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Abstract

Lexical semantic relations (LSRs) play an important role in systematically generalizing on
tasks such as lexical entailment. Notably, several tasks that require knowledge of hypernymy
still pose a challenge for recent pretrained language models (LMs), underscoring the need
to better align their linguistic behavior with our knowledge of LSRs. In this thesis, we
propose Balaur, a model that addresses this challenge by modeling LSRs directly in the
LM’s hidden states throughout pretraining. Motivating our approach is the hypothesis that
the internal representations of LMs can provide an effective interface to their linguistic
behavior, and that by controlling one we can influence the other. We verify our hypothesis
and demonstrate that Balaur consistently improves the performance of large transformer-
based LMs on a comprehensive set of hypernymy-informed tasks, as well as on the original
LM objective.

ii



Abrégé

Les relations sémantiques lexicales (LSR) jouent un rôle important dans la généralisation
systématique de tâches telles que l’implication lexicale. Notamment, plusieurs tâches qui
nécessitent une connaissance de l’hyperonymie posent toujours un défi pour les récents
modèles de langage pré-entraînés (LM), soulignant la nécessité de mieux aligner leur com-
portement linguistique avec notre connaissance des LSR. Dans cette thèse, nous proposons
Balaur, un modèle qui relève ce défi enmodélisant les LSR directement dans les états cachés
du LM tout au long de la préformation. La motivation de notre approche est l’hypothèse
que les représentations internes des LM peuvent fournir une interface efficace à leur com-
portement linguistique, et qu’en contrôlant l’une, nous pouvons influencer l’autre. Nous
validons notre hypothèse et démontrons que Balaur améliore les performances de certains
LMs sur un ensemble divers de tâches informées par l’hyperonymie, ainsi que sur l’objectif
original du LM.
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Chapter 1

Introduction

1.1 The Challenge of Hypernymy

The field of Natural Language Processing (NLP) has been revolutionized by a class of

methods known as pretrained language models (LMs). Typically, these are neural networks

trained on large quantities of unlabeled text data with a simple reconstruction objective (e.g.

by predicting the next word or randomly masked words in text). Despite the simplicity of

such learning objectives, the ability of pretrained LMs such as BERT (Devlin et al., 2019)

to learn effective representations of language by training on vast amounts of text data has

led to unprecedented progress across multiple NLP tasks (Qiu et al., 2020). However recent

work has also shown that these LMs still fail to generalize systematically on tasks requiring

understanding of hypernymy (Ettinger, 2020; Ravichander et al., 2020; Hanna andMareček,

2021; Geiger et al., 2020; Rozen et al., 2021).

Hypernymy is an important aspect of word meaning, or lexical semantics, which de-

scribes the taxonomical relationship of between words. In other words, hypernymy captures
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Balaur

the "is-a" relation. For instance, "animal" is a hypernym of "mammal" is a hypernym of

"dog", as a dog is a mammal is an animal. The ability of LMs to model this lexical semantic

relation is of more than just passing academic interest, as such systems are increasingly

deployed in the real world where behaviors inconsistent with our understanding of lexical

semantics can have subtle yet pernicious effects. Improving the consistency of model be-

havior with our understanding of hypernymy therefore becomes a question of increasing

model robustness and systematicity, decreasing the risk of errors which are fundamental yet

difficult to detect. One failure mode rooted in hypernymy can occur with lexical entailment,

where a statement about a hyponym is also by extension a statement about the correspond-

ing hypernym. For example, "the cat is in a taxi" can entail "the cat is in a car" or "the

animal is in a car", which in turn can entail many different plausible inferences about the

utterance and its meaning. Models which fail to systematically capture such hypernymy

relations can fail in unexpected and undetectable ways, e.g. if the cab-faring feline figured

in a news article and a question-answering system was asked "Is there a cat in a taxi in this

article?" it might answer differently than if asked "Is there an animal in a car?". While

this example is fairly benign, as these models are deployed in more and more settings, the

risk of such difficult-to-detect mistakes having more severe repercussions increases, and it

therefore becomes essential to develop methods that better align model behavior with our

understanding of lexical semantics, and of hypernymy in particular.
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Chapter 1. Introduction

1.2 Improving Hypernymy in Language Models

Many hypernymy relations are potentially underrepresented in the training data of LMs

due to issues of reporting bias and sparsity (Hearst, 1992; Shwartz et al., 2017). This

fundamental limitation underscores the need for methods which can complement language

model pretraining with external knowledge of hypernymy. Concretely, the hope is that

external sources of lexical knowledge such as WordNet (Miller, 1995) can be leveraged

to alleviate issues of data scarcity and improve systematic generalization of LMs on tasks

requiring knowledge of hypernymy. There also exists a rich body of work that leverages

WordNet to evaluate and improve how well lexical semantic relations are captured in

distributional methods such as word embeddings. In our thesis, we introduce Balaur,

a method which builds on this past work in several meaningful ways to better align the

linguistic behavior of LMs with our knowledge of hypernymy.

In particular, Balaur builds on semantic specialization, a class of methods typically

applied to distributional word embeddings with the goal of better representing and disen-

tangling various lexical semantic relations in one set of vector representations. Semantic

specialization methods are typically framed as auxiliary loss functions that impose con-

straints on the original distributional vector space to create systematic structure reflective of

semantic relations. With Balaur, we adapt and apply semantic specialization to the latent

representations of LMs with the underlying hypothesis that the internal representations of

LMs can provide an effective interface to their linguistic behavior, and that by controlling

one we can help guide the other. Concretely, we leverage the fact that latent representations

in LMs such as BERT can be treated as contextual word embeddings, which Balaur learns
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to transform into relation-specific vector spaces to disentangle hypernymy from the original

distributional vector space as well as other lexical semantic relations such as synonymy and

antonymy. In these relation-specific vector spaces, similarity constraints are imposed on the

transformed contextual embeddings so that they are similar to related concepts and dissimi-

lar to unrelated concepts. The resulting relation-specific losses are averaged with the overall

language modeling loss during LM pretraining, ensuring that the latent representations of

the resulting LM are both useful for the original language modeling objective, as well as

capable of systematically representing hypernymy and other lexical semantic relations. To

verify our hypothesis and proposed approach, we evaluate BERT-like LMs trained with and

without Balaur on tasks requiring knowledge of hypernymy, as well as on the original

language modeling task.

1.3 Contributions
In this work, we set out to address the issue of LMs failing to systematically generalize on

linguistic tasks that require knowledge of hypernymy. To this end, we proposed Balaur, a

novel method based on the hypothesis that the linguistic behavior of a LM can be aligned

with our knowledge of hypernymy by directly modeling lexical semantic relations in the

latent representations of the LM. While previous work on incorporating hypernymy into

language models does not evaluate on specific hypernymy-informed task, our work bridges

the gap between incorporating and evaluating hypernymy in LMs. In addition to finding that

our method can improve general language modeling capabilities, we empirically support

our hypothesis and demonstrate that Balaur improves performance on several targeted
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tasks requiring knowledge of hypernymy.

As part of our evaluations, we also provide a novel cloze-style dataset which is sig-

nificantly larger and more comprehensive than previous work. This datasaet encapsulates

hypernym and hyponym prediction for a wide variety of nouns, whereas previous work has

typically been limited to hypernym prediction for a small subset of nine categories. Lastly,

our overall evaluation brings together several disparate threads of research on evaluating

languagemodels to provide a comprehensive picture of howwell models capture hypernymy

in their linguistic behavior.

1.4 Thesis Outline

In Chapter 2, we provide an overview of the literature which our work builds upon. We focus

in particular on languagemodels and the formversusmeaning debatewhich in partmotivates

our use of external knowledge resources for hypernymy. We then discussWordNet, which is

one such resource our work leverages, and it’s relation to hypernymy. Lastly, we review the

two-fold problem of incorporating and evaluating hypernymy in language models and other

NLP systems. In Chapter 3, we introduce Balaur, our proposed method for incorporating

hypernymy into language model pretraining. We first present a high-level discussion of

Balaur and the hypothesis motivating it. We then formalize our approach mathematically

and describe how it interfaces with language model pretraining. Lastly, we go over the

methodological details of our pretraining experiments and report the effect of our method on

language modeling. In Chapter 4, we describe our evaluations for verifying our hypothesis
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and report our findings on these. These include zero-shot hypernymy-informed prompt

completion, and finetuned hypernymy-informed natural language inference. We also include

an analysis of finetuning efficiency on these two tasks to better qualify the contribution of

pretraining with Balaur to finetuned performance. Lastly, in Chapter 5, we conclude our

discussion on incorporating hypernymy into language model pretraining, summarizing our

key contributions, as well as some limitations and potential directions for future research.

