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Abstract 
 

In this thesis, we focus on modelling a newly discovered material, called graphene, using time 

domain methods. First, a general finite-difference time-domain (FDTD) approach followed by 

FDTD update equations considering graphene is introduced. Subsequently, a new FDTD 

formulation for modelling intra-band conductivity term of graphene is proposed, in which 

graphene is modelled as a resistive sheet with a frequency-dependent conductivity. The 

formulation is first developed in the context of the vector wave finite-element time-domain 

(FETD) and then reduced to the FDTD based on the equivalence between these two techniques. 

The obtained formulation is easy-to-implement and does not alter the original FDTD update 

equations. It can be applied to an existing FDTD code by simply adding a correction term to 

appropriate variables.  

In addition, an efficient method based on the recursive fast Fourier transform (FFT) to 

incorporate both the intra-band and inter-band conductivity terms of graphene into FDTD method 

is proposed. As it only requires numerical values of the conductivity, it not only does not enforce 

any restrictions on the conductivity models, but also can directly take into account material 

properties obtained from measurement. It reduces the total computational cost from 𝑶(𝑵𝟐) to 

𝑶(𝑵𝒍𝒐𝒈𝟐𝑵) where 𝑵 is the length of the unknown. The FDTD method is also modified and 

proven to retain the stability condition of the standard FDTD method. 
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Résumé 
 

Cette thèse porte sur l’étude de la modélisation d'un matériau récemment découvert, appelé 

graphène, dans les méthodes du domaine temporal. Premièrement, une approche générale dans le 

domaine temporel à différences finies (FDTD) suivie par des équations de mise à jour FDTD 

prenant en compte le graphène est introduite. Par la suite, une nouvelle formulation FDTD pour la 

modélisation du terme de conductivité intra-bande du graphène est proposée, dans laquelle le 

graphène est modélisé comme une feuille résistive avec une conductivité dépendante de la 

fréquence. La formulation est d'abord développée dans le contexte du domaine temporel à éléments 

finis (FETD) de l'onde vectorielle puis réduite à la FDTD sur la base de l'équivalence entre ces 

deux techniques. La formulation obtenue est facile à mettre en œuvre et ne modifie pas les 

équations originales de mise à jour FDTD. Elle peut être appliquée à un code FDTD existant en 

ajoutant simplement un terme de correction aux variables appropriées. 

De plus, une méthode efficace basée sur la transformée de Fourier rapide (FFT) récursive pour 

incorporer à la fois les termes de conductivité intra-bande et inter-bande du graphène dans la 

méthode FDTD est proposée. Comme elle ne nécessite que des valeurs numériques de la 

conductivité, non seulement elle n'applique aucune restriction sur les modèles de conductivité, 

mais elle peut également prendre directement en compte les propriétés matérielles obtenues à partir 

de la mesure. Il réduit le coût de calcul total de 𝑶(𝑵𝟐) à 𝑶(𝑵𝒍𝒐𝒈𝟐𝑵) où 𝑵 est la longueur de 

l'inconnu. La méthode FDTD est également modifiée et prouvée pour conserver la condition de 

stabilité de la méthode FDTD standard. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

It all started in 2010, when Nobel prize in Physics was given to Andre Geim and Konstantin 

Novoselov, two professors at the University of Manchester for the discovery of graphene. They 

isolated graphene through a repetitive peeling-unpeeling of a crystalline flake graphite with scotch 

tape. Even though the process looks orthodox, it was the first successful effort to exfoliate graphite 

into single-layer of graphene. One may think this was just a lucky draw. We believe otherwise. 

They were both aware of the prior research done on the electrical properties of very thin graphite 

such as the work of Fujibayashi published at 1972 in Journal of Physical Society of Japan. It was 

their insight that enabled them to follow the trend of discoveries where thinning graphite to single 

layer should reveal outstanding properties and they just did it. What we learned from the story was 

neither the simplicity of a discovery by scotch tape nor the shiny Nobel prize, but it was the 

importance of having an insight before acting.  

Today many researchers around the world are continuing the research of Geim and Novoselov 

and developing applications of graphene. This thesis was motivated by the need to develop a 

technique to model graphene interaction with electromagnetic fields in order to assist the 

researchers prior to conducting the experiment. In other words, the goal of this thesis is to bring 
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the insight to their research to help them to see more possibilities this magical material can bring 

into our world.   

1.2 Graphene Overview 

The past decade has witnessed the discovery of a new 2D nanomaterial called graphene, which 

possesses unique properties suited to various applications. After winning the Nobel prize by its 

discoverers, it attracted tremendous attention in fields ranging from material science, 

nanotechnology to physics and electrical engineering. Scientists across the globe have made many 

discoveries on graphene’s material properties and potential applications. In the following section, 

an overview of graphene properties and its potential applications are provided. Moreover, different 

modelling techniques used for graphene will be mentioned. 

1.2.1 Graphene: The Material of 21st Century 

In 2004, University of Manchester researchers Andre Geim and Kostantin Novoselov 

discovered graphene - a nanomaterial possessing truly extraordinary properties. In 2010, Geim and 

Novoselov were awarded the Nobel prize in Physics for their discovery of this "wonder material," 

which comprises a single layer of carbon atoms arranged in a honeycomb lattice with only 1 

molecule thickness (hence its 2D classification) [1]. The method that accidently led to the 

discovery of graphene is called the “scotch tape” method. An adhesive tape is used for the 

exfoliation of graphite down to the single layer of graphene. The procedure involves repeated 

pealing of few-layers of graphene from flakes of graphite (Fig 1.1-1.3).  
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Fig. 1.1. Mechanical cleavage of graphene from graphite using adhesive tape [2]. 

 

 

Fig. 1.2. Graphene as one single layer of graphite [2]. 
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Fig. 1.3. A graphene sample at the millimeter scale [2]. 

Graphene is the thinnest material known to mankind, with an exceptionally high theoretical 

surface area (2630 𝑚2 per gram). Atomically, it is the strongest material ever measured, is 

extremely elastic (stretchable), and has exceptional thermal and electrical conductivity, making it 

the substance a design engineer's dreams [2]. Among all these characteristics, the one that is mostly 

interesting in its electrical properties that include its high carrier mobility, measured in various 

devices as 8000-10000 𝑐𝑚2𝑣−1𝑠−1 and could reach 200000 𝑐𝑚2𝑣−1𝑠−1 in suspended graphene 

[3]. On the other hand, graphene’s non-electronic properties bring a new dimension to graphene 

research. A defect-free sheet of graphene was found to have a record-breaking strength of 42 

𝑁𝑚−1, reaching the theoretical limit, as well as a Young’s modulus of 1.0 TPa, which is also a 

record value [4]. The one-atom-thick graphene is also found to be impermeable to gases, which 

could be of interest in bio-molecular and ion transport research [5]. 

The technology of manufacturing graphene has advanced in the past few years and both the size 

and quality of the graphene made have been significantly improved. The experimental discovery 

of graphene shows that while 2-D crystals do not grow naturally, they can be made artificially by 
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two general approaches. One starts from graphite (top-down approach), the other one from small 

molecules that are used to build up graphene (bottom-up approach).  

As mentioned above, transforming graphite to graphene can be performed mechanically using 

adhesive tape [6], mechanically in solvents by sonication [7], shear mixing or ball milling [8]. In 

addition, the delamination of single layers of graphite can be facilitated using chemical methods 

that involve chemical functionalization and de-functionalization after processing. The latter 

approach to graphene aims on the synthesis of graphene on solids using a carbon source. The 

method of choice is most often chemical vapor deposition (CVD) [9] using a metal surface and 

small molecules, such as methane or acetylene.  

Each of these approaches have their own challenges that must be overcome in the future to 

obtain high performance materials utilizing the unique properties of graphene, such as the high 

mobility of charge carriers, mechanical strength, conductivity and transparency combined with 

flexibility [2]. The aforementioned graphene properties and current level of manufacturing 

capability make graphene a good candidate for many novel devices as will be introduced in the 

next section. 

1.2.2 Graphene Applications 

Understandably, graphene-related patent filings have risen significantly around the world over 

the past several years. The UK is currently a hotbed of activity in graphene, with the University of 

Manchester acting as a magnet for millions of dollars of research funding. Entrepreneurial and 

investment activities associated with graphene have increased significantly. Patenting graphene-

based applications has also increased by major electronic industries like Technology stalwarts 

Samsung and IBM. Today, the range of potential applications for graphene is limited only by one's 

imagination [2].  
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Electronics is the field where graphene is expected to have an important impact. Due to its 

outstanding electronic properties, graphene is a material of choice for devices working at radio 

frequencies [10]. Furthermore, its transparency and advantageous mechanical properties make it a 

suitable candidate to replace elements of electronic devices, such as touch screens and displays 

(Fig. 1.4). It is a promising candidate to replace traditional transparent conducting films, such as 

Tin-doped Indium Oxide (ITO) or Aluminum-doped Zinc-Oxide (AZO), which are expensive, less 

efficient and toxic [11]. 

 

Fig. 1.4. South Korean researchers made a foldable touch screen from a 30-inch piece of graphene. (Photo 

courtesy of Prof. Byung Hee Hong) 

 

Graphene has been also intensively studied as a base material for energy harvesting. Graphene 

could enhance the efficiency and integration of solar cells, acting as a transparent electrode  

[12-13].  

Moreover, graphene-based Micro-ElectroMechanical Systems (MEMS) devices and 

transistors, e.g., Field Effect Transistors (FET), have developed rapidly and are now considered 

an option for post-silicon electronics [14].  
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Another application worth mentioning is graphene nano-antennas. Earlier research on nano-

antennas was focusing on the carbon nanotube (CNT) based antennas. CNTs support slow-wave 

propagation, whereby the phase velocity of electromagnetic waves propagating in CNT is on the 

order of 𝑐0/100 to 𝑐0/50 (𝑐0 being the speed of light in a vaccum) [15]. Despite their help in 

miniaturization of structures, they suffer from a major drawback which is its high resistance due 

to its extremely high aspect ratio (length/cross sectional area). As a result of the high resistance, 

the CNT nano-antenna often has a low efficiency. Fig. 1.5 shows a CNT antenna and a graphene 

nanoribbon (GNR) antenna. 

 

Fig. 1.5. CNT nano-patch antenna on the right and Graphene nano-patch antenna on the left [2]. 

 

Another attribute of graphene which supports surface plasmon polariton (SPP) wave have 

recently caught scientists’ attention [16-17]. SPPs are infrared or visible-frequency 

electromagnetic excitations at the interface between a metal and a dielectric material.  
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The unique properties of SPPs provide pathways to harnessing light in ways not possible with 

conventional optics, resulting into novel applications such as super resolution imaging, SPP 

lithography, SPP-assisted absorption, SPP-based antennas and devices. 

Recently Vakil and Engheta [17] discussed a new device in which the SPP properties of highly 

doped graphene play a key role. Replacing metals such as gold or silver with graphene in SPP-

related device is advantageous since the material properties of graphene are tunable via external 

electric or magnetic fields, and it supports SPPs with longer propagation lengths. In this case, 

graphene behaves like a thin metal layers where its conductivity is a function of its chemical 

potential (which will be discussed in the next section). Chemical potential is dependent upon gate 

voltage and/or chemical doping. Hence, graphene conductivity is adjustable with chemical doping. 

Graphene’s tunable conductivity allows it to tailor electromagnetic fields into desired spatial 

patterns with longer propagation lengths making graphene a promising alternative to metal-based 

plasmonics [16] with SPPs that are tightly confined on the surface.  

Fig. 1.6(a) reveals the possibility of having a selected part of the graphene sheet to support SPP 

waves while not on the other part, and this is done by varying the sign of the imaginary part of the 

conductivity via applying different gate voltages. The damping loss of its SPPs is relatively low; 

hence, the propagation length could reach dozens of wavelengths of SPPs. The tuning can be done 

in real time by varying the gate voltage, and it can be done inhomogeneously to form a conductivity 

pattern on a single graphene sheet [17]. Fig. 1.6(b) shows alternatively, an uneven ground plane 

underneath the graphene can be implemented to design the conductivity profile on the graphene. 

With the above-mentioned techniques, transformation optical devices, such as graphene-based 

Luneburg lens, can be designed. 
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Fig. 1.6: (a) Graphene conductivity controlled by bias voltages [17]. (b) Graphene conductivity controlled by uneven 

ground plane [17]. 

 

Graphene-based thermoplastic/thermoset composites have attracted significant attention as 

EMI shielding materials due to the low percolation threshold in mechanical and the electrical 

properties of the graphene filled composites. It is very essential to protect interference prone 

equipment from being malfunction. Thus, metal and metallic composites were the choice for 

shielding purpose due to their high electrical conductivity. However, difficulty in processing, 

heavy weight, and its chemical instability have urged scientists to look beyond it. Therefore, 

graphene filled polymer composites have started getting attention as EMI shielding materials due 

to their light weight, large specific surface area and good electrical conductivity [2]. 

