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Abstract

The object of this thesis is to develop a new extension of Im-
age Correlation Spectroscopy (ICS) that can measure velocity vectors
for flowing protein populations in living cells. This new technique,
called Spatio-Temporal Image Correlation Spectroscopy (STICS), al-
lows measurement of both diffusion coeflicients and velocity vectors
(magnitude and direction) from fluorescence microscopy image time
series of fluorescently labeled cellular proteins via monitoring of the
time evolution of the full space-time correlation function of the inten-
sity fluctuations. By using filtering in Fourier space to remove fre-
quencies associated with immobile or slow components, it is possible
to measure the protein transport even in the presence of a large frac-
tion of immobile species that are static in the image series. The STICS
method can generate complete transport maps of proteins within sub-
regions of the basal membrane even if the protein concentration is
too high to perform single particle tracking measurements, and it
can be applied to any type of fluorescence microscopy image time
series. This thesis presents the background theory, computer sim-
ulations, and analysis of measurements on fluorescent microspheres
and fixed cell samples to demonstrate proof of principle, capabilities,
and limitations of the method. Visible fluorescent proteins (VFPs)
were used to label a variety of the proteins involved in cell-to-extra-
cellular-matrix adhesions, including focal adhesion kinase, paxillin,
a-actinin, ab-integrin, talin, vinculin and actin. Various fusion pro-
tein pairs were transfected in living cells and imaged using both laser
scanning microscopy and total internal reflection microscopes. Using
STICS analysis, co-transport maps of proteins were generated within
protruding sub-regions of the basal membrane. The new space time
image correlation method can probe the mechanistic details of the
hypothesized molecular clutch that regulates the extra cellular ma-

trix/cytoskeletal interactions during migration. The technique was
also applied to mapping fluid flow in migrating keratocytes in order
to elucidate the role that fluid flow plays in migrating cells.






Résumé

L’objet de cette thése est de développer une nouvelle extension
de la spectroscopie par corrélation d’images (ICS) qui peut mesurer
les vecteurs vitesse de flux de protéines dans des cellules vivantes.
Cette nouvelle technique, appelée spectroscopie spatio-temporelle par
corrélation d’images (STICS), permet la détermination des coefficients
de diffusion et des vecteurs vitesse (grandeur et direction) & partir de
séries d’'images de microscopie par fluorescence, en suivant 1’évolution
temporelle des corrélations spatiales des fluctuations d’intensités. En
filtrant dans ’espace de Fourier les fréquences associées aux compo-
santes immobiles ou lentes, il est possible de mesurer le transport des
protéines méme en présence d’un grand pourcentage d’especes immo-
biles qui sont statiques dans la série d’images. La méthode STICS
peut générer une cartographie compléte du transport des protéines
dans la membrane basale, méme quand la densité de protéines est
trop grande pour y performer des mesure par suivi de particule unique.
De plus cette méthode peut étre appliquée & tout type de microsco-
pie par fluorescence. Cette thése présente la théorie sous-jacente a
STICS, des simulations par ordinateur, et ’analyse d’expériences avec
des microspheres fluorescentes et des échantillons de cellules fixées
pour démontrer la preuve de principe, les capacités et les limitations
de cette méthode. Des protéines fluorescentes visibles ont été utilisées
pour marquer diverses protéines impliquées dans le lien entre la ma-
trice extra cellulaire et le cytosquelette d’actine, incluant la kinase
d’adhésion focale, la paxilline, I’a-actinine, ’a5-integrine, la taline, la
vinculine et 'actine. Ces paires de protéines ont été transfectées dans
des cellules vivantes et imagée avec des microscopes a balayage laser
et des microscopes a réflexion totale interne. En utilisant ’analyse
STICS, des cartes de co-transport de ces protéines ont été générées
pour des zones de protrusion dans la membrane basale. Cette nouvelle
méthode de corrélation spatio-temporelle d’images peut questionner
les détails mécanistique de ’hypothétique embrayage moléculaire qui

régularise les interactions entre la matrice extra cellulaire et le cytos-

il



quelette pendant la migration des cellules. La technique a aussi été
appliquée a la cartographie de flux de fluide a 'intérieur de kerato-
cytes migrants, afin d’élucider le role que joue le flux de fluide dans la

migration des cellules.

iv
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The author claims the following aspects of the thesis constitute original schol-
arship and an advancement of knowledge. Some of these findings have been
published [1, 2].

1. The design, development, characterization and live cell implementa-
tion of a new fluorescence microscopy based biophysical method called
spatio-temporal image correlation spectroscopy (STICS) for extracting
velocities of labeled proteins inside cells. The STICS approach is based
on spatial and temporal correlation analysis of intensity fluctuations
within a time series acquired via fluorescence microscopy imaging of a
sample. The following points detail the major advantages of the novel
STICS technique.

e This method has relatively high spatial mapping resolution and
can be used to analyze microscopy image sub-regions that are as
small as 16x 16 pixels. It also has the advantage that it is compu-
tationally fast compared to related techniques such as Fluorescent
Speckle Microscopy: a single region of interest of 1616 pixels and

200 images is analyzed in under 3 seconds.

e The STICS technique is also very adaptable since it can be ap-
plied to virtually any fluorescence microscope image time series.
It has the ability to map protein velocities in cells that are simply
transfected with any type of fluorescently labeled macromolecule
and does not require overly sophisticated sample preparation or

computer hardware (it is PC based).

e Most importantly it can accurately measure protein translational
motions under conditions of very high protein densities, such as
in adhesions or along actin filaments in cells, or at very low pro-

tein densities where the distribution of labeled macromolecules is
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homogeneous and diffuse, and no directed flow is apparent to the

eye upon viewing the image series.

2. The design and characterization of a novel filtering technique intended
to remove the immobile protein population fraction intensity contribu-

tion from the space-time correlation function.

e This filtering in Fourier space can remove the intensity contribu-
tions from the fully static (zero frequency) or slowly moving (low
frequency) labeled protein population by adjustment of the filter

window size.

e The filtering also removes long range spatial correlations from the
images. This is especially useful in cases where the protein density
is high and they are located in large spatially extended structures,
such as in adhesions or along actin filaments. Such extended cel-
lular structures that are larger than the optical diffraction limit

can cause deviations in the STICS analysis if they are not filtered.

3. The first study of the actin-integrin linkage in the lamella of living
cells by using STICS to measure velocity maps of integrin, actin, and

adhesion related proteins.

e Measurements of flow velocities for a number of adhesion compo-
nents (ab-integrin, a-actinin, paxillin, FAX| talin and vinculin)
were compared with those measured for actin to identify which
proteins within the linkage are potential sites of regulation via

transient decoupling or slippage.

e Experimental determination that actin polymerization is not a
determining factor in the regulation of the a-actinin-actin linkage.
On the other hand, myosin II generated tension in the actin cables

was implicated in regulation of the actin-a-actinin interactions.
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e Experimental determination that there exists a linkage complex in
migratory cells, comprising: vinculin, talin, paxillin and focal ad-
hesion kinase (and possibly other proteins). This linkage complex
links the integrin to the actin cytoskeleton in a dynamic manner,
with the STICS experiments suggesting that it is connected to the
actin 70% of the time, and to the integrins 30% of the time.

4. The first measurements of cytosolic fluid flow through the dense actin

meshwork in the lamellipodium of migrating keratocyte cells.

e Experimental determination that an overall rearward fluid flow
exists in the cell frame of reference during migration with wa-
ter influx at the leading edge, consistent with the localization of

aquaporin channels at the leading edge.

o Novel measurements of fluid flow velocities in a large population
of cells using various markers (655 nm A and 545 nm A quantum
dots, as well as green fluorescent protein) that consistently show
that this retrograde fluid flow is approximately one third of the
cell migration speed in all cases studied.

¢ Biophysical modeling of the fluid flow in the lamella shows that
water influx at the leading edge partially relieves the membrane

load, leading to an increase in the rate of actin protrusion.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

“If you try to take a cat apart to see how it works, the first thing you have

in your hands is a nonworking cat.”
Douglas Adams

Reductionism, or the study of a system by taking it apart and seeing
how its individual components work, has been a dominant approach that has
lead to many important advances in the physical and biological sciences in
the modern era. Some of the intellectual threads in classical physics that
are important in quantitative applications to biology include statistical me-
chanics, kinetic theory, hydrodynamics, continuum mechanics, nonlinear dy-
namics and colloidal physics. However, reductionist techniques study the
parts, rather than the whole. The process of taking the system apart via a
reductionist approach can be misleading especially in the extremely complex
and interconnected milieu of biological cells. A current theme in biophysics
is to be able to quantitatively measure processes directly inside the cell (in
situ). New physical techniques such as those involving micromanipulation
(e.g. optical traps), microlithography (to create structured environments)
and fluorescence methods (for direct visualization of biomacromolecules and
their biochemistry) all play an important role in getting physical insights

from in vivo measurements. An important question to ask is: “what can
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physicists bring to this field?” An interesting parallel can be drawn with
the symbiotic relationship that mathematics and physics have enjoyed for
centuries. Just as physics flourished when it was endowed with the powerful
abstract tools of mathematics, so can biology evolve into a more quantitative
science using both the technological advances and the modeling innovations
that physics has developed in the past decades, provided that the “bto” in

biophysics is not forgotten.

Developments in both theoretical and experimental biophysics have led
to giant leaps forward in the understanding of protein structure, bioenerget-
ics, ion transport, transmembrane protein transport and much more. It is
not productive for physicists to move into biology simply to copy the existing
methods and adopt the current paradigms of the biologists. They must bring
something new to the table. The importance of developing and characterizing
new techniques that can give quantitative information on particular systems
cannot be overemphasized, since the tools that have been used and that are
being created provide powerful methods for scientists to conduct quantita-
tive experiments with intact biological systems. The object of this thesis is
the development of a new biophysical technique called spatio-temporal image
correlation spectroscopy (STICS) and its application for measuring protein
transport which is necessary to understand the molecular basis of cell migra-

tion.
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1.2 The Challenge: Cell Migration

Many types of animal cells have the ability to migrate by following chemical
or mechanical cues. These displacements often play a fundamental role in
both normal or pathological cases, i.e. morphogenesis or cancer metastasis
[3]. Certain types of cells are even specialized in locomotion, such as im-
mune system neutrophils or fish epidermal keratocytes [4, 5, 6]. The basic
paradigm of cellular migration is illustrated in Figure 1.1. The cell extends
membrane protrusions which can be either flat and large (lamellar protru-
sions) or thin and tubular-like (fillipodial protrusions) [7]. These protrusions
help cells probe their environment, and acquire a spatial asymmetry enabling
them to select a given direction of migration [8]. After these protrusions are
sent out from the cell periphery, they form attachments to the substrate
called focal contacts through a variety of proteins that will be described in
detail in the next section [9]. Some of these attachment points will mature
into more stable, solid adhesions through which the cell can turn intracellu-
larly generated contractile forces into net cell body translocation [10]. These
contractile forces come from the myosin molecular motors, which bind to the

polymeric actin cytoskeleton filaments inside the cell.

The cytoskeleton is a cellular “scaffolding” or “skeleton” found in the cy-
toplasm inside cells and has three major fiber types: microfilaments made of
actin protein, intermediate filaments made of various kinds of proteins (e.g.
keratin), and microtubules made of tubulin [11]. The three fiber types serve
different functions. Actin filaments are often associated with changes in cell

size and morphology, contractility such as in muscle cells, and cell division,
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-------- actin filaments

4 adhesion related proteins
b{ integrins

§= myosin motor

detachment translocation protrusion

Figure 1.1: Illlustration of the current cell migration paradigm. As a first
step, the cell extends membrane protrusions (lamellipods or
fillipods), which anchor to the extra-cellular matriz (ECM)
through a variety of adhesion related molecules that link the
actin cytoskeleton to the transmembrane integrins. The inte-
grins in turn bind to the ECM. The myosin motors which con-
nect to the actin filaments can subsequently exert traction forces
and pull the cell body forward as adhesions at the rear of the
cell are disassembled. Adapted from [3].

growth and motility [12]. The microtubules are major filaments for internal
transport and movement of chromosomes and organelles during cell division
[13]. Intermediate filaments contribute to flexibility, elasticity, and stiffness
of cells and tissues [14]. Microtubules are straight, hollow cylinders with a
diameter of about 25 nm composed of long chains of the proteins a and [
tubulin [15]. Actin filaments are made from monomers of one basic protein
subunit, i.e. by the polymerization of F-actin monomers. Actin filaments
are about 8 nm in diameter [16], and they can bundle together with myosin
in what are called “stress fibers”. To migrate, the cell basically anchors
the actin filaments and stress fibers to adhesion sites and “tugs” forward by

pulling on the actin bundles with the myosin motors [17].



1.3 Spatio-Temporal Interactions

As recent studies have shown, the molecular partners involved in all of the
steps of cellular migration are numerous and their interactions very complex
[3]. Cell migration is a dynamic, integrated process that is coordinated both
spatially and temporally. Although numerous components are known to in-
teract before, during and after the formation of focal contacts and adhesions,
less is known about the exact timing, the number of components and trans-
port mechanisms involved in these interactions. Understanding the complex
physical and chemical integration of kinetic, kinematic and mechanical pro-
cesses requires specialized mathematical models and analysis methods, some
of which are only in their infancy. There is a great need for quantitative
biophysical techniques which can reveal important quantitative aspects of

the physico-chemical molecular mechanisms that govern cell migration [3].

1.3 Spatio-Temporal Interactions

At the cellular level, there are three main regions where the molecular part-
ners that play a role in cell migration are located [figure 1.2]. First is the
extracellular matrix (ECM), a protein rich environment outside the cell to
which all cell attachments are anchored. The ECM interacts with the basal
(lower) membrane of the cell (in a 2D tissue culture context). The ECM is
made of many types of large glycoproteins including fibronectin, vitronectin,
collagen, laminin and tenascin [18]. The second level consists of the trans-
membrane proteins which are found in the cell membrane and act as the
link between the extra- and intra-cellular environments. Integrins are the
major transmembrane proteins that cluster to form focal contacts and focal

adhesions [19]. Integrins form a functional dimer of an a and 3 subunit of
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which there are many different subforms that are characteristic of different
cells and tissues. Integrins bind to extra cellular matrix components such
as fibronectin and to intracellular cytoskeletal linker proteins such as talin
or a-actinin. These linker molecules make up the third level of molecular
partners involved in cell migration. They are termed adhesion related pro-
teins because they are part of the linkage between the integrins and the actin
cytoskeleton. They are numerous, but some of the key actors are signalling
molecules such as focal adhesion kinase (FAK) and paxillin, as well as me-

chanical linkers such as talin, vinculin and a-actinin [3, 20].

stable adhesions

Figure 1.2: Illustration of the maturation of nascent adhesions via clus-
tering of membrane integrins and recruitment of linker pro-
teins into more stable complexes. Some of the major molecular
players involved in linking the cytoskeleton to the extracellular
matriz are the linkage proteins (integrin, a-actinin, talin, vin-
culin) and the signalling molecules (FAK, pazillin). Adapted
from [20].
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Moreover, these interactions evolve in space and time in a migrating cell:
adhesions assemble and disassemble in response to extracellular cues, and
mature as the actin-ECM bond is strengthened. Recycled or newly synthe-
sized integrins are inserted into the membrane at the leading edge, where
they can form bonds with the substratum ECM ligands in what are called
“nascent adhesions” [20] (see Figure 1.2). As the cell crawls over them, the
nascent adhesions start to mature and grow by recruiting additional molec-
ular components. They can also disassemble to recycle components to newly
formed nascent adhesions at the cell’s leading edge [21]. The molecular mech-
anisms of maturation or disassembly of adhesion complexes are still unclear,
but involve signalling from adhesion related molecules such as FAK, paxillin,
Src and others [20]. Adhesions that have matured will also eventually disas-
semble at the rear of the migrating cell, as ripping release and detachment

of the membrane occur [22].

This asymmetry at the molecular level, whereby different proteins are
found at distinct locations in the cell body to serve different purposes, posits
several questions. How does the cell regulate such asymmetry, and by what
mechanisms does it replenish components at the leading edge? What is the
order of assembly? Is the transport of components due to Brownian diffu-
sion, anomalous diffusion (i.e. diffusion with obstacles or confined diffusion,
see Figure 1.3) or directed transport (e.g. by myosin motors along actin
filaments)? One important problem here is characterizing the motion and
interactions of membrane proteins, extra cellular matrix components and in-

tra cellular messengers involved in the regulation of cell migration at the
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Figure 1.3: The original fluid mosaic model as envisaged by Singer et al.
[28]. The fluid lipid bilayer membrane is punctuated by inte-
gral membrane proteins which are randomly distributed but are
diffusively mobile and can aggregate. These can be obstacles to
free diffusion.

molecular level. The next section will describe the means and methods of

investigating these transport mechanisms.

1.4 Fluorescence Imaging

Optical microscopies, and fluorescence microscopy in particular, have been
among the most important techniques developed for in vivo studies of living
cells. Fluorescent probes are amazingly useful for biological research, because
they allow the study of the inner workings of cells with single molecule de-
tection sensitivity and high specificity. The trick is to attach the fluorescent
label to the macromolecule you are interested in studying. Researchers have
developed several ways to fluorescently label macromolecules for live or fixed

cell imaging including many types of fluorescent organic dyes that can be



1.4 Fluorescence Imaging

attached to antibodies for tagging purposes. More recently developed ap-
proaches use fluorescent probes that are either naturally fluorescent proteins

or semi-conductor nanocrystals (quantum dots) [24, 25].

Figure 1.4: Stereoview of the structure of green fluorescent protein (GFP)
[26]. Shown as arrows are 11 antiparallel §-strands which form
the beta-can. Inside this beta-structure there is an alpha-heliz
(curly ribbon), in the middle of which is the chromophore (de-
tailed ball and stick molecular structure). GFP is roughly 4x3
nm (Lx W) in size.

1.4.1 Fluorescent proteins

There are several kinds of naturally fluorescent proteins that are used to label
macromolecules, each with its own absorption and emission spectra, quan-
tum yield and fluorescence lifetimes. The most commonly used naturally
fluorescent protein is the green fluorescent protein (GFP, see Figure.l.4).

GFP is naturally found in a jellyfish (Aequorea victoria [27]) that lives in
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the cold waters of the Pacific off Washington state. The jellyfish contains a
bioluminescent protein, aequorin, that emits blue light. The green fluores-
cent protein converts this light to green light, which is what we actually see
when the jellyfish lights up. The cloning of the gene that encodes GFP was a
breakthrough for live cell imaging because it became possible to genetically
splice the GFP codon within the genetic codes for other proteins [28] and
thus have the cell synthesize the protein of interest with an attached GFP
fluorescent marker (see next paragraph). Since its discovery, many mutants
of GFP have been created that fluoresce at different wavelengths including

the yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) [29].

% endocytosis

endosome

plasmid
DNA vector
& #
/ N
: o DNA-lipid released DNA
complex

o

¢ /

lipid cell membrane
vesicle

Figure 1.5: Transfection of a plasmid in a mammalian cell. The plasmid
DNA wector is placed inside a lipid vesicle, which is in turn
fuses with the cell membrane and is taken into the cell by endo-
cytosis. The endosomes are eventually degraded in the cell and
the DNA can now be used by the replication and transcription
machinery in the nucleus to express the protein of interest.
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To attach these fluorescent proteins to the molecule of interest, i.e. to
splice the fluorescent protein codon into the genetic code of another protein,
the genetic technique of choice is called transfection [30]. Transfection in-
volves cellular insertion of a DNA plasmid (essentially a circular loop of DNA)
that carries the genetic code for the protein of interest immediately followed
by the genetic code for the fluorescent protein (see Figure.1.5). Hence when
this new DNA is incorporated into the nucleus of the cell and the cell starts
its transcription, it will produce the native protein fused to the fluorescent
protein, effectively generating a protein with a built in fluorescent tag. Ad-
vantages of this method include the fact that it is the cellular machinery that
does all the work in expressing the fluorescent probe, which eliminates the
need for extrinsic labeling steps. Additionally, any kind of protein (internal
or transmembrane) can be labeled in this way, but control experiments need
to be carried out in order to determine if the natural function of the labeled

protein is unaffected by the attached fluorescent protein.

However, organic dyes and GFP also have a few drawbacks. They are
susceptible to photobleaching and can only undergo a finite number of exci-
tation/emission cycles [31]. This means that a single GFP cannot be observed
for more than a few tens of seconds when imaged with a light microscope
under typical imaging settings (however this depends heavily on laser power
and the chemical environment [32]). After a certain number of cycles, the
fluorescent molecules undergo irreversible photobleaching, thus entering a
dark state (a non-fluorescent state) [33]. Moreover, organic dyes often have
broad absorption or emission spectra, making it difficult to excite a single

dye if you have several fluorescent markers present in the cell, or making it
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difficult to separate the emission signal from two different dyes when their
spectra overlap [34]. The next section deals with a potential solution to these

problems.

1.4.2 Semiconductor Nanocrystals

Semiconductor nanocrystals, more commonly called quantum dots (QDs),
have emerged as an interesting alternative to classical fluorescent probes
[35]. They are (usually) spherically-shaped, nanometer-sized semiconductor
nanocrystals. The optical properties of QDs are dramatically different than
the bulk material because at the nanometer size scale, the QD behaves like a
potential well that confines electrons in three dimensions to a region on the
order of the electrons’ de Broglie wavelength in size [36]. An electron-hole
pair can be excited in the core of a quantum dot by photon absorption and
when they recombine, they emit light (fluoresce). The fluorescence emission
spectrum is narrow and symmetric and the wavelength depends directly on
the size of the crystal: the larger the QD, the longer the wavelength of the
emitted light [37]. As the dots shrink in size, the emitted light becomes

shorter in wavelength, moving toward the blue.

The main advantage of quantum dots is their photostability, which means
that they do not undergo irreversible photobleaching when illuminated with
laser light (at reasonable laser powers), in contrast to organic dyes and GFP
[38]. Single dots have been observed for times of up to several hours [39] and
they have a low cytotoxicity (most reports do not find effects on cell viability,
morphology, function, or development over the duration of the experiments).

However they also have a main drawback: quantum dots exhibit fluorescence
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intermittency [40]. This on and off “blinking” phenomenon can significantly
impair the ability to track single quantum dots over extended periods of time.
The characteristics of the blinking vary significantly depending on the envi-
ronment of the quantum dot, and recent studies have shown that blinking is
not strong in live cell experiments [35] but can severely affect any intensity

fluctuation analysis [41].

Semiconductor quantum dots have to be chemically functionalized in or-
der to make them hydrophilic [42], and they have to be attached to the protein
of interest with a linker group. Labeling proteins with a linker requires the
given protein to have a specific site where the linker can be attached. Usu-
ally this consists of a sequence of amino acids that is native to the protein or
has been genetically modified to be recognized by a part of the linker. The
most commonly used linker is the biotin-streptavidin complex. These pro-
teins form one of the strongest non-covalent binding complexes that exists
in biology, with a dissociation constant of 107*-107!% M and a very high
interaction specificity [43] . There are specific amino acid sequences to which
biotin can be attached (lysine residues) [44], and several fluorescent probes

are commercially available with streptavidin linkers.

The main disadvantage of labeling proteins with either a co-expressed
fluorescent protein or a linked fluorophore are steric effects (see, for example,
[45]). Tt is not always known to what extent the attached protein will affect
the structure of the native protein or its dynamics. If the labeled protein
retains its normal activity levels in the cell (which can be checked by various

control experiments to assess the functional role of the protein) then it is
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assumed that the label has minimal effect on the natural function. An open
question is whether the label perturbs the transport and activity of the pro-
tein because the GFP or QD label is usually of comparable size with protein
of interest [46]. As such, one can wonder if the observed dynamics are really
the native ones or are perturbed due to the size of the fluorescent label on
the protein. It is commonly assumed that the dynamics are not affected, for
membrane proteins, because the viscous lipid bilayer is thought to be the
primary determinant for diffusion rate while the fluorescent label is usually
located on parts of the protein outside of the membrane exposed to the less

viscous aqueous medium [47, 48].

1.5 Current Image Analysis Methods

Fluorescence imaging allows for direct observation of proteins in their native
environment, from qualitative observations of protein localization in the cell
to precise tracking of single molecules [49]. By attaching a fluorescent probe
to a protein of interest and imaging it via fluorescence microscopy, one can lo-
calize in space and follow in time the behavior of the labeled macromolecule.
Subsequent data acquisition can take the form of intensity trace collection
at a single point in the sample [50], or two- or three-dimensional imaging of

the sample to generate an (x,y,t) or (x,y,z,t) image time series [51, 52].

There are several methods that are currently used to measure low magni-
tudes and/or directions within various systems that have been developed in
different fields of study, ranging from physics to computer vision. They are

all based on acquisition of a time series of images and subsequent application
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of different algorithms for flow or motion analysis. These methods have many
interesting biological applications, however they are not all applicable to the

biological situations that we are interested in as explained below.

