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ABSTRACT

A tethered satellite system consists of two or more orbiting satellites linked together
by a tether (or cable). Although much theoretical and experimental work has contributed to
a good understanding of the short-term dynamics of tethered systems, their long-term
behaviour remains unexplored. Hence, a detailed mathematical model and a software have
been developed to analyse the long-term effect of the low Earth orbit environment on
tethered systems. The software predicts the trajectory and the attitude of the system, as well
as the temperature and the longitudinal vibrations of the tether. The program accounts for
the effects of atmospheric lift and drag, asphericity of the Earth (zonal and sectorial
harmonics), solar and Earth radiation, electromagnetic forces, lunisolar attraction, and
material damping.

The thesis reviews previous research work in the field and extends it using more
detailed models of external perturbations. Particular attention is given to the three major
external forces influencing the dynamics of tethered systems: atmospheric forces, Earth
oblateness effects, and electromagnetic forces. Furthermore, analytical solutions are
provided for the problem of atmospheric drag induced shift of the equilibrium angle.

It was noted that the present formulation can predict the long-term motion of non-
conductive librating tethered systems (such as TiPS) with greater accuracy than previous
models. The simulation software is also used to study the behaviour of spinning and
conductive systems. The results show that bare conductive tethers can decay the orbit of
spent rocket stages or dysfunctional satellites over 100 kg at a lower “weight cost” than
traditional rocket systems and much faster than atmospheric drag.



RESUME

Un satellite cablé est composé de deux satellites ou plus liés entre eux par un cable.
Malgré le fait que la dynamique a court terme des satellites cablés soit maintenant bien
connue, il demeure que le comportement a long terme de ce type de systéme reste mal
compris. Donc un modéle trés détaillé fut développé afin de mieux cerner le comportement
des satellites cablés a long terme. Le modéle et le programme qui s’y rattache prédisent la
lrajectoire orbitale, ies mouvements de iacet el de tangage, ainsi que ia température &t
I'élongation du cable. Le modéle prend les facteurs suivants en ligne de compte: la portance
et le freinage aérodynamique, la non-sphéricité et la non-homogénéité de la Terre, la
pression de radiation solaire et terrienne, les forces électromagnétiques, I"attraction luni-
solaire, et finalement les pertes visco-élastiques du cable.

Ce mémoire passe en revue les divers travaux de recherche qui furent publiés a ce
sujet et cherche a obtenir des résultats plus précis en utilisant des modéles de forces
perturbatrices plus précis que par le passé. Une attention particuliére est portée aux trois
forces perturbatrices influengant le plus la dynamique des satellites cablés: la portance et
le freinage aérodynamique, la non-sphéricité et la non-homogénéité de la Terre, et les forces
électromagnétiques. De plus, le probléme du changement de I'angle d équilibre dd au
freinage aérodynamique est résolu analytiquement.

Les résultats obtenus démontrent que le modéle amive a prédire la dynamique a long
terme des satellites cablés non-conducteurs (teis que TiPS) avec plus de précision que les
modéles utilisés précédemment. Le programme de simulation est également mis a
contribution afin d"étudier le comportement des satellites cablés en rotation continue et celui
des satellites cablés dotés d'un cable conducteur. Les résultats démontrent qu'un cable
conducteur “nu” arrive a faire réentrer les satellites de plus de 100 kg dans I'atmospheére plus
rapidement que [a propulsion chimique et beaucoup plus rapidement que le freinage
aérodynamique.
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tether cross-sectional area

spacecraft area shape factors

magnetic field

Earth asphericity coefficient

torsional damping coefficient

Young's modulus

perturbative force

shape factor for radiative heat transfer

Earth rotation factor

tether shear modulus of elasticity

atmospheric scale height

tether current; polar moment of inertia of the tether
Earth asphericity coefficient; load moment of inertia
mean longitude at epoch

true longitude at epoch

equinoctial elements

generalized force

position vector

geocentric altitude; resistance

geodetic altitude

solar radiation pressure; Earth asphericity coefficient
temperature; kinetic energy

velocity; potential energy

semi-major axis

end mass dimensions

Earth polar radius

speed of light; damping constant

orbital eccentricity

perturbative acceleration in orbital coordinates
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Earth magnetic fieid coefficients

spring constant

orbital inclination

unstressed and thermally disturbed tether length
tether length

mass

electron mass; equivalent mass

mean motion

ionospheric electron density

tether radius

argument of latitude

distance along the tether

right ascension of the ascending node

potential field

shining factor

electromotive force

total power of the Sun

pitch angle

tether visco-elastic dissipation coefficient

ballistic coefficient

ratio of the amplitude between two consecutive maxima
roll angle

distance between the spacecraft centre of mass and m,
distance between the spacecraft centre of area and m,
strain; emissivity

damping ratio

tether heat capacity

eastem longitude from the vernal equinox

eastern longitude from Greenwich

latitude

density

true anomaly

accommodation coefficient; solar reflectivity/absorptivity; standard
deviation



period

thermal expansion coefficient

w argument of perigee; circular frequency
Constants:

R, universal gas constant

H gravitational parameter

Subscripts and Su cripts:

D Drag

ND non-dimensional
a absorbed

atm atmosphere

cyl cylinder

e equivalent

load load

long longitudinal

max maximum

n normal

orb orbital

rd diffuse reflectivity
rs specular reflectivity
s spacecraft

sph sphere

t tether, tangential
tot total

a pitch angle

Y roll angle

€ strain

1,2 First and second end mass
R X | Earth, Sun, Moon
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CHAPTER 1

INTRODUCTION

11 PRELIMINARY REMARKS

A tethered satellite system consists of two or more orbiting satellites linked together
by a tether (Fig. 1.1). This concept dates back to the work of Tsiolkovsky [1]. In 1895, he
envisioned a gigantic tower stretching from the ground to a geostationary orbit from which
satellites could be deployed in orbit. Although highly impractical, this idea inspired other
scientists who later suggested using tethers or cables to build large space structures. Among
them, Colombo has come to be considered the “father of space tethers” for his major
contribution to this new field of study [2].

For practical reasons, space tethered systems are always stowed during launch. The
tether deployment begins with the separation of the end-bodies and proceeds until the tether
is completely wound out from the reel (Fig. 1.2). The system then enters its station-keeping
phase during which it gathers most of the scientific data. For many missions, the tether is
expected to remain deployed until the end of the satellite lifetime. Air drag then slowly decays
the orbit of the spacecraft until the system disintegrates in the upper atmosphere.



Station
keeping

Spacecraft Deployment
after lsunch

the Earth History
1.2 C CET FLIGHT
1.21 The Gemini Tether Experiments

The first demonstration of space tethered flight took place in September 1966 during
the Gemini X1 mission [3]. After the crew docked their Gemini capsule with an Agena upper
stage, astronaut Richard Gordon performed a spacewalk to attach the two spacecraft with
a 30 m long tether. Commander Pete Conrad then separated the two spacecraft (Fig. 1.3)
and aftempted to stabilize the system in the gravity gradient configuration. Unfortunately, the
manoeuvre failed. Conrad then spun the system up and tried to stabilize it in the cartwheel
configuration, with both spacecraft spinning around the centre of mass of the system. The
manoeuvre succeeded: the tether finally became taut. The rotational rate of the Gemini-
Agena spacecraft was increased to 55 deg/min: aimost one rotation every six minutes. At
this point, the astronauts experienced an artificial gravity of 10* g - enough for one of their
cameras to “fall® to the bottom of the capsule.

Two months later, Jim Lovell and Buzz Aldrin attempted a similar experiment on
board Gemini XI! and achieved stability in the gravity gradient configuration. Despite these



successes, the behaviour of tethered systems remained poorly understood.

Fig. 1.3: ether Experiment during the Gemini
Program [4]

1.2.2 The OEDIPUS Flights

Over the two decades that followed, an extensive amount of research contributed to
a better understanding of tether dynamics. Nevertheless, the US/Japan CHARGE 2A and 2B
suborbital flights were the enly missions to test these new theories {5].

On January 30, 1989, the OEDIPUS-A (Observations of Electric-field Distribution in
the lonospheric Plasma - a Unique Strategy) suborbital mission was launched into a boreal
aurora from Andoya in Norway (5,6]. This Canadian-American venture (Fig. 1.4) carried a
conductive tether and completed a number of experiments on tether dynamics, on the
magnetic field of the Earth, and on ionospheric plasma. The tether consisted of a tin-coated
copper wire covered with a white Teflon insulator. it had a diameter of 0.85 mm and
measured 958 m. On November 6, 1995, a more advanced probe called OEDIPUS-C flew
a similar mission from Fairbanks (Alaska) using a 1174 m tether.
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Fig. 1.4: Artist Rendition of the Oedipus-A Separation [7]

1.2.3 The TSS-1 Experiments

Over the 80's and 90's, the U.S. and Italy combined their efforts to better understand
tether dynamics, space plasma physics, and electric power generation using the Faraday
effect [6]. The result of their collaboration took the form of a spherical subsatellite connected
to the Orbiter by a 20.7 km long conductive tether.

The TSS (Tether Satellite System) flew on the Space Shuttle during missions STS-46
in July-August 1992 and STS-75 in February 1996 (Fig. 1.5). The first mission (TSS-1) failed
when the deployment system malfunctioned after deploying only 268 m of tether. During the
second mission (TSS-1R), the tether was deployed to 19.7 km, while the TSS system
generated an EMF of 3500 Volts [8]. This high electric potential resulted from the motion of
the conductive tether through the magnetic field of the Earth. However, a flaw in the tether

4



insulation sparked an electrical arc which eventually ruptured the tether.

Despite these mishaps, the TSS demonstrated the unexpected capability of bare
metals to capture ionospheric electrons. Indeed, the power generated during the experiment
reached many times the expected value.

e .j ""‘:;'
P h
Cac aud ¢ ~

3
i

Fig. 1.5: TSS-1R Experiment on the Space
Shuttle [9]

1.24 The SEDS Flights

Although they did not receive as much publicity as the ill-fated TSS-1 experiments,
the SEDS (Small Expandable Deployer System) flights successfully demonstrated the
feasibility of tether momentum transfer and proved the validity of deployment control laws [6).
Both missions flew as secondary payloads on Delta Il launches and involved a 20 km long
tether made of SPECTRA-1000.

Launched on March 29, 1993, the SEDS-1 mission demonstrated the deployment of
very long tethers (20 km). At the end of the flight, the tether was deliberately severed to
experiment tether-based orbital transfer. The manoeuvre successfully raised the orbit of the



upper body (Deita Il stage) and caused the SEDS-1 payload to deorbit.

SEDS-2 was deployed on March 9, 1994 using a predetermined control scheme. This
procedure was designed to reduce tether jerk and libration angles at the end of deployment.
The experiment was a complete success with the final deployment rate reaching a mere 2
cm/s (as opposed to 7 m/s for SEDS-1). Furthermore, the final angle of the system with
respect to the local vertical was only 4 degrees. The mission lasted about one week until the

tether was severed by either a micro-meteorite or a piece of debris.

1.2.5 The PMG Mission

The PMG (Plasma Motor Generator) flew on June 26, 1993 as a secondary payload
on a Delta i rocket (6]. With the aid of a 500 m conductive tether, the mission demonstrated
how the motion of a conductive tether across the magnetic field of the Earth can boost the
orbit of a spacecraft (while the system expends electrical energy) or generate electricity
(while lowering the spacecraft orbit).

1.2.6 The TiPS Mission

More recently, the flight of TiPS (Tether Physics and Survivability) has been paving
the way for much longer missions [10]. The spacecraft was sponsored by the NRO (Naval
Reconnaissance Office) and built by the NRL {Naval Research Laboratory) to study the
survivability and the long-term dynamics of tethered satellites (Fig. 1.6).

Deployed on June 20, 1996, TiPS has now been operating for three years. TiPS is
equipped with a 4 km long tether made of SPECTRA-1000 braided with acrylic. Although
much of the data gathered during the flight correlates with current models, no model has yet
fully explained the curious fashion in which the librational oscillations of the system have
damped. The flight of TiPS is analysed in detail in Chapter 4.



Fig. 1.6: Artist Rendition of the Separation of TIPS
(111

1.2.7 The ATEx Mission

Inspired by the success of TiPS, the NRO and the NRL recently launched the ATEXx
(Advanced Tether Experiment) mission (Fig. 1.7). Equipped with a 6 km long tether, the
ATEx system was launched on October 3, 1998 atop the STEx satellite by a Taurus rocket
[12]. The mission has three primary objectives. First, the ATEx team intends to conduct
experiments on tether libration control using a set of 16 thrusters located on the lower end
body (STEXx). Second, they plan to demonstrate end body attitude control and determination
using SLR (Satellite Laser Ranging) techniques [6]. Finally, they plan to show how a multi-
lined tether "tape" can drastically increase the survivability of space tethered systems against
micro-meteorites and space debris (Fig. 1.8).

