finite. 

(b) the permeability of iron. f.l-iron is very high but finite. 

(c) The first two conditions mean that: 

12 
li = ,;-- « t 

y wap, 

where li is the depth of penetration of the field and t is the thickness of the sheet. 

This assumption is necessary in order to make the eddy currents appear as surface 

currents which can be adequately treated by a scalar potential. Otherwise. the eddy currents 

will be volume currents and a scalar potential alone is not appropriate. Fig. 2.2 depicts an 

air-iron interface and the variation of n across this interface. 

(d) The tangential component of H across the interface will be given as 

n X H !air- n X H iron = Js (2.3.3.1) 

and. if H = - 'VQ. then 

n X 'VO!iron n X V'Oiair = Js (2.3.3.2) 

This condition will be satisfied on each interface. 

(e) Similarly. the normal component of B should also be continuous 
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2.4 Element Matrices for Sheet Elements 

n · Blair n · B 1 iron 

I.e. 

n · ~o V"Oiair = n ·~iron V"Q !iron 

or. 
ao. 
Jn ;air _ ~iron 

.JO: II · r-air ;rn:zron 

(2.3.3.3) 

2.4 Element Matrices for Sheet Elements 

Triangular prisms have been referred to as sheet elements. as these are convenient 

for modelling thin sheets or walls. In this section. the formulation for sheet elements for 

deriving the element Dirichlet matrix S and the element Metric T will be presented. The 

element matrices. 5 and T for tetrahedral elements. for the scalar Helmholtz equation are 

already reported [139) and therefore will not be derived here. Fig. 2.3 depicts a typical 

sheet element in which the surface in the x-y plane is modelled by a high order polynomial. 

and the thickness in the z direction is modelled only by first order. This is due to the fact 

that iron permeability is very high and therefore the flux is confined to the surface and does 

not penetrate in the iron. Thus. detailed modelling of the field in the direction of thickness 

is not necessary whilst the field external to iron needs to be modelled with precision. 

On a triangle of order N. the potential variation can be written in terms of 
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2.4 Element Matrices for Sheet Elements 

.'-.1 ::::: (N + 1)(N + 2)/2 (2.4.1) 

interpolation polynomials. defined as 

l'vf 

4> = L 4>kaf(x,y) (2.4.2) 
k=l 

In order to ensure the potential continuity between triangular prisms and tetrahedral 

elements. a form of potential variation similar to that of a tetrahedron is to be employed 

for the triangular prism. As discussed earlier. detailed modelling of the field is not required 

in the z direction. Interpolation functions. therefore. may be chosen to be the cartesian 

products of first order. one dimensional interpolation functions in the z direction and higher 

order. two dimensional interpolation functions for the x - y plane. defined by equation 

(2.4.2): 

2 M 
R = L L R.tkcr.f (x, y)a~ (z) (2.4.3) 

i=lk=l 

For the sake of simplicity in derivation. assume i ::::: 1 denotes the nodes on the top 

face of the elements. and i = 2 denotes the nodes on the bottom face of the elements. 

Therefore. R can be written as: 

R = L Rmcr.m(x, y, z) (2.4.4) 
m 

where. for m:.::.; M: 

and. for m > M: 

(2.4.5) 
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Figure 2.3 A Triangular Prism 
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2.4 Element Matrices for Sheet Elements 

The element Dirichlet matnx 5 for the triangular prism element is obtained by evaluating 

(2.4.6) 

If i - j are considered to be one dimensional. and m - n to be two dimensional 

indices then. with the help of (2.4.3). si:) can be expanded as: 

(2.4.7) 

Here. the differential dS refers to the plane of the triangular element and dz is the line 

element in the direction of the thickness. The gradient operator in eq~ation (2.4. 7). should 

be considered to operate on the x-y plane only. If integration is performed using simplex 

coordinates. the integrands finally reduce to 

Sk(
3
1

) = tT(l) s}J~ + AS(1)TJ1J 
LJ . t} 

(2.4.8) 

where 

(2.4.9) 

and. 

(2.4.10) 
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are the Dirichlet. matrix and the Metric for a triangular element. whose area is A. Also. 

(1) -! aa} aa} S .. - --dz 
t] l az az (2.4.11) 

and 

(2.4.12) 

are the Dirichlet and Metric matrices for a line element. where t is the distance between 

two nodes. In this case. it is the thickness of the sheet elements. 

Similarly, Metric for a triangular prism is obtained using the same product functions: 

which can be simplified by using (2.4.10) and (2.4.12) to 

(2.4.13) 

where V = tA. is the volume of the triangular prism. 

2.5 Treatment of the Sheet Edges 

The accurate accounting of the flux passing through the sheet edges requires a special 

numerical treatment. Fig. 2.4. illustrates the situation where sheet elements and tetrahedra 

form an interface. The nodes 1. 2 and 3. 4 belong to different tetrahedra which have been 
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Figure 2.4 Treatment of Sheet Edges 
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2.5 Treatment of the Sheet Edges 

chosen to model the air: .and the nodes 5. 6 belong to the sheet element. Since the sheet is 

very thin when compared to the other lateral dimensions. very little flux will enter through 

the edges as most of the flux entering the sheet will either come from above or below the 

sheet. The small flux which passes through the edges. means a very small scalar potential 

difference between the nodes 5 and 6. The difference in potential is small enough that 

these nodes can be treated as being the same potential. i.e. no flux is allowed to pass 

through the edges. Thus. all the nodes inside the square in figure 2.4 will have the same 

scalar potential. i.e. these nodes are magnetically equal but geometrically different. 

Alternatively. the sheet edges can also be treated numerically by grading the finite 

element mesh around the edges. This method of treating the edges has the advantage 

of simplicity. and can allow for cases where long edges are alone or where two or three 

edges are joined together. as in the case of a terminal box. In cases where there may be 

an unknown amount of flux passing through the edges. mesh grading is the only possible 

choice available to account for it. The mesh grading approach. however. is not that simple 

to implement in three dimensions. as it can introduce a considerable number of elements 

in all the three coordinate directions. extending up to the boundaries. 
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Chapter 3 

Mesh Generation 

3.1 Introduction 

Application of the finite element method in magnetics is extensive and well developed. 

Although the computational efficiency of general finite element programs has steadily im­

proved over the past years. the time consuming and error prone process of accurate data 

preparation is still a burden for most finite element users. For this reason. a great deal of 

effort has been expended in the development of finite element pre-processing systems. 

lt is a fact that growth in pre-processing systems has been largely due to the fast 

technological developments in the field of interactive graphics. starting from refresh vector 

graphics to the present state of raster graphics. The use of raster graphics in pre-processing 

systems has helped convert the operation of geometric modelling and discretization from 

manual to semi-automatic. Also. graphics echo is used for error checking. thereby sim­

plifying the coding. The emphasis has always been to minimize the manual input in the 

modelling phase. making the system as automatic as possible. Currently the mesh gen­

eration in 2D systems (e.g. MagNet-11 (100]. PE2D [120]. FLUX [134] etc.) is almost 

automatic, and manual input is required only for the boundaries of the geometries. 
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3.1 Introduction 

Whilst geometric modelling and mesh generation have matured relatively in two dimen­

sions. they are still under development in three dimensions. Recent developments in 30 

modelling have been attributed largely to the current advances in display systems which 

have resulted from the use of powerful microprocessors (National 32016. Motorola 68000. 

etc.). high capacity disks. and custom designed VLSI chips. Incorporation of these develop­

ments has resulted in intelligent raster display terminals which have hi~Jh resolution colour 

screens. multiple bit-planes and colour maps and allow display of lines in different styles. 

These developments. though they have enabled two dimensional pre-processors to be 

established on a strong footing. do not provide enough help in three dimensional pre­

processor development. The mathematics behind 30 transformations such as scaling. 

translation. and rotation about arbitrary axes using matrix methods have been known for 

many years. On 20 displays. these transformations are performed by software. so that 

when a view of 30 model is altered. its 20 projection must be recomputed a.nd retransmitted 

to the display. This process takes many seconds and as a result rules out any hope of 

real-time rotations as a useful aid to visualization. However. some newer displays provide 

this functionality in the terminal itself. If many rotations and translations are involved. 

some information is also lost and then the display and its interpretation become difficult. 

Real progress in three dimensional modelling will only be possible if problems involved with 

the input/ output images of 30 bodies are solved. both at the hardware and the software 

levels. 

The pre-processor. in essence, consists of two distinct phases. In the first phase. a 

model is created which defines to an appropriate accuracy the shape or the geometry of the 

component to be analyzed whilst the second phase creates a suitable finite element mesh. 

Ideally. these two phases should be independent in the sense that the model should be 

allowed to be manipulated. edited. and adjusted before the discretization process begins. 
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3 2 Desirable Features of an Automatic Mesh Generator 

However. in many systems. these two operations have been combined into one. 

3.2 Desirable Features of an Automatic Mesh Generator 

Features desired in an automatic mesh generator can be summarized as: 

(1) Precise modelling of the geometry: the meshing should not introduce any error 

beyond discretization error in the finite element model. 

(2) Good matching between the interior mesh and the information on the mesh bound­

ary: the interior of the mesh should reflect the boundary curvature and the node 

spacings: this facilitates the control of shapes of the elements and mesh refinement. 

if required. 

(3) Minimal manual input: this will reduce the time and the effort required to obtain 

a finite element solution and. therefore. the cost of the solution: at the same time 

chances of human error will also be reduced. 

(4) Topological properties: the mesh generator should be capable of handling a broad 

range of geometric topologies without imposing any restrictions on the topology 

of the mesh within a region. The element connectivities should also be created by 

the mesh generator without any user intervention. 

(5) Favourable element shapes: the elements created by the mesh generator should 

have good aspect ratios: ill-shaped elements contribute to the ill-conditioning of 

the coefficient matrix and thus instability. 

(6) Ordered database: the numbering of the nodes and elements within the model 

should be such that it will result in a lower bandwidth, frontwidth. and profile of 
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3.3 Mesh Generation Techniques in Structural Mechanics 

the coefficient matFix. These features are necessary for reducing the cost of the 

solution of equat1ons. 

(7) Response time: the mesh generator should provide reasonably fast response time. 

(8) Resource optimization: the method of mesh generation should optimize the use of 

computer resources. so that the expenses involved in the input data preparation 

can be minimized. 

3.3 Mesh Generation Techniques in Structural Mechanics 

For over fifteen years investigators have been developing mesh generation techniques 

and designing finite element pre-processing systems to reduce the effort required in pro­

ducing finite element models. Although these efforts have reduced drastically the cost of . 

generating a finite element model. there are still major efforts underway which are concerned 

both with developing flexible three dimensional mesh generators for use in interactive pre­

processing. and in integrating these procedures with CAD systems. Currently available 

mesh generators both in 2D and 3D can be classified as employing one or more of the 

following techniques: 

1. Automatic triangulation 

2. Coordinate transformations 

3. Smoothing procedures 

4. Blending functions 

Although some mesh generating techniques are generally better than others. none have 

proven superior or entirely satisfactory for a broad range of applications. 
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3.3 Mesh Generation Techniques in Structural Mechanics 

Coordinate transformations and blending function techniques are currently very popular 

because of their ability to produce well conditioned meshes. The most popular transfor-

mation technique is based on the isoparametric coordinate concept [179]. lsoparametric 

mappings require that each side be represented as a specific order polynomial and that op­

posite sides have an equal number of node points. Some of the restrictions can be relaxed 

by using the Schwarz-Christoffel transformation [16]. 

Much of the current emphasis in the development of mesh generating techniques is 

on the use of bl~nding functions in the form of transfinite mappings [69]. [64]. [10]. [70]. 

This is a family of methods. useful for the approximation of complex surfaces and volumes. 

which describes an approximate surface that matches a true surface at all points lying on 

a series of interpolation curves that are embedded in the true surface. These methods 

do suffer from general restrictions of a fixed number of regions and equal number of node . 
points on opposite sides. but the definition of what constitutes a region side is much 

less restrictive than for the isoparametric mapping approach. These mesh generators have 

proven extremely effective in interactive graphic pre-processors. 

Smoothing procedures (72]. [94] are normally used in conjunction with one of the other 

techniques to improve the shape of the elements by repositioning the nodal locations within 

the mesh generated by that technique. 

The only approaches that show any promise of automatically generating a mesh for 

any geometry are the automatic triangulation techniques (20]. [32]. [135]. [161 ]. Although 

algorithms based on this approach have been developed that will work for general two 

dimensional shapes. they have not proven popular because they often produce ill-conditioned 

meshes and. in many cases. still require a substantial amount of user input. Recently. 

Coulomb et al. (43] and Cendes and Shenton [35] have successfully implemented this 

'Delaunay Triangulation' technique for meshing three dimensional domains in magnetics. 
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3.4 3D Mesh Generators 

Although there are several different approaches used in the automatic triangulation 

algorithms. there are basically two different classes [161) and [135) that have proven popular 

in the literature. In both classes the boundary of the domain is discretized by placing nodes 

along the boundary curves. From that point on one technique triangulates by using the 

boundary polygon and cutting off sharp corners. Selected points on the boundary are 

replaced with new ones on the interior near the replaced point. Each of the areas removed 

are one or more triangular shape and are stored as elements. One such approach first 

removes each vertex of the polygon with an angle less than 90 degrees. thus creating an 

element for each vertex removed. After all those vertices are removed. the ones with angles 

less than 180 degrees are replaced by the introduction of new nodes placed in the interior 

based on the coordinates of the removed node and its· two neighbours. The area removed 

is then broken into two triangular elements. If this step creates any vertices less than 90 

degrees. the vertices are immediately removed. The process of introducing new nodes and 

cutting vertices is continued until three points remain in the polygon which then defines 

the last element. 

In the other technique. additional interior information is incorporated into the trian­

gulation procedure. For example. Bykat's algorithm f20) first breaks the domain of inter­

est into simple convex subregions and then triangulates those subregions into elements. 

Cavendish's algorithm (32). on the other hand. places node points throughout the inte­

rior of the domain and then proceeds to triangulate the domain using the boundary nodes. 

These algorithms could be classified as an outside-inside procedure in that they are strongly 

based on boundary information but use additional interior information. lt is common to 

apply some form of smoothing procedure with any of these algorithms to improve the shape 

of its resulting elements. 
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3.4 30 Mesh Generators 

There are a number of mesh generators. for example FEMGEN. ANSYS. CALMA. 

NISA. PATRAN-G. MOVIE. SUPERSAP. MENTAT. PADDY. and SCARPIA which are 

commercially available and have been developed primarily for use in mechanics. with the 

exception of the last tw~ which are for magnetics. Excellent reviews/descriptions of these 

are available in [9). (55J. [74]. and hence will not be repeated here. Instead. the principal 

attributes of only a few prominent ones will be summarized in table 3.1 

Even though there are many versatile mesh generators commercially available. three 

dimensional mesh generation is still an active area of research. mainly for the following 

reasons: 

(a.) to improve the communication between analyst and machine. 

(b.) to automatize triangulation of solids with well shaped elements and user controlled 

mesh densities. 

(c.) to minimize manual input. 

(d.) to make the system general purpose and simple to use. 

In the next section some of the mesh generators which are currently at the research 

level will be discussed briefly. 

3.5 Mesh Generators at the Research Level 

Some of the more recently developed three dimensional mesh generators are by Nguyen 

(119]. Perrucchio. Abel et al. (121]. Pissanetzky (124]. Bryant and Freeman [17]. [18). 

and Coulomb et al. (43). The first three were developed or are being developed for use 
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Attributes FEMGEN I Display/ Patran·G I Medusa 
1 

SCARPIA I ANSYS I 
Digit I I . 

Data Disr>lav Interactive • • • • • I • ! 

I Geometry Definition I Implicit • • • • I • l 
I 

[ Shape Description Language • • • • I i i 

/ Automatic Mesh Generation 2D • • • • . ! 

i 30 • ! • • • I • • 

D•u '"""'' "' Vlowi''l Complete Model • • • • • ' • ! 
Part of Model • • • • • I • 
Rotation etc. • • • • . 

I I 
Perspective. Isometric views • • • • I • 

Data Editing Batch • • I I 
Interactive • • • • • 

Operational on CDC • • • • 
DEC • • • 

PRIME • • • • • 
IBM • • • 

Univac • • • 
I 

Otl!er • I • • I I • : 

Table 3.1 
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in structural mechanics while the last two are intended for use in magnetics. The mesh 

generator by Nguyen is a non-interactive mesh generator developed for analyzing network 

structures. lt requires manual definition of all the nodes in the model before mesh generation 

can begin. The mesh generation procedure connects all these nodes to a continuous network 

structure consisting of tetrahedral elements. Mesh refinement is available in the form of 

splitting each tetrahedron into eight smaller tetrahedra. 

The KUBIK-system developed by Pissanetzky is also non-interactive and requires man­

ual entry of the node coordinates. lt starts by generating a set of modules (planes) and 

then the modules are linked according to the connection matrix which stores the connec­

tivities. The system uses irregular bricks. called cuboids. which in turn can be divided into 

tetrahedra or triangular prisms. A mesh refinement facility is also available. The program 

runs on IBM-360 and requires a storage of 128 Kbytes to generate a 1500 noded model. 

The mesh generator developed by Perrucchio et al. is interactive. lt uses a digitizing 

tablet and menus for the input data to reduce the manual entries from the keyboard. The 

plane cross-sectional meshes are generated by combining discrete transfinite mappings and 

cubic spline blending algorithms. These plane cross-sectional meshes are then used to 

generate a three dimensional geometry by interpolation between the cross-sections. The 

mesh is made of first order hexahedral elements and it is possible to examine the interior of 

the mesh by displaying the corresponding layer. The major limitations are that the defining 

cross-sections must be planar and must show a degree of compatibility. For non-planar 

geometries manual input of data is required. Multi-view dynamic display is also employed. 

which helps in element and node selection while editing the mesh. lt runs on a VAX 11/780 

connected with an Evans and Sutherland Picture System 2 vector display. 

Bryant and Freeman· s mesh generator is a highly interactive system which minimizes the 

input from the keyboard and is essentially an extension to 30 of interactive 20 techniques. 
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lt requires the definition of all the nodes forming the outline of the model in a plane. 

The nodes lying between two points (already defined) on a straight line or an arc can be 

generated automatically. As many planes as desired can be defined. Then two planes 

are joined to form a segment and by joining the segments. a geometry is modelled. The 

mesh can be generated using tetrahedra. pentahedra. hexahedra or their combinations. 