1.5.1 Fluorescence Recovery After Photobleaching

Fluorescence Recovery After Photobleaching, or FRAP, is a live cell fluo-
rescence microscopy based technique used to study the mobility of tagged
molecules which was introduced in its early forms in the 1970s [53]. It relies
on using a focused laser beam to irreversibly photobleach a population of
fluorophores in the target region of a cell via a pulse of high-intensity laser
light (see Figure 1.6). The target region will appear black as compared to
its surroundings, in which the fluorescent molecules have not been bleached.
The intensity of the laser is reduced and the sample is imaged as a function
of time after bleaching. Diffusion or directed transport of unbleached pro-
teins into the bleach spot leads to an increase in the average fluorescence
intensity. By monitoring the recovery of fluorescence in the bleached region
and fitting the associated recovery curves to a known analytical form, it is
possible to extract diffusion coefficients and immobile protein fraction from
FRAP data [54]. The diffusion coefficient is estimated from the rate of recov-
ery of intensity, and the immobile fraction is estimated from a comparison of
the prebleach intensity level to the final level of the intensity after recovery
(if some of the bleached molecules were immobile, their intensity loss will

never be recovered).

However, it has been shown that in non-ideal situations, such as confined

diffusion of the labeled proteins, FRAP can severely overestimate the immo-
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Figure 1.6: Simulation of a FRAP experiment with two populations: the
first population has a density of 20 particles/um? and a dif-
fusion coefficient of 0.02 um?/s, the second population has a
density of 10 particles/um? and is tmmobile. A) Image time
series with the bleached region in the middle and subsequent re-
covery of fluorescence. B) Intensity of the bleached region as a
function of time, relative to the initial intensity (before bleach).
As expected only the mobile fraction contributes to the intensity
recovery (here 2/8 of the population was mobile).

bile fraction and underestimate the diffusion coefficient [55]. FRAP is also
insensitive to flow direction: although directional transport into the bleached

region will affect the rate of fluorescence recovery, it is not possible to know

from which direction these new fluorescent particles entered the bleach re-
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gion since FRAP only looks at the overall intensity recovery. It is thus not

possible to determine the flow direction using FRAP measurements.

1.5.2 Single Particle Tracking

Single Particle Tracking (SPT) experiments are well-suited to the noninvasive
study of membrane protein transport [56]. In SPT experiments, the position
of a single labeled protein is followed by optical imaging as it moves within
the membrane. The position is determined by centroid fitting of the image
fluorescence intensity peak for the particle and this can be accomplished
with a precision on the order of 10’s of nanometers. If the motion of the
probe is unhindered, the spatial trajectory of the molecule will be described
accurately using a two-dimensional model for Brownian motion [57]. The
two dimensional random diffusion model predicts that the mean squared

displacement (MSD) increases linearly with time:

<r*>=4xDxt (1.1)

where r is displacement, D is the diffusion coefficient of the molecule and t is
the time [56, 58] (see Figure 1.7). If the membrane macromolecule encounters
a structure that in some way inhibits its free diffusion (see Figure 1.3), then
the trajectory will deviate from a random walk. Confined diffusion is usually
reflected in the MSD versus time plot as a plateau [59]. At small times, the
diffusion looks Brownian because the particle hasn’t encountered the bound-
ary of its confinement region and the MSD curve is linear. At longer times

however, the particle will not exit this confinement region, which puts an
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Figure 1.7: Simulation of two SPT experiment A) one particle freely dif-
fusing at 0.01 um?/s and B) one particle undergoing diffusion
at 0.01 um?/s but in a confined circular region of radius 0.5
pm. C) corresponding Mean Squared Displacement versus time
plots for the two trajectories in A (open squares) and B (open
circles). Notice the plateau of the second MSD indicative of
confinement.

upper bound on the possible mean squared displacement (and hence leads to

a plateau).
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Single particle tracking analysis will, in principle, provide much informa-
tion about the range of transport [56]. This technique has true single molecule
sensitivity, and can reveal very precise information of the dynamics at spe-
cific locations within the cell, e.g. confined lateral diffusion of membrane
receptors studied by ultra-high temporal resolution single particle tracking
(40,000 images per second) using 40 nm colloidal gold labels [47]. However,
it can be difficult to track single proteins via fluorescence imaging due to the
low signal/noise in live cells and due to the high density of expression of GFP
proteins typical for transfected cells which prevents resolution of individual
labeled particles. An exception to this will be presented below in section

1.5.4.

1.5.3 Optical Flow

In computer vision, one of the challenges is for the machine to analyze a
sequence of images and determine if something is moving in its field of view.
The definition of optical flow is “the distribution of apparent velocities of
movement of brightness patterns in an image” [60]. This technique has had
significant impact in environmental sciences such as oceanography, meteorol-
ogy and climatology where it has been used to track pollutant or ice flows
[61, 62]. In medicine, tomography sequences have been used to monitor blood

flow in which vortices can indicate pathologies [63].

In all cases, the optical flow technique relies on pattern similitude scoring
using a penalty function [64]. In essence, the optical flow method recognizes
an intensity pattern in a specific region of an image, and looks for a repetition

of that pattern in the following image, in the neighborhood of the region
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where the original pattern was found. The optical flow algorithm uses an
“optical flow constraint equation” which is equivalent to a conservation of

mass equation for intensity:

é—szE‘-v—l—%—sz (1.2)
where E is the brightness as a function of time and space, and v is the velocity
of the imaged flow field. This equation basically states that the intensity of
a spot is roughly conserved over small time steps (small displacements): it
simply insists on identity of intensities between corresponding image elements
across time. In practice, to allow for imperfect data, strict enforcement of
the continuity constraint is replaced with minimization of a cost function c;:

2
cp = (VE-U—I—%—?) (1.3)

with respect to v over an image domain of interest. Since the image is two
dimensional we need an extra equation to find the two velocity components
vy and vy,. This additional constraint is to encourage smoothness of the
recovered flow, and can be captured by minimizing the spatial variation of

the flow via [65]:

o= (32) + (5) + () + (3) (19

For every pixel, a velocity vector is found which contains the information

on how quickly an intensity pattern around that pixel is moving and its
direction. However, this technique has two major flaws when applied to

analyzing fluorescence image sequences. First, there is usually a lack of
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definite features in fluorescence images of cells, which is an important factor
for the optical flow method to work properly. The technique requires much
higher local contrast in the patterns than is typical in fluorescence microscopy
images of live cells. Second, the presence of a diffusive and an immobile
component, and the absence of a clearly resolvable flow from one image to
the next in typical fluorescence image series make the mapping of intensities

from one frame to the next difficult using this method.

1.5.4 Fluorescent Speckle Microscopy

One of the most successful methods for mapping the velocities of labeled pro-
teins in living cells is Fluorescent Speckle Microscopy (FSM). This method
relies on microscopic tracking of single fluorescent speckles caused by the
random insertion of fluorescent actin (or tubulin) monomers in an otherwise
non-fluorescent actin (or tubulin) rod [66, 67]. The actin stress fibers can
slip from their attachments and undergo retrograde flow away from the lead-
ing edge [68] because of the action of the myosin motors that pull on the
cytoskeleton in an attempt to move the cell body forward. The density of
labeled actin monomers is so low in FSM experiments that there are only a
few labeled monomers in a single actin rod. Thus speckles appear along the
actin filaments, and these speckles can be tracked to reveal the retrograde

flow of the rod using computationally intensive tracking algorithms [67].

This technique generates a massive amount of information because of the
large number of speckles tracked. FSM has been applied in its early stages for
mapping simple retrograde flow of actin [66]. Algorithmic advances in speckle

image processing allowed mapping of antiparallel flows of microtubule speck-
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les in the mitotic spindle from Xenopus leavis egg extracts [67]. FSM was
also used to reveal the existence of two coexisting actin networks at the lead-
ing edge of the cell with different kinetic, kinematic and molecular signatures
[69]. More recently, a sub-micrometer resolution version of the technique has
been used to measure actin turnover in lamellipodia and lamellae of migrat-
ing cells, demonstrating that the dominant feature in their turnover was a
spatially random pattern of periodic polymerization and depolymerization

moving with the retrograde flow [70].

FSM has proven to be a useful tool in mapping actin and microtubule
dynamics, however it is limited to these two types of proteins because of their
structure (rods composed of smaller subunits that can generate speckles).
Moreover, it requires fluorescent actin or tubulin speckles to be generated in
vivo by specialized labeling techniques. The FSM method can be perturbed
by immobile and diffusive components which makes it applicable only in
the cases where the flow is clearly distinguishable in the image series, i.e.
when the vast majority of the protein population is lowing. Moreover, even
though the technique claims to have single molecule resolution since it follows
individual speckles, in practice one needs to average the calculated velocity
vectors over a certain spatial and temporal window in order to filter out the
noise. In essence, the FSM technique is well suited for actin or microtubule

studies, but does not extend beyond to map flows of other types of proteins.
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1.6 Spatio Temporal Image Correlation Spectroscopy

The object of this thesis is the development, implementation and application
of STICS. This new technique is intended to map velocity fields in a wide
range of settings, and specifically in cases where other methods would fail,
as outlined above. This new method is an extension of a class of fluctu-
ation based techniques called “correlation spectroscopy” that include fluo-
rescence correlation spectroscopy (FCS) [71, 72, 73] and image correlation
spectroscopy (ICS) [74, 51] which are discussed in more detail in the next
chapter. It also builds on some of the early pixel correlation ideas developed

in the computer vision field [75].

To understand the molecular mechanisms that regulate cell migration,
new techniques are necessary that can be applied in situ in living cells. The
STICS method was developed for this purpose. In this thesis, I will first
present the theoretical basis of STICS and new algorithms that were devel-
oped for filtering out the immobile component. Using computer simulations,
I will then characterize the detection limits of STICS in terms of several
important imaging parameters, such as signal to noise, number of frames
in the image time series and density of the protein population. I will also
investigate the limits of the immobile population filtering algorithms. Fol-
lowing this characterization will be a description of the various corrections
that have to be applied to in situ images. I will also discuss the control
measurements and how STICS and its cross correlation counterpart, Spatio
Temporal Image Cross-Correlation Spectroscopy (STICCS), can be applied

to measure dynamics in living cells. Finally, I will present the application of
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the technique to two very different biological problems of interest: the reg-
ulation of the cytoskeleton-ECM linkage, and the problem of detecting and

measuring fluid flow inside migrating cells.
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2 Theory

2.1 Introduction

In its widest sense, science can be categorized into layers where the principles
discovered in one layer become the foundation for the next layer above. From
the physical understanding of the quantum world of atoms, to the chemistry
of molecules, to the microbiological studies of cells, to the physiology of
the human body, every level gains from the broadening of its foundations.
However, this view emphasizes the strong interconnectedness within a field
and neglects the relatively few but important links between fields. Physics
has broadened its base for decades now by expanding into non-traditional
fields. Biophysics has emerged as an expanding domain of research that
spans many orders in space and time ranging from the submolecular (pro-
tein conformation and folding) to cellular dynamics and interactions between
cells and within tissue. A common theme, be it theoretical or experimental
biophysics, is to achieve a quantitative understanding of the complex mech-
anisms that govern biological systems. Many techniques have been invented
or adapted to meet the need for quantitative information, and many new
questions require the development of novel quantitative methods for assess-

ing biophysical processes.

The theory presented in this chapter provides the underpinnings for the
subject of this thesis: spatio-temporal image correlation spectroscopy (STICS).
After an introduction of basic fluorescence and microscopy imaging systems,
I will provide an overview of image correlation spectroscopy (ICS). ICS is a

fluctuation based technique that is classified as part of a broader category
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of concentration correlation spectroscopy methods, such as fluorescence cor-
relation spectroscopy (FCS) [72, 76] or scanning FCS (S-FCS) [77]. I will
then introduce the spatio temporal extension of ICS (STICS), which relies
on a complete correlation of the spatial and temporal fluorescence fluctua-
tions contained in fluorescence microscopy image time series and can be used
for velocity mapping of proteins in cells. I will also discuss a new filtering
algorithm for image series that uses filtering in Fourier space to remove the
contribution of an immobile or slowly moving protein population from the

correlation analysis.

2.2 Fluorescence and Jablonski Energy Diagrams

To understand the principles of fluorescence imaging, it is important to first
understand the fluorescence phenomenon. Much like the excited states of
an atom, fluorescence can be explained via a Jabloniski energy diagram for
the molecule where different energy states for the electrons in the system are
arranged according to their energy like rungs of a ladder [78].

The fluorescence excitation-emission process is illustrated in Figure 2.1.
Initially the molecule is in the singlet ground state Sg, and upon excitation
an electron can be promoted to an excited singlet state S;. The excitation
source we are concerned with is light, and the energy needed to jump to an
excited state is absorbed quantally either in a single photon [79] (one pho-
ton absorption) or with two or more photons (N-photon absorption) whose
energy quanta sum to equal the difference in energy between the ground and
excited states [80]. Two-photon absorption is a non linear effect produced

by the quasi-simultaneous absorption of two excitation photons of exactly
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Figure 2.1: Jabloniski Diagram. Sy is the electronic ground state, S is the
excited singlet state, bars 0,1,2,8,4 represent vibrational energy
levels in each electronic energy level.

half the energy of an allowed transition [80]. One needs to tightly focus ultra
short pulsed lasers in order for the density of photons to be high enough to
achieve non-linear excitation. After the rapid (~ fs) absorption event, the
fluorophore is usually in a high vibrational level of the first excited singlet
state, which quickly (~ ps) decays to the lowest excited singlet state vibra-
tional energy level through non-radiative decay in a process called internal

conversion.

The fluorescence photon is emitted when the molecule drops from the
lowest vibrational excited singlet state energy level back to the ground state.
The lifetime of the excited state in this level is orders of magnitude longer
(~ ns) than the internal conversion step and if the electron decays back to
the ground state from this level, a photon will be emitted by fluorescence

emission. Due to the internal conversion, energy is lost so the fluorescence
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Figure 2.2: Aleza family dye spectra adapted from [81]. Notice for example
that the Alexa488 dye, which has a characteristic spectrum close
to that of GFP, absorbs light around 488nm and emaits around
520nm.

photon is red-shifted when compared to the (total) excitation energy (see
Figure 2.2). This shift in the emission wavelength, called the Stokes shift, is
essential for fluorescence microscopy. The greater the Stokes shift, the easier
it is to separate the excitation light from the emitted light. This separation
is the basis of the sensitivity of fluorescence microscopy. Since the light
intensity required to excite the molecules is much greater than the emitted
light intensity, filters are needed to efficiently block out the excitation light

and detect the weaker fluorescence emission.

2.3 Fluorescence Microscopy
2.3.1 General Microscope Instrumentation

The optical microscope is the basic instrument used to image fluorescent

molecules within cells (see Figure 2.3). Multiple laser lines are combined and



2.3 Fluorescence Microscopy

29

EPI ILLUMINATION

<
& o
e ==t
M2 LASER
V Aexl 1 /
OBJECTIVE ﬂ/ ,; -
. LASER
TIRM Mz |
ILLUMINATION "
DM2 \\ ’
L DM3 -
‘ ‘ CCD 1
PINHOLE ‘ e .. <
(confocal) ¥ [y Z
e GG D 2
\\
M3

Figure 2.3:

Schematic drawing of a fluorescence microscope used for imag-
ing of fluorescently labeled molecules. Multiple laser lines can
be combined through a first dichroic mirror (DM1). Aligning
the illumination to the appropriate angle for wide field, laser
scanning or total internal reflection microscopy is accomplished
by translating a single mirror (M1). A second dichroic mirror
(DM2) introduces the laser into the objective lens while allow-
ing the emitted fluorescence to pass through. In the confocal
scheme, a pinhole is needed to filter out of focus light (see sec-
tion 2.3.8). The fluorescence is split in two (or more) channels
using a dichroic mirror (DM3) and is detected by CCD cameras
(or other light detectors such as photo multiplier tubes (PMTs))
through appropriate emission filters.

focused on the sample through the microscope objective lens. The fluores-

cence photon

s are emitted into a solid angle of 47 (all directions in space)

and a fraction are collected back through the same objective lens, and split

by wavelengt

detectors for

h through an emission dichroic filter and focused on different

multiple channel (wavelength) imaging. The sample is placed
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on a stage above the objective lens (for an inverted microscope scheme, as
illustrated in Figure 2.3), and coupled to the objective through an index
matching medium (immersion oil, water, air). The focus is adjusted man-
ually by controlling the height of the objective relative to the sample. The
excitation laser beam can be expanded to just overfill the back aperture of the
objective lens for point illumination (diffraction limited focus in the absence
of abberations) in epi-fluorescence or laser scanning microscopy (confocal or
multiphoton). Or the laser may underfill the back aperture of the objective
lens and enter at the edge of the aperture (see Figure 2.3) for total internal
reflection microscopy; this generates an evanescent field at the interface with

the objective, which excites the fluorophores.

2.3.2 Wide Field Fluorescence

Wide field microscopy is the simplest implementation of the light microscope
for biological fluorescence imaging [82]. The excitation light is usually pro-
vided by a mercury lamp, which can deliver a broad range of frequencies at
high intensity, from which the desired wavelength is selected by using filters.
The light is focused through the microscope objective lens and creates a focal
plane where the excitation intensity is higher than the surroundings. Fluo-
rescence emission is collected through the same objective and directed to an

eye piece for viewing, or a camera for digital capture (see Figure 2.4).

The optical spatial resolution of this system is dictated by the wavelength

of light () via diffraction effects and by the numerical aperture (NA, see Eq.
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Figure 2.4: [llustration of the object plane in wide field microscopy. The
solid arrow is 1maged directly on the camera detector, while
the dashed arrow s imaged in front of the camera image plane
therefore it appears out of focus in the collected image.

2.3 for definition) of the objective lens, following [83]:

1.22)\

TNA (2.1)

lateral (x,y) resolution = 5

Equation 2.1 indicates that such a system is theoretically able to resolve be-
tween two objects separated by as little as 200 nm (A =~ 535 nm, NA= 1.45).
Note that Equation 2.1 is appropriate for wide field microscopy and is based
upon a number of factors that account for the behavior of objectives and
condenser lenses, and should not be considered an absolute value due to one
general physical law. In some instances, such as confocal and fluorescence
microscopy, the resolution may actually exceed the limits set by this equa-
tion. Other factors, such as low specimen contrast, aberrations, improper
illumination and beam alignment may serve to lower resolution and, more

often than not, the diffraction limited value of the resolution (about 200nm
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as mentioned above) is not realized in practice.

Fluorescence microscopy is very useful for biological applications because
it can be applied to living samples, and fluorescence detection is very sen-
sitive. However, one factor severely limits the applications of wide field mi-
croscopy in biology: the “out-of-focus” light coming from every plane in the
sample strongly contributes to background noise and leads to blurring of the
image. If the fluorescence staining is confined to a small region (for example
a cellular organelle, like the Golgi apparatus) and the background noise is re-
duced to a minimum then wide field microscopy can produce quality images.
In most experimental applications, however, a confinement of the light from
a single focal plane (rather than a confinement of the labeling) is desired. A

solution to this problem is presented in the next section.

2.3.3 Laser scanning microscopy

Microscopy systems used to image low quantum efficiency fluorescent probes
in a high density environment need to satisfy a few requirements: i) they re-
quire good spatial and temporal resolution, ii) they need to collect the signal
from a single plane and efficiently reject the background from outside the
focal plane (optical sectioning) and iii) they should not perturb the living
system (i.e. be non-invasive). A laser scanning microscope can satisfy all
these requirements to varying degrees in two different forms: the confocal

microscope and the two-photon microscope.

Early laser scanning microscopes were based on specimen scanning [84,

85]. The main advantage of this method is that the beam path is fixed, en-
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detector

Figure 2.5: Principal light pathway in confocal microscopy. The emitted
light 1s filtered by the pinhole in the image plane: out-of-focus
light is blocked by the pinhole because it is not focused at the
image plane.

suring proper illumination of the sample at all times. However, the drawback
is that the scanning rates are slow (10-150 lines per second) so that the range
of dynamic processes that can be imaged is limited. More recent commercial
systems use scanning of the laser beam rather than the specimen which al-
lows for much faster scanning (500 lines per second). Since the laser beam is
scanned before entering the objective lens, the scan mirrors have to be placed
in a conjugate plane to the back aperture plane of the objective lens [86]. In
a typical laser scanning microscope, the fluorescence signal is collected in the
backscattered direction, allowing the fluorescence to be “de-scanned” by the

scanning mirrors and imaged onto a stationary detector.

The confocal laser scanning microscope (CLSM) (see Figures 2.3 and 2.5)
has several advantages over conventional wide-field microscopy, namely the
ability to control depth of field, elimination or reduction of background flu-

orescence originating outside of the focal plane, and the capability to collect
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serial optical sections from thick specimens. The term “confocal” refers to
the spatial filtering of the backscattered fluorescence signal by use of a pin-
hole placed in the confocal image plane [86], which filters light originating
from planes above and below the focal plane of interest (see Figure 2.5).
This allows optical sectioning of thin (0.5-1.5pm) slices through a biological
sample, since fluorescence is effectively collected only from a small illumina-
tion volume (see Figure 2.7A) defined by the spatial extent of the confocal
point spread function (PSF). Due to diffraction effects, the laser light passing
through the excitation pinhole is not focused to a point, but rather a three di-
mensional intensity distribution: the excitation PSF. Likewise, the collected
fluorescence light is also imaged as a three dimensional distribution on the
detection pinhole: the detection PSF. Both PSFs have the same shape but
differ in size because of the different objective lens responses to the excita-
tion and emission wavelengths [83]. The PSF characterizes the resolution of
the imaging system, since a point emitter (sub diffraction limit size emitter)
maps as a PSF in the image space due to diffraction. In the focal plane, the
diffraction pattern is proportional to the first order Bessel function of the
first kind, which can be well approximated by a Gaussian [83]. Although the
instrument is limited by the number of available wavelengths from conven-
tional laser sources, by the transmission properties of the built-in optics and
by the range of laser intensities that can be safely delivered to live cells, it

remains the tool of choice for producing high quality images of living samples.

The two-photon microscope [87] also has optical sectioning capability but
relies on a completely different principle to achieve this [80]. Long wavelength

(IR), high intensity, femtosecond laser pulses are focused within the sample
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and the excitation of the fluorophore is achieved via two-photon absorption
as discussed in section 2.2. Such an event can only take place when the
intensity is high enough so that there is a significant probability of simul-
taneous absorption of two photons by the fluorophore. This occurs only in
a small region in the vicinity of the focus. Although the effective PSF for
two-photon absorption is slightly larger than the confocal PSF it has the
definite advantage that outside of this volume, none of the fluorophores are
excited. This entails less photobleaching of the out-of-focus dyes and less
photodamage to the sample. Two-photon microscopy thus presents inherent
optical sectioning without the use of a pinhole and can be better suited to
live sample imaging, but requires expensive pulsed lasers and can have lower

signal to noise as compared to regular confocal microscopy.

2.3.4 Total Internal Reflection Microscopy

Total Internal Reflection Microscopy (TIRM) is an evanescent wave based
technique used to locally excite fluorescence from a sample located within a
few hundred nanometers of the boundary interface surface [88, 89]. It uses
the optical phenomenon known as total internal reflection: when light strikes
an interface going from a high refractive index medium to a low refractive
index medium at an angle greater than the critical angle 8., it undergoes

total internal reflection (see figure 2.6). The critical angle is given by [88]:

0. = sin~(ny/n1) (2.2)

where n, (ng) is the refractive index of the first (second) medium, and n; > ns.

In the second, lower refractive index medium there is still a propagation of
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the electric field in the boundary layer (parallel to the interface) called the
“evanescent wave”, but this boundary wave decays exponentially in the z
direction. If a laser beam is totally internally reflected from inside the ob-
jective and off the glass coverslip interface, it is possible for the evanescent
wave to excite fluorescent molecules within ~100 nm of this surface. The ex-
cited fluorescence is collected back through the same objective lens, through

standard dichroics and emission filters.

A) n,: high refractive index B) C)

f|uor°ph°reEevanescent boundary
e layer

n,: low refractive index

Figure 2.6: Total Internal Reflection Microscopy. A) The laser beam
(shown as a thick arrow) strikes the interface between the high
and low refractive index media at an angle greater than or equal
to the critical angle 0.. An exponentially decaying evanescent
wave, which can be used to excite fluorescent molecules in the
low index medium that are close (~100 nm) to the boundary,
is created. B) experimental setup for prism-based TIRM. C)
experimental setup for through-objective TIRM.

Total Internal Reflection Microscopy has the potential to generate im-
ages with single molecule sensitivity [90, 91, 92, 93]. There is much lower
background signal than in confocal or two-photon systems because the expo-
nentially decaying evanescent wave does not excite most of the fluorophores

in the bulk solution [89]. In vivo imaging using TIRM is also very useful
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for studies of the basolateral (bottom) membrane of the cell, where macro-
molecular adhesion complexes form within two dimensional tissue cultured
cells. Since this membrane is only about 5 nm thick and located near the
coverslip boundary, it is completely immersed in the evanescent field, as are
all the transmembrane proteins and their molecular partners. This technique
is thus very useful for imaging of adhesion related proteins, since the fluores-
cently labeled adhesion molecules are present both in adhesions at the cell
membrane, but also as unbound entities in the cytosol within the cell. This
allows for very high signal to noise imaging of the adhesions, with minimal

contribution from cytosolic background.

