
Dynamic Object Partitioning and

Replication for Cooperative Cache

Omar Asad

Doctor of Philosophy

School of Computer Science
McGill University

Montreal, Quebec, Canada

January 2021

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Doctor of Philosophy

c©Omar Asad, 2021

Abstract

Data intensive applications are usually designed using a multi-tier architecture that com-
prises a web tier, an application tier and a backend database tier. To process requests,
application servers fetch data from the backend database. For faster processing, the ac-
cessed data or objects are cached at the application servers which is known as application
caching. To fully utilize the aggregated cache space of all application server caches, they
can connect together to build a cooperative cache. In such a case, an application server
can read an object from its local cache or from a remote cache.

While a cooperative cache can reduce frequent access to the backend database, local
cache access is still preferable over remote access because it is much faster. However,
achieving a high rate of local cache access is a challenging task. Current enterprise work-
loads are complex and dynamic; user requests typically access several objects, different
requests access overlapping object sets, object access is highly skewed and object popu-
larity changes over time.

In this thesis, we propose mechanisms to increase the efficiency of cooperative cache
solutions. In a first step, we analyze a real workload to understand the major charac-
teristics of its type of requests and how they access objects. Furthermore, we develop a
suite of request and object partitioning approaches that partition requests across servers
and objects across caches to achieve a high local cache hit as well as balance application
loads.

i

We further augment the data partition techniques with a novel data replication tech-
nique that replicates objects into caches of the application servers that need them the
most. While doing so, we carefully consider different kinds of overhead such as the need
to update all replicas, the overhead of different consistency protocols and the fact that
cache space is limited.

Both are purely distributed as well as our replication solutions support dynamic
workloads where access pattern can change; they monitor the workload and trigger a
replication and/or re-replication if need arises.

We integrated our partitioning and replication solutions into an existing, cooperated
cache framework, and extended the framework significantly to facilitate dynamic con-
figuration changes.

We evaluated the various partitioning and replication approaches using the YCSB
and RUBiS benchmarks, showing that our approaches are applicable in different dy-
namic workload scenarios and are able to autonomously capture workload changes and
adapt instantly. Furthermore, experimental results show that our replication solution out-
performs a well-known replication solution.

ii

Abrégé

Les applications à grand volume de données sont habituellement conçues au moyen
d’une architecture multiniveau qui comprend un niveau Web, un niveau applications et
un niveau base de données principale. Pour traiter les requêtes, les serveurs d’applications
récupèrent des données de la base de données principale. Afind’accélérer le traitement,
les données ou objets consultés sont antémémorisés dans les serveurs d’applications; ce
qui est connu comme la mise en cache. Dans le but d’utiliser tout l’espace des caches cu-
mulés dans tous les caches du serveur d’applications, les caches peuvent être regroupés
pour créer un cache coopératif. Le cas échant, un serveur d’applications peut lire un objet
de son cache local ou d’un cache distant.

Même si un cache coopératif peut réduire des accès fréquents à la base de don-
nées principale, il est préférable d’accéder à un cache local qu’à un cache distant, car
c’est beaucoup plus rapide. Toutefois, l’atteinte d’un fort taux d’accès à des caches
locaux représente une tâche ardue. Les charges de travail actuelles sont complexes et
dynamiques. Les requêtes des utilisateurs accèdent typiquement à plusieurs objets; dif-
férentes requêtes accèdent à des ensembles d’objets qui se chevauchent; l’accès aux ob-
jets est très inégal; la popularité des objets change avec le temps.

Dans cette thèse, nous proposons des mécanismes permettant d’augmenter l’efficience
des solutions de caches coopératifs. Tout d’abord, nous analysons une véritable charge
de travail afin de comprendre les principales caractéristiques de son type de requêtes et
comment ces dernières accèdent à des objets. Ensuite, nous mettons au point une série

iii

de méthodes de partitionnement des requêtes et des objets, qui partitionnent les requêtes
de tous les serveurs et les objets de l’ensemble des caches dans le but d’obtenir un taux
de réussite local élevé et d’équilibrer les charges des applications.

Puis, nous augmentons les techniques de partitionnement des données à l’aide d’une
technique novatrice de réplication des données qui reproduit des objets dans des caches
des serveurs d’applications qui en ont le plus besoin. Ce faisant, nous examinons soigneuse-
ment différents types de temps système, comme la nécessité de mettre à jour toutes les ré-
pliques, le temps système de divers protocoles de cohérence ainsi que le fait que l’espace
de caches est restreint.

Les deux techniques sont entièrement distribuées et nos solutions de réplication con-
viennent aux charges de travail dynamiques où les modes d’accès changent. Elles surveil-
lent la charge de travail et déclenchent une réplication et/ou une nouvelle réplication, au
besoin.

Nous avons intégré nos solutions de partitionnement et de réplication dans une infras-
tructure existante de caches coopératifs, et nous avons grandement étendu l’infrastructure
afin de faciliter des changements dynamiques de configuration.

Nous avons évalué les diverses méthodes de partitionnement et de réplication à l’aide
des tests de performance YCSB et RUBiS, qui ont démontré que nos méthodes peuvent
être appliquées à différents scénarios de charges de travail dynamiques et qu’elles peu-
vent capter de manière autonome des changements de charge de travail et s’adapter in-
stantanément. De plus, les résultats des expériences démontrent que notre solution de
réplication surpasse une solution de réplication bien connue.

iv

Acknowledgements

Foremost, I would like to thank my supervisor, Professor Bettina Kemme, for her con-
tinued guidance and support throughout my PhD study. The amount of personal time
she puts towards my work was very valuable. Her ability to look at the research from
different angels was very helpful. Her contribution and guidance is priceless.

I extend my gratitude to my PhD committee, Professor Jörg Kienzle and Professor
Derek Ruths, for their useful feedback and research ideas. They were open for discus-
sions with no restrictions.

I’m grateful to the System Administrator at the School of Computer Science. They
facilitated my access to all computing resources to run experiments. In addition, I would
like to thank my colleagues at the Distributed Information System lab for their collabo-
ration and insightful discussions.

Lastly, I would like to express my appreciation to my family, especially my mother,
Afaf, and my brothers and sisters for their support and encouragement. I’m also thankful
for my wife, Asma, who enormously supported me throughout my PhD journey. Finally,
I’m very grateful to my two kids, Bushra and Zuhair, whose presence empowered me to
finish this thesis.

v

Contents

1 Introduction 1

1.1 Challenges . 3

1.2 Thesis Contribution . 5

1.3 Thesis Organization . 8

1.4 Publications and Contributions of Students 8

2 Adaptive Cooperative Cache Framework 9

2.1 Multitier Architecture . 9

2.1.1 Request Characteristics . 10

2.1.2 Caching . 10

2.2 Cooperative Cache . 12

2.2.1 Handling Write Requests . 13

2.3 Data Structures for Cache Directory 14

2.3.1 Overview Data Structures . 14

2.3.2 Choosing false positive rates for global and local bloom filters . 18

2.3.3 Comparison using a global Bloom filter vs. not using a global
Bloom Filter . 19

vi

2.3.4 Experimental results . 21

2.4 AdaptCache: Adaptive Cooperative Cache Framework 25

2.4.1 Request- and Object Policies 26

2.4.2 Logging . 27

2.4.3 Policy Deployment . 27

2.4.4 Lazy Data Migration . 28

2.4.5 Workload Meta-data . 29

3 Adaptive Object Partitioning and Migration 31

3.1 Workload Analysis . 32

3.1.1 Request Characteristics . 32

3.1.2 Object Characteristics . 35

3.1.3 Further Analysis . 36

3.2 Policy Generation . 37

3.2.1 Parameter Collection . 39

3.2.2 Object Distribution First . 41

3.2.3 Request Distribution First . 44

3.2.4 Assigning Partitions to Servers 47

3.2.5 Reducing Workload Meta-data 48

3.3 Evaluation . 49

3.3.1 Benchmarks . 49

3.3.2 Understanding Partitioning Behavior 50

3.3.3 Algorithm Comparison . 52

3.3.4 Assigning Partitions to Servers 55

vii

3.3.5 Meta-data Pruning . 57

3.3.6 Log Window Size Analysis . 60

3.3.7 Result Highlights . 61

4 Consistency and Space Aware Cache Replication 63

4.1 Replication Challenges . 65

4.1.1 Data Consistency . 65

4.1.2 Limited Cache Space . 66

4.1.3 Dynamic Workload . 67

4.2 AdaptCache Replication Extension . 68

4.2.1 Extending the Parameter Collection 68

4.2.2 Extracting Operation Costs . 70

4.2.3 Independence from Distributed Solution 71

4.3 Basic Replication . 72

4.4 Managing Update Overhead . 74

4.4.1 Calculating Execution Costs 74

4.4.2 Random Write Distribution . 76

4.5 Managing Limited Cache Size . 79

4.5.1 No Write Operations in The System 80

4.5.2 Write Operations in The System. 81

4.6 Evaluation . 82

4.6.1 Experiments . 83

4.6.2 Limited Cache Space Analysis 85

4.6.3 Workload Changes Triggering Partitioning 86

viii

4.6.4 Read/Write Changes Triggering Replication 88

4.6.5 Solution Overhead . 88

5 Related Work 91

5.1 Data Partitioning and Migration in Distributed Database Systems 92

5.1.1 Data Partitioning . 92

5.1.2 Data Migration . 95

5.2 Data Replication . 99

5.2.1 Full Data Replication . 99

5.2.2 Partial Data Replication . 102

5.2.3 Data Replication in the Cloud 104

5.2.4 Data Consistency for Replicated Data 104

5.3 Data and Space Management for Distributed Caches 107

5.3.1 Cache Architectures and Data Partitioning 107

5.3.2 Data Replication and Caching 110

5.3.3 Managing Cache Space . 111

5.4 Dynamic System Configuration . 112

6 Conclusions 114

7 Future Work 117

7.1 Cooperative Cache vs Stand-alone Cache 118

7.2 Optimizing Log Messages . 119

7.3 Autoscaling Cache Nodes . 119

7.4 Fault Tolerance . 120

ix

7.5 Applying Caching Solutions to NUMA 121

Bibliography 123

Acronyms 135

x

List of Figures

1.1 Various Access Types Latencies . 3

2.1 Multitier Cache Architecture . 10

2.2 Cooperative Cache . 12

2.3 Optimized Bloom Filter Directory Performance 24

2.4 Adaptive Cooperative Cache Framework 26

3.1 Accumulative request drift over time 34

3.2 Item popularity . 36

3.3 Temporal Locality . 37

3.4 Assignining partitions to servers example 48

3.5 Req-GP algorithm performance . 51

3.6 Partitioning Strategies . 53

3.7 Smart Assignment of Partitions to Servers 55

3.8 Graph Construction and Partitioning Time 57

3.9 RUBiS and Req-GP: pruning meta-information 58

3.10 RUBiS and Obj-GP: pruning meta information 59

xi

3.11 Impact of time window size . 61

4.1 Impact of number of replicas on update latency 66

4.2 Impact of limited cache space on latency 66

4.3 Partitioning vs Basic replication performance 73

4.4 75% write workload . 84

4.5 75% cache space . 85

4.6 Dynamic reconfiguration . 87

4.7 Processing times . 89

xii

List of Tables

2.1 Global and local bloom filter configurations for pall “ 10´3, N “ 4 and
various n . 23

2.2 Request and object logged information 29

3.1 Collected parameters for request and object partitioning 40

4.1 Parameters for object replication . 69

4.2 Cost (Latency) . 71

xiii

1
Introduction

With the unprecedented increase of web users and the abundance of web applications,
performance is still considered as the key factor for both user satisfaction as well as
service provider success. Performance, which can be expressed by the response time
experienced by the user, has crucial impact on applications [27, 25, 72, 7, 71] where
spending extra milliseconds on users’ requests can lead to a considerable revenue loss
for the respective web application. Google, for instance, announced that a half second
delay decreases their traffic by 20%1. Similarly, Amazon announced that every 100 ms
of additional latency costs them 1% revenue loss2. These drops in traffic and revenue
can easily translate to millions of dollars in losses3. The impact of performance on user
behaviour was further demonstrated by a study conducted by Yahoo! Labs [3]. In sum-
mary, the lower user response times are, the more satisfied the users will be, and as a
result, the more profitable the web business will be.

Many web businesses rely on a multi-tier architecture to build and manage their ser-
vices [121]. In such an architecture, client requests are handled by a sequence of service
components, which often include a web-service that handles web pages, an application
service that executes the business logic [77], and a database system that stores business
critical information. In principle, each service can have a set of actual servers and a

1http://glinden.blogspot.ca/2006/11/marissa-mayer-at-web-20.html
2https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
3https://www.soasta.com/wp-content/uploads/2014/10/eBook-eCommerce-Best-Practices.pdf

1

Introduction

load-balancing [95, 99] mechanism distributes requests across servers. In reality, such
service replication is most typical for the application tier while the database tier usually
remains a monolithic block, because few commercial database systems offer advanced
distribution or replication support at a reasonable price.

Therefore, an important scalability issue with such architecture is that with increasing
user demand, the database can become the bottleneck and harm performance. A well-
established solution to tackle this scalability issue is application caching where each
application server is augmented with a local cache layer that stores the data most re-
cently fetched from the database. A subsequent request for data that is locally cached
avoids expensive database access, alleviating database load and reducing user latency.
However, in most current implementations each application server cache is oblivious of
other server caches, and data can be replicated across caches. Thus, aggregated cache
space is not well utilized and, at the same time, data inconsistency between caches and
the back-end database can occur.

To overcome these limitations, a cooperative cache architecture that allows an appli-
cation cache to access other application caches was developed [2]. In this architecture,
each application cache maintains a subset of the objects and each application server can
access objects residing in the local cache, as well as the remote caches. Only if an object
is in no cache, does it need to be retrieved from the database. The main advantage of
such architecture is that the full cache space is utilized.

However, data access latency can be quite different between local cache, remote
cache, and database. To illustrate different latencies between various types of data ac-
cess, Figure 1.1 shows the latencies in the prototype used in our research for fetching an
object from a local cache, a remote cache, and a database4. The figure shows that both
local and remote cache accesses have lower latencies than the database access. However,
latency of local object access is 10 times lower than remote cache access. This is due
to the fact that accessing a remote cache requires marshalling and unmarshalling of re-
quest and response messages as well as network delays. We believe that remote access

4using JBoss as an application server, and PostgreSQL as a database system. More details of our system
are presented in Chapters 2 and 3.

2

1.1 Challenges

Figure 1.1: Various Access Types Latencies

has slightly less latency compared to database access because database access requires
complex query processing while remote access only need to fetch the already formatted
object from the cache storage. Therefore, in the ideal case, requests find most of the data
they need in the local cache, find most of the other data in the remaining caches, and have
to access the database as seldomly as possible. However, given the complex workloads
of web businesses, achieving this ideal case is a challenging task, as we explore below.

1.1 Challenges

Exploiting the fast local cache access requires addressing the following challenges.

Distribute requests and objects across servers The first challenge is to be able to
assign requests to a server and allocate objects to its cache so that requests can find as
many objects as possible in their local cache. We call this locality-aware request and
object partitioning. At the same time, the load across servers should be balanced. The
challenge stems from the complexity of current enterprise workloads where a request
accesses many objects and an object might be accessed by many different request types.
To illustrate, assume there is a user searching on eBay5 for HP laptops while another
looks for new laptops. If the database contains a new HP laptop, the data sets accessed
by the two requests overlap. This workload aspect, which we refer to as request overlap,
makes the partitioning hard.

5https://www.ebay.com/

3

1.1 Challenges

Object replication A well-known technique to overcome the partitioning challenge is
data replication, where objects are replicated to caches that require them. Replicating
objects across caches enhances the performance by allowing requests to access objects
locally instead of performing costly remote or database access. However, as mentioned
before, having objects in several caches induces two major challenges. The first is guar-
anteeing object consistency across caches in case of update requests [46]. An update
request to an object located at a certain cache needs to be propagated to object replicas at
other caches or needs to invalidate the replicas in other caches. If this is not done, users
might be served outdated data. This step of updating or invalidating object replicas de-
grades the performance since an update request has to spend extra time communicating
with other nodes [1]. However, the overhead varies based on the used consistency pro-
tocol. Strong consistency requires more time updating replicated objects, while a weak
consistency protocol provides typically fast response to the users, but inconsistencies are
allowed to occur. Thus, the challenge here is not only to take update requests into consid-
eration when replicating an object, but also to consider the consistency requirements of
the application. The second challenge for conducting object replication is that replicating
objects consumes the limited cache space, which leads to a smaller number of different
objects to be cached across caches, leading again to more database access. In summary,
object replication, although it potentially can improve performance, needs to deal with
the two major issues of data consistency and a limited cache space.

Dynamicity of Workloads Application workloads can change quickly [120] reduc-
ing the effectiveness of how data is currently partitioned and/or replicated. A workload
change occurs when the relative frequency of request types changes (e.g. browsing vs
purchasing) or when the data set accessed by a particular request changes. As an exam-
ple of the second case, assume again that a user is searching on eBay for HP laptops with
the result sorted from newest to oldest listing, showing a total of 10 laptops as the first
output page. This means that newly listed items appear first. If a new laptop is inserted
into the database and then the same request is submitted again, the result set will be
slightly different. Another workload change aspect is a read/write request ratio change.
Given such workload changes, finding a good distribution/replication assignment for re-

4

1.2 Thesis Contribution

quests and objects is a dynamic task and placements need to be adjusted on a regular
basis.

1.2 Thesis Contribution

This thesis provides novel approaches for conducting adaptive request and object parti-
tioning as well as replica assignment in a cooperative cache environment with dynamic
workloads. These approaches are fully independent of the underlying application. That
is, they can work with any application, and with different number of application servers
or different network setups. Furthermore, the provided solution is adaptive to workload
changes, as it transparently monitors the workload and triggers the appropriate actions
whenever changes have been detected. More concretely, the thesis provides the following
contributions.

Workload Analysis In order to provide a practical data partitioning and replication
solution, we analyze workload patterns of a popular e-commerce site, namely e-Bay6.
The goal of conducting such analysis is to help us understand the main characteristics
of requests and the objects they access as typically found in online applications. To this
end, we develop a workload crawling tool that concurrently calls various eBay search
APIs using specific parameters and then extract and organize the output for each API to
generate useful workload statistics. We determined that search requests tend to change
the set of objects they access over time. However, we found that the degree of change
varies among request types as they have different search semantics. For objects, we deter-
mined that their overall popularity as well as their popularity over time vary accordingly.
The adaptive request and object partitioning algorithm that we describe in this thesis take
these observations into account. Moreover, we customize our benchmarks and workloads
to emulate the patterns we observed.

Requests and Objects Partitioning We developed a suite of request and object parti-
tioning solutions which aim in distributing a set of requests and their respective objects

6https://www.ebay.com/

5

1.2 Thesis Contribution

across a set of application servers such that most requests can usually find most of their
data in the local caches, and load is equally distributed across these servers. We lever-
age both graph and hyper-graph data structures [26, 91] to represent the relationships
between requests and the objects they access. We explore two solution spaces. The first
one is request distribution first, by which we let nodes in the graph represent requests
in the workload and edges represent objects. The idea is to place requests that are ac-
cessing the same objects close to each other in the graph/hyper-graph. Then we use a
graph/hyper-graph partitioning library to partition the graph into sub-graphs, each of
which contains a subset of the workload requests that are accessing overlapping sets of
objects. We further develop a greedy algorithm to assign the respective objects across
these partitions according to access frequency. The second solution space that we ex-
plore is object distribution first. That is, we build a graph/hyper-graph by mapping each
object in the workload to a vertex in the graph/hyper-graph and then let the requests rep-
resent the edge/hyper-edges. Thus, objects that are accessed by the same request will be
close to each other in the graph. Then, similar to what we have done in the first solution
space, we use a graph/hyper-graph library to partition the object graph/hyper-graph into
sub-graphs, each of which contains a set of objects that are closely related. We again use
a greedy algorithm to distribute the respective requests across object partitions in a way
that maximizes the local cache access. The two solution spaces aim at minimizing the
number of remote cache accesses while balancing the load across partitions.

Object Replication Since perfect data partitioning, that would completely prevent re-
mote cache access, is impossible [26, 87, 44, 61], we develop a novel object replication
solution that is orthogonal to the used request and object partitioning technique. Our
replication solution assumes that the underlying requests and objects are reasonably well
distributed across caches. From there, we decide about replicating a set of objects that
are accessed by requests assigned to different partitions. The proposed solution decides
for each of these objects, to which partitions, if any, it should be replicated to. To do so,
we evaluate the trade-off between the gain of replicating an object and the performance
overhead for maintaining data consistency. Based on this evaluation, the solution repli-
cates objects so that the overall response time is kept low. The solution is oblivious to

6

1.2 Thesis Contribution

the deployed consistency protocol. As such, it adapts to various consistency setups. In
addition, in case of limited cache space, the solution takes into account the trade-off of
adding an object replica to a full cache, which reduces access for this object but requires
evicting another object that now must be retrieved from the database whenever needed.

Adaptive Caching Framework We extend an existing cooperative cache (CC) frame-
work [2] to support a fully dynamic and adaptive caching solution. In order to do so,
we develop a workload tracking mechanism that continuously observes which requests
are executed and what objects they access, and detects workload changes. We categorize
workload changes into either a general workload change or a read/write change. A gen-
eral workload change occurs when the request type distribution or object popularity have
changed for some objects, leading to a decreased cache hit ratio. Thus, re-partitioning of
requests and objects is triggered to improve the cache hit ratio. As re-partitioning may
lead to a costly object migration from one cache to another, we assign new partitions to
caches in a way that keeps the number of objects that need to be moved low. We also
reduce the processing time of the partitioning step by ignoring requests that do not lend
themselves to caching because, for example, they are not popular or they change their
result set too frequently. A read/write change, on the other hand, occurs when the cache
hit ratio does not change but the ratio of objects reads compared to object writes changes.
In this case, we do not repartition but only reconsider which objects to replicate.

Implementation and Evaluation We have implemented our solution and integrated
it into the CC framework, now called AdaptCache. The original CC uses several open
source components: JBoss as an application server, Apache web-server7 as front-end
load-balancer and Ehcache8 as a caching component. In order to add adaptability, we
extended Ehcache to support migration of objects and Apache web-server to support
dynamic request distribution.

To show that our solutions are practical, we have conducted extensive experiments

7https://httpd.apache.org/
8http://www.ehcache.org/

7

1.3 Thesis Organization

using two popular benchmarks; RUBiS9 and YCSB10. Both were adapted to better emu-
late dynamic workloads. The experimental results show that our partitioning and replica-
tion solutions greatly enhance performance in terms of user perceived latency as well as
resource utilization compared to existing solutions. In addition, a comparison between
different partitioning solutions shows that, in general, most partitioning solutions behave
reasonably well. However, performance can vary depending on several factors, such as
the complexity of the workload, the frequency of workload changes, and the type of
workload change.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents the overall architecture of Adapt-
Cache, the adaptive caching framework we use, and while doing so introduces some
necessary background information. Chapter 3 presents the workload analysis part as well
as a suite of partitioning solutions and compares their performance in detail. Chapter 4
presents the consistency and space-aware replication solution and its performance re-
sults. Chapter 5 presents the related work. Chapter 6 concludes the thesis and finally,
Chapter 7 highlights several directions for future work.

1.4 Publications and Contributions of Students

I am the sole student contributor of all the research presented in this thesis. The contribu-
tions in Chapter 3 have been published in [5]. I am the sole student author on this paper.
Bettina Kemme was supervising the work and supported me in writing the paper.

9rubis.ow2.org
10https://github.com/brianfrankcooper/YCSB

8

2
Adaptive Cooperative Cache Framework

This chapter follows a step-wise approach to present the adaptive caching framework
this thesis is utilizing and enhancing. We first present a typical multi-tier architecture
cache, then show how this architecture is extended to construct a Cooperative Cache
(CC) framework. From there, we show how CC is augmented with an external adaptive
monitoring and controlling tool that is capable of hosting data partitioning and replica-
tion solutions, monitoring workload, and triggering an appropriate action once a work-
load change is detected.

2.1 Multitier Architecture

Multitier architectures are widely used as a typical building paradigm for enterprise ap-
plications [121]. They facilitate managing different parts of the application as well as
scaling these parts horizontally and vertically. Figure 2.1 depicts the standard archi-
tecture model. In this model, user requests, typically issued through web-browser or
programming APIs, are first intercepted by a front-end load-balancer (LB). The LB dis-
tributes these requests across a set of application servers (AS) that are horizontally scaled.
Each of these AS contains the same business code that can handle the different requests
and returns the result to the user through the LB. Request execution often requires com-
municating with the backend database (DB) that maintains durable application data.

9

2.1 Multitier Architecture

2.1.1 Request Characteristics

Generally, a request represents a user-initiated action which is executed by the busi-
ness logic and returns a result to the client. In a web application, a request is usually
submitted over http, indicating a URL. This URL string typically includes the domain
name, the targeted page (method), and parameter names along with their values. Thus,
we can say that a request calls a specific business method with certain values for its
input parameters. In this thesis, we say that a particular request initiated by a client is
called a “request instance”, and all request instances that have the same URL belong to
the same request type. During execution within the AS, each request instance is tagged
with a unique UIUD. If it is clear from the context, we use "request" and "request type"
interchangeable.

2.1.2 Caching

Without caching, the AS has to communicate with the DB every time a request requires
access to data. This DB access is a costly operation that can negatively affect user re-
sponse time. In addition, as the load increases, more and more requests are concurrently
accessing the DB which causes a bottleneck that further worsens the response time. This
is where caching can have a potential benefit on the overall system performance, and as
a result on user response time.

AS1

AS2

AS3

DBLB
requests

1

LC1

LC2

LC3

Figure 2.1: Multitier Cache Architecture

One widely used caching architecture is application caching which augments each

10

2.1 Multitier Architecture

AS with a local cache (LC) instance as depicted in Figure 2.1. The local cache keeps the
objects that were accessed by recently executed requests. User requests typically trigger
database access through SQL queries which can be quite complex; this means that the AS
does not usually know immediately which objects a request will access. Thus, a standard
mechanism is to execute the query on the database but to request only the primary keys
of the objects instead of retrieving the entire objects. With the identifiers determined, the
AS gets the actual objects from the local cache, and those that are not in the cache are
retrieved from the database through a direct primary key look-up. At the same time, these
objects are loaded to the cache to speed up future queries. Thus, the main advantage of
this architecture is that it can avoid object transfer from the DB as long as the objects are
stored locally.

