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ABSTRACT

Model Order Reduction is one of the most successful methods to minimize com-

putational complexity in circuit simulation. Order reduction could be done as a

part of the macromodeling process of frequency domain data into a highly accurate

and compact time domain model. This macromodeling is done by converting the

frequency domain Y -parameter or S-parameter data, which were extracted using

full-wave simulation of the physical model at hand, into a descriptor state space

based time domain model. Using the system identification method of Loewner Ma-

trix, the order selection process can only be done to a certain threshold, below which

a non-passive model would be produced. Such a non-passive model could become

unstable when connected to other terminations, even if such terminations are stable

themselves. This thesis presents a novel approach of utilizing passivity enforcement

schemes, such as Hamiltonian Matrix Pencil Perturbation, to convert a system with

mild passivity violation into a passive system. This would allow the macromodeling

process to use an order lower than the minimum threshold, making order reduction

much more efficient and effective. This whole methodology can be used to create

compact time domain macromodels for the recently popular microwave applications,

which otherwise would be difficult, or impossible, to find their closed form expressions

using their physics based information.
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ABRÉGÉ

Le modèle de réduction de séquence est une des méthodes les plus réussites

afin de réduire au maximum la complexité computationnel en simulation de cir-

cuit. La réduction de séquence pourrait être faite dans le cadre du processus de

macromodélisation de données du domaine des fréquences dans le modèle de do-

maine temporel extrêmement exact, précis et compact. Cette macromodélisation est

faite en convertissant le paramètre-Y ou le paramètre-S des données du domaine

des fréquences, qui on été extraites en utilisant la simulation à deux alternances

du modèle physique à portée de mains, dans l'état descripteur du modèle de do-

maine d'espace-temps. Utilisant la méthode d'identification du système de Loewner

Matrix, le processus de sélection de commande peut être fait qu'à un certain seuil,

en dessous duquel un modèle non passif serait produit. Un tel modèle non passif

pourrait devenir instable lorsque connecté à d'autre terminaisons, même si ces ter-

minaisons sont stables eux-mêmes. Cette mémoire de maitrise présente une nouvelle

approche de l'utilisation des schémas d'applications de passivité, tel que la pertur-

bation du faisceau de matrices hamiltonienne, afin de convertir un système avec

une légère violation de passivité dans un système passif. Cela permettrait au pro-

cessus de macromodélisation d'utiliser une commande inférieure au seuil minimum,

faisant de la réduction de séquence beaucoup plus efficace. Toute cette méthodologie

peut être utilisée afin de créer un macromodèle compact du domaine temporel pour

l'utilisation des récentes applications de micro-ondes, qui serait difficiles autrement,
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voire impossible, de trouver leur expression en forme analytique utilisant leur infor-

mations basées sur la physique.
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CHAPTER 1
Introduction

The challenge of analytically retrieving an accurate physics based model for

complex multiport linear structures is becoming much more prominent nowadays

in several microwave applications. In order to get over such a problem, accurate

frequency domain representations have been generated, such as Y -parameters and

S-parameters, which are achieved by full-wave simulations and fully describe such

structures within two boundary frequency points, fstart and fend. This is then fol-

lowed by measurement based macromodeling techniques, such as Least-Squares Ap-

proximations method [6], Vector Fitting [9, 10, 5, 26] and Loewner Matrix method

[25, 19, 32, 12, 17]. Such tools have become very popular in producing a compact

time domain macromodel, that matches the original frequency domain data with high

accuracy and is also SPICE compatible, for universal compatibility of the output.

The Loewner Matrix method produces macromodels that have high accuracy

[12]. Such a high accuracy could be unnecessary for certain applications, hence

order reduction can be done which would result in a more compact final model,

and hence a smaller SPICE netlist, which would significantly reduce computational

complexity and computational time of the simulation process. Hence, when the

macromodeling process is being done, order selection of a smaller order could be

done, however, the main problem that could be faced is that after selecting an order
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lower than a certain threshold mmin, the system could start demonstrating non-

passive behavior. Such passivity violation could greatly compromise the stability

of the system when connected to other terminations, even if both components are

stable, after the macromodel has been extracted.

In order to avoid problems with stability with the final model, the selected order

can either be higher than mmin, or a passivity enforcement scheme can be used to

rectify the passivity violation resulting from selecting an order less than mmin. The

latter option is the one presented in this thesis, in which Hamiltonian Matrix Pencil

Perturbation method [33, 34] is used to rectify a mildly non-passive region within

the frequency spectrum of the model at hand. This eventually generates a highly

accurate, much reduced, stable and passive time domain macromodel that correctly

matches the original frequency domain data.

This thesis starts with a literature review of all the basic concepts related to or

used in the works presented and comparing them to each other, such as the different

system identification methods, as well the physical definitions of passivity. This is

then followed by a detailed description of the whole process starting with macro-

modeling the frequency domain data, followed by checking the passivity conditions

of the model [38, 1], then the process of order reduction [18, 16], then finally the

passivity enforcement scheme utilized [34]. A procedure of how the data can then

be converted into a SPICE compatible netlist is then presented as shown in [16].

Finally, two microstrip line examples, based on [18], are shown with all their results,

which serve as successful applications of the contributions of this thesis.
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CHAPTER 2
Literature Review

This chapter presents a brief review of the existing theory behind which the

work presented in this thesis is built. In many of the contemporary microwave and

high-frequency applications, complex multiport linear structures with hard-to-attain

accurate physics-based analytical models have become very common. These models

would generally be formulated as first-order differential equations suitable for circuit

simulation. However, one can usually obtain accurate frequency-domain data such as

S or Y -parameter data, which describe such structures via measurements or full-wave

simulation tools.

System Identification Tools are hence needed to help macromodel such frequency-

domain data and convert them into a time-domain rational approximation which is

needed for circuit simulations. Such System Identification Methods include Least-

Squares Approximations, Vector Fitting and Loewner Matrix Method, which are

discussed in the first section of this chapter.

The scope of this thesis is to produce reduced order macromodels, to make use

of all the inherent benefits of order reduction such as better memory usage and

less computational expenditure when simulating the produced macromodel. Accord-

ingly, the following section discusses the theory behind order reduction and example

methods that are generally used.
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The final section of this chapter discusses passivity enforcement schemes gener-

ally available in the literature. This is because many of the reduced order macro-

models lose passivity after the order goes below a certain minimum threshold. To be

able to go below that order threshold while maintaining a passive macromodel, then

passivity enforcement schemes would be needed.

2.1 System Identification Tools

2.1.1 Least-Squares Approximations

The method of Least-Squares Approximations (LSA) [6] is the one the earliest

macromodeling tools utilized to identify the relations between inputs and outputs of

an n-port system. It is also one of the simplest in terms of its logic and algorithm.

Just like any other regular system, LSA starts off by assuming a system of poles and

zeros having unknown coefficients as seen in equation (2.1).

Yij(s) =
a0 + a1s+ a2s

2 + . . .+ ans
n

b0 + b1s+ b2s2 + . . .+ bnsn
(2.1)

where s ∈ (jω1, jω2, . . . , jωf−1, jωf), f is the total number of frequency points

for analysis and n is the order of the denominator and numerator polynomials. By

multiplying the right and left hand side of equation (2.1) by the poles polynomial,

we get a system of Ax = b in terms of the polynomial coefficients. Based on the

analysis presented in [6], if n is even and Yij = Yr+ jYi, the result is seen in equation

(2.2) as follows:

a0 + a1s+ a2s
2 + . . .+ ans

n

= Yrb0 + jYisb1 + Yrb2s
2 + . . .+ jYibn−1s

n−1 + Yrs
n

(2.2)
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(2.3)

This system described in equation (2.3) is an Ax = b system where the solution

results in the unknown coefficients. The following step is to to do a partial fraction

expansion of equation (2.1) with the now known coefficients. However, the system

could have unstable right-hand plane poles, which should be eliminated. This results

in m poles where m < n. Accordingly, the system is portrayed as follows in equation
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(2.4):

Yij(s) = k∞ +
m∑

a=1

ka

s− pa
(2.4)

where ki are the residues and pa are the stable poles (left-hand plane). Further and

deeper analysis of LA can be found in [6].

