
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text direetly trom the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typeWriter face, while others May be

from any type ofcomputer printer.

The quality ofthis reproduction is dependent upon the quality orthe

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs:r print bleedthrough, substandard margins:r

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to he' removed, a note will indicate

the deletion.

Oversize materials (e.g':r maps, drawings:r charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in °equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

fonn at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quafity 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMl directly to

order.

DMI
A Bell & Howell Information Company

300 North Zeeb Road, ADn Arbor MI 4~106·1346 USA
3131761-4700 800/521-0600





(

l"

The Class Groups of Arithrnetically

Equivalent Algebras

by

Nicolas Arsenault

November 1996

Department of Mathematics and Statistics

McGill University, Montréal

Canada

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science

@Nicolas Arsenault, 1996



- • - \,Il VClIIQUCl

Acquisitions and
Bibliographie Services

395 Wellington Street
OttawaON K1A0N4
canada

UU VQllQUc:I

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
Canada

Your file Vot,., référtJflce

Our fils Notre réftlrence

The author bas granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otheIWise
reproduced without the author' s
permtSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29647-4

CanadN



Ackno"W"ledgements

1 am very grateful to Professor Henri Darmon. Without his advice and ideas, his

wise guidance as a pedagogue and natural generosity this work could not have heen

presented. 1 am very proud to he in his first group of students. My only wish is to

continue ta henefit from his presence in my future studies. Thank you Henri.

1 want ta thank professors John McKay and David Ford, the first for providing

me an article on group representation theory and the second for spending a good

afternoon on checking the validity of computer resuIts. 1 acknowledge the financing

of NSERC for aIl the time 1 worked on my thesis. It allowed me to concentrate on

my studies instead of financial concerns. 1 thank the staff at the Department of

Mathematics and Statistîcs at McGill University for their kindness. 1 also mention

the chance 1 had ta share my office with great persans. 1 certainly worked in a

pleasant atmosphere.

To my friends and my family: Maman, Papa and his wife Marthe, Sophie,

Gilbert, Isabelle, Christophe and my two week old niece Florence, 1 love you aIl.



#(;.-."...:.

Abstract

Two number fields having the same Dedekind Zeta function need not have isomor­

phic class groups. However, the p-parts of these class groups are isomorphic except

possibly for a finite number of exceptional primes p. These exceptional prime num­

bers divide the degree of the normal closure of the number field. In this thesis we

extend this result to étale algebras having the same Dedekind Zeta function. These

algebras consist of direct surns of a finite number of number fields. We apply this to

the study of the class groups of suhfields of normal extensions having Galois group

isomorphic to GL2 (Fp).
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Résumé

Deux corps de nombres qui possèdent la même fonction Zéta de Dedekind n'ont

pas forcément des groupes de classes isomorphes. On sait cependant que les p­

parties de ces groupes de classes sont égales en dehors d'un nombre fini de nombres

premiers p exceptionnels. Ces nombres premiers exceptionnels divisent tous le degré

de le clôture galoisienne du corps de nombres. Dans cette thèse nous généralisons

ce résultat aux algèbres étales qui ont des fonctions Zêta de Dedekind identiques.

Ces algèbres sont des sommes directes d'un nombre fini de corps de nombres. On

applique cette théorie pour étudier les groupes de classes de certains sous corps

d'extensions galoisiennes qui ont un groupe de Galois isomorphe à GL2(Fp ).
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Chapter 1

Introduction

Since the time of Dedekind, one customary starting point for analysing the arith­

metic of algebraic number fields has been the map

assigning to each number field its Dedekind zeta function

1
(K(X) = L N(I):r: for x E (1,00)

IEOK

where l runs through all the ideals of the number ring OK and N(I) = IOK/11.
This function is known to converge for aIl x > 1 (see, for example [Fr-Ta] p.283).

Moreover, it extends to a meromorphic function of x E C having a simple pole

at x = 1. The Dedekind zeta function of a number field encodes many of its

invariants. If two number fields K and K' have the same Dedekind zeta function,

we say that K and K' are arithmetically equivalent number fields. They share

degrees [K : Q] = [K' : Q] and discriminants DK = DK" have the same number of

real embeddings s(K) = s(K' ) and of pairs of complex embeddings teK) = teK'),

have isomorphic unit groups UK ~ UK', and they determine the same normal

closure Lover Q (for an introduction of the above concepts read for example [Ma]

or [Fr-Ta]). Denoting G = Gal(L/Q), H = Gal(L/K) and H' = Gal(L/K') we

have the following equivalence (see [Pe2])

1
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where 15} (respectively 1~,) is the trivial representation of H (or H') induced to G

(see chapter 2 section 3 for definitions).

The first example of nonisomorphic arithmetically equivalent number fields was

discovered in 1925 by Gassman [Ga] with K and K' of degree 180. Later Perlis

[Pel] constructed infinite families of pairs of nonisomorphic arithmetically equiv­

aIent fields. In that same articlè Perlis proved that the smallest degree for which

there exist pairs of nonisomorphic arithmetical1y equivalent fields is 7.

The Ideal Glass Group of a number field K, denote CIK, is the quotient of the

group I K of fractional ideals by the group PK of principal ideais. This group is

abelian, and is therefore isomorphic to the direct sum of its JrSylow subgroups (in

fact every nilpotent group has that property, cf.[Ha] theorem 10.3.4 page 155). In

other words we have CIK = œpCI~). It is a classic result that the class group of a

number field is finite (see again [Ma] or [Fr-Ta]). By computing the residue at the

simple pole x = 1 of the Dedekind zeta function of K one obtains ([Fr-Ta] p.284)

where R K is the regulator of K, hK is the c1ass number (which is the number of

elements in CIK), and WK is the number of roots of unit}" in K. Comparing those

residues at x = 1 for a pair of arithmetically equivalent number fields K and K' we

get

This equation motivated Perlis to explore the relation between c1ass groups of arith­

metically equivalent number fields K and K'. Periis [Pe2] introduced a group­

theoretic invariant, a natura! number 11 = lI(G, H, H'), whose definition depends on

G, H, H' and not on L, K or K' such that for alI prime p not dividing 11 we have

ClCP> l''W ClCP)
K - K"

He also showed that the primes dividing 11 must divide IHI = IH'j. In the same

2
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paper he was able of computing explicitly the natural number Il in t'Wo concrete

examples.

Before describing the general structure of this thesis we need to define the Dede­

kind zeta function of an algebra. The algebras we study are finite direct sums of

number fields. Let J:, = œKi be snch an algebra. Then we define (J:,(x) to be

ni (Ki (x).

We also introduce the Artin-L function L(x, p), where p is a representation of

G = Gal(KfQ). Let P be a prime Iying over p and denote Dp = {a E G; qp =

P} the decomposition group at P. Let Ip = {q E G; a(a) =a(mod P) for aIl

a E OK} he the inertia group at 'P. Finally denote by ap E DpfIp the Frobenius

automorphism at P, i.e a p is an element whose restriction to the inertia field KIp

is the Frobenius automorphism. If V is the vector space on which G acts via p, we

define the Artin L-function as fol1ows

L(x, p) = II detvlp (1 - upp-Z)-l (x > 1).
p

Using this definition one shows (see for example [Fr-Ta] p.311) that

L(x, 1~) = (KH (x)

and that

L(x, p + t/J) = L(x, p) . L(x, 'ljJ)

where p and 'lj; are two representations of Gand p + t/J is the direct sum of these

representations.

In chapter 2, we study the group GL2(Fp). On that group we define the split and

non-split Cartan subgroup, denoted C and C', and the Borel subgroup, denoted B.

We aiso construct the character table of G. In chapter 3 we use that character table

ta prove the fol1owing relation on induced representations

3
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(f.

where N and N' are respectively the normalizers of C and C'. By the basic proper­

ties of the Artin L-functions (see above) one sees that L(x, 1%+1) = L(x, l~)L(x,1)

=(KN(X)(X) and similarly L(x, l~1 + 19) = (KNI(X)(KB(X) where for example K B

denotes the fixed field of K by B. Renee we have

It follows that the two algebras r, = KN El' Q and 1:,' = KN' œK8 share the same

Dedekind zeta function. They are then said to he arithmetica11yequivalent. In chap­

ter 4 we extend Perlis' result ta arithmetically equivalent algebras by constructing

a positive integer li such that for all prime t. not dividing li we have

Cl(l) ,...., Cl(l) ln CI(l)
KN - KN' 'iJ7 KS·

We also show that the primes dividing li divide the arder of G. In chapter 5 we

apply the theory developed so far to a concrete family of examples arising from the

3-division points of elliptic curves. In these examples we prove that li is a power of

2.

4



Chapter 2

A brief study of G

(

li,','.z'

2.1 The conjugacy classes of G

Consider G = GL2(Fp) , the group of 2 x 2 invertible square matrices with entries in

the finite field Fp of p elements. It can aIso be seen as the group of automorphisms

of the vector space V = Fp x Fp over F p. The cardinality of G is equal to the

number of bases of V. For the first vector of the basis, there are r - 1 choices

(rejecting (0,0». For the second, you need to take out al! the vectors spanned

by the first one and you get (p2 - 1) - (p - 1) = (p2 - p) choices. Therefore

IGI = <r - 1)(# - p) =p(p + 1)(P - 1)2.

Given 9 E G, consider its characteristic polynomial Pg(x) = x2 - tx + n where

t =trace(g) and n =det(g) (the norm). We know from basic linear algebra that

Pg(x) = P17gu- 1 (x) for any u E G. In other words Pg(x) is invariant by conjuga­

tion. Furthermore, a conjugacy class is completely determined by its characteristic

polynomial. There are four possibilities for Pg(x).