There are several experimental geometries used to achieve TIRM near
a dielectric interface in wide-field microscopy [89, 94]. Prism-based and
through-objective TIRM (see Figure 2.6) have been used extensively and
they each have their own advantages [89]. Experiments in which the total
number of photons is of importance should employ a near wall geometry
(such as through-objective TIRM) and experiments which require a rapid
measurement with good signal to noise, as single molecule measurements do,
should use a far wall geometry (such as prism-based TIRM) [95]. In the
case of slow adhesion related protein motion, the signal-to-noise and photon

collection are of importance, so we used the through objective configuration.

The collection efficiency of the objective in through-objective TIRM is

characterized by the numerical aperture (NA):

NA =n x sin(f) (2.3)
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where n is the index of refraction of the medium and 6 is the half angle of
light collection. The NA, usually 1.2-1.45 for high numerical aperture objec-
tive lenses, is a measure of how wide a cone of light the objective can gather:
the greater the NA, the wider the cone of light and the greater the resolution
of the lens. Hence a larger NA objective is desirable to permit a greater
angle of incidence for the laser in through-objective TIRM. For example, the
refractive index of the aqueous medium is usually about 1.33 to 1.38, while
the refractive index of glass is 1.52. Thus for an objective built from glass,
in order to have incoming illumination at an angle greater than the critical
angle, we need to have nisin(6) > ns (see Eq. 2.2), thus one needs the NA
> 1.35 in order to achieve through objective evanescent illumination. There
are 1.65 NA objectives available on the market but they require the use of
toxic immersion oils and costly high refractive index glass such as sapphire.
A 1.45 NA objective can be used with regular glass and immersion oil so it

is an optimal lens for TIRM.

There is no scanning involved in TIRM. The whole field of view is il-
luminated with the evanescent wave and this area is imaged using a cooled
charged coupled device (CCD) camera. Hence there is no illumination volume
per se as in confocal or two-photon microscopy. However, it is not possible
to surpass the diffraction limit as there is still collection of the fluorescence
emission through the collection optics (the objective lens), which means that
a point emitter will still transform to a PSF-sized spot in the image. The
advantage of TIRM, in addition to the narrow depth of field at the interface,

is that modern cooled CCD cameras permit very short acquisition times, on
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the order of 50 ms per image (~10 ms or faster for some cameras) compared
to the ~1 Hz imaging rate for standard LSMs. This allows the study of faster
dynamic processes in the basolateral membrane of the cells and at the inside

interface with the membrane.
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Figure 2.7: Schematic diagram of the fluorescence correlation spectroscopy
method. A) In either case, the fluorescence intensity is col-
lected only from a small region (focal volume). Fluorescence
fluctuations arise from either the molecules entering or exiting
of the volume (kinematics) and/or chemical reactions affecting
the fluorescence intensity (kinetics). B) The intensity can be
collected in time from a single point, and the autocorrelation
Sfunction of the intensity fluctuation time series reflects the dy-
namics of the system.
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2.4 Fluorescence Correlation Spectroscopy

The technique of Fluorescence Correlation Spectroscopy (FCS) was devel-
oped in the early 1970s, at Cornell University [71]. Although originally im-
plemented by relatively few groups in the biophysical community, FCS really
blossomed in the 1990’s due to advances in electronics, computers, detectors,
lasers and especially due to the implementation of confocal optics for FCS
[96]. In essence, FCS looks at the temporal persistence of the fluorescence
intensity fluctuations collected from a small volume (<1 fL) defined by the
focus of a laser beam as fluorescent molecules move into and out of the focal
volume (see Figure 2.7A). Much information is contained in the magnitude
and characteristic time scale of the fluctuations including molecular concen-
tration and kinetics/kinematics. Qualitatively, this stems from the fact that
the higher the concentration, the more particles you will find in the small
observation volume and the smaller the relative intensity fluctuations will
be, since fluorescence emission is an extensive property of the system. The
transport dynamics, and possibly chemical reaction rates and/or photophys-
ical processes such as photobleaching (see section 4.2.1), are responsible for
the fluctuations in intensity as molecules enter and leave the laser focus,
changing the occupation number. The fluorescence intensity fluctuations are
recorded in a time series which is used to calculate a temporal autocorrelation
function (ACF) that can be fit with appropriate decay models to solve for
the transport properties (diffusion coefficient, flow speeds) if the dimensions
of the focal volume are known (see Figure 2.7B). The fit models are obtained
by solving the fluctuation ACF within the context of the appropriate trans-

port equation (e.g. diffusion law or flow with constant velocity) and laser
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excitation profiles.

The time scales involved in FCS are from the microsecond to the mil-
lisecond. The inherent rates at which data can be collected by modern photo
multiplier tubes (PMTSs) or avalanche photo diodes (APDs) make it possible
to probe reactions and dynamics happening on short time scales within cells.
However, the continuous illumination of the sample can entail photodamage
to the fluorescent dye or the protein under study, and may prevent extended
exposure times to study long scale dynamic processes. As well, the measure-
ment is localized to only one point in space. Moreover, FCS measurements of
dynamics on slow time scales can suffer from low signal to noise ratios, since
for a fluctuation measurement, this ratio depends on the square root of the
number of independent fluctuations sampled. Entities with slow transport
dynamics (e.g. membrane protein diffusion) will therefore not create enough
independent fluctuations over the time course of a typical FCS experiment
in a living cell. Several extensions of FCS have been developed to address
this problem [51, 77], and we will focus our attention on image correlation

spectroscopy.

2.5 Image Correlation Spectroscopy

Image correlation spectroscopy (ICS) was introduced a decade ago in Nils
Petersen’s laboratory at the University of Western Ontario (UWO). It was
initially developed as the imaging analog of FCS for measuring labeled pro-
tein surface densities and aggregation state [51]. Later, ICS was further

extended to the temporal domain by calculation of a temporal ACF from an
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LSM image time series [97]. The characteristic imaging rate of the LSM (~1
Hz) makes it possible to probe processes happening on the seconds to min-
utes time scales, which are characteristic of membrane protein dynamics. A
summary of the basic concepts behind ICS and its cross-correlation variant,
image cross-correlation spectroscopy (ICCS), will be provided in order to set
the stage for the introduction of the theory necessary for the spatio-temporal

image correlation spectroscopy (STICS) method.

2.5.1 Generalized Spatio-Temporal Correlation Function

ICS is based on the correlation of fluorescence intensity fluctuations measured
from an observation area defined by the diffraction limited focal spot of the
exciting laser beam in a LSM. The intensity fluctuations in fluorescence are
recorded in an image series as the laser beam is repeatedly rastered across
the sample. The image series can be thought of as a record of fluorescence
intensity in space and time (we consider only collection from a single fixed
plane in z): i(x,y,t). It is an easy matter to calculate the mean intensity of

the n* image:

N
(i)n = 'N_lj\Z > il k,n) (2.4)

7=0 k=0
where N and M are the spatial dimension (in pixels) of an image from the
time series. Spatial and temporal correlation is then applied to the image
time series. We define a generalized spatio-temporal intensity fluctuation
correlation function which is a function of spatial lag variables £ and n and

of a temporal lag variable 7 for detection channels a and b:

(6%a(z, y, 1)6in(z + &,y + 0.t + 7))
<ia>t <ib>t+'r

Tab(é.»na'r) = (25)
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where 0%q00) (2, ¥, ) = ta5)(Z, Y, t) — (ia(s))¢ is the intensity fluctuation in chan-
nel a(b) at pixel position (x,y) and time t, and the angular (brackets) in the
denominator represent spatial ensemble intensity averaging over images at
time t and t+7 in the time series, and the numerator is also an ensemble
average over all pixel fluctuations in pairs of images separated by a lag time
of 7. White noise sources contribute to the numerator only at zero lags
(temporal and spatial), whereas white noise does contribute to the average
intensities in the denominator. Correction methods dealing with white noise
and background correlation have been reported [97]. This discrete calcula-
tion of the correlation function can be fit with the appropriate models (see

sections below), and the zero lags amplitude value is not weighed in the fits.

2.5.2 Spatial Correlation and Cross-Correlation

ICS has traditionally treated the cases for spatial and temporal correlations
separately. The spatial correlation function rq(€,1,0) is defined by evaluating

Eq. 2.5 with zero time lag:

(01a(z, y, )din(z + &,y + 1, 1))
(1a)e(in)e

rab(€,m,0) = (2.6)

These functions are typically calculated by Fourier methods for each image

in the time series using:

_ FFT-YFFT(ig(z,y,n)) x FFT(is(x,y,n))*}
ab(&, 1 O)n = (ia@, 5, )) in (@, 9, 70))

2.7)

where r4(€,7,0), is the spatial correlation function of the n* images of the

image time series from channels a and b, FFT(~?) denotes the (inverse) Fast
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Fourier Transform and * denotes complex conjugation. The spatial correla-
tion functions are then fit to standard 2D Gaussian functions by nonlinear
least squares methods. This is due to the fact that a TEMy “Gaussian”
beam acts as the correlator in the LSM measurement [51, 97]. The Gaussian
fit function for the spatial correlation of the n** image is given as:

&+’

Tab(&, 1, 0)n = Gab(0, 0, O)nexp{ . } + Gooabn. (2-8)
Oab

(note in this fitting equation and those that follow, the fit parameters are
highlighted in bold type). The fit parameters are the zero-lags amplitude
9a(0,0,0),,, the e72 beam radius wee (the horizontal radius of the beam
focal spot), and the offset at long correlation lengths gooasn. For an ideal
system of non-interacting particles, the zero lag amplitude g,5(0,0,0), is
the square relative intensity fluctuation and is equal to the inverse of the
mean number of independent fluorescent particles in the correlation area
defined by the focus of the laser [51]. When a=b= 1 or 2, Eq. 2.6 defines
a spatial autocorrelation function for a single detection channel, and when
a=1 and b=2, Eq. 2.6 defines a spatial cross-correlation function between

two detection channels.

2.5.3 Temporal Correlation and Cross-Correlation

The temporal correlation function is given by evaluating the generalized cor-

relation function at zero spatial lags:

(0ig(z,y, 0)0ip(x,y, t + 7))
(ia>t<ib>t+’r

Tab(0,0,7) = (2.9)
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Its decay will essentially depend on the temporal persistence of the average
spatial correlation of intensity fluctuations between images in the time series
separated by a lag time of 7 as measured from an ensemble of focal spots
(correlation areas) within a sampled image area. The same relationships hold
for the a and b subscripts in defining temporal auto and cross-correlation

functions as was outlined above for the spatial case.

2.5.4 Decay Models for Correlation Functions

The rate and shape of the decay of the correlation functions will reflect
any dynamic process that contributes fluctuations on the time scale of the
measurement [72]. The actual decay models for fluorescence correlation will
depend on both the underlying dynamics of the fluctuating process and the
geometry of the laser focal spot (the point spread function) [98]. We consider
four separate functional forms that are analytical solutions for the general-
ized intensity fluctuation correlation function appropriate for specific cases
of 2D transport phenomena as measured within a membrane system illumi-

nated by a TEMgg laser beam with Gaussian transverse intensity profile:
2D Diffusion [72]:
; -1
re(0,0,7) = gas(0,0,0) (1 + T—) + Gooab (2.10)
d
2D Flow [99]:

2
velr
re(0,0,7) = gab(0,0,0)exp{ - (—l—Ji) } 4 Gooab (2.11)

<w0ab>
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2D Diffusion and Flow for a Single Population [99):

Td
9 —1
<w0ab> Td o8

2D Diffusion and Flow for Two Populations (i=1,2) [1]:

~1
Tab(()’ 0, T) = gab(oa 0, 0) (1 + i) X (2.12)

Td1

2
v T
gab(O,O,O)zexp{ - (M_) } + Gooab

-1
t
rap(0,0,7) = gab(0,0,0)1<1+—> + (2.13)

<w0ab>

The highlighted fit parameters are the zero-lags amplitude g,(0, 0, 0),, the
long correlation time offset g..qp, the characteristic diffusion decay time 74

and the mean speed of the particles |vy|:

Woab
Tf

Ivfl = (2.14)

where 77 is the characteristic flow time. The effective e7? beam radius is
calculated by averaging the individual wy,; obtained from fitting the spatial
correlation functions (Eq. 2.8) for every image in the time series. The best
fit characteristic diffusion time combined with the average beam radius allow

calculation of the diffusion coefficient:

<W0ab>2

De:z: =
P 4Td

(2.15)

Note that in Eq. 2.14, the mean speed |vs| is directionally blind (a velocity
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magnitude). Temporal ICS is not sensitive to the direction in which the
particles exit the observation area, because the basic analysis does not include
non zero spatial lags in combination with the temporal lags in the calculation

of the correlation function (see Eq. 2.9).

2.6 Space-Time Image Correlation Spectroscopy

The object of this thesis is to develop, characterize and apply a new ex-
tension of ICS and ICCS in order to obtain flow vectors, or essentially to
determine the direction in which the particles are exiting the correlation ar-
eas if directed flux is present. To achieve this, one must combine the spatial
information embedded in the two dimensional spatial correlations with the
time dependent transport measured by the temporal correlation. For this we

define a discrete approximation to the full space-time correlation function as:

N SUAC AL ACR SRR NE)

N5 L ARG (2.16)

T;b(gv m, S) =

where N is the total number of images in the time series. The function
!, represents the average cross correlation function for channels a and b,
for all pairs of images separated by a lag time of At=sdt (where s is the
discrete frame lag between pairs of images and dt is the sampling time per
frame). This generalized space-time correlation function can be considered
as a time series, where the individual frames are averaged two dimensional

spatial (cross-)correlation functions, and the time variable is actually the lag

time (At) between all image pairs for which the correlation was computed.
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Figure 2.8: Ezamples of calculated STICS correlation functions for simu-

lations of various transport dynamics behaviors. A) Diffusion
with D = 0.01 um?/s. B) Flow of |v| = 0.144 um/s with par-
ticles flowing in random directions. C) Flow of v, = —0.12
pm/s and vy, = 0.08 um/s. D) Combined one population dif-
fusion with D = 0.01 um?/s and flow of v, = —0.12 pm/s and
vy = 0.08 um/s. E) Two population, one with a diffusion coef-
ficient of 0.01 um?/s and the second with a flow of v, = —0.12
pm/s and vy, = 0.08um/s. Scale bar is 2 pm.

For an image time series collected using a LSM, 7/ (£, 7, 0) is the average

spatial autocorrelation function from each image (Eq. 2.6 averaged for each

image n in the series; see Figures 2.8 and 2.9). It will appear as a two di-

mensional Gaussian with peak value at (6=0, n=0) since the autocorrelation

of an image with itself always yields a maximum value at zero lags. Assum-

ing that the temporal resolution is sufficiently high for intensity fluctuations
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to be correlated between successive images, .(&,n, 1), 7,(§,7,2), are also
going to appear as Gaussian spatially distributed correlations. However, if
some particles have moved between frames, the correlation function is going
to change depending on the underlying microscopic motion of the particles.
It is this change in shape and location of the correlation peak that directly
reports the nature of the transport of the particles. We can therefore monitor
the spatial evolution of the average spatial correlation function as a function
of time lag by fitting it to a two dimensional Gaussian profile with variable

peak position:

(€—z(s))’+ (n—y(s))’

+ gooab(s)
wgab(s)

Tas(€:7, 8) = gab(O,O,S)exp{ =
(2.17)

where z(s) and y(s) are the x and y coordinates of the peak of the correlation
function at lag time At=sdt (note that all fit parameters are a function of lag
time). We can monitor the transport processes by observing the evolution of

the fit Gaussian peak over time.

To better conceptualize the meaning of these changes, we will consider a
few thought experiments (see Figure 2.8). The simplest case is to imagine
the particles as stationary, then the correlation stays unchanged for At=0
to N and remains centered at (§=0, n=0) because there are no fluctuations
in intensity. If we now consider the particles as randomly diffusing, they
will tend to exit the correlation area in a symmetric fashion thus broadening
the correlation peak in every direction as a function of lag time (see Fig-
ure 2.8A). This is analogous to a tracer diffusion experiment except that at

lag time zero, we start with a centered Gaussian peak not a delta function.
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The peak will stay centered at (=0, n=0) but its value will decrease hyper-
bolically, because our discrete approximation in Eq. 2.16 evaluated at zero
spatial lags is equivalent to Eq. 2.10. If we now consider particles flowing at
constant speed in random directions, the Gaussian correlation is also going
to spread in every direction, eventually forming an expanding “doughnut”
shape for the simulation presented in Figure 2.8B. If all the particles are
flowing uniformly, the spatial correlation Gaussian peak is going to maintain
its original shape as a function of time, but its peak value will be shifted
to lag positions (z(At) = —v, - At, y(At) = —v, - At) where v, and v, are
the x and y velocities of the particles (see Figure 2.8C). This is due to the
fact that in consecutive images the same pattern of particle distribution will
occur except that it will have shifted slightly (this assumes the time resolu-
tion is sufficiently high). Hence, the correlation peak will translate between
frames (see Figure 2.8C). This is consistent with the observation that for a
flowing population, the temporal autocorrelation function r,,(0,0,7) decays
as a Gaussian (see Eq. 2.11). The negative signs in the expression for £ and
7 arise from the fact that the Gaussian correlation peak moves in a direction
opposite to the flow because of the order in which we correlate the images
(i.e. in Eq. 2.7 we multiply the FFT of the image that comes earlier in the
time series by the complex conjugate FFT of the image that comes later).
This analysis is only valid as long as the particles undergoing concerted mo-
tion stay within the bounds of the analyzed region. Finally, if we analyze
a single population that is undergoing both directed flow and diffusion (i.e.
biased diffusion) at the same time, the Gaussian correlation peak is going

to shift according to flow, but also broaden because of diffusion (see Figure
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2.8D).

Average correlation

function

I (€1,0) o (Em,1) r(ENN-1)

-

o

Figure 2.9: Schematic illustration of the algorithm used to compute the dis-

crete approzimation to a generalized spatio-temporal correlation
function for a simulated two population system with flow and
diffusion. The Gaussian autocorrelation peaks for each image
are shown in the left column (s=0), the cross correlation for a
lag time of 1 time unit in the middle column (s=1), and for the
second longest lag time of N-1 time units in the right column
(s=N-1, where N is the number of frames in the image series).
The white arrows on the simulation tmages represent the direc-
tion of the flow. The averaged Gaussian correlation functions
r.(& n,s) are shown at the bottom for s=0,1 and N-1. The
separation of the Gaussian correlation peak due to flow (FG)
from the Gaussian correlation peak arising from the diffusing
population (DG) is clearly seen.
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The two population case with a flowing and a diffusing population is
illustrated in Figure 2.8E and 2.9, where the correlation peak due to diffusion
(DG) broadens and stays centered at (=0, n=0) and the correlation peak
due to flow (FG) shifts in a direction opposite to the flow of the particles (as
indicated by the white arrows on the simulated images in Figure 2.9). In this
simulation the flowing and diffusing populations were equally represented
in terms of density and intensity. However in cell systems that are usually
studied, the actively transported protein sub-population is usually a small
fraction of the total dynamic and static protein species present. This makes
tracking the low Gaussian peak difficult because it is hard to resolve near the
zero lags origin due to the correlations of the slowly diffusing and immobile

populations. A solution to this problem is presented in the next subsection.

2.7 Immobile Population Removal in STICS Analysis

The most general case of cellular protein transport is a combination of dif-
fusion, flow and immobile populations. The challenge of applying STICS in
living cells is to measure the velocity by following the flow Gaussian cor-
relation peak, without being influenced by the correlations of the immobile
or slowly diffusing populations (which effectively remain centered at (0,0)
spatial lags). The immobile population contribution to 7,(£,7n,s) can be
removed by Fourier filtering in frequency space the zero, or low frequency
components for every pixel trace in time before running the space-time cor-

relation analysis.
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2.7.1 Zero Frequency Filtering

The intensity values in detection channel a for a given pixel value, i,(0,0,1),
contain contributions to the signal of interest from dynamic and immobile
component signals and spurious noise sources. The signal from the dynamic
components (flow and diffusion) contribute intensity fluctuations that change
as a function of time for a given pixel trace. However, an immobile component
only adds a constant intensity offset to the single pixel intensity trace through
time because, by definition, the immobile component does not move so its
intensity contribution to the pixel does not fluctuate in time. Removing
the DC (zero) frequency component eliminates this contribution from the
correlation analysis. For a given pixel location (x,y) the corrected intensities

i'(z,y,t) are given by:
lo(2,y,t) = Fy ' {Fi(ia(z,y,1)) x Hy(f)} (2.18)

where T is the total acquisition time of the image series, H 1 (f) is the Heav-
iside function which is 0 for f < % and 1 for f > %, F; denotes the Fourier
transform with respect to t, F; ! denotes the inverse Fourier transform with

respect to f, and f is the pixel temporal frequency variable.

2.7.2 Windowed Average Filtering

The advantage in using the formulation of Eq. 2.18 is that we can modulate
the range over which we perform the filtering in frequency space. The Heavi-
side function used to eliminate the zero frequency component can be modified

to include non-zero components, for example using H_1_ (), H i (f), etc...
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This is equivalent to applying a window average filter to the raw data:

1 s+AN
. . . . .
Za(-ray, 3) = Za(-’E,y, 3) (2 < AN T 1‘ nzsz_:AN la(ﬂ:,y,n)> + (za(x,y, 3)>t

(2.19)
where 2 x AN + 1 is the filtering window size. The first term in Eq. 2.19
is the intensity at location (x,y) and discrete frame time s, from which we
subtract the second term which is the average intensity in a window cen-
tered around time s. The last term in Eq. 2.19 is added as a constant
offset to prevent the temporal ACF from diverging when we divide by the
average intensity. Without this last term, we would have (& (z,y,s)) = 0
and so the denominator in Eq. 2.9 would be null. Also note that this last
term will make the correlation function decay to 1 at infinite lag times, and

not to 0 as is usually the case for Eq. 2.9 (if there is no immobile population).

This method can be used if there are slow variations in intensity that are
not part of the signal. Any low frequency “noise”, such as a vesicle slowly
moving through the field of view, will be removed. However, this technique
introduces artificial correlations in the data because of the inherent use of a
window to compute the average to be subtracted from the data. It is easiest
to understand this with an example. Assume AN = 1 (window size of 3),
dropping the channel subscript a to simplify the notation, and assuming we

select a specific pixel location (xo, yo):

. ' 1 s+AN ' '
Zl(s)ro,yo = Z(3)900,3/0 - m Z 1(”)330,1/0 + <Z(S)$o,yo>t (2'20)

n=s—AN
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or more simply (since AN = 1):

i(s) = %@-%m—n-ém+n+@{ e
= |ils—1) is) is+1) @) || * (2.22)
L 1 d

the matrix notation simplifies the generalized form for the multiplication of

the new intensity at time t and the new intensity at time t+7:

()i (s+7) = |i(s=1) i(s) i(s+1) @& |- (2.23)
5 %3 5 3| |is+T=1)
-5 -5 5 3 i(s+7)
% % % —% i(s+7+1)
L& s v ]| & |
matrix A

where matrix A is obtained by the vector multiplication of the coefficients
column vector in Eq. 2.22. The new autocorrelation function ¢'(7) for the
single pixel location is now given by:

{#"(@)i'(t + 7))

Yoo (T) = @ (2.24)

since (¢') = (i). Plugging Eq. 2.23 into Eq. 2.24 we see that the new

correlation function at lag 7 is going to be a combination of the old correlation
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function at lags 7 — 2, 7 — 1, 7, 7+ 1 and 7 4+ 2. In our case:

§(r) = %g(T oy gg(T S+ gg(f) _ % (r+1)+ %g(T +9) 41 (2.25)

where the coeflicients are obtained by summing the diagonal elements of the

submatrix constituted by the first 3x3 elements of matrix A.

In Eq. 2.25 it can be seen that the filtered correlation function at time
lag 7 includes contributions from other time lags. In a practical manner, this
process can be generalized to any window size by realizing that the coefhi-
cients weighting the old correlation functions at other lag times in Eq. 2.25
are actually the convolution of the coeflicient column vector in Eq. 2.22. In
essence, Eq. 2.25 provides an analytical form to fit the temporal autocorre-

lation function obtained when we analyze window filtered data.

2.8 Chapter Conclusions

In this chapter, the theoretical basis of the fluorescence phenomenon was in-
troduced through use of the Jabloriski energy diagram for fluorescent molecules,
and the central aspects of fluorescence important for optical microscopy were
outlined. The major tools for fluorescence imaging of biological systems,
namely confocal, two-photon and total internal reflection microscopy, were
introduced. Finally, the basis of fluorescence correlation techniques, namely
FCS and ICS, were introduced. The theoretical basis of the STICS method
was introduced and the response of the method to different forms of trans-

port was shown via analysis of simulations. In the following chapter, we will
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review the materials and methods used for characterizing STICS in silico

and in vivo.
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3 Materials and Methods

3.1 Microscopy Instrumentation
3.1.1 Wide Field Fluorescence Microscopy

Fish epidermal keratocyte cells were imaged in a cell incubation chamber on
a Nikon Diaphot 300 inverted microscope at room temperature using a 40x
(NA=1.3) or a 60x (NA=1.4) objective. Metamorph version 6.1 (Molecu-
lar Devices, Sunnyvale, CA) was used to drive the filter wheels and shutters.
Images were collected on a cooled CCD camera (Princeton Instruments, Tren-
ton, NJ), with a 2x optivar attached. For tracer flow measurements, phase
images were acquired before and after acquisition of a fluorescence image
series of 150-300 frames at a frame rate of 3-10 frames/s, using exposure
times of 50 ms (for QDs) or 100-200 ms (for GFP). The 655 QDs (Quantum
Dot Corporation, Hayward, CA) were visualized with Texas Red chromatic
filters, and the 545 QDs (Quantum Dot Corporation, Hayward, CA) and
GFP with FITC chromatic filters (Chroma, Rockingham, VT). Phase and
fluorescence images were acquired at a frame rate of 0.5 frames/s, with a

Rhodamine chromatic filter (Chroma, Rockingham, VT).

