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Abstract 

The object of this thesis is to develop a new extension of Im­

age Correlation Spectroscopy (ICS) that can measure velocity vectors 

for flowing protein populations in living cells. This new technique, 

called Spatio-Temporal Image Correlation Spectroscopy (STICS), al­

lows measurement of both diffusion coefficients and velo city vectors 

(magnitude and direction) from fluorescence microscopy image time 

series of fluorescently labeled cellular proteins via monitoring of the 

time evolution of the full space-time correlation function of the inten­

sity fluctuations. By using filtering in Fourier space to remove fre­

quencies associated with immobile or slow components, it is possible 

to measure the protein transport even in the presence of a large frac­

tion of immobile species that are static in the image series. The STICS 

method can generate complete transport maps of proteins within sub­

regions of the basal membrane even if the protein concentration is 

too high to perform single particle tracking measurements, and it 

can be applied to any type of fluorescence microscopy image time 

series. This thesis presents the background theory, computer sim­

ulations, and analysis of measurements on fluorescent microspheres 

and fixed cell samples to demonstrate proof of principle, capabilities, 

and limitations of the method. Visible fluorescent proteins (VFPs) 

were used to label a variety of the proteins involved in cell-to-extra­

cellular-matrix adhesions, including focal adhesion kinase, paxillin, 

Œ-actinin, Œ5-integrin, talin, vinculin and actin. Various fusion pro­

tein pairs were transfected in living cells and imaged using both laser 

scanning microscopy and total internaI reflection microscopes. Using 

STICS analysis, co-transport maps of proteins were generated within 

protruding sub-regions of the basal membrane. The new space time 

image correlation method can probe the mechanistic details of the 

hypothesized molecular clutch that regulates the extra cellular ma­

trix/ cytoskeletal interactions during migration. The technique was 

also applied to mapping fluid flow in migrating keratocytes in order 

to elucidate the role that fluid flow plays in migrating cells. 





Résumé 

L'objet de cette thèse est de développer une nouvelle extension 

de la spectroscopie par corrélation d'images (ICS) qui peut mesurer 

les vecteurs vitesse de flux de protéines dans des cellules vivantes. 

Cette nouvelle technique, appelée spectroscopie spatio-temporelle par 

corrélation d'images (STICS), permet la détermination des coefficients 

de diffusion et des vecteurs vitesse (grandeur et direction) à partir de 

séries d'images de microscopie par fluorescence, en suivant l'évolution 

temporelle des corrélations spatiales des fluctuations d'intensités. En 

filtrant dans l'espace de Fourier les fréquences associées aux compo­

santes immobiles ou lentes, il est possible de mesurer le transport des 

protéines même en présence d'un grand pourcentage d'espèces immo­

biles qui sont statiques dans la série d'images. La méthode STICS 

peut générer une cartographie complète du transport des protéines 

dans la membrane basale, même quand la densité de protéines est 

trop grande pour y performer des mesure par suivi de particule unique. 

De plus cette méthode peut être appliquée à tout type de microsco­

pie par fluorescence. Cette thèse présente la théorie sous-jacente à 

STICS, des simulations par ordinateur, et l'analyse d'expériences avec 

des microsphères fluorescentes et des échantillons de cellules fixées 

pour démontrer la preuve de principe, les capacités et les limitations 

de cette méthode. Des protéines fluorescentes visibles ont été utilisées 

pour marquer diverses protéines impliquées dans le lien entre la ma­

trice extra cellulaire et le cytosquelette d'actine, incluant la kinase 

d'adhésion focale, la paxilline, l'a-actinine, l'a5-integrine, la taline, la 

vinculine et l'actine. Ces paires de protéines ont été transfectées dans 

des cellules vivantes et imagée avec des microscopes a balayage laser 

et des microscopes à réflexion totale interne. En utilisant l'analyse 

STICS, des cartes de co-transport de ces protéines ont été générées 

pour des zones de protrusion dans la membrane basale. Cette nouvelle 

méthode de corrélation spatio-temporelle d'images peut questionner 

les détails mécanistique de l'hypothétique embrayage moléculaire qui 

régularise les interactions entre la matrice extra cellulaire et le cytos-

iii 



quelette pendant la migration des cellules. La technique a aussi été 

appliquée a la cartographie de flux de fluide a l'intérieur de kerato­

cytes migrants, afin d'élucider le rôle que joue le flux de fluide dans la 

migration des cellules. 
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1. The design, development, characterization and live cell implementa­

tion of a new fluorescence microscopy based biophysical method called 

spatio-temporal image correlation spectroscopy (STICS) for extracting 

velocities of labeled proteins inside cells. The STICS approach is based 

on spatial and temporal correlation analysis of intensity fluctuations 

within a time series acquired via fluorescence microscopy imaging of a 

sample. The following points detail the major advantages of the novel 

STICS technique. 

• This method has relatively high spatial mapping resolution and 

can be used to analyze microscopy image sub-regions that are as 

small as 16x 16 pixels. It also has the advantage that it is compu­

tationally fast compared to related techniques such as Fluorescent 

Speckle Microscopy: a single region of interest of 16x 16 pixels and 

200 images is analyzed in under 3 seconds. 

• The STICS technique is also very adaptable since it can be ap­

plied to virtually any fluorescence microscope image time series. 

It has the ability to map protein velocities in cells that are simply 

transfected with any type of fluorescently labeled macromolecule 

and do es not require overly sophisticated sample preparation or 

computer hardware (it is PC based). 

• Most importantly it can accurately measure protein translational 

motions under conditions of very high protein densities, such as 

in adhesions or along actin filaments in cells, or at very low pro­

tein densities where the distribution of labeled macromolecules is 
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homogeneous and diffuse, and no directed flow is apparent to the 

eye upon viewing the image series. 

2. The design and characterization of a novel filtering technique intended 

to remove the immobile protein population fraction intensity contribu­

tion from the space-time correlation function. 

• This filtering in Fourier space can remove the intensity contribu­

tions from the fully static (zero frequency) or slowly moving (low 

frequency) labeled protein population by adjustment of the filter 

window size. 

• The filtering also removes long range spatial correlations from the 

images. This is especially use fuI in cases where the protein density 

is high and they are located in large spatially extended structures, 

su ch as in adhesions or along actin filaments. Such extended cel­

lular structures that are larger than the optical diffraction limit 

can cause deviations in the STICS analysis if they are not filtered. 

3. The first study of the actin-integrin linkage in the lamella of living 

cells by using STICS to measure velocity maps of integrin, actin, and 

adhesion related proteins. 

• Measurements of flow velocities for a number of adhesion compo­

nents (o:5-integrin, o:-actinin, paxillin, FAX, talin and vinculin) 

were compared with those measured for actin to identify which 

proteins within the linkage are potential sites of regulation via 

transient decoupling or slippage. 

• Experimental determination that actin polymerization is not a 

determining factor in the regulation of the o:-actinin-actin linkage. 

On the other hand, myosin II generated tension in the actin cab les 

was implicated in regulation of the actin-o:-actinin interactions. 
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• Experimental determination that there exists a linkage complex in 

migratory cells, comprising: vinculin, talin, paxillin and focal ad­

hesion kinase (and possibly other proteins). This linkage complex 

links the integrin to the actin cytoskeleton in a dynamic manner, 

with the STICS experiments suggesting that it is connected to the 

actin 70% of the time, and to the integrins 30% of the time. 

4. The first measurements of cytosolic fluid flow through the dense actin 

meshwork in the lamellipodium of migrating keratocyte cells. 

• Experimental determination that an overall rearward fluid flow 

exists in the cell frame of reference during migration with wa­

ter influx at the leading edge, consistent with the localization of 

aquaporin channels at the leading edge. 

• Novel measurements of fluid flow velocities in a large population 

of cells using various markers (655 nm À and 545 nm À quantum 

dots, as weIl as green fluorescent protein) that consistently show 

that this retrograde fluid flow is approximately one third of the 

cell migration speed in all cases studied. 

• Biophysical modeling of the fluid flow in the lamella shows that 

water influx at the leading edge partially relieves the membrane 

load, leading to an increase in the rate of actin protrusion. 
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1 INTRODUCTION 

1 Introduction 

1.1 Motivation 

"If you try to take a cat apart to see how it works, the first thing you have 

in your hands is a nonworking cat." 

Douglas Adams 

Reductionism, or the study of a system by taking it apart and seeing 

how its individu al components work, has been a dominant approach that has 

lead to many important advances in the physical and biological sciences in 

the modern era. Sorne of the intellectual threads in classical physics that 

are important in quantitative applications to biology include statistical me­

chanics, kinetic theory, hydrodynamics, continuum mechanics, nonlinear dy­

namics and colloidal physics. However, reductionist techniques study the 

parts, rather than the whole. The process of taking the system apart via a 

reductionist approach can be misleading especially in the extremely complex 

and interconnected milieu of biological cells. A current theme in biophysics 

is to be able to quantitatively measure processes directly inside the cell (in 

situ). New physical techniques such as those involving micromanipulation 

(e.g. optical traps), microlithography (to create structured environments) 

and fluorescence methods (for direct visualization of biomacromolecules and 

their biochemistry) an play an important role in getting physical insights 

from in vivo measurements. An important question to ask is: "what can 

1 



1.1 Motivation 

physicists bring to this field?" An interesting parallel can be drawn with 

the symbiotic relationship that mathematics and physics have enjoyed for 

centuries. Just as physics fiourished when it was endowed with the powerful 

abstract tools of mathematics, so can biology evolve into a more quantitative 

science using both the technological advances and the modeling innovations 

that physics has developed in the past decades, provided that the "bio" in 

biophysics is not forgotten. 

Developments in both theoretical and experimental biophysics have led 

to giant leaps forward in the understanding of protein structure, bioenerget­

ics, ion transport, transmembrane protein transport and much more. It is 

not productive for physicists to move into biology simply to copy the existing 

methods and adopt the current paradigms of the biologists. They must bring 

something new to the table. The importance of developing and characterizing 

new techniques that can give quantitative information on particular systems 

cannot be overemphasized, since the tools that have been used and that are 

being created provide powerful methods for scientists to conduct quantita­

tive experiments with intact biological systems. The object of this thesis is 

the development of a new biophysical technique called spatio-temporal image 

correlation spectroscopy (STICS) and its application for measuring protein 

transport which is necessary to understand the molecular basis of cell migra­

tion. 

2 



1.2 The Challenge: Cell Migration 

1. 2 The Challenge: Cell Migration 

Many types of animal cells have the ability to migrate by following chemical 

or mechanical cues. These displacements often play a fundamental role in 

both normal or pathological cases, i.e. morphogenesis or cancer metastasis 

[3]. Certain types of cells are even specialized in locomotion, such as im­

mune system neutrophils or fish epidermal keratocytes [4, 5, 6]. The basic 

paradigm of cellular migration is illustrated in Figure 1.1. The cell extends 

membrane protrusions which can be either fiat and large (lamellar protru­

sions) or thin and tubular-like (fillipodial protrusions) [7]. These protrusions 

help cells probe their environment, and acquire a spatial asymmetry enabling 

them to select a given direction of migration [8]. After these protrusions are 

sent out from the cell periphery, they form attachments to the substrate 

called focal contacts through a variety of proteins that will be described in 

detail in the next section [9]. Sorne of these attachment points will mature 

into more stable, solid adhesions through which the cell can turn intracellu­

larly generated contractile forces into net cell body translocation [10]. These 

contractile forces come from the myosin molecular motors, which bind to the 

polymerie actin cytoskeleton filaments inside the cell. 

The cytoskeleton is a cellular "scaffolding" or "skeleton" found in the cy­

toplasm inside cells and has three major fiber types: microfilaments made of 

actin protein, intermediate filaments made of various kinds of proteins (e.g. 

keratin), and microtubules made of tubulin [11]. The three fiber types serve 

different functions. Actin filaments are often associated with changes in cell 

size and morphology, contractility such as in muscle cells, and eell division, 

3 



1.2 The Challenge: Cell Migration 

........ aetin filaments 

~ adhesien related preteins 

U integrins 

r myesin meter 

detachment translocation protrusion 

Figure 1.1: Illustration of the current cell migration paradigm. As a first 
step, the cell extends membrane protrusions (lamellipods or 
fillipods) , which anchor ta the extra-cellular matrix (ECM) 
through a variety of adhesion related molecules that link the 
actin cytoskeleton ta the transmembrane integrins. The inte­
grins in turn bind ta the ECM. The myosin motors which con­
nect ta the actin filaments can subsequently exert traction forces 
and pull the cell body forward as adhesions at the rear of the 
cell are disassembled. Adapted from (3j. 

growth and motility [12]. The microtubules are major filaments for internaI 

transport and movement of chromosomes and organelles during cell division 

[13]. Intermediate filaments contribute to fiexibility, elasticity, and stiffness 

of cells and tissues [14]. Microtubules are straight, hollow cylinders with a 

diameter of about 25 nm composed of long chains of the proteins ex and f3 

tubulin [15]. Actin filaments are made from monomers of one basic protein 

subunit, i.e. by the polymerization of F-actin monomers. Actin filaments 

are about 8 nm in diameter [16], and they can bundle together with myosin 

in what are called "stress fibers". To migrate, the cell basically anchors 

the actin filaments and stress fibers to adhesion sites and "tugs" forward by 

pulling on the actin bundles with the myosin motors [17]. 

4 



1.3 Spatio-Temporal Interactions 

As recent studies have shown, the molecular partners involved in aIl of the 

steps of cellular migration are numerous and their interactions very complex 

[3]. Cell migration is a dynamic, integrated process that is coordinated both 

spatially and temporally. Although numerous components are known to in­

teract before, during and after the formation of focal contacts and adhesions, 

less is known about the exact timing, the number of components and trans­

port mechanisms involved in these interactions. Understanding the complex 

physical and chemical integration of kinetic, kinematic and mechanical pro­

cesses requires specialized mathematical models and analysis methods, some 

of which are only in their infancy. There is a great need for quantitative 

biophysical techniques which can reveal important quantitative aspects of 

the physico-chemical molecular mechanisms that govern cell migration [3]. 

1.3 Spatio-Temporal Interactions 

At the cellular level, there are three main regions where the molecular part­

ners that play a role in cell migration are located [figure 1. 2]. First is the 

extracellular matrix (ECM), a protein rich environment outside the cell to 

which all cell attachments are anchored. The ECM interacts with the basal 

(lower) membrane of the cell (in a 2D tissue culture context). The ECM is 

made of many types of large glycoproteins including fibronectin, vitronectin, 

collagen, laminin and tenascin [18]. The second level consists of the trans­

membrane proteins which are found in the cell membrane and act as the 

link between the extra- and intra-cellular environments. Integrins are the 

major transmembrane proteins that cluster to form focal contacts and focal 

adhesions [19]. Integrins form a functional dimer of an a and (3 subunit of 

5 
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which there are many different subforms that are characteristic of different 

cells and tissues. Integrins bind to extra cellular matrix components such 

as fibronectin and to intracellular cytoskeletal linker proteins such as talin 

or cx-actinin. These linker molecules make up the third level of molecular 

partners involved in cell migration. They are termed adhesion related pro-

teins because they are part of the linkage between the integrins and the actin 

cytoskeleton. They are numerous, but sorne of the key actors are signalling 

molecules such as focal adhesion kinase (FAK) and paxillin, as well as me-

chanicallinkers such as talin, vinculin and cx-actinin [3, 20]. 

Figure 1.2: Illustration of the maturation of nascent adhesions via clus­
tering of membrane integrins and recruitment of linker pro­
teins into more stable complexes. Some of the major molecular 
players involved in linking the cytoskeleton to the extracellular 
matrix are the linkage proteins (integrin, cx-actinin, talin, vin­
culin) and the signalling molecules (FAK, paxillin). Adapted 
from !20j. 

6 
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Moreover, these interactions evolve in space and time in a migrating cell: 

adhesions assemble and disassemble in response to extracellular eues, and 

mature as the actin-ECM bond is strengthened. Recycled or newly synthe­

sized integrins are inserted into the membrane at the leading edge, where 

they can form bonds with the substratum ECM ligands in what are called 

"nascent adhesions" [20] (see Figure 1.2). As the cell crawls over them, the 

nascent adhesions start to mature and grow by recruiting additional molec­

ular components. They can also disassemble to recycle components to newly 

formed nascent adhesions at the cell's leading edge [21]. The molecular mech­

anisms of maturation or disassembly of adhesion complexes are still unclear, 

but involve signalling from adhesion related molecules such as FAK, paxillin, 

Src and others [20]. Adhesions that have matured will also eventually disas­

semble at the rear of the migrating ce Il , as ripping release and detachment 

of the membrane occur [22]. 

This asymmetry at the molecular level, whereby different proteins are 

found at distinct locations in the cell body to serve different purposes, posits 

several questions. How does the cell regulate such asymmetry, and by what 

mechanisms does it replenish components at the leading edge? What is the 

order of assembly? ls the transport of components due to Brownian diffu­

sion, anomalous diffusion (i.e. diffusion with obstacles or confined diffusion, 

see Figure 1.3) or directed transport (e.g. by myosin motors along actin 

filaments)? One important problem here is characterizing the motion and 

interactions of membrane proteins, extra cellular matrix components and in­

tra cellular messengers involved in the regulation of cell migration at the 

7 
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Figure 1.3: The original fiuid mosaic model as envisaged by Singer et al. 
!23). The fiuid lipid bilayer membrane is punctuated by inte­
gral membrane proteins which are randomly distributed but are 
diffusively mobile and can aggregate. These can be obstacles to 
free diffusion. 

molecular level. The next section will describe the means and methods of 

investigating these transport mechanisms. 

1.4 Fluorescence Imaging 

Optical microscopies, and fluorescence microscopy in particular, have been 

among the most important techniques developed for in vivo studies of living 

cells. Fluorescent probes are amazingly useful for biological research, because 

they allow the study of the inner workings of cells with single molecule de-

tection sensitivity and high specificity. The trick is to attach the fluorescent 

label to the macromolecule you are interested in studying. Researchers have 

developed sever al ways to fluorescently label macromolecules for live or fixed 

cell imaging including many types of fluorescent organic dyes that can be 

8 
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attached to antibodies for tagging purposes. More recently developed ap-

proaches use fluorescent probes that are either naturally fluorescent proteins 

or semi-conductor nanocrystals (quantum dots) [24, 25]. 

Figure 1.4: Stereoview of the structure of green fluorescent protein (CF?) 
(26). Shown as arrows are 11 antiparallel {3-strands which form 
the beta-can. Inside this beta-structure there is an alpha-helix 
(curly ribbon), in the middle of which is the chromophore (de­
tailed ball and stick molecular structure). CF? is roughly 4x3 
nm (Lx W) in size. 

1.4.1 Fluorescent proteins 

There are several kinds of naturally fluorescent proteins that are used ta label 

macromolecules, each with its own absorption and emission spectra, quan-

tum yield and fluorescence lifetimes. The most commonly used naturally 

fluorescent protein is the green fluorescent protein (GFP, see Figure. 1.4). 

GFP is naturally found in a jellyfish (Aequorea victoria [27]) that lives in 

9 
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the cold waters of the Pacific off Washington state. The jeIlyfish contains a 

bioluminescent protein, aequorin, that emits blue light. The green fluores-

cent protein converts this light to green light, which is what we actually see 

when the jeIlyfish lights up. The cloning of the gene that encodes CFP was a 

breakthrough for live cell imaging because it became possible to genetically 

splice the CFP codon within the genetic codes for other proteins [28] and 

thus have the cell synthesize the protein of interest with an attached CFP 

fluorescent marker (see next paragraph). Since its discovery, many mutants 

of CFP have been created that fluoresce at different wavelengths including 

the yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) [29]. 

~ ..... endocytosis 

plasmid ~~ \ 
DNA vector .. - • 

.. --+ • • • 

0- · '/DNA-liPid 
complex 

• • 
lipid 

vesicle 

endosome 

@ ..... . . . . 
' .. 
:,\, .... 

\ 
released DNA 

/ 
cel! membrane 

Figure 1.5: Transfection of a plasmid in a mammalian cell. The plasmid 
DNA vector is placed inside a lipid vesicle, which is in turn 
fuses with the cell membrane and is taken into the cell by endo­
cytosis. The endosomes are eventually degraded in the cell and 
the DNA can now be used by the replication and transcription 
machinery in the nucleus to express the protein of interest. 
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To attach these fluorescent proteins to the molecule of interest, i.e. to 

splice the fluorescent protein codon into the genetic code of another protein, 

the genetic technique of choice is called transfection [30]. Transfection in­

volves cellular insertion of a DNA plasmid (essentially a circular loop of DNA) 

that carries the genetic code for the protein of interest immediately followed 

by the genetic code for the fluorescent protein (see Figure.1.5). Henee when 

this new DNA is incorporated into the nucleus of the cell and the cell starts 

its transcription, it will pro duce the native protein fused to the fluorescent 

protein, effectively generating a protein with a built in fluorescent tag. Ad­

vantages of this method include the fact that it is the cellular machinery that 

does an the work in expressing the fluorescent probe, which eliminates the 

need for extrinsic labeling steps. Additionally, any kind of protein (internaI 

or transmembrane) can be labeled in this way, but control experiments need 

to be carried out in order to determine if the natural function of the labeled 

protein is unaffected by the attached fluorescent protein. 

However, organic dyes and GFP also have a few drawbacks. They are 

susceptible to photobleaching and can only undergo a finite number of exci­

tation/ emission cycles [31]. This means that a single GFP cannot be observed 

for more than a few tens of seconds when imaged with a light microscope 

under typical imaging settings (however this de pends heavily on laser power 

and the chemical environment [32]). After a certain number of cycles, the 

fluorescent molecules undergo irreversible photobleaching, thus entering a 

dark state (a non-fluorescent state) [33]. Moreover, organic dyes often have 

broad absorption or emission spectra, making it difficult to excite a single 

dye if you have sever al fluorescent markers present in the cell, or making it 



1.4 Fluorescence Imaging 12 

difficult to separate the emission signal from two different dyes when their 

spectra overlap [34]. The next section deals with a potential solution to these 

problems. 

1.4.2 Semiconductor Nanocrystals 

Semiconductor nanocrystals, more commonly called quantum dots (QDs), 

have emerged as an interesting alternative to classical fluorescent probes 

[35]. They are (usually) spherically-shaped, nanometer-sized semiconductor 

nanocrystals. The optical properties of QDs are dramatically different than 

the bulk material because at the nanometer size scale, the QD behaves like a 

potential well that confines electrons in three dimensions to a region on the 

order of the electrons' de Broglie wavelength in size [36]. An electron-hole 

pair can be excited in the core of a quantum dot by photon absorption and 

when they recombine, they emit light (fluoresce). The fluorescence emission 

spectrum is narrow and symmetric and the wavelength depends directly on 

the size of the crystal: the larger the QD, the longer the wavelength of the 

emitted light [37]. As the dots shrink in size, the emitted light becomes 

shorter in wavelength, moving toward the blue. 

The main advantage of quantum dots is their photostability, which means 

that they do not undergo irreversible photobleaching when illuminated with 

laser light (at reasonable laser powers), in contrast to organic dyes and G FP 

[38]. Single dots have been observed for times of up to sever al hours [39] and 

they have a low cytotoxicity (most reports do not find effects on cell viability, 

morphology, function, or development over the duration of the experiments). 

However they also have a main drawback: quantum dots exhibit fluorescence 
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intermittency [40]. This on and off "blinking" phenomenon can significantly 

impair the ability to track single quantum dots over extended periods of time. 

The characteristics of the blinking vary significantly depending on the envi­

ronment of the quantum dot, and recent studies have shown that blinking is 

not strong in live cell experiments [35] but can severely affect any intensity 

fluctuation analysis [41]. 

Semiconductor quantum dots have to be chemically functionalized in or­

der to make them hydrophilic [42], and they have to be attached to the protein 

of interest with a linker group. Labeling proteins with a linker requires the 

given protein to have a specific site where the linker can be attached. Usu­

ally this consists of a sequence of amino acids that is native to the protein or 

has been genetically modified to be recognized by a part of the linker. The 

most commonly used linker is the biotin-streptavidin complex. These pro­

teins form one of the strongest non-covalent binding complexes that exists 

in biology, with a dissociation constant of 10-13_10-15 M and a very high 

interaction specificity [43] . There are specific amino acid sequences to which 

biotin can be attached (lysine residues) [44], and sever al fluorescent probes 

are commercially available with streptavidin linkers. 

The main disadvantage of labeling proteins with either a co-expressed 

fluorescent protein or a linked fluorophore are steric effects (see, for example, 

[45]). It is not always known to what extent the attached protein will affect 

the structure of the native protein or its dynamics. If the labeled protein 

retains its normal activity levels in the cell (which can be checked by various 

control experiments to assess the functional role of the protein) then it is 
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assumed that the label has minimal effect on the natural function. An open 

question is whether the label perturbs the transport and activity of the pro­

tein because the GFP or QD label is usually of comparable size with protein 

of interest [46]. As such, one can wonder if the observed dynamics are really 

the native ones or are perturbed due to the size of the fluorescent label on 

the protein. It is commonly assumed that the dynamics are not affected, for 

membrane proteins, because the viscous lipid bilayer is thought to be the 

primary determinant for diffusion rate while the fluorescent label is usually 

located on parts of the protein outside of the membrane exposed to the less 

viscous aqueous medium [47, 48]. 

1.5 Current Image Analysis Methods 

Fluorescence imaging allows for direct observation of proteins in their native 

environment, from qualitative observations of protein localization in the cell 

to precise tracking of single molecules [49]. By attaching a fluorescent probe 

to a protein of interest and imaging it via fluorescence microscopy, one can 10-

calize in space and follow in time the behavior of the labeled macromolecule. 

Subsequent data acquisition can take the form of intensity trace collection 

at a single point in the sample [50], or two- or three-dimensional imaging of 

the sample to generate an (x,y,t) or (x,y,z,t) image time series [51, 52]. 

There are several methods that are currently used to measure flow magni­

tudes and/or directions within various systems that have been developed in 

different fields of study, ranging from physics to computer vision. They are 

all based on acquisition of a time series of images and subsequent application 
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of different algorithms for flow or motion analysis. These methods have many 

interesting biological applications, however they are not all applicable to the 

biological situations that we are interested in as explained below. 

1.5.1 Fluorescence Recovery After Photobleaching 

Fluorescence Recovery After Photobleaching, or FRAP, is a live cell fluo­

rescence microscopy based technique used to study the mobility of tagged 

molecules which was introduced in its early forms in the 1970s [53]. It relies 

on using a focused laser beam to irreversibly photobleach a population of 

fluorophores in the target region of a cell via a pulse of high-intensity laser 

light (see Figure 1.6). The target region will appear black as compared to 

its surroundings, in which the fluorescent molecules have not been bleached. 