However, using independent local caches causes each server to load objects individ-
ually, not being aware of the cache content of other servers nor being able to access their
caches. If the number of objects accessed by the requests assigned to the server is bigger
than the cache capacity of its local cache, it will come to thrashing. The LC will fill up
quickly, triggering cache eviction of objects that might be accessed again shortly after.
Such evict and reload leads to database access that can be avoided were the cache big
enough. With this, user response times become longer and the database more loaded.
Could a server also access the cache of another server, this load on the database could be
reduced.

Another effect of independent local caches is that objects will be replicated across the
servers. This is particularly the case if the LB dispatches user requests across ASs using
a content blind distribution mechanism, such as round robin, that is not aware of what
each cache stores and what objects are accessed by a request. Then requests at different
ASs could load the same object into their caches, as caches are not aware of each others
content. With this, a considerable number of objects might be replicated.

However, replication can lead to inconsistencies in case of write requests. If one AS
receives a write request, it will only update its local copy and the database, while other
caches replicas remain unmodified as the cache is oblivious of the contents of other
caches. This can lead to stale caches [32] and harm the correctness of the application.

11

2.2 Cooperative Cache

To overcome these limitations, [2] extended the basic multitier caching architecture
by letting different LCs communicate with each other in order to form a Cooperative
Cache, or CC.

2.2 Cooperative Cache

AS1

AS2

AS3

DBLB
requests

1

C1

C2

C3

Cooperative Cache(CC)

Figure 2.2: Cooperative Cache

The Cooperative Cache, shown in Figure 2.2, is a multitier distributed caching ar-
chitecture that allows all AS caches to communicate with each other in order to have a
cluster of cache nodes. CC allows any cache to manipulate objects stored in any cache in
the cluster. When an AS requests an object that resides in one of the caches, it is retrieved
from that cache. Only if none of the caches has it, it will be loaded from the database
and then stored in the local cache of that AS.

One important issue within CC is how each cache can keep track of objects loaded
to or deleted from other caches. For this purpose, CC maintains a cache directory at each
cache that keeps track of the cache content of all caches. Whenever an object is loaded
to a cache, the cache multicasts a message to all other caches, which adds the object
identifier along with its location to their cache directories. Similarly, once an object is
evicted from a cache, the cache multicasts a message about this eviction to all caches
which remove the entry for this object from their directories. When the AS requests an
object from the local cache, the local cache will first check, using the cache directory, if

12

2.2 Cooperative Cache

the object is stored locally. If this is the case, the object will be directly returned from
the local cache. If the object is not present in the local cache but is in a remote cache,
the local cache will fetch the object from that cache and then return it to the AS without
storing it locally. If the object is neither present at the local cache nor at the remote
caches, a cache fault occurs. The AS will load it from the database. It will also store it in
the local cache.

2.2.1 Handling Write Requests

Having a remote cache access capability, the cooperative cache needs to handle write
requests and guarantee a consistent state between cached objects and their respective
durable copies in the database. To this end, we extend the read-write cache strategy as
introduced by Hibernate1 to handle write requests at any cache. Whenever a cache re-
ceives a write request and before performing the actual write on the database, it replaces
the value of the object, located either in a local or a remote cache, with a soft lock. In
the mean time, if another request tries to read or write to this locked object, the request
has to go directly to the database to perform the respective operation. Note that we rely
on the database management system to guarantee an appropriate isolation level for con-
current transactions. Once the write has been performed at the database, the value of the
locked object in the cache is replaced with the newly updated object and other requests
can resume their work on this updated object. As a result, the cached object becomes
consistent with its respective database copy.

Overall, this is a strong consistency policy. Clearly, other mechanisms are possi-
ble, that may be less or more costly. Our system is independent of the actual write-
consistency mechanism in place, and finding a good update mechanism was not part of
this thesis.

Should an object be cached at several locations, additional mechanisms have to en-
sure that different caches do not have different values. We describe in more details replica
consistency mechanism in Chapter 4.

1http://www.ehcache.org/documentation/2.7/integrations/hibernate.html

13

2.3 Data Structures for Cache Directory

2.3 Data Structures for Cache Directory

The cache directory is replicated at each cache and is responsible of keeping track of all
objects across caches as well as their respective locations. Here, we will discuss three
data structures that can be used as cache directory and compare their time and space
performances.

2.3.1 Overview Data Structures

HashMap The original version of Cooperative Cache [2] uses a HashMap that stores
key/value pairs. The key is the object identifier and the value is the set of object locations.
Hence, an object that is not cached does not have en entry, an object that is cached at a
single location, i.e. not replicated, will have an entry with a single location value and an
object that is replicated will have an entry with a multiple locations’ value.

Adding an object key along with its value is done with a simple put operation. In-
ternally, Hashmap in Java, which is the language used in the cache layer of our system,
uses an array of buckets to store entries [79]. When adding an entry, the put operation
calculates first the hashcode of the entry key and based on the generated hashcode, it
finds a bucket and stores the entry into that bucket. Note that HashMap stores both the
key and its respective value into the bucket.

Retrieving an object location from a hashmap is done through a get operation. The
get operation calculates first the hashcode of the object’s key to find the respective bucket
that should ideally store the entry. If the entry exists in that bucket, it returns a single ob-
ject location in case of a non replicated object or multiple locations in case of a replicated
object. Deleting an object from the hashmap is conceptually similar. The delete opera-
tion calculates the hashcode of the key and then searches for the respective bucket for
that entry and if exists, it removes it.

An advantage of using hashamp is the time efficiency for adding and retrieving ob-
jects as these operations only require calculating a hashcode of an object’s key and then

14

2.3 Data Structures for Cache Directory

retrieve its actual location. However, a downside of utilizing hashmap as a cache direc-
tory is the amount of memory space required as each object is represented as a key/value
pair. This space consumption, in turn, decreases the overall memory space allowed for
caching objects themselves. That is, the more space is used for the cache directory, the
less space is available for the actual objects.

Bloom Filter To overcome the space consumption issue, we look in this thesis at bloom
filters [14] for the cache directory. Bloom filters have been proposed for caching in the
past [40]. Bloom filter is a fast and space-efficient data structure that allows easy look-up
for keys within a set. A bloom filter is a bit array of m bits. When an element (in our
case object), is added to a set (in our case a cache), the element key is used as input to k

hash-functions, each returning an integer smaller than m, setting the corresponding array
positions of the bloom filter to 1.

To check whether an element is a member of the set, its key is again input to the k

hash functions. If the corresponding array positions returned by these hash-functions are
all set to one, then the probability is high that the element is member of the set. If any of
these positions returns false, then the element is certainly not a member of the set. There
can be false positives but not false negatives.

The probability of a false positive can be limited by choosing appropriate values of m
and k, given the number of elements in the set. In particular, given a desired (maximum)
false positive rate p, and an expected number n of objects to be stored, the optimal
number of bit m can be calculated as2:

m “
n ˚ lnppq

pln2q2
(2.1)

that is, it is proportional to the number of elements in the set. And the optimal number
of hash functions k can be calculated as:

k “ m{n ˚ lnp2q (2.2)

2https://en.wikipedia.org/wiki/Bloom_filter

15

2.3 Data Structures for Cache Directory

or
k “ ´

lnppq

ln2
“ ´ log2ppq

The original bloom filter can not perform deletion by simply resetting a bit to zero
again because the bit could have been set by multiple elements. As in our caching sys-
tem deletion can occur, we need to use a generalized version of bloom filter known as
counting bloom filter [41]. It extends the array positions (m) from being a single bit
to multi-bit counters. To add an element, the corresponding counters are increased by
one. To check an element existence, if all of the corresponding counters are non-zero,
there is a high probability that the element is stored. Otherwise, it is certainly not stored.
To delete an element, the corresponding counters are decremented by one. To prevent a
counter overflow, the size of the counter can be configured to a number of bits that should
be large enough to handle the max number of elements that can set a certain counter.
Thus, a counting bloom filter requires an order of magnitude more space compared to
the original bloom filter.

In a distributed scenario with c different local caches, each storing a subset of the
objects, past work [40] created the cache directory by having a bloom filter for each of
the caches. In our approach we also create these filters, referring to them as local bloom
filters. Additionally, we create what we call a global bloom filter which keeps track of
all objects that are stored in any of the caches. This will help us to detect quickly if an
object is not cached anywhere.

With this approach, to add the information that an object is cached at a certain loca-
tion, the object key is inserted into two bloom filters. The first one is the global bloom
and the second is the bloom filter of the cache the object is added to. To look up an
object location, the global bloom filter is queried first. If it returns a positive result, the c

bloom filters are sequentially queried. As soon as a bloom filter returns a positive result,
the cache to which this bloom filter refers to is accessed to fetch the object. If the global
bloom returns a negative result, we know that the object is not cached anywhere, and we
do not need to perform any queries.

The global bloom filter can reduce the number of lookups that we have to perform,
in particular when the cache hit ratio is low, that is, there are many requests for elements

16

2.3 Data Structures for Cache Directory

that are not in any cache.

Compared to Hashmap, our directory structure based on counting bloom filters re-
quires less space as it does not store the actual object keys and their locations. However,
it requires more time to determine object locations as it needs to perform several hash
function calculations on both the global bloom filter as well as the local bloom filters.
Please note that for convenience, we often call it only "bloom" instead of "bloom filter".

Optimized Bloom Filter If the global bloom returns a negative result, we know that
the object is not cached anywhere. In the worst case scenario, the global bloom may
return a positive result but the key is actually stored at the last queried bloom or in none
of the locations because of the possibility of false positives in both the global and local
blooms. In such a case, all of the c local blooms have to be queried. However, because
each of these query operations requires hashing the key multiple times, equal to the
number of the used hash functions, the total time required to check all blooms will be
relatively high which adds up to the total request time.

Assuming that the caches all hold a similar number of objects, it makes sense that all
the local bloom filters have the same size m of counters, and number k of hash-functions.
Therefore, if we enforce that they all use the same k hash-functions, then, upon a query
for a given key, we only need to calculate the values for each of the hash-functions once,
and consecutively check whether the values are set for each of the local bloom filters.

Note that it would be possible to enforce that also the global bloom filter has the
same size m as the local bloom filters by choosing an appropriate false positive rate for
the global filter. However, this does not mean that it would have the same number k of
hash functions, as the optimal number of hash functions does not only depend on m but
also on n and the global bloom filter keeps track of many more objects than any local
bloom filter. Thus, in our implementation, the global bloom filter works with a different
set of hash-functions, and thus, will require extra calculations.

17

2.3 Data Structures for Cache Directory

2.3.2 Choosing false positive rates for global and local bloom filters

For a single bloom filter, a false positive rate of p means that if we check for a key that is
not in the set, the bloom filter will have all the counters for that key set to non-zero and
return true with a probability of p.

The question now arises what is the false positive rate for our 2-level approach. As-
sume that the global bloom filter has a false positive rate of pg and each of the c local
filters has the same false positive rate pl. Assume further that the global bloom filter has
a different size than the local filters which, as we mentioned before, is a realistic assump-
tion. As a result, its hash-functions have a different result domain and are independent
of the hash-functions of the local filters. This means that the probability that a given key
triggers a false positive on the global filter is independent of the probability that this
key triggers a false positive on any of the local filters. Furthermore, as each of the local
filters stores a different set of objects and the hash-functions generate uniform random
distributions, the probability that a given key triggers a false positive on one local cache
is independent of the probability that it triggers a false positive on one of the other local
filters. Thus, for a key of a cached object to result in a false positive, it must first be
a false positive for the global cache, which has probability pg. Once that false positive
occurs, the probability to trigger a false positive for any of the local filters is pl. As there
are c local filters, that second phase has a probability of c ˚ pl. Therefore, the overall
probability of a false positive is

pall “ pg ˚ pc ˚ plq (2.3)

As such, given a desired maximum false positive rate pall, we have to choose pg and pl

so that the above equation is fulfilled.

One interesting observation is that the overall space requirement for all bloom filters
is independent of the values we choose for pg and pl but only depends on pall. This can
be derived from equations 2.1 and 2.2. Assuming a total number of objects n and c local
caches, then the global bloom filters holds n keys, and each local filter holds n{c keys.

18

2.3 Data Structures for Cache Directory

Then the total number of counters, that is m counters for the one global filter and m1

counters for each of c local filters can be calculated as

m` c ¨m1 “
n˚lnppgq

lnp1{2lnp2qq
` c ¨ n{c¨lnpplq

lnp1{2lnp2qq
“ n

lnp1{2lnp2qq
¨ plnppgq`c ¨ lnpplqq “

n
lnp1{2lnp2qq

¨

lnppg ¨ c ¨ plq

Thus, as long as the product pg ¨ c ¨ pl remains the same, the exact values of pg and pl

do not matter, the space requirements remain the same.

2.3.3 Comparison using a global Bloom filter vs. not using a global
Bloom Filter

In this section, we want to illustrate the advantage of having a global bloom filter com-
pared to having only local bloom filters.

We can actually approximate a system that does not use a global bloom filter by
having a global filter with a false positive of rate of pg “ 1 and a space requirement of
m “ 0, and thus, zero hash functions.

As the overall space requirements are the same as shown before, the local caches
will be larger than if there is a global bloom filter, and the false positive rate of the local
caches must be pl “ pall{c, and thus, smaller than if there is a global bloom filter. With
this, the number of hash functions without using a global filter is actually larger than
when we use one.

Theorem 1. Let kwith be the total number of hash functions when using the global bloom

filter (i.e. pg < 1), kwithout be the total number of hash functions when not using a global

bloom filter and c ě 1 be the total number of local bloom filters then kwithout ě kwith.

Proof. From Equation 2.2 we can see that in case of a global bloom filter, the global
bloom filter has kg “ ´log2ppallcpl

q “ ´log2ppallq` log2pcq` log2pplq hash functions, and
each local filter has kl “ ´log2pplq. In the case of no global filter, each local filter has

19

2.3 Data Structures for Cache Directory

k1l “ ´log2p
pall
c
q “ ´log2ppallq ` log2pcq hash functions. With this, we have:

k1l “ kg ` kl (2.4)

Thus, kwithout “ c ¨ k1l “ c ¨ kg ` c ¨ kl whereas kwith “ kg ` c ¨ kl. When c “ 1,
kwith “ kwithout “ kg ` kl. Since kg is always a positive number for any 0 ă pg ă 1,
then for c ą 1, kwithout ą kwith.

For example, assuming a system with a global bloom filter is configured to have 5
hash functions for the global bloom filter and 7 hash functions for each local filter, then
a system with no global bloom filter that achieves the same false positive rate will have
12 hash functions for each local filter. Assuming 4 caches and thus 4 local filters, then
kwithout “ 48 while kwith “ 33.

Based on this, let’s now look at the computational costs for checking whether a data
item is in one of the cashes. If the data item is not cashed, by using a global bloom
filter, we will only check this filter and then stop (unless there is a false positive, which
is very unlikely). This means performing kg hash calculations and then checking kg bits
in the global bloom. If there is no global bloom, we have to check each local bloom,
each providing a negative results (unless there is a false positive, again very unlikely).
If all local blooms use the same hash functions (optimized), then we have to perform
k1l ą kg hash calculations. On top, we have to perform c ˚ k1l bit checks. With a bit more
calculations, the following is easy to derive.

Lemma 1. Assuming a global bloom filter setup with kg hash functions for the global

filter and kl functions each for the local filter, having an equivalent system without global

filter will require kl extra hash calculations and c ¨ kl ` pc´ 1qkg checking of bits in the

filters if the item is not cached.

For the previous example with kg “ 5, kl “ 7, and c “ 4, checking for an input
that is not in the cache will cause an extra 7 hash calculations and an extra 28+15=43 bit

20

2.3 Data Structures for Cache Directory

checks if no global filter is used.

If the data item is cashed, when using a global bloom filter, we will first check that
filter and then, on average, half of the local filters until we find the one with the match.
This means performing kg hash calculations and then checking kg bits in the global
bloom, then kl hash-calculations (assuming all local blooms use the same hash function),
and then c{2 ˚ kl bit checks. This means in total kg ` kl “ k hash-calculations and kg `

c{2 ˚ kl bit checks. If there is no global bloom, we have to perform k1l hash calculations,
and c{2 ˚ k1l bit checks. This means, the same number of hash calculations but still more
checks. With a bit more calculations we can derive the following.

Lemma 2. Assuming a global bloom filter setup with kg hash functions for the global

bloom filter and c local bloom filters, having an equivalent system without global filter

will require on average p c
2
´ 1q ˚ kg extra bit checks.

For the previous example with kg “ 5, kl “ 7, and c “ 4, looking up a cached item
when not using a global bloom will cause an extra 5 bit checks.

Thus, deploying a global bloom filter is always beneficial but the effect becomes
more pronounced if there is not a large cache hit ratio or if we cannot perform our
optimized approach where we do hash-calculations only once and not for each of the
local bloom filters. Because, then we have to do hash calculations for each local bloom
until we have a match, and the local bloom filters have many more hash functions if there
is no global bloom filter.

2.3.4 Experimental results

For our experiments, we use four caches which implies that the cache directory com-
prises of four local blooms in addition to the global bloom, and set the overall false
positive rate to 10´3. Using formulas 2.3, we set the global and local false positive rates
to 0.0316 and 0.0079 respectively. We vary the total number of inserted objects across
caches (local blooms) from 500k to 3 Mio. and evenly distribute the total number of

21

2.3 Data Structures for Cache Directory

objects across caches. For instance, in case of 500k object, the global bloom holds infor-
mation about the entire cache space of 500k objects while each of the four local bloom
filters holds information about fourth of this number or 125k objects.

Table 2.1 shows all configuration parameters for both global and local blooms. Note
that these configurations represent a single local bloom as all local bloom filters have a
homogeneous configuration and we set the bucket size to 4 bits. The table shows that
for each number of cached objects n, the respective number of buckets, m, in the global
bloom is bigger than the local bloom due to the larger n. For the number of hash functions
k, the global bloom uses less hash functions than a local bloom as it relatively has a
bigger false positive rate. In addition, the table shows that as the number of inserted
elements increases, the number of buckets increases and that is for both global and local
blooms. Doubling the number of inserted elements, for example, doubles the number
of buckets. This can be also explained by looking at formula 2.1, which shows that the
number of inserted elements linearly affects the number of buckets. However, the number
of hash functions, k, stays constant when increasing the number of inserted objects. This
is because the number of hash functions, as formula 2.2 shows, is controlled by the ratio
of m{n which stays constant as the number of buckets is linearly increased with the
number of elements.

Space analysis: Figure 2.3a shows the size of the respective data structure with dif-
ferent number of cached objects that is only measured on one cache. Since both Bloom
and Optimized Bloom use the same internal data structure and thus they both have the
same storage size, we only show the memory size for the Optimized Bloom. The figure
shows that for both approaches, the size of the directory increases as the number of the
stored objects increases. However, in case of Optimized Bloom, such increase is much
less. Adding half a million objects increases the bloom size only 4 MB while it increases
the HashMap size with 20MB. In all cases, the figure shows that the HashMap requires
almost 4 times memory space compared to bloom filter. This is due to the compact data
array used for the former compared to the space costly HashMap data structure.

However, the respective memory saving depends greatly on memory size as well as
average object size. To clarify it more, assume a cache with three GB of space, and

22

2.3 Data Structures for Cache Directory

Table 2.1: Global and local bloom filter configurations for pall “ 10´3, N “ 4 and
various n

number of

cached objects (n)

false positive

rate (p)

number of

buckets (m)

number of hash

functions (k)

global local global local global local global local

21500k 125k 0.0316 0.0079 3,595,147 1,259,461 5 7

1 Mio. 250k 0.0316 0.0079 7.190.294 2.518.921 5 7

1.5 Mio 375k 0.0316 0.0079 10,785,441 3,778,382 5 7

2 Mio. 500k 0.0316 0.0079 14,380,587 5,037,842 5 7

2.5 Mio. 625k 0.0316 0.0079 17,975,734 6,297,303 5 7

3 Mio. 750k 0.0316 0.0079 21,570,881 7,556,763 5 7

the average object size is 0.5 KB. Without cache directory, this cache can hold up to
six Mio objects. While deploying Hashmap as a cache directory consumes around 121
MB of cache space, reducing cache capacity by nearly 250,000 objects, the bloom filter
consumes only 25.2 MB, reducing capacity by only 50,000 objects.

Another appealing feature for utilizing bloom filter is that, unlike Hashmap, the ob-
ject key size does not affect the bloom space size. In our experiments, we used a standard
object key string that is generated by Hibernate and takes around 110 Byte. While having
a longer object id, for example, will increase the Hashmap size, it does not increase the
bloom directory size. This is because Hashmap stores the actual item key and its value
(the cache server name) whereas bloom filter does not store the actual item but its hashed
values, which stays constant regardless of the item’s key size. The same observation can
be also hold for the item’s value.

Time analysis: Furthermore, we measure the processing time for querying objects
on the three data structures of Bloom, Optimized Bloom and HashMap. Figure 2.3b
shows the required time in milliseconds for querying 100k object keys for various cache
hit ratios. The cache hit ratio indicates the percentage of the checked objects that are

23

2.3 Data Structures for Cache Directory

 4.4 8.4
 12.8 16.8

 21.2 25.2
 20.0

 40.0

 60.0

 81.0

 101.0

 121.0

0.5 1.0 1.5 2.0 2.5 3.0

of objects (Mio.)

0

50

100

150

S
iz

e
 (

M
B

)

Optimized Bloom HashMap

(a) Size of the cache directory for various number of objects

 240 234
 220

 187

 135

 220
 202

 194

 154
 135

 28 30
 42 46 46

100% 75% 50% 25% 0%

% of objects in caches

0

50

100

150

200

250

300

T
im

e
 (

m
s
)/

1
0

0
k
 o

b
je

c
ts

Bloom Optimized Bloom HashMap

(b) Query time for 100k objects for various percentage of cache hit

Figure 2.3: Optimized Bloom Filter Directory Performance

already stored in the cache compared to the overall objects checked. So a 100% cache
hit indicates that all checked objects are stored in the cache while 0% cache hit indicates
that none of them are stored. For all three approaches, the processing time for both Bloom
and Optimized Bloom is much higher than HashMap, which is due to the fact that the
item key has to be hashed several times for Bloom cases instead of hashing only once
in case of HashMap. However, the optimized Bloom achieves faster processing time
compared to the regular Bloom due to the optimization of reusing local hash function
results in the former. The only exception where both bloom and optimized bloom have
similar processing time is when there is zero cache hit which means that all items are
eliminated by the first layer of global bloom and thus, the optimization technique is not

24

2.4 AdaptCache: Adaptive Cooperative Cache Framework

used anymore.

Another behaviour for both blooms is that the processing time decreases with a de-
creasing cache hit ratio which is caused by the presence of the global bloom. The more
the number of non cached items, the more items the global bloom will eliminate and,
thus, the less items the local blooms have to process. As a result, the processing time de-
creases. The last interesting behaviour is related to the processing time of the HashMap
which, as opposed to its theoretical steady behaviour, is slightly increasing as the cache
hit decreases. This can be explained by the working mechanism of the HashMap get op-
eration that we briefly explained earlier. After hashing a key, the HashMap checks the
respective bucket and if it contains multiple items, their keys will be sequentially scanned
before returning a result. Thus, the lower the cache hit, the more buckets are scanned.

However, regardless if we use Hashmap or bloom filter directory, the time required
for checking the item’s location is negligible compared to the time required for accessing
the actual item, either locally (0.1 ms) or remotely (1 ms). Therefore, the gain in using
bloom filter is actually the space saving that is more important than the extra processing.

False positive analysis: Lastly, we validate the overall actual false positive rate for
the above experiment, which is indeed, bounded by the configured value of 10´3. This
ratio is based on the final number of false positives generated by any of the local blooms
that have also been falsely identified by the global bloom.

In summary, these experiments show that using Bloom Filter as a cache directory
induces a negligible extra processing time, but has a considerable advantage of memory
saving.

2.4 AdaptCache: Adaptive Cooperative Cache Frame-
work

The Adaptive Cooperative Cache Framework or AdaptCache, extends the CC by adding
an external component, called the Analyser [74], that is able to receive messages from

25

2.4 AdaptCache: Adaptive Cooperative Cache Framework

AS1

AS2

AS3

DBLB
requests

C1

C2

C3

Analyser

Object
Policy

Request
 message

Object
message

Request
Policy

Figure 2.4: Adaptive Cooperative Cache Framework

ASs regarding their requests as well as their respective objects and, based on these mes-
sages, distributes load across servers and objects across caches. The original implemen-
tation of the extended CC was static whereby the Analyser received a workload trace and
based on these traces decided on a system configuration. For this PhD thesis we have ex-
tended this framework to work in a dynamic environment. In this section we present
AdaptCache in its extended format.

2.4.1 Request- and Object Policies

The architecture of AdaptCache is shown in Figure 2.4. In order to distribute load (re-
quests) and objects, the Analyser, which is the core component of the adaptive cache
framework, generates two types of policies, the RequestPolicy and the ObjectPolicy. The
RequestPolicy contains rules that tell the load-balancer how to distribute requests among
the AS instances while the ObjectPolicy tells the individual caches which objects they
should cache locally. Both policies are generated dynamically by observing the most re-
cent requests and the objects they access. In general, the goal of the generated policies
is to assign a request to the server that has most of the objects accessed by the request
in its local cache to avoid calls to remote caches. The overall goal is to reduce request
execution time, application server load, and the amount of messages exchanged over the

26

2.4 AdaptCache: Adaptive Cooperative Cache Framework

network. While this thesis reuses the Analyser component developed in [74], we ex-
tended it to work in a dynamic environment and developed completely new algorithms
to generate the policies.

2.4.2 Logging

In order to generate policies, AdaptCache needs to observe workload behavior. At each
AS, AdaptCache generates for each request received a request log containing information
such as the URL and the server identifier. Additionally, it generates object logs whenever
a request accesses an object, keeping track of the object identifier and the request type
that accessed it. These logs represent the workload meta-data and are sent to the Analyzer
for further processing.

2.4.3 Policy Deployment

The Analyzer generates new Request- and ObjectPolicy based on the most recent meta-
data information whenever the current configuration does not serve anymore well the
current workload. In the next chapters, we discuss in detail a set of algorithms that gen-
erate these policies. The new policies are sent to the load balancer and the cooperative
cache instances where they replace the current instances of the corresponding policy
files. Note that the policy deployment was introduced in [74] and for the purpose of this
thesis, we have refined it to work in a dynamic environment.