3.1.2 Confocal Microscopy

Confocal images of cells were acquired on an Olympus Fluoview 300 micro-
scope (Olympus, Melville, NY) equipped with an IX70 inverted microscope
fitted with a 60x PlanApo (1.40 NA) oil immersion objective. Excitation was
from the 488 nm laser line of a 40 mW Ar ion laser (Melles Griot, Carlsbad,

CA) attenuated to 0.1-0.2% power using a ND filter and an acousto-optical
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tunable filter. The photomultiplier tube was operated at 800 V with 1x gain,
and 0% offset. In order to get high resolution images (0.023 pm/pixels) we
used a clip box subregion of 256x 256 pixels from a 1024x 1024 image at 10X
zoom. A custom Q500LP dichroic mirror (Chroma, Rockingham, VT) was
used for the laser excitation and for collection of the fluorescence emission.
Note that use of this filter enhanced the EGFP signal by about 50% over the
standard triple dichroic that comes with the FV300. Under these conditions
the pixel dwell times were 2 us/pixel (fast scan), 4 us/pixel (medium scan) or
8 us/pixel (slow scan), and the time between lines was 1.608 ms (fast scan),

2.12 ms (medium scan), and 3.15 ms (slow scan).

3.1.3 Two-Photon Microscopy

Two-photon microscopy of the fluorescent microspheres was conducted us-
ing an Olympus Fluoview 300 CLSM/IX70 inverted microscope (Olympus,
Melville, NY), coupled with a Tsunami (model 3960) pulsed femtosecond
Ti:sapphire laser (Spectra Physics, Mountain View, CA) pumped by a Mil-
lennia XsJS laser. The microspheres were excited at 800 nm and point de-
tection was achieved with two external PMTs (Hamamatsu, Bridgewater,
NJ). For imaging of the microspheres, a 720 DCSPXR excitation dichroic
mirror, a 555dclp emission beam splitter, and HQ525/50 HQ610/75 emission
filters (all from Chroma Technology Co., Brattleboro, VT) were employed
for light detection. All images were collected using a PlanApo Olympus 60x
(NA 1.40) oil immersion objective lens. Images were collected with a typi-
cal optical zoom setting of 2x corresponding to x and y pixel dimensions of
0.23 um/pixel. Image time series of 100 frames with a time delay of 0.45 s

between frames were collected.
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Two-photon imaging of cells was conducted using a Biorad RTS2000MP
video rate capable two-photon/confocal microscope (Biorad, Hertfordshire,
UK), coupled with a MaiTai pulsed femtosecond Ti:sapphire laser (Spec-
tra Physics, Mountain View, CA) tunable over a range from 780-920 nm.
The microscope used a resonant galvanometer mirror to scan horizontally
at the NTSC line scan rate. Point detection was employed using one or
two photomultiplier tube(s) with fully open confocal pinholes when imag-
ing. For imaging EGFP in cells, the laser was tuned to a wavelength of 890
nm and a 560 DCLPXR dichroic mirror and an HQ528/50 emission filter
were employed for light detection. For imaging cells expressing both ECFP
and EYFP fusion proteins, the laser was tuned to 880 nm and a D500LP
dichroic mirror and HQ485/22 and HQ560/40 emission filters were used for
detection and separation of the emitted fluorescence. All laser filters were
from Chroma Technology Co. (Brattleboro, VT). All image time series were
collected using a PlanApo Nikon 60X oil immersion objective lens (NA 1.40)
which was mounted in an inverted configuration. Images having dimensions
of 480 (height) by 512 (width) pixels were collected with a typical opti-
cal zoom setting of 2x corresponding to x and y pixel dimensions of 0.118
pm/pixel. Image series with time delays of 1, 5, or 10 s between sequential
frames and 60, 120 or 150 frames in total were collected from single cells. In-
dividual image frames sampled from the cells were accumulated as averages

of 32 video rate scans (i.e. approximately 1 s/frame).

3.1.4 Total Internal Reflection Microscopy

TIRM microscopy was performed on an Olympus IX70 microscope equipped

with an Olympus TIRM illumination arm and a PlanApo 60x (1.45 NA)
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TIRM oil immersion objective (Olympus, Melville, NY). The laser launch
(Prairie Technologies, Inc., Middleton, WI) was connected to the TIRM II-
lumination arm via a fiber optic and illumination was from the 488 nm line
of a 200 mW Ar Ion laser or the 543 nm line of a 2 mW HeNe green laser.
The 488 nm laser line was attenuated to 10% of incident power with a ND1
filter and further attenuated with the AOTF (Acousto-Optic Tunable Fil-
ter) to give a total power of about 1% of incident power. The HeNe green
laser was used at full power, i.e. no ND filter and the AOTF. Images were
collected on a Retiga EXi camera (QImaging, Burnaby, BC, Canada) with
2x2 binning to give a pixel resolution of 0.2146 pum. Exposure times were
typically 500 - 1000 ms. For EGFP and RFP dual imaging, the images were
collected sequentially using MetaMorph software (Molecular Devices Corpo-
ration, Downingtown, PA), the AOTF control of the laser lines and a LUDL
(LUDL Electronics Products Ltd., Hawthorne, NY) emission filter wheel con-
trolled by a MAC2000 control unit. Fluorophores were excited sequentially
and typically the image with the lower exposure time was collected first to
reduce the delay between successive frames. Imaging was done using cus-
tom dichroic filter sets designed by Chroma Technologies for use with TIRM
microscopy and lasers at a high incidence angle. For EGFP imaging, an
HQ485/30 dichroic filter was used in combination with a 535/30 bandpass
emission filter. For dual EGFP/RFP imaging a z488/543rpc dual dichroic
was used in combination with a z488/543 dual band pass emission filter in
the cube and a 535/30 or 630/60 emission filter to select either EGFP or RFP
emission. This leads to double filtering of the light causing some loses, but
it is a safer design for the end microscope user as it avoids having reflected

laser light at the eyepiece.
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3.2 Image Auto-Correlation and Cross-Correlation Anal-
ysis

Microscope image time series data sets were viewed, and image sub-regions
of 162, 322, 642, 1282 or 2562 pixels in size were selected that covered ar-
eas of the cell. These image sub-stacks were exported for image correlation
analysis using a custom Interactive Data Language (IDL 6.0, RSI Colorado)
program written for the PC. Correlation calculations for all image time series
and nonlinear least squares fitting of the spatial correlation functions were
performed in a Windows environment on a PC using programs written in
IDL. Discrete intensity fluctuation autocorrelation functions were calculated
from the image sections as described in sections 2.5 and 2.6. The equations
used for the calculation and fitting of the normalized intensity fluctuation
autocorrelation and cross-correlation functions (both spatial and temporal)

have been described in section 2.5.

3.3 Cell Culture
3.3.1 Plasmids

The a-actinin-EGFP, paxillin-EGFP, and ab-integrin-EGFP plasmids have
been previously described [100]. The plasmids for G-actin-RFP and talin-
EGFP were generous gifts from the laboratories of Frank Gertler (Mas-
sachusetts Institute of Technology) and Ken Yamada (National Institutes

of Health), respectively.
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3.3.2 Cell culture of the 3T3, MEF and CHO lines

CHO, MEF and 3T3 cells were cultured in a humidified, 8.5% CO; atmo-
sphere at 37°C in minimum essential medium (MEM) supplemented with
10% FBS, non-essential amino acids, and glutamine. For stable cell lines 0.5
mg/ml neomycin (G418) was added to the media for cell selection. Cells
were transfected 24 to 48 hours before imaging with 0.1 ug of DNA for a
given EGFP protein and 0.9 ug of BlueScript empty vector (Stratagene, La
Jolla, CA). Titrating down the EGFP protein DNA with BlueScript DNA
decreases the number of cells that highly overexpress the EGFP protein,
however it is important to maintain the total DNA concentration at 1 ug
or the transfection efficiency is markedly reduced. For dual transfections 0.1
pug of DNA for each fluorescently tagged protein was added with 0.8 ug of
BlueScript DNA. The DNA was mixed with 5 uL of lipofectamine reagent
(Invitrogen, Carlsbad, CA) in PBS and left to sit for 20 minutes. Cells were
plated in 6 well tissue cultures the day before transfection so that they were
40-60% confluent. Cells were washed two times with serum free medium and
then the lipofectamine and DNA solution was mixed with 600 ml of serum
free medium and applied dropwise to each well. The cells were placed at
37°C for 3-4 hours and then washed two times and left in serum contain-
ing medium overnight. Cells were lifted with trypsin and plated in CCM1
medium (Hyclone, UT) buffered with 15 mM HEPES on homemade 35 mm

glass bottomed dishes coated with an integrin activating extracellular matrix
protein 2 pug/mL fibronectin (Sigma, Munich, Germany) and maintained at
37°C during imaging with a Warner Instruments heated stage insert (Warner

Instruments, Hamden, CT) and a Bioptechs (Bioptechs, Butler, PA) objec-
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tive heater. Non-transfected cells were used as control samples to determine

autofluorescence background levels.

Cell samples that had been fixed with 4% paraformaldehyde in PBS for 10
minutes at room temperature were also prepared for each type of migratory
cell line studied (3T3s, MEFs and CHOs). The chemically fixed cells were
imaged to provide a control for any contributions from mechanical vibrations,

stage translations, and laser fluctuations.

3.3.3 Keratocyte cell culture

Keratocytes were isolated from the scales of the central American cichlid Hyp-
sophrys nicaraguensis as described [101] with the exception that the scales
were sandwiched between two 25 mm acid-washed glass coverslips. Cells
were cultured in Leibovitz’s L-15 medium (Gibco BRL) supplemented with
14.2 mM HEPES pH 7.4, 10% FBS and 1% antibiotic-antimycotic (Gibco
BRL) and used within 1-3 days of isolation. 5 kD methoxy PEG 655 or
545 QDs (Qtracker, Quantum Dot Corporation), purified His-tagged GFP
(gift from J. Dawson) or Alexa Fluor 546-conjugated phalloidin (AF546-
phalloidin, Molecular Probes), were introduced into living keratocytes using
a small volume electroporator for adherent cells [102]. Cells were placed in
a 35 mm dish in 1 mL of culture media, and drops of the fluorescent probe
diluted in 20 puL of water were placed directly onto the cell samples. The
655 or 545 QDs were used at 0.2-2 M and GFP was used at 160 M. In some
cases a volume marker (AF488, Molecular Probes) was also included. AF546-
phalloidin was used to visualize F-actin dynamics [103]. AF546-phalloidin
was used at 2 M and pre-mixed with 7.5 M d-ATP, 7.5 M d-GTP, and 5 M



3.4 Computer Simulations 66

d-CTP in water for ~15 min at room temperature before electroporation to
prevent aggregation. Following electroporation, the cells were allowed to re-
cover in culture media for at least 10 min before viewing on the microscope.
To obtain single isolated cells, sheets of keratocytes could be dispersed by

incubating for ~5 min in 85% PBS/2.5mM EGTA pH 7.4.

3.4 Computer Simulations

Computer simulations of image time series were used to model and test the
STICS analysis algorithms via comparison with the expected (set) results
for different particle transport property, settings and collection conditions.
This facilitated direct comparison of simulation with results from the exper-
imental measurements. An Interactive Data Language program (IDL 6.0,
RSI, Colorado) was written to simulate data that would be obtained by laser
scanning microscopy of point emitters in a 2D system under defined settings
of instrument collection and particle mobility. The program allowed a wide
range of system parameters to be defined including flow speed and direction
of the simulated particles on the 2D surface, characteristic diffusion times,
densities of multiple populations of particles, laser beam focal area size and
shape characteristics, size of confinement domains in the 2D lattice, image
size, pixel size, the number of images collected for analysis and the time in-
terval between images. The adjustable parameters are shown in Table 3.1

along with a range of typical values for a normal experiment. The simula-

tions were run on a standard desktop PC.
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symbol l description | typical values
Ax pixel spatial resolution 0.05-0.2 pm
At imaging temporal resolution 0.01-15 s/frame
) particle density 0.1-100 particles/pum?
D diffusion coefficient 0.001-0.05 um?/s
Vg x velocity of the particles 0.1-1.0 gm/min
Uy y velocity of the particles 0.1-1.0 pm/min
N, x size of ROI 16-128 pixels
Ny y size of ROI 16-128 pixels
N number of images in time series 10-300
dy confinement domain size in x 0.1-1 ym
dy confinement domain size in y 0.1-1 pm
Theach | characteristic photobleaching time 1-30 s
w e~2 laser beam size 0.2-0.4 pm
S/N | signal to noise ratio 2-10

Table 3.1: Adjustable parameters in the computer simulation of two dimen-
sional laser scanning microscopy of point emitters.

For all simulations, periodic boundary conditions were used at the im-
age edges. For diffusion, discrete displacements in x and y were computed
at every time step for each particle using normally-distributed, floating-
point, pseudo-random numbers having a mean of zero and standard deviation
o = /2Dt. For flow, a deterministic displacement in x and y was computed
from the input velocity and added to each particle’s x and y positions at
every time step. To simulate several populations with different transport
dynamics, single population movies were combined by addition and the total
intensity was scaled to simulate 8-, 12- or 16-bit acquisition. It is important
to note that scaling the intensity values of the simulated data by a constant
factor does not alter the correlation function (see Eq. 2.5), thus we were free
to multiply the intensity by a scaling factor but could not add a constant

value to the intensities. Another advantage of this scaling property is that
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clustering can also be simulated by weighted addition of two image series,
where the clustered population intensities would be multiplied by a scaling
factor proportional to the number of subunits in the cluster (or to a certain
fraction of that value to simulate self quenching during the aggregation pro-
cesses). To simulate the scanning of the sample with the focus of a TE Mgy
laser beam, we convolved the image of point emitters (single pixels) with a
kernel consisting of a two-dimensional Gaussian function with characteristic
e~? radius w as input (see Figure 3.1). Convolution is done through the
product of Fourier transforms in reciprocal space, thus we chose image sizes

that are powers of 2 in order for this convolution step to be computed quickly.

The signal to noise ratio (S/N) is usually defined as the ratio of the
average signal value to the standard deviation of the background noise. To
simulate background noise, a square matrix N of the same dimensions as the
image (L, x L,) with normally distributed random numbers was generated.
The mean of the distribution was zero and its standard deviation was one, the
absolute values of the numbers were taken and this noise matrix N was added
to the image matrix. This simulated the case where the mean background
intensity is subtracted from each pixel leaving residual background counts
that are greater than the mean in each pixel. This average background
correction is standard practice for quantitative fluorescence microscopy. A
variable scaling coefficient, S/N, is used as an adjustable standard deviation
parameter that allowed control of the magnitude of the signal to noise ratio.

The new intensity at a given pixel location (x,y) after background noise
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Figure 3.1: Generation of the simulated LSM images. A) particles are ran-
domly placed as delta functions on a 2D lattice (here a 150x 150
pizel image). B) The grid is then convolved with a 2D Gaussian
function, which simulates the scanning of the particles with a
focused TEMyy laser beam. The process is repeated over time
as we displace the particles according to their simulation de-
fined dynamics (i.e. diffusion or flow) to generate the image
time series.

addition is given by:
i(z,y,t) = i(z,y,t) + S/N x N(z,y) (3.1)
Using this definition the signal to noise ratio is defined as:

_ max[i(z,y,t)]

S/N = (3.2)

For the computer simulations presented in this thesis, the parameters were set
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to be close to what one would use or measure in the actual cell experiments.
The alternative would be to express some parameters as dimensionless quan-
tities like the velocity in pixels per frame, the density in number per pixel?,
etc. However, since the numerical ranges for the simulation parameters were
chosen close to actual experimental parameters, it was found more useful
for direct comparison purposes to keep the real units for most of the cases

presented in this thesis.

3.5 Vector Flow Fields Comparison for Two Popula-

tion Measurements

In cases where two populations of labeled proteins are not undergoing per-
fectly concomitant directed motion, the STICCS analysis will not reveal cor-
related flows because the particles are not moving entirely together. Hence it
will not be possible to track a cross-correlation Gaussian flow peak. To han-
dle these situations, which frequently arise in cell measurements, we applied
two scores to assess the degree of similarity between two velocity fields. The
first is the correlation coefficient between the magnitudes of the velocities
which reflects the degree of engagement or binding of the two proteins, and
second is the correlation between the directions of the velocity vectors for

each region of interest.

Figure 3.2A-B shows two simulated flow fields. The first one was gen-
erated with x and y velocity values that increase towards the upper right

corner of the frame. The second flow field was generated using the first field,
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Figure 3.2: Similitude scoring of two flow fields. A) Velocity field gener-
ated with increasing ¢ and y velocity values towards the upper
right corner of the figure. B) Velocity field generated by adding
angle and magnitude randomness to the first flow field, with the
magnitudes on average 1.5X larger. C) Magnitude correlation
plot. D) Histogram of the cosine values for the angles between
all velocity field vectors (dashed line indicates median).

and adding randomness in angle and magnitude. The angles were varied by
adding angles with a random uniform distribution between [-45,+45] degrees.
The x and y velocity magnitudes were multiplied by a factor of 1.5, and then

randomness was introduced by adding a uniformly distributed number be-
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tween [-0.2,40.2] um/s to these new magnitudes.

The correlation in magnitude is clearly shown in Figure 3.2C, and the
slope of the line was found by linear regression to be 1.503 + 0.003 which
recovers the multiplying factor set in the simulation. The directional corre-
lation is defined as the median of the cosine values calculated from the dot

product formula:

directional correlation score = median|[cos(®)]
median —wﬁ—
[[Wallllvall

where © is the set of all angles between the velocity vectors for each pop-
ulation at every point, ¥4 represents the set of all vectors in the first flow
field, vp represents the set of all vectors in the second flow field. For this
simulation the directional correlation score was 0.92+0.01 (see dashed bar in
histogram of cosine values in Figure 3.2D). This parameter varies between -1
and 1, 1 for perfectly aligned velocity maps and -1 for velocities in opposite
directions. Care has to be taken in the interpretation of the median because
a single value for this score can arise from many different types of histogram
distributions. The typical histogram distribution is the one showed in Fig-
ure 3.2D, since most of the vectors are aligned, the cosine values tend to be
clustered towards a value of 1. For all analyses, careful attention was paid
to the shape of the histogram. The error on the median was estimated using

the bootstrap method [104].
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3.6 Chapter Conclusion

In this chapter we described the computer simulations that will be used to
test the STICS technique in chapter 4. We have also outlined the methods
that will be applied to the culture, transfection and microscopy imaging of
cells used in chapters 5 and 6. The next chapter will make use of the computer
simulations of various biologically relevant cases to test the dynamic range

and accuracy of STICS.
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4 1In Silico Characterization

4.1 Introduction

The principal paradigm of science is that a theory can only be true if it is
falsifiable, i.e. if there are situations in which it can be tested by exper-
iments. One of the challenges of working with living cells lies in the fact
that there are so many uncontrolled and interconnected parameters, which
makes it difficult to reliably test biophysical theories. However, it is possible
to model components of biological systems and this approach is adopted to
study processes such as protein folding [105] and macromolecular transport
in biological systems [106]. An advantage of studying membrane protein dy-
namics by fluorescence microscopy is that the proteins can easily be modeled
in computer simulations as point emitters diffusing and flowing in a two di-
mensional system (i.e. the cell membrane) or a three dimensional system
(i.e. the cytoplasm). This chapter will present computer simulations of LSM
imaging of point emitters in a 2D system and their analysis with ICS and
STICS, under set simulation conditions of photobleaching, signal to noise, im-
mobile population removal by Fourier filtering, and different ratios between
the characteristic diffusion and flow times for the particles. The simulations
are intended to model transport in a 2D membrane system which is what we
are interested in for STICS measurements of membrane and membrane asso-
ciated adhesion proteins. Using the computer simulations, the sensitivity and
detection limits of STICS for such applications will be explored in this chap-
ter as a function of collection parameters and system transport properties.

It will be shown that given the proper spatio-temporal sampling, STICS can
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extract the velocities of labeled proteins in many situations typical of what

is encountered when imaging cells.

4.2 STICS characterization
4.2.1 Photobleaching

During the acquisition of a fluorescence image time series, the fluorophore
will usually undergo photobleaching due to laser irradiation and be photo-
chemically converted to a non-fluorescent state. Due to photobleaching, the
mean intensity of the images will decrease over time as fluorophores randomly
convert to a non-emitting state. After transition from an excited singlet state
to an excited triplet state (see Figure 2.1), the fluorophore may react with
another molecule to produce irreversible covalent modifications. Since the
triplet state is relatively long-lived with respect to the shorter lifetime singlet
state, the excited fluorophore has a much longer time to undergo chemical
reactions with components in the environment if it is residing in an excited
triplet state. Photobleaching will be dependent on several parameters such
as laser intensity, the nature of the fluorophore and the chemical environ-
ment. However, a characteristic of any fluorophore in a given environment is
the average number of excitation and emission cycles that can occur before
photobleaching. Some fluorophores bleach quickly after emitting only a few
photons, while others that are more robust can undergo millions of cycles
before bleaching. In a real experiment, the laser intensity has to be adjusted
so that the fluorophores do not bleach excessively on the time scale of the
image series collection, while still providing enough contrast (signal) in the

images for correlation analysis. The process of fluorescence bleaching and the
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resulting decrease in image intensity can often be fit with a mono-exponential
decay using:

(7’(1‘7 Y, t)>x,y = Aexp(—t/‘rblea,ch) + B (41)

where A, B and Tpeqen are fitting parameters, thereby providing a measure

of the characteristic bleaching time Tyeqch-
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Figure 4.1: Effects of photobleaching rates on the ICS measured velocity
magnitude for varying image size. FEach point and error bar
represents the average result of 100 simulations and standard
deviation. The shaded region shows the set velocity in the simu-
lations (v;=0.01 um/s corresponding to T, =30 s) and a band
of acceptable error of +10%.
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To investigate the effects of photobleaching on our correlation techniques,
a series of computer simulations were run to generate image series of a single
flowing population of particles. The Gaussian convolution radius was set at
0.3 pum and the velocity of the particles was kept constant at v, = 0.01 ym/s
so that the characteristic flow time was 30 s. The computer simulated images
were 64 by 64, 128 by 128 or 256 by 256 pixels with 300 frames at a density
of 10 particles/um?, using 0.5 s/frame and 0.1 um/pixel. The characteristic
bleaching time Tyeqcn, Was varied from 0.5 to 500 s so that it would cover a

range of values both smaller and larger than the characteristic flow time.

Figure 4.1 shows that at high photobleaching rates (short photobleaching
characteristic times) ICS cannot recover the correct set value for the velocity
of the particles. In fact, it can be systematically off from the set velocity
in the simulation by as many as 2 to 3 orders of magnitude. The reason
for this error is the decay in the correlation function is due mainly to the
loss of intensity due to photobleaching on the short time scale, not from the
variation due to particles coming in and out of the observation volume. The
recovered velocity value becomes acceptable (less than 10% deviation) when
Thleach 18 just above 50 seconds, i.e. when the bleaching time becomes about
twice as large as the characteristic flow time, as would be expected. In this
regime, the fluctuations in intensity between adjacent frames in the image
time series are due mostly to the dynamic fluctuations of the particles rather

than the photobleaching of the fluorophores.

In contrast to the ICS measurements, Figure 4.2 shows that STICS is not

affected unless the bleaching rate is very high. For example at a characteristic
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Figure 4.2: Effects of photobleaching rates on the recovered velocity magni-
tudes by STICS for varying image size. Fach point and error
bar represents the average result of 100 simulations and stan-
dard deviation. The shaded region show the set velocity in the
simulation (v, = 0.01 pum/s and vy = 0 um/s) and a band of
acceptable error of +10% for v,.

bleaching time of 0.5 s, all the particles are extinguished within the first 3 to
5 frames of the time series. It would be expected that STICS would fail with
the very high rates of bleaching because there are only a few valid image
frames with signal. However, even at rates of photobleaching where ICS
fails to recover the set velocity, STICS can still measure the correct x and y

velocities. Overall, we can neglect signal fluctuations due to bleaching in ICS

and STICS flow/diffusion measurements as long as the characteristic times
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associated with these processes are shorter than the bleaching time. This

was the case for all of the cell measurements reported in this work.

