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Abstract

Facial recognition (FR) technology threatens privacy and has been shown to exhibit significant bias

against certain demographic groups, which can have serious implications when deployed by police

or other government agents. This thesis explores conditions that should be met before a widely

proposed moratorium on facial recognition technology could be safely lifted. Such conditions in-

clude the establishment of an auditing system to measure accuracy and bias in FR models and the

implementation of a governance framework for the collection and use of FR data. We also intro-

duce a statistical method that reduces model bias while increasing accuracy, all without requiring

demographic information about model subjects. This method can be integrated into current FR

models without need for retraining.
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Résumé

La technologie de reconnaissance faciale (RF) menace la vie privée et a fait preuve de partialité

contre certains groupes démographiques, ce qui peut avoir de graves implications lorsque cette

technologie est déployée par la police ou par d’autres agents gouvernementaux. Cette thèse ex-

plore les conditions qui devraient être remplies avant qu’un moratoire largement proposé sur la

technologie de reconnaissance faciale puisse être levé en toute sécurité. Ces conditions compren-

nent la mise en place d’un système de vérification pour mesurer la précision et le biais des modèles

RF, ainsi que la mise en œuvre d’un cadre de gouvernance pour la collecte et l’utilisation des

données RF. Nous introduisons également une méthode statistique qui réduit le biais d’un modèle

tout en augmentant sa précision, sans nécessiter d’informations démographiques sur les sujets du

modèle. Cette méthode peut être intégrée à un modèle RF actuel sans ré-entraîner le modèle.
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Chapter 1

Introduction

Facial recognition (FR) technology has become pervasive and virtually inescapable: it has infil-

trated Canadian airports [60], malls [97], and, prior to a recent investigation by the Office of the

Privacy Commissioner, both municipal police departments and the Royal Canadian Mounted Po-

lice (RCMP), Canada’s federal police service [63]. Despite an explosion in the use of FR, particu-

larly by government agencies, Canada’s data, privacy, and technology laws have remained stagnant

and have largely failed to adequately regulate the powerful new technology [94]. FR systems have

many potential benefits and have been successfully employed by police departments to find miss-

ing children [50] and to identify child victims of sexual abuse [35]. These successes, however,

are undercut by the significant threat that FR, especially when deployed in public places, poses to

privacy and meaningful consent [7]. The technology has also been shown to exhibit bias against

certain demographic groups, particularly Black people [11, 19, 29, 43, 71]; this technological bias,

amplified by the human bias already present in law enforcement [70], risks causing serious harm

to marginalized groups. Already, FR systems have led to the false arrests of multiple Black men in

the United States [33]. Many major American cities have responded to these concerns by imposing

moratoriums or bans on facial recognition technology [77]; in Canada, there have been growing

calls for the federal government to do the same [94].
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This thesis examines two central questions: firstly, given a hypothetical federal moratorium on the

use of FR by Canadian government agencies, which conditions, both technical and policy-related,

would need to be put in place before such a moratorium could safely and ethically be lifted? And

secondly, how can we start working toward fulfilling one of these conditions, namely the condition

of context-based bias mitigation?

To tackle the first question, we consider fundamental research problems that must be solved, as

well as changes to Canadian laws that must be made and policies that must be implemented before

the risks posed by FR may be considered sufficiently dampened. Public policy alone will not

solve the problem of facial recognition; neither, however, will research and technical solutions.

We cannot program our way to a free and equitable society; for instance, even if highly effective

bias mitigation solutions become widely known, regulations are required to ensure that the FR

systems used by police officers, border control agents, and other government employees are indeed

unbiased. Conversely, sound policies must be informed by research: successfully measuring bias

necessitates an understanding of the nuances and mutual incompatibility of different bias metrics.

Employing a simple, one-size-fits-all metric entirely ignores the diverging contexts in which the

tool may be deployed: for instance, equal false positive rates should be prioritized in situations

where false positive errors (e.g. false arrests) may pose significant risks, while in other cases equal

false negative errors may be more important. Technical, legal, and policy experts must therefore

work in concert to address the problem of bias. The same is true for the two other groups of

conditions—related to data and FR usage—that we explore.

1.1 Summary

We begin Chapter 2 with a brief explanation of facial recognition (FR) technology, its uses in

Canada, and its most severe shortcomings. We then include a survey of the various mathematical

definitions of fairness, followed by a demonstration of the mutual incompatibility of three of these

definitions.
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Chapter 3 introduces the implications of a federal moratorium on government uses of FR (sec-

tion 3.1), then dives into the conditions necessary for removing such a moratorium. Note that these

conditions are non-exhaustive and fall into three primary camps: accuracy and bias conditions,

data conditions, and usage conditions, with the greatest attention paid to the first category. In sec-

tion 3.2, we consider how FR researchers have historically defined bias, how bias and accuracy

should in fact be measured (i.e. by accounting for the context and the use case), which testing

datasets should be used when measuring bias and accuracy, which demographic groups should be

prioritized, and what factors cause bias. We conclude the section with a thorough investigation of

bias mitigation strategies. Sections 3.3 addresses data conditions and provides an overview of cur-

rent data and privacy laws before introducing key considerations for developing more appropriate

data regulations. Similarly, section 3.4 presents considerations for establishing conditions and lim-

its on the use of FR. These conditions include assessing the risk, particularly at the societal level,

of various FR use cases, as well as assessing use cases’ proportionality (i.e. whether employing an

FR solution is disproportionate to a given problem).

Finally, Chapter 4 delves into a bias mitigation approach developed by Salvador et al. [83], to

which I contributed. Our method, which applies the under-utilized fairness definition of fairness-

calibration to FR, could be used with any FR system with no re-training or demographic data labels

required, the latter of which are often non-existent. Most importantly, it would allow FR users

to select, based on the deployment context, which definitions of fairness they wish to prioritize,

thereby helping to satisfy the condition of context-dependent bias mitigation.
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Chapter 2

Background

2.1 Facial recognition technology

2.1.1 How it works

Current state-of-the-art facial recognition models are composed of deep neural networks that ac-

cept images of face images as input and that output face embeddings—vectorized approximations

of facial features. In order to output accurate face embeddings, a model is first trained on vast

quantities of facial images, which contain identity labels (e.g. ’John Smith’). Training involves the

use of a loss function, which at each training interval evaluates how well the model is performing

on a set of training images.

Facial recognition technology can be used to achieve two different goals: one-to-many identifica-

tion and one-to-one verification. The former involves scanning a large database for images that

match a target image, while the latter involves checking whether the target image truly matches

another photo; this second type of FR may be used to unlock one’s cell phone, for example. Both

forms of FR compare the face embeddings of images to determine whether they depict the same

person; more precisely, a pair of images xi and xj is deemed a match if the cosine similarity score
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of their respective embeddings f(xi) and f(xj) exceeds a particular threshold. Their cosine sim-

ilarity score is computed as s(xi, xj) = f(x1)·f(x2)
‖f(x1)‖‖f(x2)‖ . A pair of embeddings with a high cosine

similarity score can be assumed to be highly similar to one another.

2.1.2 Recent and current uses

Major developers

While many prominent technology companies like Facebook develop facial recognition algorithms

solely for their own use (e.g. in automatically tagging user photos [84]), numerous other compa-

nies sell their FR technology to law enforcement, private businesses, and other buyers. Notable

developers include Amazon, which made headlines in June 2020 when it declared a one-year mora-

torium on sales of their FR algorithm, Rekognition, to law enforcement, though the model is still

available for commercial and academic use [103]. Microsoft and IBM took similar measures, with

the former imposing an indefinite moratorium until a “national law...grounded in human rights"

could be established, and the latter permanently ceasing all production and sales of FR technol-

ogy [79]. In 2019, the AI ethics board of Axon, a technology and weapons company, likewise

concluded that FR technology was not yet reliable enough to be sold to law enforcement [6].

Other companies, however, endeavoured to continue selling FR systems to police departments.

Until recently, Clearview AI was the largest provider of FR technology to law enforcement in

Canada, allowing police officers to match images to the company’s database of three billion photos,

which it had obtained by scraping content from social media platforms, in clear violation of the

sites’ terms of service [1]. Clearview AI withdrew from the Canadian market in light of a joint

investigation by the Office of the Privacy Commissioner of Canada (OPC) and several provincial

privacy commissioners [63].

Unlike the UK, the EU, and California, Canada has no legal “right to be forgotten". Despite

this, and despite an initial reluctance on behalf of Clearview AI [21], the company eventually

allowed Canadians to request that their photos be removed from their database [20]. The privacy
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commissioners’ investigation culminated in a February 2021 report (with no legal power) declaring

that the company’s treatment of personal data violated Canadians’ privacy rights [58]. As of May

2021, the OPC has not yet concluded a separate but related investigation into the RCMP’s use of

Clearview AI’s FR technology [64, 65].

Other companies continued to operate in Canada; NEC’s NeoFace Reveal has been used by Cana-

dian police departments, including the Calgary Police Department, which has used it since 2014

[55]. Idemia, whose algorithm has been shown to exhibit strong racial bias, offered their services

to the Sûreté du Québec in 2020 [73].

Canadian Border Protection

Travellers arriving at Canada’s major airports are offered the convenient option of checking in

at self-serve customs kiosks set up by the Canadian Border Services Agency [60]. These kiosks

verify the travellers’ identities using facial recognition. Passport Canada also frequently uses FR

technology to detect fraud in passport applications [60].

Police

At least 34 police departments across Canada have used Clearview AI’s FR tool [1], including

Calgary [26], Halifax [75], and Toronto [52] police departments, all three of which initially denied

using the technology. The RCMP’s National Child Exploitation Crime Centre used Clearview

AI’s FR technology; other RCMP units briefly employed the technology on a trial basis [81]. The

RCMP likewise denied employing Clearview AI’s tool before admitting, weeks later, that it had

used it for months [98].

Private sector

Private corporations, including retailers like Canadian Tire [104] and Saks Fifth Avenue [27], have

also adopted FR technology. One recent high-profile case involved Cadillac Fairview [97], the

owner of several of Canada’s largest malls. An investigation by the B.C. and Alberta privacy
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commissioners found that the real estate company had installed hidden cameras and collected over

five million images of shoppers, which were then used to conduct facial recognition.

Fusion systems

While this thesis’ focus is on FR, it is important to note that many identification systems, partic-

ularly those already deployed in non-Western countries, rely on multiple types of biometric data,

such as fingerprints, irises, and gait, in addition to facial images [23]. It is imperative that all

Canadian regulations targeting FR also apply to these fusion systems.

2.1.3 Bias

Facial recognition models have been shown to exhibit bias against racial minorities, women, and

certain age groups such as children and the elderly. Cook et al. [19] tested 11 commercial FR

systems and found that lower skin reluctance (a proxy for a darker skin tone) was associated with

lower accuracy. Krishnapriya et al. [43] studied four FR algorithms, finding higher false positive

rates and lower false negative rates among Black subjects than white subjects.

In 2019, the US National Institute of Standards and Technology (NIST) [29] undertook a large-

scale study of 189 FR algorithms from 99 developers. They tested the algorithms on 18.27 million

photos from four datasets: domestic mugshots, photos of immigrants applying for benefits, visa

application photos, and border crossing photos.

They compared false positive rates (FPRs) across demographic groups: when searching the datasets

of application photos, they found large discrepancies between countries of origin, with FPRs dif-

fering by factors of up to 100. The highest FPRs were observed for West and East African and East

Asian subjects, with the notable exception of Chinese-made algorithms, which exhibited low FPRs

on East Asian faces. The algorithms likewise displayed unequal rates when tested on mugshots,

with Indigenous people, followed by African Americans and East Asians having the highest FPRs.

Across all algorithms and datasets, women were more likely to be misidentified than men, though
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the gender gap in FPRs was smaller than the racial gap. Finally, higher FPRs were noted among

children and the elderly.

False negative rates (FNRs) also diverged between groups, though these disparities were not con-

sistent across datasets. For example, along with white faces, African American faces had low

FNRs on the mugshot dataset compared to Asian and Indigenous faces. However, when testing

on the border crossing dataset, high FNRs were noted for individuals hailing from African and

Caribbean nations. This inconsistency is likely explained by differences in image quality between

the two datasets.

Research on bias in facial recognition systems has for the most part considered only particular

fairness metrics, namely false positive and false negative rates. Other definitions of fairness, such

as fairness-calibration, which we will introduce in section 2.2, have so far been overlooked.

2.1.4 Additional risks

FR also poses major risks to privacy and undermines an individual’s ability to provide meaningful

consent. As they stand, Canada’s privacy and data laws are ill-equipped to address these dangers

[93]. Moreover, certain uses of FR, such as live police surveillance, engender especially acute

risks; there are currently no Canadian regulations to assess, curb, or ban such use cases.

2.2 Mathematical definitions of fairness

Researchers have proposed a myriad of notions to quantify fairness, some of which have been

shown to be mutually exclusive. In this section, we present a selection of the most noteworthy or

popular definitions. These definitions are taken from survey papers by Verma and Rubin [99] and

Mehrabi et al. [49]. For a more extensive (but still not exhaustive) list of definitions, see Appendix

A.
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Each definition involves the following problem setup: given a machine learning model that outputs

a score s(x) ∈ [0, 1] for an input x, we threshold the model at some value α and set

d(x) =


1, if s(x) > α

0, if s(x) ≤ α

(2.1)

If d(x) = 1, we say that x has been assigned to the positive class. In the case of facial recognition,

this corresponds to inputting a pair of face images and outputting a score s and a corresponding

decision d = {0, 1}, predicting whether the pair is truly a match. An alternative example would be

a model that predicts whether an individual will be granted a bank loan.

We test a model’s level of bias with respect to a particular sensitive attribute G (e.g. race, gen-

der, age group) by dividing subjects into groups based on that attribute. For simplicity, the

binary versions of these definitions—where subjects fall into one of two demographic groups

G = {a, b}—are presented. However, the definitions can also be applied to cases with multiple

groups.

We can differentiate between two forms of discrimination:

Definition 2.2.1 (Disparate treatment). Discrimination that results from the explicit use of a sen-

sitive attribute (e.g. a person’s race, gender, etc.) in making a decision.

Definition 2.2.2 (Disparate impact). Discrimination that does not result from the explicit use of a

sensitive attribute but rather from proxy attributes (e.g. neighbourhood and income as proxies for

race).

A model that does not directly rely on information about the subject’s gender, race, or other sensi-

tive attributes may nevertheless display significant bias against particular groups.
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2.2.1 Basic definitions

Many of the definitions of fairness proposed by researchers (see Appendix A for the more complete

list) are related to the notions of true and false positives (and negatives). A subject who has been

correctly assigned to the positive class by the model corresponds to a true positive (TP), while

one who has been incorrectly assigned corresponds to a false positive (FP). The following simple

definitions are key to many fairness definitions.

The true positive rate (TPR):
TP

TP + FN
(2.2)

is the proportion of subjects that belong to the positive class that are correctly assigned to the

positive class.

The true negative rate (TNR):
TN

FP + TN
(2.3)

is the proportion of subjects that belong to the negative class that are correctly assigned to the

negative class.

The false positive rate (FPR):
FP

FP + TN
= 1− TNR (2.4)

is the proportion of subjects that belong to the negative class that are incorrectly assigned to the

positive class.

