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Abstract13

Achieving a blended timbre for particular combinations of instruments, pitches, and14

articulations is a common aim of orchestration. This involves a set of factors that this15

study jointly assesses by correlating the perceptual degree of blend with the underlying16

acoustical characteristics. Perceptual blend ratings from two experiments were17

considered, with the stimuli consisting of: 1) dyads of wind instruments at unison and18

minor-third intervals and at two pitch levels, and 2) triads of wind and string19

instruments, including bowed and plucked string excitation. The correlational analysis20

relied on partial least-squares regression, as this technique is not restricted by the21

number and collinearity of regressors. The regressors encompassed acoustical22

descriptors of timbre (spectral, temporal, and spectrotemporal) as well as ones23

accounting for pitch and articulation. From regressor loadings in principal-components24

space, the major regressors leading to substantial and orthogonal contributions were25

identified. The regression models explained around 90% of the variance in the datasets,26

which was achievable with less than a third of all regressors considered initially. Blend27

seemed to be influenced by differences across intervals, pitch, and articulation. Unison28

intervals yielded more blend than did non-unison intervals, and the presence of plucked29

strings resulted in clearly lower blend ratings than for sustained instrument30

combinations. Furthermore, prominent spectral features of instrument combinations31

influenced perceived blend.32

Keywords: timbre, blend, orchestration, instrument dyads/triads, acoustical33

descriptors, multivariate regression34
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Acoustical correlates of perceptual blend in timbre dyads and triads35

In orchestration, composers may consider several factors when they intend to36

achieve a blended timbre between two or more instruments playing synchronously.37

There is the choice of suitable instruments that can yield a blended combination, which38

depends on the acoustical traits of these instruments. The remaining factors involve39

more musical considerations: whether instruments will be playing in unison or40

non-unison, which instrument is assigned to the top voice in non-unison passages, in41

what registral range the instruments will be playing, and what kind of articulation they42

will employ (e.g., bowed or plucked string). When it comes to establishing general43

associations between the perception of timbre blend and its underlying acoustical44

characteristics, the joint assessment of these factors will assist in predicting the45

perceived degree of blend for combinations of instruments, pitches, and articulations.46

Previous research has defined perceived timbre blend as the auditory fusion of47

concurrent instrumental sounds, where individual sounds become less distinct. The48

most common method to measure perceived blend employs rating scales (Kendall &49

Carterette, 1993; Lembke, Levine, & McAdams, in press; Lembke & McAdams, 2015;50

Sandell, 1995; Tardieu & McAdams, 2012). All studies found that spectral features51

influence blend, but employed different approaches to spectral description. One52

approach used the global descriptor spectral centroid, i.e., the amplitude-weighted53

frequency average of a spectrum. The composite (or sum) of the individual sounds’54

centroids was found to predict blend in unison dyads best (Sandell, 1995; Tardieu &55

McAdams, 2012), whereas for non-unison dyads, the absolute difference in individual56

spectral centroids served as the more reliable predictor (Sandell, 1995).57

Another approach to spectral description has considered the influence of58

prominent spectral features, such as maxima or formants. Similar to the relevance of59

formants in describing the acoustics of the human voice (Fant, 1960), wind instruments60

in particular exhibit formant structures that remain largely invariant across pitch61

(Lembke & McAdams, 2015; D. Luce & Clark, 1967; D. A. Luce, 1975; Schumann,62

1929). Their identification and description can be achieved through spectral estimations63
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that are aggregated across an instrument’s complete pitch range (Lembke & McAdams,64

2015), and therefore can be considered pitch-generalized. Reuter (1996) has argued that65

similarity between instruments’ formant structures can explain blend. Hardly66

distinguishable instrument pairings can exhibit very similar formant locations (e.g.,67

horn and bassoon), whereas the strongly pronounced, unique formant structure of the68

oboe may hinder it from blending with most other instruments.69

Frequency relationships between the most prominent main formants appear to70

influence blend critically (Lembke & McAdams, 2015). In dyads comprising a recorded71

wind-instrument sound and a synthesized analogue to that instrument, whose72

main-formant frequency could be shifted relative to that of the recorded sound, blend73

decreased drastically as the frequency of the synthesized formant exceeded that of the74

recorded sound. This relative dependency relates to musical performance, where75

accompanying musicians adjust their main formants to be lower than when playing as76

the leading instrument (Lembke et al., in press).77

Apart from spectral properties, differences between temporal features, such as78

note attacks or onsets, have been found to explain blend as secondary factors for unison79

dyads (Sandell, 1995). However, their influence becomes more dominant as attacks turn80

impulsive: shorter durations and steeper attack slopes lead to reduced blend (Tardieu &81

McAdams, 2012).82

With respect to those musical factors unrelated to timbre, blend for unison dyads83

is perceived as stronger than for non-unison combinations (Kendall & Carterette, 1993;84

Lembke et al., in press). Furthermore, the assignment of instruments to the upper and85

lower pitches in non-unison intervals resulted in differences in perceived blend between86

instrument inversions in one study (Kendall & Carterette, 1993), but lacked a87

comparable effect in another (Sandell, 1995). All of these studies on blend are limited to88

dyadic contexts, leaving open how the obtained results and proposed hypotheses would89

fare in combinations of three or more instruments. Little work has been published on90

timbre combinations in triadic contexts (Kendall, 2004; Kendall & Vassilakis, 2006,91

2010), and none of these papers address issues directly related to blend.92
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With the aim of predicting perceived blend between arbitrary instrument93

combinations, linear correlation or regression can be employed to associate blend94

measures with single acoustical features (Sandell, 1995; Tardieu & McAdams, 2012),95

without, however, making it possible to assess how several acoustical descriptors could96

jointly contribute to the explanation of blend measures. This limitation can be97

overcome by multiple linear regression (MLR). Past attempts have succeeded in98

explaining up to 63% of the variance in blend ratings for mixed-instrument dyads99

(Sandell, 1995). Similarly, MLR models also explained up to 87% of the variance in100

blend ratings across dyads in which the role of local, parametric variations of the101

main-formant frequency was studied (Lembke & McAdams, 2015).102

Yet, the MLR approach also has clear limitations. High collinearity among103

independent variables (regressors) or a low number of cases compared to the number of104

regressors may both lead to less reliable and less valid results as well as mathematically105

ill-defined solutions. This becomes problematic given the aim of the current paper,106

because many spectral descriptors are known to exhibit a high inter-correlation107

(Peeters, Giordano, Susini, Misdariis, & McAdams, 2011). For conventional MLR, this108

leaves two options: 1) disregarding the collinearity, at the risk of obtaining less reliable109

or invalid results or 2) eliminating regressors that are collinear to a reference regressor,110

i.e., one found to predict blend most strongly in simple linear regression. However, the111

latter approach risks excluding variables that might perform even better than the112

selected one once they interact with other regressors.113

A viable solution to deal with collinearity is to employ a dimension-reduction114

technique like principal component analysis (PCA) that reduces a high quantity of115

regressors to a small number of substitute or latent variables, i.e., principal116

components (PCs), which are orthogonal to one another. These PCs can thereafter117

serve as regressors that represent the common aspects for groups of collinear descriptors118