Tether deployment took place on January 16, 1999. Unfortunately, the STEx onboard
computer ordered the tether to be cut when the libration angle of the system became too

7



large. This occurred after only 22 metres of tether had been deployed. The exact cause of

the incident is currently under investigation.

soler panel
szimuth rotetion

soles pesel_Fig. 1.8: ATEx Three-
tlentionrotation | jned Tether Tape

0.2 N thrusters {1 6)
et

host spacecraft direction ‘ nadir [14]
of motion
Fig. 1.7: Schematic View of the ATEX/STEx Tethered Spacecraft

[13]

1.3 APPROVED TETHERED MISSIONS

1.3.1 The SESDE Mission

The ESA (European Space Agency) and Russia plan to fly the first all European
tether experiment [15]. The SESDE mission (Small Expandable Spool Deployment
Experiment) will take place on a PROGRESS-M resupply ship.



~ After the cargo spacecraft has undocked from the MIR space station, the tether
deployer will release the ship docking mechanism (50 kg) using a simple spring loaded
device. Following this initial release, the gravity gradient force will create enough tension to
complete the deployment of the 3 km long tether without further assistance. The main
objective of this mission is to demonstrate the safety and reliability of the deployment
mechanism. As in the SEDS-1 mission (Section 1.2.4), such a procedure could be used to
deorbit re-entry capsules from the /SS (Intemational Space Station).

1.3.2 Tethered De-orbit Test Flights

The progressive accumulation of artificial
space debris in Earth orbit has become an
increasingly alarming issue over the last decade [16].
There is a proposal to run ionospheric electrons down
a conductive tether so that the resuiting Lorentz force
would decay the orbit of spent rocket stages and
dysfunctional satellites much faster than air drag
[8,17]. The initial test flight is expected to take place
at the tum of the millennium on board a
MOLNIYA or a DNIEPR (SS-18) rocket.

Fig. 1.9: Conceptual View of the
Tethered De-orbit Concept [18]



1.4 PROPOSED TETHERED MISSIONS

1.4.1 The AIRSEDS-S Mission

A group of scientists have recently proposed to fly an atmospheric probe on the
space shuttle [6,19]. The AIRSEDS-S (Atmospheric/lonospheric Research Small Expandable
Deployer Satellite) probe would hover below the Orbiter at the end of a 80 km tether and
safely study the upper atmosphere at altitudes down to 140 km (Fig. 1.10). Unlike other
spacecraft flying at such altitudes, AIRSEDS-S would not re-enter the atmosphere
immediately because the tether tension would provide the necessary upward force.

Moreover, tethered systems can also be used to conduct close range remote sensing

studies.
AIRSEDS-S Prohe O oo
Atonnring Plate
/
Probe (_‘,-m.xu!.: /
Frbe Buosm
Satellits Antmeancia
Fig. 1.10: Conceptual Representation of the
AIRSEDS-S Probe [20]
14.2 The BOLAS Mission

In addition, the BOLAS (Bistatic Observations using Low Altitudes Satellites) mission
has been proposed to the Canadian Space Agency and NASA {21,22]. If approved, this
system will consist of two 75 kg microsatellites linked by a 100 m long tether. Depicted in
Figure 1.11, this spacecraft will study the ionosphere for si:g months and will use its own spin

10



for stabilization purposes. The BOLAS proposal is analysed in detail in Chapter 6.

Fig. 1.11: Conceptual Representation of
the BOLAS Proposal [23]

143 Space Station Power Generation and Reboost

Several scientists have recently proposed to fly long semi-insulated wires from the
ISS to generate power or to reboost the orbit of the space station [6,24,25,26]. Like the
tethered de-orbit proposal (Section 1.3.2), this concept relies on the motion of a conductive
material across the magnetic field of the Earth. The effect attained (power generation or
reboost) depends on the direction of the tether current. For example, running electrons
“down” a 20 km long aluminum wire can provide an average power of 5.3 kW. However, this
output comes at the expense of a 1 N electrodynamic dra-g which slowly decays the station
orbit. On the other hand, by running electrons “up” a 7 km long tether using a battery or solar
energy, EP (Electromagnetic Propulsion) can maintain the orbit of the space station with
approximately 7% of the station power (10 kW input). In economic terms, the yearly amount
of propellant economized with EP would reach the amount of fuel provided by 4
PROGRESS-M resupply ships. This represents an economy of $US 2 billion over ten years.

But that is not all, EP can potentially be used to control the orbital elements and the
librations of tethered systems. This concept is discussed in Chapter 5.
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1.5 FUTURE APPLICATIONS OF SPACE TETHERS

1.5.1 Space Station Related Applications

Aside from power generation and eleciromagnetic propulsion (EP), the ISS
represents a unique opportunity to implement several new tether proposals. For example,
the STEPS (Station Tethered Express Payload System) calls for a novel and yet simple
appreach (o retum small paylcads from the ISS to the Earth [€]. The paylcad and the tether
(~30 km) are released downward from the ISS. Once properly swung, the tether is severed
at the ISS end (Fig. 1.12). Conserving the angular momentum, the orbit of the space station
is raised and that of the payload is lowered, causing it to reenter the atmosphere. This
innovative approach can be used to release payloads from the space station between shuttle
flights, without the need to worry about safety hazards and rocket systems. This procedure
can also be used to raise the orbit of the ISS while allowing the Space Shuttle to return to
the Earth using less fuel [27].

Fig. 1.12: The STEPS Concept [6]

On the other hand, spinning a tethered space station generates artificial gravity
[6,28]. This application becomes particularly useful for long term manned flights such as
those involved in interplanetary exploration, since the maintenance of artificial gravity
prevents muscle atrophy and bone decaicification.
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1.6.2 Planetary Exploration

The concept of an atmospheric tethered probe can be carried even further into what
is called “tethered aerobraking” [6,29]. An interplanetary spacecraft approaching a target
planet can deploy a “tethered aerobraking” craft. The lower probe penetrates the upper
atmosphere of the planet deep enough so that air drag slows the spacecraft from hyperbolic
escape speed to orbital speed. This greatly reduces the amount of propellant required for
planetary caplure.

The use of tethers might also reduce the complexity and cost of asteroid and comet
sampling missions. Instead of having to land on the target body, a spacecraft rendezvousing
an asteroid or a comet can deploy a tethered sampling probe equipped with a penetrator
[6,30]. The secondary probe penetrates the surface of the target, extracts a sample from the
object, and retums to the “mother” craft as the tether is reeled back (Fig. 1.13). In this way,
samples from various locations on the target, or from different bodies can be brought back
to the Earth using a single spacecraft.

But that is not all: longer and stronger
tethers can be anchored to asteroids to modify
the trajectory of spacecraft [31,32]. In this
manoeuvre called “tethered sling shot assist,” a
spacecraft approaching an asteroid at a high
speed (1-3 km/s) deploys a tethered penetrator.
. The secondary probe anchors the system to the
asteroid. The trajectory of the spacecraft is
modified as it “swings-by” the anchor body.
During the “tethered assist,” samples can be
extracted from the anchor body. At the end of the
manoeuvre, the samples are brought back to the
primary craft as the tether is reeled back for

reuse. In this way, a single probe could sampie
up to 8 NEA’s (Near-Earth Asteroids) in a single
mission.

Fig. 1.13: Tethered Sampling Concept [6]
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1.6 LITERATURE REVIEW OF ORBITAL MOTION

Keplerian motion assumes that the object of interest moves under the sole infiuence
of the gravity of the attractor (the Earth). Other forces influencing the spacecraft trajectory
are called perturbations because their effect on the motion of the system is smaller, but still
noticeable. There exist several kinds of perturbations: air lift and drag, Earth asphericity
effects, solar radiation pressure, lunisolar attraction, and electromagnetic forces.

The main effect of air lift and drag is the decay of the semi-major axis [6,33]. The
decay rate depends on several factors such as altitude, ballistic coefficient, solar activity, etc.
Although several interpolation and analytical formulae can estimate the lifetime of satellites
[6,34], the exact calculation of this parameter requires very detailed modeis [35,36]. Using
one such model, Wamock and Cochran [37] investigated the effect of several parameters
like the semi-major axis, the inclination, the argument of latitude, and the tether length and
diameter on the lifetime of tethered satellites. Earth asphericity perturbation forces, as the
name suggests, result from the non-homogeneous mass distribution and aspherical shape
of the Earth. The net effect of this perturbation is a drift in the ascending node (orientation
of the orbital plane) and a drift in the argument of perigee (position of the perigee within the
orbital plane) [6,38]. The impact of photons emitted by the Sun on the surface of a spacecraft
also affects its trajectory. In fact, solar radiation pressure becomes stronger than air lift and
drag for altitudes beyond 800 km [39)]. This perturbation causes periodic changes in all of the
orbital elements [33]. Lunisolar attraction is the combined interaction of the gravity forces of
the Sun and of the Moon on a satellite. This perturbation force becomes non-negligible for
altitudes above 26000 km [33]. Electromagnetic or Lorentz forces result from the motion of
a conductive tether in the magnetic field of the Earth [6,8,24,25,26]. Depending on the
magnitude and frequency of the tether current and on the position and attitude of the
spacecraft, electromagnetic forces can influence any of the orbital elements and the
orientation of the spacecraft.
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1.7 | Vv SPACE DYNAMIC

Tethered systems are usually stable during deployment. A control system is not
required if the tether deployment rate is slow enough and if the initial orientation of the
satellite is judiciously chosen. Kulla [40] determined the upper bound on the tether
deployment rate that yields a stable deployment. On the other hand, the retrieval phase is
intrinsically unstable; regardless of the tether retrieval rate. Bainum and Kumar [41]
determined that the behaviour of the system during retrieval is more dependent on the initial
roll than on the initial pitch of the system. Matters can become of even greater concermn when
the retrieval rate is large: the Coriolis acceleration hence imparted on the system causes
further instabilities in pitch. Interested readers are referred to the work of Misra and Modi
[42], who published a survey of papers on the dynamics and control of space tethered
systems.

Although the station keeping phase is marginally stable, the atmospheric drag force
shifts the equilibrium orientation of librating tethered systems [43]. Furthermore, air drag may
even generate instabilities in long and stiff tethered systems due to atmospheric density
variations along the cable [44,45,46,47].

Several control strategies were devised to stabilize the system during all the phases
of flight. These strategies include tension control, length or reel rate control, offset control
and aerodynamic control. As this thesis does not focus on the control of tethered systems,
interested readers are again directed to the work of Misra and Modi [42] for more information
on the topic.

Several computer models were developed to study the deployment, the station-
keeping, and the retrieval of space tethered systems. These include the SKYHOOK model
developed at the Smithsonian Astrophysical Observatory [48], the GTOSS model [49], the
SPACE TETHER model [50] and the GEODYN model [10]. More recently, Schuitz and
Vigneron [51,52] have tumed their attention on the long term dynamics of spinning tethered
systems such as BOLAS.
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1.8 ATERIAL PROPERTI

Although their impact on the trajectory of the spacecraft remains minor, tether
material properties strongly influence the longitudinal oscillations of the tether. They also
contribute to the slow decay of the librations of the system [10].

Previous experimental work on various tethers has shown that their properties vary
considerably with the number and the intensity of the loading cycles. Angrilli et al. [53] have
shown that the properties of composite tethers depend to a great extent on the history of the
relative motion between the fibres and the layers of the cable. As the tether is cycled, the
friction between the fibres and the layers effectively “packs” the tether. This increases
stiffnress and reduces damping. This mechanism partly explains why tether stiffness
increases with the applied load. A higher load causes more tether “packing.” Fanti et al. [54]
determined that the stiffness of the TSS-1 tether increases quasi-logarithmically with load.
NRL analysts [55] found that the TiPS tether behaves similarly. As far as the creep behaviour
is concemed, there is little data available. However, since stress levels are very low, creep
is usually not a concemn.

Angrilli et al. [56] noticed an increase in stiffness and a large reduction in damping
as the temperature decreases. They also found that the longitudinal loss factor of the TSS
tether seems to be independent of the frequency of the oscillations. Finally, He and Powell
[57] proposed an interpolation formula to determine the longitudinal damping of the TSS-1
tether as a function of tether length.

1.9 THESI

1.9.1 Objectives of the Thesis

The major endeavour of this work is the development, implementation and
qualification of a detailed computer model capable of analysing and predicting the long-term
dynamics of tethered spacecraft. The second objective of this thesis is to use the above
model to better understand the long term dynamics and stability of space tethered systems.
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The effects of air lift and drag, Earth oblateness and electromagnetic perturbation forces are
given special attention.

1.9.2 Outline of the Thesis

This thesis first presents the mathematical equations behind the present model
(Chapter 2). The algorithm based on this model determines the effect of perturbation forces
and torques on the orbital, attitude, thermal, and longitudinal dynamics of tethered systems.
The perturbation forces taken into account include atmospheric lift and drag, Earth
asphericity, solar radiation pressure, lunisolar attraction, and electromagnetic forces.