Figure 4.3: Ezxample of simulated images with varying signal to noise ratio
at a density of 0.1 particles per beam area, all particle posi-
tions are the same in these images. A) S/N=1, B} S/N=3, C)
S/N=5, D) S/N=10. Scale bar is 5 um

4.2.2 Sampling and Signal to Noise Considerations

The spatial sampling is inherently given by the size of the selected subre-
gion(s) in the image time series. For image correlation, the sampling statistics
are related to the square root of the number of independent spatial fluctua-
tions sampled within the subregion. The number of independent fluctuations
is simply the subregion area divided by the beam focus area [7]. Additionally,
for STICS velocity measurements, there is an upper limit on the maximum
velocity that can be measured by STICS along the x or y axes because the
flow Gaussian peak location has to be tracked within the subregion for at
least one time step. The maximum velocity that can be measured along any

axis is given by:
. Nx(y) X Ax

Umaz x(y) = 9 % At (42)

where Ng(y) is the frame size in pixels, Az is the spatial resolution (pm/pixel),

and At is the time resolution (s/frame) of the image time series. For a small
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Figure 4.4: Simulation characterization of STICS accuracy and precision

as a function of signal to noise ratio, with a set velocity of 0.1
um/s. A) density=0.01 particles per beam area, B) density=0.1
particles per beam area, C) density=1 particles per beam area,
D) density=10 particles per beam area.

box size of 16 x 16 pixels? and for typical spatial and temporal resolutions of

0.2 pum/pixel and 5 s/frame respectively, the maximum velocity that can be

measured by STICS is approximately 0.3 ym/s, which is well above typical

retrograde flow rates (~0.01 pum/s) for actin and adhesion related proteins

1, 67].

The performance of the STICS analysis was also studied under varying

conditions of signal to noise ratio, number of frames sampled and the density
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of particles. For each set of conditions, 100 computer simulations were run to
obtain an average value of the velocity in x and y and an error (the standard
deviation, SD). The simulated images were 128 x 128 pixels, with a spatial
resolution of 1 pm/pixel and a temporal resolution of 1 frame/s. The veloc-
ity was set at 0.1 pum/s, typical of what would be obtained in a retrograde
protein transport measurement in adherent cells. The signal to noise ratio,
as defined in Eq. 3.2, was varied from 1 to 10. The density was varied be-
tween 0.01 to 10 particles per laser beam area (BA), and the number of image
frames was varied between 10 and 300. This series of simulations allowed a

full probing of the parameter space relevant to observation of flow in live cells.

The effects of signal to noise ratio (S/N) on the simulated images are
depicted in Figure 4.3 with typical simulation parameters as defined above.
The particle positions were kept fixed between the different images and the
signal to noise ranges from 1 to 10, with 1 being an absolute worst case sce-
nario where the standard deviation of the noise is as large as the amplitude
of the signal. Analysis of these simulations revealed that STICS is able to
perform very well (see Figure 4.4) even in poor conditions where the signal
to noise ratio is as low as 1, provided that the number of frames is sufficiently

large to allow sufficient averaging in Eq. 2.16.

The results of these simulations are summarized in Table 4.1. Notice
that the STICS analysis works very well in almost all cases, with the only
exception being the worst case scenario at the lowest density (p=0.01 par-
ticles/BA), the smallest number of frames (N=10) and the lowest signal to

noise ratio (S/N=1.0). In all other cases the recovered x-velocity is accurate
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) S/N 1 3 5 10 S/N

0.000%1.000| 0.100+0.020{ 0.10040.010| 0.100+0.004 10
0.01 0.100+£0.100| 0.100+0.010{ 0.099+0.004| 0.099+0.001 30
0.100+0.050| 0.10040.005| 0.100+0.002| 0.100£0.001] 100
0.097+0.030| 0.10040.003} 0.100£0.001| 0.100+0.001] 300
0.10040.040; 0.099+0.007 0.09940.004; 0.099+0.002 10
0.1 0.10040.020| 0.100+£0.003| 0.1004:0.002| 0.100£0.001 30
' 0.100£0.010; 0.100£0.001{ 0.100+0.001} 0.100£0.001] 100
0.099+0.006| 0.100-40.001| 0.100£0.001} 0.100+0.001] 300
0.10040.020{ 0.100=£0.005| 0.100+0.003| 0.100£0.002 10
10 0.100+£0.010; 0.10040.002| 0.100+0.001} 0.100+0.001 30
0.10040.005| 0.100=0.001| 0.1004+0.001| 0.100£0.001| 100
0.099+0.003] 0.100+0.001} 0.100£0.001| 0.100+0.001] 300
0.1004:0.020] 0.09940.005| 0.09940.003| 0.100+0.002 10
10.0 0.100+£0.010| 0.10040.002] 0.100=£0.001| 0.100£0.001 30
0.100+0.004] 0.10040.001} 0.100+£0.001| 0.100+0.001] 100
0.100+0.003| 0.100+0.001} 0.100£0.001} 0.1004+0.001; 300

Table 4.1: STICS simulation analysis results for the measured z-velocity

(set value v, = 0.1 pm/s) for the image series with varying par-
ticle density (p particles/BA), signal to noise (S/N) and number
of image frames (N). Each number in the table represents the
average velocity measured by STICS for 100 simulations under
the set conditions and the quoted error is the standard deviation

(SD).
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to within a few percent of the set value. The error, or spread in the results
between different simulations, diminishes as expected as the density p gets
higher, as the number of frames N increases and as the signal to noise ratio

(S/N) increases.
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Figure 4.5: STICS analysis of a computer simulated images of flowing and
immobile point emitters (v, = —0.12 and v, = 0.08 um/s, 90%
immobile). A) spatio-temporal correlation functions as a func-
tion of time without immobile population filtering, notice the
peak stays centered at (£=0, n=0) B) spatio-temporal correla-
tion functions as a function of time with immobile filtering, now
the Gaussian peak moves in a direction opposite to the flow and
is not hidden by the immobile component (recovered velocities:
vy = —0.119 £ 0.001 um/s and v, = 0.08 £ 0.01 um/s).

4.3 Immobile Filtering Characterization

A very basic example of application of the immobile populations filtering

algorithm (see section 2.7) is shown in Figure 4.5. A computer simulation of
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point particles imaged by LSM with 90% of the particles immobile and 10%
flowing (v, = —0.12 pm/s and v, = 0.08 um/s) was analyzed with STICS
with and without filtering. As can be seen from Figure 4.5A the analysis
without filtering is dominated by the stationary correlation peak at zero
spatial lags due to the immobile population. The linear fits for (At) and
y(At) (see Eq. 2.17) in this case yield velocity values of v, = —0.01 &+ 0.01
pm/s and v, = 0.01 £ 0.01 pum/s, which are well below the set values and
reflect the large static weighting of the immobile particle population. As a
comparison, filtering the immobile population in the simulated image series
before STICS analysis gave the measured velocity values of v, = —0.119 &+
0.001 gm/s and v, = 0.08 & 0.01 pm/s. In Figure 4.5B we can see these
results for the STICS analysis after filtering the immobile population: the
correlation peak now moves away from (=0, n=0) as only correlations due
to the dynamic population are captured. The results of these simulations
suggest that STICS, in combination with the immobile population filtering,
can be used to measure protein transport for membrane associated proteins

where a significant fraction of the proteins may be immobilized.

4.3.1 Immobile Population Filtering Artifacts

As shown by the simulation results, removing the DC offset from a single
pixel intensity trace can remove the effects of the immobile fraction if it is
present over the entire time course of the measurement. Before applying this
technique however, one has to be careful that certain criteria are fulfilled.
There are a few important requirements, especially concerning sampling and

the relative timescales of the underlying processes that must be taken into
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account in such applications.

The filtering algorithm works because the characteristic time scale for
flow (in terms of frames) is short enough compared to the total number of
frames. In other words there is complete relaxation of the flow process over
the time scale of the simulation (this requirement also holds for the case of
a diffusion study with ICS, where one needs to have a complete relaxation
of the diffusive process for accurate measurements). Relaxation refers to the
complete decay of spatial fluctuations which occurs over the characteristic
time for particle dynamics. If the flow is too slow compared to the total
time of the experiment, then it will resemble an immobile population and be
removed by the filtering algorithm. This situation can be avoided by selecting
the right sampling time resolution and experimental time scale with which
to measure the flow process. If no order of magnitude data is available, then
several trial experiments should be run in order to assess the magnitude of
the flow. The basic reasoning is that the particles should flow over a distance
greater than one full laser focus diameter during the time course of the image
series’ sampling in order to have quasi-complete relaxation of the correlation
function. Specifically the total time of the image series sampling, T, should
be greater than the characteristic flow time (ratio of the laser beam radius

to the velocity):

T >> Lo (4.3)
vf

If the particles do not move more than a correlation radius over the time

of acquisition of the entire image series, then removing the DC offset will

spatially anti-correlate the intensities over a short distance in the direction
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of the flow. In this case, the central Gaussian peak is reduced in width,
and accompanied by two diametrically opposed depressions aligned with the
flow direction (see Figure 4.6B). Nevertheless, these artifacts are of no real
consequence in the determination of the flow direction because a Gaussian
can still effectively be fit to the correlation functions and the fitted velocities
are always within 1% of the set values in the simulations (see Figure 4.6A).
Figure 4.6B shows the effect of immobile filtering on 7/,(&, 7, s) for varying
velocities. The Gaussian peak narrows at low velocities due to the spatial
anti-correlation with two depression on each side of the Gaussian peak, in
the direction of the flow (which was the x direction in this case). Note
that this effect is negligible when v~0.1 pm/s which corresponds to the
particles moving 10 correlation radii over the total image series time for this

simulation. Thus in practice the condition in Eq. 4.3 now becomes:

T 10 x 0 (4.4)
Uy

However, this condition needs only to be satisfied if we wish to recover the
proper correlation radius from the STICS analysis after using the immobile
filtering algorithm. Application of this algorithm is of particular importance
when the image time series analyzed presents static bright, spatially extended
fluorescent features (see for example filamentous adhesion structures in Fig-
ure 5.6C) that will contribute strong deviations at non-zero spatial lags and
hence distort the gaussian shape in the spatial autocorrelation function. In
this case, the fit to wpe in Eq. 2.8 will diverge significantly from the ac-
tual correlation radius value. Using the immobile filtering algorithm, one

can remove these features and get a correct value for wp,, provided that the
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Figure 4.6: Simulation results for the effects of the immobile population
filtering algorithm on 7/, (&, n,s) for particle flow with vary-
ing velocities.  All simulations were 128x128x300 (z,y,t)
at 0.1 pum/pizel and 0.1 s/frames. A) Plot of the fitted
radius for rh,(€,m,0) and the recovered relative z wvelocity:
Vg(STICS) /Um(mput) as a function of the set particle flow veloc-
ity magnitude. B) Two dimensional intensity contour maps of
r.(€,m,0) as a function of set particle flow velocity.

complete relaxation condition of Eq. 4.4 is satisfied.

In addition to the question of the time scale of the sampling, there is
also the question of the relative time scales of the underlying dynamic pro-
cesses. When imaging adhesion proteins in living cells, we are most likely

going to encounter a combination case of immobile, diffusing and flowing



4.3 Immobile Filtering Characterization 89

=z

STICS x velocity {um/s)

v

STICS y velocity (pmis)

0.05 -
o with filtering
-0.06 % §> % <}> %: {> z o without filtering
-0.07 - 1 ;{}
-0.08
0.09 g]
-0.10 . % 1
0.1 l‘
0.13 /
.0,00001 0.0001 0.001 0.01 01 1 10
D (um’ls)
6.09 T .
0.06 W /// 2
0.07 4 T b T
0.06 1 %’
005
0.04 4 é %) %) % % %) % o with fitering
{1 o without filtering
003 — - S R —

0.00001 0.0001 0.001 0.01 01 1 10
D {um’/s)

Figure 4.7: STICS analysis results for computer simulations with two par-

ticle populations, one flowing (v, = —0.12 um/s and v, = 0.08
um/s) and one diffusing (variable diffusion coefficients). A) x
velocity as measured by STICS with and without the immobile
population filtering. B) y velocity as measured by STICS with
and without the immobile population filtering. On both graphs,
each point and error bar represent the average result of 100 sim-
ulations with standard deviation. The shaded regions show the
set velocities in the simulation within an acceptable error band

of £10%.

macromolecules. The filtering is able to remove the contribution of the im-

mobile population as we have just shown, but the diffusing population has a
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characteristic time scale that is important to consider. There are two limit-
ing cases to envisage. First, if the diffusing population’s characteristic time
is fast compared to the characteristic time of the flowing population, then
the diffusing Gaussian correlation peak (DG in Figure 2.9) is going to decay
quickly within a few lag times. Then tracking the flowing Gaussian correla-
tion peak (FG in Figure 2.9) can easily be done once the diffusion correlations
have decayed. The other limiting case is if the diffusing population is slow
compared the flowing population (in terms of their characteristic times). In
this case, the total imaging time needed to capture the flowing population
correlations will be short enough so that the diffusing population will not
move significantly within that time window. Thus it will essentially look
like an immobile population over this time scale and will be removed by the

immobile filtering algorithm.

In order to quantify what is meant by “fast” and “slow” relative charac-
teristic times, flowing and diffusing particle population computer simulations
were run in which the characteristic flow time was kept constant (2.78 s), and
the characteristic diffusion time was varied over several orders of magnitude
from 4 ms to 4000 s. The computer simulated image series were 128 by 128
pixels with 100 frames at a density of 100 particles/um?, using 0.1 s/frame,

2 radius of 0.4 um.

0.06 pm/pixel and an e~
These simulations showed that the STICS analysis is valid when the char-
acteristic diffusion time is about five times faster or slower than the charac-

teristic flow time (see Fig. 4.7). When the characteristic times are similar,
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the post filtering remnants of the diffusing population contribution (DG in
Figure 2.9) effectively weight the flowing Gaussian correlation peak (FG in
Figure 2.9) back towards the zero lags origin when we try to fit the position
of the Gaussian peak in Eq. 2.17. However, both the x and y velocities are
affected in a proportional manner by the radially symmetric diffusion corre-
lation peak centered at the origin, so the direction of particle flow can still
be correctly determined from the underestimated values of v, and v,. In the
simulations shown, the angle of the velocity vector of the particles relative
to the x-axis was set to be 146.3° and the average recovered angle for the
4 data points (with filtering) that lay outside the shaded acceptable range
(£10% region) in Figure 4.7 was 146.2 £ 0.4°. In such scenarios, if one can
assume that the total flow is dominated by the directional flux (as opposed
to separate flows in random directions), then one can scale the x and y ve-
locities from STICS analysis according to the total velocity obtained by ICS
analysis. Note that the temporal ICS analysis will be sensitive to all flow
processes present, which will all contribute to the decay of the correlation
function. For the case of the adhesion protein transport at the membrane
in cells that we report in this work, the second scenario of faster diffusion

(Tp > 7¢) was usually observed.

4.3.2 Dynamic Range of Immobile Filtering

The performance of the STICS analysis in the presence of an immobile pop-
ulation was verified under varying conditions of signal to noise, number of
frames sampled and the fraction of the population that is immobile (the total
particle density being kept constant). For each set of conditions, 100 com-

puter simulations were run to obtain an average value and an uncertainty
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(SD). As before, the simulations were 128 x 128 pixels, with a spatial resolu-
tion of 1 um/pixel and a temporal resolution of 1 frame/s. The flow velocity
was set at 0.1 um/s, typical of what would be obtained in a retrograde pro-
tein transport cellular experiment. The density was kept constant at p=10
particles/BA, while the signal to noise ratio, as defined in Eq. 3.2, was var-
ied from 1 to 10, and the number of frames was varied between 10 and 120.
This series of simulations explored the overall accuracy and precision of the
STICS technique in the presence of a variable fraction of immobile species

(0 to 90% immobile).

The results of these simulations are shown in Table 4.2. There are a
few things to note in this table. The first is that when provided with a
sufficient number of frames (here N=120), the STICS analysis can always
recover the input velocity, within these ranges of signal to noise ratio or
immobile population fraction. The only exception to this was the worst case
scenario, when S/N=1 and the immobile fraction was 90%, where the error
is slightly larger but still encompasses the input value. Another element to
point out is that for S/N above 1, the fraction of immobile population does
not change the results dramatically, suggesting that the number of frames
is a much more important factor for accurate STICS analysis. Finally the
results also show that STICS needs more than 30 frames in the image series
(at v=0.1 um/s) in order for the subtracted average in each pixel to make
sense. This can be rephrased in more general terms. Since particles move
3 pixels in 30 frames and the laser focal spot radius was set at 4 pixels
in these simulations, it seems that we need our particle to move at least

one full beam focus diameter during the time of the experiment. This is
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. S/N
imm]| 1 3 5 10 N
-0.17 £0.84 | -0.10 £0.64 | -0.01 0.46 | 0.024 0.34 10
0% -0.02+ 0.59 | 0.155% 0.006 | 0.155+ 0.004 | 0.155% 0.002 30
0.106£0.003 | 0.106% 0.001 | 0.106+£0.001 | 0.106+ 0.001 70
0.101+£0.002| 0.1014 0.001 | 0.101+£0.001 | 0.101+£ 0.001 120
0.04£0.77 | -0.064 0.69 | -0.03+0.55 -0.01+ 0.39 10
20% -0.10£0.73 | 0.1544 0.009 | 0.15540.004 | 0.1554 0.003 30
0.106+£0.004 | 0.106=+ 0.001 | 0.106£0.001 | 0.106+ 0.001 70
0.10140.002| 0.101+ 0.001 | 0.1014+0.001 | 0.101+£ 0.001 120
-0.09£0.73 | -0.09% 0.70 | -0.0540.62 0.014 0.44 10
60% 0.04+0.66 0.13+ 0.14 0.15540.004 | 0.155+ 0.002 30
0.10+0.04 0.106+ 0.001 | 0.106£0.001 | 0.106+ 0.001 70
0.10140.003 | 0.101+ 0.001 | 0.101+0.001 | 0.101+£0.001 120
-0.07+0.69 | 0.00+ 0.65 -0.18+0.71 -0.124+ 0.66 10
90% -0.05+0.69 | -0.05+ 0.63 | 0.16+0.24 0.155+ 0.004 30
0.00+0.65 0.1074 0.003 | 0.106+0.002 | 0.1064 0.001 70
0.09+0.15 0.100= 0.002 | 0.101+£0.001 | 0.101+0.001 120

Table 4.2: STICS simulation analysis results for the measured z-velocity
(set value v, = 0.1 pm/s) for the characterization simulations
with immobile fraction (imm), signal to noise ratio (S/N) and
number of image frames (N). Each number in the table repre-
sents the average velocity measured by STICS from 100 simu-
lations under the set conditions and the quoted uncertainty is
the standard deviation (SD). All simulations were corrected for
tmmobile population.
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closely tied to Eq. 4.3, which was set as the condition at which we could
recover the correct beam radius from the STICS analysis after performing
the immobile population removal on the time series. This also explains the
consistent overestimation of the velocity. Since we artificially introduce a
negative correlation at the origin, in the presence of noise the fit peak is
located farther from the origin than it really should be, thus giving a higher
velocity value. However, the results of Table 4.2 show that when provided
with a sufficient number of frames, we can expect this overestimation to be

under 5%.

4.3.3 Window Filtering Correction for ICS

The previous section dealt with removing the immobile fraction by filtering
out the zero frequency component (DC offset) in the intensity pixel traces of
the image time series. However, this only works for a truly immobile pop-
ulation, and we have seen some deviation when we add a slowly diffusing
population (that is almost immobile on the time scale of the measurement).
Window filtering removes a local average around a point, so that intensity
fluctuations due to slow processes, which are essentially static over that time
window, will not contribute to the correlation function. Some cases where
removing a slowly varying signal might be of interest include the situation of
a large vesicle moving slowly through the field of view, the protruding edge
of a cell advancing at a slower rate than the dynamic transport of molecular
species inside the cell, or more simply laser illumination fluctuations or focus
drift. However, one has to be careful that the window size chosen for the
average calculation is large enough to allow quasi-complete relaxation of the

dynamic processes of interest, otherwise the deviations outlined in section
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4.3.1 will become significant.
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Figure 4.8: Generation of single (x,y) point intensity trace with slowly vary-
ing noise. The original intensity trace (A) is added to a slowly
varying noise signal (B) which has a characteristic time scale
of fluctuation, to give the modified signal (C).

Computer simulations were run to test the applicability of the theory pre-
sented in section 2.7.2. We extracted a 30,000 point intensity trace from a
single (x,y) point in a simulated image time series where the particle diffusion
coefficient was set to be 0.01 um?/s, the time resolution was 0.1 s/frame and
the e~? Gaussian radius was 0.3 um. This data constituted what we call the
“original signal” (see Figure 4.8A) to which a slower time scale, smoothly

varying noise signal (see Figure 4.8B) was added to simulate a slow drift in
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Figure 4.9: Temporal autocorrelation functions and best fits of the original

single pizel intensity trace signal (30,000 frames) and modified
signal (original + slowly varying noise with characteristic time
scale of 20 s), for both filtered and unfiltered simulation data
sets. The filter window size was set at 101 frames (AN =50).
The intensity data was extracted from an image time series
simulation.

intensity to give what we refer to as the “modified signal” (see Figure 4.8C).

The added noise signal was obtained by convolving in time a computer gen-

erated random noise signal with a Gaussian function. It was thus given a

characteristic timescale which we define as the e~ ! extent of the Gaussian

function. The window average filtering was applied to both the original and

modified signals, generating a set of two filtered signals. The autocorrela-
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tions of all four signals were calculated and fit for using Eq. 2.25 with the

appropriate window size.

Temporal autocorrelation functions of the original and modified signal,
both unfiltered and filtered with a 101 frame (AN = 50) window, are shown
in Figure 4.9 for a characteristic slow noise signal timescale of 20 s. No-
tice that the correlation functions for the filtered signals reach values below
1. This is due to the fact that we are introducing negative correlations in
the filtered data when using the window filtering. The autocorrelation func-
tion of the original signal was fit using Eq. 2.10 to obtain an estimate of
D = 0.010 £ 0.001 pum?/s (average of 100 simulations plus SD). Figure 4.9
also shows an autocorrelation function computed after filtering the original
signal with the window averaging defined by Eq. 2.19 with a window size
of 101 frames (AN = 50). The theoretical curve in Eq. 2.25 (adapted for
AN = 50) was fit and a D = 0.010%+0.001 um?/s was calculated from the fit
parameters. This shows that with the original signal (filtered or not), both

fitting equations can recover the diffusion coefficient.

The same process was repeated with the modified (slow noise added) sig-
nal, and the autocorrelation functions for the unfiltered and filtered modified
signal are shown in Figure 4.9. Note that in this specific case, the char-
acteristic timescale of the added noise signal is 20 seconds, or 200 frames,
which is longer than our window size for the filtering (101 frames). Thus we
expect the window average removal to get rid of the slowly varying signal

efficiently. For the unfiltered signal, the best fit recovered diffusion coefficient
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was 0.004 4 0.001 ym? /s, whereas for the filtered signal, it was 0.010 +0.002
wm?/s. This shows how the regular ICS fit model fails if there are significant
variations in the intensity of the signal, i.e. the fluctuations arise from longer
time scale intensity changes of the slowly varying noise signal in addition
to the dynamics of the molecule of interest. Notice how the autocorrelation
curves for both the filtered original signal and the filtered modified signal are
almost identical. This shows that if the fluctuations are slow enough, then
the window average filtering can eliminate them and the diffusion coeflicient

can be measured accurately using Eq. 2.25 as a fit model.

The results of a general analysis using window filtering for various added
noise signal characteristic timescales are shown in Figure 4.10 and Table
4.3. As expected, ICS can recover the set simulation diffusion coefficient
when fitting the unfiltered original signal temporal autocorrelation function
to Eq. 2.10. We obtain an accurate diffusion coefficients with a slightly
larger standard deviation when fitting the filtered original signal temporal
autocorrelation function to Eq. 2.25. After adding noise of varying charac-
teristic timescales to the original signal, we see that in most cases ICS fails
to recover the set diffusion coefficient except when the time scale of the noise
signal is very long relative to the diffusion timescale. This means that we
are adding very slow fluctuations to our signal and we do not expect these to
significantly influence the fitting of the correlation function using Eq. 2.10.
After filtering combined signal and noise, and fitting to the modified decay
(Eq. 2.25) of the temporal correlation function, it is clear that we can recover
the set diffusion coeflicient in almost all cases simulated. The only excep-

tion was the first case where the characteristic noise timescale is 5 seconds,
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Figure 4.10: Diffusion coefficients recovered from temporal correlation
analysis of simulated pizel intensity traces before and after
windowed tmmobile population filtering, on both the origi-
nal signal and the modified signal (original + slowly varying
noise). Points and error bars on the graph represent the av-
erage of 100 simulations with standard error of the mean. All
simulations were 30,000 frames, with the diffusion coefficient
set at 0.01 um? /s, the time resolution at 0.1 s/frame and the
Gaussian e~% radius at 0.8 um. The shaded band shows the
set diffusion coefficient with an acceptable error of +10%.

or 50 frames, which is half of our window size. In this case, we expect to
see significant intensity variations due to the noise signal within our window
frame, which is going to affect the correlation function of the filtered signal.

