
 

 

 

 

 

Spectrotemporal processing and intrinsic 

functional connectivity in human auditory cortex 

 

 

 

 

 

 

 

Kuwook Cha 

Doctor of Philosophy 

  

Integrated Program in Neuroscience 

McGill University 

Montréal, QC 

 

 

December 15th, 2016 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of 

Doctor of Philosophy 

©  Kuwook Cha 

  



2 
 

Acknowledgements 

  

 My supervisors, Robert Zatorre and Marc Schӧnwiesner, made essential 

contribution to this thesis with their advice for the entire course of research and careful 

examinations of the results and the text. The MRI technicians, David Costa, Ron Lopez, 

and Louise Marcotte, and the core research assistants, Mike Ferreira and Ilana Leppert, at 

the McConnell Brain Imaging Center helped me running the experiments with their state-

of-art support for relatively novel imaging technique, interleaved silent steady state 

imaging. A McGill undergraduate student, Bowen Li, enthusiastically assisted the 

experiments. Philippe Albouy and Pascal Kropf helped to translate the abstract of the 

thesis to French. 

 As I believe that good science comes out of becoming a good man of science and 

building a good community of science, I must acknowledge that an enormous number of 

people supported me and my work for this thesis – not only for me to give birth to the 

present work but to become a better man and community member of science. I thank 

Robert and Marc again for being excellent examples of scientific minds and 

communications. They have positive minds to find out at least one good thing from any 

results which I myself would have regarded only disappointing. Despite their solidity and 

high standard in research, they never lose humility to be open to new, and yet 

unexplainable findings, which can bring us better questions. These two men are not only 

good scientists but good persons – therefore, good men of science – so to have taught me 

how important it is to be a good person as a scientist and to have a good work-life 

balance. I cannot thank them enough for their care for my well-being and personhood, 

without which all this work would not have come out to this world.  

 Speaking of being a good person, there are many folks, inside and outside 

scientific circles, who played significant roles in my academic and personal growth. My 

lab colleagues have not only intellectually inspired me but emotionally supported me. My 

first Canadian neuroscientist friend and former lab colleague, Martha Shiell who had 

helped me feel home in the new culture and the graduate program before she encouraged 

me to join the lab when I almost dropped out of my PhD studies. She was also a model 

student to me in many ways. Friends from my former lab at McGill and the MNI 7th 

Floor folks also gave me solidarity throughout a horrible time I was going through. I also 



3 
 

remember my very first lab colleauges back in South Korea, including my former 

supervisor Sang-Hun Lee who exemplified dedication and enthusiasm for better research 

and all the lab mates who struggled together to make our dreams in science come true. I 

never forget Choongil Lee, my first model neuroscientist in my college time, whose 

intellectual gracefulness convinced me to study neuroscience. 

 My ‘framily bros’, Sujaya Neupane and Pascal Kropf, as well as the Plateau 

neighbors and the ‘Ranch’ members: I was certainly thinking of them when I said to 

myself “Though, I have such wonderful friends.” on one cold winter night after a long 

frustrating work. Pascal should receive credits for spending his time on discussing 

theoretical implications of my work with me. I must mention my spiritual family in St. 

Peter’s Anglican Church and Mennonite Fellowship of Montreal: their community 

support for this foreign person out of unconditional love and care without which I would 

have given up this journey. I thank Chris Barrigar and Jean Baptiste Mukiza for their 

humble Christian brotherhood which held science, faith and humanity altogether in my 

integrity. My fellow dancers and encounters at Cat’s Corner and Harlem Shout kept me 

in good vibe especially at the stage of thesis writing which many people often warned me 

must be depressing (it would have been so without anticipating every week to dance with 

you!).  

 I certainly feel blessed to have been in the great scientific community of 

Montreal. I thank my advisory committee members, Sylvain Baillet, Etienne de Villers 

Sidani, and Pierre Bellec, for their academic support and personal care. My gratitude also 

goes to many inspiring neuroscientists in Montreal including Paul Cisek, Andrea Green, 

Adrian Peyrache, Chris Pack, Brenda Miller, and late Donald Hebb. All of these people 

aspired me to value building a good scientific community. The legacy must continue! 

 Lastly, I am immensely grateful for my mother 안선옥, sister 차영미, brother-in-

law 허민 and brother 차봉주, for their love and support, and fathomless respect for my 

scientific journey at cost of missing their youngest. Kids in my family, 허진영, 차민영, 

허재영, and 차민지, were my best reasons to stop crying and continue the journey. I also 

thank my extended family, 박희순, 황경애, Gabriele, Ruby and Peter Thielmann, and 

Sunisha, Sunita and Shanta Neupane for their readily kindness and generosity in my time 

of need. Justine Hansen was among the angelic encounters, holding me to see the hope 

and joy I have.  



4 
 

Contribution of Authors 

  

 I am the primary author of the two manuscripts presented in the current thesis 

(chapters 2 and 3). The studies are conducted with my two supervisors, Robert Zatorre 

and Marc Schönwiesner. In study 1 (chapter 2), I designed the study, analyzed the data, 

and wrote the manuscript with advice from RZ and MS. In study 2 (chapter 3), I designed 

the study, conducted the experiments, analyzed the data, and wrote the manuscript with 

advice from RZ and MS.  

 

  



5 
 

Abstract 

 Studying the interaction and connectivity between neurons is important to 

understanding human perception and behaviors. Functional connectivity, defined as 

temporal coherence between recordings of neural activity in different locations, is a 

promising paradigm to study intrinsic dynamics of brain activity. In mammalian sensory 

cortices, intrinsic functional connectivity revealed by recording spontaneous activity has 

been positively correlated to sensory tuning similarities of neurons. Human functional 

magnetic resonance imaging (fMRI) studies have also demonstrated similar patterns with 

respect to retinotopy and somatotopy. Such coherent spontaneous activity have also been 

reported to be associated with behavior and perception. This thesis seeks to understand 

the nature of coherent spontaneous activity, that is, intrinsic functional connectivity, in 

human auditory cortex in relation to its spectrotemporal processing.  

 In Study 1, we obtained fMRI responses to pure tone stimuli and estimated best 

(preferred) frequencies of individual voxels in human auditory cortex. Intrinsic functional 

connectivity was computed by correlating residual activity, which was obtained by 

subtracting stimulus effects from fMRI responses, between every pair of voxels, and their 

correlations were sorted by difference in best frequencies. This analysis revealed that 

intrinsic functional connectivity decreases as the difference in best frequencies of paired 

voxels increases. This effect was consistent within and across hemispheres, and within 

and across regions of core and belt areas. The effect was preserved even after correcting 

functional connectivity for distance between voxels. Functional connectivity of the right 

core area had particularly high frequency preference specificity compared to the other 

three areas. Consistent results were observed when resting-epoch data were used.  

 Study 2 was designed not only to generalize the tuning specificity of functional 

connectivity to spectrotemporal tuning properties, but to address functional implications 

of having tuning-specific functional connectivity. The cortical activity measured in fMRI 

in response to 72 natural sounds were analyzed to characterize spectrotemporal 

modulation transfer functions (MTFs) of individual voxels that are parameterized by 

characteristic frequency, spectral density and modulation rate. These tuning functions 
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provided enough information to classify novel sounds from separate test datasets. 

Intrinsic functional connectivity was computed by correlating residual activity taken from 

auditory responses and resting-state activity from a separate run. Functional connectivity 

from both activity types was specific to the three tuning parameters. To examine the 

implication of functional connectivity on spectrotemporal processing, we built a model 

that combines spectrotemporal tuning functions and functional connectivity to predict 

voxel activity, and tested whether single-trial stimulus identification based on this model 

is improved compared to the model which uses the tuning functions. When functional 

connectivity was incorporated into the model, single-trial decoding performance was 

better than when only the tuning functions are used. The effect was preserved across 

primary and non-primary auditory cortex in both hemispheres. The results were also 

confirmed when maximum likelihood decoders with covariance estimated from residual 

or resting-state activity were used.  

 The findings in the above studies suggest that functional connectivity in human 

auditory cortex is associated with its functional and anatomical architecture, and that 

tuning-specifically coherent spontaneous activity is functionally important to neural 

encoding and decoding mechanisms.  
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Résumé 

 L'étude des interactions neuronales et de la connectivité corticale est importante 

pour comprendre les mécanismes qui sous-tendent la perception et les comportements 

humains. La connectivité fonctionnelle, définie comme la cohérence temporelle de 

l’activité neuronale provenant de régions distinctes, est une approche prometteuse pour 

étudier la dynamique intrinsèque de l'activité spontanée ainsi que son influence sur les 

interactions neuronales extrinsèques. Dans les cortex sensoriels des mammifères, il a été 

démontré que la connectivité fonctionnelle intrinsèque, révélée par l'enregistrement de 

l'activité spontanée, peut prédire positivement les profils de réponse des neurones 

sensoriels. L’activité cérébrale spontanée cohérente semble donc avoir un rôle 

fonctionnel dans le traitement de l'information neuronale. Ce travail de thèse cherche à 

comprendre la nature de l'activité spontanée cohérente, c'est-à-dire la connectivité 

fonctionnelle intrinsèque, dans le cortex auditif humain en relation avec le traitement 

spectro-temporel. 

 Dans l'étude 1, nous avons mesuré l’activité IRMf en réponse à des tons purs et 

nous avons estimé les profils de réponses préférentiels de voxels individuels en fonction 

de ces fréquences dans le cortex auditif humain. La connectivité fonctionnelle intrinsèque 

a été calculée en corrélant l'activité résiduelle de chaque paire de voxels, et les 

corrélations entre voxels ont été triées en fonction des différences dans des fréquences 

préférentielles. Cette analyse a révélé que la connectivité fonctionnelle intrinsèque 

diminue lorsque la différence dans les préférences fréquentielles des voxels appariés 

augmente. Cet effet était cohérent au sein et entre les hémisphères, et au sein et entre les 

régions du noyau et les aires périphériques (ceinture) du cortex auditif. Cet effet a été 

préservé après correction pour la distance entre les voxels. La connectivité fonctionnelle 

au sein du noyau auditif droit était dotée d’un profil spécifique de réponse préférentiel 

pour les hautes fréquences par rapport aux trois autres zones. Des résultats similaires ont 

été observés lors de l'utilisation des données de repos. 

 L'étude 2 a été conçue dans le but de généraliser la tuning-spécificité des profils 

de connectivité fonctionnelle et permet aussi d’estimer les implications fonctionnelles de 
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connectivité fonctionnelle. L'activité corticale, mesurée par IRMf, en réponse à 72 sons 

naturels a été analysée dans le but de caractériser les fonctions de transfert de modulation 

spectro-temporels de voxels individuels. La connectivité fonctionnelle intrinsèque a été 

estimée en corrélant l'activité résiduelle des réponses auditives et l'activité de repos 

provenant d'une série de données distincte. Le profil de connectivité fonctionnelle lors 

des deux était spécifique aux trois propriétés spectro-temporelles. Pour examiner 

l'implication de la connectivité fonctionnelle sur le traitement spectrotemporel, nous 

avons construit un modèle qui combine les fonctions d'accord spectrotemporel et la 

connectivité fonctionnelle pour prédire l'activité du voxel et a testé si l'identification du 

stimulus d'un seul essai basée sur ce modèle est améliorée par rapport au modèle qui 

utilise l'accord les fonctions. Lorsque la connectivité fonctionnelle a été incorporée dans 

le modèle, les performances de décodage à un essai étaient meilleures que lorsque seules 

les fonctions de réglage sont utilisées. Ces résultats ont également été confirmés lorsque 

nous avons utilisé des décodeurs à leur maximum de vraisemblance avec une covariance 

estimée à partir de l'activité résiduelle ou de l’activité de repos. 

 Les résultats des études ci-dessus suggèrent que la connectivité fonctionnelle dans 

le cortex auditif humain est associée à son architecture fonctionnelle et anatomique et que 

la connectivité fonctionnelle est aussi informative que la corrélation avec le bruit, les 

deux mesures pouvant être utilisées afin de décoder l'activité neuronale.  
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General Introduction 
 

1.1. Functional connectivity: A connectionist’s window to the mind and behavior 

 One of the central questions in neuroscience is how neurons interact each other, 

which is necessarily also linked to how they interconnect with each other. Advances in 

simultaneous recording techniques such as multi-microelectrode array and functional 

magnetic resonance imaging (fMRI), along with development of multivariate analyses 

methods has facilitated the pursuit of answering this question for the last few decades. 

While localization of neural correlates of cognition and behavior as exemplified in 

extreme form with the infamous ‘grandmother cells’ is still critical to understand brain 

function (Barlow, 2009; Quian Quiroga and Kreiman, 2010), no neuroscientist of this day 

can imagine studying the brain without considering the orchestrated patterns of neural 

activity.  

 The idea of neural coding and computation by a population of neurons mediated 

by anatomical connections must be dated back to the theoretical postulation of Hebb, one 

of the most insightful neuroscientists in history. His theory is often summarized as “Cells 

that fire together wire together” (Löwel and Singer, 1992), and the emphasis on 

correlated activity to create neural representation has inspired the earliest experimental 

findings of correlations in neural activity during the 1960’s in animals (Perkel et al., 

1967a, 1967b; Gerstein and Perkel, 1969). Later, in the 1990’s, correlations in neural 

activity began to be studied in humans using brain imaging techniques, at which point 

functional connectivity was formally and explicitly defined as temporal correlations 

between two spatially distinct neurophysiological recordings (Friston et al., 1993; 

Friston, 1994).  

 Although the definition of functional connectivity is simple and technical, the 

ultimate purpose of studying functional connectivity is not to describe the pattern of 

correlations per se but to understand cognition and behavior, as Hebb’s connectionist 

vision was not only a conceptual abstraction of neural organizations but also aimed at 

understanding of The Organization of Behavior (Hebb, 1949). The studies presented in 
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this thesis represent a step along the journey of understanding the brain, mind and 

behavior altogether in light of functional connectivity, specifically with respect to how 

correlations in spontaneous and stimulus-evoked activity are related to sensory encoding. 

The current thesis primarily focuses on functional magnetic resonance imaging studies on 

human auditory cortex, but the mechanistic basis and the implications are discussed in the 

broader context of systems and cognitive neurophysiology across recording techniques, 

species, and sensory systems. 

1.1.1. Studying functional connectivity: historical development 

 The number of peer-reviewed journal publications on brain functional 

connectivity has exponentially increased for the last 2 decades since its introduction to 

the field of brain imaging (Friston et al., 1993; Friston, 2011; Raichle, 2015). Functional 

connectivity in brain imaging has then extended its impact to resting-state functional 

connectivity (Biswal et al., 1995; Raichle, 2015), identification of functional networks 

(Beckmann et al., 2005; Damoiseaux et al., 2006), regional parcellation (Kim et al., 2010; 

Kahnt et al., 2012) and developing clinical applications (Rosazza and Minati, 2011). 

Despite its recent popularity especially in human brain imaging, the interest in studying 

correlations in neural activity was not new to neurophysiologists at the advent of 

functional imaging as mentioned above. For instance, Gerstain and Perkel published in 

1969 their seminal report of correlations in simultaneously recorded neurons (Gerstain 

and Perkel, 1969), which was a decade before the term functional connectivity appears in 

neuroscience literature (Anderson, 1979). Since then, neurophysiologists have 

endeavored to elucidate how the brain encode and transfer information through temporal 

correlations and synchrony. However, the term functional connectivity is less frequently 

used in animal electrophysiology than human brain imaging. It is possibly due to the 

terminological non-specificity (Horwitz, 2003) considering that there are various ways of 

analyzing temporal dependence in electrophysiological data; and it may reflect the 

distinct historic routes in paradigm development and lack of cross-talk between the two 

communities. Integration between such distinct disciplines and modalities of studies on 
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functional connectivity has recently begun (Kohn et al., 2009), and this thesis is a 

contribution along the line of such a pursuit.  

1.1.2. Definitions of functional connectivity and other related terms 

 Functional connectivity can have different operational meanings and scientific 

implications depending on the measure or the underlying activity. For example, 

functional connectivity may imply a continuous measure such as correlation coefficient 

to indicate the strength, whereas it can also mean a binary statistical decision on the 

presence of connectivity made by thresholding the continuous measure (Rubinov and 

Sporns, 2010). Depending on the temporal resolution of neurophysiological measures, 

one can compute cross-correlation to look at the detailed temporal dynamics such as lags 

or time constants (Kohn and Smith, 2005; Jermakowicz et al., 2009). When temporal 

resolution of the signal allows, coherence, i.e., cross-spectral density, is also used in order 

to examine a frequency-dependent relationship between the recorded signals (Leopold et 

al., 2003). There is also an increasing number of studies that address temporal dynamics 

or stochasticity of functional connectivity (Luczak et al., 2009; Bharmauria et al., 2016). 

Despite the variety of measures, functional connectivity means statistical dependency 

between two time series recordings without exception. Importantly, functional 

connectivity does not imply directionality of the influence between two neural systems, 

which is rather referred to as effective connectivity (Friston, 1994, 2011). 

 It is also important to distinguish intrinsic functional connectivity from stimulus- 

or task-dependent functional connectivity. Functional connectivity is inferred to be 

intrinsic when the correlated activity does not relate to a stimulus or task, that is, a 

common extrinsic drive of the correlated activity. This does not mean that one cannot 

estimate intrinsic functional connectivity from stimulus- or task-evoked activity, because 

the confounding effects of the stimulus or task to functional connectivity can be regressed 

out. In fact, the earliest functional connectivity in brain imaging literature was computed 

in such experimental setting (Friston et al., 1993; Friston, 1994), only after which the 

well-known resting-state functional connectivity began to get rigorous attention (Biswal 

et al., 1995; Raichle, 2010; Friston, 2011). Resting-state functional connectivity, named 
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after the very experimental condition where the subject is not given any stimulus or task 

but asked to stay at rest, is rather a special case of intrinsic functional connectivity. 

Intrinsic functional connectivity can be also computed from activity measured during 

resting epochs within a stimulus- or task-based experiment (Fair et al., 2007).  

 In contrast, stimulus- or task-dependent functional connectivity is inferred when 

correlations in activity are observed in the presence of the extrinsic drivers of neural 

activity (Friston et al., 1997; Kohn and Smith, 2005). For instance, areas A and B may 

not show functional connectivity in the absence of a stimulus but correlations in their 

activity can appear as a stimulus is being presented. This is sometimes called 

psychophysiological interaction in brain imaging literature because one would seek the 

interactive effect of psychological and/or physiological conditions and brain activity of 

one area on another area (Friston et al., 1997). Animal electrophysiologists have also 

known that functional connectivity can be altered by a stimulus, and discussed its 

implication on neural encoding and decoding (Kohn and Smith, 2005; Ponce-Alvarez et 

al., 2013; Franke et al., 2016; Zylberberg et al., 2016).  

 Correlations in neural activity have, in fact, been of great interest to animal 

electrophysiologists in different terms such as neural synchrony and noise correlation 

with emphasis on different implications. Neural synchrony can either mean spike train 

synchrony in discrete signals or spike signal synchrony in continuous signals (Singer and 

Gray, 1995). In both cases, synchrony emphasizes temporally precise coincidence of 

neural events or phase-locked oscillations. On the other hand, noise correlation refers to 

correlation in neural activity after being corrected for the stimulus effect, with emphasis 

on co-variability in trial-to-trial response variations to an identical stimulus (Shadlen and 

Newsome, 1998; Bair et al., 2001; Cohen and Kohn, 2011). While human brain imaging 

studies on functional connectivity are mostly concerned with the spatial patterns of those 

interactions, investigations on neural synchrony and noise correlations in animal 

electrophysiological studies have been conducted rather to answer questions on neural 

information coding and transfer, behavioral or neural variability, and binding problems 

(Zohary et al., 1994; Shadlen and Newsome, 1998; Abbott and Dayan, 1999; Singer, 

1999; Bair et al., 2001; Averbeck et al., 2006). 
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1.2. Coherent spontaneous activity in fMRI 

 In 1995, Biswal and colleagues published their seminal study of correlated 

activity in the resting brain in sensorimotor-associated regions (Biswal et al., 1995). They 

found that fMRI activity in the finger-hand motor region of the left hemisphere is 

significantly correlated with the homologous region of the other hemisphere when the 

participant is at rest without performing any particular task. Also, the topography of the 

voxels that showed correlated activity in the resting brain was very similar to the 

activation map obtained by a bilateral finger tapping task. The results suggest that the 

cortex maintains correlated spontaneous activity among regions that are functionally 

related or that would be co-activated during a task performance (Fox et al., 2006b; 

Sadaghiani et al., 2010).  

 Spatially organized coherence in the resting-state brain activity has been 

consistently replicated in many other functional networks beside the motor cortex, and 

resting-state functional connectivity has become one of the most prevailing methods used 

in human brain imaging to study functional integration and connectivity (Raichle, 2009; 

Friston, 2011). The advantages of studying large-scale networks in the brain without 

having to develop a particular experimental setup and its applicability to special 

populations who are not able to conduct certain tasks have attracted neuroscientists and 

clinicians together, and resting-state functional connectivity has become an important 

part of brain connectome studies (Behrens and Sporns, 2012; Jbabdi et al., 2013). 

 It should be noted here that the activity in the resting brain is often called intrinsic 

or spontaneous activity. Although these terms are often regarded as interchangeable, 

there is subtle nuance: resting-state activity emphasizes the specific state or experimental 

condition whereas intrinsic or spontaneous activity regards the origin or source of the 

activity. In other words, the latter can arise independently of a certain state or 

experimental condition, and neural responses can be thought of as a mixture of intrinsic 

or spontaneous activity, and extrinsic or evoked activity (Fox et al., 2006b, 2007; 

Sadaghiani et al., 2009; Saka et al., 2010; Becker et al., 2011). For this reason, it is 

sometimes called on-going activity (Arieli et al., 1996; Kenet et al., 2003; Hesselmann et 

al., 2008a; Becker et al., 2011; Leopold and Maier, 2012). 
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1.2.1. Functional organization of coherent spontaneous activity in sensory cortices: 

tuning-specific functional connectivity  

 Early human resting-state fMRI made its success to identify functional 

organizations of spontaneous activity mostly on a larger scale: Beginning with coherent 

resting-state activity in the motor cortex (Biswal et al., 1995), regions that have related 

functions such as visual (Lowe et al., 1998; Cordes et al., 2000) and auditory (Cordes et 

al., 2000) areas, the hippocampus (Rombouts et al., 2003; Vincent et al., 2006), the 

default mode network (Greicius et al., 2003) and the attentional systems (Laufs et al., 

2003; Fox et al., 2006a) have been identified by analyzing the coherent pattern of resting-

state spontaneous activity. More recent human brain imaging studies have stretched the 

scale down into topographic organizations of functional connectivity within sensory 

cortices. For example, Heinzle and colleagues (2011) showed that fMRI voxels whose 

activity encodes close locations in retinotopic space have higher resting-state functional 

connectivity than voxels that have distant receptive field locations (Figure 1C). Similar 

findings have been replicated in the somatotopic areas (van den Heuvel and Hulshoff Pol, 

2010; Cauda et al., 2011).  

 

Figure 1. Tuning-specific coherence in spontaneous activity. 

A. A snapshot of spontaneous activity (right) measured by voltage-sensitive dye imaging 

in cat visual cortex which is correlated with the orientation preference map (left). 

Adapted from Kenet et al. (2003). B. A snapshot of spontaneous activity (bottom) 

measured by electrocorticography in macaque auditory cortex which is correlated with 

the frequency preference map (top). Adapted from Fukushima et al. (2012). C. Resting-

state functional connectivity map in human primary visual cortex (V1) for a seed voxel in 
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V3 (white dot). The seed voxel has the same voxel receptive field location with the 

voxels in V1 that show the highest functional connectivity (dotted black circle).  

________________________________________________________________________ 

 Such fine-scale delineation of functional connectivity has importance for linking 

human functional connectivity studies to animal electrophysiological studies that have 

consistently documented organized spatiotemporal patterns in spontaneous activity 

(Arieli et al., 1995; Nauhaus et al., 2009; Rothschild et al., 2010; Saitoh et al., 2010). 

These patterns are not only topographical but associated with sensory representation. For 

instance, Kenet and colleagues (2003) demonstrated that the spatial organization of 

spontaneous activity measured by voltage sensitive dye imaging in the cat visual cortex is 

coherent with the spatial pattern of visually-evoked activity in response to oriented 

stimuli (Figure 1A). Similarly, spontaneous activity in the guinea pig auditory cortex 

resembles the spatiotemporal pattern of tone-evoked activity which suggests spontaneous 

activity is organized along the topography of frequency selectivity (Saitoh et al., 2010). 

These studies suggest that when two neurons prefer similar sensory features, they would 

have coherent spontaneous activity, i.e., functional connectivity. Such positive relation 

between functional connectivity and sensory tuning properties has been replicated across 

species and sensory modalities (Brosch and Schreiner, 1999; Fukushima et al., 2012; 

Farley and Noreña, 2013). Despite the difference in the scale, these human brain imaging 

studies share the same principle with the above findings in animal neurophysiology: 

functionally related neurons or neuronal populations have coherent activity with one 

another in the absence of stimuli or tasks.  