The above-mentioned examples are just a few of many applications being researched with 

graphene. Typically finding the electromagnetic fields in these subwavelength geometries requires 

numerical approaches to solve Maxwell’s equations. Below, we describe different numerical 

methods used so far to model graphene.  
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1.2.3 Different Numerical Methods to Simulate Graphene Devices 

In recent years, with the introduction of graphene-based applications, such as waveguides, 

nano-antennas, or electromagnetic (EM)-shielding; the need for studying their EM behavior has 

emerged. In a macroscopic EM fields context, graphene behaves as a surface with conductivity 

that depends on chemical doping or external field bias [18]. In order to study the scattering, 

radiation and wave-guiding properties of graphene, Maxwell’s equations need to be solved either 

in two-dimensional or three-dimensional space. Since obtaining the analytic solution of Maxwell’s 

equations in most cases is impossible, the use of numerical simulation methods is helpful.  

Graphene has been modeled in various kinds of numerical methods, both in the frequency and 

time domains, such as the method of moment (MoM) [19], the finite-element method (FEM) [20], 

and the finite-difference-time-domain (FDTD) method [21]– [25].  

In 2011 Vakil and Engheta [17] proposed a frequency domain method considering graphene 

sheet as a thin layer with a volumetric conductivity. They conducted the simulations at a particular 

frequency, where the graphene conductivity value (at that desired frequency) is directly entered to 

a commercial software tools such as CST Studio Suite [26] and COMSOL Multiphysics [27]. 

However, to study the transient behaviour of the device and obtain the result for a wide frequency 

band with a single simulation in time, numerical methods in time-domain have huge advantages 

over frequency-domain methods.  

The FDTD method is arguably the simplest, both conceptually and in terms of implementation, 

numerical technique for solving Maxwell’s equations [28]- [29] and it is straightforward to 

incorporate the macroscopic model into the general FDTD scheme to solve problems in 

electromagnetics. Modeling graphene in FDTD can be performed in different ways with dramatic 

variation in the efficiency and resource requirements of the simulation. Up to now, three 
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approaches have been used to model the graphene in FDTD methods which are: 1) regular FDTD 

method with very fine field discretization in the graphene layer [21]- [22]; 2) the sub-cell FDTD 

approach [23]; and 3) the graphene as a surface boundary condition (SBC) in FDTD [24]. Since 

graphene is very thin (one atomic thick layer) and because of the linear relationship (introduced 

by Yee [30]) between the discretization steps in space and time, finer spatial grid needs finer time 

steps, the first approach requires a significant amount of memory and time which makes it a poor 

option in practice. In spite of the merits of the last two approaches, they share at least two major 

drawbacks: first, they require different update equations in the vicinity of the graphene sheet and 

a special type of perfectly-matched layer (PML) [31] which makes the programming difficult; and 

second, the effect of the modified equations on the stability of the underlying FDTD has not been 

analytically studied.  

Early SBC works in the FDTD method, introduced in 1992 by Maloney and Beggs, such as the 

surface impedance boundary condition approach considered only the reflection from a layer [32]- 

[33]. Later that year, Wu and Han [34] came up with a method for implementation of a resistive 

sheet boundary condition which calculated both transmission and reflection through an 

infinitesimal thin sheet, but the method suffered from instability [34-36]. The previous methods 

impose a restriction on the conductivity of the resistive thin sheets which are not applicable for 

modelling graphene as an SBC in the FDTD method. 
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1.3 Thesis Outline and Contributions 

The outline and the highlights of the contributions of this thesis are as follows: 

Chapter 2 is dedicated to the study of the FDTD modeling of graphene. First, the graphene 

conductivity model is introduced, and the FDTD update equations for graphene are developed. 

Then the Von Neumann stability analysis for intra-band conductivity has been performed and by 

taking into account that all eigenvalues of the system should reside on or inside the unit circle in 

order for our system to be stable, we obtain the criteria for time step size.  

Chapter 3 first introduces FETD formulation and hybrid FDTD-FETD method for developing an 

efficient technique with better stability to solve electromagnetic problems for graphene. Moreover, 

some efforts have been made to improve the stability criteria arising in the FDTD solution, which 

is often more severe and limiting in dispersive cases. In the following sections, some important 

aspects of the FETD and FDTD formulations are discussed and reviewed. 

Chapter 4 establishes new FDTD formulation for modelling graphene, in which graphene is 

modelled as a resistive sheet with a frequency-dependent conductivity. The formulation is first 

developed in the context of the vector wave finite-element time-domain (FETD) and then reduced 

to the FDTD based on the equivalence between these two techniques. The obtained formulation is 

easy-to-implement and does not alter the original FDTD update equations. It can be applied to an 

existing FDTD code by simply adding a correction term to appropriate variables. One of the main 

contributions of our work in this chapter is analyzing the stability of the proposed formulation, 

which has not been done previously. Accuracy and stability of the new formulations have been 

studied through some numerical examples. 
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Chapter 5 includes the inter-band conductivity of graphene which is a logarithmic term and not 

easy to model. A new method based on the recursive fast Fourier transform (FFT) to incorporate 

both conductivity terms of graphene into FDTD method is proposed. As it only requires numerical 

values of the conductivity, it not only does not enforce any restrictions on the conductivity models, 

but can also directly take into account material properties obtained from measurement. It reduces 

the total computational cost from 𝑶(𝑵𝟐) to 𝑶(𝑵𝒍𝒐𝒈𝟐𝑵) where 𝑵 is the length of the unknown. 

The FDTD method is also modified and proven to retain the stability condition of the standard 

FDTD method. 

Chapter 6 concludes this thesis with a summary of work done and contributions, along with 

possible future work related to this thesis. 

The co-authors of my publications contributed as advisory members to develop the theoretical 

formalism, perform the analytical verifications and simulations, and edit the manuscripts. 



 

 

Chapter 2 

  

Finite-difference-Time-Domain Modelling of 

Graphene 

 

2.1 Introduction 

In this chapter, we introduce the macroscopic frequency-dependent graphene conductivity 

model and then we touch upon general FDTD equations followed by FDTD update equations for 

graphene. In the last part, the stability analysis for the update scheme is provided. 

2.2 Graphene Conductivity Model 

Graphene has a frequency-dependent complex-valued conductivity. The macroscopic graphene 

conductivity model used in the FDTD method consists of two terms: 1) inter-band conductivity 

and 2) intra-band conductivity. The graphene surface conductivity (in units of [S]) is given by the 

Kubo formula in an integral form [37] as shown in equation (2.1).  

𝜎(𝜔, 𝜇𝑐, 𝛾, 𝑇) =
𝑗𝑒2(𝜔 − 2𝑗𝛾)

𝜋ℏ2
[

1

(𝜔 − 2𝑗𝛾)2
∫ 𝜖 (

𝜕𝑓𝑑(𝜖)

𝜕𝜖
−
𝜕𝑓𝑑(−𝜖)

𝜕𝜖
)𝑑𝜖

∞

0

−∫
𝑓𝑑(−𝜖) − 𝑓𝑑(𝜖)

(𝜔 − 2𝑗𝛾)2 − 4(𝜖/ℏ)2
𝑑𝜖

∞

0

].                                                             (2.1) 

In this equation, 𝑓𝑑(𝜖) = (𝑒
(𝜖−𝜇)/𝐾𝐵𝑇 + 1)

−1
 is the Fermi-Dirac distribution, 𝜔 is the angular 

frequency in rad/s, and γ is the scattering rate in 𝑠−1. In addition, 𝜇𝑐 is the chemical potential in 
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𝑒𝑉, which can be controlled by chemical doping or by applying a bias voltage, 𝑇 is the temperature 

in Kelvin, 𝑒 is the electron charge, ℏ is the reduced Planck’s constant, and 𝑘𝐵 is the Boltzmann 

constant. The first term showcases the intra-band carrier relaxation contribution, and the second 

term is from the inter-band transition contribution.  

The equation (2.1) in its integral form cannot be integrated in the FDTD scheme and needs to 

be simplified [37]. Therefore, intra-band conductivity can be evaluated as: 

𝜎𝑖𝑛𝑡𝑟𝑎(𝜔, 𝜇𝑐, 𝛾, 𝑇) =  
𝑗𝑒2𝑘𝐵𝑇

(𝜔 − 𝑗2𝛾)𝜋ћ2
(
𝜇𝑐
𝑘𝐵𝑇

+ 2𝑙𝑛(𝑒𝑥𝑝(−𝜇𝑐/𝑘𝐵𝑇) + 1))                 (2.2)  

and the inter-band conductivity can be approximated by: 

 

𝜎𝑖𝑛𝑡𝑒𝑟(𝜔, 𝜇𝑐, 𝛾) = −𝑗
𝑒2

4𝜋ℏ
ln (

2|𝜇𝑐| − (𝜔 − 𝑗2𝛾)ℏ

2|𝜇𝑐| + (𝜔 − 𝑗2𝛾)ℏ
)                                                   (2.3) 

 

Fig. 2.1 demonstrates the real and imaginary parts of graphene conductivity with two different 

chemical potential 𝜇𝑐 values.  

 

a 
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Fig. 2.1. a) Plot of the real and imaginary part of the graphene conductivity calculated using equation 

(2.1) for 𝜇𝑐 = 65 𝑚𝑒𝑉 and 𝜇𝑐 = 150 𝑚𝑒𝑉 at T = 30 K and 𝛾 = 1012, b) Plot of the real and imaginary 

part of the intra-band conductivity term for 𝜇𝑐 = 65 𝑚𝑒𝑉, c) Plot of the real and imaginary part of the 

inter-band conductivity term for 𝜇𝑐 = 65 𝑚𝑒𝑉 . 

b 

c 
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When the permittivity or permeability of a material are functions of frequency, the material is 

dispersive. In the frequency domain, the relationship between the electric field and current density 

for isotropic materials is given by 𝐽(𝜔)  =  𝜎 (𝜔)�⃗⃗�(𝜔). Since FDTD solves Maxwell’s equations 

in the time domain, incorporating the dispersive property of the material requires additional 

numerical effort. One of the approaches to alleviate this problem is to use auxiliary differential 

equations (ADE) [38-39] to model the dispersive material properties in the time domain. The ADE 

method requires that the dispersive conductivity be represented as a ratio of polynomials in 𝜔, i.e. 

the Drude model. The intra-band conductivity can be expressed by a Drude-like expression [40]: 

𝜎𝑖𝑛𝑡𝑟𝑎(𝜔, 𝜇𝑐, 𝛾, 𝑇) =
𝛼

𝜔 − 𝑗2𝛾
                                          (2.4) 

In which 𝛼 =
𝑗𝑒2𝑘𝐵𝑇

𝜋ћ2
(
𝜇𝑐

𝑘𝐵𝑇
+ 2𝑙𝑛(𝑒(−𝜇𝑐/𝑘𝐵𝑇) + 1)). This expression can be directly 

implemented in the FDTD formulation; however, due to the complexity of the inter-band term, it 

cannot be directly converted into a discrete-time relation using the ADE method.  

George W. Hanson in 2013 [18] showed that for the frequency 𝜔 ≪ 2𝜇𝑐/ℏ, the inter-band term 

is negligible and the intra-band term is dominant. Considering 𝜇𝑐 > 0.05, which is a practical 

condition, the intra-band is the dominant term in gigahertz and low terahertz regimes, resulting in 

the fact that many scientists working in the microwave regime neglect this term for the 

straightforward implementation of the conductivity in FDTD scheme. However, the inter-band 

conductivity must be included when considering higher frequencies and optical behavior with 

optical energies near the chemical potential.  
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2.3 Finite-Difference Time-Domain Method  

The finite-difference time-domain (FDTD) method is a numerical method to solve partial 

differential equations such as Maxwell’s equations in the time domain. It was introduced by Yee 

in 1966 [30] and further developed by Taflove in the 1970’s [39]. The method can be applied to 

EM problems with different boundary shapes, different kinds of boundary conditions, and regions 

containing a number of different materials. The application of FDTD is simple and straightforward 

as it involves only simple arithmetic in the derivation of discretized equations and in writing the 

corresponding computer codes. Since it is a time-domain method, one single run of simulation can 

provide information over a large bandwidth when the excitation is chosen to be of large bandwidth. 

In linear, lossless and isotropic medium the differential form of Maxwell's equations, Faraday’s 

Law (equation (2.5)) and Ampere’s Law (equation (2.6)) are solved to update the electric fields 

(�⃗⃗�) and magnetic fields (�⃗⃗⃗�) in space and time. 

∇ × �⃗⃗� = −𝜇
𝜕�⃗⃗⃗�

𝜕𝑡
− �⃗⃗⃗�.               (2.5) 

∇ × �⃗⃗⃗� = 𝜀
𝜕𝐸

𝜕𝑡
+ 𝐽.⃗⃗⃗                     (2.6) 

where 𝜀 (F/m) and 𝜇 (𝐻/𝑚) are electrical permittivity and magnetic permeability, respectively. 