The hardware requirements of this system are a LSI-11/23 with a KEF-11 floating point 

processor. 128 Kwords of random access memory. two 20 cm floppy drives. a 20 Mbyte 

hard disc. a digitizing tablet. and colour graphics support. This system was considered for 

the work reported in this thesis but some difficulties were experienced whilst building the 

meshes using hexahedral bricks. lt was observed that if the model required 20 or more 

elements then it became difficult to differentiate between the already defined elements and 

the elements yet to be defined with the remaining nodes. lt is apparent that the situation 

will be worse when tetrahedra or pentahedra are used as the main elements in constructing 

the complex models. This situation is not unique to this particular generator but is inherent 

to any highly interactive system and is caused by the limitations of 2D graphics displays. 

Coulomb et al. have proposed two solutions for 3D automatic mesh generation. One is 

a parameterized topological mesh generator and the other is an automatic mesh generator 

with tetrahedral elements which can also be parameterized. Their second mesh generator is 

better suited for general applications and the ideas behind it can be summarized as follows: 

1. Define the domain by parameters and geometric points. 

2. Apply Delaunay triangulation over all the points. 

3. If the geometry consists of topologically different parts. then model them separately. 

4. Apply a coarse triangulation and then group them together. 

5. Generate elements. 

6. Finally, regularize and refine the mesh. 
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3.6 Need For Developing A Mesh Generator 

The mesh generator used in this thesis has been developed out of a necessity to over­

come the complexity and generality of available systems. lt was primarily developed for 

modelling the turbogenerator terminal box and the surrounding air space. While investi­

gating the possibility of using one of the existing, commercially available three dimensional 

mesh generators. the following limitations needed consideration: 

(1) Most of the mesh generators which are capable of accomplishing the task can only 

run on main-frame or super minicomputers. 

(2) Some packages require system dependent software which makes them untrans­

portable. 

(3) Most of the packages require dedicated machines and special graphics hardware. 

(4) The cost of leasing or buying these software packages is high. 

(5) Some of the packages may cause heavy system loading. 

These considerations had a significant impact on the decision to develop a new mesh 

generator having the following desirable attributes: 

(i) is simple to use. 

(ii) runs on small machines. 

(iii) has primitive graphics. 

( iv) is portable. 

(v) is not costly to run. 
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3.6.1 Choice of Elements 

The mesh generator developed for this thesis is capable of modelling relatively com­

plicated geometrical domains. including the terminal box. and has features required by the 

potential formulation chosen. such as creation of potential barriers. etc. The main restric­

tion on the mesh generator. however. is that it be capable of running orr machines with 

relatively limited address spaces. 

Irregular bricks were chosen as the basic building blocks because they offer simplicity in 

modelling. while simultaneously handling complicated boundary shapes providing relatively 

uncluttered displays. In addition. these bricks can be divided easily into tetrahedral elements 

which have faster glgbal matrix assembly times. 

The second important reason for choosing hexahedral bricks as basic building blocks 

is that they can easily be divided into triangular prisms. Triangular prisms are ideally 

suited for modelling walls or thin sheets of high permeability ferromagnetic materials often 

encountered when electromagnetic devices are analyzed. In the analysis of the terminal 

box. the walls forming the box were modelled using triangular prisms. 

3.6.2 Mesh Generation Philosophy and Distinct Features 

Geometries of most electromagnetic devices possess irregularities in one direction or 

another and cannot be modelled adequately using regular hexahedral bricks. In fact. they 

require a mesh generator which can model irregular shapes. Therefore. a mesh generator 

using irregular bricks has been developed as an extension of one based on regular bricks 

[54]. The developed system is an interactive. semi-automatic mesh generator developed to 
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run on small machines of limited memory. i.e. machines with 32Kbyte to 1/2 Megabyte of 

memory. 

The model is constructed from hexahedral bricks of regular or irregular shape. Each 

brick lives within a three dimensional lattice and may be described by joining together two 

dimensional slices through the lattice. Once a basic set of bricks has been created. the user 

is allowed to refine interactively the mesh wit~in any brick by creating smaller bricks. the 

only rule being that the subdivision on adjacent faces of large bricks must match. Finally. 

when the mesh is complete. an automatic mesh generator is used to create six second order 

tetrahedra within each hexahedron. The subdivision into six tetrahedra per hexahedron was 

chosen. rather than the minimum set of five. because of the simplicity in matching cuts 

along adjacent hexahedron faces. 

The task of generating complex models has been simplified by modelling each topolog­

ically different part of the geometry separately and then discretizing them into tetrahedra 

using the condition that the adjoining faces should be compatible with each other. The 

facility of interactive display of the geometry on a user defined arbitrary cut plane provides 

a visual response of the mesh and is a powerful tool for checking the validity of the mesh. 

After each part has been discretized and checked by displaying one or several cross­

sections. all the parts can be automatically grouped together to produce the combined 

database for the entire model. Once again the user can check the mesh by taking slices on 

arbitrary planes and displaying them. Thus. overlapping elements or ill-shaped elements 

can often be visually detected. Generating the mesh separately for topologically different 

parts not only assures a valid mesh at the end but also makes the task of localized editing 

much easier and faster as the database involved is kept small. In addition. the system 

response time is improved by generating and editing the individual parts separately. 
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In order to minimize input from the keyboard. the user is provided with powerful ge­

ometric operations (e.g .. copy and join ) to reduce the manual effort involved in modelling 

geometries which are repetitive or have symmetry in any or all three coordinate at a certain 

space interval. in any or all the three coordinate axes. The program can automatically 

generate the parts. join them. and finally discretize them. The only input required is the 

space interval(s) and the respective coordinate axes. 

The mesh generator offers a choice of two elements. tetrahedra or triangular prisms. 

Triangular prisms are automatically produced by cutting the hexahedral bricks into two 

triangular prisms instead of six tetrahedra. In order to keep the triangular prisms and the 

tetrahedra compatible with each other. the direction of the cut in the case of prisms is kept 

the same as in the case of tetrahedra. 

The Fig. 3.1 depicts the cutting of one hexahedral brick into six tetrahedra: Figs. 3.2 

and 3.3 show. respectively. the division of hexahedra into subhexahedra and the direction 

of cuts. Some of the geometries which have been modelled using this program are shown 

in figures 3.4 and 3.5. 

3.6.3 System Requirements 

This mesh generator requires a LSI-11/23 with 32Kbyte of memory, an alphanumeric 

keyboard, a graphics support (bla~k and white or colour) and two 20 cm floppy disk drives. 

The program has been written in standard Fortran and also runs on Perq and VAX com­

puters. No digitizing tablet is required. 

3.6.4 Input/Output Features (Data Structures) 

The x. y. and z coordinates of the eight vertices in each hexahedron are required if the 
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Figure 3.1 Subdivision of one hexahedron into six tetrahedron 
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Figure 3.2 Division of a hexahedron into subhexahedra 
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Figure 3.3 Direction of cuts 
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Figure 3.4 A discretized model 
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Figure 3.5 Model with hidden lines removed 
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brick is of irregular shape: only four need be given if it is of regular shape as input via the 

keyboard. Also required are the number of subdivisions (subhexahedra) along each axis 

and an alphabetic character to identify the material property of the element involved. The 

program generates two output files. the first contains the node numbers of each tetrahedron 

sequentially. element by ~lement. along with the label specifying the material property of the 

element. The other file stores the x. y. and z coordinates of each node listed sequentially. 

in increasing order of their numbers. 

3.6.5 Memory and CPU Time Requirements 

The memory requirements for carrying out the triangulation. i.e. the division of each 

hexahedron into subhexahedra and then the subsequent division of subhexahedra into tetra­

hedra. is O(n3). where n is the number of subdivisions along each axis. Other memory 

requirements are dependent on the number of nodes (N) the model will have. Three real 

vectors are required to store the x. y and z coordinate values associated with each node. 

In addition. a pointer vector of length {lv:, 4) is required to store the node label and three 

pointers to the locations of x. y. and z coordinate values in the database. 

In order to have a fast response time while building fairly large models (limited only by 

machine memory). the choice of suitable data structures becomes critical. The approach 

used in this mesh generator is that of an octal tree for maintaining the node coordinate 

lists. The octal tree is. essentially. a development of the data structures used in some of the 

two dimensional mesh generators. The geometric database is kept in an extremely ordered 

fashion such that all searches for nodes may run in approximately 'binary' (nlogn) time. 

Thus. the geometric modeller provides fast access to any particular node and the system 

is node dependent rather than element dependent. This approach has another advantage 
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in that the entire node list need not be in memory at any one time. This gain in memory 

requirement can be used for modelling larger problems. 

3. 7 Practical Experience 

The method of mesh building in the new mesh generator is by synthesis. i.e. the entire 

solid is modelled by filling in the elements one by one. This approach is currently prevalent 

in most of the two dimensional and some of the three dimensional mesh generators. e.g. 

KUBIK. SCARPIA. and the mesh generator developed by Bryant and Freeman. One of 

the advantages of this approach is that it results in a unique mesh for the model being 

discretized. as opposed to the analytical approach in which many triangulations of the 

model are possible. 

As described earlier. in this approach first the boundaries of the model are constructed 

with hexahedral elements and then the entire region is filled with similar elements to com­

plete the model. The filling of the elements inside the boundaries is also done element by 

element. While filling these blocks in presence of several other blocks. care has to be taken 

so that the faces or sides common to other blocks match in space. 

Experience with the mesh generator suggests that it is preferable to work with a few 

larger blocks rather than many smaller blocks - if the bigger blocks in no way affect the 

shape of the boundaries - and then subdivide the bigger blocks in as many smaller blocks as 

desired. Following this procedure. relatively large and complex models can be built quickly. 

While there is no restriction on the size of the blocks it is preferable. however. that the 

ratios of lengths in all the three coordinate axes be as close to unity as possible to prevent 

generation of deformed tetrahedra when the blocks are subdivided. 
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3.8 limitations 

Simple geometries which do not involve cylindrical or curved surfaces can be very 

well treated by the mesh generator with minimum input. But should they involve such 

surfaces, a considerably large number of blocks may be required to model the curves or 

the circumference with piecewise linear segments and the manual input may then become 

large. The interesting point is that it can be done. 

The use of interactive graphics is not extensive and. in fact. can be totally dispensed 

with if desired. Graphics come into play only if the finished model or a cross-section of it is 

to be displayed for error checking or for some other reason. The total independence from 

the graphics hardware and the ability to run on small machines makes it a remarkably low 

cost system. 

Using this mesh generator. a variety of topologically different models consisting of 120 

to 12000 elements have been built. The most complex model built was that of a terminal 

box which had 11772 elements and 3010 nodes. lt took at least 36 hours to build such 

a model. which includes manual data preparation and feeding of data into the computer. 

Models which are relatively simple or possess symmetries can be built in a few hours. 

3.8 limitations 

Although the mesh generator provides a low cost approach to three dimensional mesh 

generation of relatively complex models. it does have some limitations. 

The main limitation of the system is that once the number of subdivisions in each of the 

coordinate axes for the principal hexahedra are decided. the same number of subdivisions 

are to be kept in adjoining hexahedra and. as a consequence. it becomes difficult to choose 

different discretization densities at different regions in the same model. At times this 

restriction leads to a large number of elements in the model. 
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Chapter 4 

Element Reordering For Frontal Solutions 

The frontal method is usually associated with direct methods for solving large sparse 

systems of linear algebraic equations with symmetric positive definite coefficient matrices. 

The advantage of the frontal method is that it allows the solution of such problems with 

a minimum of computer memory and. as a result. fairly large problems can be solved on 

machines with limited address spaces. In the following section a brief description of the 

frontal method will be given; more details are available elsewhere (76]. 

4.1 The Frontal Method 

The frontal method is considered to be the most natural solution scheme. since it 

operates directly on the underlying structure of the finite element mesh. With this approach. 

the finite elements are assembled and entered into the solution one at a time. A nodal 

variable is eliminated as soon as all the neighbouring finite elements connected to it are 

available. The remaining. partially assembled nodal variables which are not yet ready for 

elimination are retained in the 'front'. Fig. 4.1 illustrates a typical situation while a problem 

is being solved using the frontal procedure. lt is customary to divide all the nodal variables 

into three parts: 

xd: Those variables which are already decomposed. 
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Figure 4.2 The Quadrilateral Mesh 
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0 

Elements Active Variables Eliminated Variables Not 

:Assembled Variables Yet Processed 

X a xd X 

1 1.2.5.6 1 
. I 

3.4.7.8.9.10.11.12.13.14.15.16 : 

2 2.3.5.6.7 1.2 4.8. 9.10.11.12.13.14.15.16 

3 3.5.6.7.19.11 I 1.2 4.8.9.12.13.14.15.16 

4 3.7.10.11.9.6.5 1.2.5.6 4.8.12.13.14.15.16 

5 3.4.7.8.9.10.11 1.2.3.4.5.6 12.13.14.15.16 

6 7.8.9.10.11.12 1.2.3.4.5.6.7.8 13.14.15.16 

7 9.10.11.12.15.161 1.2.3.4.5.6. 7 .8.12.16 13.14 

8 • 9.10.11.14.15 1.2.3.4.5.6.7.8.11.12.15.16 13 

9 9.10.13.14 1.2,3,4.5.6, 7 ,8,9.10.11.12,13,14.15.16 I 

Table 4.1 Assembly and Elimination 
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xa: Those variables which are currently active and are still awaiting elimination (This 

area signifies the activity of the front). and 

x { Those variables which are not yet assembled. i.e are to be processed in future. 

There are two additional. frequently encountered terms in the context of the frontal 

method: these are the frontwidth and the destination. The frontwidth of a variable associ­

ated with a finite element mesh is defined as the total number of variables currently active. 

The last occurrence of any variable in an element is known as its destination. thus any 

variable is considered to be active only after being encountered for the first time and until 

it reaches its destination. Appendix I contains the basic definitions of the terms used in 

the context of the frontal method. 

For the sake of illustration. the method has been applied to a mesh consisting of nine 

quadrilateral elements shown in Fig. 4.2 and the details are summarized in table 4.1. 

4.2 The Need for Element Sorting 

The ordering of the nodes. which is very important for a band solver. is immaterial 

to the frontal solver. In band solvers. all the matrix entries inside a band are stored and 

operated on: the nodes. therefore. are labelled in an attempt to achieve small bandwidths. 

The efficiency of the frontal method. on the other hand. is solely dependent on the element 

ordering. since this procedure assembles the matrix elements. element by element and 

removes variables node by node. The size of the largest problem which can be solved 

depends on the frontwidth {f) of its mesh. because the minimum storage requirements for 

the element assembly are 0{!2). To be able to solve large problems. means are sought 

which can reduce the frontwidth. This becomes even more critical when frontal solutions are 

attempted on computers with restricted address spaces. Here. a solution is only possible 

if the available memory is utilized economically. 
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4.3 A Summary of Existing Methods 

There are basically two distinct approaches for renumbering elements described in the 

current literature. The first method is known as the ·direct approach· and requires that the 

elements are ordered first and the nodes subsequently. if desired. The second approach is 

known as 'indirect'. and here the nodes are renumbered first to minimize the bandwidth 

and then the elements are resequenced according to the new node numbers. 

The indirect methods. in which nodes are renumbered first to minimize the bandwidth. 

and then the elements are resequenced. draw heavily on the existing node numbering tech­

niques used with band solvers. where reduction in bandwidth and/or profile is of prime con­

cern. One of the oldest and most popular methods belonging to this class is attributable to 

Cuthill and McKee [44]. and has been modified subsequently by George [60]. Collins [41J. 

and King [86]. All these methods suffer from a weakness of being sensitive to the choice of 

a starting node. a problem which was later overcome by Gibbs. Poole and Stockmeyer [63]. 

Node renumbering techniques based on the 'graph theoretic' approach (e.g. the minimum 

degree algorithm and its variant. the nested dissection method) to reduce the profile and 

subsequent fill-in in the solution phase were pioneered by Liu and George (58]. [61]. [62). 

The earliest attempt to derive a direct procedure for minimizing the frontwidth of a 

mesh appears to be that of King. This algorithm. which has the ability to minimize the 

frontwidth and is well suited to frontal elimination. was originally developed for reordering 

the nodes in problems arising in water distribution networks. King divided the total variables 

in the mesh into four distinct groups: 

1. Those rows of the matrix which are already eliminated. 

2. Those nodes for which the equations are fully constructed and ready for elimination. 
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3. Those nodes for which the equations are partly constructed. 

4. Those nodes for which no equations are formed. 

The main goal of his algorithm was to minimize the number of nodes in group 3 by 

scanning all the nodes in group 3 for that particular node which. when eliminated. would 

add the lowest number of new active nodes in group 3 from those in group 4. From the 

context of a frontal solution it would mean that the elements belonging to nodes in group 

4 should be chosen such that the active front. i.e. stage 3. is a minimum. As mentioned 

earlier. though the method has a frontal like element sorting strategy. it was primarily 

developed for node reordering. The principal drawback of the method is that it is highly 

sensitive to the location of the starting node. 

An alternate method for resequencing finite element meshes is Levy's (91]. and was 

also origrhally developed to reorder nodes. His method has a strong resemblance to that 

of King. but is based on an expanded minimum front-growth criteria. When searching for 

the next node to be renumbered at each stage. all nodes which have yet to be renumbered 

are considered. whereas in King's method nodes are considered for possible renumbering 

only if they are currently in the front. As a result. Levy's method is slower than that of 

King and also shares the weakness of being unable to select the starting node. 

Akin and Pardue [3] described two algorithms. one direct. the other indirect. in their 

paper. The procedure begins by identifying an element of minimum degree ( i.e. having a 

minimum number of elements connected to it) and this is numbered first. The elements 

adjoining this element are then numbered in increasing order of their current degrees. Then. 

for each numbered element. the adjoining elements are searched using a criterion based on 

first renumbering the nodes by a Cuthiii-McKee algorithm [44] followed by an element 

resequencing based on the concept of element degrees. 
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Liu's [93] method of element resequencing relies on minimizing the 'edge-front'. which 

is defined as the set of edges connecting the renumbered and un-numbered nodes. based 

on the 'dual-graph'. In a dual-graph. each element is represented by a node. and two nodes 

are considered connected by an edge if two elements have one side in common. The direct 

strategies of Liu and Akin and Pardue require that the entire element and node lists be 

stored in core so that adjacency lists can be generated. Thus a heavy demand is placed on 

the available memory. 

Bykat [21] orders the elements according to a procedure very similar to that of the 

Cuthiii-McKee algorithm. resulting in a renumbering scheme which proceeds in a layer by 

layer fashion. Bykat chooses. as the next element for assembly. that which has the greatest 

number of neighbouring elements already assembled. starting with those having more nodes 

in the front. The first element is chosen as the one with the smallest number of neighbours. 

An alternate approach to resequencing elements has been described by Pina [123]. His 

theory is based on a minimum front growth principle. but has a provision for searching 

ahead which is mainly useful for higher order elements. The method also has problems in 

selecting a starting node. 