 Despite the observation that spatial patterns of spontaneous activity are similar 

between animal neurophysiology and human brain imaging, the temporal scales of the 

two signals are very different. Whereas resting-state functional connectivity in fMRI is 

most prevalent at a very low frequency range from 0.01 to 0.1 Hz (Fox and Raichle, 

2007), coherence measured in electrophysiological signals usually lies at 1 Hz or higher 

(Kohn et al., 2009). Is functional connectivity in fMRI due to temporal aliasing of the 

higher-frequency fluctuations in electrophysiological signals or are they both 

manifestation of neuronal fluctuations in different time scales? Leopold and colleagues 
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(Leopold et al., 2003) first sought to answer this question by analyzing spontaneous 

fluctuations in band limited power of local field potential signals in monkey visual cortex 

using multi-electrode recording; and they found that spectral power of the local field 

potential at various bands recorded from different electrodes fluctuates coherently at very 

low frequency (<0.1 Hz). In other words, fast oscillations of population activity recorded 

from different electrodes are nested in coherent slow fluctuations of activity. The 

coherence was particularly high in the high gamma band (50 ~ 100 Hz) power signal, 

which also showed the longest spatial extent of coherence between electrodes compared 

to other frequency bands. Similar findings were replicated by other groups when multi-

electrode and fMRI activity were simultaneously recorded in the monkey visual cortex 

(Shmuel and Leopold, 2008; Schölvinck et al., 2010). These results suggest that the slow 

fluctuations in resting-state fMRI has a neuronal origin at a different time scale than the 

faster fluctuations of spontaneous activity which seems to be tightly linked to the slow 

fluctuations (Kohn et al., 2009; Leopold and Maier, 2012). Particularly, coherent power 

modulation of gamma oscillations between distant neurons might be a substrate of the 

coherent slow fluctuations that can be detected in fMRI (Shmuel and Leopold, 2008). 

 How are coherent patterns in spontaneous activity related to anatomical 

connectivity?  Although it is natural to infer that neural activity patterns are constrained 

by anatomical connections, elucidation of the detailed relation is not trivial. Some of the 

first evidence for the link between resting-state fMRI and anatomical projections was 

sought by Vincent and colleagues (Vincent et al., 2007). They recorded resting-state 

fMRI activity in the macaque monkey brain and obtained a functional connectivity map 

using seed regions in oculomotor regions such as frontal eye fields and lateral 

intraparietal area. The spatial pattern of the connectivity was significantly correlated with 

the map of anatomical projections obtained by retrograde tracer injection to the lateral 

intraparietal area. This result indicates that resting-state functional connectivity arises 

along anatomical projections. However, functional connectivity was not restricted to 

direct projections: they found that foveal V1/V2 was functionally connected with the 

foveal V1/V2 in the opposite hemisphere, which lacks direct interhemispheric 

connections except along the vertical meridian (Van Essen et al., 1982). Therefore, 
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coherent fluctuations of spontaneous fMRI activity are likely mediated by polysynaptic 

connections rather than direct projections.  

 Quantification of the association between functional and anatomical connectivity 

is rather a complex matter. First of all, there is no documentation for how many 

polysynaptic connections can mediate functional connectivity. Furthermore, researchers 

have not come to a consensus on which statistical procedures to detect functional 

connectivity are precise and which are the confounding signals that affect functional 

connectivity (i.e., globally correlated activity) (Murphy et al., 2009; Jo et al., 2010; Saad 

et al., 2012; Jbabdi et al., 2013). An alternative way of evaluating functional connectivity 

is to measure it as a continuous variable rather than a binary statistical decision (Jbabdi et 

al., 2013). Even in this case, it has yet to be resolved whether and how much the number 

of projections and/or synaptic efficacy play a role to determine the strength of functional 

connectivity. Therefore, the best knowledge to date on relation between functional and 

anatomical connectivity is only that the general patterns or organizational principles (e.g., 

retinotopic connectivity) are overlapped and polysynaptic projections can yield 

statistically significant functional connectivity.  

1.2.2. Functional roles of coherent spontaneous activity 

 One of the intriguing facts about spontaneous activity is that it makes the brain 

consume 20% of the oxygen that we take in although the volume of the brain is only 5% 

of the body (Raichle et al., 2001). Also, the magnitude of the metabolic consumption 

(Fukunaga et al., 2008) as well as of the activity fluctuation (Arieli et al., 1995) is 

comparable to that of evoked activity. If one considers only these two facts, spontaneous 

activity without any functional contribution would appear to be very wasteful. Do the 

organized spatiotemporal patterns of spontaneous activity reflect merely shared noise 

mediated by anatomical connections, or does it have functional roles? Considering the 

large metabolic costs (Raichle et al., 2001; Fukunaga et al., 2008) and the significant 

magnitude of the fluctuations as aforementioned, it would be more sensible for it to have 

functional benefits.  
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 A number of human fMRI studies have addressed the relation between 

fluctuations in spontaneous brain activity and variability in perception or behavior. Fox 

and colleagues (Fox et al., 2007) demonstrated that fMRI activity in the left and right 

motor cortex preceding right finger press explained variance in the pressure exerted 

during the task performance. Similarly, Boly and colleagues (2007) reported that 

somatosensory detection performance was improved in the trials when brain regions 

responsible for task-related activations showed higher pre-stimulus activity. They also 

found that poorer performance was associated with high pre-stimulus activity in the areas 

that are known to be deactivated during task engagement. Other studies reported that the 

perception of ambiguous figures, such as Rubin’s vase-face picture was correlated with 

pre-stimulus activity in the right fusiform face area (Hesselmann et al., 2008a), and that 

coherent motion perception was associated with the pre-stimulus activity in the right 

motion-sensitive occipito-temporal cortex (hMT+) (Hesselmann et al., 2008b). Such a 

positive relation between percept of figure-ground and pre-stimulus activity has also been 

found in macaque primary visual cortex (Supèr et al., 2003).  

 These results, taken together, support a hypothesis that spontaneous activity is the 

neurophysiological basis of trial-to-trial variability in neural responses (Arieli et al., 

1996; Saka et al., 2010, 2012; Becker et al., 2011) as well as behaviors (Bair et al., 2001). 

However, the positive relation between spontaneous activity and variability in neural 

responses and behavior does not necessarily demonstrate the functional benefits of 

maintaining spontaneous activity. One may even infer that spontaneous activity rather 

contributes to unreliability of neural responses and behavioral performance as a source of 

noise. Namely, spontaneous activity reflects internal sensory noise, as the signal detection 

theory describes, that biases perceptual or behavioral outputs (Ringach, 2009; 

Hesselmann et al., 2010).  

 Sadaghiani and collaborators (2010), however, suggest to pay attention to the 

interaction, i.e., non-linear relation, between spontaneous activity and evoked activity 

that varies according to percept. For instance, correlation between pre-stimulus activity 

and peak activity in the fusiform face area was decreased on trials when the participants 

perceived faces compared to when they report a vase (Hesselmann et al., 2008a). 
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Similarly, correlation between pre-stimulus and peak activity in hMT+ was also lower 

when the observer reported a coherent motion percept (Hesselmann et al., 2008b). The 

interaction between ongoing and evoked activity can be explained by predictive coding 

(Friston et al., 2009) which predicts that when spontaneous activity is high and more 

coherent with the incoming stimuli, the amplitude of evoked activity would be low 

because the prediction by spontaneous activity is accurate. This account is, however, in 

question: In the studies of Hesselmann and colleagues, the pre-stimulus baseline activity 

is temporally remote from the peak response, and the authors only address the effect of 

magnitude of baseline activity rather than correlated patterns in spontaneous activity. 

 A prominent hypothesis for the functional role of spontaneous activity is the 

replay hypothesis. In this account, spontaneous activity is involved in rehearsal of 

representations that have been learnt, or memory consolidation (Fukushima et al., 2012). 

The replay hypothesis was originally proposed to explain a phenomenon that the 

coordinated activity or sequential trace of activity patterns across neurons reverberates 

both in hippocampus and sensory cortex during sleep (Wilson and McNaughton, 1994; Ji 

and Wilson, 2007). Later, such activity patterns were observed also in awake or quasi-

awake state (Han et al., 2008; Carr et al., 2011). The coordinated pattern in resting-state 

or ongoing spontaneous activity can be a special case of this phenomenon. This 

hypothesis is particularly linked to the recently emerged concept of dynamic functional 

connectivity which refers to change in functional connectivity according to experiences 

or mental state (Hutchison et al., 2013; Liu and Duyn, 2013; Stevens and Spreng, 2014). 

However, it does not address the possibility of an immediate role for processing a 

concurrent stimulus.  

 In contrast, a group of authors hypothesize that spontaneous activity is involved in 

sensory gating for immediate stimulus information processing (Luczak et al., 2009, 2013, 

2015). This hypothesis is based on the observations that the activity of individual cortical 

neurons show consistent temporal patterns with respect to the coherent population 

activity, called ‘activity packets’, measured by multi-unit activity or local field potential 

recording (Luczak et al., 2009, 2013). The temporal relation between activity packets and 

spiking timing was consistent either when a stimulus is presented or not (Luczak et al., 
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2013). However, the probability of incidence of activity packet was higher at stimulus 

onset than sustained stimulus presentation or silent period. The results suggest that the 

cortex sporadically generates activity packets, which are coherent fluctuations of 

population activity, and neurons broadcast their messages in relation to the packets. 

 Fiser and co-authors (2010) attempt to propose a unified framework using the 

notion of Bayesian learning and inference. They suggest that spontaneous activity 

represents the prior probability distribution regarding the internal model about the 

environment that the brain has previously learnt, and the sensory input provides new 

evidence to compute the posterior probability distribution. While the learning process is 

relevant to memory consolidation in the replay hypothesis, the inference based on the 

already learnt internal model is in accordance with the sensory gating hypothesis. The 

notion of internal model and the emphasis on Bayesian inference and learning are in line 

with the predictive coding theory (Friston et al., 2009). However, this framework does 

not necessarily predict a negative interaction between spontaneous and evoked activity as 

proposed by other researchers mentioned above (e.g., Hesselmann et al., 2010).  

1.2.3. Correlations in spontaneous activity and trial-to-trial response variation 

 As briefly introduced in the above section, spontaneous cortical activity both in 

humans and other animals is tuning-specifically organized. This pattern is consistent with 

correlations in trial-to-trial variation in stimulus/task-evoked activity, i.e., noise 

correlations: noise correlations tend to be high when neurons have similar feature 

preferences (Petersen et al., 2001; Averbeck and Lee, 2003; Averbeck et al., 2006; 

Rothschild et al., 2010). Such similarity in the pattern of correlations of the two sources 

of signals, together with the fact that neural response variability is  accounted for by 

spontaneous activity (Arieli et al., 1996; Fox et al., 2006b), may be important to 

understanding the functional implication of spontaneous activity because a large body of 

research has discussed the impact of noise correlations on neural encoding and decoding 

(Abbott and Dayan, 1999; Bair et al., 2001; Schneidman et al., 2003; Shamir and 

Sompolinsky, 2004; Latham and Nirenberg, 2005; Averbeck et al., 2006).  
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 The problem of noise correlations originated from an old assumption that noise in 

neural activity, which is measured as trial-to-trial variability, can be cancelled out by 

averaging activity across many neurons (Pouget et al., 2000). This assumption is 

problematic because noise cannot be cancelled when the noise is correlated between 

recording channels (Abbott and Dayan, 1999). Averaging signals across neurons could 

rather result in significant information loss. Numerous studies have discussed the impact 

of noise correlations in neural information processing and the matter is still under debate. 

However, there is rough consensus. Firstly, theoretical studies using information-

theoretic measures suggest that the presence of noise correlation can lead to coding 

inefficiency (Abbott and Dayan, 1999; Schneidman et al., 2003; Averbeck et al., 2006). 

Especially, certain conditions of noise correlations, such as being positively correlated 

with tuning similarity of neurons, are more likely detrimental than otherwise, and this 

disadvantage can exponentially increase as the population size becomes large (Shamir 

and Sompolinsky, 2004; Averbeck et al., 2006; Moreno-Bote et al., 2014). Secondly, 

ignoring noise correlations leads to information loss in decoding unless noise is 

independent across neurons (Averbeck et al., 2006; Graf et al., 2011) or small enough to 

be ignored (Nirenberg and Latham, 2003; Latham and Nirenberg, 2005). 

 As mentioned above, most empirical evidence strongly indicates that neural 

response variability is correlated across neurons that are tuned to similar stimulus 

features. For this reason, the redundancy and apparent inefficiency in coding with 

correlated noise has intrigued researchers (Barlow, 2001; Latham and Nirenberg, 2005; 

Bharmauria et al., 2014; Schneidman, 2016) and motivated an alternative view to 

emphasize reliability and learnability of the neural code supported by correlated noise 

(Fiser et al., 2010; Jeanne et al., 2013; Miller et al., 2014; Schneidman, 2016). At the 

same time, the importance of incorporating the information of noise correlation into 

decoding has been both theoretically and empirically demonstrated (Nirenberg and 

Latham, 2003; Latham and Nirenberg, 2005; Graf et al., 2011). Importantly, this point 

has begun to be made also in human brain imaging thanks to the introduction of 

multivoxel pattern analysis: a multivoxel analysis in general takes into account the co-

variability of voxel activity, and it is capable to capture different patterns responsible for 
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distinct cognitive processes which cannot be detected by univariate analysis or averaging 

voxel activity (Kriegeskorte and Bandettini, 2007; Kriegeskorte, 2011; Serences and 

Saproo, 2012). Therefore, noise correlation is very important to neural information 

processing, and studying the relation between spontaneous activity and neural response 

variabilities, especially the correlations that reside in both types of activity might be 

essential for exploring possible mechanisms and functional roles of spontaneous activity.  

1.3. Spectrotemporal processing and tuning-specific functional connectivity in 

auditory cortex 

 The hypotheses and supporting findings introduced in the previous section 

indicate that coherent spontaneous activity influences neural information processing and 

behavior. However, they do not address the relation between coherent spontaneous 

activity and detailed encoding or tuning properties of the sensorimotor systems unless 

implicitly at best. As introduced above, there is increasing evidence that coherence in 

spontaneous activity is organized with respect to tuning functions of neurons. Therefore, 

explicitly incorporating this pattern to understanding the functional implications of 

coherent spontaneous activity would be an essential step. Understanding correlations in 

spontaneous activity can also have importance in understanding correlations in evoked 

activity, whether in signal or noise, as the above hypotheses point out. The current thesis 

addresses these issues by relating spontaneous activity particularly to spectrotemporal 

processing in human auditory cortex. This section provides is a brief introduction on what 

has been known about spectrotemporal processing and coherent spontaneous activity in 

auditory cortex.  

1.3.1. Spectrotemporal representation of a sound in the central auditory nervous system 

 A sound, in the physical sense, is a change in air pressure over time, which 

implies the original domain of the variation is only time. The auditory system in the 

brain, however, transforms them into a frequency representation that is the basis of pitch 

perception (Moore, 2003). Two mechanisms are involved in this transformation: place 

code and temporal code. Place code represents spectral magnitude in different places in 

the neural system whereas temporal code is realized by periodic temporal patterns of 
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neural activity directly. Place code is first implemented in the cochlear where the 

mechanical vibrations are transduced to neural signals along the basilar membrane to 

decompose different frequencies. The auditory nerve outputs from the cochlear can be 

represented as temporal envelopes of these frequency channels, each of which 

corresponds to ‘preferred’ or ‘characteristic’ frequency of a nerve cell (Chi et al., 2005). 

This auditory nerve output representation of a sound over (characteristic) frequency and 

time is referred to as auditory spectrogram. In this 2-dimensional space, a sound can be 

represented as envelope modulation jointly in time and frequency. In the downstream 

stages such as the inferior colliculus, medial geniculate body and the auditory cortex, 

neurons become specialized to certain forms of spectrotemporal modulations a center 

frequency and a latency, which is referred to as spectrotemporal receptive, or response, 

field (Atlas and Shamma, 2003; Chi et al., 2005). Although acoustic properties that drive 

cortical responses can be numerous, a spectrotemporal receptive field can capture the 

most important features including characteristic frequency, latency, spectral bandwidth 

and modulation (also called spectral density), and temporal modulation (Kowalski et al., 

1996a, 1996b; Depireux et al., 1998). The above understanding of the auditory system is 

established mostly based on electrophysiological studies of non-human mammalian brain.  

1.3.2. Spectrotemporal processing in human auditory cortex 

 Studies on spectrotemporal representations in human auditory cortex are 

relatively sparse due to methodological limitations, but topographical representation of 

preferred frequency has been relatively well studied compared to other auditory features. 

It is not only thanks to its gross topography that can be captured even in the coarse spatial 

resolution of brain imaging techniques but its functional importance. As described above, 

frequency is the most fundamental feature domain for the representation of a sound, and 

the spatial organization of preferred frequency, called tonotopy or cochleotopy, is an 

auditory example of the principal topographic organizations of sensorimotor cortices such 

as retinotopy and somatotopy.  

 Human fMRI studies have attested that there are multiple tonotopic fields on the 

supratemporal plane around Heschl’s gyrus, an anatomical landmark of location of the 
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primary auditory cortex (Langers and van Dijk, 2012; Moerel et al., 2012; Saenz and 

Langers, 2014; Schönwiesner et al., 2014). In fact, the exact location and orientation of 

tonotopic axis of the primary auditory cortex is a matter of debate (Humphries et al., 

2010; Da Costa et al., 2011; Moerel et al., 2014). A classical configuration is that the 

tonotopic progression runs along the long axis of Heschl’s gyrus (Lauter et al., 1985; 

Wessinger et al., 1997; Langers et al., 2007) but some researchers have proposed that the 

tonotopic axis of primary auditory cortex is perpendicular (Humphries et al., 2010; Da 

Costa et al., 2011) to Heschl’s gyrus, while others believe that it is an oblique or V-

shaped configuration (Humphries et al., 2010; Langers and van Dijk, 2012). It is 

commonly believed that the primary auditory cortex has at least two tonotopic 

progressions mirroring each other (A1 and R), and some add another tonotopic field RT 

in the anterior extension (Baumann et al., 2013; Moerel et al., 2014; Saenz and Langers, 

2014). The area surrounding the primary auditory cortex is defined as the secondary 

auditory cortex and it shares the tonotopic gradients with the primary auditory cortex 

(Kaas and Hackett, 2000; Moerel et al., 2014). Because of this surrounding geography, 

the primary and secondary auditory cortices are often called the core and belt (fields) 

areas, respectively (Kaas and Hackett, 2000; Baumann et al., 2013). Another tonotopic 

region that still shares the tonotopic gradients and runs along the lateral part of the belt 

area is identified as the parabelt area (Kaas and Hackett, 2000; Baumann et al., 2013). 

While the core, belt and parabelt areas are all tonotopic, their physiological properties 

and anatomical connectivity differ in primate studies. For instance, the core area prefers a 

narrower spectral band (Read et al., 2001; Moerel et al., 2012; Schönwiesner et al., 2014) 

and they receive more thalamocortical projections compared to the other areas (Hackett, 

2011).  

 Temporal representations of auditory stimuli in the human cortex have been much 

less studied than spectral representation but still available. Frequency modulation was 

found to activate Heschl’s gyrus, anterolateral and posterolateral parts of superior 

temporal gyrus, and superior temporal sulcus more strongly than unmodulated stimuli 

(Hall et al., 2002). In another study, the representation of amplitude modulation was 

located in primary and non-primary areas (Giraud et al., 2000). Hart and colleagues 



28 
 

(2003) also found activation by amplitude and frequency modulations in widely spread 

regions of the human auditory cortex (Hart et al., 2003). They also found greater 

activation in lateral Heschl’s gyrus and planum temporale than other regions, which 

implies hierarchical processing, and the response to amplitude is stronger in the right 

hemisphere than the left.  

 The joint spectrotemporal tuning functions in human auditory cortex have been 

studied by a few research groups. Langers and colleagues (2003) used dynamic ripple 

sounds which are known to optimally drive neuronal responses with respect to their 

spectrotemporal receptive fields (Depireux et al., 2001; Langers et al., 2003). They were 

able to demonstrate topography of preference in spectral density, temporal modulation 

rate and drift direction, separately. However, it was Schönwiesner and Zatorre (2009) 

who characterized the joint spectrotemporal receptive fields or modulation transfer 

functions of individual voxels for the first time in the human cortex (Schönwiesner and 

Zatorre, 2009). Finally, Santoro and colleagues (2014) used natural sounds rather than 

artificial dynamic ripple sounds and a neurophysiologically-based spectrotemporal 

receptive field model of auditory cortical neurons (Chi et al., 2005) to estimate joint 

modulation transfer functions of individual voxels with respect to characteristic 

frequency, spectral density and modulation rate (Santoro et al., 2014).  

 An interesting aspect in spectral and temporal processing of the human auditory 

cortex is its functional asymmetry (Zatorre et al., 2002): the left hemisphere is proposed 

to be more specialized to analyze speech and temporal features and the right is suggested 

to better process music and spectral information. This model is based on asymmetry in 

macro- and micro- anatomy such as myelination (Anderson et al., 1999), volumetrics 

(Zatorre et al., 2002) and minicolumn structure (Galuske et al., 2000), as well as 

functional asymmetry evidenced by the findings that lesions in the left temporal cortex 

that lead to impairments in speech processing and ones in the right that degrade music 

processing. Several human brain imaging studies also support this idea. For example, 

Zatorre and Belin (2001) manipulated the temporal rate and spectral separation of pure 

tone stimuli which modulated activations in positron emission tomography in human 

auditory cortex. They found that the left Heschl’s gyrus and supratemporal sulcus is more 
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strongly modulated in response to temporal rate changes while the right counter parts, to 

spectral variations (Zatorre and Belin, 2001). Schönwiesner and colleagues (2005) 

reported similar findings that parametrically changing temporal complexity in stimuli 

modulates fMRI responses more strongly in the left antero-lateral belt area while spectral 

complexity varies responses in the equivalent region in the right hemisphere. While 

Zatorre and colleagues (2002) propose that this lateralization is due to spectrotemporal 

trade-off, some other studies showed that temporal integration over longer time is rather 

lateralized to the right planum temporale (Overath et al., 2008) or that spectrotemporal 

lateralization is minimal (Overath et al., 2012). In summary, cortical neurons in human 

auditory cortex seem to have spectrotemporal response field properties as in animals and 

there are certain regional biases and hemispheric asymmetry in resolving spectral and 

temporal features. Such functional specialization yields distinct activation patterns to 

respond to different spectrotemporal components although the exact mechanism needs to 

be elucidated in order to resolve inconsistent results across studies.  

1.3.3. Tuning-specific functional connectivity in auditory cortex 

 As mentioned above, increasing evidence has pointed out that spontaneous 

activity is coherent when tuning properties of neurons are similar, and that it can have 

functional importance. However, this question has not been addressed in human auditory 

cortex. There have been a few studies that examined the relation between auditory tuning 

functions and coherent spontaneous activity in non-human mammals. Saito and 

colleagues (2010) recorded neural activity in the auditory cortex of guinea pigs using 

voltage sensitive dye imaging both during pure tone presentation and at rest. They found 

that spatiotemporal traveling wave of spontaneous activity resembles that of tone-evoked 

activity, which spreads along iso-frequency strips. In another study using voltage-

sensitive dye imaging on the same species, phase coherence of spontaneous slow-wave 

activity in delta-theta band gradually decreased as the difference in preferred frequency 

of the recording sites within and between the core and belt areas increases (Farley and 

Noreña, 2013). This relationship was preserved both within and between the core and belt 

areas, and there was consistent phase difference when the coherence was computed 
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between the core and belt areas, which was preserved when multi-tone stimuli were 

presented. Similar findings were reported in a macaque monkey study using 

electrocorticography (Fukushima et al., 2012): fluctuations of gamma band power in 

spontaneous activity was spatially coherent with the tonotopic map obtained by tone-

evoked activity across the core and belt areas. The relation between temporal feature 

representation in the auditory cortex and spontaneous activity has been reported by only 

one study where correlations in spontaneous activity varied with similarity in the onset, 

offset and temporal pattern of response of cell pairs recorded in the cat primary auditory 

cortex (Brosch and Schreiner, 1999). These findings are consistent with the notion that 

functional connectivity reflects or is constrained by the pattern of anatomical connectivity 

because  thalamocortical (McMullen and de Venecia, 1993; Hashikawa et al., 1995; 

Miller et al., 2001; Kimura et al., 2003; Lee et al., 2004b) and corticocortical (Read et al., 

2001; Lee et al., 2004b) projections are tonotopically organized.  

 Studies on the relation between functional connectivity and other auditory 

stimulus features are rare. Brosch and others (1999) computed cross-correlograms of 

spontaneous activity in pairs of neurons in cat primary auditory cortex to evaluate how 

correlation strength, i.e., peak cross-correlation, and correlation width in terms of 

similarity of many tuning properties including spectral overlap, characteristic frequency, 

response onset/offset/pattern and binaural interaction (Brosch and Schreiner, 1999). The 

similarity of all tuning properties varied with either correlation strength or width. 

Although this study indicates that tuning-specific functional connectivity is a generic 

organizational principle in the cortex regardless of any tuning properties, it has never 

been investigated whether the similarity of spectrotemporal response field properties of 

spectral density and modulation rate is related to the pattern of coherent spontaneous 

activity. Also, the anatomical projection patterns with respect to the above tuning 

properties have never been reported in contrast to tonotopic axonal projections. 

Therefore, testing tuning-specific functional connectivity with respect to various tuning 

properties including spectral density and modulation rate in human auditory cortex is 

essential to understand the functional organization of human auditory cortex and it can 

serve as a basis to predict anatomical projection patterns considering the correlation 
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between functional and anatomical connectivity patterns (Vincent et al., 2007; Honey et 

al., 2009).  

1.4. Proposal of the thesis: studying spectrotemporal processing and spontaneous 

activity in human auditory cortex using fMRI 

 To summarize the previous sections, the following points were introduced: (1) 

Functional connectivity has long been of interest to the field of neuroscience especially 

for understanding the brain through neuronal interactions; (2) the definition of functional 

connectivity is simply ‘temporal coherence between neural events in spatially distinct 

locations’, but the types of functional connectivity can be various; (3) resting-state fMRI 

functional connectivity reflects the functional architecture of the brain including gross 

functional networks and the organization of sensory tuning properties; (4) coherent 

spontaneous activity can have functional roles such as memory consolidation, sensory 

gating and/or prior probability representation; (5) correlations in spontaneous activity and 

noise correlations commonly have tuning-specificity which indicates possible 

involvement of spontaneous activity in information processing; (6) spectrotemporal 

processing in the human brain has been studied with respect to single-voxel tuning 

functions and specialization in regional and hemispheric levels; and finally (7) various 

auditory tuning functions have been related to coherent spontaneous activity in animals 

but there have been no human studies in this regard.  