Comments on Least-Square Approximations. The method of LSA has a

general advantage of being relatively simple and straightforward. However, with this

simplicity comes major drawbacks of it being only good for low-order and narrow

frequency-band systems due to its ill conditioning [12].

2.1.2 Vector Fitting

Vector Fitting [9, 10, 5, 26] is one the macromodeling tools utilized commercially

nowadays since it has straightforward mathematics, and for most applications, it is

accurate enough. As aforementioned, the data is provided in the frequency-domain,

hence it could be represented in a pole-zero representation as shown in equation

(2.5), where ai are the zeros and bi are the poles.

f(s) =
a0 + a1s+ a2s

2 + . . .+ aNs
N

b0 + b1s+ b2s2 + . . .+ bNsN
(2.5)

In order to avoid the ill-conditioning issue that was seen in LSA in subsection

2.1.1, direct multiplication by the denominator is avoided. Instead, the system is

converted into a pole-residue format for easier application with vector fitting. Equa-

tion (2.6) shows the pole-residue format where ci are the residues and ai are the poles,

6



both either real or conjugate pairs, while d and h are real. The conversion from the

pole-zero format to the pole-residue format can be done by using the mathematical

rules for partial fractions. The reason why the pole-residue format works better for

vector fitting is because it produces solutions that are better scaled and conditioned,

while being capable of solving systems of higher order [9].

f(s) =

N∑

n=1

cn

s− an
+ d+ sh (2.6)

Solving equation (2.6) would require estimating all the coefficients so that f(s)

can be estimated over the required range of frequencies required. The equation in

its current form is nonlinear. Vector Fitting hence divides the problem into a series

of 2 sequential steps solving the equations linearly given known poles, as follows:

Step 1: Pole Calculation. The first step is to specify a set of starting poles

ān and multiplying f(s) by an unknown function σ(s), giving the augmented problem

as follows in equation (2.7):






σ(s)f(s)

σ(s)




 =







N∑

n=1

cn
s−ān

+ d+ sh

N∑

n=1

c̃n
s−ān

+ 1







(2.7)

The advantage of using the σ(s) function is that at high frequencies the function

converges to unity. This hence leads to the following equation which can be written

either as equation (2.8a) or as equation (2.8b).
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(
N∑

n=1

cn

s− an
+ d+ sh

)

≈
(

N∑

n=1

c̃n

s− ān
+ 1

)

f(s) (2.8a)

(σf)fit(s) = σfit(s)f(s) (2.8b)

Accordingly, the system at hand can now be solved as an over-determined linear

system of Ax = b by taking several frequency points given its unknowns ci, d, h and

c̃i. Hence a rational function approximation of f(s) can now be readily obtained

since both (σf)fit(s) and σfit(s) are known, as shown in equation (2.9a), making

f(s) easily calculated as shown in equation (2.9b).

(σf)fit(s) = h

N+1∏

n=1

(s− zn)

N∏

n=1

(s− ān)

, σfit(s) =

N∏

n=1

(s− z̃n)

N∏

n=1

(s− ān)

(2.9a)

f(s) =
(σf)fit(s)

σfit(s)
= h

N+1∏

n=1

(s− zn)

N∏

n=1

(s− z̃n)

(2.9b)

Consequently, we can see from equation (2.9b) that the expression for f(s) is

independent of the assumed starting poles āi, while the poles of f(s) are the zeros

of σfit(s) as shown in [9].

Step 2: Residue Calculation. The residues for f(S) can be calculated di-

rectly from equation (2.9b), but for increased accuracy the zeros of σ(s) are plugged

8



into the original equation (2.6) as new poles for the system an resulting in another

over-determined system Ax = b to be solved for the unknowns ci, d and h as shown

in [9].

Comments on Vector Fitting. Vector fitting results in better conditioning

when compared to Least-Squares Approximation. This results in more accurate re-

sults generally. However, Vector Fitting holds a major drawback of having difficulties

with systems with a large number of poles and large number of ports [12]. This is a

major limitation for the method and hence methods such as Loewner Matrix, seen

in subsection 2.1.3 were devised to solve that problem.

2.1.3 Loewner Matrix

Loewner Matrix (LM) [25, 19, 12, 17], like all the other system identification

methods, is targeted at converting the frequency-domain measured data, such as Y

or S-parameters, into a a time-domain macromodel. A Y -Parameters represenation

is seen in equation (2.10) where sk is the complex frequency, Y(sk) are the Y -

parameters at frequency sk, and k = 1, 2, . . . , n, with n being the number of data

points. Equation (2.10) also shows that the admittance Y -paramaters relate the

voltage V (sk) to the current I(sk) in the frequency domain.

{sk,Y(sk)}

I(sk) =Y(sk)V (sk)

(2.10)

On the other hand, the S-parameters representation can be seen in equation (2.11)

where all Y -parameters notations stand except that S(sk) are the S-parameters at

frequency sk along with a(sk) and b(sk) being the incident and reflected power waves

9



respectively.

{sk,S(sk)}

b(sk) =S(sk)a(sk)

(2.11)

The incident and reflected power waves a(sk) and b(sk), seen in the S-parameters

representation, can be converted into a voltage/current representation using the rela-

tionships seen in equation (2.12), where z0 is the normalized impedance, convention-

ally 50Ω. Figure (2–1) also demonstrates a graphical representation of the incident

and reflected waves on an arbitrary N -line system.

a(sk) =
1

2

(
v(sk)√

z0
+ i(sk)

√
z0

)

b(sk) =
1

2

(
v(sk)√

z0
− i(sk)

√
z0

) (2.12)

�������

a1

a2

an

an+1

an+2

a2n

b1

b2

bn

bn+1

bn+2

b2n

Figure 2–1: N -Line S-Parameter System with Incident and Reflected Power Waves

Accordingly, the macromodel can be represented as a Linear Time-Invariant

(LTI) system in Descriptor State-Space (DSS) system representation with p inputs

10



and outputs. The DSS representation in shown in 2.13 as follows:

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
(2.13)

where, u(t) ∈ Rp and y(t) ∈ Rp are the input and output vectors, respectively. For

Y -parameters they become the voltage and current vectors, while for S-parameters

they become the incident and reflected power waves. E,A ∈ Rm×m, B ∈ Rm×p,

C ∈ Rp×m and D ∈ Rp×p represent the DSS where m is the order of the system. E

may be singular [4] and the matrix pencil (A,E) is always regular. Furthermore, the

eigenvalues of the matrix pencil (A,E) are the poles of the system. The order m is

determined from the singular value plot in regular LM method [17].

This transfer function for the system H(s) can hence be computed as a division

of the output y(t) by the input u(t) as follows in equation (2.14):

H(s) = C(sE−A)−1B+D (2.14)

Consequently, the first step of the LM algorithm is appending the frequency

domain data with the complex conjugates at the negative frequencies, which would

result in 2n data points, which is double the original number. This data is then

divided into 2 sets, referred to as the left and right data sets, as shown in equation

(2.15), where k = 1, 2, . . . , 2n,i = 1, 2, . . . , n, j = 1, 2, . . . , n, and sk,λi and µj are

complex frequencies:

{sk,Y(sk} → {λi,Y(λi)}, {µj,Y(µj)} (2.15)
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This data splitting can be done in several ways, with the most commonly used

ones are the Vector Format Tangential Interpolation (VFTI) [25, 19] and the Matrix

Format Tangential Interpolation (MFTI) [32]. Both tracks are presented briefly in

this review.

VFTI Data Splitting [25, 19]. VFTI will dedicate the right data set λ for

the first half of the frequency points along with their complex conjugates, while the

left data set µ would contain the remainder of the data. Equations (2.16a) and

(2.16b) show the right and left data sets respectively, where i = 1, 2, . . . , n
2
and (̄) is

the complex conjugate of the subject.