6



Chapter 2

Background

In this chapter we provide an overview of the different strands of related works on which this

thesis builds. We begin by introducing language models in §2.1, providing an operational

definition for this thesis as well as a brief discussion on pretraining and the debate of form

versus meaning which underlies this work with regards to the ability of LMs to "understand"

aspects of word meaning such as hypernymy. We then describeWordNet in §2.2, describing

how it represents hypernymy and other lexical semantic relations, providing some brief

historical context for this resource which has been central to NLP and to this work. In

§2.3, we outline the different ways in which hypernymy and lexical semantic relations

more broadly have been incorporated into NLP systems, typically with the intermediary

of WordNet. We focus on transformer language models in particular, which are the topic

of this work (§2.3.1). We also discuss semantic specialization, a rich body of work which

incorporates semantic relations into word embeddings, and on which our proposed method

draws (§2.3.2). Lastly, we review seminal work in statistical NLP on lexical semantic

relations, and discuss how it informs our work (§2.3.3). Lastly, in §2.4, we survey the
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different ways in which hypernymy has been evaluated in transformer language models,

notably representational probing (§2.4.1), behavioral probing (§2.4.2), and hypernymy-

informed textual entailment (§2.4.3).

2.1 Language Models

2.1.1 Definitions of Language Models

Language models (LMs) in the traditional sense (Jurafsky and Martin, 2023) predict the

probability %(FC |F1: C−1) of a word FC in a sequence, given preceding words F1: C−1 1.

However, with the advent of neural language models, the conventional definition of lan-

guage modeling has become less precise. Bender and Koller (2020) define a language

model as "any system trained only on the task of string prediction, whether it operates over

characters, words or sentences, and sequentially or not". The relaxation of this definition is

largely attributable to BERT (Devlin et al., 2019), a class of neural language models which

popularized several key digressions from the original formulation of language modeling.

First, unlike traditional LMs which predict the next token in a sequence, BERT is a masked

language model (MLM) which learns to predict the probability %(FC |F1: C−1, FC+1: ) ) of a

randomly masked token FC given its surrounding context F1: C−1, FC+1: ) . Second, BERT

adopts wordpiece tokenization, where tokens can be subword units rather than conventional

words. Lastly, BERT is a pretrained LM, in the sense that the LM objective of predicting

tokens in context is optimized during a pretraining phase, after which the ensuing pretrained

1In practice, word boundaries and thus splitting a sequence into words can be ambiguous, so it is more
precise to say that a sequence is tokenized into arbitrary tokens, and that LMs predict the probability of tokens.
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Chapter 2. Background

model can more effectively be adapted to a variety of downstream tasks as a result of repre-

sentations learned during pretraining. These deviations from the traditional formulation of

LMs help explain why current conventional definitions of LMs are so general in compari-

son. Throughout this thesis, we take the term language model to refer to a neural network

trained to predict textual tokens given the textual context in which they occur.

2.1.2 Pretraining of Language Models

An important aspect of modern language models is that they are trained, in the sense of

neural network optimization via stochastic gradient descent, to predict tokens in context.

Typically, the loss function of these models involves minimizing the negative log-likelihood

of a correct token C8 given it’s context �8, averaged across examples.

L = 1
=

=∑
8=1
− log %(C8 |�8) (2.1)

Despite the simplicity of this training objective, it has proven to be surprisingly effective

when coupled with larger models and larger pretraining text corpora. Models such as BERT

have led to remarkable improvements on a wide variety of linguistic tasks, matching and

sometimes surpassing human performance (Qiu et al., 2020).

2.1.3 Meaning in Language Models

When machines perform as well as humans on linguistic tasks, can they be said to "under-

stand" or to "capture meaning"? This question has underscored recent and lively debate

around language models, where advancements in the field have made it no longer hypo-
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thetical. Impressive results have engendered anthropomorphic characterizations of these

models’ capabilities, with contentious terms such as "understand" being used both in aca-

demic pieces and in the popular press (Bender and Koller, 2020). This in turn, has brought

the debate of form versus meaning to the fore, with the primary question being can mod-

els learn to capture meaning from raw text, or form, alone? Of course, meaning is an

irredeemably ineffable concept, with no agreed upon definition to guide investigations into

this question. Nevertheless, there are aspects to meaning that can be useful without being

comprehensive or definitive, and this thesis focuses on one such aspect: lexical semantics,

or the meaning of words.

Unfortunately, the meaning of the meaning of words is not much less confounding than

the meaning of meaning. Wittgenstein famously asked the meaning of the word "game"

and found that no feature could comprehensively describe it. Do all games have rules?

No, the games of children are often lawless and no less fun for it. Is it fun or amusement

then? Again, no: many games are competitive rather than amusing. And of course, not

all games are competitive. And so on, until the inevitable conclusion is that the precise

meaning of "game" is nebulous, and we are left with a "family of meanings" rather than

any single definition, "a complicated network of similarities overlapping and criss-crossing,

sometimes overall similarities, sometimes similarities of detail" (Wittgenstein, 1976).

One attempt to formalize these "networks of similarities" is the theory of lexical fields

and accompanying work on componential analysis (Trier, 1931; Pottier, 1964), which

consider meaning as a network of partially overlapping semantic features grounded in the

real world (e.g. "having rules", "being amusing", "being competitive" and so on for games).
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Chapter 2. Background

This conception of word meaning echoes the question which started us on this path: what

meaning can models capture from raw text alone, without any grounding in the real world?

One answer can be found in Bender et al. (2021), who characterize a language model as:

a system for haphazardly stitching together sequences of linguistic forms it has observed
in its vast training data, according to probabilistic information about how they combine,
but without any reference to meaning: a stochastic parrot.

There also exists an alternative view, where form itself can carry meaning. This position

is nicely condensed by Wittgenstein again, who famously said "The meaning of a word lies

in its use" (Wittgenstein, 1976). The pithy answer, while barely scratching the surface of

such a complex question, nevertheless provides a useful intuition for how meaning could

be captured from raw text alone. More concretely, work in the field of distributional

semantics attempts to characterize meaning based on distributional properties of language,

in particular patterns of word collocation. Figure 2.1 suggest how the meaning of "moon"

can be, at least in part, characterized by collocated words across a variety of contexts.

Beyond word-level distributional semantics, there has also been speculation and pre-

liminary results suggesting that transformer language models can indirectly learn latent

representations emulating meaning, reasoning or communicative intent from form alone; as

long as these contribute to further optimizing the model’s training objective (Andreas, 2022;

Nanda et al., 2023; Li et al., 2023). However, empirical results continue to demonstrate

that, despite capabilities suggestive of "understanding", models still fail in unexpected situa-

tions and produce nonsensical or non-factual outputs which conflict with various notions of

meaning (e.g. Pandia and Ettinger (2021), Du et al. (2022)). This failure to systematically

and robustly generalize in relation to word meaning is notably seen in the case of lexical

11



Balaur

Figure 2.1 Patterns of collocation for "moon" (Baroni, 2012)

semantic relations such as hypernymy, a modest yet meaningful facet of word meaning

which this thesis focuses on.

2.2 WordNet as a Hypernymy Resource

2.2.1 WordNet and Synsets

Wordnet (Miller, 1995) is a lexical database that contains nouns, verbs, adjectives and

adverbs grouped into sets of cognitive synonyms ("synsets"). However, unlike a thesaurus

which simply aggregates synonyms, WordNet links synsets to one another with semantic

relations such as hypernymy. Crucially, by modeling semantic relations between synsets,

WordNet models semantic relations between word meanings rather than between word

forms. In Miller and Fellbaum (1991), "word form" refers to the physical utterance or

inscription, while "word meaning" or "word sense" refers to the lexicalized concept that
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Chapter 2. Background

a word form can express. In other words, a set of word forms with shared word meaning

is a set of synonyms (synset), which in turn represents a given lexicalized concept. This

distinction is particularly useful for disambiguating multiple possible word meanings for a

given word form, or multiple possible word forms for a given word meaning (Table 2.1).

Synset WordNet definition Word forms

Synset(‘dog.n.01‘)
a member of the genus Canis that has
been domesticated by man since prehis-
toric times

dog
domestic dog

Canis familliaris

Synset(‘dog.n.05‘)
a smooth-textured sausage of minced beef
or pork usually smoked; often served on a
bread roll

frankfurter
hotdog
weenie

...

Synset(‘bank.n.02‘)
a financial institution that accepts deposits
and channels the money into lending ac-
tivities

bank
banking concern
banking company

...

Synset(‘bank.n.01‘) sloping land (especially the slope beside a
body of water)

bank

Table 2.1 Example word meanings for "dog" and "bank" inWordNet. Word meanings, or lexicalized
concepts, are represented by synsets and distinguished by definitions and synonymous word forms.

2.2.2 Lexical Semantic Relations and Hypernymy in WordNet

The semantic relations in WordNet notably include the lexical semantic relations of syn-

onymy, antonymy, meronymy, and hypernymy (Table 2.2). Synonymy is a symmetric

relation between two word forms that captures shared or similar word meaning. In Word-

Net, synonymy links word forms to create synsets. Similarly, antonymy is also a symmetric

relation between word forms, which captures opposite meaning. In WordNet, antonymy

links word forms rather than synsets, due to issues identified by Miller and Fellbaum (1991)

in generalizing antonymy to synsets. In contrast, meronymy and hypernymy are asym-

metric relations between pairs of synsets. Meronymy and its inverse holonymy form the
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part-whole (or has-a) relation, which can be characterized by an x is a part of a y where G

is the meronym of holonym H. Conversely, hypernymy and its inverse hyponymy form the

subset-superset (or is-a) relation, which can be characterized by an x is a kind of y where G

is the hyponym of hypernym H.