 The above studies lead to three major questions about the relation between 

spectrotemporal processing and spontaneous activity in human auditory cortex: (1) 

whether functional connectivity in human auditory cortex is specific to spectrotemporal 

tuning, (2) if so, whether tuning-specific functional connectivity is associated with gross 

functional architecture such as functional asymmetry, and (3) what would be functional 

implications of functional connectivity in auditory cortex. To address these questions, 

two following studies are conducted.  

 Study 1 is designed to address the following hypotheses: first, functional 

connectivity is specific to frequency preference in human auditory cortex, within and 

across core and non-core fields, and also across hemispheres; second, frequency tuning-



32 
 

specific functional connectivity reflects known functional architecture of human auditory 

cortex such as functional asymmetry. To test the hypotheses, best frequencies of 

individual fMRI voxels in human auditory cortex are estimated from fMRI responses to 

pure tones of 8 frequencies. Then, functional connectivity, i.e., correlations in activity 

between every pair of voxels, is computed from two different sources of activity: residual 

activity and resting-epoch activity. Residual activity was obtained by regressing out 

stimulus effects from fMRI activity in response to the stimuli and resting-epoch activity 

was taken by sub-sampling the data only from the acquisitions 18 seconds apart from the 

last stimulus presentation. Functional connectivity is sorted according to the difference of 

best frequency of the paired voxels to evaluate the tuning-specificity of functional 

connectivity. The data will be also sorted with respect to the hemispheres and the 

distinction of core and non-core fields that are parcellated using a recently published 

technique (Schönwiesner et al., 2014). The tuning specificity is quantified and compared 

between the auditory regions to evaluate its relation to functional specialty of the regions 

and hemispheres.  

 In study 2, tuning-specific functional connectivity is investigated in a larger 

context: whether the tuning-specificity of functional connectivity can be generalized to 

other tuning properties such as spectral density and modulation rate; whether and to what 

extent resting-state functional connectivity and noise correlations are similar or different ; 

whether the existence of tuning-specific noise correlations is disadvantageous for 

decoding the information with the correlation ignored; and whether resting-state 

functional connectivity is relevant to stimulus processing in the cortex so that the 

information of resting-state functional connectivity can be useful for decoding a stimulus. 

For these questions, fMRI responses to 72 natural sounds in 6 categories and resting-state 

activity are measured. Using a spectrotemporal response model previously developed 

based on neurophysiological data (Chi et al., 2005), modulation transfer functions of 

individual voxels were estimated. Voxelwise functional connectivity is computed either 

from residual activity (trial-to-trial response variation) and resting-state activity, and 

sorted according to tuning similarity between paired voxels to evaluate tuning-specificity 

of functional connectivity. To evaluate the effect of response co-variability (i.e., noise 
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correlations) between voxels, single-trial stimulus decoding (identification) by the tuning 

model is applied to the original data and the data with residual activity, or noise, 

decorrelated by trial-by-trial shuffling. Finally, decoding with resting-state functional 

connectivity incorporated is performed in comparison to decoding without functional 

connectivity added.  
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Study 1: Preferred frequency selectivity of voxel-by-voxel 

functional connectivity in human auditory cortex 
 

 Study 1 is designed to reveal the relation between frequency preference and 

functional connectivity in human auditory cortex, which is predicted to have positive 

correlation according to previous studies in animals or other human sensory cortices. 

Also, it is investigated whether such preferred frequency selectivity in functional 

connectivity differs across areas or hemispheres so to reflect functional architecture of 

human auditory cortex such as functional asymmetry. This study is published in Cerebral 

Cortex in 2014 (Cha, K., Zatorre, R.J., Schönwiesner, M., 2014. Frequency Selectivity of 

Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex. Cereb. Cortex 1–

14). 

Abstract 

 While functional connectivity in the human cortex has been increasingly studied, 

its relationship to cortical representation of sensory features has not been documented as 

much. We used functional magnetic resonance imaging to demonstrate that voxel-by-

voxel intrinsic functional connectivity (FC) is selective to frequency preference of voxels 

in the human auditory cortex. Thus, FC was significantly higher for voxels with similar 

frequency tuning than for voxels with dissimilar tuning functions. Frequency-selective 

FC, measured via the correlation of residual hemodynamic activity, was not explained by 

generic FC that is dependent on spatial distance over the cortex. This pattern remained 

even when FC was computed using residual activity taken from resting epochs. Further 

analysis showed that voxels in the core fields in the right hemisphere have a higher 

frequency selectivity in within-area FC than their counterpart in the left hemisphere, or 

than in the non-core-fields in the same hemisphere. Frequency-selective FC is consistent 

with previous findings of topographically-organized FC in the human visual and motor 

cortices. The high degree of frequency selectivity in the right core area is in line with 

findings and theoretical proposals regarding the asymmetry of human auditory cortex for 

spectral processing. 
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2.1. Introduction 

 To understand complex computation in the brain, it is necessary to identify the 

pattern of functional interactions between different regions at various spatial and 

temporal scales. This requires an understanding of the pattern of temporal coherence of 

neural activity between individual neurons or different populations of neurons, beyond 

relating only the magnitude of neural responses to behavioral and cognitive variables. 

Temporal coherence in neural activity has been studied for decades in terms of synchrony 

in spiking activity (Phillips et al., 1984), synchronous oscillations of neural populations 

(Singer and Gray, 1995; Fries, 2005), and correlations in trial-to-trial variability (or 

‘noise’ correlation) (Gawne and Richmond, 1993; Lee et al., 1998; Averbeck et al., 

2006). Given the invasive nature of this line of research, such fine-scale temporal 

dynamics in human brains has not been studied much. However, temporal coherence in 

activity measured functional magnetic resonance imaging (fMRI), referred to as 

‘functional connectivity’ (FC), has gained much attention and has provided significant 

information in the field of systems and cognitive neuroscience (Fox and Raichle, 2007; 

Behrens and Sporns, 2012). Although the fluctuations that yield coherent patterns in 

fMRI are rather very slow (<0.1Hz) than fast as those in neurophysiological studies, they 

seem to have a neuronal origin (Shmuel and Leopold, 2008; Schölvinck et al., 2010) as 

do evoked fMRI responses (Logothetis et al., 2001). It is also evident that coherent fast 

fluctuations or oscillations in neural activity observed in neurophysiological studies are 

embedded in very slow fluctuations in fMRI activity (Leopold et al., 2003; Shmuel and 

Leopold, 2008; Kohn et al., 2009; Leopold and Maier, 2012). Notably, FC, or temporal 

coherence in neural activity, in most of these studies is considered ‘intrinsic’ because it is 

obtained by correlating spontaneous activity in absence of a stimulus or a task, and thus it 

is not explained by external inputs or task demands.  

 While the functional roles of intrinsic neural activity are not yet well understood, 

there has been a line of research to relate it to cortical representation of sensory stimuli, 

both in animals and humans. For instance, a study using voltage-sensitive dye imaging in 

the cat visual cortex showed that temporally coherent spontaneous activity emerges in the 

spatial pattern of orientation maps (Tsodyks et al., 1999; Kenet et al., 2003). Nauhaus et 
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al. (2009) found that spontaneous spiking activity in monkey and cat primary visual 

cortex triggers spatiotemporal propagations of local field potentials that reflect the 

similarity of preferred orientation between recording sites. In the auditory domain, 

Fukushima et al. (2012) demonstrated that high gamma band spontaneous activity in the 

macaque auditory cortex is coherent with frequency tuning at recorded sites. 

Analogously, correlations of residual spiking activity (noise correlation) of two 

simultaneously recorded neurons in macaque primary motor cortex have been reported to 

be high when their tuning properties are similar (Lee et al., 1998). In fMRI studies, it has 

been demonstrated that topographically organized sensory and motor features are related 

via very slow coherent fluctuations of intrinsic activity. Heinzle et al. 2011 found that 

intrinsic FC measured by fMRI in visual cortex is retinotopically organized: activity of 

fMRI voxels in V1 in resting-state was better explained by activity of voxels in V3 when 

the voxels had similar receptive field locations than dissimilar locations. Other resting-

state fMRI studies have shown somatotopic organization of intrinsic FC in human motor 

network (van den Heuvel and Hulshoff Pol, 2010; Cauda et al., 2011) and in monkey 

somatosensory cortex (Chen et al., 2011). These results agree with observations in the 

animal literature that neural populations with similar tuning share coherent intrinsic 

activity, although the gaps in sampling units, frequency ranges, and species have yet to be 

filled (Kohn et al., 2009).  

 An advantage of using fMRI to study the functional organization of the brain at 

large scale is that it samples activity in multiple brain regions simultaneously. This 

applies not only to conventional amplitude-based studies, but also to studies of FC. For 

example, in Heinzle et al. (2011), the authors additionally demonstrated that the pattern 

of intrinsic FC in the visual cortex reflects difference in inter-hemispheric connectivity 

depending on voxel receptive field locations: voxels whose receptive fields were located 

along the vertical meridian have significant FC across the hemispheres, while that is not 

the case for voxels that are responsive to the horizontal meridian. This pattern of FC 

reflects the pattern of callosal connectivity found in anatomical tracer studies (Kennedy et 

al., 1986). Haak et al. (2012) have shown that the spatial extent of FC in human visual 

cortex increases as the hierarchical order of visual areas increases. This pattern is 
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commensurate with the hierarchical structure of retinotopic connectivity in early visual 

areas (Lehky and Sejnowski, 1988; Angelucci et al., 2002). Their findings also support 

the notion of constant cortical extent of inter-areal projections in the early visual cortex 

that has been proposed in previous studies (Hubel and Wiesel, 1974; Motter, 2009; 

Kumano and Uka, 2010; Harvey and Dumoulin, 2011). 

 In the present study, we hypothesized that intrinsic activity of auditory neurons in 

humans is more correlated with each other when they have similar preferred frequencies 

than when dissimilar. This hypothesis can be tested using fMRI since fMRI is capable of 

sampling the activity of neurons with similar preferred frequency in a voxel, because of 

tonotopic organization (Merzenich and Brugge, 1973; Romani et al., 1982; Morel et al., 

1993; Howard et al., 1996; Wessinger et al., 2001); intrinsic FC can then be estimated on 

a voxel-by-voxel basis as discussed above. We predicted that the intrinsic FC between 

fMRI voxels, which is not explained by stimulus inputs, would be higher between voxels 

with similar preferred frequencies than between voxels with dissimilar ones. To test this 

hypothesis, we first estimated preferred frequencies of individual voxels in human 

auditory cortex using fMRI, and then analyzed residual fMRI activity and resting-epoch 

activity to compute intrinsic FC with respect to preferred frequency. 

 We further investigated whether the degree of frequency selectivity in FC differs 

across core and non-core auditory cortex, and across the hemispheres, in order to relate 

the pattern of FC to two well-known principles of functional architecture of auditory 

cortex: hierarchical processing and functional asymmetry. In human auditory cortex, core 

fields have higher frequency selectivity than secondary fields (Wessinger et al., 2001; 

Moerel et al., 2012), as is also the case in other animals (Morel et al., 1993; Rauschecker 

et al., 1995). This hierarchy is thought to be due to integration of a broader range of 

frequency information and higher complexity of sensory representation in the secondary 

fields than the core (Rauschecker, 1998; Kaas et al., 1999; Wessinger et al., 2001; Kumar 

et al., 2007). Another important aspect in the functional organization of the human 

auditory cortex is that the auditory cortex in the right hemisphere has a higher spectral 

resolution than on the left, which instead is more sensitive to rapid temporal variations 
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(Zatorre et al., 2002). This model is supported by findings that right auditory areas show 

stronger modulations to spectral variations (Schönwiesner et al., 2005; Hyde et al., 2008).  

 One interesting question that we address with our paradigm is whether the extent 

of frequency selectivity in FC is reflective of the hierarchical and asymmetric patterns of 

response seen in other studies. If frequency selective FC is a byproduct of the selectivity 

in response amplitude to stimuli, or conversely, sharp frequency tuning in the core fields 

is explained by local FC within an area, then we would expect that FC would be more 

frequency-selective (1) in the core fields than in the non-core fields, and (2) in the right 

than in the left auditory cortices. However, if FC is not simply reflective of the pattern of 

response amplitude but rather provides additional information for hierarchy and 

asymmetry, the pattern of FC would differ from the pattern of frequency selectivity in 

response amplitude. We compare the degrees of frequency selectivity in FC across the 

core and non-core fields of both hemispheres and discuss the results in light of sensory 

encoding/decoding and hierarchical emergence of functional asymmetry. 

2.2. Materials and Methods 

2.2.1. Participants 

 Seven people (4 male, 25 ~ 32 years old) with normal hearing went through 

anatomical and functional MRI scans with informed consent after approval of the 

experimental procedure by the local ethics committee.  

2.2.2. Stimuli 

 Eight different frequencies of pure tones were used to stimulate the pure-tone 

sensitive and tonotopic auditory areas of the participants. The frequencies were 

logarithmically spaced between 200 Hz and 8000 Hz (200, 338.8, 573.8, 971.9, 1646.2, 

2788.4, 4723.1 and 8000 Hz). In order to minimize adaptation, frequency was slightly 

jittered within a range of a single semitone (1/12 octave) every 250 ms with 3/4 duty 

cycle during each 4-second long stimulus presentation of one of the eight frequencies. 

The System 3 hardware of Tucker Davis Technologies (Alachua, FL, USA) was used to 

generate the stimulus at 24.4 kHz sampling rate. In stimulus presentation, we added a 
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noise that has equal energy in each equivalent rectangular band (Moore and Glasberg, 

1996) at a level of 40 dB below the tones in order to minimize the effect of different 

thresholds for different frequencies, inter-participant difference in hearing threshold, and 

the transfer function of the headphones. Subjects were able to adjust the loudness of the 

sounds at 70 to 80 dB SPL that were delivered binaurally via an MR-compatible high-

fidelity headphone (MR Confon). 

2.2.3. Procedure 

 A sparse imaging protocol (Belin et al., 1999; Hall et al., 1999) with 9-second 

long repetition time (TR) was applied (Figure 2.1). A block consisted of 4 epochs 

(corresponding to 4 TR’s), each of which lasted for 9 seconds. During the initial 2 epochs 

of a block, a pure tone in one of the 8 frequency conditions was presented. Each epoch 

started with 4 seconds of stimulus presentation, followed by 1 second of image 

acquisition, and then 4 seconds of silence. Thus, the noise due to the functional image 

acquisition did not interfere with hearing the tone stimulus. The 2 epochs with pure tone 

sound presentation were followed by silence that lasted for the remaining 2 epochs. A 

long duration (18 sec) of silence was inserted in order to minimize the fMRI response 

undershoot effect between stimulus blocks (Hu et al., 2010; Olulade et al., 2011). Each 

frequency condition was presented 10 times for each run of functional imaging and each 

subject underwent two runs. The order of stimuli was pseudo-randomized with balanced 

transition probability. The subjects were instructed to passively listen to the stimuli while 

watching a silent nature documentary. 

2.2.4. Imaging protocol 

 An echo-planar imaging sequence (gradient echo; repetition time: 9 seconds; echo 

time: 36 ms; flip angle: 90°; in-plane resolution: 1.5 x 1.5 mm2; slice thickness: 2.5 mm; 

field of view: 192 mm) was used to acquire functional images on a 3 Tesla scanner (Trio, 

Siemens). The total number of volumes per subject was 322 including 1 initial dummy 

volume. Thirteen slices were oriented parallel to the lateral sulcus to cover Heschl’s 

gyrus, planum temporale, planum polare and the superior temporal gyrus and sulcus. A 

high resolution (1 x 1 x 1 mm3) MPRAGE image that covered the whole brain was 
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acquired for each subject in the same session for anatomical registration. 

 
Figure 2.1. Stimulus presentation and fMRI sparse sampling. 

Functional images were acquired every 9 seconds. Within a block of 4 acquisitions, each 

of the first two acquisitions was preceded by a 4-second stimulus sequence (pure tones 

187 ms in duration presented every 250 ms). Frequency conditions of the pure tones were 

randomly changed across blocks as indicated herein as f4, f2 and f7 which correspond to 

573.8, 338.8, and 4723.1 Hz. 

 

2.2.5. Data preprocessing and the estimation of preferred frequency of voxels 

 Functional imaging data were preprocessed and the general linear model (GLM)-

based estimation of response to the tone stimuli was conducted using SPM2 

(www.fil.ion.ucl.ac.uk/spm). Preprocessing included motion-correction and high-pass 

filtering. No additional spatial smoothing or stereotaxic normalization was applied to 

minimize spatial autocorrelation. The gray matter (GM), the white matter (WM) and the 

cerebrospinal fluid were segmented using the segmentation tool of SPM2 (Ashburner and 

Friston, 1997). The segmented tissues were used to define the voxels/regions of interest 

and estimate correlations as a function of inter-voxel distance (See below). High-

resolution anatomical images were aligned with the functional images to be displayed in 

Figure 2.2.  

 Eight frequency conditions were taken into account in the GLM analysis. A 

boxcar model was used to account for hemodynamic responses in a long-TR sparse 

acquisition. After estimating response amplitude as regression coefficients, F-contrast 

was applied to detect pure-tone-responsive voxels (F-test, p<0.05, uncorrected). A 

rounded exponential function, which is a Gaussian-like bell-shaped function, was fit as a 

http://www.fil.ion.ucl.ac.uk/spm/
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frequency tuning function (Rosen and Baker, 1994) to the response amplitudes of each 

voxel to estimate their preferred frequency. The form of the fitting function was

|||)|1( mxemxkay  , where y  is the response amplitude for 8 frequencies, x  is the 

vector of log-transformed frequencies and the preferred frequency was parameterized by 

m. Accordingly, the preferred frequency of each voxel was selected at the peak of the 

function. Note that the 8 linear-scale frequencies (200, 338.8, 573.8, 971.9, 1646.2, 

2788.4, 4723.1 and 8000 Hz) were corresponded to integers from 1 to 8 in the log scale 

and the preferred frequency estimate was bounded at 0.5 and 8.5 in the log scale 

(correspondingly at 153.7 Hz and 10412 Hz in the linear scale of frequency). The 

preferred frequency of the voxels that had non-significant level of goodness-of-fit (F-test, 

p>0.05; 17.12% [SD=0.01] of voxels) was replaced with the measure of the center of 

mass of the amplitudes: the amplitude was averaged with the log-transformed frequency 

values weighted. 

2.2.6. Selection of voxels and the definition of the core-fields and the non-core-fields 

areas 

 Upon choosing the pure-tone responsive voxels and estimating their preferred 

frequency, we defined the core-fields and the non-core-fields areas. The border of core-

fields area was identified based on tonotopic gradient and multivariate pattern 

classification under the assumption that the core fields are more sensitive to pure-tone 

stimuli than the non-core, as determined in a previous study (Schönwiesner et al. 2014 for 

further details). This method utilizes the support vector machine technique to find the 

boundaries in the imaging data to classify the frequencies. The eight-class frequency 

classification problem was solved by partitioning into pair-wise binary classifications. 

The core-fields area was defined as those voxels in which the classifier predicts the 

frequencies with statistically significant accuracy. The classification accuracy was 

significantly correlated with the response magnitude to pure tones and frequency tuning 

width, which can serve as indicators of response properties of the core-fields area 

according to previous studies (Morel et al., 1993; Rauschecker et al., 1995; Wessinger et 

al., 2001; Petkov et al., 2006; Moerel et al., 2012). The delineation of the core area by 
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this method was generally in agreement with the results of the probabilistic 

cytoarchitectonic maps (Morosan et al., 2001; Rademacher et al., 2001). Also, this same 

method identified the core-fields in macaque monkeys that overlap with previous 

parcellation of AC in the same data (Petkov et al., 2006). Only the voxels that had p-

values below 0.05 and reside in the segmented gray matter were included in the present 

study. The gray matter, the white matter (WM) and the cerebrospinal fluid were 

segmented using the segmentation tool of SPM2 (Ashburner and Friston, 1997).  

 The voxels of non-core areas were identified by searching for significantly 

activated voxels in the gray matter starting from the edge of the core areas: the search 

algorithm incorporated the surrounding voxels in the 3-dimensional space until it could 

not find any more significantly activated voxels within the gray matter. This procedure 

was chosen under the assumption the belt and the parabelt areas surround the core fields, 

based on the known AC organization in primates (Kaas et al., 1999; Kaas and Hackett, 

2000; Hackett, 2011). Figure 2.2A shows a representative subject’s voxels of interest 

marked as core and non-core areas in three selected slices.  

2.2.7. Residual functional connectivity and its frequency selectivity in the auditory 

cortex 

 Voxel-by-voxel FC was computed as temporal correlation (Pearson’s correlation 

coefficient) of the residual fMRI signal of each voxel after regressing out the model 

responses predicted by the stimulus (hereafter 'residual' FC). For each pair of voxels, 

correlation coefficients obtained from two runs were averaged. To ensure linearity, 

correlation coefficients were transformed to Fisher's z-score, and then averaged and 

transformed back to correlation coefficients.  

 FC was analyzed by pairing voxels at two levels: a hemisphere level and an area 

level. At the hemisphere level, we paired voxels either from one hemisphere (L-L: within 

the left hemisphere; R-R: within the right hemisphere) or across the hemispheres (L-R: 

between the left and the right hemispheres, see Figs. 3 to 7). At the area level, voxels 

were paired within an area or between areas, either within or between hemispheres. In 

Figure 2.8, 'LC' represents the core area in the left hemisphere; 'RC', the right core; 'LN', 
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the left non-core; and 'RN', the right non-core area. The label of a pair of the same area 

such as 'LC-LC' refers to the case where the seed and the target voxels were drawn from 

the same area. In this way, six pairs of areas were defined within hemispheres (Figure 

2.8A) and four pairs of areas were defined between hemispheres (Figure 2.8B).  

 FC as a function of preferred frequency in Figures 2.3 to 2.5 was obtained by a 

grid method with respect to preferred frequency of seed and target voxels: FC between a 

given voxel (seed voxel) and the remaining voxels (target voxels) was sorted by the 

preferred frequency of target voxels and then the resulting voxel-wise FC data of each 

seed voxel as function of preferred frequency of target voxels was grouped with respect 

to preferred frequency of seed voxels. The seed and target voxels were chosen either 

from the same hemisphere or from different hemispheres, depending on the analysis 

condition. Note that preferred frequency is expressed on a log-scale that ranged from 0.5 

to 8.5 (from 153.7 Hz to 10412 Hz; See the above description in Methods). 

 In order to examine patterns of FC related to selectivity but irrespective of the 

preferred frequency of any given voxel, we merged frequency selectivity of FC across 

multiple seed voxels regardless of their preferred frequencies, by sorting FC data as a 

function of difference of preferred frequencies on a log-scale (Δ preferred frequency) 

(Figure 2.2C and 2.2D). The data were binned with bin edges of 0, 0.5, 1, 2, 4 and 8, in 

order to ensure reliable estimations of average FC even at larger Δ preferred frequencies 

where we have fewer data points. The binned data were averaged across subjects (Figure 

2.3C, 2.5B, 2.6C, 2.7 and 2.8). Page's trend test was applied to test whether frequency 

selectivity is statistically significant. L-scores were transformed to χ2 scores to compute 

p-values (Page, 1963).  
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Figure 2.2. Preferred frequency map, FC map, and voxel-by-voxel FC as a function 

of preferred frequency. 

Preferred frequency maps of three slices (in-plane; z=7, 8 and 9) in a representative 

participant (top) and corresponding FC maps of three seed voxels (bottom). Top: Closed 

curves indicate the core-fields regions and black crosshairs locate the three seed voxel 

locations in each slice. Bottom: FC in each panel is computed by correlating the residual 
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activity of the seed voxel and the remaining (target) voxels. B. Voxel-by-voxel FC as a 

function of preferred frequency from each slice in the three columns. Gray dots mark FC 

of every pair of voxels in each slice and black curves are the average of preferred 

frequency binned with 1-octave width. Red vertical lines indicate the preferred frequency 

of the seed voxels. C. Voxel-by-voxel FC as a function of difference in preferred 

frequency (Δ preferred frequency) for each slice in the three columns. The consequence 

of taking Δ preferred frequency is that the preferred frequency of all seed voxels is 

aligned to 0 (red vertical lines). Black curves indicate the average of each bin of Δ 

preferred frequency). D. Pooled data from the three slices. The FC of individual pairs was 

pooled and binned. Note that this figure shows only the scheme of the method with three 

exemplary seed voxels. 

 

2.2.8. Correction of inter-voxel distance bias 

 Possible biases due to the point-spread of fMRI signals (Engel et al., 1997) and 

the generic FC that extends over large distance in the cortex (Leopold et al., 2003; Bellec 

et al., 2006; Honey et al., 2009; Schölvinck et al., 2010) were corrected by subtracting FC 

due to inter-voxel distance in the following way: We first correlated the residual fMRI 

signals between the voxels in gray matter regions, excluding auditory cortex. We then 

selected voxels with the lowest 5% F-values in the GLM analysis with the aim to exclude 

any remaining pure-tone-responsive voxels outside auditory cortex. We then computed 

voxel-by-voxel correlations between the time courses of these voxels and binned the 

results along inter-voxel distance with width of 1.5 mm (the in-plane resolution of the 

functional data). We subtracted this FC estimate from the measured FC in auditory cortex 

to obtain distance-corrected FC (Figure 2.6). 