The intensity of the laser is reduced and the sample is imaged as a function 

of time after bleaching. Diffusion or directed transport of unbleached pro­

teins into the bleach spot leads to an increase in the average fluorescence 

intensity. By monitoring the recovery of fluorescence in the bleached region 

and fitting the associated recovery curves to a known analytical form, it is 

possible to extract diffusion coefficients and immobile protein fraction from 

FRAP data [54]. The diffusion coefficient is estimated from the rate of recov­

ery of intensity, and the immobile fraction is estimated from a comparison of 

the prebleach intensity level to the final level of the intensity after recovery 

(if sorne of the bleached mo1ecu1es were immobile, their intensity 10ss will 

never be recovered). 

However, it has been shown that in non-ideal situations, such as confined 

diffusion of the labeled proteins, FRAP can severely overestimate the immo-
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Figure 1.6: Simulation of a FRAP experiment with two populations: the 
first population has a density of 20 particles/f.Lm2 and a dif­
fusion coefficient of 0.02 f.Lm 2 / s, the second population has a 
density of 10 particles/f.Lm2 and is immobile. A) Image time 
series with the bleached region in the middle and subsequent re­
covery of fluorescence. B) Intensity of the bleached region as a 
function of time, relative to the initial intensity (before bleach). 
As expected only the mobile fraction contributes to the intensity 
recovery (here 2/3 of the population was mobile). 

bile fraction and underestimate the diffusion coefficient [55]. FRAP is also 

insensitive to flow direction: although directional transport into the bleached 

region will affect the rate of fluorescence recovery, it is not possible to know 

from which direction these new fluorescent particles entered the bleach re-
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gion since FRAP only looks at the overall intensity recovery. It is thus not 

possible to determine the flow direction using FRAP measurements. 

1.5.2 Single Particle Tracking 

Single Particle Tracking (SPT) experiments are well-suited to the noninvasive 

study of membrane protein transport [56]. In SPT experiments, the position 

of a single labeled protein is followed by optical imaging as it moves within 

the membrane. The position is determined by centroid fitting of the image 

fluorescence intensity peak for the particle and this can be accomplished 

with a precision on the order of 10's of nanometers. If the motion of the 

probe is unhindered, the spatial trajectory of the mole cule will be described 

accurately using a two-dimensional model for Brownian motion [57]. The 

two dimensional random diffusion model predicts that the mean squared 

displacement (MSD) increases linearly with time: 

< r 2 >= 4 x D x t (1.1 ) 

where ris displacement, D is the diffusion coefficient of the molecule and t is 

the time [56, 58] (see Figure 1. 7). If the membrane macromolecule encounters 

a structure that in sorne way inhibits its free diffusion (see Figure 1.3), then 

the trajectory will deviate from a random walk. Confined diffusion is usually 

reflected in the MSD versus time plot as a plateau [59J. At small times, the 

diffusion looks Brownian because the particle hasn't encountered the bound­

ary of its confinement region and the MSD curve is linear. At longer times 

however, the particle will not exit this confinement region, which puts an 
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Figure 1.7: Simulation of two SPT experiment A) one particle freely dif­
fusing at 0.01 J-Lm 2 / sand B) one particle undergoing diffusion 
at 0.01 J-Lm2 /s but in a confined circular region of radius 0.5 
J-Lm. C) corresponding Mean Squared Displacement versus time 
plots for the two trajectories in A (open squares) and B (open 
circles). Notice the plateau of the second MSD indicative of 
confinement. 

upper bound on the possible mean squared displacement (and hence leads to 

a plateau). 
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Single particle tracking analysis will, in principle, provide mu ch informa­

tion about the range of transport [56]. This technique has true single molecule 

sensitivity, and can reveal very precise information of the dynamics at spe­

cifie locations within the ce Il , e.g. confined lateral diffusion of membrane 

receptors studied by ultra-high temporal resolution single particle tracking 

(40,000 images per second) using 40 nm colloidal gold labels [47]. However, 

it ean be diffieult to traek single proteins via fluorescence imaging due to the 

low signal/noise in live cells and due to the high density of expression of GFP 

proteins typical for transfected cells which prevents resolution of individual 

labeled particles. An exception to this will be presented below in section 

1.5.4. 

1.5.3 Optical Flow 

In computer vision, one of the challenges is for the machine to analyze a 

sequence of images and determine if something is moving in its field of view. 

The definition of optical flow is "the distribution of apparent velocities of 

movement of brightness patterns in an image" [60]. This technique has had 

signifieant impact in environmental sciences such as oceanography, meteorol­

ogy and climatology where it has been used to track pollutant or ice flows 

[61,62]. In medicine, tomography sequences have been used to monitor blood 

flow in which vortices ean indieate pathologies [63]. 

In aIl cases, the optical flow technique relies on pattern similitude scoring 

using a penalty function [64]. In essence, the optical flow method recognizes 

an intensity pattern in a specifie region of an image, and looks for a repetition 

of that pattern in the following image, in the neighborhood of the region 
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where the original pattern was found. The optical flow algorithm uses an 

"optical flow constraint equation" which is equivalent to a conservation of 

mass equation for intensity: 

dE 8E 
- =\lE·v+-:::::;O 
dt 8t 

(1.2) 

where E is the brightness as a function of time and space, and v is the velocity 

of the imaged flow field. This equation basically states that the intensity of 

a spot is roughly conserved over small time steps (small displacements): it 

sim ply insists on identity of intensities between corresponding image elements 

across time. In practice, to allow for imperfect data, strict enforcement of 

the continuity constraint is replaced with minimization of a cost function cr 

( 
8E)2 

Cf = \lE· v + 8t (1.3) 

with respect to v over an image domain of interest. Since the image is two 

dimensional we need an extra equation to find the two velocity components 

V x and vy. This additional constraint is to encourage smoothness of the 

recovered flow, and can be captured by minimizing the spatial variation of 

the flow via [65]: 

= (8Vx )2 (8Vx )2 (8Vy )2 (8Vy )2 
Cs 8x + 8y + 8x + 8y (1.4) 

For every pixel, a velocity vector is found which contains the information 

on how quickly an intensity pattern around that pixel is moving and its 

direction. However, this technique has two major flaws when applied to 

analyzing fluorescence image sequences. First, there is usually a lack of 
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definite features in fluorescence images of cells, whieh is an important factor 

for the optical flow method to work properly. The technique requires mu eh 

higher local contrast in the patterns than is typical in fluorescence microscopy 

images of live cells. Second, the presence of a diffusive and an immobile 

component, and the absence of a clearly resolvable flow from one image to 

the next in typieal fluorescence image series make the mapping of intensities 

from one frame to the next difficult using this method. 

1.5.4 Fluorescent Speckle Microscopy 

One of the most successful methods for mapping the velocities of labeled pro­

teins in living cells is Fluorescent Speckle Mieroseopy (FSM). This method 

relies on microscopie tracking of single fluorescent speckles caused by the 

random insertion of fluorescent actin (or tubulin) monomers in an otherwise 

non-fluorescent actin (or tubulin) rod [66, 67]. The actin stress fibers can 

slip from their attachments and undergo retrograde flow away from the lead­

ing edge [68] because of the action of the myosin motors that pull on the 

eytoskeleton in an attempt to move the cell body forward. The density of 

labeled actin monomers is so low in FSM experiments that there are only a 

few labeled monomers in a single actin rod. Thus speekles appear along the 

actin filaments, and these speckles can be tracked to reveal the retrograde 

flow of the rod using computationally intensive traeking algorithms [67]. 

This technique generates a massive amount of information because of the 

large number of speckles traeked. FSM has been applied in its early stages for 

mapping simple retrograde flow of actin [66]. Algorithmic advances in speckle 

image processing allowed mapping of antiparallel flows of mierotubule speck-
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les in the mitotic spindle from Xenopus le avis egg extracts [67]. FSM was 

also used to reveal the existence of two coexisting actin networks at the lead­

ing edge of the cell with different kinetic, kinematic and molecular signatures 

[69]. More recently, a sub-micrometer resolution version of the technique has 

been used to measure actin turnover in lamellipodia and lamellae of migrat­

ing cells, demonstrating that the dominant feature in their turnover was a 

spatially random pattern of periodic polymerization and depolymerization 

moving with the retrograde flow [70]. 

FSM has proven to be a useful tool in mapping actin and microtubule 

dynamics, however it is limited to these two types of proteins because of their 

structure (rods composed of smaller subunits that can generate speckles). 

Moreover, it requires fluorescent actin or tubulin speckles to be generated in 

vivo by specialized labeling techniques. The FSM method can be perturbed 

by immobile and diffusive components which makes it applicable only in 

the cases where the flow is clearly distinguishable in the image series, i.e. 

when the vast majority of the protein population is flowing. Moreover, even 

though the technique claims to have single molecule resolution since it follows 

individual speckles, in practice one needs to average the calculated velocity 

vectors over a certain spatial and temporal window in order to filter out the 

noise. In essence, the FSM technique is well suited for actin or microtubule 

studies, but do es not extend beyond to map fiows of other types of proteins. 
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1.6 Spatio Temporal Image Correlation Spectroscopy 

The object of this thesis is the development, implementation and application 

of STICS. This new technique is intended to map velocity fields in a wide 

range of settings, and specifically in cases where other methods would fail, 

as outlined above. This new method is an extension of a class of fluctu­

ation based techniques called "correlation spectroscopy" that include fluo­

rescence correlation spectroscopy (FCS) [71, 72, 73] and image correlation 

spectroscopy (ICS) [74, 51] which are discussed in more detail in the next 

chapter. It also builds on sorne of the early pixel correlation ideas developed 

in the computer vision field [75]. 

To understand the molecular mechanisms that regulate cell migration, 

new techniques are necessary that can be applied in situ in living cells. The 

STICS method was developed for this purpose. In this thesis, l will first 

present the theoretical basis of STICS and new algorithms that were devel­

oped for filtering out the immobile component. Using computer simulations, 

l will then characterize the detection limits of STICS in terms of several 

important imaging parameters, such as signal to noise, number of frames 

in the image time series and density of the prote in population. l will also 

investigate the limits of the immobile population filtering algorithms. Fol­

lowing this characterization will be a description of the various corrections 

that have to be applied to in situ images. l will also discuss the control 

measurements and how STICS and its cross correlation counterpart, Spatio 

Temporal Image Cross-Correlation Spectroscopy (STICCS), can be applied 

to measure dynamics in living cells. Finally, l will present the application of 
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the technique to two very different biological problems of interest: the reg­

ulation of the cytoskeleton-ECM linkage, and the problem of detecting and 

measuring fluid flow inside migrating cells. 
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2 Theory 

2 .1 Introduction 

In its widest sense, science can be categorized into layers where the principles 

discovered in one layer become the foundation for the next layer above. From 

the physical understanding of the quantum world of atoms, to the chemistry 

of molecules, to the microbiological studies of cells, to the physiology of 

the human body, every level gains from the broadening of its foundations. 

However, this view emphasizes the strong interconnectedness within a field 

and neglects the relatively few but important links between fields. Physics 

has broadened its base for decades now by expanding into non-traditional 

fields. Biophysics has emerged as an expanding domain of research that 

spans many orders in space and time ranging from the submolecular (pro­

tein conformation and folding) to cellular dynamics and interactions between 

cells and within tissue. A common theme, be it theoretical or experimental 

biophysics, is to achieve a quantitative understanding of the complex mech­

anisms that govern biological systems. Many techniques have been invented 

or adapted to meet the need for quantitative information, and many new 

questions require the development of novel quantitative methods for assess­

ing biophysical processes. 

The theory presented in this chapter provides the underpinnings for the 

subject of this thesis: spatio-temporal image correlation spectroscopy (STICS). 

After an introduction of basic fluorescence and microscopy imaging systems, 

l will provide an overview of image correlation spectroscopy (ICS). ICS is a 

fluctuation based technique that is classified as part of a broader category 
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of concentration correlation spectroscopy methods, such as fluorescence cor­

relation spectroscopy (FCS) [72, 76] or scanning FCS (S-FCS) [77]. 1 will 

then introduce the spatio temporal extension of lCS (STICS), which relies 

on a complete correlation of the spatial and temporal fluorescence fluctua­

tions contained in fluorescence microscopy image time series and can be used 

for velocity mapping of proteins in cells. 1 will also discuss a new filtering 

algorithm for image series that uses filtering in Fourier space to remove the 

contribution of an immobile or slowly moving protein population from the 

correlation analysis. 

2.2 Fluorescence and Jablonski Energy Diagrams 

To understand the principles of fluorescence imaging, it is important to first 

understand the fluorescence phenomenon. Much like the excited states of 

an atom, fluorescence can be explained via a Jablonski energy diagram for 

the molecule where different energy states for the electrons in the system are 

arranged according to their energy like rungs of a ladder [78]. 

The fluorescence excitation-emission process is illustrated in Figure 2.1. 

Initially the molecule is in the singlet ground state So, and upon excitation 

an electron can be promoted to an excited singlet state SI. The excitation 

source we are concerned with is light, and the energy needed to jump to an 

excited state is absorbed quantally either in a single photon [79] (one pho­

ton absorption) or with two or more photons (N-photon absorption) whose 

energy quanta sum to equal the difference in energy between the ground and 

excited states [80]. Two-photon absorption is a non linear effect produced 

by the quasi-simultaneous absorption of two excitation photons of exactly 
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Figure 2.1: J ablorîski Diagram. So is the electronic ground state, SI is the 
excited singlet state, bars 0,1,2,3,4 represent vibrational energy 
levels in each electronic energy lev el. 

half the energy of an allowed transition [80]. One needs to tightly focus ultra 

short pulsed lasers in order for the density of photons to be high enough to 

achieve non-linear excitation. After the rapid ('" fs) absorption event, the 

fluorophore is usually in a high vibrational level of the first excited singlet 

state, which quickly ('" ps) decays to the lowest excited singlet state vibra-

tional energy level through non-radiative decay in a pro cess called internaI 

conversion. 

The fluorescence photon is emitted when the molecule drops from the 

lowest vibrational excited singlet state energy level back to the ground state. 

The lifetime of the excited state in this level is orders of magnitude longer 

('" ns) than the internaI conversion step and if the electron decays back to 

the ground state from this level, a photon will be emitted by fluorescence 

emission. Due to the internaI conversion, energy is lost so the fluorescence 
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Figure 2.2: Alexa family dye spectra adapted from [81). Notice for example 
that the Alexa488 dye, which has a characteristic spectrum close 
ta that of GFP, absorbs light around 488nm and emits around 
520nm. 

photon is red-shifted when compared to the (total) excitation energy (see 

Figure 2.2). This shi ft in the emission wavelength, called the Stokes shift, is 

essential for fluorescence microscopy. The greater the Stokes shift, the easier 

it is to separate the excitation light from the emitted light. This separation 

is the basis of the sensitivity of fluorescence microscopy. Since the light 

intensity required to excite the molecules is mu ch greater than the emitted 

light intensity, filters are needed to efficiently block out the excitation light 

and detect the weaker fluorescence emission. 

2.3 Fluorescence Microscopy 

2.3.1 General Microscope Instrumentation 

The optical microscope is the basic instrument used to image fluorescent 

molecules within cells (see Figure 2.3). Multiple laser lines are combined and 
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Figure 2.3: Schematic drawing of a fiuorescence microscope used for imag­
ing of fiuorescently labeled molecules. Multiple laser lines can 
be combined through a first dichroic mirror (DM1). Aligning 
the illumination to the appropriate angle for wide field, laser 
scanning or total internal refiection microscopy is accomplished 
by translating a single mirror (Ml). A second dichroic mirror 
(DM2) introduces the laser into the objective Lens while allow­
ing the emitted fluorescence to pass through. In the confocal 
scheme, a pinhole is needed to filter out of focus light (see sec­
tion 2.3.3). The fluorescence is split in two (or more) channels 
using a dichroic mirror (DM3) and is detected by CCD cameras 
(or other light detectors su ch as photo multiplier tubes (P MTs)) 
through appropriate emission filters. 

focused on the sample through the microscope objective lens. The fluores­

cence photons are emitted into a solid angle of 47r (all directions in space) 

and a fraction are collected back through the same objective lens, and split 

by wavelength through an emission dichroic filter and focused on different 

detectors for multiple channel (wavelength) imaging. The sample is placed 
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on a stage above the objective lens (for an inverted microscope scheme, as 

illustrated in Figure 2.3), and coupled to the objective through an index 

matching medium (immersion oil, water, air). The focus is adjusted man­

ually by controlling the height of the objective relative to the sample. The 

excitation laser beam can be expanded to just overfill the back aperture of the 

objective lens for point illumination (diffraction limited focus in the absence 

of abberations) in epi-fluorescence or laser scanning microscopy (confocal or 

multiphoton). Or the laser may underfill the back aperture of the objective 

lens and enter at the edge of the aperture (see Figure 2.3) for total internaI 

reflection microscopy; this generates an evanescent field at the interface with 

the objective, which excites the fluorophores. 

2.3.2 Wide Field Fluorescence 

Wide field microscopy is the simple st implementation of the light microscope 

for biological fluorescence imaging [82]. The excitation light is usually pro­

vided by a mercury lamp, which can deliver a broad range of frequencies at 

high intensity, from which the desired wavelength is selected by using filters. 

The light is focused through the microscope objective lens and creates a focal 

plane where the excitation intensity is higher than the surroundings. Fluo­

rescence emission is collected through the same objective and directed to an 

eye piece for viewing, or a camera for digital capture (see Figure 2.4). 

The optical spatial resolution of this system is dictated by the wavelength 

of light (À) via diffraction effects and by the numerical aperture (NA, see Eq. 
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Figure 2.4: Illustration of the object plane in wide field microscopy. The 
solid arrow is imaged directly on the camera detector, while 
the dashed arrow is imaged in front of the camera image plane 
therefore it appears out of focus in the collected image. 

2.3 for definition) of the objective lens, following [83]: 

1.22,,\ 
lateral (x,y) resolution = 2 x NA (2.1) 

Equation 2.1 indicates that such a system is theoretically able to resolve be-

tween two objects separated by as litt le as 200 nm (,,\ ~ 535 nm, NA~ 1.45). 

Note that Equation 2.1 is appropriate for wide field microscopy and is based 

upon a number of factors that account for the behavior of objectives and 

condenser lenses, and should not be considered an absolute value due to one 

general physicallaw. In sorne instances, such as confocal and fluorescence 

microscopy, the resolution may actually exceed the limits set by this equa-

tion. Other factors, such as low specimen contrast, aberrations, improper 

illumination and beam alignment may serve to lower resolution and, more 

often than not, the diffraction limited value of the resolution (about 200nm 
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as mentioned ab ove ) is not realized in practice. 

Fluorescence microscopy is very useful for biological applications because 

it can be applied to living samples, and fluorescence detection is very sen­

sitive. However, one factor severely limits the applications of wide field mi­

croscopy in biology: the "out-of-focus" light coming from every plane in the 

sample strongly contributes to background noise and leads to blurring of the 

image. If the fluorescence staining is confined to a small region (for example 

a cellular organelle, like the Golgi apparatus) and the background noise is re­

duced to a minimum then wide field microscopy can produce quality images. 

In most experimental applications, however, a confinement of the light from 

a single focal plane (rather than a confinement of the labeling) is desired. A 

solution to this problem is presented in the next section. 

2.3.3 Laser scanning microscopy 

Microscopy systems used to image low quantum efficiency fluorescent probes 

in a high density environment need to satisfy a few requirements: i) they re­

quire good spatial and temporal resolution, ii) they need to colle ct the signal 

from a single plane and efficiently reject the background from outside the 

focal plane (optical sectioning) and iii) they should not perturb the living 

system (i.e. be non-invasive). A laser scanning microscope can satisfy aU 

these requirements to varying degrees in two different forms: the confocal 

microscope and the two-photon microscope. 

Early laser scanning microscopes were based on specimen scanning [84, 

85]. The main advantage of this method is that the beam path is fixed, en-
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Figure 2.5: Principal light pathway in confocal microscopy. The emitted 
light is filtered by the pinhole in the image plane: out-of-focus 
light is blocked by the pinhole because it is not focused at the 
image plane. 

suring proper illumination of the sample at all times. However, the drawback 

is that the scanning rates are slow (10-150 lines per second) so that the range 

of dynamic processes that can be imaged is limited. More recent commercial 

systems use scanning of the laser beam rather than the specimen which al-

lows for much faster scanning (500 lines per second). Since the laser beam is 

scanned before entering the objective lens, the scan mirrors have to be placed 

in a conjugate plane to the back aperture plane of the objective lens [86]. In 

a typicallaser scanning microscope, the fluorescence signal is collected in the 

backscattered direction, allowing the fluorescence to be "de-scanned" by the 

scanning mirrors and imaged onto a stationary detector. 

The confocallaser scanning microscope (CLSM) (see Figures 2.3 and 2.5) 

has several advantages over conventional wide-field microscopy, namely the 

ability to control depth of field, elimination or reduction of background flu-

orescence originating outside of the focal plane, and the capability ta collect 
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seriaI optical sections from thick specimens. The term "confocal" refers to 

the spatial filtering of the backscattered fluorescence signal by use of a pin­

hole placed in the confocal image plane [86], which filters light originating 

from planes above and below the focal plane of interest (see Figure 2.5). 

This allows optical sectioning of thin (0.5-1.5fLm) slices through a biological 

sample, since fluorescence is effectively collected only from a small illumina­

tion volume (see Figure 2.7 A) defined by the spatial extent of the confocal 

point spread function (PSF). Due to diffraction effects, the laser light passing 

through the excitation pinhole is not focused to a point, but rather a three di­

mensional intensity distribution: the excitation PSF. Likewise, the collected 

fluorescence light is also imaged as a three dimensional distribution on the 

detection pinhole: the detection PSF. Both PSFs have the same shape but 

differ in size because of the different objective lens responses to the excita­

tion and emission wavelengths [83]. The PSF characterizes the resolution of 

the imaging system, since a point emitter (sub diffraction limit size emitter) 

maps as a PSF in the image space due to diffraction. In the focal plane, the 

diffraction pattern is proportional to the first order Bessel function of the 

first kind, which can be well approximated by a Gaussian [83]. Although the 

instrument is limited by the number of available wavelengths from conven­

tionallaser sources, by the transmission properties of the built-in optics and 

by the range of laser intensities that can be safely delivered to live ceUs, it 

remains the tool of choice for producing high quality images of living samples. 

The two-photon microscope [87] also has optical sectioning capability but 

relies on a completely different principle to achieve this [80]. Long wavelength 

(IR), high intensity, femtosecond laser pulses are focused within the sample 
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and the excitation of the fluorophore is achieved via two-photon absorption 

as discussed in section 2.2. Such an event can only take place when the 

intensity is high enough so that there is a significant probability of simul­

taneous absorption of two photons by the fluorophore. This occurs only in 

a small region in the vicinity of the focus. Although the effective PSF for 

two-photon absorption is slightly larger than the confocal PSF it has the 

definite advantage that outside of this volume, none of the fluorophores are 

excited. This entails less photobleaching of the out-of-focus dyes and less 

photodamage to the sample. Two-photon microscopy thus presents inherent 

optical sectioning without the use of a pinhole and can be better suited to 

live sample imaging, but requires expensive pulsed lasers and can have lower 

signal to noise as compared to regular confocal microscopy. 

2.3.4 Total InternaI Reflection Microscopy 

Total InternaI Reflection Microscopy (TIRM) is an evanescent wave based 

technique used to locally excite fluorescence from a sample located within a 

few hundred nanometers of the boundary interface surface [88, 89]. It uses 

the optical phenomenon known as total internaI reflection: when light strikes 

an interface going from a high refractive index medium to a low refractive 

index medium at an angle greater than the critical angle Bc, it undergoes 

total internaI reflection (see figure 2.6). The critical angle is given by [88]: 

(2.2) 

wherenl(n2) isthe refractive index of the first (second) medium, andnl > n2. 

In the second, lower refractive index medium there is still a propagation of 
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the electric field in the boundary layer (parallel to the interface) called the 

"evanescent wave", but this boundary wave decays exponentially in the z 

direction. If a laser beam is totally internally reflected from inside the ob-

jective and off the glass coverslip interface, it is possible for the evanescent 

wave to excite fluorescent molecules within rv 100 nm of this surface. The ex-

cited fluorescence is collected back through the same objective lens, through 

standard dichroics and emission filters. 

A) n1: high refractive index 

n2: low refractive index 

evanescent boundary 
layer 

B) C) 

Figure 2.6: Total Internai Reflection Microscopy. A) The laser beam 
(shown as a thick arrow) strikes the interface between the high 
and low refractive index media at an angle greater than or equal 
to the critical angle 8c . An exponentially decaying evanescent 
wave, which can be used to excite fluorescent molecules in the 
Low index medium that are close ("-'100 nm) to the boundary, 
is created. B) experimentaL setup for prism-based TIRM. C) 
experimentaL setup for through-objective TIRM. 

Total InternaI Refiection Microscopy has the potential to generate im-

ages with single molecule sensitivity [90, 91, 92, 93]. There is much lower 

background signal than in confocal or two-photon systems because the expo­

nentially decaying evanescent wave does not excite most of the fluorophores 

in the bulk solution [89]. In vivo imaging using TIRM is also very useful 
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for studies of the basolateral (bottom) membrane of the ce Il , where macro­

molecular adhesion complexes form within two dimensional tissue cultured 

cells. Since this membrane is only about 5 nm thick and located near the 

coverslip boundary, it is completely immersed in the evanescent field, as are 

aIl the transmembrane proteins and their molecular partners. This technique 

is thus very use fuI for imaging of adhesion related proteins, since the fluores­

cently labeled adhesion molecules are present both in adhesions at the cell 

membrane, but also as unbound entities in the cytosol within the cell. This 

allows for very high signal to noise imaging of the adhesions, with minimal 

contribution from cytosolic background. 

There are several experimental geometries used to achieve TIRM near 

a dielectric interface in wide-field microscopy [89, 94]. Prism-based and 

through-objective TIRM (see Figure 2.6) have been used extensively and 

they each have their own advantages [89]. Experiments in which the total 

number of photons is of importance should employ a near wall geometry 

(such as through-objective TIRM) and experiments which require a rapid 

measurement with good signal to noise, as single molecule measurements do, 

should use a far wall geometry (such as prism-based TIRM) [95]. In the 

case of slow adhesion related protein motion, the signal-to-noise and photon 

collection are of importance, so we used the through objective configuration. 