The false negative rate (FNR):
FN

TP + FN
= 1− TPR (2.5)

is the proportion of subjects that belong to the positive class that are incorrectly assigned to the

negative class.
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The positive predictive value (PPV):
TP

TP + FP
(2.6)

is the proportion of positively-assigned subjects that truly belong to the positive class.

2.2.2 Overly simplistic notions of fairness

Definition 2.2.3 (Statistical parity). Also known as demographic parity, group fairness, and equal

acceptance rate, statistical parity requires that subjects in both groups a and b have equal probabil-

ities of being assigned to the positive predicted class. That is,

P (d = 1|G = a) = P (d = 1|G = b) (2.7)

This is equivalent to ensuring that d is independent of G. A severe flaw with this definition is that

it can be satisfied in ways that the average person would not deem “fair". For example, for the

case of a graduate program with 500 male applicants and 500 female applicants, statistical parity

would be satisfied by admitting the top ten percent of female applicants and a random selection of

50 male applicants.

Definition 2.2.4 (Conditional statistical parity). Conditional statistical parity necessitates that sub-

jects in both groups have equal probability of being assigned to the positive predicted class pro-

vided they satisfy some legitimate condition L, such as a certain minimum GRE score.1

P (d = 1|L = l, G = a) = P (d = 1|L = l, G = b) (2.8)
1Note that this notion of fairness is complicated by the difficulty of identifying a truly “legitimate" condition. GRE

scores, for instance, underestimate the success rates of minority and female students [13].
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2.2.3 Three fairness definitions of note

Here, Y = 1 and Y = 0 correspond, respectively, to the events of belonging and not belonging to

the positive class.

Definition 2.2.5 (Predictive equality). Predictive equality is satisfied if both groups have equal

false positive rates:

P (d = 1|Y = 0, G = a) = P (d = 1|Y = 0, G = b) (2.9)

Definition 2.2.6 (Equal opportunity). Equal opportunity requires that both groups have equal false

negative rates:

P (d = 0|Y = 1, G = a) = P (d = 0|Y = 1, G = b) (2.10)

Note that this is equivalent to demanding equal true positives rates.

Predictive equality or equal opportunity may be more relevant than the other in particular contexts,

depending on whether greater harm might stem from a subject being incorrectly assigned to the

positive or to the negative class. Consider an algorithm that decides whether to grant refugee sta-

tus to asylum seekers (by assessing, for example, the legitimacy of their claim and the risk they

face if denied entry to Canada). Guaranteeing that such an algorithm exhibits equal (and low)

false negative rates for different groups of applicants is crucial, as a claimant may be subjected to

violence and human rights abuses if their application is rejected. Alternatively, if being assigned

to the “positive class" by an algorithm carries more risk (e.g. a hypothetical algorithm that deter-

mines whether there exists enough evidence to arrest a suspect), equal false positive rates must be

prioritized.

In addition to predictive equality and equal opportunity, we introduce a third fairness metric,

fairness-calibration, which ensures that, regardless of the group to which a subject (or in the case
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of FR, a pair of images) belongs, the score output by the model corresponds to the subject’s true

probability of being in the positive class. Achieving fairness-calibration allows the users of an

algorithm (e.g. police officers, judges, immigration officials) to correctly interpret its scores.

In the case of FR, during testing we compare only pairs of images from the same demographic

groups (e.g. we test whether the model can accurately match two white faces, two Black faces,

etc.). Here, a “subject" corresponds to a pair of images, which is deemed to belong to the positive

class if both images depict the same individual.

Definition 2.2.7 (Fairness-calibration). A model will typically output not only a prediction of the

class to which a subject belongs but also a score S = s representing the model’s confidence in its

prediction. Fairness-calibration, also called well-calibration and fairness within groups, requires

that for any given score s, outputted by the model, subjects in both groups with this score have

probability s of truly belonging to the positive class.

For any s ∈ [0, 1]:

P (Y = 1|S = s,G = a) = P (Y = 1|S = s,G = b) = s (2.11)

In other words, the scores outputted by the model should match, regardless of group membership,

the true probability of belonging to the positive class.

2.2.4 Incompatible definitions

The case of COMPAS

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is a decision

support tool developed by Northpointe (now called Equivant) and used by US courts across mul-

tiple states, including New York and California. The tool predicts a defendant’s probability of

re-offending. In 2016, ProPublica [3] published a scathing analysis of COMPAS, highlighting a

major discrepancy between the tool’s false positive rates for Black and white defendants: 44.9%
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and 23.5%, respectively. An inverse discrepancy was found for the tool’s false negative rates: 28%

for Black defendants and 47.7% for white defendants. In other words, the model was 200% more

likely to misclassify non-recidivist Blacks than non-recidivist whites but was 41% less likely to

misclassify recidivist Blacks than recidivist whites.

Northpointe published a rebuttal, arguing that ProPublica was incorrect in their assertion that

COMPAS was racially biased, as its predictions were fairly-calibrated between groups. The en-

suing controversy prompted multiple researchers to explore the relationship between fairness-

calibration and other fairness definitions.

Calibration vs Equalized Odds

Chouldechova [12] showed that fairness-calibration and equalized odds2 (i.e. equal false positive

and negative rates between groups) cannot simultaneously hold except under narrow conditions.

Kleinberg, Mullainathan, and Raghavan [41] proved a generalized version of that result, namely

that the following three conditions: fairness-calibration, balance for the positive class, and balance

for the negative class (see Appendix A.2) can only hold if both groups have equal base rates (i.e.

the same probability of belonging to the positive class) or in cases of perfect prediction, where the

model assigns every subject to the correct class.

We recreate the proof outlined in [12], filling in the gaps and modifying the statement so that it

applies to situations with more than two groups. We also stress that the following theorem can be

interpreted as a positive and helpful result, allowing ML practitioners to select two of three possible

fairness definitions to satisfy: fairness-calibration, equal false positive rates (predictive equality),

and equal false negative rates (equal opportunity). The choice of definition will depend on the

specific application or problem each practitioner is aiming to tackle. For example, [12] argues for

the importance of prioritizing equal false positive and negative rates over fairness-calibration in the

case of recidivism algorithms in order to reduce the risk of disparate impact to minority groups.

2Note that the notion of equalized odds does not refer to the standard statistical definition of odds (i.e. the proba-
bility that an event will occur divided by the probability that the event will not occur).
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Theorem 2.2.1. Let s(x) be the score assigned for each subject x by a machine learning model.

Let G = {g1...gK} be a finite set of mutually exclusive groups such that all x ∈ gi for some

i ∈ {1...K}. Consider the following three fairness definitions: A) fairness-calibration, B) equal

false positive rates between groups, and C) equal false negative rates between groups. If A, B,

and C are all satisfied, then either perfect prediction holds, or all groups have equal probability of

belonging to the positive class, which, due to a wide range of systemic factors affecting education,

policing, and other domains, rarely occurs in real life. Otherwise, s(x) may satisfy at most two of

the three fairness definitions.

Proof. Suppose A, B, and C are satisfied. Let d be a function that assigns subjects to the positive

class if their outputted score is higher than some arbitrary threshold α ∈ [0, 1]. That is, let

d(x) =


1, if s(x) > α

0, if s(x) ≤ α

We first show that each group must have the same positive predictive value (PPV). We then use this

fact to prove that satisfying A, B, and C implies that either 1) the probability of truly belonging to

the positive class is the same for all groups, or 2) the model achieves perfect prediction (TPR = 1

and FPR = 0).

Recall that

PPV =
TP

TP + FP
(2.12)

which is equivalent to P (Y = 1|d(x) = 1).

Note that since A is satisfied, by definition

P (Y = 1|S = s(x), G = g1) = P (Y = 1|S = s(x), G = g2) ∀g1, g2 ∈ G (2.13)
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Since this holds ∀s(x) > α, it follows that

P (Y = 1|d(x) = 1, G = g1) = P (Y = 1|d(x) = 1, G = g2) ∀g1, g2 ∈ G (2.14)

Thus, the model’s PPV is the same for all groups.

Next, let pg = P (Y = 1|G = g) be the probability that subjects in group g truly belong to the

positive class.

We can then see that for any g ∈ G:

FPR =
FP

TN + FP

=

(
TP + FN

TN + FP

)(
FP

TP

)(
TP

TP + FN

)
=

(
TP+FN

TP+FN+TN+FP

1− TP+FN
TP+FN+TN+FP

)(
1− TP

TP+FP
TP

TP+FP

)(
1− FN

TP + FN

)
=

(
pg

1− pg

)(
1− PPV
PPV

)
(1− FNR)

(2.15)

Similarly, we can see that for any g ∈ G:

FNR =
FN

TP + FN

=

(
TN + FP

TP + FN

)(
FN

TN

)(
TN

TN + FP

)
=

(
1− pg
pg

)(
1−NPV
NPV

)
(1− FPR)

(2.16)

where NPV = TN
TN+FN

is the negative predictive value.

It follows that since all three definitions are satisfied, at least one of the following conditions must

hold: either 1) pgi = pgj ∀gi, gj ∈ G, meaning that all groups have an equality probability of

belonging to the positive class; or 2) FPR = 0 and FNR = 0, in which case perfect prediction is

achieved.
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Chapter 3

Conditions for lifting a facial recognition

moratorium

The contents of this chapter are a substantial expansion of two policy articles I co-produced under

the supervision of Taylor Owen (Max Bell School of Public Policy) and Derek Ruths (School of

Computer Science) [66, 67]. I played a leading role in researching and writing these articles.

3.1 Introducing a federal moratorium on facial recognition

There are currently no enforceable privacy regulations governing the use of facial recognition

technology in Canada, nor the collection or retention of FR data [94]. Moreover, uses of FR by

police departments and other public institutions are not subject to any enforceable independent

oversight [93]. Neither of Canada’s primary privacy laws—the Privacy Act, which dictates how

the federal government can collect and use personal information, and PIPEDA, its private sector

counterpart—mention FR or other biometric data. Despite a joint investigation by four Canadian

privacy commissioners deeming Clearview AI’s data collection practices illegal, the company has
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refused to comply with the privacy commissioners’ request that they cease collecting Canadians’

data and delete all previously collected data [94].

An immediate solution to this lack of regulation would be to impose a moratorium on the use

of facial recognition technology and related data collection practices by all federal agencies, in-

cluding the RCMP. The federal government could also provide incentives for cities and provinces,

especially Quebec, Ontario, and Newfoundland and Labrador, which maintain their own provincial

police forces, to enact similar moratoriums.

Moratoriums and outright FR bans have been implemented in many American cities, including

San Francisco, Oakland, Portland, Minneapolis, New Orleans, Pittsburgh, and Boston [77]. If

instituted in Canada, such a policy would give the federal and provincial governments time to

update their privacy laws. It would likewise give researchers and developers time to address many

of the problematic issues with FR, such as its propensity towards bias. While such a moratorium

would be admittedly limited in scope, covering only public-sector uses of the technology, its effects

could still be substantial, as it would legally guarantee the elimination of harm resulting from

police use. Research and consultations undertaken during the moratorium could also be applied to

the private sector.

In the following chapter, we explore numerous conditions, some technical and some policy-related,

for lifting a federal moratorium on FR technology. In other words, we ask: what conditions must

be met before the use of FR by public agencies can be considered safe and legitimate?

3.2 Accuracy and bias conditions

A basic condition for the safe use of FR technology by public institutions is that FR models output

accurate results and display no bias against protected groups, such as racial minorities or women.

An auditing system could be established whereby developers wishing to provide FR technology

to law enforcement or other public agencies would need to first demonstrate that their model is
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sufficiently accurate and bias-free. However, as we will argue, defining precisely what is meant

by “bias" and “fairness" in a technical, legally binding, and universally applicable sense, is both

infeasible and ill-advised.

3.2.1 How have researchers defined bias?

We begin with an overview of the many definitions and methodologies researchers have used to

detect bias in facial recognition systems. As shown in Chapter 2, researchers have proposed numer-

ous, sometimes contradictory, definitions of fairness. The field of facial recognition has utilized

some of these definitions but has also introduced other, more complex methods by which to mea-

sure bias.

NIST [29] used false positive and negative rates at a particular system-specific threshold to assess

bias. They noted that many FR systems have fixed decision thresholds for all users of the tech-

nology.1 Note that the choice of threshold is directly tied to a system’s false positive and negative

rates. Increasing the threshold at which a pair’s similarity score is flagged as a match decreases the

false positive rate (FPR), as the number of false positives decreases, while the number of pairs that

belong to the negative class remains unchanged. Similarly, increasing the threshold increases the

false negative rate (FNR). The freedom to modify an FR’s system threshold to best fit a particular

use context (e.g. in policing, where false positive errors may endanger marginalized communities)

is therefore highly desirable.

Krishnapriya et al. [43] likewise measured false positive and negative rates at a fixed threshold.

They also considered receiver operator characteristic (ROC) curves, which provide a visualization

of the trade-off between false positive and false negative rates. More precisely, ROC curves plot

the true positive rate (1 − FNR) as a function of the false positive rate. The authors explained

that comparing the ROC curves of two separate groups (in their case, Black and white subjects) is

not an appropriate method by which to detect FR bias, since the groups may have the same FPRs

only at very different thresholds. The ROC curves for two of the four FR models the researchers
1Here, users refer to those who use the technology (e.g. police departments), not to those subjected to it.
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tested showed higher accuracy for Black subjects. However, this result masked the fact that at a

fixed threshold, false positive and negative rates differed consistently between the groups across all

four models. The researchers examined the distributions of both groups’ similarity scores, finding

that for Black subjects, the distribution curves of imposter and genuine pairs were shifted toward

higher scores relative to the distribution curves of their white counterparts. This divergence was

responsible for the discrepancies in the groups’ FPRs and FNRs at set thresholds.

Cavazos et al. [11] also utilized both false positive rates at a fixed threshold and ROC curves

to measure bias, concluding like Krishnapriya et al. [43] that the latter has the potential to be a

misleading gauge of racial bias. Testing four FR models’ performance on white and East Asian

faces, Cavozos et al. found that the area under ROC curves (known as the AUROC) differed

little between demographic groups. However, as in Krishnapriya et al.’s tests, a lower threshold

was needed for the white subjects to achieve a given FPR. Moreover, when considering only the

extreme left end of the ROC plots—that is, considering the true positive rates associated with very

small false positive rates—smaller true positive rates were observed for the East Asian subjects.

Since many applications, including policing, frequently demand very small FPRs, this discrepancy

has the potential to be significant.

Cavozos et al. also discussed best practices for assessing the overall accuracy of a model using

ROC curves. Instead of utilizing all possible different-identity pairs to build an ROC curve, the

authors recommend using only pairs from the same demographic groups (same race, gender, etc.),

a practice known as ‘yoking’. Since demographically different pairs are more likely to receive low

similarity scores, their inclusion skews the different-identity distribution leftward, thus artificially

boosting the model’s TPR relative to its FPR. This, by extension, inflates the model’s overall

estimated test accuracy.

