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ABSTRACT 

Objective: The methodology of assessment and training of surgical skills is evolving 

to deal with the emergence of competency-based training. Machine learning 

algorithms have been employed to assess surgical expertise during virtual reality 

surgical performance. Some of these approaches fail to outline the underlying reasons 

for classification and to quantify the relative importance of each metric utilized to 

train the model. Artificial neural networks, a branch of artificial intelligence, can 

utilize newly generated metrics not only for assessment but can quantitate individual 

metric contribution and provide new insights into surgical expertise. This study aims 

to outline the multiple educational utilities of employing an artificial neural network 

in the assessment and quantitation of surgical expertise. A virtual reality vertebral 

osteophyte removal during a simulated surgical spine procedure is utilized as a model 

to outline this methodology. 

 

Design: Participants performed a simulated anterior cervical discectomy and fusion 

on the Sim-Ortho virtual reality simulator platform. Data was retrieved from the 

osteophyte removal component of the scenario, which involved utilizing a simulated 

drill. The data was manipulated to generate an initial 83 performance metrics 

spanning 3 categories (safety, efficiency, motion). The most relevant metrics were 

utilized to train and test the artificial neural network. 

 

Setting: This study was carried out at the Neurosurgical Simulation and Artificial 

Intelligence Learning Centre at McGill University affiliated with the Montreal 

Neurological Institute and Hospital (Montreal, Canada). 

 

Participants: Twenty-one participants performed a simulated anterior cervical 

discectomy and fusion. Participants were divided into 3 groups, including 9 post-

residents, 5 senior and 7 junior residents. 
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Results: The artificial neural network model trained on the six most relevant metrics 

of performance, all involving safety, achieved 83.3% testing accuracy misclassifying 

only one participant. 

 

Conclusions: This study outlines the potential utility of artificial neural networks 

which allows a deeper understanding of the composites of surgical expertise and may 

contribute to the paradigm shift towards competency-based surgical training. 
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RÉSUMÉ 

Objectif : La méthodologie d’évaluation et de formation des compétences 

chirurgicales évolue pour faire face à l’émergence de formation par compétence. Les 

algorithmes d’apprentissage automatique ont été utilisés afin d’évaluer l’expertise 

chirurgicale lors de performances chirurgicales en réalité virtuelle. Certaines de ces 

approches ne parviennent pas à expliquer le raisonnement de la classification et à 

quantifier l’importance relative de chaque métrique utilisée pour entrainer le modèle. 

Les réseaux de neurones artificiels, une branche de l’intelligence artificielle, peuvent 

utiliser des métriques nouvellement générées non seulement en but d’évaluation, 

mais peuvent quantifier la contribution de métrique individuelle et fournir de 

nouvelles perspectives sur l’expertise chirurgicale. Cette étude vise à décrire l’utilité 

éducative de l’emploi d’un réseau neuronal artificiel quant à l’évaluation et la 

quantification de l’expertise chirurgicale. Une ablation d’ostéophytes vertébraux en 

réalité virtuelle au cours d’une procédure chirurgicale simulée de la colonne 

vertébrale est utilisée comme modèle afin de décrire cette méthodologie. 

 

Conception : Les participants ont effectué une discectomie cervicale antérieure et 

fusion simulée sur le Sim-Ortho, simulateur de réalité virtuelle. Les données ont été 

récupérées à partir du composant d’ablation des ostéophytes du scénario, qui 

impliquait l’utilisation d’une perceuse simulée. Les données ont été manipulées afin 

de générer 83 métriques de performance initiales couvrant 3 catégories (sécurité, 

efficacité, mouvement). Les métriques les plus pertinentes ont été utilisées afin 

d’entrainer et tester le réseau neuronal artificiel. 

 

Cadre : Cette étude a été réalisé au Neurosurgical Simulation and Artificial 

Intelligence Learning Centre à McGill University affilié à l’Institut-hôpital 

neurologique de Montréal (Montréal, Canada). 
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Participants : Vingt et un participants ont effectué une discectomie cervicale 

antérieure et fusion simulée. Les participants étaient divisés en 3 groupes, dont 9 

«post-residents», 5 «seniors» et 7 «juniors». 

 

Résultats : Le modèle de réseau de neurones artificiels entrainé à partir des six 

métriques les plus pertinentes, toutes reliées à la sécurité, a atteint 83.3% de 

précision à tort d’un seul participant. 

 

Conclusions : Cette étude souligne l’utilité potentielle des réseaux de neurones 

artificiels permettant une compréhension plus approfondie des composites de 

l’expertise chirurgicale et peut contribuer au changement de paradigme vers une 

formation chirurgicale basée sur les compétences. 
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THESIS INTRODUCTION 

 

With the rapid emergence of artificial intelligence (AI) and constant development 

of this technology in the past few years, the medical field has recognized its potential 

and the introduction of this technology into practice to help solve a variety of clinical 

problems.1-4 Artificial intelligence is defined as a computational method of making 

algorithm based decisions through input information such as performance metrics 

allowing educational training and objective assessments.5,6 Also known as machine 

learning, artificial intelligence can be divided into three main categories: simple 

classifiers, artificial neural networks (ANN) and deep learning. Without being as 

complex as deep learning yet having more depth than simple classifiers, artificial 

neural networks are designed as a web of interconnected neurons (known as 

perceptrons) that interact between each other to resemble the structure of the human 

nervous system.7 An artificial neural network identifies and reveals hidden patterns 

within a large dataset and, throughout its interconnected structure, attributes 

weights associated with each input value or performance metric in the case of this 

study.8 The magnitude of the weights corresponds to the sensitivity of each metric on 

the algorithm’s decision-making process. Returning to the neuronal connectivity 

analogy of the brain, weights of varying magnitudes throughout the network can be 

compared to polarizing or depolarizing signals through synapses. With its decision-

making functionality, artificial neural networks can be employed as an educational 

tool to accompany the current shift towards competency-based training.9,10  

A second highly evolving technology contributing to the paradigm shift towards 

competency-based surgical training is virtual reality (VR) simulation. The idea of the 

utilization of virtual reality simulation for surgical training actually became apparent 

years ago with the noticeable success of simulation-based training in aviation.11 

Providing reproducible and repeatable practice opportunities to improve surgical 

performance and to accelerate learning curves in risk-free environment, more and 

more virtual reality simulators are being developed in all fields of surgery.9,12-15 
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Commonly performed spine procedures such as an anterior cervical discectomy and 

fusion (ACDF) are complex enough to be considered as a good candidates for 

simulation training. Such multifaceted procedures involve the use of knowledge and 

technical skills to identify critical anatomical structures to develop a sense of the 

variable tolerances of surgical instruments interacting with a variety of structures.16 

Virtual reality simulators being computer-based are able to constantly record, 

throughout the procedure, information related to the use of the virtual surgical 

instruments or the manipulations of the simulated anatomical structures. Our group 

at the Neurosurgical Simulation and Artificial Intelligence Learning Centre decided to 

apply artificial intelligence to the large datasets of information generated by the 

simulated anterior cervical discectomy and fusion. This was based on the potential 

usefulness of this technology in providing novel insights into complex questions. The 

integration of artificial intelligence within surgical simulation and its educational 

utility have previously been explored in other studies focusing primarily on 

establishing an assessment of surgical performance through the classification of 

individuals into their respective groups of varying expertise.5,6,17-21 An article on the 

best practices for utilizing machine learning within virtual reality simulation to assess 

performance establishes a set of criteria entitled The Machine Learning to Assess 

Surgical Expertise (MLASE) checklist that serves as a guideline for researchers.4 

Despite the objective assessment that may allow trainees to learn in a more 

independent manner, these methods fail to outline the underlying reasons for 

classification and to quantify the relative importance of each performance metric 

utilized to train the model. 

This study addresses multiple questions. Can an artificial neural network model 

provide an accurate assessment of surgical performance through the classification of 

individuals into groups of varying expertise level for a specific simulated spine 

procedure? How can a medical educator or trainee utilize this approach to gain 

additional information related to performance and a better understanding of 

expertise? Is this novel approach to competency-based training a potential tool to 

help shape the future of surgical training? Our hypotheses are that it will be possible 

to classify participants into either a junior resident, senior resident or post-resident 



15 
 

level group according to their surgical performance of the vertebral osteophyte 

removal component of a simulated anterior cervical discectomy and fusion by 

introducing appropriate performance metrics related to motion, safety and efficiency 

into an artificial neural network and that a better understanding of surgical expertise 

will be provided through the analysis of the model’s decision-making process 

revealing the underlying reasons for a specific classification. The objectives stemming 

from this hypothesis are: 

1. To introduce an artificial neural networks methodology for assessing expertise in 

simulation-based training. 

2. To outline the utility of artificial neural networks by demonstrating their 

usefulness in outlining novel metrics and the contributions of individual metrics 

to the composites of surgical performance utilizing a virtual reality spinal 

procedure model. 