2.2.9. Resting-epoch FC and testing confounding of stimulus effect 

 As an alternative measure of intrinsic FC that does not depend on the incoming 

stimulus, FC was also computed by correlating residual activity that was taken from the 

4th TR of every block (every 36 seconds), which is referred to as ‘resting epochs’ (Fair et 

al., 2007). The acquisition time of 4th TR is relatively far (18 seconds) from the 

preceding stimulation, and we would expect only minimal effects of the stimulation on 

the fMRI signal, because hemodynamic response functions are typically close to zero at 

this point (Hu et al., 2010; Olulade et al., 2011). To rule out any possibility that delayed 
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hemodynamic responses to the stimulus still affected the signal in resting epochs, we 

additionally regressed out the stimulus effect from the resting-epoch time series. For this 

purpose, we applied a GLM that predicts stimulus-induced responses according to the 

frequency of the sounds given in each block, and subtracted the predicted time course 

from the resting-epoch time course. The frequency selectivity of resting-epoch FC with 

and without the stimulus-effect regressed out was tested in the same way as the residual 

FC (Figure 2.7).  

2.2.10. Comparison of frequency selectivity between areas 

 In order to compare frequency selectivity of FC from one area to another, 

frequency selectivity of FC was first quantified by computing the slope of a linear 

function fit to FC as a function of Δ preferred frequency. A higher value thus reflects a 

steeper slope of the function, indicating higher selectivity. We tested whether frequency 

selectivity of FC in one area is higher than in another by a permutation test: we re-

sampled the frequency selectivity (the negative slope of linear fit) with replacement out 

of 7 subjects 1000 times for each area and permuted the area membership to obtain the 

sampling distribution under the null hypothesis. A p-value for the difference in frequency 

selectivity in the sample mean was then computed.  

2.3. Results 

2.3.1. Preferred frequency selectivity of functional connectivity in the human auditory 

cortex 

 Voxel-by-voxel FC in the human auditory cortex was found to depend on the 

similarity of the preferred frequencies of voxels (Figure 2.2 and 2.3). Figure 2.2A shows 

a representative subject’s tonotopy maps based on the preferred frequency of the voxels 

of interest (Figure 2.2A, top), and the maps of FC between a voxel (seed voxel; cross-

hair) and the remaining (target) voxels (Figure 2.2A, bottom). The FC of the three 

exemplary seed voxels is plotted as a function of preferred frequency of the target voxels 

in Figure 2.2B. This voxel-by-voxel FC is then re-sorted as a function of preferred 

frequency difference between the seed and the target voxels as shown in Figure 2.2C. 
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This sorting allows us to pool FC of all pairs of voxels, irrespective of preferred 

frequency (Figure 2.2D).  

 Figure 2.3 demonstrates that frequency selectivity of FC is present in the averaged 

data across participants, both within hemispheres (i.e. when seed and target voxels were 

chosen within a hemisphere (LL: within the left hemisphere; RR: within the right 

hemisphere) and across hemispheres (i.e. when seed and target voxels were chosen in 

different hemispheres, LR). Voxel-by-voxel FC was binned with respect to the preferred 

frequencies of seed and target voxels to be presented as a matrix (Figure 2.3A) and as a 

family of curves (Figure 2.3B). High FC is in general observed along the diagonal of the 

matrices in Figure 2.3A, indicating higher FC between voxels with similar preferred 

frequencies. This pattern is also reflected in the peaks of FC in Figure 2.3B when seed 

and target voxels have the same preferred frequency. Note that the roles of seed and 

target voxels can be exchanged because FC does not contain directionality information. 

In Figure 2.3C, voxel-by-voxel FC was pooled and binned as a function of difference in 

preferred frequency (Δ frequency) between the correlated voxels to reveal that FC 

decreases as Δ frequency increases. Page's trend test indicated that the gradual decrease 

of FC as a function of Δ frequency is statistically significant for the three conditions of 

hemisphere pairs (LL: L=383, χ2=26.42, p<0.0001; RR: L=385, χ2=28.00, p<0.0001; LR: 

L=383, χ2=26.42, p<0.0001). These results hold for each tested individual: FC was found 

to be frequency-selective in all individual participants (Figure 2.4), and the correlation 

between voxel-by-voxel FC and Δ frequency was significant in each participant in the 

within/between hemisphere conditions (p<10-6 for all cases).  
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Figure 2.3 Frequency-selective FC within and between hemispheres. 

A. FC matrix as a function of preferred frequency of the seed and target voxels. Preferred 

frequencies were binned in 1 octave steps. Left (L-L): FC of the voxels within the left 

hemisphere; center (R-R): FC within the right hemisphere; right (L-R): FC between the 

hemispheres. B. FC as a function of preferred frequency of target voxels. Each of the 

eight curves corresponds to averaged data across seed voxels that prefer similar 

frequencies of 1 octave range. Error bars are shown only at the data points of preferred 

frequency of seed voxels for clarity. Note that each curve in B corresponds to each row of 

the matrix that is aligned along the column. Error bars represent 1 STE of the mean 

across subjects. C. FC as a function of difference in preferred frequency (Δ preferred 

frequency). In B and C, each column corresponds to the ones in A. These graphs indicate 

that inter-voxel FC is higher for voxels with more similar frequency tuning. 
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Figure 2.4. FC as a function of difference in preferred frequency within and between 

hemispheres in individual participants. 

Data from the seven individual participants are plotted in the same format as Fig. 3C. All 

seven individuals clearly show decreasing FC as a function of increasing distance of 

voxel frequency preference. 

2.3.2. Inter-voxel-distance-corrected FC 

 Because of the tonotopic organization of auditory cortex (i.e., neurons with more 

similar frequency preference tend to be more closely located to one another), frequency 

preference of voxels would tend to be correlated with inter-voxel distance. FC is also in 

general correlated with physical distance between paired areas or voxels (Salvador et al., 

2005; Bellec et al., 2006; Honey et al., 2009) due to spatial smoothing of fMRI signals, 

point spread of fMRI BOLD signal (Engel et al., 1997) and/or the generic FC over the 

cortex whether local or global (Leopold et al., 2003; Honey et al., 2009; Schölvinck et al., 

2010). Therefore, the observed frequency-selective FC could have been only a byproduct 

of these two correlations (correlation between frequency preference and inter-voxel 

distance and that between inter-voxel distance and FC). To ascertain that the correlation 

of FC with preferred frequency was not fully explained by the correlation of FC with 

distance, we corrected the FC with respect to inter-voxel distance. 
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Figure 2.5. Inter-voxel distance effect. 

Temporal correlation of residual activity as a function of inter-voxel distance in the pure-

tone sensitive ROIs (ROIs; black), the gray matter outside the auditory ROIs (GM; dark 

gray) and the white matter (WM; light gray). Error bars represent 1 STE across subjects. 

B. FC in the ROIs predicted by inter-voxel distance in the GM. The inset shows the FC 

matrix as in Figure 3A. 

 

 We first confirmed that the temporal correlation of fMRI residual signals within 

the auditory ROI and also outside of the ROI (in the remaining gray and white matter) are 

dependent on inter-voxel distance (Figure 2.5A). The white matter shows the sharpest 

decay as a function of distance. The spatial extent (~3 mm) implies that the correlation 

observed in the white matter is presumably due to spatial smoothing effect in fMRI 

acquisition and motion correction rather than correlations in neural activity. In contrast, 
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the gray matter has a less steep decay function, which is consistent with previous 

interpretations that this function reflects local and global correlation in neural activity 

(Leopold et al., 2003; Schölvinck et al., 2010). The correlation in non-auditory regions of 

gray and white matter decayed to zero for distances of less than 30 mm, whereas that in 

the auditory ROIs reached an asymptote at a non-zero, positive value. This indicates that 

local FC in the auditory cortex is higher overall than the spatial extent of global FC in the 

rest of the gray matter, which in turn implies that there is auditory cortex-specific FC in 

addition to generic correlation in on-going fMRI activity over the entire cortex.  

 
Figure 2.6. Distance-corrected functional connectivity. 

Distance-corrected frequency-selective FC within the left hemisphere (L-L), within the 

right hemisphere (R-R) and between the hemispheres (L-R) is plotted in the same format 

as in Figure 3. The distance effect is corrected by subtracting the FC predicted by the 

distance in the gray matter from the original FC. The pattern of corrected results is 



52 
 

similar to the principal effects shown in Fig 3. 

 

 As a second verification that distance does not explain the observed FC in 

auditory cortex, we predicted FC that would have been observed if the generic correlation 

in the gray matter had completely explained the frequency selectivity of FC in the 

auditory cortex. We did so by assigning the correlation values in the gray matter to the 

voxels in the auditory ROIs that have equivalent inter-voxel distance. The FC predicted 

on this basis showed a weak but significant frequency selectivity within hemispheres, but 

not between the hemispheres, since inter-hemispheric distances are much larger than 30 

mm, where the correlation in the gray matter voxels decays away (Figure 2.5B; LL: 

L=385, χ2=28.00, p<0.0001; RR: L=385, χ2=28.00, p<0.0001; LR: L=334, χ2=0.50 

p=0.096). The small but significant frequency selectivity in the predicted FC within 

hemispheres could bias our findings, so we corrected this potential problem by 

subtracting the predicted FC values based solely on distance from the measured FC 

values. The corrected FC was still frequency-selective within and between hemispheres 

(Figure 2.6; LL: L=382, χ2=26.65, p<0.0001; RR: L=385, χ2=28.00, p<0.0001; LR: 

L=383, χ2=26.43, p<0.0001), indicating that the distance effect is not sufficient to account 

for the frequency selectivity.  

2.3.3. Stimulus effect and resting-epoch FC 

 Although we subtracted the predicted response accounted for by the stimulus 

from the fMRI response, a stimulus effect might still remain due to incomplete model fit. 

To control for this possibility, we used only the residual fMRI activity from the 4th TRs 

of each block. The activity captured in these TRs can be considered as resting or on-

going activity rather than stimulus-driven activity since it is collected 18 seconds after the 

previous stimulus presentation. The frequency selectivity of this ‘resting-epoch FC' was 

significant for all the within- and between-hemisphere conditions (Figure 2.7A; LL: 

L=382, χ2=25.65, p<0.0001; RR: L=384, χ2=27.21, p<0.0001; LR: L=383, χ2=26.42, 

p<0.0001). Furthermore, we regressed out again the model responses to stimulus 

conditions from the resting-epoch time series in order to remove any remaining effect of 

the preceding stimulus condition. FC using the baseline activity with the stimulus effect 
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regressed out was still frequency-selective (Figure 2.7B; LL: L=377, χ2=21.97, p<0.0001; 

RR: L=384, χ2=27.21, p<0.0001; LR: L=382, χ2=25.65, p<0.0001).  

 

 
Figure 2.7. Frequency-selective FC in resting epochs. 

A. FC in resting epochs as a function of difference in preferred frequency (Δ preferred 

frequency). B. FC in resting epochs as a function of Δ preferred frequency after 

regressing out stimulus conditions. Note that only the fourth TRs of the blocks were used 

to compute FC. The pattern obtained in the resting epochs replicates that observed in the 

other conditions. 

 

2.3.4. Frequency selectivity of FC in the core and the non-core fields, and hemispheric 

differences 

 Upon confirming frequency selectivity of FC in the auditory cortex within and 

between hemispheres, including with inter-voxel distance and the stimulus effect 

controlled, we next tested frequency selectivity of FC in the core and the non-core areas 

separately. We divided these areas to obtain 6 different pairs of areas within the 

hemispheres (Figure 2.8A) and 4 pairs between the hemispheres (Figure 2.8B). The 

results show that there is significant frequency selectivity for every pair (LC-LC: L=349, 
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χ2=6.61, p<0.05; RC-RC: L=383, χ2=26.42, p<0.0001; LN-LN: L=381, χ2=24.89, 

p<0.0001; RN-RN: L=358, χ2=28.00, p<0.0001; LC-LN: L=375, χ2=20.57, p<0.0001; 

RC-RN: L=382, χ2=25.65, p<0.0001; LC-RC: L=362, χ2=12.62, p<0.0005; LN-RN: 

L=384, χ2=27.21, p<0.0001; LC-RN: L=371, χ2=17.92, p<0.0001; RC-LN: L=383, 

χ2=26.42, p<0.0001). Therefore, FC in the auditory cortex is frequency selective within 

and between areas, both within and between the hemispheres.  

 
Figure 2.8. Frequency-selective FC in within and between core and non-core fields. 

FC is plotted as a function of difference in preferred frequency of voxels (Δ frequency) 

within and between the core and non-core fields within the hemispheres (A) and between 

the hemispheres (B). Note the steeper slope of the function corresponding to voxels 

within the right core region, compared to all the rest. 

 

 We then investigated whether the degree of frequency selectivity of local FC 

differs between core vs non-core areas, and whether it differs between left and right 

hemispheres.We quantified frequency selectivity as the negative slope of a linear function 

fit to FC data as a function of Δ (preferred) frequency for the four areas (LC, RC, LN and 

RN), shown in Figure 2.9A. Permutation tests indicated that FC in the right core area had 

a higher frequency selectivity than the left core (p<0.05; also, Wilcoxon signed-rank test: 

W=27.0, p<0.05), and than the non-core in the same hemisphere (permutation test: 

p<0.05; Wilcoxon signed-rank test: W=28.0, p<0.05). There was no difference between 

the non-core areas of the two hemispheres (permutation test: p=0.29; Wilcoxon signed-
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rank test: W=18.0, p=0.29) or between the two areas within the left hemisphere 

(permutation test: p=0.32; Wilcoxon signed-rank test: W=17.0, p=0.344). The same 

analysis applied to the resting-epoch FC with the stimulus effect regressed out 

(corresponding to the data in Figure 2.7B) showed a similar pattern (Figure 2.9B) 

although the statistical significance was marginal (RC vs. LC: p=0.08; RC vs. RN: 

p=0.11; RN vs. LN: p=0.24; LC vs. LN: p=0.63). Thus, the right core field has higher 

frequency selectivity in its within-area FC than the other areas, notably its homologue in 

the left hemisphere. 

 
Figure 2.9. Comparison of within-area FC between areas. 

Frequency selectivity of residual FC within four ROIs (LC: left core; RC: right core; LN: 

left non-core; and RN: right non-core). B. Frequency selectivity of resting-epoch FC 

within four ROIs (LC: left core; RC: right core; LN: left non-core; and RN: right non-

core). The frequency selectivity is highest for the right core compared to the other 

regions. 

 

2.4. Discussion 

 Our study is, to our best knowledge, the first attempt to link intrinsic FC and 

frequency selectivity in the human auditory cortex. Our findings demonstrate that 

intrinsic FC measured with fMRI in human auditory cortex is organized in accordance to 

frequency preference of voxels. Residual and resting epoch activity in voxels with similar 

frequency preferences was more strongly correlated than in voxels with dissimilar 

frequency preferences. This correlation was not explained by generic FC in the activity of 

the gray matter voxels, or by residual stimulus effects. Furthermore, we observed that the 
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intrinsic FC is significantly stronger within the core fields of the right hemisphere as 

compared to the left core, or the right non-core fields. 

2.4.1. Frequency-selective FC in the auditory cortex and relation to prior studies 

 The existence of frequency selectivity of intrinsic FC in the human auditory 

cortex is in line with findings in other human sensory/motor cortices and non-human 

auditory cortex. Given the topographic organization of frequency preference (Merzenich 

and Brugge, 1973; Romani et al., 1982; Morel et al., 1993; Wessinger et al., 2001), 

frequency-selective FC is the auditory analog of topographically-organized FC 

previously found in the visual and somatosensory/motor cortices. In the visual cortex, 

retinotopy-specific FC was observed between early visual areas and ipsilateral and 

contralateral MT regions in the monkey (Vincent et al., 2007), and between early visual 

areas (Heinzle et al. 2011; Haak et al. 2012). Somatotopy-specific spatial organization of 

intrinsic FC was also found in the motor cortex of the human and in the somatosensory 

cortex of the squirrel monkey (van den Heuvel and Hulshoff Pol, 2010; Cauda et al., 

2011; Chen et al., 2011). It is notable that in these studies, resting-state fMRI activity was 

used for computing FC, and thus the measured FC is intrinsic and not explainable by 

stimulus input or motor output. Although we used residual activity instead of using 

resting-state data, previous literature and our own analysis strongly suggest that the FC 

we measured is intrinsic. There is considerable evidence that residual fMRI activity is 

highly correlated with spontaneous activity (Fox et al., 2006b, 2007; Saka et al., 2010; 

Becker et al., 2011). In line with these previous findings, we empirically demonstrated 

that our residual FC was intrinsic and not accounted for by stimulus-driven activity, and 

an additional regress-out did not remove frequency-selective pattern of FC (Figure 2.7; 

See below for further discussion). Therefore, our results supplement evidence for a 

unifying proposal that intrinsic FC in the cerebral cortex is spatially organized with 

respect to sensory/motor tuning properties and/or their topographic organization (Jbabdi 

et al., 2013). 

 Our findings of frequency-selective FC are also consistent with those in 

electrophysiological studies in the non-human animal auditory cortex. Brosch and 
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Schreiner (1999) found that correlation in spontaneous neural activity is strengthened as a 

function of similarity in receptive field properties in the cat primary auditory cortex. In 

guinea pigs, spontaneous activity was shown to have similar spatiotemporal patterns with 

tone-evoked activity (Saitoh et al., 2010). Rothschild et al. (2010) also reported 

frequency-selective coherence in both residual activity and on-going spontaneous activity 

in mice, which is closely related to our paradigm: both correlation in residual neural 

activity during tone-stimulation and correlation in on-going activity taken from pre-

stimulation time windows increased when the correlated neurons had similar frequency 

selectivity. Finally, Fukushima et al. (2012) demonstrated tonotopy-specific FC in 

spontaneous activity in macaque monkeys in resting-state data. Using micro-

electrocorticographic arrays, they were able to find that the spatial pattern of high-

gamma-band voltage signals is coherent with the characteristic frequency maps along the 

supratemporal plane of the lateral sulcus. Considering that fMRI signal is not only 

correlated with evoked neural activity (Logothetis et al., 2001) but also is related to 

spontaneous activity, and that very slow fluctuations of gamma-band power in 

electrophysiological signals are correlated with spontaneous fMRI activity (Leopold et 

al., 2003; Nir et al., 2008; Shmuel and Leopold, 2008; Schölvinck et al., 2010), our 

findings of frequency selectivity in residual and ongoing fMRI activity are consistent 

with those in previous animal studies. 

2.4.2. Functional role of functional connectivity in stimulus encoding 

 While the functional role of frequency-selective FC, or feature-selective FC in 

general, is yet unclear, the importance of temporal coherence in activity of sensory 

neurons has been discussed with respect to population coding and decoding of stimulus 

features (Fries, 2005; Kohn and Smith, 2005; Averbeck and Lee, 2006; Pillow et al., 

2008; Stevenson et al., 2012). For example, Stevenson et al. demonstrated that the 

activity of neurons simultaneously recorded in various cortical areas can be better 

predicted by a stimulus encoding model that incorporates FC, measured as trial-to-trial 

correlations (‘noise’ correlations), than a model that accounts only for tuning functions. It 

is notable that in their study the correlations between neurons increased with tuning 
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similarity, which is consistent with the present data. Incorporation of FC not only 

improved prediction accuracy in encoding, but also accuracy in decoding the presented 

stimuli. In other studies, behavioral performance of animal subjects was also related to 

trial-to-trial fluctuations and correlations in spiking activity (Bair et al., 2001; Pesaran, 

2010). Despite the difference in measurement, trial-to-trial fluctuations or spontaneous 

fluctuations in fMRI signals seem to have similar functional significance as the 

aforementioned neurophysiological data for three reasons (See Kohn et al. 2009): Firstly, 

fast fluctuations observed in spiking activity or field potentials are nested in slow BOLD 

fluctuations as discussed above; secondly, trial-to-trial fluctuations or spontaneous 

fluctuations in fMRI signals are also predictive of behavioral performance (e.g., Fox et al. 

2007; Monto et al. 2008), and perception (e.g., Boly et al. 2007); and finally, recent 

successes of using multi-voxel encoding and decoding models in fMRI analysis in 

predicting neural activity and behaviors indicate the importance of temporal coherence 

(covariance) information between voxels (Naselaris et al., 2011; Serences and Saproo, 

2012). Therefore, correlations in residual activity and resting-epoch activity are likely to 

have functional significance in encoding and decoding stimulus features. The role of FC 

in processing of stimulus features is important to interpreting our results with respect to 

functional hierarchy and asymmetry, as discussed below. 

2.4.3. Controlling for inter-voxel distance and stimulus effects 

 Considering the topographic organization of frequency selectivity in the cortex, 

the relationship between FC and frequency preference that we observed in our data could 

have been caused by an artifact due to point spread of fMRI signal (Engel et al., 1997; 

Parkes et al., 2005), or spatial extent of generic FC that might not be specific to 

frequency selectivity (Young et al., 1992; Leopold et al., 2003; Bellec et al., 2006; Honey 

et al., 2009; Schölvinck et al., 2010). The data presented in Figures 2.5 and 2.6, however, 

do not support this interpretation. Firstly, the spatial extent of correlation in the non-

auditory gray matter is still shorter than that in the auditory ROIs, which suggests that the 

FC in the ROIs has an additional component beyond this generic FC. Secondly, the 

distance between the hemispheres (Figure 2.5A) is well beyond 25 mm, the point at 
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which the FC in the non-auditory gray matter reaches zero-asymptote, but we still 

observed significant interhemispheric FC. Furthermore, we regressed out the portion of 

FC that could be explained by the spatial function of the generic FC in the non-auditory 

gray matter to remove any bias in estimation of frequency selectivity in FC, and the 

corrected FC was still frequency-selective (Figure 2.6). We therefore conclude that the 

observed frequency-selective FC is not due to artifacts related to spatial smoothness of 

fMRI or generic FC. 

 Another possible confounding factor could have arisen from stimulus-driven 

effects. The residual activity used to compute FC in our study is not supposed to be 

correlated with stimulus effects if the GLM is a feasible statistical method, since it 

assumes independence between the explanatory variables and the error. Nevertheless, 

there might be residual stimulus effect due to non-linearity in hemodynamic response or 

any systematic error in model fitting. For this reason, we tested frequency selectivity of 

FC based on the calculation of correlations in the 4th TRs of each block of the residual 

time-series. The gap between the offset of the preceding stimulus and the 4th TR is 18 

seconds so that these time points would reflect on-going spontaneous activity that is 

lurking under evoked responses (Fox et al. 2006; Saka et al. 2010; Becker et al. 2011; See 

the discussion above). We found that the FC computed using the data in this time window 

is still frequency-selective (Figure 2.7). This result is in agreement with Rothschild et al. 

(2010)’s results where FC in residual activity during stimulus presentation (as our 

residual FC data) and on-going activity in pre-stimulus time windows (as our resting 

epoch FC data) are both frequency-selective.  

 Fair et al. (2007) addressed whether residual fMRI activity and activity taken 

from inter-leaved resting epochs in evoked response experiments can act as a surrogate 

for conventional resting-state data. Their analysis showed that FC using residuals of an 

event-related fMRI dataset has qualitatively similar but quantitatively different 

topography from resting-state FC, whereas fMRI activity taken from inter-leaved resting 

epochs between stimulations provides quantitatively similar patterns with FC from 

continuous resting-state scans. Moreover, the regions that showed significant correlations 

in the event-related dataset but not in the resting-state dataset overlapped with the regions 
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that were activated by the task. This might be caused by remnants of task effects or 

inconsistency in the pattern of intrinsic FC during task performance and at rest. 

According to Fair et al., our results of frequency selectivity in residual FC might be 

confounded by the stimulus effects or might reflect a different pattern of FC than that of 

resting-state FC. However, our analysis of resting epoch data suggests that the FC 

measures we used in this study would be comparable to that of continuous resting-state 

scans, and thus intrinsic (Figure 2.7). Furthermore, the additional regress-out procedure 

indeed removes any bias or error due to poor fitting of the hemodynamic response within 

a block since only one frame per block was taken (Fig 7B). 

2.4.4. Implications of frequency-selective FC for the functional architecture of human 

auditory cortex 

 Our findings of frequency selectivity of intrinsic FC are closely related to three 

important aspects of human auditory cortex in its functional architecture and information 

processing: frequency-selective connectivity, hierarchical organization, and hemispheric 

asymmetry. First of all, frequency selectivity of auditory neurons has been thought to be 

based on tonotopic or frequency-selective projections that are thalamocortical (McMullen 

and de Venecia, 1993; Hashikawa et al., 1995; Miller et al., 2001; Kimura et al., 2003; 

Lee et al., 2004a), corticocortical (Read et al., 2001; Lee et al., 2004a) and commissural 

(Code and Winer, 1985; Rouiller et al., 1991; Lee et al., 2004a). While tonotopic 

organization in the human auditory cortex has been well documented (Romani et al., 

1982; Formisano et al., 2003; Talavage et al., 2004; Humphries et al., 2010; Saenz and 

Langers, 2014), anatomical connectivity in human brains has rarely been studied due to 

the methodological limits. Considering that the pattern of intrinsic FC is likely 

constrained by anatomical connectivity (Fox and Raichle, 2007; Vincent et al., 2007; Van 

Dijk et al., 2010), frequency-selective FC in our results suggests that anatomical 

connectivity in the human auditory cortex is also frequency-selectively organized, in 

accordance with evidence from diffusion imaging (See Upadhyay et al. 2007).  