The load-balancer uses the RequestPolicy to distribute the requests. The request pol-
icy contains entries for request types (i.e. URLs) and the servers to where to send a
request instance of that type. Upon receiving a request of a certain type, it checks in
its current policy file whether an entry exists for that particular request type. If yes, the
request is sent to the AS indicated in the entry. If not, the load-balancer falls back to a
default algorithm, which in our case is round-robin. In our implementation, we extended
the load-balancer provided by Apache3 2.0 to be able to receive the RequestPolicy files
during runtime and distribute requests accordingly. The ObjectPolicy files are sent to the

3http://httpd.apache.org/

27

2.4 AdaptCache: Adaptive Cooperative Cache Framework

local caches to tell them which objects to store locally.

2.4.4 Lazy Data Migration

Object migration according to the ObjectPolicy is done in a lazy fashion. The Object-
Policy identifies the objects that the local cache should maintain. With this, there are two
types of caching: (i) an object that does not appear in any ObjectPolicy file is loaded
into the local cache of the first AS to request it; (ii) objects that appear in the Object-
Policy file of one cache will be maintained by this cache on a long-term basis. When
a local cache receives a request for an object from its AS, it checks its ObjectPolicy. If
the object identifier is contained in the policy and it is already in the local cache, it is
simply returned to the AS. If it is not in the cache, it is requested for migration from
a remote cache (checking the cache directory) or it is retrieved from the database; it is
then cached locally, and returned to the AS. When a remote cache receives a request to
transfer an object, it does so, discarding the object locally. That is, objects are not imme-
diately migrated from cache to cache when a new set of ObjectPolicies is created but are
moved lazily whenever they are requested. Thus, the timing of the migration is driven by
application access patterns, and objects that are no longer accessed will not be migrated
at all.

However, even if done lazily, migrating objects across caches while the system is up
and running puts extra load on both the source and destination servers, which as a result
impacts the overall performance [34, 43]. Particularly, one can expect that the perfor-
mance drops at the beginning of a reconfiguration as requests are redirected to different
servers and data migration starts, resulting in a lower local hit rate. But then, hopefully,
performance quickly improves once data is newly distributed. In the next chapter, we
will show how we mitigate such migration impact by assigning partitions to caches that
already have most of their objects, thus decreasing the number of objects to be migrated.

28

2.4 AdaptCache: Adaptive Cooperative Cache Framework

Table 2.2: Request and object logged information

Request Information Object Information

Request URL Object ID

Server ID Server ID

UUID Operation Type (get, put)

Access Type (local, remote, db)

UUID

2.4.5 Workload Meta-data

In this section, we have a closer look at the actual data collected. In order to keep the
logging overhead small, AdaptCache uses two different tracking and analysis phases.
In the coarse-grained tracking phase, AdaptCache only extracts information from the
running system that is sufficient to detect workload changes that require to repartition
or readjust replication. Once the Analyzer determines that a reconfiguration is needed,
fine-grained logging is activated and much more detailed information is logged that will
help to find appropriate new Request- and ObjectPolicies as well as the right replication
level for each object. Originally [74], AdaptCache performed only fine-grained tracking.
We added the coarse-grained logging phase in order to reduce overhead.

Fine-grained Phase In the fine-grained phase, AdaptCache generates detailed infor-
mation about the currently executed requests and their respective objects, similar to [74].
This logging information is generated at the AS and the cache and then sent to the An-
alyzer. In particular, AdaptCache generates a request log for each request instance the
AS receives with the information depicted in Table 2.2. As mentioned in Section 2.1.1,
the request URL identifies the request type. In order to be data-aware, a request type
identifier is the entire URL, including the specific method that is called and the list of
the parameters that are the input for the method. The UUID offers a unique identifier for
each individual request instance. There can be many request instances for a given request

29

2.4 AdaptCache: Adaptive Cooperative Cache Framework

type/URL.

Additionally, AdaptCache generates an object log whenever a request accesses an
object, keeping track of the object identifier, the server to which the request was submit-
ted, the operation type (put/get) and the access type (object found in the local cache, in
a remote cache, or had to be retrieved from the database), and the UUID of the calling
request instance.

AdaptCache uses an interceptor approach to generate these logs that does not require
changes to or knowledge of the application nor the application server code. These logs
represent the workload meta-data during the fine-grained logging phase and are sent
continuously to the Analyzer. The fine-grained phase lasts for a configurable time, called
the log window size. The Analyzer processes the logs sent during the log window size
and reformats them into summary information such as the number of accesses per request
type, number of accesses per object, etc. The details will be discussed in the following
chapters. The Analyser then generates the new policies and possibly new replication
configuration. These new policies are then sent to the load-balancer and the cooperative
cache instances where they replace their current policy files, and then the system switches
back to the coarse-grained logging phase.

Coarse-grained Phase In the coarse-grained phase, much less detailed information is
needed. In fact, as we will discuss in detail in the next chapters, the local hit ratio, which
indicates the ratio of objects accesses where the object is found in the local cache over
all object accesses, and the ratio of write vs. read operations are the two metrices that are
important for determining whether reconfiguration is necessary.

Both information types can be easily retrieved from the object logs. Thus, during
the coarse-grained phase, AdaptCache only generates simplified object logs that only
indicate the operation type and the access type and sends those to the Analyzer. No
object identifier or UUIDs need to be determined, reducing the logging overhead at the
AS and the cache considerably. Furthermore, the Analyzer has also considerably less
overhead during the coarse-grained phase to process these logs to determine the hit ratio
and the read/write ratio.

30

3
Adaptive Object Partitioning and

Migration

In this chapter, we show the various request and object partitioning solutions that we
have developed to distribute requests and objects across server caches with the aim to
minimize remote cache access and balance the load. We first start by presenting our
workload analysis for typical e-commerce queries that inspired our dynamic partitioning
solutions and also helped us in extending our evaluation benchmarks. From there, we
present a suite of request and object partitioning algorithms and show how we tailor
them to work in a dynamic workload environment. Finally, we show experimental results
using various workloads.

31

3.1 Workload Analysis

3.1 Workload Analysis

A holistic caching solution has to be able to handle complex, real-life workloads. We
have had a closer look at eBay1, a well known e-commerce application. eBay allows
users to sell and buy items online: sellers can post items, and clients can search the
posted items using various filtering conditions and sort the results based on different
sorting criteria. The goal of analyzing this application is to help us understand the main
characteristics of requests and the objects they access as typically found in online appli-
cations.

3.1.1 Request Characteristics

In eBay, a buyer typically first chooses a coarse category (fashion, electronics), and then
a subcategory. Furthermore, more advanced searches can be executed that restrict the
price, location and other attributes. A general key word search is also possible. The first
result page contains, by default, 50 items and the user has to explicitly request each of
the next result pages one by one.

Request Overlap

As we mentioned in Section 2.1.1, a request type in AdaptCache is a URL including
method parameters. Thus, it is obvious that request types overlap in the objects they
access. In eBay, the first result page of a request searching for HP laptops might overlap
with a request that searches for only new laptops. The fact that different request types
do not access disjoint data sets makes data partitioning a challenging task and has been
considered by previous work [39, 26, 87].

Request Popularity

The most common search on eBay is to simply look within a subcategory, possibly re-
stricting some additional attributes. Thus, one can expect these request types to be quite

1https://www.ebay.com/

32

3.1 Workload Analysis

frequent. Additionally, even a general keyword search appears to be skewed because af-
ter typing the first keyword, the system suggests extensions that represent searches in the
recent past. By suggesting them to the next user, it is quite likely that their popularity
will remain high. Furthermore, a per-user search history is maintained. All these features
likely lead to a highly skewed request popularity and favor caching solutions.

Request Drift

When data changes frequently, e.g., due to inserts, search requests will change their
results over time, which we refer to as request drift. For example, assume that a user
wants to search for an item within a certain category but prefers the returned result to
be sorted based on listing time (i.e., newly listed items appear first). In this case, the set
of items returned when the same request type is submitted twice, thus given two request
instances of the same request type, will not be identical if items of the searched category
are inserted in between the two calls.

To understand how prevalent request drift is on eBay, we conducted the following
experiment. We asked for the first result page of a search including a specific subcategory.
For this simple search, there are 12 request types, one for each sorting order that eBay
offers. For a period of 60 minutes in total, we submitted a request instance of each of
these request types every 10 seconds. Thus, at the end of the experiments, we have 360
result sets of 50 items each for each request type.

To track how these result sets change over time, we look at the accumulative request
drift over the observed time period. Let DSi be the accumulative data set containing all
data items that were returned since the start of the experiment up to the i’th call. As every
individual call or request instance returns only 50 items, the size of DSi is a measure of
the accumulative drift.

Overall, we could categorize the 12 sorting orders offered by eBay into three groups
according to the drift rates: large, medium, and small. For illustration in this thesis, we
pick the sorting orders EndingTimeSoonest, StartTimeNewest and BestMatch to represent
each group, respectively.

33

3.1 Workload Analysis

Time (x10 sec)

0 50 100 150 200 250 300 350 400

#
 o

f
it
e

m
 c

h
a

n
g

e
s

0

5000

10000

15000

102

11505

1781

BestMatch

StartTimeNewest

EndingTimeSoonest

Figure 3.1: Accumulative request drift over time

Figure 3.1 depicts the accumulative request drift over time. For all three request
types, the result set drifts. This drift is very small for BestMatch (only 102 different
items in one hour), higher for StartTimeNewest (few thousand) and very high for End-
ingTimeSoonest (more than 10,000).

In BestMatch, the items are sorted based on criteria such as the seller’s rating and the
item’s popularity. These factors do not change quickly over time. Thus, a popular item
will likely stay popular for some time. It can disappear from a result set because it is sold
or because an item that scores higher in the BestMatch scoring function is inserted.

The other two search orders sort items based solely on time attributes (start/expiry).
This causes the results to change at a higher rate because of the high insertion and ex-
tremely high bid expiration rates. eBay allows users to sell their items in one of two
styles: “auction” and “buy-it now”. Both tag items with an expiration date. If an auc-
tion item expires, then it won’t appear again in future search results. We can expect
those items to expire at the same rate as new items are created. For buy-it now items, in
contrast, eBay allows users to keep their items active until they are sold. eBay then auto-
matically renews the expiration time every 30 days until it is sold. Thus, a single inserted
item can expire many times, leading to a very large accumulative drift when items are
sorted by their expiration time.

In summary, request drift can have a significant impact on the dynamicity of the
workload, and requires a continuous adjustment of data partitioning strategies, even if

34

3.1 Workload Analysis

the request types themselves do not change. Additionally, if a request type has quickly
changing result sets, the potential for caching becomes restricted.

3.1.2 Object Characteristics

Let’s now focus on how individual objects are accessed. Just as with requests, we can
envision not only differences in popularity of objects but also that the popularity changes
over time, thus showing temporal locality.

Object Popularity

Figures 3.2(a-c) show for each of the three sorting orders and for each of the items
they access, how often the item is accessed, sorted from most popular to least popular
item. Please note that the y-values are quite different for the different sorting orders. In
BestMatch, the most popular item is returned in all 360 requests that were executed, and
from there popularity decreases very slowly. Most objects are fairly popular with half
of the objects accessed more than 100 times. This behavior can be expected when only
a small number of objects are accessed overall. In StartTimeNewest, the most popular
item is accessed fairly frequently (close to 50 times) but popularity then decreases more
quickly following a more skewed distribution. With EndingTimeSoonest all items show
nearly the same very low access frequency. The reason is that at any given time, there
are many items that are close to expiring. With making calls every 10 seconds, many of
the items that were returned in a first call have already expired at the time of the second
call, and are no longer in the result set.

Object Temporal Locality

Another important aspect is an item’s temporal locality. An important assumption for
caching to work well is that items that are currently accessed will be accessed again in
the near future. At some time point, however, they might become unpopular, and once
they haven’t been accessed for a while it becomes unlikely that they will be accessed in
the near future. Thus, the caching solution has to get rid of them.

35

3.1 Workload Analysis

item#

0 50 100

p
o

p
u

la
ri
ty

0

500

(a) BestMatch
item#

0 500 1000 1500

p
o

p
u

la
ri
ty

0

50

(b) StartTimeNewest

item#

0 5000 10000

p
o

p
u

la
ri
ty

0

5

(c) EndingTimeSoonest

Figure 3.2: Item popularity

Figures 3.3 (a-c) show that this assumption holds for all sorting orders. Each figure
depicts the 100 most popular items on the y-axis with decreasing popularity. The x-axis
depicts time. There is a dot for an item x at time i, if x was contained in the result
set of the ith call of that request type. As expected, for BestMatch we can see that the
most popular items were returned in every call. Others appear in the first calls but not
in later ones, likely because they were removed. Some only appear in later calls, likely
because they were inserted sometime during the experiment. For StartTimeNewest, an
item becomes popular at the moment it is inserted, then is in the result set for several
calls before it disappears from the result set because new items were created and replace
the older ones in the result set. The behavior for EndingTimeSoonest is similar, but each
item is only in the result set for very few times before it is removed because its ending
time has expired (or was reset).

In summary, we can confirm that temporal locality is generally given, which is an
attractive property for caching if handled properly. However, for some requests and ob-
jects, the time window is very short; the benefits of caching for them is less clear.

3.1.3 Further Analysis

In addition to what we described above, we conducted experiments with different cat-
egories, and additional filtering conditions such as price. We also ran the experiments
at different times of the day. In all cases, we found similar patterns. Only when we
narrowed down the search by, for example, searching for rare items, we did not notice
significant difference between the drift rates of different searching orders because all of

36

3.2 Policy Generation

(a) BestMatch (b) StartTimeNewest (c) EndingTimeSoonest

Figure 3.3: Temporal Locality

them returned very small data sets. Thus, we believe that a large set of requests posted
to eBay follow the patterns we have discussed in this section, and our caching solution
is designed with these patterns in mind.

3.2 Policy Generation

In this section we discuss in detail the algorithms we have explored to distribute requests
and objects across application servers. The main goal of these partitioning algorithms
is to distribute end-user requests as well as their respective data among different cache
nodes so that the overall number of distributed calls is low and the load is equally dis-
tributed among different cache nodes.

Our approach was inspired by previous approaches, explicitly SCHISM [26] and
Sword [91], developed in the area of distributed database systems. They aim in distribut-
ing database objects across storage nodes such that most transactions only need to access
one data store, and thus, only few distributed transactions are required. This avoids the

37

3.2 Policy Generation

costly 2-phase commit protocol. In order to distribute objects, such that objects that are
accessed together by a transaction end up at the same partition, they have proposed build-
ing an object-based workload graph. They map each data item in the workload to a vertex
in the graph. In some cases, they give each object a weight equal to its access frequency
in order to consider the load created by each object. Alternatively, they give all items
the same weight in order to keep the amount of data stored at each data store equal. The
approaches differ in how edges are constructed: SCHISM builds a simple graph while
Sword builds a hyper-graph. Once the workload graph/hyper-graph has been constructed,
a graph partitioning tool that builds partitions is used so that the number of edges between
objects that are in different partitions is minimized. This helps in putting objects that are
accessed together (have many edges) into the same partition. This is similar to what we
want to achieve. For our application, that means if two objects are accessed by the same
request (and thus have a connectivity edge) the partitioning tool tries to assign them to
the same partition. The partitions are then distributed across nodes.

Our first solution space, which is object distribution first, is based on this approach. It
generates the object partitions which basically represents the object policy as described
in Section 2.4. However, we need much more because we look at very different chal-
lenges. Firstly, we do not only need to decide which objects to put into which cache, but
we also need a request policy that decides which application server executes which re-
quests in order to achieve optimal access locality. Furthermore, as we have shown in the
previous section, the workload is highly dynamic and even requests that remain popular
for a long time tend to change their accessed data set over time. Additionally, new re-
quests that specifically query the newly inserted data appear while old requests that query
the excluded data disappear. Thus, our approach has to be highly dynamic, not only con-
tinuously adjusting how we partition the data but also how we distribute requests across
the application servers.

Therefore, we explore several ways of building a graph as well as performing par-
titioning to better understand the trade-offs. More precisely, we do not only look at an
object graph but also at a request graph, where requests are nodes that are connected
when they access common objects. With this, we are likely to assign requests that access

38

3.2 Policy Generation

common objects together into the same partition. Furthermore, we have a close look at
how to assign the partitioned data to servers. Finally, in each iteration, we determine
requests and objects that can be pruned, that is, ignored for distribution. This may be
because they have fading popularity or because the requests have too high drift rate to
benefit from caching.

3.2.1 Parameter Collection

We have briefly illustrated in Section 2.4 that the Analyser does not trigger policy gen-
eration on a regular interval basis; rather it does so only when the currently deployed
policies do not serve the current workload anymore. And in order to detect workload
changes the Analyser uses the coarse-grained phase while it uses the fine-grained phase
to collect detailed information about the current workload that causes such a change.

Coarse-grained Tracking

In the coarse-grained tracking phase, the Analyser monitors the workload to measure the
performance in order to decide about triggering reconfigurations. The question is how
to measure performance. We could use the throughput and evaluate throughput degrada-
tion. However, throughput might decrease simply because the overall load submitted to
the system might decrease (e.g., night time). Thus, we choose to use the local hit rate
assuming this to be a more stable performance metric.

In order to decide when to trigger policy generation, the Analyser periodically mea-
sures the current local cache hit ratio hc. To do so, the Analyser maintains three counters
for local, remote and db accesses and whenever an object log arrives, the respective
counter is increased by one. The local cache hit ratio is then calculated by dividing the
number of local accesses by the total number of all accesses. Recall from Section 2.4.5
that during the coarse-grained phase, simplified object logs are sent.

To determine whether reconfiguration is needed, the Analyzer also needs to keep
track of the maximum local cache rate hm since the last time new policies were in-
stalled. Once hc has degraded considerably compared to hm, or more precisely, once

39

3.2 Policy Generation

Table 3.1: Collected parameters for request and object partitioning

np number of partitions

r.O set of objects that request type r accessed in the last window

r.n number of accesses of request type r

r.no number of accesses of request type r to object o

o.n overall number of accesses to object o

hm´hc

hm
ą threshold, the Analyser switches to the fine-grained phase where fine-grained

information related to requests and objects will be gathered. That means, reconfiguration
is not triggered on a fixed interval basis, but varies depending on how much workload
changes influence the performance. However, such an approach does not trigger a recon-
figuration when hit rates do not get worse. Nevertheless, it might be possible that with a
better configuration, hit rates could be even better. In order to not miss these situations,
we trigger a new reconfiguration after a certain, fairly long time, even if the degradation
threshold has not been reached.

Fine-grained Tracking

As a first step of reconfiguration the system switches to fine-grained tracking. In the
fine-grained tracking phase, the Analyser utilizes the detailed request and object log
messages as described in Section 2.4.5 to generate statistics for each request and accessed
object. These statistics are generated for a predefined observation interval and are used as
input for the partitioning approach. Table 3.1 illustrates the required parameters collected
for our request and object partitioning solutions. The first parameter is the number of
partitions, np, which also represents the number of AS. The partitioning solutions use
this parameter to partition the workload graph into a number of partitions equal to np. In
addition, the Analyser generates statistics per request and object. Particularly, for each
request type, represented by the request identifier r (URL), the Analyser keeps track of
the set of objects the request instance of this request type accessed in the last window,
or r.O. It also calculates the total number of instances of request types, i.e. how often

40

3.2 Policy Generation

request r was requested by some clients, denoted as r.n. In addition, for each request
type r, the Analyzer needs to know how often its instances accessed an object o P r.O

denoted as r.no. Finally, for each object o, the overall number of accesses to that object,
or o.n, is calculated.

In the following, and for simplicity of description, we use request r instead of request
type r. For instance, when we say that the Analyzer assigns a request r to a server in the
RequestPolicy, it means that all request instances of request type r will be executed at
that server.

Note that all of these parameters only consider read requests as all of the partitioning
solutions we propose only consider read requests. This is due to the fact that partitioning
write requests across ASs will not have real performance benefit as all write requests have
to access the back-end database anyway; which becomes the significant performance
impact. Therefore, the location of executing write requests is not as critical. However,
when considering replication in the next chapter, we will distinguish between reads and
writes, and thus, nomenclature will be slightly different.

Another important parameter that we briefly discussed in Section 2.4.5 is the log
window size. It represents how much workload meta-data from the fine-grained phase
should be taken into account for the new policies. If too much is used we could consider
objects and requests that are no longer relevant; if we take too little, we can miss impor-
tant patterns. In the evaluation section we analyze the impact of the log window size in
more detail.

3.2.2 Object Distribution First

In this first solution space, we first assign objects to servers, that is, we build the Object-
Policy, and then build the RequestPolicy with the goal to distribute requests among the
servers so as to achieve a high local hit rate.

41

3.2 Policy Generation

Object-based Graph

Our object-graph is built as in SCHISM [26]. What we consider differently is that we
build the graph using request and access frequencies that were collected within our log
window as described in Section 2.4.5 while SCHISM considers the log of a past ex-
ecution. In SCHISM, vertices are objects and two vertices are connected if there is a
transaction that accesses both data items. The edge weights represent the number of
transactions that access both objects. Vertices have a weight that either reflects the total
number of accesses to that vertix or the size of the object. The graph is then split using a
k-way min/cut algorithm that splits the graph into np object partitions opi, 1 ď i ď np,
such that each partition contains almost equal vertix weight, at the same time, the total
edge weight that is cut, i.e., where the edge vertices reside in different partitions, is as
small as possible. Cuts through heavy-weight edges should be avoided as they lead to
many distributed transactions that must access more than one partition. An example of
such a k-way min/cut algorithm is the multi-level graph partitioning algorithm proposed
in [55] and implemented in METIS2, a well known graph partitioning library.

In our caching solution, we use the number of accesses to an object, o.n, as vertex
weight to guarantee equal load, and we use a slightly different edge weight to keep track
of request drift. Although a request type might access two objects, not every request
instance of this request type might access these two objects. Therefore, we use as edge
weight the sum of both objects’ number of accesses caused by request types that access
both objects. For instance, assume only request type r accessed both objects o1 and o2 and
it accessed o1 x times, and o2 y times within the observation window, that is r.no1 “ x

and r.no2 “ y. Then, we set the edge weight to x ` y. Thus, the more often the objects
were accessed, the larger the edge weight, and the more likely both objects will be in the
same partition opi. The RequestPolicy will then have request types assigned to the node
that holds partition opi and all request instances of this request type, whether they only
access one of the objects or both, will trigger only local access. We refer to this approach
as Object-based Graph Partitioning, or Obj-GP.

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

42

3.2 Policy Generation

Object-based Hyper-Graph

Instead of building a graph, Sword [91] uses a hypergraph. Objects are vertices, and
all objects that are accessed by the same transaction are connected through a hyper-
edge whose weight is the number of times the transaction is executed. Our Object-based

Hyper-graph Partitioning approach, referred to as Obj-HgP, follows the same approach
connecting all objects accessed by a specific request type with a hyperedge with the
edge weight being the number of times the request type executed during the observation
period.

Both graphs can have a large number of nodes as there are many objects in the cache.
Furthermore, the standard object graph can have many edges. The problem is aggravated
due to the request drift which can cause an edge explosion. The hyper-graph has less
edges but each edge will connect many objects if there is a large request drift. Further-
more, it cannot reflect how many times each of the objects is accessed by the request
type as there is a single edge for a request type.

A further important restriction of this approach is that we have difficulties consid-
ering cache size. One cache might get very few but very frequently accessed objects,
another might get many infrequently accessed objects. In order to have an upper cap on
the amount of objects (or total object size) stored at a server, we could use object size in-
stead of access frequency for each object vertex. However, then load-imbalances might
occur. Alternatively, we would need further conditions on the graph (e.g., two-valued
vertex weights).

Request Distribution

To route queries among servers after partitioning the data, both Sword [26] and SCHISM [91]
leverage the query translation capability of a front-end database system that extracts the
respective objects for each transaction. The transaction is then (partially) executed at the
affected partitions. If there is more than one, the transaction is distributed.

In contrast, our load-balancer will send the request to a single AS where it is executed

43

3.2 Policy Generation

in its entirety and that AS will then retrieve the objects from the local cache, remote
caches and the database as needed. Thus, we create for each object partition opi, 1 ď i ď

np where np is the number of partitions, a request partition rpi so that the RequestPolicy
will assign all requests in rpi to the AS whose cache maintains opi. The idea is that if a
request is assigned to request partition rpi then it will find most of its objects in object
partition opi.

To this end, we develop a gain formula that determines the gain of assigning a re-
quest type to request partition rpi by summing up all its object accesses into opi during
the last observation window. We then assign a request to the partition with the highest
gain. Formally, let r.O be the set of objects that request type r accessed during the last
observation window. Let r.no be the number of times r accessed an object o during that
window. Then the gain to add r to rpi is expressed as

gainpr, rpiq “
ÿ

oPopi

r.no | o P r.O (3.1)

3.2.3 Request Distribution First

The second solution space assigns first requests to servers, that is, builds the Request-
Policy, and then builds the ObjectPolicy.

For that, we build a request-based graph that maps each request type to a vertex in the
workload graph. As one of our partitioning goals is to assign equal load to each partition,
we assign to each vertex as a weight the number of times the request type was executed
in the last observation window multiplied by the average number of objects the request
type accessed every time it was executed. The average number of objects accessed by
request r, or AvgObjNoprq, can be calculated as

AvgObjNoprq “

ř

oPr.O

r.no

r.n
(3.2)

44

3.2 Policy Generation

Request-based Graph

To achieve the second partitioning goal of collocating requests that access common ob-
jects on the same machine, we add an edge between two vertices (requests) if they access
at least one object in common. The edge weight reflects how often they access common
objects, i.e., it is the sum of all accesses of these two request types to objects that both
request types accessed in the last observation window:

weightpedger1,r2q “
ÿ

oPpr1.OXr2.Oq

r1.no ` r2.no (3.3)

The more often they access common objects, the less likely the requests end up in
different partitions. Objects that are accessed by only one request do not create any edges.

We use two mechanisms for partitioning this request-based graph. The first again uses
a k-way min/cut partitioning algorithm, and we refer to this approach as Request-based

graph partitioning or Req-GP.

The second attempts to simplify and speed up the partitioning approach. It first tra-
verses the graph using Breadth First Search (BFS) starting with the most popular request
and builds an ordered list of vertices. The heuristic behind using BFS is to encourage
adjacent vertices to remain close to each other. After traversing the graph using BFS, we
use the traversed list to assign requests (vertices) to different partitions using bin pack-
ing. However, we set a threshold for the capacity of each partition as being the sum of
all vertex weights divided by the number of partitions plus a small variation. By doing
so, we guarantee that the workload will be evenly distributed among different partitions.
We refer to this simple heuristic approach as Heur. We decided to include this simple
partitioning scheme into our evaluation to see whether sophisticated and costly graph
partitioning algorithms really provide a significant advantage.