This study focuses on the educational utility of the artificial neural network 

approach to competency-based training. It outlines the potential of this method to 

reveal the composites of expertise alongside the quantifiable measures of their 

contributions and provides the necessary information to understand the interplay of 

these composites leading trainees to acquire the psychomotor and technical skills 

involved with expert surgical performance. 
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BACKGROUND 

Past and Future of Surgical Training 

Traditionally, surgical training and education has been taught through an 

apprenticeship model in surgical fields.22,23 Due to constant changes in which surgery 

is practiced, the past models have substantial limitations.24 There is a shift in the 

paradigm of surgical training from the apprenticeship model to a competency-based 

system.10,25 Competency-based training in surgery can be defined as a method 

ensuring that graduating residents are competent, in parts, related to medical 

knowledge, technical skills and mindset allowing them to provide proper services to 

patients.26,27 However, in order to comprehend the need for change, it is necessary to 

understand the limitations of past models in our current and future educational 

planning.  

In the 19th century, physicians and surgeons in Europe would visit the leading 

hospitals of major cities such as London, Paris or Vienna to learn novel surgical 

methods and procedures.24 With self-training and some form of apprenticeships 

being the accepted norm, no formal and standardized training programs existed 

before 1890 when William Steward Halstead introduced the first residency program 

and became the first chief of surgery at the Johns Hopkins Hospital in the United 

States.24,28 By creating this formal training program with his “see one, do one, teach 

one” model whereby a trainee having observed a specific surgical procedure is 

expected to then have the capabilities to perform said procedure and finally teach the 

procedure to another trainee, Halstead envisioned a more efficient and effective way 

of transferring surgical knowledge and skills through apprenticeships.28 The 

standardized apprenticeship model designed by Halstead is primarily based on two 

fundamental principles: a collaborative proximity of both the trainee and the expert 

to the surgical procedures and enough time spent doing so.24 It is designed to have 

trainees gain increasing responsibilities as they learn throughout their years as 

residents and ultimately achieve virtually full independence.28 Halstead, having 

trained in Germany, employed the concept of “graded responsibility” which was an 

integral part of the training system German residents would go through.29 This model 
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acted as the pillar for current residency programs by establishing a structure to 

surgical training and setting a new standard. Halstead’s model has remained 

practically unchanged over the past century and is still regarded as the traditionally 

employed residency program of today.24,28 

The apprenticeship model has a number of limitations.25,29,30 Concerns 

regarding patient safety, more demanding educational expectations, and novel 

simulation technologies are becoming more apparent and have resulted in a 

reevaluation of  the apprenticeship model of surgical training.25 Furthermore, as this 

model is built upon the notion that a trainee will learn from an expert and eventually 

become an expert and teach a new trainee, the amount of time required is 

considerable and based on both time available and the expertise of the surgeon 

teacher. In 2003, the American Accreditation Council for Graduate Medical Education 

(ACGME) significantly reduced the average amount of hours permissible for a 

resident to work per week to 80 hours.24,28 This regulation was implemented to 

address both residents’ physical and mental health as well as patient safety.31 

Following this change, studies have failed to reach a consensus on the effects of the 

80-hour workweek rule on the burnout rate of residents since study results have been 

inconsistent.32-34 With no significant results, the only definite outcome from the 

regulation change is the reduced amount of time residents spend during surgical 

procedures. Therefore, considering exposure as one of the fundamentals principles 

that characterizes the current surgical training program for residents, new methods 

need to be considered to compensate for this lack of direct operative exposure. 

As the future of surgical training pivots towards more competency-based 

training, more novel simulation technologies are available and trainees are looking 

for alternative ways to gain experience, surgical simulators are becoming 

increasingly utilized for assessment and evaluation. 

 

Surgical Simulation 

The military and aviation have at least one major commonality with surgery. 

Errors involving the technical skills of individuals are high-risk. It is expected that 
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pilots have the knowledge required to fly a plane, but, even more so, to have the ability 

to actually fly one.25 Surgical training is decades behind pilot training for airlines and 

the military,24,25 in part, due to the late integration of simulation into surgical training. 

Simulation has the role of replicating various scenarios in realistic environments for 

assessment and feedback, thus, creating an ideal educational platform due its 

standardized, reproducible and safe environment features.35 Pilots and surgeons 

alike has always been regarded as having high-risk professions. However, pilots 

require manual skills assessment through simulation in order to be certified for the 

airline industry,36 whereas surgical trainees’ skills and competencies are not reliably 

assessed.35 

With the advancements of simulation technologies in the surgical field, it is 

important to assess the utilization of simulation in the training of high-risk scenarios. 

First, surgical simulation allows trainees to gain the multitude of critical skills in 

cognitive, technical, psychomotor and clinical domains.35,37,38 Even experienced 

surgeons can reinforce acquired skills through repeated practice sessions performing 

high-risk simulated scenarios. The notion of repetition is a key element for the 

consolidation of skills and the development and maintenance of expertise.35,37 

Second, simulators replicate various surgical scenarios in realistic environments 

without actually being in the operating room or potential putting a patient at risk.39,40 

Third, with most surgical procedures being complex and requiring multiple steps, 

these simulators focus trainees on components of the procedure requiring 

improvement and development of technical skills by deconstructing the operative 

procedure into simple and convenient tasks.41,42 Finally, a proper surgical simulator 

should provide educational information such as a quality assessment of performance 

and detailed feedback.28,35,37,43 An objective assessment and structured feedback are 

integral components for the improvement of surgical performance through 

simulation-based training as the trainee’s progress can be tracked and the learning is 

more effective.44 However, not all simulators provide such assessments and feedback. 

Hence, many simulation-based training program have not been able to properly 

integrate these two important key elements.44  
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There are multiple types of surgical simulators available varying from low to 

high-fidelity which relates to the complexity and realism of the simulation.37,45 

Studies comparing the two types of simulators observed different results in regards 

to the superior model.46 Depending on the task and the individual’s level of expertise, 

a simulator with an appropriate fidelity must be utilized for training.46 Low-fidelity 

simulators including primarily bench models and video box trainer are inexpensive, 

usually easy to build and portable, and use real surgical instruments.37 However, 

these low-fidelity simulators provide limited feedback and require the presence of a 

medical instructor to observe and assess surgical performance.37 Most current 

simulation-based training involves direct observation by an expert to provide 

feedback for proper learning.43 One example is the Fundamentals of Laparoscopic 

Surgery video box trainer that is simple, low-cost and includes an optical system that 

mimics the real operative equipment utilized for laparoscopic procedures.47 A set of 

simulations have been developed for this video box trainer with the purpose of 

training and assessing psychomotor skills.47 Such a simulator fulfills its intended role 

in laparoscopic surgery, but other types of surgery or surgical tasks may require more 

immersive and realistic simulations that only a high-fidelity simulator can provide. 

These high-fidelity simulators can be divided into subcategories including virtual 

reality simulators, procedural simulators, mannekins and a hybrid of virtual reality 

and mannekin.36,37 A major advantage of these simulators is that they can combine 

many different operative tasks in order to train for an entire surgical procedure,36 

whereas low-fidelity simulators focus on one specific task at a time. Furthermore, 

most of these simulators, being computer-based systems, compile immense amounts 

of information during a simulation. Therefore, simulators involving virtual reality 

technology reduce biased assessments and feedback in part due to the information 

generated providing a more quantitative and evidence-based  understanding of 

learning progression.48 A recurring criticism is the lack of realism in some virtual 

reality simulations.49,50. With computers becoming increasingly more powerful, this 

problem is being addressed. Continuum mechanics techniques such as finite elements 

have the potential to aid with the realism of virtual reality simulations.50 A good 

example of a virtual reality simulator with high-quality realism is the NeuroVR.51 
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Originally developed as a collaboration between the National Research Council of 

Canada and the Neurosurgical Simulation and Artificial Intelligence Learning Centre 

under the name of NeuroTouch, this simulator is regarded as the most advanced and 

highly realistic in the field of neurosurgery.9,51 Combined with the visual, auditory and 

haptic feedback, this virtual reality simulator utilizes a finite element model to create 

highly realistic interactions such as deformation in between anatomical tissues and 

the instruments being manipulated.9 Designed for neurosurgical training, very few 

simulated scenarios on the NeuroVR are spine procedures. 