 In the framework of hierarchical processing (Rauschecker, 1998; Kaas et al., 

1999; Wessinger et al., 2001; Kumar et al., 2007; Rauschecker and Scott, 2009), sensory 
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features represented in the cortex become more complex and integrative in the later 

stages of the processing stream. This principle predicts that frequency tuning becomes 

wider and less selective as the order of hierarchy increases. How do our results relate to 

the difference in frequency selectivity in terms of response amplitude between cortical 

processing levels? One simple hypothesis is that the emergence of sharp tuning functions 

is dependent on local FC within a given area. Conversely, the local FC could be simply a 

byproduct of response amplitudes. Both predict that the selectivity of FC will follow the 

selectivity in response amplitude. In other words, the frequency selectivity of FC in the 

core-fields would be higher than the one in the non-core-fields area. Our results partially 

support this prediction: Only right core-fields area has particularly high selectivity in its 

within-area FC compared to the other areas (Figure 2.8 and 2.9). Also, our control 

analyses in which FC of the resting epochs was used and stimulus effects were regressed 

out (Figure 2.7) rule out the possibility that FC is a simple reflection or a byproduct of 

amplitude structures that emerge locally.  

 Our results may offer an important new conclusion in the context of 

understanding the functional asymmetry of human auditory cortex. Many prior studies 

have suggested that there exists a functional asymmetry favoring the right auditory cortex 

in fine-grained tonal or spectral processing, and the left in temporal processing (Zatorre et 

al., 2002). For example, Zatorre and Belin (2001) demonstrated that cerebral blood flow 

in the right superior temporal gyrus and sulcus was more sensitive to differences in 

spectral separation of a series of pure tones than the left auditory cortex; these findings 

were subsequently replicated with BOLD signal measures (Jamison et al., 2006). The 

general conclusion of right auditory cortex advantage for fine-grained spectral processing 

has been supported by various other studies using related approaches (Patterson et al., 

2002; Zatorre et al., 2002; Schönwiesner et al., 2005; Hyde et al., 2008). The finding of 

greater intrinsic FC in right compared to left core areas adds significantly to this body of 

literature by suggesting a possible mechanism by which functional asymmetries might 

emerge. A given voxel in the right auditory cortex is more likely to be connected to 

another voxel with similar spectral tuning than on the left side; therefore encoding of 

fine-grained spectral information would tend to be enhanced, since neurons with similar 
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tuning properties would be more functionally interconnected to one another. Conversely, 

on the left side, we speculate that the relative lack of such frequency-selective 

connectivity might reflect integration across frequencies, which could instead enhance 

temporal resolution. 

 There is one potential discrepancy, however, between the present data and those 

obtained earlier: whereas the present lateralized effects were limited to the right core 

area, prior studies largely reported asymmetries in non-core regions. For example, 

Schönwiesner et al. (2005) reported that the covariation of spectral complexity and fMRI 

activity was  greatest in the antero-lateral belt on the right superior temporal gyrus; and 

Hyde et al. (2008) identified the right planum temporale to be sensitive to pitch variation 

in a tonal sequence. The particularly high frequency selectivity in FC of the right core 

area rather invites a hypothesis that incorporates both the hierarchical processing model 

and functional asymmetry: highly frequency-selective FC in the right core area may 

contribute to asymmetric responses to tonal variations in the later processing stages. In 

other words, a possible mechanism underlying this effect is that the right core area passes 

finer frequency information formed by temporal coherence to higher-order auditory 

areas. This idea is supported by empirical evidence and theoretical considerations. First 

of all, spectral information processing in the secondary auditory cortex seems to be 

greatly dependent on the primary auditory cortex in non-human animals. Neurons in the 

caudomedial area of rhesus monkeys have their responses abolished after deactivation of 

the primary auditory cortex (Rauschecker et al., 1997). Similarly, deactivation of the cat 

primary auditory cortex yields reduction in response strength and receptive field 

bandwidth for pure tone stimuli in the anterior and the posterior auditory fields (Carrasco 

and Lomber, 2009a, 2009b). Anatomical tracer injection studies in cats and primates also 

imply frequency-selective inputs in the non-core fields that mostly originate from the 

core fields: the non-core fields receive most thalamic inputs from the middle and dorsal 

divisions of medial geniculate complex whose cells are known to be weakly frequency-

selective and the topographically organized inputs from the core areas suggest tonotopic 

organization of the corticocortical inputs (de la Mothe et al., 2006a, 2006b, 2012a, 2012b; 

Hackett, 2011; Lee and Winer, 2011). Also, it has been reported that most cortical 
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connections to the posterior auditory field in the cat originate in the primary auditory 

cortex (Lee and Winer, 2008). These data, taken together suggest that spectral processing 

in the non-core areas in the right hemisphere is dependent on spectral processing in the 

ipsilateral core fields. Considering the role of FC as discussed above, this hierarchical 

organization of auditory cortex and the functional asymmetry of FC in our results support 

the idea that sharp frequency selectivity of FC in the right core area feeds forward to 

enable or support the enhanced spectral processing and the emergence of functional 

asymmetry at the later cortical stages. 

2.4.5. Summary/conclusion 

 Frequency selectivity of auditory neurons in early cortical areas is critical to 

spectral analysis and perception. We demonstrated that intrinsic FC in the human 

auditory cortex is frequency-selective, by correlating residual activity on a voxel-by-

voxel basis. This pattern is neither explained by generic FC that is correlated with spatial 

distance nor by stimulus effects. The data in resting epochs maintained the frequency-

selective FC even after controlling possible residual stimulus effects. Frequency-selective 

FC in the auditory cortex is consistent with the previous studies that suggest intrinsic FC 

is constrained by functional and anatomical organization of the cortex. We also found 

that frequency selectivity of FC was significantly higher in the right core-fields area than 

the left and the non-core areas. This finding suggests that frequency-selective temporal 

fluctuation in the right core-fields has important roles in spectral analysis in higher order 

areas in the right hemisphere, that are already known to be specialized to process 

spectrally complex stimuli compared to the counter-parts in the left. 
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Study 2. Decoding natural sounds in human auditory cortex: joint 

contribution of spectrotemporal tuning and functional connectivity 
 

 The current study is an investigation on functional implications of 

spectrotemporal tuning-specific functional connectivity. Tuning specificity observed in 

study 2 is generalized to population spectrotemporal response fields of voxels. Functional 

significance of functional connectivity is evaluated by means of decoding natural stimuli 

with the information of resting-state functional connectivity or noise correlations. Study 2 

has been prepared as a manuscript for a journal publication, which is here formatted to be 

included in the thesis. 

Abstract 

 Cortical spontaneous activity in sensory cortices has tuning-specific patterns: 

neurons with similar tuning show more coherent activity than neurons with dissimilar 

tuning. This pattern of tuning-specificity can be observed with neuroimaging at the level 

of voxels. Voxels with similar frequency preference in human auditory cortex show 

increased functional connectivity (a measure of correlated activity). It is not known 

whether this result holds for sound features other than frequency, such as spectrotemporal 

modulation rate. The contribution of tuning-specific functional connectivity to the 

representation and processing of sound features is also unclear. Here, we show that 

voxel-wise resting-state functional connectivity is specific to characteristic frequency, 

spectral density, and modulation rate estimated from responses to natural sounds in single 

voxels. Tuning-specificity was consistent between functional connectivity from resting-

state activity and residual activity, but was higher for residual than resting-state activity. 

Tuning-specific functional connectivity from residual activity implies correlated noise, 

which we show is detrimental to decoding when only spectrotemporal tuning functions 

are used and the correlation is ignored for decoding. However, decoding performance 

was improved when resting-state functional connectivity was incorporated to the decoder 

as weight functions to predict trial-to-trial response variations or as covariance estimator 

for maximum likelihood decoding. Our results suggest that coherent spontaneous activity 

contributes to stimulus encoding and decoding.  
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3.1. Introduction: 

 Studies of resting-state functional connectivity (rsFC) using functional magnetic 

resonance imaging (fMRI) have exponentially increased in the last two decades because 

of its implication on understanding large-scale functional integration of the brain (Friston, 

2011). Macroscopic analyses of rsFC have established a principle that regions whose 

functions are similar have correlated activity, even in the absence of a stimulus or task 

(Lowe et al., 1998; Arfanakis et al., 2000; Cordes et al., 2000; Greicius et al., 2003; 

Bellec et al., 2006; Smith et al., 2009). This principle has also become evident on a 

smaller scale within sensory and motor cortex: the pattern of rsFC is correlated with 

topographic sensory representations. Thus, two voxels that have preference for similar 

sensory features would have higher rsFC than otherwise. This pattern has been found in 

retinotopic visual areas (Vincent et al., 2007; Heinzle et al., 2011), somatotopic sensory 

and motor areas (van den Heuvel and Hulshoff Pol, 2009; Cauda et al., 2011). Our 

previous study extended this pattern of findings to tonotopic auditory areas in humans by 

showing voxels that prefer similar frequencies showed temporal coherence in their 

residual activity and resting-epoch activity (Cha et al., 2014). 

 The association between topographically organized sensory representation and 

rsFC is indeed well in line with earlier neurophysiological findings in animals that the 

spontaneous activity of neurons (or populations of neurons) is more correlated when they 

have preferences for similar stimulus features than when they have dissimilar preferences 

(Brosch and Schreiner, 1999; Kenet et al., 2003; Rothschild et al., 2010; Fukushima et 

al., 2012). This correlation is not limited to tuning properties that are topographically 

represented on the cortical surface, but has also been found for non-topographic 

properties, such as orientation selectivity (Kenet et al., 2003). 

 Despite the consistency of these findings, a major question remains: Is this 

tuning-specific coherence in spontaneous activity relevant to sensory processing? One 

possibility is that spontaneous activity influences sensory processing for concurrent 

sensory inputs either by adding the activity to, or interacting with, the sensory input 

signals. Previous human brain imaging studies have shown that spontaneous on-going 

activity preceding a stimulus accounts for trial-to-trial variation in brain responses, i.e., 
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residual activity, and behavioral measures (Fox et al., 2006b; Boly et al., 2007; Fox and 

Raichle, 2007; Hesselmann et al., 2008a, 2008b; Saka et al., 2010; Becker et al., 2011). 

Some of these studies found an interaction between spontaneous activity and evoked 

activity measured as variance reduction in evoked activity (Hesselmann et al., 2008b; 

Sadaghiani et al., 2010). These studies suggest that spontaneous activity contributes to 

information processing underlying perception and action. However, most previous 

studies have only addressed the relation of spontaneous activity and residual activity at a 

regional level, without measuring the detailed patterns of correlations between individual 

voxels and their relation to voxel-level tuning functions.  

 Trial-to-trial response variation, in fact, has a similar pattern to that of rsFC: 

neurons tuned to similar sensory features have more correlated trial-to-trial variability 

(Lee et al., 1998; Bair et al., 2001; Averbeck and Lee, 2003; Kohn and Smith, 2005). 

This similarity can be important to discussion of the functional relevance of rsFC because 

the correlation in response variability, often called ‘noise’ correlation, has a significant 

impact on neural encoding and decoding. For instance, correlated variability can possibly 

be detrimental to coding efficiency especially when assuming the read-out, i.e., decoding, 

process would try to remove noise by averaging activity across neurons without taking 

into account the correlated nature of variability (Abbott and Dayan, 1999; Shamir and 

Sompolinsky, 2004; Averbeck and Lee, 2006). However, information loss can be 

alleviated if the decoding process takes into account the correlation in response variation 

(Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Averbeck et al., 2006; Graf 

et al., 2011). Therefore, one way to evaluate functional relevance of rsFC might be to 

assess if rsFC can be utilized in decoding of neural activity.  

 Here we evaluate the pattern of rsFC in relation to spectrotemporal tuning 

functions and decoding of fMRI responses to natural sounds in human auditory cortex. 

We first extend our previous findings of preferred frequency specificity of functional 

connectivity to the joint spectrotemporal modulation transfer function (MTF) parameters, 

i.e., characteristic frequency, spectral density and modulation rate. Spectrotemporal 

MTFs, equivalent to spectrotemporal response fields, compactly describe the linear 

portion of the relationship between neuronal activity and the spectrotemporal structure of 
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an acoustic stimulus (Kowalski et al., 1996a, 1996b, Depireux et al., 1998, 2001). MTFs 

can be estimated for single unit activity (Kowalski et al., 1996a; Klein et al., 2000; Wu et 

al., 2006; David et al., 2007; Theunissen and Elie, 2014) in animal models, and for single 

voxels in humans using artificial (Schönwiesner and Zatorre, 2009) and natural sounds 

(Santoro et al., 2014). Since neural encoding of spectrotemporal response fields are 

essential to auditory processing not only of simple features but also of complex natural 

stimuli such as speech (Chi et al., 1999, 2005; Santoro et al., 2014), investigation of the 

relation between the rsFC and MTF would be essential to understanding the functional 

contribution of rsFC to spectrotemporal processing.  

 We estimate single voxel spectrotemporal tuning and rsFC to determine whether 

rsFC covaries with spectrotemporal tuning similarity between voxels. If this is the case, 

as we predict, then we could conclude that tuning-specific rsFC might be a generic 

property of auditory cortical neurons, indicating the relevance of rsFC to auditory 

processing. We then assess functional importance of correlations in residual activity and 

spontaneous activity to spectrotemporal encoding and decoding. We demonstrate that 

correlated noise has a detrimental effect to decoding when the decoder ignores the 

correlation, but the decoding performance can be improved, or at most recovered, by 

incorporating rsFC, which indicates functional importance of the pattern of rsFC which is 

consistent with noise correlations. 

3.2. Experimental Procedures 

3.2.1. Participants 

 Thirteen people (8 males, 19–29 years old) with normal hearing participated in 

the study with informed consent. They received monetary compensation for their time 

and effort upon the completion of each experiment session. The MR Research Committee 

and the Ethics Review Board Committee at McGill University approved the experimental 

procedure. 

3.2.2. Stimuli 

 Seventy-two naturalistic, complex sounds of 6 categories were presented to 
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participants in the auditory stimulation MRI experiments. The six categories, each of 

which consisted of 12 sounds, included animal vocalization, human non-speech 

vocalization, speech, natural environmental sounds, artificial objects, and music. The 

stimuli were cut to be 1 s long and their initial and last 250 ms segments were ramped 

using a squared sine function to remove transient onset and offset.  

 Each sound was then simplified in terms of cortical representation of the sound 

according to a spectrotemporal response field model (STRF) described in Chi et al. 

(2005) in order to limit the parameter space of cortical tuning function (See below). To 

achieve the simplification of the sound, the NSL Tools package (http://www. 

isr.umd.edu/Labs/NSL/Software.htm) were used. The model first transform an input 

sound wave function to auditory nerve outputs and then transfers the outputs to the 

responses of hypothetical cortical neurons according to their STRFs.  

 

Figure 3.1. Stimulus preparation and presentation in an interleaved silent steady-

state (ISSS) fMRI protocol 

A. Stimulus preparation. Each of 72 natural sound stimuli (6 categories with 12 sounds 
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each) were reconstructed from a set of selected MTF parameters in order to minimize the 

features that will not be included in the MTF encoding model. A stimulus was 

transformed to cortical spectrotemporal response field model responses in 128 CFs × 4 

SDs × 8 MRs and then reduced to 16 CFs × 4 SDs × 8 MRs (512 resulting parameters). 

The sound was reconstructed using the reduced model responses so to be presented in the 

experiment. B. Stimulus presentation in fMRI. An epoch of fMRI consisted of 4 TRs of 

acquisitions followed by a 2 TR-long silent steady state period during which a 1-second 

long stimulus was presented 3 times.  

 

 The cortical representation model specifies the STRF of a neuron with the 

parameters of characteristic frequency (CF), spectral density (SD) and modulation rate 

(MR) (Figure 3.1B). The cortical response of the model output for a sound served as a 

‘linearizing input’ to an encoding model of fMRI voxel activity (Figure 3.2A; See 

Naselaris et al., (2011) and Wu et al., (2006) as to linearizing input). The CFs correspond 

to a cochlear frequency bank of 128 overlapping bandpass filters that cover 5.3 octaves 

from 180 to 7040 Hz. The spectral density was set to be 0.25, 0.5, 1 and 2 cyc/oct (cycles 

per octave) and the modulation rate was set as ± 2, 4, 8, and 16 Hz. This setting leads to 

the ideal number of parameters of a voxel STRF to be estimated being 4096 (128 × 4 × 

8).  

 To reduce the parameter space, only 16 CFs between 300 to 4000 Hz out of the 

original 128 CFs were subsampled, and the stimuli were reconstructed by the sound 

reconstruction algorithm of the NSL tools package (Chi et al., 2005; Figure 3.1A). The 

resulting number of parameters was 512. The selected CFs ranged from 300 to 4000 Hz, 

equally spaced in the logarithmic frequency space.  

 Each sound stimulus was played to the participant through MR-compatible 

headphones inside the MRI three times in a given trial in the window of a 3.6 s long 

steady-state silent period between clustered MRI acquisitions (Figure 3.1A). To minimize 

adaptation effects, the CF was slightly increased by 0.04 oct through the three 

presentations within a single trial.  

3.2.3. MRI experiments 

 Each participant underwent anatomical and functional magnetic resonance 

imaging on a 3T scanner (Trio, Siemens) in a single session. For anatomical imaging, 
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high-resolution MPRAGE protocol with integrated parallel acquisition (1 × 1 × 1 mm3) 

was applied in coverage of the whole brain. In the functional MRI runs, interleaved silent 

steady state (ISSS) protocol was used (repetition time: 1.8 s; echo time: 30 ms, flip angle: 

90 °, in-plane resolution: 2 x 2 mm2, slice thickness: 2 mm, field of view: 224 mm). Six 

repetition times (TRs) constructed one epoch, where 4 consecutive acquisitions were 

followed by 2 dummy acquisitions in which there was no volume acquisition for 2 TRs 

(Figure 3.1B). Twenty two slices were located parallel to the lateral sulcus to cover the 

auditory cortex including the supratemporal plane and superior temporal gyrus.  

 Functional MRI started with one resting-state run followed by 10 runs with 

auditory stimulation. Both type of runs consisted of 46 epochs, which correspond to 184 

actual volume acquisitions and 92 dummy acquisitions. In the resting-state run, 

participants were asked to stay awake with eyes closed. In the auditory stimulation runs, 

participants passively listened to auditory stimuli played in the silent periods while 

watching a muted nature documentary movie.  

The 72 stimuli were divided into two partitions each of which was assigned to alternating 

runs to be presented in. The two halves of each sound category (6 out of 12 stimuli) were 

assigned into the two partitions, so that 36 sounds out of all six categories were presented 

in each run. In each run, 36 stimulus presentation trials and 10 blank trials were assigned 

to the 46 epochs. The first epoch and the last three epochs were blank trials where no 

sound was presented. The remaining 42 epochs were divided into 6 blocks of 7 epochs, in 

which a blank trial and 6 stimuli out of 6 different categories were randomly assigned. 

Each stimulus was presented 5 times in total throughout 10 runs in each session. 

3.2.4. Processing of anatomical data and selection of atlas-based auditory areas  

 The segmentation and spatial normalization routine in SPM12 

(www.fil.ion.ucl.ac.uk/spm) was used to segment the gray matters and to define the 

primary auditory cortex (PAC) in individual native image space. For the definition of the 

PAC, the deformation field of the anatomical images into the MNI space was computed 

and used to non-linearly transform the regions of Te1.0, Te1.1 and Te1.2 (Morosan et al., 

2001) in the Juelich probabilistic cytoarchitectonic atlas (Eickhoff et al., 2005). The 

http://www.fil.ion.ucl.ac.uk/spm
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obtained probability maps in the anatomical image space were resampled in the 

functional image space, in which the values were thresholded at the half of the maximum 

probability value. The thresholding was necessary since the maps were smoothed by the 

transformation processes. The PAC was further refined by functional localization of the 

auditory cortex according to activation statistics (See below). 

3.2.5. Preprocessing of fMRI data 

 Motion correction and high-pass filtering (cut-off: 0.01Hz) were applied to the 

functional MRI data using SPM12. The high-pass filtering was modified so that the 

discrete cosine transform to be regressed out were resampled according to the sampling 

time points of the acquired data. This was to overcome the issue in temporal filtering of 

time-series obtained from clustered imaging technique. Low-pass filtering was not 

additionally applied because the sluggish nature of hemodynamic response and the low-

frequency (Nyquist frequency: ~0.05 Hz) of the neural events will yield minimal power 

in the low frequency in the resultant neural activity estimates (see below for neural 

activity estimation).  

3.2.6. Neural activity estimation 

 The general linear model (GLM) analysis of SPM was used to estimate 

underlying neural activity of each voxel in a single trial. Each of 5 presentations of 72 

stimuli was treated as a single condition (variable) in the GLM, and we thus obtained 360 

trials of neural activity parameters from the auditory experiment.  

 Single-trial activity estimation was applied also to resting-state runs. Excluding 

the first one and the last three epochs, 42 out of 46 epochs in a given resting-state run 

were regarded as ‘resting’ trials neural activity was estimated. The resulting estimated 

neural activity was regarded as spontaneous activity since no evoked activity could be 

assumed in resting state runs.  

The resulting neural activity estimates from both the auditory runs and resting-state runs 

were divided by the run-specific constant in the GLM for each voxel to normalize scale 

factors varying across runs and voxels. This procedure is equivalent to normalization by 
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conversion to percent signal change.  

3.2.7. Localization of the auditory cortex 

 The functionally defined auditory cortex was assumed to be a collection of voxels 

that are activated by the auditory stimulation and spatially clustered in the temporal 

cortex. To localize the auditory cortex in both hemispheres, t-statistics were computed for 

the estimated neural response to all stimuli against the implicit null condition and the 

spatially smoothed statistical map (Gaussian filter, SD = 4mm) was thresholded 

(p<0.001). Visual inspection confirmed the selected voxels were clustered in the temporal 

cortex and the selected voxels were further restricted in the gray matter.  

3.2.8. Spectrotemporal encoding model (tuning-only model) 

 The spectrotemporal tuning-only model dictates that the predicted neural activity 

of an fMRI voxel i is postulated in the equation, 𝑦̂𝑖 = Xℎ̂𝑖 , where 𝑦̂𝑖, X, and 

ℎ̂𝑖  respectively denote the predicted neural activity, the linearizing input representations 

of the stimuli, and the estimated MTF (Figure 3.2A). For a given voxel,  𝑦̂𝑖 is an n × 1 

vector where n is the number of observations, X is an n × p matrix where p is the number 

of MTF parameters, and ℎ̂𝑖 is a p × 1 vector.  

 The NSL tools were used to obtain the linearizing input in light of cortical 

response field model (Chi et al., 2005). The linearizing feature space was the span of 16 

characteristic frequencies (CFs), 4 spectral densities (SDs), and 8 modulation rates 

(MRs), as defined in the stimulus creation (reconstruction) process. By this, each 

stimulus was represented as a cortical MTF of a 512 × 1 vector space. The neural 

response representation computed by the NSL is in complex domain to include 

magnitude and phase responses, and only the magnitude was taken in the linearizing 

input. 

3.2.9. MTF parameter estimation 

 The dataset was divided into 6 subsets according to the sound categories. Each of 

6 training sets was made of trials with 5 sound categories and the corresponding test set 

was comprised of trials of the remaining sound category. Since each sound was presented 
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5 times for each session, 300 trials (12 sounds × 5 categories x 5 measurements) were 

included in each training set while 160 trials in each test set.  

 To estimate MTFs, principal component regression was used to overcome the 

problem of multicollinearity of stimulus features and high dimensionality which are 

common challenges in using natural stimuli to estimate receptive fields (Wu et al., 2006; 

Theunissen and Elie, 2014). A built-in function ‘pca’ in MATLAB, which bases on 

singular vector decomposition, was used to compute principal components (PCs) of the 

input matrix X for the selected stimuli of the training set. The input had been 

standardized (z-scored) before the selection of the set. The PCs with the largest 

corresponding variance explained up to 90% were chosen to estimate PCR coefficients by 

least squares regression of the voxel activity onto the PCs. Finally the PCR coefficients 

were projected back to the original tuning parameter space.  

 The CF-only, SD-only and MR-only encoding models were also trained by using 

marginalized linearizing inputs and their parameter estimates were used as references to 

evaluate the reliability of the original full MTF estimates. The full MTF estimates were 

marginalized into CF, SD and MR functions as well. The peak CFs, SDs and MRs were 

obtained from the parameters from the both models (full vs. reduced) and the correlation 

between the parameters of the two models was computed as a measure of reliability. 

3.2.10. Computation of resting-state functional connectivity (rsFC) as a function of 

tuning similarity 

 In order to investigate the organization of resting-state functional connectivity 

(rsFC) in relation with tuning similarity between voxels, Pearson’s correlation 

coefficients of every pair of time courses of voxel activity were computed. Note that this 

measure of FC is descriptive so it is distinct from regression coefficients or covariance 

for FC that are used to predict and decode voxel activity in this paper (See below). The 

simple distance effect on FC was estimated in the gray matter voxels outside the auditory 

cortex and the empirical rsFC function of distance was used to regressed out from rsFC 

as described in our previous paper (Cha et al., 2014).  

 Tuning similarity between voxels was measured by correlating the tuning 
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functions of every pair of voxels with respect to the full MTF, CF, SD and MR. The 

tuning functions of CF, SD and MR were obtained by marginalizing the full MTF. RsFC 

was then binned according to tuning similarity. To test whether RsFC increases as a 

function of tuning similarity, the slope of the binned rsFC as a function of tuning 

similarity was estimated by linear fitting, and a t-test was performed for the slope 

estimates. 

3.2.11. Residual activity and noise correlations (residFC) 

 Residual activity, i.e., trial-to-trial variations, in trial k where stimulus j was 

presented was obtained by subtracting the mean response the stimulus j from the activity 

of trial k. Noise correlations in Figure 3.4 to be compared with rsFC as a descriptive 

measure were estimated simply by computing Pearson’s correlation coefficients of 

residual activity time course of voxel pairs. To compare tuning-specificity of noise 

correlations to that rsFC, noise correlations were processed in the same manner as rsFC 

and the slopes were estimated by linear fitting as well.  