45

3.2 Policy Generation

Request-based Hyper-Graph

A further alternative is to build a hyper-edge for each object that connects all requests
that have accessed that object at least once. In this case, the weight of the hyper-edge
will be the access frequency of that object. We use the standard hyper-graph partitioning
algorithm and refer to the approach as Req-HgP.

Object Distribution

After having generated the request partitions, we now have to create an object partition
opi for each request partition rpi. Similar to the gain function we created before, we
use a gain function to determine the gain we achieve by adding an object o accessed
in the last observation window to the object partition opi pertaining to request partition
rpi. Our gain function expresses our expectation of how many local hits this assignment
will produce. We then assign o to the partition that produces the maximum gain. More
formally, we calculate the gain as

gainpo, opiq “
ÿ

rPrpi

r.no | o P r.O (3.4)

Additionally, we also want to make sure that we do not add more objects to a cache
than the cache capacity allows. In our current implementation we assume caches have
similar sizes and objects to have the same size. With this, we should assign roughly the
same number of objects to each cache. We do so by assigning objects in descending
order of their access rates. Thus, the more popular the object, the more likely it will be
assigned to the partition with the highest gain. Once a partition reaches its object thresh-
old, it can no longer host objects and thus, will not be considered for the assignment of
subsequent objects. If cache sizes or object sizes differ, we can simply build thresholds
and assignments determined by cache and object sizes.

46

3.2 Policy Generation

3.2.4 Assigning Partitions to Servers

New policies are sent to the load-balancer and the object caches whenever needed. How-
ever, if we assign each pair rpi{opi of request and associated object partition to a random
server, it might be quite likely that most requests (and the objects they access) are now
assigned to a different server compared to the previous policies. As a result, when a
request first executes at the new server, its objects, although according to the new Ob-
jectPolicy should reside at the local cache, are still probably located at a different cache
and have to be migrated to their new location. Despite the fact that this happens lazily
the first time the object is accessed, it can still generate a considerable overhead.

Thus, the idea is to keep the number of objects to be migrated low by looking at each
cache’s local content and find the partition assignment that offers a maximum overlap of
current cache content and new object locations.

In a first step, we determine for each object partition opi and server S the overlappopi, Sq
as the number of objects in opi that already reside at S’s cache. We then determine for
each possible assignment of object partitions to servers the gain in number of objects
that do not need to be migrated because the servers’ caches already hold these objects.
We then choose the assignment with the largest gain.

Figure 3.4 shows an example where three partitions need to be assigned to three
servers each of them already having certain objects in their caches. The left table shows
for each server and partition the number of objects that already reside on the server
(overlap). For instance, three of the objects of object partition op1 already reside in the
cache of S1. From there, the right table shows for each of the 6 possibilities to assign
partitions to servers, the overall number of objects that do not need to be migrated (sum
of the corresponding overlap values of the left table). In this example, the assignment
op3 Ñ S1, op2 Ñ S2, op1 Ñ S3 gives us the biggest gain.

47

3.2 Policy Generation

op1

?

Overlap
(opx,Sy)

S1 S2 S3

op1 3 4 9

op2 2 4 5

op3 8 1 7

S1 S2 S3 ∑ Overlap

op1 op2 op3 14

op1 op3 op2 9

op2 op1 op3 13

op2 op3 op1 12

op3 op1 op2 17

op3 op2 op1 21

S1

S2

S3

op2

op3

Figure 3.4: Assignining partitions to servers example

3.2.5 Reducing Workload Meta-data

It is important to prune the logging information to be used for generating the workload
graphs for two reasons. First, the more information we use the longer it will take to
generate and partition the graph. Second, as we discussed previously, not all request
types are worth to be considered for partitioning as for some of them there might be little
benefit for caching their objects. Even worse, if considered, they might trigger objects to
be migrated during reconfiguration, even having a negative impact on performance.

There are two types of requests that we consider to ignore for our graph generation.
The first are those that had low weight during the last observation window because they
were not called frequently. The second type are requests with high drift as discussed in
Section 3.1.1. For that, we tag each request with a drift rate value in the range [0,1]
which represents the average rate at which a request changes the objects from one call to
the next. For instance, if a request returns 50 objects on average every time it is called,
and on average two objects are different from one call to the next, the drift rate is 2/50
or 4%.

48

3.3 Evaluation

After having decided on the request types to be eliminated, we also ignore all objects
that are only accessed by the requests that we discarded.

3.3 Evaluation

In this section we show the evaluation results for our caching solution using the YCSB
and RUBiS benchmarks. We conducted our experiments on a cluster of 9 nodes: one
each for load-balancer, database server, analysis server and client emulator, and four for
application server instances. Each of the machines has an Intel(R) 2.90GHz Dual-core,
8GB of RAM, and runs with Linux OS. In the four application server instances, we
dedicate one GB of RAM to the cache while the rest is used by the business processes of
the application server.

3.3.1 Benchmarks

YCSB: The Yahoo! Cloud Service Benchmark has been developed to evaluate key/value
stores [23], and is widely used in the research literature. We extended it so that the YCSB
client emulator sends requests through a front-end load-balancer to one of application
servers where the queries are executed within a web servlet, instead of sending them di-
rectly to a backend database. The backend database system is MySQL3 5.5.41. We work
with a database size of 5GB ensuring that not all data fits into the AS caches but small
enough so that our database backend does not become the bottleneck. YCSB comprises
a set of workloads that emulate various data access behaviors. For our experiments we
chose the read latest workload with a combination of scan and insert requests. Each scan
request returns the first five tuples with key values less than or equal the included key
parameter. Whenever a new item is inserted, a new request type is created accordingly
with a key parameter equal the inserted key. Such workload exhibits request overlap and,
at the same time, since the last created request type is the most popular request and the
last inserted key is the most popular object, it also has a dynamic behavior.

3https://www.mysql.com/

49

3.3 Evaluation

RUBiS: RUBiS4 is a benchmark modeled after eBay to test application server perfor-
mance, and is considerably more complex than YCSB. It has several tables representing
buyers, sellers, items to be sold or auctioned in different categories and regions, bids,
etc. Our test database has roughly 7GB of data. We use PostgreSQL 9.2.4 as backend.
There are many request types such as browsing different regions and categories, items,
bids, and the user profile. Users can also insert and purchase items. These different re-
quest types overlap in the objects they access. However, by default, RUBiS does not have
requests with object drift as the request to search items always returns the same objects
based on best match. Therefore, we add two new request types to search for items sim-
ilar to those we found in eBay. The first sorts items based on their insertion time with
newly listed items appearing first. This is a request with moderate drift rate. The second
sorts items based on their expiration date with items with smaller expiration time appear-
ing first. Furthermore, we force a large set of items to expire throughout the experiment
leading to a request type with large drift rate. Furthermore, whenever the client emulator
submits a search request for items, it chooses randomly one of the now three sorting or-
ders (BestMatch, StartTimeNewest or EndingTimeSoonest). All three return 50 objects.
There are a fair amount of smaller request types that return less objects.

3.3.2 Understanding Partitioning Behavior

In our first experiment, we have performed a detailed runtime analysis for one of our
partitioning algorithms, Req-GP, using the RUBiS workload to see the overall behavior
of our system before, during and after reconfiguration. For the experiment, we have set
the log window size to 60 seconds. We will later analyze this parameter in more detail.
The threshold to trigger the partitioning is 10% (i.e., when the local hit ratio has degraded
by 10% compared to the maximum local hit ratio since the last reconfiguration). We do
not yet perform the optimizations described in Sections 3.2.4 and 3.2.5 but assign the
new partitions randomly to servers and do not prune any objects or requests.

Figure 3.5 shows (a) throughput, (b) local cache hit ratio, and (c) the number of ob-
jects migrated after reconfiguration over time. The graphs start at 60 seconds, the time

4rubis.ow2.org

50

3.3 Evaluation

Time (seconds)

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

0

2000

4000
Req-GP Def

Triggering

rebalancing

process

Data

migration

begins

Peak

data

migration

(a) Throughput

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

Time (seconds)

0

50

100

C
ac

h
e

H
it

 R
at

io
 (

%
)

Req-GP Def

(b) Cache hit ratio

Time (seconds)

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 #
 O

b
je

ct
 M

ig
ra

ti
o

n

×10
4

0

2

4

6

Req-GP Def

(c) Data migration

Figure 3.5: Req-GP algorithm performance

the first partitioning takes place and end at 900 seconds of execution. The black dotted
line shows the performance of standard round-robin load balancing without reconfig-
uration. Note that round-robin can also access data in remote caches. We refer to this
default set-up as Def. We can see that Req-GP significantly outperforms simple Def at

51

3.3 Evaluation

all times. After the first reconfiguration at 60 seconds, throughput goes up, and then
slowly degrades as the policy generated at 60 seconds does not serve well anymore the
dynamic workload. We can see that the throughput is highly correlated with the local
cache hit ratio. At 270 seconds (first vertical red line), the local hit ratio has decreased
by 10% compared to its maximum value, and the Analyser generates and installs the
new Request- and ObjectPolicies5. After they are installed, throughput actually first de-
creases somewhat as objects need to be migrated first (see Figure 3.5c), which puts some
additional burden on the system and reaches its low at around 300 seconds. Right after
that point and when most of the objects in the ObjectPolicy have been migrated, cache
hit and throughput again increase. The maximum cache hit ratio is reached at around 360
seconds before it decreases again due to workload changes, and the cycle repeats.

Note that overall hit ratio, i.e., local and remote together, stays above 75% throughout
the experiment as our architecture is able to use the entire cache capacity of all caches.
As new objects are created they reside first in the cache of the server that created the
object, and then will be migrated by our policy to shift the cache hit ratio towards local
hits.

Thus, our system is able to use the entire cache capacity while, at the same time, keep
the local hit ratio high, and this in a dynamic environment.

3.3.3 Algorithm Comparison

In this section, we have a closer look at the different partitioning strategies that we ex-
plore. This time, we use both YCSB and RUBiS, have again a 60 seconds log window
size and a threshold for repartitioning of 10%. As deterioration was slower in YCSB,
we ran it for 50 minutes. Figure 3.6 shows the throughput for (a) YCSB and (b) RUBiS
over time, as well as (c) the overall throughput over the entire execution time for all
algorithms for both YCSB and RUBiS.

All algorithms follow the overall behavior of Req-GP that we have observed in the
previous experiment. Performance is always better than Def. After reconfiguration, per-

5As we will see later this process only takes a few seconds

52

3.3 Evaluation

Time (seconds)

600 1200 1800 2400 3000 T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

0

2000

4000

6000

Heur Req-GP Req-HgP Obj-GP Obj-HgP Def

(a) YCSB throughput

Time (seconds)

300 600 900 T
h

ro
u
g

h
p
u
t

(t
x
n

/s
)

0

2000

4000

Heur Req-GP Req-HgP Obj-GP Obj-HgP Def

(b) RUBiS throughput

T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

0

2000

4000

6000

H
eu

r

R
eq

-G
P

R
eq

-H
gP

O
bj
-G

P

O
bj
-H

gP D
ef

YCSB

RUBiS

(c) Average throughput

Figure 3.6: Partitioning Strategies

formance first decreases until migration is completed and then increases quickly and
stays high for a while. It then goes down again because of workload changes.

For YCSB, all algorithms provide similar performance. This is due to the simplicity

53

3.3 Evaluation

of the YCSB workload that consists of a single scan request targeting one table. Obj-
GP and Obj-HgP both have worse throughput at peak migration time than the others
because they do not per se guarantee an equal distribution of objects across all partitions
as we weight our graph with load numbers. As a result, for YCSB, object distribution
becomes very skewed: two of the caches have only 3% of the objects (which are very
highly loaded) while the other two share the rest. If these latter objects are not assigned
to the same server after reconfiguration, a huge data migration is triggered. Note also
that this could potentially be a severe problem if cache sizes were more restricted. Note
that the algorithms that partition requests first do not have this problem as we control
the maximum number of objects that are assigned to any server after the partitioning of
the requests has taken place. However, overall the performance differences do not look
significant, and even our simple heuristic works quite well.

In case of RUBiS, re-balancing occurs at different times for the different algorithms.
This is due to mainly two reasons. First, generating and partitioning the graph takes
longer for some strategies. This is particularly the case for Obj-GP as we will see in Sec-
tion 3.3.5. Second, in our implementation, the analyzer checks the degradation threshold
only every 60 seconds. Thus, a small difference in the cache hit value of two algorithms
might lead to one being triggered much earlier than the other. These differences in timing
are therefore probably an artifact of our implementation. In fact, Figure 3.6c shows that
all algorithms have nearly the same throughput for RUBiS with the exception of Obj-GP,
which we will analyze later, and the simple heuristic. Given the higher complexity of the
workload, a simple heuristic is not good enough anymore. In our case, the heuristic, for
instance, does not take edge weight into consideration.

Overall, we can say that all graph representations provide good potential to properly
present the workload of the system. The important thing is that both requests and their
loads, and objects and their load and number, are properly taken into consideration when
describing the workload. The object-based partitioning algorithms do not guarantee an
equal distribution of objects in all cases (although they provided it in the case of RUBiS).

54

3.3 Evaluation

3.3.4 Assigning Partitions to Servers

In this experiment, we evaluate the impact of ensuring that partitions get assigned to
servers in a way as to minimize the number of objects that need to be migrated. For that,
we compare the throughput results of the experiment of the previous section with the
throughput achieved when we assign partitions according to the previous cache content
of the servers (see Section 3.2.4).

O
b

j.
 M

ig
.

R
e

d
u

c
ti
o

n
(%

)

0

20

40

60

80

H
eu

r

R
eq

-G
P

R
eq

-H
gP

O
bj
-G

P

O
bj
-H

gP

YCSB

RUBiS

(a) Data migration reduction

T
h

p
t

Im
p

ro
v
e

m
e

n
t

(%
)

0

10

20

30

H
eu

r

R
eq

-G
P

R
eq

-H
gP

O
bj
-G

P

O
bj
-H

gP

YCSB

RUBiS

(b) Throughput improvement

Figure 3.7: Smart Assignment of Partitions to Servers

Figure 3.7a shows for YCSB and RUBiS for all partitioning strategies, how much

55

3.3 Evaluation

we were able to reduce the amount of objects migrated with our cache-aware assignment
of partitions to servers. For the Heuristic, we had to migrate roughly 45% less objects
for both benchmarks. This is due to the simplicity of the partitioning algorithm, where
the same requests tend to end up in the same partition and still access a fair amount
of objects that they have accessed in the past. Thus, there is a lot of overlap between
the new object partitions and the content of the individual caches, and our cache-aware
assignment leads to less data migration.

For the other partitioning algorithms, the gain for RUBiS is fairly small. These algo-
rithms are more sensitive to graph changes since they do not only consider edge connec-
tivity, but also edge weights. In addition, they use several optimizations to enhance the
quality of the produced partitions. Thus, they produce partitions with different content
every time, and therefore, there is less overlap with the current object distribution.

The results are better for YCSB because of the simplicity of the benchmark. The
graph remains very close from iteration to iteration. Thus, the algorithms tend to build
very similar partitions every time and a cache-aware assignment leads to a significant
reduction in object migration. For the object-based partitioning, a further aspect is that,
as we already mentioned, they produce skewed object distributions for YCSB as we
partition based on object access frequencies (i.e., load), and not according to total number
of objects per partition. In this particular case, one server has nearly 60% and another
nearly 40% of all data. If we guarantee that we assign these object partitions again to the
servers that already have the data, very few data has to be migrated.

Figure 3.7b shows the improvement in throughput during the migration phase that
is achieved by the cache-aware partition assignment. We can see that the impact on
throughput is somewhat limited most of the time but quite significant for the Heuris-
tic and for the object-based partitioning algorithms for YCSB that now avoid the deep
throughput dip that was observed in Figure 3.6a.

56

3.3 Evaluation

T
im

e
 (

s
e

c
)

0

20

40

60

H
eu

r

R
eq

-G
P

R
eq

-H
gP

O
bj
-G

P

O
bj
-H

gP

G/Hg Construction

G/Hg Partioning

Figure 3.8: Graph Construction and Partitioning Time

3.3.5 Meta-data Pruning

One of the challenges for dynamic reconfiguration is to generate the caching policies in
a relatively short time. Figure 3.8 shows the processing time considering both graph con-
struction and graph partitioning for all of our algorithms when considering 60 seconds of
log information. All except one algorithm require less than 7 seconds. The hyper-graphs
require less time for graph creation (as they create less edges) but more time for partition-
ing. In fact, partitioning time is negligible for all simple graphs. Req-HgP is the fastest
of all. In contrast, Obj-GP takes considerably longer. The reason is that we consider all
requests, including those with high drift rate. However, these requests generate many
edges as they access many objects over the observation interval. Thus, the construction
of the graph takes very long. For instance, the request-based graph has 15000 request
vertices and 120000 edges while the object-based graph has 150000 object vertices and
2 Mio. edges between them. Heur and Req-GP behave roughly the same because the
request-based graph is constructed the same way in both cases and partitioning time is
negligible.

The question now is how pruning requests and objects can increase performance both

57

3.3 Evaluation

Time (seconds)

120 180 240 300 360

T
hr

ou
gh

pu
t (

tx
n/

s)

0

1000

2000

3000

4000 100% 15% 10% 5%

(a) Top k% req. thpt.

Time (seconds)

120 180 240 300 360

T
hr

ou
gh

pu
t

(t
xn

/s
)

0

1000

2000

3000

4000 100% 80% 40% 20%

(b) Drift thpt.

P
ro

ce
ss

in
g

Ti
m

e
(s

)

0

2

4

6

8

to
p 5

%
 re

q

to
p 1

0%
 re

q

to
p 1

5%
 re

q

drif
t 2

0%
 re

q

drif
t 4

0%
 re

q

drif
t 8

0%
 re

q
pla

in

(c) Processing time

Figure 3.9: RUBiS and Req-GP: pruning meta-information

in terms of partitioning time as well as data migration. We run this set of experiments
with Req-GP, as a representative where graph processing is fast, and Obj-GP, our outlier.

We first analyze pruning unpopular requests and then pruning requests with high drift
rate. Figures 3.9a and 3.10a show throughput for Req-GP and Obj-GP, respectively, con-

58

3.3 Evaluation

Time (seconds)

120 180 240 300 360

T
hr

ou
gh

pu
t (

tx
n/

s)

0

1000

2000

3000

4000 100% 15% 10% 5%

(a) Top k% req. thpt.

Time (seconds)

120 180 240 300 360

T
hr

ou
gh

pu
t (

tx
n/

s)

0

1000

2000

3000

4000 100% 80% 40% 20%

(b) Drift thpt.

P
ro

ce
ss

in
g

T
im

e
(s

)

0

20

40

60

to
p 5

%
 re

q

to
p 1

0%
 re

q

to
p 1

5%
 re

q

drif
t 2

0%
 re

q

drif
t 4

0%
 re

q

drif
t 8

0%
 re

q
pla

in

(c) Processing time

Figure 3.10: RUBiS and Obj-GP: pruning meta information

sidering 100% of the requests, or only the 5%, 10% and 15% highest weighted requests.
Additionally, the first three bars in Figures 3.9c and 3.10c show the time to generate the
partitions. For Req-GP, considering less requests, at time of reconfiguration (180 sec-
ond), throughput increases quicker as less objects are migrated, but after that throughput
is significantly lower. Pruning 90% or more of the requests leads to a throughput loss

59

3.3 Evaluation

of around 15% which is mainly due to a lower local hit ratio as many requests are not
considered, and thus are not sent to the right application server. At the same time, Fig-
ure 3.9c shows that Req-GP runs in a bit less than half of the time (2.5 seconds vs 6
seconds). In contrast, and as shown in Figure 3.10c, the reduction in Obj-GP run-time
from 50 seconds to around 35 seconds allows reconfiguration to kick in earlier and thus,
throughput increases faster than if all requests need to be considered. Also, the number
of objects to be migrated is significantly less leading to nearly the same performance
despite the pruning.

In a second experiment, we analyze the impact of eliminating requests that have
high drift rate. Again, we run both Req-GP and Obj-GP against RUBiS considering all
requests or only the 20%, 40%, and 80% of requests with lowest request drift. Figures
3.9b and 3.10b show throughput for Req-GP and Obj-GP. Again, we refer to Figures
3.9c and 3.10c for the time to generate the partitions with these drift rates. For Req-GP,
eliminating high drift requests does not have a noticeable impact on the throughput but
slightly reduces the processing time. Considering high drift-rate requests does neither
harm nor benefit the performance. In any case, their objects are likely to not be in the
right cache. In case of Obj-GP, the outcome of eliminating these requests is better as
graph partitioning is much faster, in particular if we only consider the 20% of requests
with lowest drift rate. Thus, reconfiguration can kick in faster and benefits are quicker
observable.

3.3.6 Log Window Size Analysis

So far, we only presented results using 60 seconds of logging information. We also ex-
perimented with different intervals, and found the performance to be quite similar. For
instance, Figure 3.11 shows the throughput with Req-GP for YCSB and RUBiS log win-
dow sizes of 30, 60, and 90 seconds. 60 seconds achieves slightly better performance
than 30 and 90 seconds. This is probably due to the trade off between two contradicting
factors. With a large window size, some of the workload data might be outdated; with a
short window size we might not capture all necessary information. In our current system,
the interval needs to be set manually. In future work it would be interesting to find the

60

3.3 Evaluation

 T
h
ro

u
g
h

p
u
t

(t
x
n

/s
)

0

2000

4000

6000

4679 4871 4754

30
 s

60
 s

90
 s

(a) YCSB- Avg. thpt

 T
h

ro
u

g
h

p
u

t
(t

x
n

/s
)

0

1000

2000

3000

2323

2746 2681

30
 s

60
 s

90
 s

(b) RUBiS -Avg. thpt

Figure 3.11: Impact of time window size

sweet spot dynamically and workload dependent.

3.3.7 Result Highlights

At first view, all approaches appear to behave sufficiently well. Thus, we believe a graph-
partitioning approach is a feasible and promising solution to our caching challenge.

A closer view reveals several interesting details. First, the behavior of the simple
YCSB differs significantly from the more complex RUBiS. In particular, the partitions
from one iteration to the next are quite similar, thus, our smart partitioning assignment
has significant benefits. However, RUBiS reveals that as soon as the workload and data
design becomes slightly more complex, the generated graphs and resulting partitions

61

3.3 Evaluation

differ a lot from one iteration to the next. Thus, graph-partitioning is quite disruptive
and not an incremental approach. Therefore, having a lazy and smooth data migration
solution is crucial.

In the same realm, with a simple heuristic approach, while being potentially more
incremental and thus, less disruptive at time of reconfiguration, it is challenging to come
up with partitions that have equal performance compared to when using optimized graph-
partitioning algorithms, in particular when data design and access patterns are complex.

The object-based graph, as being proposed previously in the literature, has difficulties
when requests have a large drift. The size of the graph can quickly become unmanagable.
Request graphs tend to be smaller as the number of different requests is potentially con-
siderably smaller than the number of different objects. While the size of an object-graph
can be managed through the request pruning mechanisms that we propose, it appears
that avoiding the problem all together by using request-based graphs appears appealing.
Furthermore, in contrast to request graphs, controlling the number of objects assigned
to each partition when considering object load is not feasible, which might lead to poor
cache size utilization.

Pruning can significantly improve the performance in some cases and appears to have
little negative effect in the other cases. Thus, pruning is an effective mechanism to handle
the problem space.

62

4
Consistency and Space Aware Cache

Replication

In the previous chapter, we showed how carefully partitioning requests and objects across
application servers and their caches ensures a high local cache hit and an overall low
cache miss rate. How good such partitioning approaches can be in terms of high local hit
rates depends heavily on the respective workload. As current enterprise workloads tend
to be complex, user requests typically access several objects, different requests access
overlapping object sets, object access is highly skewed, and object popularity changes
over time, it is not always possible to perfectly partition the objects such that each request
finds all objects it accesses locally. A widely used technique to overcome such workload
complexity is object replication. In its simplest form, an object can be replicated to all
caches where it is locally needed, and we avoid having remote reads all together. How-
ever, object replication comes with two major challenges: the first one is maintaining
replica consistency under update workloads that can, such as in strong consistency, sig-
nificantly increase response time for write operations. And the second challenge is that
object replication consumes the limited cache space which potentially results in a larger
number of cache misses for other objects leading to expensive back-end access.

In this chapter, we present a replication solution that replicates objects to specific
caches only if there are real performance benefits. We assume a partitioning approach

63

Consistency and Space Aware Cache Replication

has distributed objects across partitions and the load-balancer has some policies to send
requests to partitions. Ideally, these policies send requests to partitions that have the nec-
essary objects local most of the time. For instance, any of the distributed approaches
presented in the previous chapter can be used. On top of this, we perform replication
independently from the object distribution approach. That is, we add replicas for some
of the objects, namely whenever the performance gain for reads outperforms the penalty
of data consistency and reduced cache space. Furthermore, we show how the proposed
replication solution is dynamic, detecting workload changes as they occur and reacting
to them in an eager manner without service interruption. Finally, we present extensive
performance tests using the RUBiS and YCSB benchmarks showing how our replica-
tion solution improves performance over a distributed cache and outperforms an existing
replication solution.

64

4.1 Replication Challenges

4.1 Replication Challenges

Theoretically, a partitioning algorithm should allow every request find all objects in the
local cache. However, our workload analysis as well as previous studies [91, 61] have
shown that enterprise applications are complex, and partitioning solutions are always
best-effort: there will always be the need to retrieve some objects from remote caches. In
order to avoid remote reads, we can replicate objects. But this will increase write costs
due to consistency requirements, and might fire back as our overall capacity of caching
different objects is reduced. In the following, we discuss these two challenges in addition
to the dynamic workload challenge in more detail.

4.1.1 Data Consistency

When an object is updated its physical copies need to be updated. There exist a plethora
of data consistency protocols, and several attempts in the research literature to categorize
them [56, 122, 115, 114, 8, 9]. Weak consistency algorithms execute the operation on a
single object copy and then confirm success to the user. Propagation of the update to
other replicas occurs in the background. In this case, the response time observed by the
user is usually not significantly affected by the number of copies. Strong consistency

algorithms perform the update on more than one copy before a confirmation is sent to
the user, typically on a quorum or on all copies. Some implementations only ensure that
the request is received at the remote cache while others wait until the update is actually
executed at all caches. All this can have a significant impact on the response time. Again,
many different algorithms and implementations exist which can result in very different
response times.