The collection efficiency of the objective in through-objective TIRM is 

characterized by the numerical aperture (NA): 

NA = n x sin(B) (2.3) 
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where n is the index of refraction of the medium and B is the half angle of 

light collection. The NA, usually 1.2-1.45 for high numerical aperture objec­

tive lenses, is a measure of how wide a cone of light the objective can gather: 

the greater the NA, the wider the cone of light and the greater the resolution 

of the lens. Hence a larger NA objective is desirable to permit a greater 

angle of incidence for the laser in through-objective TIRM. For example, the 

refractive index of the aqueous medium is usually about 1.33 to 1.38, while 

the refractive index of glass is 1.52. Thus for an objective built from glass, 

in order to have incoming illumination at an angle greater than the critical 

angle, we need to have nlsin(B) > n2 (see Eq. 2.2), thus one needs the NA 

> 1.35 in order to achieve through objective evanescent illumination. There 

are 1.65 NA objectives available on the market but they require the use of 

toxie immersion oils and costly high refractive index glass such as sapphire. 

A 1.45 NA objective can be used with regular glass and immersion oil so it 

is an optimallens for TIRM. 

There is no scanning involved in TIRM. The whole field of view is il­

luminated with the evanescent wave and this area is imaged using a cooled 

charged coupled device (CCD) camera. Hence there is no illumination volume 

per se as in confocal or two-photon microscopy. However, it is not possible 

to surpass the diffraction limit as there is still collection of the fluorescence 

emission through the collection optics (the objective lens), which means that 

a point emitter will still transform to a PSF -sized spot in the image. The 

advantage of TIRM, in addition to the narrow depth of field at the interface, 

is that modern cooled CCD cameras permit very short acquisition times, on 
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the arder of 50 ms per image C-v 10 ms or faster for sorne cameras) compared 

to the rv 1 Hz imaging rate for standard L8Ms. This allows the study of faster 

dynamic pro cesses in the basolateral membrane of the cells and at the inside 

interface with the membrane. 
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Figure 2.7: Schematic diagram of the fluorescence correlation spectroscopy 
method. A) In either case, the fluorescence intensity is col­
lected only from a small region (focal volume). Fluorescence 
fluctuations arise from either the molecules entering or exiting 
of the volume (kinematics) and/or chemical reactions affecting 
the fluorescence intensity (kinetics). B) The intensity can be 
collected in time fram a single point, and the autocorrelation 
function of the intensity fluctuation time series reflects the dy­
namics of the system. 
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2.4 Fluorescence Correlation Spectroscopy 

The technique of Fluorescence Correlation Spectroscopy (FCS) was devel­

oped in the early 1970s, at Cornell University [71]. Although originally im­

plemented by relatively few groups in the biophysical corn munit y, FCS really 

blossomed in the 1990's due to advances in electronics, computers, detectors, 

lasers and especially due to the implementation of confocal optics for FCS 

[96]. In essence, FCS looks at the temporal persistence of the fluorescence 

intensity fluctuations collected from a small volume «1 fL) defined by the 

focus of a laser beam as fluorescent molecules move into and out of the focal 

volume (see Figure 2.7 A). Much information is contained in the magnitude 

and characteristic time scale of the fluctuations including molecular concen­

tration and kinetics/kinematics. Qualitatively, this stems from the fact that 

the higher the concentration, the more particles you will find in the small 

observation volume and the smaller the relative intensity fluctuations will 

be, since fluorescence emission is an extensive property of the system. The 

transport dynamics, and possibly chemical reaction rates and/or photophys­

ical pro cesses such as photobleaching (see section 4.2.1), are responsible for 

the fluctuations in intensity as molecules enter and leave the laser focus, 

changing the occupation number. The fluorescence intensity fluctuations are 

recorded in a time series which is used to calculate a temporal autocorrelation 

function (ACF) that can be fit with appropriate decay models to solve for 

the transport properties (diffusion coefficient, flow speeds) if the dimensions 

of the focal volume are known (see Figure 2. 7B). The fit models are obtained 

by solving the fluctuation ACF within the context of the appropriate trans­

port equation (e.g. diffusion law or flow with constant velocity) and laser 
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excitation profiles. 

The time scales involved in FCS are from the microsecond to the mil­

lisecond. The inherent rates at which data can be collected by modern photo 

multiplier tubes (PMTs) or avalanche photo diodes (APDs) make it possible 

to probe reactions and dynamics happening on short time scales within cells. 

However, the continuous illumination of the sample can entail photo damage 

to the fluorescent dye or the protein under study, and may prevent extended 

exposure times to study long scale dynamic processes. As well, the measure­

ment is localized to only one point in space. Moreover, FCS measurements of 

dynamics on slow time scales can suffer from low signal to noise ratios, since 

for a fluctuation measurement, this ratio depends on the square root of the 

number of independent fluctuations sampled. Entities with slow transport 

dynamics (e.g. membrane protein diffusion) will therefore not create enough 

independent fluctuations over the time course of a typical FCS experiment 

in a living cell. Several extensions of FCS have been developed to address 

this problem [51, 77], and we will focus our attention on image correlation 

spectroscopy. 

2.5 Image Correlation Spectroscopy 

Image correlation spectroscopy (ICS) was introduced a decade ago in Nils 

Petersen's laboratory at the University of Western Ontario (UWO). It was 

initially developed as the imaging analog of FCS for measuring labeled pro­

tein surface densities and aggregation state [51]. Later, ICS was further 

extended to the temporal domain by calculation of a temporal ACF from an 
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LSM image time series [97]. The characteristic imaging rate of the LSM ('" 1 

Hz) makes it possible ta probe pro cesses happening on the seconds to min-

utes time scales, which are characteristic of membrane protein dynamics. A 

summary of the basic concepts behind lCS and its cross-correlation variant, 

image cross-correlation spectroscopy (lCCS), will be provided in order to set 

the stage for the introduction of the theory necessary for the spatio-temporal 

image correlation spectroscopy (STlCS) method. 

2.5.1 Generalized Spatio-Temporal Correlation Function 

lCS is based on the correlation of fluorescence intensity fluctuations measured 

from an observation area defined by the diffraction limited focal spot of the 

exciting laser beam in a LSM. The intensity fluctuations in fluorescence are 

recorded in an image series as the laser beam is repeatedly rastered across 

the sample. The image series can be thought of as a record of fluorescence 

intensity in space and time (we consider only collection from a single fixed 

plane in z): i(x,y,t). It is an easy matter to calculate the mean intensity of 

the n th image: 
1 N M 

(i)n = NM I:I>(j,k,n) 
j=O k=O 

(2.4) 

where N and M are the spatial dimension (in pixels) of an image from the 

time series. Spatial and temporal correlation is then applied to the image 

time series. We define a generalized spatio-temporal intensity fluctuation 

correlation function which is a function of spatial lag variables ç and '17 and 

of a temporallag variable T for detection channels a and b: 

(
è ) _ (bia(x, y, t)bib(X + ç, y + '17, t + T) 

rab .", '17, T - (' ) (' ) 
'la t 'lb t+T 

(2.5) 
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where 6ia(b) (x, y, t) = ia(b) (x, y, t) - (ia(b))t is the intensity fluctuation in chan­

nel a(b) at pixel position (x,y) and time t, and the angular (brackets) in the 

denominator represent spatial ensemble intensity averaging over images at 

time t and t+T in the time series, and the numerator is also an ensemble 

average over aH pixel fluctuations in pairs of images separated by a lag time 

of T. White noise sources contribute to the numerator only at zero lags 

(temporal and spatial), whereas white noise does contribute to the average 

intensities in the denominator. Correction methods dealing with white noise 

and background correlation have been reported [97]. This discrete calcula­

tion of the correlation function can be fit with the appropriate models (see 

sections below), and the zero lags amplitude value is not weighed in the fits. 

2.5.2 Spatial Correlation and Cross-Correlation 

ICS has traditionally treated the cases for spatial and temporal correlations 

separately. The spatial correlation function r ab(,;,7],O) is defined by evaluating 

Eq. 2.5 with zero time lag: 

(
t 0) _ (6ia(x, y, t) 6ib(X +,;, Y + 7], t)) 

rab <", 7], - (' ) (' ) 'la t 'lb t 
(2.6) 

These functions are typically calculated by Fourier methods for each image 

in the time series using: 

(
c ) _ FFT-1{FFT(ia(x,y,n)) x FFT(ib(x,y,n))*} 

rab <", 7], 0 n - (' ( ) ) (' ( ) ) 'la x,y,n 'lb x,y,n 
(2.7) 

where rab(';, 7], O)n is the spatial correlation function of the nth images of the 

image time series from channels a and b, FFT(-l) denotes the (inverse) Fast 
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Fourier Transform and * denotes complex conjugation. The spatial correla-

tion functions are then fit to standard 2D Gaussian functions by nonlinear 

least squares methods. This is due to the fact that a T EMoo "Gaussian" 

beam acts as the correlator in the LSM measurement [51, 97]. The Gaussian 

fit function for the spatial correlation of the nth image is given as: 

(2.8) 

(note in this fitting equation and those that fo 11 ow , the fit parameters are 

highlighted in bold type). The fit parameters are the zero-lags amplitude 

gab(O, 0, O)n, the e-2 beam radius WOab (the horizontal radius of the beam 

focal spot), and the offset at long correlation lengths gooabn' For an ideal 

system of non-interacting particles, the zero lag amplitude gab(O, 0, O)n is 

the square relative intensity fluctuation and is equal to the inverse of the 

mean number of independent fluorescent particles in the correlation area 

defined by the focus of the laser [51]. When a=b= 1 or 2, Eq. 2.6 de fines 

a spatial autocorrelation function for a single detection channel, and when 

a=1 and b=2, Eq. 2.6 de fines a spatial cross-correlation function between 

two detection channels. 

2.5.3 Temporal Correlation and Cross-Correlation 

The temporal correlation function is given by evaluating the generalized cor-

relation function at zero spatial lags: 

(0 ° ) 
_ (5ia(x, y, t)5ib(X, y, t + T)) 

rab , ,T - ( ) ( ) 
'la t 'lb t+T 

(2.9) 
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Its decay will essentially depend on the temporal persistence of the average 

spatial correlation of intensity fluctuations between images in the time series 

separated by a lag time of T as measured from an ensemble of focal spots 

(correlation areas) within a sampled image area. The same relationships hold 

for the a and b subscripts in defining temporal auto and cross-correlation 

functions as was outlined above for the spatial case. 

2.5.4 Decay Models for Correlation Functions 

The rate and shape of the decay of the correlation functions will reflect 

any dynamic process that contributes fluctuations on the time scale of the 

measurement [72]. The actual decay models for fluorescence correlation will 

depend on both the underlying dynamics of the fluctuating process and the 

geometry of the laser focal spot (the point spread function) [98]. We consider 

four separate functional forms that are analytical solutions for the general-

ized intensity fluctuation correlation function appropriate for specifie cases 

of 2D transport phenomena as measured within a membrane system illumi-

nated by a TEMoo laser beam with Gaussian transverse intensity profile: 

2D Diffusion [72]: 

(2.10) 

2D Flow [99]: 

{ ( IVfIT)2} Tab(O, 0, T) = 9ab(0, 0, O)exp - (WOab) + 900ab (2.11) 
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2D Diffusion and Flow for a Single Population [99]: 

gab(O, 0, 0) (1+ :d) -1 X (2.12) 

exp{ - O::~=)' (1+ :d r} + g=ab 

2D Diffusion and Flow for Two Populations (i=I,2) [1]: 

gab(O, 0, Oh (1 + _t ) -1 + (2.13) 
7"dl 

gab(o,o,oJ,exp{ - n::~)) 2} + g~ab 

The highlighted fit parameters are the zero-lags amplitude 9ab(0, 0, O)n, the 

long correlation time offset gooab, the characteristic diffusion decay time Td 

and the mean speed of the particles Iv fi: 

1 1 
WOab 

vf =-­
Tf 

(2.14) 

where Tf is the characteristic flow time. The effective e-2 beam radius is 

calculated by averaging the individual WOab obtained from fitting the spatial 

correlation functions (Eq. 2.8) for every image in the time series. The best 

fit characteristic diffusion time combined with the average beam radius allow 

calc1l1ation of the diffusion coefficient: 

(2.15) 

Note that in Eq. 2.14, the mean speed IVfl is directionally blind (a velocity 
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magnitude). Temporal lCS is not sensitive to the direction in which the 

particles exit the observation area, because the basic analysis does not include 

non zero spatiallags in combination with the temporallags in the calculation 

of the correlation function (see Eq. 2.9). 

2.6 Space-Time Image Correlation Spectroscopy 

The object of this thesis is to develop, characterize and apply a new ex-

tension of lCS and lCCS in order to obtain flow vectors, or essentially to 

determine the direction in which the particles are exiting the correlation ar-

eas if directed flux is present. To achieve this, one must combine the spatial 

information embedded in the two dimensional spatial correlations with the 

time dependent transport measured by the temporal correlation. For this we 

define a discrete approximation to the full space-time correlation function as: 

'(C ) _ 1 ~ (Sia(x, y, t)Sib(x + ç, y + Tl, t + s)) 
rab .", Tl, s - X L..t ( ) ( ) 

N - S t=l ia t ib t+s 
(2.16) 

where N is the total number of images in the time series. The function 

r~b represents the average cross correlation function for channels a and b, 

for all pairs of images separated by a lag time of L\t=sSt (where s is the 

discrete frame lag between pairs of images and St is the sampling time per 

frame). This generalized space-time correlation function can be considered 

as a time series, where the individual frames are averaged two dimensional 

spatial (cross-) correlation functions, and the time variable is actually the lag 

time (L\t) between all image pairs for which the correlation was computed. 
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t=O sec t=2 sec t=4 sec t=6 sec t=8 sec 

Figure 2.8: Examples of calculated STICS correlation functions for simu­
lations of various transport dynamics behaviors. A) Diffusion 
with D = 0.01 p,m2/s. B) Flow of Ivl = 0.144 p,m/s with par­
ticles fiowing in random directions. C) Flow of V x = -0.12 
p,m / sand vy = 0.08 p,m / s. D) Combined one population dif­
fusion with D = 0.01 p,m2/s andfiow ofvx = -0.12 p,m/s and 
vy = 0.08 p,m/ s. E) Two population, one with a diffusion coef­
ficient of 0.01 p,m2 

/ s and the second with a fiow of V x = -0.12 
p,m/ sand vy = 0.08p,m/ s. Scale bar is 2 p,m. 

For an image time series collected using a LSM, r~a(ç, 'T/, 0) is the average 

spatial autocorrelation function from each image (Eq. 2.6 averaged for each 

image n in the series; see Figures 2.8 and 2.9). It will appear as a two di­

mensional Gaussian with peak value at (ç=O, 'T/=O) sinee the autocorrelation 

of an image with itself always yields a maximum value at zero lags. Assum-

ing that the temporal resolution is sufficiently high for intensity fluctuations 
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to be correlated between successive images, r~a(ç, 'Tl, 1), r~a(ç, 'Tl, 2), are also 

going to appear as Gaussian spatially distributed correlations. However, if 

sorne particles have moved between frames, the correlation function is going 

to change depending on the underlying microscopie motion of the particles. 

It is this change in shape and location of the correlation peak that directly 

reports the nature of the transport of the particles. We can therefore monitor 

the spatial evolution of the average spatial correlation function as a function 

of time lag by fitting it to a two dimensional Gaussian profile with variable 

peak position: 

1 { (ç-X(S))2+('Tl-Y(S))2} 
rab(ç, 'Tl, s) = gab(O, 0, s)exp - 2 ( ) + gooab(S) 

W Oab S 

(2.17) 

where x (s) and y (s) are the x and y coordinates of the peak of the correlation 

function at lag time 6t=sbt (note that all fit parameters are a function of lag 

time). We can monitor the transport processes by observing the evolution of 

the fit Gaussian peak over time. 

To better conceptualize the meaning of these changes, we will consider a 

few thought experiments (see Figure 2.8). The simple st case is to imagine 

the particles as stationary, then the correlation stays unchanged for 6 t=O 

to N and remains centered at (ç=O, 'Tl=0) because there are no fluctuations 

in intensity. If we now considcr the particles as randomly diffusing, they 

will tend to exit the correlation area in a symmetric fashion thus broadening 

the correlation peak in every direction as a function of lag time (see Fig­

ure 2.8A). This is analogous to a tracer diffusion experiment except that at 

lag time zero, we start with a centered Gaussian peak not a delta function. 
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The peak will stay centered at (Ç"=O, Tl=O) but its value will decrease hyper­

bolically, because our discrete approximation in Eq. 2.16 evaluated at zero 

spatial lags is equivalent to Eq. 2.10. If we now consider particles flowing at 

constant speed in random directions, the Gaussian correlation is also going 

to spread in every direction, eventually forming an expanding "doughnut" 

shape for the simulation presented in Figure 2.8B. If all the particles are 

flowing uniformly, the spatial correlation Gaussian peak is going to maintain 

its original shape as a function of time, but its peak value will be shifted 

to lag positions (x(.6.t) = -Vx . .6.t, y(.6.t) = -vy . .6.t) where V x and vy are 

the x and y velocities of the particles (see Figure 2.8C). This is due to the 

fact that in consecutive images the same pattern of particle distribution will 

occur exeept that it will have shifted slightly (this assumes the time resolu­

tion is sufficiently high). Renee, the correlation peak will translate between 

frames (see Figure 2.8C). This is consistent with the observation that for a 

flowing population, the temporal autocorrelation function raa(O,O,T) decays 

as a Gaussian (see Eq. 2.11). The negative signs in the expression for Ç" and 

Tl arise from the fact that the Gaussian correlation peak moves in a direction 

opposite to the flow because of the order in which we correlate the images 

(Le. in Eq. 2.7 we multiply the FFT of the image that comes earlier in the 

time series by the complex conjugate FFT of the image that comes later). 

This analysis is only valid as long as the particles undergoing concerted mo­

tion stay within the bounds of the analyzed region. Finally, if we analyze 

a single population that is undergoing both directed flow and diffusion (i.e. 

biased diffusion) at the same time, the Gaussian correlation peak is going 

to shift according to flow, but also broaden because of diffusion (see Figure 
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2.8D). 

Figure 2.9: Schematic illustration of the algorithm used to compute the dis­
crete approximation to a generalized spatio-temporal correlation 
function for a simulated two population system with fiow and 
diffusion. The Gaussian autocorrelation peaks for each image 
are shown in the left column (8 =0), the cross correlation for a 
lag time of 1 time unit in the middle column (8=1), and for the 
second longest lag time of N-1 time units in the right column 
(8=N-1, where N is the number of frames in the image series). 
The white arrows on the simulation images represent the direc­
tion of the fiow. The averaged Gaussian correlation functions 
r~a (ç, 'Tl, 8) are shown at the bottom for 8 =0,1 and N-1. The 
separation of the Gaussian correlation peak due to fiow (FG) 
from the Gaussian correlation peak arising from the diffusing 
population (DG) is clearly seen. 
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The two population case with a fiowing and a diffusing population is 

illustrated in Figure 2.8E and 2.9, where the correlation peak due to diffusion 

(DG) broadens and stays centered at (Ç"=O, '17=0) and the correlation peak 

due to fiow (FG) shifts in a direction opposite to the fiow of the particles (as 

indicated by the white arrows on the simulated images in Figure 2.9). In this 

simulation the fiowing and diffusing populations were equally represented 

in terms of density and intensity. However in cell systems that are usually 

studied, the actively transported protein sub-population is usually a small 

fraction of the total dynamic and static protein species present. This makes 

tracking the fiow Gaussian peak difficult because it is hard to resolve near the 

zero lags origin due to the correlations of the slowly diffusing and immobile 

populations. A solution to this problem is presented in the next subsection. 

2.7 Immobile Population Removal in STICS Analysis 

The most general case of cellular protein transport is a combination of dif­

fusion, fiow and immobile populations. The challenge of applying STICS in 

living cells is to measure the velocity by following the fiow Gaussian cor­

relation peak, without being infiuenced by the correlations of the immobile 

or slowly diffusing populations (which effectively remain centered at (0,0) 

spatial lags). The immobile population contribution to r~a(Ç", '17, s) can be 

removed by Fourier filtering in frequency space the zero, or low frequency 

components for every pixel trace in time before running the space-time cor­

relation analysis. 
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2.7.1 Zero Frequency Filtering 

The intensity values in detection channel a for a given pixel value, ia(O, 0, t), 

contain contributions to the signal of interest from dynamic and immobile 

component signaIs and spurious noise sources. The signal from the dynamic 

components (flow and diffusion) contribute intensity fluctuations that change 

as a function of time for a given pixel trace. However, an immobile component 

only adds a constant intensity offset to the single pixel intensity trace through 

time because, by definition, the immobile component does not move so its 

intensity contribution to the pixel do es not fluctuate in time. Removing 

the De (zero) frequency component eliminates this contribution from the 

correlation analysis. For a given pixel location (x,y) the corrected intensities 

i~(x, y, t) are given by: 

(2.18) 

where T is the total acquisition time of the image series, H l.. (1) is the Heav-
T 

iside function which is ° for f < ~ and 1 for f ~ ~, Ft denotes the Fourier 

transform with respect to t, Fil denotes the inverse Fourier transform with 

respect to f, and f is the pixel temporal frequency variable. 

2.7.2 Windowed Average Filtering 

The advantage in using the formulation of Eq. 2.18 is that we can modulate 

the range over which we perform the filtering in frequency space. The Heavi-

si de function used to eliminate the zero frequency component can be modified 

to include non-zero components, for example using H_l_ (1), H_l_ (1), etc ... 
T-l T-2 
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This is equivalent to applying a window average filter to the raw data: 

( 

1 s+b.N ) 

i~(x, y, s) = ia(x, y, s) - 2 x ~N + 1 n=~N ia(x, y, n) + (ia(x, y, s))t 

(2.19) 

where 2 x ~N + 1 is the filtering window size. The first term in Eq. 2.19 

is the intensity at location (x,y) and discrete frame time s, from which we 

subtract the second term which is the average intensity in a window cen-

tered around time s. The last term in Eq. 2.19 is added as a constant 

offset to prevent the temporal ACF from diverging when we divide by the 

average intensity. Without this last term, we would have (i~(x, y, s)) = 0 

and so the denominator in Eq. 2.9 would be null. Also note that this last 

term will make the correlation function decay to 1 at infinite lag times, and 

not to 0 as is usually the case for Eq. 2.9 (if there is no immobile population). 

This method can be used if there are slow variations in intensity that are 

not part of the signal. Any low frequency "noise", such as a vesicle slowly 

moving through the field of view, will be removed. However, this technique 

introduces artificial correlations in the data because of the inherent use of a 

window to compute the average to be subtracted from the data. It is easiest 

to understand this with an example. Assume ~N = 1 (window size of 3), 

dropping the channel subscript a to simplify the notation, and assuming we 

select a specifie pixel location (xo, Yo): 

1 s+b.N 

i'(s)xo,yO = i(s)xO'YO - 2 x ~N + 1 L i(n)xo,yO + (i(s)xo,yo)t 
n=s-b.N 

(2.20) 
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or more simply (since D.N = 1): 

i' (s) 
2 1 1 
-i(s) - -i(s - 1) - -i(s + 1) + (i) 
3 3 3 

[ i(s -1) i(s) i(s+ 1) (i) J. 
2 
3 

1 

1 
3 

55 

(2.21) 

(2.22) 

the matrix notation simplifies the generalized form for the multiplication of 

the new intensity at time t and the new intensity at time t+T: 

i'(s)i'(s + T) [ i(s - 1) i(s) i(s + 1) (i) J. (2.23) 

1 2 1 1 i(s + T - 1) 9 9 9 3 

2 4 1 2 i(S+T) -g -g 9 3 
1 1 1 1 i(s + T + 1) 9 9 9 -3 

1 2 _1 1 (i) 
3 3 3 

" 'V 
,1 

matrix A 

where matrix A is obtained by the vector multiplication of the coefficients 

column vector in Eq. 2.22. The new autocorrelation function 9'(T) for the 

single pixel location is now given by: 

, () _ (i'(t)i'(t + T)) 
gxo,'Yo T - (i) (2.24) 

since (i') = (i). Plugging Eq. 2.23 into Eq. 2.24 we see that the new 

correlation function at lag T is going to be a combination of the old correlation 
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function at lags 7 - 2, 7 - 1, 7, 7 + 1 and 7 + 2. In our case: 

1 1 4 2 4 1 
g (7) = gg(7 - 2) - gg(7 - 1) + "3g(7) - gg(7 + 1) + gg(7 + 2) + 1 (2.25) 

where the coefficients are obtained by summing the diagonal elements of the 

submatrix constituted by the first 3 x 3 elements of matrix A. 

In Eq. 2.25 it can be seen that the filtered correlation function at time 

lag 7 includes contributions from other time lags. In a practical manner, this 

process can be generalized to any window size by realizing that the coeffi-

cients weighting the old correlation functions at other lag times in Eq. 2.25 

are actually the convolution of the coefficient column vector in Eq. 2.22. In 

essence, Eq. 2.25 provides an analytical form to fit the temporal autocorre-

lation function obtained when we analyze window filtered data. 

2.8 Chapter Conclusions 

In this chapter, the theoretical basis of the fluorescence phenomenon was in-

troduced through use of the Jablonski energy diagram for fluorescent molecules, 

and the central aspects of fluorescence important for optical microscopy were 

outlined. The major tools for fluorescence imaging of biological systems, 

namely confocal, two-photon and total internaI reflection microscopy, were 

introduced. Finally, the basis of fluorescence correlation techniques, namcly 

FCS and ICS, were introduced. The theoretical basis of the STICS method 

was introduced and the response of the method to different forms of trans-

port was shown via analysis of simulations. In the following chapter, we will 
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review the materials and methods used for characterizing STICS in silico 

and in vivo. 
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3 Materials and Methods 

3.1 Microscopy Instrumentation 

3.1.1 Wide Field Fluorescence Microscopy 

Fish epidermal keratocyte cells were imaged in a cell incubation chamber on 

a Nikon Diaphot 300 inverted microscope at room temperature using a 40x 

(NA=1.3) or a 60x (NA=1.4) objective. Metamorph version 6.1 (Molecu­

lar Devices, Sunnyvale, CA) was used to drive the filter wheels and shutters. 

Images were collected on a cooled CCD camera (Princeton Instruments, Tren­

ton, NJ), with a 2x optivar attached. For tracer flow measurements, phase 

images were acquired before and after acquisition of a fluorescence image 

series of 150-300 frames at a frame rate of 3-10 frames/s, using exposure 

times of 50 ms (for QDs) or 100-200 ms (for GFP). The 655 QDs (Quantum 

Dot Corporation, Hayward, CA) were visualized with Texas Red chromatic 

filters, and the 545 QDs (Quantum Dot Corporation, Hayward, CA) and 

GFP with FITC chromatic filters (Chroma, Rockingham, VT). Phase and 

fluorescence images were acquired at a frame rate of 0.5 frames/s, with a 

Rhodamine chromatic filter (Chroma, Rockingham, VT). 