The first case; Pg(x) = (x - a)2 and the eigenspace associated to a is of dimension

two. In that case g = (~ :)- The matrix g is scalar and (p - 1) such classes

existe When the matrix 9 is scalar we denote it by: g""" At-

5



The second case; Pg(x) = (x - a)2 but the eigenspace associated to a is of

dimension one. By the theory of the Jordan canonical form (see for example [Ja]

section 3.10 p. 200), 9 is conjugate to (~ :). Here again (p - 1) sucb classes

exist. When 9 is of the second case we denote it by: 9 "'J A2•

The third _case; Pg(x) has two distinct roots, a and b in Fp • By the Jor­

dan canonical form, 9 isdiagonalisable and is conjugate to (~ ~)- There are

(P-l)JP-2) such classes corresponding to subsets of two elements in F;. When 9 is of

the third case, it is denoted by: 9 rv A3 •

The fourth case; Pg(x) is irreducible over F;. Let Fp2 be a fixed quadratic

extension of Fp. The irreducible monic polynomials of degree two over Fp are in

bijection with (Fp2 \ Fp)/t, where t is the Galois automorphism. Hence there are

~ of them. When 9 has irreducible characteristic polYnomial, we denote it by:

9 t'V BI.

Now we compute.the sizes of each of these four types of conjugacy classes. The

general strategy is the following. Given a conjugacy class C, the group G acts

transitively on C via conjugation. By a basic fact in group action theory (see [Ja]

section 1.12 p.71) we have ICi = Lorbiû[G : Z(Xi)] where x E C and Z(x) is the

centralizer of x. We therefore have

ICI = [G: Z(g)] for any 9 E C (2.1)

#..
~

For the first case when 9 is in the center, we have IA1(g)1 = 1. In other

words the number of element in the conjugacy class of 9 t'V Al is one because then

9 belongs to the center of G.

6
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For the second case, 9 ~ ih, let x = (: :) and 9 = (: :). A compu­

tation shows that xg = gx if and only if c = 0 and a = d. Henee

Z(g) ={XE G : x = (~ :)}.

Thus IZ(g)1 = (p - 1)p and IA2(g)1 = (p - l)(p + 1) hyequation (2.1).

For the third case, 9 ~ A3 , let 9 = (: ;). Then xg = gx if and only if

(b, c) = (0,0). Renee

Z(g) = {x E G : x= (~ ~)}.

Thus IZ(g)1 = (p - 1)2 and IA3(g)1 = p(p +1) byequation (2.1).

For the fourth case, 9 'V BI, let a he a root of Pg(x). Then 9 helongs to the

conjugacy class of g' = ( : :). Let x E G L2 (Fp2) be sucb that if = xgx- I then

xZ(g)x-1 is contained in

Moreover it eonsists exactly of the matrices in Z(g') satisfying 'YI = "12. Thus Z(g)

is isomorphie to F;2 and

By equation (2.1) we get IB1(g) 1 = p(p - 1). The results are summarized in the

following table.

Table 1 Conjugacy classes of G

7
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Conjugacy class # of classes # element/class

9 '" Al (~ ~) (p -1) 1

9 "" A2 (~ :) (P-1) p2 -1

9 r-J A3 (~ ~) (p-I)(p-2) p(p + 1)2

9 "" BI non-split E.U!=!l p(p - 1)2

2.2 Definition of the split and non-split Cartan

subgroup

This section is inspired from ([LaI] chapter 18, section 12). A split Cartan subgroup

of Gis a conjugate to the group of diagonal matrices.

Let Fp2 be a separable quadratic extension of Fp' Let {WI, W2} be a basis of Fp2 over

Fp . Then F;2 acts on Fp x F p with respect to the chosen basis via multiplication.

We can therefore view F;2 as a subgroup of G. We denote by C' this subgroup.

A different choice a basis of Fp2 corresponds to conjugation of C' in G. We caU

C' a non-split Cartan subgroup. The subalgebra Fp[C'] CMat2(Fp) is isomorphic

to Fp 2 itself while the units of the algebra are the elements of C' = F;2' CODsider

{l, a} as a basis for Fp2 over F p' For example, when p 1= 2, a can be taken as a

root of x2 - a where a is Dot a square in Fp' In that case we describe the elem.ents

of C' in the natural basis {l, a} of F p2 and we have

C' = {(: :): (x, y) # (0, 0)} .

Before continuing the analysis of our Cartan subgroups we need the following

classical theorem found for example in ([Ja] p.207).

8
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Theorem 1 (Frobenius Theorem) Let A E Mn(F), F a field, and let det().,[ ­

A) = dl (À) ... ds(.~) be the characteristic polynomial expressed in irreducible factors

over F[À]. Let ni = deg di(À). Then the dimension of the vector space over F of

matrices commuting with A is given by the formula

s

N = L(2s - 2j + l)nj.
j=1

We are DOW ready to resume our study of the Cartan subgroups.

Lemma 1 The subgroup C' is a maximal commutative subgroup

Proof. Clearly C' is a commutative subgroup. Now suppose x E G commutes

with aIl elements of C'. The matrix endomorphisms, Mat2(Fp), is an Fp-algebra.

Consider Fp[C'] as a subalgebra of Mat2(Fp). We know IFp[C']1 = p2. For x ~

Fp[C'], we have IFp[C', x] 1 2:: p2+ 1. Now by the formula of Theorem 1 the dimension

of the vector 'space over Fpof matrices commuting with x can't he equal to 3 (analyse

the possible s), hence IFp[C',x]l =fi p3. Since IFp[C',x]1 divides 1Mat2(Fp )1 it implies

that IFp[C',x]l = IMat2(Fp )1 but then Mat2(Fp) would be commutative which is

DOt the case. Therefore x E Fp[C']. But x is invertible, 50 x E C'. QED.

A Cartan subgroup is a suhgroup conjugate to the split Cartan subgroup or to

ODe of the subgroups described above (one of the C'). Here is a more conceptual

way of seeing the Cartan subgroups.

Lemma 2 Every maximal commutative subgroup ofGL2 (Fp ) is a Cartan subgroup,

and conversely.

Proof: Clearly the split Cartan subgroup is a maximal commutative subgroup of

G. Suppose H is a maximal commutative subgroup of G. We say that H is

diagonalizable if and only if aIl its elements are diagonalizable with respect to a

fixed basis. If H is diagonalizable over Fp, then H is contained in a conjugate of the

split Cartan subgroup. On the other hand, suppose His not diagonalizable over Fp .

It is diagonalizable over F;, the separable closure of Fp (in the basis {(l, 0), (0, 1)}

9
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of F; = Fp Ell FP' any element il! E H is equivalent ta the diagonal matrix (: :)

where x and x are the eigenvalues of Ct), and the two eigenspaces of dimension 1

give rise to two characters

of H in the multiplicative group of the separable closure. For each element 0 E H

the values 4>(0) and 4>'(0) are the two eigenvalues of o. At least for one a E H,

these eigenvalue are distinct because H is not diagonalizable. Hence the pair of

elements 4>(Ct) ,4>'(0) are conjugate over F. The image 4>(H) is cyclic, and if 4>(0:)

generates this image, then we see that 4>(Ct) generates a quadratic extension Fp2 of

Fp • The map

a t---> 4>(0) with 0 E H

extends to an Fp-linear mapping, aise denoted by t/J, of the algebra Fp[Hl into Fp2.

It follows that cP : Fp[H] -4- Fp2 is an isomorphism. Hence 4> maps H into F;2'

and in fact maps H ante F;2 because H was taken to be maximal. QED.

The normalizers of C and C'.

We also want to describe what are the normalizer of C and C'. Let 9 -

(: :) E G and (: ~) E C, then

g(: :)g_l=de~(g)(::=:: =:::~)EC
if and only if (a, d) = (0,0) or (b, c) = (0,0). Therefore the normalizer of C is

N = {(: ~). (~ ~) :a, b, C, d E F;}.

Before computing N', the normalizer of C' we need two lemmas.

Lemma 3 Let t be the linear automorphism of Fp2 given by the galois conjugation.

(In the basis {l, Ct} ofFp2 chosen above, it is described by the matrix (1 0).)
. 0 -1

10



Then

tx = xt for ail x E F p2

Proof. A direct verification.

Since t does not commute with C', it follows from lemma 3 that t E N' - C'.

Lemma 4 (N': C') = 2

ProoE (see [Sel] p.279): If s E N', the application x ~ sxs- l gives rise to an

auto morphidm of Fp[C'] fixing Fp. Let 'l/J : N' --+ {±1} = Aut(Fp2) he the

homomorphism which sends 8 to this automorphism. If 1/1(8) is the identity then 8

commutes with C' and hence belongs to C' by lemma 1. Hence ker(1/J) = C'. But

'ljJ is surjective by lemma 3. QED.

Lemma 4 implies

N' = C'utC'

= {(: ~). (:y ::): (z,y) # (0,0), a # D}

2.3 The character table of G

2.3.1 Representation theory of groups

We review the basic facts of representation theory of groups (see for example [Se2J).

Given a finite group G, a homomorphism p : G ---+ GL(V) from G into the

automorphism group of a vector space V over F (a field) is called a representation of

"G. If pis a representation of G, p(g) can be viewed as an invertible (dimV) x (dimV)

square matrix. We say that p: G ----+ GL(V) and p' : G ---+ GL(V') are isomorphic

representations if and only if there exist an invertible n x n matrix M (where

n =dim(V) = dim(V'») such that for aIl 9 E G we have

p(g)M = Mp'(g).

For any representation p of G we can write p as a direct sum of irreducible repre­

sentations. The set of irreducible representations is defined to he the smallest set

Il
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of representations having the above property. To the representation p we associate

the character Xp : G --+ F defined by

Xp(g) = trace p(g).

Proposition 1 When F has characteristic zero, two representations having the

same character are isomorphic.

This is why we often focus our study on the characters of G instead of its repre­

sentations. For any character X the dimension of X is defined to be equal to the

dimension of the vector space V on which G acts. Since the trace is invariant under

conjugation, X is a class function. In other words for all the 9'S in a conjugacy class

Cl of G their images by X are equal.