As an illustrative example of the performance differences between algorithms, we
run a simple experiment on the cooperative cache with EHCache which we extend with
replication. We use the extended servlet version of Yahoo! Cloud Service Benchmark
(YCSB) [23] that was discussed in Section 3.3.1 and submit a YCSB workload with
50% update requests, each updating 10 records, and 50% scan requests, each reading
100 objects. We use a weak consistency and a strong consistency protocol, the latter

65

4.1 Replication Challenges

of replica

1 2 3 4

L
a

te
n

c
y
 (

m
s
)

0

10

20

Strong consistency

Weak consistency

Figure 4.1: Impact of number of replicas on update latency

25 50 75 100

Percentage of data that fits in the cache (%)

0

1

2

3

4

L
a
te

n
c
y
 (

m
s
)

0

25

50

75

100

D
B

 h
it
 (

%
)Latency

DB hit

Figure 4.2: Impact of limited cache space on latency

updating all replicas before returning to the user.

Fig. 4.1 shows the average update latency per object for different number of replicas.
As expected, there are large differences in the update costs and in the dependency on the
number of replicas. Clearly, performance differences do not depend only on the particular
algorithm but also how it is exactly implemented and engineered.

Showing these extra costs, it becomes clear that replication can induce a considerable
or very little overhead on write operations. Sometimes, the negative effects might be
considerably higher than the gains for read operations.

4.1.2 Limited Cache Space

The cache capacity of all cache instances of a cooperative cache could still be too small
to hold the most frequently accessed objects. In such a case, replicating some objects
will aggravate this problem as even less different objects will fit into the caches, leading

66

4.1 Replication Challenges

to overall lower cache hit (local or remote) and more database access. Thus, while access
to replicated objects will now be faster, access to objects that can no more be kept in the
cache will be a lot more expensive.

To show the impact of limited cache sizes, we set up a cooperative cache with two
cache instances and run the extended YCSB workload composed of 100% scan requests
where each request scans 100 objects (uniform distribution). We set up the caches so that
the aggregated cache size for both caches holds 25%, 50%, 75%, or 100% of all accessed
data (randomly partitioned). When a data item is accessed that is not in one of the two
caches, the data item has to be retrieved from the backend database. Fig 4.2 shows the
response time of the requests on the left y-axis and the percentage of database accesses
on the right y-axis. With increasing cache capacity latency decreases. One can see that
this is directly related to the decreased database access.

In summary, the trade-offs between replicating some objects causing other objects to
be removed from the cache vs. the capacity to hold a larger number of different objects
has to be well analyzed.

4.1.3 Dynamic Workload

As discussed earlier, workload can quickly change. One particular change that can have
a significant impact on a replication solution is a change in the read/write ratio overall
and of individual objects. This can happen due to several factors. For example, price
drops for certain items on an e-commerce website may lead to a spike in their sales. Or
in an auction-bidding system such as eBay, bidding on items might increase just shortly
before their expiration. Furthermore, an online ticketing system might experience a spike
in ticket sale when the corresponding event approaches. These update spikes on an object
change the read/write ratio and may diminish the replication benefit or even worse, lead
to higher response time than without replication. Thus, our replication solution needs
a good mechanism to detect such read/write changes, and then react to them without
causing too much reconfiguration overhead.

67

4.2 AdaptCache Replication Extension

4.2 AdaptCache Replication Extension

In order for AdaptCache to support dynamic object replication, we have empowered the
cooperative cache framework with the necessary tools to be able to carry dynamic object
replication. In particular, we have extended the cooperative cache to support consistency
in case of replication by implementing a strong consistency algorithm that updates all
cached objects and the database object before returning to the client. However, our sys-
tem is not dependent on this particular algorithm as we see further below.

In addition we have extended the parameter collection process, described in Section
3.2.1, to support dynamic object replication. In particular we have extended the coarse-
and fine- grained tracking phases to collect replication-related parameters. Also, we have
added an extra feature for the AdaptCache to extract cache operation costs (latency) that
are necessary for our solution.

4.2.1 Extending the Parameter Collection

In Section 3.2.1, we showed how the Analyser manages the parameter collection process
through coarse- and fine-grained tracking in order to detect workload changes and col-
lect necessary parameters for conducting data partitioning. Here, we will show how we
extend these two phases to support dynamic object replication.

Extending Coarse-grained Tracking

Recall that in the coarse-grained tracking phase, the Analyser tracks only a high level
workload information that is required to decide if data reconfiguration is necessary. In
addition to tracking the local cache hit ratio that is used to decide if a new repartitioning is
necessary, we extend the Analyser to keep track of the the total number of read and write
operations to determine the read/write ratio. A read/write ratio is a strong indicator that
can be used to detect changes on the write request frequency submitted to the system. A
change of such frequency may impact the current replication deployment and thus may
trigger a replication adjustment. To this end, the Analyser maintains two counters, one

68

4.2 AdaptCache Replication Extension

Table 4.1: Parameters for object replication

np number of partitions

o.nrpi number of reads to object o issued by partition pi

o.nr

řnp

i“1 o.nrpi

o.RP set of partitions with at least one read operation to o i.e., pi P o.RP iff o.nrpi ą 0

o.nwpi number of writes to o issued by pi

o.nw

řnp

i“1 nwpi

o.WP set of partitions with at least on write operation to o i.e., pi P o.WP iff o.nwpi ą 0

for the number of read-object operations and the other for write-object operations. For
simplicity, whenever an object log message of type get arrives during the coarse-grained
phase, the read counter is increased wheres the write counter is increased if the object
message has a put type. Similar to monitoring the local hit ratio, the Analyser keeps track
of the read/write ratio to detect workload changes.

Similar to Section 3.2.1, the Analyser periodically checks first if there is a significant
change in the local cache hit ratio. If this is the case, the Analyser determines a new par-
titioning solution followed by determining a new replica assignment. If the local cache
hit ratio has not changed, there is no need to repartition. But if the read/write ratio has
significantly changed, then the Analyser will still revise the replica assignment as the
write ratio can have a considerable impact on the benefits of replication.

Extending Fine-grained Tracking

The fine-grained tracking phase aims to collect information about requests and objects
that are necessary to perform partitioning and replication. In the previous chapter, we
showed the collected information to perform partitioning. Similarly, in order to assign
replicas, the Analyser generates statistics for each accessed object and that for a prede-
fined observation interval. These metrics are listed in Table 4.1. We refer to a partition pi

69

4.2 AdaptCache Replication Extension

as the union of all client read-only and update requests that are assigned to server i and
all the objects that are stored in the server’s local cache. There are a total of np partitions.
For each object o that was accessed during the interval of observation, we denote with
o.RP (o.WP) the set of all partitions that have at least one request that reads (writes) o.
For each pi P o.RP po.WP q, the Analyser keeps track of the number of read (write) oper-
ations that originate from pi denoted as o.nrpi (o.nwpj). Also, the Analyser keeps track of
the total number of reads and writes that originate from all partitions to object o denoted
as o.nr and o.nw respectively. The operation here refers to the individual cache operation
that is spawned by a request type. A scan request, for example, that targets 10 objects
and is executed at partition pi will spawn 10 read operations all of which originate from
pi.

Note that while both partitioning and replication solutions use the same workload
meta-data to collect input parameters, the collected statistics are mostly different. A very
few parameters are shared across both solutions; such as the number of partitions and the
object’s total number of reads. The rest are different. Specifically, the replication solution
does not need information about individual read requests such as their types or access
frequencies. This is because the replication solution relies on the underlying data parti-
tioning solution to manage request distribution; thus, it does not need information about
individual read requests. It does need, however, information about the number of read
and write requests issued to objects as well as from which partitions. This is because the
presented replication approach is an object-based solution that manages object replica
locations across caches based on various object-based statistics. These statistics are indi-
rectly derived from requests as they access objects. That is, for replication purposes, we
only need the information provided in the object logs.

4.2.2 Extracting Operation Costs

We mentioned before that replication leads to faster reads but slows down writes. To
understand the trade-off we need to quantify the performance. To this end, we leverage
response time as our performance metric because it reflects well user experience, and
because it can be automatically and transparently extracted. Since the overall object re-

70

4.2 AdaptCache Replication Extension

Table 4.2: Cost (Latency)

crl cost of read local

crrem cost of read remote

crdb cost of read db

cwlpkq cost of writing k replicas (one write local)

cwrempkq cost of writing k replicas (only remote writes)

cwdb cost of only writing to db

sponse time depends on individual cache operation costs or response times, we extract
all object-related operation costs from our running system. Table 4.2 lists the different
costs that we measure in our system. For reads, crl indicates the time to retrieve an object
from the local cache, crrem is the retrieval time from a remote cache and crdb is the time
to retrieve an object from the database.

Write costs are a bit more complicated as they also depend on the number of replicas,
especially for strong consistency protocols. Therefore, cwlpkq depicts the cost for a write
operation with k replicas where one of the replicas resides in the local cache, while
cwrempkq depicts the cost where all replicas are in remote caches. We can expect cwlpkq

to be lower than cwrempkq. However, with increasing k we can expect this benefit to be
less and less. Finally, we also extract the write cost cwdb when the object is in no cache
and only the database has to be updated. cwdb will always be lower than when the object
is cached as the database must always be updated.

4.2.3 Independence from Distributed Solution

So far, we have discussed the replication solution as an extension to our distribution
solution discussed in Chapter 3. But we can also use it independently as the replication
solution is decoupled from the distributed solution. To do so, the targeted system has

71

4.3 Basic Replication

to have certain requirements. First, the data has to be well distributed across sites in a
way that groups a set of data that is accessed together in the same partition. Second, a
load-balancer has to be able to distribute incoming requests across these partitions such
that most requests can find most of their data in the partition where they are executed
and minimize the number of remote data access.

Once the data has been well distributed, object replication parameters and operation
costs, similar to those in Tables 4.1 and 4.2, can be extracted, even differently, and used
by the replication solution that is totally independent from the underlying distributing so-
lution. The independent nature of the replication solution manifests itself in several ways.
First, it does not need to know how the underlying partitioning solution works. Second,
it does not need to know the implementation details of read/write operations or the used
consistency approach. Third, it does not need to know information about request types,
their access frequencies or sites where they are executed. Such independence allows the
replication solution to gracefully work on top of other data distribution solutions. In
Chapter 7 of the Future Work, we will discuss the feasibility of adding our independent
replication solution on top of well-known systems and partitioning solutions.

4.3 Basic Replication

In this section we discuss a simple replication solution that serves as our baseline. As
our solution assumes that the already deployed partitioning solution assigns each object
to a single partition and distributes requests across server, replication is now relevant for
an object o that is assigned to partition pi but there is a remote partition pj that needs to
execute a read operation on o. We refer to these objects as remote read objects, or RRO.

With this, the basic solution, also denoted at RepRRO, extends the base distribution
solution by adding copies so there are no more RROs in the system. More precisely, a
copy of an object o is added to a partition pj to which o was not originally assigned to, if
and only if there is a read operation on o originating from pj . As a result, all originally
remote reads are transformed to local reads.

72

4.3 Basic Replication

 2.3

 30.0

 3.4 1.9

 54.3

 4.2

100%

 scan

50%

 update

100% scan with

 75% of data fits

 in the cache

0

20

40

60

9
9

th
 %

'il
e

 l
a

te
n

c
y
 (

m
s
)

Obj-GP RepRRO

(a) latency

100%

 scan

50%

 update

100% scan with

 75% of data fits

 in the cache

C
a
c
h
e
 h

it
 (

%
)

0

50

100 90

 23

 69

 98

 22

 57

(b) local cache hit ratio

Figure 4.3: Partitioning vs Basic replication performance

RepRRO focuses on making reads fast as they will be on local caches. However, it
has only little consideration for the additional overhead in case of updates. Furthermore,
it does not take limited cache capacity into consideration.

To better understand the limitations, we compare this basic replication solution with
one of the non-replicated distribution approaches presented in Section 3.2.2, specifically
the object-based graph partitioning, which we refer to as Obj-GP, that achieves fairly
high but not perfect local cache hit ratio. We use the YCSB benchmark and four caches
to analyze three different workloads. Workload I has only scan requests each access-
ing 100 objects. Workload II has 50% update requests each reading and then updating
five objects, and 50% scan requests (as before). We use a strong consistency algorithm
as described in Section 4.2. In both workloads, all objects fit in the aggregated cache.
Workload III has 100% scan requests as before but the aggregated cache space can hold
only 75% of the total number of accessed objects.

Figure 4.3a shows the 99th percentile latency per operation and Figure 4.3b the lo-
cal cache hit ratio. Lowest latencies are with workload 1. Replication has a higher local
cache hit ratio, and thus, lower latencies than Obj-GP. In update workload II, both ap-
proaches perform worse than the read-only workload due to the high cost of writing to
the backend database. Replication is actually worse than Obj-GP due to the extra time
required for updating the additional copies. The gain for the read operations is overall
less than the extra overhead for writes. For workload III with a limited cache space,
replication achieves again worse performance than Obj-GP, this time because the repli-

73

4.4 Managing Update Overhead

cas consume the limited cache space and, thus, the overall cache hit (local and remote
together) is smaller, triggering a higher DB access.

Clearly, such a simple basic replication approach is not sufficient to balance the trade-
offs of replication. In the next two sections, we will show how to tackle these challenges.

4.4 Managing Update Overhead

In this section we look at the trade-offs between the benefits of reads and the overhead
of writes, but we ignore limited cache sizes. We start again with the partitioning only
solution. We are only interested in objects that have remote access, that is, an object o
assigned to partition pi and there is a partition pj that has an operation on o (i.e. |o.RP Y

o.WP | ą 1q. As a first step, we check for each of these objects whether it is a read-only
object (o.WP “ H). If this is the case, we simply follow the basic replication approach
by replicating the object to each pi P o.RP that does not store o originally. As there is
no overhead for writes, it makes sense to replicate the object to all partitions that access
it.

If an object o is (also) updated we have to be more careful. We want to find the set of
partitions o.PC Ď o.RP Y o.WP such that replicating object o to all partitions in o.PC

maximizes the gain in performance for o.

4.4.1 Calculating Execution Costs

For that, we first must be able to quantify performance. We do this by calculating for a po-
tential configuration o.PC, the expected total overall execution time, denoted TT po.PCq.
The calculation takes all read and write operations on o that were observed during the
observation interval, and sums up their expected execution time should o be replicated
to all partitions in o.PC. The configuration with the lowest overall time has the lowest
cost, and thus, is considered the best configuration.

We discussed in the previous section the parameters that we need to calculate this

74

4.4 Managing Update Overhead

cost: we need to know how many read and write operations to o were submitted at each
partition (nrpi and nwpi), the costs for local and remote cache reads (crl and crremq, and
the costs for write, depending on the number of replicas and whether the submitting
partition has a local copy or not (cwlpkq and cwrempkq).

Using these parameters, we calculate the total expected execution time when repli-
cating o to all partitions in o.PC as the sum of expected read time RT po.PCq and write
time WT po.PCq:

TT po.PCq “ RT po.PCq `WT po.PCq (4.1)

The formulas for read and write costs are quite similar. For reads, let o.nrlpPCq “
ř

piPo.PCXo.RP o.nrpi be the number of all read operations where there is a local replica
in configuration o.PC, and let o.nrrempPCq “

ř

piPpo.RP zo.PCq o.nrpi be the number of
all read operations where there is no local replica. Then we have

RT po.PCq “ o.nrlpPCq ˚ crl ` o.nrrempPCq ˚ crrem (4.2)

That is, all reads on partitions with replicas have local read cost, and all reads on parti-
tions without replicas have remote read costs. We do not need to look at partitions with
no read operations. The larger the number of reads nrpi and the more expensive a remote
read is compared to a local one (crrem ´ crl), the lower will be the total time if o has a
replica on pi.

For writes, let k “ |o.PC| be the number of replicas, let o.nwlpPCq “
ř

piPo.PCXo.WP o.nwpi

be the number of all write operations where there is a local replica in configuration o.PC,
and let o.nwrempPCq “

ř

piPpo.WP zo.PCq o.nwpi be the number of all write operations
where there is no local replica. We have

WT po.PCq “ o.nwlpPCq ˚ cwlpkq ` o.nwrempPCq ˚ cwrempkq (4.3)

Again, we do not need to consider partitions that do not write o, but we have to consider
the number of replicas k. While the number of replicas negatively affects writes, for a
particular partition the access cost with a local replica cwlpkqmight actually be lower than
a remote access with less overall replicas cwrempk´ 1q. This could be, e.g., the case with
weak consistency. In this case, only one copy is updated first and update propagation

75

4.4 Managing Update Overhead

is performed in the background. Updating locally will likely be faster than updating a
remote copy. For strong consistency algorithms, however, the number of replicas will
have a much more negative affect. Given this complexity, it’s much less clear how much
the actual update overhead for writes really is.

Example Let’s have a look at a simple example with two partitions p1 and p2, an object
o originally assigned to p1, read operations r1 and r2 accessing o and assigned to p1

and p2 respectively, and two write operations w1 and w2 on o assigned to p1 and p2

respectively. Assume first that nrp1 “ 30, nrp2 “ 20, nwp1 “ nwp2 “ 2, crrem “ 1,
crl “ 0.1, cwlp1q “ 8, cwremp1q “ 10, and cwlp2q “ 12.

Thus, we have three configurations with different total times as follows: TT po.tp1uq “
3 ` 20 ` 16 ` 20 “ 59, TT po.tp2uq “ 30 ` 2 ` 20 ` 16 “ 68, and TT po.tp1, p2uq “

3 ` 2 ` 24 ` 24 “ 53. Thus, configuration o.tp1, p2u, which replicates o to p2 saves
execution time. However, if we have more write operations, e.g., nwp1 “ nwp2 “ 5, then
TT po.tp1uq “ 113, TT po.tp2uq “ 122, and TT po.tp1, p2uq “ 125 and we should not
replicate.

Complexity Calculating the costs for all subsets of o.RP Y o.WP might appear to be
very costly as there are 2|o.RPYo.WP |´1 possible subsets. However, if the partitioning so-
lution did a good job, then |o.RP Yo.WP |will actually be a small number. However, we
have mentioned that for the cooperative cache, it was actually very difficult to determine
which objects a client write request would write; thus write requests are distributed ran-
domly across partitions, and |o.WP | is equal to the number of partitions in the system.
Therefore, in the following, we will have a closer look at this assignment policy and see
that in this particular case, complexity is not exponential. Instead we only have to look
at np different configurations.

4.4.2 Random Write Distribution

In the partitioning solution of Chapter 3, the partitioning algorithm distributes write oper-
ations randomly across all nodes using round robin. With this, |o.WP | “ np is the num-

76

4.4 Managing Update Overhead

ber of partitions in the system and for any two pi, pj P np, we can expect nwpi “ nwpj .
With o.nw “

ř

i o.nwpi being the total number of write operations and k “ |o.PC| the
number of replicas, the write time becomes

WT po.PCq “ nwp
k

np

cwlpkq ` p1´
k

np

qcwrempkqq (4.4)

That is, k
np

of the nw write operations can access a local copy while the rest has no local
copy available. With this, the overall write overhead does not depend on where an object
is replicated, but only how many replicas there are. The write costs for all configuration
with k replicas are the same.

Two partitions Let’s look at an example with two partitions p1 and p2, and o originally
assigned to p1, two read operations r1 and r2 assigned to p1 and p2 respectively, and
writes equally distributed across both partitions. The question is now whether it’s worth
to replicate o to p2 to make r2’s reads local. If we look at the two configurations we have

TT po.tp1uq “ nrp1crl ` nrp2crrem ` nwp1{2cwlp1q ` 1{2cwremp1qq

TT po.tp1, p2uq “ pnrp1 ` nrp2qcrl ` nwcwlp2q

Replicating to p2 is better if TT po.tp1uq ą TT po.tp1, p2uq which can also be expressed
as
nrp2pcrrem ´ crlq ą nwpcwlp2q ´ p1{2cwlp1q ` 1{2cwremp1qqq

or
nrp2

nw
ą

cwlp2q´p1{2cwlp1q`1{2cwremp1qq
crrem´crl

That is, if the ratio of reads that turned local to the number of writes is larger than the
ratio of the extra overhead of a write to the performance gain for a read, then replicating
an object to p2 will result in a better total time compared to not replicating it.

More than two partitions Interestingly, if write operations are equally distributed
across all nodes, then we can significantly reduce the number of replica configurations

77

4.4 Managing Update Overhead

that we need to consider. More particular, the number of configurations for which we
have to calculate TT to determine the lowest possible TT , is equal to the number of
partitions np. More precisely, for each k “ 1...np, we only need to calculate TT for one
configuration with k replicas.

For k “ 1, i.e., no replication, we assume that the distribution algorithm provided
us with the best solution. Assume it assigned o to pi. Then, there is no need to look
at any other o.PC “ tpju where j “ i. Thus, we only need to calculate TT of one
configuration where k “ 1.

From there, we sort the remaining p by descending number of read accesses nrp into
vector ppj2 , pj3 , . . . q. Partitions that do not have any read access will all be at the end of
this list.

For k “ 2, we calculate the total time for configuration o.PC “ tpi, pj2u. Among
all the configurations with two replicas we can be sure that this one has the smallest
TT . By adding the partition with the most read operations, we are able to reduce remote
cache access the most and thus reduce RT the most. As all possible configurations with
2 replicas have the same write costs, WT will be the same, no matter where we add a
replica.

For all further k “ l, 2 ă l ď |o.RP |, the same argumentation holds. By adding pjl

we add from the remaining partitions the one that has the most read operations, and thus,
benefits the most from local access. As all possible configurations with k replicas have
the same write costs we know that this is the best configuration with k replicas.

Finally, for all k “ l, |o.RP | ă l ď |o.WP |, we simply add a replica to a random
partition in o.WP that does not yet have a replica. Read costs do not change anymore.
Replication here will only be beneficial if the fact of having more writes with a local
replica outweigh the costs of having an extra replica.

78

4.5 Managing Limited Cache Size

4.5 Managing Limited Cache Size

In this section, we consider systems with limited cache size where replicated objects have
to compete with non-replicated objects for space. To illustrate the problem, assume two
partitions p1 and p2 with a 10-object capacity each. Assume that the original distribution
approach equally partitions a total of 20 objects across the two partitions. Assume further
that an object o1 assigned to p1 is also accessed by a remote read operation r2, that is
assigned to p2. Since the replication solution in the previous section is size-unaware,
it suggests to replicate o1 to p2. However, there is no space at p2 to host all of the 10
originally assigned objects and o1. The question is which object should p2 evict.

The best solution might be to evict one of the objects originally assigned to p2. But
it might also be that the penalty for this is actually higher than the benefit for replicating
o1, and then o1 should be evicted, or better termed, not be replicated in the first place.

Traditional caches use standard eviction mechanism, such as evicting the least-frequently-
used object as this generates the least penalty. However, in our case, calculating the
penalty of an eviction is not as clear. An object that is replicated somewhere else gen-
erates less penalty than an object that is not replicated because it can be retrieved from
a remote cache, which is cheaper than retrieving it from the database. Even if the ob-
ject is not replicated, it might have remote reads from other partitions, which have to be
considered. We have to take all this into account in our solution.

At a high level, we first assign replicas as described in the previous section without
space consideration. Then we ensure in a follow-up phase that all objects assigned to
a cache actually fit in the cache. For that, we evict from each cache any oversupply of
objects. To do so, we calculate the expected eviction penalty for each object and evict
the ones with lowest penalty. In the following, we first look at this follow-up phase for a
system with no write operations, and then add write operations.

79

4.5 Managing Limited Cache Size

4.5.1 No Write Operations in The System

Assume partition pi has m objects more than its cache capacity. Out of all objects some
might be local-only (i.e., not replicated at any other site) while others are replicated. If pi
evicts a replicated object o, then all local read operations on o have now a costly remote
read. If pi evicts a local-only object, its own read operations as well as the remote read
operations it receives from other partitions now all go to the database, again much more
costly. Thus, we always have to pay a penalty. We calculate the penalty as the difference
between the total expected execution time for this object if evicted and if it remains in
the cache.

For a replicated object o on pi, if o is evicted, pi has to read the object from a remote
cache. For all other pj the situation does not change. Thus, the eviction penalty is

oEvPty
“ o.nrpipcrrem ´ crlq (4.5)

Clearly, the lower the number of local read operations the lower the penalty.

If a local-only object is evicted, all access has to go to the database, i.e., the local
read operations but also the operations that are issued from other caches. Recall, that crdb
denotes the time to read an object from the database. With this, the penalty for evicting
a local-only object o on pi is

oEvPty “ o.nrpipcrdb ´ crlq ` po.nr ´ o.nrpiqpcrdb ´ crremq (4.6)

that is, both the local cache reads and any remote cache reads have to be replaced by
database accesses instead. The penalty shows that the higher the number of overall reads
and the more costly the database access compared to local or remote access, the higher
the penalty. Furthermore, for the standard case where cdb ą crrem ą crl, the number of
local accesses has more impact on the penalty since the time difference between database
access and local access is so high.

From here, we simply sort objects by their eviction penalty and remove the m objects
with the lowest penalty.

80

4.5 Managing Limited Cache Size

4.5.2 Write Operations in The System.

Considering writes, the removal of an object also affects the write costs.

If we remove a replicated object from pi, then there is one less replica in the system
but the write cost for a write on pi is now cwrem instead of cwl. The write costs for a con-
figuration are given in Eq. 4.3. The difference between these costs for the configuration
before and after the eviction has to be simply added to Eq. 4.5. For strongly consistent
protocols there is likely a benefit for writes if there is one less replica; for weak con-
sistent algorithms it’s less clear. In any case, as this is a complicated formula that has
to be calculated for every configuration, sorting replicated objects by penalties can be-
come quite costly. For the special case of random distribution of writes, however, things
are simpler. For each number k of replicas, we can pre-compute the average write cost,
denoted cwpkq, as follows

cwpkq “
k
np
cwlpkq ` p1´

k
np
qcwrempkqq (right part of Eq. 4.4).

The formula only depends on system parameters such as cwl and on k. With this, the
penalty can be quickly calculated as

oEvPty
“ o.nrpipcrrem ´ crlq ` po.nwpcwpkq ´ cwpk ´ 1qq (4.7)

For a local-only object, in case of eviction, a write operation now only needs to update
the DB with a cost denoted cwdb, and no cached copies anymore. This will always be
smaller than the write costs for any k of replicas. The penalty is

oEvPty
“o.nrpipcrdb ´ crlq ` po.nr ´ o.nrpiqpcrdb ´ crremq

` o.nwpcwdb ´ cwp1qq
(4.8)

81

4.6 Evaluation

4.6 Evaluation

In this section, we evaluate our solution and compare it with other approaches using
the YCSB and RUBiS benchmarks with the modifications we had discussed in Section
3.3.1. We use a total of 8 machines each having an Intel(R) 2.90GHz Dual-core, 8GB
of RAM, and running with Linux OS as follows: one for the client emulator, one for the
load-balancer, four application servers with caches, one database server and one for the
Analyser.