Semantic Relation Examples
Synonymy
(similar)

pipe, tube
rise, ascend
sad, unhappy

rapidly, speedily
Antonymy
(opposite)

wet, dry
powerful, powerless
friendly, unfriendly
rapidly, slowly

Meronymy
(part-whole)

brim, hat
gin, martini
ship, fleet

Hypernymy
(superset-subset)

maple, sugar maple
tree, maple
plant, tree

Table 2.2 Examples of lexical semantic relations in WordNet.

These lexical semantic relations were chosen and refined byMiller and Fellbaum (1991)

because of their broad applicability throughout English, their familiarity to non-experts,

and their potential for capturing meaningful semantic structure in the English lexicon.

Notably, WordNet’s directed acyclic graph of hypernymy relations was originally intended

as a representation of the mental lexicon described in §2.2.3. This psycholinguistic goal

is also reflected in the lexicographer class labels in which synsets are categorized, also

known as supersenses (Ciaramita and Johnson, 2003). Supersenses are closely related to

hypernymy, and correspond to broad semantic categories in which synsets might belong,

e.g. WordNet includes "person", "animal", "act", "substance", "event" and "feeling" among

26 noun-specific supersenses.
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2.2.3 Origins and Legacy of WordNet

Interestingly, WordNet was not originally intended as a resource for computational linguis-

tics or NLP. The psycholinguist behind the project, George A. Miller, was interested in

testing the concept of semantic networks, which ascertains that long-term memories are

organized hierarchically; enabling inferences such as "a canary can fly" based on the stored

memories that "birds can fly" and "a canary is a bird" (Fellbaum, 2013). This theory was

quite popular at the time, following empirical results from Collins and Quillian (1969)

which demonstrated that reaction-times for qualifying such statements as true or false were

proportional to distances in this semantic network (Figure 2.2), and Miller was interested

in building such a network for the English lexicon more generally.

Figure 2.2 Canary in the semantic network (Collins and Quillian, 1969)

In the 1980s, Miller recruited his wife and a group of colleagues and students to

help him cluster words into "synsets", which could then be interrelated with a handful of

semantic relations. Without much further instructions and relying on conventional lexical
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resources and intuition, this skunkworks teammanually entered tens of thousands of entries

in the WordNet database. Fortuitously, one government sponsor’s requirement led to the

database’s public release, which in turn led to an unexpected yet extraordinary and rapid

adoption by a budding NLP community interested in word sense discrimination (Fellbaum,

2013). As the project grew 2, its focus shifted from psycholinguistics to computational

linguistics and NLP with the direction of Christiane Fellbaum. Over the decades, WordNet

has enjoyedwidespread adoption in variousNLP applications, expanded globally beyond the

English language, and helped trigger the creation of other lexical resources (e.g. FrameNet

(Fillmore et al., 2002) and PropBank (Palmer et al., 2005)) based on alternative linguistic

theories (Miller and Fellbaum, 2007).

2.3 Incorporating Hypernymy in NLP Systems

2.3.1 Language Model Pretraining with Hypernymy

Incorporating LSRs into LM pretraining, particularly hypernymy, has been approached

from different angles. Lauscher et al. (2020) create an auxiliary training objective with

supplemental, objective-specific training instances. These training instances consist of

two words, where the model must predict whether they are semantically related using the

next sentence prediction objective of Devlin et al. (2019). In contrast to our work, this

approach combines synonymy, hypernymy and hyponymy into one relation of semantic

relatedness and requires a large number of additional training examples during pretraining.

2The current PrincetonWordNet 3.1 contains 117, 791 synsets, 207, 272 word senses, 159, 015 word forms
(or lemmas), and 285, 668 synset relations (McCrae et al., 2019)

16



Chapter 2. Background

This approach was shown to improve performance on the GLUE benchmark (Wang et al.,

2018) as well as on lexical simplification tasks.

Levine et al. (2020) avoid the need for additional training data by modifying the LM

objective to predict a word’s supersense, a high-level hypernym, along with the word itself.

This approach was shown to improve performance on word sense disambiguation in partic-

ular. Similarly, Bai et al. (2022) create a curriculum where LMs learns to predict a word’s

hypernym before learning to predict the word itself. However, this approach aims and suc-

ceeds to improve language modeling performance more generally. Typically, previous work

uses multi-task learning to incorporate hypernymy into LM pretraining. However, it does

not evaluate on specific hypernymy-informed tasks or attempt to disentangle hypernymy

from other relations during pretraining. In contrast, our work bridges the gap between incor-

porating and evaluating hypernymy in LMs, proposing a novel method based on semantic

specialization and demonstrating improvements on targeted evaluations of hypernymy.

2.3.2 Semantic Specialization of Word Embeddings

Word embeddings capture distributional similarity, which can serve as a proxy for semantic

similarity but struggles to capture semantic relatedness (Budanitsky and Hirst, 2006). In

particular, semantic similarity can be seen as an instance of the more general concept of

semantic relatedness which includes and distinguishes between different types of semantic

relations (Baroni and Lenci, 2011). Semantic specialization refers to a class of methods

that address this issue and have been used to incorporate and disentangle LSRs in word

embeddings. It is often framed as learning an auxiliary objective function to impose
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constraints on a distributional vector space and create systematic structure reflective of

LSRs. However semantic specialization has, to the best of our knowledge, not been explored

in the context of language models. In this thesis, we consider how this approach can be

adapted to the latent representations of LMs to more systematically represent hypernymy

and help guide their linguistic behavior on hypernymy-informed tasks.

While semantic specialization covers a wide breadth of techniques and goals, we provide

here an overview of the different threads of researchwhich underlie ourwork. Yu andDredze

(2014) first incorporate synonymy in Word2vec (Mikolov et al., 2013a) with an auxiliary

learning objective based on Bordes et al. (2012). Given word F8, the probability of related

words F ∈ '8 is maximized based on the normalized dot product of their embeddings (2.2).

Similarly, Fried and Duh (2015) incorporate hypernymy into NLM embeddings (Collobert

et al., 2011) by making the cosine similarity of word embeddings proportional to their

proximity in WordNet’s hypernymy graph (Fellbaum and Miller, 1998).

log ?(F |F8) = exp(4)F4F8 )/
∑
F̄ exp(4)F4F8 )

L = 1
#

#∑
8=1

#∑
F∈'8

log ?(F |F8)
(2.2)

However, a key limitation of these methods is that they involve retraining embeddings

from scratch. To address this issue, Faruqui et al. (2015) retrofit already trained embeddings

@8 by jointly minimizing their euclidean distance with the original embeddings @̂8 and with

related embeddings @ 9 for the set of related pairs (8, 9) ∈ � , with hyperparameters U and

V to control the relative weight of each constraint (2.3). Building on this approach, Mrkšić

18



Chapter 2. Background

et al. (2016) propose counter-fitting, which includes an additional objective to maximize the

euclidean distance between antonyms. Vulić and Mrkšić (2018) further extend retrofitting

by adding a hypernymy-specific objective which minimizes the cosine distance of related

hyponym-hypernym pairs while adjusting vector norms to reflect the WordNet hierarchy.

L =
=∑
8=1

U8 | |@8 − @̂8 | |2 +
∑
(8, 9)∈�

V8 9 | |@8 − @ 9 | |2
 (2.3)

To more systematically represent multiple relations, Xu et al. (2014) augment skip-gram

(Mikolov et al., 2013b) with a margin-based regularization function, similar to the TransE

model of Bordes et al. (2013) which represent distinct relations as distinct translations

in the vector space of embeddings (following which related embeddings should be more

similar). In contrast, Glavaš and Vulić (2018) specialize distributional word embeddings

by learning distinct neural networks for distinct relations, each neural network taking in

two word embeddings and predicting whether they are related. Lastly and most closely

related to our work, Arora et al. (2020) propose LexSub (2.4). For a symmetric relation

A, LexSub minimizes the cosine distance 3?A> 9A of related word embeddings (G8, G 9 ) that

have been projected into a relation-specific subspace with , ?A> 9
A (except for antonymy

which maximizes cosine distance in synonymy space, similar to counter-fitting). In the

case of asymmetric relations such as hypernymy, an additional relation-specific linear

transformation is performed only on G8 to capture asymmetry in the cosine distance 30BH<A .
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3
?A> 9
A (G8, G 9 ) = 3 (, ?A> 9

A G8,,
?A> 9
A G 9 )

3
0BH<
A (G8 → G 9 ) = 3?A> 9A (,0BH<

A G8 + 10BH<A , G 9 )
(2.4)

By modeling distinct relations as similarity constraints in distinct transformations of

the original vector space, these approaches can effectively model and disentangle multiple

relations in one set of representations, bridging the gap between semantic similarity and

semantic relatedness. Crucially, this functional representation of LSRs as transformations

may enable systematic generalization to unseen pairs of related items (Vulić et al., 2018).