Given X and X, two characters of G, we define

(X, X') = I~I ~ X(g)X'(g-l).
gEG

Proposition 2 If X and x' are two irreducible characters of G then

{
1 ÜX=X

(X, X') = 0
otherwise

Any character of G can be expressed as a linear combination of irreducible char­

acters. The character table of G is defined by the gathering of aIl the irreducible

characters of G in a table. We aiso know that the number of irreducible characters

of G is equal to the number of conjugacy classes of G.

Given H a proper subgroup of G, then any representation p : H ~ GL(V)

gives rise to an induced representation pg : G ---4 Aut(W), where W is the space

of functions from G to V satisfying f (hx) = p(h)f (x) for all h EH, and the action

of G on W is given by y/{x) = f(xg). The character of p~, called the induced

character X~, is defined as follows

. { x(g)where x(g) = 0
ügEH

otherwise

12
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A special type of induced character is obtained when one consider the trivial

character 1H : H ~ C where IH(h) = 1 for aH h E H. Then you construct 1~

with the above definition. Actually 1~ is the character associated to the permuta­

tion representation of the coset space [G/ Hl Q. For 9 E G, 1~ (g) is equal to the

dimension of the subspace S where S = {x E [G/H]Q : gx = x}.

We now introduce an important theorem that is going to play a major role in the

contruction of the character table of GL2(Fp).

Theorem 2 (Frobenius Reciprocity) Let X be a character ofGand 't/J be a char­

acter of H, where H is a subgroup of G. Then

where XH is the restriction of X on H.

2.3.2 The computation of the character table of G

Again this part is based on ([LaI] chapter 18, section 12). Here are sorne definitions

we need in the course of computing the character table of G.

A - Diagonal subgroup of G

Z - Center ofG

U - Group of unipotent elements ( ~ :)
B - Borel subgroup = UA = AU

Theo IBI =p(P-l)2. We will construct the irreducible characters of G by inducing

characters from B. There are four types of irreducible characters of G .

First type

Let J.L: F;~ C* denote a complex character. Then J.L 0 clet: G~ C* are the

characters of the first type of dimension one. Its values on the conjugacy classes

are given in the following table.

Table 2

13
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JL(ad) JL 0 det«(3)

There are (p - 1) eharaeters of first type, beeause IF;I = (p - 1). Note that they

are all irreducible, sinee they are of dimension 1.

Second type

Let

~~( ~ :) =p(a~.
We obtain the indueed eharacter

where

. () {1/J~ (g) if g E B
and 'l/J~ 9 = .

o otherwise

Note that 'l/J~ is not irreducible because it cantains J.todet. Indeed using the Frobe­

nius Reciprocity Theorem we get

('l/J~, JL 0 clet)G - ('l/J~, JL 0 det)B

- I~I L 'l/J~(g)(JL 0 det)(g)* where * means eonjugate
gEB

- I~I L IJL(g)1
2

gEB

- 1.

The eharacters X = 'l/J~ - JL 0 det are called of second type. Let's study the values

that 'r/J~ takes on the different conjugacy classes.

For an element in the center we get

14



'l/lG( a 0) =
p 0 b

(

. . (Xl X 2 )For an element ln a conJugacy class of the form A2 we have for x =
Xa X4

• (a 1) -1 1 (XIX4 a - XIXa - X2 X
3

a x~ )ln G that x x = det(z) 2
o a -X3 XIX3 - X2X3a + axlX4

belongs ta B if and only if x E B. 80 we obtain

~~(: n= I~I~~P (g(: : )g-l)
- I~I L ?/Jp(g)J.L(a)2?/Jp(g-1)

gEB

- J.L(a)2.

For an element in a conjugacy class of the form A3 and for a given x E G we

have

(
a 0) -1 1 (XIX4 a - X2 X 3b -XIX2a + XIX2 b )

X 0 b x = det(x) Xa X4a - X3 X4b -X3X2a+ XIX4 b

belongs to B if and only if X3 or X4 is equal to zero. So we obtain

1~1~~p(g(: :)g-l)

- ~~I~p (: :) = 2p(ab).

Lastly for an element {3 E C' - F; (Le 13 is of the form BI) we have that any

conjugate of {3 does Dot belong in B because pp(x) is invariant via conjugation and

pp(x) is irreducible while for aIl 9 E B, Pg(x) is reducible. So we have

In the following table we reproduce the characters of type two.

Table 3

~.
x

'l/l~ - J.L 0 det o

15
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(

These type-two characters are aIl irreducihle; indeed, using Table 1 we find

IGI(x, X) = L Ix(g)12

gEG

p-l

- L IpJL(a)21 2 +
0=1

p-l

p(p + 1) L 1J.t(ad)12 + p(p -1) E 1- J1. 0 det(p)12

a<d 13eC'\F;

2(p 1) (p - 1)(P - 2)CP + l)p CP - 1)2p2
-p - + 2 + 2

_ pep - 1) (2p2 _ 2)
2

- IGI

There are (p - 1) such characters of type two corresponding to the different possihIe

p..

Third type

Let 'I/J : A ---+ C' denote a homomorphism. Take w = (~ ~) E N \ A.

Then w = w-1 and w (a 0) w = (d 0) = gW if 9 = (a 0). Thus
'0 d 0 a 0 d

conjugation by w is an automorphism of arder 2 on A. Let [w]1P he the conjugate

character; i.e.([w]'l/J(g) = "p(wgw-l) = 'l/J(gW) for 9 E A. Then [w]J.L = Il- (because

[w ]J.L(g) = J.L(gW) = J.L(g)). The characters J.L on A are precisely those which are

invariant under [w]. The others can be written in the form

with distinct characters .,pl, 'l/J2 = F; -4- C*. We amy consider the induced character

'ljJG = Ind~([w]1P) with 1P such that w'l/J f:. 'l/J. Those characters X = 1PG will he called

of the third type. Let us study the values that "pG takes on the different conjugacy

classes.

16



For an element in the center we have

G (a 0) 1~ .( (a 0) -1)'l/J = -L'l/J 9 9
o a IBI gEG 0 a

IGI (a 0)= jBj1/J 0 a = (p + 1)1/J(a).

For an element in the conjugacy class of the form A2 we already k.now that

9( ~ : )9-1 EB if and only if9EB. Hence we have

G (a 1) IBI (a 1)
'l/J 0 a = IBI1/; 0 a = 1/J(a).

For an element in a conjugacy c1ass of the form A3 we define

There are two alternatives for an 9 E N (B). In the first 9 E Band then lj>G (~ ~)

= lj> (~ ~). In the second possibility 9 E N(B) - B then we know that N(E) =

BU Bw. This is right because

( Xl X2) (0 1) = (X2 Xl).
o X3 1 0 X3 0

Therefore for such a 9 we have that 9 = OOW for sorne go E Gand we get

where x = (~ ~). So when we evaluate lj>G on an element x = (~ ~) we get

1
t/JG(x) = jBï(IBI'l/J(x) + IBI'ljJ(xW

) = 1/;(x) + 1/J(XW
).

Lastly for an element {3 E C' - F; we have 'lj;G ({3) = 0 because there exist no

9 E G such that gf3g-1 E B.

17



The characters of type three are reproduced in the table below.

Table 4

7/JG[w]1/J =F VJ (P + 1)1/J(a) 1/J(a) t/J(x) + 1/J(XW
) 0

Moreover a character 7/JG of the thirdtype is irreducible. To show this, let us

compute EgEG Ix(g) 12• We remark first that two elements 9 and 9' E A are in the

same conjugacy class if and only if 9 = g' or 9 = [w]g'. Now we have, using Table 1

and Table 4

p-l p-l

- (p + 1)2 L 1?/J(a)12+ (p2 - 1) L 17/J(a)12
0=1 0=1

(

+p(p + 1) E 1'ljJ(x) + 1jJ(XW
) 1

2

XE(A\F;>/w

The third term of this sum is equal to

(p~ l)p E ('I/J(x) + t/J(XW))(t/J(x- l ) + 'l/J(x-W))
XEA\F;

=p(p + 1) L (1 + 1+ 1/J(x1- W
) + 'l/J(XW - 1))

2 XEA\F;

We write the sum over x E A \ F; as a sum for x E A minus a sum for x E F;. If

x E F; then xw- 1= x1- w = 1. By assumption on 1/J, the character x t----+ 1/J(x1- w )

for x E A is non trivial, and therefore the sum over x E A is equal to zero. So we

get that the third term is equal to

p(P; 1) [2(P -1)(P - 2) - 2(p -1)] = p(P + 1)(P - 1)(P - 3)

and

L l'l/JG (g)12 - (p + 1)(P2 - 1) + (p - 1)(p2 -1) + p(p + l)(p - 1)(P - 3)
gEG

- p(p - 1)(P2 -1) = IGI.

Proving that 1/JG is irreducible. Finally there are (p-l~(p-2) characters of the third

type. Because this is the number of characters 7/J such that 1/J =F [w]?/J, divided by

two because 'lj; and [w]'l/J induced the same character 'l/JG in G.

18
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Fourth type

Let (J : F;2 ~ C denote a homomorphism, which is \;ewed as a character on

C' (the non-split Cartan subgroup). Consider t = (1 0) EN' \ C'. We have
o -1

that t = t-1 • So

/3~ t{jt = [t]/3
.-

is an automorphism of C' which is also a field automorphism of Fp(C'] ~ Fp2 over

F p. Since [Fp2 : F p] = 2, it follows that conjugation br t is the automorphism

/3~ {3p. As a result we obtain the conjugate character [t]9 such that

((tJO)(/J) =8([t],B) = 8{,Bf),

and we get the induced character

Let jJ. : F;~ C denote a homomorphism as in the first type.

And..\ : Ft~ C he a non-trivial homomorphisme Consider (J,L,..\) = the character

on ZU such that

(p, À) ( (~ :)) = p(a)À(x).

(J,L, À)G = ind~u(J,L, ..\). Now what we want is the value of (JG and (J,L, À)G on the

conjugacy classes of G. We now compute (JG on the different conjugacy classes of

G.

