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Abstract

Nonparametric estimation of the survival function for either incident or prevalent cohort

failure time data, exclusively, has been well studied in the literature; the Kaplan-Meier

(KM) estimator is routinely used for right-censored incident cohort failure time data while a

modi�ed form of the KM estimator, sometimes referred to as the Tsai-Jewell-Wang (TJW)

estimator, is the default estimator used for prevalent cohort data with follow-up. Often, fail-

ure time data comprise observations from a combination of incident and prevalent cohorts.

In this note, we justify the use of the TJW estimator for a combined sample of incident

and prevalent cohort data with follow-up. We suggest how the TJW estimator forms the

basis for density estimation and hypothesis testing problems, when incident and prevalent

cohorts are combined.
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1 INTRODUCTION

It is common in survival analysis for the collected data to comprise the union of two data sources; typically, one source is a classical incident
cohort study with follow-up while the other source is a prevalent cohort study with follow-up. In the latter, subjects with prevalent disease are
followed forward in time. The development of statistical procedures for such combined cohort data allows researchers to avoid the shortcomings
of analyses based on the two types of data separately. Combined cohort data may arise through the use of complex study designs in which multiple
groups are simultaneously sampled, as well as through the sharing of subject-level data from different studies (Tierney et al. 2015; Wolfson, Best,
Addona, Wolfson, & Gadalla 2019). For example, Humbert et al. (2010) examined the survival of subjects with Pulmonary Arterial Hypertension
(PAH) taken from the French PAH registry. From this registry, the subjects with idiopathic, familial or anoreixgen-associated PAH were classified
either as incident cases (subjects who acquired PAH during the observation period) or prevalent cases (subjects who had acquired PAH prior to the
observation period). Other examples of combined cohort data occur when independent studies are combined, as might be done in a meta-analysis
(Abner et al. 2015). Analyses using combined cohort data may be found in a variety of fields including medicine/health, sports, public policy and
finance (Daepp, Hamilton,West, & Bettencourt 2015; Groothuis & Hill 2011; Kingwell et al. 2012; Lee, Ning, Kryscio, & Shen 2019; Welch 1998).

Irrespective of whether the observed combined cohort data were collected from a single study or collected from various sources, a single survival
analysis using all available data can have substantial benefits. For, when used alone: (i) Incident cohort studies may be of limited duration owing
to logistical considerations and/or funding constraints. As a result, many failure times will be administratively censored at the end of the study
rendering the classic Kaplan-Meier estimator undefined beyond this point (Kaplan & Meier 1958). Moreover, increasing the cohort size in a study
of restricted duration does not solve this problem; (ii) On the other hand, increasing the size of the prevalent cohort in a prevalent cohort study
with follow-up is likely to ameliorate this problem even with restricted follow-up (Wolfson et al. 2019). Yet, a modified form of the Kaplan-Meier
estimator, called the Tsai-Jewell-Wang (TJW) estimator, used for pure prevalent cohort studies with follow-up, can produce absurd estimates of the
survivor function. This happens when the risk set is underpopulated at observed failure times close to t = 0 (Pan & Chappell 1998; Wolfson et al.
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FIGURE1Acomparison of the nonparametric product-limit estimates of the survival function for purely prevalent cohort data (blue), incident cohort
data (green), and combined cohort data (orange) to the true underlying survival curve (purple). The underlying failure time distribution is Weibull
with an Exponential censoring time distribution and a Gamma truncating distribution where each individual cohort comprise 50 observations. The
TJW estimate derived from the prevalent cohort with follow-up has a substantial drop near the origin. The Kaplan-Meier estimate derived from an
incident cohort, is undefined after the end of the study. The TJW estimate based on the combination of prevalent and incident cohorts ameliorates
both of these issues.

2019). It is suggested through simulations, by Wolfson et al. (2019), that combining incident and prevalent cohort data simultaneously addresses
both of these issues, through a data-based “fix”. For a visual representation of these properties, see Figure 1. Further, use of all the available data
will enhance the precision of the estimators; for example, the onset dates of a certain disease in a pure prevalent cohort study will follow-up,
retrospectively obtained, can induce additional uncertainty (McVittie, Wolfson, & Stephens 2019; Zhong & Cook 2014).