Cook et al. [19] employed a rather different approach to measuring bias in FR systems, organiz-

ing a rally in which 11 commercial FR systems could be tested in real-time. They recruited 363

volunteers, who were instructed to line up to have their photo taken by each system. Immediately
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after capturing a subject’s image, the FR systems attempted to match it against two datasets con-

taining the subjects’ faces, one ‘same-day’ dataset and one ‘historic’ dataset, composed of photos

dating back four years. For each subject, system-specific similarity scores were calculated be-

tween the captured image and potentially matching images flagged by the system. The researchers

then estimated overall average demographic effects on system performance by performing linear

regression on the average same-day and historic similarity scores for all systems, as well as the

average transaction times for each subject across systems. Eleven covariates were considered, in-

cluding gender, age, race (self-identified), and skin reflectance, which correlates with race. Skin

reflectance was found to be a stronger predictor of system performance than self-identified race,

with lower reflectance (darker skin) associated with lower system accuracy. Lower reflectance was

also associated with longer transaction times.

Phillips et al. [71] studied a possible “other race effect" in East Asian and Western-made FR sys-

tems. They theorized that, like humans, who are better able to recognize faces belonging to their

own ethnic group—an effect that becomes apparent starting as young as three months old—FR

algorithms may be biased in favour of the primary ethnic group of their country of origin. The

researchers compared a fusion of five algorithms developed in East Asian countries to a fusion of

eight Western algorithms, finding that for East Asian faces, the former fusion algorithm had a supe-

rior ROC curve to its Western counterpart. The reverse held true for white faces. They also pitted

the fusion algorithms’ performance against the performance of real humans. Unlike the humans,

who proved to be slightly more adept at recognizing members of their own group, both algorithm

fusions had higher AUROCs for white faces than for East Asian faces; however, this advantage for

white faces was significantly more pronounced for the Western-made fusion algorithm.

Methods to reduce bias also utilize different definitions of fairness. Terhörst et al.’s [95] method is

based on the concept of fairness through awareness, and the researchers reported bias by computing

the standard deviation of the different demographic groups’ FNRs. Robinson et al. [80] examined

detection error trade-off curves (i.e. plots showing FNR vs FPR); their method ensures equal

FPRs across groups. Dhar et al. [22] defined bias as the difference between two groups’ TPR at
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a given FPR, while Gong et al. [28] defined it as the standard deviation between different groups’

AUROCs. Wang et al. [102] considered ROC curves and measured each group’s TPRs.

Table 1 summarizes the bias definitions and measurement methods used in various papers.

Authors Bias measurement approach

Grother et al. (NIST) [29] FPRs and FNRs at fixed thresholds

Krishnapriya et al. [43] FPRs and FNRs at fixed thresholds, ROC curves

Cavazos et al. [11] FPRs at fixed thresholds, ROC curves

Cook et al. [19] Linear regression on average similarity scores

and average transaction times

Terhörst et al. [95] Standard deviation of groups’ FNRs

Robinson et al. [80] Error trade-off curves

Dhar et al. [22] TPRs at fixed FPR

Gong et al. [28] Standard deviation of groups’ AUROCs

Wang et al. [101] TPRs ROC curves

Phillips et al. [71] ROC curves and AUROCs

3.2.2 How should bias and accuracy be measured?

As evidenced by the myriad of definitions employed by different researchers, no universal fairness

metric has been established. However, most of the definitions that have been prioritized make use

of false positive or false negative rates. One could make the case for the relevance of additional

fairness definitions not related to FPRs and FNRs, such as fairness-calibration, that have as of yet

been overlooked in the FR literature (for a discussion on the applicability of fairness-calibration to

FR, see Chapter 4).

While this lack of a clear, easily testable fairness definition makes designing a simple algorithmic

auditing system infeasible, it offers an opportunity for policy-makers to go beyond mathematical

one-size-fits-all notions of fairness and truly consider what makes a facial recognition system fair.

Fairness and performance are largely context-dependent. Consider three applications of FR: an
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office security system using FR to screen arriving workers, a police investigation into a convenience

store robbery, where FR technology is used to analyze security camera footage, and a terrorist

attack, where live FR is used to catch suspects. In each situation, false positive and negative errors

pose different levels of risk to both individuals and the public at large. In the office security case,

a false positive error is unlikely to result in great harm to either the intruder or the office workers,

while repeated false negative errors, particularly if they affect certain groups of workers at higher

rates, could impede workers’ perceived job performance and timeliness, thereby impacting their

wages and advancement opportunities. Conversely, in the second context, false positive errors

engender a substantial amount of risk in comparison to false negative errors. Due to ongoing

disparities in police treatment, this risk is heightened if the falsely detained individual is Black or

Indigenous, groups disproportionately likely to be mistakenly identified by FR systems. Finally,

both false positive and false negative errors pose the highest amount of risk in the third scenario.

Because of the high threat level to civilians, individuals incorrectly identified as suspected terrorists

are at a considerable risk of police brutality or death. On the other hand, false negative errors could

lead to civilian casualties if the perpetrators are not successfully identified.

As the above three scenarios demonstrate, a case-based approach to performance evaluation and

bias detection is required. Such an approach necessitates not only a consideration of the most

appropriate fairness metric to optimize, but also of which groups deserve particular attention and

protection (e.g. Black and Indigenous people), given the algorithm’s use case (e.g. law enforce-

ment investigation) and the context in which it will be deployed (e.g. in a police department that

may already have a history of racial bias). To help address the first of these considerations, we

present in Chapter 4 a simple post-hoc method that would allow FR users to choose which fairness

definitions to emphasize.

Any FR auditing system adopted by the Canadian government should likewise take use cases,

the environment of deployment, and the most at-risk groups into account. This would involve

auditing both the FR developers—analyzing, for instance, the bias mitigation strategies they’ve

employed—and the agencies that utilize their systems. In particular, auditors should investigate
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how government agencies use FR in practice and the potential for that use to lead to discrimina-

tion. If one police department uses a lower match detection threshold than its neighbours, but the

departments all interpret their model’s outputs in the same way (i.e. if one department believes that

90% is a sufficiently high probability threshold, while the others only consider potential matches

with similarity scores above 97%), then the first department is more likely to make false arrests.

Ho et al. [36] suggest using A/B testing to appraise how FR users (e.g. police officers) interpret

confidence scores outputted by a model. They also advocate for A/B testing in comparing the de-

cisions users make with or without the help of the FR system and in judging the users’ possible

over (or under) reliance on the technology.

The EU’s proposed AI Regulation is an example of a regulatory system that prioritizes the process

by which an algorithm is developed and deployed over one specific performance or bias threshold

that the end product must meet [45]. Indeed, Watcher et al. [100] argued that legal notions of

fairness, at least in the EU, are too context-dependent and subject to judicial interpretation to ever

be fully “automated".

Ultimately, when shaping policy or designing auditing systems to ensure that the FR systems used

by government agencies are fair and unbiased, it is imperative that we understand that bias stem-

ming from the FR model itself can be greatly compounded by the socio-technical environment in

which the model is used.

3.2.3 What testing dataset should be used?

As described above, a national moratorium should only be lifted once a robust auditing mechanism

is established to verify FR systems’ propensity toward bias. This auditing process would require

analyzing algorithms’ performances on testing datasets. Crucially, these testing datasets should

not be publicly available, or else developers could train their models on them.

The choice of testing dataset is paramount: while the testing dataset cannot impact an FR algo-

rithm’s underlying accuracy, it can certainly alter the algorithm’s perceived accuracy. For example,
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testing a racially biased algorithm on a dataset that is largely racially homogenous would yield a

better overall accuracy than testing the same algorithm on a balanced dataset, thereby obscuring

the model’s true performance. Many commonly used testing datasets skew white. 80% of IJB-A’s

images depict light-skinned individuals; for Audience, that percentage reaches 86% [8].

Cavazos et al. [11] discussed the possible impacts of testing FR performance on datasets that do

not adequately represent the population on which the algorithm will operate. To rectify this prob-

lem, many researchers have introduced demographically balanced datasets. The methods they

employed to produce these datasets could help inform federal auditors when creating their own

datasets.

Robinson et al. [80] constructed Balanced Faces in the Wild (BFW), a racially and gender balanced

dataset containing 20,000 images of 800 individuals. BFW was created by sampling subjects from

VGGFace2, a 3.3 million image dataset. The researchers used a pre-trained ethnicity model to

scan VGGFace2’s list of names, then later used gender and ethnicity classifiers on the selected

names’ corresponding images to narrow down their pool of potential subjects. Out of this pool,

they manually selected 100 individuals from each of their eight demographic groups—Asian fe-

males, Asian males, Black females, Black males, Indian females, Indian males, white females, and

white males—to add to BFW. Once their final list of subjects was solidified, they used MTCNN to

identify all associated facial images. Using the FR model Sphereface, they generated face embed-

dings and built a matrix of similarity scores for each individual’s face images. Faces that proved too

dissimilar to their subject’s other images—that is, faces with low median similarity scores—were

removed from the dataset2. The remaining images were visually verified.

Wang et al. [102] introduced Racial Faces in-the-Wild (RFW), a testing dataset which the authors

used to measure the racial bias of eight FR algorithms. RFW is comprised of 12,000 identities

and 40,000 images, equally split between four racial groups: Asians, Indians, Africans, and Cau-

2This was done to purge possible false positive pairs from the dataset. We note, however, that since many individ-
uals do drastically change their appearance over time, such a removal practice risks making the dataset less represen-
tative of the real images that FR systems may encounter and less useful for testing an FR system’s performance on
“difficult" pairs.
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casians. While subjects belonging to the former two groups could be directly collected from the

MS-Celeb-1M dataset using its “nationality" attribute, identifying subjects belonging to the latter

two groups required applying an ethnicity classifier, Face++, to the dataset and manually verify-

ing selected images that were assigned low confidence scores. Individuals were also excluded if

some of their associated images were predicted to be of different races or if their nearest neighbour

in two other datasets, CASIA-Webface and VGGFace2, as determined using an Arcface FR loss,

shared their identity. The researchers manually cleaned all 40,000 images; they also verified that

the pose, age, and gender makeups of each racial group were similar.

Alvi et al. [2] built Labeled Ancestral Origin Faces in the Wild (LAOFIW), which contains 14,000

images of individuals of various ancestral origins, namely sub-Saharan Africa, the Indian Sub-

continent, Europe, and East Asia. These images were selected using the Bing Image Search API.

The dataset contains a diversity of poses, illumination levels, and facial expressions, and is split

approximately evenly between male and female subjects.

All three of the above datasets are demographically balanced between four distinct racial groups.

However, as Cavazos et al. [11] pointed out, race cannot be neatly divided into discrete categories.

In testing an FR algorithm only on photos of white, Black, Indian, and East Asian individuals,

bias against mixed-race subjects and against subjects belonging to other racial groups, such as

Indigenous North Americans, cannot be evaluated. This is a grave oversight, as Indigenous people

already face disproportionate police scrutiny in Canada, a trend that could be amplified by biased

FR systems.

Bias could instead be proposed to be measured as a function of skin reflectance and not race, as

Cook et al. [19] found the former to be more strongly related to FR performance. Unfortunately,

this solution would likely be inadequate, as different racial groups, such as whites and East Asians,

are apt to be lumped together, thus obscuring potential bias against certain groups.

Additionally, one key component of the “context" consideration for testing both bias and system

accuracy is the specific real-world conditions in which a model is deployed. For example, a model
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may be trained on high-quality images but later be required to process low-quality CCTV footage.

As we will see in a later section, this may influence the degree of bias manifested by the system,

in addition to its overall accuracy level. Testing only on high-quality images may misrepresent the

model’s true accuracy and propensity toward bias. However, to complicate matters, there may be

ethical dimensions related to consent and privacy of testing on “realistic" data like CCTV images

(see section 3.3.2 for a further discussion of the ethics of data collection for testing purposes).

3.2.4 Which demographic groups should be protected?

While we have highlighted the need to prioritize at-risk groups when measuring bias in different

use cases, it also crucial to extend our discussion to include groups that are often not considered

when analyzing FR technology. So far, our discussion has focused on racial bias and to a lesser

extent bias related to age and sex (male vs female). Indeed, the vast majority of research and

legislative efforts have centred on these demographic factors. The Canadian Charter of Rights

and Freedoms precludes discrimination on the basis of race, age, and sex, but also on the basis of

other attributes, including physical and mental disability [56]. Little has been done to investigate

the performance of FR on subjects with craniofacial differences such as cleft lip, Pierre Robin

sequence, or Treacher Collins syndrome [9]. Facial recognition tools have been used to help detect

genetic conditions like Down Syndrome [74] (a task which itself, in a 2017 study, yielded far

better results for white Belgian faces than Black Congolese ones [46]), but individuals with these

conditions have not been considered when testing standard FR systems for bias. People with facial

disfigurements form a sizeable group: in 2017, they accounted for nearly 1% of the total population

of the UK [92].

For a moratium to be lifted, it is vital that auditors be able to assess FR bias against Canadians

with disabilities. This will require identifying the most effective ways to detect such bias. As fa-

cial characteristics vary broadly between conditions and syndromes, and even between individuals

with the same condition (particularly between individuals of different races), evaluating for bias

is not as simple as inserting a small number of images into a testing set. Since this area remains
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largely neglected, significant research is required to study and, if necessary, combat, disability and

disfigurement-related FR bias. Particular attention should be paid to individuals who have under-

gone significant facial surgery, as current FR systems are unlikely to be able to match new and

old photos of these individuals. Before removing FR restrictions, the federal government should

implement a manual oversight and/or appeals process to ensure that such individuals are not dis-

criminated against, for instance by FR systems designed to detect fraud in passport applications.

Transgender, non-binary, and other gender non-conforming individuals constitute another group

that has been excluded from studies on FR bias. Keyes [39] found that nearly all papers on au-

tomatic gender recognition papers define gender as binary, and a large majority define it as im-

mutable. The same appears to be true for facial recognition papers. Many popular commercial

gender recognition algorithms, which operate very similarly to facial recognition algorithms, have

been shown to misclassify transgender individuals at high rates and to be totally unable to classify

non-binary individuals [88].

In an attempt to mitigate this problem, Wu et al. [105] included training images of non-binary

people, as well as a non-binary prediction option, in their gender recognition algorithm. However,

Keyes [40] criticized Wu et al.’s paper for its choice of dataset (Wikipedia photos of non-binary

celebrities), arguing it did not accurately represent non-binary people as a group. They further

objected to the paper’s use of ‘non-binary’ as a discrete third gender category, explaining that the

physical appearance and outward gender expression of non-binary people differ greatly between

individuals and cannot be essentialized as simply “androgynous". While the aforementioned works

did not directly examine potential bias against trans and non-binary people in facial recognition

applications, they did highlight the complexity of both addressing such bias and of building an

appropriate testing set to measure it.

There have seemingly been no studies comparing the performance of FR systems on trans men and

women and non-binary people to their performance on cisgender men and women. As discrimina-
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tion based on gender identity or gender expression is prohibited in Canada, it would be misguided

to deem any FR system “safe" and “unbiased" before any such studies are undertaken.

Like with individuals who have had substantial surgery because of a facial disfigurement, there is

also a risk that certain FR applications (e.g. fraud detection) may lead to discrimination against

trans people. While limited efforts have been made to improve FR algorithms’ ability to match

photos of the same transgender individual at different points in time [44], it is nevertheless imper-

ative that government agencies wishing to employ such uses of FR guarantee effective recourse

mechanisms to handle errors.