The field of orthopedic surgery like many other surgical specialties has been 

slow in integration simulators into training programs.12,52 Few simulators have been 

developed to address the needs associated with orthopedic training. The main 

challenge in regards to the development of orthopedic virtual reality simulators is to 

respect the many different anatomical structures in terms of morphology and tactile 

feeling.53 Unlike other kinds of surgery, orthopedic surgery involves soft tissues such 

as muscles and ligaments as well as hard structures like bones. Therefore, the haptic 

feedback transmitted through the instruments utilized during an orthopedic 

simulation must be highly variable. Attempts to develop virtual reality simulators 

without haptic feedback became an option, however, the lack of tactile information 

limited their potential for surgical training.53 It has been shown that haptic-based 

simulators provide a superior platform for surgical training.54,55 A systematic review 

that investigated existing studies utilizing virtual reality simulators in spinal 

procedures revealed only 19 articles in which only 5 different simulators were 

mentioned.40 Two noticeable aspects were highlighted by this review. First, the 

majority of the simulated scenarios on these simulators were simple operative tasks 

requiring few steps such as lumbar mass screw or pedicular screw placements, 

lumbar punctures or vertebroplasty.40 There has been limited use of high-fidelity 

simulators. Another study investigating a mixed reality simulation of an artificial 

cervical disc replacement demonstrated that more complex scenarios involving 

spinal procedures are possible.56 Second, augmented reality and mixed reality 

simulators were identified, alongside virtual reality simulators, in the previous 

review.40 Mixed reality simulators are the combination of both a virtual platform of 
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simulation and a physical one developed in an effort to address the issue of inaccurate 

haptic feedback associated with pure virtual reality simulators.57,58 This systematic 

review outlined the underlying need to develop new multi-faceted scenarios for 

spinal procedures on virtual reality simulators with proper haptic feedback. 

A spinal procedure to consider for such a scenario is the anterior cervical 

discectomy and fusion. This operative procedure can be separated into multiple 

components each involving different surgical instruments that interact with various 

anatomical structures ranging from soft tissues like the intervertebral disc and much 

harder structures like the actual vertebrae. Despite the challenging nature of 

developing a realistic virtual reality spinal procedure, a small startup company, 

OSSimTechTM (Montreal, Canada), has developed a virtual reality simulator which 

includes a variety of orthopedic scenarios including an anterior cervical discectomy 

and fusion. 

 

Virtual Reality Spine Surgery Simulator 

OSSimTechTM (Montreal, Canada) developed the Sim-Ortho Simulator in 

collaboration with the AO Foundation (Davos, Switzerland). Unlike the NeuroVR 

previously mentioned, this virtual reality simulator is driven by a gaming system and 

utilizes 3D glasses to provide realistic visual feedback. Furthermore, it is equipped 

with a single 5 degrees of freedom haptic system which appropriately replicates the 

variable applied forces by the instruments interacting with and deforming soft tissues 

and hard bones.12,59 Finally, there is auditory feedback generated by the simulator 

which is produced while cutting or drilling into the different anatomical structures. 

Therefore, by combining these three appropriately true means of feedback with an 

anterior cervical discectomy and fusion scenario, the Sim-Ortho can be considered as 

a potentially useful virtual reality simulator for training of a complex surgical spine 

procedure. 

Aside from sensory feedback systems, it was previously mentioned that virtual 

reality simulators built upon computer-based systems could provide an objective 

assessment of surgical performance as well as educational feedback while tracking 
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progress through repeated training sessions. These features are possible through the 

collaborative effort of the haptic and computer-based systems by precisely tracking 

the instrument movements and force applications. Subsequently, advanced metrics 

related to psychomotor skills are available.12 As previously mentioned, objective 

assessments aim to reduce bias by adopting a factual point of view and, therefore, do 

so through the analysis of these metrics which are the basis of objectively assessing 

the surgical performance and skills of an individual on a virtual reality simulator. 

Using common statistical methods such as t-tests or ANOVAs, analysis of performance 

metrics was demonstrated by many previous studies in a various fields of surgery.60-

64 These methods independently compare specific metrics of individuals at different 

levels of expertise and calculate if there is significant difference. However, with 

literature focusing on competency and defining it as a multifaceted set of skills 

culminating in desirable outcomes,65 assessments of performance should be 

determined through a combination of metrics rather than the analysis of each metric 

independently. With the advancements of artificial intelligence and its known 

capability of processing large datasets, a novel methodology of analyzing data and 

metrics from virtual reality simulators should be considered. 

 

Artificial Intelligence 

Artificial intelligence, also known as machine learning, is a division of 

computer science that intends to mimic human intelligence and behavior within 

computers. Therefore, due to this artificial intelligence, computers may have abilities 

associated with human intelligence such as learning and problem solving. This 

advanced field of computer science can further be subdivided into 3 branches: simple 

classifiers, artificial neural networks and deep learning. Each of these approaches 

process and analyze large datasets in an attempt to recognize and reveal hidden 

patterns. Then, based on the learned information, the artificially intelligent 

algorithms can proceed with making a decisive action. This is main role of artificial 

intelligence, whereby it can learn on its own and then proceed to making decisions 

without being explicitly programmed to do so. Moreover, these algorithms have 
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increasingly stronger capabilities from a simple classifier to deep learning as seen in 

Figure 1. 

Many algorithms can be found within the simple classifier category such as 

Support Vectors Machines, Decision Trees, K-Nearest Neighbors or Naïve Bayes 

amongst others. Although each of these perform some variant of a similar statistical 

approach, previous studies have shown that the effectiveness and accuracy of a 

simple classifier may vary from one case to the other.66-69 

Artificial neural networks also known as shallow neural networks are more 

complex. Designed to resemble the neuronal architecture of a brain with its 

programmed interconnected perceptrons (or neurons) separated into an input layer, 

a hidden layer and an output layer, an artificial neural network is an algorithm with 

similar learning capabilities as the previous simple classifiers. However, the 

interconnectivity of the perceptrons influences the decision-making process of the 

artificial neural network through specific weights attributed to each perceptronal 

connection. Once the artificial neural network has completed its learning (or 

training), certain inputs will generate different outputs through specific 

interconnected perceptronal paths of corresponding weights. As previously 

mentioned, the artificial neural network design functions in a similar manner to 

intertwined neurons transmitting and receiving synapses from one to the other 

through variant levels of stimuli whereby only certain stimuli will generate actual 

synapses. In this study, an artificial neural network was employed. 

The third and most sophisticated subcategory of artificial intelligence is deep 

learning. As opposed to a shallow neural network, deep learning involves deep neural 

networks which are named after the 2 or more hidden layers in their design. These 

algorithms become increasingly more complex with each new layer of perceptrons 

added allowing stronger decision-making capabilities responsible for more subtle 

decisions.70 

For each of these branches of artificial intelligence, the learning paradigms can 

be characterized as either supervised or unsupervised learning. Supervised learning 

is described to be a method of learning utilizing a training dataset where both the 

input data and the proper classification associated with that data are provided.71 
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Knowing both the input information as well as the correct classification assigned to 

that information, the artificially intelligent model can train itself to classify future 

undefined input datasets. Employed in this study, the supervised learning method 

used metrics derived from the surgical performance of individuals on the simulator 

as the input data alongside the predefined levels of expertise of each individual to 

train the artificial neural network. Therefore, by learning how sets of performance 

metrics relate to certain expertise groups, the model should be able to differentiate 

new individuals into the appropriate groups according to their surgical 

performances. Contrarily to supervised learning, unsupervised learning does not 

utilize input training data that has previously been labeled.71 This method allows 

models to train without referring to the solution (classification labels), hence, 

obliging the model to discover hidden patterns in unlabeled input datasets.71 This 

aspect of unsupervised learning allows the discovery of patterns that might not have 

been identified by a supervised learning model. However, the method of 

unsupervised learning requires a much larger dataset to function optimally. Had this 

study involved more participants and allowed for a greater data collection, 

unsupervised learning would have been possible. In such a case, the model being 

trained would not have known which input datasets of performance metrics 

corresponded to which expertise group allowing the model to classify the data into 

groups based on the similarities between groups as well as other hidden patterns 

identified. 

With its multiple functionalities, machine learning can be considered as a 

useful tool when utilized in combination with virtual reality simulators for analyzing 

the large datasets generated. First, as opposed to traditional statistical methods that 

evaluate performance metrics individually, machine learning methodology takes a 

different approach by analyzing the complete data of intimately interconnected 

metrics which together characterize surgical performance. Second, this automated 

analysis allows the differentiation of individuals into two or more groups of various 

expertise levels. This classification serves as an objective assessment tool for surgical 

performance. Third, some machine learning algorithms have the capabilities of 

providing a better understanding of surgical expertise through the ranking of 
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performance metrics relative to their importance for each surgical expertise group. 

This last feature provides insight into the contributions of each metric to expert 

performance. Therefore, out of the set of relevant performance metrics utilized to 

classify an individual, one may identify which of those metrics have a higher relative 

importance and, subsequently, have a greater impact on the decision-making process 

of the algorithm. Combining the usefulness and the educational utility of artificial 

intelligence and surgical simulation, it is reasonable to consider that the field of 

education would increasingly employ this technology. 