Algorithms For our experiments, we compare the following approaches.

‚ Obj-GP: This is the object-based graph partitioning approach presented in the
previous chapter (Section 3.2.2). Although Obj-GP does not achieve the best per-
formance across all partitioning algorithms that were discussed in Chapter 3, we
chose it as baseline because SCHISM [26] is also an object distribution algorithm
that uses a similar object-graph approach.

‚ RepRRO This is the solution from Section 4.3 that uses first Obj-GP, and then
replicates RRO objects.

‚ RepDYN: This is our update- and space-aware replication solution from Sections
4.4 and 4.5. It also uses Obj-GP as starting point.

‚ SCHISM: This approach is a customized version of SCHISM [26]. As discussed
in Section 3.2.2, SCHISM motivated our object-based graph partitioning algo-
rithm and was developed to partition data accessed by database transactions aim-
ing in avoiding distributed transactions. It basically uses the object-partition algo-
rithm that we described in Section 3.2.2 and to which we added the request dis-
tribution mechanism. SCHISM also supports replication. In contrast to our solu-
tions RepRRO and RepDyn, replication is very tightly integrated with partitioning.
More precisely, SCHISM represents each object with multiple nodes in the graph.
In particular, one vertix for each request that accesses the object. Whenever the
partitioning algorithm puts these nodes into different partitions, the corresponding
objects will be replicated. SCHISM does not offer request partitioning. Thus, we

82

4.6 Evaluation

have added a request partitioning similar to the one used in Obj-GP. SCHISM is
not cache-size aware.

4.6.1 Experiments

We have run experiments with various workloads, a limited cache space, and with con-
tinuous workload changes. We also show runtime analysis results.

Write dominant workload performance

In a first expirement, we adjust both YCSB and RUBiS workloads to contain 75% write
requests and assume unlimited cache space. For YCSB, each scan request fetches 100
objects and each update request updates 10 objects. For RUBiS, read requests can browse
several pages each with different number of items while an update request can either put
a bid on an item or buy an item. In each setting we collect parameter values for 5 minutes
and then run partitioning and replication. Figure 4.4 shows average request latency, local
cache hit and replication degree. The latter, adapted from [125], represents the average
number of physical copies for all objects. As we consider limited cache, it ranges from
0 to n (n is the number of caches).

Given the large write ratio, replication is not beneficial, therefore RepDYN replicates
very few objects and performs nearly the same as Obj-GP. Both SCHISM and RepRRO
replicate considerably more objects, and as a result, they have higher latency although
they have more cache hits. SCHISM performs particularly bad in this scenario. With
RUBiS, RepDYN is clearly the best in terms of latency, and RepRRO and SCHISM are
the worst. RepDYN has the same replication degree as SCHISM, but it better targets the
objects where replication does not cause too much write overhead.

The replication degrees in RepRRO and SCHISM are considerably higher in YCSB
than in RUBiS. With YCSB, most requests overlap significantly with other requests,
and thus, a distribution only solution leads to a lot of remote read requests, which both
RepRRO and SCHISM try to avoid by replication, without properly taking update over-
head into account. In contrast, RUBiS lends itself to easy distribution. Thus, replication

83

4.6 Evaluation

59
65

49

67

81

95

81

122

0

50

100

150

L
a
te

n
c
y
 (

m
s
)

Obj-GP

RepRRO

RepDYN

SCHISM

(a) YCSB-Latency

59
65

49

67

0

20

40

60

80

100

L
a

te
n

c
y
 (

m
s
)

Obj-GP

RepRRO

RepDYN

SCHISM

(b) RUBiS-Latency

C
a
c
h
e
 h

it
 (

%
)

0

10

20

30

40

32%
34% 33% 34%

(c) YCSB-Cache hit

C
a
c
h
e
 h

it
 (

%
)

0

20

40

60

48%
51%

48%
51%

(d) RUBiS-Cache hit

R
e

p
lic

a
ti
o

n
 d

e
g

re
e

0

0.5

1

1.5

2

1.00

1.27

1.01

1.90

(e) YCSB-Replication degree

R
e

p
lic

a
ti
o

n
 d

e
g

re
e

0

0.5

1
1.00

1.06 1.04 1.04

(f) RUBiS-Replication degree

Figure 4.4: 75% write workload

is not as crucial for reads.

84

4.6 Evaluation

151

181

151

199

0

50

100

150

200

250

L
a

te
n

c
y
 (

m
s
)

Obj-GP

RepRRO

RepDYN

SCHISM

(a) YCSB-Latency

90
104

60

138

0

50

100

150

200

L
a

te
n

c
y
 (

m
s
)

Obj-GP

RepRRO

RepDYN

SCHISM

(b) RUBiS-Latency

C
a
c
h
e
 h

it
 (

%
)

0

50

100

63%

42%

69%

44%

(c) YCSB-Cache hit

C
a
c
h
e
 h

it
 (

%
)

0

50

100

70%

61%

82%

56%

(d) RUBiS-Cache hit

R
e

p
lic

a
ti
o

n
 d

e
g

re
e

0

0.5

1

1.5

2

1.00

1.27

0.75

1.81

(e) YCSB-Replication degree

R
e

p
lic

a
ti
o

n
 d

e
g

re
e

0

0.5

1
1.00

1.06

0.75

1.04

(f) RUBiS-Replication degree

Figure 4.5: 75% cache space

4.6.2 Limited Cache Space Analysis

In this set of experiments, we run both YCSB and RUBiS with a read-only workload.
As before, each YCSB read request scans 100 items while a RUBiS read requests scans

85

4.6 Evaluation

different number of objects depending on the page it is accessing. Figure 4.5 shows the
performance for YCSB and RUBiS variants with 100% read load where only 75% of
the working set fits in the aggregated cache space. When looking at response times, Fig-
ure 4.5a and 4.5b, we can clearly see that RepDYN outperforms RepRRO and SCHISM.
The reason is the much better cache hit ratio as seen in Figures 4.5c and 4.5d. This is due
to the RepDYN’s cache aware replication decision. In fact, if we look at the replication
degree, Figures 4.5e and 4.5f, as RepDYN is cache aware and only 75% of the objects
fit in the cache, the replication degree is 0.75. While many objects have now 0 physi-
cal copies (they were evicted), the most frequently accessed objects still have 2 or more
replicas. Obj-GP, RepRRO and SCHISM have always replication degrees of 1 or higher
as they are not aware of the cache size and assign more objects to each cache than the
cache can actually hold. It’s the cache internal policy that decides which objects to keep
and which to evict. RepRRO has the same replication degree as in the previous experi-
ment as it is neither aware of the write overhead nor the limited cache. By evicting the
least important objects right from the beginning, RepDYN can achieve better cache hit
ratio than the other approaches, in particular for the more sophisticated RUBiS, and thus,
achieves the best latency results. RepRRO and SCHISM have particularly bad cache hit
ratios, and thus, worse latency in all cases.

4.6.3 Workload Changes Triggering Partitioning

In this experiment, we change over time the workload submitted to the system. The
changes are significant enough to trigger a repartitioning. Figure 4.6a shows latency
over time for the three dynamic solutions: Obj-GP, RepRRO, and RepDYN. We only
show results for YCSB as results for RUBiS were conceptually similar. We first run
workload WrkldD1 of 50/50 read/write ratio and no partitioning/replication reconfigu-
ration takes place the first 300 seconds. Then we trigger the first partitioning/replication
manually after 300 seconds and turn to dynamic reconfiguration mode (whereby recon-
figuration will occur if cache hit ratio changes by 10%). After further 300 seconds we
switch to WrkldD2 that also has 50/50 read/write ratio but targets a totally different data
set. Performance of all approaches is the same for the first 300 seconds (with a short

86

4.6 Evaluation

0 300 600 900

Time (seconds)

0

50

100

150

L
at

en
cy

 (
m

s)
Obj-GP RepRRO RepDYN

(a) partitioning+replication

0 300 600 900

Time (seconds)

0

50

100

150

L
at

en
cy

 (
m

s)

Obj-GP RepRRO RepDYN

(b) replication only

Figure 4.6: Dynamic reconfiguration

warm-up phase at the beginning) as no reconfiguration has taken place. After the first re-
configuration, RepRRO and RepDYN perform better than Obj-GP because the workload
is read-intensive, thus both replicate many read-only objects with considerable benefit.
When the second workload kicks in, reconfiguration takes place. This time again, both
RepDYN and RepRRO replicate similar number of objects and thus perform better than
Obj-GP.

87

4.6 Evaluation

4.6.4 Read/Write Changes Triggering Replication

In this experiment, shown in Figure 4.6b, we run again two YCSB workloads in the
same time intervals as in the last experiment. We also again switch partitioning/replica-
tion on after 300 seconds. But the changes in workload only affect the read/write ratio:
WrkldRW1 has a 90/10, and WrkldRW2 a 25/75 read/write ratio. Therefore, they do not
require a full repartitioning, and no reconfiguration is triggered for Obj-GP and RepRRO.
In contrast, RepDYN detects the changes at 600 seconds and finds new replica assign-
ments.

After the reconfiguration at 300 seconds, latencies are better for all approaches. Given
the high read rate of the first workload, RepRRO and RepDYN have similar perfor-
mance outperforming Obj-GP until the next workload kicks in because they replicate
many objects. As the second workload has many writes, latencies go generally up. Rep-
Dyn removes the replicas it has previously generated and thus, performs now better than
RepRRO. Its performance is now similar to Obj-GP. This shows the advantage of having
a replication solution that is decoupled from the partitioning solution. If there is only
a change in read/write ratios, it’s not necessary to fully repartition, which is expensive.
Only a light-weight adjustment of the location of replicas is needed.

4.6.5 Solution Overhead

Finally, we look at the execution times for the different repartitioning/replication algo-
rithms. For that, the object-graph has to be generated taking the objects and requests and
their frequencies as input. The graph has then to be fed into the graph-partitioning li-
brary. For RepRRO and RepDYN, replica assignment has to be determined on top of the
partitions. As the structure of the graph influences its generation, we run two workloads.
Both use RUBiS with a 90/10 read/write ratio where each write request updates a single
item and read requests either search items or view items and users.

In the first setup, we vary the number of objects per request from 50 to 200. Fig. 4.7a
shows that for all approaches, the processing time increases with increasing number of

88

4.6 Evaluation

50 100 150 200

objects/request

0

50

100

150

200

P
ro

ce
ss

in
g

 t
im

e
(s

)

Obj-GP RepRRO RepDYN SCHISM

(a) number objects per request

20% 40% 60% 80%

objects/request

0

50

100

150

200

P
ro

ce
ss

in
g

 t
im

e
(s

)

Obj-GP RepRRO RepDYN SCHISM

(b) Overlap

Figure 4.7: Processing times

objects per request. This is directly related to the object-graph that tends to generate more
edges with more number of accessed objects per request. However, the processing times
for Obj-GP, RepRRO and RepDYN are similar, showing that neither of the two replica-
tion assignments has a high overhead compared to graph construction and partitioning.
The processing time is steady and considerably lower than for SCHISM with the latter
also increasing with increasing number of objects. The reason is that SCHISM has more
vertices and edges, because if there are k requests accessing an object, SCHISM creates
k vertices for this object with many additional edges between the objects accessed by the

89

4.6 Evaluation

same requests. In SCHISM, the multiple vertices are introduced specifically for enabling
replication. Obj-GP, in contrast, only creates one vertex per object because it does not
handle replication. RepRRO and RepDYN do it instead in a later step.

In our second experiment, each request accesses 100 objects, and there is pair-wise
overlap between requests. That is, request1 and request2 overlap, request2 and request3

overlap etc. In Figure 4.7b we show processing times when the percentage of this over-
lap increases. Obj-GP, RepRRO and RepDYN have again similar times as the overhead
for replication assignment is very low compared to the graph partitioning overhead. This
time, execution times increase with more overlap as the number of edges increases sig-
nificantly with higher overlap leading to more complex graphs. SCHISM’s execution
again takes much longer because it has many more vertices and edges.

We would again like to note that for RepRRO and RepDYN, 96% of the processing
time is spent on graph-creation and partitioning, and only 4% is spent on assigning the
replicas. Thus, should we choose any of the graph algorithms we discussed in Chapter 3
that has lower processing time than the Obj-GP, the overall time would be much reduced.

90

5
Related Work

In this chapter, we discuss several works that are related to this thesis and show how they
compare to our contributions. We start by discussing related works on data partitioning
and replication in the area of database systems. Then, we present works on distributed
caching architectures and their respective data distribution and/or replication. Finally,
we discuss some works in the area of dynamic reconfiguration for data partitioning and
replication.

91

5.1 Data Partitioning and Migration in Distributed Database Systems

5.1 Data Partitioning and Migration in Distributed Database
Systems

A shared-nothing architecture is a popular distribution approach that horizontally scales
the database tier in order to handle increasing amount of data or load. The distributed
database system comprises several stand-alone servers, or partitions, each holding a sub-
set of data and serving transactions. A common approach is to have a front-end server
as a middleware that accepts all database requests and then distributes them across the
servers which is conceptually similar to the load-balancer introduced in Chapter 2 that
distributes load across application servers. In the next two subsections, we show first
various database partitioning techniques and then discuss some related work on database
migration.

5.1.1 Data Partitioning

Data partitioning mechanisms have been widely studied in distributed systems and database
communities with the goal of dividing data across a set of shared-nothing servers in order
to improve scalability and performance. A good introduction can be found in [59, 83].
Based on whether the workload characteristic is taken into account when partitioning
the data, partitioning mechanisms can be divided into two main categories: workload-
unaware partitioning and workload-aware partitioning.

Workload unaware partitioning: These mechanisms partition the data without con-
sidering the workload access pattern or the workload transaction semantic. The most
basic partitioning mechanisms are range and hash-partitioning [59]. In range partition-
ing, database tables are partitioned based on a value range of one of the table columns.
For example, a customer orders table can be range-partitioned across servers based on
the order date attribute. Hash partitioning on the other hand, assigns each row in a table,
to a specific partition by hashing the value of one of its attributes, most commonly the
primary key, using a hash function.

92

5.1 Data Partitioning and Migration in Distributed Database Systems

In both cases, the meta-data information that is required to know for each request
which partition holds its respective data is relatively small. In range partitioning, the
load-balancer requires to know the range boundaries for each partition, while hash parti-
tioning requires a hash function in addition to information about which partition should
hold which hash values. Due to their small footprint as well as their deployment simplic-
ity, many database management systems offer one or both of these partitioning mech-
anisms. To name a few, MySQL, Oracel and MongoDB offer range partitioning while
Dynamo [30], Cassandara [62] and Infinispan [73] use a special version of hash parti-
tioning known as consistent hashing that requires minimal data movement whenever a
partition addition/removal occurs [54].

However, despite their simplicity and minimal meta-data, both approaches have vis-
ible drawbacks such as load-impalance across partitions. Furthermore, they cause chal-
lenges for a key component of database systems which is transaction support. If the
transaction is complex and updates multiple tuples residing in different partitions, the
front-end server requires to run a costly consensus protocol, such as two-phase com-
mit, to finalize such a distributed transaction resulting in a humble performance [26].
Therefore, in the last decade, many more sophisticated forms of partitioning have been
proposed in the database community in order to counter the disadvantages of range and
hash-partitioning.

Workload-aware partitioning: The goal of workload-aware partitioning techniques
is to reduce the number of distributed transactions through grouping data items that are
accessed by groups of transactions in a single partition. Thus, as data partitioning de-
pends on particular workload transactions, these techniques are workload-aware.

In the previous chapters, we have already discussed Schism [26] and Sword [91, 61]
in details. They are graph-based solutions and our approaches are inspired by them.
Another work that also leverages graph representation can be found in [44]. However,
rather than building a simple graph, it builds a bipartite graph that represents transactions
as vertices on the left side and objects as vertices on the right. An edge is added between
a transaction and its accessed objects. Then, a graph partitioning algorithm is used to

93

5.1 Data Partitioning and Migration in Distributed Database Systems

partition both transactions and objects across partitions.

As mentioned before, even though our data partitioning solutions are also based
on building a workload graph, they differ in several aspects. First, we explore both
request- and object-based graph partitioning. Also, we do not only distribute objects
across caches, but we also distribute requests across application servers. Furthermore,
Schism does not handle workload change. Sword does it in an incremental manner
through monitoring the percentage of distributed transactions. Whenever this percent-
age exceeds a certain threshold, it moves data items across partitions to mitigate the
impact of workload changes. However, they are not able to capture fine grain changes
such as weight change. In contrast, we build a complete new graph on every iteration,
which is feasible as we do not partition the entire database but only the most recently
accessed objects and requests. This allows us to capture any form or workload changes.

Horticulture [87] uses range partitioning to partition the entire tables. It proposes sev-
eral partitioning designs, each is based on selecting a certain table attribute as a candidate
partitioning key. A cost model that calculates the execution costs of the various proposed
designs based on a given workload is used to pick the best partitioning design. In addi-
tion to distributed transactions, the cost model also considers the workload skew factor.
A workload skew happens due to a sudden load spike on a certain tuple or set of tuples.
As a result, the hosted partition becomes overloaded which negatively affects the overall
performance. However, instead of considering an overall skew factor, Horticulture slices
the entire workload into weighted intervals and then calculates the overall skew factor
as the arithmetic mean. As it only considers static workloads, Horticulture does not pro-
vide a mechanism for dealing with dynamic workloads that feature new queries and/or
newly accessed objects. Also, the generated design may not work well with different
skew access patterns.

E-store [113] targets dynamic workload skew that happens due to a sudden load
spike of a certain tuple or set of tuples. It dynamically detects overloaded partitions and
transfers hot tuples from their original overloaded partitions to less-loaded partitions
in order to balance the load. E-store builds its solution upon the assumption that the
database follows a tree-schema structure based on primary key/foreign key relationships,

94

5.1 Data Partitioning and Migration in Distributed Database Systems

and a transaction only accesses tuples within a single tree. Thus, as long as all tuples
within a tree reside in the same partition, there are no distributed transactions. If a hot
root tuple needs to be migrated, the entire tree has to be migrated, including also cold
tuples. However, for databases that do not adhere to such a tree-schema structure and
where transactions can access any tuple, E-store’s skew solution will not work and lead
to distributed transactions which adds to the latency.

In order to properly manage the hot tuple issue for transactions with random access
patterns without introducing distributed transaction, the authors of E-store proposed a
follow up approach called Clay [101]. It builds an object graph, similar to Schism, when-
ever an overload situation appears. This graph, however, contains only vertices and edges
that are monitored during the overload situation. The reason of having this graph is to
add the hot tuple’s adjacent vertices to the migrated vertices set. Thus, instead of moving
only a hot tuple, Clay moves also the tuples that are accessed together with the hot tu-
ples in recent transactions to reduce the number of distributed transactions. In addition,
instead of moving these vertices to a random under-loaded partition, they are moved to
a partition that is not only under-loaded but also contains tuples that are likely to be
co-accessed with this set of moved tuples.

Another workload-aware data partitioning [103] technique is used to transform JSON
collection of documents to relational database tables. It decides, based on the observed
workload, which JSON attributes (keys) should be grouped together on a partition. To do
so, the technique constructs a workload graph with vertices representing attributes and
edges representing attribute co-accesses. However, instead of using graph partitioning
tool, they use a heuristic approach that starts from the most frequent query and assigns
all its attributes to a partition.

5.1.2 Data Migration

Data migration has been playing an important role for several purposes such as recover-
ing faulty database nodes [57, 70] or reconfiguring data across database nodes to meet
workload requirements [35, 43, 104, 123]. In addition, the emerge and fast adoption of

95

5.1 Data Partitioning and Migration in Distributed Database Systems

cloud computing and virtual machines have also been leveraging data migration. For in-
stance, in order to react to workload variations, the virtual machine in which the database
resides can be migrated or the database itself can be migrated from one virtual machine
to another [36, 60, 11, 28] . In addition, most works on data partitioning have utilized
data migration techniques in order to move data across partitions [113, 101].

Early work about data migration can be found in the context of data replication [57,
70]. These works aim at transferring data from a non-faulty node to a recovered node
that is joining back the cluster. To do so, the authors propose either to transfer the latest
state copy of data items along with the ongoing transactions or transfer only the updates
the recovered node has missed.

Squall [35], Morphus [43] and Parqua [104] propose data migration for database
reconfiguration. These works aim to deploy a new data reconfiguration policy through
migrating data across a set of DB instances in a live manner allowing both reads and
writes during reconfiguration without bringing the entire system down. These works
migrate individual data tuples from one DB instance to another. To do so, Squall [35]
for instance, uses two approaches to migrate data. The first one is a proactive approach
that starts moving data across partitions whenever the reconfiguration is triggered, and
the second is a reactive approach that is triggered by a transaction to pull the tuple from
the source node to the destination node if it has not been migrated yet.

Similarly, Morphus [43] targets NoSQL data stores, specifically MongoDB, and uses
a pull-based approach to migrate data across nodes but in a proactive manner. A follow-
up work that also uses a proactive pull-based approach is Parqua [104]. It handles re-
configurations and data movement in NoSQL data stores, such as Casandra, that use
consistent hashing for data distribution.

Our data migration approach is reactive and works on a pull-based mechanism. We
do not have an explicit, proactive procedure of migrating all objects whenever a new
object policy is installed since such migration may negatively impact the performance
of application servers. Studying the feasibility of integrating a proactive data migration
approach within AdaptCache is an interesting topic of future research.

96

5.1 Data Partitioning and Migration in Distributed Database Systems

Another study [123] tries to reduce the downtime as well as the degradation phase of
the migration process through completely replicating data to the destination node before
discarding the source node.

In the context of cloud computing, data migration plays a vital role to enable applica-
tion resource auto scaling. Auto scaling has become a major feature of cloud infrastruc-
ture capabilities. It monitors application performance and adjusts required resources to
maintain steady application performance with a reasonable price. Many cloud comput-
ing providers such as Amazon AWS1, Microsoft Azure2 and Google Cloud3 offer such
capability. Therefore, it is important to have tools for migrating system components, in-
cluding databases, across virtual machines. Examples of works that offer such tools are
Zephyer [36], Rocksteady [60], ShuttleDB [11] and Albatross [28].

Zephyer [36] uses a dual mode to transfer data from a source to a destination VM.
Initially, and once the migration plan is triggered, the source node pushes the meta-data
to the source node in order to allow it to serve transactions. Once a transaction that is
executed at the destination node requests a certain tuple that is not yet migrated, it uses
a pull mechanism similar to Squall to pull the entire data page that contains this tuple
from the source node. Finally, all remaining pages that have not been accessed so far
are asynchronously pushed to the destination node. In principle, we follow a similar
policy but we do not have the final push as we only consider "hot data" that is accessed
frequently.

The same pull-based mechanism is also used by Rocksteady [60]. It forwards all
client requests to the destination node and whenever the destination node receives a read
query it initiates a pull request to the source node, pulls the tuples, stores it locally and
then returns it to the client.

ShuttleDB [11], on the other hand, migrates the entire database to a new virtual ma-
chine by taking snapshots of the source node and applying it to the destination node. As
the destination node may not be up-to-date, ShuttleDB replays queries that took place

1https://cloud.google.com/compute/docs/autoscaler/
2https://azure.microsoft.com/en-us/features/autoscale/
3https://cloud.google.com/compute/docs/autoscaler/

97

5.1 Data Partitioning and Migration in Distributed Database Systems

during the migration process on the destination node. This is similar to what was pro-
posed in [57, 70].

Albatross [28] assumes a different architecture that is built on the network attached
storage (NAS) paradigm whereby several database instances share the same storage but
each has its own cache and serves a subset of user transactions. Thus, the problem here is
not to migrate the entire database to a different node but to migrate the database instance
cache in order to allow for a warm startup for a new instance. The authors propose to
copy the snapshot cache of the source node to the destination node but as the snapshot
might change during the copying phase at the source, the authors suggest an iterative
copying where in each iteration the destination node syncs up with the source node.
Once the transfer is done, transactions are then forwarded to the new instance whose
cache should be in up-to-date state.

Another use case of data migration, as stated earlier, is to move data across database
instances to fulfill dynamic workload partitioning. Sword [91] migrates data across nodes
through an external tool that explicitly removes migrated tuples from a source node and
places it at a destination node. In order not to impact performance, the data migration
phase is only carried out during low demand times. E-store [113] as well as Clay [101]
use Squall [35] to migrate data across nodes.

One of the challenges of the above migration mechanisms is how to deal with con-
current transaction processing that might change the state of individual tuples. In our
cache, the issue is of less concern as transactions are managed through the central back-
end database. A write request exclusively locks the cached object being updated and
only updates it once the respective database copy has been successfully updated. If an-
other request tries to access a locked object, the cache will forward it to the database for
processing. Therefore, if the object that needs to be migrated is locked (being updated),
the request on the source node has to access the database to fetch the object instead of
the remote cache holding that object. Thus, AdaptCache’s data migration process safely
migrates objects in case of concurrent writes.

98

5.2 Data Replication

5.2 Data Replication

Data replication is a widely used approach across many storage systems. It provides
availability, scalability and responsivity [89]. The idea is that a logical data item has
many physical copies or replicas. In principle, a request accessing a data item can be
served from any storage server that has a copy of this item. This provides availability as
long as one copy is available. It provides scalability as requests can be distributed across
many copies and more copies can be added as the workload increases. And replication
can also provide higher system responsivity to globally distributed clients by bringing
replicas close to clients [58].

Despite its benefit, data replication comes with challenges that need to be handled
properly, such as keeping data copies consistent and to properly handle replica failure.
These issues become even more complicated when considering replication for database
systems where a transaction can access several data items and the execution across all
these data items needs to be atomic, isolated and durable.

In all cases, and independently of whether data replication is implemented in a simple
storage system or in a more complex database system, it can be roughly divided into two
main categories: full or partial replication.

5.2.1 Full Data Replication

Full data replication means that the entire data is replicated across several nodes each of
which holds copies of all data items [86, 39, 98]. In this situation, a node or a storage
server is also referred to as replica. Requests are usually distributed by a load-balancer
across replicas. Full data replication works well with a read-dominant workload while it
struggles with write-heavy workloads because writes have to be executed on all replicas,
leading to considerable overhead.