Assuming 𝐽 = 0 and �⃗⃗⃗� = 0, the two Maxwell’s curl equations (2.5), (2.6) can be written as six 

scalar equations in Cartesian coordinates. Electric field can be written as: 

𝜕𝐸𝑥
𝜕𝑡

=
1

𝜀
[
𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦

𝜕𝑧
]              (2.7𝑎) 

𝜕𝐸𝑦

𝜕𝑡
=
1

𝜀
[
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑥

]              (2.7𝑏) 



 
 

19 
 

𝜕𝐸𝑧
𝜕𝑡

=
1

𝜀
[
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥
𝜕𝑦

]              (2.7𝑐) 

and for magnetic field, we will have: 

𝜕𝐻𝑥
𝜕𝑡

=
1

𝜇
[
𝜕𝐸𝑦

𝜕𝑧
−
𝜕𝐸𝑧
𝜕𝑦

]              (2.8𝑎) 

𝜕𝐻𝑦

𝜕𝑡
=
1

𝜇
[
𝜕𝐸𝑧
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑧
]              (2.8𝑏) 

𝜕𝐻𝑧
𝜕𝑡

=
1

𝜇
[
𝜕𝐸𝑥
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑥
]              (2.8𝑐) 

As shown in Fig. 2.2, the Yee’s cell of dimension ∆𝑥 × ∆𝑦 × ∆𝑧 is introduced as a unit cell of 

the discretized spatial domain and ∆𝑡 as temporal increment steps. Any function of space and time 

can be written as: 𝑢(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡). 

 This method is an explicit finite difference method using central difference for space and time 

on a staggered Cartesian grid (leap-frog method) and it is second order accurate. 

 

𝜕𝑢𝑛(𝑖, 𝑗, 𝑘)

𝜕𝑥
=
𝜕𝑢𝑛(𝑖 + 1/2, 𝑗, 𝑘) − 𝜕𝑢𝑛(𝑖 − 1/2, 𝑗, 𝑘)

∆𝑥
+ 𝑂(∆𝑥2)        (2.9) 

𝜕𝑢𝑛(𝑖, 𝑗, 𝑘)

𝜕𝑡
=
𝜕𝑢𝑛+1(𝑖, 𝑗, 𝑘) − 𝜕𝑢𝑛(𝑖, 𝑗, 𝑘)

∆𝑡
+ 𝑂(∆𝑡2)                            (2.10) 
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Fig 2.2. Position of electric and magnetic field vector components in a unit Yee cell [30]. 

All fields are initially set to zero in the simulation domain. With a source excitation, all 𝐸 fields 

are updated at the integer time step 𝑛 and 𝐻 fields are updated at half time steps 𝑛 + 1/2 using the 

𝐸 values at time step 𝑛. Repeating this process allows the simulation to march in time. 

2.3.1 The Leap Frog Scheme 

Considering the discretization method in equations (2.9) and (2.10), FDTD update equations in 

homogeneous materials with 𝜎 = 0 for the electromagnetic field components with the exact 

locations shown in Fig 2.2 are as follows: 

𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛+1 = 𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛

+
∆𝑡

𝜀

[
 
 
 
 𝐻

𝑧,(𝑖+
1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2 − 𝐻

𝑧,(𝑖+
1
2
,𝑗−

1
2
,𝑘)

𝑛+
1
2

∆𝑦
−

𝐻
𝑦,(𝑖+

1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑦,(𝑖+
1
2
,𝑗,𝑘−

1
2
)

𝑛+
1
2

∆𝑧

]
 
 
 
 

           (2.11𝑎) 
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𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛+1 = 𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛

+
∆𝑡

𝜀

[
 
 
 
 𝐻

𝑥,(𝑖,𝑗+
1
2
,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑥,(𝑖,𝑗+
1
2
,𝑘−

1
2
)

𝑛+
1
2

∆𝑧
−

𝐻
𝑧,(𝑖+

1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2 − 𝐻

𝑧,(𝑖−
1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2

∆𝑥

]
 
 
 
 

           (2.11𝑏) 

𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛+1 = 𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛+1

+
∆𝑡

𝜀

[
 
 
 
 𝐻

𝑦,(𝑖+
1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑦,(𝑖−
1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2

∆𝑥
−

𝐻
𝑥,(𝑖,𝑗+

1
2
,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑥,(𝑖,𝑗−
1
2
,𝑘+

1
2
)

𝑛+
1
2

∆𝑦

]
 
 
 
 

           (2.11𝑐) 

𝐻
𝑥,(𝑖,𝑗+

1
2
,𝑘+

1
2
)

𝑛+
1
2 = 𝐻

𝑥,(𝑖,𝑗+
1
2
,𝑘+

1
2
)

𝑛−
1
2

−
∆𝑡

𝜇
[

𝐸
𝑧,(𝑖,𝑗+1,𝑘+

1
2
)

𝑛 − 𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛

∆𝑦
−

𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘+1)

𝑛 − 𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛

∆𝑧
]            (2.12𝑎) 

𝐻
𝑦,(𝑖+

1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2 = 𝐻

𝑦,(𝑖+
1
2
,𝑗,𝑘+

1
2
)

𝑛−
1
2

−
∆𝑡

𝜇
[

𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘+1)

𝑛 − 𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛

∆𝑧
−

𝐸
𝑧,(𝑖+1,𝑗,𝑘+

1
2
)

𝑛 − 𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛

∆𝑥
]              (2.12𝑏) 

𝐻
𝑧,(𝑖+

1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2 = 𝐻

𝑧,(𝑖+
1
2
,𝑗+

1
2
,𝑘)

𝑛−
1
2

−
∆𝑡

𝜇
[

𝐸
𝑦,(𝑖+1,𝑗+

1
2
,𝑘)

𝑛 − 𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛

∆𝑥
−

𝐸
𝑥,(𝑖+

1
2
,𝑗+1,𝑘)

𝑛 − 𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛

∆𝑦
]              (2.12𝑐) 

 



 
 

22 
 

2.4 Implementing Graphene in FDTD method at Microwave 

Frequencies 

To incorporate graphene, 𝐽 in equation (2.6) will not be zero. By using just intra-band 

conductivity, and approximating it with Drude-like formula equation (2.4), the conduction current 

𝐽 can be updated as: 

𝐽(𝜔) = 𝜎(𝜔). �⃗⃗�(𝜔) =
𝜎0

1 + 𝑗𝜔𝜏
�⃗⃗�(𝜔)                       (2.13) 

where, 𝜎0 = 𝑗𝜏𝛼.  

𝐽(𝜔) + 𝑗𝜔𝜏𝐽(𝜔) = 𝜎0�⃗⃗�(𝜔)                                        (2.14) 

which in time domain it becomes: 

𝐽(𝑡) + 𝜏
𝜕𝐽(𝑡)

𝜕𝑡
= 𝜎0�⃗⃗�(𝑡)                                                (2.15) 

Using the leap-frog method to obtain the discrete form of 
𝜕𝐽(𝑡)

𝜕𝑡
 in time and taking the average 

value of 𝐽(𝑡)  and �⃗⃗�(𝑡) results in the following equations: 

𝐽𝑛+1 + 𝐽𝑛

2
+ 𝜏

𝐽𝑛+1 − 𝐽𝑛

∆𝑡
= 𝜎0

𝐸𝑛+1 + 𝐸𝑛

2
                   (2.16) 

         𝐽𝑛+1 = 𝛼𝐽𝑛 + 𝛽(𝐸𝑛+1 + 𝐸𝑛)                                      (2.17)     

where, 𝛼 =
(2𝜏−∆𝑡)

(2𝜏+∆𝑡)
 ,   and   𝛽 =

𝜎0∆𝑡

(2𝜏+∆𝑡)
. 

In order to obtain  𝐽𝑛+1, we need to have 𝐸𝑛+1 from the same step. By discretizing (2.5) and 

(2.6) in space and considering 𝛿{∙} as the discrete curl operator, we will have the discrete form of 
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the fields in space. Again, by using the leap-frog method to obtain the discrete form in time and 

finally by taking the average value of 𝐽, we will have: 

𝐸𝑛+1 = 𝐸𝑛 −
∆𝑡

𝜀
δ {𝐻𝑛+

1
2} −

∆𝑡

2𝜀
(𝐽𝑛+1 + 𝐽𝑛)                 (2.18) 

By replacing equation (2.17) in (2.18) and taking 𝐸𝑛+1 to the left side, it is clearly shown that 

𝐸𝑛+1 depends only on previous time steps and can be incorporated in FDTD scheme as: 

𝐸𝑛+1 = 𝑨𝐸𝑛 + 𝑩δ {𝐻𝑛+
1
2} + 𝑪𝐽𝑛                                  (2.19) 

where, 𝑨 =

𝜀

∆𝑡
−

𝜎0∆𝑡

2(2𝜏+∆𝑡)
𝜀

∆𝑡
+

𝜎0∆𝑡

2(2𝜏+∆𝑡)

, 𝑩 = 
−1

𝜀

∆𝑡
+

𝜎0∆𝑡

2(2𝜏+∆𝑡)

 and 𝑪 =

(−2𝜏)

(2𝜏+∆𝑡)
𝜀

∆𝑡
+

𝜎0
2(2𝜏+∆𝑡)

. 

The update equation for H fields follow as: 

𝐻𝑛+
1
2 = 𝐻𝑛−

1
2 −

∆𝑡

𝜇
δ{𝐸𝑛+1}                                                                                       (2.20) 

The discretized 3-D update equations for graphene are listed below: 

𝐽
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛+1 =
(2𝜏 − ∆𝑡)

(2𝜏 + ∆𝑡)
𝐽
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛 +
𝜎0∆𝑡

(2𝜏 + ∆𝑡)
(𝐸

𝑥,(𝑖+
1
2
,𝑗,𝑘)

𝑛+1 + 𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛 )            (2.21)     

𝐽
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛+1 =
(2𝜏 − ∆𝑡)

(2𝜏 + ∆𝑡)
𝐽
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛 +
𝜎0∆𝑡

(2𝜏 + ∆𝑡)
(𝐸

𝑦,(𝑖,𝑗+
1
2
,𝑘)

𝑛+1 + 𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛 )          (2.22)    

𝐽
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛+1 =
(2𝜏 − ∆𝑡)

(2𝜏 + ∆𝑡)
𝐽
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛 +
𝜎0∆𝑡

(2𝜏 + ∆𝑡)
(𝐸

𝑧,(𝑖,𝑗,𝑘+
1
2
)

𝑛+1 + 𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛 )             (2.23)     
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𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛+1 =

𝜀
∆𝑡 −

𝜎0
2(2𝜏 + ∆𝑡)

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

𝐸
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛 +
−1

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

[
 
 
 
 
 
 𝐻

𝑧,(𝑖+
1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2 − 𝐻

𝑧,(𝑖+
1
2
,𝑗−

1
2
,𝑘)

𝑛+
1
2

∆𝑦

−

𝐻
𝑦,(𝑖+

1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑦,(𝑖+
1
2
,𝑗,𝑘−

1
2
)

𝑛+
1
2

∆𝑧 ]
 
 
 
 
 
 

+

(−2𝜏)
(2𝜏 + ∆𝑡)

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

 𝐽
𝑥,(𝑖+

1
2
,𝑗,𝑘)

𝑛                                                                         (2.24) 

𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛+1 =

𝜀
∆𝑡 −

𝜎0
2(2𝜏 + ∆𝑡)

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

𝐸
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛 +
−1

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

[
 
 
 
 
 
 𝐻

𝑥,(𝑖,𝑗+
1
2
,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑥,(𝑖,𝑗+
1
2
,𝑘−

1
2
)

𝑛+
1
2

∆𝑧

−

𝐻
𝑧,(𝑖+

1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2 − 𝐻

𝑧,(𝑖−
1
2
,𝑗+

1
2
,𝑘)

𝑛+
1
2

∆𝑥 ]
 
 
 
 
 
 

 

+

(−2𝜏)
(2𝜏 + ∆𝑡)

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

 𝐽
𝑦,(𝑖,𝑗+

1
2
,𝑘)

𝑛                                                                     (2.25)       

𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛+1 =

𝜀
∆𝑡 −

𝜎0
2(2𝜏 + ∆𝑡)

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

𝐸
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛 +
−1

𝜀
∆𝑡 +

𝜎0
2(2𝜏 + ∆𝑡)

[
 
 
 
 
 
 𝐻

𝑦,(𝑖+
1
2
,𝑗,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑦,(𝑖−
1
2
,𝑗,𝑘−

1
2
)

𝑛+
1
2

∆𝑥

−

𝐻
𝑥,(𝑖,𝑗+

1
2
,𝑘+

1
2
)

𝑛+
1
2 − 𝐻

𝑥,(𝑖,𝑗−
1
2
,𝑘+

1
2
)

𝑛+
1
2

∆𝑦 ]
 
 
 
 
 
 

 

+

(−2𝜏)
(2𝜏 + ∆𝑡)

𝜀
∆𝑡
+

𝜎0
2(2𝜏 + ∆𝑡)

 𝐽
𝑧,(𝑖,𝑗,𝑘+

1
2
)

𝑛                                                                       (2.26)       

The update equations for H field remain the same as in (2.12a) - (2.12c). 