For an ele.ment in the center we get

8
G (~ :)= II~}I ([t]8) (~ :) = p(p - l)lJ(a).

For an element x = (~ :) in a conjugacy class of the fonn A2 we have

G 1 .
9 (x) = IC'I L 8(gxg-

1
) = 0

geG
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because gxg- 1 ~ C' for all 9 E G.

For an element x = (~ ~) a 'fi b, in a conjugacy class of the form As we have

gxg-1 1. C' for aIl 9 E G. This implies 9G (x) = o.
Lastly for an element {3 E (C' \ F;), we have g{3g-1 E C' if and only if 9 E N' so

O°(lJ) = 1~'19~ iJ(gfJg-l) + IN' ~ C'liJ(gfJg-
1

)

- 9({3) + 8({3t).

We now study (J,l, À)G on the different conjugacy classes of G. For an element

in the center, (p, À)O(: :) = ,fJ, (p, À)(a) = (p2 - l)p(a).

(al) (Xl X
2

)For an element ,g = , and x = E G we have xgx-1 E ZU
D a Xa X4

if and only if X3 = Q. CalI S the set {x E G: Xa = D}, For x E S we have xgx- l =

(
a a(x x-1a-1) )o 1 : and our computation comes down ta

For an element 9 = (: ~) 1a 'fi b we have
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This belong to ZU if and only if X3X4 (b - a) = 0 and (b - a)(xlx4 + X2X3) = 0 which

is impossible. Thus (j.t, A)G(g) = Q.

For an element f3 E C'\F;, then 9{3g-1 ~ ZU for aIl 9 E G. Thus (j.t, ,\)9(,8) = O.

The information obtained on the two characters 6G and (J.L, À) G is reorganized in

the following table.

Table 5

x (~ ~) (~ :) (~ ~ )a# b {3 E C' \ F;

8G p(p - 1)8(a) 0 0 B(P) + (J(pt)

(J.L,À)G (p2 - I)JL(a) -J.L(a) 0 0

Now consider the character (res(J, A)G, where res(J is the restriction of 6 to F;. Then

by the Frobenius Reciprocity Theorem we have

SO 8G occurs in the character of (res8, À)G. Thus we define 6' = (res(J, À)G - (JG =

([t]O)'. A character 8' is said to be of the fourth type if (J is such that (J =1= [t](J.

Using Table 5 we get the following table

Table 6

0', (J =1= [t]O (p - 1)8(a) -9(a) 0 -(J({3) - (J({3t)

Lemma 5 8' of the fourth type is irreducible.

Proof:

L 10'(g)12
- (p - 1)2(P - 1) + (p - 1)(p2 - 1)

geG

~., +p(p - 1) E 18({3) + O(,Bt) 12 •

2 PEC'\F;
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The third SUffi is equal to

p(p - 1) L (8({3) + 9({3t)(8(f3-1) + 8({3-t))
2 {JEC'\F;

= p(p - 1) L (1 + 1+ 8({3l-t) + (J(f3t-l)).
2 {jEC'\Fj,

We write the sum over {3 E C' \ F; as a SUffi for {3 E C' minus a sum for {3 E F;. If

{3 E F; then f31-t = {3t-l = 1. By the assumption on (J (9 :1 [t]8), the character

for {3 E C'is non-trivial and therefore the sum over f3 E C'is equal to zero. So we

get that the third term is equal to

p(p; 1) [2(P _ l)p - 2(p - 1)] = p(p _1)3

and

So «(J', (JI) = 1 implies that 8' is irreducible. QED.

The table also shows that there are ~I(C' \ F;)I = P(P;l) distinct characters

of the fourth type. We thus come to the final result of this section, namely the

character table of G.

Table 7 Character table of GL2(Fp)

Type number of that type dimension

1 JI. 0 clet (p- 1) 1

II 'ljJ~ - JLO clet (p - 1) P

III ?/JG, 1/1 ~ [w]7/J (p-l)(p-2) (p+ 1)2

IV (JI, 8 ~ [t]8 ~ (p -1)2

To verify that there are no more irreducible character of G, one shows that the

total number of characters in Table 7 is equal ta the number of conjugacy classes

in Table 1.
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Chapter 3

Induced representations from the

normalizers of the split and

non-split Cartan subgroups

Let us denote 1~ and 1%' the two induced characters. Our goal in this section will

he to compare them. We will prove that

where B is the Borel subgroup as defined in the last chapter.

As we have seen, to understand better the induced representation of the sub­

group N (resp. N') in G, it is a good strategy to find a set X (resp. X') on which

G acts transitively and such that for an x E X the Stab(x) = N. When we do find

such an X then l~(g) is equal to the number offixed points of 9 in X. To construct

these two sets , X and X', we will exploit the Mobius transformations acting on a

projective space.
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3.1 Mobius transformations acting on Pl(Fp)

CODsider the natural action of G = GL2(Fp ) on the projective lines over F p , Le.

Pl (Fp) = FpU {oo}. This natural action is via the Mobius transformations

gx = (a b) x = ax + b,
e d cx+d

where x E PI(Fp), with the convention that alO = 00, goo = ale if e '# 0 and

goo = 00 if e = O.

Lemma 6 If 9 f; ÀI, then 9 has at most two fixed points in PI(Fp).

Prao! (see for example [La2) p.231 lemma 5.5): Let 9 = (: :). If C = 0 then

9 has one or two fixed points depending if a is equal to d or not. In that case 00 is

always fixed. If e f; 0 then for x :1 -die ( because g(-die) = 00 ) we have gx = x

if and only if(
cx2 + x(d - a) - d = O. (3.1)

But this equation has at most two solutions different from {oo} and g{00) =
ale =1= 00 so 00 is not fixed by g. QED.

So the number of fixed points of 9 depends only on the number of solutions of

(3.1) and we get

o when (d - a)2 + 4bc -:/; 0

#/p(g) = 1 when (d - a)2 + 4bc = 0

2 when (d - a)2 + 4bc = 0

where a = 0 meaDS that a is a square number in Fp. To compare with the conjugacy

classes of G we DOW consider Pg (y), the characteristic polynomial of g. The roots

of Pg{Y) = y2 - y(a + d) + ad - cd are given by the quadratic formula

a + d ± J(d - a)2 + 4cb
y= 2 .
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o when (d - a)2 + 4bc i= 0

Sa the number of distinct roots of the Pg(Y) is 1 when (d - a)2 + 4bc = 0 .

2 when (d - a)2 + 4bc = 0

Remembering the conjugacy class of an element 9 E G is completely determined by

the roots of its characteristic polynomial and by comparing (when c = Dand when

c =F 0) the distinct roots and the fixed points of 9 we see that

#Jp(g rv Al) - p+l

#Jp(g rv A2 ) - 1

#Jp(g rv A3 ) - 2

#Jp(g rv Bd - 0

3.2 Mobius transformations acting on X.

Let X be set consisting of aIl subsets of two elements of Pl(Fp ). Then IXI =

(P+l)2;(P+I) = ~. The action of G on PI (Fp ) by Mobius transformations gives

rise naturally to an action of G on X by g{Xl, X2} = {gXI, gX2}.

Lemma 7 This action of G on X is transitive, and Stab{O, oo} = N.

PraoE: Let a,b E Fp • Then we have (: ~) {D, oo} = {D, a}, (~ :) {D, oo} =

{a, oo} and (: :) {D, oo} = {a, b} which shows the transitivity.

Setting x = {D, oo} E X we have

Stab(x) - {g E G : gx = x}

- {g'E G : g(O, 00) = (0, oo)} U {g E G : g(O, 00) = (00,0)}

Denote 8 1 and 82 the two sets in the last equation. Let g = (: :), g belongs

to SI if and only if b = 0 and c = D. On the other band 9 belongs to 8 2 if and only

if d = 0 and a = O. We therefore have
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Stab{O,oo} = {( ~ ~)}u{(: :)} =N

which completes the proof of the lemma. QED.

(3.2)

(

Ii,i,:',-,

Theorem 3 The values of 1~ (g) on the different conjugacy classes of G (which

is equal to the number of fixed points of 9 with respect to the action of G on X

described above ) are given in the table below.

Table 8 Values taken by 1~ (9)

conj. class #0/ classes #elements per class 1~(g)

9 "-1 Al . (~ ~) p-l 1 p(p+l)
2

g"-l A2 (: :) p-l p2 -1 0

g"-l A3 (: ~) (P-l)(p-3) p(p+ 1) 1
a/b #-1

2

9 "-1 A3

(~ ~) ~ p(p + 1) tt
a/b =-1

2 2

9 "-1 BI
non - split ~ p(P-1) 0

t#O
2

9 "-1 BI
non - split p-l p(p-1) l!.±!

t=O
2 2

Proof. If 9 is in the center then 9 is the identity when it acts on X. Therefore the

number of points fixe<! by 9 is Pep:1).

If 9 = (: :) we saw that 9 fixes 00 in Pl (Fp ). We will use the fact that 9

as a Mobius transformation has order p. Indeed,
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So we rewrite 9 as

where Xl is any point different from 00. The number of fixed point of such agis

the number of subsets of two elements in P1(Fp ) fixed by the 9 - action. When

you look at 9 decomposed ~n cycles it is clear that there are no sucb fixed point.

If 9 = (~ ~) where a ~ b, we know 9 fixes two points, 0 and 00 in Pl (Fp ).

We will use the fact that the order of 9 divides (p - 1). Indeed

(
g2 (a2 0)-

o b2

-

gP-l (ap
-

1 0 )- o 11'-1

- J.