Most crucial of all is the question of intersectionality: how do we measure bias against individuals

belonging to more than one at-risk group? Kearns et al. [38] explored the “fairness gerrymandering

effect", whereby a model is unbiased on the basis of individual attributes (e.g. race and gender)

but exhibits bias when tested on intersectional subgroups (e.g. Black women, white women, Black

men, and white men). They introduced an algorithm to find the classifier that is maximally fair with

respect to a set of intersectional subgroups; they defined fairness as requiring low false positive (or

alternatively, false negative) rates across all groups. We note, however, that such a solution requires

discrete demographic groups, which as previously established, do not exist.

Detecting bias along intersecting demographic axes is key to ensuring that models are indeed bias-

free. As previously stated, it is likewise key to recognize that in certain use cases some groups are

at a higher risk of harm than others: bias against a white female has different implications in the

context of law enforcement than bias against a Black male. A context-based auditing system must

therefore possess the ability to analyze the deployment context in order identify at-risk groups, as

well as the ability to detect bias, both model-based and environmental (e.g. differences in how FR

users interpret the model’s output when different groups are concerned).
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3.2.5 What causes bias?

As stated in [67], “for a moratorium to be lifted, it is not enough to possess the means by which to

test bias—FR systems must be unbiased enough to pass said test". Thus, eliminating FR bias is an

implicit condition for lifting a federal moratorium on the technology. Unearthing the root causes

of that bias is a key starting point for eradicating it.

According to Cavazos et al. [11], one phenomenon explains “both everything and nothing" about

demographic bias: the discrepancy between different groups’ similarity score distributions. In

Figure 3.1, we show the distribution of three FR models’ cosine similarity scores on four racial

groups.

Figure 3.1: Distribution of cosine similarity scores by ethnicity on the Balanced Faces in the Wild

dataset. Figure source: [83].

Cavazos et al.’s explanation is helpful only if the cause (or causes) of these diverging distribu-

tions can be unearthed. Researchers have presented several potential culprits, but measuring the

influence of these factors on a large and complex model’s level of bias is highly difficult.

Image quality

Krishnapriya et al. [43] examined the MORPH dataset, a large collection of mugshots, and ob-

served that images of Black subjects tended to be of lower quality than those of white subjects:
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only 48% of Black images met the International Civil Aviation Organization’s (ICAO) standards

for travel documents compared to 57% of white images. They noted that the two groups’ images

especially differed on the basis of “brightness" and speculated that the quality gap could be closed

by adopting skin tone-appropriate lighting. However, in analyzing only the subset of the groups’

photos that were ICAO-compliant, they found a slightly smaller gap between the groups’ ROC

curves compared the full dataset case, but little difference in their FNRs at a low FPR.

Cavazos et al. [11] attempted to measure racial bias as a function of image difficulty. They com-

pared the ROC curves of four FR algorithms on the Good, Bad, and Ugly (GBU) dataset, which

divides its face pairs into three subsets based on how easy or how difficult it is for an FR algorithm

to accurately match them. This partition is made by computing similarity scores for each pair using

top-ranked FR systems (as judged by NIST’s 2006 FR vendor test). They found that for “good"

images, all four models achieved close to perfect accuracy on both white and East Asian faces,

though for two of the four, a small bias against East Asian faces was detected at very low FPR

rates. For the “ugly" set, three of the four models had starkly superior ROC curves for the white

images.

NIST’s Grother et al. [29], in their updated FR Vendor Test, remarked that increased image quality

leads to smaller discrepancies between various groups’ false negative rates. However, their results

showed that inflated false positive rates for certain groups were still apparent even for high-quality

photos. Thus, it is unlikely that the problem of demographic bias in facial recognition can be solved

solely by ensuring that equally high-quality photos are taken for all demographics. Moreover, even

if such a solution were sufficient, it would be difficult to maintain in practice, particularly in the

context of police surveillance and border crossing.

Balanced training set

Cavazos et al. [11] discussed the possible impact of a demographically unbalanced training set on

bias but concluded that assessing such an impact is troublesome, as many additional factors are at

play, such as image quality.
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Phillips et al. [71] considered an “other-race effect" in Western and East Asian FR systems. Such

an effect, they speculated, could be attributed, at least in part, to differences in the racial makeup

of the algorithms’ training sets. Published in 2011, the numerical results of this work are out of

date, but its central question of whether the country of origin of an algorithm affects its propensity

toward bias remains highly relevant. In their work for NIST, Grother et al. [29] likewise noted that

while East Asian faces had high false positive rates across most FR algorithms, this was not the

case for Chinese-made systems; indeed, for these systems, East Asian faces had notably low FPRs.

Krishnapriya et al. [43] noted that ResNet’s superior ROC curve for Black subjects compared to

white subjects was achieved despite the fact that the model’s training set skewed heavily white.

They claimed that this implied that equal accuracy between groups could be attained without a

demographically balanced training set. However, the authors remarked elsewhere in the paper that

ROC curves are a poor measure of bias. Moreover, even if true, this claim would not preclude a

balanced training set from positively impacting a model’s level of fairness.

3.2.6 How can bias be reduced?

Drawing on techniques from various other fields of machine learning, researchers have devised

a number of strategies to reduce bias in facial recognition algorithms. These strategies include

employing adversarial training [2, 22, 28], reinforcement learning [101], data augmentation [42],

domain adaptation [102], group-specific thresholds [80, 95], and post-hoc neural networks [96].

All of these methods, with the notable exception of group-specific thresholds and post-hoc neu-

ral networks, require retraining the FR model, which may be computationally expensive or even

infeasible in practice.

Adversarial training

Dhar et al. [22] introduced an ‘Adversarial Gender De-biasing algorithm’ (AGENDA), with the

goal of curbing the gender predictability of face embeddings. This strategy hinges on the assump-

tion that biased demographic information gets transferred from the dataset to the face embeddings
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while training for identity classification and that removing this demographic information would

reduce gender bias in facial recognition tasks. AGENDA aims to transform face embeddings so

that they cannot be used to predict gender. The algorithm consists of four principal components.

The first is a pre-trained network P , which outputs a face embedding fin = P (I) given an image

I . The other components are a generator model M , which takes in fin and generates a lower di-

mensional embedding fout; an identity classifier C, which takes in fin and generates a prediction

vector for identity classification; and an ensemble of K gender prediction models E1, E2...EK .

The goal is to train M so that it generates face embeddings that C is capable of identifying but that

contain limited gender information and therefore fool the gender discriminator E. An E that is

totally gender-agnostic (i.e. one that produce posterior probabilities of 0.5 for both groups of face

embeddings - male and female) implies that the face embeddings contain no gendered information

whatsoever. For additional details, see Appendix B.1.

Dhar et al. defined gender bias as the difference (in absolute value) between the two groups’ TPRs

at a fixed FPR. They found that applying AGENDA to face embeddings reduced gender bias for

two test datasets. This reduction came at the expense of slightly worse to significantly worse TPRs

at different fixed FPRs.

Gong et al. [28] also introduced an adversarial network, which they dubbed DebFace. The net-

work contains an identity classifier, DebFace-ID, and three demographic classifiers, DebFace-G,

DebFace-A, and DebFace-R, which are trained to predict gender, age, and race. They argued that

a single-demographic adversarial network is inadequate, as a gender prediction model can, for ex-

ample, still display racial bias. They instead proposed a novel multi-task framework consisting

of four classifiers, jointly trained via adversarial learning to be able to correctly predict their own

attribute (gender, age, race, or identity) while being agnostic toward the other three.

Gong et al. tested DebFace on two genders, six age groups, and four races (a total of 48 demo-

graphic groups). They defined bias as the standard deviation of the groups’ AUROCs. Compared

to face embeddings generated by the shared feature encoder of DebFace (i.e. the embeddings gen-
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erated prior to the adversarial training stage), the DebFace-ID embeddings were found to contain

less gender-, age-, and race-based bias when used to perform facial recognition. They likewise

found that DebFace was less biased when performing gender, age, and race prediction than the

pre-adversarial model (which the researchers called BaseFace). However, BaseFace slightly out-

performed DebFace-ID at facial recognition on all four test datasets, since removing demographic

information limits the classifier’s ability to identify faces.

To address this decrease in accuracy, Gong et al. combined the four DebFace embeddings into an

aggregate embedding, DemoID. DemoID accrued additional bias but also additional accuracy in

comparison to DebFace-ID, allowing it to outperform BaseFace on the test datasets. In other words,

DemoID struck a trade-off between bias and accuracy: it proved more biased than DebFace-ID but

less biased than BaseFace and proved more accurate than both models.

The authors noted that their solution failed to fully exterminate bias: DebFace still performed

differently on different demographic groups. They attributed this to disparities in image quality or

capture conditions between the groups.

Alvi et al. [2] did not utilize the term “adversarial learning" in their work, but the method they

introduced bears a strong resemblance to those described above. Their aim was to create a network

capable of learning a single classification task (e.g. age recognition) but that is blind to other

information (e.g. pose, ethnicity, and gender). Their algorithm, which they termed a joint learning

and unlearning algorithm, involves the use of a standard convolutional neural network3 to output

a face embedding. The face embedding is passed to a primary branch, consisting of a primary

classification loss, and to multiple secondary branches. Each secondary branch is associated with

a different variable (e.g. gender) and contains both a classification loss and a confusion loss. For

the case of gender information, the former loss learns to predict the associated gender of the face

embedding, while the latter modifies the face embedding so that it becomes invariant to shifts in

3For more information on convolutional neural networks, see [82].
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gender. Training occurs in two alternating stages: the secondary classification losses are trained

together, followed by the primary classification loss and the confusion losses.

While the authors didn’t utilize their method to debias face recognition, limiting their scope to age,

ethnicity, gender, and pose classification, their work could easily be applied to such a task.

Alvi et al. found that their joint learning and unlearning algorithm could remove between 78%

(removing ethnicity information from a pose classifier) and 100% (removing ethnicity information

from an age classifier) of secondary information from a primary classifier. Here, the percentage of

unlearned information corresponds to the relative difference between the model’s baseline accuracy

and its debiased accuracy compared to random chance. The researchers also considered the impact

of their method on overall accuracy: while the age classifier’s accuracy decreased by 5% post

debiasing, no change in accuracy was noted for the gender and pose classifiers, and the ethnicity

classifier’s accuracy actually improved by 1%.

Reinforcement learning

Wang and Deng [101] proposed a novel method, a reinforcement learning based race balance

network (RL-RBN)4. Standard FR models maximize their overall accuracy by applying margins

between different classes (e.g. dogs and cats in image recognition). In the case of FR, each class

consists of one individual subject. If a certain type of subject (e.g. white people) are highly

represented in the training set, the model will optimize for that group, to the detriment of other

groups, as that will help improve its overall performance. RL-RBN hinges on the idea of modifying

the margins between subjects in order to achieve a balanced accuracy across different racial groups.

The authors noted that the same process could be applied to mitigate age or gender-based bias. See

Appendix B.2 for a more detailed explanation of RL-RBN.

Wang and Deng tested their method by training their model, as well as three other state-of-the-art

models, on two custom-made datasets, BUPT-Globalface and BUPT-Balancedface, and evaluating

4For more information on reinforcement learning, see [53]
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their respective performances on the Racial Faces in-the-Wild dataset. They found that their model

obtained a more balanced performance, and in some cases higher accuracies for each of the four

racial groups, than other models.

Data augmentation

Kortylewski et al. [42] tackled bias caused by variations in face poses by inserting synthetic images

into the training set. While their method doesn’t directly address demographic bias, it could be

readily modified to instead consider race, gender, or age-based bias. The authors undertook two

major experiments: firstly, they used labelled synthetic data to measure an FR model’s overall

accuracy as a function of face pose. While there already exists many demographically labeled

datasets, an image generator like the one proposed by Kortylewski et al. could create images with

fine-grained annotations that specify, for instance, the precise age or skin tone of the synthetic

subject.

The authors’ second experiment involved training a model with a mix of genuine images and a

large number of synthetic images that greatly varied in face pose. The benefits of this approach

were twofold: when testing on genuine images, the synthetically trained model was better able

to generalize to new face poses, and it was found that the number of genuine images needed for

training could be slashed by 75% without significantly affecting the model’s overall accuracy. The

ability of such an approach to reduce demographic bias could and should be investigated.

Yin et al. [107] introduced a method by which to augment the feature space5 of subjects who only

have a few images in the training set. Their method, Feature Transfer Learning (FTL), generates

new images for these underrepresented samples by mimicking the feature distributions of regular

subjects. This requires assuming that the features of both regular and underrepresented subjects

are normally distributed and share the same intra-subject variance. Like Kortylewski et al.’s [42]

work, this method is not directly applicable to the problem of FR bias. However, a similar approach

5The high-dimensional space in which “features", i.e. pieces of information about the images, exist.
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could be envisioned to generate entirely new subjects and sets of associated images by replicating

the feature distributions of subjects in the same demographic groups.

Domain adaptation

Wang et al. [102] designed a deep information maximization adaptation network (IMAN) based

on unsupervised domain adaptation (UDA), a method that has been shown to decrease algorithmic

bias. They found that IMAN achieved higher true positive rates than other FR models on Indian,

Asian, and African subjects from the authors’ newly introduced Racial Faces in-the-Wild dataset

(see section 3.2.5). They likewise compared different models’ ROC curves, with IMAN coming

out on top. A full breakdown of their method can be found in Appendix B.3.

Group-specific thresholds

Having observed differences between various demographic groups’ FPRs when employing a single

threshold for all subjects, Robinson et al. [80] introduced group-specific thresholds. Using three

FR models, they tested their method on Labeled Faces in the Wild (LFW), a dataset in which

eight groups—images of Asian, Black, Indian, and white females and males—are labeled. The

group-specific thresholds, which ensured that each group had the same FPR, were determined

using detection error trade-off (DET) curves, graphical plots that map a group’s FNR as a function

of its FPR. Optimal thresholds were found to differ between FR models.

During testing, one image from each pair was designated the ‘query’ and the other the ‘test’. The

threshold associated with the query’s demographic group was adopted for the pair. The authors

measured the groups’ TPRs at different fixed FPRs, noting improvements across all groups relative

to the global threshold approach.

In practice, demographic labels are not always available. Efforts to label search databases may

themselves be prone to bias (either human or algorithmic) and may breach subjects’ privacy. More-

over, many attributes, such as race, resist categorical labelling. It is thus desirable to devise a
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method that assigns different thresholds to different individuals even when group labels are not

known.

Terhörst et al. [95] did just that, introducing a fair score normalization (FSN) method that splits the

dataset into clusters and assigns to each cluster a unique threshold. Their work was also motivated

by their assertion that many previous bias mitigation methods, such as adversarial networks, are

computationally expensive and difficult to integrate into existing FR systems. Moreover, they noted

that these methods typically curb the model’s overall accuracy.

Their fair score normalization method is based on the notion of individual fairness, or fairness

through awareness (see Appendix A.3.3), which requires that similar individuals be treated simi-

larly. It involves two phases: a training phase and an operation phase.