3.2.12. RsFC-incorporated activity prediction model 

 In order to test the hypothesis that rsFC can be used to predict trial-to-trial 

variations in neural responses to stimuli which in turn benefits decoding of stimuli, we 

built a model that incorporates rsFC into the spectrotemporal encoding model (Figure 

3.5A). In this model, a single trial response is predicted as the sum of evoked activity 

predicted by the spectrotemporal encoding model and residual activity predicted by the 

weighted sum of residual activity of other voxels. Importantly, the weighting function is 

approximated by rsFC. Accordingly, predicted neural activity of voxel i in response to 

stimulus j in a trial k is formulated as 𝑦̂𝑖,𝑗,𝑘 = 𝑦̂𝑖,𝑗,𝑘
𝑒𝑣𝑜𝑘𝑒𝑑 +  𝑢̂𝑖,𝑗,𝑘

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑥𝑗 ∙ ℎ̂𝑖 + 𝑢𝑘 ∙ ŵ𝑖, 

where 𝑥𝑗 and ℎ̂𝑖 are respectively the linearizing input for stimulus j and the estimated 

tuning function (MTF) of voxel i as in the spectrotemporal tuning-only model, and 𝑢𝑘 

and ŵ𝑖are the residual activity of the remaining voxels (i.e., the other voxels than voxel i 

in the auditory cortex) in trial k and the estimated FC weights for voxel i, respectively. 

The FC-weights were estimated from two separate sources: resting-state activity in a 
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separate fMRI run and residual activity in the training dataset. Principal component 

regression was applied in the estimation of the FC-weight parameters. The PCs of the 

input resting-state activity of the voxels in the entire ROI were first computed and the 

best PCs that accounted for 90% of variance of the data were selected for regression on 

the resting-state activity of each voxel. The PCR coefficients were transformed back to 

the voxel space.  

3.2.13. Model evaluation: single-trial stimulus identification  

 Prediction accuracy of the tuning-only model and rsFC-incorporated model was 

evaluated by single-trial stimulus identification performance based on the similarity 

between predicted and actual patterns of multivoxel activity (Kay et al., 2008; Santoro et 

al., 2014). Firstly, neural activity of voxels in the test data was predicted by a given 

model whose parameters were estimated in a separate dataset. Secondly, Euclidean 

distance in multivoxel activity space between the predicted and the actual activity for 

each trial was calculated. The Euclidean distance from an observed pattern in trial k, 𝑦𝑘, 

to predicted patterns for the trial l for stimulus j, 𝑦̂𝑗,𝑙, was computed as  d𝑗,𝑘 =

 
1

𝐿
∑ √(𝑦𝑘 − 𝑦̂𝑗,𝑙) ∙ (𝑦𝑘 −  𝑦̂𝑗,𝑙)𝑙  where L = 5. In the tuning-only model, 𝑦̂𝑗,𝑙 is the same 

across trials since it doesn’t account for trial-to-trial variation while it varies according to 

the input spontaneous activity in the rsFC-incorporated model.  

 The final score for identification performance was computed based on ranking of 

the distance measure between the predicted pattern of the trial and that of the correct 

stimulus among those to all the 12 stimulus candidates in test (Figure 3.2B; See Santoro 

et al. (2014), for the ranking-based scoring). More specifically, let the rank of the 

distance for trial k, g(k), be the number of sounds whose activity distance measure is 

equal to or smaller than that of the correct sound, and the identification score was defined 

as s(k)  =  1 – (g(k) − 1)/(L − 1) where L is the number of tested sounds. The overall 

identification score for each subject was obtained by averaging the identification scores 

across trials and test sets, and used for t-tests for the comparison of the model 

performance at the group level (N = 13).  

 The empirical chance level performance was estimated by shuffling stimulus 
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labels. A hundred repetitions of shuffling were performed for each trial and the score was 

averaged. For the model with FC-weights shuffled, shuffling the weights in terms of 

voxel pairs was applied also 100 times and averaged for each trial.  

3.2.14. Maximum likelihood decoding 

 The probability to observe an activity pattern, 𝑦, given stimulus 𝑠 is as follows: 

p(𝑦|𝑠) = (1/𝐶) exp( −
1

2
(𝑦 − 𝑦̂(𝑠))𝑆−1(𝑦 − 𝑦̂(𝑠))𝑇 , where C is a normalization factor, 

𝑦̂(𝑠) is the most probable activity pattern for stimulus s, and S is the covariance matrix. 

The key of this model is that 𝑦̂(𝑠) is predicted by the tuning-only model and the 

covariance matrix is estimated from resting state activity or residual activity.  

 The encoding distribution, p(𝑦|𝑠), leads to the corresponding decoding 

distribution in light of the maximum a posteriori decoding in which the posterior 

probability is formulated as 𝑝(𝑠|𝑦) = 𝑝(𝑦|𝑠)𝑝(𝑠)/𝑝(𝑦). If the prior, 𝑝(𝑠), is assumed to 

be flat, the stimulus that maximizes the posterior probability is equivalent to one that 

maximizes the likelihood function given the observation y, L(s) = p(y|s). Therefore, the 

most likely stimulus identity is the one that maximizes L(s).  

Finally, maximizing L(s) is equivalent to minimizing the Mahalanobis distance 

𝑑𝑀𝑎ℎ𝑎𝑙(𝑠) =  (𝑦 − 𝑥(𝑠)𝐻)𝑆−1(𝑦 − 𝑥(𝑠)𝐻)𝑇. The covariance matrix 𝑆 was estimated by 

computing the covariance based on either resting-state activity or residual activity. For 

the estimation of inverse covariance, a matrix shrinkage method (Ledoit and Wolf, 2004) 

was applied. Once the Mahalanobis distances were computed for the test stimuli, the 

identification score was calculated based on the rank of the distances in the same way as 

described above. 

3.3. Results: 

 BOLD fMRI activity was measured in 13 participants with normal hearing while 

they passively listened to 72 natural sounds drawn from 6 categories (animal 

vocalization, human non-speech vocalization, speech, natural environmental sounds, 

artificial objects, and music) with simplified spectrotemporal content (Figure 3.1). 

Single-trial neural activity in response to the stimuli (5 trials per stimulus) was estimated 
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with general linear model analysis (fMRI deconvolution: Glover, 1999; Moerel et al., 

2012; Mumford et al., 2012) in pre-defined sound-responsive voxels (based on a t-test 

threshold of p<0.001in a sound vs. silence contrast). Resting-state spontaneous activity 

was estimated from a separate ~9-minute run of fMRI data obtained in the same session 

before auditory stimulation.  

3.3.1. Spectrotemporal tuning-specific rsFC 

 To assess whether the pattern of rsFC covaries with similarity in spectrotemporal 

tuning across fMRI voxels, we first characterized the MTF of individual voxels in the 

auditory cortex using a linearizing encoding model approach (Wu et al., 2006; Kay et al., 

2008; Naselaris et al., 2011; Santoro et al., 2014). This ‘tuning-only’ model predicts 

activity of a voxel with the MTF of the voxel that serves as a weight for the features in 

the input stimulus (Figure 3.3A). We presented spectrotemporally simplified natural 

stimuli, but even these simplified stimuli contained a large number of combinations of 

acoustic parameters (512) and multicollinearity. Principal component regression was used 

to overcome this problem (Wu et al., 2006; Theunissen and Elie, 2014). 

 Figure 3.2A shows an example of the topography of the estimated peak CFs 

(tonotopy), SDs, and MRs in one participant. The peaks were found after marginalizing 

the MTFs into each of the three dimensions (Figure 3.2A). RsFC between voxels was 

computed using Pearson’s correlation of estimated resting-state neural activity. As in our 

previous study, the effect of spatial distance on rsFC was removed by subtracting the FC 

that is predicted by cortical distance (Cha et al., 2014). RsFC was then binned as a 

function of tuning similarity, which was measured as Pearson’s correlation coefficients 

between voxel tuning functions. Dependency of rsFC on tuning similarity was apparent 

when full MTF tuning was considered, as well as when each of the dimensions (CF, SD 

and MR) was considered separately, both within and between hemispheres (Figure 3.2B). 

To test the dependency of rsFC on tuning similarity statistically, we fit a linear function 

to the binned data in individual participants and found that estimated slopes were 

significantly above zero in all 12 conditions (p < 0.001 for all of 3 hemispheric 

conditions × 4 tuning function types, t-tests). Therefore, rsFC is positively related to 
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features of spectrotemporal tuning (spectral density and modulation rate), not only to the 

preferred frequency of voxels. 

 

Figure 3.2. Topography of MTF parameter estimates and tuning specificity of rsFC 

and noise correlation (residFC) 

A. Topography of peak characteristic frequency (CF), spectral density (SD) and 

modulation rate (MR). Only a representative slice of a participant is shown here. The top 

panels show the topographic maps of best CFs (left), SDs (center) and MRs (right) that 

were obtained by marginalizing the full MTF estimates of the original MTF encoding 

model. B. Tuning-specific rsFC. Voxel pairwise resting-state functional connectivity 

(rsFC) was binned as a function of tuning similarity in terms of full modulation transfer 

function (MTF), characteristic frequency (CF), spectral density (SD) and modulation rate 

(MR) within the two hemispheres and across the hemispheres. RsFC increases as tuning 
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similarity between the voxels increases. C. Noise correlation (residFC) as a function of 

tuning similarity presented in the same format as B. D. Relation between rsFC and noise 

correlation with respect to tuning-specificity measured as slopes of a linear function. 

Each dot represents individual participants. The color scheme is the same as in B and C. 

It is notable that while both rsFC and residFC have spectrotemopral tuning specificity, 

residFC has higher specificity than rsFC and the pattern is consistent within subjects. 

 

3.3.2. Tuning specificity of noise correlations 

 Tuning-specificity is not only observed in rsFC but also in noise correlations. It is 

reasonable to suppose that noise correlations show a similar pattern of tuning specificity 

as rsFC, but these patterns have not yet been directly compared. Therefore, we analysed 

noise correlations in the same way as rsFC and compared the resulting slopes with those 

obtained from the rsFC analysis (Figur 3C). Here we refer to noise correlations as 

‘residual’ functional connectivity (residFC) because the functional connectivity is 

obtained by correlating residual activity after subtracting the average response to a 

stimulus from original single trial responses. The slopes of residFC were significantly 

higher than zero in all 7 conditions (p < 0.001 for each of the 7 conditions, one-tailed t-

tests). The slopes of residFC were highly consistent with rsFC across subjects, that is, a 

participant who had high residFC had high rsFC (Figure 3.2D; p<0.01 for each of the 12 

conditions, Pearson correlation). However, when the slopes of residFC were compared to 

rsFC within a participant, residFC had larger slopes than rsFC in all conditions (p<0.01, 

one-tailed paired t-tests).  

3.3.3. Decoding multivoxel activity by the MTF model and the effect of decorrelating 

noise 

 Multivoxel activity in response to novel sounds was decoded using the MTF 

(tuning-only) model in various configurations including trial-averaged, single-trial, MTF 

estimates-shuffled, and noise-decorrelated conditions. Single voxel activity was predicted 

as the MTF-weighted sum of STRF model responses of an input sound (Figure 3.3A). 

The input was drawn from sound category sets that had not been used in the MTF 

parameter estimation. Stimulus identification was performed based on prediction error, 

which is similar to the methods that have been described in the previous studies (Kay et 
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al., 2008; Santoro et al., 2014). The MTF model predicts multivoxel activity patterns for 

the 12 input sounds from one of the 6 test datasets. These predicted patterns are compared 

to the actual pattern of activity for a given stimulus, and the identification score was 

determined based on the ranking of the distance between the observed pattern and the 

predicted pattern of the correct stimulus (Figure 3.3B).  

 The identification performance significantly exceeded chance level when 

averaging activity patterns across trials (p < 0.001, one-tailed t-test), and for single trial 

activity (p < 0.01, one-tailed t-test, Figure 3.3C). However, the decoding performance 

was significantly degraded when the MTF parameters were shuffled across voxels (p < 

0.02, one-tailed t-test, Figure 3.3C). This indicates that the specific spatial organization of 

MTF parameters has a significant role in encoding and decoding. Note that we computed 

an empirical chance level by permuting stimulus labels 100 times for each of the tested 

observation in order to avoid bias.  

 
Figure 3.3. Stimulus identification using the tuning-only model and the effect of 

noise correlation 

A. Scheme of activity prediction by the tuning-only model. Activity of a voxel i for a 

stimulus j, which has not been presented in the training dataset, is predicted as an inner 

product of the STRF model responses for stimulus j (a 512 × 1 vector) and the tuning 



81 
 

function of voxel i (a 512 × 1 vector) estimated in the training stage. B. Scheme of 

computation of identification performance based on rankings of Euclidean distances in 

case of 5 stimuli. Predictions are made for 5 stimuli 𝒚̂s=1,2,...,5 (filled circles) and the 

Euclidean distances between the predicted patterns and the actual response pattern for 

stimulus 2, 𝒚s=2, (open circle) is evaluated and the ranking for the correct stimulus (in this 

case, s=2) is used to determine the identification score ranged from 0 (the worst 

prediction) to 1 (the best prediction). In the single-trial identification the observed 

activity is taken from a single trial whereas the activity is averaged across trials in the 

trial-averaged case. C. Stimulus identification performance of the MTF tuning-only 

model. The performance is significantly higher than the chance level (red line) both in 

single-trial (p < 0.005) and trial-averaged (p < 0.0005) activity decoding (red line: an 

empirical chance level estimated by label permutations). When MTF estimates are 

shuffled across voxels, the decoding performance was degraded compared to decoding 

without shuffling (p < 0.02). When noise (residual activity) is decorrelated, single trial 

performance was enhanced (p < 0.001) so to be incomparable to identification with trial-

averaged data (p = 0.12). Boxes and whiskers indicate the 75 and 95 percentiles, 

respectively, and colored dots show the performance in each of 13 individual participants. 

 

 

 The performance difference between trial-averaged and single-trial decoding 

(p<0.005) indicates the impact of trial-to-trial variability in neural decoding. What would 

be then the contribution of correlation in trial-to-trial variability? Since this question has 

long been of theoretical interest to sensory neuroscientists particularly in regard to 

population coding (Abbott and Dayan, 1999), we evaluated the decoding performance 

with the residual activity, i.e., noise, decorrelated. The decorrelation was performed by 

permuting the residual activity across trials for each voxel. The decoder performed better 

with noise decorrelated than with it intact (p < 0.001, one-tailed paired t-test, Figure 3.3) 

and it was comparable to decoding for averaged data (p = 0.12, two-tailed paired t-test). 

Therefore, consistent with previous studies, when activity is decoded only by predicting 

the mean activity pattern, the performance is degraded due to the correlated trial-to-trial 

variability.  

3.3.4. Improvement in single-trial decoding performance when rsFC is incorporated 

 Would it be beneficial to decode activity if noise correlation was considered? 

Previous theoretical and neurophysiological studies indicate that this is the case 

(Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Graf et al., 2011): when a 
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decoder takes into account activity co-variability, the accuracy is improved. However, 

would it be also the case when rsFC is incorporated into a decoder? To test whether that 

is the case, we built an activity prediction model that uses the patterns in rsFC to predict 

trial-to-trial variations of responses to stimuli. These variations are then added to the 

prediction of stimulus-evoked activity based only on tuning functions (Figure 3.4A). In 

other words, the predicted activity of a voxel i in response to stimulus j in a given trial k 

is the sum of the stimulus-evoked activity predicted by the tuning-only model for 

stimulus j and the residual activity predicted by rsFC-weighted residual activity of other 

voxels in trial k. Since it is a high dimensional regression model with multi-collinearity, 

principal component regression was used to estimate the weight coefficients. 

 
Figure 3.4. RsFC-incorporated activity prediction model and its decoding 

performance 

The scheme of rsFc-incorporated activity prediction model. The model predicts trial-to-

trial variation of single-voxel activity based on the residual activity of other voxels based 

on functional connectivity estimated in resting-state activity. The predicted residual 

activity is added to the evoked activity predicted by the spectrotemporal encoding model. 

In contrast to the tuning model, the prediction is made for each trial. Subscipts i, j, and k 

denote voxel, stimulus and trial number. B. Improved stimulus identification performance 

of the rsFC-incorporated model compared to the tuning-only model. The performance 

improvement is presented as percent improvement with respect to the tuning-only model. 

RsFc-incorporated model outperformed the tuning only model (p < 0.001). When rsFC 

was shuffled, the performance was degraded compared to the original rsFC-incorporated 

model (p < 0.01; rsFC-shuffled). When FC weights were estimated from residual activity 
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in the training datasets (ResidFC-incorporated), the performance was also improved 

compared to the tuning-only model (p < 0.001) and the improvement did not differ from 

the rsFC-incorporated model (p = 0.18). Shuffling residual-based FC (ResidFc-shuffled) 

had a similar effect as shuffling resting-state FC. Also the performance improvement of 

rsFC-incorporated model did not differ from that of the tuning-only model with noise 

decorrelated (Noise-decorrelated; p = 0.44). Boxes and whiskers indicate the 75 and 95 

percentiles, respectively, and colored dots show the performance in each of 13 individual 

participants. It is remarkable that providing functional connectivity information, whether 

rsFC or residFC, to the model improves decoding performance, which becomes 

comparable to the case with noise decorrelated. 

 

 Stimulus identification performance of the rsFC-incorporated model was 

evaluated by the same measure as the tuning-only model, based on which percentage 

improvement in comparison to the tuning-only model was computed (Figure 3.4B). We 

found the rsFC-incorporated model significantly outperformed the tuning-only model (p 

< 0.001, one-tailed t-test, n = 13). However, the improvement was degraded when rsFC 

was shuffled in terms of voxel pairs (rsFC-intact vs. rsFC-shuffled: p<0.01, one-tailed 

paired t-test, n = 13), indicating the specific structure of correlation is necessary for the 

improvement. In fact, the model with shuffled rsFC also significantly outperformed the 

tuning-only model (p<0.001, one-tailed t-test, n = 13), presumably due to the effect of 

overall correlations.  

 We then compared the improvement in decoding performance by the rsFC-

incorporated model to a model where FC coefficients were estimated based on residual 

activity instead of resting-state activity (See Methods). Note that the coefficients 

estimated from residual activity correspond to residFC and noise correlation. The model 

with residFC-based coefficients (residFC-incorporated model in Figure 3.4B) showed the 

same pattern as the rsFC-incorporated model: improved performance compared to the 

tuning-only model (p < 0.001, one-tailed t-test, n = 13), and shuffling the pattern 

degraded the improvement (p < 0.01, one-tailed paired t-test, n = 13). We found that the 

percentage improvement did not significantly differ between the two sources of FC 

coefficients (p = 0.18, two-tailed paired t-test, n = 13). These results suggest that 

specifically organized rsFC provides information for predicting and decoding single-trial 

responses to auditory stimuli to an extent comparable to what informing residFC, or noise 
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correlations, can provide to decoding cortical responses in the auditory cortex.  

 
Figure 3.5. No regional bias in the improvement by FC-incorporated activity 

prediction 

A. Topography of the improvement in voxel activity prediction with rsFC incorporated 

compared to the tuning-only model. Four slices from one representative participant are 

shown. The improvement was measured by root mean squared error (RMSE). B. Percent 

improvement of decoding performance in four auditory regions. There is no difference 

between the regions in both cases of the rsFc-incorporated (RsFC-incorporated) and the 

residual-based FC-incorporated (ResidFC-incorporated) model (p > 0.05; one-way 

ANOVA). Boxes and whiskers indicate the 75 and 95 percentiles, respectively. 

 

3.3.5. No regional bias in decoding improvement by the rsFC-incorporated model  

 We also tested whether the improvement in decoding performance by 

incorporation of rsFC varies across sub-regions of the auditory cortex, specifically 

primary and non-primary auditory cortex. The topography of voxelwise prediction errors 

of the tuning-only model and the rsFC-incorporated model did not exhibit immediately 

obvious regional differences in the improvement in prediction accuracy (Fig. 6A, data 

from a representative participant). In order to statistically test regional biases, we 

computed the percentage improvement of stimulus identification performance in four 

separate auditory regions that included the primary and non-primary auditory cortices in 
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both hemispheres. There was no significant difference among the regions whichever 

correlation information (rsFC or residFC) was used (p>0.05, one-way ANOVA for each 

of the two models). 

3.3.6. RsFC as covariance in maximum likelihood decoding 

 The improved performance by the incorporation of rsFC or noise correlations may 

be in part due to the particular architecture of our model, in which trial-to-trial variation 

is predicted based on the concurrent residual activity in the test datasets. To rule out this 

potential problem, we replicated the results using a maximum likelihood decoder. A 

virtue of maximum likelihood decoding, a specific case of Bayesian decoding, is that it 

directly links encoding and decoding models and takes into account the probabilistic 

nature of neural activity (Latham and Nirenberg, 2005; Naselaris et al., 2011). The 

maximum likelihood decoder assumes that a stimulus is probabilistically encoded in 

multi-voxel activity space and, under a Gaussian noise assumption, the likelihood that an 

activity pattern 𝑦 is observed given a stimulus 𝑠 is formulated as follows: 

p(𝑦|𝑠) = (1/𝐶) exp( −
1

2
(𝑦 − 𝑦̂(𝑠))𝑆−1(𝑦 − 𝑦̂(𝑠))𝑇, 

where C is a normalization factor, 𝑦̂(𝑠) is the mean activity pattern for stimulus s, and S 

is the covariance matrix that describes the joint distribution of the activity across voxels. 

The mean activity 𝑦̂(𝑠) is predicted by the tuning model and the covariance S can be 

estimated either from resting-state or residual activity. The tuning-only model would be 

the particular case where the distribution is assumed to be independent and identical 

across voxels (Figure 3.6.A). While most encoding models assume independent noise 

between recording units (Wu et al., 2006; Naselaris et al., 2011), supplying the 

covariance of noise of neural activity to a decoder provides a measure of the importance 

of the information in the correlations (Latham and Nirenberg, 2005; Averbeck et al., 

2006; Graf et al., 2011). 
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Figure 3.6. Maximum likelihood decoding with and without correlation information 

from resting-state activity and residual activity 

A. How information of activity covariance improves maximum likelihood decoding. The 

two dots (red and blue) represent maximally probable activity patterns given two stimuli 

(s = 1 and s = 2) in the 2-dimensional space (i.e., the joint activity of 2 voxels). The 

ellipsoids around the two dots are iso-probability lines of the activity patterns for the two 

stimuli. The correlated variability is indicated by the oriented geometry of the ellipsoids, 

which makes the green solid line the optimal boundary to decide which stimulus an 

observed activity is closer to than the other. In this case, 𝒚observed (black cross-haired 

circle) belongs to the area closer to 𝒚̂s=2 (i.e., p(r|s=2) > p(r|s=1). When the correlation 

ignored and the activity distribution is assumed to be identical and independent between 

the 2 voxels as in the tuning-only model, the decision boundary lies along the green 

dashed line and 𝒚observed is classified as s  = 1. B. Percent improvement in stimulus 

identification by maximum likelihood decoding compared to the tuning only model. 

Decoding with full covariance estimated from resting-state activity (RsCov-incorporated) 

outperforms the tuning only model (p < 0.001). Informing only variances from resting-

state data to the decoder (RsVar-incorporated) performs significantly worse than 

decoding with full covariance (p < 0.05). This pattern is replicated in the case where 

residual activity was used to estimate covariance and variances (ResidCov-incorporated 

and ResidVar-incorporated). It is also notable that decoding with covariance from 

residual activity gives a better performance than that using resting-state activity (p < 

0.001). The performance improvement by incorporating the covariance from resting-state 

data did not differ from that of the tuning only model with noise decorrelated. Boxes and 

whiskers indicate the 75 and 95 percentiles, respectively, and colored dots show the 

performance in each of 13 individual participants. 
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 We again computed percentage improvement in single-trial stimulus identification 

performance of the maximum likelihood decoder with full covariance information to the 

tuning-only model (Figure 3.6B). The decoders with full covariance based on either 

source outperformed the decoder with identity covariance, i.e., the tuning-only model 

(Figure 3.6B, p < 0.05 for resting-state-based covariance and p < 0.001 for residual-based 

covariance, one-sided paired t-test, n = 13), although the decoder with covariance based 

on residual activity had a better performance than the one based on resting-state activity 

(p<0.001). We also performed decoding with only variances included in the model by 

setting the off-diagonal elements of S to zero. Although the variance-only decoders 

performed better than the tuning-only (identity-covariance) decoder (p < 0.001, one-sided 

paired t-test, n = 13), it was not sufficient to perform as well as the decoder with full 

covariance (p < 0.001 for resting-state-based covariance, p < 0.05 for residual-based 

covariance, one-tailed paired t-test, n = 13).  

3.4. Discussion 

 Our results indicate that rsFC between voxels has a positive relation with 

similarity in spectrotemporal tuning functions, or MTFs, of fMRI voxels, and that 

incorporating the information of rsFC into a spectrotemporal encoding model improves 

predicting and decoding noisy single-trial activity patterns. The positive relation between 

rsFC and tuning similarity was found not only in frequency tuning, as shown previously 

(Fukushima et al., 2012; Cha et al., 2014; Striem-Amit et al., 2016), but also spectral 

density and modulation rate tuning. We also found that noise correlations, i.e. 

correlations in trial-to-trial response variation, have a consistent pattern with rsFC. As 

previously proposed (Shamir and Sompolinsky, 2004; Averbeck and Lee, 2006; Mitchell 

et al., 2009), decorrelating noise, i.e., trial-to-trial response variation, improved single-

trial decoding compared to decoding the data with correlated noise intact, when only 

MTFs were taken into account to predict activity. However, when incorporation of rsFC 

to predict trial-to-trial variations to the encoding model improved decoding performance. 