Chapter 3 discusses a series of experiments on tether material properties carried out
at the University of British Columbia and at the Chapman Space Centre of the Canadian
Space Agency. The results of these experiments are used to estimate the longitudinal and
torsional stiffness, and the longitudinal and torsional damping of the tether used in the TiPS
mission and in the BOLAS proposal.

Chapter 4 focuses on the effect of air drag and Earth oblateness forces on the
dynamics of /ibrating tethered systems. As an example, the behaviour of the TiPS spacecraft
is examined in detail. On the other hand, the fifth chapter examines the effect of
electromagnetic forces on the orbital motion and on the librations of tethered systems.
Chapter 6 discusses the long term behaviour of spinning tethered systems such as BOLAS.
Finally, Chapter 7 presents some concluding remarks and suggestions for future work.
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CHAPTER 2

THEORETICAL CONSIDERATIONS

2.1 DESCRIPTION OF T TEM

The system under consideration consists of two satellites of mass m, and m, linked
by an elastic tether of mass m, (Fig. 1.1). The tether is assumed to remain straight. This is
done to keep the dynamical model manageable, and because transverse oscillations are not
likely to have significant effect on the long-term dynamics of the system. The state of the
spacecraft is described by a set of variables that fix the position and velocity of the
spacecraft, its attitude (orientation), its temperature, and the longitudinal elongation of the
tether. The position and velocity of the system are obtained from its orbital elements
(a,P,P,Q,Q,L"). The attitude of the tether is described by the in-plane angle: pitch a and
out-of-plane angle: roll y. The rotation of the system about an axis parallel to the tether line
(yaw) is assumed to have no effect on the dynamics of the system. The longitudinal
elongation of the tether is described by its strain €. The transverse oscillations of the tether
are not considered in this thesis. Finally, the tether temperature T, constitutes the finai
variable required to fix the state of the system.
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Throughout this thesis, the deployed length of the tether is denoted by /, and its
radius by r,. The longitudinal stiffness and damping constant of the tether are EA and f
respectively. The relevant thermal properties of the tether include its emissivity ¢, heat
capacity «, and coefficient of thermal expansion £ The atmospheric lift and drag on the
system are strongly dependent on the tangential and normal accommodation coefficients of
each surface (g and g;). These two parameters describe how the incoming flow of air
interacts with the surface of the object. On the other hand, the solar absorptivity and diffuse
and specular reflectivity (g,, g4, g,) describe the interaction between the system and the
photons emitted by the Sun.

A thorough analysis of the motion of tethered systems requires three coordinate
frames: a vemal coordinate system, an orbital coordinate system and a spherical coordinate
system. The vemnal coordinate system OXYZ is well suited to describe the position and
velocity of the centre of mass of the system (Fig. 2.1). The origin of this inertial system of
coordinates rests at the centre of the Earth. The Z-axis points in the direction of the celestial
north pole, the X-axis points toward the vemal equinox, and the Y-axis completes the right-
handed set OXYZ.

Fig. 2.1: Vernal and Orbital Coordinate
Systems

The orbital coordinate system O'X'Y'Z' (Fig. 2.1) proves particularly useful for
describing the spacecraft attitude and to calculate most of the perturbation forces. The origin
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of this non-inertial coordinate system is the centre of mass of the tethered spacecraft. The

'-axis is parallel to the local vertical, that is, the position vector of the system centre of mass
measured from the centre of the Earth R. The Z'-axis points in the direction of the angular
momentum vector of the spacecraft orbit. Finally, the Y'-axis completes the right-handed
frame O'X'Y'Z.. As seen in Fig. 2.2, the angle between the projection of m, on the X'Y’'-plane
and the X’-axis gives the pitch of the system (a). Roll is defined as the angle between the
position vector of m, relative to O’ and its projection on the X'Y'-plane.

The spherical coordinate system (R\A,9) is a non-inertial and right-handed frame with
its origin (O") at the centre of mass of the system (Fig. 2.3). The ey axis is parallel to the local
vertical, the e, axis points eastward in the direction of increasing longitude, and the e, axis

lies in the direction of increasing latitude.

zl
A Orbital coordinate system z
\ €y e,
m, er
ol'
/? ,
\
II) i o] >Y
/ T \
Ay (ro >y
/ a (pltch) \ Projection of the Earth
position of m, on X
the X'Y' plane.
Fig. 2.2: Definition of the Pitch and Roll Fig. 2.3: Vernal and Spherical
Angles * Coordinate Systems

Most of the computations to be performed in this thesis make use of the orbital
coordinate system. Vectors in vernal and spherical coordinate frames can be rotated to the
orbital coordinate frame using the following transformation equations:

{R}arb =[A]{R}ver (2'1)

{R},s =[Al[BI{R}, (22)
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’ where matrices [A] and [B] are given by

cos2cosf) —sing2sin@)cosf) —cos(2sinfy)—-sin2cosfr)cosf) sine2sing)
[Al=| sinf2cos) +cosf2sin@)cosf) —sine2sinfr)+cosf2cosf)cosf) —cose2sing) |(2.3)
sinf)sing) cosf)sing) cosf)

cosicogp —sind —sindsing
(B=|sinlcopp cosl -sindsing
sing 0 cosp (2.4)

where v is the argument of latitude (u=6+w), 12 represents the right ascension of the
ascending node, i is the orbital inclination, 4 denotes the eastem longitude of the object from

the vernal equinox, and ¢ gives the latitude.

2.2 PERTURBATIONS QF THE ORBITAL ELEMENTS

In the absence of disturbing forces, any satellite would keep orbiting along a conic
section orbit of fixed dimensions and orientation. As explained in the introduction, many
factors perturb the motion of satellites. Predicting the state of a satellite over a long period
of time requires that one take ail these factors into account. The exact trajectory of a
spacecraft is determined by integrating the influence of the perturbative forces over time. To
that end, perturbation equations must be obtained for each orbital element. Such equations
were derived for the classical elements by Lagrange, but they become singular for circular
(e—0) and equatorial (/—0) orbits [58]. The classical orbital elements are the semi-major axis
(a), the eccentricity (), the inclination (i), the true anomaly (&), the argument of perigee (w),
and the right ascension of the ascending node ({2 (Fig. 2.4).
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Fig. 2.4: The Clas: ‘cal Orbital Elements [33]

A different set of elements called the equinoctial elements (a,P,,P,,Q,,Q,,L) is more
robust for equatorial and circular orbits [58]). However, the determination of the mean
longitude (L=M+w+(J) is computationally time-consuming. To solve this problem, Wamock
and Cochran [37] introduced a slightly different formulation which relies on the true longitude
(L*=6+wt()) of the satellite. Based on this, the author devised an even more computationally
efficient algorithm to propagate the spacecraft trajectory using the “modified equinoctial
elements”. One can convert the classical orbital elements to the modified equinoctial

elements using the following relations:

P, =exsin(w+)
P,=excos(w+Q)
0, =tan(i/2)sin(Q) (2.5)
Q,=tan(i/2)cos(Q2)
L =0+w+Q

On the other hand, the modified equinoctial elements can be converted to classical

elements by using the following equations:
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i=2arctan(Q;'+0;)
Q=arctan(Q,/Q,) (2.6)
w=arctan(P /P,)-Q
=L " -w-Q

The perturbative equations for the modified equinoctial elements can be derived from
Lagrange's perturbation equations and are:

da _2a* L2
Z2=Z ([P sin(L")-Pycos(L ), Rf,]

[- cos(L V[P, +(1+ )sm(L )]f -P,[0,cos(L *)-Q,sin(L )Y, ]

I
%—7[ sin(L ), +[P, +(1+p Jeos(L "), +P\{Q,cos(L *)-Q,sin(L ")]f. /]

@7
7?,-%2—’;[1 Q+QHsin(L Y,

a0, R )
—-‘-1,—’=-2—},-[1+Q3+Qf]cos(L Yo

dlL* h Rsin(6+w)tan(i/2)f./]
S——t
dat R:? h

where R denotes the geocentric altitude, and f=(f,.f.f,) is the perturbative acceleration
expressed in the orbital coordinate frame. For maximum accuracy, the model in this thesis
discretizes the system into k+2 elements: two for the end-bodies and k elements along the
tether. The model then calculates the perturbative force on each element. The sum of these
perturbative forces is divided by the total mass of the system to obtain the net perturbative
acceleration of the centre of mass of the system (£, f,, f,). In the above equations, h and
p=a(1-e?) denote the specific angular momentum and semi latus rectum of the spacecraft
orbit respectively. The first five equations in (2.7) were derived by Broucke [58]. The
perturbation equation for the true longitude was derived by the author. The above differential
equations have no singularities, except for linear trajectories (h=0, a trivial case) and for
perfectly retrograde orbits (=m).
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" From an implementation point of view, the accuracy of numerical analysis software
is optimal when all the variables integrated have roughly the same order of magnitude. For
this reason, the semi-major axis is non-dimensionalized through division by the radius of the
Earth.

a
aszg (2.8)
2.3 ITUDI DYNAMIC
TETHERED SATELLITES
2.3.1 Lagrangian of the System

The system under consideration contains two masses and a longitudinally flexible
tether whose actual length depends on the deployed tether length and on mechanical and
thermal strains. The system is free to librate in the orbital plane (pitch) or out of the orbital
plane (roll). Modi et al. [59] provide a very detailed expression for the Lagrangian of tethered
systems with a rigid cable. Based on this, one can derive expressions for the kinetic and
potential energy of a tethered system with a longitudinally flexible tether:

. m1}(1+€)?
2
v m 12(1+€)*u(1-3cos’acos’y) EAL€?
= +
2R3 2

[(6+&)2cos™y +72] +ﬂzl[io(1 ve)+L &P
(2.9)

where  is the gravitational parameter of the Earth (u=GMg) and /, is the length of the tether
subjected to thermal strain

I =I(1+EAT) (2.10)
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The mass parameters m, and m’ are given by

m, m, m/2 _m,
m,=(m + Y ——) -
._my(m, +m,) (2.11)

m

where m is the total mass of the system (m, + m, + m,). The various terms in equation (2.9)
denote the kinetic energy due to tether libration and extension, the potential energy due to
gravity and the elastic energy due to tether extension, respectively. The presence of d6/dt
and of w/R’ indicate that the librational and longitudinal dynamics of the system are coupled
with orbital motion.

2.3.2 System Librations

Through application of Lagrange's method, the equations of motion for pitch and roll
can be obtained as

B8+6)+2(0 + _t & o 3usinke_ . O
(0+6)+2( a)[ 7 Ytany (l+e)] IR Poady(ie) (2.12)

. . 2
g4291 mi, € q,sin2y [(e+a)z+3p.cos a]= QY
mJl, (1+€) 2 R3 m¢1:(1+€)2

(2.13)

where Q, and Q, are the generalized forces in the pitch and roll generalized coordinates
respectively, and m is defined as

e almy+mj2) (2.14)
m
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The stable orientation for tethered satellites is the “gravity gradient” configuration. It
occurs when a=y=0,; that is, when the system is perfectly aligned with the local verticai. For
circular orbits, the frequency of small oscillations about the local vertical is V3w, and 2w,
for pitch and roll, respectively [42]. However, the libration frequency decreases drastically
when libration amplitudes become large. This phenomenon is caused by non-linearities in
the equations of motion and is similar to the behaviour of simple pendula.

2.3.3 Longitudinai Osciliations

" The equation governing the tether strain is

mll (1ve)+l &]+m "[[ (1+€)+2] & +1 €] +Ede +peé
-m J (1+€)[(0+a)’cos’y +y *72“—3(3 cos*ycos’e-1)] =% 2.15)

o

in equation (2.15), Q, denotes the generalized force corresponding to the generalized
coordinate ¢ and the S term accounts for the visco-elastic damping of the tether [50]. The
natural frequency of the longitudinal oscillations in the gravity gradient orientation can be
approximated using equation (2.15)

£4 (2.16)

w =
long .
im

For most cases of interest, the strain and strain rate of the tether are much smaller
in magnitude than the other variables to be integrated. For this reason, the software
implementation of the present model utilizes non dimensionalized strain and strain rate
variables. These quantities are obtained in the following way:
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EAde
2
m el (")arb

deND _ EAe

d(nt) melw:rb

€M3=

(2.17)

where ¢ denotes time and n is the mean motion of the spacecraft (number of revolutions per

day).

2.3.4 Tether Tension

The tether tension [50] is given by

T=EAe+Bé (2.18)

In most cases, the tension can be approximated by EA¢, where the strain depends on
several factors like the altitude and the orientation of the system.