 

2.5 Stability Analysis: Intra-band Conductivity 
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Stability analysis is calculated via well-known Von Neumann method, which involves 

substituting a discrete traveling wave solution 𝑢 = 𝑒𝑗(𝜔𝑛∆𝑡−𝑘∅∆∅) , where 𝑗 = √−1 and ∅ is 

direction: x, y or z into FDTD equations (2.21)-(2.26) and rewriting them into matrix format 𝐴𝑥 =

0. In order to derive the characteristic polynomial consequently, we set det(𝐴 = 0), for dispersion 

relationship we will have (see Appendix A): 

(𝛼𝑒−𝑗0.5𝜔∆𝑡 − 𝑒𝑗0.5𝜔∆𝑡)(4𝑠𝑖𝑛2 (
𝜔∆𝑡

2
)) − 4

∆𝑡2𝑐2

∆𝑥2
𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) − 4

∆𝑡2𝑐2

∆𝑦2
𝑠𝑖𝑛2 (

𝑘𝑦∆𝑦

2
)

− 4
∆𝑡2𝑐2

∆𝑧2
𝑠𝑖𝑛2 (

𝑘𝑧∆𝑧

2
) + 4𝑗𝛽

∆𝑡

𝜀
𝑐𝑜𝑠2 (

𝜔∆𝑡

2
) 𝑠𝑖𝑛 (

∆𝑡

2
) = 0,             (2.27) 

where 𝑐0 = 1/√𝜀0𝜇0 is the speed of light. Equation (2.27) can be further simplified by substituting 

the growth factor 𝑔 = 𝑒𝑗𝜔∆𝑡 in to the equation, and rewriting 𝑠𝑖𝑛 and 𝑐𝑜𝑠 in terms of 𝑔:  

𝑎𝑔3 + 𝑏𝑔2 + 𝑐𝑔 + 𝑑 = 0,                                                                                                  (2.28) 

where, 

𝑎 = 𝛽
∆𝑡

2𝜀
+ 1                                                                                                                           (2.29) 

𝑏 = 𝛽
∆𝑡

2𝜀
− 𝛼 + 𝐷 − 2                                                                                                          (2.30) 

𝑐 = 1 − (𝐷 − 2)𝛼 − 𝛽
∆𝑡

2𝜀
                                                                                                    (2.31) 

𝑑 = −𝛼 − 𝛽
∆𝑡

2𝜀
                                                                                                                      (2.32) 

and 

𝐷 = 4(
∆𝑡2𝑐2

∆𝑥2
𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) +

∆𝑡2𝑐2

∆𝑦2
𝑠𝑖𝑛2 (

𝑘𝑦∆𝑦

2
) +

∆𝑡2𝑐2

∆𝑧2
𝑠𝑖𝑛2 (

𝑘𝑧∆𝑧

2
)).          (2.33) 
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The stability condition is met if the growth factor 𝑔 is less than or equal to 1. In order to derive 

a closed form stability criteria for equation (2.28), the Routh-Hurwitz criterion is used here. This 

criterion considers a mapping transformation 𝑔 =
𝑟+1

𝑟−1
, which maps the exterior of the unit circle 

for 𝑔 in the z-plane to the right half of the r-plane. For our scheme to be stable, there should be no 

roots in the right half plane of the r-plane. 

Applying the transformation to (2.28), we will have: 

 𝑎3𝑟
3 + 𝑎2𝑟

2 + 𝑎1𝑟 + 𝑎0 = 0,                                                                          (2.34)  

where, 

𝑎3 = 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝐷(1 − 𝛼),                                                                     (2.35𝑎) 

               𝑎2 = 3𝑎 + 𝑏 − 𝑐 − 3𝑑 = 4𝛽
∆𝑡

𝜀
+ 𝐷(1 + 𝛼),                                                 (2.35𝑏)                 

𝑎1 =  3𝑎 − 𝑏 − 𝑐 + 3𝑑 = (𝐷 − 4)(𝛼 − 1),                                                   (2.35𝑐) 

𝑎0 = (4 − 𝐷)(1 − 𝛼).                                                                                         (2.35𝑑) 

A Routh table [31] is constructed: 

Table(2) : Routh table for equation (2.34). 

𝒂𝟑 𝒂𝟏 

𝒂𝟐 𝑎0 

𝒂
𝟏−
𝒂𝟑𝒂𝟎
𝒂𝟐

 0 

𝒂𝟎 0 

For stability, the first column of the Routh table needs to be non-negative. Given that 𝜏  and 𝜎0 

are both positive values, the following condition will be obtained: 
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∆𝑡2𝑐2

∆𝑥2
𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) +

∆𝑡2𝑐2

∆𝑦2
𝑠𝑖𝑛2 (

𝑘𝑦∆𝑦

2
) +

∆𝑡2𝑐2

∆𝑧2
𝑠𝑖𝑛2 (

𝑘𝑧∆𝑧

2
) < 1.             (2.36) 

To simplify the expression, assuming the maximum value of  

𝑠𝑖𝑛2 (
𝑘𝑥∆𝑥

2
) = 𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) = 𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) = 1, the stability condition will be: 

𝑆 =
∆𝑡2𝑐2

∆𝑥2
+
∆𝑡2𝑐2

∆𝑥2
+
∆𝑡2𝑐2

∆𝑥2
< 1                                                                     (2.37) 

which is the Courant–Friedrichs–Lewy (CFL) limit of the regular 3-D FTD update equations.  

2.6 Conclusion 

In this chapter, we introduced a conductivity model of graphene and the simplified formulations 

for both inter-band and intra-band conductivity. An introduction of the FDTD method followed by 

a basic FDTD modelling for graphene considering only inter-band conductivity model was also 

introduced. Then we performed Von Neuman stability analysis to show that the stability condition 

for the graphene update equations is the same as the CFL limit for the conventional FDTD method. 

The stability condition for the 1-D and 2-D case can be derived following the same method. A 

more detailed derivation of the stability condition is provided in Appendix A. 

  



 

 

Chapter 3 

 

Finite-Element-Time-Domain Method for 

Dispersive Medium 

 

3.1 Introduction 

To overcome the stair casing error and other limitations inherent to the FDTD method 

introduced in chapter 2, the hybrid method with finite element method (FEM) is proposed in this 

chapter. The finite-element time-domain (FETD or TDFEM) method is a very powerful numerical 

time domain method for solving Maxwell’s differential equations. FETD unlike the FDTD is able 

to treat unstructured grids, which enables versatility in modeling complex geometries [40]. In 

general, there are two categories for FETD scheme. The first category discretizes the second-order 

vector wave (curl-curl) equation (VWE), obtained by eliminating one of the field variables from 

Maxwell's equations. It is an implicit method in which time step is not constrained by a stability 

criterion. This VWE-FETD has more computational complexity meaning that the solution of a 

linear system of equations is required at each time step. Furthermore, it can be formulated to be 

unconditionally stable and can be extended to higher-orders [41-42].  

The second category directly discretizes the time-dependent coupled Maxwell’s equations 

called mixed method, yielding an explicit, conditionally stable algorithm in which the maximum 
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time-step must be constrained to ensure stability. This method can be considered as a 

generalization of the finite-difference time-domain (FDTD) method for unstructured grids [43-44].  

In this chapter, we first introduce a FETD formulation and a hybrid FDTD-FETD method for 

developing an efficient technique with better stability to solve electromagnetic problems for 

graphene. 

Moreover, some efforts have been made to improve the stability criteria arising in the FDTD 

solution, which is often more severe and limiting in dispersive cases. In the following sections, 

some important aspects of the FETD and FDTD formulations are discussed and reviewed. 

3.2 VWE-FETD Formulation  

Considering the first category, the vector wave equation (VWE) in dispersive media, based on 

electric field and current density 𝐽𝑖 is: 

∇ × (
1

𝜇
∇ × 𝐸(𝑡)) + 𝜀(𝑡) ∗

𝜕2𝐸(𝑡)

𝜕𝑡2
+
𝜕𝐽𝑖(𝑡)

𝜕𝑡
= 0,         (3.1)  

where ∗ denotes convolution in time. 𝜇 and 𝜀 represents the permeability and permittivity of the 

medium in the time domain. For a unique solution, by considering the Dirichlet boundary condition 

of surface S enclosed computational domain Ω [42], we will have the weak formulation of equation 

(3.1) as: 

∭ [
1

𝜇
∗ (∇ × 𝑁). (∇ × 𝐸(𝑡)) + 𝑁. ε(t) ∗

𝜕2𝐸(𝑡)

𝜕𝑡2
] 𝑑𝑣

𝑣

−∭ 𝑁.
𝜕(𝐽𝑖(𝑡))

𝜕𝑡
𝑑𝑣

𝑣

= 0    (3.2) 

where, 𝑁 is a vector basis function. Then, the electric field is expanded in space using vector 

basis function, 
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𝐸(𝑡) = ∑ 𝑁𝑖𝐸𝑖(𝑡)                                  (3.3)

𝑁𝑒𝑑𝑔𝑒

𝑖=1

 

With 𝑁𝑒𝑑𝑔𝑒 indicating total number of edges (unknowns). 𝐸𝑖(𝑡) and 𝑁𝑖 are the time-dependent 

electric field intensity and the vector basis function corresponding to the 𝑖-th degree-of-freedom 

(DoF), respectively.  

Consequently, we will have a system of ordinary differential equations (ODE’s): 

[𝑇]
𝑑2{𝑒}

𝑑𝑡2
+ [𝑆]{𝑒} = {𝑓}                         (3.4) 

where, {𝑒} = [𝑒1(𝑡), 𝑒2(𝑡), … 𝑒𝑁𝑒𝑑𝑔𝑒(𝑡)]
𝑇

, 

𝑇𝑘,𝑖𝑗 =∭ 𝑁𝑖. 𝑁𝑗
𝑣

𝑑𝑣,                            (3.5) 

𝑆𝑘,𝑖𝑗 =∭ ∇×𝑁𝑖
𝑣

. ∇ × 𝑁𝑗  𝑑𝑣,             (3.6) 

𝑓𝑖(𝑡) = −∭ 𝑁𝑖
𝜕𝐽𝑖(𝑡)

𝜕𝑡
 𝑑𝑣

𝑣

.                (3.7) 

3.3 Mixed-FETD Formulation 

In the mixed FETD which directly discretize coupled Maxwell’s equation, the electric field 

components are expanded using Whitney 1-form for edge elements and magnetic field components 

are expanded using Whitney 2-form basis functions for face elements [45]. This discretization 

leads to semi-discrete first order systems of Ordinary Differential Equation (ODE) in time:  
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{
[𝑇]

𝑑{𝑒}

𝑑𝑡
= [𝐶]𝑇[𝑇𝑓]{𝑏}

𝑑{𝑏}

𝑑𝑡
= −[𝐶]{𝑒}      

                       (3.8) 

where {𝑒} = [𝑒1, 𝑒2, … 𝑒𝑁]
𝑇 is electric field intensity unknowns and  {𝑏} = [𝑏1, 𝑏2, … 𝑏𝑁𝑓]

𝑇

 denotes 

the magnetic flux density unknowns.  [𝐶]  represents incident matrix, which is sparse and has -1, 0 

or +1 entries, and [𝑇], [𝑇𝑓], [𝑆] are square matrices given by: 

𝑇𝑖𝑗 = ∫𝜖𝑊𝑖
(1).𝑊𝑗

(1) 𝑑Ω                              (3.9) 

𝑆𝑖𝑗 = ∫∇ ×𝑊𝑖
1. ∇ × 𝑊𝑗

(1) 𝑑Ω                     (3.10) 

𝑇𝑓,𝑖𝑗 = ∫𝜇−1𝑊𝑖
(2)
.𝑊𝑗

(2)
𝑑Ω                       (3.11) 

in which 𝑊(1) and 𝑊(2) represent the Whitney 1-form and Whitney 2-form elements, respectively.  

3.4 The Equivalence between Mixed-FETD and VWE- FETD 

By eliminating {b} in equation (3.8), we obtain VWE-FETD formulation: 

[𝑇]
𝑑2{𝑒}

𝑑𝑡2
+ [𝑆]{𝑒} = {𝑓}        (3.12) 

in which it can be shown that [𝑆] = [𝐶]𝑇[𝑇𝑓][𝐶] for Whitney elements [44]. Therefore, both 

formulations become equivalent to each other in the continuous-time case [45]. 

If the [𝑇] and [𝑇𝑓] matrices, and [𝑆] in 3-D case, are approximated using the trapezoidal 

integration rule, it can be shown that equation (3.1) can exactly lead to the standard FDTD 

equations in space [46]. See Appendix B for more details. 
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3.4.1 Discretization of the Dispersive Medium using Möbius 

Transformation 

As briefly explained above, in time-harmonic form, one can account for transforming the 

frequency dependence of permittivity 𝐷(𝜔)  =  𝜀(𝜔)𝐸(𝜔) into time-domain. The multiplication 

of harmonic functions is equivalent to convolution in the time domain. Therefore, it requires some 

additional effort to model these types of dispersive materials. Since the susceptibility function of 

a general dispersive medium can be expressed as a sum of some rational functions in the frequency 

domain, its time-domain counterpart inherits the feature of exponential functions.  

In the Laplace space, we consider a linear permittivity model of the following form: 

𝜀(𝑠) =
𝑎𝑛𝑠

𝑛 + 𝑎𝑛−1𝑠
𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0

𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 +⋯+ 𝑏1𝑠 + 𝑏0
                       (3.12) 

In time domain, we will have: 

𝜀(𝑡) =
𝑎𝑛𝔇

𝑛 + 𝑎𝑛−1𝔇
𝑛−1 +⋯+ 𝑎1𝔇+ 𝑎0

𝑏𝑛𝔇𝑛 + 𝑏𝑛−1𝔇𝑛−1 +⋯+ 𝑏1𝔇+ 𝑏0
                    (3.13) 

where 𝔇𝑛 represents, n-th derivative with respect to time (
𝜕𝑛

𝜕𝑡𝑛
). In order to discretize equation 

(3.13) in time, we use the Möbius transformation technique defined as: 

            
𝜕

𝜕𝑡
→
2

∆𝑡

1 − 𝑧−1

1 + 𝑧−1
                                                    (3.14) 

which is the Trapezoidal rule with time step ∆𝑡; it gives: 

𝜀(𝑧) =
𝑐0 + 𝑐1𝑧

−1 +⋯+ 𝑐𝑝𝑧
−𝑝

1 + 𝑑1𝑧−1 +⋯+ 𝑑𝑝𝑧−𝑝
                                     (3.15) 
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where the coefficients in equation (3.15) are related to the coefficients of equation (3.13) and ∆𝑡. 