Similar effects were found when noise correlation was taken into account, which is 

consistent with previous studies (Nirenberg and Latham, 2003; Latham and Nirenberg, 
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2005; Averbeck et al., 2006; Graf et al., 2011). The results were consistent when using 

maximum likelihood decoding where covariance was estimated from resting-state or 

residual activity. There were no regional biases across left and right, primary and non-

primary auditory areas. The consistency between rsFC and noise correlations and the 

improved decoding performance by including rsFC in the model suggests that correlated 

fluctuations in spontaneous activity have a tight functional relation with correlated 

variability in neural responses.  

3.4.1. Spectrotemporal tuning-specificity of rsFC  

 In our previous work, we found increased voxelwise residual FC between voxels 

with similar preferred frequencies (Cha et al., 2014). We also demonstrated that 

frequency-specificity of FC was preserved when activity was taken from silent resting 

epochs. Our current findings with a full run of resting state activity confirm that rsFC is 

frequency tuning-specific, in accordance with other studies in humans or non-human 

animals (Brosch and Schreiner, 1999; Fukushima et al., 2012; Striem-Amit et al., 2016). 

We extended these findings to the two other feature domains in spectrotemporal tuning 

functions, that is, spectral density (SD) and modulation rate (MR). To our best 

knowledge, SD- or MR- specific functional connectivity has never been reported 

previously either in humans nor animals.   

 In our results, the positive relation between rsFC and sensory tuning similarity 

does not appear to be restricted to sensory feature domains that are topographically 

organized. There has been little evidence in single-unit electrophysiological studies to 

prove that the cortical representation of SD and MR has topographical organizations at a 

macroscopic level, and human imaging studies have reported inconsistent results 

(Schönwiesner and Zatorre, 2009; Santoro et al., 2014). Although a limited number of 

studies have shown topographical organization of other tuning properties such as spectral 

asymmetry (Shamma et al., 1993) and periodicity (Langner et al., 2009), CF is the only 

auditory tuning property, especially among the ones with respect to spectrotemporal 

tuning, that has been widely agreed to have macroscopic topography consistently across 

species and individual subjects.  
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 Given that functional connectivity measured in resting-state fMRI reflects 

anatomical connectivity whether monosynaptic or polysynaptic (Vincent et al., 2007; 

Honey et al., 2009), our findings are in line with CF-specific anatomical connectivity that 

has been repeatedly reported (Code and Winer, 1985; Rouiller et al., 1991; McMullen 

and de Venecia, 1993; Miller et al., 2001; Read et al., 2001; Kimura et al., 2003; Lee et 

al., 2004a). Since the origin of correlated spontaneous activity is elusive (Leopold and 

Maier, 2012), both thalamocortical and corticorticocortical projections can be the 

underlying substrate of the functional connectivity. However, anatomical connectivity 

with respect to similarity in SD and MR has little been known. Our findings suggest that 

neurons with similar SD or MD tuning functions could have denser anatomical 

projections or higher synaptic efficacy, whether directly or indirectly, than ones with 

dissimilar tuning functions.  

3.4.2. Comparison of tuning specificity between rsFC and noise correlations 

 Trial-to-trial response variations, or noise correlations, are dependent on tuning 

similarities (Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Rothschild 

et al., 2010), which suggests that they may also depend on spectrotemporal tuning. 

However, this has never been demonstrated with experimental data. Our results indicate 

that trial-to-trial response variations, which is herein referred to as residFC, depend on 

similarity of full MTF functions and the three components of the MTF separately. It is 

not only consistent with the pattern of rsFC we observed on average, but there were also 

significant subject-to-subject correlations between noise correlations and rsFC. This 

suggests that a common mechanism is involved to yield correlated fluctuations in trial-to-

trial responses and spontaneous activity (Jermakowicz et al., 2009; Luczak et al., 2009) 

or that evoked activity is constrained by spontaneous activity (Luczak et al., 2013). 

 In our data, noise correlations had higher tuning specificity than rsFC. This 

appears to be discrepant with previous studies. For instance, Kohn and Smith (2005) 

reported that stimulus presentation decreased noise correlations between two neurons 

when compared to correlations in spontaneous activity. Also, in our previous study (Cha 

et al., 2014), there was no significant difference in frequency tuning specificity between 
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noise correlations and rsFC. This discrepancy might be due to the difference in the 

temporal scale and the stimulus configuration. The decorrelation in Kohn and Smith 

(2005) occurs only transiently at stimulus onset or offset and the decorrelation effect 

decays in sustained period of stimulus presentation. The length of our stimuli and the 

temporal resolution of fMRI do not allow us to detect such transient effects. Also, overall 

reduction of correlation across the whole neuronal population would not necessarily 

change the tuning specificity of noise correlations. In Cha et al. (2014), we used residual 

activity that included a whole run which included resting-epochs. In contrast, we obtained 

single-trial responses from which residual activity was obtained without including any 

blank trials. Such difference in the methods could have reduced the effect we observed in 

the current study. 

 Most importantly, we used naturalistic sounds, which contained many features 

preferred by heterogeneous groups of neurons. Most studies on noise correlations used 

simple stimuli such as oriented bars and pure tones whose effects cannot necessarily be 

extrapolated to complex stimuli (Klein et al., 2000; Machens et al., 2004; Theunissen and 

Elie, 2014). Also, noise correlations show some stimulus specificity: a stimulus preferred 

by two neurons causes higher noise correlations than one that is not preferred (Kohn and 

Smith, 2005; Jermakowicz et al., 2009; Lin et al., 2015; Franke et al., 2016; Zylberberg et 

al., 2016). This interaction between stimuli and tuning functions in determining noise 

correlations could cause higher tuning-specificity in residFC than rsFC.  

3.4.3. Effect of decorrelating noise in decoding 

 The impact of correlated trial-to-trial variability, i.e., noise correlation, on neural 

coding and decoding has been rigorously studied especially in theoretical neuroscience 

(Abbott and Dayan, 1999; Nirenberg and Latham, 2003; Schneidman et al., 2003; Shamir 

and Sompolinsky, 2004; Averbeck and Lee, 2006; Averbeck et al., 2006; Moreno-Bote et 

al., 2014). While coding efficiency is often measured by information-theoretic measures, 

decoding noise-shuffled data has also been suggested to provide a measure of coding 

efficiency (Nirenberg and Latham, 2003; Latham and Nirenberg, 2005; Averbeck et al., 

2006). If decoding noise-shuffled data provides higher accuracy than the original data, 
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correlated noise is detrimental; and if it leads to lower accuracy, correlated noise is 

beneficial, under the assumption that the system would try to remove the noise by 

averaging responses across neurons (Averbeck et al., 2006). Studies have also suggested 

that coding efficiency can be lower than otherwise if noise correlation is tuning-specific 

(Shamir and Sompolinsky, 2004; Averbeck and Lee, 2006). Although the theoretical 

considerations and simulations are supported by some experimental data, testing these 

hypotheses is challenging because the number of neurons to be recorded is limited in 

electrophysiological recordings. Thus, previous studies only extrapolated their empirical 

results to a larger population or used simulated data (Shamir and Sompolinsky, 2004; 

Averbeck and Lee, 2006; Graf et al., 2011; Moreno-Bote et al., 2014). Our results that 

decoding with noise decorrelated performs better than that with noise correlation intact 

supports the hypothesis that tuning-specific noise correlation is detrimental to coding 

efficiency when an entire auditory cortex is included in the analysis.  

3.4.4. Role of rsFC in predicting and decoding neural activity 

 In both of our decoding frameworks, incorporating rsFC or noise correlations 

improved stimulus identification performances. The importance of knowing noise 

correlations in decoding has been demonstrated in a number of studies (Nirenberg and 

Latham, 2003; Latham and Nirenberg, 2005; Averbeck et al., 2006; Graf et al., 2011). 

For instance, a decoding model performs sub-optimally if response distributions are 

correlated between two neuron and the decoder assumes identically independently 

distributed responses (Nirenberg and Latham, 2003; Latham and Nirenberg, 2005). Graf 

and colleagues (2011) provided empirical evidence that neural decoding with taking into 

account noise correlations in neural responses improves the performance compared to 

when independent noise is assumed. We confirmed the previous proposals and findings 

when incorporating residFC, i.e., noise correlations, into prediction and decoding of 

voxel-level fMRI responses from human auditory cortex. We furthermore showed that 

rsFC instead of residFC can be used to improve decoding performance. 

 Why do spontaneous activity and trial-to-trial variations have similar patterns of 

correlations across voxels even to the extent of providing information for decoding neural 
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responses? Recent studies have suggested that structured spontaneous activity can 

contribute to sensory encoding. For instance, (Luczak et al., 2009) demonstrated that the 

regime of evoked responses of a neural population is bounded by that of its coherent 

spontaneous activity. Also, a later study showed that spiking activity is temporally 

coordinated with population activity measured by multiunit recording activity or local 

field potential, suggesting that coherent spontaneous activity gates sensory input signals 

(Luczak et al., 2013). These studies suggest that coherent spontaneous activity regulated 

can induce a similar pattern in noise correlations and thereby contribute to regulating 

neural encoding (Luczak et al., 2009; Schneidman, 2016). This does not mean that rsFC 

should be identical to noise correlations. Differences between rsFC and noise correlations 

are evident in our data, and previous results indicate a stimulus-dependency of noise 

correlations (Shamir and Sompolinsky, 2004; Kohn and Smith, 2005; Franke et al., 2016; 

Zylberberg et al., 2016). Therefore, it is likely that rsFC rather provides a common 

structure of coherent activity to which more information can be added by stimulation, 

which would then yield stimulus-specific noise correlations.  

 Another hypothesis is that spontaneous activity encodes a prior probability 

distribution associated with internal models of the environment (Fiser et al., 2004). 

Namely, spontaneous activity samples probable activity patterns based on prior 

experiences of stimuli to which external inputs are incorporated so to update the internal 

model as a posterior distribution. This idea is supported by demonstrations that neural 

responses represent probability or its associated quantities (Koechlin et al., 1999; 

Anastasio et al., 2000; Graf et al., 2011; Pouget et al., 2013). This framework of Bayesian 

learning and inference presumes the involvement of neuronal connectivity in its 

implementation of representations (Harris, 2005; Fiser et al., 2010; Pouget et al., 2013), 

which is also understood as the basis of the organization of spontaneous activity (Vincent 

et al., 2007). Although our results do not directly address this particular hypothesis of 

rsFC representing prior probability for internal models, it is consistent with the idea of 

the pattern of rsFC as the representation of stimulus-independent coherence or joint 

distribution of population activity, which can evolve to be more specific by stimulation. 

Considering that the brain has to decode an uncountable, or virtually infinite, number of 
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stimuli, maintaining rsFC as a generalized or versatile patterns of neural code that can be 

adapted to new stimuli may be an economic strategy for neural encoding (Fiser et al., 

2010; Jeanne et al., 2013; Miller et al., 2014; Schneidman, 2016). 
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General discussion 

4.1. Tuning specific functional connectivity: what, how and why 

 In the studies of the current thesis, three main questions were addressed: (1) 

whether coherent spontaneous activity in human auditory cortex is specific to 

spectrotemporal tuning, (2) whether tuning specificity of functional connectivity reflects 

functional architecture of auditory cortex such as functional asymmetry, and (3) whether 

coherent spontaneous activity in auditory cortex is associated with spectrotemporal 

processing. In study 1, it was demonstrated that functional connectivity depends on 

similarity in frequency preference between voxels within and between sub-regions and 

hemispheres; and that the dependency of functional connectivity on frequency preference 

was high particularly in the right core area. The patterns were consistent whether 

functional connectivity was computed from residual activity or resting-epoch activity. In 

study 2, the dependency of functional connectivity on tuning similarity was generalized 

to spectrotemporal tuning properties, including spectral density and modulation rate. 

When predicting and decoding fMRI responses to natural sounds using a voxelwise 

spectrotemporal receptive field model, decorrelating noise (residual) improved the 

performance, indicating the detrimental effect of correlated noise. However, 

incorporating resting-state functional connectivity to the decoders helped to overcome the 

effect of correlated noise, indicating the functional significance of coherent spontaneous 

activity. The results were qualitatively similar whether resting-state activity or residual 

activity was used to estimate functional connectivity; and there the improvement of 

decoding performance was observed throughout the auditory cortex without regional 

preference.  

4.1.1. What and where: tuning-specific functional connectivity and its relation to 

functional organization of human auditory cortex 

 The findings of tuning specificity of intrinsic functional connectivity provide 

evidence that human auditory cortex follows the organizational principles such as 

tonotopic projection patterns or functional asymmetry that have been implied in the 

previous studies on sensory cortices in various species including humans (Zatorre et al., 
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2002; Hackett, 2011). However, the findings have more implications than replicating 

previous studies to other species or sensory modalities.  

 First, preferred frequency-specific functional connectivity may provide important 

clues to infer the organization of anatomical connectivity in the human auditory brain. As 

indicated in chapter 2, the pattern of functional connectivity associated with frequency 

tuning is largely in agreement with the tonotopic or frequency-selective projections that 

are thalamocortical (McMullen and de Venecia, 1993; Hashikawa et al., 1995; Miller et 

al., 2001; Kimura et al., 2003; Lee et al., 2004a), corticocortical (Read et al., 2001; Lee et 

al., 2004a), and commissural (Code and Winer, 1985; Rouiller et al., 1991; Lee et al., 

2004a). Note that the corticocortical projections are inclusive of local projections along 

iso-frequency strips as long as those across different areas or tonotopic fields (Read et al., 

2001; Lee et al., 2004a). While these patterns in anatomical projection are found in non-

human mammals, neuroanatomical data in humans are sparse. 

 The findings of tonotopic functional connectivity between the core and belt areas 

in study 1 can imply two possibilities of anatomical connectivity in humans: (1) tonotopic 

functional connectivity between the two areas is mediated by thalamocortical connections 

that diverge to core and non-core fields; and (2) it arises through corticocortical 

projections. In non-human primates, tonotopic thalamocortical projections terminate 

mostly in the core fields (Hackett, 2011). If the human auditory system has the same 

pattern, the tonotopic pattern of functional connectivity is likely due to tonotopic 

projections between the human core and belt areas rather than direct projections from the 

thalamus to the belt area although a definitive answer requires more evidence from 

anatomical data.  

 Tonotopic functional connectivity between the two hemispheres (Figure 2.7, for 

instance) can be also taken as evidence of tonotopically organized commissural 

projections (Code and Winer, 1985; Rouiller et al., 1991; Lee et al., 2004b). It is indeed 

possible that interhemispheric functional connectivity is mediated by contralateral 

projections from the subcortical structures instead of direct callosal connections. 

However, anatomical connectivity in mammalians indicates that the closest contralateral 

origin of axonal projections to the cortex is the inferior colliculus, which is already two 
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stations away from the core because of the lack of direct inputs from the inferior 

colliculus to the cortex (Calford and Aitkin, 1983; Hackett, 2011; Pickles, 2015). Also, 

callosotomy leads to loss of interhemispheric functional connectivity between homotopic 

regions (Johnston et al., 2008). These suggest that preferred frequency specific functional 

connectivity between hemispheres is likely mediated by correspondingly organized 

callosal connections. In the absence of direct examinations of anatomical connections, 

these issues could be better addressed if one analyzes tonotopic functional connectivity or 

effective connectivity between the cortical and subcortical regions including the inferior 

colliculus using ultra-high resolution fMRI (De Martino et al., 2013; Moerel et al., 2015).  

 Second, tuning-specific functional connectivity with respect to spectral density 

and modulation rate (study 2) suggests that there is a similar pattern of anatomical 

connectivity, whether direct or indirect, between neurons that have similar tuning 

functions for spectral density and modulation rate. Such a pattern of anatomical 

connectivity has never been reported. It remains an open question whether the underlying 

anatomical projections has a form of topographic connectivity similar to tonotopy. One 

neurophysiological study demonstrated that spectral bandwidth has columnar 

representations in the cat primary auditory cortex, and that the columns have modular 

anatomical projections for similar bandwidths (Read et al., 2001). Connectivity for 

bandwidth could be a proxy of connectivity for spectral density since bandwidth and 

spectral density have been reported to be highly correlated in neurophysiological data 

(Connor et al., 2006), and the cortical response model used in study 2 assumes complete 

association of both features (Chi et al., 2005). High field fMRI can also contribute to 

resolving the issue on whether the representation of spectral density and modulation rate 

is topographically organized (Schönwiesner and Zatorre, 2009; Santoro et al., 2014). 

Nonetheless, the existence of anatomical modular projection patterns can be ultimately 

tested using anatomical tracer studies with neurophysiological characterization of 

auditory neurons.  

 Third, study 1 showed that the degree of tuning specificity of functional 

connectivity can be reflective of functional specialization at a regional or hemispheric 

level. The particularly high specificity to frequency preference found in study 1, for 
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example, indicates that the high selectivity in connectivity may provide relevant 

information to higher-order areas in the right hemisphere known to process spectral 

features on a finer scale (Zatorre and Belin, 2001; Zatorre et al., 2002; Schönwiesner et 

al., 2005; Hyde et al., 2008). However, this finding was not replicated in study 2. The 

discrepancy might be due to differences in the methods between the two studies including 

the range of frequency used for tuning function (200 to 8000 Hz in study 1 vs. 300 to 

4000 Hz in study 2) and the definition of the primary auditory cortex (functional 

localization in study 1 vs. anatomical localization in study 2). Also, pure tone and natural 

sounds could lead to difference in estimated tuning functions (Laudanski et al., 2012). 

The hypothesis of transferring functional connectivity information to a higher area can be 

tested by more sophisticated computational modeling or analysis methods such as 

causality analysis (Upadhyay et al., 2008), or by invasive experiments that might involve 

disturbing functional connectivity in the core area to examine whether the spectral 

processing is impaired in higher-order areas. 

 Fourth, the two studies showed strong similarity in tuning specificity between the 

data from resting-state activity and residual activity, which is possibly relevant to the 

origin of neural response variability. A number of studies addressed the possibility that 

spontaneous activity might be the source of neural response variability, following the 

results that either pre-stimulus activity within the region of interest (Arieli et al., 1996; 

Saka et al., 2010) or activity in a functionally connected area (Fox et al., 2006b; 

Schölvinck et al., 2012) can be predictive of variability of evoked activity. The studies in 

this thesis elaborated this notion with respect to tuning-specific organization of functional 

connectivity. The finding in study 2 that single-trial prediction and the resulting decoding 

performance were improved when resting-state functional connectivity was incorporated 

(Figure 3.4 and 3.6) suggests that resting-state functional connectivity is predictive of 

variability in evoked activity. This implies that if the neural response variability 

originated from spontaneous activity, it would involve tuning-specific integration of the 

activity. Alternatively, the similarity between the resting-state and residual activity could 

be caused by a common origin instead of one being caused by the other. The similarity 

between spontaneous activity and residual activity can be evidence for functional 
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significance of coherent spontaneous activity (Luczak et al., 2009, 2013), which will be 

discussed later.  

 Last, the findings in the two studies support both functional specialization and 

distributed processing in the auditory cortex. Both mechanisms in fact seem to be 

intertwined. For example, the very notion of tuning specificity of functional connectivity 

indicates functional specialization. However, functional connectivity over voxels that are 

tuned to different features, despite the specificity, substantiates functional integration and 

thus distributed processing in a large sense. Moreover, the impact of functional 

connectivity on neural decoding implies that interaction between inhomogeneous units 

can play an important role in neural information processing. The high preferred 

frequency specificity of functional connectivity within the right core area observed in 

study 1 (Figure 2.8 and 2.9) also supports functional specification, and at the same time, 

functional interaction between distributed units underlies this specificity. Also, the 

contribution of functional connectivity to decoding was not limited to a certain region or 

hemisphere (Figure 3.5). Therefore, the auditory cortex seems to process information 

both in terms of modular and distributed processing, although theorizing on how they 

interplay together would require more detailed data. 

4.2.1. How: the origin and mechanism of tuning-specific functional connectivity  

 What underlying mechanisms give rise to tuning-specific functional connectivity? 

This question must be addressed in terms of two regimes: spontaneous activity and 

variability in evoked activity. The first has also been referred to as resting-state (or 

resting-epoch) functional connectivity in this thesis according to the specific 

experimental settings, while the latter was designated as residual functional connectivity 

in the sense that it is computed from activity after removing stimulus-evoked activity. 

Residual functional connectivity can be also regarded as a measure of noise correlation.  

 The origin of spontaneous activity is attributed to be thalamocortical or 

corticocortical recurrent circuitry (Sakata and Harris, 2009; Leopold and Maier, 2012; 

Hartmann et al., 2015). A number of studies support the importance of thalamocortical 

network as being important in generating spontaneous activity. For instance, high 
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spontaneous firing rate in the primate visual cortex has been observed in layers 4A, 4C 

and 6 which receive thalamic inputs while other layers, especially those receiving 

corticocortical inputs, have scarce spontaneous activity (Snodderly and Gur, 1995). The 

significant contribution of corticothalamocortical circuits to drive information 

transmission to cortical activity (Theyel et al., 2010) also emphasizes the importance of 

thalamocortical recurrent circuits. However, these studies do not directly address how 

recurrent circuits can generate spontaneous activity.  

 Other studies stress the role of corticocortical circuits in driving spontaneous 

activity. Sanchez-Vives and McCormick (2000) found that spontaneous recurrent activity 

is generated among pyramidal cells in layer 5 of the ferret neocortex in vitro, followed by 

activity in other layers. The generation of spontaneous activity in their experiments was 

intrinsic because there was no thalamocortical input. Sakata and Harris also reported 

similar findings that both spontaneous activity and evoked activity are prominent in layer 

2/3 and 5, but the former propagates from layer 5 while the latter spreads from layer 2/3 

(Sakata and Harris, 2009). These results support that spontaneous activity arises within 

the cortex. However, it is still possible that activity in layer 5 can also involve the 

corticothalamocortical loops as in Theyel et al. (2010).  

 Other researchers attribute coherent spontaneous activity to neuromodulatory 

effects in consideration of global functional connectivity over the almost entire cortex 

(Schölvinck et al., 2010). This account concerns neurochemical or neuromodulatory 

innervations from the brain stem or other subcortical structures to affect neuronal activity 

or neurovascular coupling over the cortex (Schölvinck et al., 2010; Leopold and Maier, 

2012).  

 How are these accounts related to tuning-specific resting-state functional 

connectivity? There are at least two possibilities. One is that functional connectivity 

arises directly from the generative mechanisms of spontaneous activity from recurrent 

circuits or neuromodulatory inputs. This assumption immediately rejects the 

neuromodulatory account for tuning-specific functional connectivity since 

neuromodulatory inputs in this account are non-specific. Then, direct recurrent circuits 

can be the substrate for tuning-specific functional connectivity if these circuits are tuning-
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specifically organized within and between the hemispheres. The other possibility is that 

functional connectivity arises from propagation of activity to a region that is spatially 

distant from the origin of spontaneous activity. In this case, localized recurrent circuits or 

globally spread neuromodulatory inputs can equally likely generate the tuning-specific 

correlations in spontaneous activity: even if the generation of spontaneous activity is non-

specific, the correlation can be refined through specific local projections to become 

tuning-specific. This is supported by previous reports of spatiotemporal propagation of 

spontaneous activity in the cortex in a tuning-specific fashion (Song et al., 2006; Nauhaus 

et al., 2009, 2012; Saitoh et al., 2010).  

 What is, then, the origin of trial-to-trial response variability? A simple and old 

hypothesis is that trial-to-trial variability arises from spontaneous activity that is simply 

linearly superimposed on evoked activity (Arieli et al., 1996; Fox et al., 2006b; Saka et 

al., 2010). Arieli and colleagues, for instance, demonstrated that single-trial responses to 

a visual stimulus can be better predicted by simply adding pre-stimulus spontaneous 

activity to the average response to the stimulus. Other studies also support linear 

superposition between spontaneous activity and neural variability using various 

techniques and paradigms in different species (Fox et al., 2006b; Saka et al., 2010, 2012; 

Becker et al., 2011; Schölvinck et al., 2012). 

 There is, however, evidence that functional connectivity or neural correlation 

varies depending on stimuli or cognitive states. For example, variance in stimulus-evoked 

cortical activity is smaller than that of ongoing baseline activity (Hesselmann et al., 

2008b; He, 2013); and attention allocation quenches correlations in trial-to-trial 

variability (Cohen and Maunsell, 2009; Mitchell et al., 2009). Recent studies have also 

shown that trial-to-trial variability in retinal ganglion cells varies with stimulus 

orientation according to the geometric mean of orientation tuning functions of paired 

neurons, which suggests tuning-specific noise correlations is affected by stimuli (Franke 

et al., 2016; Zylberberg et al., 2016). These findings support the possibility that 

correlations in spontaneous activity and trial-to-trial variability interact with one another 

rather than the latter simply reflects the former (Fiser et al., 2010; Hesselmann et al., 

2010; He, 2013). Thus, there might be other sources of variability and correlation, such as 
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stimulus effects, in neural responses in addition to spontaneous fluctuations in baseline 

activity.  

 Other researchers propose that evoked activity is constrained by a mechanism that 

generates spontaneous activity (Harris and Mrsic-Flogel, 2013; Luczak et al., 2015). 

Proponents of this view specifically put stress on cortically-originated recurrent activity 

that plays a role as building blocks of correlated activity (Harris, 2005; Sakata and Harris, 

2009). From this view, one can hypothesize that while spontaneous activity in the cortex 

maintains the building blocks of ensemble activity, the brain system can engage such 

internally generated activity to a more specific code for an incoming stimulus (Miller et 

al., 2014). It is also possible, and possibly consistent with the above hypothesis, that 

correlated spontaneous activity serves as a gating function for evoked activity (Luczak et 

al., 2013).  