More recently. Fenves and Law (53] have come up with a strategy which they call ·a 

two step approach'. Their scheme involves ordering of the finite elements by first using the 

Cuthiii-McKee algorithm and then renumbering the nodes. element by element. according 

to decreasing order of their valency. defined as the number of elements incident on that 

node. After the nodes are renumbered. the node ordering is reversed. The object behind 

this scheme is that the nodes with the lowest valency will be eliminated first. The algorithm 

needs the full element and node sets in core to produce the adjacency list and the starting 

node must be specified. 
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One of the more prominent indirect methods. which recently came to the fore. is that of 

Razzaque [127]. which first renumbers the node for bandwidth minimization using either the 

Collins or Grooms [65] algorithms (which are essentially Cuthiii-McKee like methods) then 

reorders the elements in ascending order of their lowest numbered nodes. More recently. 

another version has been expounded by Sloan and Randolph [150). where the nodes are 

renumbered using a modified King's algorithm. and the elements are then renumbered using 

the same strategy as Razzaque' s. 

Since indirect methods use node numbering first. either by Cuthiii-McKee or similar 

techniques. they do not quite match with the frontal concept. as the reordering phase 

alone needs the entire node and element lists in core. Direct methods. however. do have 

the potential of producing element renumbering algorithms in a true frontal fashion but. 

surprisingly. were not investigated from a memory economy point of view until recently. 

Auda [4]. in 1981. developed an algorithm for constructing .an element level structure 

of maximum depth within frontal storage limitations as the number of memory resident 

elements at any stage were proportional to the active variables in the frontal procedure. 

The algorithm needs O(m2 N 2) comparisons to complete the first iteration. where m and 

N are respectively the number of nodes per element and total number of elements in the 
. 2 

mesh. The storage requirements are of O(.JiV) for two dimensional. and O(N3) for three 

dimensional meshes. The algorithm. hereinafter referred to as the SAS algorithm. was later 

modified [141] to reduce the number of disk accesses at the cost of more memory. since 

the time spent in input-output operations involving three sequential files tended to be long. 

4.3.1 Comments on the SAS Algorithm 

The SAS algorithm. which is related to both the minimum degree algorithm and the 

Cuthiii-McKee method for renumbering the nodes. was developed to resequence the ele-
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ments within the frontal frame-work so as to reduce the frontwidth. The algorithm was 

tested on several topologically different two dimensional models consisting of between 128 

and 1024 first order triangular elements. The examination of the performance results leads 

to the following conclusions: 

(a) The algorithm performs poorly in reducing the frontwidth. In almost 70 percent 

of the cases there is either an increase in the frontwidth from the original. or no 

improvement. or only a marginal improvement. 

(b) The algorithm is very sensitive to the starting element. 

(c) The algorithm reduces both the bandwidth and the profile remarkably. 

(d) At least two or more iterations are required. 

These conclusions provided the major motivation for developing a new algorithm which 

is capable of alleviating some or all of the shortcomings involved. whilst at the same time 

operating in the frontal framework of restricted space requirements. In the next sections. 

the new algorithm will be discussed. and its performance will be compared with that of 

SAS. 

4.4 The New Method 

The frontal solver has often been referred to as the ·natural' way of solving finite 

element equations. On the same basis. the new method can be described as a ·natural' 

approach to element renumbering. In this algorithm. the resequencing of elements is done 

using a theory similar to that of the Gaussian elimination algorithm. in which equations are 

eliminated one by one. Along the same lines. element reordering can proceed by sorting and 

arranging the elements as a group for each node as it occurs in a natural fashion. The nodes 
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are then eliminated one by one in the same natural order in the assembly and elimination 

phase. This procedure has two distinct advantages: one. there is no need to renumber 

separately the nodes. as the first node to be eliminated can be renumbered immediately 

as number one and so on in increasing order: second. the task of destination allotment for 

every node is complete when the last element sharing this node is sorted out. This is a 

better way of handling destination allotment than the approach used in [4}. where all the 

elements in a level defined as a superelement have the same destination. which means that 

all the nodes in the superelement will be eliminated simultaneously; a procedure which is 

in direct contrast to the frontal spirit. 

As the new algorithm automatically renumbers the nodes while sorting the elements. 

both the element sorting and node sorting are completed in one pass. The numerical 

results. reported in the sections to follow. confirm that this procedure leads to consider­

able reductions in both the frontwidths and the bandwidths. However. in the absence of 

any optimal element and node sorting algorithm. definite conclusions regarding absolute 

minimality cannot be established. 

4.4.1 The Algorithm 

The new element and node resequencing algorithm can be described as follows: 

N = Number of elements. 

M = Number of nodes. 

m = Nodes per element. 

A = Integer pointer array. 

E = Input file containing element lists. 

P = Output file containing element lists. 
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Allnodes = Vector storing the nodes as they occur. 

FW = Frontwidth 

S = Nodes which can be eliminated. 

mp = Number of nodes. which have destinations lower than the current node. 

nodelabel = Array into which the input is read. 

fwm = Minimum frontwidth. 

step = 1: 

Initialize A=O: P=O: 5=0: FW=O: Allnodes=O: 

P = {firstelement} 

step 2: 

S :={Empty}: mp := 0: 

BEGIN 

FOR k : = 1 to m D 0 

in := nodelabel (k) 

step 3: 

step 4: 

BEGIN 

ij(in ~ Allnodes) THEN Allnodes := Allnodes +in: 

FOR j := 1 to N DO 

if(j i A.) THEN 

BEGIN 

FOR i := 1 to m DO 

if(in E E(j,i)) A :=A+ j; 

p := P+j: 

END 
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FOR I := j to N DO 

FOR 11 : = 1 to m DO 

if(in i E(t.ll)) THEN S := S + 1: 

mp := mp + 1: 

END 

step 5: 

ifS:= {Empty} THEN Compute FW 

ELSE 

BEGIN 

FOR i := 1 to mp DO 

fwm:= min!FWI 

END 

UNTIL { P = E}: 

END. 

4.4 The New Method 
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4.4.2 Comments on the Algorithm 

The algorithm presented in the last section is simple and self explanatory. However. in 

order to enhance the readability and understanding. a brief description seems necessary. 

In step 1. all the variables are initialized and the first element is read. The first node of 

the node-list is chosen as the starting node. In step 2. all the elements of E are searched 

and those elements sharing the starting node are read into main memory. All the nodes of 

the node-list are transferred to the vector Allnodes and the first element is written to the 

output file P. In step 3 pointer vector A is updated and the elements sharing the common 

node are written onto P. In step 4. E is searched to find out if other nodes which belong to 

elements in the core occur for the last time. The search for a node is discontinued upon 

the first encounter of an element containing the node being searched for. The search effort 

is saved in a pointer vector A. which stores this element number. The same procedure is 

repeated for all the remaining nodes of the element. If there is more than one node which 

is occurring for the last time. i-.e. has a destination lower than the first node. then these 

nodes are sorted out according to their frontwidths in step 5. The nodes are arranged 

according to ascending frontwidths. i.e. the node contributing a minimum to the front is 

numbered first. 

In an element for which there are no nodes occurring for the last time. the node being 

checked is renumbered in the usual way; its frontwidth is determined and the last element 

sharing this node is tagged. Also. in order to keep the growth of the front low. the elements 

in core are resequenced according to increasing order of their highest numbered node. 

4.4.3 Memory and Time Requirements 

One of the best features of this algorithm is that at any one time only the element list 

corresponding to one node is in core. Unlike the SAS algorithm. in which a level structure 
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of maximal depth is constructed. with a memory size of 0{ JN) for two dimensional and 
2 

O(N3) for three dimensional meshes. the memory requirements of the present algorithm 

are O(k) for constructing an element level-structure for one node where k < < N. and 

depends on the mesh topology and the order of the elements. 

A bound on k can be arrived at easily by considering the fact that an algorithm based 
1 2 

on constructing O(Nl) numbers of level structures each comprising of O(Nl) requires 
2 

O(N 3') main memory; a similar algorithm. therefore. based on constructing N level struc-

tures will need 0(1) storage locations. Supposing M and N are to be of the same or.der 

for first order elements. then the number k is 0{1). Thus savings in space are resulting 

not only due to working with O(k) spaces. but also due to the fact that no adjacency or 

linked lists are generated. 

Two working vectors. each of length M. are needed to accomplish the task of node 

numbering at the same time as the element numbering is in progress. The disk storage is 

required for E and P is mN integer words each. 

The time requirements of the algorithm are O(mN1\1'} as these are the total number 

of operations executed in the sorting. In addition. time is required for accessing the input 

and output files. Therefore. the execution time can be longer due to a large number of disk 

accesses. A great reduction in 1/0 time is possible. however if large part of the database 

is brought into the core depending on the availability of the core while sorting. 

The algorithm is primarily written for small computer systems where the main storage is 

always a major restriction. This restriction can only be overcome at the cost of execution 

time, as the exploitation of one generally contributes to the deterioration of the other. 

Therefore. a possibility of slower execution for large models is inherent in the algorithm. 
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4.4.4 Data Structures 

The input file to the element sorting routines is a direct access file. Each record in the 

file contains two alphabetic characters and the node labels belonging to this element. The 

first character is reserved for specifying the material property and the other for identifying 

the element type. There are as many records as there are elements in the model. 

The output file produced by the new algorithm has essentially the same structure. with 

the exception that each node is now either followed by a blank or a · *.. The · *' indicates 

that this node occurs for the last time in this element. In the matrix assembly routine. 

the · *' will indicate that this row can be decomposed. as soon as the current element is 

assembled. Typical input and output records are shown below: 

:A IT 1 

N(1) I N(2) J N(3) J I N(m) :· 

Figure 4.3 Data Structure-Input file 

I A I T I N(1) i C(1) i N(m) I 1 C(m) 1 

Figure 4.4 Data Structure- Output File 

4.5 Numerical Experiments 

In order to evaluate the performance of the new algorithm. a series of numerical exper­

iments were performed on meshes which were different in both topology and size. The six 

topologically different models used in the evaluation process were a square. a square with 

a hole in the middle. an U-shape. a L-shape. a '+'-shape and an H-shape. These shapes. 
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shown in Figs. 4.5-4.10. were chosen because they were easy to construct using the mesh 

generator described in Chapter Ill. 

All six models were then used to compare the SAS algorithm and the new algorithm with 

regard to the frontwidths determined by each of them. In tables 4.2 and 4.3. the original 

statistics. i.e. before element sorting. are given. Both algorithms were tried with different 

starting nodes and the resulting frontwidths were recorded. The results are summarized in 

tables 4.4 and 4.9. After establishing that the new algorithm performs better than the SAS 

algorithm in returning the minimum frontwidth. several larger models were constructed. 

The topological structures of the models were kept the same as the smaller ones. The 

parameters monitored were. (a} the bandwidth. (b) the frontwidth. (c) the root mean square 

frontwidth. (d) the profile and (e) the number of comparisons required to resequence the 

elements. Both first order and second order elements were used. All the results on each 

of the models are presented in tables 4.10-4.21. 

For the sake of convenience. the numerical experiments were performed on a VAX-

11 /780 computer and had to be run as batch jobs under lowest priority. As a result. 

accurate monitoring of the execution time became difficult. 
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4.5 Numerical Experiments 
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0 
Figure 4.5 Model Square 
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4.5 Numerical Experiments 

0 
Figure 4.6 Model Square with Hole 
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4.5 Numerical· Experiments 
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Figure 4. 7 Model U-Shape 
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4.5 Numerical Experiments 
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Figure 4.8 Model l-Shape 
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Figure 4.9 Model '+'-Shape 
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Figure 4.10 Model H-Shape 

94 



0 

i 
I 

: 

4.5 Numerical Experiments 

Model Elements Nodes I Nodes Per Frontwidth 1 

I ' 
i Element 

Square 294 128 I 4 17 
! 

588 192 4 65 

Square With Hole i 240 120 4 17 
: 480 ; 

U-Shape l 204 

408 

L-Shape 144 

288 

+-Shape 198 

396 
H-Shape 222 I 

I 
! 

444 

180 I 

108 

162 

78 

117 

96 
144 

112 

168 

4 

4 

4 

61 

27 

55 

4 17 

4 49 

4 20 

4 I 57 

Table 4.2 Test Problem Statistics: First Order Elements 

Model • Elements i Nodes I Nodes Per Frontwidth 

• . Element . 

Square 
I 

294 675 10 52 I 

I 
I 588 1125 10 232 I 

• Square With Hole ! 240 600 10 52 
I 
I 480 1000 10 207 

• 

I 

I U-Shape 204 I 525 • 10 52 
I 

408 875 10 182 
L-Shape 144 375 

I 
10 51 

288 625 10 132 

+-Shape 198 483 10 52 

396 805 10 168 
H-Shape 222 555 10 17 

444 I 925 10 192 

Table 4.3 Test Problem Statistics: Second Order Elements 
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4.5 Numerical Experiments 

Elements : Nodes SAS Algorithm New Algorithm 
! Starting Iterations I Frontwidth Iterations Frontwidth 

I 

i El~ment ' 

294 128 1 1 I 15 ! 1 15 I 

i 
1 2 15 1 15 

100 1 . 28 1 15 

100 2 15 1 15 

150 1 40 1 15 

150 2 15 I 1 15 I 

200 1 24 1 15 

200 2 16 I 1 15 

588 192 1 1 47 I 1 22 i 
I 

\ 1 2 36 1 22 

98 1 42 1 22 

98 2 36 1 I 22 

301 1 40 1 I 22 
I j 301 
I 

2 40 1 22 
588 1 45 1 22 

588 2 36 1 ! 22 

Table 4.4 Model Square 
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c 

Elements Nodes : SAS Algorithm 

240 120 

480 180 

! Starting i Iterations I Frontwidth 

! Elements ! 

1 

1 

81 

81 

161 

161 

235 

235 

1 

1 

200 

200 

405 
405 
479 

479 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

24 

28 

24 

28 

27 

27 

21 

17 

47 

35 

44 

35 

39 

39 

41 

40 

Table 4.5 Model Square with Hole 

4.5 Numerical Experiments 

New Algorithm 

Iterations i Frontwidth 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

12 

12 

12 

12 

12 
12 

12 

12 

18 
18 

18 

18 

18 

18 
18 

18 
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4.5 Numerical Experiments 

Elements Nodes; SAS Algorithm New Algorithm 

1 Starting ! Iterations Frontwidth Iterations Frontwidth 

j Element • 

204 
1

. 1o8 
I 

1 1 27 1 12 

1 2 18 1 12 

101 1 27 1 12 

101 2 20 I 
i 

1 12 
., 

153 1 24 1 12 
I 
I 153 2 20 1 12 
I 

203 1 20 1 12 
I ! 
I I 

203 2 I 21 1 12 

408 162 1 1 34 1 18 

1 2 24 1 18 

205 1 33 1 18 

205 2 24 1 18 

304 1 33 1 18 

304 2 24 1 18 
407 1 33 1 18 

407 2 24 1 I 18 

Table 4.6 Model U-Shape 
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4.5 Numerical Experiments 

0 

Elements Nodes i SAS Algorithm I New Algorithm I 
Starting Iterations Frontwidth 

1 
Iterations l Frontwidth 

Elements 

144 
I 

78 1 1 15 1 6 

1 2 9 1 6 

76 1 15 1 6 

76 2 7 1 6 

105 1 19 1 6 

105 2 7 1 6 

I 141 1 16 1 6 
I 
I 141 2 8 1 6 I 

288 117 1 1 21 1 9 

1 2 13 1 9 

77 1 22 1 9 

77 2 13 1 9 

226 1 21 1 9 

I 
226 2 13 1 

I 
9 

I 283 1 20 1 9 

I 283 2 13 1 I 9 

Table 4.7 Model l-Shape 

99 



4.5 Numerical Experiments 

Elements I Nodes ! SAS Algorithm I New Algorithm I 

Starting Iterations Frontwidth Iterations j Frontwidth 

Element r I 
198 96 52 1 16 1 15 

52 2 17 1 15 

101 1 24 1 15 

101 2 17 1 15 

151 1 17 1 15 

151 2 29 1 15 

190 1 28 I 1 15 

190 2 17 
I 

1 15 

396 144 1 1 33 1 20 
1 2 24 1 20 

75 1 32 1 20 

75 2 24 1 20 

155 1 32 1 I 20 

155 2 24 1 i 20 
! 370 1 33 1 20 I 
I 

370 2 24 1 
I 

20 I 

Table 4.8 Model '+'-Shape 
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4.5 Numerical Experiments 

c 

Elements j Nodes 1 SAS Algorithm ' New Algorithm i 
Starting [Iterations 

1 

Frontwidth Iterations Frontwidth 

Elements , 

222 112 1 1 21 1 17 

1 2 18 1 17 

60 1 26 1 17 
I 

60 2 18 I 1 17 
! I 

150 l 1 26 1 17 
150 i 2 20 1 17 

I 
210 

i 
1 18 1 17 

210 2 18 1 17 

444 168 1 I 1 46 1 26 

1 2 31 1 26 

109 1 39 1 26 

109 2 30 1 26 

250 1 48 1 26 

250 2 31 1 26 

I 
400 

I 

1 31 1 26 
i 

I 400 2 
I 

32 I 1 I 
. 26 

Table 4.9 Model H-Shape 
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0 
4.5 Numerical Experiments 

i Original ! After Sorting and Renumbering 

Elements Nodes 

1

1 Nodes Per 

1

. Band · Profile Front RMS Front I Band Profile I Front RMS Front 

Element Width • I Width Width I Width Width Width 

294 

294 

I 128 I 4 ! 29 I 1657 17 14.899 21 11116 15 12.86 
, 675 10 138 I 52581 s2 44.72 33 . 411o 34 21.26 

~----~----~,------~----~-----+----~------~----~----+----4-------·-

588 I' 192 4 ! 136 8326 I 65 45.12 29 1465 22 16.37 
588 1125 10 ' 748 329611 232 159.11 1 188 97555 47 23.77 

726 ll 288 4 13t 1o199 47 34.71 I 5t 536o 11 11.59 

126 1s9o to 1 697 ! 3334oo 131 103.o 201 11325o 59 26.31 

1
40 1'1 350 43814 157598 102.77 ! 107 10801 26 15.73 

2o4o 1 186754o 375.86 265 130969 131 49.18 

1542 I 432 

1542 2651 

4 350 1 87748 165 128.63 83 3774 I 26 16.42 

10 2040 i 4289700 614 484.43. 281 140352 1 102 61.34 

Table 4.10 Model Square 
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4.5 Numerical Experiments 

Original After Sorting and Renumbering 

Elements Nodes Nodes Per Band Profile I Front RMS Front Band Profile Front ' RMS Front 

I Elements Width Width Width Width Width I Width 

240 I 120 4 29 
I 

1428 I 17 12.87 22 • 1216 I 12 8.35 

240 [ 600 
I 

10 138 39965 52 36.85 102 • 237250 56 I 33.19 

480 I 180 4 128 7192 61 41.52 61 i 3163 I 18 11.29 i 
I 

480 1000 10 673 256497 207 139.5 346 i 107676 I 92 64.452 

630 270 4 I 99 8275 44 29.4 102 . 8544 i 44 29.71 
r 

I 
' I 

630 1443 10 505 256088 131 87.75 89 : 26209 I 63 43.64 

1260 405 4 316 37487 142 94.18 i 171 1 18868 1 71 52.7 I 

1260 2406 10 1765 1506960 503 334.96 i 369 I 72431 I 131 67.89 

2520 675 4 
I 

445 74394 148 110.73 

I 
189 I 7577 I 47 36.54 

2520 i 4332 10 1765 3485480 I 565 433.71 353 , 43658 1 132 i 72.11 
I 

Table 4.11 Model Square with Hole 
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4.5 Numerical Experiments 

0 

Elements i Nodes 
I Original After Sorting and Renumbering 

Nodes Per 1 Band Profile Front RMS Front Band Profile 11-ront RMS 1-ront 
Elements 1 Width Width Width Width Width Width 

204 108 I 4 21 1215 i 27 12.12 21 1115 12 7.9 

I 204 525 I 10 122 31917 56 33.18 104 30458 1 23 17.34 

408 162 4 112 5871 55 ! 37.67 42 i 27.71 18 I 13.00 

408 875 10 I 568 198585 182 I 123.45 300 1916732 92 I 60.95 I 

558 252 4 
i 

99 i 6890 38 26.09 54 
I 

3990 I 17 
I 

11.34 
: I 558 1314 10 I 505 I 202015 110 75.73 147 19951 34 21.77 

1116 I 378 1 

4 298 32056 133 87.23 I 166 I 15177 i 64 I 45.27 

i 1636 
I 

I 
I 

1116 ' 2190 10 1228280 461 303.28 I 407 55078 83 53.15 

2232 ! 630 I 4 I 298 65122 144 110.14 I 83 6303 I 51 I 33.21 

2232 1 3942 I 10 I 1636 2853420 509 393.553 I 332 270832 i 119 I 57.64 

Table 4.12 Model U-Shape 
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4.5 Numerical Experiments 

I I 
Original I After Sorting and Renumbering i 

Elements Nodes : Nodes Per 1 Band Profile i Front RMS Front 1 Band I Profile I Front I RMS Front 

i Elements i Width I Width Width i Width 
1 

Width 
1 

Width 

144 78 I 4 I 26 615 i 24 
i 

9.51 I 11 
I 

417 ! 6 I 3.10 
i 

I 

144 375 : 10 129 16754 I 51 I 27.82 
! 