Applying the z-transform and making use of its property: 𝑧−𝑚𝐹(𝑧) ↔ 𝐹𝑛−𝑚, the time discrete 

form of the above equations can be obtained easily. 

3.5 Stability Criteria using FETD 

Applying central difference discretization scheme to equation (3.12) in general form and 

performing the z-transform in source-free homogenous dispersive medium, we will have [48]: 

(𝑧 − 1)2𝜀(𝑧)𝑇�̃�(𝑧) + ∆𝑡2𝑧𝑠�̃�(𝑧) = 0,         (3.16)   

Since matrix [𝑇] is symmetric and positive definite, we can multiply both sides of equation 

(3.16) with [𝑇]−1 resulting in an eigenvalue problem: 

−(𝑧 − 1)2𝑧−1𝜀(𝑧)�̃�(𝑧) = ∆𝑡2𝑇−1𝑠�̃�(𝑧).             (3.17) 

considering 𝜆 = −(𝑧 − 1)2/𝑧, as eigenvalue of the matrix (∆𝑡2)[𝑇]−1[𝑠]. 

In order to have a stable formulation in FETD, the following condition has to be satisfied [49]: 

Assuming 𝜆𝑚𝑎𝑥 as the maximum value of 𝜆, all eigenvalues of the amplification matrix have 

to reside inside or on the unit circle (in the z-plane). 

∆𝑡 ≤
√𝜆𝑚𝑎𝑥

√𝜌([𝑇]−1[𝑠])
                            (3.18) 

where 𝜌(. ) denotes the spectral radius of matrix (. ), which is the maximum eigenvalue of matrix 

(.). 

3.6 Conclusion 

In this chapter, VWE-FETD and Mixed-FETD have been introduced and by using the bilinear 

transform method, the FETD formulation based on the second-order VWE has been directly 

extended to include arbitrary linear dispersive media. In mixed FETD, the constitutive relations 
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can be updated separately from the Maxwell’s curl equations; therefore, it is more convenient to 

include medium dispersion effect. Therefore linear dispersive media using the ADE method can 

be implemented and the stability criteria was examined. 

 



 

 

Chapter 4 

 

An Efficient and Stable FDTD Formulation 

for Modelling Graphene 

 

4.1 Introduction 

In this chapter, a new finite-difference time-domain (FDTD) formulation for modelling 

graphene is proposed, in which graphene is modelled as a resistive sheet with a frequency-

dependent conductivity. The formulation is first developed in the context of the vector wave finite-

element time-domain (FETD) and then reduced to the FDTD based on the equivalence between 

these two techniques. The obtained formulation is easy-to-implement and does not alter the 

original FDTD update equations. It can be applied to an existing FDTD code by simply adding a 

correction term to appropriate variables. One of the main contributions of our work in this chapter 

is analyzing the stability of the proposed formulation, which has not been done previously.  

4.2 Graphene as Surface Boundary Condition in Mixed FETD-FDTD  

As mentioned above, graphene is modelled as surface boundary condition. Fig. 4.1 shows a 2-

D rectangular grid in which the electric field unknowns {e} are assumed to be represented by 

edges. Graphene can be considered as a resistive sheet on which we have: 

𝜎𝑖𝑛𝑡𝑟𝑎𝐸 = �̂� × (𝐻
+ − 𝐻−).                              (4.1) 
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Fig.4.1 Graphene sheet in a 2-D rectangular grid. 

The resistive sheet can be modeled in the VWE-FETD simply, as: 

[𝑇]
𝑑2{𝑒}

𝑑𝑡2
+ [𝑆]{𝑒} + {𝑔} = {0}                       (4.2) 

in which 

{𝑔} =
𝑗𝜔𝜎

1 + 𝑗𝜔𝜏
[𝑄𝑔]{𝑒}                                       (4.3) 

and 

𝑄𝑔𝑖𝑗
= ∫ �̂� ×𝑊𝑖

(1). �̂� × 𝑊𝑗
(1)𝑑𝑠

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒

           (4.4) 

Equation (4.2) can be transformed into the mixed FETD formulation in which both electric {𝑒} 

and magnetic fields {b} are being updated together similar to the FDTD, as: 

{
 
 

 
 [𝑇]

{𝑒}𝑛+1 − {𝑒}𝑛

∆𝑡
= [𝐶]𝑇[𝑇𝑓]{𝑏}

𝑛+
1
2 − {𝐽}𝑛+

1
2

{𝑏}𝑛+
3
2 − {𝑏}𝑛+

1
2

∆𝑡
= −[𝐶]{𝑒}𝑛+1

                                 (4.5)       

where 𝜕{𝐽}/𝜕𝑡 = {𝑔}. Applying the central difference scheme to this term yields 
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{𝐽}𝑛+
1
2 = {𝐽}𝑛−

1
2 + ∆𝑡{𝑔}𝑛                                                                    (4.6) 

In order to obtain 𝑔𝑛, we discretize equation (4.3) with the trapezoidal rule by simply replacing 

𝑗𝜔 with the bilinear transformation, 
2

∆𝑡

1−𝑧−1

1+𝑧−1
 and invoking the z-transform properties, which gives: 

{𝑔}𝑛 = (
2𝜏 − ∆𝑡

2𝜏 + ∆𝑡
) {𝑔}𝑛−1 +

2𝜎[𝑄𝑔]({𝑒}
𝑛 − {𝑒}𝑛−1)

(2𝜏 + ∆𝑡)
                   (4.7) 

Here, we have employed the central difference to discretize the mixed FETD equation (4.5) to 

exactly recover the leapfrog FDTD out of it, although applying other schemes such as Crank-

Nicolson (CN) or Alternating Direction Implicit (ADI) is readily possible. The trapezoidal 

integration has to be employed to evaluate integrals, which makes [𝑇], [𝑇𝑓], and [𝑄𝑔] fully diagonal 

(mass lumping procedure). A detailed derivation of these matrices are provided in Appendix B. It 

should be noted that only those unknowns on which the graphene sheet lie have non-zero 

contribution in [𝑄𝑔]. Having plugged mass-lumped matrices in equation (4.5), update equations 

identical to the fully-discretized FDTD are obtained in which the electric field update equation for 

those unknowns resided on the graphene sheet have an additional term {𝐽}. In case of an explicit 

FDTD method, e.g., the standard leapfrog FDTD discussed here, {𝐽} can be updated separately and 

applied as a correction term after the standard update process is performed, which greatly 

simplifies implementation. Needless to mention the update equation for the magnetic field is not 

changed in this approach. 
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4.3 Stability Analysis 

Since our method is based on the equivalence between FETD and FDTD method, they have the 

same stability criteria. Therefore, for the sake of simplicity, we study the stability analysis of 

VWE-FETD. In order to simplify the stability analysis, we have considered a rectangular grid with 

the graphene on every edge of the grid. A perfect electric conductor (PEC) boundary condition is 

used to truncate the computational domain. Since in our grid ∆𝑥 = ∆𝑦, both [𝑇] and [𝑄𝑔] will be 

diagonal matrices each with the same entry on the diagonal. By substituting [𝑇 ]  =  𝛽 𝐼 and 

[𝑄𝑔]  =  𝜑𝐼, we will have: 

𝛽𝐼
𝑑2{𝑒}

𝑑𝑡2
+ [𝑆]{𝑒} + 𝜑𝐼

𝜎𝔇

1 + 𝜏𝔇
{𝑒} = 0.                                      (4.8) 

For a square grid, 𝛽 = 𝜀∆𝑥2 and 𝜑 = ∆𝑥. Since [𝑠] is a symmetric matrix, it can be written as 

[𝑆] = [𝑃]−1[𝑉][𝑃]. By multiplying equation (4.8) in [𝑃]−1 and replacing �̃� = [𝑃]−1𝑒 our 

equations will be decoupled and with 𝜆𝑖 as the eigenvalues of [𝑆], we will have: 

𝛽
𝑑2{�̃�}

𝑑𝑡2
+ 𝜆𝑖{�̃�} + 𝜑

𝜎𝔇

1 + 𝜏𝔇
{�̃�} = 0                                             (4.9) 

By discretizing �̃� in central difference and the conductivity term via trapezoidal method we will 

have a third-order polynomial. By investigating the roots of the characteristic polynomial using 

the Routh–Hurwitz stability criterion mentioned before, and by having all eigenvalues of the 

amplification matrix reside inside or on the unit circle, we reach the following condition: 

∆𝑡 ≤
2

√𝜑𝜎𝛽−1𝜏−1 + 𝛽𝜆−1
                                                           (4.10) 

According to the definition of 𝜆 and 𝛽, 𝛽−1𝜆 represents eigenvalues of [T]−1[S]. The most 

limiting ∆t is corresponding to the maximum value of 𝛽−1𝜆, which is shown to be equal to  
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𝛽−1𝜆 =
4𝑐2

∆𝑥2
+
4𝑐2

∆𝑦2
                                                                       (4.11) 

for the 2-D case [50] in which 𝑐 is the speed of light. As can be seen from equation (4.10), this 

condition reduces to the CFL condition in the absence of graphene (𝜎=0); however, it becomes 

more limiting, if graphene layers are included in simulation. In order to see how much more 

stringent the new condition is, we consider the ratio of the two terms in the denominator of equation 

(4.10). 

By substituting right hand side of (4.11), 𝛽 = 𝜖∆𝑥2 and 𝜑 = ∆𝑥, we have: 

𝜑𝜎𝛽−1𝜏−1

𝜆𝛽−1
=
𝜇𝜎∆𝑥

8𝜏
                                                                       (4.12) 

which is very small for typical graphene problems. In order to demonstrate the validity of the 

stability condition, we conducted a numerical experiment in which we considered a rectangular 

grid with 30×30 cells, ∆x=∆y=2μm and PEC boundary condition on the outer boundaries. We 

assumed that graphene resides on every edge of the grid with T=300K, 𝜇𝑐 = 0.5 𝑒𝑣 and 𝜏 =

0.5 𝑝𝑠. Under this assumptions, the CFL condition yields ∆𝑡= 4.717×10−15 and the condition 

obtained from equation (4.10) gives ∆𝑡 = 4.632×10−15, which is less than 2 percent smaller than 

the CFL condition. We performed the simulation for two different values of ∆𝑡 slightly below and 

above the value obtained from the new condition, which are ∆𝑡= 4.63×10−15 and ∆𝑡= 4.64×10−15 

respectively. As can be seen in Fig. 4.2, the first ∆𝑡 results in completely stable results while the 

second value of ∆𝑡 leads to unstable results.   
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Fig. 4.2. Stability analysis; on the left: stable results with time steps slightly below the new stability condition, on 

the right: unstable results with time steps slightly above the new stability condition. 

 

4.4 Numerical Results 

4.4.1 Reflection and Transmission Response 

In order to validate the proposed formulation, we considered two numerical examples. Our first 

example involves calculating reflection and transmission coefficients of an infinitely long 

graphene sheet with T=300K, 𝜇𝑐 = 0.5 𝑒𝑣 and 𝜏 = 0.5 𝑝𝑠 as in [37], located in the middle of our 

computational domain. The problem was solved in 2-D with 210×210 cells, ∆𝑥 = ∆𝑦 = 2𝜇𝑚 . A 

perfect electric conductor (PEC) was used to truncate the graphene layer and a 8 cell layer perfectly 

matched layer (PML) for both sides of the domain. We excited the problem with a Blackman-

Harris pulse shape plane-wave [28]. The exact solutions were calculated by 𝑇 = 2/(2 + 𝜂0𝜎𝑔𝑟) 

and Γ = 𝑇 − 1 , in which 𝜂0 is free space impedance and 𝜎𝑔𝑟 is graphene conductivity. 

Fig. 4.3 shows comparison of the numerical and analytical results of transmission and reflection 

coefficients in which we can observe our method in an excellent agreement with the analytical 

results.  
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Fig. 4.3. Comparison between transmission and reflection coefficients of our numerical method and 

analytical results for Graphene; T=300K, τ=0.5ps, μc=0.5ev. 

 

4.4.2 Surface Plasmon Polariton Supported by Graphene 

As mentioned before, one of the main applications in which graphene plays an important role 

is SPP waves. The field of SPPs supported by graphene is tightly confined on the surface and the 

damping loss of its SPPs is relatively low, hence, the propagation length could reach dozens of 

wavelengths of SPPs [44]. Typically finding the electromagnetic fields in these subwavelength 

geometries requires numerical approaches to solve Maxwell’s equations. Due to the difficulties in 

measuring the SPP field, numerical simulation has been the essential manner to verify the 

theoretical analysis. This matter leads to our second example in which, the infinite graphene sheet 

is excited by a sinusoidal dipole electric source as SPP surface source at 30 THz frequency. Our 

domain has 200 × 60 cells and ∆𝑥 = ∆𝑦 = 20𝑛𝑚. The time step is calculated as  

∆𝑡 = ∆𝑥/(2𝑐0) = 3.3 × 10−17𝑠 and we truncated the domain with 8 layer PML cells. In order to 

avoid spurious reflections from the boundary, the graphene layer is extended to the PML regions.  