24 DETERMINATION OF THE GENERALIZED FORCES

The equations of orbital, librational and longitudinal motion of the system (Sections
2.2 and 2.3) require the determination of the overall acceleration vector f, and of the
generalized external forces Q,, Q,. and Q.. For maximum accuracy, the present formulation
discretizes the spacecrafi into k+2 elements: two for the end bodies and k elements along
the tether line. The model then calculates the total perturbative force on each element as:

Fi=F 4y *F gy *Fppeg [, +f5 fe)s (219)

where F,, is the aerodynamic force; F;,, denotes the solar radiation pressure force, F,,
designates the electromagnetic force; and f,, f ,, and £, represent the acceleration due to the
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Earth's asphericity and lunisolar attraction, respectively. These forces and accelerations are
modelled in section 2.5. The sum of all perturbative forces ZF; is divided by the total mass
of the system to obtain the net perturbative acceleration of the system f.

To determine the generalized forces on the system, one must first determine the
position of the centre of mass of the system at any instant. To do this, let us define /, as the
total length of the tether:

1, ~l(1+€)(1+EAT)= (1+€) (2.20)

The fwo terms in parentheses account for the mechanical and thermal strains. /, denotes the
“thermally” strained tether length.

The distance dbetween the centre of the first end body and the centre of mass of the
system is given by (Fig. 2.5).

_my[l, ¥ (e, re)2]+m [l +c 12

5 tot tot (2.21)
m
c,/2 [
e cM " element -
| e—
— x
m, m,
< Fo) rgl

Fig. 2.5: System Discretization

Defining x; as the position of the centre of the /" element with respect to the centre of mass
of the system (Fig. 2.5), we have, for the first end body (=1):
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x,=-0 (2.22a)

for the tether (2sj<k+1):

2j -3)1“" ¢,
== "~ T+ -5 2.22b
Tk 2 (2.220)

and for the second end body {=k+2):

c,*c,
Xt 3 -5 (2.22c)

2 Yot

The generalized forces are obtained from basic principles:

k+2 aR
Q,=Zl: F,-'E?’ (2.23)
J= i

where F, is the total perturbative force on the /" element of the system, R, is the vector joining
the centre of mass of the system to the centre of the f"element. This vector is given in orbital
coordinates by

. x; cos(y)cos( a)
{R;}, =|x;cos(y)sin(a) (2.24)
x;sin(y)

The next task is to find the partial derivatives of R, with respect to a, yand ¢. For
pitch and roll, this can be done by direct partial differentiation of equation (2.24)

BE - X; sinfa)cos(y)
{ a—’ b =| Xjcos(a)cos(y) (2.25)
“ 0
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BE - x;cos(a)sin(y)
{(—L} . = - X; sinfa)sin(y )

5}
4 x;cos(y)

(2.26)

On the other hand, obtaining the partial derivative of R with respect to ¢ is slightly

more involved. Using the chain rule, we have

aR,.=aRj axj az,o,_ loR}. axj
de axj. al, de X, azm

(2.27)

The partial derivative of x; with respect to /, can be determined using equation (2.22). For
the first end body, we have:

ox, =(m,+m/2)

(2.28a)
61!01 m ’
for the tether elements:
ox, 2j-3 (my*m/2) (2.286)
ol, 24k m )
for the second end mass:
ox,,, (m +m/2)
3 = - (2.28c)
fot
Therefore, the generalized force in the pitch coordinate is
k+2
0, =,2=; x| -F_sin(e)cos(y) +F, ,cos(e)cos(Y)] (2.29a)

where x; is given by equation (2.22). The generalized force for roll is
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k+2

fo‘;l x [-F,cos(e)sin(y) -F, sin(a)sin(y) +F,;cos(Y)] (2.28b)

Finally, the generalized force for strain is

k+2 ax
Q.=1,) <7 [Fjeos(y)cos(a) +Fy cos(y)sin(a) +F,sin(y)] (2.29c)
J=1

where the partial of x; with respect to ky is given by equation (2.28). Here F,, F,,and F,, are
compénents of F, along orbital coordinate axes.

25 PERTURBATION FORCES
251 Aerodynamic Forces
2511 Aerodynamic Forces

Atmospheric lift and drag drastically modify the trajectory of satellites in LEO. Their
most dramatic effect is the decay of the semi-major axis. The decay rate increases more or
less exponentially as the altitude decreases. This phenomenon becomes a true concern for
altitudes below 500 km. Although they considered the effects of aerodynamic drag [43,48],
most of the previous analyses of tether dynamics have not considered aerodynamic lift.
Nonethelass, recent studies [44,61] have shown that lift has a significant effect on the
attitude dynamics of tethered systems. The present formulation accounts for the combined
effect of both air lift and drag.
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Fig. 2.6: Atmospheric Lift and Drag on a Tethered
Spacecraft

Hughes [35] presents a particularly detailed derivation of the air lift and drag force
acting on a spacecraft (Fig. 2.6). He bases his analysis on the free-molecular flow model.
This model assumes that the mean free path of the air molecules is much larger than the
size of the spacecraft. As a result, the effect of collisions between air molecules and the
spacecraft is greater than the effect of collisions among air molecules. This situation applies
in rarefied density environments like LEO. Hughes states that in such cases, the combined
lift and drag force on a surface due to its interaction with the atmosphere is given by

V
F, air=pa:'rVrz[of4.DDv’ +°"(7'2)APD+(2-°" ~0)4,,”] (2.30)

where p, is the atmospheric density, v, is a unit vector in the direction of the velocity of the
local atmosphere relative to the surface and V, is the speed of the atmosphere with respect
to the surface. A", A° and A,° are called shape factors. These parameters depend on the
shapé and size of the spacecraft surface. g, and g, are the accommodation coefficients in
the normal and tangential direction respectively. The value of the two accommodation
coefficients usually varies between 0.85 and 0.95. The limiting cases of specular and diffuse
reflection correspond to 0,=0=0 and ¢,=0=1, respectively. V, is the speed of the air
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molecules at the temperature of the tether T. In other words,

R T

me

V,=

(2.31)

where R, is the universal gas constant and m,, is the molecular mass of the air.

As the accommodation coefficients usually near unity (diffuse reflection) and since
Vy<<V,, the first lerm in equation (2.30} dominates over the cother two. As a result,
atmospheric forces predominantly act in the direction opposite to that of the spacecraft
motion. In other words, the effect of air drag is much more important than that of atmospheric
lift. Indeed, the lift to drag ratio of tethered systems (L/D) is of the order of 1/10 [6]. This
tends to decay the orbit of satellites.

251.2 Shape Factors

As mentioned earlier, the shape factors A,°, A.° and A,,° depend on the shape and
size of the spacecraft surface. They are given by

A PDE f H(coset)cosadA

A= f fH(cosa)cosadA (2.32)
Al= f f H(coset)cos*adA

where H(x) is the Heaviside function [35]. This function is 1 if x20 and 0 if x<0. The Heaviside
accounts for the absence of air lift and drag on surfaces unexposed to the flow. Note that
A, is a scalar, while A,° and A,° are both vector quantities. All of the above integrals are
surface integrals and in general, A,D is not simply the magnitude of Ap". The shape factors
of a tether element of radius r, and length dx are given by

D
4, =2r (v, n)dx
A ?=§r,(v;n)naﬁc

" (2.33)

4
A pf,‘:?r‘(v ) ndx
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where n is a unit vector that lies in the t-v, plane and is perpendicular to the tether (Fig. 2.6).
t is a unit vector along the tether line. Most of the calculations performed in this thesis
assume that the end bodies are shaped like square prisms sp. As shown in Figure 2.7, a and
¢ designate the width and depth of each subsatellite.

Tether
§ c
a
T ol
/\ il
T a
End Body

Fig. 2.7: View of a Square Prism Subsatellite

Since the interaction between a square prism and the surrounding flow of air depends
on the orientation of the end mass around the tether axis, the shape factors must be
averaged over one complete yaw rotation. Hence, the averaged shape factors of a square
prism are given by:

42=2ac(v n)+a?|(v, 1)
Py T r r
D
A, =ac(v m)n+a v, 1)t (2.34)

AD_Sac

PR S PV )
Pp”-g(v, n)’n+a‘(v 1)t

On one particular occasion, the first two shape factors of a sphere and of a cylinder
will also be required:
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(2.35)

where r,, 1., |, denote the sphere radius, the cylinder radius, and the cylinder length,
respectively.
25.1.3 Atmospheric Density

Spacecraft flying in LEO encounter a relatively “dense” atmosphere. As a result, their
orbit decays faster than that of satellites in higher orbits. In fact, the determination of the
atmospheric density represents the most important issue in the determination of air lift and
drag forces. A large number of previous studies in tether dynamics assume that the
atmospheric density follows an exponential variation [43,47,48,51). Although this
approximation may lead to analytical solutions, it fails to account for the very large variations
in atmospheric density caused by solar and geomagnetic activity, latitude, etc. These factors
can cause the atmospheric density to vary by as much as 2 or 3 orders of magnitude. As an
example, Figure 2.8 shows the influence of the solar activity (exospheric temperature) on the
atmospheric density. Therefore, great efforts are made to find a very reliable atmospheric
density model. The present formulation relies on one of the most accurate atmospheric
density models available: the Jacchia 77 model [36]. This model gives the density and molar
mass of the ambient air as a function of altitude, solar activity, geomagnetic activity, latitude,
Sun-satellite angle, and seasonal variations. The solar activity and geomagnetic activity
indices are available via intemet on the WDC (World Data Centre) webpage [62].

2514 Earth Oblateness
The oblateness of the Earth also influences lift and drag forces on a spacecraft. As

the planet is not a perfect sphere, but an ellipsoid, the geodetic altitude (altitude above the
ground) of an object varies with the geocentric altitude as well as with the latitude (Fig. 2.9).
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For example, the polar radius of the Earth is approximately 21.4 km smaller than the
equatorial radius. This variation in aititude causes a variation in atmospheric density and
hence in lift and drag. For any geocentric altitude and latitude, the geodetic altitude is given
by

b
R’=R-
2.36

J1-€gcos’d (2.36)

where R is the geocentric altitude, R’ is the geodetic altitude, b is the polar radius of the
Earth, ¢is the latitude, and eg4 is the eccentricity of the surface of the Earth [63].

The effect of Earth oblateness on the lifetime of tethered satellites has been studied
in detail by Wamock and Cochran [37]. They noticed that the orbit of polar satellites decays
much slower than that of equatorial spacecraft. To explain this phenomenon, they pointed
out that the geodetic altitude increases near the poles. This in turn reduces the average
atmospheric density and air drag on the spacecraft.

25.1.5 Rotation of the Earth

The last factor to influence the lift and drag forces on a spacecraft is the rotation of
the Earth. Few earlier studies have considered this factor [2,37]). In equation (2.30), V,
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designates the velocity of the local atmosphere relative to the spacecratt. If the effect of the
rotation of the Earth is neglected, V, is simply -V, (the negative of the spacecraft velocity).
Keshmiri [2], and Wamock and Cochran [37], who accounted for the rotation of the
atmosphere, assumed that its rotational rate equals the rotational rate of the Earth. But King-
Hele [64], who studied the speed of winds in the upper atmosphere, has pointed out that the
rotational rate of the atmosphere varies with the altitude (Fig.2.10). In Figure 2.10, the
rotational rate is non-dimensionalized upon division by the rotational rate of the Earth. The
velocity of the local atmosphere relative to the spacecraft is then

V=o,xR-V, (2.37)

From equation (2.37), neglecting the influence of atmospheric rotation leads to an
overestimation of air drag for direct orbits (/<90°). The opposite holds for retrograde orbits
(i>90°). This deduction was verified numerically by Wamock and Cochran [37].
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2516 Analytical and Empirical Lifetime Approximations

Several analytical and empirical formulae have been devised to estimate the orbit
decay rate and lifetime of LEO satellites subjected to air drag. For example, Boden [34]
presents the following analytical orbit decay model:
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da_-2myapp,e [l +2el]

dr B’
- (2.38)
de —2mfup,e I el +1,)/2]
a Vap

where H is the scale height of the atmosphere at the perigee, and /, denotes the modified
Bessel function of order x and argument (as/H)} where a is the semi-major axis. The
parameter S* which equals m/CpA, is commonly known as the ballistic coefficient where C,
is the drag coefficient (=2.2). When the orbit is circular, equation (2.38) reduces to

2 - -Zﬂmpmr

dt B (2.39)
de
—=0
dt

On the other hand, Cosmo and Lorenzini [6] present an empirical model to predict
the lifetime of satellites when the atmospheric density is larger than 10" kg/m®:

2ae
2+0.308ae/H
0.15myr " [1+2.9(R "-6578)/T_]"! (2.40)
3000-T,

R =a(l-e)+

lifetime=

where T, the exospheric temperature (given in K), is a function of the solar activity [36].