λ2i−1 = si

λ2i = s̄i

(2.16a)

µ2i−1 = sn
2
+1

µ21 = s̄n
2
+i

(2.16b)

MFTI Data Splitting [32]. MFTI on the other hand aseembles in the right

set the odd frequency samples along with their complex conjugates, while the even

ones are added to the left set. Equations (2.17a) and (2.17b) show the right and left

sets respectively where i = 1, 2, . . . , n
2
.

λ2i−1 = s2i−1

λ2i = s̄2i−1

(2.17a)
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µ2i−1 = s2i

µ21 = s̄2i

(2.17b)

After choosing either VFTI or MFTI for the splitting methodology, the next

step is to compute the Loewner Matrix L and the Shifted Loewner Matrix σL along

with 2 other matrices F and W on a block-by-block perspective. Equation (2.18)

shows the construction of L and σL where j = 1, 2, . . . , n and i = 1, 2, . . . , n.

[Lj,i] =
ΦjRi − LjΩi

µj − λi

[σLj,i] =
µjΦjRi − λiLjΩi

µj − λi

(2.18)

Where Φj and Ωi are defined as follows in equation (2.19), given that Ri ∈ Cp×ti

and Lj ∈ Cti×p are the tangential direction matrices for the right and left data sets

respectively:

LjY(µj) = Φj

Y(λi)Ri = Ωi

(2.19)

The matrices F and W are hence constructed as follows:

F =
[

ΦT
1 . . .ΦT

j . . .ΦT
n

]T

W =
[

Ω1 . . .Ωi . . .Ωn

] (2.20)

Since the computation of Ri and Lj is dependent on the tangential interpolation

method used, the following paragraphs show the computation of Ri and Lj for VFTI

and MFTI.
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VFTI Tangential Directions Computation [25, 19]. Since VFTI is vector

based, this makes the value of ti = 1. Hence Ri and Lj are computed as follows:

R2i−1 = R2i = Ic

L2i−1 = L2i = (Ic)
T

(2.21)

where i = 1, 2, . . . , n
2
and Ic ∈ Rp×1 is the cth column of the identity matrix of

dimension p × p. If i mod p = 0, then c = p, otherwise c = i mod p. This can be

summarized as Ri = LT
i , Lj = RT

j and vice versa.

MFTI Tangential Directions Computation [32]. Since MFTI is matrix

based, this sets the value of ti = p since the matrices are of dimension p × p. This

makes the computation of Ri and Lj as follows:

R2i−1 = R2i = I

L2i−1 = L2i = I

(2.22)

where i = 1, 2, . . . , n
2
and I ∈ Rp×p is an identity matrix.

The Loewner Matrices hence formulated in equations (2.18) and (2.19) are com-

plex and need to be converted to a real ones in order to obtain a real macromodel.

This is done by the similarity transformation as follows [19]:

Lr = G
∗
LG, σLr = G

∗σLG

Fr = G
∗
F, Wr = WG

(2.23)
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where G ∈ C
n×n is a block-diagonal matrix. Each one of the blocks of G is hence

as follows:

g =
1√
2






Ir −jIr
Ir +jIr




 (2.24)

where Ir ∈ Rti×ti is an identity matrix. Since for VFTI ti = 1, hence Ir will be

replaced by a 1, while for MFTI ti = p, so it will remain a matrix.

The next step would be to extract the time-domain macromodel. This can be

done by extracting the regular part of the matrix pencil (xLr−σLr) [25]. One method

for extracting the regular part could be done by Singular Value Decomposition (SVD)

[25, 19], as follows:

xLr − σLr = ΛΣΨ∗ (2.25)

where x ∈ {λi} ∪ {µj}, λi, µj 6∈ eig(σLr,Lr), Σ is a diagonal matrix containing the

singular values, Λ and Ψ are the orthonormal matrices and ()∗ denotes the complex

conjugate transpose. Any chosen value of x, ∀x ∈ {λi}∪{µj}, will result in the same

SVD, except for when x is one of the eigenvalues [19].

If enough data points were utilized, the matrix pencil (xLr − σLr) would gen-

erally not be full-rank. The regular part of the system if hence extracted by taking

the first m columns of Λ and Ψ to form the orthonormal basis as follows:

ΛR = [Λ1Λ2 . . .Λi . . .Λm]

ΨR = [Ψ1Ψ2 . . .Ψi . . .Ψm]

(2.26)
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where Λi and Ψi are the ith column of Λ and Ψ respectively and m is the order of

the system. The choice and selection of m is a topic that is to be discussed later on

in the Order Reduction section of the work.

Accordingly, the time-domain macromodel can now be extracted as follows:

E = −Λ∗
RLrΨR

A = −Λ∗
RσLrΨR

B = Λ∗
RFr

C = WrΨR

D = 0

(2.27)

Comments on Loewner Matrix Method. Evidently, Loewner Matrix method

requires more complex computations compared to Vector Fitting. However, it has

the significant advantage of being capable of handling larger and higher order sys-

tems more efficiently. This leads to Loewner Matrix method being the chosen system

identification method for the work done in this thesis.

2.2 Passivity and Passivity Enforcement

Passivity is one of the critical characteristics of any given system, along with

stability and causality. A physical system is denoted as a passive system if and only

if it is unable to generate energy on its own [31]. In order to represent this condition

mathematically, an n-port network network representation is done for admittance

and scattering representations, or as commonly known as Y and S-parameters. For
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the Y -parameters case, the condition for a system to be labeled passive is as follows:

∫ t

−∞
vT (τ)i(τ)dτ ≥ 0 (2.28)

where the equation applies for all given time t and for all admissible port voltages

v(t) and currents i(t). S-parameters on the other hand, which are represented in

incident and reflected power waves instead, a(t) and b(t) respectively, which makes

the condition for passivity as follows:

∫ t

−∞

[

aT (τ)a(τ)− bT (τ)b(τ)
]

dτ ≥ 0 (2.29)

The above conditions, mentioned in equations (2.28) and (2.29), are applicable

for both lumped and distributed systems. The equations represent the cumulative

net energy absorbed by the system from −∞ to the instant t. A system would hence

be passive if such energy is to be positive at any given time t. This is only satisfied

if the following 2 conditions apply [31]:

1. More energy is absorbed by the system than generated

2. Potential energy generation occurs after energy absorption

It is worth noting that, according to [35, 36], all passive systems are causal.

The main problem with a non-passive system is that, even if it is stable, when

connected to terminations that could potentially be both stable and passive, could

result in an overall unstable system. i.e. Even if a non-passive system is stable

on its own, the overall system when connected to terminations could be unstable.

Additionally, passive models are physically consistent. This leads to the need for
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passivity enforcement algorithms, which force a non-passive system to become passive

without changing much of its intrinsic features. Stability and causality of the system

can be easily enforced while fitting the model itself, hence only passivity enforcement

deserves special attention [22].

Passivity Enforcement mechanisms generally present a trade-off between the

optimality of the produced passive model and the computational cost to generate it.

An optimal model is one that is passive in the entire frequency spectrum of interest

yet maintains the same behavior of the original non-passive model [22]. Accordingly,

based on [23], we can see that Passivity Enforcement schemes can be officially divided

into optimal and sub-optimal methods. Optimal methods are capable of providing a

single passive model that is closest to the original model in some norm within a given

parameterization form, such as methods based on Positive or Bounded Real Lemma

Passivity constraints. Methods such as those presented in [29, 21] optimize system

poles and residues simultaneously in one single step while methods such as those

presented in [3, 24, 2] optimize the poles and residues separately in two different

steps. Optimal methods are guaranteed through their convex formulation, which

results in high computational demands for both processing and memory.