(e.g., Giordano, Rocchesso, & McAdams, 2010).119

A promising regression method that uses PCA as an integral part is partial120

least-squares regression (PLSR), which originates from the discipline of chemometrics,121
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but has more recently been applied within the field of auditory perception (Eerola,122

Lartillot, & Toiviainen, 2009; Kumar, Forster, Bailey, & Griffiths, 2008; Rumsey,123

Zieliński, Kassier, & Bech, 2005). PLSR allows analysis of complex correlational124

relationships among perceptual measures and arrays of acoustical or psychoacoustical125

variables.126

The current investigation uses PLSR in an attempt to predict blend ratings from127

perceptual experiments. The perceptual data are collected on a diverse set of variables128

that affect timbral blend and orchestration, including different instruments, pitches, and129

unison and non-unison intervals, as well as dyadic and triadic contexts. The set of130

potential regressors consists of a wide range of acoustical measures that, through several131

stages of PLSR models, are continually refined to retain only the most relevant132

regressors and, importantly, ones that are independent of each other.133

Method134

Partial least-squares regression (PLSR)135

Predicting a single measure of blend through a set of regressors relating to136

acoustical descriptors can be expressed mathematically by associating the column vector137

of blend ratings y with an n×m matrix X, which encompasses n cases (e.g., stimulus138

conditions) across m regressors. Conventional MLR employs the relationship y = X · b,139

with b being a vector of regression coefficients of length m. PLSR represents algorithms140

that employ an inherent coupling between MLR and PCA (Geladi & Kowalski, 1986),141

allowing large m relative to n and even collinearity among the m regressors.142

PLSR decomposes X into k principal components (PCs), yielding the relationship143

X = T · P ′, with T representing an n× k matrix of scores and P an m× k matrix of144

loadings. Unlike computing a PCA on X independently and inputting the obtained145

scores T into MLR, PLSR achieves the component decomposition by maximization of146

the inherent covariance between y and X, leading to a better predictive relationship.147

The loadings P can be understood as vectors for the m regressors in k-dimensional148

space, describing the degree to which regressors contribute to individual PCs and also149
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showing the collinearity or independence among regressors. The PLSR technique used150

here is SIMPLS (de Jong, 1993), in its implementation for MATLAB.1151

Performance, predictive power, and reliability. Regression performance152

evaluates the variation in y that is explained by the model. The measure R2 describes153

both the global and component-wise performance, with the latter quantifying the154

relative contribution of PCs. With increasing k, however, models are prone to155

overfitting the data, at the cost of predictive power when applied to other data sets. In156

order to assess the predictive power of models, sixfold cross validation (CV) is157

employed, partitioning the n cases into six subsets of similar size, building models based158

on five subsets, assessing the error in predicting the remaining, excluded subset, and159

repeating the last two steps for all permutations of subsets. CV allows the computation160

of an alternative measure of explained variance, Q2 (Wold, Sjöström, & Eriksson, 2001).161

Just as R2 evaluates the sum of squared deviations between the fitted and actual y, Q2
162

evaluates the sum of squared deviations between the predicted and actual y, with these163

predictions made for the excluded subsets across all CV permutations. Together, R2
164

and Q2 can be taken as the upper and lower benchmarks of the model, respectively, in165

terms of explaining the data and assessing the degree of predictive power. The selection166

of the optimal number of components k considers two independent criteria: 1) the167

component-wise gain in R2, and 2) the component-wise decrease in CV prediction error,168

with k being chosen when both measures cease to exhibit substantial improvements for169

additional PCs.170

Identifying relevant and independent regressors. The current PLSR171

analysis aims to reduce the number of investigated regressors in X to those of greatest172

utility in explaining y as well as further reducing it to a selection of regressors that are173

relatively independent of each other. The chosen approach consists of three stages of174

sequentially evaluating and refining PLSR models: 1) An initial model is obtained for175

the original matrix Xorig of all regressors considered (see Table 3). 2) Based on the176

loadings Porig from the first PLSR model, one half of the variables are identified that177

act as the strongest predictors. More specifically, only those regressors are retained for178
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which the Euclidean distances across k dimensions exceed the distribution median179

(Q50), leading to the computation of another model based on the reduced matrix XQ50.180

3) The following stage distills the regressors down to those that explain y through181

ideally independent contributions. Such independence or orthogonality is achieved for182

loadings P that point in perpendicular directions in k-dimensional space. To this aim,183

imagine the resulting loadings PQ50 rotated so as to align the most dominant variable184

loading along one axis of a Cartesian coordinate system. Relative to this variable,185

loadings aligned along the remaining k − 1 axes exhibit maximal independence. To186

obtain an ideally independent set of variables, the selection is constrained to variables187

such that the angles φi between variable loadings and the ith axis are less than 22.5◦.188

This constraint yields an approximately orthogonal set of regressors Xortho, on which189

the final PLSR model is computed.190

Perceptual data sets191

The regression analysis considers two data sets that originate from listening192

experiments in which participants provided blend ratings for dyads or triads. The two193

experiments were unrelated with respect to their original motivation and experimental194

design, yet they employed similar blend ratings, with the medians across participants195

taken as the dependent variable y to be modeled through PLSR.196

The stimuli were presented over a standard two-channel stereophonic loudspeaker197

setup inside an Industrial Acoustics Company double-walled sound booth. They were198

drawn from recorded instrument samples from the Vienna Symphonic Library2 (VSL),199

supplied as stereo WAV files (44.1 kHz sampling rate, 16-bit amplitude resolution). In200

separate pilot experiments, all stimuli had been both adjusted for perceptual synchrony201

between sounds constituting the dyads and triads and equalized for loudness within the202

dyad and triad sets independently. Adjustments for synchrony were based on consensus203

by three people for dyads and two for triads. The loudness equalization was conducted204

subjectively, anchored to a global reference for all dyad or triad conditions. The205

equalization was conducted by five people for dyads and six for triads. Gain levels were206
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determined that equalized stimulus loudness to the global reference. These gain levels207

were based on median values across participants; all corresponding interquartile ranges208

were less than 4 dB.209

For the main experiments, participants with varying degrees of musical experience210

were recruited from the McGill University community. All participants passed a211

standardized pure-tone audiogram (ISO 389–8, 2004; Martin & Champlin, 2000)212

ensuring that thresholds at all audiometric frequencies were less than or equal to213

20 dB HL. Informed consent was obtained, and both studies were certified for ethical214

compliance by the McGill University Research Ethics Board II.215

Dyads.216

Participants. Nineteen people took part in the experiment (12 female and217

seven male) with a median age of 21 years (range: 18–46). Among the participants, nine218

considered themselves amateur musicians, two as professional musicians, and eight as219

non-musicians. All were compensated financially for their participation in the hour-long220

experiment.221

Stimuli. The stimulus set comprised a total of 180 dyads that resulted from the222

combination of several factors. Six wind instruments, namely, (French) horn, bassoon,223

oboe, C trumpet, B[ clarinet, and flute, formed the 15 possible non-identical-instrument224

pairs listed in Table 1. These instrument pairs occurred at two pitch levels: C4225