2.5.2 Solar Radiation Pressure

The Sun emits more than 3.8x10% Joules of energy every second [65]. Most of that
energy is radiated away from the Sun by photons travelling at the speed of light. The impact
of these photons on the surface of a spacecraft disturbs its motion. The solar radiation
pressure at any point in the solar system is given by
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canRl, (2.41)

where =is the total power of the Sun, cis the speed of light, and R,, is the distance between
the Sun and the object of interest. The solar radiation pressure S in LEO hovers around
4.5x10® Pa and varies slightly due to several factors like the position of the spacecraft
around the Earth and the distance between the Earth and the Sun. The present model takes
these minute variations into account. However, one must bear in mind that solar radiation
pressure influences the dynamics of a spacecraft only if the object is exposed to sunlight. If
the object is in the shadow of the Earth, then the soiar radiation pressure force is reduced
and may vanish. The present formulation accounts for this variation. Remembering that
photons can be treated as particles, the photon-satellite interaction can be seen as a
multitude of particles colliding against the surface of an object and bouncing off in various
directions [35]. Therefore, the solar radiation pressure force can be accounted for in a way
similar to atmospheric lift and drag (Section 2.5.1):

5 .
FSun = LIIS[(OG +°rd)A.:s +-§arnAP° +2ONA :P] (2.42)

where ¢ is the “shining factor.” This parameter is zero if the Sun is hidden from the
spacecraft by the Earth, 1 if the Sun is totally visible from the spacecraft, and 0<¢<1 if the
Sun is partially eclipsed by the Earth. The present formulation utilizes Baker’s algorithm to
determine the value of ¢ [39). The position of the Sun is determined by an algorithm used
in the Astronomical Almanac [66]. The shape factors have a form very similar to those for
atmospheric lift and drag, except that the vector v, is replaced by s, a unit vector in the
direction of the photon flux. The shape factors for the tether and the square prisms are given
by equation (2.43), where n is a unit vector that lies in the t-s plane and is perpendicular to
the tether (Fig. 2.6).

Solar radiation pressure causes yearly sinusoidal variations in eccentricity [33]. The
period and magnitude of these variations depend on several factors such as spacecraft area,
reflectivity, etc. Figure 2.11 compares the solar pressure force to air drag for a perfectly
absorptive 1m? flat plate facing an incoming flow of photons and air molecules. Although

39



Baker states that solar pressure becomes stronger than air drag at 800 km of altitude, the
graph below clearly shows that this parameter is strongly dependent on the level of solar
activity.

A,: =2r(s-n)dx
A =T r(s'm)ncx
n=or(sn)

A;,fg'-r(s-n)zndbc

. 4 2 (2.43)
A, =—ac(s'n)+a’|(st)|

® n

A;; =ac(s-m)n+a’(s-0)t
4° -8ac

20 4y 2(go1)2
‘n)‘n+a*(s-t)’t

C ]

00 S0 600 700 800 900 1000 1100 1200
Aitude (km)
Fig. 2.11: Solar Pressure and Air Drag Forces on a 1m?
Flat Plate
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253 Earth Asphericity Perturbation Forces

For short term orbital predictions, the gravitational field of the Earth is usually
modelled as that of a perfectly spherical and homogeneous body [38], i.e.,

4’,,,,,=% (2.44)

where @,,, denotes the gravitational potential of a body with respect to its spherical attractor.
As a matter of fact, @,,, is simply the negative of the gravitational potential energy of the
object. This model leads to Keplerian motion in which the object moves along a conic secticn
of fixed dimensions and orientation. As the Earth is not a perfect sphere with uniform mass
distribution, this model does not provide accurate results over more than a few hours. For
long term predictions, one must account for the exact shape and mass distribution of the
Earth. The gravitational potential of an object in orbit around an aspherical and non-
homogeneous attractor can be expanded in terms of Legendre functions [67]:

- k &
®,.A1-3 %[-Jfk(sintbhzl PLsin®)(CleosGh) +SisinGA ] (2.45)
= J=

where Ry is the equatorial radius of the Earth, ¢is the latitude, A, is the eastward longitude
from Greenwich, P,(x) is the Legendre polynomial of degree k and order zero, P/(x) is the
associated Legendre function of the first kind of degree k and order j, and J,, C, and S, are
constants that depend on the shape and mass distribution of the attractor. The value of
these coefficients for the Earth are available in the WGS 84 model [68]. The only coefficients
retained for calculations in this thesis are J, (1082,63X10%), J, (-2.53X10%), J, (-1.61X10%),
C2 (1.57X10%) and C," (2.19X10%); however, the formulation is general.

The perturbative acceleration due to the asphericity and non-homogeneity of the

Earth can be obtained by taking the gradient of [@,. - @) Moyer [67] presents this
perturbative acceleration in spherical coordinates:
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o= “Se""’z R@Z JPY(sind)[-C[sin(j} ) +S/cos(jA,)] (2.46)
k=2 R

£,y %[-Jfl(sindo) +_ PUSnG)Cloos(jh)+S{sinGA )]
= J=

L]

where the prime above P denotes differentiation with respect to the argument sing. The
components of this acceleration vector can be converted to orbital coordinates using

equation (2.2).

As J, is more than 400 times larger than all the other coefficients of the Legendre
harmonics, the J, term in f, is dominant over all of the other terms of equation (2.46).
Chobotov [33] states that if only the J, term is considered, all orbital parameters show
periodic oscillations. However, the mean motion n, the line of apses, and the line of the
nodes show the secular variations described by equation (2.47):

3J,Re 3. 5.
e 2 )
3JReft 5 . 5.
—_  [2-Z 2.47
T 2)]2[ 55 @] (2.47)
A= —3J2Réﬁcos(:)
2[a(1-e*]

£=1+
n

w=

254 Electromagnetic Forces on Conductive Tethered Systems

2541 Magnetic Field of the Earth

- The motion of a conductive wire across the magnetic field of the Earth induces an
EMF and a Lorentz force across the system [6]. The resulting voitage and force can provide
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electrical power and control the motion of the spacecraft. But to accurately predict the effect
of EP (Electromagnetic Propulsion) on a tethered spacecraft, one must first modei the
magnetic field of the Earth. As is the case for the gravitational field of the Earth, its magnetic
field can be represented by a potential function in terms of Legendre polynomials [69]. This
potential function is given by

e pkel
ERe

QMOE-RQ,:ZU P{(sind)(gicos(A,) +h{sin(jA,)] (2.48)

=0

where P/(x) is the normalized Legendre function of the first kind of degree k and order j,
while g/ and h/ are normalized coefficients that determine the exact shape of the magnetic
potential. As the magnetic field of the Earth varies continuously, the values of these
coefficients change by a few nT (nanoTesla) every year. The yearly values of the g’s and h's
are found in the IGRF model [70]. The magnetic field B of the Earth at any point is obtained
by taking the gradient of the magnetic potential @,

- Ré’z k
E Z (k+1)P, (smd))[gkcos(]). Y+h; sm(j).g)]

k=1 R’m;:o

Y jPi(sind)[-g/siniA, )+hicos(A )] (2.49)

k=1 Rk'zj

- k
B,=) —Z P\’(smd))[g,‘cos(/). )+hlsin(j2 )]

where the prime denotes differentiation with respect to the argument sing. The components
of the field vector can be written in terms of orbital coordinates using equation (2.2). The
computer implementation of the model truncates equation (2.49) at k=/=5, which gives 20
coefficients in all.

2.5.4.2 Induced EMF, Current, and Lorentz Forces in Insulated Wires

There exist two basic types of conductive tethers: insulated wires and bare wires.
This first subsection analyses the characteristics of insulated wire systems. These devices
can only exchange electrons with the ionosphere using the subsatellites, since the entire wire
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is covered with an insulator (Fig. 2.12). As a result, electron collection in insulated systems
is limited to fairly low currents due to Debye-sheath shielding [25,71]. On the other hand,
electron emission can be achieved using a hollow cathode or an electron gun. The electrical
circuit formed by the interaction between an insulated tether and the magnetic field of the
Earth is shown in Fig. 2.12.

R
/[7 VWA
Electron
Collector
\ R,
g 7
Insulated
Tether Y= gl':zitm
Rldad v I
Ele%ron
mitter
@-L

R.

Fig. 2.12: Electrical Circuit for an Insulated
Space Tethered System

In the above diagram, R, denotes the impedance of the load, which depends on the
application of the system. For example, a negative R, implies that a battery is used to drive
the current against the induced EMF Y. R, R,, R, denote the tether, emitter, and collector
resistances, respectively. As in other investigations [24,25,26,71], the present formulation
neglects the tether resistance R, and assumes perfect efficiency. The elecrical potential
induced in the system by the motion of the conductive tether [6] is given by

llol
1= f (V. <Bydl (2.50)
0

where V,,, designates the velocity of the spacecraft relative to the magnetic field, and dl is
an infinitesimal vector element pointing along the tether from m, to m, (Fig. 2.13). Using this
convention, Yis positive whenever m, has a higher electrical potential than m, and the
current I is positive whenever electrons flow from m, to m,.
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Fig. 2.13: Induced EMF in a Conductive Tether

The velocity of the spacecraft with respect to the magnetic field is given by
Vim=V,~0g*R (2.51)
where wgis the rotational rate of the Earth and V, is the spacecraft velocity.

The short-circuit current /.., which corresponds to R, =0, is given by the Parker-
Murphy law [72] which was recently updated following the TSS-1R mission [73]:

oK ".\/— [+ )m] (2.52)

where K,=5.1255x10"' Amp*m*°K>, and n, denotes the ionospheric electron density. This
parameter varies between 10" e/m?® (during the day) and 10" e/m?® (at night). T_is the
undisturbed ionospheric plasma temperature and Y, is given by

A*B%"

’1‘0=
8ttm P

(2.53)
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where A* designates the total surface area of the collecting body, 8 is the magnitude of the
surrounding magnetic field, e” represents the elementary clectron charge, and m, is the
electron mass. The current flow through the tether induces a Lorentz force on the system [6]
which is given by

llol

F e~ [I(dxB) (2.54)
0

For insulated wire tethers, the current / can be factored out of the above integral because
it remains uniform across the system.

2543 Induced EMF, Current, and Lorentz Forces in Insulated Wires

Bare wire systems rely on the tether itself for electron collection (Fig. 2.14). However,
a bare wire cannot effectively release electrons into the ionosphere [26,74]. For this reason,
such systems are always equipped with one subsatellite acting as an electron emitter and
another end mass which merely serves as a ballast to keep the tether taut. Unlike insulated
tethers, the characteristic radius of bare wire systems, i.e. the tether radius, is much smaller
than the Debye gyroradius. This virtuaily eliminates Debye shielding which severely limits the
electron collection capability of insulated systems. As a result, bare tethers can collect ions
in much larger numbers than insulated wire systems [25].

" For example, Figure 2.15 shows the voltage bias and the tether current along a bare
wire system designed for the generation of 3.1 kW through a load resistance of 200 Ohms
using a 20 km long tether with a 1 mm radius flying through a motional electric field £,=.2
V/m and an electron density n, of 9x10" e/m’. The volfage bias V* is defined as the
difference between the motional EMF generated at a distance / from m, and the voltage
drop/rise at the load/battery [25]. In other words,

V*()=E I-I, *R,,, (2.55)

The collection scenario is the following: the electrons are captured over a segment
of the tether (4.52 km in Fig. 2.15). Beyond this point, the current reaches its maximum value
I... (15.48 Amp in Fig. 2.15) and does not change thereafter because the voltage bias
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. becomes negative and the wire cannot release electrons.
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Fig. 2.14: Conceptual Representation of a Fig. 2.15: Example of the Current and Voltage
Bare Wire Tethered System Bias Variation Along a Bare Conductive Tether

In mathematical terms, electron collection in bare wires takes place according to the
following relations [25,71]. For the interval along the tether where the voltage bias is positive,
i.e. form /=/,-/. to =/, we have

%*{’JMV'(’) (2.56)

where V*(l) is given by (2.55) and K,=1.9x10"°C"%kg®°. Upon integration, the above
differential equation becomes

1(1)--—K2rp¢‘/_ [J 32 -() - max_load "'"‘R "’““ (2.57)

0

In (2.57) the electron collection length, /., is given by

1 =l _IleRload
¢ ‘tot T

o

(2.58)

For the interval along the tether for which the voltage bias is negative, that is, from /=0 to
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=11, the tether current is constant:

2
I(I)=[mnx='§ ere Eolcy2 : (2°59)

To verify the validity of (2.57), one can note that it yields zero current when /=], and
maximum current when /=/-/., which agrees with Figure 2.15. Once the current flowing
through each tether element is determined, the induced Lorentz force is calculated using
equation (2.54).

2544 Effect of Electromagnetic Propulsion on the Orbital Elements

The EP force is responsible for the progressive decay of the spacecraft orbit when
the system works as an electrical generator. The TSS-1 missions (Section 1.2.3) and the
tethered de-orbit concept (Section 1.3.2) are examples of such generator/deorbit operation.
On the other hand, using a battery to run current against the induced EMF produces a thrust
which raises the orbit of the satellite. However, this thrust force comes at the expense of the
energy expended by the battery. By properly modulating the current in the tether, the
electromagnetic force can be used to control the trajectory of tethered systems. Such
modulation can be achieved with a vanable R, and with a battery that reverses the direction
of the current when necessary.