Fig. 4.4, shows the spatial distribution of Hz at time step 100 000 when the fields reach steady 
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state. From field distribution we can easily extract the guided wavelength  

𝜆𝑆𝑃𝑃 = 29 × 20 𝑛𝑚 = 580 𝑛𝑚 which is in good agreement with the analytically calculated 

guided wavelength as 𝜆𝑆𝑃𝑃 =
𝜆0

ℜ (√1−(
2

𝜂0𝜎𝑔𝑟
)
2

)

= 586 𝑛𝑚.  𝜆0 is the free-space wavenumber [50]. 

 

Fig. 4.4. Spatial distribution of Hz at time step 100 000 depicting SPP surface wave on the graphene layer. 

 

4.5 Conclusion 

In this chapter, we developed a simple, low cost formulation based on equivalence between 

FETD and FDTD to model graphene which can be implemented with minimal modifications on 

an existing FDTD code.  

Stability analysis has been performed for the first time unlike the other methods used to model 

graphene. Although it is an explicit method, the CFL stability condition has only been changed 

negligibly. 



 

 

Chapter 5 

 

Incorporating Inter-band Conductivity into 

FDTD using Recursive Fast Fourier 

Transform 

 

5.1 Introduction 

In this chapter, an efficient method based on the recursive fast Fourier transform (FFT) to 

incorporate both the intra-band and inter-band conductivity terms of graphene into the finite-

difference time-domain (FDTD) method is proposed. As it only requires numerical values of the 

conductivity, not only does it not enforce any restrictions on the conductivity models, but also can 

directly take into account material properties obtained from measurement. It reduces the total 

computational cost from 𝑶(𝑵𝟐) to 𝑶(𝑵𝒍𝒐𝒈𝟐𝑵) where N is the length of the unknown (e.g. edge 

elements). The FDTD method is also modified and proven to retain the stability condition of the 

standard FDTD method. 

The convolution involving the logarithmic approximation of the inter-band term can’t be 

evaluated efficiently in a recursive manner and the computation cost increases as the time-stepping 

proceeds [22]. Several authors have alleviated this problem by approximating the inter-band term 

using high-order rational functions [21,22,51]. The order of the approximating function can be 

very high, which consequently increases the complexity and cost of the implementation. 
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Furthermore, these methods require an accurate conductivity model of graphene, which may not 

be available in some applications such as graphene nanocomposites [37]. In these scenarios, 

measurement might be the primary approach to obtain electromagnetic properties in an accurate 

manner, which can’t be directly implemented into the FDTD code.  

In this chapter, we employ the recursive fast Fourier transform (FFT) to evaluate the time 

convolution in order to incorporate both inter-band and intra-band conductivity in the FDTD. This 

implementation needs only the values of the conductivity functions instead of the closed-form 

models as required by previous approaches. It reduces the complexity of brute-force evaluation of 

the convolution from 𝑶(𝑵𝟐) to 𝑶(𝑵𝒍𝒐𝒈𝟐𝑵). In addition, the FDTD algorithm is modified and we 

prove that it preserves the stability condition of the standard FDTD algorithm compared to chapter 

4 where the stability condition is a little limiting. Various numerical examples are presented to 

validate the method. 

5.2 New Formulation for Modelling Graphene in the FDTD Method 

The FDTD method described here is motivated by the easy-to-implement formulation presented 

in chapter 4; however, the previous formulation imposes an extra constraint on the stability 

condition. Here, a modified formulation is presented to retain the stability condition of the standard 

FDTD. 

By discretizing Maxwell’s curl equations (2.5-2.6) in space and considering 𝛿{∙} as the discrete 

curl operator, we will have the discrete form of the fields as 

                            
𝛿{𝐸}

𝜇
= −

𝜕𝐻

𝜕𝑡
                                                    (5.1) 

                            
𝛿{𝐻}

𝜀
=
𝜕𝐸

𝜕𝑡
+
𝐽

𝜀
.                                                 (5.2) 
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Using the leap-frog method to obtain the discrete form of equation (5.1) and equation (5.2) in 

time and taking the average value of 𝐽 results in the following equations: 

              
𝛿{𝐸}𝑛+1

𝜇
= −

𝐻𝑛+
3
2 − 𝐻𝑛+

1
2

∆𝑡
                                          (5.3) 

           
𝛿{𝐻}𝑛+

3
2

𝜀
=
𝐸𝑛+1 − 𝐸𝑛

∆𝑡
+
𝐽𝑛+1 + 𝐽𝑛

2𝜀
.                              (5.4) 

Applying the trapezoidal integration rule to evaluate 𝐽𝑛 = 𝜎 ∗ 𝐸𝑛 over each interval, yields  

          𝐽𝑛 =
∆𝑡

2
(𝜎1𝐸𝑛 + 𝜎𝑛𝐸1) + ∆𝑡 ∑ 𝜎𝑛−𝑚+1𝐸𝑚.

𝑛−1

𝑚=2

           (5.5) 

Since calculating 𝐽𝑛 requires having the value of 𝐸𝑛, we take the term containing 𝐸𝑛 out of 

equation (5.5) and consider the rest as 

          𝐺𝑛 =
∆𝑡

2
(𝜎𝑛𝐸1) + ∆𝑡 ∑ 𝜎𝑛−𝑚+1𝐸𝑚

𝑛−1

𝑚=2

                        (5.6) 

which clearly results in 

                              𝐽𝑛 =
∆𝑡

2
(𝜎1𝐸𝑛) + 𝐺𝑛.                                  (5.7) 

Subsequently, substituting equation (5.7) into equation (5.4) and taking the En+1 to the  

left-hand side yields;  

                    𝐸𝑛+1 =
1

𝑋
(
𝛿{𝐻}𝑛+

3
2

𝜀
+
𝐸𝑛

∆𝑡
) −

𝑌

𝑋
                      (5.8)   

in which 𝑋 = (1 +
∆𝑡2𝜎1

4𝜀
) and 𝑌 =

∆𝑡

2𝜀
(𝐺𝑛+1 + 𝐽𝑛) . 

As can be seen in equation (5.8), the electric field update equation for the unknowns residing 

on the graphene sheet will have a correction term. After the standard update process is performed, 
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𝑌 can be updated separately and added to the electric field update followed by a division by the 

constant value of 𝑋. This approach greatly simplifies implementation without changing the 

standard FDTD update process. Needless to mention, the update equation for the magnetic field is 

not changed in this approach. 

5.3 Recursive Fast Fourier Transform 

Applying the trapezoidal integration rule to 𝐽𝑛 = 𝜎(𝑡) ∗ 𝐸𝑛 transforms the evaluation of the 

convolution integral into calculation of a summation with the basic form of 

                                     𝐽𝑛 = ∑ 𝜎𝑛−𝑚𝐸𝑚
𝑛

𝑚=1

.                                (5.9) 

In order to evaluate equation (5.9) with the recursive FFT algorithm, we need to divide equation 

(5.9) into summations of lengths of 2𝑝 (except the last one) starting with 𝑁, the biggest possible 

2𝑝, and in an descending order [28] 

𝐽𝑛 = ∑∙

𝑁

𝑚=1

+ ∑ ∙

𝑁+2𝑝1

𝑚=𝑁+1

+ ∑ ∙

𝑁+2𝑝1+2𝑝2

𝑚=𝑁+2𝑝1+1

+⋯+ ∑ ∙

𝑛

𝑚=⋯

    

𝑝 > 𝑝1 > 𝑝2 > ⋯       (5.10) 

It is optimal to keep the length of 2𝑝-long summations equal to or greater than 64 [52]. 

Therefore, the length of the last summation will be less than 64, which should be evaluated directly. 

In order to explain it clearly, we consider evaluation of equation (5.9) at the 890th time-step 

(n=890). We first break equation (5.9) into several summations each of the length 2𝑝; 𝑝 > 5: 

𝐽(890) = ∑∙

𝟓𝟏𝟐

𝑚=1

+ ∑ ∙

512+𝟐𝟓𝟔

𝑚=513

+ ∑ ∙

768+𝟔𝟒

𝑚=769

+ ∑ ∙

832+𝟓𝟖

𝑚=833

                    (5.11)    
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By breaking this summation to the lengths of 2𝑝 , we can efficiently evaluate the first three 

summations using FFT. However, we need to calculate last remaining summation directly, as it is 

not efficient to further break a summation shorter than 64 to apply FFT which has been explained 

in [52].  

It should be noted that only one summation has to be calculated (either directly or using FFT) 

at each time-step, because the length of a discrete convolution containing two vectors each with 

𝑚 entries is 2𝑚 − 1. For example, once we evaluate the first summation at 512th time-step, we do 

not need to re-evaluate it until 𝑛 = 1024. Similarly, we do not re-evaluate the first three 

summations in equation (5.11) for any values of 𝑛 between 833 and 895. The last two summations 

will be replaced by one summation from 769 to 768+128 once we reach 896, which should be 

evaluated by FFT. When this process is applied recursively, more convolutions can be evaluated 

by FFT and the total cost of evaluating the entire summation containing 𝑁 steps is eventually 

reduced to 𝛰(𝑁𝑙𝑜𝑔2𝑁) [12]. 

𝛰 (𝑁𝑙𝑜𝑔𝑁 + 2(
𝑁

2
𝑙𝑜𝑔

𝑁

2
) + 4(

𝑁

4
𝑙𝑜𝑔

𝑁

4
)) = 𝛰(𝑁𝑙𝑜𝑔2𝑁)    (5.12) 

5.4 Stability Analysis 

Our stability analysis is based the well-known von Neumann method, which involves 

substituting a traveling plane-wave trial function 𝐸𝛼 = 𝐸𝛼0𝑒
−𝒿(𝑖𝑘𝑥∆𝑥+𝑗𝑘𝑦∆𝑦); 𝒿 = √−1 into the 

FDTD equations and rewrite them in the form 𝑋𝑛+1 = 𝚲𝑋𝑛. In order to have a non-growing 

solution during time stepping, the eigenvalue of 𝚲 with the largest magnitude should not lie outside 

of the unit circle in the complex plane [48]. For the sake of brevity, we only study the 2-D TMz 

case here for which the governing equations are  
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𝜕𝐻𝑥
𝜕𝑡

= −
1

𝜇

𝜕𝐸𝑧
𝜕𝑦

                                        (5.13) 

                             
𝜕𝐻𝑦

𝜕𝑡
=
1

𝜇

𝜕𝐸𝑧
𝜕𝑥

                                            (5.14) 

                             
 𝜕𝐸𝑧
𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥
𝜕𝑦

) − 𝐽𝑧 .                 (5.15) 

By discretizing equations (5.13-5.15) in space and time and substituting the trial functions, we 

reach  

𝐻𝑥0
𝑛+

1
2 = 𝐻𝑥0

𝑛−
1
2 −

𝐴∆𝑡

𝜇
𝐸𝑧0
𝑛                                                                            (5.16) 

𝐻𝑦0
𝑛+

1
2 = 𝐻𝑦0

𝑛−
1
2 +

𝐵∆𝑡

𝜇
𝐸𝑧0
𝑛                                                                             (5.17) 

𝐸𝑧0
𝑛+1 = 𝐸𝑧0

𝑛 + (
𝐵∆𝑡

𝜀
𝐻𝑦0
𝑛+

1
2    −

𝐴∆𝑡

𝜀
𝐻𝑥0
𝑛+

1
2) −

∆𝑡

2
(𝐽𝑧
𝑛+1 + 𝐽𝑧

𝑛)             (5.18) 

where 𝐴 =
𝒿2

∆𝑦
𝑠𝑖𝑛(𝑘𝑦

∆𝑦

2
) and 𝐵 =

𝒿2

∆𝑥
𝑠𝑖𝑛(𝑘𝑥

∆𝑥

2
). 

In the evaluation of 𝐽𝑧
𝑛, we only take into account the intra-band conductivity term 𝜎(𝑡) =

𝜎𝑖𝑛𝑡𝑟𝑎(𝑡) = 𝐾𝑒
−𝛼𝑡𝑢(𝑡), as the exponential form allows us to write the time-discrete convolution 

in a recursive fashion. However, the non-linear inter-band term does not possess such a property 

and makes the stability analysis complicated. Substituting the conductivity term into equation (5.5) 

and making some simplifications yields the following recursive relation 

𝐽𝑛+1 = 𝑒−𝛼∆𝑡𝐽𝑛 +
𝐾∆𝑡

2
𝑒−𝛼∆𝑡(𝐸𝑛 + 𝑒𝛼∆𝑡𝐸𝑛+1).                 (5.19) 

Now, we write equations (5.16-5.18) in the matrix form shown below 

𝑴[𝐻𝑥
𝑛+

1
2; 𝐻𝑦

𝑛+
1
2; 𝐸𝑧

𝑛+1; 𝐽𝑧
𝑛+1] = 𝑵 [𝐻𝑥

𝑛−
1
2; 𝐻𝑦

𝑛−
1
2; 𝐸𝑧

𝑛; 𝐽𝑧
𝑛]   (5.20) 
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in which 

𝑴 = [

1           0
0           1

  0        0
       0              0

𝐴∆𝑡 𝜀⁄ −𝐵∆𝑡 𝜀⁄
0 0

1 ∆𝑡 2⁄

−𝐾𝑒𝛼∆𝑡∆𝑡 𝜀⁄ 𝑒𝛼∆𝑡

]           (5.21) 

and 

𝑵 = [

1 0
0 1

−𝐴∆𝑡 𝜇⁄ 0

𝐵∆𝑡 𝜇⁄ 0

0 0
0 0

1 −∆𝑡 2⁄

𝐾∆𝑡 2⁄ 1

].                                           (5.22) 

Studying the eigenvalue of  𝚲 = 𝑴−𝟏𝑵 shows that to meet max(|eig(𝚲)|) ≤ 1 requirement, 

the time step should satisfy the following condition 

                                    ∆𝑡 ≤
√𝜇𝜀

√
1
∆𝑥2

+
1
∆𝑦2

                               (5.23) 

which is identical to the conventional stability condition, hence the new method does not limit the 

stability of the underlying FDTD method. Our stability analysis for the 3-D case yields the same 

result. 