The training phase proceeds as follows: given a set of face images split into training and testing

sets, face embeddings are computed by an FR model. A k-means cluster algorithm is then trained

to divide the training set into k clusters. Using each cluster’s genuine and imposter scores, cluster-

specific thresholds are calculated to ensure a universal FPR of 10−3 (as recommended by Frontex,

a European border guard agency).

The operation phase involves computing a normalized similarity score ŝi,j for each pair of images

i and j in the testing set. For the images in a pair, their clusters and associated thresholds thri and

thrj are identified. These thresholds, along with a global threshold thrG and the pair’s original

similarity score sij as outputted by the model, are used to determine

ŝi,j = sij −
1

2
(∆thri + ∆thrj) (3.1)

where

∆thri = thri − thrG (3.2)
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Terhörst et al. tested their approach on three datasets using two FR models: FaceNet and VGGFace.

They fixed an FPR of 10−3 for all clusters and used FNR as their performance metric. For each

dataset, they considered up to three demographic attributes: age, gender, and ethnicity, depending

on which labels were available. They found that their method decreased FNRs for most demo-

graphic groups, with the exception of already exceptionally high-performing groups like white

or middle-aged subjects in the ColorFeret dataset, whose FNRs increased after their scores were

normalized. The researchers measured a system’s level of bias for a particular attribute (i.e. age

group) by calculating the standard deviation of the demographic groups’ FNRs. They found that

their method reduced total bias by 82.7%. Overall performance (as measured by the overall FNR)

increased by 82.9%.

Investigations into the optimal value of k for the k-means cluster algorithm revealed that both

small and large k values lead to reductions in performance. For small k values, this was due to

clusters of unequal sizes, while clusters containing too few images to produce reliable thresholds

were responsible for the poor performances associated with large k values. A value of k = 100

was found to be optimal.

Figure 3.2 shows a visualization of the Audience dataset’s FaceNet embeddings, where each point

corresponds to an individual.

Post-hoc neural network

Terhörst et al. [96] introduced a fair template comparison (FTC) method requiring no re-training of

an FR model. Given a model capable of generating face embeddings, instead of simply comparing

two embeddings’ cosine similarity scores, they passed the embeddings through a neural network

trained to output fair scores. See Appendix B.4 for details.
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Figure 3.2: Audience dataset’s FaceNet embeddings. Each point corresponds to an individual

and is plotted using a t-SNE algorithm, which maps high-dimensional embeddings to two dimen-

sions. Different colours correspond to different optimal thresholds. Clusters of similar individuals

requiring similar thresholds are readily apparent. Figure source: [95]

Terhörst et al. tested their method on the ColorFeret and Labelled Faces in the Wild datasets and

measured bias as the Mean Absolute Deviation of groups’ TPRs at a fixed global FPR. They found

that their method reduced bias by up to 52.67%.

Could the bias problem be solved simply by substantially improving the accuracy of FR

models?

Studies measuring the bias present in various FR systems have observed significant differences

between the best- and worst-performing systems. Cook et al. [19] found that systems with high

overall performances fared better on images with low reflectance (and by extension, dark skin)

than inferior systems did on all photos.

Similarly, while NIST’s Face Recognition Vendor Test detected bias across a majority of systems,

the highest-performing one-to-one verification systems showed little bias, with consistently low

FPRs and FNRs across demographic groups [29]. The best one-to-many identification systems

exhibited even less bias. In some systems, such as NEC-3 and Idemia, the disparities between

groups’ FPRs were deemed “undetectable", while many of the most accurate systems actually had
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lower FNRs for white women than for white men (Black men had lower FNRs than white men

across most systems) [29]. Moreover, even when disparities between groups were present, some

systems performed so well on even the most “difficult" groups that these disparities were virtually

meaningless. For example, an algorithm developed by the American firm Calvi exhibited an FPR

that was 13 times higher for Indigenous women than for white men; however, their system was so

effective that Indigenous women were still only false identified at a rate of around 0.01% [48].

This suggests that the problem of bias may naturally disappear as the overall accuracy of FR

algorithms continues to increase. This would of course be a welcome development, but there

are numerous reasons for researchers and policy-makers to continue to engage with the issue of

bias, certainly for the foreseeable future if not for longer. Firstly, as demonstrated by NIST, a

large number of commercially available FR system are in fact biased against certain demographic

groups. Many other systems have not been tested by NIST, including Clearview AI’s; in fact,

the company has failed to self-report any information regarding bias and has self-reported wildly

inconsistent estimates of its overall accuracy, ranging from 75% to 98.6% accurate [32]. Even if it

is indeed possible to mitigate bias simply by virtue of achieving a high overall accuracy, it remains

crucial that FR systems are audited to ensure that they do in fact display negligible bias. Secondly,

as discussed above, bias may stem not only from the FR algorithm but also from the environment

and the way in which it is used. For example, NIST found that six of the best-performing systems

had higher FPRs on Black men than white men at a certain threshold, but that the opposite was

true at another threshold [48]. Audits must consider an FR’s performance not in isolation but as a

part of a larger socio-technical system.
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3.2.7 Checklist: what needs to be accomplished before a moratorium can be

lifted?

Policy challenge

• Build an auditing system to measure bias in FR models used by government agencies. The

auditing system should scrutinize developers, users, and the model itself. It should consider

context to determine the best fairness definition(s) and to analyze the socio-technical envi-

ronment in which model is deployed (which demographic groups are most at risk? How does

the agency use the FR system?).

Research challenges

• Develop effective context-dependent methods by which to mitigate bias.

• Study the implications of different fairness definitions to identify which definitions are most

relevant for different use cases.

• Test FR systems on neglected groups such as people with facial disfigurements and trans-

gender people.

• Study how to best measure bias when discrete demographic groups do not exist (e.g. racial

categories).

• Study the technical and legal considerations of prioritizing measuring bias against particular

groups (e.g. Black men in the context of policing).

3.3 Data conditions

Data usage is a dimension that extends beyond bias. As we have previously discussed, bias is

heavily tied to data: the choice of which training and testing datasets to employ can affect a model’s
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underlying bias levels, as well as whether and how that bias is detected. Choices around data also

have major implications for privacy and consent. Often, these two issues are intertwined, as bias

mitigation and measurement usually requires knowledge of sensitive demographic information.

The new EU AI Regulation accounts for this, specifying that FR providers may process special

types of personal data, such as those specified by Article 9 of the EU’s General Data Protection

Regulation (e.g. data relating to an individual’s race, sexual orientation, etc.) [18], for the purpose

of bias detection; however, as-of-yet unspecified safeguards must be in place to protect individuals’

privacy and other rights [14].

Unlike the EU, Canada has no law nor proposed law regulating AI, and its privacy and data pro-

tection laws are woefully out-of-date. Before a Canadian moratorium on FR could be lifted, the

government would need to complete the following two steps: update its laws, including the Pri-

vacy Act and PIPEDA, and develop a framework and complementary auditing system to ensure

that neither FR providers’ nor users’ data practices contravene the fundamental rights of Canadian

residents. Below, we briefly outline the current state of data protection laws in Canada and their

ambiguous relationship with FR technology. We then highlight some key considerations for the

development of a FR data governance framework and auditing system.

3.3.1 Data and privacy laws

The two primary laws regulating personal data in Canada are the Privacy Act, which governs its

collection and use by the Canadian government, and the Personal Information Protection and Elec-

tronic Documents Act (PIPEDA), which governs its collection and use by private companies for

commercial purposes [59]. The Privacy Act applies only at the federal level: provincial govern-

ments are regulated by provincial laws [59]. Similarly, PIPEDA does not apply to data that remains

within its province of origin; companies that operate solely within Alberta, British Columbia, or

Quebec are instead subject to provincial laws [59].
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The ability of the Privacy Act or PIPEDA to adequately regulate FR data is severely limited. Un-

like the EU’s General Data Protection Regulation (GDPR), the UK’s Data Protection Act, and

California’s Consumer Protection Privacy Act, neither of the Canadian laws explicitly mentions

biometric data (of which facial recognition data is an important type) [93]. Thus, despite its ex-

tremely sensitive nature, FR data is not subject to any additional rules. Even enforcing the laws as

they currently stand has proven difficult: the Office of the Privacy Commissioner has argued that

Clearview AI violated PIPEDA during its mass web-scraping operations; however, its condemna-

tion of the company carries no legal weight. Clearview AI, for its part, has maintained that it is not

subject to PIPEDA, claiming it has “no substantial link to Canada" [58].

Stevens and Brandusescu [93] argued that Canadian laws “neither explicitly allow nor prohibit law

enforcement agencies from processing biometric information." Notably, their investigation failed

to identify any Canadian laws, at the provincial or federal level, that restrict law enforcement

agencies’ ability to acquire FR technology or to process FR data. Stevens and Brandusescu further

asserted that due to the Privacy Act’s relatively lenient approach to consent, federal agencies can

provide personal data (and thus FR data) to the RCMP, conditional only on the latter specifying in

writing which data they require and stating that the data will be used for policing.

The Canadian government introduced Bill C-11 in November 2020 with the intent of moderniz-

ing Canada’s data laws. Numerous experts have criticized the bill, including Canada’s Privacy

Commissioner Daniel Therrien [5], who explicitly condemned its laxity toward FR.

It’s clear that current and currently proposed Canadian data legislation is ill-equipped to respond

to the threats posed by FR. This inadequacy is further reason to impose a federal moratorium,

which would give the government time to update Canada’s laws and to define and implement a

governance framework that would establish transparent standards in the collection, disclosure, and

use of FR data, and an auditing system to ensure compliance.
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3.3.2 Key considerations for a data usage framework

Types of data

How should policy-makers approach designing a data framework? First, we must note that FR

systems incorporate four types of data: training data, which may be used to either train the model

or to validate its results; external testing data; input data, i.e. data processed by the model after

deployment (e.g. images captured by security cameras); and search data, that is, data contained

in a search database (e.g. mugshots that the FR system will comb through to identify possible

matches). Additionally, FR systems generate data—typically similarity scores for particular pairs

of images.

The first four types of data can originate from different sources: a facial recognition system might

be trained on images of celebrities 6 and then applied to a police database of mugshots. Search data

may be held by the FR users (e.g. mugshots) or may be provided by the FR developers (as in the

case of Clearview AI’s web-scraped database). Each data category likewise invokes slightly dif-

ferent ethical considerations; for example, there is less risk—both of material harm and of privacy

violations—associated with including an individual’s image in a training dataset accessed only by

developers than with including it in a police search database or with inputting it into an FR model.

Conversely, while it is important to ensure that training and testing data is demographically bal-

anced in order to mitigate model bias, this is of course not a requirement for input and search data.

The different datasets are also likely to contain different types of personal information: for bias

mitigation purposes, training data may have demographic labels, while testing data may likewise

have such labels in order to measure that bias. Search databases, by construction, contain names or

other personally identifiable information; depending on the context, they may contain demographic

labels as well. It is thus crucial that when creating a data governance framework policy-makers do

not treat FR data as if they are homogeneous.

6Note that such a dataset may not adequately capture the full range of human faces, as images of celebrities are
often photoshopped, well-lit, and depict makeup-clad individuals who conform to Eurocentric standards of beauty.
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Existing data principles

Next, any data framework and auditing system should be built on existing, albeit insufficient, data

conventions, such as those outlined in PIPEDA. The private sector privacy law lays out 10 key

principles, namely company accountability; identification of purpose prior to data collection; con-

sent; limiting collection to only necessary data; limiting use, disclosure, and retention so as to

fulfill a pre-determined purpose and no more; accurate and up-to-date personal information; se-

curity safeguards; transparency about the company’s practices; the right to be informed when and

for what purpose one’s information has been collected and to amend it if necessary; and the right

to challenge a company’s compliance with PIPEDA [62]. Many of these principles fit under the

umbrellas of “purpose limitation", which holds that data should only be collected to fulfill a pre-

stated purpose, and “data minimization", which holds that the data collected should be relevant

and not disproportionate to the intended purpose, and that it should be retained for no longer than

is necessary and shared no more than is necessary [24,37]. For instance, the Swedish Data Privacy

Authority concluded that applying FR to school children to track attendance violated GDPR’s pur-

pose limitation and data minimization principles, as outlined in Article 5 [17, 24]. Note, however,

that these same principles are often difficult to satisfy in the context of FR, and indeed in machine

learning applications more broadly: policy-makers must pay special heed to ensure they can be

guaranteed.

Data collection

When drafting the data framework, policy-makers should consider the following questions: what

types of data should be allowed to be collected for the purpose of facial recognition by a govern-

ment agency? Who should be permitted to collect it: the agency, the FR developers, or a third

party? How much data should be allowed to be collected? For how long should it be retained?

The data minimization principle dictates that the amount of data collected and its retention time

should be limited to no more than is necessary to achieve one particular purpose. FR presents

numerous complications, however: data collected for the purpose of training, testing, or using FR,

along with data generated by the model, may be extremely valuable for further improving the FR
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system or reducing its bias. Moreover, limiting data retention may be complicated by the desire for

FR providers to maintain long-term search databases that they can offer to different police depart-

ments. Despite this, AI Now and UK’s Information Commissioner’s Office both argued that data

minimization is nevertheless a crucial condition to maintain: just because data might be useful for

a later purpose does not make it necessary to fulfill that purpose, “nor does it justify its collection,

use, or retention" [37].

According to legal experts, Bill C-11’s commitment to data minimization is questionable: its min-

imization requirements apply only to the collection, and not to the usage or disclosure, of personal

data [4].

Consent

PIPEDA and the Privacy Act, which govern the private and public (at the federal level) sectors,

respectively, differ on the issue of consent: both laws uphold the principle of purpose limitation,

requiring, in most circumstances, that an individual’s consent is obtained before their personal

data can be used for a purpose other than the one for which the data was collected [57, 61]. Only

PIPEDA, however, explicitly requires consent to collect personal data in the first place. FR tech-

nology used by government agencies exists at the intersection of the public and private sectors:

any data framework for FR will likely need different rules regarding consent for data collected by

the FR providers vs data collected by the agency itself. Specifically, policy-makers will need to

consider the consent requirements for an individual’s inclusion in a provider-held training set, a

provider-held testing set, an agency or government-held testing set (e.g. for bias verification pur-

poses), a provider-held search dataset (e.g. the database provided to police agencies by Clearview

AI), an agency-held search dataset (e.g. a police database), and an agency-held input set (e.g.

CCTV footage collected by a police department).

If policy-makers deem that requiring consent in certain contexts and for certain types of data would

torpedo the effectiveness and by extension the possible benefits of FR technology (e.g. police

departments deploying security cameras on a public street, where meaningful consent would be

47



impossible to obtain), the public should, at minimum, be informed of its use, in keeping with both

the Privacy Act and PIPEDA [57, 62].

The applicability of PIPEDA’s consent requirements to provider-held search data under PIPEDA

has already been examined by the OPC in the case of Clearview AI’s data mining activities. The

OPC’s conclusion, that Clearview AI did not obtain the requisite consent to amass users’ social

media photos, has been criticized by some legal experts for its assertions that PIPEDA’s excep-

tions from consent should be interpreted narrowly, particularly its assertion that social media data

shouldn’t be counted under PIPEDA’s “publicly available" exception [91]. It follows that PIPEDA,

as well as the Privacy Act, would benefit from updates in order to clarify how they apply to FR.