Based on a first order approximation of the magnetic field of the Earth, Moore [75]

has determined that EP causes the following effect on the orbital elements of tethered
systems:
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However, equations (2.60) are not sufficient to determine the variation of the orbital
elements; one also needs to know the evolution of the tether current /(t).

Based on a simplified model of the Earth magnetic field [6], the following approximate
expressions were obtained for the induced EMF, current, and Lorentz force in orbital
coordinates for arbitrary position and pitch, and for zero roll:

F,f’”' é—l,f,,sm(Za)cosz(i)[Re/R]s.s
= (2.62)

tot

F = 2512 cos(ayeosi () Rg/RTF

tot

" — I,i,cos(a)sin(Zi)cos(u)[Re/Rls,s
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where K,=0.215 V/m, K,=6.235x10° N*Ohms/m?>.

Using the above expressions and the perturbation equations for the classical orbitai
elements [38,76], one can approximate the derivatives of the orbital elements for low
eccentricity orbits:

| -2K,J2 cos¥(a)cos*())Rg
a=

tot

JumR,p°
. 3K,el? cos’(e)cos’(i)Rg’
é=

tot
2/umiR,_Ja%(1-e?)8
. K,I,ﬁ,cos(a)sin(Zi)Ré”
i= —
4/umR ¢
) -K 12 sin(2a)cos} ()R’
4/umR, ¢

Q=0
B=n

(2.63)

Despite its being a mere approximation, equation (2.63) reveals a lot about the
behaviour of conductive tethered spacecraft. Inverting the above derivatives yields the
amount of time required for a prescribed change in each of the orbital elements:
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By corhparison, Forward, Hoyt, and Uphoff [8] used a different method which neglected the
influence of orbital eccentricity. They obtained the following variations in the semi-major axis
and inclination:

sa -212B*Rgcos(a)cos(i)
o mR ,a°
mR,,a° °

Ar=-( ] 2.65
1212 B*R 3cos¥(e)cos(i) % (2.65)
3i _loB Racos’(®)sin(2i)

o 4mR ,a°

Based on the above equations, Forward and Hoyt have calculated the deorbit rate
and time for several types of orbits [77,78,79].

2.5.5 Lunisolar Attraction

According to Newton'’s Universal Law of Gravitation, all objects in the universe attract
one another. Nevertheless, light and distant bodies do not significantly attract spacecraft in
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LEO. Only the Moon and the Sun can somewhat alter the geocentric trajectory of a
spacecraft. Mouiton [80] presents the acceleration of any object in LEO due to the attraction
of the Sun:

) R 11
fu-pn[-R3 *Ro-o(———)] (2.66)
-0 5~ -

In equation (2.66), & denotes the Sun, © designates the Earth, and s denotes the

spacecraft. A similar relation can also be used to calculate the net attraction of the Moon on
the spacecraft. The algorithm required to determine the exact position of the Moon and of
the Sun with respect to the Earth at any instant is found in the Astronomical Almanac [66].
Lunar attraction causes the tides on Earth, and a drift in the line of apses and in the line of
nodes:

dw, 3n¢[1-1.5sin’(i][2-2.5sin(i)+.5e ]

dt 4n\/mE

A, -3nl(1+1.5e Hcos(i)[3cos*(ig-1]

dt 8ny1-e?

(2.67)

where n,and i, denote the mean motion and the inclination of the Moon with respect to the
Earth equator, respectively [33]. Equation (2.67) also applies to solar perturbations. For
equatorial and circular orbits, the average rotation of the perigee and line of nodes can be
approximated by

dw _ 3ng

dr 2n (2.68)
&Q _~3ng

dt  4n

By comparing equations (2.68) and (2.47), one can deduce that the effect of lunisolar
attraction becomes larger than that of Earth oblateness at altitudes beyond 22000 km.
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2.6 ND I
ENVIRONMENT

The temperature of the tether influences the dynamics of the entire system to a
certain extent. For example, the SPECTRA-Acrylic tether used in the TiPS mission and in the
BOLAS proposal has a high and negative coefficient of thermal expansion. This causes the
tether to contract as it heats up. By conservation of angular momentum, the pitch and roll
rates are increased. The reverse effect occurs when the spacecraft flies through the shadow
of the Earth.

The following analysis assumes that the tether is thermally insulated from the end
bodies and that it has uniform temperature. Figure 2.16 shows the heat exchanges between
the tether and its surroundings. The cable receives thermal energy from Earth infrared
radiation dQ 44dft, from direct solar radiation dQ /dt, from Earth albedo radiation dQ,/dt, from
air drag dQ,/dt, and from ohmic dissipation dQ./dt. On the other hand, the tether radiates
energy away in the infrared spectrum dQ/dt.

A simple heat balance on the tether gives the state equation for tether temperature

T:
2020 +0 0.0
£= [Q@ Qa QA 2D Qo QE] (2.59)
dt mx
The Earth infrared radiation absorbed by the tether [6] is given by
Q@=(2nrl wF °O Tge, (2.70)

where F° is the view factor of the tether for the Earth. This parameter varies with the altitude
and with the orientation of the system. o denotes Stephan-Boltzmann's constant, and Te s
the black body temperature of the Earth (248 °K). The dependence of dQ./dt on the tether
emissivity ¢, is justified by Kirchoff's law [81].
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Fig. 2.16: Heat Exchanges between
the System and Its Environment

The heating rate due to direct solar radiation is [6]

0,20 A, y®, (2.71)

where Wis the shining factor and A’ is first shape factor of the tether. &, is the solar flux:

4nR?2,

®,=Sc= (2.72)

The solar flux in LEO averages 1353 W/m?. its minute variations (=40 W/m?) result from the
change in the distance between the spacecraft and the Sun. The present formulation
accounts for these variations. While much of the solar radiation incident on the system
comes directly from the Sun, a significant amount bounces off the clouds and the surface of
the Earth before hitting the spacecraft [6]. This phenomenon is called Earth albedo radiation
and its intensity is given by

QA =(21tr1m)F otd)uoacos(g) (2.73)

where ¢ represents the Sun-zenith angle; that is, the reflection angle of Sun rays on the Earth
or atmosphere. rdenotes the Earth albedo: the reflectivity of the Earth. rranges between
0.1 and 0.7, but its average value is 0.37.
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The atmospheric heating input is simply the power exerted by aerodynamic forces on
the tether [6]

Op=F Vg (2.74)
If an electrical current is run through the tether, the resulting ohmic dissipation will
transfer heat to the system at the rate

),=RJ? (2.75)

where R, is the tether resistance and / is the tether current. Finally, the tether radiates energy
away according to Stephan-Boltzmann law [6]

Oy=(2nrl_)eoT* (2.76)

Although the determination of the exact thermal profile requires the integration of

equation (2.69), the minimum tether temperature can be approximated by equating the heat
intake due to Earth radiation with the energy radiated by the tether:

o 1/4 .
T o= ToFom (2.77)

On the other hand the tether temperature is maximized when the solar, the albedo, and the
Earth IR heating are all maximized. Therefore, the maximum tether temperature is
approximately

@0 [TFcos(c)+1/x]
€0

(2.78)

T =*|F° Ta+
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2.7 N _SYSTEM
LIBRATIONS

2.71 Effect of Atmospheric Forces on System Librations

Atmospheric forces influence the librations of tethered systems in two major ways.
Firstly, they can shift the equilibrium angle of the system when the aerodynamic centre of the
system does not coincide with the centre of mass, or when the atmospheric density gradient
along the tether becomes large. Secondly, atmospheric forces can dampen or excite the
librations of a tethered system.

27.11 Equilibrium Angle Shift due to Aerodynamic Forces

The equilibrium angle shift caused by aerodynamic forces has been investigated on
several occasions [43,82], but all solutions found so far are implicit and iterative. The main
objective of this subsection is to derive an explicit approximate solution to the problem of
equilibrium shift in tethered systems due to atmospheric forces. Three end mass shapes are
considered: the sphere, the cylinder, and square prism (Section 2.5.1.2).

As mentioned earlier, the position of the aerodynamic centre along the tether is one
of the major factors influencing the equilibrium shift. Using a notation similar to that of
Section 2.5.1.2, the aerodynamic centre of a tethered system is given by

+(c,+¢,)/2]

rot tot

6_=Ap?[1 +c,)/2+4,1

(2.79)
D_,D_,D
A, A, +4,

where J* denotes the distance between the centre of m, and the aerodynamic centre of the
system. When the aerodynamic centre falls below the mass centre (J*<J), the equilibrium
shift is positive, and vice-versa.

The atmospheric torque on the system can be calculated by substituting equation
(2.30) which gives the atmospheric force into equation (2.29a). To simplify the treatment of
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this problem, the flow reflection is assumed to be perfectly diffuse (0,=0,=1), roll oscillations
are disregarded, the tether is presumed to be cylindrical (2.33), and V<<V,

Qo =PuF *Vicosal[d, 8-4, (1

fot

-8)-r/,cose(l,,~26)] (2.80)

The above equation assumes that /, and J are much larger than the end masses
dimensions, and that the air density and speed remain uniform along the system. On the
other hand, the F*term accounts for the influence of Earth rotation [51]:

_ W,,,c0s(i)

F=[1 I (2.81)

orb

" The equilibrium angle shift due to atmospheric forces can be determined by
substituting (2.80) into the pitch equation of motion (2.12), and setting all time derivatives to

Zero.

3usin2e_Park "ucosa[d, 8 -4, (1, ~8) -1}, cos(l,, ~28)]

3 2
2a mal,,

(2.82)

The term on the left-hand side of equation (2.82) represents the GG (Gravity Gradient)
torque. Furthermore, (2.82) neglects the influerice of orbital eccentricity and Earth
oblateness.

The “perturbed” equilibrium angle for square prismatic end masses a,,, for spherical
subsatellites a;,, and for cylindrical end masses a,, can be determined by combining
equations (2.34), (2.35), and (2.82) and solving for a. After a few algebraic manipulations,
the “perturbed” equilibrium angles reduce to
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o = X
=atan| ]

* K, +sign(d" -d)K,
K

9
K, +sign(d-8)K,,
-K,,-sign(8"-8) /K -4K, IK,,]

o =atan (2.83)

o, =asin{

sph

where the K's are given by
_ 4[dac, —(lm-é)azcz]

6 T er( tot 26)

:or

3m1

WA e
K 6al =( mr—a)azz
K =26r .1 ( -8)r r o, cylz r/m(lm-25)

oyly r.yl

Kyo=nl8r2, (80, (2.84)
omzl;

- m Lot +r2[ ‘(1 25)2

Pk 2t

6m‘1m1t[5 s (1 o) Ph]

Pak @
Ky =n[8ry, ~(I-8)r p,,l]— 212 (1-26)

11

K12

2.7.1.2 Librational Excitations due to Aerodynamic Forces

Atmospheric forces not oniy shift the equilibrium angle, they can also cause unstable
motion in very long tethered systems. As pointed out by Onada and Watanabe [45), and No

and Cochran {47], there exists a critical length /* given by

"= | (2.85)



beyond which aerodynamic forces cause unstable pitch motion.

Furthermore, the oblateness of the Earth can also cause unstable roll motion. A
spacecraft flying along an inclined orbit encounters a 2a,, variation in atmospheric density
due to the ellipsoidal shape of the Earth. As a resuit, the aerodynamic forces on the system
also follow a 2w, variation which is resonant with roll librations [42].

2.7.2 Effect of Earth Oblateness Forces on System Librations

Analysing the influence of Earth oblateness forces on the librational motion of
tethered systems can be greatly simplified by considering the J, term only. With this in mind,
the oblateness perturbation force [38] reduces to

_ -3muJ,Rg[1-3sin’(i)sin’(x)]

!/
F, R
-3muJ, Rasin(i)sin(2u
F;= w/,Rasin”(i)sin(2u) (2.86)
2R4
ol -3muJ,Re[sin(2i)sin(u)]
2 2R 4
Substituting (2.86) into (2.29) gives tha J, induced torques:
k2 [(1-35% s%u )sacy -s2%i s(2u )eacy)]
0, I REY: (L oot 5B
" 2, (2.87)
€2 [(1-3s% s%u)casy +s%i s(2u )sasy -5(2i )su cY)]

QM=3“J’R5§ e 2R*

J
where sx and cx denote the sine and cosine of x, respectively. By inspection, the J, induced
torques arise from variations in the gravitational field along the system. In fact, if gradient
effects were neglected, the entire fraction in (2.87) could be factored out of the summation.
Furthermore, the sum of myx; would vanish, since it is none other than the first moment of
area about the centre of mass, which is zero by definition. In that case, both torques would
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clearly vanish.