3.1.2 Confocal Microscopy 

Confocal images of cells were acquired on an Olympus Fluoview 300 micro­

scope (Olympus, Melville, NY) equipped with an IX70 inverted microscope 

fitted with a 60x PlanApo (1.40 NA) oil immersion objective. Excitation was 

from the 488 nm laser line of a 40 m W Ar ion laser (Melles Griot, Carlsbad, 

CA) attenuated to 0.1-0.2% power using a ND filter and an acousto-optical 
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tunable filter. The photomultiplier tube was operated at 800 V with 1 x gain, 

and 0% offset. In order to get high resolution images (0.023 J.Lm/pixels) we 

used a clip box subregion of 256x256 pixels from a 1024x1024 image at 10x 

zoom. A custom Q500LP dichroic mirror (Chroma, Rockingham, VT) was 

used for the laser excitation and for collection of the fluorescence emission. 

Note that use of this filter enhanced the EGFP signal by about 50% over the 

standard triple dichroic that cornes with the FV300. Under the se conditions 

the pixel dwell times were 2 J.Ls/pixel (fast scan), 4 J.Ls/pixel (medium scan) or 

8 J.Ls/pixel (slow scan), and the time between lines was 1.608 ms (fast scan), 

2.12 ms (medium scan), and 3.15 ms (slow scan). 

3.1.3 Two-Photon Microscopy 

Two-photon microscopy of the fluorescent microspheres was conducted us­

ing an Olympus Fluoview 300 CLSM/IX70 inverted microscope (Olympus, 

Melville, NY), coupled with a Tsunami (model 3960) pulsed femtosecond 

Ti:sapphire laser (Spectra Physics, Mountain View, CA) pumped by a Mil­

lennia XsJS laser. The microspheres were excited at 800 nm and point de­

tection was achieved with two external PMTs (Hamamatsu, Bridgewater, 

N J). For imaging of the microspheres, a 720 DCSPXR excitation dichroic 

mirror, a 555dclp emission beam splitter, and HQ525/50 HQ610/75 emission 

filters (aH from Chroma Technology Co., Brattleboro, VT) were employed 

for light detection. An images were collected using a PlanApo Olyrnpus 60x 

(NA 1.40) oil immersion objective lens. Images were collected with a typi­

cal optical zoom setting of 2 x corresponding to x and y pixel dimensions of 

0.23 J.Lm/pixel. Image time series of 100 frames with a time delay of 0.45 s 

between frames were collected. 
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Two-photon imaging of cells was conducted using a Biorad RTS2000MP 

video rate capable two-photon/confocal microscope (Biorad, Hertfordshire, 

UK), coupled with a MaiTai pulsed femtosecond Ti:sapphire laser (Spec­

tra Physics, Mountain View, CA) tunable over a range from 780-920 nm. 

The microscope used a resonant galvanometer mirror to scan horizontally 

at the NTSC line scan rate. Point detection was employed using one or 

two photomultiplier tube(s) with fully open confocal pinholes when imag­

ing. For imaging EG FP in cells, the laser was tuned to a wavelength of 890 

nm and a 560 DCLPXR dichroic mirror and an RQ528/50 emission filter 

were employed for light detection. For imaging cells expressing both ECFP 

and EYFP fusion proteins, the laser was tuned to 880 nm and a D500LP 

dichroic mirror and HQ485/22 and HQ560/40 emission filters were used for 

detection and separation of the emitted fluorescence. All laser filters were 

from Chroma Technology Co. (Brattleboro, VT). All image time series were 

collected using a PlanApo Nikon 60x oil immersion objective lens (NA 1.40) 

which was mounted in an inverted configuration. Images having dimensions 

of 480 (height) by 512 (width) pixels were collected with a typical opti­

cal zoom setting of 2 x corresponding to x and y pixel dimensions of 0.118 

pm/pixel. Image series with time delays of 1, 5, or 10 s between sequential 

frames and 60, 120 or 150 frames in total were collected from single cells. In­

dividual image frames sampled from the cells were accumulated as averages 

of 32 video rate scans (i.e. approximately 1 s/frame). 

3.1.4 Total InternaI Reflection Microscopy 

TIRM microscopy was performed on an Olympus IX70 microscope equipped 

with an Olympus TIRM illumination arm and a PlanApo 60x (1.45 NA) 
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TIRM oil immersion objective (Olympus, Melville, NY). The laser launch 

(Prairie Technologies, Inc., Middleton, WI) was connected to the TIRM Il­

lumination arm via a fiber optic and illumination was from the 488 nm line 

of a 200 m W Ar Ion laser or the 543 nm line of a 2 m W HeN e green laser. 

The 488 nm laser line was attenuated to 10% of incident power with a ND1 

filter and further attenuated with the AOTF (Acousto-Optic Thnable Fil­

ter) to give a total power of about 1% of incident power. The HeNe green 

laser was used at full power, i.e. no ND filter and the AOTF. Images were 

collected on a Retiga EXi camera (QImaging, Burnaby, BC, Canada) with 

2x2 binning to give a pixel resolution of 0.2146 p,m. Exposure times were 

typically 500 - 1000 ms. For EGFP and RFP dual imaging, the images were 

collected sequentially using MetaMorph software (Molecular Deviees Corpo­

ration, Downingtown, PA), the AOTF control of the laser lines and a LUDL 

(LUDL Electronics Products Ltd., Hawthorne, NY) emission filter wheel con­

trolled by a MAC2000 control unit. Fluorophores were excited sequentially 

and typically the image with the lower exposure time was collected first to 

reduce the delay between successive frames. Imaging was done using cus­

tom dichroie filter sets designed by Chroma Technologies for use with TIRM 

mieroscopy and lasers at a high incidence angle. For EGFP imaging, an 

HQ485/30 dichroic filter was used in combination with a 535/30 bandpass 

emission filter. For dual EGFP /RFP imaging a z488/543rpc dual dichroic 

was used in combination with a z488/543 dual band pass emitltlion filter in 

the cube and a 535/30 or 630/60 emission filter to select either EGFP or RFP 

emission. This leads to double filtering of the light causing sorne loses, but 

it is a safer design for the end microscope user as it avoids having reflected 

laser light at the eyepiece. 
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3.2 Image Auto-Correlation and Cross-Correlation Anal-

. 
ySlS 

Microscope image time series data sets were viewed, and image sub-regions 

of 162 , 322
, 642

, 1282 or 2562 pixels in size were selected that covered ar-

eas of the ceIl. These image sub-stacks were exported for image correlation 

analysis using a custom Interactive Data Language (IDL 6.0, RSI Colorado) 

program written for the PC. Correlation calculations for aIl image time series 

and nonlinear least squares fitting of the spatial correlation functions were 

performed in a Windows environment on a PC using programs written in 

IDL. Discrete intensity fluctuation autocorrelation functions were calculated 

from the image sections as described in sections 2.5 and 2.6. The equations 

used for the calculation and fitting of the normalized intensity fluctuation 

autocorrelation and cross-correlation functions (both spatial and temporal) 

have been described in section 2.5. 

3.3 Cell Culture 

3.3.1 Plasnaids 

The a-actinin-EGFP, paxillin-EGFP, and a5-integrin-EGFP plasmids have 

been previously described [100]. The plasmids for ,6-actin-RFP and talin­

EGFP were generous gifts from the laboratories of Frank Gertler (Mas­

sachusetts Institute of Technology) and Ken Yamada (National Institutes 

of Health), respectively. 
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3.3.2 Cell culture of the 3T3, MEF and CHO Hnes 

CHO, MEF and 3T3 cells were cultured in a humidified, 8.5% CO2 atmo­

sphere at 37°C in minimum essential medium (MEM) supplemented with 

10% FBS, non-essential amino acids, and glutamine. For stable celllines 0.5 

mg/mL neomycin (G418) was added to the media for cell selection. Cells 

were transfected 24 to 48 hours before imaging with 0.1 f.Lg of DNA for a 

given EGFP protein and 0.9 f.Lg of BlueScript empty vector (Stratagene, La 

Jolla, CA). Titrating down the EGFP protein DNA with BlueScript DNA 

decreases the number of cells that highly overexpress the EGFP protein, 

however it is important to maintain the total DNA concentration at 1 f.Lg 

or the transfection efficiency is markedly reduced. For dual transfections 0.1 

f.Lg of DN A for each fluorescently tagged protein was added with 0.8 f.Lg of 

BlueScript DNA. The DNA was mixed with 5 f.LL of lipofectamine reagent 

(Invitrogen, Carlsbad, CA) in PBS and left to sit for 20 minutes. Cells were 

plated in 6 well tissue cultures the day before transfection so that they were 

40-60% confluent. Cells were washed two times with serum free medium and 

then the lipofectamine and DNA solution was mixed with 600 ml of serum 

free medium and applied dropwise to each well. The cells were placed at 

37°C for 3-4 hours and then washed two times and left in serum contain­

ing medium overnight. Cells were lifted with trypsin and plated in CCM1 

medium (Hyclone, UT) buffered with 15 mM HEPES on homemade 35 mm 

glass bottomed dishes coated with an integrin activating extracellular matrix 

protein 2 f.Lg/mL fibronectin (Sigma, Munich, Germany) and maintained at 

37°C during imaging with a Warner Instruments heated stage insert (Warner 

Instruments, Hamden, CT) and a Bioptechs (Bioptechs, Butler, PA) objec-
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tive heater. Non-transfected cells were used as control samples to determine 

autofluorescence background levels. 

Cell samples that had been fixed with 4% paraformaldehyde in PBS for 10 

minutes at room temperature were also prepared for each type of migratory 

cellline studied (3T3s, MEFs and CHOs). The chemically fixed cells were 

imaged to provide a control for any contributions from mechanical vibrations, 

stage translations, and laser fluctuations. 

3.3.3 Keratocyte cell culture 

Keratocytes were isolated from the scales of the central American cichlid Hyp­

sophrys nicaraguensis as described [101] with the exception that the scales 

were sandwiched between two 25 mm acid-washed glass coverslips. Cells 

were cultured in Leibovitz's L-15 medium (Gibco BRL) supplemented with 

14.2 mM HEPES pH 7.4, 10% FBS and 1% antibiotic-antimycotic (Gibco 

BRL) and used within 1-3 days of isolation. 5 kD methoxy PEG 655 or 

545 QDs (Qtracker, Quantum Dot Corporation), purified His-tagged GFP 

(gift from J. Dawson) or Alexa Fluor 546-conjugated phalloidin (AF546-

phalloidin, Molecular Probes), were introduced into living keratocytes using 

a small volume electroporator for adherent cells [102]. Cells were placed in 

a 35 mm dish in 1 mL of culture media, and drops of the fluorescent probe 

diluted in 20 ML of water were placed directly onto the cell samples. The 

655 or 545 QDs were used at 0.2-2 M and GFP was used at 160 M. In sorne 

cases a volume marker (AF488, Molecular Probes) was also included. AF546-

phalloidin was used to visualize F-actin dynamics [103]. AF546-phalloidin 

was used at 2 M and pre-mixed with 7.5 M d-ATP, 7.5 M d-GTP, and 5 M 
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d-CTP in water for '" 15 min at room temperature before electroporation to 

prevent aggregation. Following electroporation, the cells were allowed to re­

cover in culture media for at least 10 min before viewing on the microscope. 

To obtain single isolated cells, sheets of keratocytes could be dispersed by 

incubating for ",5 min in 85% PBS/2.5mM EGTA pH 7.4. 

3.4 Computer Simulations 

Computer simulations of image time series were used to model and test the 

STICS analysis algorithms via comparison with the expected (set) results 

for different particle transport property, settings and collection conditions. 

This facilitated direct comparison of simulation with results from the exper­

imental measurements. An Interactive Data Language program (IDL 6.0, 

RSI, Colorado) was written to simulate data that would be obtained by laser 

scanning microscopy of point emitters in a 2D system under defined settings 

of instrument collection and particle mobility. The program allowed a wide 

range of system parameters to be defined including fiow speed and direction 

of the simulated particles on the 2D surface, characteristic diffusion times, 

densities of multiple populations of particles, laser beam focal area size and 

shape characteristics, size of confinement domains in the 2D lattice, image 

size, pixel size, the number of images collected for analysis and the time in­

terval between images. The adjustable parameters are shown in Table 3.1 

along with a range of typical values for a normal experiment. The simula­

tions were run on a standard desktop PC. 
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symbol 1 description 

6x pixel spatial resolution 
6t imaging temporal resolution 
p particle density 
D diffusion coefficient 
V x x velocity of the particles 
vy y velocity of the particles 
N x x size of ROI 
N y Y size of ROI 
N number of images in time series 
dx confinement domain size in x 
dy confinement domain size in y 

Tbleach characteristic photobleaching time 
w e-2 laser beam size 

S /N signal to noise ratio 

1 typical values 

0.05-0.2 /Lm 
0.01-15 s/frame 
0.1-100 particles//Lm2 

0.001-0.05 /Lm 2 /s 
0.1-1.0/Lm/min 
0.1-1.0/Lm/min 
16-128 pixels 
16-128 pixels 
10-300 
O.l-l/Lm 
0.1-1 /Lm 
1-30 s 
0.2-0.4/Lm 
2-10 
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Table 3.1: Adjustable parameters in the computer simulation of two dimen­
sional laser scanning microscopy of point emitters. 

For all simulations, periodic boundary conditions were used at the im-

age edges. For diffusion, discrete displacements in x and y were computed 

at every time step for each particle using normally-distributed, floating-

point, pseudo-random numbers having a mean of zero and standard deviation 

(J = V2Dt. For flow, a deterministic displacement in x and y was computed 

from the input velocity and added to each particle's x and y positions at 

every time step. To simulate sever al populations with different transport 

dynamics, single population movies were combined by addition and the total 

intensity was scaled to simulate 8-, 12- or 16-bit acquisition. It is important 

to note that scaling the intensity values of the simulated data by a constant 

factor does not alter the correlation function (see Eq. 2.5), thus we were free 

to multiply the intensity by a scaling factor but could not add a constant 

value to the intensities. Another advantage of this scaling property is that 
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clustering can also be simulated by weighted addition of two image series, 

where the clustered population intensities would be multiplied by a scaling 

factor proportional to the number of subunits in the cluster (or to a certain 

fraction of that value to simulate self quenching during the aggregation pro­

cesses). To simulate the scanning of the sample with the focus of a T EMoo 

laser beam, we convolved the image of point emitters (single pixels) with a 

kernel consisting of a two-dimensional Gaussian function with characteristic 

e-2 radius w as input (see Figure 3.1). Convolution is done through the 

product of Fourier transforms in reciprocal space, thus we chose image sizes 

that are powers of 2 in order for this convolution step to be computed quickly. 

The signal to nOIse ratio (SIN) is usually defined as the ratio of the 

average signal value to the standard deviation of the background noise. To 

simulate background noise, a square matrix N of the same dimensions as the 

image (Lx x Ly) with normally distributed random numbers was generated. 

The mean of the distribution was zero and its standard deviation was one, the 

absolute values of the numbers were taken and this noise matrix N was added 

to the image matrix. This simulated the case where the mean background 

intensity is subtracted from each pixel leaving residual background counts 

that are greater than the mean in each pixel. This average background 

correction is standard practice for quantitative fluorescence microscopy. A 

variable scaling coefficient, SIN, is used as an adjustable ::;t,andard deviatioll 

parameter that allowed control of the magnitude of the signal to noise ratio. 

The new intensity at a given pixel location (x,y) after background noise 



3.4 Computer Simulations 

,,~', 

~7 
.~y- ~~"< 

<.~'Ô /" 

-;;;:,,"êP 
,,,.-~«,';;i:.~·'""" 

~~,--.ç.'-f-e'~"""' 

- ":'~:f.-"\ 
._ "u-";.i..j5' ,-" 

-"'§C~Q,..,..0''"O'' 

69 

Figure 3.1: Generation of the simulated LSM images. A) particles are ran­
domly placed as delta functions on a 2D lattice (here a 150x 150 
pixel image). B) The grid is then convolved with a 2D Gaussian 
function, which simulates the scanning of the particles with a 
focused TE Moo laser beam. The process is repeated over time 
as we displace the particles according to their simulation de­
fined dynamics (i. e. diffusion or fiow) to generate the image 
time series. 

addition is given by: 

i'(x, y, t) = i(x, y, t) + SIN x N(x, y) (3.1) 

Using this definition the signal to noise ratio is defined as: 

SIN = max[i(x, y, t)] 
Œ 

(3.2) 

For the computer simulations presented in this thesis, the parameters were set 
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to be close to what one would use or measure in the actual eell experiments. 

The alternative would be to express sorne parameters as dimensionless quan­

tities like the velocity in pixels per frame, the density in number per pixel2
, 

etc. Rowever, sinee the numerical ranges for the simulation parameters were 

chosen close to actual experimental parameters, it was found more useful 

for direct comparison purposes to keep the real units for most of the cases 

presented in this thesis. 

3.5 Vector Flow Fields Comparison for Two Popula­

tion Measurements 

In cases where two populations of labeled proteins are not undergoing per­

fectly concomitant directed motion, the STICCS analysis will not reveal cor­

related fiows because the particles are not moving entirely together. Renee it 

will not be possible to track a cross-correlation Gaussian fiow peak. To han­

dIe these situations, which frequently arise in cell measurements, we applied 

two scores to assess the degree of similarity between two velocity fields. The 

first is the correlation coefficient between the magnitudes of the velocities 

which refiects the degree of engagement or binding of the two proteins, and 

second is the correlation between the directions of the velocity vectors for 

each region of interest. 

Figure 3.2A-B shows two simulated fiow fields. The first one was gen­

erated with x and y velocity values that increase towards the upper right 

corner of the frame. The second fiow field was generated using the first field, 
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Figure 3.2: Similitude scoring of two fiow fields. A) Velocity field gener­
ated with increasing x and y velocity values towards the upper 
right corner of the figure. B) Velocity field generated by adding 
angle and magnitude randomness to the first fiow field, with the 
magnitudes on average 1.5x larger. C) Magnitude correlation 
plot. D) Histogram of the cosine values for the angles between 
all velocity field vectors (dashed line indicates median). 

and adding randomness in angle and magnitude. The angles were varied by 

adding angles with a random uniform distribution between [-45,+45] degree~. 

The x and y velocity magnitudes were multiplied by a factor of 1.5, and then 

randomness was introduced by ad ding a uniformly distributed number be-
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tween [-0.2,+0.2] f-Lm/s to these new magnitudes. 

The correlation in magnitude is clearly shown in Figure 3.2C, and the 

slope of the line was found by linear regression to be 1.503 ± 0.003 which 

recovers the multiplying factor set in the simulation. The directional corre-

lation is defined as the median of the cosine values calculated from the dot 

product formula: 

directional correlation score median[ cos (e)] 

- median["i"·,~~,,l 
where e is the set of aH angles between the velocity vectors for each pop­

ulation at every point, vÂ represents the set of all vectors in the first fiow 

field, v Ë represents the set of all vectors in the second fiow field. For this 

simulation the directional correlation score was 0.92±0.01 (see dashed bar in 

histogram of cosine values in Figure 3.2D). This parameter varies between-l 

and 1, 1 for perfectly aligned velocity maps and -1 for velocities in opposite 

directions. Care has to be taken in the interpretation of the median because 

a single value for this score can arise from many different types of histogram 

distributions. The typical histogram distribution is the one showed in Fig-

ure 3.2D, since most of the vectors are aligned, the cosine values tend to be 

clustered towards a value of 1. For aH analyses, careful attention was paid 

to the shape of the histogram. The error on the median was estimated using 

the bootstrap method [104]. 
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3.6 Chapter Conclusion 

In this chapter we described the computer simulations that will be used to 

test the STICS technique in chapter 4. We have also outlined the methods 

that will be applied to the culture, transfection and microscopy imaging of 

cells used in chapters 5 and 6. The next chapter will make use of the computer 

simulations of various biologically relevant cases to test the dynamic range 

and accuracy of STICS. 
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4 In Silico Characterization 

4.1 Introduction 

The principal paradigm of science is that a the ory can only be true if it is 

falsifiable, i.e. if there are situations in which it can be tested by exp er­

iments. One of the challenges of working with living cells lies in the fact 

that there are so many uncontrolled and interconnected parameters, which 

makes it difficult to reliably test biophysical theories. However, it is possible 

to model components of biological systems and this approach is adopted to 

study processes such as protein folding [105] and macromolecular transport 

in biological systems [106]. An advantage of studying membrane protein dy­

namics by fluorescence microscopy is that the proteins can easily be modeled 

in computer simulations as point emitters diffusing and flowing in a two di­

mensional system (i.e. the cell membrane) or a three dimensional system 

(i.e. the cytoplasm). This chapter will present computer simulations of LSM 

imaging of point emitters in a 2D system and their analysis with lCS and 

STlCS, under set simulation conditions of photobleaching, signal to noise, im­

mobile population removal by Fourier filtering, and different ratios between 

the characteristic diffusion and flow times for the particles. The simulations 

are intended to model transport in a 2D membrane system which is what we 

are interested in for STlCS measurements of membrane and membrane asso­

ciated adhesion proteins. Using the computer simulations, the sensitivity and 

detection limits of STlCS for such applications will be explored in this chap­

ter as a function of collection parameters and system transport properties. 

It will be shown that given the proper spatio-temporal sampling, STlCS can 
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extract the velocities of labeled proteins in many situations typical of what 

is encountered when imaging cells. 

4.2 STICS characterization 

4.2.1 Photobleaching 

During the acquisition of a fluorescence image time series, the fluorophore 

will usually undergo photobleaching due to laser irradiation and be photo­

chemically converted to a non-fluorescent state. Due to photobleaching, the 

mean intensity of the images will decrease over time as fluorophores randomly 

convert to a non-emitting state. After transition from an excited singlet state 

to an excited triplet state (see Figure 2.1), the fluorophore may react with 

another molecule to produce irreversible covalent modifications. Since the 

triplet state is relatively long-lived with respect to the shorter lifetime singlet 

state, the excited fluorophore has a much longer time to undergo chemical 

reactions with components in the environment if it is residing in an excited 

triplet state. Photobleaching will be dependent on several parameters such 

as laser intensity, the nature of the fluorophore and the chemical environ­

ment. However, a characteristic of any fluorophore in a given environment is 

the average number of excitation and emission cycles that can occur before 

photobleaching. Sorne fluorophores bleach quickly after emitting only a few 

photons, while others that are more robust can undergo millions of cycles 

before bleaching. In a real experiment, the laser intensity has to be adjusted 

so that the fluorophores do not bleach excessively on the time scale of the 

image series collection, while still providing enough contrast (signal) in the 

images for correlation analysis. The process of fluorescence bleaching and the 
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resulting decrease in image intensity can often be fit with a mono-exponential 

decay using: 

(i(x, y, t))x,y = Aexp( -t/Tbleach) + B (4.1) 

where A, Band Tbleach are fitting parameters, thereby providing a measure 

of the characteristic bleaching time Tbleach' 
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Figure 4.1: Effects of photobleaching rates on the lCS measured velocity 
magnitude for varying image size. Each point and error bar 
represents the average result of 100 simulations and standard 
deviation. The shaded region shows the set velo city in the simu­
lations (vx=O.Ol J-lm/s corresponding to Tflow=30 s) and a band 
of acceptable error of ±10%. 
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Ta investigate the effects of photobleaching on our correlation techniques, 

a series of computer simulations were run to generate image series of a single 

fiowing population of particles. The Gaussian convolution radius was set at 

0.3 !-lm and the velocity of the particles was kept constant at V x = 0.01 !-lm/s 

so that the characteristic fiow time was 30 s. The computer simulated images 

were 64 by 64, 128 by 128 or 256 by 256 pixels with 300 frames at a density 

of 10 particles/!-lm 2, using 0.5 s/frame and 0.1 !-lm/pixel. The characteristic 

bleaching time Tbleach was varied from 0.5 to 500 s so that it would cover a 

range of values both smaller and larger than the characteristic fiow time. 

Figure 4.1 shows that at high photobleaching rates (short photobleaching 

characteristic times) ICS cannot recover the correct set value for the velocity 

of the particles. In fact, it can be systematically off from the set velocity 

in the simulation by as many as 2 to 3 orders of magnitude. The reason 

for this error is the decay in the correlation function is due mainly to the 

loss of intensity due to photobleaching on the short time scale, not from the 

variation due to particles coming in and out of the observation volume. The 

recovered velo city value becomes acceptable (less than 10% deviation) when 

Tbleach is just above 50 seconds, i.e. when the bleaching time becomes about 

twice as large as the characteristic fiow time, as would be expected. In this 

regime, the fiuctuations in intensity between adjacent frames in the image 

time series are due mastly ta the dynamic fluctuations of the particles rather 

than the photobleaching of the fiuorophores. 

In contrast to the ICS measurements, Figure 4.2 shows that STICS is not 

affected unless the bleaching rate is very high. For example at a characteristic 
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Figure 4.2: Effects of photobleaching rates on the recovered velocity magni­
tudes by STICS for varying image size. Each point and error 
bar represents the average result of 100 simulations and stan­
dard deviation. The shaded region show the set velocity in the 
simulation (vx = 0.01 J-Lm/s and vy = 0 J-Lm/s) and a band of 
acceptable error of ±10% for vx . 

bleaching time of 0.5 s, all the particles are extinguished within the first 3 to 

5 frames of the time series. It would be expected that STICS would fail with 

the very high rates of bleaching because there are only a few valid image 

frames with signal. However, even at rates of photobleaching where leS 

fails to recover the set velocity, STICS can still measure the correct x and y 

velocities. Overall, we can neglect signal fluctuations due to bleaching in lCS 

and STl CS flow/diffusion measurements as long as the characteristic times 
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associated with these processes are shorter than the bleaching time. This 

was the case for all of the cell measurements reported in this work. 