(f0 = 261.6 Hz) and G4. Furthermore, dyads comprised both unison and minor-third226

intervals, including the inverse voicing of instruments for the latter, resulting in a total227

of three interval conditions. Based on the two pitch levels, minor thirds occurred at the228

pitches C4-E[4 and G4-B[4.229

All VSL samples were sustained, non-vibrato recordings, performed at mezzoforte230

dynamics, and were limited to the signal in the left channel. Both instruments were231

simulated as being captured by a stereo main microphone at spatially distinct locations232

inside a mid-sized, moderately reverberant room. Encompassing a volume of 600 m3,233

the relatively absorbent room yielded a reverberation time T30 = 0.4 s; due to the234

configuration inside the room being fully symmetric, identical frequency responses235
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applied to both instruments.3 The spatial locations of instruments included both236

possible orientations (e.g., horn left of bassoon and vice versa). Overall, this resulted in237

the full-factorial combination of 15 pairs × 2 pitches × 3 intervals × 2 orientations =238

180 dyads. All stimuli had a duration of 1200 ms, with artificial offsets imposed by a239

100-ms linear amplitude ramp. A set of 12 representative dyad stimuli can be found in240

the Supplemental Material Online section.241

[— Insert Table 1 about here. —]242

Procedure. Participants heard individual dyads in randomized order and were243

asked to rate their degree of blend, employing a continuous slider scale with the verbal244

anchors most blended and least blended visualized on a computer screen. Ahead of the245

main experiment, participants had been familiarized with the degree of possible246

variation in blend among all dyads and had completed 15 practice trials on a separate247

but comparable stimulus set.248

Triads.249

Participants. Twenty people (15 female and five male) with a median age of250

21 years (range: 19–64) completed the experiment. Thirteen participants classified251

themselves as amateur musicians, with the remaining seven being non-musicians. All252

were remunerated for the hour-long experiment.253

Stimuli. The stimuli comprised 20 triads, representing only a selection of the254

vast multiplicity of possible instrument and pitch combinations. In order to focus on255

timbral characteristics, all triads formed the same chord with pitches C4, F4, and B[4,256

thus controlling for contextual effects with pitch register, chroma, and height. This257

chord choice of stacked perfect-fourth intervals avoided standard major and minor258

triads and generated the same consonances (perfect fourths) and a single dissonance259

(minor seventh). Such quartel chords were neutral enough not to draw attention to any260

one melodic voice, while allowing ‘inside’, middle voices to be easily heard.261

In terms of instrumentation, the triads were composed of flute, oboe, B[ clarinet,262

tenor trombone and cello sounds, corresponding to the instrument families woodwinds,263

brass, and strings. The instrument selection for triads (see Table 2) comprised mixtures264
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between two or three instrument families. Furthermore, the selection included all265

woodwind reed types (air jet, single and double reed) and two different excitation types266

for strings (bowed and plucked excitation; arco and pizzicato, respectively), with each267

distinction represented by a single instrument (e.g., oboe for double reed, cello for string268

instrument). Instruments would only take on pitches based on conventional voice269

assignments given a particular mixture. For instance, the cello only occurred at the two270

lower pitches, whereas the flute was always highest in pitch relative to other woodwinds.271

Each instrument appeared in from six to 10 triads (counting different excitation types272

as separate instances).273

All samples were taken as stereo files from VSL, with woodwind samples274

comprising sustained sounds at mezzoforte dynamics and without vibrato. The275

trombone samples were similar, but at mezzopiano dynamics. The arco cello samples276

were recorded at mezzoforte dynamics. Unlike the wind instruments, they decayed after277

just a brief bow stroke, in order to be more similar to the pizzicato versions, which278

occurred at forte to allow for a longer sound decay. All cello sounds contained vibrato.279

The total duration for all triads was limited to 850 ms by applying an artificial 100-ms280

linear amplitude-decay ramp. A set of 10 representative triad stimuli can be found in281

the Supplemental Material Online section.282

[— Insert Table 2 about here. —]283

Procedure. Participants were asked to sort all triads based on their relative284

degree of blend along a scale continuum with the verbal anchors most blended and least285

blended. At the beginning, visual icons for all triads were randomly arranged on a286

computer screen and could be dragged around or clicked on to trigger sound playback.287

Participants were first asked to identify two triads perceived as exhibiting the highest or288

lowest blend, to assign them to the extremes of the visualized continuum and then to289

position all remaining triads along the continuum. The sorting was conducted twice,290

the first counting as a practice round meant to familiarize participants with both the291

experimental task and the triads, the second serving as the main experiment.292
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Acoustical descriptors293

For each data set, a collection of acoustical measures constitute the regressors in294

matrix X. The measures include spectral, temporal, and spectrotemporal acoustical295

descriptors of timbre, as well as other potentially relevant features such as differences in296

fundamental frequency. Table 3 lists all the investigated descriptors, specifying how297

individual descriptor values were associated with dyads and triads.298

Descriptor relationships within dyadic and triadic contexts. As dyads299

and triads consist of several constituent sounds, their individual descriptor values need300

to be summarized to a single regressor value per stimulus by an association of some301

kind. For dyads with the constituent sounds a and b and the acoustical descriptor x,302

the association considers the difference measure ∆x = |xa − xb| and the composite303

measure Σx = xa + xb. Three associations are computed for triads with sounds a, b, and304

c, whose relationship along descriptor x is xa ≤ xb ≤ xc. The triad difference considers305

the range between maximum and minimum, i.e., ∆x = xc − xa. The composite sums all306

three values, i.e., Σx = xa + xb + xc. In addition, a third measure relates the307

distribution of the intermediate value xb relative to the extremes, i.e.,308

Ξx = 2 · (xb − xa)/∆x− 1. Ξx varies from −1 to 1. It is −1 when xa = xb, 0 when xb is309

halfway between xa and xc, and 1 when xb = xc. These three regressor types apply to310

most of the investigated acoustical descriptors but not all, based on whether the311

association is appropriate or not, as indicated in Table 3.312

[— Insert Table 3 about here. —]313

Timbre descriptors.314

Spectral descriptors. These descriptors assess properties associated with a315

time-averaged spectral representation. The investigated descriptors are computed on316

the output of one of two spectral-analysis methods: 1) analyses of the audio signals (∼)317

for individual instrument samples from VSL (e.g., oboe at G4) by use of the Timbre318

Toolbox (Peeters et al., 2011) employing harmonic analysis, and 2) pitch-generalized (◦)319

spectral envelopes (Lembke & McAdams, 2015), which are estimated by fitting a curve320
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to partial tones aggregated across all available pitches from VSL (e.g., oboe from B[3 to321

G6) and therefore allow for the characterization of an instrument’s pitch-generalized322

formant structure. Furthermore, the spectral descriptors can be distinguished as323

quantifying global and local spectral properties, as listed in Table 3. The global324

descriptors (S) include measures of spectral centroid (amplitude-weighted mean325

frequency), spectral slope (linear regression on the spectral envelope), spectral skewness326