Although intended for use with pure prevalent cohort data, the TJW estimator may be used with combined incident-prevalent cohort data by
regarding the incident cohort as a prevalent cohort with truncation times set equal to zero. The wide availability of the TJW estimator in statistical
software packages makes its use for combined data sets particularly attractive. However, the asymptotic properties of the TJW estimator originally
relied on the assumed continuity of the truncation time distribution, which is not the case when some of them are allowed to be zero (Tsai, Jewell, &
Wang 1987; Wang, Jewell, & Tsai 1986). Since then, various authors have analyzed the asymptotic properties of the TJW estimator under different
assumptions on the truncating distribution and restrictions on the supports of the random variables involved in the estimation procedure, all within
the context of a purely prevalent cohort (Gijbels & Wang 1993; Zhou 1996; Zhou & Yip 1999).

In this note, we show how the approach taken by Gijbels andWang (1993), which allows for an arbitrary truncating distribution (not necessarily
continuous), may be used to establish the asumptotic properties of the TJW (product-limit) estimator in the combined cohort setting. We conclude
with a discussion on two applications, in density estimation and hypothesis testing problems.

2 THE TSAI-JEWELL-WANG PRODUCT-LIMIT ESTIMATOR: DEFINITION AND ASYMPTOTIC

PROPERTIES

Let T1,T2, ...,Tn be i.i.d. failure times with distribution function F(·). We assume each Ti is potentially randomly right-censored by the random
variable Ci which has distribution function H(·), for all i = 1, 2, ..., n. Our incident cohort consists of the independent pairs of observations
{(Xi, δi) = (min(Ti,Ci), 1(Ti < Ci)) : i = 1, 2, ..., n}. Let T1,T2, ... be a sequence of i.i.d. failure times with distribution function F(·) and let
A1,A2, ... be a sequence of i.i.d. truncation times independent of T1,T2, ..., with distribution function G(·). Our prevalent cohort consists of the
observations for which Ti > Ai where each failure time Ti is subject to right-censoring by the random variable C∗i where, by assumption, C∗i > Ai

and C∗i ∼ H∗(·). Thus, after follow-up, the prevalent cohort consists of the observation triples {(Xi,Ai, δi) = (min(Ti,C
∗
i ),Ai, 1(Ti < C∗i )) : i =

1, 2, ...,m}. As discussed by Wolfson et al. (2019), incident cohort data may be embedded in R3 by setting the truncation times of the incident
cohort failure/censoring times to 0. A combined cohort consisting of both incident and prevalent cohort data would then consist of the quadruples
{(Xi,Ai, δi, γi) : i = 1, 2, ..., n + m} where γi is the cohort inclusion indicator function.
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Let {(xi, ai, δi, γi) : i = 1, 2, ..., n + m} denote the observed quadruples of a combined incident and prevalent cohort, and let t(1), t(2), ..., t(k),
denote the distinct ordered lifetimes of the uncensored x’s. The TJW estimator of the survival function S = 1− F is given by:

Ŝn+m(t) =


1 if t < min{xi : δi = 1}∏

j:t(j)<t

(
1−

∑n+m
i 1(t(j)=ti)∑n+m

i 1(ai≤t(j)≤xi)

)
otherwise

(1)

Not only is Ŝ a product-limit estimator, it is also the non-parametric maximum likelihood estimator (NPMLE) of S (see (Wang 1991) for further
details).

To establish the asymptotic properties of the TJW estimator, we note that the observed data may arise via two mechanisms. Either two studies
(incident and prevalent cohorts, respectively) are combined or, data are collected from a single study in which the numbers of incident and prevalent
cases are random. In the former case, we can embed the observed incident cases into the same space as the prevalent cases by considering their
truncation times to be equal to 0. Thus, the combined cohort truncation times follow a mixture distribution G∗(·), where either G∗(·) has non-zero
probability mass at 0 or follows the distribution G(·) for all positive truncation times. A similar scenario arises in the case in which the grand sample
size is fixed but the numbers of incident and prevalent cases are random. Again, the combined cohort truncating distribution will follow the mixture
distribution G∗(·).