 

Artificial Neural Networks Approach to Surgical Competency 

The increasing use of artificial intelligence in the field of medical and surgical 

competency has resulted in many publications outlining a variety of applications 

dealing with these decision-making processes.4,72 Out of 77 published articles 

identified in two separate systematic reviews, one conducted by Dias et al. and the 

other by the McGill Neurosurgical Simulation and Artificial Intelligence Learning 

Centre,4,72 the vast majority of these studies utilized simple machine learning 

classifiers such as the support vector machine algorithm. This may be explained by 

the fact that the decision-making processes of simple classifier algorithms of this kind 

are usually well defined and understood unlike artificial neural networks. The 

complexity of the artificial neural network may be one of the reasons few studies 

employ this type of algorithm to resolve classification problems such the 

identification of a mass or lesions to aid with a diagnosis or the differentiation of skill 

levels to assess performance. Ten studies utilized artificial neural networks of which 

only 2 involved the assessment of surgical performance. 

The first study utilized artificial neural networks to predict the academic 

performance in surgical training for residents within a variety of training programs 

in the United States.73 Residents answered questions related to their own behavioural 

styles, motivators and acumen characteristics. Provided with this information as well 

as the American Board of Surgery In-Training Examination (ABSITE) scores of each 

resident which are used by program directors to evaluate the performance of 
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residents in a standardize manner, the artificial neural network can be trained to 

classify and assess residents according to their psychosocial skills and characteristics 

outlined. Although these psychosocial skills are essential, surgical residents must 

develop skills in all six ACGME competencies which include the necessary 

psychomotor and technical skills associated with surgery and the Patient Care 

competency.39,74 Training and development of such skills occur in the operating room, 

but may also involve the use of virtual reality simulation or other training device.74,75 

The second study involved the utilization of an artificial neural network to assess 

surgical performance of both simulated and live surgeries by tracking eye 

movements.19 Despite having utilized more relevant metrics in regards to surgery, 

this study is limited by the fact that the metrics of performance that it assessed to 

differentiate levels of expertise are not at present easy to teach. 

 Having demonstrated that artificial neural networks are able to classify 

surgical performances, the next step would be for one to try to understand the 

decision-making process that led to a specific classification. However, out of the 77 

studies in the previous systematic reviews, all fail to quantify the relative importance 

of each performance metric to outline the underlying factors for a classification. Many 

methods have proven to aid in the quantification of the contributions of metrics 

towards classification.76,77 In light of this information, a study that focused on the 

discectomy component of the simulated anterior cervical discectomy and fusion on 

the Sim-Ortho platform served as a proof of concept for the integration of artificial 

neural networks within a virtual reality spine procedure.8 

 Building upon previous work, the following manuscript provides a perspective 

on the utilization of an artificial neural network approach to competency-based 

training by highlighting the educational utilities of this methodology utilizing a spinal 

procedure as a model. Not only serving as a proof of concept, this study elaborates on 

how information can be extracted from the artificial neural network approach and 

aid in the understanding of expertise and it adds new insights into surgical resident 

learning of complex spinal procedures. 
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RATIONALE FOR THE STUDY 

 

This study aims to outline the relevance and potential of an artificial neural 

network approach to competency-based training through its utilization on a 

simulated spinal procedure. Based on previous work conducted on the discectomy 

portion of a simulated anterior cervical discectomy and fusion, this study focuses on 

the vertebral osteophyte removal components to inform surgical trainees and 

instructors concerning the educational utilities of this methodology. 
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ABSTRACT 

Objective. The methodology of assessment and training of surgical skills is evolving 

to deal with the emergence of competency-based training. Machine learning 

algorithms have been employed to assess surgical expertise during virtual reality 

surgical performance. Some of these approaches fail to outline the underlying reasons 

for classification and to quantify the relative importance of each metric utilized to 

train the model. Artificial neural networks, a branch of artificial intelligence, can 

utilize newly generated metrics not only for assessment but can quantitate individual 

metric contribution and provide new insights into surgical expertise. This study aims 

to outline the educational utility of employing an artificial neural network in the 

assessment and quantitation of surgical expertise. A virtual reality vertebral 

osteophyte removal during a simulated surgical spine procedure is utilized as a model 

to outline this methodology. 

 

Design. Participants performed a simulated anterior cervical discectomy and fusion 

on the Sim-Ortho virtual reality simulator platform. Data was retrieved from the 

osteophyte removal component of the scenario, which involved utilizing a simulated 

burr. The data was manipulated to initially generate 83 performance metrics 

spanning 3 categories (safety, efficiency, motion). The most relevant metrics were 

utilized to train and test the artificial neural network. 

 

Setting. This study was carried out at the Neurosurgical Simulation and Artificial 

Intelligence Learning Centre at McGill University affiliated with the Montreal 

Neurological Institute and Hospital (Montreal, Canada). 

 

Participants. Twenty-one participants performed a simulated anterior cervical 

discectomy and fusion. Participants were divided into 3 groups, including 9 post-

residents, 5 senior and 7 junior residents. 
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Results. The artificial neural network model trained on the six most relevant metrics 

of performance, all involving safety, achieved 83.3% testing accuracy misclassifying 

only one participant. 

 

Conclusions. This study outlines the potential utility of artificial neural networks 

which allows a deeper understanding of the composites of surgical expertise and may 

contribute to the paradigm shift towards competency-based surgical training. 
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INTRODUCTION 

Artificial intelligence is defined as a computational method of making 

algorithm-based decisions through novel metrics that can be used for assessment and 

educational training.5,6 Machine learning, a subset of artificial intelligence, includes 

both simple classifier algorithms and artificial neural networks. These artificial 

neural networks function as a series of interconnected nodes that communicate 

between each other and assign weights, which correspond to the sensitivity of the 

algorithm’s decision-making process. These systems can recognize and uncover 

hidden patterns in large datasets to build their connections and define the weights 

associated with each performance metric.8 These artificial neural networks can be 

exploited by competency-based training systems to develop new paradigms for 

surgical education.9,10 

Simulation-based training provides a safe environment for individuals to 

acquire the necessary surgical skillset to demonstrate competency in high-risk 

scenarios. A multifaceted operative procedure such as an anterior cervical 

discectomy and fusion allows trainees to develop a wide diversity of skills including 

knowledge, competence and technical proficiency.16 Virtual reality simulators 

generate vast datasets of quantitative information relating to psychomotor 

skills.5,6,8,78 Our group has explored the value of virtual reality simulation utilizing 

performance metrics derived from the raw data that can be employed by surgical 

educators to train individuals to improved levels of performance.4,8,61,79,80 Studies 

including those focused on the educational utility of artificial intelligence techniques 

during surgical simulation have demonstrated that the classification of individuals 

into various groups is a valid method for assessing performance.5,6,17,19,20,69 However, 

these approaches fail to outline the underlying reasons for classification and to 

quantify the relative importance of each performance metric utilized to train the 

model. An appreciation of the role that artificial neural networks play in classifying 

performance, defining novel metrics and quantitating the relative importance of each 

performance metric will enhance our understanding of the composites of surgical 

expertise and our ability to teach these composites. 
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The objectives of this study are: 1) to introduce an artificial neural network 

methodology for assessing the composites of expertise in simulation-based training, 

2) to outline the utility of artificial neural networks by utilizing a virtual reality spinal 

procedure model. This study reveals the potential of virtual reality simulation 

combined with artificial neural networks to understand not only the essential 

composites of expertise, the contributions of each composite, but the interplay of 

specific composites to expert surgical performance. 

 

MATERIAL AND METHODS 

Participants 

Participant data utilized in this study was collected from previous studies at 

the Neurosurgical Simulation and Artificial Intelligence Learning Centre.8,81 Twenty-

seven individuals were initially recruited. The simulator utilized in this study is 

optimized for right-handed participants resulting in the removal of 3 left-handed 

participants.  Two neurosurgeons and a fellow were excluded since their practices 

and training were not spine focused. The remaining 21 participants performed the 

simulated anterior discectomy and fusion simulation on the Sim-Ortho virtual reality 

platform. Participants were divided into 3 groups, 9 post-residents, (4 practicing 

spinal neurosurgeons and orthopedic surgeons and 5 spine fellows), 5 senior and 7 

junior residents. Table 1 outlines participant demographic information. This study 

was approved by the McGill University Health Centre Research Ethics Board, 

Neurosciences-Psychiatry. All participants whose data was used to train the artificial 

neural network model signed an approved written consent form. 

 

Virtual Reality Simulator 

This study utilized the Sim-Ortho virtual reality simulator platform developed 

through the collaborative work of OSSimTechTM (Montreal, Canada) and the AO 

Foundation (Davos, Switzerland). The system offers realistic 3D visuals of the 

anterior cervical discectomy and fusion surgical procedure using a combination of 3D 

glasses and graphics based on a gaming platform (Figure 2). The Sim-Ortho platform 
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provides haptic feedback allowing individuals to feel the different anatomical 

structures with the various interchangeable instruments (Figure 2A to D) and 

auditory feedback generated by the utilized instruments (Figure 2E). 