Sub-optimal methods, on the other hand, are based on approximate lineariza-

tion of the passivity constraints. This includes methods based on Hamiltonian Ma-

trix Pencil Perturbation and Residue or State-Space Perturbation via Localized con-

straints at specific frequencies [7, 27, 8, 11, 28]. Such methods are much faster and

demand less computational memory, however, they are only approximate since they

are iterative methods that demand certain convergence thresholds.
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For this thesis, the sub-optimal method of Hamiltonian Matrix Pencil Perturba-

tion is utilized for perturbing the models into passive ones. Since the great strength

of Loewner Matrix method, which is the system identification tool used in this the-

sis, is dealing with high order and large number of ports, a huge model in terms of

order or port number can hence be used. Accordingly, even the reduced order model,

despite smaller than the original one, could also be too big. With optimal passivity

enforcement methods the computational expenditure will be too high. Accordingly,

a sub-optimal method is used and its accuracy is good enough, since passivity vio-

lation driven out of the order reduction of a Loewner Matrix based model is limited

in both frequency spread and extent of violation.
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CHAPTER 3
Thesis Contribution

This chapter presents the main thesis contribution, which is centered around

system identification of frequency domain S-parameter data using the Loewner Ma-

trix method discussed in 2.1.3, through that order reduction is also achieved, which

is discussed in this chapter. This is then followed by Passivity checking and Enforce-

ment algorithm of Hamiltonian Matrix Pencil Perturbation. This is then finalized

by an algorithm that converts the macromodel into a spice netlist for universality

of the algorithm and convert it into a practical model that can be utilized wherever

needed.

3.1 Loewner Matrix

Loewner Matrix is the method utilized in the work done in this thesis for system

identification of the frequency domain scattering parameters (S-parameters). The

method takes the data as input for the frequency spectrum of interest and produces

as output the matrices
{
E,A,B,C,D

}
. Details of the macromodeling process and

all its mathematics and references are mentioned earlier in subsection 2.1.3.

3.2 Passivity Checking

Choosing the order of the macromodel resulting from the Loewner Matrix method

is a process that involves choosing the extent of passivity that can be tolerated by

the passivity enforcement algorithm [18]. The reasoning behind this is that there

is a certain threshold of order reduction, when reducing the order below which the
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system starts to become non-passive by nature. Going further below that thresh-

old induces more extensive passivity violations. According to [18], there is also a

maximum passivity violation extent that the Hamiltonian Matrix Pencil Perturba-

tion methodology can handle. Hence, before discussing the order selection process, a

method for checking the passivity condition and passivity extent of the macromodel

needs to be realized, which is the primary aim of this section.

Equations (2.13) and (2.14) from subsection 2.1.3 describe the Descriptor State

Space System and the transfer function resulting from that, respectively. These are

the eventual outputs of the Loewner Matrix method, but in the case of scattering S-

parameters, the inputs and outputs become the incident and reflected power waves.

According to [34] and [33], the DSS can be re-written in Weierstrass Canonical form

as follows:

E = W






Imf
0

0 N




T, A = W






J 0

0 Im∞




T (3.1)

where W and T are m×m non-singular matrices, with m being the same m of the

Loewner Matrix order. Ij is an identity matrix of dimension j and mf +m∞ = m.

N is a nilpotent matrix of index µ meaning that Nµ−1 6= 0 and Nµ = 0, where µ is

called the index of the DSS. Accordingly, using the Weierstrass Canonical form, the

transfer function in equation (2.14) can be rewritten as follows:

H(s) = Cp(sImf
− J)−1Bp +M0

︸ ︷︷ ︸

Hp(s)

+

µ−1
∑

i=1

siMi

︸ ︷︷ ︸

H∞(s)

(3.2)
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where M0 = D−C∞B∞, Mi = −C∞N iB∞,






Bp

B∞




 = W−1B,

[

Cp C∞

]

= CT−1,

Hp(s) is called the proper part of the transfer function, while H∞(s) is the improper

part.

Accordingly, the right and left spectral projector matrices, Pr and Pl respec-

tively, project onto the right and left deflating sub-spaces associated with the finite

eigenvalues of the (A,E) matrix pencil as defined as follows (elaborate details of

their calculation is found in [37]):

Pr = T−1






Imf
0

0 0




T (3.3a)

Pl = W






Imf
0

0 0




W−1 (3.3b)

where by definition Pr = P T
l as seen in [37]. It is worth noting that if an improper

part exists, the proper part can be extracted either by EPr or PlE.

In consequence, the form seen in equation (3.2) can be tested for passivity as

seen in [34] if the following conditions are satisfied:

1. The proper part Hp(s) is bounded real, which implies:

• Hp(s) has no poles with positive real parts

• sup
ω∈R

{
σmax

(
Hp(jω)

)}
≤ 1

2. The improper part H∞(s) is zero, i.e. Mi = 0 for i ≥ 1
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where sup is the supremum mathematical function and σmax(•) is the maximum

singular value of the subject where σ(M), the singular value function, is defined as
√
eigenvalues of the self-adjoint matrix (M∗M).

However, the problem with the passivity checking algorithm presented earlier is

that the calculation of the Weierstrass Canonical Form is computationally expensive.

Accordingly, a more computationally efficient method is needed. Since the Hamil-

tonian Matrix Pencil matrices are to be calculated anyways for the enforcement of

passivity, later on to be presented, [38, 1] show a methodology of using those matrices

to check the passivity of the model at hand. The following equation (3.4) shows the

definition of the matrices J and K:

J =






A−BDTS−1C −BR−1BT

CTS−1C −AT +CTDR−1BT






K =






E

ET






(3.4)

where S = DDT − I and R = DTD − I. The matrix J ∈ R2m×2m is called a

Hamiltonian matrix and it satisfies the following condition:

X−1
0 JX0 = −J T (3.5)

where X0 =






0 Im

−Im 0




 satisfies XT

0 = X−1
0 = −X0. Given the same definition of

X0, matrix K ∈ R2m×2m is called a symplectic matrix since it satisfies the following
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condition:

X−1
0 KX0 = KT (3.6)

Since J is Hamiltonian andK is symplectic, therefore the generalized eigenvalues

of the matrix pencil (J ,K) are distributed symmetrically on the complex plane with

reference to both real and imaginary axis, i.e. eigenvalues reflect on both x and y-

axes. Figure 3–1 shows a plot of sample generalized eigenvalues of (J ,K). The green

are present in all four quadrants since they are complex (having real and imaginary

values), while the blue and red ones are only present in pairs since they are purely

imaginary and purely real, respectively.

−4 −2 0 2 4

−4

−2

0

2

4

Real

Im
ag
in
ar
y

Figure 3–1: Arbitrary Generalized Eigenvalues of (J ,K) Matrix Pencil
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Based on [38, 1], the passivity check hence becomes through the same eigenval-

ues. If there exist eigenvalues of the matrix pencil (J ,K) that are purely imaginary

(have no real part), then the system is non-passive; i.e. a system is only passive if it

has no purely imaginary eigenvalues of the matrix pencil (J ,K).
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·10−3
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lo
g
1
0

(

σ
m
a
x

(
H

(j
ω
)
)
)

Nonpassive Model
Passive Model

Figure 3–2: Maximum singular values of sample S-parameter matrices with and
without a passivity violation

The method of maximum singular values, discussed earlier, can still however be

used as an additional check. If the maximum singular value of any frequency point

exceeds the value of 1, then the system is non-passive, even if it goes back to below 1

afterwards. Figure 3–2 shows 2 sample systems, with one having a passivity violation

between 9.7 and 9.9GHz, and the other one completely passive. The plot is done on
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a logarithmic vertical axis, hence the threshold for passivity violation becomes a 0

instead of the original 1.

3.3 Order Reduction

Followed by the method of system identification of Loewner Matrix, it is im-

portant to determine the order m to be used to be able to extract the time-domain

macromodel. As mentioned before, reducing the order below a certain threshold

value would induce a passivity violation. Going further below that value would in-

duce further violation. Given the passivity checking algorithm described in section

3.2, a completely passive order can be found first and then iteratively going be-

low that order in a binary search algorithm till the highest level of passivity to be

rectified is reached [18]. For the method of Hamiltonian Matrix Pencil perturba-

tion presented in this thesis, the maximum rectifiable passivity violation is 4 purely

imaginary eigenvalues.