2.3.3 Lexical and Distributional Semantics

More broadly, these lines of work explore the interplay between lexical and distributional

semantics, specifically how the first (in the form of LSRs) can help inform the second (in

the form of training and evaluating LMs or word embeddings). In contrast, there is a rich

body of work that has attempted to inform lexical semantics with distributional semantics.

Of particular relevance to our work is the extraction from corpus data of hypernymy

(Caraballo, 1999; Snow et al., 2004) and meronymy (Poesio et al., 2002) relations, typically

based on Hearst patterns (Hearst, 1992). Similarly, Mohammad et al. (2008) leverage the

co-occurrence hypothesis (Charles andMiller, 1989) to identify antonymy. Bridging the gap

between lexical and distributional semantics, there is work like Agirre et al. (2009) which

combines both approaches, noting that while distributional methods help alleviate out-of-

vocabulary issues in lexical resources, they struggle to distinguish semantic similarity from

relatedness. Our work attempts to address this issue, explicitly modeling LSRs in LM
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representations so they can be distinguished.

2.4 Evaluating Hypernymy in Language Models
2.4.1 Representational Probing

As transformer language models such as BERT (Devlin et al., 2019) obtained state-of-the-

art performance across NLP tasks (see Qiu et al. (2020) for a review), a growing body of

work sought to better understand these positive empirical results, by understanding, among

other things, what kind of information is learned by LMs and how it’s represented in their

internal representations.

Rogers et al. (2020) and Belinkov and Glass (2019) provides comprehensive reviews of

this line of work, including one class of approaches in particular, referred to as "probing

tasks" (Conneau et al., 2018) or "diagnostic classifiers" (Veldhoen et al., 2016). These

approaches train classifiers over model representations to predict specific linguistic phe-

nomena. For example, Tenney et al. (2019b) probe token-level representations on a range

of syntactic and semantic tasks such as part-of-speech tagging, dependency labeling, and

semantic role labeling. In the context of hypernymy, Vulić et al. (2020) use probing to

systematically analyze how well LMs encode lexical semantics in their representations.

Specifically, they adapt the WN-LS evaluation from Glavaš and Vulić (2018), which in

turn is based on CogALex-V (Santus et al., 2016). In both evaluations, relations between

word pairs must be classified as synonymy, antonymy, hypernymy, or meronymy. While

the original dataset suffers from skewed class distribution, lexical repetitiveness, and a non-

systematic split where words in the train set occur in the test set, theWN-LS dataset contains
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10,000 word pairs evenly distributed between categories. However, the 80% train-test split

in WN-LS remains unsystematic, and the performance reported by Vulić et al. (2020) is

lackluster, with a micro-averaged �1 score that never exceeds 0.73 across configurations.

These probing methods suffer from several limitations discussed by Rogers et al. (2020).

Notably, probes tell us what information can be recovered from model representations, not

how (or even if!) models use it in practice (Tenney et al., 2019a). Furthermore, probing

typically improves with classifier complexity, however it becomes less clear to what extent

the targeted information is captured by the original model rather than the probe itself.

2.4.2 Behavioral Probing

A fundamental challenge of evaluating LMs via their representations is understanding

whether performance is attributable to a model’s representations, or to the probing and

finetuning processes. An alternative approach to evaluating what information is captured

by a language model considers instead its linguistic behavior, in terms of the text it generates

given certain contexts. This is typically done in a zero-shot setting, i.e. without finetuning.

For instance, Linzen et al. (2016) use conditional text generation to assess subject-verb

number agreement in LSTMs, comparing the probabilities of generating the correct verb in

either its singular or plural form. Building on this work, Marvin and Linzen (2018) compare

sequence-level probabilities between grammatical and ungrammatical sentences in LSTMs

to assess how well they capture syntax. More broadly, Radford et al. (2019) investigate

how well LMs perform on a variety of downstream NLP tasks framed as conditional text

generation. Petroni et al. (2019) use conditional text generation in a more targeted way to
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extract relational knowledge from LMs in an unsupervised way, finding this approach to

be remarkably competitive with non-neural and supervised alternatives in terms of mean

precision.

In the context of hypernymy, Ettinger (2020) adapts psycholinguistic tests to "examine

LMs’ general linguistic knowledge, specifically by asking what information the model are

able to use when assigning probabilities to words in context". One of the proposed tests

builds on Fischler et al. (1983) to evaluate negation and category membership. In this test,

models must complete prompts such as "a robin is a " and "a robin is not a ", where

"bird" is the right completion for the first prompt, but not the second. While BERT performs

well on predicting noun categories from positive contexts, it completely fails to account

for negation. An important limitation of these results is the limited size of the dataset,

containing only 9 noun categories with two subject nouns each for a total of 18 prompts

templates. In contrast, Ravichander et al. (2020) more directly target hypernymy knowledge

encoded in BERT, evaluating the systematicity of its behavior on such prompts. Specifically,

they demonstrate that BERT fails to generalize when nouns are pluralized (e.g. "robins are

"), extending the original dataset of Ettinger (2020) from 18 to 576 noun-category pairs

while maintaining the original 9 Fischler categories. Unsurprisingly, BERT performance

drops precipitously from perfect performance on the original (positive) dataset to 67.53%

accuracy on the extended dataset, and 44.1% on the pluralized extended dataset, suggesting

that LMs struggle to capture hypernymy in their linguistic behavior. Similarly, Hanna and

Mareček (2021) find that LMs can only predict correct hypernyms with 57% accuracy

across more diverse prompts. In particular, a qualitative analysis of model behavior found
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that LMs often perform semantically and syntactically correct completions unrelated to

hypernymy, suggesting a mismatch between the original language modeling objective of

LMs and prompts aimed at hypernym extraction.

These behavioral probing results suggest that LMs such as BERT fail to systematically

capture hypernymy in its linguistic behavior, motivating the work in this thesis. However,

the findings of Hanna and Mareček (2021) also highlight a limitation of zero-shot prompt-

ing, where specific linguistic capabilities are difficult to disentangle from general language

modeling behavior. While previous work has attempted to address this by computing eval-

uation metrics on a closed set of possible completions (e.g. Fischler categories in Ettinger

(2020) and Ravichander et al. (2020)), this approach does not capture LM behavior in

practice. An alternative approach to disentangle general language modeling behavior from

specific capabilities is to finetune models on prompt completion, and to benchmark perfor-

mance throughout finetuning (Talmor et al., 2020). Importantly, comparing performance

with baselines throughout finetuning enables this approach to better distinguish what latent

capabilities are learned by LMs during pretraining as opposed to during finetuning. In our

work, we address several of the limitations outlined for behavorial probing in the context

of hypernymy. First, we create a novel dataset of prompts which is significantly larger and

more comprehensive than previous work, encapsulating hypernym and hyponym prediction

for a wider variety of nouns. Second, we address the issue of language modeling mismatch,

adapting the protocol of Talmor et al. (2020) to evaluate how well LMs transfer learn on this

task. Lastly, we use systematic train-test splits to isolate how well LMs learn a functional

abstraction of hypernymy, rather than specific instances of hypernym-hyponym pairs.
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2.4.3 Hypernymy-informed Entailment

In addition to representational and behavioral probing, how well LMs capture hypernymy

can be measured based on their performance on downstream tasks that are informed by

hypernymy. One such task is textual entailment, or Natural Language Inference (NLI),

which can require knowledge of hypernymy in certain cases.

Similarly to different word forms having shared meaning, different utterances can also

have shared meaning; a linguistic phenomenon which Dagan et al. (2006) identify as

"variability of semantic expression". They propose Recognizing Textual Entailment (RTE)

as an application-independent task which measures models’ abilities to capture inferences

involved in identifying entailment. Concretely, RTE is define as "recognizing, given two

text fragments, whether the meaning of one text can be inferred (entailed) from the other".

Several iterations of this task are compiled into the RTE subtask of the GLUE benchmark

(Wang et al., 2018), which has played a central role in evaluating LM capabilities. GLUE

also includes several NLI tasks such as SNLI (Bowman et al., 2015), which are similar to

RTE but include "contradiction" as a third entailment classification.

Textual entailment can involve diverse inferences, not necessarily related to hypernymy.