The gradient nature of the J, torque does not come as a surprise, since the GG
(Gravity Gradient) torque is also gradient based. But as the influence of J, on the
gravitational field of the Earth is much smaller than that of u, one should expect any
librational instability that could be generated by J, torques to be quickly overtaken by the
much stronger GG torques.

Closer examination of equation (2.87) reveals the general behaviour of J, induced
oscillations in tethered systems librating near the local vertical (a, y—0)

£ (1-3s%s'u)a-s%is(2u)

. 2
Qm_,2~3l’L12R@j=El mej 2R4

j
. . . (2.88)
Q.,h=3IJJ 2§ mﬁjY(l -3s%is%u)-s(2i )su,

" 4
J=! ZRj

For non-equatorial and non-polar orbits, the pitch oscillations described by (2.88) would be
a superposition or beat [83] of two waves of frequency 2w,,, (coming from the asin’(u) and
sin(2u) terms) and v3w,, (coming from the o term) respectively. These two waves add up
to a single wave with a time varying amplitude, with an oscillation frequency of (2+v3)w,,/2,
and a beat frequency of (2-v3)w,,. For roll oscillations, the beat frequency would be (2-
1)W,e=W.s, Since the ysin?(u) and yterms both have a 2w,,, frequency, and the sin(u) term
has a frequency of w,,. '

For poiar orbits, (2.88) becomes

k2 (1-35%u)e-s(2u)
o~ 2 J J
Q%.. 3 quR@FZl mx, R

J
&2 (1-35%)

_ 2
O, =3WRev Y, mt— =

J

(2.89)

in which case pitch conserves its (2-v3)w,,, beat, but roll “loses its beat® and becomes a

“pure” sine wave with a frequency of 2@,
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For equatorial orbits, (2.88) reduces to

k+
0., =3iRdeY. 21
o , (2.90)

k2 mx
0, =Ry, ~LL
2 J=1 2Rj

The J, torques on librating systems flying along equatorial orbits have a destabilizing
influence, since they grow linearly with the libration angle. But as mentioned earlier, these
moments are counterbalanced by the GG torque which tends to align the system along the
local vertical. Since the J, moment can be regarded as a small perturbation which constantly
opposes the GG torque, the resulting motion is a distorted sine wave with a frequency
slightly lower than V3w, for pitch and slightly lower than 2w, for roil.

2.7.3 Effect of Electromagnetic Forces on System Librations

Electromagnetic forces can not only modify the orbital elements of a spacecraft, they
can also alter its librational motion. Colombo et al. [84] have pointed out that a current
modulation of v3w,, can be used to control pitch librations. However, modulations of one or
two times the orbital frequency can dangerously excite roll librations. This topic is discussed
in more detail in Chapter 5.
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CHAPTER 3

DETERMINATION OF TETHER
MATERIAL PROPERTIES

3.1 C c |

This chapter aims at verifying experimentally the commonly accepted value for the
longitudinal stiffness and damping ratio of a SPECTRA-1000 tether braided with acrylic. An
approximate value for the torsional stiffness and damping ratio is also desired. The tether
specimen considered is identical to that used in the TiPS mission and was graciously
provided by Joe Carroll of Tether Applications.

To determine some of the physical properties of this tether, two sets of experiments

were carried out at the IRIS laboratory of the University of British Columbia and at the
Chapman Space Centre of the Canadian Space Agency.
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3.2 TIFF ND PIN
PERT!

3.2.1 Preliminary Considerations

The longitudinal stiffness £A and damping ratio {of the tether not only influence the
vibrations of the tether, they also determine to a great extent the decay rate of the librations.
This phenomenon is caused by the coupling between pitch, roll and longitudinai strain
noticeable from equations (2.12), {2.13), and (2.15). To determine the value of EA and { a
simpie tether and mass system was constructed (Fig. 3.1).

{ _

Fig. 3.1: Schematic Representation of the
Experimental Setup

SPECTRA is known for its highly non-linear stress-strain relationship [85].
Furthermore, its stiffness and damping properties depend on the tether “loading history”; that
is, on the number of loading cycles and the magnitude of each cycle. Neglecting the
influence of the tether mass, the equation of motion for the system shown in Figure 3.1 is
given by:

. Cc., k
X+—Xx+—x=g¢ 3.1)
m m
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where k = EA/ and ¢ = 2{ mw,. As a result, the above expression can be written as

x+2( mn.i'+m,2,t=g 3.2)

3.21.1 Static Tests

At static equilibrium, the two time derivatives in equation (3.2) vanish. Therefore, a
simple measurement of the deformation caused by a given mass fixes the tether stifiness
for a given load:

FAd= mgl

xeq

(3.3)

3.2.1.2 Cynamic Tests

The system vibrations hold the key to the determination of the tether stiffness and
damping ratio [86]. The frequency of the dampened oscillations w,, the period between two
consecutive maxima z, and the ratio of the amplitude of two consecutive maxima & are given
by:

w0 y1-¢2
T, =21/, (3.4)
B=e 27W1-C

From the above equations, r; and & suffice to solve for the damping ratio and the stiffness:

In6

y[In6]? +4m?

Ed= 4n’mil (3.9)
tj(l -(%)

(=

To summarize, the tether stiffness can be obtained using both static and dynamic
tests (equations (3.3) and (3.5)), while the damping ratio can only be deduced from dynamic
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tests (equations (3.5)).

3.2.2 Laboratory Setup

The laboratory setup for static and dynamic tests is described in length by Modi and
Pradhan [87] who used the same facilities to perform similar tests on the OEDIPUS-C tether.

3.2.2.1 Static Tests

The laboratory setup for static tests consists of the elements shown on Figure 3.1
(tether and end mass) and of a Vemier caliper used to measure the static deformation of the
cable.

3.2.2.1 Dynamic Tests

The oscillations of the mass (m = 0.2 kg) are monitored using an accelerometer (m
= 0.031 kg) attached to the end body. A thin wire links the accelerometer to a charge
amplifier. The amplifier boosts the weak electrical signal emitted by the transducer and relays
it to an oscilloscope. The operator reads the necessary information (7, and 6) graphically
from the oscilloscope.

3.23 Results and Analysis

3.2.3.1 Static Tests

Tables 3.1 and 3.2, and Figure 3.2 present the data related to three distinct static
deformation tests. The first test was carried out on a “fresh” tether (with no previous loading).
The second test was carried out on the same specimen, but after it had been subjected to
test #1 and to a 2 N load for 100 minutes. Finally, the third test was performed following the
first two tests and a 2 N pre-stress of 2 months.
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End mass (g) | Elongation for test | EA for test #1 Elongation for EA for test #2

#1 (cm) (N) test #2 (cm) (N)

0 - 0 -
5 0.45 443 0.3 66.5
10 0.7 57 0.5 79.8
20 1.4 57 1.1 725
30 1.55 77.2 1.25 95.7
40 1.75 91.1 1.45 110
50 1.95 102.3 1.6 124.6
60 21 113.9 1.8 132.9
70 24 116.3 1.9 146.9
100 2.7 147.7 23 173.4
150 3.15 189.9 26 230.1
200 3.6 221.5 2.7 295.4
300 3.8 314.8 3 398.8
400 4.2 379.8 3.15 506.4
500 4.3 | 463.7 3.3 604.2

End mass (g) Elongation for test #3 (cm) EA for test #3 (N)
0 0 -
5 0.12 166

" 10 0.27 148

I 20 0.51 156
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Fig. 3.2: Strain-Stiffness Curve for the Static Deformation Tests

As can be seen from Tables 3.1 and 3.2, and Figure 3.2, the tether stiffness varies
with the load and the loading history. By comparison, Figure 3.3 displays the results obtained
by the NRL TiPS team [55]. As mentioned in Section 1.8, the dependence of the tether
stiffness on the loading history is mainly attributable to tether packing [53]. Indeed, the
strength properties of tethers depend to a great extent on the history of the relative motion
between the fibres and the layers of the cable. As the tether is stressed and cycled, the
friction between the fibres and the layers effectively “packs” the tether. This increases
stiffness. The above values of EA generally agree with the quoted value of 150 N to 10000
N. The lower stiffness values recorded for low loads are due to the absence of tether packing
in “fresh” tethers subjected to low stresses.

Over the long run, SPECTRA, which is used for TiPS and BOLAS, becomes well
packed. Furthermore, the tether in these two missions is subjected to very low strains (below
0.003) [88]. The corresponding stiffness in Table 2.3 reaches 150 N. However, the low
temperatures prevailing in LEO probably contribute to an increase in EA. For this reason, the
value of EA adopted for all TIPS and BOLAS simulations in Chapters 4 and 6 is 200 N. This
value is consistent with that used in other investigations [52].
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Fig. 3.3: Tension-Stiffness Graph of the TiPS Tether [55]

3.2.3.2 Dynamic Tests

The specimen underwent dynamics tests following a two-month prestressing of 2 N.
Several tests were carried out to determine the period of the oscillations 7; and the ratio of
two consecutive maxima 8. The data pertaining to these tests are displayed in Table 3.3.

The resuits yield an average stiffness of 2700 N (g = 620 N) which is consistent with
that of a “well packed” tether subjected to heavy loading. The mean damping ratio is 0.13 (o
= 0.02 ) which agrees with the value of 0.1 quoted by Schuitz and Vigneron [52].

The effect of the uncertainty of the stiffness and damping ratio on the long-term
dynamics of space tethered systems is difficult to predict. Glaese found that larger damping
ratios decay tether vibrations more quickly, but to a lesser extent than smalier damping ratios
[88].
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|E 26 0.1625 0.1503 1436
2 1.85 0.1125 0.0971 2957 4'
3 1.8 0.125 0.0931 2393 |
4 2.5 0.125 0.1443 2423 "
5 2.4 0.119 0.138 2669
6 2 0.125 0.1097 2401
7 2,63 0.125 0.1518 2429
8 2 0.125 0.1097 2401 1{
9 25 0.1125 0.1443 2991
10 2.27 0.13 0.1296 2231
11 2.56 0.125 0.1477 2425
12 3 0.15 0.1722 1698
13 2.4 0.125 0.138 2419
14 2.25 0.1 0.128 3769
15 222 0.1125 0.1261 2976
16 267 0.1125 0.1542 3000
17 2.43 0.1 0.1398 3781
18 2.1 0.1125 0.1173 2970
19 2 0.1 0.1097 3752
20 2.5 0.1125 0.1443 2991
3.3 JETHER TORSIONAL STIFEFNESS AND DAMPING
PROPERTIES
3.3.1 Preliminary Considerations
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The equation of torque-free torsional motion is derived from the concepts elaborated
by Wilson [89]

e =0 3.6
s @6

where J = mr’/2 denotes the mass moment of inertia of the load; D represents the torsional
damping coefficient [kg*m?/s), / = m #/2 is the polar moment of inertia of the tether [90]; G
denotes the shear modulus of the tether [Pa], fis the twist (angular deflection), and / is the
tether length [m]. To determine the value of G and D, one must measure the ratio of the
amplitude between an extremum and the following extremum' 6, and the amount of time
elapsed between them 7/2.

Comparing equation (3.6) and (3.2) yields the following dynamical equivalence:

‘ IG
N T
3.7)

(-2
2/JIG

Therefore, the period of the dampened torsional oscillations is given by

Jl

=27 | —————
IG(1-¢%)

t

(3.8)

Once the amplitude ratio &is determined from experiments, the damping coefficient [86] can
be calculated using

In6

C:—
o (3.9)

! For example, a maximum and the following minimum.
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l ’

The parameters G and D can then be determined from

3.3.2 Laboratory Setup

- 4n2Jl
(1-3%
_ 4nlJ

Ty 1-0?

(3.10)

To calculate the torsional stiffness and damping ratio, a high resolution video camera

was used to record the torsional motion of the system. The “movie” of the motion was then

analysed to determine D and G. The parameters of the system are shown in Table 3.4.

End body shape Cylindrical
End body mass (kg) 0.2

End body radius (cm) 3.5

End body length (cm) 4.4

Tether radius (mm) 1.125
Tether length (m) 4.065

hetmer (M?) 2.516x10"2
J (kg*'m?) 1.225x10™*

3.3.3 Results

_ A series of six tests were carried out to determine the values of D and G. The data

related to these experiments are summarized in Table 3.5.
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"Test # | Ratio between { Time Between | D [ukg*m?s) G [MPa]
max. and min. Extrema (sec)
1 3.33 0.358 26.6 11.1 3.17
2 3.75 0.388 21.9 14.8 4.79
3 3.33 0.358 24 12.3 3.89
4 2.31 0.258 19 10.8 5.8
5 3.2 0.347 31 9.2 2.31
L& 2.74 0.306 24.5 10.1 3.59

torsional properties of the specimen.