 

Simulated Operative Scenario 

A simulated anterior discectomy and fusion operative scenario was employed 

in this study.8,81 This simulated surgical procedure is deconstructed into 4 

components: vertebral disc annulus incision, discectomy, vertebral osteophyte 

removal and posterior longitudinal ligament excision. These components are outlined 

in Video 1. The high face and construct validity of the simulated vertebral osteophyte 

removal component, using a simulated burr,81 suggested that this simulation was well 

suited to assess our specific objectives of assessing the utility of an artificial neural 

network model in the assessment and quantitation of surgical expertise in this 

simulated operative procedure. Participants did not have prior experience 

performing the ACDF simulation on the Sim-Ortho platform and were limited to using 

only the burr, at one power setting, to perform the vertebral osteophyte removal. No 

limit was placed on the time allocated to complete this component of the simulation. 

 

Integration of Artificial Neural Network within Virtual Reality Simulation 

Data Collection and Metrics Generation 

The process of integrating an artificial neural network to a virtual reality 

simulator is illustrated in Figure 3. Raw data including information on the position 

and angle of the surgical instruments, the force applied to anatomical structures and 

volume of tissue removed was constantly recorded as participants performed the 

simulation procedure. Once the simulation was completed, the raw data was 

manipulated and transformed into performance metrics serving as the features for 

the model. Features are defined as elements of information input into the artificial 

neural network which, in the case of this study, are the performance metrics. These 

metrics are standards of reference by which performance, efficacy and progress can 

be assessed and are essential to be able to provide effective feedback. Initially, 83 
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metrics were generated utilizing expert opinion, data from publications focused on 

burr performance associated with surgical performance21,78 and novel metrics 

derived from the raw data. 

 

Metrics Selection 

Large sets of metrics are at risk of containing redundant and irrelevant 

features. Therefore, filtering this input data allows us to retain only useful and 

relevant information which will improve the artificial neural network.82 In this study, 

an initial 83 performance metrics were generated of which 28 were removed for 

comprising null values throughout participants’ performances. Following, a forward 

sequential feature selection algorithm was applied through the sequentialfs function 

in Matlab R2019b. This feature selection algorithm has proven to be useful in artificial 

neural network applications and picks the most important input data by adding one 

input at a time to ensure the best possible performance of the system.83 The inputs, 

in this case, were the performance metrics and, thus, the forward sequential feature 

selection was able to determine the optimal combination of performance metrics to 

be utilized with the artificial neural network. After the utilization of a forward 

sequential feature selection algorithm, 6 important metrics of performance remained.  

 

Artificial Neural Network Model 

The final 6 metrics along with the data from the 21 participants were split into 

2 sets. First, 70% was used for training the artificial neural network (15 participants: 

6 post-residents, 4 seniors, and 5 juniors). Then, the remaining 30% (6 participants: 

3 post-residents, 1 senior, and 2 juniors) was employed to test the model. Therefore, 

data from the training set was used to train the neural network in a supervised 

manner and the data from the testing set was used to test the model. 

 

Model Optimization 

The artificial neural network is comprised of 6 input layer nodes for each 

performance metric, 36 hidden layer nodes and 3 output layer nodes for each 
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performance group as shown in Figure 4. The training algorithm utilized in this study 

was the Bayesian Regularization Backpropagation algorithm (trainbr function in 

Matlab R2019b). Due to its built-in regularization, this algorithm aids in avoiding an 

overfit model, which artificial neural networks are prone to.84,85 The model was 

trained over 10 iterations, through a procedure known as early stopping, to minimize 

overfitting issues.86 The tansig transfer function from Matlab R2019b was applied to 

the hidden and output layers. This method was chosen for its higher performance 

results previously demonstrated.87 Finally, only two parameters were modified from 

their default values. The Marquardt adjustment parameter, also known as mu, and 

the decrease ratio of mu were set respectively at 2 and 0.95 for optimal results. These 

hyperparameters have been defined and optimized through random trial and error 

which has been proven to be an efficient method.88 However, there is uncertainty in 

this process of random trial and error of hyperparameters as it may result in better 

artificial neural network models that are yet to be discovered for the exact same 

dataset.89 

 

Relative Importance of Performance Metrics 

Artificial neural networks are sometimes regarded as “black boxes” because 

the decision-making process of the algorithm remains hidden and requires 

supplementary methods to reveal insight into the importance of the metrics of 

performance utilized to train the model.77,85,90 In this study, our group gains access to 

the valuable information hidden within the artificial neural network, also known as 

the relative importance of each performance metric for each group (post-resident, 

senior, and junior residents), through the utilization of the Connection Weights 

Algorithm, which is a method previously employed for analyzing the discectomy 

component of the simulated anterior cervical discectomy and fusion.8,90 Briefly, the 

Connection Weights Algorithm takes advantage of the interconnected weighting 

system of the artificial neural network as illustrated in Figure 4 to rank each 

performance metric for each participant group according to their importance, thus, 
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determining the importance of individual metrics on the network’s decision-making 

process.8 

While still referring to Figure 4, one will notice 216 interconnected weights 

(wx,y) between the layer inputting the performance metrics and the hidden layer of 

the artificial neural network model as well as 108 interconnected weights (vy,z) 

between the hidden layer and the output layer. Following the extraction of these 

weights from the artificial neural network, the Connection Weights algorithm is 

applied by summing the product of each input to hidden layer weight (wx,y) and the 

hidden to output layer weight (vy,z). This algorithm (Equation 1)8,90 calculates the 

Connection Weight Product (CWP) which is a value for each metric of each 

performance group allowing to understand the significance of each metric.  

𝐶𝑊𝑃𝑥 =∑𝑤𝑥,𝑦 ∙ 𝑣𝑦,𝑧

𝑚

𝑦=1

 

Equation 1: Connection Weight Product 

The relative importance of each performance metrics within a specific 

expertise group is derived from the Connection Weight Products. Furthermore, 

interpretation of the Connection Weight Product requires an understanding of the 

value’s sign and magnitude. The Connection Weight Product specifies if the value of a 

specific metrics should be bigger or smaller in order to favor a specific classification. 

For example, Figure 6 shows that post-residents have a very negative Connection 

Weight Product, senior residents have a slightly negative Connection Weight Product 

and junior residents have a very positive Connection Weight Product for the force 

applied on the C5 vertebra metrics. Hence, a lower force applied on that vertebra 

implies a higher probability of being classified in a group of higher expertise. Both the 

post-resident group and the senior resident group had negative values for the 

Connection Weight Product of that metrics. However, a performance generating a 

more negative value for that metric would increase the likelihood of classification in 

the post-resident group. 
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RESULTS 

Performance Metrics 

Eighty-three performance metrics were created for every participant for the 

osteophyte removal component of the anterior cervical discectomy and fusion 

scenario. These were divided into three categories encompassing safety, efficiency 

and motion elements of simulation performance. Of the 83 metrics, 28 were removed 

for comprising zero values throughout participants’ performances reducing the 

number to 55. Furthermore, a feature selection algorithm was employed reducing the 

final number of relevant metrics used to train the artificial neural network to 6. These 

metrics all originate from the safety category (Table 2) and outline the important role 

of safety in the osteophyte removal component of the anterior cervical discectomy 

and fusion procedure. These results are consistent with the findings from previous 

virtual reality spine studies and those from a virtual reality tumor resection model.8,80  

 

Classification of Surgical Performance 

Confusion matrices are tables which are commonly employed to outline the 

performance of a classification model (or “classifier”) on datasets for which the true 

values are known. These matrices allow one to visualize the performance of the 

artificial neural network used. The confusion matrices of our data, separated into a 

training set (15 participants) and a testing set (6 participants), are outlined in Figure 

5. Following the optimization of the artificial neural network’s parameters and having 

the algorithm train over 10 iterations, the previously mentioned sets respectively 

achieved overall accuracies of 80% and 83.3%. The training set misclassified 3 

participants (a junior resident, a senior resident and a post-resident) while the testing 

set only misclassified one participant (a senior resident). 

 

Importance of Performance Metrics 

The sensitivity of each performance metric for each group can vary allowing 

for different influences on the decision-making process of the artificial neural 

network. One can access the weights assigned to each metric within the artificial 
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neural network by using the Connection Weights Algorithm, shown to be the most 

appropriate method of quantifying performance metric importance.77,90 This 

algorithm takes advantage of the weights between layers of a neural network and 

forms the basis for calculating the importance of each performance metric for each 

participant group. The 6 performance metrics for post-residents, senior residents and 

junior residents along with their corresponding Connection Weight Products (CWP) 

and relative importance are represented respectively in Tables 3, 4 and 5. The 

magnitude of their Connection Weight Products ranged from +1.5 to -1.07 (Figure 6). 