For example, Bar-Haim et al. (2005) identify mechanisms on the lexical entailment level

(morphological derivations, ontological relations, lexical world knowledge), and on the

lexical-syntactic entailment level (syntactic transformations, paraphrases, and co-reference)

in the original RTE dataset. Of particular interest to this thesis is ontological relations;

where synonymy, hypernymy, or meronymy enable meaning-preserving word substitutions,

which in turn result in textual entailment. For example A dog ate my hotdog entails
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A dog ate my frankfurter because of synonymy, as well as A dog ate my food because of

hypernymy. This principle of meaning-preserving word substitutions is referred to as lexical

entailment (Geffet and Dagan, 2005) and informs MoNLI (Geiger et al., 2020), a challenge

NLI dataset where entailment is determined by hypernymy, negation and monotonicity

reasoning. Textual entailment examples are created with hyponym-hypernym single-word

substitutions in PMoNLI, with negation introduced in NMoNLI to reverse the direction of

entailment (for example A dog didn’t eat my food now entails A dog didn’t eat my hotdog).

Rozen et al. (2021) provide a similar challenge NLI dataset without negation and find that

BERT obtains only 65% accuracy, suggesting that LMs struggle to learn representations of

hypernymy useful for textual entailment. In our work, we includeMoNLI in our evaluations

to complement our behavioral probes. Combined with the transfer learning evaluation of

Talmor et al. (2020), our evaluations provide a comprehensive overview of the different

ways in which LMs may capture hypernymy in their linguistic behavior. We do not include

representational probing in our evaluation, as our method directly optimizes this.
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Incorporating Hypernymy

In this chapter, we present Balaur, our proposed approach for aligning the linguistic

behavior of language models with our understanding of hypernymy. We first introduce

Balaur in §3.1, with a high-level discussion of the method and the hypothesis underlying

it. We then formalize Balaur in §3.2, providing detailed explanations of how we translate

our hypothesis into a concrete neural network architecture and optimizable loss function.

In §3.3, we describe how pretraining a language model with Balaur is operationalized in

practice throughout our experiments. Lastly, in §3.4, we discuss the unexpectedly positive

effects of Balaur on the original language modeling objective.

3.1 Balaur

Based on work in semantic specialization (§2.3.2), we propose a novel approach to incor-

porate LSRs into LM pretraining. In this approach, we learn LSR-specific transformations

that are applied to the latent representations of LMs; modeling LSRs as constraints in the
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resulting vector spaces. Concretely, the transformed latent representations of two lexical

items should be similar only if they are related by the corresponding LSR.We operationalize

this approach with Balaur: a modular neural architecture composed of distinct heads for

each LSR, named after the many-headed dragon of Romanian folklore. As shown in Fig-

ure 3.1, each head learns different LSR-specific transformations that enforce our similarity

constraint between contextualized embeddings of input tokens (i.e. the LM’s final hidden

states) and embeddings of concepts. By parameterizing LSRs as learned transformations,

our approach can model LSRs inductively; i.e. generalize from instances of related pairs

to a functional representation that can extrapolate to unseen pairs. Moreover, by learning

separate transformations, we model multiple LSRs in one vector space such that they can

be disentangled from one another; e.g. capturing that "dog" and "fox" share the hypernyms

"canine" and "animal", but have different hyponyms (Figure 3.1).

Our hypothesis is that, by jointly learning these transformations during LM pretraining,

we can instill the resulting LM’s hidden states with inductive biases useful for LSR-informed

tasks. More broadly, we aim to demonstrate that controlling the latent representations

of LMs can provide an interface to their linguistic behavior and help align it with our

knowledge. One important advantage of our proposed approach is its data and compute

efficiency. By enforcing our constraints on hidden states that are already computed in the

LM’s forward pass, our method can be incorporated in pretraining with negligible overhead

and no additional training examples. Conversely, using separate concept embeddings allows

us to model LSRs for lexical items that would otherwise fall outside the model’s vocabulary

or that do not co-occur in training examples.
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Figure 3.1 Combining Balaur with LM pretraining to model LSRs in its hidden states.

3.2 The Balaur Head Architecture

3.2.1 Modeling Lexical Semantic Relations

Assumptions We take the term (neural) language model (LM) to refer to a neural network

that predicts a token given its context, including commonly used masked LMs like Bert

(Devlin et al., 2019) and auto-regressive LMs like GPT (Radford et al., 2018). These

LMs encode a sequence of tokens into latent representations known as hidden states or

contextualized token embeddings ) , using these as inputs to a classification head that

predicts the target token. Meanwhile, we represent a lexical semantic relation ' as a

set of related lexical item pairs (-8 → - 9 ) ∈ ', noting that LSRs can be directed, e.g.

(2>A68 → 3>6) resides in hypernymy while (3>6 → 2>A68) resides in hyponymy.

Our goal is to model LSRs in ) , where )8 is the LM hidden state for token 8. However
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modeling LSRs between pairs of in-context tokens is intractable. On the one hand, if

we were to model relations between tokens in the same context, we run into the issue

that tokens typically do not co-occur with related tokens. On the other hand, if we were to

model relations between pairs of tokens in different contexts, the number of such pairs grows

combinatorially with the number of contexts. Instead, we model LSRs as ()8 → � 9 ) ∈ ',

where � is a set of context-independent concepts, represented as static embeddings learned

by Balaur during pretraining. This allows us to tractably model LSRs in ) while using the

same training examples as a vanilla language model, instead of artificially creating contexts

with co-occurring related tokens (Lauscher et al., 2020) or combining pairs of contexts in

the model forward pass. Furthermore, operating on lexicalized concepts, similar to Bai et al.

(2022), enables us to account for lexical items that are not present in the LM’s vocabulary.

Concretely, for a given relation ', the corresponding Balaur head learns to transform

) and � such that related token-concept pairs are similar in the resulting relation-specific

vector space. For example, Figure 3.1 shows that the token embedding for dog and the

concept embedding for (canine) are similar when transformed into hypernymy space;

while dog and (corgi) are similar when transformed into hyponymy space. These learned

transformations enable Balaur heads to model and disentangle multiple LSRs in the vector

space of ) , i.e. ensuring a token’s related concepts can be predicted from its contextualized

embedding, distinguishing across different relations. We implement these transformations

as two-layer neural networks with GELU activations (Hendrycks and Gimpel, 2020):
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(3.1)

where C and 2 are the number of token and concept embeddings, and 3 and 1 are their original

and transformed dimensionalities. ,', ,',) , ,',� , �',) , �',� are learned projection and

bias matrices that parameterize the transformations for '.

3.2.2 Optimizing a Balaur Head

To translate our similarity constraint to a learning objective, we adapt the supervised

contrastive loss of Khosla et al. (2021) which maximizes the inner product similarities (

between each related token-concept pair (8, 9), while minimizing it for unrelated pairs (8, :).

Optimizing this loss thus enables us to predict a token’s related concepts from its contextual

embeddings, encoding the corresponding LSR in the LM’s hidden states:

S'
C×2
= ) '

C×1
× (�')

2×1

) (3.2)

L' =
1
|' |

'∑
(8, 9)
− log

exp (('
8, 9
)∑

:<2

exp (('
8,:
) (3.3)

where 8 indexes the set of C token embeddings, while 9 and : index the set of 2 concept

embeddings.
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3.2.3 Interfacing with Language Models

During LM pretraining, ) is computed in the forward pass and used as input to the LM’s

classification head for token prediction. Each Balaur head also takes ) as input, along

with concept embeddings � and relation-specific sets of indices (8, 9) — where 8 indexes

) and the corresponding token in the training batch, while 9 indexes a concept in � related

to )8 by the corresponding relation '. Each head then computes its loss L' and these are

averaged before being added to the LM loss.

3.3 Pretraining with Balaur

In this section, we detail our methods for LM pretraining with Balaur, using LSRs and

concepts extracted from WordNet. We also present the architecture and hyperparameters

for the LM in our experiments, a variant of BertLarge suitable for academic budgets. While

our experiments are limited to masked language modeling and LSRs, our method can easily

be extended to autoregressive language modeling and other forms of relational knowledge.

3.3.1 Extracting LSRs from WordNet

As a first step, we extract related token-concept pairs for hypernymy, hyponymy, antonymy

and synonymy from WordNet’s noun hierarchy (Miller, 1995). To do this, we begin by

mapping the model’s vocabulary to correspondingWordNet synsets (referred to throughout

this paper as concepts) using NLTK (Bird and Loper, 2004). For example, dogmaps to the

concept of dog.n.01 (a pet dog) or frank.n.02 (a hot dog).

Next, using the resulting set of concepts, we extract related concept-concept pairs
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from WordNet and convert these to token-concept pairs. For example canine.n.01 is a

hypernym of dog.n.01, while sausage.n.01 is a hypernym of frank.n.02; but both

are extracted as hypernyms of the token dog1. To increase our coverage of WordNet, we

consider multi-hop hypernymy up to depth 3, such that e.g. animal.n.01 is extracted as

a hypernym of both dog and canine. The resulting set of token-concept pairs contains

15, 612 unique concepts.

Manual sampling and inspection of the resulting pairs revealed several known issues

associated with WordNet, including inaccurate lemmatization (McCrae et al., 2019), and

word senses that are too fine-grained (McCarthy, 2006). To help address these potential

sources of noise in Balaur, we filter tokens, concepts and token-concept pairs using the

criteria described in A.1.1.