Figure 4.3: Example of simulated images with varying signal ta noise ratio 
at a density of 0.1 particles per beam area, al! particle posi­
tions are the same in these images. A) S/N=l, B) S/N=3, C) 
S/N=5, D) S/N=10. Seale bar is 5 {Lm 

4.2.2 Sampling and Signal to Noise Considerations 

The spatial sampling is inherently given by the size of the selected subre-

gion(s) in the image time series. For image correlation, the sampling statistics 

are related to the square root of the number of independent spatial fluctua-

tions sampled within the subregion. The number of independent fluctuations 

is sim ply the subregion area divided by the beam focus area [7]. Additionally, 

for STICS velocity measurements, there is an upper limit on the maximum 

velo city that can be measured by STICS along the x or y axes because the 

flow Gaussian peak location has to be tracked within the subregion for at 

least one time step. The maximum velocity that can be measured along any 

axis is given by: 
Nx(y) x ~x 

Vmax x(y) = 2 x ~t ( 4.2) 

where Nx(y) is the frame size in pixels, ~x is the spatial resolution ({Lm/pixel), 

and ~t is the time resolution (s/frame) of the image time series. For a small 
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Figure 4.4: Simulation characterization of STICS accuracy and precision 
as a function of signal to noise ratio, with a set velo city of 0.1 
/-Lm/s. A) density=O.Ol particles per beam area, B) density=O.l 
particles per beam area, C) density= 1 particles per beam area, 
D) density= 10 particles per beam area. 

box size of 16 X 16 pixels2 and for typical spatial and temporal resolutions of 

0.2 /-Lm/pixel and 5 s/frame respectively, the maximum velocity that can be 

measured by STICS is approximately 0.3 /-Lm/s, which is well above typical 

retrograde flow rates (!"VO. 01 /-Lm/ s) for actin and adhesion related proteins 

[1,67]. 

The performance of the STICS analysis was also studied under varying 

conditions of signal to noise ratio, number of frames sampled and the density 
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of particles. For each set of conditions, 100 computer simulations were run to 

obtain an average value of the velocity in x and y and an error (the standard 

deviation, SD). The simulated images were 128 x 128 pixels, with a spatial 

resolution of 1 J-Lm/pixel and a temporal resolution of 1 frame/s. The veloc­

ity was set at 0.1 J-Lm/ s, typical of what would be obtained in a retrograde 

protein transport measurement in adherent cells. The signal to noise ratio, 

as defined in Eq. 3.2, was varied from 1 to 10. The density was varied be­

tween 0.01 to 10 particles per laser beam area (BA), and the number of image 

frames was varied between 10 and 300. This series of simulations allowed a 

full probing of the parameter space relevant to observation of fiow in live cells. 

The effects of signal to noise ratio (S/N) on the simulated images are 

depicted in Figure 4.3 with typical simulation parameters as defined above. 

The particle positions were kept fixed between the different images and the 

signal to noise ranges from 1 to 10, with 1 being an absolute worst case sce­

nario where the standard deviation of the noise is as large as the amplitude 

of the signal. Analysis of these simulations revealed that STI CS is able to 

perform very weIl (see Figure 4.4) even in poor conditions where the signal 

to noise ratio is as low as 1, provided that the number of frames is sufficiently 

large to allow sufficient averaging in Eq. 2.16. 

The results of these simulations are summarized in Table 4.1. Notice 

that the STICS analysis works very weIl in almost aIl cases, with the only 

exception being the worst case scenario at the lowest density (p=O.01 par­

ticles/BA), the smallest number of frames (N=10) and the lowest signal to 

noise ratio (S/N=1.0). In an other cases the recovered x-velocity is accurate 
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1~11 
0.000±1.000 0.100±0.020 0.100±0.01O 0.100±0.004 10 

0.01 
0.100±0.100 0.100±0.010 0.099±0.004 0.099±0.001 30 
0.100±0.050 0.100±0.005 0.100±0.002 0.100±0.001 100 
0.097±0.030 0.100±0.003 0.100±0.00l 0.100±0.00l 300 
0.100±0.040 0.099±0.007 0.099±0.004 0.099±0.002 10 

0.1 
0.100±0.020 0.100±0.003 0.100±0.002 0.100±0.00l 30 
0.100±0.010 0.100±0.00l 0.100±0.001 0.100±0.001 100 
0.099±0.006 0.100±0.001 0.100±0.001 0.100±0.001 300 
0.100±0.020 0.100±0.005 0.100±0.003 0.100±0.002 10 

1.0 
0.100±0.01O 0.100±0.002 0.100±0.001 0.100±0.001 30 
0.100±0.005 0.100±0.001 0.100±0.001 0.100±0.00l 100 
0.099±0.003 0.100±0.00l 0.100±0.00l 0.100±0.001 300 
0.100±0.020 0.099±0.005 0.099±0.003 0.100±0.002 10 

10.0 
0.100±0.010 0.100±0.002 0.100±0.00l 0.100±0.001 30 
0.100±0.004 0.100±0.00l 0.100±0.001 0.100±0.00l 100 
0.100±0.003 0.100±0.001 0.100±0.00l 0.100±0.001 300 

Table 4.1: STICS simulation analysis results for the measured x-velocity 
(set value V x = 0.1 tLmls) for the image series with varying par­
ticle density (p particleslBA), signal to noise (SIN) and number 
of image frames (N). Each number in the table represents the 
average velocity measured by STICS for 100 simulations un der 
the set conditions and the quoted error is the standard deviation 
(SD). 
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to within a few percent of the set value. The error, or spread in the results 

between different simulations, diminishes as expected as the density p gets 

higher, as the number of frames N increases and as the signal to noise ratio 

(SjN) increases. 

A) 

t = 0 S t = 5 s t = 10 s 

B) 

t = 0 S t = 5 s t = 10 s 

Figure 4.5: STICS analysis of a computer simulated images of fiowing and 
immobile point emitters (vx = -0.12 and vy = 0.08 fJm/s, 90% 
immobile). A) spatio-temporal correlation functions as a func­
tion of time without immobile population filtering, notice the 
peak stays centered at (ç=O, TJ=O) B) spatio-temporal correla­
tion functions as a function of time with immobile filtering, now 
the Gaussian peak moves in a direction opposite to the fiow and 
is not hidden by the immobile component (recovered velocities: 
Vx = -0.119 ± 0.001 fJmjs and vy = 0.08 ± 0.01 fJm/s). 

4.3 Immobile Filtering Characterization 

A very basic example of application of the immobile populations filtering 

algorithm (see section 2.7) is shown in Figure 4.5. A computer simulation of 
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point particles imaged by LSM with 90% of the particles immobile and 10% 

fiowing (vx = -0.12 J-Lm/s and vy = 0.08 J-Lm/s) was analyzed with STICS 

with and without filtering. As can be seen from Figure 4.5A the analysis 

without filtering is dominated by the stationary correlation peak at zero 

spatial lags due to the immobile population. The linear fits for x(~t) and 

y(~t) (see Eq. 2.17) in this case yield velocity values of Vx = -0.01 ± 0.01 

J-Lm/s and v y = 0.01 ± 0.01 J-Lm/s, which are weIl below the set values and 

refiect the large static weighting of the immobile particle population. As a 

comparison, filtering the immobile population in the simulated image series 

before STICS analysis gave the measured velocity values of Vx = -0.119 ± 

0.001 J-Lm/s and vy = 0.08 ± 0.01 J-Lm/s. In Figure 4.5B we can see these 

results for the STICS analysis after filtering the immobile population: the 

correlation peak now moves away from (Ç'=O, 'T1=0) as only correlations due 

to the dynamic population are captured. The results of these simulations 

suggest that STICS, in combination with the immobile population filtering, 

can be used to measure protein transport for membrane associated proteins 

where a significant fraction of the proteins may be immobilized. 

4.3.1 Immobile Population Filtering Artifacts 

As shown by the simulation results, removing the DC offset from a single 

pixel intensity trace can remove the effects of the immobile fraction if it is 

present over the entire time course of the measurement. Before applying thit:> 

technique however, one has to be careful that certain criteria are fulfilled. 

There are a few important requirements, especially concerning sampling and 

the relative timescales of the underlying processes that must be taken into 
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account in such applications. 

The filtering algorithm works because the characteristic time scale for 

flow (in terms of frames) is short enough compared to the total number of 

frames. In other words there is complete relaxation of the flow pro cess over 

the time scale of the simulation (this requirement also holds for the case of 

a diffusion study with ICS, where one needs to have a complete relaxation 

of the diffusive process for accurate measurements). Relaxation refers to the 

complete decay of spatial fluctuations which occurs over the characteristic 

time for particle dynamics. If the flow is too slow compared to the total 

time of the experiment, then it will resemble an immobile population and be 

removed by the filtering algorithm. This situation can be avoided by selecting 

the right sampling time resolution and experimental time scale with which 

to measure the flow process. If no order of magnitude data is available, then 

several trial experiments should be run in order to assess the magnitude of 

the flow. The basic reasoning is that the particles should flow over a distance 

greater than one full laser focus diameter during the time course of the image 

series' sampling in order to have quasi-complete relaxation of the correlation 

function. Specifically the total time of the image series sampling, T, should 

be greater than the characteristic flow time (ratio of the laser beam radius 

to the velocity): 

T» WOab 

vf 
(4.3) 

If the particles do not move more than a correlation radius over the time 

of acquisition of the entire image series, then removing the DC offset will 

spatially anti-correlate the intensities over a short distance in the direction 
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of the fiow. In this case, the central Gaussian peak is reduced in width, 

and accompanied by two diametrically opposed depressions aligned with the 

fiow direction (see Figure 4.6B). Nevertheless, these artifacts are of no real 

consequence in the determination of the fiow direction because a Gaussian 

can still effectively be fit to the correlation functions and the fitted velocities 

are always within 1% of the set values in the simulations (see Figure 4.6A). 

Figure 4.6B shows the effect of immobile filtering on r:b(Ç, 'Tl, s) for varying 

velocities. The Gaussian peak narrows at low velocities due to the spatial 

anti-correlation with two depression on each si de of the Gaussian peak, in 

the direction of the fiow (which was the x direction in this case). Note 

that this effect is negligible when v;:::;;O.l Mm/ s which corresponds to the 

particles moving 10 correlation radii over the total image series time for this 

simulation. Thus in practice the condition in Eq. 4.3 now becomes: 

( 4.4) 

However, this condition needs only to be satisfied if we wish to recover the 

proper correlation radius from the STICS analysis after using the immobile 

filtering algorithm. Application of this algorithm is of particular importance 

when the image time series analyzed presents static bright, spatiallyextended 

fiuorescent features (see for example filamentous adhesion structures in Fig­

ure 5.6C) that will contribute strong deviations at non-zero spatial lags and 

hence distort the gaussian shape in the spatial autocorrelation function. In 

this case, the fit to WOab in Eq. 2.8 will diverge significantly from the ac­

tuaI correlation radius value. Using the immobile filtering algorithm, one 

can remove these features and get a correct value for WOab provided that the 
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Figure 4.6: Simulation results for the effects of the immobile population 
filtering algorithm on r~b(ç, Tl, s) for particle fiow with vary­
ing velocities. All simulations were 128x 128x 300 (x, y, t) 
at 0.1 fJm/pixel and 0.1 s/frames. A) Plot of the fitted 
radius for r~b(ç, Tl, 0) and the recovered relative x velocity: 
Vx(STICS)/Vx(input) as a function of the set particle fiow veloc­
ity magnitude. B) Two dimensional intensity contour maps of 
r~b(ç, Tl, 0) as a function of set particle fiow velocity. 

complete relaxation condition of Eq. 4.4 is satisfied. 

In addition to the question of the time sc ale of the sampling, there is 

also the question of the relative time scales of the underlying dynamic pro-

cesses. When imaging adhesion proteins in living cells, we are most likely 

going to encounter a combinat ion case of immobile, diffusing and fiowing 
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Figure 4.7: STICS analysis results for computer simulations with two par­
ticle populations, one flowing (vx = -0.12 J-tm/s and vy = 0.08 
J-tm/s) and one diffusing (variable diffusion coefficients). A) x 
velocity as measured by STICS with and without the immobile 
population filtering. B) y velocity as measured by STICS with 
and without the immobile population filtering. On both graphs, 
each point and error bar represent the average result of 100 sim­
ulations with standard deviation. The shaded regions show the 
set velocities in the simulation within an acceptable error band 
of±10%. 

macromolecules. The filtering is able to remove the contribution of the im-

mobile population as we have just shown, but the diffusing population has a 
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characteristic time scale that is important to consider. There are two limit­

ing cases to envisage. First, if the diffusing population's characteristic time 

is fast compared to the characteristic time of the fiowing population, then 

the diffusing Gaussian correlation peak (DG in Figure 2.9) is going to decay 

quickly within a few lag times. Then tracking the fiowing Gaussian correla­

tion peak (FG in Figure 2.9) can easily be done once the diffusion correlations 

have decayed. The other limiting case is if the diffusing population is slow 

compared the fiowing population (in terms of their characteristic times). In 

this case, the total imaging time needed to capture the fiowing population 

correlations will be short enough so that the diffusing population will not 

move significantly within that time window. Thus it will essentially look 

like an immobile population over this time scale and will be removed by the 

immobile filtering algorithm. 

In order to quantify what is meant by "fast" and "slow" relative charac­

teristic times, fiowing and diffusing particle population computer simulations 

were run in which the characteristic fiow time was kept constant (2.78 s), and 

the characteristic diffusion time was varied over several orders of magnitude 

from 4 ms to 4000 s. The computer simulated image series were 128 by 128 

pixels with 100 frames at a density of 100 particlesj J..Lm2
, using 0.1 sjframe, 

0.06 J..Lmjpixel and an e-2 radius of 0.4 J..Lm. 

These simulations showed that the STICS analysis is valid when the char­

acteristic diffusion time is about five times faster or slower than the char ac­

teristic fiow time (see Fig. 4.7). When the characteristic times are similar, 
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the post filtering remnants of the diffusing population contribution (DG in 

Figure 2.9) effectively weight the flowing Gaussian correlation peak (FG in 

Figure 2.9) back towards the zero lags origin when we try to fit the position 

of the Gaussian peak in Eq. 2.17. However, both the x and y velocities are 

affected in a proportional manner by the radially symmetric diffusion corre­

lation peak centered at the origin, so the direction of partic1e flow can still 

be correctly determined from the underestimated values of V x and V Y ' In the 

simulations shown, the angle of the velocity vector of the partic1es relative 

to the x-axis was set to be 146.3° and the average recovered angle for the 

4 data points (with filtering) that lay outside the shaded acceptable range 

(±1O% region) in Figure 4.7 was 146.2 ± 0.4°. In such scenarios, if one can 

assume that the total flow is dominated by the directional flux (as opposed 

to separate flows in random directions), then one can scale the x and y ve­

locities from STICS analysis according to the total velocity obtained by ICS 

analysis. Note that the temporal ICS analysis will be sensitive to all flow 

processes present, which will all contribute to the decay of the correlation 

function. For the case of the adhesion protein transport at the membrane 

in cells that we report in this work, the second scenario of faster diffusion 

(TD » Tf) was usually observed. 

4.3.2 Dynamic Range of Immobile Filtering 

The performance of the STICS analysis in the presence of an immobile pop­

ulation was verified under varying conditions of signal to noise, number of 

frames sampled and the fraction of the population that is immobile (the total 

partic1e density being kept constant). For each set of conditions, 100 com­

puter simulations were run to obtain an average value and an uncertainty 
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(SD). As before, the simulations were 128 x 128 pixels, with a spatial resolu­

tion of 1 /Lm/pixel and a temporal resolution of 1 frame/s. The fiow velocity 

was set at O.l/Lm/s, typical of what would be obtained in a retrograde pro­

tein transport cellular experiment. The density was kept constant at p=lO 

particles/BA, while the signal to noise ratio, as defined in Eq. 3.2, was var­

ied from 1 to 10, and the number of frames was varied between 10 and 120. 

This series of simulations explored the overall accuracy and precision of the 

STICS technique in the presence of a variable fraction of immobile species 

(0 to 90% immobile). 

The results of these simulations are shown in Table 4.2. There are a 

few things to note in this table. The first is that when provided with a 

sufficient number of frames (here N=120), the STICS analysis can always 

recover the input velocity, within these ranges of signal to noise ratio or 

immobile population fraction. The only exception to this was the worst case 

scenario, when S/N=l and the immobile fraction was 90%, where the error 

is slightly larger but still encompasses the input value. Another element to 

point out is that for SIN above 1, the fraction of immobile population does 

not change the results dramatically, suggesting that the number of frames 

is a much more important factor for accurate STICS analysis. Finally the 

results also show that STICS needs more than 30 frames in the image series 

(at v=O.l /Lm/ s) in order for the subtracted average in each pixel to make 

sense. This can be rephrased in more general terms. Since particles move 

3 pixels in 30 frames and the laser focal spot radius was set at 4 pixels 

in these simulations, it seems that we need our particle to move at least 

one full beam focus diameter during the time of the experiment. This is 
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1 imml1 I~ 
-0.17 ±0.84 -0.10 ±0.64 -0.01 ±0.46 0.02± 0.34 10 

0% 
-0.02± 0.59 0.155± 0.006 0.155± 0.004 0.155± 0.002 30 
0.106±0.003 0.106± 0.001 0.106±0.001 0.106± 0.001 70 
0.101±0.002 0.101± 0.001 0.101±0.00l 0.101± 0.001 120 
0.04±0.77 -0.06± 0.69 -0.03±0.55 -0.01± 0.39 10 

30% 
-0.10±0.73 0.154± 0.009 0.155±0.004 0.155± 0.003 30 
0.106±0.004 0.106± 0.001 0.106±0.001 0.106± 0.001 70 
0.10l±0.002 0.101± 0.001 0.101±0.00l 0.101± 0.001 120 
-0.09±0.73 -0.09± 0.70 -0.05±0.62 0.01± 0.44 10 

60% 
0.04±0.66 0.13± 0.14 0.155±0.004 0.155± 0.002 30 
0.1O±0.04 0.106± 0.001 0.106±0.001 0.106± 0.001 70 
0.10l±0.003 0.101± 0.001 0.101±0.00l 0.101±0.00l 120 
-0.07±0.69 O.OO± 0.65 -0.18±0.71 -0.12± 0.66 10 

90% 
-0.05±0.69 -0.05± 0.63 0.16±0.24 0.155± 0.004 30 
0.00±0.65 0.107± 0.003 0.106±0.002 0.106± 0.001 70 
0.09±0.15 0.100± 0.002 0.101±0.001 0.101±0.00l 120 

Table 4.2: STICS simulation analysis results for the measured x-velocity 
(set value V x = 0.1 J-Lmjs) for the characterization simulations 
with immobile fraction (imm) , signal to noise ratio (SjN) and 
number of image frames (N). Each number in the table repre­
sents the average velocity measured by STICS from 100 simu­
lations under the set conditions and the quoted uncertainty is 
the standard deviation (SD). AU simulations were corrected for 
immobile population. 
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closely tied to Eq. 4.3, which was set as the condition at which we could 

recover the correct beam radius from the STICS analysis after performing 

the immobile population removal on the time series. This also explains the 

consistent overestimation of the velocity. Since we artificially introduce a 

negative correlation at the origin, in the presence of noise the fit peak is 

located farther from the origin than it really should be, thus giving a higher 

velocity value. However, the results of Table 4.2 show that when provided 

with a sufficient number of frames, we can expect this overestimation to be 

under 5%. 

4.3.3 Window Filtering Correction for ICS 

The previous section dealt with removing the immobile fraction by filtering 

out the zero frequency component (DC offset) in the intensity pixel traces of 

the image time series. However, this only works for a truly immobile pop­

ulation, and we have seen sorne deviation when we add a slowly diffusing 

population (that is almost immobile on the time scale of the measurement). 

Window filtering removes a local average around a point, so that intensity 

fluctuations due to slow processes, which are essentially static over that time 

window, will not contribute to the correlation function. Sorne cases where 

removing a slowly varying signal might be of interest include the situation of 

a large vesicle moving slowly through the field of view, the protruding edge 

of a ceU advancing at a slower rate than the dynamic transport of molecular 

species inside the ceIl, or more simply laser illumination fluctuations or focus 

drift. However, one has to be careful that the window size chosen for the 

average calculation is large enough to allow quasi-complete relaxation of the 

dynamic processes of interest, otherwise the deviations outlined in section 
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4.3.1 will become significant. 
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Figure 4.8: Generation of single (x,y) point intensity trace with slowly vary­
ing noise. The original intensity trace (A) is added to a slowly 
varying noise signal (B) which has a characteristic time scale 
of fluctuation, to give the modified signal (C). 

Computer simulations were run to test the applicability of the theory pre­

sented in section 2.7.2. We extracted a 30,000 point intensity trace from a 

single (x,y) point in a simulated image time series where the particle diffusion 

coefficient was set to be 0.01/Lm2 /s, the time resolution was 0.1 s/frame and 

the e-2 Gaussian radius was 0.3 /Lm. This data constituted what we caU the 

"original signal" (see Figure 4.8A) to which a slower time scale, smoothly 

varying noise signal (see Figure 4.8B) was added to simulate a slow drift in 
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Figure 4.9: Temporal autocorrelation functions and best fits of the original 
single pixel intensity trace signal (30,000 frames) and modified 
signal (original + slowly varying noise with characteristic time 
scale of 20 s), for both filtered and unfiltered simulation data 
sets. The filter window size was set at 101 frames (b.N = 50). 
The intensity data was extracted from an image time series 
simulation. 

intensity to give what we refer to as the "modified signal" (see Figure 4.8C). 

The added noise signal was obtained by convolving in time a computer gen-

erated random noise signal with a Gaussian function. It was thus given a 

characteristic timescale which we define as the e-1 extent of the Gaussian 

function. The window average filtering was applied to both the original and 

modified signaIs, generating a set of two filtered signaIs. The autocorrela-
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tions of an four signaIs were calculated and fit for using Eq. 2.25 with the 

appropriate window size. 

Temporal autocorrelation functions of the original and modified signal, 

both unfiltered and filtered with a 101 frame (!:lN = 50) window, are shown 

in Figure 4.9 for a characteristic slow noise signal timescale of 20 s. No­

tice that the correlation functions for the filtered signaIs reach values below 

1. This is due to the fact that we are introducing negative correlations in 

the filtered data when using the window filtering. The autocorrelation func­

tion of the original signal was fit using Eq. 2.10 to obtain an estimate of 

D = 0.010 ± 0.001 f..Lm 2 
/ s (average of 100 simulations plus SD). Figure 4.9 

also shows an autocorrelation function computed after filtering the original 

signal with the window averaging defined by Eq. 2.19 with a window size 

of 101 frames (/:).N = 50). The theoretical curve in Eq. 2.25 (adapted for 

/:).N = 50) was fit and a D = 0.010 ± 0.001 f..Lm 2 / s was calculated from the fit 

parameters. This shows that with the original signal (filtered or not), both 

fitting equations can recover the diffusion coefficient. 

The same process was repeated with the modified (slow noise added) sig­

nal, and the autocorrelation functions for the unfiltered and filtered modified 

signal are shown in Figure 4.9. Note that in this specifie case, the char­

acteristic timescale of the added noise signal is 20 seconds, or 200 frames, 

which is longer than our window size for the filtering (101 frames). Thus we 

expect the window average removal to get rid of the slowly varying signal 

efficiently. For the unfiltered signal, the best fit recovered diffusion coefficient 
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was 0.004 ± 0.001 J-lm2 
/ s, whereas for the filtered signal, it was 0.010 ± 0.002 

J-lm2 / s. This shows how the regular leS fit model fails if there are significant 

variations in the intensity of the signal, i.e. the fluctuations arise from longer 

time scale intensity changes of the slowly varying noise signal in addition 

to the dynamics of the molecule of interest. Notice how the autocorrelation 

curves for both the filtered original signal and the filtered modified signal are 

almost identical. This shows that if the fluctuations are slow enough, then 

the window average filtering can eliminate them and the diffusion coefficient 

can be measured accurately using Eq. 2.25 as a fit model. 

The results of a general analysis using window filtering for various added 

noise signal characteristic timescales are shown in Figure 4.10 and Table 

4.3. As expected, leS can recover the set simulation diffusion coefficient 

when fitting the unfiltered original signal temporal autocorrelation function 

to Eq. 2.10. We obtain an accurate diffusion coefficients with a slightly 

larger standard deviation when fitting the filtered original signal temporal 

autocorrelation function to Eq. 2.25. After adding noise of varying charac­

teristic timescales to the original signal, we see that in most cases leS fails 

to recover the set diffusion coefficient except when the time scale of the noise 

signal is very long relative to the diffusion timescale. This means that we 

are adding very slow fluctuations to our signal and we do not expect these to 

significantly influence the fitting of the correlation function using Eq. 2.10. 

After filtering combined signal and noise, and fitting to the modified decay 

(Eq. 2.25) of the temporal correlation function, it is clear that we can recover 

the set diffusion coefficient in almost all cases simulated. The only excep­

tion was the first case where the characteristic noise timescale is 5 seconds, 
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Figure 4.10: Diffusion coefficients recovered from temporal correlation 
analysis of simulated pixel intensity traces before and after 
windowed immobile population filtering, on both the origi­
nal signal and the modified signal (original + slowly varying 
noise). Points and error bars on the graph represent the av­
erage of 100 simulations with standard error of the mean. AU 
simulations were 30, 000 frames, with the diffusion coefficient 
set at O. 01 J1m 2/s, the time resolution at 0.1 s/frame and the 
Gaussian e-2 radius at 0.3 J1m. The shaded band shows the 
set diffusion coefficient with an acceptable error of ±10%. 

or 50 frames, which is half of our window size. In this case, we expect to 

see significant intensity variations due to the noise signal within our window 

frame, which is going to affect the correlation function of the filtered signal. 

However, even when the characteristic timescale of the noise signal is 100 
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characteristic D original D original D modified D modified 
noise timescale unfiltered filtered unfiltered filtered 
(s) 1 (frames) (/Jm2 

/ s) (/Jm2 
/ s) (/Jm2 

/ s) (/Jm2 
/ s) 

5 50 0.010±0.001 0.010±0.002 0.130±0.030 0.000±0.001 
10 100 0.010±0.002 0.010±0.002 0.001±0.001 0.01O±0.002 
15 150 0.010±0.002 0.010±0.002 0.003±0.001 0.01O±0.002 
20 200 0.010±0.001 0.01O±0.002 0.004±0.001 0.01O±0.002 
25 250 0.010±0.002 0.010±0.002 0.005±0.002 0.01O±0.002 
40 400 0.01O±0.002 0.010±0.002 0.007±0.002 0.010±0.002 
50 500 0.010±0.002 0.01O±0.002 0.008±0.003 0.01O±0.002 
100 1000 0.010±0.002 0.01O±0.002 0.01O±0.002 0.010±0.002 
200 2000 0.01O±0.001 0.010±0.002 0.01O±0.002 0.01O±0.002 

Table 4.3: Diffusion coefficients recovered fram IGS analysis of simulation 
time series before and after windowed immobile population fil­
tering (/:).N = 50)) on both the original signal and the modified 
signal (original signal+ slowly varying noise). All simulations 
were 30)000 frames) and every number in the table represents the 
average IGS measured D for 100 simulations with standard error 
of the mean. The diffusion coefficient was set at 0.01 /Jm 2/s) the 
time resolution was 0.1 s/frame and the Gaussian e-2 convolu­
tion radius was 0.3 /Jm. 

frames (so almost equal to our window size of 101 frames), the filter adjusted 

correlation analysis can recover the set diffusion coefficient within error. 