Different metrics are important for each individual group and these values are 

represented in Tables 3 to 5. A number of different patterns are seen when one 

reviews the Connection Weight Products data and our group has reported these 

patterns previously.8 The two most identifiable regularities outlined are a continuous 

learning pattern and a discontinuous learning pattern for technical skills. The former 

involves a progressive and sequential change in which learning occurs in incremental 

stages or follows a certain prescribed order when comparing performance as residents 

progress from junior to senior and then to the post-resident level of technical skills. 

The Connection Weight Products associated with average force applied on the C5 

vertebra (post-residents CWP = -1.07; senior residents CWP = -0.08; junior residents 

CWP = +0.68) illustrates this continuous learning pattern. These values signify that 

there is an increased likelihood of being classified as a post-resident compared to a 

senior and junior resident if the participant applied less average force on the C5 

vertebrae during the procedure and an increased likelihood of being classified as a 

senior resident compared to a junior resident if the average force being applied on 

the C5 vertebrae is less. The second pattern is associated with a variable and 

nonsequential modification of psychomotor skills learning as residents progress from 

junior to the post-resident level of performance while going through an intermediate 

senior resident level that performs incongruously. Examples of this discontinuous 

learning pattern are seen when a participant is much more likely to be classified as a 

senior resident than a post-resident or junior resident if that participant has 

increased numbers of contacts of an active burr on the spinal dura (post-residents 

CWP = -0.68; senior residents CWP = +0.32; junior residents CWP = -0.92) and if the 
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participant has applied increased average force on the left posterior longitudinal 

ligament (post-residents CWP = -0.71; senior residents CWP = +0.94; junior residents 

CWP = -0.15). Interestingly, another pattern seen was that a participant was more 

likely to be classified as a post-resident if high average force was applied to the right 

posterior longitudinal ligament (post-residents CWP = +1.5; senior residents CWP = 

-1.07; junior residents CWP = -0.64). The percentage of relative importance for the 6 

metrics defined by the artificial neural network provides new perspectives on critical 

aspects of expert performance during removal of vertebral osteophytes when 

utilizing a burr (Tables 3, 4 and 5). 

 

DISCUSSION 

Summary 

The first objective of this study was to introduce artificial neural networks 

methodology for assessing expertise in simulation-based training. Using the vertebral 

osteophyte removal component of the anterior cervical discectomy and fusion virtual 

reality scenario developed on the Sim-Ortho virtual reality simulation platform, we 

determined 6 metrics which the artificial neural network utilized for assessing 

surgical performance.  In the second objective, the utility of this artificial neural 

network was outlined through the determination of the individual contributions of 

these 6 metrics to the composites of surgical performance utilizing a virtual reality 

spinal procedure model. These results have improved our understanding of some of 

the critical composites of surgical expertise involved in this simulated procedure. The 

authors believe that an artificial neural network, as the one utilized in this study, 

could be employed in any medical or surgical procedure in which large datasets are 

available allowing to assist with competency-based learning. 

 

Utility of Artificial Neural Networks 

Our group has explored the utility of virtual reality simulators and machine 

learning classifiers to outline objective bimanual psychomotor assessments metrics 

in neurosurgical and spine procedures.5,6 The high-fidelity simulators with haptic 
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feedback retain instrument-tissue interactions and pathological realism allowing 

them to complement the present surgical training models. Learners have unrestricted 

freedom to practice in safe-to-fail environments without the limitations imposed by 

lack of supervision, the presence of patients or the use of OR resources.8 Virtual 

reality simulators can deconstruct complex surgical procedures into manageable 

steps for learners to master allowing learners to bypass steps in which they are 

competent and focus on specific steps that require improvement.41,42,91  

The Sim-Ortho anterior cervical discectomy and fusion simulation was 

deliberately designed in 4 specific components so that each component could be 

independently assessed and used for training. Utilizing the same participant data set 

and the artificial neural network employed in this study, the metrics and Connection 

Weight Products for the discectomy component of the procedure have also been 

published.8 This allows a further analysis of the utility of the same artificial neural 

network in two very different components of the same simulation procedure (Table 

6). Although the discectomy and the osteophyte drilling both take place within the 

disc cavity, there are major technical procedural differences between these two 

components of the anterior cervical discectomy and fusion. These are related to the 

complexity of each procedure. The discectomy involved the participants choosing 

between three possible instruments as opposed to the osteophyte removal where 

only the burr could be used.  This difference provides insight in what the results of 

using the artificial neural network approach may be.  The outlined new metrics and 

the role of individual metrics in determining composites of expertise are expected to 

be different. First, for complex operative procedures, this methodology may outline 

both increased numbers of metrics and more complicated metrics. In our previous 

study, 16 metrics, involving safety, efficiency, motion and cognition, were selected for 

the discectomy while only 6 safety metrics were selected for osteophyte removal. 

Second, the predominance in safety metrics for both components of the simulation 

suggests that, despite the differences in these two procedures, our methodology 

regards operative safety as a critical composite of surgical expertise. These results 

are consistent with the previous model suggested by our group.80 Third, with the 

limited number of participants in the training set and the testing sets, lower 
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classification accuracies such as 80% and 83.3% may be expected.92 An artificial 

neural network model can be more robust by recruiting more individuals from 

various institutions.86,93 Expanding both of the training and testing sets should help 

our model have a more representative picture of surgical expertise. Fourth, the 

Connection Weight Products also provide helpful insight to educators tasked with 

prioritizing specific metrics during training for both procedures. For the 6 safety 

metrics identified for osteophyte removal, the relative importance percentage of 

these metrics, as seen in Tables 3, 4 and 5, ranged from 33.31% to 5.36 % for the post-

resident group, 37.97% to 2.88% for the senior resident group and 27.54% to 4.41% 

for the junior resident group. These percentages allow educators to rank the 

performance metrics according to which contributes more towards the classification 

of a specific expertise level. For example, a metric such as the average force applied 

on the C5 vertebra has more influence on classifying a participant as a post-resident 

or junior resident since that metric is ranked as second most important for both of 

these groups with respective relative importance values of 23.77% and 20.31%. 

However, this metric has far less impact on the classification of a participant in the 

senior resident group because it has a low relative importance (2.88%) and is ranked 

sixth for that group. Furthermore, the range in numbers are consistent with 

percentages seen in the discectomy data suggesting that surgical educators need to 

be aware of these differences in relative importance of metrics to maximize the 

surgical performance of trainees.65 Considering the difference between the concepts 

of competence and expertise,65 the improvement of the psychomotor skills involved 

with top tier metrics (high Connection Weight Products magnitude or relative 

importance) may benefit the overall performance of the trainee and aid in achieving 

competency. However, other metrics of lesser importance should not be neglected as 

they may also be important factors in attaining expertise. 

 

Educational Patterns of Artificial Neural Networks 

The ability of artificial neural networks to rank the significance of a specific 

metric in expertise assessment during virtual reality procedures allows surgical 
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educators to investigate new concepts of teaching. Should metrics that predominately 

contribute to expertise take precedence in surgical training paradigms? Should 

surgical education programs focus on training junior residents to the senior resident 

or that of the post-resident levels? When looking at the average force applied to the 

spinal dura metric in junior residency training this is not an issue since senior 

resident or post-resident values are equivalent (Table 5). However, our results have 

identified two other patterns; the continuous learning pattern and the discontinuous 

learning pattern of technical skills. In the first pattern discussed previously, there is 

a progressive change seen when moving from the junior resident to the post-resident 

group. This pattern was observed with the incrementally decreasing average force 

applied on the C5 vertebrae metric when comparing the three groups. This 

continuous learning pattern was also prominent in the discectomy component of the 

procedure.8 Several studies from our group have demonstrated that expertise is 

associated with decreasing force application and the findings with this metric are 

consistent with these results.6,8,94,95 The question does arise as to whether junior 

residents should be trained to the senior or post-resident level of force application in 

this scenario to accelerate the acquisition of surgical expertise? Studies focused on 

this question are needed. The discontinuous learning pattern outlined involves the 

senior resident group performance being a nonsequential outlier compared to that of 

the junior and post-resident groups. This pattern was seen when the number of 

contacts of the active burr with the spinal dura and the average force applied to the 

left posterior longitudinal ligament metrics were analyzed. It may be reasonable to 

speculate that junior residents are hesitant to approach the spinal dura and the left 

posterior longitudinal ligament with the active burr, while senior residents are more 

aggressive in this activity. The post-resident group may have modulated this behavior 

with experience and their predominant focus on safety. Considering this pattern, 

should junior residents be trained to the senior resident level of performance which 

is potentially associated with increased risk? It would appear reasonable to also 

develop studies to address this issue. Both the continuous and discontinuous learning 

patterns are illustrated in Figure 7. A number of other patterns were found which can 

be seen in Figure 6. An unusual pattern was that of the average force on the right 
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posterior longitudinal ligament where the post-residents applied more force than 

both senior and junior residents. This may be a result of instrument positioning and 

hand ergonomics in relation to the right posterior longitudinal ligament. One can 

speculate that post-residents were more aggressive when trying to completely 

remove osteophytes near the virtual patient’s right posterior longitudinal ligament to 

decompress the adjacent cervical nerve. This action requires more wrist flexion and 

the muscle activation associated with wrist flexion may lead to greater forces 

applied.80 If the Sim-Ortho platform could be optimized for left hand dominant 

individuals, one can hypothesize that this specific unusual pattern would be present 

for the force applied on the left posterior longitudinal ligament rather than the right 

side. Observing this reversal of patterns from right-handed to left-handed individuals 

would provide further insight concerning this unusual pattern and support the hand 

ergonomics hypothesis. Further studies involving not only a larger number of 

participants, but also left-handed participants will be required to investigate these 

less easily understood patterns. All these patterns allow medical educators and 

trainees to begin to better comprehend the composites associated with expertise and 

adjust the focus of the training paradigms. 