(asymmetry in the spectral distribution), spectral kurtosis (peakier or flatter deviation327

from a Gaussian distribution), spectral spread (standard deviation of the spectral328

distribution), spectral roll-off (95th percentile of spectral-energy distribution), spectral329

decrease (spectral slope with low-frequency emphasis) and noisiness of the signal. They330

are described in detail in Peeters et al. (2011). The local, formant-related descriptors331

(F ) require some elaboration.332

[— Insert Figure 1 about here. —]333

The formant structure derived from the pitch-generalized spectral envelope for a334

horn is shown in Figure 1. A set of frequencies indicate formant maxima (solid red335

lines; two formants are identified for this horn) and delineate their extent through lower336

and upper bounds (dotted lines) at which the magnitude has decreased by 3 dB. Note337

in the case of the horn in Figure 1 that there is no lower bound for the second formant,338

because the minimum point in the envelope between the two formants is not at least339

3 dB below the maximum of the second formant. In this study, the focus lies on the340

main formant F1, with Fmax and F3dB characterizing the frequency at its maximum341

magnitude and at the 3 dB upper bound, respectively (the latter appears to be more342

perceptually relevant; Lembke & McAdams, 2015). Two related measures, Fslope and343

F∆mag, assess the relative importance of the main formant compared to the344

spectral-envelope regions lying above it. Fslope evaluates the (linear) spectral slope (grey345

diagonal) above the main formant in Figure 1, whereas F∆mag quantifies the level346

difference between the main-formant peak and the averaged magnitude of the spectral347

envelope above it (black arrow).348

[— Insert Figure 2 about here. —]349
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Furthermore, the degree to which wind instruments are characterized by formant350

structure varies, being strongest for oboe but much weaker for clarinet and flute. The351

measure Fprom quantifies the prominence of up to two formants based on a cumulative352

score that increases with the number and width of formant features. As illustrated in353

Figure 2, the larger the total area covered by existing formant bounds (shaded354

rectangles), the higher the prominence of an instrument’s formant structure, reflected in355

Fprom being considerably higher for oboe (blue) than for flute (red). Two additional356

difference measures, Ffreq and Fmag, relate magnitude and frequency differences357

between the formants of constituent instruments. More specifically, Fmag quantifies the358

cumulative magnitude deviation between the constituent instruments’ spectral359

envelopes at all formant frequencies they exhibit (vertical lines projected on the far360

right). Ffreq evaluates the cumulative frequency difference (horizontal line projected at361

the top) between formants of the same order (e.g., main formant with main formant), if362

they exist for both sounds.363

Temporal descriptors. Three descriptors characterize the time course of the364

amplitude envelope with respect to the attack (A) or onset portions of sounds,365

considering attack time and attack slope descriptors (Peeters et al., 2011).366

Spectrotemporal descriptors. A pair of descriptors account for spectral367

variation across time, which the (static) spectral descriptors leave unaddressed.368

Previous research has not reported specific spectrotemporal (ST ) descriptors as being369

relevant to blend, although temporal modulation of spectral components has been370

discussed in the context of blend (Reuter, 2009). In the interest of using a371

comprehensive set of timbre-related descriptors, two descriptors are included that372

involve the commonly reported spectral flux (STflux, Peeters et al., 2011) and the373

alternative measure spectral incoherence (STincoher), which quantifies the aggregate374

deviations of spectral magnitude between successive time frames (Horner, Beauchamp,375

& So, 2009).376

Other descriptors and variables. The experimental designs involved factors377

that were likely to explain variance in median blend ratings but were not related to or378
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not reliably measured through timbre features. Their relevance as potential regressors is379

assessed by several categorical variables (C), in addition to acoustical descriptors that380

could serve as equivalent predictors in application scenarios lacking a priori knowledge381

of categorical distinctions, e.g., by quantifying pitch relationships or the loudness382

balance between combined sounds. The categorical variables make binary or ternary383

distinctions and for the use with PLSR are expressed as dummy variables (Martens,384

Høy, Westad, Folkenberg, & Martens, 2001). A categorical variable is represented by as385

many dummy variables as there are categories, with each category’s dummy variable set386

to 1 for cases matching the category and 0 if not. As a result, these regressors yield387

multiple loadings. For example, a binary categorical variable yields two loadings in388

opposing orientations, with “-D1” or “-D2” being appended to the variable name to389

symbolize the first and second categories of the variable, respectively (or -D0, -D1, and390

-D2 for a ternary variable).391

For triads, a strong distinction was expected beforehand for the presence (D1)392

versus absence (D2) of pizzicato string sounds (Cpizz), as they are highly impulsive.393

Similarly, the distinction between unison (D1) and non-unison (D2) dyads was also394

expected to yield higher ratings for the former (Cunison and ∆f0). Additional regressors395

account for the lower (D1) or higher (D2) pitch level (Cpitch) and difference between396

pitches expressed in ERB units (f0|ERB; Moore & Glasberg, 1983), interval type397

(Cinterval; D0: unison, D1: instrument A low, instrument B high, D2: instrument B low,398

instrument A high), and instrument position at left (D1) or right (D2) in stereo space399

(Cposition). In addition, the production of dyads and triads also involved determining400

relative mix or scaling ratios between the amplitudes of the constituent sounds forming401

dyads or triads, which are also quantified to assess their possible influence on the blend402

ratings (xmix). For dyads, xmix concerned a fractional gain value between 0 and 1 that403

applied to one instrument, while xmix −1 scaled the other instrument. For triads, xmix404

concerned the sound-level balance between the constituent sounds (e.g., negative slope405

for monotonously decreasing sound levels with ascending pitch).406
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Results407

As mentioned under Method, PLSR analysis of a particular data set involves three408

stages, beginning with the original set of regressors Xorig, then restricting the selection409

to XQ50, and finally attaining an approximately orthogonal selection of regressors410

Xortho. Although statistics for all three stages are reported in Tables 4 and 5, only the411

results for the final stage Xortho are presented in detail. In some of the following412

visualizations, data points representing dyads or triads use the labels in Tables I and II,413

respectively. A further distinction between dyads or triads containing instruments that414

blend more strongly and those that blend weakly is made with color to help assess how415

a given acoustical descriptor separates these instruments. For dyads, the instruments416

clarinet, bassoon, and horn lead to the highest blend ratings of comparable magnitude,417

whereas the trombone leads to the highest blend ratings for triads. Therefore, the horn418

and trombone were chosen to represent instruments that blend well with others (colored419

green) in the dyad and triad sets, respectively, as both brass instruments’ spectral420

descriptions also resemble each other. Furthermore, the oboe was chosen as the421

exemplary instrument leading to poor blend (colored grey) in both sets.422

Dyads423

PLSR models predicting median blend ratings for dyads initially involved 46424

regressors (Xorig). Elimination of loadings in Porig that fall below the median threshold425

yielded 23 regressors in XQ50. As listed in Table 4, a three-PC model explains 93% of426

the variance for XQ50. Refining the regressors to an approximately orthogonal set, the427

resulting Xortho consists of 14 regressors, again, leading to a three-PC model explaining428