However, even when the characteristic timescale of the noise signal is 100
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characteristic D original | D original | D modified | D modified
noise timescale unfiltered filtered unfiltered filtered

(s) | (frames) | (um?/s) (um?/s) | (um?/s) (um?/s)

5 50 0.01040.001 | 0.01040.002 | 0.13040.030 | 0.000+0.001
10 100 0.01040.002 | 0.01040.002 | 0.00140.001 | 0.01010.002
15 150 0.010£0.002 | 0.010£0.002 | 0.003£0.001 | 0.010+0.002
20 200 0.010+£0.001 | 0.010+0.002 | 0.004=£0.001 | 0.010+£0.002
25 250 0.010£0.002 | 0.01040.002 | 0.00540.002 | 0.01040.002
40 400 0.010+0.002 | 0.01040.002 | 0.007£0.002 | 0.01040.002
50 500 0.01040.002 | 0.010+0.002 | 0.00840.003 | 0.010+0.002
100 1000 0.010£0.002 | 0.010+£0.002 | 0.010£0.002| 0.010+0.002
200 2000 0.01040.001 | 0.01040.002 | 0.010+0.002 | 0.010+£0.002

Table 4.3: Diffusion coefficients recovered from ICS analysis of simulation
time series before and after windowed immobile population fil-
tering (AN = 50), on both the original signal and the modified
signal (original signal+ slowly varying noise). All simulations
were 30,000 frames, and every number in the table represents the
average 1CS measured D for 100 simulations with standard error
of the mean. The diffusion coefficient was set at 0.01 um? /s, the
time resolution was 0.1 s/frame and the Gaussian e~ convolu-
tion radius was 0.3 um.

frames (so almost equal to our window size of 101 frames), the filter adjusted

correlation analysis can recover the set diffusion coefficient within error.

4.3.4 Window Filtering and STICS

Window filtering of a slowly moving population can also be of use when using
the STICS technique for mapping velocities. To asses the effects of this type
of filtering on the STICS analysis, we generated simulated images of 128 x 128
pixels, with a spatial resolution of 0.1 wm/pixel and a temporal resolution
of 0.1 frame/s. The particle velocity was varied between 0.01 and 1.0 pum/s,
and the window filter size was changed from 21 to 111. The measured STICS

velocities are shown in Figure 4.11 as a function of set input velocity, where
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each point represents the average from 100 simulations, and the error is the

standard deviation (SD).
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Figure 4.11: Plot of STICS measured mean velocity as a function of set in-
put particle velocity after window immobile population removal
for image series simulations. Fach error bar is the standard
deviation for 100 simulation measurements.

These simulations show that the STICS velocity measurement fails for
small window sizes, but this is not due to an intrinsic flaw in the STICS
method. It fails because the window size is too small and the underlying

dynamic processes (here flow) do not relax completely over the time scale of
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v AN 21 51 81 111
0.01 -0.47£0.18 -0.0240.03 -0.010£0.003 | -0.007+0.003
0.05 -0.13+0.47 0.013£0.008 | 0.007£0.009 | 0.03%0.02
0.1 0.1094:0.001 0.105+£0.008 | 0.1024+0.002 | 0.1001%0.0003
0.5 0.5001+0.0003 | 0.500140.0002 | 0.5000+0.0008 | 0.500240.0003
1.0 0.9997+0.0008 | 1.0000+0.0001 | 1.0000+0.0001 | 1.000+£0.001

Table 4.4: STICS measured mean velocity as a function of set input velocity
and filter window size for image series simulations as a function
of set velocity (v) and window size (AN ). Each number in the
table represents the average velocity measured by STICS from
100 simulations under the set conditions and the quoted uncer-
tainty is the standard deviation (SD).

the window. Table 4.4 shows the simulations STICS analysis results, and we
can see that the measurement systematically fails for v = 0.01 pm/s because
even in 111 frames (i.e. 11.1 seconds) the particles only move 0.111 pm (just
over one pixel). This does not satisfy the sampling criterion of Eq. 4.3 as
discussed in sections 4.3.1 and 4.3.2. This condition will be met for v > 0.05
pm/s at a window size of 111. In the limiting case of v = 0.05 pum/s, the
particles move approximately 0.5 um over the time scale of the window when
AN=111 (which is greater than the Gaussian e~2 radius of 0.3 um) and the
STICS measured velocity of 0.03+£0.02 is within error of the set value. In
general, the STICS analysis works well with the window filtering when the

dynamic process of flow relaxes completely over the time scale of the window.

Also, as discussed in the previous section, by removing a window average
from the data, we are introducing negative correlations. This is reflected
in the STICS analysis as the Gaussian flow peak becomes negative, i.e. a

negative amplitude gq(0,0,s) in Eq. 2.17. However, this does not prevent
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us from fitting for the x and y location of this peak, and thus we can still

extract the correct velocity values.

4.4 Chapter Conclusion

In this chapter we modeled fluorescence microscopy imaging of protein dy-
namics in the membrane by using computer simulations of point emitter
particles diffusing and flowing in a two dimensional matrix. We used the
simulation image time series to investigate the dynamic range, accuracy and
precision of STICS, under set simulation conditions of photobleaching rate,
signal to noise ratio, immobile population removal by Fourier filtering, and
different ratios between the characteristic diffusion and flow times for the
particles. We found that STICS was almost unaffected by photobleaching or
low signal to noise ratios, since it always recovered the set value for velocity
within the ranges studied. Furthermore, we investigated the effects of immo-
bile filtering and found that given proper spatio-temporal sampling, STICS
can recover accurate particle velocities even in the presence of a high density
immobile population. Finally, we showed that the window immobile filtering
algorithm could be applied in cases where a slowly varying noise signal is
superimposed over the signal of interest, and that both STICS and temporal
correlation analysis could recover the set velocity values after the filtering.
Overall, we have seen that STICS is a very robust technique by investigating
its dynamic range using a range of simulation parameters. The next chapter

will focus on the characterization and implementation of STICS in vivo.
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5 In Situ Characterization

5.1 Introduction

The sheer complexity of microenvironments present in the cell stems from
the diversity of the molecular components, their dynamics and an incredibly
complex myriad of interactions between them. However refined computer
simulations might be given the rapid progress that has been made in micro-
processor speed and computational algorithms, they currently cannot mimic
the full extent of a living cell. Therefore, a careful testing of any new bio-
physical technique has to be performed in situ, and care must be exercised in
applying the method to account for cellular variability, inhomogeneous dy-
namical parameters, background and noise, and any other important physical
parameter. In this section, I first present the controls and corrections that
have to be applied to an image time series before performing the STICS
analysis, in order to remove the background noise and correct for drift and
intensity variations. 1 will then show control measurements performed on
chemically fixed cells to test the detection limits of STICS, and present the
measurement and analysis of typical cases of diffusion, non directed flow and
directed flow of labeled proteins in living CHO cells. Finally, I will demon-
strate a test experimental application of the cross-correlation implementa-
tion of STICS using fluorescent microsphere samples, and an in situ proof
of principle experiment using two kinds of labeled tracers in fish epidermal
keratocytes to characterize applications of the STICS and STICCS methods

in real systems.
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5.2 Image treatment
5.2.1 Noise and Immobile Population Removal

The white or random noise that, by definition, has a uniform power spectral
density at every frequency in the range of interest, only contributes at the
zero spatio-temporal lag point of the correlation function: 74(0,0,0). This
stems from the fact that white noise is essentially uncorrelated beyond zero
lags, so it only correlates with itself. As discussed in the original ICS contri-
butions [51, 97], it is possible to correct for white noise by acquiring a white
noise image and measuring its average to subsequently remove this number
from the original cell image. The same method can be applied by selecting
an “off-cell” region from the image (see Figure 5.1), which should essentially
be white noise assuming there are no real fluorescent particles in the region.
The average intensity of that subregion is subsequently subtracted from the
whole image to correct for the mean background. The result of this process
is shown in figure 5.1, where the corrected image shows better contrast, and
more importantly for quantitative analysis has a reduced background noise

contribution.

In STICS analysis, however, the immobile population filtering algorithm
will remove the white noise offset at every pixel by removing the average
value of that pixel over the time course of the experiment. This temporal
average should be equivalent to the spatial average if we assume that the
system is ergodic, and that there are no significant laser intensity variations
during the acquisition. The Fourier filtering algorithm is designed to remove

the immobile component in the space time correlation function of Eq. 2.5. If
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Figure 5.1: Ezample of white noise correction. A) TIRM image of a CHO
cell transfected with actin-mRFP. B) Histograms of the inten-
sity inside and outside of the cell, as defined by the two white
bores shown in A. C) Mean background corrected image of
the cell showing better contrast than the original image. D)
New histogram of intensities after average background correc-
tion from the same regions inside and outside the cell. Scale
bars are 5 um.
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this immobile component is not removed, then the STICS measured velocity

is consistently underestimated (see section 4.3.2).

Filtering the immobile population will also remove any extended spatial
correlations due to static fluorescent structures in the image. These struc-

tures can severely deform the spatial correlation function if they are present.
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Figure 5.2: Fzample of immobile population filtering. A) TIRM image from
a time series of a CHO cell transfected with a-actinin con-
jugated with GFP. B) Same image after immobile population
removal using the whole time series. Scale bars are 10 um. C-
F) Time evolution of the spatio-temporal correlation function
without immobile population removal. Note that the flow peak
is buried in the static correlations of the immobile population.
G-J) Time evolution of the spatio-temporal correlation function
with the immobile population removed. The translating peak due
to flow can now easily be seen and tracked.

For example, if the image contains an actin stress fiber (bundle of actin fila-

ments) or focal adhesion contacts, the correlation function will be perturbed
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and deviate from the expected Gaussian shape as these cellular structures
are larger than the diffraction limit. Figure 5.2A-B shows a typical image of
a cell transfected with GFP tagged a-actinin and the resulting image follow-
ing the immobile population filtering in the image series. Because a-actinin
strongly interacts with actin, it is also organized in filamentous structures
(along the actin filaments) and thus the spatial correlation function of the
first image reflects this organization by showing long “bands” of spatial cor-
relations oriented in the direction of the filaments (see Figure 5.2C-F). Any
fraction of the total population that undergoes directed motion along the
filaments will be obscured by the static correlations of the mostly immobile
proteins. The image after filtering shows less structure, and although the
organization along filaments can still be seen, the filtered time series shows
much clearer speckles of a-actinin undergoing retrograde flow. Indeed, the
spatial correlation function after the immobile population filtering does not
show these long range spatial correlations, and we can clearly track the trans-
lating Gaussian peak due to flow and extract the a-actinin velocity in and

around the filaments (see Figure 5.2G-J, white arrow head).

5.2.2 Drift Correction

An unavoidable consequence of imaging with any type of microscope is sam-
ple drift. The sample is mechanically coupled to the objective lens by the
immersion oil (see section 2.3.1). So after focusing, the system can some-
times slowly relax to an equilibrium, leading to a slight lateral drift or a drift
from focus axially of the sample on the microscope stage. Such a drift in
the image series will hamper quantitative pixel-to-pixel analysis of any spa-

tially dependent variable. The drifts can range from as small as one half to a
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few micrometers, which corresponds to typical distances moved by proteins
such as actin over the duration of a typical image series collection. Such a
drift would show up as a significant component, of protein flow in the STICS

analysis, and it is essential to be able to detect and correct for drift when it

appears.
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Figure 5.3: Measured stage drift as a function of time for an image time
series of a CHO cell. As we increase the rebinning factor n,
the precision in the drift measurement increases. The dotted
line shows a linear best fit to the n=5 curve. This theoretical
curve 1s used for final drift correction on the entire image time
series.

A simple correlative approach was used to find the drift at any time
point. It assumes that the cell doesn’t change shape extensively, and requires
locating a source of background fluorescence that is bound to the coverslip

surface and can thus act as a reporter of stage drift. The correction scheme
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simply uses the first frame of the movie (or a cropped subregion around
the marker) as a reference frame, and subsequently correlates every frame
of the image series with the first one. The maximum of the correlation
function (Zmaz, Ymaz) 18 located for each frame by a simple maximum location
search. This gives the x and y displacements (i.e. the drift) at which the
images best match (correlate with) the first reference image with about a one
pixel precision. One can fit a function (usually a Gaussian), to extract the
peak location with subpixel precision, but the choice of that function would
critically influence the peak location and is therefore not so reliable. An
alternate approach, that was used in this work, involves artificially enhancing
the resolution of the image by a factor of n by rebinning the pixels of the
original N, by N, pixelsimage into a grid nx N, by nXx N, using interpolation.

The correlation function is now recalculated, and the pixel location where

/

ez Ymaz) 18 Telated to the original pixel

it attains its maximum value (x

location (Zmaz, Ymaz) and the rebinning factor n through:

xl

a y1/naa:
(mmam,ymax) - (—%—xv T) (51)

thereby artificially enhancing our precision by a factor of n. By visual inspec-
tion of the drift-corrected image time series, we found that values of n greater
than 5 do not result in a significant improvement of the drift correction pro-
cess. Most of the time, drift shows up as a non-random, directed motion of
the stage (see Figure 5.3). The level of precision increases as we increase the
value of n, and we can see that the drift approaches a linear function in the
rebinned image series. We can combine this rebinning approach with a linear

regression fit without offset, in order to extract the theoretical displacement
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of the stage at all times which is the used to correct the original image time
series. This type of linear fit is shown in Figure 5.3 (for n = 5), and the

corrected image series using the fit data shows no apparent drift.

5.3 STICS Applied to Cells
5.3.1 Fixed Controls

In order to asses the detection limits of STICS under true imaging conditions
with drift, we imaged CHO cells transfected with EGFP labeled Epidermal
Growth Factor Receptor (EGFR), a cell surface signalling receptor which has
been implicated in the development and progression of a number of human
cancers including those of the lung, breast, prostate, colon, ovary, head and
neck [107]. The CHO cells were fixed in 4% paraformaldehyde/PBS, a func-
tional fixative that cross-links membrane proteins, thus killing and “freezing”
the cell. Early FRAP studies have shown that protein motion stops after the
cells have been fixed with paraformaldehyde above a concentration of 3.7%

[108].

Several chemically fixed cells were imaged, at slow or fast scan speeds,
to generate image time series with 100 frames and these were subsequently
corrected for drift and analyzed by STICS to extract the x and y velocities
of the labeled proteins. The imaging times were varied from 45 s to 10 min,
and the sample drift and focus drift varied between the data sets. Fast scan
samples showed no sample drift, whereas slow scan samples had to be cor-
rected for drift. An extreme example of focus shift is shown in Figure 5.4A

(basal membrane) and B (inside the cell). In this case the sample has drifted
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Figure 5.4: First (A) and last (B) frames of a confocal image time se-
ries of EGFP labeled EGFR receptor in CHO cells fized in 4%
paraformaldehyde (scale bars are Sum ). This is an extreme ez-
ample of focal plane drift in z, combined with a small sample
drift. C) Average STICS measured velocities for regions inside
fized cells, at different scan speeds. The arrow indicates the
average x and y velocity measured for the case illustrated in A
and B. The error bars are SD and the shaded region represents
the deduced detection limit of £0.001 pm/s.

down so the focal plane ends up inside of the cell as can be seen in the latter

image (Figure 5.4B). We do not expect focal plane shifts to result in any
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apparent velocity of the labeled protein because the intensity changes are
only due to motion in the z direction. However, stage and sample motions
in x-y will affect the STICS measurement and will set a lower limit on the
velocities that can be measured. For the fixed cell experiments the STICS
measured x and y velocities were less than 0.001 um/s (see Fig. 5.4C), thus
establishing our lowest detection limit at typical confocal microscopy settings
and sampling times. The larger errors for the fast scan setting are probably
due to our inability to accurately detect a very small sample drift on the
shorter time scales and thus correct for it. Longer imaging times allowed us
to properly remove the sample drift and thus obtain a detection limit on the

order of 10™*um/s.

The fixed cell controls also allow verification that fluorescence photo-
bleaching does not affect the accuracy of the STICS measurements. The
bleaching curves for the samples analyzed in Figure 5.4, plotted as the rela-
tive intensity normalized to the first frame as a function of time, are shown
in Figure 5.5. As expected the bleaching rate is not really dependent on the
imaging rate, but rather on the total laser exposure time for the cells. As
such, the fast scan samples bleach at a faster rate than the slow scan samples.
In all cases, however, the STICS analysis was not affected and returned ve-
locity magnitudes that were zero (within error), consistent with expectations

for the fixed cells.
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Figure 5.5: Photobleaching curves (mean intensity relative to the first frame
mean versus time) for the fized cell image time series analyzed
from Figure 5.4C.

5.3.2 Diffusion, Non Directed Flow and Directed Flow in Living
Cells

We used STICS to measure diffusion, directed and non-directed transport of
EGFP/adhesion proteins expressed in living CHO cells. We first measured
a-actinin/EGFP constructs expressed in CHO-KI1 cells plated on fibronectin
coated substrates. The protein a-actinin is a cytoplasmic molecule that
binds to the intcgrins at the membrane and also links to the actin cytoskele-
ton [3]. We have previously determined that a-actinin is more mobile in the
peripheral regions of the CHO cells where there is active lamellar extension,
retraction, and membrane ruffling when the cells are activated on fibronectin

[2]. We focused our measurements on such active peripheral areas (see Figure
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5.6).

Figure 5.6:

Two-photon LSM images of the basal membrane of CHO cells
expressing EGEFP labeled a-actinin. The cells were plated on
fibronectin and imaged at 37° C. The regions analyzed with ICS
and STICS are shown as white squares and the STICS analysis
results are shown in Figures 5.7, 5.8 and 5.9. A) A 64?2 pizels
region where the temporal autocorrelation function is best fit
to a single population diffusion model (Eq. 2.10). B) A 128*
pixels region where the temporal autocorrelation function is best
fit to a two population flow/diffusion model (Eq. 2.13). C) A
1282 pizels region where the temporal autocorrelation function is
best fit to a two population flow/diffusion model (Eq. 2.13). All
images are 512 by 480 pizels at a resolution of 0.118 um/pizel,
and a total of 180, 360, 120 frames at a temporal resolution of
5, 5 and 15 s/frame for A), B) and C) respectively.

Figure 5.7 shows the ICS and STICS analysis results for a typical 64 x 64

pixels? region from the cell periphery (Fig. 5.6A). As is evident from Figure

5.7B, the temporal autocorrelation function can be fit very well by Eq. 2.10,

which yields a diffusion coefficient of (9 & 1)10™4 um?/s. We show contour

plots of the spatio-temporal correlation functions for different time lags in

Figure 5.7A for i) the unmodified image time series (without the immobile

population removed) and ii) the filtered image time series (with the immobile

population removed). As expected for isotropic diffusion, in both cases the

correlation peaks stay centered at zero spatial lags (indicated by the white
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Figure 5.7: In vivo ICS and STICS analysis of protein diffusion in a pe-
ripheral basal membrane region of a CHO cell (Fig. 5.6A) ex-
pressing EGFP labeled a-actinin. A) Contour plots of space-
time correlation functions from STICS analysis (Eq. 2.16) as a
function of lag time for i) without and it) with the immobile pop-
ulation filtering. B) A plot of the ICS temporal autocorrelation
function and best fit to a single population diffusion model (Eq.
2.10). The recovered diffusion coefficient was D = (9 &+ 1)10™*
um?/s. C) Peak tracking plot of the STICS correlation peak
reveals that it stays centered at zero spatial lags, within the pre-
cision of our measurement.

cross-hairs). Fitting for the displacement of the Gaussian yields a very small
velocity vsrics = (1.2 £ 0.8)107® pum/s (from v, = (—0.9 £ 0.8)1073 and
vy = (—0.8£0.7)107° um/s, see Figure 5.7C) which cannot be attributed to

a very slow concerted flux of the proteins, since these values are on the order
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of the detection limit of our measurements, which was determined by apply-
ing the STICS analysis to cells fixed in 4% paraformaldehyde (see section
5.3.1). These results illustrate a membrane region exhibiting mainly slow
protein diffusion and immobile proteins, and show how the random walk is
manifest in both the ICS and STICS analyses. It probably represents a-
actinin that is bound to membrane integrins (that are diffusing or immobile)

and not bound to actin as flow was not detected.

The same analyses were applied to a different region from the periphery of
another cell (Figure 5.6B) and reveal different protein transport. Figure 5.8
shows our results for a 128 x 128 pixels? region in which clusters of a-actinin
are clearly resolved, and these clusters can be observed to flow in a directed
fashion on what appear to be defined linear tracks. However, the ICS (Fig-
ure 5.8B) and STICS (Fig. 5.8A,C) analyses yield very different values for
the flow speed: vics = (13 &£ 1)107% um/s and vsrics = (1.1 +0.7)1073
pm/s (from v, = (—0.67 £ 0.02)107% and v, = (—0.9 £ 0.8)107% um/s).
The velocity magnitude from ICS analysis is about 10 times higher than the
velocity value measured by STICS. This is due to the fact that STICS only
measures the net resultant directed component (here the majority, but not
all of the clusters were observed to be traveling to the left and down in the
image series), whereas ICS measures an average total flow speed (and a small
diffusion coefficient in this case) as it is not sensitive to the direction of flow.
Hence the combination of ICS and STICS allows us to distinguish between
unidirectional flow (see also Figure 5.9), or directional flow in many random
directions as was the case here. Visual tracking of the resolved clusters shows

that the directions are mostly random with a slight bias towards the lower
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Figure 5.8: In vivo ICS and STICS analysis of protein flux in random di-
rections in a peripheral basal membrane region of a CHO cell
(Fig. 5.6B) expressing EGFP labeled o-actinin. A) Contour
plots of space-time correlation functions from STICS analysis
as a function of time for i) without and i) with the immobile
population filtering. B) A plot of the ICS temporal autocorre-
lation function and best fit to a two- population flow/diffusion
model (Eq. 2.13). The recovered ICS wvelocity and diffusion
were vics = (13 £ 1)107% um/s and D = (8 £ 1)10™* um?/s.
C) Peak tracking plot of the the STICS correlation peak reveals
that it stays centered at zero spatial lags, within the precision
of our measurement, yielding a very small resultant velocity of

VSTICS = (11 + 0.7)10_3 /Jm/S.
left of the image. In this case, single particle tracking (SPT) analysis will in
principle provide more information about the range of transport [56]. How-

ever, it proved difficult to track the clusters with the fluorescence signal to
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Figure 5.9: In vivo ICS and STICS analysis of directed protein flow in a
peripheral basal membrane region of a CHO cell (Fig. 5.6C)
expressing EGFP labeled a-actinin. A) Contour plots of space-
time correlation functions from STICS analysis as a function of
time for 1) without and i) with the immobile population filter-
ing. B) A plot of the ICS temporal autocorrelation function and
best fit to a two- population flow/diffusion model (Eq. 2.13).
The recovered velocity was vics = (7.7 £ 0.8)1073 pum/s and
a small diffusion coefficient was measured: D = (6 £ 1)107°
um?/s. C) Peak tracking plot of the STICS correlation peak
(after the immobile population removal) shows a net peak dis-
placement from the zero lags center, yielding velocities of v, =

(1.8 +£0.3)107% and v, = (5.5 £0.2)107% um/s.

noise ratio and for the density of expression of EGFP proteins typical for

these transfected cells.
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The true advantage of STICS emerges in situations where no bright clus-
ters are clearly resolved (hence SPT would be impossible), but concerted flux
of protein can still be detected and quantified by correlation analysis. Figure
5.9 shows results for a 128x128 pixels? region of a basal membrane of a CHO
cell expressing EGFP labeled a-actinin (Figure 5.6C). Here the ICS analy-
sis again detects the flow and diffusion of two separate populations (Figure
5.9B) with vics = (7.7 £ 0.8)107° um/s and a small diffusion coeflicient
D = (6 +1)107% um?/s. The STICS analysis also detects a directional flow
(Figure 5.9A,C) with v, = (1.8 £0.3)1073 and v, = (5.5 £ 0.2)1073 um/s.
This example illustrates again the importance of removing the immobile pop-
ulation, since the correlation function peak in Figure 5.9A i) is dominated by
immobile protein population spatial correlations and thus roughly stays cen-
tered at zero spatial lags. However, after the immobile population removal,
one can see and track the Gaussian peak clearly moving away from the zero
lags center towards the bottom left corner and the residual zero lags centered

peak from the diffusing population (Figure 5.9A ii).

5.4 STICCS Applied to cells
5.4.1 Fluorescent Microsphere Control Experiments

Fluorescent microsphere samples containing a mixture of non interacting
flowing spheres emitting at two different wavelengths (referred to as “red”
and “green”) were prepared and imaged as a function of time by two-photon
laser scanning microscopy (see Materials and Methods) to generate an image
series of two independent particle populations. By adding another image

series of flowing microspheres to both independent channels in the collected
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time series, we could effectively introduce an artificial interacting popula-
tion (i.e. one that appeared in both image series which models different
fluorophores being detected at the same pixel locations in the two detection
channels). The direction of flow of this “interacting” population added by
image processing was set by the user and is thus independent of the direction
of flow of the original non-interacting particle populations. A typical overlay
image from these image processed time series is shown in Figure 5.10A. It
has an equal density of red and green microspheres, with approximately 40%

of each population interacting.