 

Surgical Education Platform powered by Artificial Neural Networks 

Adequate and reliable assessment tools that can effectively evaluate 

competency or expertise are crucial for competency-based training in medical 

education.96 Appropriate technologies and the implementations of validated virtual 

reality training scenarios can help to determine a trainee’s baseline skill level and 

provide them with critical information to ensure quality feedback.97 Simple machine 

learning classifiers such as support vector machines, k-nearest neighbors, linear 

discrimination analysis and decision trees can be useful for the classification of skill 

level.5,6,69 Artificial neural networks have the potential to help focus the training of 

residents into specific metrics which may be important in the development of 

expertise.  
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Simulation-based training may be automated by providing post-operative 

feedback to trainees using the information outputted by the artificial neural network. 

This may decrease the reliance on expert instructors to give feedback or modulate the 

way these educators provide feedback. This study amongst others have 

demonstrated that quality feedback can be provided by an artificial neural 

network.8,98 However, questions remain concerning the best methods of optimizing 

these automatic feedback systems. Would an automated instructor be more effective 

than actual expert surgical trainers? What would be the optimal method for the 

artificial neural network-integrated feedback systems to present trainee 

information? Threshold expert benchmarks may be one methodology to present each 

important performance metric.99 Clear goals set by educators through benchmarking 

aid in the creation of efficient competency-based curricula for trainees.44 Video 

feedback is another method that has been shown to convey necessary information for 

medical trainees to acquire important surgical skills.100 A comparison of various 

personal feedback model systems such as Technical Abilities Customized Training 

(TACT) and combinations of feedback technologies can aid in our understanding of 

their effectiveness and impact on trainees’ learning performance.64,101 

This study demonstrates how artificial neural networks can be utilized to 

develop training curricula molded to the specific needs of trainees. With the added 

benefits of a personalized and automated feedback system, a virtual operative 

assistant has been developed by our group in the Neurosurgical Simulation and 

Artificial Intelligence Learning Centre.98 This virtual operative assistant utilizes a 

machine learning algorithm, support vector machine, to assess an individual’s  

surgical performance during a simulated operative scenario and tailors its feedback 

based on performance metrics. This allows a personalized training experience with 

virtual reality simulation.98 This type of virtual operative assistant could also be 

developed utilizing data obtained from artificial neural networks. Studies are planned 

to compare trainee performance on virtual reality simulators receiving personalized 

virtual operative assistant feedback to that of individuals receiving feedback from an 

expert instructor. 
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LIMITATIONS 

Limitations of Artificial Neural Networks in Education 

The artificial neural networks methods utilized in this study followed best practices 

to utilize machine learning algorithms to assess surgical expertise in simulation previously 

established by our group.4 However, artificial neural networks have limitations 

regarding their use in surgical education and training. Employing artificial neural 

networks to classify individuals and assess performances may be difficult due to 

overfitting. There are a number of methods for resolving this issue.85 The artificial 

neural network in this study benefited from regularization, limiting the number of 

hidden nodes as well as limiting the amount of training iterations. However, due to 

the process of optimizing the model’s hyperparameters by random trial and error, a 

better artificial neural network model for the same data may remain undiscovered.89 

Training curricula differ depending on the surgical specialty and institution causing 

variable levels of resident expertise.102,103 If an artificial neural network is trained 

with the data of individuals from one educational site, the classification may not 

perform well for individuals from other institutions. Hence, our model may be limited 

by the fact that all training data was obtained from surgeons and resident from a 

single institution which may not generalize well to other institutions. A more 

generalizable model would require data from a large number of individuals from 

multiple institutions. 

 

Limitations of the Study 

The incorporation of an advanced gaming engine into the Sim-Ortho virtual 

reality surgical simulator platform improved anatomical structure realism and the 

interactions of simulated instruments with these structures.  However, this platform 

does not reproduce the complex ever-changing environment of a patient undergoing 

an anterior cervical discectomy and fusion procedure. A number of limitations need 

to be considered when assessing this study. First, to limit the variables associated 

with the task, only one specific burr, at one setting, was utilized in this simulation 

which is not consistent with the multiple burr options for surgeons completing a real 
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ACDF. Second, hand ergonomics have proved to be an important factor in simulated 

operative procedures.80 The Sim-Ortho platform was designed for right-handed use 

limiting its usefulness in assessing and quantitating the composites of bimanual 

performance. Modifications of the Sim-Ortho platform are warranted to allow for a 

more comprehensive understanding of bimanual expertise. Third, the study involved 

a small sample size of a priori-defined participant groups from one institution which 

has previously been identified as a common limitation for artificial neural networks. 

Assessing the accuracy and generalizability of the utilization of artificial neural 

networks in competency-based training will require large prospective multi-

institutional studies. 

 

CONCLUSION 

This study reveals the potential of virtual reality simulation combined with 

artificial neural networks to outline the important composites of surgical expertise, 

the contributions of each composite, and the interplay of specific composites which 

result in expert surgical performance. Our results demonstrate the educational 

potential of integrating artificial neural networks with virtual reality surgical 

simulation and automated feedback systems to develop personalized training 

curricula in competency-based education.
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THESIS CONCLUSION 

Summary 

 The present thesis demonstrates the educational utility of artificial neural 

networks using a simulated spine procedure as a model. The study objectives of 

introducing an artificial neural network methodology for assessing the composites of 

expertise in simulation-based training and outlining the utility of artificial neural 

networks by utilizing a virtual reality spinal procedure model were achieved. An 

initial 83 performance metrics involving safety, motion and efficiency were generated 

for the osteophyte removal portion of the anterior cervical discectomy and fusion. 

Following manipulation and selection of the most relevant 6 metrics, an artificial 

neural network was created and trained using participants’ performances to classify 

participants into groups of varying expertise levels (post-residents, senior residents 

and junior residents). This model was then tested on the data of another set of 

participants, only misclassifying one individual, achieving an 83.3 % accuracy. The 

artificial neural network, often regarded as a black-box, was opened and analyzed to 

outline the relative importance of each performance metric and understand the 

composites of expertise as well as the interplay of these composites involved with 

training to higher levels of performance. 

 It is difficult to generalize this artificial neural network due to the small sample 

size. However, the model demonstrates its potential utility as an educational tool 

when combined with virtual reality simulation. First, the artificial neural network’s 

ability of classification serves as a means of objective assessment of participant 

surgical performance. This assessment provides trainees with a baseline 

performance evaluation and allows them to track their progress as they train on the 

simulator and develop new psychomotor and technical skills. Second, if the artificial 

neural network presents the relative importance of each performance metric, 

trainees and surgical educators can acquire a better understanding of the composites 

of expertise. This information will allow surgical trainees and educators to adapt their 

training paradigms to focus either on the major skills necessary to be competent or 
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other metrics skills which may also be essential for mastering performance. Third, 

the artificial neural network reveals hidden patterns related to the development of 

specific technical skills. Two noticeable patterns identified as the continuous learning 

pattern (progressive and incremental learning) and the discontinuous learning 

pattern (variable non sequential learning) illustrate very different methods of 

acquiring technical skills. These patterns can aid trainees and educators to better 

comprehend the composites of expertise and adapt the training accordingly. Hence, 

the artificial neural network approach can provide not only an objective assessment 

of surgical performance but also provide formative information related to how to 

structure a training curriculum specific to the needs of the surgical trainee. 

 Aside from the educational utility, one must also consider the social 

ramifications of the artificial neural network approach to competency-based training. 

There is concern that artificial intelligence may replace human involvement. Our 

group does not advocate the replacement of present educational paradigms by automated 

systems.6,8,98 Human interaction is vital to learning. The integration and the wider 

availability of intelligent tutoring systems may complement present curricula. Intelligent 

tutoring systems can utilize different simulation platforms, increasing the surgical 

educators’ armamentarium to help learners achieve mastery levels of surgical performance. 

The methodology suggested in this study is an incremental technological change that 

will continue to evolve and be integrated into the current apprenticeship model. 