4.3.4 Window Filtering and STICS 

Window filtering of a slowly moving population can also be of use when using 

the STICS technique for mapping velocities. To asses the effects of this type 

of filtering on the STICS analysis, we generated simulated images of 128 x 128 

pixels, with a spatial resolution of 0.1 /Jm/pixel and a temporal resolution 

of 0.1 frame/s. The particle velocity was varied between 0.01 and 1.0 /Jm/s, 

and the window filter size was changed from 21 to 111. The measured STICS 

velocities are shown in Figure 4.11 as a function of set input velocity, where 
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each point represents the average from 100 simulations, and the error is the 

standard deviation (SD). 
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Figure 4.11: Plot of ST! CS measured mean velocity as a function of set in­
put particle velocity after window immobile population removal 
for image series simulations. Each error bar is the standard 
deviation for 100 simulation measurements. 

These simulations show that the STICS velocity measurement fails for 

small window sizes, but this is not due to an intrinsic fiaw in the STICS 

method. It fails because the window size is too small and the underlying 

dynamic processes (here fiow) do not relax completely over the time scale of 
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1~121 111 

0.01 -0.47±0.18 -0.02±0.03 -o. 010±0. 003 -0.007 ±O. 003 
0.05 -0.13±0.47 0.013±0.008 0.007±0.009 0.03±0.02 
0.1 0.109±0.00l 0.105±0.008 0.102±0.002 0.1001±0.0003 
0.5 0.5001±0.0003 0.500l±0.0002 0.5000±0.0008 0.5002±0.0003 
1.0 0.9997±0.0008 1.0000±0.0001 1.0000±0.000l 1.000±O.OOl 

Table 4.4: STICS measured mean velocity as a function of set input velocity 
and filter window size for image series simulations as a function 
of set velocity (v J and window size (I:1N J. Each number in the 
table represents the average velocity measured by STICS from 
100 simulations un der the set conditions and the quoted uncer­
tainty is the standard deviation (SD J. 

the window. Table 4.4 shows the simulations STICS analysis results, and we 

can see that the measurement systematicaIly fails for v = 0.01 p,m/s because 

even in 111 frames (i.e. 11.1 seconds) the particles only move 0.111 p,m (just 

over one pixel). This does not satisfy the sampling criterion of Eq. 4.3 as 

discussed in sections 4.3.1 and 4.3.2. This condition will be met for v 2:: 0.05 

p,m/s at a window size of 111. In the limiting case of v = 0.05 p,m/s, the 

particles move approximately 0.5 p,m over the time scale of the window when 

I:1N=111 (which is greater than the Gaussian e-2 radius of 0.3 p,m) and the 

STICS measured velocity of 0.03±0.02 is within error of the set value. In 

general, the STICS analysis works weIl with the window filtering when the 

dynamic process of flow relaxes completely over the time scale of the window. 

Also, as discussed in the previous section, by removing a window average 

from the data, we are introducing negative correlations. This is reflected 

in the STICS analysis as the Gaussian flow peak becomes negative, i.e. a 

negative amplitude gab(O, 0, s) in Eq. 2.17. However, this do es not prevent 
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us from fitting for the x and y location of this peak, and thus we can still 

extract the correct velocity values. 

4.4 Chapter Conclusion 

In this chapter we modeled fluorescence microscopy imaging of protein dy­

namics in the membrane by using computer simulations of point emitter 

particles diffusing and flowing in a two dimensional matrix. We used the 

simulation image time series to investigate the dynamic range, accuracy and 

precision of STICS, under set simulation conditions of photobleaching rate, 

signal to noise ratio, immobile population removal by Fourier filtering, and 

different ratios between the characteristic diffusion and flow times for the 

particles. We found that STICS was almost unaffected by photobleaching or 

low signal to noise ratios, since it always recovered the set value for velocity 

within the ranges studied. Furthermore, we investigated the effects of immo­

bile filtering and found that given proper spatio-temporal sampling, STICS 

can recover accurate particle velocities even in the presence of a high density 

immobile population. Finally, we showed that the window immobile filtering 

algorithm could be applied in cases where a slowly varying noise signal is 

superimposed over the signal of interest, and that both STICS and temporal 

correlation analysis could recover the set velocity values after the filtering. 

Overall, we have seen that STICS is a very robust technique by investigating 

its dynamic range using a range of simulation parameters. The next chapter 

will focus on the characterization and implementation of STICS in vivo. 
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5 In Situ Characterization 

5.1 Introduction 

The sheer complexity of microenvironments present in the cell stems from 

the diversity of the molecular components, their dynamics and an incredibly 

complex myriad of interactions between them. However refined computer 

simulations might be given the rapid progress that has been made in micro­

processor speed and computational algorithms, they currently cannot mimic 

the full extent of a living cell. Therefore, a careful testing of any new bio­

physical technique has to be performed in situ, and care must be exercised in 

applying the method to account for cellular variability, inhomogeneous dy­

namical parameters, background and noise, and any other important physical 

parameter. In this section, l first present the controls and corrections that 

have to be applied to an image time series before performing the STICS 

analysis, in order to rem ove the background noise and correct for drift and 

intensity variations. l will then show control measurements performed on 

chemically fixed cells to test the detection limits of STICS, and present the 

measurement and analysis of typical cases of diffusion, non directed flow and 

directed flow of labeled proteins in living CH 0 cells. Finally, l will demon­

strate a test experimental application of the cross-correlation implementa­

tion of STICS using fluorescent microsphere samples, and an in situ proof 

of principle experiment using two kinds of labeled tracers in fish epidermal 

keratocytes to characterize applications of the STICS and STICCS methods 

in real systems. 
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5.2 Image treatment 

5.2.1 Noise and Immobile Population Removal 

The white or random noise that, by definition, has a uniform power spectral 

density at every frequency in the range of interest, only contributes at the 

zero spatio-temporal lag point of the correlation function: Tab(O, 0, 0). This 

stems from the fact that white noise is essentially uncorrelated beyond zero 

lags, so it only correlates with itself. As discussed in the original ICS contri­

butions [51, 97], it is possible to correct for white noise by acquiring a white 

noise image and measuring its average to subsequently remove this number 

from the original cell image. The same method can be applied by selecting 

an "off-cell" region from the image (see Figure 5.1), which should essentially 

be white noise assuming there are no real fluorescent particles in the region. 

The average intensity of that subregion is subsequently subtracted from the 

whole image to correct for the mean background. The result of this process 

is shown in figure 5.1, where the corrected image shows better contrast, and 

more importantly for quantitative analysis has a reduced background noise 

contribution. 

In STICS analysis, however, the immobile population filtering algorithm 

will remove the white noise offset at every pixel by removing the average 

value of that pixel over the time course of the experiment. This temporal 

average should be equivalent to the spatial average if we assume that the 

system is ergodic, and that there are no significant laser intensity variations 

during the acquisition. The Fourier filtering algorithm is designed to remove 

the immobile component in the space time correlation function of Eq. 2.5. If 



5.2 Image treatment 107 

B) 450 

400 

350 

300 

J!l 
250 

c: 
~ 200 
U 

150 

100 

50 

10 20 40 50 60 

Orso 
400 

350 

300 

l'l 
250 

c 8 200 

150 

100 

50 

10 20 30 40 50 60 

Intensity value (arb. units) 

Figure 5.1: Example of white noise correction. A) TIRM image of a CHO 
ceU transfected with actin-mRFP. B) Histograms of the inten­
sity inside and outside of the ceU, as defined by the two white 
boxes shown in A. C) Mean background corrected image of 
the ceU showing better contrast th an the original image. D) 
New histogram of intensities after average background correc­
tion from the same regions inside and outside the ceU. Scale 
bars are 5 f1m. 

this immobile component is not removed, then the STICS measured velo city 

is consistently underestimated (see section 4.3.2). 

Filtering the immobile population will also remove any extended spatial 

correlations due to static fluorescent structures in the image. These struc-

tures can severely deform the spatial correlation function if they are present. 
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Figure 5.2: Example of immobile populationfiltering. A) TIRM imagefrom 
a time series of a CHO cell transfected with o;-actinin con­
jugated with GFP. B) Same image after immobile population 
removal using the whole time series. Scale bars are 10 /-lm. C­
F) Time evolution of the spatio-temporal correlation function 
without immobile population removal. Note that the fiow peak 
is buried in the static correlations of the immobile population. 
G-J) Time evolution of the spatio-temporal correlation function 

with the immobile population removed. The translating peak due 
to fiow can now easily be seen and tracked. 

For example, if the image contains an actin stress fiber (bundle of actin fila­

ments) or focal adhesion contacts, the correlation function will be perturbed 
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and deviate from the expected Gaussian shape as these cellular structures 

are larger than the diffraction limit. Figure 5.2A-B shows a typical image of 

a cell transfected with GFP tagged a-actinin and the resulting image follow­

ing the immobile population filtering in the image series. Because a-actinin 

strongly interacts with actin, it is also organized in filamentous structures 

(along the actin filaments) and thus the spatial correlation function of the 

first image refiects this organization by showing long "bands" of spatial cor­

relations oriented in the direction of the filaments (see Figure 5.2C-F). Any 

fraction of the total population that undergoes directed motion along the 

filaments will be obscured by the static correlations of the mostly immobile 

proteins. The image after filtering shows less structure, and although the 

organization along filaments can still be seen, the filtered time series shows 

much clearer speckles of a-actinin undergoing retrograde fiow. lndeed, the 

spatial correlation function after the immobile population filtering does not 

show these long range spatial correlations, and we can clearly track the trans­

lating Gaussian peak due to fiow and extract the a-actinin velocity in and 

around the filaments (see Figure 5.2G-J, white arrow head). 

5.2.2 Drift Correction 

An unavoidable consequence of imaging with any type of microscope is sam­

pIe drift. The sample is mechanically coupled to the objective lens by the 

immersion oil (see section 2.3.1). So after focusing, the system can some­

times slowly relax to an equilibrium, leading to a slight lateral drift or a drift 

from focus axially of the sample on the microscope stage. Such a drift in 

the image series will hamper quantitative pixel-to-pixel analysis of any spa­

tially dependent variable. The drifts can range from as small as one half to a 
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few micrometers, which corresponds to typical distances moved by proteins 

such as actin over the duration of a typical image series collection. Such a 

drift would show up as a significant component of protein flow in the STICS 

analysis, and it is essential to be able to detect and correct for drift when it 

appears. 

a 100 200 300 

Time (5) 

400 500 600 

Figure 5.3: Measured stage drift as a function of time for an image time 
series of a CHO ceU. As we increase the rebinning factor n, 
the precision in the drift measurement increases. The dotted 
line shows a linear best fit ta the n=5 curve. This theoretical 
curve is used for final drift correction on the entire image time 
senes. 

A simple correlative approach was used to find the drift at any time 

point. It assumes that the cell doesn't change shape extensively, and requires 

locating a source of background fluorescence that is bound to the coverslip 

surface and can thus act as a reporter of stage drift. The correction scheme 
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sim ply uses the first frame of the movie (or a cropped subregion around 

the marker) as a reference frame, and subsequently correlates every frame 

of the image series with the first one. The maximum of the correlation 

function (xmax , Ymax) is located for each frame by a simple maximum location 

search. This gives the x and y displacements (i.e. the drift) at which the 

images best match (correlate with) the first reference image with about a one 

pixel precision. One can fit a function (usually a Gaussian), to extract the 

peak location with subpixel precision, but the choice of that function would 

critically influence the peak location and is therefore not so reliable. An 

alternate approach, that was used in this work, involves artificially enhancing 

the resolution of the image by a factor of n by rebinning the pixels of the 

original Nx by Ny pixels image into a grid n x Nx by n x Ny using interpolation. 

The correlation function is now recalculated, and the pixel location where 

it attains its maximum value (x:nax, y:nax) is related to the original pixel 

location (xmax , Ymax) and the rebinning factor n through: 

, , 
( ) ( Xmax Ymax) Xmax , Ymax = --,--

n n 
(5.1) 

thereby artificially enhancing our precision by a factor of n. By visual inspec-

tion of the drift-corrected image time series, we found that values of n greater 

than 5 do not result in a significant improvement of the drift correction pro-

cess. Most of the time, drift shows up as a non-random, directed motion of 

the stage (see Figure 5.3). The level of precision increases as we increase the 

value of n, and we can see that the drift approaches a linear function in the 

rebinned image series. We can combine this rebinning approach with a linear 

regression fit without offset, in order to extract the theoretical displacement 
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of the stage at all times which is the used to correct the original image time 

series. This type of linear fit is shown in Figure 5.3 (for n = 5), and the 

corrected image series using the fit data shows no apparent drift. 

5.3 STICS Applied to Cells 

5.3.1 Fixed Controis 

In order to asses the detection limits of STICS under true imaging conditions 

with drift, we imaged CHO cells transfected with EGFP labeled Epidermal 

Growth Factor Receptor (EGFR), a cell surface signalling receptor which has 

been implicated in the development and progression of a number of human 

cancers including those of the Iung, breast, prostate, colon, ovary, head and 

neck [107]. The CHO cells were fixed in 4% paraformaldehydejPBS, a func­

tional fixative that cross-links membrane proteins, thus killing and "freezing" 

the cell. Early FRAP studies have shown that protein motion stops after the 

cells have been fixed with paraformaldehyde above a concentration of 3.7% 

[108]. 

Several chemically fixed cells were imaged, at slow or fast scan speeds, 

to generate image time series with 100 frames and these were subsequently 

corrected for drift and analyzed by STICS to extract the x and y velocities 

of the labeled proteins. The imaging times were varied from 45 s to 10 min, 

and the sample drift and focus drift varied between the data sets. Fast scan 

samples showed no sample drift, whereas slow scan samples had to be cor­

rected for drift. An extreme example of focus shift is shown in Figure 5.4A 

(basal membrane) and B (inside the ceIl). In this case the sample has drifted 
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Figure 5.4: First (A) and last (B) frames of a confocal image time se­
ries of EGFP labeled EGFR receptor in CHO cells fixed in 4% 
paraformaldehyde (scale bars are 5!-lm). This is an extreme ex­
ample of focal plane drift in z, combined with a small sample 
drift. C) Average ST/CS measured velocities for regions inside 
fixed cells, at different scan speeds. The arrow indicates the 
average x and y velocity measured for the case illustrated in A 
and B. The error bars are SD and the shaded region represents 
the deduced detection limit of ± 0.001 !-lm / s. 

down so the focal plane ends up inside of the cell as can be seen in the latter 

image (Figure 5.4B). We do not expect focal plane shifts to result in any 
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apparent velocity of the labeled protein because the intensity changes are 

only due to motion in the z direction. However, stage and sample motions 

in x-y will affect the STICS measurement and will set a lower limit on the 

velocities that can be measured. For the fixed cell experiments the STICS 

measured x and y velocities were less than 0.001 fJm/ s (see Fig. 5.4C), thus 

establishing our lowest detection limit at typical confocal microscopy settings 

and sampling times. The larger errors for the fast scan setting are probably 

due to our inability to accurately detect a very small sample drift on the 

shorter time scales and thus correct for it. Longer imaging times allowed us 

to properly remove the sample drift and thus obtain a detection limit on the 

order of 10-4 fJm/ s. 

The fixed cell controls also allow verification that fluorescence photo­

bleaching does not affect the accuracy of the STICS measurements. The 

bleaching curves for the samples analyzed in Figure 5.4, plotted as the rela­

tive intensity normalized to the first frame as a function of time, are shown 

in Figure 5.5. As expected the bleaching rate is not really dependent on the 

imaging rate, but rather on the total laser exposure time for the cells. As 

such, the fast scan samples bleach at a faster rate than the slow scan samples. 

In all cases, however, the STICS analysis was not affected and returned ve­

locity magnitudes that were zero (within error) , consistent with expectations 

for the fixed cells. 



5.3 STrCS Applied ta Cells 

;W 0.9 
t: 
::::J 

..ci 
'-
~ 0.8 

0.7 

0.6 

. 

\ 

0.5 -+-----,,-----,---.,-----,---.......-----,,-----,-----, 

o 100 200 

Time (s) 

300 400 

115 

Figure 5.5: Photobleaching curves (mean intensity relative to the first frame 
mean versus time) for the fixed cell image time series analyzed 
from Figure 5.4 C. 

5.3.2 Diffusion, Non Directed Flow and Directed Flow in Living 

CeUs 

We used STICS to measure diffusion, directed and non-directed transport of 

EGFP /adhesion proteins expressed in living CHO cells. We first measured 

a-actinin/EGFP constructs expressed in CHO-KI cells plated on fibronectin 

coated substrates. The protein a-actinin is a cytoplasmic molecule that 

binds ta the intcgrins at the membrane and alsa links ta the actin cytaskele-

ton [3]. We have previously determined that a-actinin is more mobile in the 

peripheral regions of the CHO cells where there is active lamellar extension, 

retraction, and membrane ruffiing when the cells are activated on fibronectin 

[2]. We focused our measurements on such active peripheral areas (see Figure 



5.3 STICS Applied ta Cells 116 

5.6). 

Figure 5.6: Two-photon LSM images of the basal membrane of CHO cells 
expressing EGFP labeled a-actinin. The cells were plated on 
fibronectin and imaged at 37> C. The regions analyzed with l CS 
and STICS are shown as white squares and the STIeS analysis 
results are shown in Figures 5. 7, 5.8 and 5.9. A) A 642 pixels 
region where the temporal autocorrelation function is best fit 
to a single population diffusion model (Eq. 2.10). B) A 1282 

pixels region where the temporal autocorrelation function is best 
fit to a two population flow/diffusion model (Bq. 2.13). C) A 
1282 pixels region where the temporal autocorrelation function is 
bestfit to a two populationfiow/diffusion model (Eq. 2.13). All 
images are 512 by 480 pixels at a resolution of 0.118 fJm/pixel, 
and a total of 180, 360, 120 frames at a temporal resolution of 
5, 5 and 15 s/frame for A), B) and C) respectively. 

Figure 5.7 shows the lCS and STlCS analysis results for a typical64 x 64 

pixels2 region from the ceIl periphery (Fig. 5.6A). As is evident from Figure 

5.7B, the temporal autocorrelation function can be fit very weIl by Eq. 2.10, 

which yields a diffusion coefficient of (9 ± 1) 10-4 fJm 2 / s. We show contour 

plots of the spatio-temporal correlation functions for diflerent time lags in 

Figure 5.7 A for i) the unmodified image time series (without the immobile 

population removed) and ii) the filtered image time series (with the immobile 

population removed). As expected for isotropie diffusion, in both cases the 

correlation peaks stay centered at zero spatial lags (indicated by the white 
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Figure 5.7: In vivo ICS and STICS analysis of protein diffusion in a pe­
ripheral basal membrane region of a CHO cell (Fig. 5.6A) ex­
pressing EGFP labeled O!-actinin. A) Contour plots of space­
time correlation functions from STICS analysis (Eq. 2.16) as a 
function of lag time for i) without and ii) with the immobile pop­
ulation filtering. B) A plot of the JCS temporal autocorrelation 
function and best fit to a single population diffusion model (Eq. 
2.10). The recovered diffusion coefficient was D = (9 ± 1)10-4 

/-Lm 2 
/ s. C) Peak tracking plot of the STICS correlation peak 

reveals that it stays centered at zero spatiallags, within the pre­
cision of our measurement. 

cross-hairs). Fitting for the displacement of the Gaussian yields a very small 

velocity VSTICS = (1.2 ± 0.8)10-3 /-Lm/s (from Vx = (-0.9 ± 0.8)10-3 and 

vy = (-0.8 ± 0.7) 10-3 /-Lm/s, see Figure 5.7C) which cannot be attributed to 

a very slow concerted flux of the proteins, since these values are on the order 
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of the detection limit of our measurements, which was determined by apply­

ing the STICS analysis to cells fixed in 4% paraformaldehyde (see section 

5.3.1). These results illustrate a membrane region exhibiting mainly slow 

protein diffusion and immobile proteins, and show how the random walk is 

manifest in both the lCS and STICS analyses. It probably represents Œ­

actinin that is bound to membrane integrins (that are diffusing or immobile) 

and not bound to actin as fiow was not detected. 

The same analyses were applied to a different region from the periphery of 

another cell (Figure 5.6B) and reveal different protein transport. Figure 5.8 

shows our results for a 128 x 128 pixels2 region in which clusters of Œ-actinin 

are clearly resolved, and these clusters can be observed to fiow in a directed 

fashion on what appear to be defined linear tracks. However, the lCS (Fig­

ure 5.8B) and STICS (Fig. 5.8A,C) analyses yield very different values for 

the fiow speed: VICS = (13 ± 1)10-3 /-Lm/s and VSTICS = (1.1 ± 0.7)10-3 

/-Lm/s (from Vx = (-0.67 ± 0.02)10-3 and Vy = (-0.9 ± 0.8)10-3 /-Lm/s). 

The velocity magnitude from lCS analysis is about 10 times higher than the 

velo city value measured by STICS. This is due to the fact that STICS only 

measures the net resultant directed component (here the majority, but not 

aIl of the clusters were observed to be traveling to the left and down in the 

image series), whereas lCS measures an average total fiow speed (and a small 

diffusion coefficient in this case) as it is not sensitive to the direction of fiow. 

Hence the combinat ion of lCS and STICS allows us to distinguish between 

unidirectional fiow (see also Figure 5.9), or directional fiow in many random 

directions as was the case here. Visual tracking of the resolved clusters shows 

that the directions are mostly random with a slight bias towards the lower 
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Figure 5.8: In vivo lCS and STICS analysis of protein flux in random di­
rections in a peripheral basal membrane region of a CHO ceU 
(Fig_ 5.6B) expressing EGFP labeled cx-actinin_ A) Contour 
plots of space-time correlation functions from STICS analysis 
as a function of time for i) without and ii) with the immobile 
population filtering- B) A plot of the lCS temporal autocorre­
lation function and best fit to a two- population flow/diffusion 
model (Eq. 2.13). The recovered 1 CS velo city and diffusion 
were VICS = (13 ± 1)10-3 p,m/ sand D = (8 ± 1)10-4 p,m2 

/ s­
C) Peak tracking plot of the the STICS correlation peak reveals 
that it stays centered at zero spatial lags, within the precision 
of our measurement, yielding a very small resultant velocity of 
VSTICS = (LI ± 0_7)10-3 p,m/s. 

left of the image_ In this case, single particle tracking (8PT) analysis will in 

principle provide more information about the range of transport [56]- How-

ever, it proved difficult to track the clusters with the fluorescence signal to 
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Figure 5.9: In vivo ICS and STICS analysis of directed protein flow in a 
peripheral basal membrane region of a CHO cell (Fig. 5_ 6C) 
expressing EGFP labeled a-actinin. A) Contour plots of space­
time correlation functions from STICS analysis as a function of 
time for i) without and ii) with the immobile population filter­
ing. B) A plot of the ICS temporal autocorrelation function and 
best fit to a two- population flow/diffusion model (Eq. 2.13)_ 
The recovered velocity was VICS = (7_7±0.8)10-3 J-Lm/s and 
a small diffusion coefficient was measured: D = (6 ± 1) 10-5 

J-Lm2 
/ s_ C) Peak tracking plot of the STICS correlation peak 

(after the immobile population removal) shows a net peak dis­
placement from the zero lags center, yielding velocities of V x = 
(1.8 ± 0_3)10-3 and V y = (5_5 ± 0_2)10-3 J-Lm/ s_ 

noise ratio and for the density of expression of EGFP proteins typical for 

these transfected cells. 
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The true advantage of STICS emerges in situations where no bright clus­

ters are clearly resolved (hence SPT would be impossible), but concerted flux 

of protein can still be detected and quantified by correlation analysis. Figure 

5.9 shows results for a 128x128 pixels2 region of a basal membrane of a CHû 

cell expressing EGFP labeled o:-actinin (Figure 5.6C). Here the lCS analy­

sis again detects the flow and diffusion of two separate populations (Figure 

5.9B) with VIes = (7.7 ± 0.8)10-3 fJm/s and a small diffusion coefficient 

D = (6 ± 1)10-5 fJm 2 /s. The STICS analysis also detects a directional flow 

(Figure 5.9A,C) with Vx = (1.8 ± 0.3)10-3 and vy = (5.5 ± 0.2)10-3 /-Lm/s. 

This example illustrates again the importance of removing the immobile pop­

ulation, since the correlation function peak in Figure 5.9A i) is dominated by 

immobile protein population spatial correlations and thus roughly stays cen­

tered at zero spatial lags. However, after the immobile population removal, 

one can see and track the Gaussian peak clearly moving away from the zero 

lags center towards the bottom left corner and the residual zero lags centered 

peak from the diffusing population (Figure 5.9A ii). 

5.4 STICCS Applied to cells 

5.4.1 Fluorescent Microsphere Control Experiments 

Fluorescent microsphere samples containing a mixture of non interacting 

flowing spheres emitting at two different wavelengths (referred to as "red" 

and "green") were prepared and imaged as a function of time by two-photon 

laser scanning microscopy (see Materials and Methods) to generate an image 

series of two independent particle populations. By adding another image 

series of flowing microspheres to both independent channels in the collected 
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time series, we could effectively introduce an artificial interacting popula­

tion (i.e. one that appeared in both image series which models different 

fiuorophores being detected at the same pixel locations in the two detection 

channels). The direction of fiow of this "inter acting" population added by 

image processing was set by the user and is thus independent of the direction 

of fiow of the original non-interacting particle populations. A typical overlay 

image from these image processed time series is shown in Figure 5.lOA. It 

has an equal density of red and green microspheres, with approximately 40% 

of each population interacting. 