3.3.2 Incorporating Balaur into Pretraining

We then use these token-concept pairs to optimize a Balaur head for each LSR throughout

LM pretraining. First, we instantiate an embedding layer� for the set of extracted concepts,

shared across four Balaur heads for hypernymy, hyponymy, synonymy and antonymy.

Second, each training example is annotated with relation-specific sets of indices (8, 9),

where 8 indexes a token in the training sequence and 9 indexes a related concept in �.

Lastly, the hidden states ) are computed in the LM’s forward pass, and fed into each

Balaur head along with � and the sets of indices (8, 9) to compute L' as described in

1This approach does not distinguish between different in-context meanings of a token, and instead models
relations for all possible meanings simultaneously; simplifying implementation by foregoing wordsense
disambiguation, with the downside of a noisier learning signal.
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§3.2.3. To reduce the overhead of iterating over Balaur heads, we adopt the parallelization

technique from multi-head attention (Vaswani et al., 2017). Specifically, we learn one set

of transformations (3.1) but multiply 1 by |' | so the resulting transformed vector space can

be partitioned across relations. To further improve efficiency we only give the subset of )

containing LSRs as inputs to Balaur, ensuring 8 is reindexed on this subset.

3.3.3 Language Model Pretraining Setup

Our LM architecture, pretraining procedure, and hyperparameters are based on 24hBert

(Izsak et al., 2021) which enables rapid pretraining with limited resources, while reaching

comparable performance with the original Bert models (Devlin et al., 2019). Specifically,

we pretrain a BertLarge architecture to perform masked language modeling (MLM) on

128-token sequences for 25,000 steps with a batch size of 4,096 and using 16-bit precision.

We optimize using AdamW (Loshchilov and Hutter, 2019) and a peak learning rate of 2e-3

with warm-up over the first 1,500 steps and linear decay. The pretraining data is a snapshot

of English Wikipedia from 2022-03-01, and BookCorpusOpen (Bandy and Vincent, 2021),

with 0.5% withheld for validation. These datasets were downloaded from and preprocessed

with the datasets library (Lhoest et al., 2021) which provided licenses such as CC-BY-SA

3.0 and GFDL for Wikipedia.

3.4 Balaur Improves Language Modeling

In Table 3.1, we see that incorporating Balaur into the LM pretraining procedure of Izsak

et al. (2021) increases both negative log likelihood (NLL) and mean reciprocal rank (MRR)
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for the original masked language modeling objective.

Random Tokens Lsr Tokens
Model NLL MRR NLL MRR

Bert (ours) 1.659 0.733 3.359 0.482
Bert+Balaur 1.587 0.743 3.201 0.503
Δ (%) 4.3 1.4 4.5 4.1

Table 3.1 Validation MLM performance, shown for masking random tokens and for only masking
tokens with LSRs (i.e. modeled by Balaur during pretraining).
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Figure 3.2 Validation MLM loss throughout pretraining.

We observe similar improvements when masking random tokens as when masking only

tokens with LSRs, indicating the improvements introduced by Balaur extend beyond the

modeling of LSRs. Lastly, we note that the improvements in the original MLM objective

begin early and are consistent throughout pretraining, as seen in Figure 3.2. This suggests

the beneficial effects of Balaur on LMs occur early in optimization rather than later,

highlighting the importance of pretraining from scratch in our method.
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Evaluating Hypernymy

In this section, we evaluate whether pretraining with Balaur heads can improve perfor-

mance of LMs on tasks that are informed by LSRs, specifically hypernymy and hyponymy.

To this end, we compare BertLarge models that were pretrained with and without Balaur

heads1. Throughout this section, we refer to these as Bert+Balaur and Bert (ours)

respectively. The goal of this analysis is to verify our hypothesis that controlling the latent

representations of LMs can provide an interface to their linguistic behavior and help align it

with our knowledge (in this case, of hypernymy). To this end, we bring together a compre-

hensive set of evaluations from the literature (§2.4), which target different ways in which

LMs might capture hypernymy:

Prompt completion (§4.1): models must predict the correct token given a cloze-style

prompt describing a hypernymy or hyponymy relation, e.g. "a dog is a type of [mask]".

Monotonicity NLI (§4.2): models must predict whether a sentence entails another, when

1Note that during evaluation,Balaur heads are discarded such that bothmodels have the same architecture,
differing only in their learned weights.
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hypernymy and monotonicity determine entailment, e.g. "drive a taxi" entails "drive a car".

Finetuning Efficiency (§4.3): we compare how efficiently models transfer-learn throughout

finetuning on the two previous tasks to evaluate how well model representations capture

hypernymy, disambiguating what is learned during pretraining versus during finetuning.

4.1 Prompt Completion

Task Description We create HypCC: a dataset of cloze-style prompts taking the form

“In the context of hypernymy, a(n) G is a type of H.” where G, H are hyponym-hypernym

pairs of tokens in our model’s vocabulary, and either is masked out to be predicted by

the model. This evaluation builds on the work of Ettinger (2020) and Ravichander et al.

(2020), which draws from human psycholinguistic tests to create cloze prompts. In contrast

to previous work, our evaluation includes hypernyms beyond Fischler categories, evaluates

hyponym prediction, considers tokens with multiple word senses, and include clozes with

multiple valid completions. The resulting dataset contains 17,556 hyponym-hypernym

pairs; 5,217 hypernym prediction prompts; and 4,115 hyponym prediction prompts. We

report additional details for the creation of HypCC in A.1.2, as well as limitations in §A.1.3.

Evaluation Method In line with previous work, models are evaluated on HypCC in a

zero-shot manner (i.e. using masked language modeling to complete the cloze prompt); and

performance measured with accuracy and mean reciprocal rank (MRR) for both the open
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and closed vocabulary settings. For accuracy, we report Acc@1/5, i.e. the rate at which

correct answers lie in the top-1 and top-5 predictions. In the closed setting, metrics are

calculated using only the set of possible hypernyms or hyponyms in HypCC, while the open

setting considers the model’s entire vocabulary. Importantly, these metrics are adjusted to

account for multiple valid completions in a prompt: ignoring other valid completions when

computing a completion’s rank (i.e. if a model’s top three predictions are all valid, the

average accuracy will be 100% instead 33%). To prevent a skewing of results by prompts

with multiple completions, metrics are averaged over the set of prompts X after averaging

over the set of possible completions . (G) for each prompt G ∈ - .

M =
1
|- |

∑
G∈-


1
|. (G) |

∑
H∈. (G)

M(H, G)
 (4.1)

Results and Discussion In Table 4.1, we find that Balaur can robustly improve LM

performance on hypernymy-informed prompt completion across settings and metrics, even

outperforming the original BertLarge implementation of Devlin et al. (2019).
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Closed Vocab Open Vocab
Model Acc@1/5 Mrr Acc@1/5 Mrr

Hypernym Prediction
†BertLarge 3.53 / 14.13 0.092 1.78 / 11.77 0.071
Bert (ours) 5.18 / 18.61 0.121 0.88 / 14.72 0.080
Bert+Balaur 5.31 / 19.65 0.128 1.60 / 15.44 0.089

Hyponym Prediction
†BertLarge 3.60 / 14.95 0.097 2.76 / 12.87 0.083
Bert (ours) 2.69 / 12.22 0.081 2.03 / 10.65 0.069
Bert+Balaur 3.49 / 17.91 0.110 1.85 / 14.56 0.084

Table 4.1 Zero-shot results on HypCC. Balaur generally improves performance across metrics
when compared to a baseline Bert model with the same 24hBert pretraining procedure, as well as
the published checkpoint of †BertLarge (Wolf et al., 2020).

Model Hypernym Repetition Hyponym Repetition

†BertLarge 50.17 47.08
Bert (ours) 87.81 64.20
Bert+Balaur 69.59 69.38

Table 4.2 Rates of repetition on HypCC. Balaur reduces repetition for hypernym prediction, with
comparable rates of repetition for hyponym prediction.

However, we note that both of our models struggle with Acc@1 when compared to

†BertLarge, despite general improvements of Balaur over our baseline. A closer inspection

of model predictions reveals that, similar to findings of Ettinger (2020), models often repeat

the hypernym or hyponym in the context (e.g. predicting “a daisy is a type of daisy”).

In Table 4.2, we find that our baseline pretraining procedure exacerbates this problem,

explaining the discrepancy in Acc@1 performance.

Moreover, a qualitative analysis of selected clozes similar to Arora et al. (2020), shown

in Table 4.3, suggests that Balaur better disentangles hypernymy from other forms of

semantic relatedness. These results agree with Agirre et al. (2009), who showed similar
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improvements combining lexical and distributional semantics in word embeddings.

In the context of hypernymy, a church is a type of [mask].

Bert church religion structure building worship
(ours) 74.78 2.83 1.25 1.11 0.86

Bert+ church building structure place object
Balaur 27.33 21.45 15.57 2.41 1.83

In the context of hypernymy, a [mask] is a type of poem.