We write 9 with cycles and we obtain more subsets of two elements fixed by g, apart

from the subset {O, oo} which is always fixed, if and only if the order of 9 is equal

to two. Theo we have (p - 1)/2 more subsets. The order of 9 is two if and only if

9 = ). (1 o.). The number of fixed points of 9 in X is (p + 1)/2 if 9 has order
o -1

twoI~d~r:e~) where t is the trace and n the norm and such that Pg(x) =

x 2 -tx+n is irreducible, we know fronl the first section ofthis chapter that 9 has no

fixed points in P1(Fp). By the same reasoning, to have any subset of two elements
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fixed by g, we must have 9 of order 2.

92 = ( t2 - n -t) = >"1
nt -n

if and only ift = O. So when t,= 0, then we obtain (p+l)j2 subsets oftwo elements

fixed by 9 because

Therefore the number of fixed points of 9 is~ if trace(g) = 0 and zero otherwise.

There are~ co(nj~g~~ C)lasses of the Corm BI with their trace = O. Indeed, if

t = 0 we get 9 = n 0 and Pg(x) = x2 + n must be irreducible. This is true

if and only if -n is not a square in Fp. Which is true half of the values that n can

take,~. QED.

3.3 Mobius transformations acting on Pl(Fr )
Before constructing our set x' we analyse the action via Mobius transformations

of G on Pl(Fp2) = Fp(œ) U {oo}.

Lemma 8 When G acts on Pl (Fp2) via the Mobius transformations action we have

# jp(g)(g rv Al) - p2 + 1

#jp(g)(g ,...., A2 ) - 1

#jp(g)(g rv A3 ) - 2

#jp(g)(g rv BI) - 2

Praor. Using lemma 6 we get again that for 9 :1 >"1 then 9 has at most two fixed

points. By the same logic presented in section 3.1 it suffices to study Pg(x) ta find

the number of fixed points of 9 . So for the 9 not in a conjugacy class of the fonn

9 ,...., BI we get the desired number of fixed points.

It remains only to study the case Pg(x) is irreducible for 9 E G. Here Pg(x) is

irreducible in Fp but not in Fp(a). So in Fp(a), Pg(x) = (x - >..)(x - X) where
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À E Fp
2 - Fp. The numbers À and Xare the eigenvalues of 9 . Now consider IV and

W' (see [La2] p.235 exercice 14) the two eigenvectors associated to À and X. Then

W and W' can be written in the following way:

Indeed, suppose w-= ( : ) then

is possible if and only if c = 0 which contradicts the fact that Pg(x) is irreducible

over Fp' Actually w' = w because when you fix W = ( : ) you force W' ta he

( : ). One verifies this in the equation 9W' = :XW' using that 9W = ÀW . Let

S = (w; W') = ( : :) then using that

( ' - , ') (À ,0) = S (À
o

,0)g8 = 9 W, W) = (À~ ÀW) = (W, W 0 A A

we find that

-1 (À 0)8 g8 = 0 X .

Thus S is a matrix that conjugates 9 to a diagonal matrix in GL2 (Fp2) . Now we

daim that w and w are fixed points of g. Indeed,

gw - s(~ ~ ) S-l(W)

~' - s(~ ~ ) ( 1/d -w/ d ) (w)
À -l/d w/d

29



~ s( ~ ~ ) (00)
f;t. -,',

- 8(00)

- w

In a similar way one shows g(w) = w. By lemma 6 , we obtain that 9 has exactly

two fixed points , w and w. QED.

3.4 Mobius transformations acting on X'.

The group G acts on X' = (Fp 2 \ Fp)/conjo by Mobius transformations. (This

follows because if xE Fp 2, then g(x) =g(x).)

Lemma 9 The action of G on X' is transitive, and the Stabilizer Stab(x) is equal

to' N', if x = [a] EX'.

Praaf Let 9 = (: :) E G; then g(a) = a if and anly if

aa+b aa+b
--=aor =-a.
oo+d oo+d

one checks that this is true if and only if 9 E N'. The transitivity of the G-action

r Il f . th bOt f [ ] h' 101 p(p-1)2(P+I)10 OWS rom a countlng argument: e or 1 0 a as Slze IStab([Q]}I = 2(P-l)(P+l) =
~ = IX'I. QED.

From the preceding section, when G acts on Pl (Fp2) we have

#Jp(g '" Al) - p2+ 1

#Jp(g '" A2 ) - 1

#Jp(g", A3 ) - 2

#Jp(g '" Bd - 2

We will use this to calculate the number of fixed points of an arbitrary 9 E G with

respect to the action on X'. The computation 'will prave the following theorem.
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Theorem 4 The values of 1~,(g) on the diffent conjugacy classes of G (which is

equal ta the number of fixed points of9 with respect ta the action ofG on X' defined

above ) are compiled in the table below.

Table 9 Values taken by 1%,(9)

conj. class #of classes # elements per class 1~/(g)

9 "J Al (~ :) p-l 1 l1e::..!l
2

9 "J A2 (~ :) p-l p2 -1 0

9 f"oJA3

(~ :) (p-I)(p-3) p(p + 1) 0
a/b -:/=-1

2

g"J A3

(~ :) l!=.! p(p + 1) p-l

a/b =-1
2 2

g"J BI
non - split ~ p(p -1) 1

t-:/=O
2

9 "J BI
non - split E.=! p(p -1) p+3

t=O
2 2

ProoE For 9 in the center the number of fixed points by 9 is IX'I = pep;!).

For the case where 9 = (~ :). there is no x E Fp(ct) sncb that g(x) =x (the

point {co} being the only one in P1(Fp(œ)) ). So the only possible case is when an

element is sent into its conjugate by g. We have (a 1) (Xl + X2a) = (Xl - X2 a )
. 0 a

if and only if 2aX2Q = -1, which is impossible because 2ax2œ ct Fp while -1 does

belong to Fp • So the number of fixed points of such agis zero.

For the case where 9 = (~ :). a # b then 9 has two fixed points in Pl (F,,(ct»)

namely 00 and {D}. But those two do not belong in Fp2 - Fp' Therefore again our

only hope is to find an x sncb that g(x) = x. So this condition says (~ :) (Xl +

31



(

X2a) = Xl - X20' if and only if (a - b)XI +. (a + b)X2Q = 0 . We know X2 =fi 0,

it implies that (a + b) = O. Since (a + b) = 0 then (a - b) just can~t he equal to

zero and Xl must he zero. Rence 9 has a fixed point if and only if Xl '= 0 and

a/b = -1. When alb = -1 the number of fixed points is equal to the number of

different values taken by X2' Since X2a = -X2a in X', we have that this number is

{

1!=.!. a/b = -1
(p - 1)/2. Therefore the number of fixed points of such agis 2 •

o otherwise

(
t -1)For the case 9 = n 0 where x2

- tx + n is irreducible, the argument is

less straightforward. From our earlier result, we know there exist w, w E Fp(a) - F p

such that g(w) = w and g(w) = w. So in any case, we certainly have one element

in X' fixed by 9 . If there are more fixed points they must satisfy g(x) = x where

x E Fp(a) - Fp . This is true if and only if t~~l =x if and only if tx - 1 = n(xx).

So we deduce that t must be equal to zero because xx E F p while x ~ Fp • When

(0-1)t = 0 we have that n 0 (x) = x if and only if nxx = -1. So we are looking

for the number of x satisfying
-1

xx=-.
n

Lemma 10 The following sequence of mappings is exact.

(3.3)

1
Norm

t kerN --_1F;2 t F; --_t 1

PraoE The norm of an element x E Fp2 is defined as Norm(x) = xx . One checks

that the norm is a homomorphism. If x = Xl + X2a~ its norm is

where m E Fp - {D} . First, the cardinality of ker(N) is at most 2p because for a

fixed Xl there is at most two values of X2 such that Norm(x) = 1. On the other hand

the cardinality of ker(N) is at least (p + 1) because (p + 1) divides Iker(N) 1 since it

is the kernel of an homomorphism F;2 ~ F;. We deduce that Iker(N)1 = (p+ 1).

So the sequence is in fact an exact sequence, hence F;2/ker(N) is isomorphic to F;.

QED.
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Lemma 10 implies that for -lin t.here are p+ 1 elements in F;2 (one whole coset

of ker(N)) such that Norm(x) = -lin. For such an x \Vith norm equal to -lin we

have that x ~ F;. Indeed if it were then x2 = -lin which implies x2 + lin = 0 has

a solution in Fp • This contradicts our choice of g. Therefore the number of fixed

points of 9 in X' is equal to 1 + (P;l) = (p~l). QED.

3.5 The link between 1% and 1~1

We now deduce the link between 1~ and 1~/ Consider the character X = 1~ - l~, .

Using tables 8 and 9 we have that

x(g rv Ad - p

x(g rv A2 ) - 0

x(g rv A3 ) - 1

X(g rv Bd - -1.

(
On the other hand, we remark that the irreducible character of G of type two

'l/J~ - J.L 0 det ( see table 3 chapter 2 ) is exactly equal to X when J.L : F; ---4 C· is

the trivial homomorphism. But"pP - 1 = 1~ - 1.

Theorem 5 Let G = GL2 (Fp ) with the subgroups N, N' and B as defined in

chapter 2. We have the following relation on the induced characters

The dimension equation is DOW verified.

(3.4)

dim(I~) -dim(l~,) -
p(p + 1)

2

p(p - 1)
2

- p

- dim(l~) - dim(l).
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Chapter 4

Extension of Perlis' result

In this chapter we will extend Perlis' method of comparing the Class Groups of

arithmetically equivalent fields to the fixed fields of the normalizers of the split

and non-split Cartan subgroup and the Borel subgroup. The construction we will

encounter in this chapter is an analogue of the one of Perlis found in [Pe2].

The first section is devoted to defining the group theoretic invariant, a positive

integer number 11, in terms of the induced representations of G = GL2(Fp ) from

the latter subgroups and in showing that its prime divisors must divide the order

of G. In the second section we construct an isomorphism between the f.-part of the

ideal class group of the fixed field of N onto the l-part of direct sum of the class

group of N' and the class group of B, and this for aIl primes l Dot dividing 11. In

the last section we discuss the difference between the main theorem of this chapter

and Nehrkom's theorem established in [Wa]. We will see how important it is to

find concrete examples where the set of prime divisors of li is strictly contained in

the set of prime divisors of IGI to make our result effective.