These image time series were then analyzed with two-color STICCS, yield­

ing directional fiow information for the red and green populations, as well as 

for the interacting fraction. We can recover the fiow directions of the non­

interacting red and green microsphere populations to within 8 degrees in the 

presence of the interacting population, as compared with the recovered fiow 

directions of the original image time series (i.e. analysis performed without 

the addition of the interacting population). Moreover, we can find the direc­

tion of fiow of the interacting population to within 5 degrees. Figure 5.lOB 

shows the one to one relationship between the velocity magnitudes (in x and 

y) for the added population as measured by STICS from its original image 

time series before addition and the velocity magnitude of the added (inter­

acting) population as measured by STICCS in the dual channel constructed 

image time series (i.e. in the presence of the non interacting microsphere 

populations). The data are plotted for sever al experiments in which the 

direction of fiow of the added interacting population was varied. The mag­

nitudes of the velocities measured by STICS analysis on the dual channel 
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Figure 5.10: A) A composite image of fluorescent microspheres consisting 
of two different fluorescent particle populations (red and green) 
and an added (linteracting" particle population (yellow). The 
composite image was made by adding an independent image 
of fluorescent spheres (our artificial interacting population) to 
both detection channel images. For each image time series 
constructed, the velocities of the non interacting populations 
remained constant whereas the interacting fraction's direction 
of flow was systematically changed_ B) A plot of the inter­
acting population velocity magnitudes in x and y measured by 
STICeS in the composite image series (i_ e. with the added 
population and the red and green microspheres all present) ver­
sus the velocity magnitude of the introduced interacting pop­
ulation measured by STICS in its original image series (i. e. 
without the red and green particles present). 

image time series differ by less than 10% from the original values (as mea­

sured separately before the addition of the artificial interacting population); 

see Tables 5_1 and 5_2_ Note that the density of the added interacting particle 

population was five times lower than the densities of the independent green 

and red particle populations_ 
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Set first population second population 
(green) (red) 

# velo city (/Lm/min) velocity (/Lm/min) 
V x 1 vy V x 1 vy 

1 O.11±O.O4 -1.53±O.O5 O.14±O.O5 -1.48±O.O5 
2 O.27±O.O5 -1.24±O.O4 O.30±O.O3 -1.22±O.O5 
3 O.O3±O.Ol -l.OO±O.lO O.16±O.O3 -1.23±O.O5 
4 O.O3±O.O6 -l.O8±O.O6 O.11±O.O9 -O.98±O.O4 
5 O.O2±O.O5 -1.27±O.O3 O.O3±O.O5 -1.20±O.O5 
6 O.12±O.O2 -O.51±O.O5 O.17±O.O3 -1.63±O.O5 

Table 5.1: STICCS measured parameters for an image time series of fiow­
ing microspheres (see Figure 5.10). Shown here are the x and y 
velocities of the green and red microspheres as recovered by the 
STICCS analysis. Errors are SD from 4 separate measurements. 

Set isolated inter acting interacting population 

# population velocity velocity (/Lm/min) 
(/Lm/min) 

V x 1 vy V x 1 vy 
1 -O.Ol±O.O5 -3.9±O.1 -O.Ol±O.O9 -4.2±O.2 
2 1.39±O.O4 O.O9±O.O4 1.21±O.O7 -O.25±O.O5 
3 -1.26±O.O3 2.27±O.O3 -l.O8±O.O4 2.13±O.O4 
4 -1.44±O.O3 O.60±O.Ol -1.33±O.O3 O.52±O.O3 
5 -O.31±O.O3 -l.O5±O.O2 -O.22±O.O5 -l.O2±O.O5 
6 O.21±O.O2 O.98±O.O2 O.19±O.O2 -l.OO±O.O2 

Table 5.2: STICS measured parameters for an image time series of fiowing 
microspheres (see Figure 5.10). The column ilisolated interacting 
population velocity" refers to the STICS analysis results before 
image addition when applied to the single channel image time 
series that is subsequently added to the dual channel image time 
series to create the interacting population. The column ilinter­
acting population velocity" refers to the two-color STICCS anal­
ysis results after image addition for the co-localized (interacting) 
population in the composite image. These values should, in the­
ory, be equal to the values in the column ilisolated interacting 
population velocity". Errors are SD from 4 separate measure­
ments. 
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The STICCS analysis for the single non-interacting populations is influ­

enced by both the fraction that is flowing independently and the movements 

of the interacting fraction (i.e. there are two directions of flow in these image 

time series). As long as the overall contribution to the image intensity from 

the interacting population does not exceed that of the non-interacting popu­

lation (for example 80% of the population is flowing independently and 20% 

is interacting), STICS can detect the differences in flow direction between the 

populations. In situations where this effect becomes dominant (i.e.: equal 

contribution from interacting and non-interacting species), one can fit two 

Gaussians to the spatial correlations of Eq. 2.6 (raa(Ç', fJ, 7), a=l or a=2) 

to extract the two flow directions. Conversely, the STICCS analysis of the 

interacting population can also be influenced by the single non-interacting 

populations if these happen to flow in the same direction and random spatial 

cross-correlations occur. These effects account for the errors in magnitude 

and direction of the measured velocities in the constructed image series as 

compared with the velocities measured from the original image series of the 

independent microspheres. 

5.4.2 STICCS Measurement of Concerted Flow of Labeled Pro­

teins in Ce Us 

To verify the STICCS analysis in living cells, we chose epidermal fish kerato­

cytes because they are thought to exhibit internaI fiuid fiow during migration. 

The cells were electroporated to introduce fluorescent tracer particles in their 

interior (for full experiments and discussion see section 6.2). In short, these 

tracers are small and inert so they do not show any interaction with the actin 

cytoskeleton or other components and are, therefore, expected to move with 
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any fiuid fiaw within the ceIl. Henee when we eleetroporate fish keratoeyte 

with two kinds of tracer particles and image the different emission wave-

length, we expeet that both of these tracers will show the same transport 

behaviar as they will both refieet fiuid fiow inside the ceIl. 
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Figure 5.11: STICS measured velocity maps for A) Alexa Fluor 488 B) 
655QDs and C) the ST/CCS measured cross-correlation veloc­
ity map. Scale bar is 10 /Lm, velocity scale vector is 1 /Lm/s. 
D ) Magnitude and E) directional correlation plots for fiuid 
flow fields measured from the movements of the two different 
tracers in the same cell. 
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Using wide-field fluorescence microscopy, we imaged fish keratocytes elec­

troporated with 655QDs (quantum dots with emission at 655nm) and AF488 

(Alexa Fluor 488nm), using two channel detection with minimal bleedthrough 

(less than 1%). The two resulting image series were analyzed individually us­

ing STICS to reveal the flow patterns as mapped for each fluorescent tracer. 

Magnitude and directional correlation analysis (as described in section 3.5) 

shows that both flow fields are very similar as expected (see Figure 5.11A­

B). The magnitude correlation coefficient was 0.98 ± 0.06 and the directional 

correlation coefficient was 0.991 ± 0.002 (see Figure 5.11D-E), indicative of 

quasi-identical flow fields. We also performed the magnitude and directional 

correlation analysis between the AF488 map (Figure 5.11A) and the STICCS 

measured cross-correlation map (Figure 5.11 C), as well as between the 655QD 

map (Figure 5.11B) and the cross-correlation map to verify that the two 

channel cross-correlation velocity map was accurate. The former resulted 

in a magnitude correlation of 0.93 ± 0.06 and a directional correlation of 

0.994 ± 0.002; while the latter yielded values of 0.97 ± 0.08 and 0.983 ± 0.003 

for the same correlation coefficients. These results show that STICCS is able 

to accurately detect and measure concomitant flow fields of two different 

labeled tracers in situ. 

5.5 Chapter Conclusion 

Spatio Temporal Image Correlation Spectroscopy provides a unique tool to 

study protein motion in situ. The control measurements performed on chem­

ically fixed cells presented in this chapter indicate that, after background 

noise removal and drift correction, the velocity detection limits of STICS are 
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lowenough ("" 0.001 p,m/s) that we can readily measure typical retrograde 

flow velocities of adhesion proteins and actin in cells ("" 0.01 - 0.1 p,m/s). 

Furthermore, the immobile population removal algorithm was successfully 

applied to STICS data obtained from living cells in order to remove the 

contributions of large, static molecular complexes to the spatial correlation 

function. This permits the use of the STICS analysis even in regions where 

there is a significant immobile population fraction, and spatially non-uniform 

distributions of labeled proteins. 

lCS is sensitive to flow regardless of the direction, since the temporal cor­

relation measures intensity fluctuations in time irrespective of the (spatial) 

direction in which particles enter and exit exit the beam focal volume. On 

the other hand, STICS only registers concerted flow motion, because it yields 

a directionally weighted net resultant correlation peak due to all fiows. By 

combining both lCS and STICS, we have demonstrated the ability to dis­

tinguish between cases of diffusion, fiow in random directions and concerted 

directional flow in living cells. Finally, the cross-correlation applications of 

STICS and STICCS were tested using control experiments with fluorescent 

microspheres to generate image time series where we could artificially add an 

interacting population. These experiments show that we can recover the flow 

directions of the non-interacting and interacting populations to within a few 

degrees. STICCS was also applied in situ using two fluorescent tracers in­

troduced into fish epidermal keratocyte, where fluid flow is expected to carry 

both tracers with the same velo city magnitude and direction. The measured 

magnitude and directional correlation coefficients show that STICCS can 

accurately measure perfectly concomitant flow of two fluorescent markers. 
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6 Velo city Mapping applications in living cells 

6.1 The Molecular Clutch 

Cell migration is regulated, in part, by the connection between adhesion 

components and the actin cytoskeleton. However, the very large number 

of proteins involved in the linkage from the substratum to actin and their 

complex network of interactions (see section 1.3) make it difficult to directly 

assess their role in migration of living cells. In this section, STICS exper­

iments to characterize the protein linkage between integrin and actin, and 

identify points of slippage or disconnect in this linkage in migrating cells will 

be described and discussed. 

6.1.1 CeU Adhesion Mechanisms 

CeU protrusion and adhesion are essential features of ceU migration and con­

tribute to many processes such as cancer metastasis, embryonic develop­

ment, and inflammation, as weU as the formation of synaptic connections in 

the central nervous system [8]. Cell migration results from the integration 

of several component processes including the formation and stabilization of 

protrusions and the assembly and disassembly of adhesions [3, 8]. While 

protrusions are generated by actin polymerization, the protrusion rate can 

be modulated by the relative rate of retrograde actin flow, which is adhesion 

dependent [68, 109]. The assembly of adhesions is regulated, in part, by 

the tension sensed by adhesions, which serve as both signalling centers and 

traction points for the generation of tension [8, 110]. Therefore, adhesion 

and protrusion are interconnected, and are controlled by the efficiency of the 

linkage between actin and the extraceUular matrix (ECM). Thus, it is not 
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surprising that this linkage emerges as a potential site for molecular regula­

tion of protrusion and migration. 

Despite its importance, only a few studies have addressed the ECM-actin 

linkage and its regulation in migrating cells. The role of integrins in the 

linkage has been studied in retracting regions at the rear of migrating cells 

[111, 112, 113]. In these regions, the linkage severs between integrin and 

other adhesion components leaving integrin-containing residual "footprints" 

on the substratum, often with an accompanying sliding of the remaining ad­

hesion [112, 113, 114]. The amount of integrin in the footprints depends on 

parameters that contribute to adhesion strength such as the concentration of 

ECM proteins, the number of integrin receptors, the affinity of integrin for 

the ECM, as well as cal pain activity [111]. These observations suggest that 

for retracting regions of the cell, the bond between the ECM and integrin is 

much stronger than that linking integrin to the cytoskeleton [111, 112, 113]. 

Recently, paxillin was observed to be associated with footprints in focal ad­

hesion kinase (FAK) null cells, suggesting FAK regulates a labile site in the 

linkage [21]. These observations lead to a hypothesis in which the linkage be­

tween the ECM and actin is regulated by changes in interactions among link­

age components through the action or modification by signalling molecules 

su ch as src, paxillin and focal adhesion kinase (FAK). The challenge, there­

fore, is to define the nature and regulation of the linkage at the molecular 

level in migrating cells. 

A plethora of in vitro studies point to interactions among integrin, talin, 

vinculin, a-actinin, and actin as likely critical elements of the linkage [115, 
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116, 117]. Adhesion associated signaling components, like FAK, Src, and 

paxillin, could then regulate the ECM-actin linkage through modifications 

that result in altered affinities, e.g., phosphorylation or enzymatic cleavage 

of proteins that comprise the linkage. Such studies would benefit greatly 

from quantitative estimates of the efficiency of the linkage in situ and the 

roles of various adhesion components in determining its efficiency and where 

the points of linkage are actually located. It is difficult to clearly define and 

characterize the molecular basis of the ECM-integrin-actin linkage in living 

cells because of the small volume of the cell, the complex spatio-temporal 

interactions between integrins and adhesion proteins [20] and the diverse ki­

netic and kinematic behaviors of the cytoskeleton [69]. 

Recently, there have been significant advances in cellular imaging tools 

and techniques that allow this problem to be approached via direct mea­

surements inside cells. In situ experiments using chromophore-assisted laser 

inactivation (CALI) have implicated talin as a critical molecule in the ECM­

actin linkage during filopodial extension and retraction [118]. More recently, 

extensive characterization of actin dynamics using Fluorescent Speckle Mi­

croscopy (FSM) [66] has revealed two spatially, kinetically and kinematically 

distinct actin networks; with the local expansion of the lamella network be­

ing a source of persistent cell protrusion [69]. There is also evidence that the 

actin network is dynamically coupled to adhesions [103, 119] by a biphasic 

relationship between the retrograde fiow of actin and the cell-substratum ad­

hesiveness [103]. Nevertheless, to date, the dynamics of the integrin linkage 

to actin has not been systematically studied during cell migration. 



6.1 The Molecular Clutch 132 

In this section we apply STICS to determine protein flow velocities through­

out the cell and use these measurements to explore how F -actin based motility 

is regulated by interactions with adhesion components. We will quantify a­

actinin retrograde velocities and compare them to actin retrograde flow, and 

then apply STICS to generate co-transport maps of actin and a set of adhe­

sion proteins within sub-regions of the basal membrane in doubly transfected 

cells. The detailed cellular maps of molecular transport allow us to quant if y 

the coupling between adhesion components and actin and thus provide new 

insight about the mechanistic details of the integrin-actin linkage during cell 

protrusion and migration. 

6.1.2 Retrograde Flow 

The ubiquity of actin retrograde flow [109] and recent evidence for directed 

motion of sorne adhesion proteins [1, 2] suggest that we can study the cou­

pling between the actin cytoskeleton, adhesions and ECM at the molecular 

level by measuring protein velocities. We transfected mouse embryonic fi­

broblasts (MEFs) with an a-actinin-GFP expressing cDNA, and imaged the 

cells using TIRM (see section 2.3.4), which excites only the molecules within 

"-' 100 nm of the coverslip. Even for the few image series where movement 

of a-actinin could be seen by eye, the density of labeled protein along actin 

filaments was too high to perform SPT or FSM measurements. 

As described in section 2.6, STICS analysis relies on averaging two di­

mensional spatial correlation functions calculated from fluorescence intensity 

fluctuations. Large spatially extended bright fluorescent structures in the 

image time series will dominate and distort the spatial correlations, making 
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Figure 6.1: A) STICS measured velocity map of Œ-actinin-GFP in an MEF 
cell image time series (100 frames, 10 s/frame), color coded 
for velocity magnitude (spatial scale bar is 5 f../,m, velocity scale 
vector is 5 f../,m/min). The analysis to generate this map took 
approximately 10 minutes, using partially overlapping 16x 16 
pixels2 boxes. The inset shows an expanded region of the ve­
locity map. STICS correlation fiow peak tracking is nearly im­
possible without immobile population filtering (B-C-D J. After 
immobile population removal (E-F-G), a clear displacement of 
the fiow peak can be observed (white arrow head) and tracked to 
reveal the direction and magnitude of the velocity. Using this 
jiltering, the contribution of the large static features and other 
immobile proteins to the correlation function are removed. HJ 
Inverse relationship between cell protrusion rate (measured by 
kymograph analysis) and STICS measured retrograde velocity 
for Œ-actinin. Error bars are SD. 
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the tracking of the correlation peak due to fiow unfeasible. The a-actinin 

organizes along actin filaments which appear as extended filamentous struc­

tures in the images and remain visibly static over the imaging periods. We 

used the immobile filtering algorithm to remove the immobile component 

which eliminated the perturbing contribution of these bright static spatial 

structures from the correlation function (see section 2.7). As described be­

fore, if the immobile component is not removed, then the fiow peak of the 

correlation function is "buried" under the static spatial correlations of the 

filament structures (Figure 6.1B-D). However, after the algorithm is applied 

one can easily see and track the fiow peak (see Figure 6.1E-G, lower left 

quadrant). This algorithm allowed us to map the retrograde movement of 

a-actinin along organized actin filament structures. 

Forces driven by actin polymerization push the membrane forward gener­

ating protrusion [68], while membrane resistance to this pressure combined 

with myosin activity leads to retrograde actin fiow. Using STICS, velocity 

maps were generated in protruding regions of cells where we found that a­

actinin was undergoing retrograde fiow with rates ranging mostly from 0.2 

to 0.7 J-Lm/min (Figure 6.1A). These rates are comparable to those previ­

ously measured for actin [67]. We found an inverse relationship between the 

a-actinin retrograde velocities and the cell protrusion rates (measured by 

kymograph analysis across the moving membrane edge boundary [103, 120]), 

which is also analogous to what others have seen for actin [121] (Figure 6.1H). 

The measurement of a-actinin velocities and an inverse relationship between 

velocities and protrusion rates comparable to actin validates and establishes 
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the generality of the STICS method for an arbitrarily expressed fluorescent 

protein. 

before CytoD after CytoD -_ ..... 

Figure 6.2: Velocity maps of cx-actinin and actin before and after treatment 
with Cytochalasin D (200 nM). Spatial scale bar is 5/-Lm, veloc­
ity scale vector is 1 /-Lm/min. The image time series were 200 
frames at 5 s/frame. 

6.1.3 Hidden mobility and velo city perturbations 

When analyzing the co-transport of adhesion proteins and actin, two simul-

taneous cellular velo city maps are generated for image series collected in two 

detection channels (one for each labeled protein). The absolute values of the 

protein velocities cannot be directly compared among different cells due to 

the dependence of the retrograde velocities on the protrusion rate, substrate 
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adhesiveness and the rate of actin polymerization which varies between cells 

[121]. Therefore, only velocities relative to the velocity of actin within a 

given cell contain useful information about the degree of interaction between 

actin and the adhesion proteins. Moreover, spatial variations in the rates 

of actin retrograde flow in the lamella dictate that the comparison between 

flow fields should be done locally. To probe the role of myosin II and actin 

polymerization in protrusion and their effect on the integrin-actin linkage in 

the lamella, we focused on the Œ-actinin/ actin protein pair and performed 

cellular pharmacological (drug) perturbations to actin polymerization and 

filament contraction. 

Cells were imaged before and after treatment with cytochalasin D (cy­

toD), which inhibits the polymerization of actin free barbed ends [122] and 

therefore stops cell protrusion. The velocity maps of Œ-actinin and actin 

computed before and after treatment (see Figure 6.2) revealed that both the 

actin and the Œ-actinin velocities were markedly reduced following cytoD 

treatment. The average actin velocity decreased from 0.22 ± 0.01 to 0.063 ± 

0.002 {Lm/min and the average Œ-actinin velocity from 0.19 ± 0.01 to 0.058 

± 0.002 {Lm/min, a reduction of a factor of 3 in each case (Figure 6.3A, 

compare before and after CytoD). Nevertheless, although the mean velocity 

of both actin and Œ-actinin decreased after CytoD treatment, their mobility 

was still correlated as their relative magnitude (0.98 ± 0.20 before and 1.0 

± 0.3 after treatment) and directional correlation coefficients (0.90 ± 0.03 

before and 0.91 ± 0.03 after treatment) remained unaffected (Figure 6.3B, 

see section 3.5 for the definition of the correlation coefficients). 



6.1 The Malecular Clutch 

A) 
~ 0.4 
C 
'Ë -E 
:::t 

Z­
'u o 0.2 
Q) 

> 
Q) 
C) 

~ 
Q) 

> « 0.0 

B) 

--
1.6 

1.4 

en 1.2 
~ 
c 
:::J 1.0 

.c '- 0.8 
ct! --~ 0.6 
o u 0.4 
en 

0.2 

0.0 

_ o.-actinin 
Il,'111111 a ct i n 

before after 
CytoD 

before after 
Blebbistatin 

_ relative magnitude correlation 
!'Wkju!:rl directional correlation 

before after 
CytoD 

before after 
Blebbistatin 

137 

Figure 6.3: A) Average velocities before and after treatment with Cytocha­
lasin D (200 nM) or Blebbistatin (50 /-LM) for a-actinin and 
actin (black and grey bars, respectively; error bars are SEM). 
B). Relative magnitude and directional correlation coefficients 
for o;-actinin and actin (black and grey bars, respectively) before 
and after treatment with Cytochalasin D and Blebbistatin. 

Ta examine the role of actin filament contraction in the retrograde pro-

tein fiow, the ATPase activity of non-muscle myosin II (a motor protein 

that drives retrograde movement of the actin filaments) was inhibited with 
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blebbistatin [123]. Blebbistatin very rapidly inhibits the retrograde move­

ment of actin and a-actinin as shown by the STICS analysis. The average 

actin velocity decreased from 0.36 ± 0.03 to 0.12 ± 0.01 /.Lm/min and the 

average a-actinin velocity from 0.40 ± 0.03 to 0.13 ± 0.01 /.Lm/min, again 

showing a reduction by a factor of 3 in each case (Figure 6.3A). However, 

in contrast to the cytoD treatment, the directional correlation coefficient be­

tween actin and a-actinin was also significantly reduced across the lamella 

by the treatment with blebbistatin, decreasing from 0.88 ± 0.07 to 0.36 ± 

0.10 (Figure 6.3B). A very small directional correlation coefficient implies 

that local flow vectors are not aligned in their directions and that the flow 

fields are decoupled. This suggests that the tension generated by myosin II 

is likely required to establish or maintain the coupling of actin and a-actinin. 

It is important to note that the image time series of actin and a-actinin 

(Figure 6.2) had a very diffuse distribution of labeled proteins (as is often the 

case for CHO KI cells plated under migration promoting conditions) with 

no visibly apparent labeled protein movement and no organized filamentous 

structures. With this type of protein expression, it would be virtually im­

possible to perform FSM or SPT, however, STICS analysis easily reveals an 

underlying directed motion of both proteins. 

6.1.4 Correlated velocity of actin and adhesion proteins 

To investigate the interactions of adhesion-associated molecules with the 

actin cytoskeleton during protrusion, we co-transfected cells with adhesion 

proteins labeled with green fluorescent protein (GFP) and actin-monomeric 

red fluorescent protein (mRFP) expressed at near endogenous levels. We ob-
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served patterns of retrograde movement for a5-integrin, paxillin, FAK, talin, 

vinculin (Figure 6.4A-E), a-actinin (see Figure 6.2, before treatment) and 

actin (Figure 6.4F-J) in the lamella of migrating cells. lntegrin velocities 

were very slow throughout the lamella; its magnitude correlation relative 

to actin was only 0.14 ± 0.08 and showed little association with the actin 

fiow direction (directional correlation coefficient of 0.3 ± 0.5) consistent with 

their tight engagement with the ECM (see Figures 6.4A and 6.5). Based 

on ICS analysis, more than 80% of the integrins were essentially stationary 

relative to the substrate (data not shown). This is in accord with our earlier 

measurements where we found the majority of a5-integrin to be immobile 

and supports the notion of a strong interaction with the substratum in the 

lamella of the cells [2]. 

STICS velocity measurements of the adhesion proteins were performed 

in regions of the lamella where there are extensive adhesions by using the 

immobile removal algorithm to filter out the spatial correlations due to the 

adhesion structures themselves (Figure 6.4B-E). In contrast to the integrin, 

the adhesion proteins paxillin (Figure 6.4B), FAK (Figure 6.4C), talin (Fig­

ure 6.4D) and vinculin (Figure 6.4E) were highly directionally correlated 

with the actin fiow (Figure 6.4G-J) suggesting a direct or indirect interac­

tion with actin. The adhesion proteins paxillin (0.67 ± 0.06), FAK (0.62 ± 

0.10), talin (0.72 ± 0.06) and vinculin (0.69 ± 0.13) aIl have intermediate 

relative velocity magnitudes when compared to actin. On average the veloc­

ity of these proteins was approximately 2/3 that of the actin for every region 

of interest on the velocity maps (Figure 6.5). Relative velocities that are less 

than unit y suggest that we are measuring an adhesion protein population 
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Figure 6.4: Dual detection channel protein STICS velo city maps for cells 
that were co-transfected with one type of adhesion protein-GFP 
and actin-mRFP and imaged by TIRM. Velocity maps of GFP 
conjugated A) integrin (121 frames, 10 s/frame), B) paxillin 
(121 frames, 5 slframe), C) FAK (200 frames, 10 slframe), 
D) talin (52 frames, 9 s/frame), E) vinculin (176 frames, 10 
s/frame), and the corresponding actin-mRFP velocity maps (F­
I). Insets are a 2x expansions of the smalt white box in each 
image. Spatial scale bars are 5/-Lm, velocity scale vectors are 1 
/-Lm/min. 



6.1 The Molecular Clutch 141 

that is transiently binding and unbinding to the actin. We are effectively 

averaging over the actin bound and unbound states of the adhesion protein, 

with the bound protein moving at the same speed as actin (for 70% of the 

measurement time) and the unbound protein immobile (for 30% of the mea­

surement time). In this situation, averaging over the bound and unbound 

populations gives a lower apparent velo city correlation with actin. It is im-

portant to note that we are able to measure transient binding in this manner 

because the immobile removal algorithm only filters out contributions from 

fluorescent components that do not move throughout the entire duration of 

the image time series analyzed. 
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Figure 6.5: Relative magnitude and directional correlation coefficients for 
the actinjadhesion protein pairs studied by ST/CS analysis. 
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The velocities of a-actinin were the most uniformly and highly correlated 

with those of actin. These two proteins had nearly identical velocity maps, 

with a relative magnitude correlation coefficient of 1.0 ± 0.2 and a direc­

tional correlation of 0.91 ± 0.03 (Figure 6.5) which is consistent with the 

tight coupling of a-actinin to actin as a bundling protein. Nevertheless, to 

our knowledge this is the first time a correlated velocity between a-actinin 

and actin has been observed and quantified in situ. 

For paxillin it is interesting to note that the flow vectors correlate highly 

with the a-actinin flow direction in regions where there are adhesions (see 

Figure 6.6), while in other areas of the lamella, its movement is not direc­

tionally correlated with a-actinin and shows vectors pointing in multiple 

directions. The large randomly oriented white vectors shown in the left part 

of the lamella for paxillin (see Figure 6.6B) are artifacts and are observed in 

cases where there is no directed protein motion. In such cases, we are able 

to distinguish these noise artifacts from vectors due to real protein flows by 

visual inspection as we can see when the best fit Gaussian peak jumps to a 

low amplitude background correlation noise peak. Moreover, the directional 

correlation between a-actinin and paxillin was 0.85 ± 0.03 and the relative 

magnitude was 0.79 ± 0.10, which are similar to actin-paxillin correlation 

scores. This is expected since a-actinin and actin are highly correlated. 