99

5.2 Data Replication

Load-balancing strategies

One simple approach to distribute requests is round robin. As request service times vary,
a weighted version of round robin referred to as least connections was proposed for
distributing workload requests across replicated web servers using the current number of
active requests at each replica as a load measure [17]. An incoming request is dispatched
to the replica with the least number of active requests.

One major advantage of utilizing such simple distribution mechanisms is their de-
ployment simplicity as they do not require information regarding request-to-replica map-
ping. Also, for most workloads, they are sufficient to balance the load across replicas.
However, one drawback of utilizing such simple approaches is memory contention [39].
In order to process requests, replicas usually require to perform the costly I/O operation
to fetch data from disk to memory. If request instances of the same request type are pro-
cessed by different replicas, then all of them must fetch the data to their memory space,
leading to duplicate I/O. Furthermore, similar to the issue for stand-alone distributed
caches discussed in Section 2.1, memory contention arises that leads to poor utilization
of the aggregated memory space across all replicas. The operating system reacts to such
a situation by performing costly memory swapping as well as additional disk I/O opera-
tions which substantially increases request latency.

Therefore, reducing memory contention across replicas by carefully sending requests
to the replicas whose memory already holds their respective data is of a great perfor-
mance benefit. Hence, and conceptually similar to database partitioning and the work
presented in this thesis, workload-aware request distribution across replicas that aims at
achieving memory access locality and equal load distribution has received considerable
attention [85, 126, 97, 39, 89].

Locality aware request distribution or LARD [85] is an early approach that sends a
request for an object to the server that was the most recent to serve this request. [126]
follows a similar approach. A fundamental difference to our approach is that LARD as-
sumes that each server has its own independent cache while we work with a cooperative
cache that can provide a higher cache capacity. In addition, while LARD assumes that a

100

5.2 Data Replication

request accesses only a single object, our approach takes into account requests that are
accessing multiple objects.

In addition, several works on database replication try to achieve transaction locality
by analyzing the workload in advance and deciding about load distribution. In particular,
[97] analyzes the benefits of sending a complex query to a replica where a similar query
was previously sent by estimating the size of the data set overlap between these two
queries depending on the predicates contained in the queries.

In the same spirit, TAashkent+ [39] statically analyzes workloads and groups trans-
action requests that access the same data. The requests of one group are then always
sent to a specific database replica. The goal again is to enable these requests to find their
working data sets in the database cache instead of performing costly disk I/O. However,
as they statically analyze workload in advance, workload changes are difficult to han-
dle. Also, as TAshkent+ targets database systems, there is the additional challenge of
transaction properties.

Another load-balancing approach widely used in database systems is to separate
read-only and write transactions. Ganymed [89] distinguishes between these transactions
by sending write transactions to a primary replica while sending read-only transactions
to other replicas. Writes are then asynchronously propagated to other replicas and reads
are either forwarded to an updated replica or delayed until one of the read replicas gets
the latest updates. Recent works, such as [65], follow a similar approach. The advantage
of such a primary replica approach is that maintaining consistency is a lot easier than
in approaches where updates can be submitted everywhere. Furthermore, the read-only
replicas can be optimized for the more complex analytical queries.

101

5.2 Data Replication

Fault tolerance and availability

Data replication is also widely used for fault tolerance and to guarantee service availabil-
ity. Most modern DB engines such as MySQL4, Microsoft SQL Server5, PostgreSQL6

Oracle7, MongoDB8 as well as the Hadoop file system HDFS9 [105] offer data replica-
tion.

The idea is to enable a data system to keep working without service interruption or
with minimal performance degradation in case of a replica failure. One of the challenges
for a fault tolerance system is how alive replicas can decide about the final values of data
items in case of a replica failure.

5.2.2 Partial Data Replication

We have previously discussed that the complexity of current enterprise workloads makes
the task of perfectly partitioning data across partitions an impossible task. Thus, repli-
cating a few data items to partitions that need them increases access locality and also
enables better load-balancing [26, 87, 61].

However, as replication increases the number of data copies, a write request to a
replicated data is required to be performed at all servers containing that copy in order to
guarantee data consistency [56, 58], which, as a result, adds to the transaction latency.
Thus, analyzing the benefits of data replication in terms of reducing the number of dis-
tributed transactions vs. the loss such replication may induce due to the extra cost of
propagating write requests has been explored within the database community.

Early work in this area [102] proposes to partially replicate data items to servers geo-
graphically close to the clients likely to access these items. This implicitly decreases the

4https://dev.mysql.com/doc/refman/8.0/en/replication.html
5https://docs.microsoft.com/en-us/sql/relational-databases/replication/
6https://www.postgresql.org/docs/9.1/high-availability.html
7https://docs.oracle.com/cd/A87860_01/doc/server.817/a76959/repover.htm
8https://docs.mongodb.com/manual/replication/
9https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Replication

102

5.2 Data Replication

cost of updates as updates have to be propagated to only a few and close replicas. How-
ever, in order for this solution to work, a workload should follow a certain geographical
access pattern where one region will likely access the same set of data. Thus, the solution
will not work for workloads that do not follow such a pattern.

Schism [26] is another work that proposes partial replication. In the previous chapter
we have discussed how Schism determines which object to replicate by translating each
object that is accessed by several transactions into many vertices in the workload graph,
and whenever the partitioning tool puts these vertices into different partitions, the object
will be replicated. Sword [91] follows a similar approach. The main issue of these ap-
proaches is that they do not take the various costs of consistency protocols into account.
Moreover, as the number of transactions accessing a certain object increases, the num-
ber of vertices and edges in the workload graph becomes big. Thus, constructing and
partitioning such a graph becomes expensive.

Horticulture [87] powers its partitioning mechanism by replicating read-only tables
across partitions only if the partition storage has enough capacity. In order to prioritize
read-only tables for replication, authors use the table temperature measurement [42],
which represents the access frequency of the table divided by its size. Read-only tables
are then sorted in a descendant order based on their temperatures for replication.

Rabl and Jacobsen [92] aim to achieve the best performance possible in a shared noth-
ing database using a theoretical model that decides about either distributing or replicating
data to maximize throughput and achieve equal load distribution. They use throughput
as their primary objective metric and disk space as a secondary one. To replicate tables,
the approach groups query types that access the same set of tables together, and based
on the query weight, which is calculated as the total execution time multiplied by the
respective table sizes the query accesses, it assigns queries and their respective tables to
partitions in a bin-packing fashion. However, reducing the impact of data consistency in
case of update queries is not explicitly considered.

All of the above solutions either use ad-hoc replication (replicate read-only objects
or small tables) or their replication is tightly integrated into the distribution solution. In

103

5.2 Data Replication

contrast, our solution puts replication on top of a distribution solution and can easily
handle dynamicity as the overhead of finding good replica assignments is not expensive.
Furthermore, we consider limited cache size, something ignored by most approaches
mentioned.

5.2.3 Data Replication in the Cloud

Cloud environments add some interesting additional issues both when data is repli-
cated within a data center as well as when replicated across geographically distributed
data centers. In addition to minimizing user request latency and balancing load across
databases in a geo-replicated environment [81, 68], other research is looking into the
price of using cloud resources as well as energy consumption [15]. The authors propose
to replicate data across servers within the same data center and/or across different data
centers in order to enhance performance and, at the same time, reduce energy consump-
tion. The simulated results show that integrating energy saving as a replication objective
can have a potential impact on energy saving. However, this comes at the price of per-
formance.

Spanner [24] is a more dynamic data storage system that allows for fine-grained data
replication across data centers based on several criteria related to user’s latency as well
as the cost of maintaining consistency across replicas. However, unlike our replication
approach, the number of replicas as well as their locations are manually determined.
A conceptually similar approach can be also found in [47]. Surveys on data replication
tehniques in cloud data centres can be found in [96, 76]

5.2.4 Data Consistency for Replicated Data

The benefits of replication for scalability and performance depend on the used consis-
tency algorithm. In general, consistency protocols can be divided into two main classes
depending on when copies are updated [83]. The first one is called lazy or weak, and
the second one is called eager or strong. This categorization holds for both data storage
systems and database systems. However, due to transactional requirements, consistency

104

5.2 Data Replication

protocols for database systems are more complicated.

Lazy replication

Lazy replication requires to execute the update on one replica and then, after committing
and returning the result to the user, propagate the update to the rest of the replicas. The
strength of lazy replication is its performance as no communication for update propaga-
tion occurs within the response time observed by the client.

Early works for transactional databases focused on primary-copy lazy consistency
where a primary node is in charge of executing all updates and only propagate them
to the secondaries after informing clients [31, 29]. This is also the approach used in
Ganymed [89] that we discussed earlier. More recent systems such as PNUT [22] extend
that lazy replication model to have a dynamic primary node instead of a predefined fixed
primary node. However, due to the immense amount of processed data, PNUT relaxes
the transactional requirements in favour of performance.

A weak, yet wildly adopted correctness model of lazy replication is eventual con-
sistency. It requires that if no further updates are received, all copies will be eventually
consistent [9]. Several cloud storage systems such as Amazon Dynamo [30] and Google
Cloud Datastore use eventual consistency as their consistency level. However, as even-
tual consistency makes no transactional guarantees, it is not suitable for transactional
systems.

Eager replication

Eager protocols ensure that all replicas execute the update before returning to the client.
They are widely used in fault tolerance systems. Conventional database systems with
transactional requirements usually uses Two-Phase Commit protocol to guarantee that
all data copies have the same value at the end of transaction. Should a replica fail af-
ter having committed a value, all available replicas will also commit. Non-transactional
storage systems use Paxos [64] or a modern version of it called Raft [82]. Paxos is a
widely adopted consensus protocol that allows a set of alive replicas to form a con-

105

5.2 Data Replication

sensus over a value in the presense of replica failure. Several large scale data storage
systems such as Google Megastore [10] and Spanner [24], that are used to store various
Google products, utilize Paxos to build a fault-tolerance storage system. A comprehen-
sive comparison between Two-Phase Commit and Paxos can be found in [45]. In contrast
to Paxos, Raft [82] decomposes the consensus challenges into relatively independent
sub-problems and solves each of them individually which makes it easier to understand
and also implement than Paxos.

As eager replication can have higher latency compared to lazy replication, several
works try to mitigate such performance degradation [56, 38]. In [56], the authors pro-
pose a strong consistency implementation without 2PC by propagating changes to other
replicas before committing the transaction using a total order group communication pro-
tocol but committing the transaction and return to the client before the other replicas
have applied the changes. In [38], the authors allow the front-end middleware rather than
individual database replicas to determine the ordering of the committed transactions and
send the ordering of the transaction execution in one shot to different replicas. This can
result in a considerable performance benefit.

Recent works analyze the trade-off between different consistency levels with the goal
of dynamically picking the best consistency level protocol [20, 67, 110]. Although the
goal of maximizing performance gain is the same as ours, a major difference to our
replication solution is in the way the problem is tackled. These works assume a fixed
object replication policy in place and the system can switch to a different consistency
protocol to achieve the best performance possible. In contrast, our solution assumes a
cache with a given consistency protocol and the goal is to pick the best replication policy
under the given consistency algorithm.

106

5.3 Data and Space Management for Distributed Caches

5.3 Data and Space Management for Distributed Caches

Caching can be implemented either as a stand-alone architecture such as Memcached10

or it can be integrated with the application tier such as Ehcache11. Based on the given
architecture, we will discuss related works on data distribution, data replication, and
space management in distributed caching.

5.3.1 Cache Architectures and Data Partitioning

Many current key-value caching systems rely on a dedicated cluster of cache nodes to
store recently used data. Example of these caching systems include Memcached and
Redis12. As the cache nodes are completely decoupled from the application servers, all
cache calls are remote. Our Cooperative Cache overcomes this limitation by coupling
each application server with its local cache and, at the same time, letting all local caches
share their data.

To distribute data among nodes, many caching systems, such as Memcached and
Redis, utilize consistent hashing [54]. As described previously, consistent hashing is a
widely used distribution technique that allows for dynamic node changes without the
need to reorganise all the data.

Chord [111, 112] is a consistent hashing protocol that allows for fast key lookup
and minimal data movement when the number of nodes changes. It does so by creating
an identifier space as a logical ring and distributing both nodes and data items across
the ring space by hashing their ids and keys respectively. Each node stores all data items
with keys that are in the range between its own and its predecessor’s identifier. Whenever
a key is requested, the node that receives the request forwards it to a node whose id is
closer to the requested key using a routing table that is built in a way that greatly reduces
the number of hops. A new node is placed within the ring based on its hashed id and
receives part of the data of its predecessor in the ring. Thus, only a small portion of the

10https://memcached.org/
11http://www.ehcache.org/
12https://redis.io/

107

5.3 Data and Space Management for Distributed Caches

data has to be moved to the new node and there is no need to reshuffle the entire data in
case of node changes.

One issue of the Chord design is that it does not guarantee even hash values distribu-
tion over the hash space, which can lead to load and size imbalance [6, 49]. Also, when
a new node is added it alleviates only the load of its predecessor in the ring. Hwang
and Wood [50] adjust the hash space by representing each physical node as many virtual
nodes. All data items of a physical node are virtually distributed across all its virtual
nodes, and it is the virtual nodes that build the ring. When a new node is added, its vir-
tual nodes will be neighbours of various existing virtual nodes that reside on different
physical nodes, thus, the load from many different physical nodes will move to the new
node. Individual virtual nodes can also be moved from one physical node to another. This
allows for better load-balancing as well as minimal data shuffling whenever the number
of nodes changes.

In addition, other works have targeted the memory allocation mechanism that Mem-
cached uses to store objects. In Memcached, whenever an object is cached it will be
assigned to a slab, where slabs of equal sizes are grouped into a class. If, for example,
all objects are of the same size, they will be assigned to the same class which makes
other classes not well utilized resulting in imbalanced utilization. Lama [48] optimizes
the memory allocation mechanism by calculating the best number of slabs within each
class as well their sizes based on the workload. The entire hash space is then restructured
in order to maximize memory cache usage.

Our cache partitioning solution is quite different. It is able to detect load-imbalance
during run time as it occurs and initiates new partitioning according to the most recent
workload.

Other works that target data partitioning across a set of application server caches can
be found in [118, 119]. The authors assume a front-end load-balancer that dispatches
requests across a set of servers each of which contains an independent caching compo-
nent to store the recently accessed objects that are fetched from the backend storage.
In order to reduce backend access, the authors propose a request-policy that is used to

108

5.3 Data and Space Management for Distributed Caches

send a request to a server whose cache contains the requested data. Instead of build-
ing a fine-grained request policy similar to ours, they build a coarse-grained policy that
maps a category of requests to a server or set of servers. Whenever a request arrives, the
load-balancer assigns its respective server through its category.

Again, individual caches work independently. Hence, a request updating a certain
object at a certain server may cause inconsistency with other cached copies of the same
object at different caches. In addition, the proposed solution assumes that a request is
targeting a single object, which, as we have previously shown in Chapter 3, is not always
the case. Thus, distributing only requests without their respective objects will not achieve
the best outcome.

In a quite different context, non-uniform memory access or NUMA [63, 69], has
some similarity with our cooperative cache architecture. In NUMA, cores on different
nodes can access remote memories as well as their local memories. As accessing local
memory is faster than accessing a remote one, memory segments have to be allocated
among different NUMA nodes in a way that keeps remote memory access infrequent.
In [63], two memory allocation policies are discussed. The first one is local; memory
pages are allocated to memory attached to the core that is processing its code while
the second is random where memory pages are assigned to memory cores in a round-
robin fashion. However, such simple memory allocation policies still require processes to
access remote memory pages. Thus, we believe that the data partitioning and replication
solutions presented in this thesis could inspire a dynamic and application-aware NUMA
memory allocation solution.

Shared-everything is another architecture that might benefit from our data partition-
ing solution. In shared-everything, the entire database is located at a multi-socket, multi-
core server. ATraPos [90] indicates that the challenge of scaling such a multi-core system
is that it experiences bottlenecks in terms of accessing centralized data structures, such
as shared locks and the list of active transactions. ATraPos dynamically partitions these
centralized data structures as well as their receptive data across cores in a way that re-
duces inter-core communication and balances the load across cores. However, as data is
partitioned across different cores but within the same machine, data migration is not seri-

109

5.3 Data and Space Management for Distributed Caches

ously considered. In addition, data replication to enhance data locality for more complex
workloads is not considered.

Another scalability issue in a shared-everything architecture is the coherence of the
cache directory that keeps information about locations of data across memory cores.
Whenever a change is made to the content of any core’s memory, the centralized di-
rectory has to be updated accordingly, which as a result, can cause scalability issue. A
previously proposed solution [33] aims at moving the centralized data directory to an
in-node directory where data location information is located within each node. This is in
order to reduce the amount of exchanged messages when reading or writing data.

5.3.2 Data Replication and Caching

Replicating data across caches can be used to balance the load across caches and to
achieve fault-tolerance. Replication for these purposes has been developed in architec-
tures that decouple cache servers from application servers [111, 6, 4, 7]. As these caching
systems usually use consistent hashing where an object is assigned to a single node, a
failure of a cache instance can harm the performance. Thus, several works and systems
try to bring high availability to these caching systems [111, 50].

An example of work that utilizes object replication to solve load imbalance across
Memcached nodes can be found in [124]. The proposed solution detects keys with
high popularity and replicates them across underloaded partitions. Requests are then
dispatched to nodes using a load-balancer that maintains information about replicated
objects.

Repcached13 is an extended replication library that replicates data across Memcached
instances. It provides a flexible replication mechanism that allows developers to choose
the type of operations to replicate at a peer cache. Other caching systems that offer object
replication include Oracle’s TimesTen In-Memory Database Replication14, IBM Web-

13http://repcached.lab.klab.org/
14https://docs.oracle.com/cd/E11882_01/timesten.112/e21635/overview.htmTTREP115

110

5.3 Data and Space Management for Distributed Caches

Sphere eXtreme Scale [51], and the recent Amazon DynamoDB Accelerator (ADX)15

that works on top of DynamoDB [30] to provide faster data access.

In caching systems where cache instances are collocated with application servers,
replicating data across caches aims also to enhance data access locality. This is a typical
case of Ehcache16 and JBoss cache17.

Compared to our replication solution, all of the above replication mechanisms do
not take into consideration the update cost of replicated objects. In addition, they do not
consider the problem of the limited cache space. We believe, however, that their flexible
replication APIs allow for easy integration of our replication solution.

5.3.3 Managing Cache Space

The problem of managing cache space across several virtual machines (VM) has received
considerable attention. At the abstract level, the architecture comprises a set of applica-
tions each running within a single VM and all VMs share a common cache space. The
question becomes how to dynamically divide the cache space across these applications
in a way that maximizes the overall performance [75, 4, 93].

CloudCache [4] partitions cache space across a set of applications based on their
demands. In addition, it tackles the issue of a limited cache space by migrating, if nec-
essary, both the VM and the attached cache space to a different host with enough cache
capacity. Multi-Cache [93] divides hierarchical cache layers, each with different speed,
among a set of VMs and the goal is to achieve the best allocation policy.

A conceptually similar research problem is how a set of applications that share a
common cache can divide the cache space among the applications based on their de-
mand [109, 21, 16]. Moirai [109] divides a shared cache space across applications in a
way that can either prioritize certain applications or maximize the overall application hit
ratio. Memshare [21] adds more memory to applications with high demand while cutting

15https://aws.amazon.com/dynamodb/dax/
16http://www.ehcache.org/
17http://jbosscache.jboss.org/

111

5.4 Dynamic System Configuration

off memory of over-provisioned applications. The goal is to reduce the costly cache evic-
tion process. mPart [16] is a recent work that also tries to achieve the same goal using a
theoretical model that uses as an input the cache hit ratio curve for each application as
well as the entire cache capacity in order to find an optimal cache allocation strategy.

Managing cache space can be also useful for modern multi-core hardware systems
where database queries can compete on the cache space and harm performance. In [80],
the authors propose to distribute the cache across queries in a way that achieves the
best performance and avoids cache competition across queries. They dedicate certain
amounts of cache to queries based on their type according to a priory fixed analysis of
queries’ cache requirements.

Clearly, the goal of all of the above works is different to the problem of managing
the cache space this thesis deals with. A work close to ours can be found in [66]. The
authors assume a limited storage space and the problem is to decide either to replicate an
object to that storage or not. While they use a formula that weights objects based mainly
on their access count, they do not differentiate between various access costs for various
request types. Furthermore, they do not consider the write overhead.

5.4 Dynamic System Configuration

Research on dynamic system configurations aims to produce a highly adaptive system
with minimal human interaction. The need for a dynamic approach has increased with the
advent of cloud computing and virtualization. As stated earlier, cloud computing allows
several VMs to run on a single machine. Thus, these VMs can be automatically config-
ured in order to distribute the physical resources of the host machine among the differ-
ent applications according to their workload variations [106, 84, 94, 108]. Even within
each application, there is a space to control the service level according to the workload
against different resources (CPU, memory) [88, 18]. Alternatively, several machines can
be dedicated to a large-scale enterprise. This can be dynamically self-configured through
allocating extra machines in the peak workload time while deallocating some machines
during low demand time [37, 117, 116, 19]. A more recent work [107] combines the

112

5.4 Dynamic System Configuration

above two approaches. It dynamically allocates resource for applications whose services
are hosted in heterogeneous cloud platforms by either changing the number of VMs,
resizing the existed ones or both. To facilitate cloud resources provisioning, workload
modeling for applications can be used [12, 52].

Our partitioning and replication caching solution is also dynamic. The AdaptCache
tool is eager to work with any application that is hosted on top of a cooperative cache.
Second, the tool is orthogonal to the targeted system in terms of number of machines,
types of the network, used consistency protocol and various types of workload changes.
All these system-related parameters and performance metrics are transparently extracted
through the developed tool.

113

6
Conclusions

The Multi-tier architecture is such as the widely popular system design pattern that di-
vides the entire system into many layers; web layer, the application layer and the back-
end database layer. Each of these layers is logically and likely physically separated to
allow for better scalability, availability and portability. An application tier, for example,
can be scaled to have several application servers to serve increasing user demands. In
such a case, a load-balancer is placed at the front of these instances to intercept user
requests and distribute them across the application instances.

Data intensive applications require to fetch data from the back-end database to serve
client requests. To alleviate load on the back-end data tier, a caching module can be
added to each application instance. However, to fully utilize the entire cache space, a
cooperative cache that connects all application local caches is constructed. The ques-
tion becomes how to manage requests and objects in such architecture to achieve best
performance possible.

This thesis provides novel approaches for conducting request and object partitioning
as well as replication for cooperative caches. The approaches are adaptive, requiring
no external interaction to function. They transparently monitor the workload to detect
changes and react accordingly.

To motivate the need for such an adaptive partitioning approach, we first analyzed a

114

Conclusions

real workload to extract important request and object access patterns. Out of this anal-
ysis, we concluded important aspects that impact our caching partitioning solutions. In
particular, we found that request types change their accessed objects over time. Also, we
found that different objects have different popularities as well as different access times.
These observations, along with others, influenced our data partitioning solutions.

We developed a suite of partitioning solutions that aim in distributing requests and
objects across servers in a way that achieves high local data access and an equal load
distribution. We explore two solution spaces that utilize both graph and hyper-graph data
structures to represent the workload. The first solution space is request distribution first

that builds a request graph/hyper-graph and then partitions it, using a graph/hyper-graph
partitioning library, into a number of partitions each assigned to a server. The respective
objects are then distributed across these partitions in a way that minimizes remote cache
access. The second solution space is object distribution first, which builds an object
graph/hyper-graph, partitions it, and then distributes respective requests.

Due to the complexity of enterprise workloads that prevents full local data access, we
empowered the basic partitioning solution with a novel dynamic object replication. The
replication approach adds object replicas to partitions that need them, thus making read
requests to these replicas fast. It also considers the challenge of maintaining a consistent
object state across replicas in case of write requests as well as the challenge of limited
cache space. To do so, the replication solution evaluates the performance of an object
as the gain of replicating an object and the overhead such replication may induce by
maintaining a consistent state across replicas in case of write requests. Also, in case of
limited cache space, the solution decides to evict objects, either replicated or not, that
are least beneficial to performance.

We further extended the partitioning and replication solution to work in an adaptive
manner. That is, it tracks workload changes and reacts quickly. The solution tracks two
types of workload changes. The first one occurs when the local cache hit ratio changes
by a predefined threshold, which triggers full object and request partitioning in order to
improve cache hit ratio. As this re-partitioning step may induce object migration across
caches, which harms the performance, we assign each partition to a cache in a way

115

Conclusions

that keeps as many objects as possible at their caches. The second workload change
type occurs when the ratio of read/write objects changes, which only triggers object
replication in order to improve user latency. We also optimize the solution processing
time by ignoring requests and objects with least performance benefit.

We have implemented our partitioning and replication solution into a tool called
AdaptCache. AdaptCache is capable of performing data partitioning and replication for
applications that use a cooperative cache framework. AdaptCache needs no prior knowl-
edge of the application code nor the specific configurations such as the number of servers
or the consistency requirements. Rather, it observes the workload using minimal amount
of data and decides to dynamically partition and/or replicate objects. We have conducted
extensive experiments using RUBiS and YCSB benchmarks with various combinations
of workloads. The results show that our solution can enhance performance for real work-
loads. In addition, we compare the performance of various partitioning solutions against
several workloads and analyse their results. The result also shows that our replication
solution can greatly enhance the performance in case of write requests and limited cache
space. In addition, the result shows that our replication solution outperforms a well-
known replication solution.

116

7
Future Work

In this chapter we outline future research lines arising from the work carried out in this
thesis. In particular, we discuss how the cooperative cache can be compared to other
caching architectures such as a stand-alone cache. In addition, we discuss the possibil-
ity to optimize the log messages of the cooperative cache. Another research direction is
how cache instances can auto-scale based on the workload demands. Also, we discuss the
possibility to empower the current caching system with a proper fault-tolerance mecha-
nism. We finally discuss how caching solutions presented in this thesis can be applied to
systems with a similar architecture to the cooperative cache.

117

7.1 Cooperative Cache vs Stand-alone Cache

7.1 Cooperative Cache vs Stand-alone Cache

As a stand-alone distributed caching architecture that caches data in dedicated cache
nodes, such as Memcached, is widely used in web enterprises [124, 53], its performance
compared to co-allocated distributed caching that caches data within application nodes,
such as our cooperative cache, requires an in-depth analysis. The idea is to compare the
performance of these two caching architectures with respect to various parameters such
as the load on the system, the number of nodes, the cached data size, and different mix-
tures of read/write workloads. Another metric that can be analyzed is how the deployed
consistency protocols impact the performance in both scenarios in case of replicated
cached objects.