Bill C-11 aims to update Canada’s privacy laws, but legal experts have argued it may do more

harm than good, particularly as it relates to consent [4,68,85]. The bill largely replicates PIPEDA,

including its consent requirements, while empowering the OPC to enforce the new law, primarily

through compliance orders to companies [4]. Under PIPEDA, the OPC can only publish non-

binding reports [86].

Even under the updated law, however, the OPC’s enforcement powers would remain limited. As

detailed by Scassa [87], companies would have the ability to appeal not only the OPC’s orders but

also its findings to a new Personal Information Protection and Data Tribunal, a body that would be

required to contain only one expert in privacy law. The OPC would not be able to directly issue

fines to offending companies; instead, it would make recommendations to the tribunal. Moreover,

only certain breeches could result in fines; a failure to acquire consent, as in the case of Clearview

AI, is not one of them, to the consternation of Canada’s Privacy Commissioner [5].

Bill C-11 also contains numerous exceptions to both consent and knowledge (i.e. the company’s

duty to inform individuals when it collects or uses their data) that are absent from PIPEDA [85].

For example, “knowledge and consent" are not required in the course of business activities that

are “carried out to prevent or reduce the organization’s commercial risk" or where “obtaining
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the individual’s consent would be impracticable because the organization does not have a direct

relationship with the individual" [4].

Scassa [87] argued that under the proposed law a company such as Clearview AI would undoubt-

edly employ the latter exception as a defence. She highlighted, however, the bill’s assertion that

exceptions to consent are permitted only in situations where “a reasonable person would expect

such a collection or use for that activity"; this, she alleged, would not apply to Clearview AI,

whose data mining activities have already been deemed inappropriate by the OPC. Nevertheless,

despite concluding that the bill as written would likely preclude Clearview AI from prevailing on

the basis of such claims, she, like other experts, expressed serious concern over the ambiguity and

the large scope of the bill’s consent exceptions [4, 87].

Whether or not the new law would be adequate in preventing large scale data collection efforts,

it seems nevertheless apparent that such collection efforts are incompatible with most definitions

of consent. Compelling an organization like Clearview AI to notify and garner the consent of

each individual in their three billion-image database would be infeasible and would likely beget

a greater privacy violation than data mining itself. This problem is not limited to particularly

egregious cases like Clearview AI’s; indeed, a lack of consent is inherent to most modern FR

datasets. While Clearview AI’s dataset is noteworthy for its unparalleled size, Raji and Fried [76]

mapped historical trends in face dataset construction and found that the unprecedented amounts of

data required by deep learning has led to the widespread eradication of consent.

Early face datasets were primarily sourced through photo shoots with the full consent of partici-

pants. 2007 marked a turning point with the release of the web-scraped Labeled Faces in the Wild

dataset and its 13,000 images, which was swiftly followed by numerous other unconstrained (and

therefore non-consensual) datasets. The deep learning explosion, which occurred around 2014,

triggered an exponential growth in dataset size; images numbered in the millions rather than the

thousands, and individual consent became virtually impossible to procure. Raji and Fried also ob-

served that many of these newer datasets contain images of minors or else include descriptive labels
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that are racist or sexist. Many of the demographically balanced testing datasets that researchers

have touted as being key to solving FR’s bias problem, such as Balanced Faces in the Wild (sam-

pled from VGGFace2) and Labeled Ancestral Origin Faces in the Wild (sampled from Bing Image

Search API), were assembled without the knowledge or consent of their subjects [2,80]. It remains

unclear how policy-makers should reconcile the principle of consent with the need for large, di-

verse datasets with which to train and test FR models for accuracy and bias. One approach would

be to require consent in order to add a photo to a provider-held search or input dataset, where the

risk of material harm is much higher, but not to a provider-held training or testing dataset. Another

approach would be to rely on synthetic images, such as the ones used by [42], to construct training

and testing datasets.

Right to object and right to be forgotten

Related to the right to consent is the right to object to non-consensual data usage, a principle that

is enshrined in Article 21 of the GDPR but that is not currently included in PIPEDA [16,37]. Both

principles are related to the right to be forgotten, i.e. the right to have one’s data erased—another

right extended to Europeans but not to Canadians [15, 47].

In practice, ensuring that one’s likeness is removed from a non-consensual dataset may further

violate one’s privacy, as demonstrated by Clearview AI’s offer to delete an individual’s photos

only on the condition that they supply the company with a new photo so that their future re-

admittance into Clearview AI’s database could be prevented [20]. Any organization possessing a

continually growing FR dataset for which consent is not prioritized would be unable to permanently

exclude an individual from their dataset without the continued possession of some form of unique,

personally identifiable data [67]. Storing only the anonymized face embedding associated with the

individual’s photo would be feasible only if the FR algorithm is immutable.

If, instead, consent was required prior to one’s inclusion in an FR dataset, individuals could request

that their data be removed without the dataset-holder needing to permanently retain the individual’s

personal information.

50



3.3.3 Checklist: what needs to be accomplished before a moratorium can be

lifted?

Policy challenges

• Create a data usage framework to establish collection, usage, and retention standards for

FR and other biometric data. The framework should account for different types of FR data,

should be built on existing data principles such as data minimization, and should define in

what circumstances consent is required.

• Update the Privacy Act and PIPEDA and pass new legislation if needed to implement the

framework.

• Develop an auditing system to enforce the framework.

3.4 Usage conditions

Even if substantially improved, the Privacy Act and PIPEDA would likely be insufficient in and of

themselves in adequately regulating the use of FR by government agencies, as their scope is largely

limited to data collection, storage, and use. A new law, similar to the EU’s new AI Regulation [14],

would likely be needed in order to allow the Canadian government to explicitly identify which use

cases of FR should be harshly regulated, and how, and which use cases should be banned outright.

The context in which an FR system is deployed, as well as its specific purpose, have implications

far beyond questions of bias or data usage. Different use cases have different risks and bene-

fits, not only for particular groups, but for individuals, FR users, the public, and even for society

as a whole. The EU’s regulation takes this into account, requiring different levels of auditing and

scrutiny for different use cases: developers of high-risk systems will be subjected to periodic audit-

ing to ensure that they comply with various requirements, including the implementation of a risk

management system, appropriate data management practices, and record-keeping and technical
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documentation, as well as other transparency, oversight, and accuracy conditions [14]. Extremely

high-risk systems, such as those that perform live monitoring of public places for the purpose of

law enforcement, will be banned except in specific circumstances like terrorist attacks [14].

3.4.1 Key considerations for establishing usage conditions

What constitutes a high-risk use case?

Determining which use cases of FR should be deemed high-risk (or extremely high-risk) is both

critical and contentious. The new EU AI Regulation categorizes particular types of AI, such as

remote biometric (of which FR is an example) identification systems, as high risk, as they have the

potential to violate Europeans’ fundamental rights [14]. Other proposed legislation has employed

different definitions of “high-risk". The Algorithmic Accountability Act, introduced to the US

Congress in 2019, has been criticized for its overly broad definition; for example, under the pro-

posed law, any algorithm that processes gender information would be classified as high-risk [51].

It is also imperative that the list of high-risk and extremely high-risk (i.e. banned) use cases be

modifiable over time. The EU AI Regulation allows for new additions by the European Commis-

sion to the list of high-risk systems; however, no such rule is explicitly laid out for banned use

cases [14].

Social validity and society-wide risks

How do we measure the social validity and society-wide risk of an FR use case? We have so far

examined harm stemming from the FR system itself (e.g. bias originating from the model or from

the training data), as well as harm stemming from how the model is used and the environment in

which it is used (e.g. police departments exacerbating bias, data collectors overlooking consent).

In determining for which use cases of FR the potential benefits outweigh the risk, we must situate

the FR system in its larger social context and consider its long-term effects on Canadian society,

not only on individuals directly impacted by its decisions. A moratorium would allow researchers
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and policy-makers to investigate the ultimate question: even if the problem of bias is solved, are

there uses of FR that carry too much societal risk to be engaged in by government agencies?

As explained above, meaningful consent is incompatible with many aspects of FR, such as its use

in public places, as well as large-scale data collection for training, testing, and bias mitigation. The

former is of heightened concern, as such practices amount to surveillance that is more pervasive

and more acute than any to which most Canadians have previously been subjected. While Canadi-

ans are currently protected by strong democratic institutions, norms, and laws, albeit ones that are

somewhat lax when applied to FR, there is no definitive guarantee that Canadian democracy will

remain stable decades into the future. Indeed, the previous decade and a half has been character-

ized by a global decline in the number of democracies and in democratic freedoms [78]. If data

minimization principles are not followed, future governments will be able to easily obtain access

to decades-worth of biometric data. Even if such principles are upheld, if FR is widely and freely

used by the police and other government agencies, the tools and practices necessary to implement

an autocratic surveillance state will be readily available.

While this scenario may appear inconceivable, there is evidence that surveillance has severely

negative effects, even when integrated into an otherwise democratic society. Researchers have ar-

gued that heavy surveillance results in self-censoring and dissuades people from exercising their

rights [90]. One example is the progression of LGBTQ rights; within 40 years, Canada trans-

formed from a society in which sex between men was a prosecutable offence to one which largely

embraced same sex marriage. Experts argue that privacy and anonymity, and the countercultures

they protect, are necessary for such changes to occur [90].

Thus, before a moratorium can be lifted, researchers and policy-makers should aim to better un-

derstand the effects of FR surveillance on the Canadian public in order to assess whether certain

use cases of the technology (e.g. widespread public use of FR by government agencies) pose too

large of a threat to be authorized.
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Existing principles beyond risk mitigation

While assessing potential risks is critical when deciding whether to ban or regulate certain use cases

of FR, other ethical principles, such as proportionality, should likewise be taken into consideration.

A key example is the case of the Swedish school that was fined for implementing an FR-based

attendance system; the Swedish data protection authority’s decision was based in part on how

disproportionate the solution (applying FR) was to the problem (tracking attendance) [24].

Under the proposed EU AI Regulation, the principle of proportionality is utilized when assessing

whether certain use cases, namely exceptions to the ban on real-time biometric identification, are

appropriate [14]. The seriousness of the crime, the likelihood and degree of potential harm from

FR, and the context in which the FR system would be used are all considered when determining if

a particular exception is proportionate.

Notably, the regulation does not extend this proportionality condition to high-risk or low-risk sys-

tems [14]. In other words, while the proposed regulation uses proportionality to justify exceptions

to its ban on the most dangerous type of FR, the reverse is not true: authorized use cases that violate

the principle of proportionality do not appear to be given any special consideration. Many uses of

FR that do not present a high enough risk to be banned under the proposed regulation might never-

theless violate the principle of proportionality. For example, relying on extensive facial recognition

searches to catch the perpetrators of low-level crimes like shoplifting is arguably a disproportionate

response. Canadian policy-makers would be advised to examine the proportionality of each use

case, in addition to its risk level, when deciding whether to ban, regulate, or authorize.

Restricting access and frequency

In addition to banning extremely high-risk uses of FR, policy-makers could also curb the ease with

which public agencies engage in high-, medium-, or even, when appropriate, low-risk uses of the

technology. By introducing authorization requirements, the frequency and overall risk of FR usage

could be greatly dampened.
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In December 2020, motivated in large part by an ACLU investigation that uncovered widespread

and unrestricted FR usage by Massachusetts police, state senators attempted to pass strict FR

reforms but were blocked by the state’s Republican governor [34]. A compromise was reached

whereby a judge’s permission must be acquired before local police can request that an FR search

of the state police, FBI, or Registry of Motor Vehicles database be performed.

3.4.2 Checklist: what needs to be accomplished before a moratorium can be

lifted?

Policy challenges

• Implement a law similar to the EU’s new AI Regulation [14] that will allow the government

to ban, regulate, and authorize particular use cases of FR, in a way that accounts for the risk

level of different use cases, as well as other principles such as proportionality.

Research challenge

• Research the societal impacts of particularly high-risk use cases of FR such as widespread

public surveillance.
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Chapter 4

Bias mitigation through calibration

The method and experiments presented in this chapter are taken from a paper by Salvador et al. [83]

that is currently under submission. As the paper’s second author, I proposed the central problem

of fairness in facial recognition and pointed out that calibration had not been previously explored

for FR. I conducted a thorough literature review (as shown in section 2.2, subsection 3.2.1, and

subsection 3.2.6) and through many discussions helped design experiments to show the effective-

ness of our method. I also contributed to the writing and editing of the paper. The experiments

were coded by Tiago Salvador with help from Noah Marshall. Tiago Salvador ran the experiments

and prepared the figures and tables contained in this chapter. For a full discussion of methods and

results, see [83].

4.1 Motivation

Solving facial recognition’s bias problem is arguably the most important condition for ensuring its

safe use. As we saw in Chapter 3, researchers have applied a myriad of fairness definitions when

assessing FR bias. However, to the best of our knowledge, no work thus far has applied the metric

of fairness-calibration to FR. As Pleiss et al. [72] explained, fairness-calibration is a crucial condi-
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tion to ensure fairness in many contexts. For example, if a model to predict a defendant’s recidivism

risk is not fairly-calibrated between racial groups, a Black defendant and a white defendant with

the same predicted score may have different true probabilities of reoffending, thus inciting judges

to account for race in their sentencing decisions. The same danger of making race-based decisions

extends to uncalibrated facial recognition, particularly when it is utilized for policing or sentenc-

ing. To rectify this, Salvador et al. [83] introduced a simple way to ensure fairness-calibration

while likewise maintaining equally low FPRs between demographic groups. Recall that perfectly

achieving the three conditions of fairness-calibration, predictive equality (i.e. equal FPRs), and

equal opportunity (i.e. equal FNRs) is impossible except in very narrow circumstances [12, 41].

Our bias mitigation approach has three considerable advantages. Firstly, unlike many methods

described in Chapter 3, it is not computationally expensive, nor does it require re-training an FR

model; rather, it can be easily appended to an existing system. Secondly, our method does not

depend on knowledge of demographic groups; variations of the approach can be applied whether

or not demographic labels are present in the search dataset. Finally, it achieves both fairness-

calibration and predictive equality (beating comparable post-hoc methods) without sacrificing ac-

curacy; in fact, it increases a model’s accuracy.

Figure 4.1: Reduction in bias on RFW using the FaceNet (WebFace) model, as measured by group

FPRs. Our Bias Mitigation Calibration (BMC) method results in lower bias (lines closer together)

than comparable post-hoc methods FTC [96] and FSN [95]. Figure source: [83]

Our method also allows users of the FR system to choose, based on the use context, which fairness

condition (predictive equality or equal opportunity) they wish to fulfill in addition to fairness-
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Figure 4.2: Bias reduction, as measured by deviation between the black line (threshold needed

to achieve a global FPR of 5%) and red lines (thresholds needed to achieve FPRs of 5% for each

demographic group). Simply applying a standard calibration method does not reduce bias. Our

methods, Oracle Calibration (separately calibrating each demographic group; group membership

must be known) and BMC (separately calibrating clusters that were generated using feature vec-

tors), successfully reduce bias. Figure source: [83]

calibration, simply by setting a low global FPR (if predictive equality is desired) or a low global

FNR (if equal opportunity is desired). For instance, equal FPRs should be prioritized when the

potential for harm stemming from a false positive (e.g. a false arrest or conviction) is substantial.