3.3.1 Finding Minimal Passive Order

The type of the system being modeled leads to a different response and accord-

ingly a different singular value decomposition pattern. For a lumped system, it is

possible for the frequency-domain data to span the full bandwidth of the system,

as seen in figure 3–3, which illustrates the forward voltage gain response S2,1. This

leads to a large drop in the singular values when plotted versus the order as an

independent factor, which is shown in figure 3–4, where σ̂l is calculated as follows:

σ̂l = log10

(σl

σ1

)

(3.7)
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Figure 3–3: Sample S-parameter Data for a Lumped System
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Figure 3–5: Sample S-parameter Data for a Distributed System
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In this case the order can be easily calculated as seen in [19] based on that

significant drop’s index. However, for distributed systems, the methodology is not

as straightforward as it is for the lumped ones. Figure 3–5 shows that response S5,5

keeps ringing in the case of the distributed system, so the sampled data can not reach

a decaying steady state value for it i.e. it is impossible to span the full bandwidth.

Accordingly, the singular values plot will have no prominent drops similar to

the one shown in the lumped system plot. In fact, theoretically, the distributed

system is supposed to have an infinite number of poles. However, there are still a

few small drops in the singular values of the distributed system as shown in figure

3–6. Such drops are to be used as a basis for a searching algorithm to find the

smallest completely passive order to be used as the mstart for the order reduction

process [16, 14].

The algorithm’s first step is calculating the drops among the singular values as

follows:

δl = σ̂l+1 − σ̂l; 1 ≤ l ≤ pN − 1 (3.8)

where δ is the value of the drop, p is the number of ports of the system, N is

the number of frequency samples taken for the system resulting in a product pN

representing the size of the Loewner Matrix. The drops are then sorted descendingly

in a manner as follows:

δi,1 > δi,2 > . . . > δi,x > . . . > δi,pN−1 (3.9)

where i, x is the index of the xth largest drop.
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Consequently, the order is then chosen starting the largest drop first and the

model is extracted. The model is then tested out for passivity using the method

explained in section 3.2. If the model turns out to be non-passive, then the next

drop is chosen instead, and the same procedure is repeated till a passive macromodel

is found and its order is taken to be mstart. It is noteworthy that when sufficiently

enough data points N are taken and the system is free from noise, typically the

largest drop leads to a passive system and hence the previously mentioned algorithm

to find mstart converges in one iteration [15, 13]. In the presence of noise, such as

discretization noise from the full wave simulation, or if the N is just sufficiently large

enough, then 2-3 iterations would be needed. If the system takes 5 passivity checking

iterations then N needs to be much larger to be able to extract a passive system.

Algorithm 1 shows a pseudo-code for the methodology used to find {E,A,B,C}start,

the macromodel extracted at order mstart

Algorithm 1 Determining the order, mstart preserving passivity

k ← 1;
cnvrg ← 0;
repeat
m← ik;
Macromodel {E,A,B,C} is extracted as equation (2.27);
Check for stability and passivity;
if Macromodel stable and passive then
mstart ← m;
{E,A,B,C}start ← {E,A,B,C};
cnvrg ← 1;

else
k ← k + 1;

end if
until (cnvrg = 1) or (k ≥ 5)
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3.3.2 Reducing Order Further till Maximum Rectifiable Passivity Vio-
lation

Given a passive reduced order mstart, it is now desirable to reduce the order even

further, to get more benefits out of order reduction. However, from this point onward,

further order reduction results in passivity violation. This subsection describes the

algorithm used to find the the maximum correctable passivity violation, 4 generalized

purely imaginary eigenvalues of the (J ,K) matrix pencil, in the system at hand.

The order finding methodology is very similar to the root finding algorithm of

bisection method. We start off with an upper order bound mupper equal to mstart and

a lower bound mlower equal to mstart

2
. The average value of the 2 bounds is taken as

the testing order mtest, if its passivity violation is more than tolerable then the order

is increased. On the other hand if the passivity violation is still tolerable, then the

order is reduced even further. This process is repeated till the required number of

purely imaginary eigenvalues is found, which is 4 [18]. This methodology is explained

in a pseudo-code form in Algorithm 2 to reach a final order mf and a macromodel

{E,A,B,C}f .

3.3.3 Determining Purely Imaginary Eigenvalues of (J ,K)

This subsection describes the two methodologies that could be used to deter-

mine whether some of the eigenvalues of the (J ,K) matrix pencil, the Hamiltonian

and symplectic matrices, are purely imaginary or not. According to [34], rounding

error results in a real part to exist in eigenvalues even if they were supposed to be

purely imaginary. This calls for the need of a methodology to determine whether an

eigenvalue is to be considered purely imaginary or not.
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Algorithm 2 Determining the order, mf for maximum rectifiable passivity violation

cnvrg ← 0;
mupper ← mstart

repeat
mlower ← round

(mupper

2

)
;

mtest ← round
(mupper+mlower

2

)

Macromodel {E,A,B,C}test is extracted as equation (2.27);
Check for passivity;
if Macromodel passivity < 4 purely imaginary eigenvalues then
mupper ← mtest;

else if Macromodel passivity > 4 purely imaginary eigenvalues then
mupper ← round

(
6
5
∗mupper

)
;

else
mf ← mtest

cnvrg ← 1
{E,A,B,C}f ← {E,A,B,C}test;

end if
until (cnvrg = 1)

Methodology 1. The first method, which is relatively straight forward is

shown in [7]. This method involves deciding on a certain value δ as a threshold

value. If the real value of the eigenvalue is less than delta i.e. R {λ} < δ, then the

eigenvalue λ is to be considered purely imaginary, and vice versa.

The problem with this methodology, however, is that some eigenvalues could

inherently have a real part, but it happens to be small value and not a rounding

error. In such case, this methodology would consider such eigenvalue as a purely

imaginary one mistakenly, causing the system to be assumed to be non-passive when

it could actually be passive. Additionally, if the value of δ is chosen to be smaller

than it should be, a purely imaginary eigenvalue having a real part larger than the
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value of δ due to rounding errors could be ignored, and hence its passivity violation

will not be put into consideration.

Figure 3–7 shows a plot with sample eigenvalues and an arbitrary δ ≈ 0.12.

The green eigenvalues are ones which are not purely imaginary, but are considered

so mistankenly, while the red pair could be purely imaginary yet are not inspected.

This shows that this methodology is good to give a general idea about whether

eigenvalues are purely imaginary or not, but not good enough to give a detailed

perspective.
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Figure 3–7: Sample Pairing and Non-Pairing Eigenvalues of (J ,K) Matrix Pencil

Methodology 2. This method is more robust than the other method men-

tioned earlier. It is a variation of the procedure presented in [34]. This technique

relies on the fact that all the eigenvalues of the (J ,K) matrix pencil come in pairs
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of mirror images across all 4 quadrants, but the reflection across the imaginary axis

is of most interest in this case. The method starts by taking picking a value for δ

that is big enough, such as 0.2, to include all the eigenvalues that could be purely

imaginary but having a large error in the real value. This narrows down the number

of eigenvalues that are to be inspected and tested. The eigenvalues left within such a

bound are to be tested if they have a pairing mirror image across the imaginary axis.

If there exists a pair then the eigenvalues are not to be considered purely imaginary

and vice versa.