93% of the variance. The model fit in y for Xortho, displayed in Figure 3, shows the429

variation in median blend ratings to be represented well. However, the blend ratings430

(x-axis) exhibit two distinct groups of data points, corresponding to unison dyads431

(circles) leading to substantially greater blend than non-unison dyads (diamonds).432

Furthermore, non-unison dyads involving horn (green) yielded slightly greater blend433

overall than those with oboe (grey), whereas no such distinction is observable for unison434
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dyads.435

[— Insert Table 4 about here. —]436

[— Insert Figure 3 about here. —]437

Figure 4 visualizes the loadings Portho (vectors) and the scores Tortho (symbols)438

across the first two PCs. Larger symbols for scores correspond to higher blend ratings.439

Likewise, longer vectors represent loadings that contribute more strongly, while the440

vector orientation illustrates which PCs the contribution primarily affects.441

[— Insert Figure 4 about here. —]442

Reflecting the main distinctions in median blend ratings, the scores Tortho also443

form two distinct groups for unison and non-unison dyads, with the corresponding444

categorical variable Cunison describing this distinction most accurately along PC 1. The445

acoustical descriptor ∆f0 predicts the same distinction comparably well. PC 2 appears446

to be influenced by two factors: 1) an additional grouping of dyads based on low and447

high pitch levels, described by the categorical variable Cpitch and the acoustical448

descriptor f0|ERB, and 2) a collinear set of spectral descriptors, falling slightly oblique to449

the PC axis. The distinction across interval types (horizontal) and pitch levels (vertical)450

yields four subgroups. Along each of these obliquely aligned groups the influence of451

spectral features appears to lead to similar dyad constellations.452

Figure 5 suggests that the spectral and pitch influence is independent (orthogonal)453

on the plane spanning PCs 2 and 3. The spectral regressors involve several composite454

(Σ) as well as difference (∆) measures for S◦centr and formant-related descriptors. With455

regard to the resulting scores, Tortho yields a grouping of dyads into those containing456

either horn or oboe (green/low-left vs. grey/top-right), for both unison and non-unison457

dyads.458

[— Insert Figure 5 about here. —]459

Overall, the dyad data exhibit a complex structure of underlying factors, involving460

interval type, pitch level, and spectral features. Across all investigated models, their461

performance (R2) is remarkably well matched by their predictive power (Q2). Given the462

relatively large number of cases, N = 180, further PLSR analyses on subsets separated463
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by interval type are conducted, yielding N = 60 for unison and N = 120 for non-unison464

dyads. Separate analyses allow an assessment of whether certain spectral and pitch465

trends are specific to only one of the interval types.466

Unison. A three-PC model on XQ50 involving 22 regressors leads to 46%467

explained variance in median blend ratings for unison dyads, exhibiting a substantially468

lower predictive power of only 17% explained variance. Due to a fairly wide variation in469

PQ50 orientations, the angular threshold φi determining Xortho had to be increased to470

|φi| < 30◦ to ensure that the reduction to an approximately orthogonal set would lead471

to a meaningful number of contributing regressors. The resulting model with nine472

regressors yields a two-PC model explaining 27% of the variance, which appears a more473

realistic estimate of the true predictive relationship between median blend ratings and474

Xortho, as the discrepancy between model performance and the predictive power is475

substantially reduced.476

As shown in Figure 6, the yunison fit appears a closer fit to the diagonal than for477

the complete dyad data (Figure 3), but the blend ratings only span a relatively narrow478

scale range. This may result from a reduction in the perceptual resolution among the479

unison dyads due to the dominant distinction between unison and non-unison dyads.480

The reduced resolution also makes it more likely for the variation in median blend481

ratings to contain increased noise levels, supported by the large discrepancy between R2
482

and Q2 in the initial models.483

[— Insert Figure 6 about here. —]484

PC 1 explains 22% of the variance and, as shown in Figure 7, appears to be linked485

to spectral composite (Σ) descriptors for main formant location (e.g., Fmax, F3dB) as486

well as centroid (e.g., S◦centr), which also distinguishes low register and high register487

instrument dyads (e.g., HB vs. OF). PC 2 accounts for another 5% of the variance,488

involving a distinction between instrument dyads with similar formant structure and489

those with divergent structures (e.g., HB vs. BF and HF), explained by the490

formant-related descriptors ∆Fslope and ∆Ffreq.491

[— Insert Figure 7 about here. —]492
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Non-unison. Twenty-three regressors in XQ50 yield a three-PC model493

explaining 55% of the variance in median blend ratings for non-unison dyads, with the494

predictive power corresponding to 47% of the variance explained. The reduction to495

Xortho yields 11 regressors and a three-PC model explaining 48% of the variance, with a496

lower predictive power accounting for 35% of the variance. The model fit in ynon−unison497

for Xortho, shown in Figure 8, improved compared to the one for the complete dyad set498

(Figure 3), showing a better approximation to the ideal fit (dashed line).499

[— Insert Figure 8 about here. —]500

As shown in Figure 9, PC 1 clearly reflects a grouping of dyads based on pitch501

level (Cpitch and f0|ERB), accounting for 33% of the explained variance. At the same502

time, the composite of the spectral slope S∼slope appears to covary with pitch change. All503

remaining spectral regressors appear relatively independent (orthogonal) to the pitch504

influence. Figure 10 illustrates that across the plane spanning PCs 2 and 3, two505

seemingly independent contributions of spectral regressors occur: 1) an implied triangle506

between the composite (Σ) regressors F3dB, S◦centr, and the difference (∆) descriptor507

F3dB distinguishes dyads into those containing horn (bottom-left) and those involving508

oboe (top-right); 2) perpendicular to this orientation, difference in spectral slope S∼slope509

and composite in noisiness Snoise contribute somewhat more weakly. Together, PCs 2510

and 3 account for 8% and 7% of the variance, respectively.511

[— Insert Figure 9 about here. —]512

[— Insert Figure 10 about here. —]513

Triads514

The PLSR analysis of triads first involved 61 regressors, which reduced to515

30 regressors in XQ50, leading to a two-PC model explaining 89% of the variance in516

median blend ratings and with a predictive power explaining 73% of the variance. The517

subsequent reduction to Xortho yields another two-PC model with 15 regressors that518

again explains 89% of the variance, notably, gaining in predictive power compared to519

the previous models. As shown in Figure 11, the model fit for y appears satisfactory,520
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given the smaller number of cases for triads (n=20). Still, a compact cluster involving521

pizzicato cello (squares, bottom-left) stands in contrast to more spread out ratings for522

sounds lacking them (circles, right half). A trend for triads involving trombone (green)523

to be the most blended is apparent in each subgroup.524

[— Insert Table 5 about here. —]525

[— Insert Figure 11 about here. —]526

The main distinction found in Figure 12 along PC 1, which accounts for 85% of527

the variance, concerns the presence or absence of pizzicato cello sounds (the categorical528

variable Cpizz), with the acoustical difference in attack slopes Aslope performing similarly529

well. Apart from Aslope, the composite and difference descriptors for spectrotemporal530

incoherence STincoher and noisiness Snoise are somewhat correlated with Cpizz. This531

could result from both the transient attack and rapid decay of the temporal envelope of532

pizzicato sounds contributing to more noise and more spectral change over time,533

respectively. In addition, the inclusion of two other spectral descriptors, difference in534