29 1118 15 I 10.44 
I i 

288 117 4 76 3009 I 40 27.29 
i 

31 
I 

804 9 I 4.36 
I I 

I 

288 625 10 389 100816 
i 

132 i 89.39 57 3270 
I 32 I 26.47 

' 
342 160 4 99 2713 29 ! 18.46 

I 
23 270.1 

I 
9 5.73 

342 819 I 10 505 78210 84 ! 52.5 114 3611 37 24.73 

684 

I 
240 ! 4 206 13051 I 87 I 56.40 i 161 6086 51 31.10 

684 1365 10 1141 482677 296 i 192.53 I 276 21709 160 96.02 

1368 400 4 206 . 26565 i 93 I 70.75 
. 

121 12.28 26 I 20.16 

1141 11121970 I 
I I 

1368 2457 10 325 248.227 I 473 107837 67 I 36.47 I 

Table 4.13 Model l-Shape 
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4.5 Numerical Experiments 

0 

Original After Sorting and Renumbering 

Elements I Nodes Nodes Per • Band Profile I Front RMS Front Band Profile I Front RMS Front 
i 

Element Width Width Width Width i Width Width 

198 

I 

96 4 
i 

21 1037 17 12.06 22 1130 I 15 10.43 

198 483 10 I 117 30520 
• 

52 36.06 43 12200 . 26 16.81 I 

396 

I 

144 I 4 
I 

96 4768 49 34.12 35 2620 20 14.60 

396 805 10 l 508 172883 168 116.33 322 92519 79 . 45.9 

510 216 4 I 113 5993 37 27.42 86 4275 35 24.54 

510 1158 10 589 188234 111 81.44 141 16369 64 34.77 

1020 324 4 269 25022 123 77.91 178 11893 68 47.43 

1020 1931 10 1536 1009040 434 277.52 456 46358.3 i 218 151.66 

2040 540 4 269 49850 125 97.14 133 4747 
I 

52 31.34 I 

2040 3477 10 1536 2303810 455 355.90 461 217161 1 167 84.36 

Table 4.14 Model '+'-Shape 
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4.5 Numerical Experiments 

Original After Sorting and Renumbering 

Elements Nodes Nodes Per Band Profile I Front RMS Front Band Profile Front I R MS Front 

Elements Width 1 Width Width Width Width I Width 

222 112 4 21 1345 1 20 13.10 27 1368 17 
I 

12.84 I 
I 

222 555 10 114 37900 i 52 38.23 61 19546 32 i 24.18 

444 168 4 

• 

116 6394 I 57 39.38 42 3178 32 ! 22.38 i 
i 

444 925 10 598 224941 I 192 131.81 311 I 111235 102 70.82 
: I 

I 
I 

i 742.8 5.14 582 252 4 107 7755 i 38 29.36 24 9 
I 

• 

582 i 1337 10 553 235654 112 86.33 123 ! 22151 16 10.75 

1164 

I 
378 4 302 33297 141 89.41 32 1 1629 39 

I 
21.13 

1164 2230 10 1691 I 1318390 493 314.97 117 I 60982 127 83.26 

2328 630 4 302 I 66737 144 112.083 107 I 64285 41 23.37 

2328 . 4016 10 1691 I 3029130 517 40606700 241 78598 96 63.76 

Table 4.15 Model H-Shape 
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0 

I 

Elements 

N 

294 

294 

588 

588 

726 

726 

1542 

1542 

2904 

2904 

Elements 

N 

240 

240 

480 

480 

630 

630 

1260 

1260 

2520 

2520 

, 4.5 Numerical Experiments 

I 

Nodes Nodes Per I Comparisons I Ratio ' 

Element , I mfJ M 

M m 0 

128 4 0.148764E06 0.988 

675 10 0.197127E07 0.993 

192 4 0.448056E06 0.992 I 
1125 10 0.658854E07 0.996 

288 4 0.831998E06 0.994 

1590 10 0.115107E08 0.997 

432 4 0.250935E07 0.938 

2651 10 0.335544E08 1 0.820 

720 4 0.834610E07 I 0.9979 

4773 . 10 0.335544E08 I 0.2420 

Table 4.16 Model Square 

Nodes 

M 

120 

600 

180 

1000 

270 

1443 

405 

2406 

675 

4332 

Nodes Per 

Element 

m 

4 

10 

4 

10 

4 

10 

4 

10 

4 

10 

: 

Comparisons Ratio 
0 

mNM 
0 

0.113760E06 0.987 

0.142920E07 0.992 

0.342720E06 0.991 

0.477840E07 0.995 

0.676622E06 0.9941 

0.906256E07 0.996 

0.203364E07 0.996 

0.335544E08 1.10 

0.678889E07 0.997 

0.335544E08 1 0.307 

! 

Table 4.17 Model Square with Hole 
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4.5 Numerical Experiments 

0 Elements I Nodes Nodes Per Comparisons ' Ratio [ 
I 

Element ~I 
N M m 0 I 

204 108 4 0.869040E05 0.986 

204 525 10 0.106182E07 0.991 

408 162 4 0.261936E06 0.990 

408 875 10 0.355164E07 0.994 

558 252 4 0.559116E06 0.994 

558 1314 10 0. 730701 E07 0.996 

1116 378 4 0.168070E07 0.996 

1116 2190 10 0.320031E08 1.309 

2232 630 4 0.561125E07 0.997 

2232 3942 10 0.335544E08 0.3813 

Table 4.18 Model U-Shape 

Elements Nodes Nodes Per Comparisons : Ratio I 
Element 0 

mNM 
N M m 0 

144 78 4 0.440640E05 0.980 I 

144 375 10 0.533520E06 0.988 

288 117 4 0.133056E06 0.987 

288 625 10 0.178704E07 0.992 

342 160 4 0.216828E06 0.984 

342 819 10 0.278559E07 0.994 

684 240 4 0.652536E06 0.993 

684 1365 10 0.930582E07 0.993 

1368 400 4 0.218059E07 0.996 i 
1368 2475 10 0.335544E08 0.998 

Table 4.19 Model l-Shape 
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4.5 Numerical Experiments 

0 Elements ' Nodes Nodes Per Comparisons 

I El ement "fflN7J 

N M m 0 

198 ' 96 4 0.740844E05 0.984 i 

198 483 10 0.947430E06 0.990 

396 144 4 0.225720E06 0.989 

396 805 10 0.316998E07 0.994 

510 216 4 0.437582E06 0.993 ' 

510 1158 10 0.588286E07 0.996 

1020 324 4 0.131580E07 0.995 

1020 1931 10 0.225234E08 1.143 

2040 540 4 0.439417E07 0.997 

2040 3477 10 0.335544E08 0.473 

Table 4.20 Model "+'-Shape 

Elements Nodes Nodes Per Comparisons Ratio I 
Element 0 

'mNM 
N. I M m 0 

222 112 4 0.981240E05 0.984 

222 555 10 0.122211E07 0.991 

444 168 4 0.295704E06 0.991 

444 925 10 0.408702E07 0.995 

582 252 4 0.583166E06 j 0.994 

582 1337 10 0. 775516E07 0.996 

1164 378 4 0.175299E07 0.996 

1164 2230 10 0.335544E08 1.29 

2328 630 4 0.585260E07 0.997 

2328 4016 10 0.335544E08 , 0.358 

Table 4.21 Model H-Shape 

0 
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4.6 On the Algorithm Performance 

4.6 On the Algorithm Performance 

The analysis of results presented in tables 4.10 to 4.211ead to the following conclusions: 

(1) The new algorithm consistently reduced the bandwidth. frontwidth. profile. and 

the root-mean-square frontwidth for almost all the cases considered. and the fron­

twidths obtained after resequencing the elements were always lower than the band­

widths obtained after renumbering the nodes. 

(2) The new algorithm is insensitive to the choice of starting element and always returns 

the same maximum frontwidth. This is achieved because of the fact that. for a 

given model. the number of elements shared by each node is fixed and. therefore. 

the maximum frontwidth also remains the same. However. it may be possible that 

the rms frontwidths may be different for a different choice of starting node. Since 

the storage allocation for a frontal solver is always dependent on the maximum 

frontwidth. changes in rms frontwidth are not of any concern. 

(3) The new algorithm requires only one iteration to the elements with near minimum 

frontwidths. The subsequent iterations tried on all the cases did not further reduce 

the maximum frontwidth. 

(4) The new algorithm behaved strictly as per the operation count estimates. except 

for a few models comprising of second order elements for which it is lower. This is 

possibly due to the fact that for bigger models a large number of midside nodes are 

sorted out with their vertices and need not be searched individually. The number 

of comparisons was always O(m1\.1N) for all the cases analyzed (See tables 4.16-

4.21). The factor mlvf N seems to be a better way of assessing the performance of 

element or node resequencing algorithms than using N 2• because the former can 
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4.6 On the Algorithm Performance 

take care of the exact relationship between the node and the element numbers for 

higher order elements. 

(5) No extra work is required to renumber the nodes after element sorting is finished. 

since the new algorithm accomplishes both the tasks together in one pass. This 

feature adds to the efficiency of the algorithm by reducing the additional number 

of comparisons required if the node numbering is to be done separately. 

(6) The algorithm needs O(k) memory locations for element resequencing where (k < < 

N). For example. a mesh consisting of 10000 nodes and as many elements as 

possible would need 11 K floating point words of memory to resequence the elements 

and the nodes. However. if only element sorting is to be done. then the space 

requirements are halved. 
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Chapter 5 

Preconditioned Conjugate Gradient Frontal Method 

5.1 Introduction 

The finite element solution of a partial differential equation leads to an algebraic system 

of linear equations whose coefficient matrix is sparse. symmetric. and positive definite. 

There are two general classes of methods for solving such systems of linear algebraic 

equations: direct and iterative. Recently, there have been significant developments in both 

classes to make the methods computationally more efficient by manipulating the sparsity 

structures of the resulting matrices. Also. advancements in both classes have been brought 

about by exploiting the properties of the matrices. i.e. property 1\11. diagonal dominance. 

etc. 

In the class of direct methods. the usage of fast Fourier transform techniques. marching 

methods. and nested dissection techniques have provided most of the improvements and 

these methods have become more competitive for two dimensional problems. including sin­

gle or multiple right hand sides. Generally. for three dimensional problems involving more 

than a thousand variables. iterative methods have always provided better performance and. 

with major advances in the strongly implicit procedure and the use of preconditioning tech-
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5.2 Conjugate Gradients 

niques with the conjugate gradient algorithm. the power of iterative methods has increased 

significantly. 

For the sake of illustration. consider a problem for which the coefficient matrix. A.is 

full. The solution of the matrix equation. based on Gaussian elimination would need O(N3 ) 

operations with 0( N 2) storage. Also. if band solvers are employed. the operation count 

can be further reduced to 0(,82 N) for a matrix with semi-bandwidth /3. which is still higher 

than O(N1.5) for the preconditioned conjugate gradient method. On the other hand. one 

iteration of an iterative method which calculates the residual requires O(N2) operations. 

and if the method converges in less than N iterations. the number of operations required is 

considerably less than for the direct methods. Additionally. the storage is always less. as no 

decomposition is required . Iterative methods usually exploit the sparsity of the algebraic 

equations from two angles: the first is the reduction in the amount of storage needed to 

solve the system. and the second is the reduction in the number of operations required 

to obtain a solution of specified accuracy. In the sections to follow. it will be explained 

how these two objectives are achieved by using the conjugate gradient method. and how a 

memory-economic and fast converging preconditioned conjugate gradient frontal algorithm 

can be devetoped. 

5.2 Conjugate Gradients 

The conjugate gradient (CG) method was developed by Hestenes and Stiefel in 1952 

(73] for solving sets of linear algebraic equations. Essentially, the method is N step iterative. 

i.e. the solution is achieved in no more than N steps. if there are no roundoff errors. The 

following advantages are principally associated with the conjugate gradient algorithm: 

(1) The simplicity of the computational procedure. 
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5.2 Conjugate Gradients 

(2) The preservation of the original matrix of coefficients and its sparsity during the 

computations. 

(3) Small storage. 

(4) The ability to start anew at any point in the computations. 

(5) A progressively refined solution at every step. 

Using exact arithmetic. CG calculates the solution to a system of 1\J equations in O(N3) 

operations. each made up of N steps of O(N2) computations. 

The convergence of the conjugate gradient algorithm depends on the number of distinct 

eigenvalues and their spread. i.e how closely the eigenvalues are clustered together. This 

phenomenon was first observed by Reid [128]. and later Jennings [82]. and leads to the 

conclusion that in the absence of roundoff the number of CG steps for the convergence is 

equal to the number of clusters. 

However. for the algebraic equations derived from finite element or finite difference 

models of partial differential equations. the clustering property does not hold. as the eigen­

values are generally well distributed and. in some circumstances. are uniformly distributed. 

Thus. the conjugate gradient method was not considered to be suitable for such systems. 

In 1977. Meijerink and Van der Vorst [102] proposed the use of a system of equations. 

preconditioned by an approximate inverse of the coefficient matrix. with the conjugate gra­

dient algorithm. The preconditioning operation resulted in a clustering of the eigenvalues. 

and thus conjugate gradients could be applied to finite element or finite difference equa­

tions. This procedure turned out to be very efficient and gave rapid convergence to the 

conjugate gradient algorithm, which has resulted in increased popularity for preconditioned 

conjugate gradients. 
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5.3 Preconditioned Conjugate Gradients 

5.3 Preconditioned Conjugate Gradients 

The basic conjugate gradient method yields the solution of N linear equations 

(5.1} 

in less than or equal to N iterations. in the absence of roundoff errors. lt could converge 

in far less than N iterations. if the eigenvalues of the matrix A are clustered together with 

many close to unity. Theoretically. the number of iterations is equal to the number of 

distinct eigenvalues. The central idea of the preconditioned conjugate gradient algorithm 

is to transform the matrix equation (5.1) to 

or. 

where 

Cy = z 

L-1AL-T = C 

LTx =y 

L-1b = z 

(5.2) 

and L is a positive definite preconditioning matrix and is usually computed by performing 

either LU. LDLT. an incomplete Cholesky or any other factorization of the matrix A . 

. Meijerink and Van der Vorst proposed two kinds of incomplete Cholesky preconditioning 

matrices: one. type ICCG (0). is computed by keeping the same sparsity pattern as that of 

the matrix A whilst the other. type ICCG(3). has three extra diagonals of non-zero elements. 

The idea behind choosing these additional diagonals is that it can be demonstrated that the 

exact Cholesky factor of a five diagonal matrix A has almost total fill-in between the non­

zero diagonals of the matrix A. and that these fill-in elements decrease in size further from 
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5.4 The Preconditioned Conjugate Gradient Algorithm 

the non-zero diagonals in the positions defined by those of the matrix A. The incomplete 

Cholesky factors for both ICCG(O) and ICCG(3) are calculated by enforcing the condition 

that the preconditioning matrix LLT has the same elements as the matrix A on those 

diagonals which correspond to the non-zero diagonals of L and LT. 

Meijerink and Van der Vorst demonstrated the existence of incomplete LU factorization 

for 'M-matrices'. with the sparsity of the approximate factors predetermined. and on the 

basis of which an iterative method of solution would be convergent. They also showed 

that approximate factors obtained using both classes of sparsity for the matrices L and U 

are non-singular and the incomplete LU factorization process is at least as stable as the 

construction of the complete LU factorization without pivoting. 

If L is the exact Cholesky factor of the matrix A. then C is the identity matrix and 

the conjugate gradient method would yield the exact s'olution in just one step. However. 

since L is only an approximate decomposition of the matrix A. several steps of the conju­

gate gradient algorithm will be required. Since the preconditioning will have clustered the 

eigenvalue spectrum of the matrix C when compared to that of the matrix A. the residual 

of the preconditioned system should reduce much more rapidly in the first few steps. 

5.4 The Preconditioned Conjugate Gradient Algorithm 

There are basically three ways of preconditioning a system of equations if the approx­

imate factors of A = LLT are known [79]: these may be defined as split. left. and right 

preconditioning. However. it is the split preconditioning which has been used extensively 

and therefore. the algorithm stated in an Algol-like notation below is based on a split 

preconditioning i.e. equation (5.2). 