The first step in realizing whether a two eigenvalues are a pair or not is to inspect

the imaginary value first. If the absolute value of the percentage difference between

their imaginary values is less than 1%, then they lie on the same vertical level. The

following equation describes the test on two eigenvalues λi and λj:

∣
∣
∣
∣

R {λi} − R {λj}
R {λi}

∣
∣
∣
∣
< 1% (3.10)

If the eigenvalues are found to be on the same vertical level, then they need to

be tested for the horizontal value through testing their real parts. If the eigenvalues

λi and λj are a pair, then their real parts will have opposite sign, hence the absolute

value of the real parts’ sum should be zero ideally. However, for error compensation

the method used takes the percentage change of such difference to be less than 1%

to consider the eigenvalues a pair. This is shown in the following equation:

∣
∣
∣
∣

I {λi}+ I {λj}
I {λi}

∣
∣
∣
∣
< 1% (3.11)
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Consequently, we see that if the conditions in equations (3.10) and (3.11) are

satisfied, then the eigenvalues λi and λj are a pair. If the condition is not satisfied,

then the eigenvalues within the region of δ should be looped through and tested with

respect to λi till a par is found. If all eigenvalues have been looped and none are

found to pair, λi is hence to be considered as a purely imaginary eigenvalue. Figure

3–7 also shows how the green eigenvalues are a pair, while the red ones are not a

pair, making the former a regular complex eigenvalue (not purely imaginary) while

the latter could be purely imaginary, depending on the chosen value for δ.

3.4 Passivity Enforcement

After the order mf has been chosen, which introduces slight passivity but has

the advantage of being a lower order than the previously mentioned mstart, passivity

enforcement would now be needed to eliminate that violation. The methodology used

in this work is based on the Hamiltonian Matrix Pencil Perturbation, or sometimes

referred to as Generalized Hamiltonian Method (GHM) theorem, shown in [34].

This method is one of the sub-optimal methods of passivity enforcement, but it

ideal for this application. Since passivity violation is limited to only 4 eigenvalues

of the (J ,K) matrix pencil, the iterative perspective will not be a problem in this

case because only very few iterations would be needed to rectify the violation. This

also results in having very accurate results, even if they are approximate, because

the region of non-passivity is limited. This makes the method accurate in terms of

comparing the responses of the original non-passive model to the passive one, and
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also relatively low computational complexity with respect to number of iterations,

making it ideal for the applications presented in this work.

Accordingly this part is divided into three main subsections; Model Conversion,

Impulse Checking and Proper Part Perturbation, the three main steps of enforcing

passivity. Model Conversion changes the model into an alternative form that fits

into the GHM theorem, if the given model does not fit. Impulse Checking checks

for the availability of an improper part in the system’s transfer function. Proper

Part Perturbation is the main process of changing aspects about the macromodel

iteratively till a passive model is realized.

3.4.1 Model Conversion

The model will need conversion to an alternative form if one or both of the

following conditions are present:

0 ∈ eig
(
D+DT

)
(3.12a)

1 ∈ σ(D) (3.12b)

where eig(•) are the eigenvalues of the subject and σ(•) are the singular values

of the subject, as defined earlier in section 3.2. Hence, an alternative model for

the matrices (E,A,B,C,D) to become (Econv,Aconv,Bconv,Cconv,Dconv), where the

latter model avoids the conditions in equations (3.12a) and (3.12b). By choosing a

value for k satisfying 0 < k < 1, the following is how the converted macromodels can

36



be created:

Econv =






E 0

0 0




 Aconv =






A 0

0 Ip






Bconv =






B

kIp −D




 Cconv =

[

C Ip

]

Dconv = kIp

(3.13)

where Ip is an identity matrix of dimension p, the same dimension previously de-

scribed in subsection 2.1.3. The resulting converted models are identical models

in terms of their characteristics and response [38], however they have lost the un-

desirable conditions mentioned in equations (3.12a) and (3.12b). This can also be

guaranteed by checking I−DconvD
T
conv = (1−k2)I to be non-singular, which is certain

in this case [34]. Computational complexity of the whole model conversion process is

very low since it is merely a reassembly process of the matrices into bigger ones. If no

model conversion is found to be needed, then the converted matrices would be iden-

tical to the original ones i.e. {Econv,Aconv,Bconv,Cconv,Dconv} = {E,A,B,C,D}.

3.4.2 Impulse Checking

For passivity violation to be rectified using GHM theorem, the system cannot

have an improper part H∞(s), as mentioned in section 3.2, which is also referred to

as the impulsive response. Hence, the process of impulse checking needs to be done

before undergoing the perturbation process to validate its usability. The Weierstrass

Canonical form described in section 3.2 can be used to extract the transfer function in

the form of the proper and improper part, and check for the availbility or absence of
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the impulsive response. However, according to [34], the Weierstrass Canonical form

is very computationally expensive and ill-conditioned. Accordingly, this subsection

displays an alternative method to be used for the same purpose. The following limit

is to be used as a checking algorithm for the impulsive response:

Γ = lim
s→∞

s−1H(s) (3.14)

where Γ is a limit matrix of dimension p × p and s−1 is a scalar multiplied to the

transfer function matrix H(s). Accordingly, the following set of conditions define the

interpretation of Γ:

1. If Γ = 0→ System is impulse free; passivity is rectifiable

2. If Γ = constant 6= 0 or Γ = ∞ → System has improper part; definitely non-

passive

For even further simplification of the impulse checking process, the method could

be approximated by picking two large positive numbers s1 and s2, governed by the

relationship of S1 = γs2 where 3 < γ < 10. The system can hence be checked for

impulsive response as follows:

1. If
‖H(s1)‖2
‖H(s2)‖2

≪ γ → γ = 0→ Impulse-free

2. If
‖H(s1)‖2
‖H(s2)‖2

= γ → γ = constant→ Definitely non-passive

3. If
‖H(s1)‖2
‖H(s2)‖2

≫ γ → γ = constant→ Definitely non-passive

It is noteworthy that since the discussed systems are all stable, hence all poles

are distributed on the left half of the complex plane. Accordingly, choosing a positive

value for s, as done here in the choice of s1 and s2, will always result in an invertible

(non-singular) matrix (sEconv−Aconv). According to [34], this method is numerically
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stable and highly efficient. Computational complexity of this process is very low since

it only includes plugging in certain values and computing system responses.

3.4.3 Proper Part Perturbation

After model conversion was done, if needed, and the system checked for the

absence of the impulsive response, it is now turn for the perturbation process of

the proper part from a non-passive to a passive one. According to GHM theorem,

a system can be changed from non-passive to passive status if the (J ,K) matrix

pencil is perturbed. The (J ,K) matrix pencil is made out of the five different model

matrices {Econv,Aconv,Bconv,Cconv,Dconv}. We hence have five different options for

the perturbation process. Reference [34] shows a summary of why some of those

matrices could be modified to enforce passivity, while others cannot, as follows:

• Matrices Econv and Aconv cannot be modified, since that would jeopardize the

system’s stability condition. It can also change the key dynamic properties of

the system at hand, which would hurt the accuracy of the newly generated

model.

• Matrix Dconv cannot be perturbed, because that would result in inaccuracy in

the entire frequency band of interest.

• Matrices Bconv and Cconv are suitable for the perturbation process, especially

since the transfer function H(s) is linear with respect to Bconv and Cconv.

Matrix Cconv is chosen arbitrarily over Bconv for the perturbation process.

The next step is to create criterion that can be used to control the error in-

troduced by perturbing the matrix Cconv. This methodology is based on the one

presented in [34]. Given the impulse response, h(t), the inverse Laplace transform of
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the transfer function, the error of the perturbed model can be measured as follows:

∆ =

∫ ∞

0

‖dh(t)‖2Fdt =
∫ ∞

0

trace
(
dh(t)dhT (t)

)
dt (3.15)

where trace(M) is the sum of all the elements in the diagonal of matrix M . Hence,

by defining dh(t) = dCconvF(t)Bconv with F(t) = T−1






ejt 0

0 0




W−1, we can rewrite

the error function as follows:

∆ = trace
(
dCconvGpcdCT

)
(3.16)

where Gpc is the proper controllability Gramian defined as follows:

Gpc =
∫ ∞

0

F(t)BconvB
T
convFT (t)dt (3.17)

However, an easier method can be used to compute the Gramian Gpc would be

through solving the generalized Lyapunov equations [30] as follows:

EconvGpcAT
conv +AconvGpcET

conv = −PlBconvB
T
convPr

Gpc = PrGpc
(3.18)

By performing a Cholesky Decomposition on the Gramian Gpc = LTL, a coor-

dinate transformation for dCt, the small perturbation matrix for the original Cconv,

can hence be done as follows:

dCt = dCconvL
T (3.19)
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Thus, we can redefine the error function as follows:

∆ = trace
(
dCtdC

T
t

)
= ‖dCt‖2F = ‖vec(dCt)‖22 (3.20)

where vec(M) is a vector created by stacking all the columns of the matrix M .