 The similar patterns between resting-state and residual functional connectivity 

found in both studies in this thesis partly support linear superposition of spontaneous 

activity (Figure 2.7, 2.9 and 3.2); however, the higher tuning specificity in residual 

functional connectivity found in study 2 (Figure 3.2) is consistent with the previous 

findings that stimulus can modulate tuning-specific noise correlations (Franke et al., 

2016; Zylberberg et al., 2016). Therefore, the results support that noise correlations are 

driven by both stimulus effects and a common mechanism that it shares with the 

generation of spontaneous activity. 

4.2.2. Why: Functional implications of tuning-specific functional connectivity 

 Possible functional benefits or disadvantages of having tuning-specific functional 

connectivity both in spontaneous activity and residual activity (noise correlation) have 

already been introduced and discussed throughout the thesis. As to tuning-specific 

coherent spontaneous activity, the replay hypothesis (Ji and Wilson, 2007), the sensory 

gating hypothesis (Luczak et al., 2013) and the internal model hypothesis (Fiser et al., 

2010) were addressed; and it was pointed out that if the spontaneous activity is only an 

epiphenomenon of random noise shared in the network without any functional benefit, it 

would be wasteful to consume high metabolic demands at rest. For correlated variability, 
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the presence of stimulus-independent noise correlation that increases with tuning 

similarity has been known to be detrimental to neural coding efficiency especially when 

it is presumed that a neural decoder, or a signal receiver, in the brain tries to extract the 

information by averaging (Abbott and Dayan, 1999; Shamir and Sompolinsky, 2004; 

Averbeck et al., 2006). However, the effect can vary depending on the characteristics of 

noise correlation (Shamir and Sompolinsky, 2004; Moreno-Bote et al., 2014) and in 

particular, stimulus-dependent noise correlation in the retina has recently been reported to 

increase the amount of coded information compared to the case of independent noise 

(Shamir and Sompolinsky, 2004; Franke et al., 2016; Zylberberg et al., 2016). On the 

other hand, to the decoding point of view, incorporating information about actual noise 

correlation to decoding can be beneficial compared to decoding under the assumption of 

independent noise (Latham and Nirenberg, 2005; Averbeck et al., 2006). In the previous 

section, it was discussed that correlated spontaneous activity can be the origin of 

correlated response variability. Therefore, it might be possible for these accounts to come 

to a unified framework to understand both types of functional connectivity (Fiser et al., 

2010; Schneidman, 2016). 

 The studies in this thesis have addressed the functional implications of tuning-

specific functional connectivity with respect to auditory information processing. In study 

1, high preferred frequency specificity of functional connectivity of the right core area 

was suggested to be related to functional specialization for high-resolution spectral 

processing. Study 2 was an attempt to address the functional significance of tuning-

specific functional connectivity more directly by comparing the resting-state functional 

connectivity and noise correlations as well as showing that both can be useful to improve 

neural decoding performance. The maximum likelihood decoding analysis indicated that 

decoding with residual functional connectivity (noise correlations), which showed higher 

tuning-specificity, outperforms decoding with resting-state functional connectivity. This 

result might be related to the interpretation of high specificity in the right core in study 1: 

high tuning-specificity in functional connectivity can lead to better resolution of sensory 

processing in the higher cortical areas that might extract information from functional 

connectivity in the earlier stations.  
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 As to the impact of noise correlations, study 2 demonstrated that when residual 

activity, i.e. noise, is decorrelated across voxels by shuffling trials independently for 

individual voxels, the decoder that takes into account only the spectrotemporal tuning 

model identified the stimulus better than when noise is intact (Figure 3.3C). This result is 

consistent with numerous theoretical and experimental studies that have suggested 

detrimental effects of correlated noise on coding efficiency in the neural systems 

especially when it has a positive relation with tuning similarity (Abbott and Dayan, 1999; 

Shamir and Sompolinsky, 2004; Averbeck et al., 2006). These, including the result in 

study 2, suggest that if the decoder only extracts the information in terms of tuning 

functions and predicts mean activity patterns for a particular stimulus, it would be better 

for the encoding system to have uncorrelated noise (Mitchell et al., 2009). However, this 

is not the case in real neural systems: noise correlations are usually positively correlated 

with tuning similarity (Lee et al., 1998; Averbeck et al., 2006; Luczak et al., 2009).  

 One possible solution to this problem is to provide noise correlation information 

to a neural decoder: studies on neural decoding have shown that adding information to a 

decoder about noise correlation that exists in neural responses can improve decoding 

performance (Averbeck et al., 2006; Graf et al., 2011). The results that the incorporation 

of correlation information from functional connectivity improved decoding performance 

(Figure 3.4B and 3.6B) are consistent with the previous studies. However, it still remains 

unclear whether decoding with correlation information can recover all information loss in 

encoding if any; whether the brain actually uses implements a decoding strategy to use 

noise correlation; and why the coding system would allow inefficiency in the first place 

even if it can decode the information after all.  

 A number of researchers propose that coding efficiency might not be the only 

measure to evaluate the neural coding system; rather, reliability or learnability should 

also be considered (Barlow, 2001; Luczak et al., 2009; Fiser et al., 2010; Harris et al., 

2011; Schneidman, 2016). As to reliability, redundant coding by correlated activity can 

increase reliability in the sense that if one neuron fails to respond faithfully to a stimulus 

at a given time, other neurons with similar response patterns can still make a reliable 

contribution to the neural code (Schneidman et al., 2006; Luczak et al., 2009; Ganmor et 
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al., 2015). Also, it has been suggested that correlations in neural activity can help the 

neural system increase the capability of learning from activity samples (Fiser et al., 2004; 

Ganmor et al., 2011, 2015), for instance by flexibly engaging stimulus-evoked activity of 

single neurons to ensemble spontaneous activity (Miller et al., 2014).  

 This view is also consistent with the sensory gating hypothesis of spontaneous 

activity (Luczak et al., 2009, 2013) and the internal model account (Fiser et al., 2010; 

Berkes et al., 2011; Peyrache et al., 2015). Luczak and colleagues (Luczak et al., 2009, 

2013, 2015) point out that the similarity between spontaneous activity and evoked 

activity suggests that common regulatory mechanisms might lead spontaneous activity to 

serve as a gating function, which in turn restricts possible codes that evoked activity can 

choose for encoding. On the other hand, Fiser and colleagues propose that the neural 

system can use spontaneous activity to learn the prior probability for the model of the 

environment, and evoked activity is combined with spontaneous activity to infer the 

incoming stimuli and to update the prior (Fiser et al., 2004). Importantly, the above 

accounts commonly predict that correlated patterns in spontaneous activity would be 

similar to noise correlations (Figure 2.8, 2.9 and 3.2D) and that a stimulus input could 

alter the correlations (Figure 3.2D and 3.6B) as shown in the current thesis. Therefore, 

the results currently presented are consistent with the notion of utilization of coherent 

spontaneous activity in sensory encoding and decoding.  

4.3. Methodological implications 

 The two studies in the thesis are suggestive of computational linking between 

fMRI and electrophysiological studies in terms of encoding and decoding models. On the 

encoding model side, fMRI activity was fit by neurophysiologically plausible encoding 

models. In addition to that, functional connectivity was computed for each voxel pair and 

associated with tuning functions. On the decoding side, study 2 introduced 

neurophysiologically plausible multivoxel decoding rather than only finding decoding 

model parameters in an abstract space, as done in most fMRI decoding studies. The 

following section discusses these two points briefly. 
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4.3.1. Neural encoding in fMRI: linking voxels to neurons 

 Since the beginning of human fMRI studies, the methods have been heavily used 

to link mental representations (whether it is of incoming stimuli, outward actions or 

cognitive processes in between) and brain activity in a linear fashion. For this reason, the 

general linear model has been the essential procedure in fMRI analysis. In this approach, 

an activated voxel or region is assumed to encode some relevant aspect of the mental 

representation. In many fMRI studies, researchers seek associations between voxels (or 

regions) and a single type of category, or for relative preferences between a few types of 

mental representations. While the former is merely functional localization or brain 

mapping, the latter can be called ‘cognitive encoding tuning’ or ‘cognitive preference’ 

function in the sense that it describes what cognitive process a voxel prefers although it is 

still a type of functional localization (Haxby et al., 2001).  

 The concept of tuning or preference functions has been used in sensory 

neurophysiology for decades. The traditional approach is in fact very similar to the 

practices in fMRI research: a set of simple stimuli are presented and a neuron is 

characterized with respect to its response magnitude to each of the stimuli. The stimuli 

are parameterized by only one feature dimension, e.g., bar orientation, and thus the tuning 

function of a neuron can be described by one variable. Sensory neuroscientists have 

adopted this approach to characterize sensory tuning functions of single voxels in fMRI, 

for instance, for frequency tuning function or orientation selectivity (Freeman et al., 

2011; Park et al., 2013; Schönwiesner et al., 2014). Once tuning functions are 

established, one can fit a model to it in order to express it as a functional form which 

leads to estimation of biologically meaningful parameters such as best frequency, tuning 

width or periodicity (Moerel et al., 2012; Schönwiesner et al., 2014). Study 1 used this 

approach to characterize frequency tuning functions of single voxels and estimate best 

frequencies as a continuous variable. These parameters are often comparable to neuronal 

tuning properties: for instance, the width of frequency tuning functions is larger in the 

non-core areas than the core (Moerel et al., 2012; Schönwiesner et al., 2014) which is in 

agreement with neurophysiological findings in animals (Rauschecker, 1998; Kaas and 

Hackett, 2000).  
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 Another approach to estimate sensory encoding functions using fMRI is to model 

the responses of hypothetical neurons in terms of their tuning properties and associate 

fMRI voxel responses to the responses of multiple hypothetical neurons to a stimulus 

(Kay et al., 2008; Brouwer and Heeger, 2009; Naselaris et al., 2011; Santoro et al., 2014). 

In other words, tuning functions or receptive fields of hypothetical neurons yields filter 

responses to various features in a stimulus and the outputs of the filters are linearly 

combined to produce an fMRI response. Individual voxels have characteristic weights in 

this linear mapping that serve as tuning function in terms of particular stimulus feature 

variables (e.g., spatial frequency, orientation, and spectral density), and the weights 

indicate how much each of the hypothetical neurons (or corresponding filters) contribute 

to the fMRI response. In this approach, it is important to have biologically plausible 

assumptions about the receptive fields and response properties of neurons. The 

advantages of this approach include the capability of using complex or natural stimuli as 

input for model estimation and as output to be decoded, characterizing multiple feature 

variables at once, and testing neurophysiological models of receptive fields without direct 

electrophysiological recordings. Study 2 took this approach to identify spectrotemporal 

encoding functions of individual voxels of human auditory cortex (Figure 3.1). It opened 

the possibility to characterize tuning functions for the three variables of spectrotemporal 

receptive field (characteristic frequency, spectral density, and modulation rate) and to test 

models that can account for natural sound processing.  

 Furthermore, voxelwise functional connectivity was computed in both studies and 

related to the tuning properties of the voxels. This approach allowed not only to quantify 

the relation between tuning functions and functional connectivity (studies 1 and 2) but to 

evaluate the effect of functional connectivity on encoding and decoding (study 2). 

Quantification of the relation of tuning functions and functional connectivity led to 

comparison between different areas (study 1: Figure 2.9) or between two different types 

of functional connectivity (study 2: Figure 3.2D). Testing prediction or decoding models 

based on functional connectivity in study 2 brought out discussions on the importance of 

noise correlations using human fMRI data that cover an entire sensory cortex. 

Quantification of tuning-specific functional connectivity (Jermakowicz et al., 2009; Goris 
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et al., 2014; Moreno-Bote et al., 2014) and research on noise correlations (Averbeck and 

Lee, 2006; Kohn et al., 2016) have mostly concerned animal electrophysiological and 

theoretical studies. The commonly addressed limitation in those studies is that the data to 

fit the models are limited to small populations of neurons (Abbott and Dayan, 1999; 

Shamir and Sompolinsky, 2004; Franke et al., 2016). The current thesis takes the 

discourse in the classical neurophysiological community into the regime of fMRI to 

replicate the findings and test the hypotheses on a larger scale, and in humans.   

4.3.2. Neural decoding in fMRI: modeling information to be decoded 

 After decades of practice of univariate analysis in fMRI to associate a certain 

mental representation or state to specific voxels, Haxby and colleagues (2001) first 

applied fMRI multivoxel pattern analysis to decode the stimulus identity out of activity 

patterns in the human ventral visual cortex. In fact, their methods were similar to the 

tuning model-based decoder in study 2: the stimulus category preference function is 

estimated in a dataset and used to predict multivoxel patterns to identify the stimulus by 

comparing the predicted patterns. Although these two approaches are multivoxel pattern 

analysis, they do not take into account the interaction of voxels or trial-to-trial variability 

(i.e., only mean activity is predicted).  

 Subsequent fMRI studies, however, soon adopted various existing machine 

learning methods including the support vector machine (Kamitani and Tong, 2005) and 

linear discriminant analysis (Haynes and Rees, 2005). These machine learning methods 

take into account variability and correlations between voxels partially (support vector 

machine) or fully (linear discriminant analysis). Since then, various decoding methods 

derived from machine learning that incorporate trial-to-trial variability in the data have 

been introduced to the field. However, only a few methods, such as linear discriminant 

analysis fully incorporates the co-variability; but the biological underpinnings of co-

variability between voxels have been ignored. This is due to the computational challenge 

in estimating covariance from limited samples (Ledoit and Wolf, 2004) and to the 

limitation that the decoding approach in general cannot explicitly track down the 

encoding process (Kriegeskorte, 2011; Serences and Saproo, 2012).  
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 Representational similarity analysis is another multi-voxel pattern analysis 

method that is believed to model the brain’s information processing (Kriegeskorte, 2011), 

but it does not necessarily concern the co-variability across voxels. In general, it is 

sufficient to compute similarity between the patterns of average activity for distinct 

representations. Receptive field modeling-based analysis, which is the kind of tuning-

only model used in study 2 is in a similar position. Namely, it models the encoding 

process of the brain but it does not necessarily take into account co-variability between 

voxels in most cases (Kay et al., 2008; Naselaris et al., 2009, 2011; Santoro et al., 2014).  

 As discussed in many studies, correlation in neuronal response variability may 

lead to information loss (Shadlen and Newsome, 1994; Abbott and Dayan, 1999; Shamir 

and Sompolinsky, 2004; Averbeck and Lee, 2006). This was the case in the data in study 

2. When the inter-voxel correlation is intact in the original data, the decoding 

performance was worse than the case where the correlation in trial-to-trial variability was 

disturbed in single trial decoding. The decoding performance with trial-averaged test data 

used was equivalent to the single-trial decoding with the co-variability disturbed (Figure 

3.3). This is probably due to the fact that averaging across trials decreases the effect of 

co-variability (by removing noise). However, there is no means by which a brain system 

can actually remove noise in this way because it needs to be able to decode the activity in 

a single trial. Even for engineering, for instance when developing a neural prosthetic 

device, the real problem lies in a single trial situation. Therefore, taking into account co-

variability across neurons or voxels is critical to studying neural decoding.  

 Study 2 stresses how important knowing co-variability in the data is in decoding 

brain activity, and how it can be combined with a biologically-based tuning model. 

Moreover, the study explicitly and fully incorporated the co-variability factor into 

decoding rather than implicitly or abstractly as in other methods. Therefore, this approach 

brings encoding models and co-variability, both of which are biologically tractable, 

together into neural decoding.  Furthermore, the findings demonstrated that the co-

variability can be estimated from resting-state data, which not only has the 

aforementioned biological implications but also has the practical implication that 

researchers can run resting-state fMRI runs to obtain data for a reliable covariance 
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estimation, which usually requires much more amount of data than for estimation of 

mean activity.  

4.4. Limitations and suggestions for future research 

 The present thesis has addressed the three main hypotheses: (1) functional 

connectivity in human auditory cortex has spectrotemporal tuning-specific organization; 

(2) tuning-specific functional connectivity reflects known functional architecture of 

human auditory cortex such as tonotopic organization of anatomical connectivity and 

functional asymmetry; and (3) coherent spontaneous activity has a functional implication 

related to trial-to-trial co-variability (noise correlations), such that including the 

information of resting-state functional connectivity can improve activity prediction and 

decoding. The results from this thesis supporting these hypotheses will contribute to 

discussions in the field to elucidate the organization of neuronal interactions and the 

nature of coordinated spontaneous activity that form the basis of human cognition and 

behavior, as Hebb foresaw.  

 It is, however, necessary to address the inevitable limitations of the studies. First, 

despite the application of neurophysiologically-motivated receptive field models and 

voxelwise analysis, the results cannot provide sufficient evidence for any strong inference 

about behaviors of individual neurons. Rather, voxel activity must be understood as 

population activity of a mixture of homogeneous and inhomogeneous neurons (Heeger 

and Ress, 2002; Boynton, 2005; Dumoulin and Wandell, 2008; Brouwer and Heeger, 

2009). For topographically organized features such as visual receptive field locations 

(retinotopy) or auditory characteristic frequency (tonotopy), activity in response to the 

stimuli of interest could be regarded as arising from a relatively homogeneous group of 

neurons; however, other tuning properties such as orientation preference of a voxel 

cannot be attributed to responses from a homogeneous group of neurons since the spatial 

distribution of the feature representation such as orientation columns cannot be resolved 

by conventional fMRI voxel size (Boynton, 2005; Chaimow et al., 2010; Freeman et al., 

2011). The spatial organization of spectral density or modulation rate has not been 

documented in previous studies although it’s been indicated that there might be 
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bandwidth columns that run across iso-frequency maps (Read et al., 2001). Previous 

fMRI studies have presented inconsistent results on the spatial organization of 

spectrotemporal modulation transfer function on a macroscopic scale (Langers et al., 

2003; Schönwiesner and Zatorre, 2009; Santoro et al., 2014) and Schönwiesner and 

Zatorre (2009) reported cross-subject variability on a smaller scale. These considerations, 

taken together, suggest that the common resolution of fMRI might not be able to 

precisely delineate the topography of these two feature parameters. It does not, however, 

mean that the estimated modulation transfer function derived from our results is flawed, 

or that the tuning-specific functional connectivity is irrelevant to the underlying neuronal 

organization: it only means that the signal reflects biases in the neural population in a 

voxel which is still highly relevant to neurophysiological underpinnings (Haynes and 

Rees, 2005; Kamitani and Tong, 2005; Chaimow et al., 2010; Freeman et al., 2011). This 

point, together with the lack of anatomical data on the relation between spectrotemporal 

tuning parameters (except characteristic frequency) and projection patterns, makes it 

difficult to infer about the underyling anatomical and functional substrates of the 

functional connectivity results. To resolve this issue, more advanced fMRI techniques 

such as high field MRI (> 7T) or non-conventional sequences in a lower field strength 

can be used (Olman et al., 2003; Yacoub et al., 2008; De Martino et al., 2013).  

 Second, the high tuning-specificity of functional connectivity in the right core 

fields observed in study 1 (Figure 2.8 and 2.9) was not replicated in study 2. There are, in 

fact, multiple methodological differences that could cause the inconsistency, as briefly 

mentioned above. Study 1 used pure tone sounds whereas natural sounds were presented 

in study 2. Discrepancies between receptive fields estimated from artificial sounds and 

those from natural sounds have been documented in animal neurophysiological studies 

(Theunissen et al., 2001; Machens et al., 2004; Laudanski et al., 2012; Theunissen and 

Elie, 2014). Considering that voxel activity may be a mixture of inhomogeneous neuronal 

groups, as described above, natural sounds can drive more complex pattern of tuning 

functions such as more robust multi-peaks (Moerel et al., 2013). The inconsistent results 

might have also been caused by compromised reliability in the estimation of parameters 

in study 2 due to the large number of parameters. Another possibility is that the 
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discrepancy was caused by the smaller range of characteristic frequency parameter in 

study 2. The range of frequency was 1.5 times smaller in study 2, and the high specificity 

in the core in study 1 appears to be more strongly related to the highest frequency 

difference bin (Figure 2.8). To resolve this issue, it is suggested to present both types of 

stimuli to the same participants and use a wider range of frequency for the 

spectrotemporal response field model. Studying the differences in tuning properties 

between the responses to artificial stimuli and to natural stimuli in humans would, in fact, 

be of great interest to human auditory neuroscientists by itself, as would the study of the 

modulation of functional connectivity caused by the different characteristics of stimuli. 

 Third, the results in studies 1 and 2 support both hierarchical and distributed 

processing particularly with respect to functional interactions between neural units, but 

the detailed computational mechanism to integrate the two schemes is elusive. To study 

hierarchical processing, it might be necessary to implement causal modeling approaches 

(Kumar et al., 2007). Computational modelling using effective connectivity, i.e., 

estimation of directed influences between voxels, can be also useful to investigate how 

both processing strategies are combined throughout the processing stages in the cortex. 

Moreover, including analysis of subcortical activity simultaneously imaged in the model 

will help to understand how interactions between neural populations in voxels influence 

information processing in progression of neural stations.  

 Fourth, although functional implications of coherent spontaneous activity are 

indicated by the results that both resting-state functional connectivity and noise 

correlations have tuning-specific patterns, and that incorporating resting-state functional 

connectivity into a spectrotemporal encoding model improves activity prediction and 

stimulus decoding, understanding of the exact mechanism would need to depend on 

electrophysiological data to decide among options such as sensory-gating mechanism or 

Bayesian inference/learning. The sensory-gating hypothesis is challenging to test using 

fMRI data since the mechanism is essentially described in terms of temporal coherence 

between spiking activity and multi-unit activity (or local field potential) (Luczak et al., 

2013) which requires data at a sufficient temporal resolution. However, under the 

assumption that sensory gating plays a role for a perceptually ambiguous stimulus to 
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reach awareness (Kiefer et al., 2011), the hypothesis can be tested by decoding the 

percept of an ambiguous stimulus with functional connectivity from pre-stimulus activity. 

If the sensory gating mechanism holds, the decoding performance or decoded stimulus 

with pre-stimulus connectivity would be correlated with the percept. The hypothesis of 

Bayesian inference and learning can be also tested using fMRI. For instance, an 

investigator can give participants a learning task related to artificial or natural stimuli 

with certain subsets of features altered so to develop an altered internal model (or mental 

representation) about the stimulus statistics. Then measure changes in functional 

connectivity to test whether it reflects the statistics of the learnt stimuli. It would be also 

interesting to use the functional connectivity information to decode the stimuli and assess 

whether it improves decoding of the learnt stimuli better than the stimuli that have not 

been learnt.  

 Lastly, it is suggested that researchers in the fields of neurophysiology and human 

brain imaging collaborate to integrate the understanding of functional connectivity or 

population dynamics at different scales. The studies in this thesis demonstrated that the 

combination of voxel-wise fMRI analysis and neurophysiologically-based computational 

modelling can bridge the two streams of research. These two regimes of 

neurophysiological studies are complementary: electrophysiology provides more precise 

temporal information in neural activity despite the lack of spatial extension (in unit 

recording) or spatial precision (in such techniques as electroencephalography) whereas 

fMRI provides data on a spatially large scale up to the entire brain. Therefore, unifying 

the models of neural encoding and decoding that widely fit to different types of datasets 

will benefit not only understanding of the brain but also developing applications such as 

neural prostheses and diagnostic tools. 

4.5. Towards a bigger picture: unifying two views of brain function  

Raichle, one of the pioneers in studying spontaneous activity of the brain, 

articulated in his review (Raichle, 2010) that there have been two views on brain function 

in the history of neuroscience. One is to assume the brain as a reflexive system to be 

momentarily driven by external demands from the environment while the other view is 
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that the brain rather builds up intrinsic operations to interpret, respond and predict 

environmental demands. The first view is mostly interested in characterizing the 

representation of the features in environmental stimuli or demands that has been already 

established in the system. In this view, the representation of cognitive operations and 

motor outcome can be regarded as the end product of processing sensory inputs (Cisek 

and Kalaska, 2010). Therefore, deterministic associations between neural activity and 

stimuli or movement control are key for brain function.  

In contrast, the second view emphasizes the necessity to generate intrinsic activity 

which is not immediately reflexive to external demands. While it is certain that the brain 

maintains intrinsic activity without receiving any stimulation or executing motor 

outcome, the key of this view is to assign functional utility to intrinsic activity as 

evidenced by the existence of central pattern generators in the spinal cord, intrinsic 

oscillations in cortical circuits and coordinated spontaneous activity (Buzsáki and 

Draguhn, 2004; Yuste et al., 2005; Ji and Wilson, 2007; Fiser et al., 2010; Schneidman, 

2016). Cortex has been also found to sustain dynamic state changes such as up/down or 

synchronized/desynchronized states (Cossart et al., 2003; Harris et al., 2011; Luczak et 

al., 2013) and spontaneously vary its functional connectivity over time (Hutchison et al., 

2013)). As discussed earlier, emerging thoughts interpret these data as evidences that the 

brain actively might constantly make predictions (Friston et al., 2009) or regularizations 

(Fiser et al., 2010; Luczak et al., 2015) to infer what stimulus it is given or what outcome 

is optimal.  

While the first view has motivated researchers to characterize the tuning function or 

response preference that link sensory inputs or cognitive processes to the magnitude of 

average response of neural units after removing the variability, the second view would 

promote investigations on spontaneous activity and response variabilities, i.e., how brain 

activity changes independently of cognitive representations. These two approaches are 

complementary to one another rather than conflicting – at least in the methodological 

sense, and yet studies on the intrinsic activity of the brain are far sparser than those on 

sensory/cognitive representations. Therefore, the emerging studies to understand the 
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intrinsic operations will continue to make a significant impact on systems and cognitive 

neuroscience. 
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