Real vectors x. b. r. p. q 
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5.4 · The Preconditioned Conjugate Gradient Algorithm 

Matrices 4. L 

"( := 1.0: 

p := 0.: 

X:= L-1b: 

X ·- L-T . . - . 
WHILE norm(r) :S E DO 

BEGIN 

q := £-lr: 

/3:=0/1: 

I:= 0: 

q := L -tr; 

p := q + j3 * p: 

q :=A* p: 

0: ·- 1· .-b. 

X:= X+ 0: * p; 

r := r- a:* p: 

END 

Generally. both A and L are stored in compacted form in actual computing practice. 

In fact. memory space for the finite element coefficient matrix A may be dispensed with 

0 entirely. since it is only required for a matrix vector multiplication which can be performed 

quite efficiently on an element by element basis. A may thus be stored implicitly as a set 
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of individual element matrices. and the only high speed memory needed is that required for 

one element matrix. Backup memory (disk space) requirements. however. are O(N). 

5.5 Preconditioned Conjugate. Gradient Frontal Method 

. The PCCG frontal approach (112J is a new method for solving the large sparse sys­

tems of linear equations which arise in three dimensional finite element problems. This 

method has been developed by combining the frontal method (described in Chapter IV) for 

matrix assembly and incomplete factorization with the preconditioned conjugate gradient 

technique. The resulting hybrid method makes the solution of large. three dimensional 

problems feasible even on machines with limited primary memory. since it automatically 

trades memory for execution time. The concept is that as problems become large. so 

computing time increases dramatically but solution is still possible. i.e the algorithm has a 

·soft-failing' tendency. 

5.5.1 Frontal Gaussian Elimination 

The frontal algorithm of Irons made the solution of large two and three dimensional 

finite element problems feasible on computers of limited memory by eliminating the need to 

store the entire coefficient matrix in memory at one time. This method is mathematically 

indistinguishable from conventional Gaussian elimination. Computationally. however. it is 

very different. for the variables are renumbered (or. what is equivalent. rows and columns 

of the coefficient matrix are permuted in such a sequence that (1) only a minimal number 

of matrix rows and columns are needed at any given moment and (2) rows and columns are 

made active exactly once. In other words. an 'activity front' passes through the ensemble 

of variables. and each variable is in turn considered (a) not yet active. (b) active. (c) no 

longer active. Since only the active rows and columns need be housed in core. considerable 

memory economy is achieved. the active memory required being 0(/2). where f is the 
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frontwidth. i.e. the largest number of variables active at any time. The computing time 

is almost entirely spent in triangular decomposition and is 0(!2 N). where N is the total 

number of variables to be solved for. 

For the sake of comparison between the frontal method based on Gaussian elimination 

and the frontal method based on the preconditioned conjugate gradient algorithm. reference 

will be made to a model problem. This will be a finite element model of a cuboidal space 

filled with (n- 1) * (n 1) ~ (n 1) hexahedral first order finite elements. The number 

of variables is then N = n3. With optimal variable numbering. f = n 2. For Irons frontal 
1 

technique, the total computing time for the model problem is therefore O(N s). and the 
4 

high speed memory requirement is 0 ( N s). 

5.5.2 Incomplete Cholesky Decomposition 

The incomplete Cholesky decomposition of type ICCG(O) has been used in the pre­

conditioned conjugate gradient frontal algorithm. Incomplete in this context means that a 

Cholesky decomposition is computed but. whenever the element Ail in the original matrix 

is zero and i > j. the corresponding entry Li) in the Cholesky factor is discarded and 

set to zero also. The sparsity structure of the decompos~ and the original matrix are 

therefore identical. In all cases. the total (disk) storage requirement is kN. where k is 

the average number of non-zero elements per half-row of A. The computing time required 
3 

for the conventional ICCG is not analytically known. but it is very close to O(N2). for a 

broad variety of problems of stress. thermal. and electromagnetic field analysis. For the 

model problem. therefore. this technique requires O(N) disk space. 0{!) random access 
3 

memory. and O(Ni) time. better than the corresponding values for the frontal Gaussian 

decomposition method. Consequently. the ICCG method has become the method of choice 

for most new software in the electromagnetics area. 
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5.5.3 Implementation of PCGF Algorithm 

An examination of the preconditioned conjugate gradient algorithm indicates that L 

enters the computation in only two ways: 

(a) Classical forward elimination. 

(b) Backsubstitution. 

Both operations are ideally suited to a sequential work organization and both require 

at least one row of L at a time to reside in random access memory. along with part of the 

vector or vectors r or q currently being treated. The part of r and q which must reside 

in random access memory is 0(!). i.e. it is proportional to the frontwidth of the matrix 

L. The vector inner products and scalar vector multiplications essentially require constant 

small amounts of memory and may be ignored. The disk space required by L and by the 

vectors is O(N). 

The incomplete decomposition itself can also be organized more easily on a frontal basis 

than the full decomposition. because the fill-in is strictly controlled and known in advance. 

Consequently. a frontal work organization is practical.· provided that the frontwidth can be 

held to a reasonable size. This. however. is perfectly feasible using the element resequencing 

technique described in the last chapter. Frontally organized partial decomposition requires 

O(fk) memory. since f rows of the matrix L need to be accessed simultaneously. and each 

row contains k nonzero values. Thus. the decomposition requires O(N) disk space. and 
5 

O(f) random access memory. Its time requirement is O(Nl). since O(k} operations need 

to be performed for each of the f matrix rows associated with each of the N variables. 
5 

and O(fkN) = O(Nl) for the model problem. 
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5.5 Preconditioned Conjugate Gradient Frontal Method 

5.5.4 The Soft-Failing Algorithm 

The random access memory requirements of the ICCG algorithm are dictated primarily 

by the frontwidth of the preconditioning matrix L. But. since the preconditioning matrix in 

the ICCG method represents only a rough decomposition of the coefficient matrix A. certain 

liberties may be taken in computing it. For example. the requirement that L have identical 

sparsity to A is arbitrary in any case: a different sparsity pattern might be imposed on L if 

desired. This observation leads to a memory-economic modification of the ICCG algorithm 

which reduces the frontwidth of L as required. so as to fit within a prescribed amount of 

memory. 

Preconditioning matrices may be more or less arbitrary in many cases. For instance. 

the preconditioned conjugate gradient method reduces to the ordinary conjugate gradient 

algorithm if the unit matrix is used for preconditioning. L = I. According to Manteuffel 

[103] the convergence rate is invariant under diagonal scaling. and convergence is always 

guaranteed in at most N steps. if roundoff error accumulation is negligible. This fact 

suggests that a gradual transition from ICCG to straight conjugate gradient solution is 

possible. To do so. the preconditioning matrix L is computed by a slightly different in­

complete Cholesky factorization: LiJ is forced to zero if either A.i1 - 0. or if the maximum 

permissible frontwidth fmax is exceeded. (i- j) > fmax· In practical computing. fmax is 

chosen to suit available computer memory. 

As problem size grows very large. this procedure slowly degrades the standard ICCG 

algorithm into an ordinary conjugate gradient method without preconditioning. The disk 
3 

space required grows linearly with N. and solution time gradually moves from O(N2") 

value of ICCG to O(N2) as preconditioning is lost. However. the random access memory 

requirement remains fixed at 0 (! max). The effect is that solver performance degrades 
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3 
markedly -for 104 equations. the 0( N 2) solver will take 100 times as long as the O(N 2) 

solver- but there is no longer any 'brick wall' constraint on the number of equations to be 

solved and the algorithm acquires a ·soft-fail' nature. 

Extensive details of the implementations of the ·soft-fail' algorithm are given in [110] 

and therefor.e will not be repeated here. 

5.5.5 Numerical Results 

Numerical experiments were performed which reduced the completeness of the pre-

conditioning matrix by gradually reducing the memory available for decomposition. As 

expected. the algorithm was found to be numerically stable. However. the number of 

conjugate gradient steps increased as the decomposition became more approximate. 

The problem chosen for numerical experimentation was Lap lace's equation for the 

air region surrounding three conductors carrying balanced three phase currents. lt was 

discretized using first order tetrahedra. Fig. 5.1. Two discretizations were used. the first 

containing 1368 elements and 556 nodes. and the second one 5472 elements and 1390 

nodes. The conjugate gradient iterations were stopped when the Euclidian norm of the 

residue became less than or equal to a specified tolerance. The numerical experiments 

reported here were performed on a Perq Computer System's PERQ-1 computer. 

The performance of the solver with a gradual reduction of the buffer size is summarized 

in tables 5.1 and 5.2 for each model respectively. The variation in the number of conjugate 

gradient steps with respect to the Cholesky buffer and with respect to log( 8tlfer) is 

shown in Figs. 5.2. 5.3 and 5.4. 
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5.5.6 Discussion 

In the preconditioned conjugate gradient routine the behavior of the Euclidian norm of 

the residue vector r was monitored for both the models. The typical variation of log(r) 

with respect to CG steps for both problems is shown in Fig. 5.5. Only one run was chosen 

for plotting because. although there will be a variation with different buffer sizes. this will be 

reflected in varying convergence rates and the overall nature of the curves will be preserved. 

Since. the Cholesky decompositions were stable. a pronounced convergence was observed 

near the solutions for both the models. 

Examination of the results of both test problems reveals that a minimum number of 

CG steps are needed if the preconditioning matrix has been computed with a buffersize of 

O(f~axl· and are constant until the buffer is reduced from O(f~axl to 0(/max). In these 
1 

cases. they increase gradually from O(N2) to O(N) as is evident from the curves shown 

in Figs. 5.2. 5.3. and 5.4. 

5.6 Modified ICCG Frontal Method 

5.6.1 General 

The methods of Meijerink and Van der Vorst were restricted to symmetric M matrices 

and. in the case of ICCG(O). the sparsity pattern of the incomplete Cholesky factors was 

forced to be identical to that of the matrix A. For ICCG(3). three extra diagonals were 

allowed to have non-zero elements in the factor matrices over and above those in the 

corresponding positions of the matrix A. In both cases. the values of the non-zero elements 

of the approximate factors were determined by forcing the equality of the elements of the 

preconditioning matrix LLT and the original matrix A. The numerical stability during the 

incomplete factorization and the non-singularity of L was proven for the special case of 

symmetric M matrices. 
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y 

~X 

Figure 5.1 A Discretized Model 
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5.6 Modified ICCG Frontal Method 

S.N. Buffer for CG Steps I Disk Accesses Disk Accesses J Time in 
1 

Time in: 

Precond. • in assembly in solving • assembly and I solving i 
I ' Matrix and elimin. elimination I 

Seconds 
I i 

I 1 Seconds 1 

I 1 3000 19 3036 i 43923 10607 I 2577 ' 

2 2500 19 3036 43923 10607 2577 

3 2000 19 3036 43923 10607 2577 

4 1500 19 3036 43923 10607 2577 
I 5 1000 19 3036 43923 10607 2577 ! 

6 500 19 3036 43923 10607 2577 

7 250 19 3036 43923 10607 2577 

8 200 23 3036 53171 10607 3120 

9 150 27 3036 62418 10607 3662 
10 100 34 3036 78600 10607 4612 

11 50 44 3036 101718 10607 5968 
12 10 133 3036 307467 10607 18041 

---------------

Table 5.1 Three Dimensional Model-1368 Elements 
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c 

S.N. Buffer for I CG Steps Disk Accesses Disk Accesses I Time in Time in 
I 

Precond. 
1 

in assembly in solving ' assembly and solving 

Matrix I and elimin. I elimination I 

I Seconds Seconds 

1 8000 37 9642 209890 42484 14350 

2 6000 37 9642 209890 42484 14352 

3 4000 I 37 

I 
9642 209890 42484 14351 

I 

4 2000 37 9642 209890 42484 14351 

0 5 1000 37 9642 209890 42484 14350 

6 500 
i 

37 9642 209890 42484 14350 
I 

7 430 41 9642 232580 42484 15901 
8 360 46 9642 260944 42484 17840 

9 290 51 9642 289307 42484 19779 
10 220 58 9642 329016 42484 22494 

11 150 67 9642 380071 42484 25985 
12 80 83 9642 470834 42484 32190 
13 10 251 9642 1423484 42484 

I 
97347 

0 Table 5.2 Three Dimensional Model-5472 Elements 
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0 

0 

0 
Figure 5.2 Variation of CG steps with buffer - Model with 1368 elements 
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0 

0 

§ 

Figure 5.3 Variation of CG steps with buffer - Model with 5472 elements 
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Figure 5.5 Variation of log(r) with CG steps 
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In their published studies of 1977 and 1979. Meijerink and Von der Vorst [101]. [102] 

showed that both the ICCG(O) and the ICCG(3) methods belong to a class of methods 

for symmetric lvf matrices for which the incomplete Cholesky decomposition are derived 

either by ignoring fill-ins altogether or by allowing fill-ins if a particular acceptance criteria 

is met. The symmetric successive over-relaxation method of Axelsson [7] also belongs to 

this class. The conclusion to which Meijerink and Van der Vorst reached is that there is an 

optimal threshold of fill-in which balances the extra computations needed with the faster 

rate of convergence obtained with better factors. lt was shown that the threshold depends 

on the diagonal structure of the matrix as well as on the values of the matrix elements. 

Kershaw [85] later extended the method of Meijerink and Van der Vorst for a wider 

class of systems for which the coefficient matrix is symmetric positive definite. but not an 

M matrix. For an 1\!1 matrix. the diagonal terms of the Cholesky factor are positive but the 

same is not true for a general symmetric positive definite matrix. In order to ensure that 

the preconditioning matrix be positive definite as well as non-singular. Kershaw suggested 

modifying the main diagonal elements to a suitable positive value. if they happen to be non­

positive. Munksgarrd [114]. developed a similar algorithm in which fill-ins are controlled 

by a user defined threshold factor. The fill-in is ignored if it is smaller in magnitude than 

the tolerance times the diagonal element. 

5.6.2 A Modified Cholesky Decomposition 

The convergence of iterative methods for symmetric positive definite matrices depends 

on the condition number of the matrix, which is defined as the ratio of maximum to min­

imum eigenvalues ( 1max). The basic ICCG(O) algorithm for a symmetric positive definite 
mtn 

matrix. in which all the fill-in entries are discarded. results in a preconditioned matrix whose 

eigenvalues are not very close and as a result their condition number is large. Gustafsson 
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[65] showed that the condition number can be reduced if the row sum of the precondi­

tioning matrix LLT be equal to that of A. Munksgarrd used this idea for modifying only 

the diagonal terms. as the off-diagonal terms were computed by maintaining strict equality 

between elements of matrices LLT and A. 

The main object of preconditioning a coefficient matrix is to obtain a system which is 

as close to identity as the imposition of the sparsity on the approximate factor matrices 

will allow. The product of the preconditioning matrix LLT is therefore to be as close to as 

possible to the matrix A. The measure of closeness for a symmetric positive definite matrix 

is the spread of eigenvalues. The Raleigh quotient bounds the maximum and minimum 

eigenvalues of a matrix A and can be written as: 

(x, Ax) 

(x, x) 
(5.6.1) 

for any non-zero vector x. Thus. the preconditioning matrix LLT will be close to the matrix 

A. if the two quadratic forms are approximately equal for all vectors x. i.e. 

(x, Ax) ~ {x, LLT x) 

Therefore the Raleigh quotient of the preconditioned matrix L - 1 AL -T is given by: 

(x, A.x) 
(x, LLT x) 

(5.6.2) 

(5.6.3) 

which is desired to be as close to unity as possible for any vector x and this is possible if 

the equality of row sums of the preconditioning matrix LLT and the original matrix A is 

ensured. i.e. for every row i 

n n 

I: !Aijl =I: I(LLT)ij! (5.6.4) 

i=1 1'=1 
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Therefore. if the equation ( 5.1) is preconditioned by a matrix which has been computed 

by enforcing the row sum equality. then a system results whose condition number (~max) 
. "m~n 

is much smaller [173) than the condition number of the preconditioned system of equations 

(5.2). 

The modified incomplete Cholesky factorization is performed in the same manner as 

the incomplete Cholesky factorization ICCG(O) with exact equality between the off-diagonal 

elements of matrices A and LLT. but the diagonal elements are modified to ensure the row 

sum equality between the rows of the matrix A and the matrix LLT. lt has been observed 

that the enforcement of these two conditions makes the decomposition both less sensitive 

to roundoff errors and makes it a closer approximation to that of a complete Cholesky 

factor. 

For a matrix which has k non-zero elements per row. the extra computations beyond 

those required by the ICCG(O) type preconditioning are of O(k2 N) for forming the product 

LLT: O(N) operations for computing the row-sum and O(N) for modifying the diagonals. 

Thus. the extra work required is O(k2 N). which is small when compared to the total 

operations of 0(4kN + 5N) for each CG iteration in the preconditioned conjugate gradient 

algorithm. 

Incorporation of a modified incomplete Cholesky decomposition with the preconditioned 

conjugate gradient method. along with the frontal algorithm. results in a modified ICCG 

frontal method whose performance is much better than that of the ICCG(O) frontal method. 

The comparison of both the algorithms on a set of experimental problems is presented in 

section 5.6.4. 
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5.6.3 Computational Problems Involving Air-Iron Interfaces 

In general. the elements of the coefficient matrix characterizing three dimensional prob­

lems are higher by an order of magnitude than those in coefficient matrices resulting from 

two dimensional problems for the same medium. The presence of an air-iron interface 

presents computational difficulties even in 20. but the problem becomes more aggravated 

in three dimensions for the following reasons: 

(1) In most problems involving electromagnetic devices. regions comprised of air-iron 

interfaces are made up of thin and/ or ill-shaped elements. More often than not the 

geometries involved are such that the mesh-grading techniques which are commonly 

employed in 20 are not easily applicable to 3D models. as the size of the mesh 

grows by O(N3). As a result. the core requirements in the solution phase can be 

prohibitive. 

(2) The heavy contrast in material properties of iron. with relative permeability values in 

the thousands and air with relative permeability equal to 1. results in a wider spread 

of eigenvalues Amax - Amin- In addition. on occasion. it can lead to the loss of 

numerical stability during incomplete Cholesky factorization due to the generation of 

negative pivots for the rows which are in. or close to. the interface. The magnitude 

of these negative pivots is much larger than those arising in 20 problems. 

There is no easy cure for the first problem other than always modelling the geometry 

with well shaped elements and also grading the mesh in regions of intense variation of 

the field. subject to memory limitations. The magnitudes of the negative pivots in the 

incomplete Cholesky factors are quite large and the suggestion of Manteuffel [103) of 

adding small positive real numbers to the diagonals does not always work. Because in the 

Manteuffel approach the diagonal element is replaced by a small positive number. matrix 

elements which are computed by the division of this small number can grow to an extent that 
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exponent overflow problems may be encountered during incomplete Cholesky factorization 

if the computations are being performed in single precision .. On the other hand. if double 

precision is used and/or the negative pivots are replaced by sufficiently large numbers. the 

incomplete Cholesky decomposition can be stabilized. Nevertheless. when this matrix is 

used as a preconditioning matrix there can be convergence problems. lt is also interesting 

to note that the concepts of arbitrary diagonal scaling of the preconditioning matrix or 

the use of arbitrary preconditioning matrices often do not achieve the CG convergence. 