Conversely, for an office building equipped with an FR security system, a slew of false negatives

would prove highly disruptive for workers; equal FNRs should thus be given priority.

4.2 Calibration vs fairness-calibration

Recall that fairness-calibration is satisfied if for any outputted score sε[0, 1]:

P (Y = 1|S = s,G = a) = P (Y = 1|S = s,G = b) = s (4.1)

That is, fairness-calibration holds if, regardless of group membership, any image pair with a score

s truly has a probability s of being a genuine match.

Calibration, for its part, holds if a pair with a score s has an overall probability s of being a genuine

match, i.e. for any sε[0, 1]:

P (Y = 1|S = s) = s (4.2)
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A model may be calibrated but not fairly-calibrated. For example, consider two groups of equal

size, both of whose members are all given scores of 0.5. If group A’s members all have true

probabilities of 0.4, and group B’s members all have true probabilities of 0.6, then the model

satisfies the notion of calibration but does not satisfy fairness-calibration.

4.3 Standard calibration methods

We can apply a standard approach to ensure overall calibration (i.e. to ensure that predicted scores

correspond to real probabilities); however, as we just saw, this is insufficient to guarantee that an FR

model is fairly-calibrated between different demographic groups. An additional step is required,

wherein we divide the dataset into groups or clusters and separately apply a calibration method to

each one.

We begin by presenting traditional calibration methods, any of which could be adopted for our

fairness-calibration approach. Each of the below methods converts pairs’ similarity scores into

confidence scores that better reflect the pair’s true probability of depicting the same person.

First, we define P cal ⊆ X × X as the set of image pairs that we aim to calibrate. We designate

Scal to be the set of corresponding cosine similarity scores. That is, for a pair (xi, xj) ∈ P cal,

we set s(xi, xj) = f(x1)·f(x2)
‖f(x1)‖‖f(x2)‖ ∈ Scal, where f(xi) is the face embedding generated by the FR

model. We likewise define I(xi) as the identity of image i and Y = yi,j as the true class (1 or 0,

i.e. genuine pair or not) of a pair (xi, xj).

4.3.1 Histogram binning

Histogram binning [108] is a simple method that involves dividing Scal into N bins. This division

can be made to ensure that the bins have equal weight or are equally spaced, or even to maximize

mutual information [69]. Each similarity score s(xi, xj) ∈ Scal is assigned to one bin Bn, where

n = 1, ...N . The score is then converted into a confidence score that reflects the proportion of

scores in Bn that truly correspond to genuine pairs. In other words, for a pair (xi, xj) whose score
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s(xi, xj) belongs to Bn, we assign the pair the following confidence score:

cij =
1

|Bn|
∑

slm∈Bi
(xl,xm)∈P cal

1I(xl)=I(xm) (4.3)

4.3.2 Isotonic regression

Isotonic regression [54] involves learning a confidence function c : R→ R by solving

argmin
µ

1

|P cal|
∑

(xl,xm)∈P cal

(
µ(s(xl, xm))− 1I(xl)=I(xm)

)2 (4.4)

and then setting c(xi, xj) = µ(s(xi, xj)).

4.3.3 Beta calibration

Beta calibration [69], a generalization of logistic regression, involves learning the calibration map

cθ(s) = µ(s; θ1, θ2, θ3) =
1

1 + 1/
(
eθ3 sθ1

(1−s)θ2

) (4.5)

where θ1, θ2, θ3 are parameters selected by minimizing

LL(c, y) = y(− log(c)) + (1− y)(− log(1− c)) (4.6)

where c = µ(s(xi, xj)).

4.4 Applying fairness-calibration methods to facial recognition

4.4.1 Oracle Calibration

If demographic labels are present, the search dataset can readily be divided into groups based

on a function A that assigns an attribute a (e.g. gender) to each image. We can then convert
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the similarity scores for each group into confidence scores by applying a standard calibration ap-

proach (like the ones discussed in section 4.3) to each individual group. So, given a pair of images

(xi, xj) ∈ P cal with a score s(xi, xj), we set the pair’s confidence score as:

c(xi, xj) =


ca(s(xi, xj)) if A(xi) = A(xj) = a

0 if A(xi) 6= A(xj)

(4.7)

where ca is the confidence function for group a. Salvador et al. [83] dubbed this method ‘Oracle

calibration’, as it requires knowledge of demographic information. In practice, the usability of

this method would be limited, particularly when mitigating racial bias, as racial identity cannot be

precisely partitioned into discrete categories.

4.4.2 Bias Mitigation Calibration

In the absence of demographic labels, we can instead employ a k-means algorithm (with k =

100, as determined through testing) to generate k distinct clusters of images. As with the Oracle

approach, calibration can be achieved for each group (cluster) via a standard calibration method.

However, unlike with Oracle calibration, it is possible that two images from different clusters do

indeed form a genuine pair. Thus, for a pair (xi, xj) ∈ P cal in clusters a and b, respectively, we set

its confidence score as:

c(xi, xj) = θca(s(xi, xj)) + (1− θ)cb(s(xi, xj)),

where ca is the confidence function for cluster a and θ is the population fraction of cluster a relative

to cluster b.
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4.5 Experiments

4.5.1 Models and datasets

We tested our method by appending it to three existing FR models: an ArcFace model [89]

trained on a refined version of the MS-Celeb-1M dataset [30], and two Inception ResNet mod-

els [25] trained on the VGGFace2 [10] and CASIA Web-face [106] datasets. We employed two

demographically-labeled testing datasets: Racial Faces in the Wild (RFW) [102] and Balanced

Faces in the Wild (BFW) [80]. Prior to testing, we pre-processed our images using a Multi-Task

Convolutional Neural Network (MTCNN).

4.5.2 Methods compared

We compared our Oracle and Bias Mitigation Calibration (using k = 100) methods to a base-

line method that applied beta calibration [69] to the dataset as a whole (instead of to individual

groups). We also tested two post-hoc bias mitigation methods introduced by other researchers,

namely Terhörst et al.’s fair template comparison (FTC) method [96] and Terhörst et al.’s fair score

normalization (FSN) method [95]. To make a fair comparison, we applied (overall) beta calibration

to both of these methods. Table 4.1 shows the advantages of our method over FTC and FSN.

Table 4.1: Advantages and disadvantages of the different post-hoc bias mitigation methods. Table

source: [83]

Method
Improves accuracy Predictive equality

Fairly-calibrated
Does not require sensitive Does not require sensitive

over Baseline (equal FPRs) attribute during training attribute at test time

FTC [96] 4 4 4 4 4

FSN [95] 4 4 4 4 4

Oracle (Ours) 4 4 4 4 4

BMC (ours) 4 4 4 4 4

4.5.3 Metrics

To test for fairness-calibration, we measured the calibration error on each demographic group

using a metric inspired by the Kolmogorov-Smirnov (KS) statistic test and introduced by Gupta et

al. [31]. Their metric compares the cumulative distributions of P (Y = 1, C = c) and cP (C = c),
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which correlate with calculating the sequences {hn} and {h̃n}. Let N be the total number of pairs

such that for all n ∈ N , (xni , xnj) is a pair of images. Then

hn = hn−1 + 1yni,nj=1/N and h̃n = h̃n−1 + c(xni , xnj)/N (4.8)

where h0 = h̃0 = 0. The KS calibration error metric is then set as

KS = max
n
|hn − h̃n|. (4.9)

4.5.4 Results

We found that our Bias Mitigation Calibration (BMC) method was the best, of the post-hoc meth-

ods surveyed, at global accuracy, fairness-calibration, and predictive equality. We used 5-fold cross

validation to generate our results. See the appendix of [83] for more detailed results, including the

standard deviation errors for each method.

Global accuracy

We measured global accuracy by computing the area under the ROC curve1 and the TPR at different

global FPRs (0.1% and 1%) (see Table 4.2). Our BMC method obtained the best AUROC in all

cases and the highest TPR in seven out of eight cases.

Fairness-calibration

We wanted to ensure that a pair’s outputted probability matched its true probability of being a

match, regardless of which demographic group(s) it belonged to. To this end, we measured each

group’s calibration error (KS). Moreover, we wanted to minimize the deviations between groups’

calibration errors, as measured by the Average Absolute Deviation (AAD), the Maximum Absolute

Deviation (MAD), and the Standard Deviation (SD); see Table 4.3.
1Note that while subsection 3.2.1 described the limitations of the AUROC, this was in reference to its use in

measuring bias, not in measuring overall accuracy, which is indeed its original function.
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BMC attained the lowest mean calibration error (across groups) in three of the four cases and the

lowest deviation in all cases (see Table 4.3).

Predictive equality

We tested how close the different methods were to reaching perfect predictive equality by comput-

ing the deviation (AAD, MAD, and STD) between demographic groups’ FPRs at global FPRs of

0.1% and 1%.

Our BMC method came out on top in 18 of 24 cases (see Table 4.4). In the remaining six cases,

FTC performed best. However, unlike BMC, FTC’s reduction in bias was achieved only at the

expense of a decrease in overall accuracy (see Table 4.2).

Context-dependent bias mitigation: Equal opportunity

Our method can be readily modified (simply by setting a low global FNR instead of a low global

FPR) so as to be applied to contexts where equal opportunity is more valuable than predictive

equality. Table 4.5 shows that in most cases BMC achieved comparable results to its rival methods.

Tables

Table 4.2 shows the global accuracy of the different methods across the different models, while

Tables 4.3-4.5 show how well the various methods satisfied the conditions of fairness-calibration,

predictive equality, and equal opportunity. The best results for each FR model are bolded. Since

our Oracle method requires knowledge of the sensitive attribute, it is largely infeasible in practice;

we therefore did not consider it when determining the best method. Note, however, that our BMC

method beat or was comparable to our Oracle method by nearly all measures.
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Table 4.2: Global accuracy, as measured by the AUROC and the TPR at global FPRs of 0.1%

and 1%. Table source: [83]

RFW BFW
FaceNet (VGGFace2) FaceNet (Webface) FaceNet (Webface) ArcFace

AUROC
TPR @ TPR @

AUROC
TPR @ TPR @

AUROC
TPR @ TPR @

AUROC
TPR @ TPR @

(↑) 0.1% FPR 1% FPR 0.1% FPR 1% FPR 0.1% FPR 1% FPR 0.1% FPR 1% FPR

Baseline 88.26 18.42 34.88 83.95 11.18 26.04 96.06 33.61 58.87 97.41 86.27 90.11
FTC 86.46 6.86 23.66 81.61 4.65 18.40 93.30 13.60 43.09 96.41 82.09 88.24
FSN [95] 90.05 23.01 40.21 85.84 17.33 32.80 96.77 47.11 68.92 97.35 86.19 90.06
BMC (Ours) 90.58 23.55 41.88 86.71 20.64 33.13 96.9 46.74 69.21 97.44 86.28 90.14
Oracle (Ours) 89.74 21.4 41.83 85.23 16.71 31.6 97.28 45.13 67.56 98.91 86.41 90.40

Table 4.3: Fairness-calibration is achieved if two conditions are met: 1) all subgroups have a low

calibration error (as measured by the mean KS across demographic subgroups), and 2) the calibra-

tion error differs little between subgroups (as measured by the Average Absolute Deviation (AAD),

Maximum Absolute Deviation (MAD), and Standard Deviation (STD) of KS across subgroups).

Table source: [83]

RFW BFW
FaceNet (VGGFace2) FaceNet (Webface) FaceNet (Webface) ArcFace

(↓) Mean KS AAD MAD STD Mean KS AAD MAD STD Mean KS AAD MAD STD Mean KS AAD MAD STD

Baseline 6.37 2.89 5.73 3.77 5.55 2.48 4.97 2.91 6.77 3.63 5.96 4.03 2.57 1.39 2.94 1.63
FTC [96] 5.16 2.31 4.44 2.87 4.11 1.87 3.74 2.20 6.60 2.42 5.19 2.93 3.70 1.50 3.07 1.78
FSN [95] 1.43 0.35 0.57 0.40 2.49 0.84 1.19 0.91 2.76 1.38 2.67 1.60 2.65 1.45 3.23 1.71
BMC (Ours) 1.37 0.28 0.5 0.34 1.75 0.41 0.64 0.45 3.09 1.34 2.48 1.55 2.49 1.3 2.68 1.52
Oracle (Ours) 1.18 0.28 0.53 0.33 1.35 0.38 0.66 0.43 2.23 1.15 2.63 1.4 1.41 0.59 1.3 0.69

Table 4.4: Predictive equality is achieved if the demographic groups have equal FPRs. We

thus measure the Average Absolute Deviation (AAD), Maximum Absolute Deviation (MAD), and

Standard Deviation (STD) between the groups’ FPRs at fixed global FPRs of 0.1% and 1%. Table

source: [83]

RFW BFW
FaceNet (VGGFace2) FaceNet (Webface) FaceNet (Webface) ArcFace
AAD MAD STD AAD MAD STD AAD MAD STD AAD MAD STD

0.
1%

FP
R

Baseline 0.10 0.15 0.10 0.14 0.26 0.16 0.29 1.00 0.40 0.12 0.30 0.15
FTC FTC 0.10 0.15 0.11 0.12 0.23 0.14 0.24 0.74 0.32 0.09 0.20 0.11
FSN [95] 0.10 0.18 0.11 0.11 0.23 0.13 0.09 0.20 0.11 0.11 0.28 0.14
BMC (Ours) 0.09 0.14 0.10 0.09 0.16 0.1 0.09 0.20 0.11 0.11 0.31 0.15
Oracle (Ours) 0.11 0.19 0.12 0.11 0.2 0.13 0.12 0.25 0.15 0.12 0.27 0.14

1%
FP

R

Baseline 0.68 1.02 0.74 0.67 1.23 0.79 2.42 7.48 3.22 0.72 1.51 0.85
FTC [96] 0.60 0.91 0.66 0.54 1.05 0.66 1.94 5.74 2.57 0.54 1.04 0.61
FSN [95] 0.37 0.68 0.46 0.35 0.61 0.40 0.87 2.19 1.05 0.55 1.27 0.68
BMC (Ours) 0.28 0.46 0.32 0.29 0.57 0.35 0.8 1.79 0.95 0.63 1.46 0.78
Oracle (Ours) 0.4 0.69 0.45 0.41 0.74 0.48 0.77 1.71 0.91 0.83 2.08 1.07
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Table 4.5: Equal opportunity is achieved if the demographic groups have equal FNRs. We

thus measure the Average Absolute Deviation (AAD), Maximum Absolute Deviation (MAD), and

Standard Deviation (STD) between the groups’ FNRs at fixed global FNRs of 0.1% and 1%. Table

source: [83]

RFW BFW
FaceNet (VGGFace2) FaceNet (Webface) FaceNet (Webface) ArcFace

(↓) AAD MAD STD AAD MAD STD AAD MAD STD AAD MAD STD

0.
1%

FN
R Baseline 0.09 0.13 0.10 0.10 0.16 0.11 0.09 0.23 0.11 0.11 0.31 0.14

FTC [96] 0.09 0.11 0.09 0.08 0.14 0.1 0.04 0.09 0.05 0.06 0.14 0.07
FSN [95] 0.09 0.13 0.09 0.09 0.14 0.10 0.07 0.22 0.10 0.12 0.33 0.15
BMC (Ours) 0.10 0.14 0.10 0.11 0.17 0.12 0.10 0.27 0.13 0.09 0.17 0.10
Oracle (Ours) 0.11 0.18 0.12 0.12 0.21 0.13 0.09 0.24 0.11 0.11 0.32 0.14

1%
FN

R

Baseline 0.60 0.96 0.67 0.45 0.81 0.53 0.39 0.84 0.47 0.75 1.85 0.93
FTC [96] 0.48 0.83 0.56 0.32 0.58 0.38 0.3 0.62 0.34 0.49 1.12 0.6
FSN [95] 0.28 0.47 0.32 0.40 0.78 0.48 0.41 0.92 0.49 0.77 1.91 0.96
BMC (Ours) 0.30 0.51 0.34 0.39 0.72 0.48 0.32 0.74 0.40 0.65 1.48 0.80
Oracle (Ours) 0.38 0.61 0.42 0.56 1.06 0.67 0.37 0.77 0.44 0.5 1.11 0.60
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Chapter 5

Conclusion

5.1 Summary

The aim of this thesis was twofold: firstly, to examine the conditions, both technical and policy-

oriented, required to lift a potential moratorium on the use of facial recognition technology by

federal government agencies, and secondly, to present a promising step toward fulfilling one of the

most fundamental of these conditions: context-dependent bias mitigation.