F∆mag and distribution in Sskew, could be explained by differences in spectral-envelope535

shape for the two articulations of the cello.536

[— Insert Figure 12 about here. —]537

PC 2 explains the remaining 3% of the variance, appearing to relate to the538

distribution (Ξ) of a number of formant descriptors. These comprise frequency539

measures of the main formant, F3dB and Fmax, measures of balance between main540

formants and the remaining spectral envelope, Fslope and F∆mag, and the overall541

prominence of formant structure, Fprom. Furthermore, the relevance of two difference542

measures related to formants, Fmag and Fprom, suggests that the most pronounced543

differences among three descriptor values could also be of importance.544

Discussion545

Previous research has associated blend with acoustical measures describing546

spectral features, as well as temporal features like the attacks or onsets of sounds under547

certain circumstances. The current investigation pursued a correlational analysis using548
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PLSR, modeling two perceptual data sets involving dyads and triads. PLSR loadings549

allowed us to evaluate the extent to which regressors were collinear or independent of550

each other. This approach helped select the most effective regressors. Applied to the551

complete data sets for both dyads and triads, the final models based on optimized552

regressor sets explain around 90% of the variance in median blend ratings. Notably,553

these levels of explained variance were still achieved after the elimination of554

non-essential regressors, i.e., more than two thirds from the original set. The variation555

in both data sets is best explained by a dominant factor that is unrelated to spectral556

features.557

For dyads, the distinction between unison and non-unison intervals explains 91%558

of the variance, with the fundamental-frequency difference ∆f0 representing a reliable559

acoustical predictor. That unison dyads would lead to higher blend than for non-unison560

had been anticipated, given that similar effects have been found in other studies561

(Kendall & Carterette, 1993; Lembke et al., in press). The pronounced difference562

obtained in the current results, however, seems to exceed those previously reported,563

which could be related to the current study being the only one in which unison and564

non-unison were presented in a common stimulus set, whereas in other studies both565

interval types had been grouped into separate experimental blocks (Kendall &566

Carterette, 1993; Lembke et al., in press) or had even been tested in separate567

experiments (Sandell, 1995).568

In addition, even the second-most important factor in explaining the variation569

among dyads, f0|ERB, is unrelated to spectral features, as it reflects differences in pitch570

height, accounting for 2% in all dyads and 33% when considering only the non-unison571

dyads. The fact that the contribution of the pitch level is limited to the non-unison572

dyads implies that it may not affect blend of unison dyads. For non-unison dyads, it is573

also worth noting that inverting the assignment of instruments to the two pitches had574

no effect on blend ratings. This negative finding goes counter to many claims in575

orchestration treatises that the order of pitch assignment affects blend. It thus supports576

the conclusion by Sandell (1995) that timbral inversion does not appear to influence577
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blend; only a single finding argues in its favor (Kendall & Carterette, 1993).578

With regard to triads, the presence of a pizzicato cello evoked a strong decrease in579

blend ratings, whereas even triads including cello sounds excited by a single, brisk bow580

stroke led to substantially more blend. Again, this distinction had been anticipated,581

given that increasingly impulsive sounds have been associated with comparable582

decreases in blend (Tardieu & McAdams, 2012). Regarding the description of onset583

articulations, the difference in attack slopes Aslope is strongly collinear with the584

categorical distinction Cpizz, explaining about 85% of the variance; additional585

collinearity with spectrotemporal or noise features can be assumed to co-occur as586

byproducts of the abrupt changes in temporal envelopes.587

With both data sets being dominantly influenced by pitch or temporal features588

(e.g., attack), spectral descriptors only occur as secondary or even tertiary sources of589

variation in the modeled blend ratings. In perceptual tasks comparable to those590

employed in these experiments, participants may focus their attention on the dominant591

distinctions across stimuli at the cost of perceptual resolution for the less pronounced592

differences.593

As the spectral factors likely only affected blend ratings in these regions of594

reduced perceptual resolution, the possible role of behavioral noise needs to be595

considered. Indeed, clear discrepancies between model performance R2 and predictive596

power Q2 indicate that the initial PLSR models could have been overfitting to noise597

artifacts instead of systematic factors of variation. For example, stripped of the598

dominant factor, the unison and non-unison subsets of data account for no more than599

50% of the variance (R2). The unison-dyad data suggest that the true performance is600

substantially lower as the predictive power is generally quite low and likely reflects601

random variation or factors not captured by the tested regressors. In summary, the602

identified tendencies for spectral regressors can be assumed to be valid for the obtained603

proportions of explained variance, but they should be considered preliminary until604

confirmed in additional datasets yielding greater resolution in the perceptual ratings.605

Three spectral descriptors stand out in explaining the PLSR models for both data606
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sets, namely, the centroid of the pitch-generalized spectral envelope S◦centr and the two607

main-formant descriptors Fmax and F3dB, notably representing spectral features that608

have previously been found to be relevant (Lembke et al., in press; Lembke &609

McAdams, 2015; Reuter, 1996; Sandell, 1995; Tardieu & McAdams, 2012). Differences610

exist concerning the types of association between descriptor values of the instruments611

constituting dyads or triads. For unison dyads, the composite (Σ) measures for all three612

descriptors became relevant in explaining 22% of the variance, which is in agreement613

with the same association explaining other perceptual results for unison dyads (Sandell,614

1995; Tardieu & McAdams, 2012).615

Non-unison dyads yield a more complex relationship and involved the composite616

for S◦centr and F3dB complemented by the difference in F3dB, overall contributing 15% of617

the variance. The relevance of the difference measure (∆) is in agreement with the618

absolute spectral-centroid difference having previously been reported as the strongest619

predictor for non-unison dyads (Sandell, 1995). The particular combination of620

composite and difference measures suggests that as S◦centr and F3dB increased, so did the621

divergence of F3dB between the individual instruments, with both possibly contributing622

to decreased blend. For instance, oboe paired with horn yields a higher composite623

centroid due to the oboe’s higher main formant, which at the same time increases the624

frequency distance to the horn’s low main formant, whereas for horn and bassoon, both625

main formants are relatively low and, moreover, practically coincide in frequency.626