Also. the conjugate gradient algorithm without preconditioning does not converge due to 

accumulation of roundoff errors. 

The problems of growth in the magnitude of numbers in the Cholesky factor and 

negative pivots are related but need to be addressed separately. lt has been found. while 

searching for a cure. that if the coefficient matrix is normalized by a suitable norm of any 

row which belongs to an air-iron interface. i.e. an interface along which there is a large 

change in material property. the inherent growth of the matrix elements due to large values 

of material properties and the use of three dimensional elements can be controlled. The 

normalization of the coefficient matrix also makes a positive contribution in lowering the 

magnitude of the negative pivots. The difficulties associated with negative pivots can be 

solved by replacing them by real numbers which are equal to the sum of the absolute values 

of all the off-diagonal elements in the row. Incorporation of these two measures appears 

to lead to an unconditionally stable preconditioned conjugate gradient algorithm which can 

provide a solution in 0( VN) steps. even in the presence of several air-iron interfaces. 

and is computationally cheaper than the algorithm of Aziz and Jennings [2) in which the 

i~complete factor is computed at every C G steps. 

5.7 Numerical Results 

Laplace's equation was solved for the different geometries shown in Figs. 4.5 - 4.10. 
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which were all discretized by second order tetrahedral elements. The models consisted 

of 243 to 11259 nodes. The comparison of performance of both type of solvers based 

on ICCG(O) preconditioning and the MIC preconditioning for these models is tabulated in 

table 5.6. Before starting the solution phase. the elements were sorted to minimize the 

frontwidth using the .algorithm described in Chapter IV. and were renumbered subsequently 

to minimize the bandwidth. Maximum bandwidth and frontwidth for each mesh is also 

included in table 5.6. The gains in execution speed for the MIC preconditioned solver are 

considerable -over the ICCG(O)type solver. particularly when the problem size grows. as is 

evident from Fig. 5.6. which has been plotted between ( v'N) and CG steps. where N is 

the number of nodes in the model. The variation of the residue with the CG steps for both 

type of algorithms has been plotted in Fig. 5.7. These results are in close conformity with 

those of Jacobs [80) and Lavers (89]. 

5.8 Conclusions 

Using the frontal technique. the total number of operations in forming the coefficient 

matrix A with an average k number of non-zero elements per row will be O(k2 N) and con­

sequently may be performed in O(N) times. Its disk requirements. however. will be O(N). 

On the assumption that the extra work required in computing the modified incomplete 

Cholesky decomposition is negligible and is comparable to that of a simple ICCG(O) type 

incomplete Cholesky decomposition. the ICCG and MICCG algorithms with frontally orga­

nized storage and computation sequences. can be implemented at the following asymptotic 

computing costs: 
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S.N.I Nodes 
' 

M . I 
CG Steps 

Elements Maximum ax1mum! 
Front Band ' ICCG(O) MICCG 

1 243 96 41 173 12 8 

2 567 288 50 206 16 12 

3 891 480 52 248 20 14 
4 1215 I 672 55 266 24 16 

' 

5 1539 864 61 270 26 17 

6 2187 1248 79 312 31 19 

7 2835 1632 107 477 35 21 

8 3483 2016 138 584 37 22 
9 4779 2784 165 726 43 24 

10 6075 3552 175 922 48 25 

11 8667 5088 360 975 57 27 

12 11259 6624 I 721 1138 64 39 

Table 5.3 Comparison 
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Figure 5.6 Variation of (JiV) with CG Steps 
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Figure 5. 7 Variation of residue with CG steps 
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5.8 Conclusions 

Working Step Time : Disk I Memory 

[ 

O(NJ i O(N) I 
2 

i Matrix Setup 

Decomposition O(Nl) O(N) O(Nl) 

Solution 3 I 2 O(N2) 1 O(N) O(Nl) 

From the table it is clear that the time required for the decomposition is a little longer 

than the time for the solution. But this difference between the exponents j and ~ is 
5 

very small. For example. for a system of equations with 10000 equations the ratio 1!!f) 
N'l 

is approximately four. The exponent ~ for the decomposition is dependent on problem 

topology to some extent. while the exponent ~ is well established experimentally. 

Both algorithms described above provide memory-economic approaches to the solution 

of equations. While the first algorithm is soft-failing in nature and the other is robust and 

faster. both are suitable for solving large sets of linear algebraic equations. such as those 

that arise from the use of finite elements in the solution of three dimensional electromagnetic 

field problems. These algorithms were devised initially to be used on small computer 

systems or engineering work-stations. The frontal characteristics. however. coupled with 

the semi-iterative approach of the conjugate gradient method. probably make them suitable 

for computer architectures in which there are several interconnected processors. or over a 

set of networked computers. 
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6.1 Introduction 

Chapter 6 

Post- Processing 

Post-processing is the last. but probably the most important. phase in any system in 

which quantities of engineering significance such as impedances. losses and field distribu­

tions are derived from the numerical solution provided by the solver and are displayed. if 

possible. In an industrial environment a newly designed machine is always subjected to 

rigorous testing to check its compliance with the design specifications. This is done by 

performing a series of tests on the machine and then comparing them with the design data. 

Similarly. a post-processor can be considered as a test-bed on which any numerical design 

of a magnetic device could be tested by performing a series of operations on the solution 

provided by the solver. Thus. the different tests which are performed on actual machines 

on a test-bed are simulated in a post-processor by a number of operations. However. the 

end result - 'to check the validity of the design'- is the same. In the machine it is the 

actual design but in the post-processor it is the numerical design. In a post-processor. 

generally. an examination consists of inspecting graphical plots of potentials. fluxes or flux 

density. eddy current distributions. etc .. rather than reading a pile of numeric output. and 

evaluating some global parameters. e.g. iron losses. inductances. forces. 
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6.2 Properties of the Data 

The post-processors specifically developed for 3D magnetics are still rare and so is the 

literature on them. although there could be several in use in various research laboratories 

developed for specific applications. All of these processors lack generality. for example 

the post-processor which comes with the program package TOSCA is very much limited 

as it allows the display of potentials and the field components on 2D slices only and 

the geometries on which these are plotted or computed cannot be displayed thus making 

comprehension of the results difficult. Also. the processor cannot be used with any other 

analysis system where the potential function in the formulation is a vector rather than a 

scalar. 

In this chapter. the various problems in designing a general purpose post-processor 

for three dimensional magnetics will be examined. Also. a scan conversion method for 

equipotential plotting will be described and its performance will be compared with the 

other contour plotting techniques. e.g. a conventional contour plotting method using linear 

first order elements. At the end of the chapter the scan conversion technique will be used 

to plot the contours on the walls of the terminal box. 

6.2 Properties of the Data 

The finite element method essentially transforms a continuum physical problem into 

a discretized problem. Both the process of transformation and the characteristics of the 

physical problem contribute certain attributes to the discretization which are reflected in 

the solution produced by the analysis phase. Identification of these attributes and their 

characteristics will eventually not only govern the structure of the processor but will also 

help in defining a range of operations which are mathematically or otherwise meaningful 

and valid. 
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In magnetics the field is modelled in terms of potentials which have certain restrictions 

imposed on them by their defining equations and these restriction must be remembered 

when the potentials are processed. Also. the finite element method being a numerical 

technique produces a numerical solution. i.e. data produced by the solver are numerical. 

A numerical solution is inherently an approximate solution because of the idealizations 

made in the mathematical modelling of the field. in the geometrical modelling. and in 

the discretization of the device. Also. computational errors result from the nature of the 

algorithm and the roundoff affects the accuracy of the numerical solution. Thus. further 

processing of the data has to be performed whilst respecting these approximations which 

may have significant effect on the final results. 

Another important characteristic of the numerical data. which results from the the use 

of piecewise linear shape functions for modelling the potentials. is that piecewise linear 

interpolation functions are c0 continuous only and. consequently. derivatives higher than 

the first order are meaningless. 

6.3 Valid Post-Processing Operations 

With the knowledge of the properties of the numerical data provided by the solver. the 

task of scrutinizing the operations which are valid on them becomes straightforward and 

easier and will be described in this section. 

Essentially. Maxwell' s equations and the constituting relations govern all the phenom­

ena taking place in magnetic materials and devices. Because Maxwell' s equations have 

mostly vectors and. occasionally. tensor variables. extraction of a desired quantity from the 

potential solution involves applications of vector or tensor calculus and algebra in addition 

to scalar algebra and calculus. Assuming that the application of tensors is relatively rare 
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in day-to-day analysis and post-processing. the basic operations in a post-processor are 

those which involve vectors and scalars [99) : 

(i) Vector Operations: dot and cross products. 

(ii) Scalar Operations: addition. subtraction. multiplication. and division. 

(iii) Differential Operations: curl. gradient. and divergence. 

(iv) Integral Operations: Line. surface. and volume integration. 

These are the operations which may be needed in extracting any desired quantity and 

it is quite possible that not all the combinations operations may be valid. A valid operation 

can be defined as one which is mathematically correct and at the same time does not 

violate the data properties. For example. any operation involving second or higher order 

derivatives is invalid because the result is zero. Also. if the scalar potential function is used 

in the formulation. then trying to compute V(VO) is invalid and meaningless. 

There is another property of the data which is very important from the point of view of 

valid operations and that is the dimensionality of the data. Data may be zero dimensional. 

i.e. a scalar. or a two or a three dimensional vector. A vector operation on a one dimensional 

scalar may lead to a vector and situations can arise which will lead to invalid operations 

involving two non-compatible data items. 

As long as the mathematical operations performed are valid and the characteristics of 

the data items on which these are performed are respected it does not matter to what end 

application the post-processor will be put. In other words. it is quite possible to design a 

post-processor without a priori knowledge of its ultimate application. provided only valid 

operations are performed. 
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6.4 Displays 

The key to any interactive operation is the ability of the system to provide feedback 

to the user by displaying the results. and the same is also true for post-processing. The 

results may vary from pure numerics to three dimensional scalar or vector functions. Before 

delving into the specifics of displaying three dimensional quantities. it would be ideal to 

concentrate on the displaying of numerical data in complete generality. 

Generally a display of n dimensional data -involves (n + 1) variables. i.e. it has n + 

1 dimensions. For example. a zero dimensional pure scalar or a numeric requires one 

dimensional representation which can be displayed either as an alphanumeric string or as a 

bar chart. Similarly. a one dimensional quantity will represent a two dimensional variation. 

The typical example of this class can be functions of single variable and will need at least 

two columns. one for the function and the other for the variable. if the tabular mode of 

displaying is chosen. Alternatively. this information can be displayed graphically in the form 

of a curve. The function will be plotted on one axis and the variable on the other. 

The task of representation of zero dimensional or one dimensional data which are simple 

and easily comprehensible becomes more complex when variables of higher dimensionality 

are encountered. The dimensions of variations grow with the addition of extra space 

dimensions or if variables change from a scalar to a vector. 

Scalar fields of two independent variables occur frequently and are generally represented 

as isothermals or equipotentials. depending on the field. Colours have also long been used 

for depiction of such fields. as in the geographical descriptions of the continents in an 

atlas. Now with the availability of inexpensive colour monitors the use of colours for 

displaying regions of different intensities is also becoming popular. In the absence of colour 
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monitors numbered potentials or gray scaling can be used on monochrome display terminals 

to produce the same effect. Alternatively. such fields may be depicted by using isometric 

projections. lt is a common practice in engineering design offices to provide isometric views 

of various components on drawings before these components are manufactured. Although 

this practice is well established and quite old in engineering. it apparently only has been 

seen in post-processing applications for the last two decades. 

While displays of scalar fields have become integral parts of post-processing systems. 

the same thing cannot be said about vector fields. This is primarily due to the fact 

that a vector field has one variable more than a scalar field. i.e. its direction. and is. 

essentially. a four variable field in two dimensions. This makes two dimensional displays 

difficult. Secondly. the vector field in general does not provide any important engineering 

information which can be of any use to a designer. Generally a designer is more interested 

in the components of the vector fields which then become scalars and can be plotted in the 

form of curves. Nevertheless a two component vector can be represented by arrows. The 

arrowhead represents the direction of the field whereas the length of the tip corresponds to 

the magnitude. Examples of such plots are more frequent in flow problems and structural 

mechanics [90). [40]. 

The addition of a third space dimension complicates displays of scalar or vector fields 

further as the scalar and vector fields now have four or five dimensional variations respec­

tively. The degree of complexity of a two component vector field and a three dimensional 

scalar field. both of which have identically four degrees of freedom. are not the same be­

cause in the latter an extra space dimension is involved. The directional component of a 

planar two component vector field can be treated by arrowheads without any ambiguity on 

a two dimensional display with no recourse to any means of approximations or appropriate 

reductions in the dimensionality of the variations. but for a three dimensional scalar field 
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some form of auxiliary means are a must. 

The options available for displaying a scalar field in three dimensions can be: 

(1} Plotting of equipotential contours on planar cross-sections which are derived from 

the geometrical model. 

(2) Using the colours for depicting zones of different intensities or to using numbered 

potentia Is. 

(3) Plotting the contours on the isometric views of the geometric model. 

There does not seem to be any way of displaying a three component vector field other 

than displaying it on a plane. The field is depicted by either arrows in the form of pyramids 

[8). hockey pucks [117]. or stereograms [174]. 

The field on arbitrary cut-planes is finally projected onto the display screen. In the first 

approach the sense of direction is conveyed by the direction of arrowheads. whereas in the 

second approach orientation of the axes of hockey pucks (short cylinders) communicates 

the same. The magnitude. however. is communicated in both cases by the size of the 

object. 

In the last case. the standard object for representing a vector is also an arrow but 

stereographics are used for displaying the field. In a stereographic display system two 

perspective views. one from the left eye and the other from the right eye. are needed. Once 

both the views are displayed on a cathode ray tube a stereoimage is generated. The right 

view is displayed by the colour red and the left view by green. The viewer wears a pair of 

stereoglasses having a red lens in the right and green lens in the left eye. The stereograms 

can also be used for displaying three dimensional scalar fields. 
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6.5 Post-Processor Structure 

In the preceding sections. the characteristics of numerical data have been examined and 

valid post-processing operations have been defined. The dimensionality of the data and the 

complexities with regard to displaying them have also been considered. What is left now 

is to build a structure which will embody these parts and at the same time preserve the 

generality of the system. 

In three dimensions there is not a single post-processing system which can be said to 

be general purpose. However. in two dimensions a truly general purpose post-processor 

MagPost [98] exists which has its origins in the the well known stack-configured Ruthless 

post-processor [99]. 

MagPost is a highly structured post-processing system in which three distinct stacks. 

namely 'field'. 'curve', and 'numeric'. have been created according to the geometric dimen-

sionality of the data. Operations which use or create two dimensional data are treated 

in the field stack whereas operations involving one space variable are done in the curve 

stack. All the operations on pure numerics are performed in the numeric stack. Since the 

basic operations in each stack involve calculations for extracting desired parameters. these 

stacks are nothing but three calculators. Each stack handles valid operations on the data. 

performs stack management operations. and is also responsible for the data display. 

Since these stack-configured processors are now well established and have advantages 

such as a simple command language and efficient data management it seems quite logical 

that a stack-configured structure will also suit a three dimensional post-processor. The 

three dimensional processor will have an extra stack to deal with the variables involving 

three space dimensions in addition to the usual three stacks. This stack will be the largest 
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in terms of memory and will have more features to take care of applications arising due to 

three dimensional data. The operations which will be carried out in this main stack will be 

all the operations of vector calculus. algebra. and arithmetic beside the stack management 

functions. 

A typical structure of a three dimensional post-processor is shown in figure 6.1 

6.5.1 Algorithmic Features 

A glance through the basic operations needed in a post-processor reveals that the 

differentiation is the key in forming the gradient. divergence. and curl operators. The best 

way to perform the differential operations is by using universal finite element matrices 

[142]. Using these primitive matrices efficient directional differentiation and generation of 

elePnent S and T matrices is possible. In this approach. the differentiation is performed 

over the interpolation polynomials and. as a consequence. it is independent of the size and 

shape of the elements. The gradients. divergences. and curls of various vectors can be 

accomplished easily. The computation of differentials using universal matrices results in 

memory economic procedures as only four primitive matrices need to be stored. which are 

of size m. where m is the order of approximating functions. 

Scalar and vector operations are purely algebraic in nature and do not need any spe­

cial consideration because computing machines are at their best in handling them. Some 

suggestions for the integration operations. however. can be made. lt appears that the best 

way to perform integration is element by element. At times. while performing contour or 

surface integrations. the elements involved in the path or space of integration need to be 

extracted from the entire geometrical database. In such instances it will be preferable if 

possible. to work with hexahedral bricks or triangular elements. rather than tetrahedra be-
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6.5 Post-Processor Structure 

cause intersections with the elements could be computed faster and result comprehension 

may be easier if the accompanying geometry is also to be displayed. 

The efficiency of the post-processor is dependent on the choice of suitable data struc­

tures. Since most of the operations in the processor will be performed on the entire model 

or part of the model which is to be extracted from the geometrical database. it is obvious 

that the data structure of the post-processor should be compatible with the geometrical 

database of the model. 

6.5.2 Memory Requirements 

The storage in a post-processor is basically required for three purposes: (a) to store the 

software which constitutes the various operators; (b) to carry out the operations. and (c) 

to carry out interstack transfers and to store the results which will constitute the working 

space. 

The storage for the software is fixed for any giyen post-processor and is dependent on 

its sophistication and the number of operations it is supposed to perform. This does not 

mean that the memory size is in any way directly proportional to the number of operations 

it C<:Jn perform. By providing a basic set of primitive operators in the post-processor. e.g. 

universal matrices which need minimal storage. a more complex set of operators can be 

constructed by the user. depending on his needs .. In fact. any operator can be constructed 

from the basic operators defined in the system as long as valid operations are performed. 

The ability to generate operators when required totally eliminates the need for storing the 

generated operators explicitly and. as a result. no extra space other than for storing the 

primitive operators is required for different operators. 

Savings in memory locations are not the only consideration for choosing such a software 
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structure. The other major consideration is to preserve the flexibility of usage by keeping 

an open-ended design. By an open ended design is meant that the post-processing system 

is free from any assumptions with regard to the physical phenomenon and the choice of 

potential function. As a result an open-ended system can be used with any analysis system. 

a task which cannot be done by application-restricted post-processors designed primarily 

for specific applications. 

The working space requirements are dependent on the size of the geometric models. 