Since the the original matrix Cconv would be perturbed by the small matrix

dCconv, the Hamiltonian and symplectic matrices J and K respectively, would also

be perturbed. This can be done by differentiating them with respect to the matrix

Cconv. Since the symplectic matrix K is independent of Cconv, hence its change

matrix (derivative) would be a zero as follows:

dK =






0 0

0 0




 (3.21)

On the other hand, the Hamiltonian matrix J is dependent on the matrix Cconv as

seen in section 3.2. This hence results in a derivative change matrix as follows:

dJ =






−BDTS−1dC 0

dCTS−1C+CTS−1dC dCTDR−1BT




 (3.22)

where, as defined before, S = DDT − I and R = DTD− I, and both matrices are

symmetric. It is also noteworthy that the matrix dJ is also Hamiltonian like the

original matrix J .
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For every generalized eigenvalue λ ∈ C of the matrix pencil (J ,K), there exist

right and left eigenvectors x and y ∈ Cm such that:

J x = λKx

y∗J = λy∗K
(3.23)

The generalized eigenvalue λ can therefore be written as a tuple 〈α, β〉, with λ = α
β
.

Hence, if β = 0, λ is an infinite eigenvalue. Hence upon perturbing the purely

imaginary eigenvalues of the (J ,K) matrix pencil, they change form from λ to λ′,

which can hence be described as follows:

λ′ =
α′

β
=

α +∆α

β
= λ+

y∗dJ x
y∗Kx (3.24)

According to [34], if λ is purely imaginary, then λ′ is also purely imaginary. Accord-

ingly, we can design a set Λ = {λi} = {jωi} for i = 1, 2, . . . , q for all the q purely

imaginary eigenvalues of the matrix pencil (J ,K). This divides the entire frequency

band from 0→∞ into q + 1 segments, with all the eigenvalues in the set Λ need to

be perturbed, since σ
(
H(jωi)

)
> 1. Accordingly, in order to perturb ωi to ω̃i, we

use the following equation:

ω̃i = ωi+ǫ(ωi+1 − ωi)

0 <ǫ < 0.5

(3.25)

However since the newly calculated ω̃i is relatively arbitrary, this should be treated

as a new new input to the system and the passivity checking procedure should be

reiterated. This is the iterative part of the passivity enforcement algorithm. Based
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on [34], for mild passivity violation, which is the case here, the number of iterations

should not exceed five.

The next step is to plug in the perturbed frequency values ω̃i’s into the system

in order to compute the perturbed matrix C̃conv in lieu of the old non-passive Cconv.

Firstly, the right eigenvector xi is to be split into two vectors of the same size, becom-

ing xi =






xi,1

xi,2




. Secondly, it will be denoted that zi = S−1

(
Cconvxi,1 +DconvB

T
convxi,2

)
.

Then, based on [34], we can create an equation containing dCt as follows:

R
{(

xT
i,1L

−1
)
⊗ z∗i

}
× vec(dCt) = (ω̃i − ωi)I

{
x∗
i,2Exi,1

}
(3.26)

where ⊗ is the Kronecker product of two subjects. From the previous equation

(3.26) we can extract two block matrices mi and ni denoting the equation (3.26)’s

main subjects, as follows:

mi = R
{(

xT
i,1L

−1
)
⊗ z∗i

}
(3.27a)

ni = (ω̃i − ωi)I
{
x∗
i,2Exi,1

}
(3.27b)
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In such case, if there exists q eigenvalues to be moved, then the block matrices

mi and ni can be incorporated into larger matrices and vectors M and N as follows:

M =












m1

m2

...

mq












∈ R
q×pm, N =












n1

n2

...

nq












∈ R
q×1 (3.28)

This would results in an equation of the form

M × vec(dCt) = N (3.29)

which can be used solve for the desired unknown vec(dCt) which can then be eas-

ily transformed from vector form back to matrix form of dCt. Equation (3.29) is

a standard least-squares problem to be solved, however, the constraint is an under-

determined equation since the number of unknowns pm far exceeds the number of

equations q i.e. q ≪ pm. Based on [34], there are two possible ways to solve equation

(3.29), which are as follows:

1. Pseudoinverse Method: Solution would be vec(dCt) = MT (MMT )−1N

2. QR-Factorization Method: Solution would be vec(dCt) = QMR−T
M

N with

QMRM = MT is the QR-factorization of MT

After finding the value of dCt, the perturbed matrix C̃conv can hence be found

as follows:

C̃conv = Cconv + dCtL
−T (3.30)
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This would result in a new passive model
{

Econv,Aconv,Bconv, C̃conv,Dconv

}

with a

reduced order mfinal.

3.5 SPICE Netlist Generation

The next step is to generate a SPICE netlist of the model described by the

matrices
{

Econv,Aconv,Bconv, C̃conv,Dconv

}

having a reduced order mfinal. Since

this model is stable and now passive, it can be used for generic modeling along with

any other device or terminations, which also are stable and passive, hence producing

an overall stable system that does not produce energy on its own. The benefit of

the SPICE netlist is its universality, since the netlist would be generic and any other

device or terminations can be easily connected to the model at hand, whether those

be linear or nonlinear.

There are several ways to generate a netlist from a DSS model, however, [16]

presents a methodology of creating a SPICE netlist using the Modified Nodal Analy-

sis (MNA) formulations. The macromodel matrices
{

Econv,Aconv,Bconv, C̃conv,Dconv

}

are stamped into the MNA equation and we can hence generate a circuit node for

every port. A similar approach, but for Y -parameter data can be seen in [20]. The

methodology implies considering the input and output voltages at the ports of the

model at hand. However, for S-parameter based systems, the incident and reflected

power waves a(sk) and b(sK) are what characterize the model, as seen in equation

2.12, which is reiterated in the following equation:

a(sk) =
1

2

(
v(sk)√

z0
+ i(sk)

√
z0

)

b(sk) =
1

2

(
v(sk)√

z0
− i(sk)

√
z0

) (3.31)
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Figure 3–8: Equivalent Voltage-Current Realization of Terminal Power Wave Rep-
resentations

where z0 is any arbitrary reference impedance, which could be used as the standard

50Ω. Hence, there needs to be a way of converting such system which is based on

power waves to expressions in terms of the voltages and currents. This implies having

extra circuitry to the MNA equation at hand which would handle such a conversion.

The circuitry used is based on [16] and is seen in voltage-controlled voltage sources

as well as current-controlled voltage sources that are seen in figure 3–8.
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CHAPTER 4
Implementation Examples

This chapter presents several examples to prove the functionality and evaluate

the performance of the previously proposed algorithms. The following examples are

all based on 10cm long microstrip lines with varying number of 1mm wide traces.

The separation between the traces is 0.2mm. More elaborate details of the generic

microstrip line used is shown in figure 4–1.

0.2mm

17µm

1mm 0.2mm

0.5mm ǫr = 4.7

Figure 4–1: Microstrip line structure

The structures at hand are first defined in terms of their Per-Unit Length (PUL)

parameter matrices, then the required number of S-parameter data is generated using

the matrix exponential stamp. This is then followed by macromodeling using LM,

determining the lowest order achieving the maximum rectifiable passivity violation

mfinal and finally enforcing the passivity on the model at hand.
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4.1 Example 1: 8-Traces Microstrip Line

The first examples pertain a microstrip line that has 8 traces, also presented in

[18], hence has 16 ports. The original system has an order m = 358. This order is

reduced substantially to an mstart = 275 and eventually reaching a final reduced non-

passive order of mfinal = 271. Passivity is then enforced using the GHM theorem,

with an optimal ǫ = 0.4. We see that the passivity enforcement algorithm converges

in 2 iterations only, and the time for macromodeling using LM is 1.04 seconds and

the time for passivity rectification is 2.75 seconds.