4.1 Definition and divisors of v

Let K be a normal extension of Q with Galois group G. Consider N, N', B the

three subgroups defined in chapter 2 and their respective fixed fields K N , K N',

K B • We have that [K : Q] = IGI = p(p - 1)2(p + 1), [KN : Q] = IGINI = ~,
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~_;J.PNt : Q] = IG/N'I = ~, [KB
: Q: = IG/BI = (p + 1), and from chap-:.~r 3, we

DOW that 1~ +1 = 1~, + 1~. Let us ':'·~note by X the character 1% +1 and :'>y X' the

6aracter 1~, + 1~. Their respective ::-epresentations, D and D' : G ---+ GLk(Q),

ê:e isomorphic, where k = 1 + IGI-'''l = IG/N'I + IG/BI = p2+2P+2
• T.:Jose two

r-::presentations are the permutation :-~presentation of G on F = Q[G/1\·1 --3 Q and

t-' = Q[G/N') E9 Q[G/BJ. Since the: are isomorphic there exist a ration.al k x k

i::!vertible matrix M such that

D(g)~1 = MD'(g) (4.1)

fJT all 9 E G. By clearing denomi.::.ators, we may assume that the coefficients

Go: Mare integers. For the mamen.: we ignore invertibility and we look at aIl

~tegral matrices satisfying (4.1). Ta see what M looks like wben it satisfies (4.1)

we describe D and D' explicitIy. Let ~~ = 1, P2, Pa, ... ,PIG/NI he representa.:tives for

oe left casets of G by N and let Pk = 1 be a representative for the coset G. Now

let P~ = 1, p~, .. . , piG/N'1 be representatives for the left casets of G by 1\-r and let

~_p, ••• , Pk = 1 be representatives fOI the left cosets of G by B. The action of G

on these cosets describes two hamomorphisms 1r and Tr' fram G into the symmetric

group Sk given by Trg(i) = j, where g,:JiN = pjN for 1 ~ i :5 IGINI and 1r!ll(k) = 1

and 1T"~(i) = j, where gp~N' = r/;.l'''' for 1 < i :5 IG/N'I and gf4B = pjB for

i > 1G/N' 1. Associating i with the i-:r.h basis element of an k-dimension.aJ vector

space over Q then identifies 1rg and ~ with the matrices

me displayed term being the (i, j)th eItement and abeing the Kronecker 5 function.

By comparing the coefficients one sees that a k x k matrix M = (mij) satisfies (4.1)

if and only if

(4.2)

fur aIl 9 E G. That is, if and only if 1.1 is constant on the orbits of G rmder the

action g(i, j) = (7rgi, 1I"~j).
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Let M be the set of aIl integral k x k matrices satisfying the equivalent conditions

(4.1) and (4.2) and let

v = gcd{ldetMI, M E M}. (4.3)

(

Since X = )(, there exist at least one M E M with nonzero determinant. Thus v is

a weil defined positive integer.

Remark 1 By interchanging X and )( (D and D') we obtain another set M' and

this does Dot change v. Then a matrix M belongs to M if and only if its transpose

Mt belongs to M'. We will need the set M' in the next section.

We DOW turn our attention to the prime divisors of v. \Ve want to show that these

primes divide the order of G. The group G acts in two ways on the free module

ZtXl œZlX2 œ... El:) ZtXI;; over the ring of t-adic integer Zt by permuting the Xi'S

by the rules of 1r and '!r'. That is, the element g E G acts on these free module via

the matrices D(g) and D'(g). This gjves us two ZdG]-moduIes which we denote Vi

and Vi.

Lemma Il The prime divisors of v are precisely the primes t for which the Zt[G]­

modules Vi and Vi are not isomorphic.

Proof: Suppose Vi and Vi are isomorphic. A Zt[G]-isomorphism from Vi to Vi is

described in term of the basis Xl, X2,"" XI;; by a matrix N = (ni;) in GLk(Zt)

satisfying

D(g)N = ND'(g)

for aIl 9 E G. That is N satisfies (4.2) and detN =j:. 0 (mod i). Let M = (mij) be

the matrix with coefficients in Z uniquely determined by 0 < mi; < t and mi; =ni;

(mod l). Then M E M (by verifying equation (4.2)) and detM =detN 't 0 (mod

l). 80 we have t does not divide v . Conversely, if l does not divide v, then there

is a matrix M E M whose determinant is not divisible by i. Thus M is invertible

over Zt and yields an isomorphism from Vi to Vi- QED.
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'Vith this lemma, we will know the prime divisors of vas soon as we have a way

of recognizing the primes ~ for which Vi and Vi are isomorphic.

Lemma 12 Let f. be any prime number not dividing the order of G. Then Vi and

Vi are projective Zt[G]-modules.

Proof: We first show t't is projective. Let e : Vi~ y and f : F ---t Y be any two

Zt[G]-homomorphisms where f is surjective. By definition Vi is projective if and

only if there exist ?/J : vt ---t F a Zt[G]-homomorphism such that f1/J = e. Since

G permutes the Xi'S in a two orbits action, any ZdG]-homomorphism is completely

determined by the image of Xl and Xk. Furthermore, an assignment of Xl and Xk

extends to a ZtfGJ-homomorphism from Vi if and only if the stabilizer of Xl also

stabilizes its image and the stabilizer of Xk also stabilizes its image. The stabilizer of

Xl is N and the stabilizer of Xk is G. Rence N also stabilizes e(xI) and G stabilizes

e(xk) in Y. Let Zl E F be any preimage of e(xI) and Zk E F be any preimage of

e(xk)' Since INI and IGI are Dot divisible by l they are invertible in Zl. We DOW

set z~ = INI-I EnE~ nZl and z~ = IGI-1 EgEG gZk' Then we have

f(zD - f(INI- 1 E nZI)
nEN

- INI-I E nf(zd
nEN

1
- INI L ne(xI) = e(xl)

nEN

because n E Stab(e(xI»' Similarly we have f(z~) = e(xk)' So the map 1/J : Xl~ zi
and Xk .....-.+ 4 defines the desired Ze[G]-homomorphism that satisfies J'tf; = e.

Indeed, on one hand one verifies that no'I/J(xl) = 1/J(XI) for aU no E N and 9o'tf;(Xk) =

'I/J(Xk) for aIl go E G to show that 'l/J is an homomorphisme On the other hand one

checks that f 0 g(xd = e(xd and Jo g(Xk) = e(xk)' We therefore have that Vi is a

projective ZtlG]-module.

One shows in a similar fashion that Vi is projective by studying the images of Xl,

Xk-p and their corresponding stabilizers N', Band by using theofact that IN'I and

IBI are invertible in Zt. QED.

We now obtain the main result of this section.
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Theorem 6 Every prime number dividing 1/ divides the arder of G.

Praof. Given a prime l not dividing IGI. We will show that f. does not divide 1/. For

this, by Iemma Il, we must show vt :=: Vj as ZdG]-modules. The representations

D, D' of G on Vi and Vi have the same character. Furthermore since l does Dot

divide IGI it implies that Vi and "'1 are projective. And projective Zt[G]-modules

are determined up to isomorphism by their characters (see (Se2] section 16.1, corol­

lary 2 to theorem 34). We need this fact about projective Zt-modules because Zl

representations are not always determined by their characters (for example, let Vi

and V(P+l) be two vector spaces over F p with dimension 1 and (p + 1). Consider

DOW Pl and P(p+l) the respective trivial representations ofG acting on Vi and V(p+l);

every 9 E G is sent in the identity automorphism. The characters are equal even if

the representations are not isomorphic). This shows that Vi and Vi are isomorphic.

QED.

4.2 The isomorphism Cl~N rv Cl~N' EB Cl~B for i

Dot dividing v.

The ideal class group CIK ( for any Dumber field K) is the direct sum of its t-Sylow

subgroups. This section contains a proofthat CI~N ~ CI~N,œCI~Bwhenever l does

not divide v. We begin by considering the following two arithmetically equivalent

algebras (see introduction) L = K N œQ and L' = K N' œK B. Let M = (7Tl.ïj) he a

matrix in M. We DOW define a map PM : L·~ L'·; for a = aN El) al E L· we set

k-l k-l
/-LM(a) = II Pi (aN )7nil (al)mIt1 El) II PiCaN )miJ: (ad mu

i=l i=l

Lemma 13 For matrices A and B in M and for a = aN œal E L* we have

(i) /-LM is a homomorphism (of multiplicative groups) from L* -t L'·.

(ii) /-L(A+B)(a) =J.tA(a)/-LB(a).

(iii) (P,Bt) 0 (J-LA) = J.L(ABt).
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Praof. (i) \Ve certainly have that JlA(a) is nonzero and lies in K œK. For n' E l'V' =
Gal(K/KN') we have 1l"~,(1) = 1 and for b E B = Gal{K/KB ) we have 1rb(k) = k.

Writing A = (Tnïj) and setting 1in,(i) = rand 1rb(i) = l, from (4.2) we then have

mil = mkl and mik = mu:. Thus we get

k-I k-l
(n' œb)PA(a) = II n'Pi=l (aN )mil n'(adm

A:l El) TI bPi (aN )m;kb(al)mu
i=l i

k-l k-l
- II Pr(aN )m,.l (al)fnrl œII PI (aN )mUI: (al)mu

r=l 1=1

- /lA (a),

so the image J.LA(a) lies in the algebra KN' œKB since n'and b were taken arbitrary.

Clearly /lA is multiplicative 50 we conclude that it is a group homomorphism.