Apart from the geometrical database. the solution vector is also required in core in post­

processing operations and needs to be saved if any subsequent usage other than the current 

one is envisaged. Also. in certain instances data has to be transferred from one stack to the 

other. depending on the dimensionality of the data produced as a result of an operation. 

e.g. integration operations on a one. two or three dimensional domain result in a zero 

dimensional pure numeric which need to be transferred to the appropriate stack. These 

interstack transfers which will usually occur between a stack of higher dimension to one of 

lower dimension are to be done through a space separately reserved only for data transfer 

purposes and can be a part of the working space. 

The post-processing operations generally need access to one or more of the following 

input data which are usually stored in different files: 

(1.) Geometrical data of the mesh in terms of element lists and node coordinates. 

(2.) Material data comprised of magnetization curves. loss curves. etc. 

(3.) Potential solutions provided by the solver. 

An efficient management of different types of data which may involve extracting a part 

of the model. a particular loss curve etc. in a post-processor becomes very important if 
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the memory economy has to be achieved in storing them. A part of the working space has 

to be specifically assigned for this purpose. Thus the bound on the working space will be 

O{N). where N is the number of elements in the model and cannot be reduced without 

sacrificing the response time. 

6.5.3 Response Time 

lt is important to have fast response from the machine to the user's commands if the 

post-processing is to be done with a real sense of interaction. Response time is dependent 

on the size of the problem being analyzed as well as on the availability of the data to be 

processed. Obviously. it will be much better if the problem is small and all the data is 

in core. More often than not the designer is more interested in processing information 

pertaining to a local part of the model and this can be done relatively quickly. 

The local post-processing involves identification of the zone in terms of space coor­

dinates on which processing is to be done. Once the zone is identified all the elements 

belonging to the zone are to be brought in the space reserved for the geometrical attributes 

which is usually a part of the working space. The potential solution pertaining to the nodes 

belonging to the elements in the zone is also to be extracted and stored in the working 

space. The desired operations will be performed in the appropriate stacks depending on 

the dimensionality of the geometric data. lnterstack transfers may also be needed if there 

is a change in the dimensionality of the output data subsequent to the operations. lt is 

always cheaper and faster to solve a few smaller sub-problems than to solve a large one. 

6.6 Derived Quantities 

The quantities which can be derived from the numerical solution can be many depending 

on the characteristics of the device being analyzed. In one application it may be the losses 
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which are of concern: in another it might be forces or temperature rise. Therefore. instead 

of elaborating on the means of deriving important parameters of electromagnetic devices 

from the numerical solution which are already discussed elsewhere [96]. quantities which 

are of importance to a terminal box and can be obtained from the scalar potential solution 

will be considered in this section. 

6.6.1 Surface Current Densities 

The surface currents on the box walls are related to the scalar potential by the following 

relation: 

f H · ds lenc (6.6.1.1) 

But as per the definition of the magnetic scalar potential equation (2.2.2). this enclosed 

current is equal to the difference in scalar potential between the two sides of the sheet 

60 = -ienc (6.6.1.2) 

Consider the sheet shown in fig. 6.2 to which a local coordinate system (x.y.z) is 

attached. Assuming z is normal to the sheet and the origin of the coordinate system is 

placed at the point where the contour of integration contacts the sheet then. 

Therefore. 

V X H =V X (60) = J 

v x (k60) = i~60 ay j~6o ax 

J = -v x (k60) 

(6.6.1.3) 

(6.6.1.4) 
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Figure 6.2 

Equation (6.6.1.4) gives the local current density and also makes clear that lines of constant 

Q are indeed the eddy current paths. 

6.6.2 Power Loss 

Once the surface current density is known the power loss density can be obtained by 

using the following expression: 

W=J·E (6.6.2.1) 

and since J = O"E. the expression for power density becomes. 

(6.6.2.2) 
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The integration of W over the wall surfaces will give numerical estimates of the power loss. 

6.6.3 Forces 

Forces on the iron parts can be computed by various methods based on surface integra-

tion (29]. The use of the Maxwell stress tensor appears to be a good choice for the terminal 

box. The stresses consist of a tension along the 'lines of force' of magnitude i~toH2 . and 

an equal pressure of magnitude i~toH2 . at right angles to them. When resolved in normal 

and tangential directions over a surface. the component of stress directed away from the 

surface is 

(6.6.3.1) 

and the tangential component is 

(6.6.3.2) 

. 
6. 7 Equipotential Contour Plots 

6. 7.1 General 

The equipotential plots of a scalar or a vector function are generally the first part 

of any post-processing session because these plots provide the qualitative feeling for the 

correctness of the numerical solution and. as a result. the equipotential plotting facilities 

have become one of the standard features of post-processing systems. Some systems have 
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this facility as a part of the analysis phase also and can immediately provide the plots once 

the solution to the algebraic equations is known. Consequently. decisions regarding the 

need to process the results any further can be taken much earlier without having to enter 

the post-processing phase. 

Equipotentials which are the curves joining points having the same function value are 

desired to be plotted for the entire model. In three dimensions the process takes a very 

long time even for small models. let alone large ones. and becomes a batch job rather than 

an interactive process. Moreover, these plots over the entire geometry are. in most cases. 

totally incomprehensible because of the massive clutter on the screen. Therefore. it has 

become a general convention to plot the contours on user defined two dimensional slices 

passing through the geometry which are not only comprehensible but also can be plotted 

relatively quickly even on small machines. A series of such plots on different planes then 

·provide a three dimensional variation of the solution. 

Methods which can be used for contour plotting are: 

(i) linear first order 

(ii) Scan conversion 

(iii) Higher order curves 

The linear first order method is the most popular method because it is fast as well as 

reliable. In this method the intersections of the contour with the element edges are easily 

calculable and the intersections can then be joined by straight lines without any ambiguity. 

whereas in higher order curves the nature of the contour between the intersections is 

unknown and can be of any shape. 

In practice. higher order curves are rarely plotted because of the difficulties associated 

in finding them inside any element on which they are being plotted. To plot contours on 
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higher order elements there are only two reliable choices. Either divide the higher order 

elements to first order elements and then plot linear first order curves. or use the scan 

conversion method. 

The scan conversion method is related to raster displays in which the contour to be 

plotted on an element is scanned by horizontal lines and is plotted pixel by pixel. The 

method of contour plotting using scan conversion is relatively new and will be discussed in 

subsequent sections. 

Before the details of the scan conversion method are elaborated it is worth comparing 

its speed of plotting with the linear first order method as the scan conversion technique 

is generally considered to be slow [118]. The bound on the number of operations for 

the linear first order method is O(N) whereas for the scan conversion algorithm it is 

O(No. of pixels). Therefore for the first order elements there is no ambiguity about the 

superiority of the linear first order method. But for higher order elements where the number 

of elements grows as the square of the order of approximating polynomial. when broken 

down to first order elements. the scan conversion method can be comparable with the linear 

first order method because the number of operations increases by an order of magnitude 

for third and fourth order elements. 

6.7.2 The Scan Conversion Method 

The method of scan conversion was first proposed by Forghani [54]. and is implemented 

in this thesis. The formulation. which involves the derivation of the expressions of the 

coefficients of the polynomial being solved. is presented in the next section. The expressions 

are derived in terms of simplex coordinates and are matched with the mesh produced by 

the mesh generator described in Chapter Ill. In the present form it can handle first as well 

as second order elements. 
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6.7.2.1 Formulation 

In finite element analysis the potential function which models the field is approximated 

by interpolation functions. The knowledge of these approximating functions is required in 

determining equipotential points in the model. If second order approximating functions are 

used for modelling the potential functions. then. for a three dimensional element. it is given 

by 

V(x,y,z) = Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Pz + Q (6.7.2.1.1) 

To obtain this equation for a particular tetrahedron the ten coefficients A. B. C. D. 

E. F. G. H. P. Q must be determined. Once these coefficients are found the potential 

value at any node inside the tetrahedron can be determined by specifying its coordinate 

values. One very expensive possibility for determining the coefficients is to solve a system 

of 10 by 10 equations for every tetrahedron. The alternate approach is to use interpolation 

polynomials. which will provide expressions for the coefficients in terms of the coordinate of 

the nodes and their potential values. In this section. the latter approach which is adopted. 

For each tetrahedron. the potential function is represented as a linear combination of 

approximating functions: 

u(<;b <;2, <;"3, S"4) = L Uiiklaijkd~t. S"2, <;"3, <:4) 
ijkl 

(6.7.2.1.2) 

where uijkl are the potential values at the nodes and aijkl are the approximating functions. 

expressed in terms of simplex coordinates ~1· ~2. ~3 and <;4• For a second order tetrahedron 

using single subscripted notations such that i + j + k + l = n. the expression (6.7.2.1.2) 

can be written as: 
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(6.7.2.1.3) 

The interpolation polynomial is defined in terms of auxiliary polynomials: 

where the auxiliary polynomials are defined as: 

and. 

1 
m-1 

Rm(n, ~·) = - IT (n)'"- k) 
m! 

k=O 

R0(n, s") = 1 

The expanded version of (6.7.2.1.3) will be : 

where 

al = R2(n, ~t) 

a2 = Rt{n,~·dRt(n,:;-2) 
a3 = Rt ( n, ~·1) Rt (n, S'J) 

a4 = Rt(n,s-t)Rt(n,c;-4) 

as = R2(n, ~2) 

a6 = Rt(n,s"2)Rt(n,s""3) 

a7 = Rt(n, ~2)Rt(n, c;-4) 

aa = R2(n, ~3) 

ag = Rt(n, ~3)Rt(n, ~4) 

(6.7.2.1.4) 

(6.7.2.1.5) 

(6.7.2.1.6) 
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These expressions for the a's can be transformed in terms of r;1 s by using (6. 7 .2.1.5) 

and (6.7.2.1.6) and. when finally substituted in (6.7.2.1.7). the resulting expression is: 

U = (2~f - r{t)Ut + 4(r;tS"2)u2 + 4(S"tS"J)UJ + 4(S"tS"4)u4 + 

(2S"i S"2)us + 4(S"2s"3)u6 + (4S"2s"4)u7 

+(2S"}- r;3)us + (4s"3s"4)ug + (2r;l- r;4}u10 (6.7.2.1.8) 

The simplex coordinates r;1 s can be expressed in terms of Cartesian coordinates by 

using the relation 

a(sm) 
s"m = a(s) 

where a(sm) is the subsimplex of simplex a(s}. which can be defined as: 

a(s) = 
Yt Zl 

1 x2 Y2 Z2 
1 XJ Y3 ZJ 
1 x4 Y4 Z4 

(6.7.2.1.9) 

(6.7.2.1.10) 

Any point p inside a simplex. whose coordinates are X. y, z. divides it into n + 1 

subsimplexes. where n is the dimension of the space and each of these simplexes have 

n + 1 vertices. Therefore. with the help of (6.7.2.1.9). the expression for s"t can be written 

as: 

I~ 
X y z 

X2 Y2 Z2 
1 XJ Y3 ZJ 

11 X4 Y4 Z4 
(6.7.2.1.11) S"t = :1 Xt Yt Zt 

1 x2 Y2 Z2 
1 XJ Y3 ZJ 
1 X4 Y4 Z4 
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which finally becomes: 

1 
~1 = ll {xt(Y4Z3- Y3Z4 + Y2Z4- Z2Y4- Y2Z3 + Y3z2) 

+Yt (x3z4 - X4Z3 X2Z4 + X4Z2 + X2Z3 - X3z2) 

(6.7.2.1.12) 

where ll is the determinant of the denominator. Similarly. expressions for ~2· s'"3 and ~4 are 

derived and are contained in Appendix 11. 

Once the values of ~·1· <"2· \3 and ~4 are substituted in (6.7.2.1.8) and the coefficients 

of x2. y2. z2. xy. xz. yz. x. y. z and the constant are collected then. upon equating 

this expression with (6.7.2.1.1}. the coefficients A. B. C. D. E. F. G. H. P and Q are 

determined. The expressions for these coefficients are given in Appendix 11. 

6.7.2.2 Reductio~:~ from 30 to 20 

If the potentials at the nodes of a tetrahedron are known and the coefficients of the 

polynomials (6.7.2.1.8) are also known in terms of the Cartesian coordinates. then the 

plotting operation requires finding a set of x. y .z coordinates which satisfy equation 

(6. 7.2.1.1) for a given potential. The problem can be simplified if the y and z coordinates 

are kept constant and the equation is solved for x. This particular approach is similar to 

that of FINPLT [34]. 

If the cut-plane is parallel to the X- Y plane then it has a constant z value. If not. it 

can be rotated to become parallel to the X-Y plane. Now. if the cut plane is translated to 

z = 0. the problem is reduced from three dimensions to two dimensions and. as a result 

only 6 coefficients of equation (6.7.2.1.1) need to be determined instead of 10. To be able 
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6.7 Equipotential Contour Plots 

to plot the contours on a-cut-plane both the cut-plane and its intersections with the finite 

element mesh. must be defined. Also. the solution for each of the nodes belonging to the 

plane is needed. The intersection may be either triangular or quadrilateral. In the latter 

case the quadrilateral is divided into two triangles. 

6. 7 .2.3· Plotting 

Once the information required to plot the contours on a cut-plane is available. plotting 

is started. One of the attractive features of the plotting is the use of the structure of the 

graphics system. The method is based on a form of scan-conversion using the fact that 

a raster display consists of a set of horizontal lines. These horizontal lines. which cover 

the cross-sections of elements. are found and then in turn are examined to check if any of 

the required potential values occur on them. The task of examining whether the lines lie 
-

within a triangle is done by solving the polynomial equation as explained below. 

The second order function to be plotted inside the triangle can be written as: 

u(x,y) = Ax2 + By2 + C xy + Dx + Ey + F (6:7.2.3.1) 

For a row of pixels as shown in Fig. 6.3. the y-coordinate value. e.g. y1. is known. 

Also. the solution for which the plot is to be made is known. say v1. Then 

vl = Ax2 + Byf + Cxy1 + Dx + Ey1 + F (6.7.2.3.2) 

which is reduced to 

Ax2 + (Cyt + D)x + (Byf + Eyt + F- vt) = 0 (6.7.2.3.3) 
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6.3 An Application 

The details of projections from one Z plane to another. reducing the problem from 3D 

to 2D. and the procedures for generating the intersections of the mesh with the cut-plane 

along with the corresponding solutions are available in [54] and. hence, will not be repeated 

here. 

A three dimensional post-processing system having attributes similar to that described 

m preceding sections can be used to examine the terminal box. The contour plotting 

method based on scan conversion technique has been applied for plotting the contours on 

one of the terminal box wall which are shown in the next section. 

6.8 An Application· 

The equipotentials which are shown in Fig. 6.5 were plotted on a plane using the scan 

conversion method. The plane was derived from the model shown in Fig. 5.1 which was 

constructed using the interactive three dimensional mesh generator described in Chapter 

Ill. The discretized model consisted of 11772 first order elements and 3010 nodes. The 

elements of the mesh were first sorted to minimize the frontwidth and subsequently renum­

bered to minimize the bandwidth of the resulting coefficient matrix using the new algorithm 

presented in Chapter IV. The solution to the problem was obtained by the preconditioned 

conjugate gradient frontal solver described in Chapter V. 
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Chapter 7 

Conclusions 

This thesis has developed a computationally economic magnetic modelling system for 

three dimensional magnetostatic field problems. The whole system has evolved from the 

need to determine the surface current distributions on the walls of a turbogenerator terminal 

box- a problem which belongs to the class of problems characterized by low skin depth. 

lt has been shown that such problems can be modelled using magnetic scalar potential 

alone, instead of pairs of a scalar and a vector potentials minimally required. A significant 

computational economy is achieved by reducing the number of degrees of freedoms per 

node from four to one as a direct consequence of the low skin depth approximation. The 

solution of a large number of variables which are characteristic of a three dimensional 

domain. generally leads to high computational costs due to the space and time requirements. 

Therefore. it is very important that in a finite element analysis system. the overall reduction 

in computing cost should stem not only from memory economic mesh generators. fast 

converging algebraic equation solvers. and efficient post-processors. but also from the 

potential function which has been chosen to model the phenomenon. Only then can such 

problems be solved on machines of limited address spaces. 

As part of the system. an interactive three dimensional mesh generator has been de­

veloped to model geometries using irregular hexahedral bricks. The model could be refined 
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by subdividing each hexahedron into subhexahedra-in all three space directions. Once the 

model is ready. the mesh is automatically generated by dividing each brick into either six 

tetrahedra or two triangular prisms. Either first order or second order elements can be 

generated. The mesh generator runs on an LSI -11/23 with 32 Kbyte of memory and can 

be transported to other machines. The geometric database is highly organized in the form 

of an octal tree and. as a result. all the search'es for nodes run in 'binary· (nlogn) time. 

A new algorithm for element resequencing to minimize the wavefront for the frontal 

solver has been introduced. The algorithm is a natural method of element sorting and is 

similar in theory to a Gaussian elimination algorithm. The elements are sorted and arranged 

as a group for each node in a natural fashion and they are eliminated one by one in the 

same order in the matrix assembly and the elimination phase. This procedure has two 

distinct advantages: first. there is no need to renumber the nodes separately and. second. 

the task of destination allotment for every node is completed when the last element sharing 

this node is sorted out. 

One of the best features of this algorithm is that the element list corresponding to one 

node is in core at one time. Unlike the SAS algorithm in which a level structure of maximal 
1 2 

depth is constructed with a memory size of O(N2) for two dimensional and O(N3) for 

three dimensional meshes. the memory requirements of the present algorithm are O(k). 

where k is the number of elements shared by one node and generally k is 0(1). Other 

significant advantages of the algorithm are that it is insensitive to the choice of starting 

node (at least on all the experimental models on which it has been tried) and needs only 

one iteration. 

The performance of the new algorithm has been compared with the SAS algorithm on 

topologically different models and in most cases it gave better frontwidths than the SAS 
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algorithm. Further experimental testing -on larger models of similar topologies resulted 

in considerable reductions in the frontwidths. bandwidths. profiles. and root-mean-square 

frontwidths. Moreover. the algorithm respected the upper bound for the number of com­

parisons O(mA:fN) for all the runs. Here m is the number of nodes in an element of a 

mesh consisting of N elements and M nodes. 

Two memory economic algorithms. one . soft-failing' and the other 'fast converging 

and robust'. for the solution of systems of linear algebraic equations are introduced. Both 

the algorithms are developed by combining the adva-ntages of the frontal algorithm for 

the matrix assembly and its subsequent factorization. and the preconditioned conjugate 

gradient algorithm for solving the resulting matrix equations iteratively. 