5.5 Numerical Results 

To demonstrate the validity of the proposed formulation, we simulate the problem of plane-

wave reflection by and transmission through an infinite graphene sheet with T=300K, 𝜇𝑐 = 0.6 𝑒𝑉 

and Γ = 11 𝑚𝑒𝑉/ℏ [21] using the 2-D FDTD method. The graphene sheet was located inside a 

parallel-plate waveguide with PEC walls and was truncated by a 10-layer thick perfectly matched 

layer (PML). As shown in Fig. 5.1, the computational domain contains 200×200 cells with ∆𝑥 =

∆𝑦 = 2𝜇𝑚 .  
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Fig. 5.1. Graphene sheet in 2-D FDTD computational domain truncated by PML and PEC 

boundaries. 

5.5.1 Reflection and Transmission Response 

The transmission and reflection coefficients are obtained using discrete Fourier transform and 

are compared with the analytical solutions calculated by 𝑇𝑟 = 2/(2 + 𝜂0𝜎𝑔𝑟) and Γ = 𝑇𝑟 − 1 , in 

which 𝜂0 is free space impedance and 𝜎𝑔𝑟 is the graphene conductivity including both inter-band 

and intra-band terms. 

Fig. 5.2 shows a comparison of the numerical and analytical results, for both the transmission 

and reflection coefficients; it demonstrates excellent agreement with the proposed method. The 

relative error between the analytical results and the proposed method is less than 0.05% in the 

considered frequency range.   

 
Fig. 5.2. Comparison between transmission and reflection coefficients for a normally incident 

plane-wave. 
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5.5.2 TM Surface Plasmon Polariton 

Since graphene supports TM surface plasmon polariton (SPP) waves [53], it gives rise to 

micrometer size antennas resonating in the terahertz frequency range, yielding an advantage over 

their metallic counterparts. For this reason, as a second example, we simulate a SPP surface wave 

on two graphene layers excited by a sinusoidal dipole electric source at 30 THz frequency, as the 

SPP surface source in between the layers. 

Fig. 5.3. Shows the spatial distribution of 𝐸𝑧 at time step 40,000 when the field reaches steady-

state. Our domain has 120×200 cells and Δx = Δy = 20 nm. The time step is calculated as Δt = 

Δx/(2c0) = 3.3 × 10−17 s. In order to avoid spurious reflections from the boundary, the graphene 

layer is extended to PML regions of 10 cells. From the field distribution, we can easily extract the 

guided wavelength 𝜆𝑆𝑃𝑃 = 29 × 20 = 580 𝑛𝑚 while the results of the analytically calculated 

guided wavelength is 𝜆𝑆𝑃𝑃 =
𝜆0

𝑟𝑒√1−(
2

𝜂0𝜎𝑔𝑟
)2
= 577 𝑛𝑚. 

 
Fig. 5.3. Shows the calculated field of the SPP-mode propagating along two graphene sheets with 

the dipole source located in between. 
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5.6 Conclusion 

This work presents an efficient method to model graphene layers based on the recursive fast 

Fourier transform (FFT), in which both the intra-band and inter-band terms of its surface 

conductivity are modeled. This new approach only requires numerical values of the conductivity 

directly obtained from measurement, as opposed to the exact conductivity model required by 

previous methods. It is also shown to be fast and very cost effective. 

Moreover, the new FDTD method can be implemented with minimal modifications using an 

existing code and leaves the stability condition of the underlying FDTD method intact. 

 



 

 

Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis we focused on modelling graphene in time domain techniques based on the 

simplified formulations for both inter-band and intra-band conductivities. First, a basic FDTD 

modelling for graphene considering only inter-band conductivity model was introduced. Then we 

performed Von Neuman stability analysis to show that the stability condition for the graphene 

update equations is the same as the CFL limit for the conventional FDTD method. 

Furthermore, VWE-FETD and Mixed-FETD have been introduced and, by using the bilinear 

transform method, the FETD formulation based on the second-order VWE has been directly 

extended to include arbitrary linear dispersive media. In mixed FETD, the constitutive relations 

can be updated separately from the Maxwell’s curl equations; therefore, it is more convenient to 

include the medium dispersion effect. Therefore linear dispersive media using the ADE method 

can be implemented and the stability criteria was examined. In addition, a simple, low cost 

formulation has been developed based on equivalence between FETD and FDTD to model 

graphene which can be implemented with minimal modifications on an existing FDTD code. For 

the first time stability analysis has been performed unlike the other methods used to model 
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graphene. Although it is an explicit method, the CFL stability condition has only been changed 

negligibly. 

In order to take into account the inter-band conductivity model as well, an efficient method to 

model graphene layers based on the recursive fast Fourier transform (FFT), in which both the intra-

band and inter-band terms of its surface conductivity are modeled. This new approach only 

requires numerical values of the conductivity directly obtained from measurement, as opposed to 

the exact conductivity model required by previous methods. It is also shown to be fast and very 

cost effective. Moreover, the new FDTD method can be implemented with minimal modifications 

using an existing code and leaves the stability condition of the underlying FDTD method intact. 

6.2 Future Work 

In the future works, developing unconditionally stable numerical methods such as Crank-

Nicolson or a hybrid implicit explicit-finite difference time-domain (HIE-FDTD) for a stability-

improved implementation where both the inter-band and intra-band conductivity of the graphene 

are handled directly through an auxiliary difference is an interesting possibility. 

Graphene has a promising future in optical devices operating at the high terahertz frequency range 

graphene nanoribbons (GNR) in which the inter-band conductivity need to be taken into 

consideration. In those cases, higher computational efficiency such as discontinuous Galerkin 

time-domain (DGTD) algorithm using a nonlocal transparent surface impedance boundary 

condition (SIBC) incorporated into the DGTD scheme will be an interesting modelling approach.  
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Appendix A 

 

Dispersion Relation Derivation 
 

Substituting the travel wave expression of 𝑈 = �̃�𝑒𝑗(𝜔∆𝑡−𝑘∅∆∅) in, 𝑘∅∆∅ = 𝑘𝑥𝑖∆𝑥 + 𝑘𝑦𝑗∆𝑦 +

𝑘𝑧𝑘∆𝑧 to equation (2.21-2.26) and equations (2.12a-2.12c) and simplifying the equations, we will 

have:  

   𝑒𝑗(𝜔(𝑛+1)∆𝑡) 𝑒𝑗(𝑘∅∆∅) 𝐽𝑥   = 𝛼𝑒
𝑗(𝜔∆𝑡) 𝑒𝑗(𝑘∅∆∅) 𝐽𝑥 + 𝑒

𝑗(𝑘∅∆∅) 𝛽( 𝑒𝑗(𝜔(𝑛+1)∆𝑡) �̃�𝑥  + 𝑒
𝑗(𝜔𝑛∆𝑡) �̃�𝑥)     

  →  (𝑒𝑗(𝜔∆𝑡) − 𝛼)𝐽𝑥 − 𝛽(𝑒
𝑗(𝜔∆𝑡)  + 1)�̃�𝑥 = 0                                                           (𝐴. 1)     

   (𝑒𝑗(𝜔∆𝑡) − 𝛼)𝐽𝑦 − 𝛽(𝑒
𝑗(𝜔∆𝑡)  + 1)�̃�𝑦 = 0                                                               (𝐴. 2)     

   (𝑒𝑗(𝜔∆𝑡) − 𝛼)𝐽𝑧 − 𝛽(𝑒
𝑗(𝜔∆𝑡)  + 1)�̃�𝑧 = 0                                                                (𝐴. 3)     

(𝑒𝑗(𝜔∆𝑡) − 𝐴)�̃�𝑥 + 𝐵𝑒
𝑗(𝜔

∆𝑡
2
) 

[
 
 
 
 
 
 
(
𝑒𝑗(𝑘𝑦

∆𝑦
2
)   − 𝑒−𝑗(𝑘𝑦

∆𝑦
2
) 

∆𝑦
) �̃�𝑧

−(
𝑒𝑗(𝑘𝑧

∆𝑧
2
)   − 𝑒−𝑗(𝑘𝑧

∆𝑧
2
) 

∆𝑧
) �̃�𝑦

]
 
 
 
 
 
 

− 𝐶 𝐽𝑥 = 0      (𝐴. 4) 

(𝑒𝑗(𝜔∆𝑡) − 𝐴)�̃�𝑦 + 𝐵𝑒
𝑗(𝜔

∆𝑡
2
) 

[
 
 
 
 
 
 
(
𝑒𝑗(𝑘𝑧

∆𝑧
2
)   − 𝑒𝑗(𝑘𝑧

∆𝑧
2
) 

∆𝑧
) �̃�𝑥

−(
𝑒𝑗(𝑘𝑥

∆𝑥
2
)   − 𝑒−𝑗(𝑘𝑥

∆𝑥
2
) 

∆𝑥
) �̃�𝑧

]
 
 
 
 
 
 

− 𝐶 𝐽𝑦 = 0      (𝐴. 5) 
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(𝑒𝑗(𝜔∆𝑡) − 𝐴)�̃�𝑧 + 𝐵𝑒
𝑗(𝜔

∆𝑡
2
) 

[
 
 
 
 
 
 
(
𝑒
𝑗(𝑘𝑥

∆𝑥
2
) 
  − 𝑒

−𝑗(𝑘𝑥
∆𝑥
2
) 

∆𝑥
) �̃�𝑦
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) �̃�𝑥

]
 
 
 
 
 
 

− 𝐶 𝐽𝑧 = 0       (𝐴. 6) 

(𝑒𝑗(𝜔
∆𝑡
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= 0  (𝐴. 9) 

We reach to this system of equation following by the matrix to construct �̅�𝑋 = 0: 
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{
 
 
 
 
 
 

 
 
 
 
 
 
�́�𝐽𝑥 − �́��̃�𝑥 = 0                                                                          (𝑎. 1)

�́�𝐽𝑦 − �́��̃�𝑦 = 0                                                                           (𝑎. 2) 

�́�𝐽𝑧 − �́��̃�𝑧 = 0                                                                           (𝑎. 3)

�́��̃�𝑥 + �́��̃�𝑧 − �́��̃�𝑦 − 𝐶 𝐽𝑥 = 0                                                  (𝑎. 4)

�́��̃�𝑦 + �́��̃�𝑥 − �́��̃�𝑧 − 𝐶 𝐽𝑦 = 0                                                  (𝑎. 5)

�́��̃�𝑧 + �́��̃�𝑦 − �́��̃�𝑥 − 𝐶 𝐽𝑧 = 0                                                  (𝑎. 6)

�́��̃�𝑥 + �́́��̃�𝑧 − �́́��̃�𝑦 = 0                                                               (𝑎. 7)

�́��̃�𝑦 + �́́��̃�𝑥 − �́́��̃�𝑧 = 0                                                               (𝑎. 8)

�́��̃�𝑧 + �́́��̃�𝑦 − �́́��̃�𝑥 = 0                                                              (𝑎. 9)

           (𝐴. 10)      

 �̅�𝑋 =

[
 
 
 
 
 
 
 
 
 
 
+�́�  0  0 − �́�  0  0  0  0  0
0 + �́�  0  0 − �́�  0  0  0  0
0  0 + �́�  0  0 − �́�  0  0  0
−𝐶  0  0  �́�  0  0  0 − �́�  �́�
0 − 𝐶  0  0  �́� 0  �́�   0 − �́�
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0  0  0 + �́́�  0 − �́́�  0  �́�  0

0  0  0 − �́́�  + �́́�  0  0  0  �́�]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝐽𝑥
𝐽𝑦

𝐽𝑧
�̃�𝑥
�̃�𝑦

�̃�𝑧
�̃�𝑥
�̃�𝑦

�̃�𝑧]
 
 
 
 
 
 
 
 
 
 

= 0                            (𝐴. 11) 

 

The elements of Matrix A is as follows: 

�́� = 𝑒𝑗(𝜔∆𝑡) –𝛼, �́� = 𝛽(𝑒𝑗(𝜔∆𝑡)  + 1), �́� = 𝑒𝑗(𝜔∆𝑡) – 𝐴           (𝐴. 12) 