(H) It follows directly from the definitions

(iii) Recall that for B E M its transpose belongs to M' (see remark 1). Just as

each matrix in M gives rise to a homomorphism from L· to L'· t the matrix B t gives

tise to a homomorphism /lBt in the opposite direction, namely for a' = aN' œaB

and B t = (bi;) we have

IG/N'I k IG/N'I k

J.LBt (a') = II p~(aN' )bil
• II p~(aB)bH El) Il p~(aN' )biJ: • TI p~(aB)bu:.

i=l . i=IG/N'I+l i=l l=IG/N'I+l

We aiso have that the matrix product yields PABt : L ~ L'. The composition

(P,Bt) 0 (J.LA) also maps L onto itself. One checks the validity of (iii) by a straight­

forward computation using (4.2) to convert indices like we did in the proof of (i)

above. QED.

The maps PM will he used to define homomorphisms between the class groups

of L and L'. This is accomplished in severa! steps. First, for any matrix M, let

M+ he the matrix obtained by replacing the negative components of M by zero,

and let M- = (-M)+. Then both M+ and M- have nonnegative entries, and

M = M+ - M-. By looking at condition (4.2) we see that when ME M we aIso

have M+ and M- both belong to M.

Next, we consider a nonnegative matrix M+ E M and observe that if x E L*

is the direct sum of two integers (in K N and Q) then J.LM+(X} is also the direct
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sum of two integers (in KN' and KB). For the integral ideals U, A of K N and Q

respectively we define

J.LM+(U EB A) = (JLM+(U œa), u EU and a E A)

to be the L'-ideal generated by the images of elements of U œA. This definition

extends immeàiately to direct surns of fractional ideals (of K N and Q).

Finally, for M = M+ - M- in M and for any fractional ideal U œA of L', we

set

J.LM(U œA) = (J1.M+(U œA» . (J1.M-(U œA»-l.

This is a well-defined map on IN œl, where IN and I are the ideal groups 1 of K N

and Q respectively. By denoting the ideal groups of KN' and K B by IN' and lB we

have the following lemma.

Lemma 14 The map UœA t---+ J.LM(UEfJA) is a group homomorphismfrom INœI

to IN' œlB,

Proof: Let U EB A and V œB be two elements in IN œ1. In order to show J1.M «U œ
A)(V œB» = J.LM(U œA)· J-LM(V œ8) it suffices to check that equality holds when

both sides are extended to K œK. Writing the extended ideals in square braquets,

we must show [J1.M«UœA)(VœB))] = [JLM(UœA)][J1.M(VE9B)]. This latter equality

is an immediate consequence of the following daim:

For every direct sum of ideals W El) C of K N œQ we have

k k

[JLM(W œC)] =Il Pi (w]mil œII Pi [C]Tnik
i=l i=l

(4.4)

the right hand side brackets denote extended ideals to K and we consider product

of ideals in K. To prove this claim it is sufficient to consider M with nonnegative

coefficients and W, C are integral ideals in their respective number ring.

The left hand side of (4.4) is generated by the images J.lM(W œc) of elements in

1The ideal group of a number field K is the group of the fractional ideals containing the integral

ideals with the natura! multiplication of ideals.
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w œc, so the we have the inclusion ç . Denote by the right hand side of (4.4)

by [W]Ml œ(C]Mk • \Vrite W = (Wb W2) and C = (Cb C2) (see for example [rvla]

p. 61). Then (wd = W· 'D'f and (W2) = W . 1J~ with integral ideals Vf, 1)~.

The generators can be chosen sa that 'Df is relatively prime to the norm of V~; so

that [Vr] is relatively prime to every conjugate of [Vf] (see, for example [He], Satz

74). By a similar construction we obtain V~ and V~ with the same property where

(Cl) = C· V~ and (C2) =C· V~.

Now the claimed equality is dearly true for principal ideals, and the map WœC 1----+

(W]Ml EB (C]Mk is multiplicative, sa

The gcd of these two principal ideals of IK œIK is [J.LM(WI Et) Cl), J.LM(W2 œC2)] =
[W]Ml EB [C]MA:, showing that the right side of (4.4) is contained in the left side. This

gives the proof of the lemma. QED.

Since the J.tM take principal ideals of IN œIQ to principal ideals of IN' œlB,

we obtain a family of homomorphisms between CIKN and CIKNI EB CIKB for each

M E M. The next theorem studies these homomorphisms when they are restricted

to the i-Sylow subgroups of the ideal class groups.

Theorem 7 Let KN, KN' and K B be as belore. Then for ail prime numbers i not

dividing Il we have Ct-f)N ~ Ct-;)NI EB C!i/B'

Proof. Since i does Dot divide Il there is a matrix A E M with .e not dividing

detA. Let B be the matrix whose transpose is Bt = (detA) . A-1. Then B aiso

belongs to M. Let U E CI~N lie in the kernel of J.LM' Theo J.LMU = 1, so 1 =
- - n<detA) -

J.t(Bt)(J.tAU) = J.tABtU = U , by lemma 13. Since U is killed by a power of i and

by detA, it follows that U = 1, so the restriction of J.LA to CI~N is injective. Since

our arithmetically equivalent algebras, L and L', have symmetric roles, exchangjng.

them yields an injection in the opposite direction, implying that the finite groups
(i) (l) (l). .CIKN and CIKNI EB CIKB are lsomorphlc. QED.
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4.3 Discussion on the Brauer's class number re-

lation

In Brauer relation theory we study the relation between class groups of suhfields

LB of L when we have an equation relating their respective induced representations

in G =Gal(L/Q) in the following way

2: aB1Z = L bH1~, (4.5)
HSG H~G

and aH, bH E Z~o. For example when aIl the aH, bH's are equal to zero but for one

H < G and one H' < G, H :F H' we have aH = bR' = 1, then LB and LH' are

arithmeticallyequivalent. Walter, in his article [Wa] puhlished in 1979 (almost at

same time Perlis proved his result on the class groups of arithmetically equivalent

fields), showed the following theorem.

Theorem 8 (Nehrkorn's theorem) Let L be a normal extension Q and suppose

the equation (4.5) is satisfied on the induced representation for sorne aH, bH . Then

for ail the primes p not dividing the order of G Gal(L/Q), we have the following

isomorphism on the p-part of the subgroups

Nehrkorn's theorem already tells us that for aIl the primes not dividing the order of

GL2(Fp) we have the desired isomorphism of Theorem 7 between the class groups.

In other words, if it is impossible ta' find concrete examples where the set of prime

divisors orthe integer vis strictly contained in the set prime of divisors of IGI, then

Theorem 7 would not be very interesting. In the next section, we will study an

example where the only prime divisor of v is 2 while the prime divisors of IGI are

2 and 3.

Perlis' construction can he extended, mutatis mutandis, to the more general

context of equation (4.5). It is possible ta construct a v-Perlis integer with its
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associated extended relation on the class groups. But without concrete examples

and the possibility of computing the integer v these results would not tell us much

more than what we extract from Nehrkorn's theorem.
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Chapter 5

N umerical examples

In this section we study sorne concrete examples. First, we find normal extensions

of Q with Galois group PGL2 (F3), by studying elliptic curves. Second, we apply

theorem 7 to the class groups of arithmetically equivaient aIgebras by computing

explicitly the integer v.

5.1 The field of 3-division points on E.

We have for G = GL2 (Fp) that 1~ + 1 = 1%, + 1~ (see 3.4). These four characters

are also characters of PGL2(Fp ) = G/Z which is denoted by G. Now we denote in

a similarway N = N/Z, B = B/Z and N' = N' /Z. Using the fact that Z is the

center of G, one shows l~(gh) = l~(g)l%(h). We observe aiso that 1% = 1~ when

we consider these characters as characters of G. Note that in the following x = xz.

l~(Ïi) =

So we have a similar relation of characters in G, namely 11~+ 1 = 1~+ li 1.
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Our goal is to find a normal extension L of Q \Vith Galois group isomorphic

to G. This is achieved by considering the p-division field of an elliptic curve E

defined over Q (i.e the ai's are in Q). To make possible any calculation we fix

p = 3. Let E : y2 + alXY + a3Y = x3 + a2x2 + a4X + a6 be an elliptic curve

over Q. A fundamental fact in the theory of el1iptic curve is that E = {P =
(x, y) satisfying the equation that defines E} has a group structure. This group is

described in Silverman's book ([Si] chap.3).

Now in that group consider Er3] the subgroup of E consisting of the 3-division

points, E[3] = {P E E sucb that 3P = D}. Let us denote by LE[a] the field of

3-division points of E. In other words LE[3] is the smallest field containing the x

and y coordinates of aIl the P's in E[3]. We know that L E [3l is a finite extension of

Q with the property that Gal(LE[3]/Q) ~ GL2(F3) (see [Si] p.90). APis in E[3]

if and only if 2P = -P. This will he more manageable since we have formulas to

compute 2P and -P. Given P = (x, y) E E we use the Duplication Formula ([Si]

p.59) and we obtain that the x-coordinate of 2P is the following,

x4 - b4x2 - 2b6x - bg
x[2P] =-------

4x3 + b2x2 + 2b4x + b6

where b2 = ai + 4a2, b4 = 2a4 + ala3, b6 = a~ + 4a6, bg = a~a6 + 4a2t16 - ala3a4 +
a2a~ - a~. On the other hand x[-P] = x. Therefore if P = (xo, Yo) E E[3], Xo must

be a root of F(x) = 3x4 + ~x3 + 3b4x2 +3b6x + bg • We denote the splitting field of

F(x) by L. Let us look at the y-coordinate of a P = (xo, Yo) E E[3].

y[2P] _ _ (3X~ + 2a2xO + a4 - alYO + al) x[2P]
2yo + alXO + a3

_(-x~ + a4XO+ 2a6 - a3YO ) _ a3 ([Si]p.59)
2yo + alxO + a3

On the other hand y[-P] = -yo - alXO - a3. From this, one checks that Yo is a root

of an irreducible polYnomial of degree two with coefficients in L. So we have that

LE{3] is a quadratic extension of L. From now on we will he working on the field L.