Expert educators may not always be available. Therefore, intelligent tutoring systems 

based on artificial neural networks can augment the learning experience of trainees. 

This artificial neural network approach is an educational tool designed to provide an 

objective assessment and other formative information related to performance 

without replacing surgical educators and expert feedback.  

 This study outlines that the artificial neural network approach to competency-

based training provides novel perspectives regarding surgical performance and 

further insights into the understanding of expertise and its composites. 
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Future Directions 

This study suggests new questions related to the use of the learning patterns 

outlined suggesting possible modifications to current surgical training paradigms. 

Also, questions related to the generalizability of the artificial neural network model 

remain unanswered. 

First, having identified and defined the continuous learning pattern and the 

discontinuous learning pattern involved in our investigation, further studies will be 

required to gain a better understanding of the significance of these two patterns. 

Investigating these patterns and the information they provide can help determine if 

a junior resident should train to a post-resident level of expertise either by only 

developing the surgical skillset of a post-resident or by needing to first develop an 

intermediate senior level of performance. Providing surgical educators and trainees 

with this information can improve current training curricula and competency-based 

training programs with the potential for more efficient learning and acquisition of 

psychomotor and technical skills which may result in safer patient outcomes. 

Second, due to the small sample size utilized in this study, it is not possible to 

assess the generalizability of the artificial neural network model. The participants 

from this study all came from the same institution and their surgical performances 

data may not translate to individuals of other institutions. A future study will be 

required to assess the generalizability of the this trained artificial neural network by 

including new participants from multiple institutions. If the present model does not 

achieve good classification accuracy, this new data combined with the data from this 

study may be utilized to train a new artificial neural network which will be more 

robust in terms of generalizability. 

Current surgical training relies on the feedback of expert educators. Other 

means of providing automated feedback involving intelligent tutoring systems are 

under development. The virtual operative assistant developed in the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre is one such example.98 Studies 

involving intelligent tutoring systems, such as the virtual operative assistant, are 

necessary to design optimal feedback methods to improve trainee learning curves. 

Investigations designed to assess the role of combining surgical educators with 
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intelligent tutoring systems will provide further insights into how to optimize future 

surgical education paradigms.  
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APPENDIX 

TABLES 

Table 1: Demographics information related to each group of participants for 
this study. 

 Junior 
Residents 

Senior 
Residents 

Post-Residents 

Number of individuals 7 5 9 

Age (years) 

Mean ± SD 27.4±1.4 30.6±2.3 44.2±13.2 

Sex 

Male 5 4 9 

Female 2 1 0 

                

PGY 1-3 PGY 4-6 Fellows Consultants 

Neurosurgery 3 3 2 2 

Orthopedic Surgery 4 2 3 2 

  

Level of 
training 

 

Surgical 
Specialty 
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Table 2: List of performance metrics used to train artificial neural network. 
 

Category of 
Performance Metrics 

Performance Metrics 

Safety Average force applied on right posterior longitudinal 
ligament  

Safety Average force applied on C5 vertebra  
Safety Average force applied on left posterior longitudinal 

ligament 
Safety Number of contacts on the spinal dura with active burr  
Safety Average force applied on spinal dura 
Safety Average force applied on right vertebral artery 
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Table 3: List of ranked performance metrics with their corresponding weights 
and relative importance for post-residents. all six of these metrics were 
associated with safety. 
 

Rank Performance Metrics Connection 
Weight 
Product 

Relative 
Importance 

(%) 
1 Average force applied on right posterior 

longitudinal ligament  
1.5 33.31 

2 Average force applied on C5 vertebra  -1.07 23.77 
3 Average force applied on left posterior 

longitudinal ligament  
 

-0.71 15.78 

4 Number of contacts on the spinal dura with 
active burr 

-0.68 15.06 

5 Average force applied on spinal dura  -0.30 6.72 
6 Average force applied on right vertebral artery 0.24 5.36 
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Table 4: List of ranked performance metrics with their corresponding weights 
and relative importance for senior residents. all six of these metrics were 
associated with safety. 
 

Rank Performance Metrics 
Connection 

Weight 
Product 

Relative 
Importance 

(%) 
1 Average force applied on right posterior 

longitudinal ligament  
-1.07 37.97 

2 Average force applied on left posterior 
longitudinal ligament  

0.94 33.44 

3 Number of contacts on the spinal dura with 
active burr  

0.32 11.27 

4 Average force applied on spinal dura -0.30 10.56 
5 Average force applied on right vertebral artery 0.11 3.88 
6 Average force applied on C5 vertebra -0.08 2.88 
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Table 5: List of ranked performance metrics with their corresponding weights 
and relative importance for junior residents. all six of these metrics were 
associated with safety. 
 

Rank Performance Metrics Connection 
Weight 
Product 

Relative 
Importance 

(%) 
1 Number of contacts on the spinal dura with 

active burr 
-0.92 27.54 

2 Average force applied on C5 vertebra 0.68 20.31 
3 Average force applied on right posterior 

longitudinal ligament 
-0.64 19.04 

4 Average force applied on spinal dura 0.63 18.75 
5 Average force applied on right vertebral artery 0.33 9.95 
6 Average force applied on left posterior 

longitudinal ligament 
-0.15 4.41 
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Table 6: Comparison between discectomy and osteophyte removal 
components of the simulated anterior cervical discectomy and fusion. 

 

 Discectomy Osteophyte Removal 
Number of instruments 
utilized 

3 (bone curette, pituitary 
rongeur and disc rongeur) 

1 (burr) 

Number of metrics  16 metrics 6 metrics 

Metrics categories 
Safety, Cognition, Efficiency 

& Motion 
Safety 

Most important 
category of metrics 

Safety (makes up more 
than 50% of the metrics) 

Safety (makes up 100% 
of the metrics) 

Testing accuracy 83.3% 83.3% 
Connection Weight 
Product signs 

Positive & Negative Positive & Negative 

Highest magnitude of 
Connection Weight 
Product 

5.24 1.5 

Lowest magnitude of 
Connection Weight 
Product 

0.02 0.08 

Hidden patterns 
Continuous learning & 
discontinuous learning 

Continuous learning & 
discontinuous learning 
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FIGURES 

Figure 1: The 3 branches of artificial intelligence in order of complexity related 
to decision-making capabilities. 
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Figure 2: The virtual reality simulator utilized for this study 
The Sim-Ortho virtual reality simulator developed by OSSimTechTM (A) 
Utilization of 3D glasses and the haptic feedback arm. (B) Participant's point of 
view on the Sim-Ortho Virtual Reality Simulator. (C) Beginning of the osteophyte 
removal component of the anterior cervical discectomy and fusion. (D) Surgical 
instrument handles utilized on the Sim-Ortho Virtual Reality Simulator. (E) 
 

B A 

D 

C 

E 
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Completion of 
Virtual Reality 
Surgical Task

Acquisition of Raw 
Data

Creation of Metrics

Selection of Metrics

Training of Artificial 
Neural Networks

VR 

Data 

Figure 3: Process of integrating artificial neural networks within virtual 
reality simulation. 
Participants perform the simulated scenario which generates a large dataset of 
information related to their performance. The data is collected and transformed into 
quantifiable performance metrics. A feature selection is employed to reduce the 
metrics to only the most relevant ones. These final metrics are used to train the 
artificial neural network. 
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Figure 4: Interconnectivity of the artificial neural network. 
The artificial neural network is composed of three layers. The input layer (left) 
comprises the performance metrics (Xx). Each performance metric is connected 
to every hidden layer (middle)perceptron (Yx). The perceptrons of the hidden 
layer are themselves connected to each of the perceptrons (Zx) in the output 
layer (right) representing each group of variant expertise level. Both the input-
hidden layer connections and the hidden-output layer connections have weights 
(respectively Wx,y and Vx,y) attributed to them. These weights correspond to the 
sensitivity of each input on the algorithm’s decision-making process. 
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Figure 5: Classification of the model. 
The confusion matrix of the training set (left) correctly classified 12 out of 15 
participants reaching an 80% accuracy. The confusion matrix of testing set 
(right) correctly classified 5 out 6 participants reaching an 83.3% accuracy. 
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Figure 6: Representation of performance metric Connection Weight Products 
relative to each level of expertise. 
Each relative importance percentage corresponds to the magnitude of the Connection 
Weight Product of a specific performance metric over the sum of all Connection 
Weight Product magnitudes within the same performance level group of either post-
resident (blue), senior resident (red) or junior resident (green). Hence, the relative 
importance represents the influence of each metric on the classification of a 
participant into a specific group. 
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Figure 7: Illustration of continuous and discontinuous learning patterns. 
With the X-axis representing the time variable training progress of an individual and 
the Y-axis representing the Connection Weight Product, the progressive and 
incremental learning curve associated with the continuous learning pattern and 
variable non sequential learning curve of the discontinuous learning pattern are 
illustrated. 
 