Bert poem poet poetry verse word
(ours) 91.72 0.84 0.55 0.50 0.35

Bert+ poem verse song poetry “ ”
Balaur 66.23 3.80 3.46 2.47 1.67

In the context of hypernymy, a volcano is a type of [mask].

Bert volcano lava cone rock eruption
(ours) 88.30 1.59 1.11 0.94 0.88

Bert+ volcano mountain structure object rock
Balaur 69.54 13.27 2.55 0.80 0.69

Table 4.3 Top-5 completions and probability percentages for selected clozes, showcasing how
Balaur can help disentangle hypernymy from other forms of semantic relatedness (related but
invalid completions are bolded).

It is also interesting to note that Balaur spreads its probability mass more evenly across

predictions, better capturing the one-to-many nature of hypernymy relations. However,

we observe that many of the seemingly valid completions are not actually gold-standard

completions in HypCC. This is because HypCC considers only direct hypernymy relations

in WordNet, while several completions are indirect hypernymy relations or not in WordNet.

We further discuss these limitations in §A.1.3.
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4.2 Monotonicity NLI

Task Description Our second evaluation is taken from Geiger et al. (2020), who create

MoNLI: a challenge NLI dataset where entailment is determined by hypernymy. For in-

stance, "A man is talking to someone in a taxi" entails "A man is talking to someone in a car".

While models finetuned on SNLI (Bowman et al., 2015) perform well on such examples,

they fail to generalize on examples where negation reverses entailment. For instance, "A

man is not talking to someone in a car" now entails "A man is not talking to someone in

a taxi". MoNLI is divided into PMoNLI and NMoNLI to distinuish between positive and

negated examples.

Evaluation Method We follow the evaluation procedure of Geiger et al. (2020), reporting

test set accuracies for models finetuned on SNLI, and models also finetuned on MoNLI2.

We follow the NLI finetuning procedure of 24hBert (Izsak et al., 2021) on which our model

is based. However, we found that performance is sensitive to random seeds, so we report

results averaged across 5 seeds.

Results and Discussion In Table 4.4, we replicate the results of Geiger et al. (2020), finding

that models finetuned on SNLI only generalize to PMoNLI but fail completely on NMoNLI.

Unexpectedly, we findBalaur significantly improves both SNLI and PMoNLI performance

in this setting, suggesting examples in SNLI also benefit from the representations learned

with Balaur pretraining.

2Consistently with Geiger et al. (2020), models fineuned on MoNLI are only tested on NMoNLI as there
is no systematic split of PMoNLI
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Model SNLI PMoNLI NMoNLI

SNLI Finetuning Only
Bert (ours) 85.44 65.51 0.50
Bert+Balaur 86.49 76.92 0.10

SNLI + MoNLI Finetuning
Bert (ours) 85.43 - 48.90
Bert+Balaur 86.38 - 56.50

Table 4.4 SNLI and MoNLI accuracies.

However, we conversely find that Balaur degrades performance on the withheld test set

of NMoNLI. While Balaur may help LMs better capture hypernymy, the fact that it does

not account for negation may help explain this result. Furthermore, visualizing performance

across seeds in §A.2.3, we observemarkedly larger variance onNMoNLI compared to SNLI

and PMoNLI, making this result more difficult to interpret reliably.

4.3 Finetuning Efficiency

Task Description Our final evaluation reframes §4.1 and §4.2 not in terms of zero-shot or

final performance, but in terms of performance throughout the finetuning of a pretrained

model — as proposed by Talmor et al. (2020) in oLMpics. This approach was originally

proposed because finetuning pretrained LMs makes it hard to disentangle what is captured

in the pretrained representations fromwhat is learned during finetuning. On one hand, zero-

shot performance on prompt completion (§4.1) does not account for issues such as potential

mismatches with the original language modeling objective (Hanna and Mareček, 2021),

where poor performance may be attributable to valid completions not related to hypernymy.
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On the other hand, final fine-tuned performance onMoNLI (§4.2) might not even depend on

the original pretrained representations and be largely attributable to the finetuning process.

The evaluation protocol of Talmor et al. (2020) enables us to more comprehensively eval-

uate how well different models capture hypernymy in their representations, accounting for

the two potential confounds outlined above. A key assumption underlying this evaluation

is that models which better capture hypernymy in their pretrained representations will be

finetuned more efficiently (i.e. with better finetuned performance relative to finetuning

steps, throughout finetuning).

Evaluation Method We finetune our models using the hyperparameters in the code pub-

lished by Talmor et al. (2020) and follow their procedure. This includes freezing model

parameters for the prompt completion task (leaving only the language modeling head un-

frozen); while leaving the entire model unfrozen for the NLI task. We perform 5-fold

cross-validation with a 20% split, and average validation set results. Importantly, the splits

are systematic to ensure that no hypernyms or hyponyms occur in both train and validation

sets.

Results and Discussion (Prompt Completion) In Figure 4.1, we see that Balaur’s im-

provement on hypernym prediction extends throughout finetuning, indicating better transfer

learning abilities. We show similar results for the hyponym subset of HypCC in §A.2.2.
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Figure 4.1 Average open-vocab MRR throughout finetuning on the hypernym prediction subset of
HypCC.

However, it is puzzling that performance remains relatively low despite extensive fine-

tuning. A closer look at the outputs of the final model reveals that many of the erroneous

entries in the model’s top-10 open vocabulary predictions were in fact other classes in the

HypCC dataset (i.e. tokens from the closed vocabulary). In Figure 4.2, we quantify the

class intrusion rate as the proportion of top-10 predictions which are both erroneous and a

class in HypCC, finding that it increases significantly throughout finetuning.
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Figure 4.2 Average class intrusion rate throughout finetuning on the hypernym prediction subset of
HypCC.

One possible explanation is that models learn to predict indirect hypernyms or hyponyms
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not accounted for in HypCC, similar to examples in Table 4.3. However, a manual inspec-

tion of model predictions showed that this was not often the case.
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Figure 4.3 Average intrusion rate and frequency of classes in the final models finetuned on the
hypernym prediction subset of HypCC.

Instead, in Figure 4.3, we find that the intrusion rate of a class growswith its frequency in

the finetuning dataset. Given that intrusion rates increase with finetuning and that frequent

classes have higher intrusion rates, this suggests that LMs struggle to discriminate single

token differences in prompts, and instead conflate learning signal across prompts with more

frequent classes dominating.
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Results and Discussion (MoNLI) In Figure 4.4, we observe similar results for MoNLI,

indicating that Balaur improves finetuning efficiency. In contrast to the results in §4.2, we

also observe in Table 4.5 that Balaur improves final performance on systematic validation

splits for both PMoNL and NMoNLI. These improvements are consistent even when strati-

fying by Balaur coverage of the hypernym and hyponym in a given MoNLI example, i.e.

whether or not Balaur models hypernymy or hyponymy relations for these tokens.
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Figure 4.4 Average accuracy throughout finetuning.

Overall Accuracy by Balaur Coverage
Accuracy Hypernym+Hyponym Hypernym No Coverage

PMoNLI
Bert (ours) 82.14 80.69 85.07 58.33
Bert+Balaur 86.78 86.19 88.27 72.22

NMoNLI
Bert (ours) 80.31 78.00 81.81 -
Bert+Balaur 93.01 91.44 94.02 -

Table 4.5 Final performance onMoNLI subsets, averaged across five systematic validation splits and
stratified by Balaur coverage. Due to insufficient examples where only the hyponym is covered,
there is no "Hyponym" entry in this table. Similarly, there were no NMoNLI validation examples
with no Balaur coverage.
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Conclusion

In this work, we set out to align the linguistic behavior of LMs with our knowledge of LSRs

and improve their performance on hypernymy-informed tasks. We presented Balaur, an

approach that aims to guide the linguistic behavior of LMs in such a way by modeling LSRs

directly in their hidden states throughout pretraining.

Underlying this proposed approach was the hypothesis that LM latent representations

can provide an interface to their linguistic behavior, and that controlling one can help guide

the other. To verify our hypothesis, we characterized the effect of Balaur on a series of

evaluations, targeting several distinct ways in which LMs might capture hypernymy in their

linguistic behavior.

Our findings show thatBalaur can robustly improve performance on diverse hypernymy-

informed tasks, validating the effectiveness of our method while supporting our original

hypothesis. Notably, we demonstrated that Balaur also improves performance on the orig-

inal language modeling objective, indicating our method’s improvements are not limited
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to hypernymy-informed tasks and can extend to more general linguistic behavior. How-

ever, we found that aligning the linguistic behavior of LMs with Balaur still poses several

challenges.

More broadly, Balaur is a general-purpose architecture for modeling relations in the

latent representations of neural network models. While our work has focused on modeling

LSRs inLMfinal hidden states throughout pretraining,Balaur can in principle be applied to

different modalities, architectures, latent representations, relations or optimization settings.