The distribution of the truncation times in the combined cohort is necessarily of mixed type as there is a discontinuity at time t = 0. Therefore,
the asymptotic properties of the TJW estimator must be established under this assumption. With this in mind, we consider the approach taken
by Gijbels and Wang (1993). While the authors’ proof requires that the supports of the failure time and truncation time distributions are bounded
intervals, in practice, this restriction is hardly serious for combined incident and prevalent cohort data. For any distribution function K, denote the
left and right endpoints of its non-zero support by

aK = inf{t : K(t) > 0} and bK = inf{t : K(t) = 1}

Let the distribution function W be defined through the equality 1−W(·) = (1− F(·))(1− H†(·)) where H†(·) is the distribution function of the
combined cohort censoring random variables. Note that F is identifiable if aG ≤ aW and bG ≤ bW (Gijbels &Wang 1993). Gijbels andWang establish
an i.i.d. representation for the NPMLE F̂n+m(·) when aG < aW . Now, in most applied settings where combined incident and prevalent cohort data
are available, this support assumption will hold since the incident cohort cases will contribute a non-zero probability mass at t = 0. Thus, we may
assume aG = 0. More precisely, in practice, it can be assumed that there exists ε > 0 such that F(x) = H†(x) = 0 for all 0 ≤ x ≤ ε. Further, we
may adapt the strong representation approach of Gijbels and Wang (1993) for a pure prevalent cohort with follow-up to a mixed cohort setting.
Crucially, Gijbels and Wang place no continuity requirement on the truncation distribution, which they allow to be arbitrary. In mixed cohorts, the
truncation distribution, G(·), is inevitably discontinuous. Therefore, there is a strong representation for the NPMLE of the failure time distribution
function, F̂n+m(·), as given in Corollary 1 (d) of (Gijbels & Wang 1993). This representation opens the way to the following theorem:

Theorem 1. Let aG < aW and b < bW .

1. For 0 < x < bW , F̂n+m(x)→ F(x) a.s.

2. sup0≤x≤b |F̂n+m(x)− F(x)| = O(((n + m)−1 ln ln n + m)
1
2 ) a.s.

3. Let D[0, b] be the space of all right-continuous functions with left limits on the interval [0, b]. The stochastic process
√
n + m

[
F̂n+m(x)− F(x)

]
converges weakly on D[0, b] to a mean zero Gaussian process with covariance function

Γ(x1, x2) =

x1∧x2∫
a

[P(T ≤ x ≤ X|T ≤ X)]−2 P(T ≤ x ≤ C†)
P(T ≤ X)

dF (x)

where C† is the combined cohort censoring random variable.

3 APPLICATIONS AND DISCUSSION

The NPMLE may also be applied to density estimation and hypothesis testing problems. For pure prevalent cohort data, Gijbels and Wang (1993)
define the kernel density estimator:

f̂m(z) =
1

b−1
m

∫
K((z − t)/bm)dF̂m(t).

Invoking the asymptotic properties of Theorem 1 above, it follows that f̂m+n(z), defined analogously, in the mixed cohort setting, has matching
asymptotic properties for estimating the probability density function f of the common survivor function.
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Ning, Qin, and Shen (2010) discuss how the product-limit estimator may be used to test for distributional differences between two random
variables when the observed samples are both length-biased (i.e. the onset process of the failure times is assumed to follow a stationary Poisson
process) and right-censored. They argue that in the more general left-truncation setting, the TJW estimator may be used for such a test. In the
combined cohort setting, as the testing procedure of Ning et al. is likelihood-based, their approach may be generalized to test whether data
collected from an incident cohort and a prevalent cohort come from the same underlying distribution. This procedure would allow researchers
to test whether survival is the same in two different cohort studies, one an incident cohort study and the other, a prevalent cohort study with
follow-up. It could also be used to test for a change in survival before and after recruitment of the two cohorts.

A product-limit type non-parametric estimator of the survivor function has been proposed by Lai and Ying (1991) in the pure prevalent cohort
setting. Importantly, they established the asymptotic properties of their estimator under much weaker conditions than those required for the proof
of Theorem 1; they require independence of the failure times and of the truncaiton times. However, they do not require continuity of the truncation
time distribution or of the failure time distribution. Moreover, they do not require the truncation times to be identically distributed. Nevertheless,
the Lai and Ying estimator comes with a price for its implementation as it requires the specification of two tuning parameters which seem hard to
determine in a systematic way. The simulation results presented by Wolfson et al. (2019) suggest that the TJW estimator performs at least as well
as the Lai and Ying estimator in most cases and is clearly better in several. Importantly, the TJW estimator is included in most statistical software
packages.
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