These image time series were then analyzed with two-color STICCS, yield-
ing directional flow information for the red and green populations, as well as
for the interacting fraction. We can recover the flow directions of the non-
intefacting red and green microsphere populations to within 8 degrees in the
presence of the interacting population, as compared with the recovered flow
directions of the original image time series (i.e. analysis performed without
the addition of the interacting population). Moreover, we can find the direc-
tion of flow of the interacting population to within 5 degrees. Figure 5.10B
shows the one to one relationship between the velocity magnitudes (in x and
y) for the added population as measured by STICS from its original image
time series before addition and the velocity magnitude of the added (inter-
acting) population as measured by STICCS in the dual channel constructed
image time series (i.e. in the presence of the non interacting microsphere
populations). The data are plotted for several experiments in which the
direction of flow of the added interacting population was varied. The mag-

nitudes of the velocities measured by STICS analysis on the dual channel
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Figure 5.10: A) A composite image of fluorescent microspheres consisting
of two different fluorescent particle populations (red and green)
and an added “interacting” particle population (yellow). The
composite image was made by adding an independent image
of fluorescent spheres (our artificial interacting population) to
both detection channel images. For each image time series
constructed, the velocities of the non interacting populations
remained constant whereas the interacting fraction’s direction
of flow was systematically changed. B) A plot of the inter-
acting population velocity magnitudes in x and y measured by
STICCS in the composite image series (i.e. with the added
population and the red and green microspheres all present) ver-
sus the velocity magnitude of the introduced interacting pop-
ulation measured by STICS in its original image series (i.e.
without the red and green particles present).

image time series differ by less than 10% from the original values (as mea-
sured separately before the addition of the artificial interacting population);
see Tables 5.1 and 5.2. Note that the density of the added interacting particle
population was five times lower than the densities of the independent green

and red particle populations.
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Set first population second population
(green) (red)

# velocity (um/min) velocity (um/min)

Uy vy Vg vy
1 [0.1140.04 |-1.53£0.05 | 0.14+0.05 | -1.48£0.05
2 1 0.274£0.05 |-1.2440.04 | 0.30+0.03 | -1.2240.05
3 10.03£0.01 |-1.0040.10 | 0.16+0.03 | -1.23+0.05
4 |0.03£0.06 |-1.0840.06 | 0.11£0.09 | -0.98+0.04
5 |0.0240.05 |-1.2740.03 | 0.03£0.05 | -1.20+0.05
6 |0.1240.02 | -0.51£0.05 | 0.1740.03 | -1.6320.05

124

Table 5.1: STICCS measured parameters for an image time series of flow-

ing microspheres (see Figure 5.10). Shown here are the x and y
velocities of the green and red microspheres as recovered by the
STICCS analysis. Errors are SD from 4 separate measurements.

Set | isolated interacting interacting population
# population velocity velocity (um/min)
(pm/min)

Vg Uy Uy I Uy
1 |-0.01£0.05 | -3.9£0.1 -0.01+0.09 | -4.2+0.2
2 | 1.3940.04 | 0.0940.04 | 1.21£0.07 | -0.2540.05
3 1-1.26+£0.03 | 2.274+0.03 | -1.084+0.04 | 2.13+0.04
4 |-1.44£0.03 | 0.60£0.01 | -1.33£0.03 | 0.5240.03
5 |-0.31+£0.03 | -1.05+0.02 | -0.224+0.05 | -1.02%0.05
6 | 0.21+0.02 | 0.98£0.02 | 0.19£0.02 | -1.00%0.02

Table 5.2: STICS measured parameters for an image time series of flowing

microspheres (see Figure 5.10). The column “isolated interacting
population velocity” refers to the STICS analysis results before
image addition when applied to the single channel image time
series that is subsequently added to the dual channel image time
series to create the interacting population. The column “inter-
acting population velocity” refers to the two-color STICCS anal-
ysis results after image addition for the co-localized (interacting)
population in the composite image. These values should, in the-
ory, be equal to the values in the column “isolated interacting
population velocity”. FErrors are SD from 4 separate measure-
ments.
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The STICCS analysis for the single non-interacting populations is influ-
enced by both the fraction that is flowing independently and the movements
of the interacting fraction (i.e. there are two directions of flow in these image
time series). As long as the overall contribution to the image intensity from
the interacting population does not exceed that of the non-interacting popu-
lation (for example 80% of the population is flowing independently and 20%
is interacting), STICS can detect the differences in flow direction between the
populations. In situations where this effect becomes dominant (i.e.: equal
contribution from interacting and non-interacting species), one can fit two
Gaussians to the spatial correlations of Eq. 2.6 (rq(€,n,7), a=1 or a=2)
to extract the two flow directions. Conversely, the STICCS analysis of the
interacting population can also be influenced by the single non-interacting
populations if these happen to flow in the same direction and random spatial
cross-correlations occur. These effects account for the errors in magnitude
and direction of the measured velocities in the constructed image series as
compared with the velocities measured from the original image series of the

independent microspheres.

5.4.2 STICCS Measurement of Concerted Flow of Labeled Pro-

teins in Cells

To verify the STICCS analysis in living cells, we chose epidermal fish kerato-
cytes because they are thought to exhibit internal fluid flow during migration.
The cells were electroporated to introduce fluorescent tracer particles in their
interior (for full experiments and discussion see section 6.2). In short, these
tracers are small and inert so they do not show any interaction with the actin

cytoskeleton or other components and are, therefore, expected to move with
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any fluid flow within the cell. Hence when we electroporate fish keratocyte
with two kinds of tracer particles and image the different emission wave-
length, we expect that both of these tracers will show the same transport

behavior as they will both reflect fluid flow inside the cell.
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Figure 5.11: STICS measured velocity maps for A) Alexa Fluor /88 B)
655QDs and C) the STICCS measured cross-correlation veloc-
ity map. Scale bar is 10 um, velocity scale vector is 1 um/s.
D) Magnitude and E) directional correlation plots for fluid
flow fields measured from the movements of the two different
tracers in the same cell.
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Using wide-field fluorescence microscopy, we imaged fish keratocytes elec-
troporated with 655QDs (quantum dots with emission at 655nm) and AF488
(Alexa Fluor 488nm), using two channel detection with minimal bleedthrough
(less than 1%). The two resulting image series were analyzed individually us-
ing STICS to reveal the flow patterns as mapped for each fluorescent tracer.
Magnitude and directional correlation analysis (as described in section 3.5)
shows that both flow fields are very similar as expected (see Figure 5.11A-
B). The magnitude correlation coefficient was 0.98 £0.06 and the directional
correlation coefficient was 0.991 + 0.002 (see Figure 5.11D-E), indicative of
quasi-identical flow fields. We also performed the magnitude and directional
correlation analysis between the AF488 map (Figure 5.11A) and the STICCS
measured cross-correlation map (Figure 5.11C), as well as between the 655QD
map (Figure 5.11B) and the cross-correlation map to verify that the two
channel cross-correlation velocity map was accurate. The former resulted
in a magnitude correlation of 0.93 + 0.06 and a directional correlation of
0.994 4+ 0.002; while the latter yielded values of 0.97 4 0.08 and 0.983 £ 0.003
for the same correlation coefficients. These results show that STICCS is able
to accurately detect and measure concomitant flow fields of two different

labeled tracers in situ.

5.5 Chapter Conclusion

Spatio Temporal Image Correlation Spectroscopy provides a unique tool to
study protein motion in situ. The control measurements performed on chem-
ically fixed cells presented in this chapter indicate that, after background

noise removal and drift correction, the velocity detection limits of STICS are
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low enough (~ 0.001 um/s) that we can readily measure typical retrograde
flow velocities of adhesion proteins and actin in cells (~ 0.01 — 0.1 um/s).
Furthermore, the immobile population removal algorithm was successfully
applied to STICS data obtained from living cells in order to remove the
contributions of large, static molecular complexes to the spatial correlation
function. This permits the use of the STICS analysis even in regions where
there is a significant immobile population fraction, and spatially non-uniform

distributions of labeled proteins.

ICS is sensitive to flow regardless of the direction, since the temporal cor-
relation measures intensity fluctuations in time irrespective of the (spatial)
direction in which particles enter and exit exit the beam focal volume. On
the other hand, STICS only registers concerted flow motion, because it yields
a directionally weighted net resultant correlation peak due to all flows. By
combining both ICS and STICS, we have demonstrated the ability to dis-
tinguish between cases of diffusion, flow in random directions and concerted
directional flow in living cells. Finally, the cross-correlation applications of
STICS and STICCS were tested using control experiments with fluorescent
microspheres to generate image time series where we could artificially add an
interacting population. These experiments show that we can recover the flow
directions of the non-interacting and interacting populations to within a few
degrees. STICCS was also applied in situ using two fluorescent tracers in-
troduced into fish epidermal keratocyte, where fluid flow is expected to carry
both tracers with the same velocity magnitude and direction. The measured
magnitude and directional correlation coefficients show that STICCS can

accurately measure perfectly concomitant flow of two fluorescent markers.
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6 Velocity Mapping applications in living cells

6.1 The Molecular Clutch

Cell migration is regulated, in part, by the connection between adhesion
components and the actin cytoskeleton. However, the very large number
of proteins involved in the linkage from the substratum to actin and their
complex network of interactions (see section 1.3) make it difficult to directly
assess their role in migration of living cells. In this section, STICS exper-
iments to characterize the protein linkage between integrin and actin, and
identify points of slippage or disconnect in this linkage in migrating cells will

be described and discussed.

6.1.1 Cell Adhesion Mechanisms

Cell protrusion and adhesion are essential features of cell migration and con-
tribute to many processes such as cancer metastasis, embryonic develop-
ment, and inflammation, as well as the formation of synaptic connections in
the central nervous system [8]. Cell migration results from the integration
of several component processes including the formation and stabilization of
protrusions and the assembly and disassembly of adhesions [3, 8. While
protrusions are generated by actin polymerization, the protrusion rate can
be modulated by the relative rate of retrograde actin flow, which is adhesion
dependent [68, 109]. The assembly of adhesions is regulated, in part, by
the tension sensed by adhesions, which serve as both signalling centers and
traction points for the generation of tension [8, 110]. Therefore, adhesion
and protrusion are interconnected, and are controlled by the efficiency of the

linkage between actin and the extracellular matrix (ECM). Thus, it is not
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surprising that this linkage emerges as a potential site for molecular regula-

tion of protrusion and migration.

Despite its importance, only a few studies have addressed the ECM-actin
linkage and its regulation in migrating cells. The role of integrins in the
linkage has been studied in retracting regions at the rear of migrating cells
[111, 112, 113]). In these regions, the linkage severs between integrin and
other adhesion components leaving integrin-containing residual “footprints”
on the substratum, often with an accompanying sliding of the remaining ad-
hesion [112, 113, 114]. The amount of integrin in the footprints depends on
parameters that contribute to adhesion strength such as the concentration of
ECM proteins, the number of integrin receptors, the affinity of integrin for
the ECM, as well as calpain activity [111]. These observations suggest that
for retracting regions of the cell, the bond between the ECM and integrin is
much stronger than that linking integrin to the cytoskeleton [111, 112, 113].
Recently, paxillin was observed to be associated with footprints in focal ad-
hesion kinase (FAK) null cells, suggesting FAK regulates a labile site in the
linkage [21]. These observations lead to a hypothesis in which the linkage be-
tween the ECM and actin is regulated by changes in interactions among link-
age components through the action or modification by signalling molecules
such as src, paxillin and focal adhesion kinase (FAK). The challenge, there-
fore, is to define the nature and regulation of the linkage at the molecular

level in migrating cells.

A plethora of in vitro studies point to interactions among integrin, talin,

vinculin, a-actinin, and actin as likely critical elements of the linkage [115,
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116, 117]. Adhesion associated signaling components, like FAK, Src, and
paxillin, could then regulate the ECM-actin linkage through modifications
that result in altered affinities, e.g., phosphorylation or enzymatic cleavage
of proteins that comprise the linkage. Such studies would benefit greatly
from quantitative estimates of the efficiency of the linkage in situ and the
roles of various adhesion components in determining its efficiency and where
the points of linkage are actually located. It is difficult to clearly define and
characterize the molecular basis of the ECM-integrin-actin linkage in living
cells because of the small volume of the cell, the complex spatio-temporal
interactions between integrins and adhesion proteins [20] and the diverse ki-

netic and kinematic behaviors of the cytoskeleton [69].

Recently, there have been significant advances in cellular imaging tools
and techniques that allow this problem to be approached via direct mea-
surements inside cells. In situ experiments using chromophore-assisted laser
inactivation (CALI) have implicated talin as a critical molecule in the ECM-
actin linkage during filopodial extension and retraction [118]. More recently,
extensive characterization of actin dynamics using Fluorescent Speckle Mi-
croscopy (FSM) [66] has revealed two spatially, kinetically and kinematically
distinct actin networks; with the local expansion of the lamella network be-
ing a source of persistent cell protrusion [69]. There is also evidence that the
actin network is dynamically coupled to adhesions [103, 119] by a biphasic
relationship between the retrograde flow of actin and the cell-substratum ad-
hesiveness [103]. Nevertheless, to date, the dynamics of the integrin linkage

to actin has not been systematically studied during cell migration.
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In this section we apply STICS to determine protein flow velocities through-
out the cell and use these measurements to explore how F-actin based motility
is regulated by interactions with adhesion components. We will quantify a-
actinin retrograde velocities and compare them to actin retrograde flow, and
then apply STICS to generate co-transport maps of actin and a set of adhe-
sion proteins within sub-regions of the basal membrane in doubly transfected
cells. The detailed cellular maps of molecular transport allow us to quantify
the coupling between adhesion components and actin and thus provide new
insight about the mechanistic details of the integrin-actin linkage during cell

protrusion and migration.

6.1.2 Retrograde Flow

The ubiquity of actin retrograde flow [109] and recent evidence for directed
motion of some adhesion proteins [1, 2] suggest that we can study the cou-
pling between the actin cytoskeleton, adhesions and ECM at the molecular
level by measuring protein velocities. We transfected mouse embryonic fi-
broblasts (MEFs) with an a-actinin-GFP expressing cDNA, and imaged the
cells using TIRM (see section 2.3.4), which excites only the molecules within
~100 nm of the coverslip. Even for the few image series where movement
of a-actinin could be seen by eye, the density of labeled protein along actin

filaments was too high to perform SPT or FSM measurements.

As described in section 2.6, STICS analysis relies on averaging two di-
mensional spatial correlation functions calculated from fluorescence intensity
fluctuations. Large spatially extended bright fluorescent structures in the

image time series will dominate and distort the spatial correlations, making
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Figure 6.1: A) STICS measured velocity map of a-actinin-GFP in an MEF
cell image time series (100 frames, 10 s/frame), color coded
for velocity magnitude (spatial scale bar is 5 um, velocity scale
vector is 5 um/min). The analysis to generate this map took
approximately 10 minutes, using partially overlapping 16X 16
pizels® bozes. The inset shows an expanded region of the ve-
locity map. STICS correlation flow peak tracking is nearly im-
possible without immobile population filtering (B-C-D). After
immobile population removal (E-F-G), a clear displacement of
the flow peak can be observed (white arrow head) and tracked to
reveal the direction and magnitude of the velocity. Using this
filtering, the contribution of the large static features and other
immobile proteins to the correlation function are removed. H)
Inverse relationship between cell protrusion rate (measured by
kymograph analysis) and STICS measured retrograde velocity
for a-actinin. Error bars are SD.
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the tracking of the correlation peak due to flow unfeasible. The a-actinin
organizes along actin filaments which appear as extended filamentous struc-
tures in the images and remain visibly static over the imaging periods. We
used the immobile filtering algorithm to remove the immobile component
which eliminated the perturbing contribution of these bright static spatial
structures from the correlation function (see section 2.7). As described be-
fore, if the immobile component is not removed, then the flow peak of the
correlation function is “buried” under the static spatial correlations of the
filament structures (Figure 6.1B-D). However, after the algorithm is applied
one can easily see and track the flow peak (see Figure 6.1E-G, lower left
quadrant). This algorithm allowed us to map the retrograde movement of

c-actinin along organized actin filament structures.

Forces driven by actin polymerization push the membrane forward gener-
ating protrusion [68], while membrane resistance to this pressure combined
with myosin activity leads to retrograde actin flow. Using STICS, velocity
maps were generated in protruding regions of cells where we found that o-
actinin was undergoing retrograde flow with rates ranging mostly from 0.2
to 0.7 pm/min (Figure 6.1A). These rates are comparable to those previ-
ously measured for actin [67]. We found an inverse relationship between the
a-actinin retrograde velocities and the cell protrusion rates (measured by
kymograph analysis across the moving membrane edge boundary [103, 120]),
which is also analogous to what others have seen for actin [121] (Figure 6.1H).
The measurement of a-actinin velocities and an inverse relationship between

velocities and protrusion rates comparable to actin validates and establishes
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the generality of the STICS method for an arbitrarily expressed fluorescent

protein.
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Figure 6.2: Velocity maps of a-actinin and actin before and after treatment
with Cytochalasin D (200 nM). Spatial scale bar is 5 um, veloc-
ity scale vector ts 1 um/min. The image time series were 200
frames at 5 s/frame.

6.1.3 Hidden mobility and velocity perturbations

When analyzing the co-transport of adhesion proteins and actin, two simul-
taneous cellular velocity maps are generated for image series collected in two
detection channels (one for each labeled protein). The absolute values of the
protein velocities cannot be directly compared among different cells due to

the dependence of the retrograde velocities on the protrusion rate, substrate
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adhesiveness and the rate of actin polymerization which varies between cells
[121]. Therefore, only velocities relative to the velocity of actin within a
given cell contain useful information about the degree of interaction between
actin and the adhesion proteins. Moreover, spatial variations in the rates
of actin retrograde flow in the lamella dictate that the comparison between
flow fields should be done locally. To probe the role of myosin II and actin
polymerization in protrusion and their effect on the integrin-actin linkage in
the lamella, we focused on the a-actinin/actin protein pair and performed
cellular pharmacological (drug) perturbations to actin polymerization and

filament contraction.

Cells were imaged before and after treatment with cytochalasin D (cy-
toD), which inhibits the polymerization of actin free barbed ends [122] and
therefore stops cell protrusion. The velocity maps of a-actinin and actin
computed before and after treatment (see Figure 6.2) revealed that both the
actin and the a-actinin velocities were markedly reduced following cytoD
treatment. The average actin velocity decreased from 0.22 £ 0.01 to 0.063 +
0.002 pm/min and the average a-actinin velocity from 0.19 =+ 0.01 to 0.058
+ 0.002 pm/min, a reduction of a factor of 3 in each case (Figure 6.3A,
compare before and after CytoD). Nevertheless, although the mean velocity
of both actin and a-actinin decreased after CytoD treatment, their mobility
was still correlated as their relative magnitude (0.98 £ 0.20 before and 1.0
+ 0.3 after treatment) and directional correlation coefficients (0.90 + 0.03
before and 0.91 + 0.03 after treatment) remained unaffected (Figure 6.3B,

see section 3.5 for the definition of the correlation coefficients).
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Figure 6.3: A) Average velocities before and after treatment with Cytocha-
lasin D (200 nM) or Blebbistatin (50 pM) for a-actinin and
actin (black and grey bars, respectively; error bars are SEM).
B). Relative magnitude and directional correlation coefficients
for a-actinin and actin (black and grey bars, respectively) before
and after treatment with Cytochalasin D and Blebbistatin.

To examine the role of actin filament contraction in the retrograde pro-
tein flow, the ATPase activity of non-muscle myosin II (a motor protein

that drives retrograde movement of the actin filaments) was inhibited with
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blebbistatin [123]. Blebbistatin very rapidly inhibits the retrograde move-
ment of actin and a-actinin as shown by the STICS analysis. The average
actin velocity decreased from 0.36 £ 0.03 to 0.12 £+ 0.01 pm/min and the
average a-actinin velocity from 0.40 + 0.03 to 0.13 & 0.01 pum/min, again
showing a reduction by a factor of 3 in each case (Figure 6.3A). However,
in contrast to the cytoD treatment, the directional correlation coeflicient be-
tween actin and «-actinin was also significantly reduced across the lamella
by the treatment with blebbistatin, decreasing from 0.88 £ 0.07 to 0.36 +
0.10 (Figure 6.3B). A very small directional correlation coefficient implies
that local flow vectors are not aligned in their directions and that the flow
fields are decoupled. This suggests that the tension generated by myosin II

is likely required to establish or maintain the coupling of actin and a-actinin.

It is important to note that the image time series of actin and a-actinin
(Figure 6.2) had a very diffuse distribution of labeled proteins (as is often the
case for CHO K1 cells plated under migration promoting conditions) with
no visibly apparent labeled protein movement and no organized filamentous
structures. With this type of protein expression, it would be virtually im-
possible to perform FSM or SPT, however, STICS analysis easily reveals an

underlying directed motion of both proteins.

6.1.4 Correlated velocity of actin and adhesion proteins

To investigate the interactions of adhesion-associated molecules with the
actin cytoskeleton during protrusion, we co-transfected cells with adhesion
proteins labeled with green fluorescent protein (GFP) and actin-monomeric

red fluorescent protein (mRFP) expressed at near endogenous levels. We ob-
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served patterns of retrograde movement for a5-integrin, paxillin, FAK, talin,
vinculin (Figure 6.4A-E), a-actinin (see Figure 6.2, before treatment) and
actin (Figure 6.4F-J) in the lamella of migrating cells. Integrin velocities
were very slow throughout the lamella; its magnitude correlation relative
to actin was only 0.14 + 0.08 and showed little association with the actin
flow direction (directional correlation coefficient of 0.3 + 0.5) consistent with
their tight engagement with the ECM (see Figures 6.4A and 6.5). Based
on ICS analysis, more than 80% of the integrins were essentially stationary
relative to the substrate (data not shown). This is in accord with our earlier
measurements where we found the majority of ab-integrin to be immobile
and supports the notion of a strong interaction with the substratum in the

lamella of the cells [2].

STICS velocity measurements of the adhesion proteins were performed
in regions of the lamella where there are extensive adhesions by using the
immobile removal algorithm to filter out the spatial correlations due to the
adhesion structures themselves (Figure 6.4B-E). In contrast to the integrin,
the adhesion proteins paxillin (Figure 6.4B), FAK (Figure 6.4C), talin (Fig-
ure 6.4D) and vinculin (Figure 6.4E) were highly directionally correlated
with the actin flow (Figure 6.4G-J) suggesting a direct or indirect interac-
tion with actin. The adhesion proteins paxillin (0.67 + 0.06), FAK (0.62 &
0.10), talin (0.72 £ 0.06) and vinculin (0.69 + 0.13) all have intermediate
relative velocity magnitudes when compared to actin. On average the veloc-
ity of these proteins was approximately 2/3 that of the actin for every region
of interest on the velocity maps (Figure 6.5). Relative velocities that are less

than unity suggest that we are measuring an adhesion protein population
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Figure 6.4: Dual detection channel protein STICS wvelocity maps for cells
that were co-transfected with one type of adhesion protein-GFP
and actin-mRFP and imaged by TIRM. Velocity maps of GFP
conjugated A) integrin (121 frames, 10 s/frame), B) pazillin
(121 frames, 5 s/frame), C) FAK (200 frames, 10 s/frame),
D) talin (52 frames, 9 s/frame), E) vinculin (176 frames, 10
s/frame), and the corresponding actin-mRFP velocity maps (F-
J). Insets are a 2x expansions of the small white box in each
image. Spatial scale bars are 5 um, velocity scale vectors are 1
pm/main.
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that is transiently binding and unbinding to the actin. We are effectively
averaging over the actin bound and unbound states of the adhesion protein,
with the bound protein moving at the same speed as actin (for 70% of the
measurement time) and the unbound protein immobile (for 30% of the mea-
surement time). In this situation, averaging over the bound and unbound
populations gives a lower apparent velocity correlation with actin. It is im-
portant to note that we are able to measure transient binding in this manner
because the immobile removal algorithm only filters out contributions from
fluorescent components that do not move throughout the entire duration of

the image time series analyzed.
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Figure 6.5: Relative magnitude and directional correlation coefficients for
the actin/adhesion protein pairs studied by STICS analysis.
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The velocities of a-actinin were the most uniformly and highly correlated
with those of actin. These two proteins had nearly identical velocity maps,
with a relative magnitude correlation coefficient of 1.0 + 0.2 and a direc-
tional correlation of 0.91 £ 0.03 (Figure 6.5) which is consistent with the
tight coupling of a-actinin to actin as a bundling protein. Nevertheless, to
our knowledge this is the first time a correlated velocity between a-actinin

and actin has been observed and quantified in situ.