How well our results and hypothesis generalize to such different settings remains an open

question.
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Appendix

A.1 Additional Method Details

A.1.1 Filtering LSRs from WordNet

Filtering Tokens When mapping tokens to WordNet synsets using NLTK, we observed
several potential sources of noise that could be addressed by filtering tokens. First, we
observed that many tokens with 3 or fewer characters were often over-zealously lemmatized
by NLTK as acronyms or abbreviations for unlikely synsets. For example cat may map
to computerized_tomography.n.01, while in maps to indium.n.01, indiana.n.01,
and inch.n.01. Originally, we attempted to filter any token with 3 or fewer characters,
however our coverage of important concepts dropped significantly, so we limit ourselves to
filtering tokens with 2 or fewer characters. We also filter out tokens which are wordpieces
in the model vocabulary (e.g. tokens prefixed by "##" in the vocabulary of Bert, indicating
these are not preceded by whitespace and occur in the middle of words) to ensure we only
model LSRs for tokens that correspond to entire words. We also use a WordNet stoplist
(Pedersen and Banerjee, 2009) to filter common function words that tend to be misrepre-
sented byWordNet. Lastly, we limit ourselves to alphabetical tokens, as we found numerical
and alphanumerical tokens to introduce a lot of noise.

Filtering Synsets Having filtered tokens, we then map each of these to all possible synsets
using the NLTK interface to WordNet. However, we found the quality, coverage and ambi-
guity of annotations to vary significantly across synset types. To reduce noise, we filtered
synset categories based on manual inspection. We first limit ourselves to noun synsets, and
filter what we found to be particularly noisy categories: quantity, motive, shape, relation,
and process. Furthermore, we found that despite filtering tokens from our stoplist, NLTK
was still lemmatizing other tokens to synsets in the stoplist, so we further filter any synset
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whose identifiers are in the stoplist.

Filtering Token-Concept Pairs After mapping hypernymy, hyponymy, synonymy and
antonymy relations between tokens and synsets, we filter synsets based on their coverage of
our model’s vocabulary. Specifically, our goal is to avoid modeling LSRs for synsets that
only relate to one item in our vocabulary, as these cannot provide any useful inductive bias
to our model’s representations of its vocabulary. We first keep any synsets which map to 2
or more tokens (i.e. capture synonymy). If a remaining synset has antonymous synsets, we
keep it if both it and it’s antonym(s) have corresponding tokens in the model vocabulary.
Lastly, if a remaining synset belongs in a hypernymy or hyponymy relation, we keep it even
if it does not map to a token, as long as it relates to two or more hypernym or hyponym
synsets that do. This enables us to indirectly model concepts not in the model vocabulary
via co-hyponymy and co-hypernymy relations. Any remaining synset is removed, along
with it’s related token-concept pairs. This filtering ensures that we model concepts relating
to multiple tokens in our vocabulary and prevents the degenerate case where a concept is
indistinguishable from a token.

A.1.2 Hypernymy-informed Cloze Completion Task

To create HypCC, we first extract related token-concept pairs using the same procedure out-
lined in §3.3.1 and A.1.1. One notable difference is that we only consider direct hypernyms,
instead of multi-hop hypernyms up to depth 3. Furthermore, we filter tokens such that they
occur in the two most frequent English LM vocabularies: bert-base-uncased and gpt2,
as hosted by the transformers library (Wolf et al., 2020).

We then convert token-concept pairs to sets of token-token pairs, based on the concepts’
surface forms which are present in our vocabularies. To convert these pairs to cloze-style
prompts, we adopt the following template: "A(n) - is a type of .". We use the inflect
library 1 to filter plural forms or determine the adequate article ("a" or "an"). While we do
not account for uncountable nouns, we find that most prompts maintain their legibility.

Lastly, we found that several concepts and tokens were disproportionately represented
in this dataset as a result of having multiple wordsenses or maintaining a high position in
the WordNet hierarchy. These often lead to nonsensical prompts, which we attempted to
filter out using a manually curated stoplist for tokens and concepts 2.

1https://github.com/jaraco/inflect
2github_link_to_be_published
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A.1.3 Noise, bias and coverage in WordNet

When using knowledge bases such as WordNet, it is important to account for their inherent
limitations. In particular, we identify three prevalent issues in WordNet that can negatively
affect what LMs learn in our experiments.

First is the problem of noise. Due to issues with lemmatization, word sense granular-
ity and idiomaticity, we found many questionable relations being extracted when creating
training data forBalaur and examples forHypCC. For example, we find that "cat" is lemma-
tized to the concept "cat-o’-nine-tails.n.01", implying "cat" has the hypernym "whip.n.01".
Conversely, word sense granularity can lead to questionable relations like "chair (profes-
sorship.n.01)" being a hyponym of "situation (position.n.06)". Lastly, idioms like "taking a
crack at something" can lead to (unlikely when taken out of context) relations like "crack"
having the hypernym "endeavor". These limitations are exacerbated in our experiments, as
we do not disambiguate word senses, considering all possible meanings of a given token
instead.

Second is the issue of bias. We found WordNet to encode several harmful biases and
stereotypes, either directly via harmful relations, or indirectly by including certain relations
for some groups but not others. For example, when comparing hyponyms for "man" and
"woman" we found significant occurrences of both types of bias (see Table A.1).

Hyponym Associations in WordNet

Man
boy commando ranger gunner

veteran officer sailor bachelor
gentleman patriarch gallant swell

dude stud bull sir

Woman
girl nanny nurse siren

amazon whore baggage mistress
wife widow flirt tease
broad peach dish sweetheart

Table A.1 Harmful biases in WordNet hyponyms.

Despite removing these associations in our work, we want to note that these kind of
biases can be difficult to comprehensively account for when expressed as selective inclusion
or omission of associations for different groups.

Lastly, is the related issue of coverage. Many concepts and relations are simply not
expressed in WordNet; limiting the knowledge of LSRs that can be incorporated in LMs
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with this resource. This lack of coverage is exacerbated in our experiments, as we are limited
to single token words (i.e. words in the model’s vocabulary). Despite trying to alleviate this
by also modeling extra-vocabulary concepts, effectively controlling the representations of
multi-token expressions in LMs remains an open problem. We note that, due to it’s reliance
on expert lexicographers, WordNet has had limited updates and developments to increase
it’s coverage; this is in contrast to the open sourced English WordNet 2019 (McCrae et al.,
2019). We suggest future work consider this resource to mitigate coverage issues.

A.1.4 Detailed counts for Balaur relations

Relation Token Count Synset Count Relation Count

Hypernymy 16601 5968 49283

Hyponymy 8764 12106 55262

Synonymy 14919 13241 46902

Antonymy 1133 483 1491

Table A.2 Number of tokens, synsets, and related token-synset pairs for each relation in Balaur.
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A.2 Additional results

A.2.1 Extended zero-shot results on HypCC

Closed Vocab Open Vocab
Model Acc@1/5 Mrr Acc@1/5 Mrr

Hypernym Prediction
BertBase 2.75 / 12.88 0.081 0.30 / 10.25 0.054
BertLarge 3.53 / 14.13 0.092 1.78 / 11.77 0.071
RobertaBase 4.46 / 15.54 0.103 1.90 / 12.14 0.074
RobertaLarge 7.01 / 20.12 0.137 5.29 / 17.00 0.114

Bert (ours) 5.18 / 18.61 0.121 0.88 / 14.72 0.080
Bert+Balaur (ours) 5.31 / 19.65 0.128 1.60 / 15.44 0.089

Hyponym Prediction
BertBase 1.99 / 11.89 0.073 1.39 / 10.42 0.061
BertLarge 3.60 / 14.95 0.097 2.76 / 12.87 0.083
RobertaBase 2.94 / 12.06 0.080 2.24 / 9.92 0.066
RobertaLarge 3.89 / 12.90 0.091 3.37 / 11.55 0.081

Bert (ours) 2.69 / 12.22 0.081 2.03 / 10.65 0.069
Bert+Balaur (ours) 3.49 / 17.91 0.110 1.85 / 14.56 0.084

Table A.3 Zero-shot results on HypCC across MLMs.
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A.2.2 Extended finetuning results on HypCC
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Figure A.1 Average open-vocab MRR throughout finetuning on the hyponym prediction subset of
HypCC.
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Figure A.2 Average class intrusion rate throughout finetuning on the hyponym prediction subset of
HypCC.

54



Appendix A. Appendix

8 9

1
2 3 4 5 6 7 8 9

10
2 3

0

0.01

0.02

0.03

0.04
BERT+BALAUR

BERT (OURS)

Class Frequency in HypCC

I
n

t
r
u

s
io

n
 R

a
t
e

Figure A.3 Average intrusion rate and frequency of classes in the final models finetuned on the
hyponym prediction subset of HypCC.
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A.2.3 MoNLI performance across random seeds

Figure A.4 MoNLI performance across 5 seeds when finetuned only on SNLI.
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Figure A.5 MoNLI performance across 5 seeds when finetuned on SNLI and MoNLI.
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