By classical Galois theory we know that the Galois group of Lover Q is a subgroup

of 84 , the permutation group of 4 elements, because F(x) is a quartic polYnomial
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([Ga] part 14). In our study we will only consider the elliptic curves E such that

Gal(L/Q) = 84, "Te remark that S4 = PGL2(F3) = G; to see that consider the

natural action of G on PI(F3) via the Mobius transformations. Hence we have the

desired L.

When we look carefully at B, N' and N as subgroups of 84 we note that B = S3'

N'= D s the dihedral group of 8 elements generated by «1,2,3,4),(1,3)(2,4» and

N = {l, (1,2), (3,4), (1, 2)(3,4)} isomorphic to Z/2Z œZ/2Z. The objective now

is to find three irredncible polynomials j(x), g(x) and h(x) snch that for any root

0: of I(x) we have Q(a) =LB, for any root f3 of g(x) we have Q(.B) = LN' and for

any root 'Y of h(x) we have Q('Y) = LN. The reason for this requirement is that

GP-PARI (version 1.39.03) computes the Ideal Class Group of the number field

Q(o:) where a is any foot of an irreducible polynomial j(x) entered by the user.

By a simple substitution F(x) is rewritten as j(y) = yot + py2 + qy + r; p, q, rE Q

(namely you divide F(x) by 3 and then you let y = x + ~). The splitting field of

J(y) is isomorphic ta the one of F(x) 50 we keep the same notation for the field,

namely L. Let ab a2' 0:3 and 0:4 he the foots of j(y) then Q(ai) = LB because

Gal(L/Q(ai» = 83 , Now if we define

(31 - -(al + (3)(a2 + (4)

(32 - -(al + (2)(a3 + (4)

(33 - -(al + (4)(a2 + (3),

then Q(f3i) is isomorphic to LN1 because Gal(L/Q«(3i» = D s the dihedral group of

eight elements. After sorne calculation we get

.BI + 132 + f33 - -2p

f3ll32 + PIP3 + 132f33 - p2 - 4r

and (31132(33 _ q2.

This implies that our g(x) = x3+ 2px2 + (p2 - 4r)x - ri is the resolvent for I(x)

([Ga] part 14).
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FinallYt if we construct h(x) by defining the following values

"Y1 - (01 + 0'2) - (03 + (4) = 2(01 + 0:'2)

"Y2 - 2(01 + (3)

"Y3 - 2(01 + (4)

"Y4 - -1'1

"Ys - -1'2

1'6 - -1'3,

then Q(l'i) is isomorphic to LN because Gal(L/Q(l'i)) = N. We verify that

1'; + '"Y~ + '"Yi - -8p

7;1'~ + 7;'Yi -+ "Yi7i - 16(p2 - 4r)

7~"Yi7i - 64q2.

So when we consider

n~=l (x - 7i) = x6 - (1'~ + 1'~ + 1'~)X4 + ('Y?'"Y~ + 7~'Y~ + 'Y~"Y~)X2 - 7?1'~7~

we see that h(x) = x6 + 8x4 + 16(p2 - 4r)x2 - 64q2.

We are ready to compute concrete examples. Given an elliptic curve E over Q

picked in the tables of Cremona [Cr] we first make sure that the Galois group of

the splitting field of F(x) is 8 4 (using a function of GP-PARI). Then we construct

f(x), g(x), h(x). Lastly we feed in GP-PARI with these three polynomials and it

gives us back the corresponding Ideal Class Group denoted respectively ClLB , ClLNI

and ClLN • A sample of the computations we obtained is reproduced below.

Table la The Glass Groups in function of the elliptic curve E
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Ii.~.:.
~

15A8 1 2 2

17A4 1 1 1

26Bl 1 3 3

37A1 1 3 3

43A1 1 12, [12] 6, [6J

46Al 1 2 1

114C1 1 6, [6] 3

115Al 1 1 1

117Al 1 6, [6] 3

120Al 1 3 3

122Al 1 12, [12] 6, [6]

123A1 1 4, [4] 2

13DBl 2 6, [6] 6, [6J

252Bl 1 6, [6] 3

258Gl 2 12, [6, 2] 12, [6,2]

259Al 1 3 3

262Bl 1 30, [30] 15, [15J

264Al 1 6, [6] 6, [6]

For a given elliptic curve E taken from Cremona's table [Cr], you read in the above

table the class number followed by a description of the class group as a direct sum

of cyclic groups (in square brackets) for our three subfields of L. When we observe

table 10 we remark that for all these elliptic curves Cli~ ~ c1i3.Jr œCli~/ while in

general there is no isomorphism between the 2-part (even if they do not differ by

much!). From this there is hope that only the prime 2 divides li = lI(G, N, B, N').

Actually we know that 2 divides li just by looking at table 10. We will DOW show

that 3 does Dot divide li by exhibiting a matrix M E M snch that 3 does DOt divide

IdetMI·
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5.2 Computation of v

We now construct a general matrix M E M. Sucb a matrix must satisfy equation

(4.2). To study the action of G on the couples (i,j), we first identify the coset

representatives of G/N by the elements of X (where X is defined in section 3.2),

then those of G/ NI by the elements of XI (defined in section 3.4) and finally those

of G/ B by the elements of Pl (F3)' Denoting the-elements of G by the numbers 1

to 24 and by letting G act on X, XI and Pl(F3 ) one shows without difliculty that

M with integer coefficient satisfies equation (4.2) for ail 9 E G if an only if M has

the following form

(

A B BDC C D

BAB C D C D

B BAC C D D

B BAD DCC

BAB D C D C

A B B C D D C

E E E F F F F

(5.1)

where A, B, C, D, E, F are integers. When we specialized A = D = F = 1 and

B = C = E = 0 we get a matrix with IdetMI = 24
• Another specialization

(A = D = E = 1 and B = C = F = 0) gives us a matrix M with IdetMI = 24. So

the integer v is a power of 2 and is equal ta 2,4 or 8. We now apply theorem 7 to

obtain the following result.

Theorem 9 For ail prime l difJerent /rom 2 we have

where L is any number field (normal extension) such that its Galois group is iso­

morphic to 84 (= G).

This result tells us that in concrete examples it is possible to compute the v of

theorem 7 and obtain that v has less prime divisors (only the prime 2) than the

arder of G (the primes 2 and 3). From the family of examples we studied we can
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also believe that theorem 7 is optimal in the following sense: when 2 dh"ided v,

we round specifie elliptic curves (see table 10) where the 2-part of the class group

equation was not satisfied. This may weIl be true in general.

Ta conclude let us say there is still much more ta do with arithmetically equiv­

aient algebras. First, by looking at table 10 we see that the 2-part of these class

groups differ at mast by a factor 2. There is certainly a way to bound the ratio

h2/h~ in function of our integer v. We can look at Perlis' work (in [Pe2]) for a

similar problem and try to find an integer i = i(v) such that 2- i ~ h2/h~ ~ 2i • We

would need ta calculate v explicitly in that case. Second, we would like to general­

ize theorem 9 for aU normal extensions with Galois group GL2(Fp ) for any prime

p. The method one should use is ta exhibit a p2+f +2 x p2~p+2 matrix satisfying

equation (4.2) such that its determinant has only a few prime factors. Let L be a

Galois extension with Galois group G = GL2(Fp). Is it true that for primes i =F 2

we have cl~1 ~ Gl~1 €a cl~1" and similarly for G = PGL2 (Fp )? Our hope is ta

answer this question by the affirmative.

50



(

Bibliography

[Cr] J.E. Cremona, "Algorithms for modular elliptic curves," Cambridge University

Press, 1992.

[Fr-Ta] A.Frolich and M.J.Taylor, tJ Algebraic number theory", Cambridge Univer­

sity Press, 1991.

[Ga] D.J.H. Garling, "A course in galois theory," Cambridge University Press, 1986.

[Ga] F. Gassman, Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z.

25 (1926), 124-143.

[Ha] Marshall Hall, " The theory of groups", The Macmillan Company, New York,

1959.

[He] E. Hecke, "Vorlesungen uber die Theorie der Algebraischen Zahlen," Chelsea,

New York, 1970.

[Ja] N. Jacobson, "Basic Algebra 1", 2nd edition, W.H. Freeman and Company,

New York, 1985.

[Ma] Daniel A. Marcus, "Number fields," Springer-Verlag, New York, 1977.

[LaI] Serge Lang, "Algebra," 3rd Ed, Addison-Wesley, 1984.

[La2] Serge Lang, "Complex analysis," 3rd Ed, Springer-Verlag, New York, 1993.

[Pel] R.Perlis, On the equation (K(S) = (K/(S), J. Number Theory 9 (1977), 342­

360.

51



••

(

[Pe2] Robert Perlis, On the class numbers of arithmetically equivalent fields, J.

Number Theory 10 (1978L 489-509.

[Pe3] Robert Perlis and Bart De Smit, Zeta Functions do not determine class num­

bers, Bull. .Amer. Math. Soc 31 (1994), 213-215.

[Sel] Jean-Pierre Serre, Proprietes galoisiennes des points d'ordre fini des courbes

elliptiques, Inv. Math. 15 (1972), 259-331.

[Se2] Jean-Pierre Serre, "Representations lineaires des groupes finis," 2nd Ed, Her­

mann, Paris, 1971.

[Si] Joseph H. Silverman, " The arithmetic of elliptic curved," Springer-Verlag,

New York, 1986.

[Wa] C.D. Walter, Brauer's class number relation, ~cta A. 35 (1979), 33-40.

52



1.0 :: I~ 11111 2.5

I~ : Iii. 111112.2
~ I~ -

IIIIIJ:L t ~ IIII~
11111 1.8

11111
1
.
25

111111.4 1~111.6

1

1
'---....

'--

150mm --J-1
......

- 6" ----J~

1

APPLIED .:S IMAGE 1_ . ne
.== 1653 East Main Street

_.:S Rochester, NY 14609 USA..=:::= Phone: 716/482·0300
__ Fax: 716/288-5989

Cl 1993, Applled Image,lnc., Ali Rights Reserved