For paxillin it is interesting to note that the flow vectors correlate highly
with the a-actinin flow direction in regions where there are adhesions (see
Figure 6.6), while in other areas of the lamella, its movement is not direc-
tionally correlated with a-actinin and shows vectors pointing in multiple
directions. The large randomly oriented white vectors shown in the left part
of the lamella for paxillin (see Figure 6.6B) are artifacts and are observed in
cases where there is no directed protein motion. In such cases, we are able
to distinguish these noise artifacts from vectors due to real protein flows by
visual inspection as we can see when the best fit Gaussian peak jumps to a
low amplitude background correlation noise peak. Moreover, the directional
correlation between a-actinin and paxillin was 0.85 + 0.03 and the relative
magnitude was 0.79 £ 0.10, which are similar to actin-paxillin correlation
scores. This is expected since a-actinin and actin are highly correlated.
These observations suggest that the directed movement of paxillin is due to
its association with actin through a-actinin, as part of the linkage complex.
At the rear of the lamella there is little evidence for directed motion of the
adhesion proteins, which is consistent with the reduced number of adhesions

and disassembly of actin filaments in this region of the cell (Figure 6.6). The
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Figure 6.6: Dual detection channel STICS velocity maps for a CHO cell
co-transfected with a-actinin-GFP (A) and pawillin-DsRed (B)
and imaged by TIRM (100 frames, 15 s/frame). The large
randomly oriented white vectors in the lower left part of the
lamella for paxillin are fitting artifacts for cases where there
is no detectable protein transport. They appear throughout the
rear of the lamella, where there are fewer adhesions and actin
filaments are disassembling. Insets are 2x expansions of the
small white boxes in each image. Spatial scale bar is &5 um,
velocity scale vector is & pm/min..

flow maps are also less homogeneous towards the rear of the lamella where
there are many more velocity vectors pointing in variable directions. This
can be seen for both talin and vinculin with some arrows actually pointing

towards the leading edge of the cell (Figure 6.4D, 6.4E).
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6.1.5 Discussion

Regulation of the linkage between the ECM and the actin cytoskeleton is
critical for cell migration. The linkage is important for regulating the rate
of protrusion, protrusion stability and retraction. In addition, the linkage
plays a role in adhesion assembly, growth, turnover and the signaling of ad-
hesions by coupling myosin mediated actin filament contraction to adhesions
[89, 124, 125]. In this study we have addressed the efficiency of the ECM-
actin linkage and identified potential points of regulation. To address the
nature of the linkage we have applied our new image correlation method:
STICS. Flow velocities for a number of adhesion components (ab-integrin,
a-actinin, paxillin, FAK, talin and vinculin) were compared with those of
actin to identify which proteins within the linkage are potential sites of reg-

ulation via transient decoupling or slippage.

Previous studies have pointed to integrins as the link between the sub-
stratum and cytoplasmic adhesion components making the binding between
integrin and adhesion components a potential site of decoupling or slippage
with actin [111, 112, 114]. At the rear of the cell the strength of integrin bind-
ing to the substratum depends on the affinity of the integrin to the ECM, the
concentration of fibronectin on the substratum, and the number of integrin
receptors [111, 112, 114]. The studies presented here show that the binding

of integrin to the substratum is also strong in the lamella of migrating cells

where upwards of 80% of the integrin is immobile.

While the integrin movement is not tightly coupled to actin, all four

other adhesion components studied here: paxillin, FAK, talin and vinculin
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Figure 6.7: Diagramatic model of a protruding lamella illustrating how dif-
ferential retrograde motion of actin and adhesion proteins can
occur by a two-level linkage mechanism. The actin (stippled
chevrons) and a-actinin (ovals) are always concomitant. Slip-
page occurs either A) proxzimal to a-actinin through its interac-
tion with one of the components of the linkage complez (shaded
molecules), or B) prozimal to the integrins (trapezoid dimers)
perhaps at the talin-integrin linkage. C) Protrusion and cell
body translocation can occur through polymerization generated
forces and myosin II contraction when both levels of the adhe-
sion complex are engaged.

are. This suggests that there is a significant disconnect between integrin and
the cytoplasmic adhesion components. The very similar coupling to actin
shown by all four adhesion proteins implies that they all reside in a common
complex, likely including additional adhesion proteins, which is more tightly
associated with actin than integrin. These adhesion proteins show velocities
that are 70% as large as actin suggesting that the linkage complex is bound
to actin 70% of the time and to immobilized integrin 30% of the time. Thus,
the ECM-actin linkage appears to be regulated at two levels: between the
adhesion complex and integrin and between the adhesion complex and actin

(see Figure 6.7).
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On the first level, there are many potential proteins that link integrin to
the actin cytoskeleton, however talin is emerging as a major player in cell
motility [126], so it is a likely candidate for a point of slippage, or disconnect.
Its presence is essential for force generation [127], integrin activation [128],
and the stability of junctions [129]. Although the integrin-talin interaction is
relatively weak, it may be highly regulated [130], and many weak interactions

may be easier to regulate than a few strong bonds.

On the second level, the binding of the adhesion complex with actin may
be regulated via the interaction between ca-actinin and one of its binding
partners. Several studies point to a-actinin as a key protein in tension sens-
ing by adhesions. Studies suggest that the incorporation of a-actinin into
adhesions occurs late in their assembly and the incorporation is coincident
with the onset of their retrograde movement, or sliding, when the adhesions
are presumably under higher tension [100, 131]. In a similar vein, force de-
pendent strengthening of integrin-cytoskeleton linkages correlates with the
incorporation of a-actinin into adhesions and this incorporation is regulated
by FAK dependent phosphorylation on Y12 of a-actinin [100, 132]. The po-
tential role of a-actinin in tension sensing, the fact that it is known to bind
both vinculin and talin, and the fact that vinculin and talin are thought to
comprise a structural linkage between integrin and actin [133, 134] all make
a-actinin a likely candidate for regulation of the ECM actin linkage via its

binding to the linkage complex.

It is interesting that the directional correlation of actin and a-actinin is

significantly reduced by inhibition of myosin II activity with blebbistatin.
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One possibility is that tension generated by myosin II regulates a-actinin-
actin binding through tension induced effects on the organization of actin
within filaments. Alternatively, it may affect actin organization directly be-
cause of a weakened affinity of myosin Il for actin, when cells are treated

with blebbistatin [135, 136].

These measurements are significant as they represent the first experimen-
tal approaches that attempt to discern the nature of the adhesion complex
in living cells. These results represent an important application of STICS
to a highly significant problem in cell biology and demonstrate the power of
quantitative biophysical measurements in situ. In the next section, STICS
is applied to a different live cell application: mapping fluid flow in migrating

keratocytes.

6.2 Fluid Flow in Fish Keratocyte
6.2.1 Fluid Flow in Cells

Indirect observations {137, 138, 139] have suggested that fluid intake through
aquaporin channels at the leading edge might play an important role in cell
motility. The hydrodynamic forces they induce could oppose membrane load
and help actin polymerization, and they might influence transport of compo-
nents of the actin machinery to the leading edge [140]. Cytosolic fluid flow
has been well-studied in many systems such as plant cells or amoebae [141]
where velocities range from 10 nm/s to 100 pm/s. Current techniques for

measuring flow in these cells involve imaging and following large organelles
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inside the cell, but they are inadequate for measuring fluid flow in cells that

have a dense actin meshwork.

In collaboration with the Theriot lab at Stanford University, we devised
a technique for measuring fluid flow in the lamella of migrating cells by
incorporating fluorescent tracers in the cytosol, imaging and then performing
STICS analysis. A requirement for these tracers is that they have minimal
non-specific interactions with the actin meshwork or other components of the
cytoplasm, in order for their motion to reflect the fluid flow. We chose two
sizes of methoxy-polyethylene-glycol (PEG) coated quantum dots (PEG QDs;
655QDs and 545QDs with a diameter of 30.7 nm and 24.5 nm respectively)
and green fluorescent protein (GFP, ~4x3 nm LxW) as tracers. The PEG
coating on the QDs helps in reducing non-specific interactions both in-vivo
[42, 142], and in in-vitro actin networks [143]. It is interesting to note that
the measured flow should be independent of tracer size because the Reynolds
number is very low at this size scale so all flow is laminar. In such cases,

viscous friction dominates and the particles are simply carried by the flow.

6.2.2 Fluid Flow Patterns in Keratocytes

Flows were measured by electroporating a high concentration of PEG coated
quantum dots in fish keratocytes and imaging those using wide field fluo-
rescence microscopy followed by STICS analysis. Fish keratocytes present a
very nice system for the study of cytosolic fluid dynamics in migrating cells.
The cell motion is smooth and persistent with almost no change in shape
[5, 6], which makes it easy to define a cell frame of reference, and perform

analysis in this reference frame. The large and thin (~40 gm X 200 nm)
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lamella of moving keratocytes is an ideal substrate for the two dimensional
STICS analysis. Also the essential macromolecular components of the cell
motility machinery are present in keratocytes, with distributions and func-
tions similar to other cells [144, 145]. Additionally all of these characteristics

make this system particularly amenable to biophysical modeling.

Figure 6.8: STICS velocity map measurements of flow for A) 545 QDs and
D) GFP. Panels B) and E) show the fluorescence image; while
panels C) and F) show the phase contrast microscopy image.
Images are oriented so that all cells are moving downward.
Measurements were performed by STICS in the cell frame of
reference. Each arrow corresponds to the average flow vector in
a 1.8x 1.8 wm? region around its center. The magnitude of the
flow is indicated by both its size and color. The cell migration
speeds are: 0.20 um/s, 0.14 im/s for A) and D) respectively.
The spatial scale bars are 10 um, the velocity scale vectors (on
A and D) are 1 um/s.
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We performed fluorescence microscopy imaging and then carried out STICS
analysis on many regions of the keratocyte lamella to generate velocity maps
as shown in Figure 6.8. We found that several general features stood out.
In all cells observed (N=>59) there was an approximately constant rearward
fluid flow away from the leading edge, opposite to the direction of movement
with a magnitude that was approximately 34 + 20% of the cell migration
speed (Figure 6.9; note that in the lab frame of reference this translates to a
net forward flow at 66 £+ 20% of the cell migration speed). The fluid flow in
the end lobes of the cell was usually slower, and exhibited correlation with
the angular motion in turning cells. The lobe that was most distant from
the center of rotation of the cell exhibited larger retrograde flows, consistent
with the interpretation of fluid intake since this lobe is also moving faster
(being further away from the center of rotation). We also found there was
a correlation between the perpendicular fluid flow and the rotation speed of
the cell (Figure 6.10). As the cell is rotating one way, the fluid lags behind,
so that in the cell frame of reference we observed a perpendicular fluid flow

in the opposite direction.

Moreover, we found that there was no dependence of the measured ve-
locity for fluid flow on the fluorescent tracer size. Independent fits showed
that the retrograde flow velocity dependence on the cell speed was the same
for the 655 PEG QDs (0.37 + 12%) and 545 PEG QDs (0.31 =+ 23%), and
for GFP (0.31 + 22%) which is almost an order of magnitude smaller in size
(see Figure 6.9). This is further evidence that we are indeed measuring fluid

flow, and that interactions with the cytoskeleton are an unlikely cause of the
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Figure 6.9: STICS was used to measure tracer flow in the cell frame of
reference for a population of migrating cells. The flow speed
parallel to the direction of cell motion, averaged over the front
region of the lamella, is shown for: 655QDs (diamonds, N=31
cells), 545QDs (squares, N=9 cells) and GFP (triangles, N=19
cells), as a function of cell speed. The linear regression fit line
corresponds t0 Vparaiier = 0.34 X Veey + 0.019 (R2 = 0.5). The
F-actin meshwork flow speeds measured from phalloidin labeled
actin (circles, N=12 cells) are shown for comparison (Vparauer =
0.84 x Ve +0.017, R2 = 0.94).

retrograde flow because we would expect this type of interaction to be size
and surface chemistry dependent, and would predict a greater velocity for

the smaller GFP molecules if this were the case.
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Figure 6.10: STICS was used to measure tracer flow in the cell frame

of reference for a population of migrating cells. The flow
speed perpendicular to the direction of cell motion, averaged
over the front region of the lamella, is shown for: 655QDs
(diamonds, N=31 cells), 545QDs (squares, N=9 cells) and
GFP (triangles, N=19 cells), as a function of cell speed.
The fit line corresponds to Vperpendicular = 9 £ 4um/rad x Q
(R? = 0.46) where Q is the cell rotational speed. The F-actin
meshwork flow (circles, N=12 cells) is shown for comparison
(Voerpendicular = 11 £ 5um/rad x Q, R* = 0.73).

We further applied the STICS analysis to generate velocity maps of phal-

loidin labeled actin filaments. The maps were qualitatively and quantita-

tively different from the the fluid flow tracer maps within the same cell type.

The actin retrograde flow was faster and, as expected, approximately equaled

the cell speed [146]. The actin flow pattern was much more coherent and
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showed less spatial variations. Taken together, all of these results suggest
that the quantum dot or GFP tracer flow measured by STICS reflects the

fluid flow in the lamells.

6.2.3 Active Flow Model

To account for these results, we collaborated with Prof. Alex Mogilner, a
theoretical physicist at UC Davis studying theoretical aspects of cell motility
6, 7, 147, 148, 149]. He developed a simple physical model describing the
behavior of the cytosolic fluid in a moving cell along the anterior-posterior
direction (Figure 6.11), which accounts for our experimental measurements.
The model assumes that actin dependent cell protrusion at the leading edge
is limited by membrane resistance, and that the osmotic pressure, P,sn,
at the leading edge contributes to the protrusion force. Let V, be the actin
polymerization speed, V; the speed of actin retrograde flow in the lab frame of
reference, and Ve = V,—V,, the cell speed. The rate of actin polymerization
is slowed by membrane resistance and can be approximately characterized

by the following linear force-velocity relation:

Pr_Pom
%=%<1——W> (6.1)

where Vj is the free polymerization rate, F, is the pressure of the membrane
resistance, and Pt is the pressure required to stall protrusion at the leading
edge. We further assume that permeability of the membrane is concentrated
at the leading edge of the cell, so that the fluid inflow rate is proportional
to the pressure difference between the actual osmotic pressure at the leading

edge Poem, and P22 | a constant model parameter defined as the equilibrium
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fluid flow: Vf
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actin flow: Vp

Figure 6.11: A diagramatic physical model showing a cross section of a
moving keratocyte in the cell frame of reference. The direction
of cell movement is to the right, with the large cell body in
the back and a thin lamella at the front. The actin meshwork
exhibits retrograde flow (red arrow) with a speed approzimately
equal to the cell speed. The fluid flow exhibits substantially
slower retrograde flow (blue arrow) accompanied by a pressure
gradient across the lamella, with P being the pressure at the
leading edge and Py, the pressure in the cell body. The effective
pressure difference across the membrane is equal to Pl —
Pysm. The parameters k,, and k. denote the permeability of
the membrane at the leading edge, and the permeability of the
actin meshwork, respectively. Model developed by Prof. Alex
Mogilner (UC Davis).

osmotic pressure at the leading edge at which the water influx would be
zero. With the membrane permeability, k,, (in units of um3/pN - s), as the
proportionality constant [138, 150], the speed of fluid flow into the cell, V5,
is given by:

Vf = k”n(Peq - Posm) (62)

osm

The velocity difference between the actin cytoskeleton and the fluid phase,

Vp — V4, is proportional to the pressure gradient between the cell body and
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the leading edge. This is characterized by the D’Arcy flow equation:

Pcb - Posm)

%—W:H( - (6.3)

where k' is the hydraulic permeability [138, 150] of the meshwork, Py is the

pressure in the cell body, and L is the lamellipodial length.

The three equations 6.1, 6.2 and 6.3 constitute a linear system for three
unknown variables, V,, V; and P,y as functions of the model parameters
Vo, B, Pstll P, K, Py and k. = k'/L. The solution of this system is
consistent with our experimental measurements of fluid flow as a function of
cell speed under the assumption that the observed cell-to-cell speed variation
is due to variation in the model parameters Vg, , P! and P, i.e. it is due
to variations in the polymerization rates and membrane resistance between

different cells. In this case we obtain the following simple relation:

Km

Vi a ——“——km_‘_kcvceu (6.4)

which implies that the fluid flow rate is linearly proportional to the observed
cell speed, with a proportionality coefficient less than 1. This is in excellent
agreement with the data (Figure 6.9). Estimates of the membrane and hy-
draulic permeabilities (k. ~ 10™% um3/pN - s and ky, ~ 1074 um3/pN - s, see
[151]) show that they are of the same order of magnitude, which is consistent
with the experimentally measured slope of ~0.34 for the linear fits (for which

we would need k. =~ 2k,).
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6.3 Chapter Conclusion

In this chapter we have applied STICS to study two very different biological
systems of interest for cell migration. First, we generated retrograde velocity
maps of several adhesion related proteins labeled with GFP and actin-mRFP.
We found that the integrins were essentially fixed to the substrate, whereas
a-actinin was always bound to actin and flowed in a retrograde manner that
correlated with the actin flow. In between these two extremes lie a group
of structural and signalling molecules (FAK, paxillin, vinculin and talin)
which have approximately 70% correlation in magnitude and direction with
the actin flow. Thus the STICS measurements suggest that these adhesion
proteins are part of a linkage complex that dynamically regulates the inter-
actions between the integrins and the actin cytoskeleton. These experiments
point to a two level molecular clutch mechanism where the linkage is proba-
bly regulated between the integrins and the linkage complex at the talin level,
and between the a-actinin and the linkage complex. Although the molecu-
lar clutch hypothesis was first proposed more than a decade ago [109], our
measurements represent the first attempts to measure the dynamic aspects

of its regulation in situ.

We also applied STICS to the unresolved problem of fluid flow in migrat-
ing cells. By introducing various tracer particles (quantum dots or GFP) in
the cytosol of moving keratocytes, we were able to map the retrograde flow
of fluid in the lamella. The flow was found to be independent of tracer size as
expected, and was always approximately 1/3 of cell migration speed, which

is in accord with a biophysical model developed by Prof. Alex Mogilner (UC
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Davis). Retrograde fluid flow maps of phalloidin-labeled actin showed much
faster flow, which were on the order of the cell speed. This is expected [146]
and shows a significant difference from our tracer results suggesting that the
quantum dot or GFP tracer flow measured by STICS truly reflects the fluid
flow in the lamella. These measurements indicate that fluid flow does play a
role in cell migration for keratocytes by alleviating the membrane load at the
leading edge and favoring actin polymerization, and answers a decades old
question by elegant application of quantitative biophysical measurements in

living cells.
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7 Conclusion and Outlook

Fluorescence microscopy has emerged as a versatile and productive tool in
biophysics, most importantly for in vivo studies of living cells. Imaging by
confocal, two-photon LSM or TIRM enables direct observation of proteins
in their native cellular environment. Applications range from qualitative
localization of proteins within the cell to quantitative dynamic studies by
SPT or correlation analysis of the image time series. Most of the existing
velocity measurement techniques are limited for applications involving deter-
mination of protein flow velocities in living cells (Chapter 1). To address this
need,we developed STICS as an extension of the intensity fluctuation correla-
tion family of biophysical analysis methods (Chapter 2). By spatio-temporal
correlation analysis of intensity fluctuations in fluorescence microscopy image
time series, STICS combines the directional information imbedded in the two
dimensional spatial correlations with the time dependent transport measured
by the temporal correlation. However, in the presence of a large immobile
population fraction, the STICS analysis will be dominated by the intensity
contribution from the static population. A filtering algorithm was devised
which removes the intensity contribution of the immobile species (Chapter
2) by filtering the zero (or low) frequency components in reciprocal space, for

every pixel trace in time before running the space-time correlation analysis.

The advantage of the STICS method is the extensive averaging that is
done over all pairs of images in the time series analyzed. This allows map-
ping of velocities even in cells with very low densities of labeled proteins, low

signal to noise ratio and with relatively short temporal sampling (Chapter
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4). Computer simulations have shown that situations in which the fluores-
cent molecules photobleach do not significantly affect the STICS analysis,
provided that the time scale for bleaching is not much shorter than the char-
acteristic flow time of the particles. The simulations also revealed that STICS
is able to perform very well even in poor imaging conditions where the signal
to noise ratio is as low as 1, provided that the number of frames is large
enough to allow sufficient averaging. The dynamic range of the immobile fil-
tering algorithm was investigated under varying conditions of signal to noise,
number of frames sampled and the fraction of the population that is immo-
bile. From these simulations, it was shown that the immobile filtering is best
applied when particles move at least one full beam focus diameter during
the time of the experiment, thus allowing full relaxation of the dynamic flow
process over this time scale. Moreover, removing the immobile and low fre-
quency components in the intensity trace for every pixel using the window
filtering algorithm can get rid of slow variations in intensity from unwanted

sources without affecting the results of the STICS analysis.

As a final step for characterization of the new method, the STICS anal-
ysis was applied in vivo (Chapter 5). We imaged a-actinin, which organizes
along actin filaments in spatially extended structures that perturb the STICS
analysis. The immobile filtering algorithm was successful in removing these
dominant spatial correlations due to the immobile population, allowing us to
map a-actinin velocities across the lamella in living CHO cells. By analyzing
typical cases of diffusion, flow in random directions and concerted flow in
vivo, we have further shown that the combination of ICS and STICS can

distinguish between these cases, because ICS is sensitive to flow speed irre-
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spective of particle direction while STICS measures a net resultant velocity
vector for the flowing molecules present. The cross-correlation application
of STICCS to fluorescent microsphere samples demonstrated the ability of
this method to recover protein flow magnitude and direction for both inter-
acting and non-interacting populations, provided the interacting population
remains coupled for the duration of the experiment. However, the more gen-
eral case of the varying protein interactions (where proteins bind and unbind
repeatedly), can be treated by analyzing the relative velocity magnitudes at

every point in the velocity maps for the two species.

STICS was then applied to the problem of cell migration, which is regu-
lated by several processes involving many different transmembrane, cytosolic
and cytoskeletal proteins (Chapter 6). By applying STICS to map out the
relative retrograde flow magnitudes of several adhesion related molecules and
actin, we were able to identify a complex linking the transmembrane integrins
to actin. The integrins were stationary relative to the substrate as expected
[2]. On the other hand, a-actinin was found to be entirely associated with
actin, consistent with the tight coupling of a-actinin to actin as a bundling
protein. The protein complex was found to comprise structural proteins such
as talin and vinculin, as well as signalling molecules such as paxillin and FAK.
We found that the linkage complex is bound to actin 70% of the time and
to immobilized integrin 30% of the time. The ECM-actin linkage appears
to be regulated at two points of labile linkage: one proximal to the inte-
grins, one proximal to the a-actinin. Furthermore, perturbation of the actin
polymerization using Cytochalasin D did not affect the relative magnitude

and directional correlation of a~actinin, indicating that polymerization does



7 CONCLUSION AND OUTLOOK 162

not play a significant role in regulating the integrin-actin linkage. However,
inhibition of myosin II using blebbistatin significantly reduced the coupling
between the a-actinin and actin flows. This might be because the tension
generated by myosin II regulates a-actinin-actin binding through tension in-
duced effects on the organization of actin within filaments. Interestingly,
a-actinin is present only in adhesions that are under tension and this bind-
ing is regulated by a FAK dependent tyrosine phosphorylation of a-actinin
[100, 132].

Finally, we used STICS to look at fluid low in the lamella of epidermal
fish keratocytes, which are amongst the fastest migrating cells (Chapter 6).
We introduced different fluorescent tracer particles, like PEG coated quan-
tum dots or GFP, in the cytosol of migrating keratocytes and imaged them.
Using STICS, we obtained maps of retrograde fluid flow in the lamella of
these migrating cells. The flow was found to be independent of tracer size as
expected for fluid flow, and the fluid flow speed was always approximately
1/3 of cell migration speed, which is in accord with a model developed by
Prof. Alex Mogilner at UC Davis. Moreover, fluid flow maps of phalloidin-
labeled actin showed faster retrograde velocities for the cytoskeleton, on the
order of the cell speed, which is expected [146] and which are significantly
different from the tracer speeds. Taken together, this data suggests that the
quantum dot or GFP tracer flow measured by STICS reflects the fluid flow
in the lamella. This answers a long standing question about the role of fluid
flow in keratocyte migration, as we have demonstrated that fluid flow at the

leading edge alleviates the membrane load and favors actin polymerization.
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Other velocity mapping techniques, such as fluorescent speckle microscopy,
have been successful at extracting actin and tubulin flow velocities by track-
ing single speckles of labeled subunits inside the filaments. The wealth of
information on cytoskeletal dynamics provided by speckle microscopy is, how-
ever, limited to applications on only actin and tubulin. The STICS technique,
on the other hand, has the advantage that it can be applied in a matter of
minutes to virtually any fluorescence microscope image time series, to cells
that are simply transfected with any type of fluorescently labeled molecule
(not just cytoskeletal proteins). It does not require any overly sophisticated
sample preparation or imaging instrumentation (such as the specialized la-
beling needed for FSM). The technique has high resolution, and most im-
portantly it can measure protein motions either at high protein densities,
such as in adhesions or along actin filaments, or at very low homogenous
protein densities when there are no obvious resolvable structures to track
(such as with SPT). In summary, the STICS method is a versatile tool that
can be used in many different situations, from protein dynamics to fluid flow,
where quantitative information on directed protein motion within the cell is

required.

Image correlation techniques have been applied for a decade in various
biological systems of interest. Several avenues of possible research open up
by combining the STICS analysis with other biophysical approaches. For ex-
ample, one could use patterned substrates of ECM protein gradients to direct
cellular migration, or look at the effect of ECM protein distribution on the ad-
hesion protein interactions and recruitment. One could also use microfluidic

devices to deliver drugs quickly and reversibly to migrating cells, and look at
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their effect on retrograde flow and protein interactions. Several extensions
and refinements to the STICS technique will be needed, particularly ways to
improve the temporal resolution (i.e. faster imaging approaches). The re-
sults presented in this thesis show that STICS is a powerful method that can
be applied in living cells to solve certain problems that require quantitative
measurements of protein velocities. As such, it represents a significant con-
tribution to those who toil in the biophysical community seeking to properly

arrange the pieces of the puzzle that is life.
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