The soft-failing algorithm works for any size problem but gradually deteriorates in 

efficiency as the memory size is reduced. This behaviour results because the quality of the 

preconditioning matrix decreases with reduced computer memory. resulting in increased 

conjugate gradient iterations. Problems which can fit in machine memory are solved with 

a true incomplete Cholesky preconditioning matrix. while others which do not fit are solved 

with more incomplete preconditioning matrices. So. there is a gradual transition in the 

algorithm from a preconditioned conjugate gradient state towards a pure conjugate gradient 

state. But now there is no longer any constraint on the number of equations to be solved. 

The second algorithm. which is faster than the first one. also employs the incomplete 

Cholesky decomposition matrix as a preconditioning matrix. but is computed with two 

restrictions in addition to those in the first algorithm such that: 

(a) all the off-diagonal non-zero elements of matrix (LLT) be equal to that 

of the coefficient matrix A. and 

(b) the row-sum of matrix LLT be equal to that of A. 
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With these two restrictions. the condition number of the preconditioned system is much 

smaller than that of the first algorithm and. as a result. the second algorithm has a faster 

convergence than the first. 

lt has been observed that the elements of the coefficient matrix characterizing 30 

problems are larger in magnitude than those for a 20 section of the same problem. This 

fact. combined with the material property differences encountered at the air-iron interfaces. 

can make the difficulties normally encountered in two dimensional problems even worse in 

three dimensions. The problem is further compounded because air-iron interfaces in most 

electromagnetic devices often consist of. and are surrounded by. thin and badly shaped 

elements. Although most mesh generation systems attempt to avoid this situation. its 

complete removal seems difficult. The combined effect of these two factors is that negative 

pivots are created during the incomplete factorization for rows which represent areas inside 

or close to the interface. lt has been found that many of the traditional cures. such as 

diagonal scaling or Manteuffel shifts. do not seem to be totally successful in overcoming 

these difficulties and an alternate approach. that of normalization. is a better solution for 

such situations. 

By normalizing the coefficient matrix by a suitable norm of a row which belongs to the 

interface. the difficulties associated with the excessively large numbers which can cause 

overflow can be overcome. The replacement of a negative pivot by a suitable number which 

has been found to be equal to the sum of absolute values of the off-diagonal elements 

is very crucial for the convergence of the CG algorithm. The incorporation of both the 

measures makes the second algorithm numerically stable and it generally converges in 
1 

O(N2) iterations. even in the presence of a wide range of material properties and element 

shapes. The asymptotic computing costs of both the algorithms can be summarized as: 
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Working Step Time Disk Memory I 
I 
i 

Matrix Setup I O(N) I O(N) I 
' 5 2 

Decomposition. O(N3) • O(N) i O(N3) 

Solution I O(N~) I O(N) ! O(N~) 

Conclusions 

Extraction of engineering information in terms of local and global quantities from the 

numerical solution is accomplished in the post-processing phase. which is probably the 

most important phase in the finite element analysis. A design of a three dimensional 

post-processor has been developed by considering the characteristics and limitations of the 

various attributes which constitute such a processor. Identification of the attributes such as 

properties of data. valid post-processing operations. and displays and their characteristics 

is important because these factors not only govern the structure of the processor but also 

helpful in defining a range of operations which is mathematically valid and meaningful on 

the numerical data. 

Displays are the key to interactive post-processing and. as a result. have been treated 

by classifying the data to be displayed according to its dimensionality. Various possible 

means of displaying data ranging from a zero dimensional scalar to scalars or vectors 

which are functions of upto three space dimensions are suggested. General considerations 

related to the structure of the processor such as algorithmic features. space requirements 

and response time have been examined also. lt has been concluded that a post-processor 

embodying the features discussed above will be potential formulation independent and its 

design will not require a priori knowledge of ultimate future applications. 

A new contour plotting technique for plotting higher order curves using the scan con­

version feature of raster displays on the user defined cut-planes has been developed and 

its performance speed has been compared with the linear first order method of contour 
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plotting. This developed system has been used for displaying the solution on the terminal 

box walls. 

7.1 Recommendation for Future Work 

There are many areas of research relating to this thesis that were not explored or 

implemented due to the limitations of time and scope. The areas which need further 

exploration/implementation are: 

( 1) In the present analysis of the terminal box a linear model for the ferromagnetic 

sheets has been used: further search should extend to the use of a nonlinear one. 

(2) The general purpose three dimensional post-processor whose design has been pro­

posed in chapter VI should be fully implemented so that desired quantities of 

interest can be derived from the potential solution and displayed if desired. 

(3) lt will be interesting if the computed results are compared with the experimental 

results performed on an actual machine. 

( 4} The influence of the geometrical dimensions on the losses and the forces should be 

studied by solving the problem with different geometrical models. Studies of this 

kind may finally lead to design optimizations. 

(5) Suitability of sheet iron of particular magnetic characteristics from the point of view 

of losses should also be examined. 

(6) The method of analysis presented in this thesis should be applied to other devices. 

such as transformer tanks. which belong to the same class of problems as the 

terminal box. 
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7.1 Recommendation for Future Work 

(7) Improvements in the scan conversion method of contour-plotting should be done to 

make-it run faster. One of the possible means of accomplishing this is by solving 

the polynomial equation on pixels which are just above and below the current pixels. 
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For a symmetric positive definite matrix A. the bandwidth for i th row can be defined 

as 

(A.1) 

where fi (A) is the leftmost nonzero element in row i and can be given as 

fz (A) = min{j : aij :j:. 0} (A.2) 

Thus the maximum bandwidth .Bmax(i) for the matrix A can be defined as 

.Bmax(i) = max{,Bi (A) : 1 :;; i < N} (A.3} 

The profile of the matrix A is the region from the leftmost nonzero element in any row to 

the main diagonal. i.e. 

N 

Profile( A) = L .Bi(A) 
i=l 

(A.4) 

Similarly, the frontwidth for the i th row is defined as the number of rows in the profile 

of A which intersect column i 

fwi(A) = {!J': j > i and ajl :j:. 0 for l::; il} (A.5) 
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0 and then the maximum frontwidth or wavefront can be defined as 

fwmax = max{fwi (A) : 1 :S £ :S N} (A.6) 

The root mean square (rms) frontwidth for the coefficient matrix A is defined as 

(A.7) 

The fill-in which occurs in the triangular factors L and U when a Gaussian elimination is 

applied to the matrix A is defined as the number of nonzeros created in L or U in locations 

where A had zeros. Formally 

fill(A) = {{i,j}: aij = 0, (L + U)t1 t= 0} (A.8) 

0 
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The second order function to be plotted inside the triangle and the expression for 
simplex coordinate ~1 are defined as: · 

u(x,y) = Ax2 + B/ + Cxy + Dx + Ey + F (8.1) 

1 
~1 = a {xt(Y4Z]- Y3Z4 + Y2Z4 Z2Y4- Y2Z3 + YJZ2) 

+ Y1 (x3z4- X4Z3 - X2Z4 + X4Z2 + X2Z] - X]Z2) 

+ z1 (x2Y4- X4Y2 X3Y4 + X4Y3 - X2Y3 + XJY2) 

+ x2(Y3Z4- Y4Z3)- Y2(x3z4- x4z3) + z2(x3y4 X4y3)} (8.2) 

where a is the determinant of the denominator ( equation 6.7.2.1.11). Similarly. ex­
pressions for ~2· ~3 and ~4 are derived and are listed below: 

and 

1 
~2 = a {x(y3z4- Y4ZJ) y(XJZ4- x4z3) + z(X3Y4 - I4Y3) 

x1(Y3Z4- y4z3) + yt(x3z4- x4z3) - z1(x3y4 x4y3) 

+ Xt(YZ4- zy4) Yt(xz4- zx4) + zt(xy4 yx4) 

x1(yz3- ZYJ) + Yt(XZJ- ZXJ)- zt(xy4- X4y)} (8.3) 

1 
~3 = a [{xt(y2z3- YJZ2) Yt(X2Z4- x4z3) + zt(x2Y4 X4Y2)} 

+ {(x2z4- Z2X4- XtZ4 + X4Z1 + ItZ2- X2z1)}y 

+ {( Y2Z4 + Z2Y4 + YtZ4 

+ {( -X2Y4 + Y2X4 + XtY4 

ZtY4- Y1z2 +y2zt)}x 

YtX4 + YtX2- X1Y2)z}] 

1 
~4 =a [{ -x1(Y2Z3 ~ YJZ2) + Yt(X2Z]- XJZ2)- Zt(X2Y3- x3y2)} 

+ x(y2z3 - z2y3 - Y1 z3 + Y3Z1 + Yi z2 - ZtY2) 

+ y( -X2Z3 + Z2X3 + X1Z3 ZtXJ- X1Z2 + x2z1) 

(8.4) 

+ z(x2y3 - XJY2 - XtY3 + XJYl + X1Y2 - X2Yt)}] (B.S) 

The procedure to determine the expressions for the constants A. B. C. D. E, and 
F has already been described in Chapter VI. In this appendix. the expressions for these 
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constants in terms of the coordinates of the vertices and the potential values of the nodes 
are given. Let the constants be defined as 

At = Y3Z4 - Y4ZJ 

F2 = Y2Z3 + YJZ2 
A.4 :;::: Yt Z4 - Y4Zt 

Fs = Ytz2 + Y2z1 

Bt:;::: X]- X2 
B4:;::: X2- X4 

Dt = Z4At 
D5 = z3A3 
Dg = z2A4 
Dt3 = Z4A4 
D11:;::: Z2A4 

Dzt = z4As 

Ht = x2Bt 
Hs = -x3B4 
Hg = x4B2 
Hn- ~.r383 

Hu = .qB4 
H21:;::: X]B6 

Gt = x2 + x3 
G4 = Xt + xz 

Ft = Y3Z4 + Y4Z3 
A3 = Y2Z4 - Y4Z2 
F4 = YtZ4 + Y4Zt 
A6 = YtZJ- Y3Z2 

B2 = X4- X] 

Bs = x 1 - x 3 

Dz = z3At 
D6 = z2A3 
D10 = -z1A2 
D14 = z4A·G 
Dts = zzA6 
D22 = z3As 

Hz = xzB4 
H6 x3B2 
H10 = x2B5 
H14 = x4Bs 
Hts = x1B2 
H22 = x4B6 

D3:;::: Z2At 
D7:;::: Z4A2 

D11 = ZtA3 
Dts = z3A4 
D19 = -z1A4 
D23 = -ztAs 

H3 = x2B2 

H7 = x4Bt 
H11 = x2B3 
ffts = .qB3 
H19 = .rtBs 
Hn = xtB6 

G2 = X2 + x4 
Gs = xt + x4 

.4.2 = Y2Z3 Y3Z2 
F3 = Y2Z4 + Y4Z2 
As= Y1z2 - yzzt 
F6:;::: YtZ3 + Y3Z1 

B3 = X4- Xt 

B6 = X2- Xt 

D4 = z4A3 
0 8 = z3A2 
012 = -ztAz 
Dt6 = z3A6 
Dzo = -ztA6 
D24 = -z2A5 

H4 = -x3B1 
Ha= x4B4 
H12 = -x3B5 
H16 = -x1B1 
H2o= -x1B3 

H24 = -xzB6 

G3 = X3 + X4 

G6 = Xt + X3 
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A= 2.0(ut {At(At- 2A3) + .43(.43- 2A2) + A2(A2 + 2At)} 

+ 2(-At + A4- A6)(u2'{At -- A3 + A2) + u4(A3- A4 +As}} 

+ u5(A3(A3 - 2A4) + A4(A4 - 2As) + As(As + 2.4.3)} 

+ 2(.4.1 + A2 - A3){(u6(A3- A4 +As)+ u7( -A2 + .46 As) + ua(A2 - 2.4.6) 

+ A6(A6 - 2As) + As(As + 2A2)} + 2(-.4.2 + A6- As){(u9 (A3 - .44 +As) 

- uto(At- A4 + A6) + u3{(At(A1- 2.4.4) + A4(A4- 2.4.6) + .46(.4.6 + 2At)} }I/ ~2 

BB1 = 2.0[ut{z4Bt(z4B1 + 2z3B4) + z3B4(z3B4 + 2z2B2) 

+ z2B2(z2B2 + 2z4B1)} + 2(z4Bs + z3B3- z1B2){u2(z4B1 + z3B4 + z2B2) 

- u4( -z4B6 + z2B3 + z1B4)} + u3{z4Bs(z4Bs + 2z3B3) 

+ z3B3(z3B3- 2ztB2) + z1B2(z1B2- 2z4B5)} 

+us{ z4B6(z4B6- 2z2B3) + z2B3(z2B3 + 2zt 84) 

+ ztB4(z1B4- 2z4B6)}]/~ 2 

BB2 = 2.0[2z4B1 + z3B4 + z2B2){u6(z4B6- z2B3- z1B4) 

- u7(z3B6 + z2Bs + ztBt)} + ua{z3B6(z3B6 + 2z2Bs) 

+ z2Bs(z2Bs + 2ztBt) + ztBt(ztBt + 2z3B6)} 

+ 2(z3B6 + z2Bs + ztBt){ ug( -z4B6 + z2B3 + z1B4) - u1o(z4Bs + z3B3 - z1B2)}]/ ~2 
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c 

0 

GCt = 4.0[(-Dt + D4 D7)(u1B1 + u2Bs + u6B6) 

+ ( -D2 + D5 D8)(u1B4 + u2B3 u7B5) 

+ (D3- D6 + Dg)(-u1B2 + u6B3 + u7B5) 

+ (DtD13 + D14Hu2B1 + u3Bs + u4B6) 

(D2 - Dts + D16)(u2B4 + u3B3- uwB6)]/ 8.2 

GG2 = [(Dto D19 + D2o)(u3B2 + u4B4 + utoBtl 
+ ( -D4 + D13 D21)(u4Bs + usB6 + u6Bt) 

+ (-Du+ D19 D23)(u482 + usB4 + ugBt) 

+ (D6 D17 - D24)(u5B3 u6B2 + ugBs) 

+ (Ds Dt6 + D22H u7 84 ua86 + uwB3) 

+ ( -Dg + D18 + D24 )( -u7B2 + u8Bs + ugB3) 

+ (D12 - D2o + D23HusB1 + ugB4 + u1oB2) 

+ (D7- Dt4 + D21Hu7B1 + ugB6 + utoBs) 

+ (D3 D11 + D1a(u2B2- u4B3- uwBs) 

+ ( Ds + Dts - D22) ( u5B4 - ugB6 + u4B3) 

+ ( -Dto +Du- D12)(u2B2 + u6B4 + u7BtlJ/ 8.2 

DDt = 4.0(ut {At( -x2A1 + G1A3) + A3( -x3(.4.3 + G3A2) A2(x4A2 + G2At)} 

Appendix 11 

+ {G4A1 - G6A3 + GsA2Hu2A1 u6A3 + u7A2) + (GtAt- 2.0x3A3 + G3A2) 
( -u2A4 + u7A5) + (G2A.1- G3A.3 + 2.0x4A2)(u2A6 u6A.s) + u3{At(-x1A1 + G6A4)+ 
A4( -x3A4 + G3A.6) (A.6(x4A.6 + GsA.t)} + (2.0xtA3- G4A.4 + GsA.s)(u4A1 + ugA2JJ/ 8. 
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DD2::: (G6.43 G1.44 + G3A5)( -u4A4 + ugAs} 

+ (u4A6(Gs.43 G2A4 + 2.0x4A5)- us(A3(x1A3(x1A3- G4A4) 

+ A4 (x~A4 G2As) + A5(x4As + GsA3)) 

+: (2.0x2At GtA3 + G2A2)(u6A4- u7A6) 

+ ug(A2( -x1A2 + G4A6) + A6( -x2A6 + GtAs) 

- As(x3A5 + G6A2)) + ug(A6( -G4A3 + 2.0x2A4- G2As))]/ ll. 

DD3::: (uto(At(-2.0xtA2 + G4A6 G6As) + A4(G6A2) 

- Gt A6 + 2.0x3A5) + A6( -G5A2 + G 2A6 - G3A5))]/ ll. 2 

+ [ut(At + A2- A3) + u3(-A1 + A4 A6) 

+ us(A3 A4 +As)+ ua(-A2 + A6- As)] Ill. 

EE1 ::: 4.0(u7(D2H24- D3H1o + HdDto + Dt4) 

+ DsH21 D6H12 + H4(Du + D21l + Ds(H22 + H17) 

+ Dg(- Ht4 + Hts) + D12H1 + D7 Ht6 + Dt6H2 

+ DnHs + DtsH3-- D24H6) + ua(H23Ds 

+ H24D16 + H21D22- HtgDg HtoDta + H12D24 

+ Ht6Dt2 + H1D2o + H4D23) + ug( H23(D7 + Ds) 

H24(D14 + Dts) H21D21 + H19D6 - Ht6Du H2o 

+ D9 - H11D18 + D24 (H13 + H14) + H10D17 - H1D19]/ ll. 
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EE2 = [(H17D12 + H2D2o + D23(H5 + H7) + H22D22) 

+ U1Q(D2H23 + Htg( -D3 + D7) + D10H16 + Dt4H10 

+ H12(D21 + D17) + DsH2o + D22H13 + Dt6(H11 

- H22) - D19H4 + DtsH14 + D2o( -H7 + H3) 

+ D12H1a +D23H6- DtsH21))/6
2 

+ ( -ul (z4Bt + z3B4 + z2B2) - u3(z4Bs 

+ z3B3- z1B2) + us(-z4B6 + z2b3 + z1B4) 

+ ua(z3B6 + z2B5 + ztBt)1/6 

F = 2.0[ut(x2Adx2A1 - 2.0x3A3) + x3A3(x3A3- 2.0x4A2) 

+ x4A2(x4A2 + 2.0x2At)) + 2.0( -x2A1 + x3A3 

- x4A2)(xt(u2A1- u6A3 + u7A2) 

+ x3A3 - x4A2)(xt(u2A1 - u6A3 + u7A2) 

+ x3( -u2A 4 + u 1As) + x4(u 2A6 - u6As) 

+ x2(u6A4- u7A6) + Llutf4,0)] 

+ [u3(x1At)) + 2.0x4A6) + x4A6(x4A6 

+ 2.0x1A1)) + 2.0(xtA1 - x3A4 + x4A6) 

- u4(x1A3 + u4x2A4- u4x4A5 + .llu3/4.0)] 

+ [us(x1A3(x1A3 - 2.0x2A4) + x2A4 

+ (x2A4- 2.0x4A!;) + x4A5(x4A5 + 2.0x1A3)) 

+ ug(x1A2(x1A2- 2.0x2A6) 

+ x2A6 (x2A6 - 2.0x3A5) + x3A5(x3A5 

+ 2.0x1A2)) + 2.0(xtA2- x2A6 

+ x3A5)(ug( -x1A3 + x2A4- x4A5) + u10(x1A1 - x3A4 

+ x4A6) + ua;4.0)))/ 6 2[-us(x1A3A4 + x4As)l/6 
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