These observations suggest that the directed movement of paxillin is due to 

its association with actin through a-actinin, as part of the linkage complex. 

At the rear of the lamella there is little evidence for directed motion of the 

adhesion proteins, which is consistent with the reduced number of adhesions 

and disassembly of actin filaments in this region of the cell (Figure 6.6). The 
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Figure 6.6: Dual detection channel STICS velocity maps for a CHO cell 
co-transfected with a-actinin-GFP (A) and paxillin-DsRed (B) 
and imaged by TIRM (100 frames, 15 s/frame). The large 
randomly oriented white vectors in the lower left part of the 
lamella for paxillin are fitting artifacts for cases where there 
is no detectable protein transport. They appear throughout the 
rear of the lamella, where there are fewer adhesions and actin 
filaments are disassembling. Insets are 2x expansions of the 
small white boxes in each image. Spatial scale bar is 5 p,m, 
velocity scale vector is 5 p,m/min .. 

flow maps are also less homogeneous towards the rear of the lamella where 

there are many more velocity vectors pointing in variable directions. This 

can be seen for both talin and vinculin with sorne arrows actually pointing 

towards the leading edge of the cell (Figure 6.4D, 6.4E). 
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6.1.5 Discussion 

Regulation of the linkage between the ECM and the actin cytoskeleton is 

critical for cell migration. The linkage is important for regulating the rate 

of protrusion, protrusion stability and retraction. In addition, the linkage 

plays a role in adhesion assembly, growth, turnover and the signaling of ad­

he si ons by coupling myosin mediated actin filament contraction to adhesions 

[89, 124, 125]. In this study we have addressed the efficiency of the ECM­

actin linkage and identified potential points of regulation. To address the 

nature of the linkage we have applied our new image correlation method: 

STICS. Flow velocities for a number of adhesion components (a5-integrin, 

a-actinin, paxillin, FAK, talin and vinculin) were compared with those of 

actin to identify which proteins within the linkage are potential sites of reg­

ulation via transient decoupling or slippage. 

Previous studies have pointed to integrins as the link between the sub­

stratum and cytoplasmic adhesion components making the binding between 

integrin and adhesion components a potential site of decoupling or slippage 

with actin [111, 112, 114]. At the rear of the cell the strength of integrin bind­

ing to the substratum depends on the affinity of the integrin to the ECM, the 

concentration of fibronectin on the substratum, and the number of integrin 

receptors [111, 112, 114]. The studies presented here show that the binding 

of integrin to the substratum is also strong in the lamella of migrating cells 

where upwards of 80% of the integrin is immobile. 

While the integrin movement is not tightly cou pIed to actin, all four 

other adhesion components studied here: paxillin, FAK, talin and vinculin 
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Figure 6.7: Diagramatic model of a protruding lamella illustrating how dif­
ferential retrograde motion of actin and adhesion proteins can 
occur by a two-level linkage mechanism. The actin (stippled 
chevrons) and o;-actinin (ovals) are always concomitant. Slip­
page occurs either A} proximal to o;-actinin through its interac­
tion with one of the components of the linkage complex (shaded 
molecules), or B} proximal to the integrins (trapezoid dimers) 
perhaps at the talin-integrin linkage. C) Protrusion and cell 
body translocation can occur through polymerization generated 
forces and myosin II contraction when both levels of the adhe­
sion complex are engaged. 

are. This suggests that there is a significant disconnect between integrin and 

the cytoplasmic adhesion components. The very similar coupling to actin 

shown by all four adhesion proteins implies that they all reside in a common 

complex, likely including additional adhesion proteins, which is more tightly 

associated with actin than integrin. These adhesion proteins show velocities 

that are 70% as large as actin suggesting that the linkage complex is bound 

to actin 70% of the time and to immobilized integrin 30% of the time. Thus, 

the ECM-actin linkage appears to be regulated at two levels: between the 

adhesion corn pl ex and integrin and between the adhesion complex and actin 

(see Figure 6.7). 
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On the first level, there are many potential proteins that link integrin to 

the actin cytoskeleton, however talin is emerging as a major player in cell 

motility [126], so it is a likely candidate for a point of slippage, or disconnect. 

Its presence is essential for force generation [127], integrin activation [128], 

and the stability of junctions [129]. Although the integrin-talin interaction is 

relatively weak, it may be highly regulated [130], and many weak interactions 

may be easier to regulate than a few strong bonds. 

On the second level, the binding of the adhesion complex with actin may 

be regulated via the interaction between a-actinin and one of its binding 

partners. Several studies point to a-actinin as a key protein in tension sens­

ing by adhesions. Studies suggest that the incorporation of a-actinin into 

adhesions occurs late in their assembly and the incorporation is coincident 

with the onset of their retrograde movement, or sliding, when the adhesions 

are presumably under higher tension [100, 131]. In a similar vein, force de­

pendent strengthening of integrin-cytoskeleton linkages correlates with the 

incorporation of a-actinin into adhesions and this incorporation is regulated 

by FAK dependent phosphorylation on Y12 of a-actinin [100, 132]. The po­

tential role of a-actinin in tension sensing, the fact that it is known to bind 

both vinculin and talin, and the fact that vinculin and talin are thought to 

comprise a structural linkage between integrin and actin [133, 134] all make 

a-actinin a likely candidate for regulation of the ECM actin linkage via its 

binding to the linkage complex. 

It is interesting that the directional correlation of actin and a-actinin is 

significantly reduced by inhibition of myosin II activity with blebbistatin. 
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One possibility is that tension generated by myosin II regulates a-actinin­

actin binding through tension induced effects on the organization of actin 

within filaments. Alternatively, it may affect actin organization directly be­

cause of a weakened affinity of myosin II for actin, when cells are treated 

with blebbistatin [135, 136]. 

These measurements are significant as they represent the first experimen­

tal approaches that attempt to discern the nature of the adhesion complex 

in living cells. These results represent an important application of STICS 

to a highly significant problem in cell biology and demonstrate the power of 

quantitative biophysical measurements in situ. In the next section, STICS 

is applied to a different live cell application: mapping fluid flow in migrating 

keratocytes. 

6.2 Fluid Flow in Fish Keratocyte 

6.2.1 Fluid Flow in CeUs 

Indirect observations [137, 138, 139] have suggested that fluid intake through 

aquaporin channels at the leading edge might play an important role in cell 

motility. The hydrodynamic forces they induce could oppose membrane load 

and help actin polymerization, and they might influence transport of compo­

nents of the actin machinery to the leading edge [140]. Cytosolic fluid flow 

has been well-studied in many systems such as plant cells or amoebae [141] 

where velocities range from 10 nm/s to 100 J1m/s. Current techniques for 

measuring fiow in these cells involve imaging and following large organelles 
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inside the cell, but they are inadequate for measuring fluid flow in cells that 

have a dense actin meshwork. 

In collaboration with the Theriot lab at Stanford University, we devised 

a technique for measuring fluid flow in the lamella of migrating cells by 

incorporating fluorescent tracers in the cytosol, imaging and then performing 

STICS analysis. A requirement for these tracers is that they have minimal 

non-specific interactions with the actin meshwork or other components of the 

cytoplasm, in order for their motion to reflect the fluid flow. We chose two 

sizes of methoxy-polyethylene-glycol (PEG) coated quantum dots (PEG QDs; 

655QDs and 545QDs with a diameter of 30.7 nm and 24.5 nm respectively) 

and green fluorescent protein (G FP, rv4 x 3 nm Lx W) as tracers. The PEG 

coating on the QDs helps in reducing non-specific interactions both in-vivo 

[42, 142], and in in-vitro actin networks [143]. It is interesting to note that 

the measured flow should be independent of tracer size because the Reynolds 

number is very low at this size scale so all flow is laminar. In such cases, 

viscous friction dominates and the particles are simply carried by the flow. 

6.2.2 Fluid Flow Patterns in Keratocytes 

Flows were measured by electroporating a high concentration of PEG coated 

quantum dots in fish keratocytes and imaging those using wide field fluo­

rescence microscopy followed by STICS analysis. Fish keratocytes present a 

very nice system for the study of cytosolic fluid dynamics in migrating cells. 

The cell motion is smooth and persistent with almost no change in shape 

[5, 6], which makes it easy to define a cell frame of reference, and perform 

analysis in this reference frame. The large and thin (rv40 J-lm x 200 nm) 
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lamella of moving keratocytes is an ideal substrate for the two dimensional 

STICS analysis. Also the essential macromolecular components of the cell 

motility machinery are present in keratocytes, with distributions and func-

tions similar to other cells [144, 145]. Additionally all of these characteristics 

make this system particularly amenable to biophysical modeling. 

r~' 
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Figure 6.8: STICS velocity map measurements of fiow for A) 545 QDs and 
D) CFP. Panels B) and E) show the fluorescence image; while 
panels C) and F) show the phase contrast microscopy image. 
Images are oriented so that all cells are moving downward. 
Measurements were performed by STICS in the cell frame of 
reference. Each arrow corresponds to the average flow vector in 
a 1. 8x 1.8 /km 2 reg'ion around its center. The magnitude of the 

flow is indicated by both its size and color. The cell migration 
speeds are: 0.20/km/s, 0.14 flm/s for A) and D) respectively. 
The spatial scale bars are 10 /km, the velocity scale vectors (on 
A and D) are 1 /km/s. 
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We performed fluorescence microscopy imaging and then carried out STICS 

analysis on many regions of the keratocyte lamella to generate velocity maps 

as shown in Figure 6.8. We found that several general features stood out. 

In aIl ceUs observed (N=59) there was an approximately constant rearward 

fiuid fiow away from the leading edge, opposite to the direction of movement 

with a magnitude that was approximately 34 ± 20% of the cell migration 

speed (Figure 6.9; note that in the lab frame of reference this translates to a 

net forward fiow at 66 ± 20% of the cell migration speed). The fiuid fiow in 

the end lobes of the cell was usually slower, and exhibited correlation with 

the angular motion in turning cells. The lobe that was most distant from 

the center of rotation of the cell exhibited larger retrograde flows, consistent 

with the interpretation of fluid intake since this lobe is also moving faster 

(being further away from the center of rotation). We also found there was 

a correlation between the perpendicular fiuid fiow and the rotation speed of 

the ceIl (Figure 6.10). As the ceIl is rotating one way, the fiuid lags behind, 

so that in the cell frame of reference we observed a perpendicular fiuid fiow 

in the opposite direction. 

Moreover, we found that there was no dependence of the measured ve­

locity for fiuid fiow on the fiuorescent tracer size. Independent fits showed 

that the retrograde fiow velocity dependence on the cell speed was the same 

for the 655 PEG QDs (0.37 ± 12%) and 545 PEG QDs (0.31 ± 23%), and 

for GFP (0.31 ± 22%) which is almost an order of magnitude smaller in size 

(see Figure 6.9). This is further evidence that we are indeed measuring fiuid 

fiow, and that interactions with the cytoskeleton are an unlikely cause of the 
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Figure 6.9: ST/CS was used to measure tracer fiow in the cell frame of 
reference for a population of migrating cells. The fiow speed 
parallel to the direction of cell motion, averaged over the front 
region of the lamella, is shown for: 655QDs (diamonds, N=31 
cells) , 545QDs (squares, N=9 cells) and GFP (triangles, N=19 
cells) , as a function of cell speed. The linear regression fit line 
corresponds to Vparallel = 0.34 X Vcell + 0.019 (R2 = 0.5). The 
F-actin meshwork fiow speeds measured from phalloidin labeled 
actin (circles, N = 12 cells) are shown for comparison (V;arallel = 
0.84 X Vcell + 0.017, R2 = 0.94). 

retrograde flow because we would expect this type of interaction to be size 

and surface chemistry dependent, and would predict a greater velocity for 

the smaller G FP molecules if this were the case. 
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Figure 6.10: STICS was used to measure tracer fiow in the cell frame 
of reference for a population of migrating ceUs. The fiow 
speed perpendicular to the direction of ceU motion, averaged 
over the front region of the lameUa, is shown for: 655QDs 
(diamonds, N=31 ce Us), 545QDs (squares, N=9 ceUs) and 
CFP (triangles, N=19 ceUs), as a function of cell speed. 
The fit line corresponds to 'Vperpendicular = 9 ± 4p,m / rad x n 
(R2 = 0.46) where n is the ceU rotational speed. The F-actin 
meshwork fiow (circles, N=12 ceUs) is shown for comparison 
(Vperpendicular = 11 ± 5p,m/rad x n, R 2 = 0.73). 

We further applied the STICS analysis to generate velocity maps of phal-

loidin labeled actin filaments. The maps were qualitatively and quanti ta-

tively different from the the fiuid fiow tracer maps within the same cell type. 

The actin retrograde fiow was faster and, as expected, approximately equaled 

the cell speed [146]. The actin fiow pattern was much more coherent and 
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showed less spatial variations. Taken together, aU of these results suggest 

that the quantum dot or GFP tracer fiow measured by STICS refiects the 

fiuid fiow in the lamella. 

6.2.3 Active Flow Model 

To account for these results, we collaborated with Prof. Alex Mogilner, a 

theoretical physicist at UC Davis studying theoretical aspects of cell motility 

[6, 7, 147, 148, 149]. He developed a simple physical model describing the 

behavior of the cytosolic fiuid in a moving cell along the anterior-posterior 

direction (Figure 6.11), which accounts for our experimental measurements. 

The model assumes that actin dependent cell protrusion at the leading edge 

is limited by membrane resistance, and that the osmotic pressure, Posm, 

at the leading edge contributes to the protrusion force. Let Vp be the actin 

polymerization speed, v;. the speed of actin retrograde fiow in the lab frame of 

reference, and Vcell = Vp - v;., the cell speed. The rate of actin polymerization 

is slowed by membrane resistance and can be approximately characterized 

by the following linear force-velocity relation: 

(6.1) 

where Va is the free polymerization rate, Pr is the pressure of the membrane 

resistance, and p:tall is the pressure required to staIl protrusion at the leading 

edge. We further assume that permeability of the membrane is concentrated 

at the leading edge of the ce Il , so that the fiuid infiow rate is proportional 

to the pressure difference between the actual osmotic pressure at the leading 

edge Posm, and P~im' a constant model parameter defined as the equilibrium 
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Figure 6.11: A diagramatic physical model showing a cross section of a 
moving keratocyte in the cell frame of reference. The direction 
of cell movement is to the right, with the large cell body in 
the back and a thin lamella at the front. The actin meshwork 
exhibits retrograde fiow (red arrow) with a speed approximately 
equal to the cell speed. The fiuid fiow exhibits substantially 
slower retrograde fiow (blue arrow) accompanied by a pressure 
gradient across the lamella, with P being the pressure at the 
leading edge and Pcb the pressure in the cell body. The effective 
pressure difference across the membrane is equal to P~im -
Posm' The parameters km and kc denote the permeability of 
the membrane at the leading edge, and the permeability of the 
actin meshwork, respectively. M odel developed by Prof Alex 
Mogilner (UC Davis). 

osmotic pressure at the leading edge at which the water influx would be 

zero. With the membrane permeability, km (in units of p,m3/pN . s), as the 

proportionality constant [138, 150], the speed of fluid flow into the cell, Vj, 

is given by: 

(6.2) 

The velocity difference between the actin cytoskeleton and the fluid phase, 

Vp - Vj , is proportional to the pressure gradient between the cell body and 
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the leading edge. This is characterized by the D'Arcy flow equation: 

Vp _ V
f 

= k' (Pcb - Posm) 
L 
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(6.3) 

where k' is the hydraulic permeability [138, 150] of the meshwork, Pcb is the 

pressure in the cell body, and L is the lamellipodiallength. 

The three equations 6.1, 6.2 and 6.3 constitute a linear system for three 

unknown variables, Vp, Vf and Posm as functions of the model parameters 

Va, PT) p:tall, Posm, km, Pcb and kc = k' / L. The solution of this system is 

consistent with our experimental measurements of fluid flow as a function of 

cell speed under the assumption that the observed cell-to-cell speed variation 

is due to variation in the model parameters Va , p:tall and Pr, i.e. it is due 

to variations in the polymerization rates and membrane resistance between 

different cells. In this case we obtain the following simple relation: 

(6.4) 

which implies that the fluid flow rate is linearly proportional to the observed 

cell speed, with a proportionality coefficient less than 1. This is in excellent 

agreement with the data (Figure 6.9). Estimates of the membrane and hy­

draulic permeabilities (kc r-v 10-4 I1m3 /pN . s and km r-v 10-4 I1m3 /pN . s, see 

[151]) show that they are of the same order of magnitude, which is consistent 

with the experimentally measured slope of r-v0.34 for the linear fits (for which 

we would need kc ~ 2km). 
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6.3 Chapter Conclusion 

In this chapter we have applied STICS to study two very different biological 

systems of interest for cell migration. First, we generated retrograde velo city 

maps of several adhesion related proteins labeled with GFP and actin-mRFP. 

We found that the integrins were essentially fixed to the substrate, whereas 

a-actinin was always bound to actin and fiowed in a retrograde manner that 

correlated with the actin fiow. In between these two extremes lie a group 

of structural and signalling molecules (FAK, paxillin, vinculin and talin) 

which have approximately 70% correlation in magnitude and direction with 

the actin fiow. Thus the STICS measurements suggest that these adhesion 

proteins are part of a linkage complex that dynamically regulates the inter­

actions between the integrins and the actin cytoskeleton. These experiments 

point to a two level molecular clutch mechanism where the linkage is proba­

bly regulated between the integrins and the linkage complex at the talin level, 

and between the a-actinin and the linkage complex. Although the molecu­

lar clutch hypothesis was first proposed more than a decade ago [109], our 

measurements represent the first attempts to measure the dynamic aspects 

of its regulation in situ. 

We also applied STICS to the unresolved problem of fiuid fiow in migrat­

ing cells. By introducing various tracer particles (quantum dots or GFP) in 

the cytosol of moving keratocytes, we were able to map the retrograde fiow 

of fiuid in the lamella. The fiow was found to be independent of tracer size as 

expected, and was always approximately 1/3 of cell migration speed, which 

is in accord with a biophysical model developed by Prof. Alex Mogilner (UC 
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Davis). Retrograde fluid flow maps of phalloidin-labeled actin showed much 

faster flow, which were on the order of the cell speed. This is expected [146] 

and shows a significant difference from our tracer results suggesting that the 

quantum dot or GFP tracer flow measured by STICS truly reflects the fluid 

flow in the lamella. These measurements indicate that fluid flow does play a 

role in cell migration for keratocytes by alleviating the membrane load at the 

leading edge and favoring actin polymerization, and answers a decades old 

question by elegant application of quantitative biophysical measurements in 

living cells. 
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7 Conclusion and Outlook 

Fluorescence microscopy has emerged as a versatile and productive tool in 

biophysics, most importantly for in vivo studies of living cells. Imaging by 

confocal, two-photon LSM or TIRM enables direct observation of proteins 

in their native cellular environment. Applications range from qualitative 

localization of proteins within the cell to quantitative dynamic studies by 

SPT or correlation analysis of the image time series. Most of the existing 

velocity measurement techniques are limited for applications involving deter­

mination of protein flow velocities in living cells (Chapter 1). To address this 

need, we developed STICS as an extension of the intensity fluctuation correla­

tion family of biophysical analysis methods (Chapter 2). By spatio-temporal 

correlation analysis of intensity fluctuations in fluorescence microscopy image 

time series, STICS combines the directional information imbedded in the two 

dimensional spatial correlations with the time dependent transport measured 

by the temporal correlation. However, in the presence of a large immobile 

population fraction, the STICS analysis will be dominated by the intensity 

contribution from the static population. A filtering algorithm was devised 

which removes the intensity contribution of the immobile species (Chapter 

2) by filtering the zero (or low) frequency components in reciprocal space, for 

every pixel trace in time before running the space-time correlation analysis. 

The advantage of the STICS method is the extensive averaging that is 

done over all pairs of images in the time series analyzed. This allows map­

ping of velocities even in cells with very low densities of labeled proteins, low 

signal to noise ratio and with relatively short temporal sampling (Chapter 
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4). Computer simulations have shown that situations in which the fluores­

cent molecules photobleach do not significantly affect the STICS analysis, 

provided that the time scale for bleaching is not much shorter than the char­

acteristic fiow time of the particles. The simulations also revealed that STICS 

is able to perform very weIl even in poor imaging conditions where the signal 

to noise ratio is as low as 1, provided that the number of frames is large 

enough to allow sufficient averaging. The dynamic range of the immobile fil­

tering algorithm was investigated under varying conditions of signal to noise, 

number of frames sampled and the fraction of the population that is immo­

bile. From these simulations, it was shown that the immobile filtering is best 

applied when particles move at least one full beam focus diameter during 

the time of the experiment, thus allowing full relaxation of the dynamic fiow 

pro cess over this time scale. Moreover, removing the immobile and low fre­

quency components in the intensity trace for every pixel using the window 

filtering algorithm can get rid of slow variations in intensity from unwanted 

sources without affecting the results of the STICS analysis. 

As a final step for characterization of the new method, the STICS anal­

ysis was applied in vivo (Chapter 5). We imaged a-actinin, which organizes 

along actin filaments in spatially extended structures that perturb the STICS 

analysis. The immobile filtering algorithm was successful in removing these 

dominant spatial correlations due to the immobile population, allowing us to 

map a-actinin velocities across the lamella in living CHO cells. Byanalyzing 

typical cases of diffusion, fiow in random directions and concerted fiow in 

vivo, we have further shown that the combination of ICS and STICS can 

distinguish between these cases, because lCS is sensitive to fiow speed irre-
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spective of particle direction while STICS measures a net resultant velocity 

vector for the flowing mole cules present. The cross-correlation application 

of STICCS to fluorescent microsphere samples demonstrated the ability of 

this method to recover protein flow magnitude and direction for both inter­

acting and non-interacting populations, provided the interacting population 

remains coupled for the duration of the experiment. However, the more gen­

eral case of the varying protein interactions (where proteins bind and unbind 

repeatedly), can be treated by analyzing the relative velocity magnitudes at 

every point in the velocity maps for the two species. 

STICS was then applied to the problem of cell migration, which is regu­

lated by several processes involving many different transmembrane, cytosolic 

and cytoskeletal proteins (Chapter 6). By applying STICS to map out the 

relative retrograde flow magnitudes of several adhesion related molecules and 

actin, we were able to identify a complex linking the transmembrane integrins 

to actin. The integrins were stationary relative to the substrate as expected 

[2]. On the other hand, a-actinin was found to be entirely associated with 

actin, consistent with the tight coupling of a-actinin to actin as a bundling 

protein. The protein complex was found to comprise structural proteins su ch 

as talin and vinculin, as well as signalling molecules su ch as paxillin and F AK. 

We found that the linkage complex is bound to actin 70% of the time and 

to immobilized integrin 30% of the time. The ECM-actin linkage appears 

to be regulated at two points of labile linkage: one proximal to the inte­

grins, one proximal to the a-actinin. Furthermore, perturbation of the actin 

polymerization using Cytochalasin D did not affect the relative magnitude 

and directional correlation of a-actinin, indicating that polymerization does 
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not play a significant role in regulating the integrin-actin linkage. However, 

inhibition of myosin II using blebbistatin significantly reduced the coupling 

between the a-actinin and actin fiows. This might be because the tension 

generated by myosin II regulates a-actinin-actin binding through tension in­

duced effects on the organization of actin within filaments. Interestingly, 

a-actinin is present only in adhesions that are under tension and this bind­

ing is regulated by a FAK dependent tyrosine phosphorylation of a-actinin 

[100, 132]. 

Finally, we used STICS to look at fiuid fiow in the lamella of epidermal 

fish keratocytes, which are amongst the fastest migrating cells (Chapter 6). 

We introduced different fiuorescent tracer particles, like PEC coated quan­

tum dots or CFP, in the cytosol of migrating keratocytes and imaged them. 

Using STICS, we obtained maps of retrograde fiuid fiow in the lamella of 

these migrating cells. The fiow was found to be independent of tracer size as 

expected for fiuid fiow, and the fiuid fiow speed was always approximately 

1/3 of cell migration speed, which is in accord with a model developed by 

Prof. Alex Mogilner at UC Davis. Moreover, fiuid fiow maps of phalloidin­

labeled actin showed faster retrograde velocities for the cytoskeleton, on the 

order of the cell speed, which is expected [146] and which are significantly 

different from the tracer speeds. Taken together, this data suggests that the 

quantum dot or GFP tracer fiow measured by STICS refiects the fiuid fiow 

in the lamella. This answers a long standing question about the role of fiuid 

fiow in keratocyte migration, as we have demonstrated that fiuid fiow at the 

leading edge alleviates the membrane load and favors actin polymerization. 
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Other velocity mapping techniques, such as fluorescent speckle microscopy, 

have been successful at extracting actin and tubulin flow velocities by track­

ing single speckles of labeled subunits inside the filaments. The wealth of 

information on cytoskeletal dynamics provided by speckle microscopy is, how­

ever, limited to applications on only actin and tubulin. The STICS technique, 

on the other hand, has the advantage that it can be applied in a matter of 

minutes to virtually any fluorescence microscope image time series, to cells 

that are simply transfected with any type of fluorescently labeled molecule 

(not just cytoskeletal proteins). It does not require any overly sophisticated 

sample preparation or imaging instrumentation (such as the specialized la­

beling needed for FSM). The technique has high resolution, and most im­

portantly it can measure protein motions either at high protein densities, 

such as in adhesions or along actin filaments, or at very low homogenous 

protein densities when there are no obvious resolvable structures to track 

(such as with SPT). In summary, the STICS method is a versatile tool that 

can be used in many different situations, from protein dynamics to fluid flow, 

where quantitative information on directed protein motion within the cell is 

required. 

Image correlation techniques have been applied for a decade in various 

biological systems of interest. Several avenues of possible research open up 

by combining the STICS analysis with other biophysical approaches. For ex­

ample, one could use patterned substrates of ECM protein gradients to direct 

cellular migration, or look at the effect of ECM prote in distribution on the ad­

hesion protein interactions and recruitment. One could also use microfluidic 

devices to deliver drugs quickly and reversibly to migrating cells, and look at 
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their effect on retrograde flow and protein interactions. Several extensions 

and refinements to the STICS technique will be needed, particularly ways to 

improve the temporal resolution (Le. faster imaging approaches). The re­

sults presented in this thesis show that STICS is a powerful method that can 

be applied in living cells to solve certain problems that require quantitative 

measurements of prote in velocities. As such, it represents a significant con­

tribution to those who toil in the biophysical community seeking to properly 

arrange the pieces of the puzzle that is life. 
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