In Chapter 2, we described how facial recognition technology works, how it is used in Canada,

and why, due to concerns around bias and privacy, it poses a risk to Canadians. We then presented

a selection of key fairness definitions used to assess bias present in FR models. We recreated a

proof from [12] demonstrating that of the following three fairness definitions—predictive equality

(i.e. equal false positive rates), equal opportunity (i.e. equal false negative rates), and fairness-

calibration—no more than two can be satisfied simultaneously, except under strict conditions.

Next, in Chapter 3, we explored the conditions that should be met before policy-makers consider

removing a moratorium on government use of FR. We grouped these conditions into three cate-

gories: accuracy and bias conditions, data conditions, and usage conditions.

67



In our section on accuracy and bias, we highlighted one primary policy condition: the development

of an auditing system to assess FR bias. We explained that this auditing system should inspect not

only the model itself, but how it was built and how it is used (e.g. which fairness definition(s)

is most relevant, which demographic groups may be most harmed by the model’s use, etc.). We

also detailed the following research challenges: 1) the creation of context-based bias mitigation

solutions; 2) an analysis of the relevance of different fairness definitions for different use cases;

3) a study of FR bias against overlooked demographic groups; 4) an investigation into how to

evaluate bias in cases when discrete and mutually exclusive groups are nonexistent; and finally,

5) an examination of the technical and legal implications of prioritizing some groups over others

when assessing bias.

We laid out one primary data-related condition: the creation of a data usage framework—one that is

based on key principles such as data minimization and that clearly addresses consent—to regulate

the use, collection, and retention of FR data. As we explained, implementing such a framework

would necessitate modifying (or replacing) laws like the Privacy Act and PIPEDA. An auditing

system to assess compliance would likewise be needed.

We also outlined the following usage condition: the implementation of a law to outlaw or regu-

late different uses of FR, depending on use cases’ level of risk and their adherence to principles

such as proportionality. We also stressed the need for researchers to scrutinize and deepen our

understanding of the society-wide risks of certain FR use cases such as mass surveillance.

Finally, in Chapter 4, we tackled the challenge of bias mitigation, introducing our Bias Mitigation

Calibration method [83], a post-hoc method that allows FR models to successfully satisfy both

fairness-calibration and predictive equality, while simultaneously increasing their overall accuracy.

Our method has numerous advantages: 1) it can be applied to any existing FR model with no re-

training required; 2) it does not require that images possess demographic labels; 3) it achieves

better accuracy and lower bias than comparable post-hoc methods; and 4) if called for by the use
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case and deployment context, it could instead be used to achieve fairness-calibration and equal

opportunity (as opposed to fairness-calibration and predictive equality).

5.2 Key takeaways and future work

Facial recognition technology, as it currently exists, is biased and dangerous. The threat it poses

both to individuals and to our democratic society cannot be mitigated by technical approaches or

by policy approaches alone. A moratorium on government usage of FR would give researchers

time to tackle FR systems’ technical failings and to study the true impacts of their use. Our work

demonstrates that with a solid understanding of fairness metrics, models can indeed be made sub-

stantially fairer. A moratorium would also allow policy-makers to implement sound, technically

informed regulations—and if needed, outright bans. Addressing the problem of bias, for instance,

will require designing auditing systems that account for different context-dependent fairness defi-

nitions.

Future work should consider the practical considerations of implementing a moratorium on the use

of FR by government agencies, as well as the feasibility of extending a similar moratorium to the

private sector and to public agencies at the provincial level. A future project could also build on

the work in this thesis, as well as on [67], to develop a comprehensive research agenda to be un-

dertaken during a moratorium. Such a project could likewise examine the role public consultation,

particularly with marginalized groups, should play in crafting appropriate policy solutions.
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Appendix A

Additional fairness definitions

All definitions are taken from [99].

A.1 Definitions based on predicted and actual outcome

Definition A.1.1 (Predictive parity). Also called “outcome test", predictive parity is satisfied if

both groups have equal positive predictive values (PPVs).

P (Y = 1|d = 1, G = a) = P (Y = 1|d = 1, G = b) (A.1)

where Y = 1 and Y = 0 correspond, respectively, to the events of belonging and not belonging to

the positive class.

Recall that PPV corresponds to the probability that a positively predicted subject genuinely belongs

to the positive class.

Definition A.1.2 (Equalized odds). Known also as conditional procedure accuracy equality and

disparate mistreatment, equalized odds necessitates that the two groups have equal true positive
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rates (TPRs) and equal false positive rates (FPRs).

P (d = 1|Y = i, G = a) = P (d = 1|Y = i, G = b), i ∈ {0, 1} (A.2)

It can be shown that if P (Y = 1|G = a) 6= P (Y = 1|G = b) then a model that satisfies predictive

parity cannot satisfy equalized odds.

Definition A.1.3 (Conditional use accuracy). Conditional use accuracy equality is satisfied if both

groups possess equal positive predictive values (PPVs) and negative predictive values (NPVs).

That is, both

P (Y = 1|d = 1, G = a) = P (Y = 1|d = 1, G = b) (A.3)

and

P (Y = 0|d = 0, G = a) = P (Y = 1|d = 0, G = b) (A.4)

must be satisfied.

Definition A.1.4 (Overall accuracy equality). Overall accuracy equality requires equal prediction

accuracies for both groups.

P (d = Y,G = a) = P (d = Y,G = b) (A.5)

In other words, the probability that a subject from either the positive or negative class is assigned

to its correct class must be the same for both groups.

Definition A.1.5 (Treatment equality). Treatment equality is satisfied if the two groups have equal

ratios of false positives and false negatives.

FN

FP
(a) =

FN

FP
(b) (A.6)
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A.2 Definitions based on predicted probabilities and actual out-

come

Definition A.2.1 (Balance for positive class). Balance for the positive class is satisfied if the aver-

age predicted score s for subjects truly in the positive class is equal for both groups.

E(S|Y = 1, G = a) = E(S|Y = 1, G = b) (A.7)

Definition A.2.2 (Balance for negative class). Similarly, balance for the negative class is satisfied

if the average predicted score s for subjects truly in the negative class is equal for both groups.

E(S|Y = 0, G = a) = E(S|Y = 0, G = b) (A.8)

A.3 Similarity-based measures

Definition A.3.1 (Causal discrimination). Here, fairness is achieved if the model produces the

same classification for any two subjects with the exact same non-sensitive features X. In other

words, two subjects who differ only by which group G they belong to should be assigned to the

same class.

(Xm = Xf ∧Gm 6= Gf )→ dm = df (A.9)

Definition A.3.2 (Fairness through unawareness). Fairness through unawareness is achieved if no

sensitive attribute is used in the decision-making process.

In theory, the classification outcomes should be the same for any subjects i & j who have the same

non-sensitive features X:

X : Xi = Xj → di = dj (A.10)
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However, in practice, other features often unintentionally serve as a proxy for the sensitive attribute

(e.g. neighbourhood serving as a proxy for race), thereby affecting the classification outcomes of

subjects from different demographic groups.

Definition A.3.3 (Fairness through awareness). Fairness through awareness requires that similar

individuals be classified similarly. Here, similarity is defined by D, a distance metric between the

distribution of model outputs. Given a set of subjects V , we define K : V × V → R as being

the distance between subjects. To satisfy fairness through awareness, D must be no more than K.

That is, fairness is achieved if for any subjects x and y:

D(M(x),M(y)) ≤ K(x, y) (A.11)

where M : V → δA is a mapping from the set of subjects to the probability distribution of the

model outcomes.
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Appendix B

Bias mitigation methods - additional details

B.1 Adversarial training: AGENDA [22]

Recall that Dhar et al.’s [22] AGENDA contains four components: a pre-trained network P that

generates a face embedding fin; a generator modelM , which takes fin as input and outputs a lower

dimensional fout; an identity classifier C; and a set of K gender predictors E1, E2...EK .

Training for AGENDA occurs over four key stages. Stage 1 involves initializing and training the

generator model M and the identity classifier C. The face embedding fin (outputted from the

pre-trained network) is passed through M to generate fout. M and C are then trained using

Lclass(φM, φC) = −yid log (ŷid) (B.1)

where ŷid = C(fout, φC), and where φM and φC are the weight of M and C.
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Figure B.1: AGENDA architecture. Figure source: [22]

Stage 2 initializes and trains the gender predictor model E. The outputs fout generated by M are

passed into E, which is then trained to classify gender using

Lg(φM, φE) =
K∑
k=1

LEkg (B.2)

where

LEkg (φM, φEk) = −yg log y(k)g − (1− yg) log (1− y(k)g ) (B.3)

Here, yg is the binary gender label for the input face embedding fout and y(k)g is the softmax output

of Ek.

Next, M and C are updated during Stage 3. M is trained to generate face embeddings fout that can

be used to predict identity but not gender. First, fout is fed into C and the classifier training loss

Lclass is computed. Next, fout is fed into each model in E and used to calculate gender probability

scores omalek , ofemalek = Ek(fout, φEk). If E is gender-agnostic, as desired, omalek and ofemalek would

both equal 0.5.
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The adversarial loss for the model Ek can then be defined as

LEka (φM, φEk) = −(0.5 ∗ log (omalek ) + 0.5 ∗ log (ofemalek )) (B.4)

Since the aim is to make fout gender-agnostic with respect to multiple gender prediction models,

they compute the adversarial loss for each model Ek and select the model with the maximum loss:

Ldeb(φM, φE) = max{LEka (φM, φEk)|Kk=1} (B.5)

They then combine Lclass and Ldeb into

Lbr (φC, φM, φE) = Lclass (φC, φM) + λLdeb (φM, φE) (B.6)

which is used to train M and C, while φE remains unchanged. During training, φC is updated via

the gradients of Lclass, while φM is updated via the gradients of both Lclass and Ldeb.

Finally, in Stage 4, E is re-trained to predict gender based on fout. Stage 3 (training M to fool E

and training C) and stage 4 (training E) are alternated until training is complete.

B.2 Reinforcement learning: Race balanced network

Wang and Deng’s [101] race balanced network (RL-RBN) uses a Markov decision process to

identify optimal margins for each demographic group. This process consists of the following

steps: Deep Q-learning—an important component of reinforcement learning—is used to train an

agent to create an adaptive margin policy for subjects of colour. Deep Q-learning trains the agent

to learn which actions to take to maximize a reward function—in this case, the reward is related to

the distances between each race’s face embeddings for intra- and inter-subject pairs. In particular,

the reward is based on the difference, Bg,w
inter, between the inter-subject distances for white subjects
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and for subjects from each other race g ∈ { Indian, Asian, African }.

Bg,w
inter = |dginter − dwinter| (B.7)

where

dginter =
1

Ng

Ng∑
i=1

max
k=1:Ng ,k 6=i

cost(ck, ci) (B.8)

where Ng is the number of subjects in group g, and ci is computed by taking the mean face embed-

ding of the i-th subject in group g.

The reward is likewise based on the intra-subject equivalent to Bg,w
inter:

Bg,w
inter = |dgintra − dwintra| (B.9)

where

dgintra =
1

Ng

Ng∑
i=1

1

|Ii|
∑
xj∈Ii

cos(xj, ci) (B.10)

where Ii is the set of all images associated with subject i.

Once the optimal adaptive margin policy is determined, it is used to train the FR model in such a

way that each race has similar intra- and inter-subject distances.

B.3 Domain adaptation

Wang et al. [102] proposed IMAN, a deep information maximization network inspired by unsu-

pervised domain adaption (UDA). UDA involves applying a network trained on a labeled source

domain to an unlabeled target domain. Here, the labeled source domain is a set of facial images

of white subjects whose identities (i.e. labels) are known, and the unlabeled target domain is a set

of images of non-white subjects whose identities are unknown. Standard UDA methods use the

source domain’s classifier to estimate labels for the target domain and are thus incompatible with

facial recognition, since the source and target domains do not share labels (i.e. identities). The
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authors proposed an alternative method to generate pseudo-labels for the target domain: a cluster-

ing algorithm that retains only strongly-connected groups of images with similar cosine similarity

scores (as computed by the network). Pseudo-labels were thereby bestowed upon these clusters

and their associated images.

The authors noted, however, that due to the inadequacy of these pseudo-labels, further steps are

required to ensure that the network performs well on the target domain. To that end, they introduced

a mutual information loss, which uses all target images (not only those retained clusters) to learn

larger decision margins for—and thereby improve the network’s classification abilities on—the

target domain.

The team tested three versions of their approach: transferring information about white faces to

African, Asian, and Indian target domains. As described in the main text, IMAN performed better

(in terms of true positive rates and ROC curves) than other models when applied to Indian, Asian,

and African subjects.

B.4 Fair Template Comparison

Terhörst et al. [96] tested two different losses, one based on group fairness (i.e. fairness between

demographic groups) and the other based on individual fairness (i.e. the similar treatment of similar

individuals) for their post-hoc neural network. They claimed that the second loss, which we present

below and which we employed for our tests (see Chapter 4), resulted in a more substantial reduction

in bias (up to 52.67% vs up to 41.22%). For an image pair with a true class of y (i.e. a genuine

pair or an imposter pair containing images of two different individuals), and a predicted class of ŷ,

they computed the loss as follows:

L = (1− λ)H(y) + λf(y, ŷ) + γl2 (B.11)
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where H is a binary cross-entropy function, and f is a penalization term based either on group or

individual fairness. The fairness parameter λ controls the trade-off between higher accuracy and a

higher degree of fairness. Finally γl2 is an l2 regularization to limit overfitting.

Given a set of demographic groups G, they let Sg such that g ∈ G be a set of face embeddings that

belong to group g. Then, for the case of individual fairness, they set

f =
∑
i,j∈G

1

|Si| · |Sj|
∑

(yk,ŷk)∈Si
(yl,ŷl)∈Sj

δ(yk, yl)(ŷk − ŷl)2 (B.12)

where

δ(yk, yl) =


1, if xk = xl

0, if xk 6= xl

(B.13)
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