4.1.1 Correctness Validation
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Figure 4–2: Maximum Singular Values of Example 1’s S-Parameter Matrices Before
and After Passivity Enforcement
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Figure 4–2 shows the maximum singular values of the example at hand before

and after passivity enforcement. Evidently, the non-passive model has singular values

crossing the maximum threshold of 1 (0 on the logarithmic scale in the plot), while

the passive model is below that mark. Figure 4–3 shows a magnified version of the

same plot with the region of passivity violation shown clearly to be 9.78→ 9.89GHz.

The plots also demonstrate that the passivity violation has been corrected efficiently.
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Figure 4–3: Magnified Maximum Singular Values of Example 1’s S-Parameter Ma-
trices Before and After Passivity Enforcement

4.1.2 Accuracy Validation

After proving the success of the modeling and passivity enforcement parts, this

part discusses the error produced by both process. When computed across 1000

frequency point within the frequency range of interest, it has been found that the
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Root Mean Squared (RMS) error as resulting from the macromodeling process is

5.9 × 10−5, while the overall RMS error after passivity enforcement is 7.5 × 10−5,

both of which are very insignificant numbers, showing that the whole process is

accurate to a great extent. This also verifies that the passivity enforcement scheme

is both functional and accurate. A plot of the RMS error across the entire frequency

range is found in figure 4–4.
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Figure 4–4: RMS Error Across Frequency Spectrum for Example 1

Plots of magnitude and phase of original vs. perturbed models were evaluated

for further verification. Figures 4–5 and 4–6 show an aggressor line response at index

(10, 10), while figures 4–7 and 4–8 show a victim line response at index (2, 16). The

four plots validate correctness and negligible loss of accuracy in perturbation while

achieving smaller order mfinal.
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Figure 4–5: Magnitude of Aggressor Line Response at (10, 10) for Example 1
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Figure 4–6: Phase of Aggressor Line Response at (10, 10) for Example 1
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Figure 4–7: Magnitude of Victim Line Response at (2, 16) for Example 1
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Figure 4–8: Phase of Victim Line Response at (2, 16) for Example 1
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4.2 Example 2: 16-Traces Microstrip Line

The second example, also discussed in [18], is larger than the first example with

double the number of traces in the microstrip line i.e. 16 traces, matching to 32

ports in the system. The original system has an order m = 725, which is then

reduced to mstart = 544 and eventually reaching a final reduced non-passive order

of mfinal = 537. As with the previous example, passivity enforcement is performed

using the GHM theorem, finding an optimal value for ǫ = 0.35. As with the previous

example, the system converges in 2 iterations only with a macromodeling time of 3.35

seconds using LM, while the time for the passivity correction is 20.63 seconds. The

time taken for the passivity rectification is considerably longer than that taken for

the first example, because the passivity violation is more extensive in this example,

in addition to the system generally having more eigenvalues for the (J ,K) matrix

pencil.

4.2.1 Correctness Validation

Figure 4–9 shows the maximum singular values of for the second example before

and after passivity rectification. Evidently, we see that, just like the first example,

the original system had passivity violation, illustrated by crossing the 1 boundary in

its singular value decomposition. After the passivity rectification, the singular values

no longer cross that boundary, proving successful perturbation in the system. Figure

4–10 shows a magnified version of the same plot illustrating the region of passivity

violation being within 9.74 → 9.92GHz. Upon Comparing figures 4–3 to 4–10, we

see that the extent of the passivity violation (the height of the peak) is way higher

for example 1, explaining the increase in computation time.
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Figure 4–9: Maximum Singular Values of Example 2’s S-Parameter Matrices Before
and After Passivity Enforcement

4.2.2 Accuracy Validation

Similar to the first example, an error analysis over 1000 frequency points from

DC to 10GHz. The results of the error analysis show that macromodeling process

results in an overall RMS error of 3.9× 10−5, while after passivity perturbation, the

overall RMS error increased only to 5.3 × 10−5. This shows that the process is also

accurate, and no significant accuracy is lost in the passivity perturbation process.

Figure 4–11 further elaborates on the same conclusions by showing the error trends

along the frequency range of interest.

Plots of magnitude and phase of original vs. perturbed models were evaluated

for further verification. Figures 4–12 and 4–13 show an aggressor line response at

index (4, 4), while figures 4–14 and 4–15 show a victim line response at index (8, 12).
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Figure 4–10: Magnified Maximum Singular Values of Example 2’s S-Parameter Ma-
trices Before and After Passivity Enforcement
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Figure 4–11: RMS Error Across Frequency Spectrum for Example 2
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Figure 4–12: Magnitude of Aggressor Line Response at (4, 4) for Example 2
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Figure 4–13: Phase of Aggressor Line Response at (4, 4) for Example 2
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Figure 4–14: Magnitude of Victim Line Response at (8, 12) for Example 2
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Figure 4–15: Phase of Victim Line Response at (8, 12) for Example 2
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CHAPTER 5
Conclusion

To sum up the work presented in this thesis, we see that we can undergo order

reduction of system macromodels in a very efficient way. This is done by first utilizing

system identification methods, such as Loewner Matrix in this case, choosing a much

reduced order that results in mild passivity violation, then correcting that passivity

violation using passivity enforcement schemes such as Hamiltonian Matrix Pencil

Perturbation. The advantage of following such a scheme is that we can reach a much

reduced order than the one that could have been reached by using the standard

model order reduction methodologies. This is done at a minor computational cost,

as seen in table 5–1, which summarizes the results and parameters from the examples

described in chapter 4. The table shows that as the size of the system increases, the

computational time for passivity rectification increases, but the number of iterations

needed to converge remains the same. Generally, the bulk of the computational

expenditure comes from the passivity rectification algorithm, but this is countered

by its main advantage of being capable of reaching a much reduced order compared

to the original one. The only drawback is that the algorithm is not capable of

handling severe passivity violations, or else it would take way too many iterations

and computational time, but this can be fixed by changing the passivity enforcement

scheme to another one that suits the application at hand.
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Table 5–1: Examples Parameters and Characteristics Summary

Parameter Example 1 Example 2

# of Lines 8 16
# of Ports 16 32
Original Order m 358 725
Final Order mfinal 271 537
ǫ 0.4 0.35
# of Iterations 2 2

Simulation Time (seconds)
Loewner Matrix 1.04 3.35
Passivity Enforcement 2.75 20.63

Passivity Violation Spectrum (GHz) 9.78 ≤ f ≤ 9.89 9.74 ≤ f ≤ 9.92

In terms of the accuracy of the methodology being used, the systems yield highly

accurate responses compared to the original models at hand. Table 5–2 can be seen

as a summary of the overall RMS errors for the examples shown in chapter 4. The

table shows that the GHM theorem, while as mentioned before might not be suitable

for high passivity violations, is perfectly suitable for mildly non-passive systems,

which in this case is limited to 4 eigenvalues of the (J ,K) matrix pencil. The table

Table 5–2: Examples Error Summary

Error Example 1 Example 2

Before Passivity Enforcement 5.9× 10−5 3.9× 10−5

After Passivity Enforcement 7.5× 10−5 5.3× 10−5

shows that the GHM theorem, while as mentioned before might not be suitable for

high passivity violations, is perfectly suitable for mildly non-passive systems, which

in this case is limited to 4 eigenvalues of the (J ,K) matrix pencil. So the resulting

model described by
{

Econv,Aconv,Bconv, C̃conv,Dconv

}

can be seen to be a stable,
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passive, and much reduced in order than the original system while maintaining highly

accurate physical characteristics when compared to each other.
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