𝑑 =
𝑒𝑗(𝑘𝑦

∆𝑦
2
)   − 𝑒−𝑗(𝑘𝑦

∆𝑦
2
) 

∆𝑦
=
2𝑗𝑠𝑖𝑛(𝑘𝑦

∆𝑦
2 )

∆𝑦
 →      �́� = 𝐵𝑒𝑗(𝜔

∆𝑡
2
) 𝑑   (𝐴. 13) 

𝑒 =
𝑒𝑗(𝑘𝑧

∆𝑧
2
)   − 𝑒−𝑗(𝑘𝑧

∆𝑧
2
) 

∆𝑧
=
2𝑗𝑠𝑖𝑛(𝑘𝑧

∆𝑧
2 )

∆𝑧
 →        �́� = 𝐵𝑒𝑗(𝜔

∆𝑡
2
) 𝑒    (𝐴. 14) 

𝑓 =
𝑒𝑗(𝑘𝑥

∆𝑥
2
)   − 𝑒−𝑗(𝑘𝑥

∆𝑥
2
) 

∆𝑥
=
2𝑗𝑠𝑖𝑛(𝑘𝑥

∆𝑥
2 )

∆𝑥
 →     �́� = 𝐵𝑒

𝑗(𝜔
∆𝑡
2
) 
𝑓   (𝐴. 15)  

�́� = (𝑒𝑗(𝜔
∆𝑡
2
) − 𝑒−𝑗(𝜔

∆𝑡
2
) ) = 2𝑗 𝑠𝑖𝑛 (𝜔

∆𝑡

2
)                                         (𝐴. 16) 

�́́� =
∆𝑡

𝜇
𝑑, �́́� =

∆𝑡

𝜇
𝑒, �́́� =

∆𝑡

𝜇
𝑓                                                     (𝐴. 17) 
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In order to calculate the dispersion relation we need to set 𝐷𝑒𝑡(𝑋) to zero: 

𝐷𝑒𝑡(𝑋) = �́�(�́��́� + �́�𝐶)(−�́�𝐶𝑔 − �́��́�𝑔 − �́��́��́́� − �́��́��́́� + �́��́��́́�)2                                           (𝐴. 18) 

 

By substituting the variables, Dispersion relation is:  

(𝑒𝑗𝜔∆𝑡 − 𝛼)(−𝑒𝑗𝜔∆𝑡 − 𝐴)(4𝑠𝑖𝑛2 (
𝜔∆𝑡

2
)) − 4

∆𝑡2𝑐2

∆𝑥2
𝑠𝑖𝑛2 (

𝑘𝑥∆𝑥

2
) − 4

∆𝑡2𝑐2

∆𝑦2
𝑠𝑖𝑛2 (

𝑘𝑦∆𝑦

2
)

− 4
∆𝑡2𝑐2

∆𝑧2
𝑠𝑖𝑛2 (

𝑘𝑧∆𝑧

2
) + 4𝑗𝛽

∆𝑡

𝜀
𝑐𝑜𝑠2 (

𝜔∆𝑡

2
) 𝑠𝑖𝑛 (

∆𝑡

2
) = 0,             (𝐴. 19) 

 



Appendix B 

 

Derivation of Mass and Stiffness Matrices of VWE with 

Graphene 
 

As mentioned before, Yee’s FDTD is equivalent to mass-lumped FETD on a mesh composed 

of blocks [44]. By expanding E field in Whitney 1-form for edge elements 𝑒 = {𝑖, 𝑗} and B field 

in Whitney 2-form for face elements 𝑓 = {𝑖, 𝑗, 𝑘}, the shape functions are: 

𝑤𝑒 = 𝑤𝑖∇𝑤𝑗 − 𝑤𝑗∇𝑤𝑖                                                                              (𝐵. 1) 

𝑤𝑓 = 2(𝑤𝑖∇𝑤𝑗 × ∇𝑤𝑘 + 𝑤𝑗∇𝑤𝑘 × ∇𝑤𝑖 + 𝑤𝑘∇𝑤𝑖 × ∇𝑤𝑗)               (𝐵. 2) 

The edge element preserve tangential continuity while face element maintains the normal 

continuity across the boundaries. 

In the case of 1D, consider a uniform axes of edge length ∆𝐿, with graphene at second edge as 

shown in Fig. B.1: 

 

Fig.B.1. 1D scheme for Whitney edge and face element 

 

It is apparent that Whitney functions can be introduce as follow: 
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𝑊1
(1)
= (

∆𝐿 − 𝑍

∆𝐿
) �̂�,   𝑊2

(1)
= (

𝑍

∆𝐿
) �̂�    𝑎𝑛𝑑 𝑊(2) = (1)�̂�                              (𝐵. 3) 

Applying Trapezoidal rule on equation (3.5), (3.7) and (B.3) we will have: 

𝑇11 = ∫𝜖𝑊1
(1). 𝑊1

(1) 𝑑𝑙 = 𝜖 ∫(
∆𝐿 − 𝑍

∆𝐿
)
2

�̂�. �̂� 𝑑𝑧 = 𝜖
∆𝐿

2
 (1 + 0) = 𝜖

∆𝐿

2
   (𝐵. 4)    

𝑇12 = 𝑇21 = ∫𝜖𝑊1
(1).𝑊2

(1) 𝑑𝑙 = 𝜖∫(
∆𝐿 − 𝑍

∆𝐿
) (

𝑍

∆𝐿
) �̂�. �̂� 𝑑𝑙 = 𝜖

∆𝐿

2
 (0 + 0) = 0   (𝐵. 5)      

𝑇22 = ∫𝜖𝑊1
(1). 𝑊1

(1) 𝑑𝑙 = 𝜖 ∫(
𝑍

∆𝐿
)
2

�̂�. �̂� 𝑑𝑙 = 𝜖
∆𝐿

2
 (1 + 0) = 𝜖

∆𝐿

2
                        (𝐵. 6)  

𝑇𝑓 = ∫𝜇
−11.1 𝑑𝑙 = 𝜇−1∆𝐿                                                                                                   (𝐵. 7)    

 

𝑇𝑒1 = 𝜖 [

∆𝐿

2
0

0
∆𝐿

2

],   𝑇𝑒2 = 𝜖 [

∆𝐿

2
0

0
∆𝐿

2

] , …    (𝐵. 8) 

 

Assembling all the elements results in the total mass matrix:  

𝑇 = 𝜖

[
 
 
 
 
 
∆𝐿

2
0     0 0

0 ∆𝐿     0 0
0 0     ∆𝐿 0

0 0     0
∆𝐿

2 ]
 
 
 
 
 

                                        (𝐵. 9) 

It is obvious that apart from boundary edges we can approximate 𝑇 = 𝜖∆𝐿. Applying 

Trapezoidal rule on equation (4.4) which concerns the graphene layer, gives: 

𝑄𝑔11
= ∫(�̂� × (

∆𝐿 − 𝑍

∆𝐿
) �̂�) . (�̂� × (

∆𝐿 − 𝑍

∆𝐿
) �̂�) . 𝑑𝑙,     �̂� × �̂� = �̂�                                        (𝐵. 10) 

   𝑄𝑔11
= ∫(

∆𝐿 − 𝑍

∆𝐿
)
2

�̂�. �̂�  𝑑𝑧 = 0  (𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 𝑎𝑡 1𝑠𝑡 𝑒𝑑𝑔𝑒)                          (𝐵. 11) 

𝑄𝑔22
= ∫(�̂� × (

𝑍

∆𝐿
) �̂�) . (�̂� × (

𝑍

∆𝐿
) �̂�) = ∫(

𝑍

∆𝐿
)
2

�̂�. �̂� 𝑑𝑧 = 1                                              (𝐵. 12) 
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𝑄𝑔12
= 𝑄𝑔

12
= ∫(�̂� × (

∆𝐿 − 𝑍

∆𝐿
) �̂�) . (�̂� × (

𝑍

∆𝐿
) �̂�) =0                                                           (𝐵. 13) 

As we can see, matrix Q= [
0 0
0 1

] is a diagonal matrix with nonzero values only on the edges 

containing graphene. C is the curl matrix which is a linear combination of the face elements and 

their related edges: 

𝐶 =
1

∆𝐿
[
1 −1 0
0 1 −1

]       (𝐵. 14) 

 

In the case of 2D, four elements with the length of the edges ∆𝐿 is considered here; 

 

Fig.B.2. 2D scheme for Whitney edge and face element. 

 

In this case, shape functions will be as follow: 

𝑊1
(1) = (

∆𝐿 − 𝑥

∆𝐿
) �̂�              𝑊2

(1) = (
𝑦

∆𝐿
) �̂�              𝑊3

(1) = (
∆𝐿 − 𝑦

∆𝐿
) �̂�  

 𝑊4
(1) = (

𝑥

∆𝐿
) �̂�                 𝑊(2) = (

∆𝐿 − 𝑧

∆𝐿
) �̂�                                (𝐵. 15) 

Again by applying Trapezoid rule of equation (3.5),(3.7) for element 1, gives: 
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𝑇11 = 𝜖∫(
∆𝐿 − 𝑥

∆𝐿
) �̂�. (

∆𝐿 − 𝑥

∆𝐿
) �̂�. 𝑑𝑦 = 𝜖

∆𝐿2

4
 (1 + 0 + 1 + 0) = 𝜖

∆𝐿2

2
  (𝐵. 16)     

𝑇11 = 𝑇22 = 𝑇33 = 𝑇44                                                                                          (𝐵. 17) 

𝑇12 = 𝑇21 = ∫(
∆𝐿 − 𝑥

∆𝐿
) �̂�. (

𝑦

∆𝐿
) �̂� 𝑑𝑙 = 0                                                      (𝐵. 18)    

𝑇13 = 𝑇31 = ∫(
∆𝐿 − 𝑥

∆𝐿
) �̂�. (

∆𝐿 − 𝑦

∆𝐿
) �̂� 𝑑𝑙 = 0                                                 (𝐵. 19)        

𝑇14 = 𝑇41 = ∫(
∆𝐿 − 𝑥

∆𝐿
) �̂�. (

𝑥

∆𝐿
) �̂� 𝑑𝑙 = 0                                                           (𝐵. 20)        

𝑇23 = 𝑇32 = ∫(
∆𝐿 − 𝑦

∆𝐿
) �̂�. (

𝑦

∆𝐿
) �̂� 𝑑𝑙 = 0                                                                (𝐵. 21)        

𝑇𝑓1 = ∫𝜇
−1 (

∆𝐿 − 𝑧

∆𝐿
) �̂�. (

∆𝐿 − 𝑧

∆𝐿
) �̂� 𝑑𝑙 = 𝜇−1∆𝐿2                                            (𝐵. 22) 

𝑇𝑓1 = 𝑇𝑓2 = 𝑇𝑓3 = 𝑇𝑓4                                                                                              (𝐵. 23) 

 

𝑇𝑒1 = 𝑇𝑒2 = 𝑇𝑒3 = 𝑇𝑒4 = 𝜖

[
 
 
 
 
 
 
 
 
∆𝐿2

2
 0     0 0

0
∆𝐿2

2
      0 0

0 0     
∆𝐿2

2
 0

0 0     0
∆𝐿

2 ]
 
 
 
 
 
 
 
 

          (𝐵. 24) 

After assembly we will have: 

𝑇12×12 = 𝜖 [

∆𝐿2

2
⋯ 0

⋮ ∆𝐿2 ⋮
0 ⋯ ⋱

]               (𝐵. 25) 

𝑇𝑓 = 𝜇−1 [∆𝐿
2 0
0 ∆𝐿2

]                          (𝐵. 26) 

For equation (4.4), we will have: 

𝑄𝑔11
= ∫(𝑛 × (

∆𝐿 − 𝑥

∆𝐿
) �̂�) . (𝑛 × (

∆𝐿 − 𝑥

∆𝐿
) �̂�) . 𝑑𝑙 = 0 (𝐵. 27) 



 
 

69 
 

𝑄𝑔11
= 𝑄𝑔22

= 𝑄𝑔33
= 0 (𝐵. 28) 

𝑄𝑔44
= ∫(𝑛 × (

𝑥

∆𝐿
) �̂�) . (𝑛 × (

𝑥

∆𝐿
) �̂�) . 𝑑𝑙 = ∆𝐿 (𝐵. 29) 

𝑄𝑔14
= ∫(𝑛 × (

∆𝐿 − 𝑥

∆𝐿
) �̂�) . (𝑛 × (

𝑥

∆𝐿
) �̂�) . 𝑑𝑙 = 0,   𝑛 × �̂� = −𝑖 × 𝑗 = −𝑘 (𝐵. 30) 

𝑄𝑔14
= 𝑄𝑔41

= 0,      𝑄𝑔24
= 𝑄𝑔42

= 0,      𝑄𝑔34
= 𝑄𝑔43

= 0,     

𝑄𝑔32
= 𝑄𝑔23

= 0 ,     𝑄𝑔31
= 𝑄𝑔13

= 0,       𝑄𝑔21
= 𝑄𝑔12

= 0 
(𝐵. 31) 

𝑄12×12 =

[
 
 
 
 
 
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 2∆𝐿

 …    
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

     …     
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0]

 
 
 
 
 

 (𝐵. 32) 

which is diagonal matrix with diagonal elements which does not contain graphene are equal to 

zero. 