The results for triads expand previous knowledge beyond dyadic contexts. Even if627

spectral features only account for 3% of the variance, some new insight is gained from628

the distribution (Ξ) of three descriptor values for several formant measures serving as629

the strongest predictor, suggesting that relative position of the sound having an630

intermediate descriptor value among all three sounds may indeed be useful in describing631

instrument combinations with more than two instruments.632

Overall, the global descriptor S◦centr and the main-formant location F3dB indicate633

that prominent spectral-envelope properties represent reliable correlates to blend across634

various instruments, pitches, and polyphonic combinations. Being the first investigation635
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to test for the relevance of global and local spectral descriptors jointly, both domains636

seem helpful as regressors in a predictive application. Across all datasets, the descriptor637

loadings P confirmed that most spectral descriptors were partially correlated, at the638

same time, allowing the identification of descriptors that appeared independent of S◦centr639

and F3dB, namely, the spectral slope, S∼slope, and noisiness, Snoise (Figure 10), as well as640

the formant-based spectral slope, Fslope, and formant frequency difference between641

constituent sounds, Ffreq (Figure 7). These additional descriptors could be of special642

interest in achieving more complete prediction models, although their relevance seems643

to depend on the stimulus context. A similar analysis approach on a wider data set is644

needed to confirm these trends, and possibly even to give further insight into the role of645

associations (Σ, ∆, Ξ) relevant for different musical scenarios. Furthermore, the646

apparent utility of pitch-generalized descriptors, i.e., all F descriptors and S◦centr as647

opposed to S∼centr, implies that a case-by-case signal analysis on individual pitches may648

not be necessary, but instead, a prediction application could rely on a comprehensive,649

offline database of pitch-generalized instrument descriptions alone, which would650

significantly facilitate computation.651

When considering the relative locations of instrument combinations along the PCs652

that correlate with spectral features, a recurring pattern of dyads or triads including653

oboe (grey), on the one side, opposed to combinations involving horn or654

trombone (green), on the other, becomes apparent. Dyads or triads containing oboe are655

often less blended, whereas combinations with horn or trombone (e.g., bassoon and656

horn, clarinet and horn, trombone and trombone) are among the most blended ones. If657

we consider the notion of blendability of a particular instrument, the oboe should be658

considered a poor ‘blender’, which can be explained spectrally by its prominent and659

unique formant structure. Similar observations linking oboe to poor blend have been660

made in previous perceptual investigations (Kendall & Carterette, 1993; Reuter, 1996;661

Sandell, 1995; Tardieu & McAdams, 2012) as well as ‘prescriptions’ found in662

orchestration treatises (Koechlin, 1954; Reuter, 2002). On the other hand, the horn is663

generally considered an easily blendable instrument, again reflected in perceptual results664
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(Reuter, 1996; Sandell, 1995). The relatively ‘dark’ timbre of the horn could support a665

general hypothesis of lower centroids leading to more blend (Sandell, 1995), at the same666

time supporting the argument that similar main-formant locations explain the good667

blend obtained between horn and bassoon (Lembke et al., in press; Reuter, 1996).668

In addition, Figure 12 illustrates that the distribution (Ξ) along formant669

descriptors (F ) distinguishes triads with two identical instruments (e.g., two trombones670

plus clarinet, two pizzicati or two arco celli plus clarinet) from more diverse671

combinations, without, however, directly reflecting how these combinations vary in672

blend (visualized size of the symbols for scores predicted by the models). Nevertheless,673

it does imply that timbral similarity, if not identity, aids blending. In summary, once674

factors related to pitch intervals or onset articulation are taken into account, spectral675

features do seem to represent the main underlying factor governing whether instrument676

combinations blend or not, with pitch-generalized spectral descriptions possibly677

conveying the timbral signature traits of instruments.678

Conclusion679

The present investigation shows that the perception of blended timbres in dyadic680

and triadic contexts correlates with a number of acoustical factors. Analyses using681

PLSR converged on an apparently reliable selection of independent predictors. The682

importance of factors such as pitch interval type, pitch, and articulation (e.g., impulsive683

vs. gradual note attack) became apparent. In addition, a group of spectral descriptors684

that exhibit the strongest predictive abilities could be identified from a wide range of685

descriptors, namely, the global spectral centroid and the upper frequency bound of main686

formants, which may represent the relevant features informing instrumentation choices.687

This wide variety of predictors suggests that in blend-prediction applications aimed at688

realistic musical scenarios, all factors should be taken into account. Given an689

appropriate acoustical characterization of instruments and details of how they are690

combined and employed musically (e.g., in unison or non-unison, the articulation and691

dynamic markings), these properties could suffice to predict the associated degree of692
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blend.693

One main challenge for future research is determining the effective weighting694

between these different factors of influence. Whether the clear dominance of interval695

type or impulsiveness of attacks over spectral features, which became apparent in the696

current investigation, would extend to more complex musical contexts remains to be697

explored. It can be assumed that the growing complexity that a listening scenario698

involving musical contexts would present, given the simultaneous presence of other699

musical parameters, could significantly alter the relative importance of factors found in700

listening experiments employing isolated dyadic or triadic stimuli.701

For instance, a composer may assign a unison blend between two instruments to a702

melodic voice while juxtaposing this against a chordal, non-unison accompaniment layer703

whose instruments are chosen to blend amongst themselves into a homogeneous timbre.704

On another level, the melody may become more distinct from the accompaniment due705

to the distinction between unison and non-unison, which may also be desired. This case706

scenario illustrates that blend-related factors need not stand in competition with each707

other like they do in the investigated perceptual data, but instead could operate on708

independent levels, fulfilling separate functions within the musical context.709

For the composer, working with blend is not a matter of favoring unison intervals710

over non-unison intervals, but being able to employ it at individual levels of the musical711

scene (e.g., melody, accompaniment, or contrasting the two). Within each level, blend is712

achieved by relying on the same principles, i.e., similarity in spectral description as well713

as articulatory features (e.g., note attacks). This hypothetical scenario encourages714

future work on blend-prediction models to rely on perceptual data obtained from715

stimuli involving musical contexts (Kendall & Carterette, 1993; Lembke et al., in press;716

Reuter, 1996), as it provides a more realistic setting from which weights between717

blend-related factors could be estimated. We thus propose the need for a718

meta-analytical investigation into a diverse range of perceptual blend data, in an719

attempt to move toward generally applicable blend-prediction techniques.720
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Footnotes721

722
1MATLAB, Mathworks. The plsregress function from the Statistics and Machine723

Learning Toolbox was used. URL: https://uk.mathworks.com/products/matlab.html.724

Last accessed: August 21, 2017.725

2URL: http://vsl.co.at/. Last accessed: August 21, 2017.726

3See Appendix C in Lembke (2015) for details.727

Supplemental Material728

Representative examples for the dyad and triad stimuli are available online as729

supplemental material, which can be found as part of the online version of this article at730

http://msx.sagepub.com. Access the sound files through the hyperlink “Supplemental731

material”. Their filenames follow the naming convention found in Tables 1 and 2.732
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Table 1
Fifteen dyads across pairs of the six investigated instruments.

Dyad Instrument pair
HB horn bassoon
HO horn oboe
HT horn trumpet
HC horn clarinet
HF horn flute
BO bassoon oboe
BT bassoon trumpet
BC bassoon clarinet
BF bassoon flute
OT oboe trumpet
OC oboe clarinet
OF oboe flute
TC trumpet clarinet
TF trumpet flute
CF clarinet flute
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Table 2
Twenty triads and their constituent instruments and assigned pitches.