One can imagine that for scenarios where the individual instances of the cooperative
cache have enough memory to hold their working data set as well as enough processing
power, the cooperative cache can outperform a stand-alone caching system as it has
more local accesses. However, if any of these two resources becomes saturated, a stand-
alone caching might perform better. A comprehensive comparison between these two
architectures can reveal such interesting observations.

In addition, most cloud providers offer caching solutions with a similar architecture
to the standalone Memcached. Examples of these cloud caching systems include Ama-
zon DynamoDB Accelerator (DAX)1, Microsoft Azure Redis Cache2 and Google Mem-
orystore3. These caching systems are dedicated to the provider’s services and designed
to work exclusively with their hosted applications. Although they allow little freedom
for users to control object locations, comparing these solutions to our cooperative cache
is another viable research track. The idea again is to compare these caching architectures
regarding performance in addition to the configuration and management costs.

1https://aws.amazon.com/dynamodb/dax/
2https://azure.microsoft.com/en-us/services/cache/
3https://cloud.google.com/memorystore

118

7.2 Optimizing Log Messages

7.2 Optimizing Log Messages

Log messages are a central part of our caching solution. They are used for the two main
purposes of workload monitoring and carrying out data partitioning and replication. Al-
though having them is a non-avoidable design option, log messages can degrade perfor-
mance of the targeted application, which is mainly due to the additional processing that
has to be carried out by both the log sender (the application servers) and the log receiver
(the Analyser). In addition, these messages consume network bandwidth. While this may
not be an issue for a system that is hosted on premise with enough network bandwidth,
it can cause extra charges for cloud-hosted applications.

Therefore, minimizing the logging overhead can result in a considerable performance
benefit as well reduced costs for cloud-hosted systems. Options to optimize log message
management include decreasing the number of log messages, decreasing the size of mes-
sages or both. Conducting such an optimization step, however, has two main challenges.
First, making sure that the reductions in message size and/or number is not negatively
impacting the quality of the overall workload meta-data which might decrease the ac-
curacy of workload monitoring or, more importantly, the quality of the produced parti-
tioning/replication solution. Second, the log message optimization step itself should not
incur an extra overhead at the sender or the receiver.

7.3 Autoscaling Cache Nodes

The load experienced by the system varies greatly by time [100, 113]. If the system
experiences low load, a few servers can be enough to serve the workload. But if the load
is high, more nodes might be needed to avoid overhead and performance degradation.
Therefore, a server auto-scaling mechanism that aims to either increase or decrease the
number of active servers, depending on the currently served workload, is necessary.

There are several challenges to conduct such auto-scaling. First, a proper workload
and/or resource tracking mechanism is needed that is able to detect such overload/under-
load situation. Second, proper reconfiguration algorithms are needed that are able to add

119

7.4 Fault Tolerance

or remove nodes without violating consistency requirements. Third, this reconfiguration
should be transparent to the user, which requires executing the action without service
interruption and with minimum performance degradation. Thus, an important technique
to minimize such degradation during the auto-scaling phase is to keep the amount of
requests and objects that need to be migrated across servers low.

7.4 Fault Tolerance

In addition to providing low-latency for user requests, achieving high availability is an-
other important feature that can be added to the cooperative cache architecture. Several
components of AdaptCache and its extension for replication, such as the load-balancer,
the cache instances and the Analyser, are vulnerable to failure. These failures can hap-
pen due to either hardware failures such as network problems or software failures such
as running out of memory and excessive disk I/O operations.

We can categorize the components based on their failure impacts into two categories.
The first category comprises components where a failure brings down the entire system.
For AdaptCache, this is mainly the load-balancer. However, a simple restart with an
initial round-robin distribution technique should be sufficient to get the system working
again. The next rebalancing will again provide the load-balancer with a new policy. Thus,
making it highly available through, for example, replication, is important.

The second category comprises components where a failure will not shut down the
entire caching system but rather will degrade its performance. These components include
the application server instances as well as the Analyser. Having a failed server instance
can degrade the performance because it will not be able to serve requests, and because its
cached data becomes unavailable. However, as the load-balancer can monitor application
instances, it can disable the failed one and redirect requests to alive servers. But these
have to load the data originally cached in the failed server from the back-end database.
This phase of loading the failed data causes a temporary performance degradation. Also,
as this newly loaded data are not well partitioned, performing a new partitioning may be
necessary to achieve a better performance.

120

7.5 Applying Caching Solutions to NUMA

In case of failure of the Analyser, the system looses its capability of performing
workload monitoring as well as carrying out data partitioning/replication, which can
lead to reduced performance over time when workload changes occur. A high availability
solution either provides replication/persistence of the Anlyzer’s meta-data to allow quick
and complete take-over by a new Analyser instance or a new instance would have to start
collecting meta-data if starting from scratch.

In all cases, a high availability solution needs to be able to detect any component
failure fast and then react to such failure in a way that minimizes the performance degra-
dation period and, if possible, avoids the downtime for the entire system. To track cache
instances aliveness, many performance metrics that can be used are already captured in
our design. Alternatively, tools to detect performance changes, such as [13], can be used.

7.5 Applying Caching Solutions to NUMA

Although the caching solution presented in this thesis is mainly designed for a coop-
erative cache system in multi-tier architectures, other systems that share conceptually
a similar architecture can benefit from our solutions. One potential example of these
systems is the non-uniform memory access or NUMA system [63, 69]. NUMA allows
several computational nodes, each with its own CPU and memory, to access other nodes’
memories. This architecture is being adopted by many operating system vendors such as
HP4, Dell5 and VMware6. Thus, many applications can enjoy this performance boosting
technology by allowing processes to access remote memories.

Conceptually similar to the cooperative caching, a careful distribution of processes
across nodes and data across memories will result in a high data access locality. Also,
replicating popular data, in particular those that are rarely updated, across memories that
require them may further enhance performance. Thus, some of the ideas presented in
this thesis might be applicable to NUMA. However, NUMA has different challenges.

4https://h50146.www5.hpe.com/products/software/oe/linux/mainstream/support/whitepaper/pdfs/c032618712012.pdf
5http://doc.xueqiu.com/14738e1820f33fea1ba083fd.pdf
6https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jspcom.vmware.vsphere.resourcemanagement.doc_41/

121

7.5 Applying Caching Solutions to NUMA

In particular, it deals with memory pages [78] rather than high level objects. This re-
quires a mechanism to have full control over memory pages and their locations. Further-
more, NUMA deals with processes rather than requests, which requires a mechanism to
reschedule these processes to different CPUs.

122

Bibliography

[1] D. Abadi. Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. IEEE Computer, 45(2):37–42, 2012.

[2] S. Ali. Contquer: an optimized distributed cooperative query caching architecture.
Master’s thesis, McGill, 2009.

[3] I. Arapakis, X. Bai, and B. Cambazoglu. Impact of response latency on user
behavior in web search. In SIGIR, 2014.

[4] D. Arteaga, J. Cabrera, J. Xu, and S. Sundararaman. Cloudcache: On-demand
flash cache management for cloud computing. In USENIX, 2016.

[5] O. Asad and B. Kemme. Adaptcache: Adaptive data partitioning and migration
for distributed object caches. In Middleware, 2016.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis
of a large-scale key-value store. In ACM SIGMETRICS Performance Evaluation

Review, 2012.

[7] X. Bai, I. Arapakis, B. Cambazoglu, and A. Freire. Understanding and leveraging
the impact of response latency on user behaviour in web search. ACM Transac-

tions on Information Systems, 36(2):21:1–21:42, 2017.

[8] P. Bailis and A. Ghodsi. Eventual consistency today: Limitations, extensions, and
beyond. Communications of the ACM, 56(5):55–63, 2013.

[9] P. Bailis, A. Ghodsi, J. Hellerstein, and I. Stoica. Bolt-on causal consistency. In
SIGMOD, 2013.

123

BIBLIOGRAPHY

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J. Leon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available stor-
age for interactive services. In CIDR, 2011.

[11] S. Barker, Y. Chi, H. Hacigumus, P. Shenoy, and E. Cecchet. ShuttleDB:
Database-aware elasticity in the cloud. In ICAC, 2014.

[12] A. Bhattacharyya, S. A. J. Jandaghi, and C. Amza. Semantic-aware online work-
load characterization and consolidation. In IEEE CLOUD, 2018.

[13] A. Bhattacharyya, S. Sotiriadis, and C. Amza. Online phase detection and char-
acterization of cloud applications. In CloudCom, 2017.

[14] B. Bloom. Space/time tradeoffs in hash coding with allowable errors. Communi-

cations of the ACM, 13(7):422–426, 1970.

[15] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Zomaya. Energy-efficient
data replication in cloud computing datacenters. Springer Cluster Computing,
18(1):385–402, 2015.

[16] D. Byrne, N. Onder, and Z. Wang. mPart: Miss-ratio curve guided partitioning in
key-value stores. ACM SIGPLAN Notices, 53(5), 2018.

[17] V. Cardellini, M. Colajanni, and P. Yu. Dynamic load balancing on web-server
systems. IEEE Internet Computing, 3(3):28–39, 1999.

[18] G. Casale, A. Kalbas, D. Krishnamurthy, and J. Rolia. Automatic stress testing
of multi-tier systems by dynamic bottleneck switch generation. In Middleware,
2009.

[19] J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend
databases in dynamic content web servers. In ICAC, 2006.

[20] H. Chihoub, S. Ibrahim, G. Antoniu, , and M. Perez. Harmony: Towards auto-
mated self-adaptive consistency in cloud storage. In CLUSTER, 2012.

124

BIBLIOGRAPHY

[21] A. Cidon, D. Rushton, S.Rumble, and R. Stutsman. Memshare: a dynamic multi-
tenant key-value cache. In USENIX ATC, 2017.

[22] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. In VLDB, 2008.

[23] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In SoCC, 2010.

[24] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[25] A. Crescenzi. Time pressure in information search. In SIGIR, 2015.

[26] C. Curino, Y. Zhang, E. Jones, and S. Madden. Schism: a workload-driven ap-
proach to database replication and partitioning. In VLDB, 2010.

[27] W. Dakka, L. Gravano, and P. Ipeirotis. Answering general time-sensitive queries.
In CIKM, 2008.

[28] S. Das, S. Nishimura, D. Agrawal, and A. ElAbbadi. Albatross: Lightweight elas-
ticity in shared storage databases for the cloud using live data migration. In VLDB,
2011.

[29] K. Daudjee and K. Salem. Lazy database replication with snapshot isolation. In
VLDB, 2006.

[30] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, , and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In SOPS, 2007.

125

BIBLIOGRAPHY

[31] P. Minet E. Pacitti and E. Simon. Fast algorithms for maintaining replica consis-
tency in lazy master replicated databases. In VLDB, 1999.

[32] Ehcache. Ehcache Replication Guide. http://www.ehcache.org/.

[33] N. Eisley, L. Peh, and Li Shang. In-network cache coherence. In MICRO, 2006.

[34] A. Elmore. Elasticity Primitives for Database as a Service. PhD thesis, University
of California, Santa Barbara, 2013.

[35] A. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. ElAbbadi. Squall:
Fine-grained live reconfiguration for partitioned main memory databases. In SIG-

MOD, 2011.

[36] A. Elmore, S. Das, D. Agrawal, and A. Abbadi. Zephyr: Live migration in shared
nothing databases for elastic cloud platforms. In SIGMOD, 2015.

[37] S. Elnikety, S. Dropsho, E. Cecchet, and W. Zwaenepoel. Predicting replicated
database scalability from standalone database profiling. In EuroSys, 2009.

[38] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting durability with trans-
action ordering for high-performance scalable database replication. In EuroSys,
2006.

[39] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+: Memory-aware load
balancing and update filtering in replicated databases. In EuroSys, 2007.

[40] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-
area web cache sharing protocol. In SIGCOMM, 1998.

[41] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–
293, 2000.

[42] E. Boughter G. Copeland, W. Alexander and T. Keller. Data placement in Bubba.
In SIGMOD, 1998.

126

http://www.ehcache.org/

BIBLIOGRAPHY

[43] M. Ghosh, W. Wang, G. Holla, and I. Gupta. Morphus: Supporting online recon-
figurations in sharded NoSQL systems. In ICAC, 2015.

[44] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha. Distributed data place-
ment to minimize communication costs via graph partitioning. In SSDBM, 2014.

[45] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transaction on

Database Systems, 31(1):133–160, 2004.

[46] J. Gray, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In
SIGMOD, 1996.

[47] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Dhoot, A. Ku-
mar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa: Geo-replicated, near real-
time, scalable data warehousing. In VLDB, 2014.

[48] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang, and Z. Wang. LAMA:
Optimized locality-aware memory allocation for key-value cache. In USENIX

ATC, 2015.

[49] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. Freedman, K. Birman, and R. Re-
nesse. Characterizing load imbalance in real-world networked caches. In HotNets,
2014.

[50] J. Hwang and T. Wood. Adaptive performance-aware distributed memory caching.
In ICAC, 2013.

[51] J. Marshall and J. Pape and K. Peterson and G. Reid and F. Santos and B. Silva
and F. Senese. WebSphere eXtreme Scale V8.6 Key Concepts and Usage Scenar-
ios. http://www.redbooks.ibm.com/redbooks/pdfs/sg247683.
pdf.

[52] S. A. J. Jandaghi, A. Bhattacharyya, and C. Amza. Phase annotated learning for
apache spark: Workload recognition and characterization. In CloudCom, 2018.

127

http://www.redbooks.ibm.com/redbooks/pdfs/sg247683.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247683.pdf

BIBLIOGRAPHY

[53] X. Jin, X. Li, H. Zhang, R. Soule, J. Lee, N. Foster, C. Kim, and I. Stoica. Net-
cache: Balancing key-value stores with fast in-network caching. In SOSP, 2017.

[54] D. Karger, E. Lehman, T. Leighton, M. Levine, D Lewin, and R. Panigrahy. Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Symposium on Theory of Computing, 1997.

[55] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for rregular
graphs. Parallel and Distributed Computing, 48(1):96–129, 1998.

[56] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to
implement database replication. In VLDB, 2000.

[57] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration in replicated
databases based on group communication. In International Conference on De-

pendable Systems and Networks, 2001.

[58] B. Kemme, R. Jimenez-Peris, and M. Patino-Martinez. Database Replication.
Morgan and Claypool Publishers, 2010.

[59] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Be-

hind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, 2017.

[60] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and R. Stutsman. Rocksteady: Fast
migration for low-latency in-memory storage. In SOSP, 2017.

[61] K. Kumar, A. Quamar, A. Deshpande, and S. Khuller. SWORD: Workload-aware
data placement and replica selection for cloud data management systems. The

VLDB Journal, 23(6):845–870, 2014.

[62] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[63] C. Lameter. NUMA (Non-Uniform Memory Access): An overview. ACM Queue,
11(7):1–12, 2013.

128

BIBLIOGRAPHY

[64] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[65] J. Lee, S. Moon, K. Hwan Kim, D. Kim, S. Cha, and W. Han. Parallel replication
across formats in SAP HANA for scaling out mixed OLTP/OLAP workloads. In
VLDB, 2017.

[66] M. Lei, S. Vrbsky, and X. Hong. An on-line replication strategy to increase avail-
ability in data grids. Future Generation Computer Systems, 24(1):85–98, 2008.

[67] C. Li, J. Leitao, A. Clement, N. Preguica, N. Rodrigues, and V. Vafeiadis. Au-
tomating the choice of consistency levels in replicated systems. In USENIX, 2014.

[68] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguic, and R. Rodrigues. Making geo-
replicated systems fast as possible, consistent when necessary. In OSDI, 2012.

[69] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman. NUMA-aware algorithms:
the case of data shuffling. In CIDR, 2013.

[70] W. Liang and B. Kemme. Online recovery in cluster databases. In EDBT, 2008.

[71] C. Luo, X. Li, Y. Liu, T. Sakai, F. Zhang, M. Zhang, and S. Ma. Investigating
users’ time perception during web search. In CHIIR, 2017.

[72] C. Luo, F. Zhang, X. Li, Y. Liu, M. Zhang, and S. M. Manipulating time percep-
tion of web search users. In CHIIR, 2016.

[73] F. Marchioni and M. Surtani. Infinispan data grid platform. PACKT Publishing,
2012.

[74] R. Maredia. Automated application profiling and cache-aware load distribution in
multi-tier architectures. Master’s thesis, McGill, 2011.

[75] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu. vCacheShare: Auto-
mated server flash cache space management in a virtualization environment. In
USENIX, 2014.

129

BIBLIOGRAPHY

[76] B. Milani and N. Navimipour. A comprehensive review of the data replication
techniques in the cloud environments: Major trends and future directions. Journal

of Network and Computer Applications, 64(1):229–238, 2016.

[77] C. Mohan. Tutorial: Application servers and associated technologies. In VLDB,
2002.

[78] M.Tikir and J. Hollingsworth. NUMA-aware Java heaps for server applications.
In IPDPS, 2005.

[79] M. Naftalin and P. Wadler. Java generics and collections. 2006.

[80] S. Noll, J. Teubner, N. May, and A. Boehm. Accelerating concurrent workloads
with CPU cache partitioning. In ICDE, 2018.

[81] D. Nukarapu, B. Tang, L. Wang, and S. Lu. Data replication in data intensive
scientific applications with performance guarantee. IEEE Transactions on Parallel

and Distributed Systems, 22(8):1299–1306, 2011.

[82] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[83] T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Springer,
2019.

[84] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
K. Salem. Adaptive control of virtualized resources in utility computing environ-
ments. In EuroSys, 2007.

[85] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and
E. Nahum. Locality-aware request distribution in cluster-based network servers.
In ASPLOS, pages 205–216, 1998.

[86] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and G. Alonso. MIDDLE-R:
Consistent database replication at the middleware level. ACM Transactions on

Computer Systems, 23(4):375–423, 2005.

130

BIBLIOGRAPHY

[87] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning
in shared-nothing, parallel OLTP systems. In SIGMOD, 2012.

[88] J. Philipp, N. De Palma, F. Boyer, and O. Gruber. Self adapting service level in
Java enterprise edition. In Middleware, 2009.

[89] C. Plattner and G. Alonso. Ganymed: scalable replication for transactional web
applications. In Middleware, 2004.

[90] D. Porobic, E. Liarou, P. Tozun, and A. Ailamaki. ATraPos: Adaptive transaction
processing on hardware islands. In ICDE, 2014.

[91] A. Quamar, K. Ashwin Kumar, and A. Deshpande. SWORD: Scalable workload-
aware data placement for transactional workloads. In EDBT, 2013.

[92] T. Rabl and H. Jacobsen. Query centric partitioning and allocation for partially
replicated database systems. In SIGMOD, 2017.

[93] S. Rajasekaran, S. Duan, W. Zhang, and T. Wood. Multi-cache: Dynamic, efficient
partitioning for multi-tier caches in consolidated VM environments. In IEEE In-

ternational Conference on Cloud Engineering, 2016.

[94] J. Rao, X. Bu, C. Xu, L. Wang, and G. Yin. Vconf: a reinforcement learning
approach to virtual machines auto configuration. In ICAC, 2009.

[95] K. Risvik, Y. Aasheim, and M. Lidal. Multi-tier architecture for web search en-
gines. In LA-WEB, 2003.

[96] R.Kingsy and G. Manimegalaib. Dynamic replica placement and selection strate-
gies in data grids- a comprehensive survey. Journal of Parallel and Distributed

Computing, 74(2):2099–2108, 2014.

[97] U. Rohm, K. Bohm, and H. Schek. Cache-aware query routing in a cluster of
databases. In ICDE, pages 641–650, 2001.

[98] N. Schiper, F. Pedone, and R. Renesse. The energy efficiency of database replica-
tion protocols. In DSN, 2014.

131

BIBLIOGRAPHY

[99] H. Schuldt. Multi-tier architecture. In Encyclopedia of Database Systems, pages
1862–1865. Springer US, Boston, MA, 2009.

[100] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and U. Minhas. Ac-
cordion: Elastic scalability for database systems supporting distributed transac-
tions. PVLDB, 7(12):1035–1046, 2014.

[101] M. Serafini, R. Taft, A. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker.
Clay: Fine-grained adaptive partitioning for general database schemas. In PVLDB,
2016.

[102] D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme. An autonomic
approach for replication of internet-based services. In SRDS, 2008.

[103] S. Sharify, A. W. Lu, J. Chen, A. Bhattacharyya, Ai B. Hashemi, N. Koudas,
and C. Amza. An improved dynamic vertical partitioning technique for semi-
structured data. In ISPASS, 2019.

[104] Y. Shin, M. Ghosh, and I. Gupta. Parqua: Online reconfigurations in virtual ring-
based NoSQL systems. In ICAC, 2015.

[105] K. Shvachko, . Kuang, S. Radia, and R. Chansler. The Hadoop distributed file
system. In MSST, 2010.

[106] A. Soror, U. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath.
Automatic virtual machine configuration for database workloads. In SIGMOD,
2008.

[107] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya. Elastic load balancing for dy-
namic virtual machine reconfiguration based on vertical and horizontal scaling.
IEEE Transactions on services computing, 12(2):319–334, 2019.

[108] G. Soundararajan, J. Chen, M. Sharaf, and C. Amza. Dynamic partitioning of the
cache hierarchy in shared data centers. In PVLDB, pages 635–646, 2008.

132

BIBLIOGRAPHY

[109] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani, T. Karagiannis,
A. Rowstron, and T. Talpey. Software-defined caching: Managing caches in multi-
tenant data centers. In SoCC, 2015.

[110] A. Stiemer, I. Fetai, and H. Schuldt. Analyzing the performance of data replication
and data partitioning in the cloud: the BEOWULF approach. In ICDE, 2016.

[111] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In SIGCOMM, 2001.

[112] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Frans Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transaction on Networking, 11(1):17–32, 2003.

[113] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. Elmore, A. Aboulnaga, A. Pavlo,
and M. Stonebraker. E-Store: Fine-grained elastic partitioning for distributed
transaction processing systems. In VLDB, 2014.

[114] D. Terry. Replicated data consistency explained through baseball. Communica-

tions of the ACM, 56(12):82–89, 2013.

[115] D. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. Aguilera, and H. Abu-
Libdeh. Consistency-based service level agreements for cloud storage. In SOSP,
2013.

[116] G. Tesauro. Online resource allocation using decompositional reinforcement
learning. In AAAI, 2005.

[117] G. Tesauro, N. Jong, R. Das, and M. Bennani. On the use of hybrid reinforcement
learning for autonomic resource allocation. In CLUSTER, 2007.

[118] J. Tirado, D. Higuero, F. Isaila, and J. Carretero. Multi-model prediction for en-
hancing content locality in elastic server infrastructures. In HiPC, 2011.

[119] J. Tirando, D. Higuero, F. Isaila, , and J. Carretero. Predictive data grouping and
placement for cloud-based elastic server infrastructures. In CCGRID, 2011.

133

BIBLIOGRAPHY

[120] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile dynamic
provisioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst,
3(1):1–39, 2008.

[121] D. VanderMeer, K. Dutta, and A. Datta. A cost-based database request distribution
technique for online e-commerce applications. MIS Quarterly, 36(2):479–507,
2012.

[122] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties
and the trade-offs in commercial cloud storages: the consumers’ perspective. In
CIDR, 2011.

[123] X. Wei, S. Shen, R. Chen, and H. Chen. Replication-driven live reconfiguration
for fast distributed transaction processing. In USENIX ATC, 2017.

[124] Jinho Hwang Wei Zhang, Timothy Wood. Netkv: Scalable, self-managing, load
balancing as a network function. In ICAC, 2016.

[125] E. Zamanian, C. Binnig, and A. Salama. Locality-aware partitioning in parallel
database systems. In SIGMOD, 2015.

[126] X. Zhang, M. Barrientos, J. Chen, and M. Seltzer. HACC: An architecture for
cluster-based web servers. In USENIX NT Symposium, 1999.

134

Acronyms

LB Load Balancer

AS Application Server

LC Local Cache

DB Database

CC Cooperative Cache

VM Virtual Machine

JVM Java Virtual Machine

UUID Universally Unique Identifier

NAS Network Attached Storage

OLTP Online Transnational Processing

OLAP Online Analytical Processing

HDFS Hadoop File System

135

	Introduction
	Challenges
	Thesis Contribution
	Thesis Organization
	Publications and Contributions of Students

	Adaptive Cooperative Cache Framework
	Multitier Architecture
	Request Characteristics
	Caching

	Cooperative Cache
	Handling Write Requests

	Data Structures for Cache Directory
	Overview Data Structures
	Choosing false positive rates for global and local bloom filters
	Comparison using a global Bloom filter vs. not using a global Bloom Filter
	Experimental results

	AdaptCache: Adaptive Cooperative Cache Framework
	Request- and Object Policies
	Logging
	Policy Deployment
	Lazy Data Migration
	Workload Meta-data

	Adaptive Object Partitioning and Migration
	Workload Analysis
	Request Characteristics
	Object Characteristics
	Further Analysis

	Policy Generation
	Parameter Collection
	Object Distribution First
	Request Distribution First
	Assigning Partitions to Servers
	Reducing Workload Meta-data

	Evaluation
	Benchmarks
	Understanding Partitioning Behavior
	Algorithm Comparison
	Assigning Partitions to Servers
	Meta-data Pruning
	Log Window Size Analysis
	Result Highlights

	Consistency and Space Aware Cache Replication
	Replication Challenges
	Data Consistency
	Limited Cache Space
	Dynamic Workload

	AdaptCache Replication Extension
	Extending the Parameter Collection
	Extracting Operation Costs
	Independence from Distributed Solution

	Basic Replication
	Managing Update Overhead
	Calculating Execution Costs
	Random Write Distribution

	Managing Limited Cache Size
	No Write Operations in The System
	Write Operations in The System.

	Evaluation
	Experiments
	Limited Cache Space Analysis
	Workload Changes Triggering Partitioning
	Read/Write Changes Triggering Replication
	Solution Overhead

	Related Work
	Data Partitioning and Migration in Distributed Database Systems
	Data Partitioning
	Data Migration

	Data Replication
	Full Data Replication
	Partial Data Replication
	Data Replication in the Cloud
	Data Consistency for Replicated Data

	Data and Space Management for Distributed Caches
	Cache Architectures and Data Partitioning
	Data Replication and Caching
	Managing Cache Space

	Dynamic System Configuration

	Conclusions
	Future Work
	Cooperative Cache vs Stand-alone Cache
	Optimizing Log Messages
	Autoscaling Cache Nodes
	Fault Tolerance
	Applying Caching Solutions to NUMA

	Bibliography
	Acronyms