Instruments & pitches
Triad C4 F4 B[4
AAF cello (arco) cello (arco) flute
AAC cello (arco) cello (arco) clarinet
PPC cello (pizz.) cello (pizz.) clarinet
PPO cello (pizz.) cello (pizz.) oboe
PAF cello (pizz.) cello (arco) flute
PAO cello (pizz.) cello (arco) oboe
ACF cello (arco) clarinet flute
AOF cello (arco) oboe flute
ACO cello (arco) clarinet oboe
PCO cello (pizz.) clarinet oboe
TTF trombone trombone flute
TTC trombone trombone clarinet
TTO trombone trombone oboe
TCO trombone clarinet oboe
PTT cello (pizz.) trombone trombone
PAT cello (pizz.) cello (arco) trombone
ATF cello (arco) trombone flute
ATC cello (arco) trombone clarinet
PTC cello (pizz.) trombone clarinet
PTO cello (pizz.) trombone oboe
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Table 3
Acoustical descriptors investigated for dyads and/or triads (marked by ‘x’ in the
rightmost columns), related to the global spectrum (S), formants (F ), the attack portion
of the temporal envelope (A), spectrotemporal variation (ST ), as well as categorical
variables (C). Descriptor values for individual sounds forming dyads or triads were
associated with a single regressor value by difference ∆, composite Σ, distribution Ξ
(triads only) or as specified otherwise.

Abbrev. Description Unit Association Dyad Triad
S∼centr spectral centroida Hz ∆, Σ, Ξ x x
S◦centr spectral centroidb Hz ∆, Σ, Ξ x x
S∼slope spectral slopea Hz−1 ∆, Σ, Ξ x x
S◦slope spectral slopeb Hz−1 ∆, Σ, Ξ x x
Sskew spectral skewa - ∆, Σ, Ξ x x
Skurtos spectral kurtosisa - ∆, Σ, Ξ x x
Sspread spectral spreada Hz ∆, Σ, Ξ x x
Sroll spectral roll-offa Hz ∆, Σ, Ξ x x

Sdecrease spectral decreasea - ∆, Σ, Ξ x x
Snoise noisinessa - ∆, Σ, Ξ x x
Fmax main-formant maximumb Hz ∆, Σ, Ξ x x
F3dB main-formant upper boundb Hz ∆, Σ, Ξ x x
Fslope spectral slope above main formantb Hz−1 ∆, Σ, Ξ x x
F∆mag level difference F1 vs. aboveb dB ∆, Σ, Ξ x x
Fprom formant prominenceb - ∆, Σ, Ξ x x
Ffreq formant frequency deviationsb Hz ∆ x x
Fmag formant magnitude deviationsb dB ∆ x x
Atime attack time s ∆, Ξ x x

Alog(time) log. attack time s ∆, Ξ x x
Aslope attack slope s−1 ∆, Ξ x x
STflux spectral fluxa - ∆, Σ, Ξ x x
STincoher spectral incoherencea - ∆, Σ, Ξ x x
Cunison unison or non-unison - binary x

∆f0 f0 difference Hz ∆ x
Cpitch pitch level - binary x
f0|ERB f0, auditory scaling ERBc rate C4 or G4 x
Cinterval interval type - ternary x
Cposition instrument positions - binary x
Cpizz including pizzicato or not - binary x
xmix amplitude mix or balance - scaled value x x

Note.
aS∼ based on signal analysis for individual pitches.
bS◦ based on pitch-generalized spectral-envelope estimate.
cERB: equivalent rectangular bandwidth (Moore & Glasberg, 1983).
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Table 4
Performance (R2) and predictive power (Q2) of the PLSR model for dyads as well as
component-wise contribution along the first three PCs for the three stages Xorig, XQ50,
Xortho involving a sequential reduction of the number of regressors m.

y dyads X regressors m R2 Q2 PC 1 PC 2 PC 3
Xorig 46 .94 .91 .88 .04 .01

all XQ50 23 .93 .92 .90 .03 <.01
Xortho 14 .93 .93 .91 .02 <.01
Xorig 44 .56 .18 .33 .14 .10

unison XQ50 22 .46 .17 .26 .12 .09
Xortho 9 .27 .16 .22 .05 -
Xorig 45 .60 .40 .42 .10 .08

non-unison XQ50 23 .55 .47 .39 .14 .03
Xortho 11 .48 .35 .33 .08 .07
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Table 5
Performance (R2) and predictive power (Q2) of the PLSR model for triads as well as
component-wise contribution along up to three PCs. Three stages Xorig, XQ50, Xortho

involve a sequential reduction of the number of regressors m.

y triads X regressors m R2 Q2 PC 1 PC 2 PC 3
Xorig 61 .90 .64 .86 .04 -

all XQ50 30 .89 .73 .84 .05 -
Xortho 15 .89 .76 .85 .03 -
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Figure 1 . Pitch-generalized spectral envelope of a horn with identified frequencies for
formant maxima and 3 dB bounds (see Lembke & McAdams, 2015). Fmax and F3dB

characterize the maximum and upper bound, respectively, for the dominant, lower main
formant. Fslope represents the spectral slope above the main formant. F∆mag quantifies
the magnitude difference between Fmax and and the average magnitude above F3dB.
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Figure 2 . Pitch-generalized spectral envelopes of oboe (blue) and flute (red). Fprom

characterizes the existence and clarity of formant features (e.g., 3 dB formant bounds);
the larger the total shaded area, the more prominent the instrument’s formant
structure. Fmag evaluates the total magnitude difference between spectral envelopes at
formant frequencies. Ffreq quantifies the deviation between formant frequencies.
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Figure 3 . Dyad model fit of y variables for Xortho. Legend: circles, unison; diamonds,
non-unison; grey involves oboe; green involves horn (excl. HO).
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Figure 5 . Dyad Portho and Tortho for PCs 2 and 3. See Figure 4 for legend.
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Figure 6 . Unison-dyad model fit of y variables for Xortho. See Figure 3 for legend.
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Figure 7 . Unison-dyad Portho and Tortho for PCs 1 and 2. See Figure 4 for legend.
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Figure 8 . Non-unison-dyad model fit of y variables for Xortho. See Figure 3 for legend.
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Figure 9 . Non-unison-dyad Portho and Tortho for PCs 1 and 2. See Figure 4 for legend.
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Figure 10 . Non-unison-dyad Portho and Tortho for PCs 2 and 3. See Figure 4 for legend.



ACOUSTICAL CORRELATES OF BLENDED TIMBRE 47

0 0.25 0.5 0.75 1
Median blend rating

0

0.25

0.5

0.75

1

P
L

S
R

 m
o

d
e
l 
p

re
d

ic
ti
o

n

Figure 11 . Triad model fit of y variables for Xortho. Legend: squares, including
pizzicati; circles, excluding pizzicati; grey involves oboe; green involves trombone (excl.
PTO, TTO, TCO).
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Figure 12 . PLSR loadings Portho (vectors) and scores Tortho (symbols) for PCs 1 and 2
with triads. Legend: squares, including pizzicati; circles, excluding pizzicati; symbol size
represents relative degree of blend; grey involves oboe; green involves trombone
(excluding PTO, TTO, TCO).