Table 3.6 presents the average value and standard deviation of the three important

3.3.4

Torsional Period of Orbital Tethered Systems

Torsional property Average value Standard deviation
Sheae Migles G (MPa) 3.92 1.2
Torsional damping coefficient D (pkg*m?s) 11.4 2

\LTorsional damping factor § 0.336 0.047

This sections applies the results obtained in the preceding section to orbital systems.
Figure 3.4 illustrates the motion of the end masses about the tether (yaw) axis.

Accounting for the presence of tether damping, the period of the twist motion is

1:"—‘21\:

J

!

IGU, +L,)(1-0)
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Assuming that the torsional stiffness G and dampening ratio {do not vary with the
tether length, Table 3.7 shows the period of torsional oscillation of two tethered systems
equipped with the same type of tether as the one tested in this chapter.

Yaw Axis

Name I{m) Jy (kg*m?) J; (kg*m?) 7, (hrs)
TiPS 4023 1.387 0.349 19.8
BOLAS 100 1.694 __11.661 5.41

To determine the amount of vibrational energy lost over time, one must consider the
period and amplitude of oscillation, as well as the damping ratio. As shown in Table 3.7, the
period of torsional oscillations for tethered systems is extremely long (hours to days).
Furthermore, torsional strains in tethered systems are usually low [91]. As a result, tethered
systems lose little energy through torsional damping, even though the damping ratio is
relatively large (0.336 for SPECTRA). Hence, the assumption that yaw oscillations have
negligible influence on the system is justified.
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CHAPTER 4

THE DYNAMICS OF LIBRATING
SPACE TETHERED SYSTEMS

4.1 EFFECT OF AERODYNAMIC FORCES ON LIBRATING
SYSTEMS
411 Equilibrium Angle Shift due to Atmospheric Forces

As mentioned in Section (2.7.1.1), aerodynamic forces cause a shift in the equilibrium
angle of librating tethered systems. This perturbation resuits from the torque imparted on the
spacecraft by air drag and becomes non-negligible at low altitudes.

The example of a tethered spacecraft flying along a circular and equatorial orbit is
used to test the validity of the approximate solution given by equation (2.83) which
approximates this angular shift. Three end mass shapes are considered: the square
parallelepiped, the cylinder, and the sphere. The parameters of the end bodies and tether
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are displayed in Tables 4.1 and 4.2, respectively.

Parameter Value
Mass (m,, m,) 100 kg, 5 kg
Square prism width (a,, a,) 1m,03m

Square parallelepiped and cylinder length (c,, ¢, /,,1,) 1m,03m

Sphere and cylinder radius (r;;, r,, £y, 1, 1m,0.3m

Parameter Value
Mass (m,) 1.36 kg
Radius (n) 1.125 mm
Length () 1000 m

The state equations for the ten variables of interest (a,e,/, 602 w, a,y,€,T) and for three
of their derivatives (da/dt, dy/dt, de/df) form a system of thirteen first order differential
equations to be integrated using MATLAB's implementation [92] of Gear's method [93].
Unlike fixed step size methods like Euler's method and Runge-Kutta’'s method, Gear's
methdd is a variable order and variable step size predictor-corrector algorithm particularly
well suited for “stiff” systems, which contain time constants of different orders of magnitude.
Hence, this algorithm provides much more accurate results than fixed step size methods
and faster computational speeds than other predictor-comrector schemes such as the Adams-
Moulton method [48].

For the example spacecraft presented above, Tables 4.3 through 4.8 show the
equilibrium shift due to atmospheric forces as calculated using equation (2.83) and using the
simulation software. Note that although (2.83) assumes that V,<<V,, the simulation does not
use this simplification. Therefore, (2.83) gives a simple estimate of the equilibrium shift
caused by atmospheric forces, but the simulation software provides more accurate results.
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Altitude \ T_ 500 K 1000 K 1500 K
250 km -1.4° -10.1° -19.0°
300 km -0.23° -3.3° -8.1°
400 km -0.0094° -0.49° -1.9°
500 km 0.0014° -0.091° -0.56°

Altitude \ T, 500 K 1000 K 1500 K
250 km -1.5° -10.5° -19.5°
300 km -0.24° -3.4° -8.4°
400 km -0.0098° -0.51° -2.0°
500 km -0.0014° -0.095° -0.58°

Altitude \ T_

500 K 1000 K 1500 K
250 km -1.5° -10.5° -19.8°
300 km -0.24° -3.5° -8.6°
400 km -0.010° -0.51° -2.0°
500 km -0.0015° -0.096° -0.59°
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Altitude \ T, 500 K - 1000 K 1500 K
250 km -1.5° -11.0° -20.2°
300 km -0.25° -3.6° -8.9°
400 km -0.010° -0.53° -2.1°
500 km -0.0015° -0.10° -0.62°




Altitude \ T. 500 K 1000 K 1500 K
[ 250 km 140 -10.5° -19.8°
| 300 km 0.23° 3.4° 8.4°
[ 400 km -0.0086° 0.50° -2.0°
11500 km -0.0014° 0.003° 0.57°

Altitude \ T_ 500 K 1000 K 1500 K

250 km -1.5° -10.9° -20.4°

300 km -0.24° -3.5° -8.7°

400 km -0.010° -0.52° -2.0°

500 km -0.0016° -0.097° -0.60° _|

As shown in the above tables, the equilibrium shift due to atmospheric forces varies
strongly with altitude and solar activity. Indeed, lower altitudes and higher solar activities
cause higher atmospheric densities which induce larger shifts. The “perturbed” equilibrium
angle corresponds to the attitude for which the gravity gradient torque counter-balances the
drag induced torque.

Upon examination of the above data, (2.83) is shown to provide a very reasonable
approximation of the equilibrium orientation, but slightly underestimates it in all cases. This
discrepancy arises because equation (2.83) neglects the second term of (2.30). Indeed, the
Ap" of the tether and end bodies all have a component either in the n or in the v, direction
(equations (2.34), (2.35); Fig. 2.6). Furthermore, the aerodynamic centre does not coincide
with the mass centre. As a result, the second term in (2.30) tends to further increase the
angular perturbation induced by atmospheric forces. Therefore, the angular shift predicted
by (2.83) is always smaller than the “actual” value obtained using the simulation software.

Moreover, one should keep in mind that the accuracy of (2.83) is considerably lower
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for long tethers. For example, a spacecraft with spherical end masses identical to those
described in Tables 4.1 and 4.2, but with a 20 km long tether flying 250 km above the ground
in a 1500 K atmosphere would librate about an equilibrium angle of -5.45°, whereas equation
(2.83) predicts an equilibrium angle of -6.66°. This 22% error is due to the large atmospheric
density gradients along the system which are not accounted for in (2.83). As the density is
lower along the upper part of the spacecraft, the analytical solution always overestimates the
torque on the upper portion of long tethered systems. Hence, (2.83) underestimates the
angular shift caused by atmospheric forces when a,, is positive and overevaluates a,, when
the shift is negative.

But that is not all, for as shown in Table 4.9, the mass distribution of the system also
influences the angular shift. The results listed below apply to a series of spacecraft with
spherical end masses identical to those presented in Tables 4.1 and 4.2, except for the mass
of the second end body which varies. The spacecraft is assumed to fly some 250 km above
the ground and the prevailing solar activity yields an exopheric temperature of 1500 K.

As the mass of the second end body approaches that of the primary (100 kg), the
centre of mass of the system moves higher up along the tether. If the centre of mass is
below the aerodynamic centre, then the equilibrium angle will be negative. The converse also
holds.. The further the mass centre is from the aerodynamic centre, the larger the equilibrium
shift is. The reason why the equilibrium angle does not converge to zero as m,—* m, is that
atmospheric density gradients along the tether induce a larger torque on the lower portion
of the cable.

Equilibrium Angle
5 -20.5°
25 -1.17°
32 0.01°
50 1.54°
100 2.93°
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On the other hand, the projected area of the subsatellites does not play a major role
in the equilibrium shift because most of the spacecraft surface area is provided by the tether.
Although the example presented in Tables 4.1 and 4.2 has a relatively short tether (1 km),
the area of the cable “exposed” to the air flow accounts for more than two thirds of the total
spacecraft area. For this reason, changing the projected area of the end masses would not
significantly alter the equilibrium orientation.

41.2 Instabilities induced by Aerodynamic Forces

As mentioned in Section 2.7.1.2, atmospheric forces may in some cases cause
unstable librational and/or longitudinal motion. This subsection gives an example of such
unstable behaviour. Table 4.10 shows the initial parameters of the simulation which assumes
an exospheric temperature of 1500 K, and accounts for orbital, librational and longitudinal
motion.

Semi-major axis 6963 km
| Orbital eccentricity 0.05
Orbital inclination 90°
True anomaly 0°
Argument of perigee 0°
Right ascension of the ascending node 0°
Pitch 40°
Pitch rate 0%s
Roli 0°
l| Roll rate O/s
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Strain

Strain Rate Ols I

The resulting librations and longitudinal oscillations are displayed in Figures 4.1 and
4.2, respectively.
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As demonstrated by Figures 4.1 and 4.2, the spacecraft motion is clearly unstable:
pitch grows in an unbounded fashion; roll oscillations are excited to a 4° amplitude; and the
tether loses tension before the spacecraft completes its first half orbit. This unstable motion
is caused by a combination of two factors. First and foremost, the aerodynamic centre and
the centre of mass of the system are located very far apart. This induces a large net
aerodynamic torque on the system. Secondly, the spacecraft encounters large and periodic
atmospheric density variations along its eccentric orbit which excite both librational and
longitudinal oscillations.

! For the prescribed initial orbital and librational parameters, this represents the

equilibrium strain (equation (2.15)).
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4.2 EFFECT OF EARTH OBLATENESS ON LIBRATING SPACE
JETHERED SYSTEMS

This section focuses on the influence of Earth oblateness on the attitude of tethered
satellites. The parameters of the spacecraft used to demonstrate the concepts laid out in
Section (2.7.2) are presented in Tables 4.1 and 4.2. Unlike what was the case for
aerodynamic forces, the shape of the end masses bears no importance on the behaviour of
the system. For non-aquatcrial and non-polar orbits, Earth oblateness torques are given by
(2.88) and induce the following librational motion (Figures 4.3 and 4.4):
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Fig. 4.3: Pitch Librations of a Spacecraft Fig. 4.4: Roll Librations of a Spacecraft
Subjected to Earth Oblateness Torques Subjected to Earth Oblateness Torques
(a=6578km, =0, /=45°) (a=6578km, e=0, =45°)

The above plots clearly show that pitch follows a beat of frequency (2-v3)w,, =
0.25w,, with an oscillation frequency of (2+v3)w,,/2=1.87 w,,. On the other hand, roil follows
an oscillation of frequency w,,.

As explained in Section (2.7.2), the same spacecraft flying along a polar orbit should
conserve its beat in pitch (Fig. 4.5) and should lose its beat in roll (Fig. 4.6). While Figure 4.5
does follow the expected behaviour, the simulated roll oscillations seem to contradict the
theoretical predictions made in Chapter 2. This can be explained by the influence of higher
order harmonics of the Earth gravitational field which are not accounted for in equation
(2.89), but are included ii: the simulation software and may have a significant effect in polar
orbits. Nevertheless, the roll oscillations due to these harmonics are less than a tenth of the
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size of that encountered along mid-latitude trajectories (for /=45°).

As shown in Figures 4.7 and 4.8, the pitch and roli motion of equatorial tethered
systems subjected to Earth oblateness show no beat, but slightly distorted sinusoidal waves
of frequency v3w,, and 2w, for pitch and roll, respectively. This behaviour agrees with

equation (2.90).
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A series of parameter analyses was performed to determine the effect of several
factors on the oblateness induced oscillations of tethered systems. For example, comparison
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of Figures 4.5, 4.9 and 4.10 demonstrate the effect of altitude on pitch.

It is clear that the orbital altitude (semi-major axis) only affects the amplitude, but not
the shape of pitch librations. A more in depth analysis reveals that the amplitudes of pitch
and roll librations vary with the inverse of the square of the altitude.
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Fig. 4.9: Pitch Librations of a Spacecraft Fig. 4.10: Pitch Librations of a Spacecraft
Subjected to Earth Oblateness Torques Subjected to Earth Oblateness Torques
(a=8000km, e=0, =0°) (a=10000km, e=0, /=90°)

Similar investigations were camried out to determine the influence of system mass and
geometry and of orbital inclination on oblateness induced oscillations. Although the results
of these analyses are not shown here for brevity, the librations were found to be independent
of system geometry and mass over a wide range of values of m,, m,, and /. Furthermore, the
oblateness induced librations peak at inclinations of 90° for pitch and 45° for roll.

Based on the above results, the following interpolation formulae provide an upper
bound on the maximum amplitude of oblateness induced oscillations for tethered systems

flying along circular orbits:
6578km 5
(14 0.62°(————
max_,ts ( a )

., 6578km (4.1)
YV SO 15—

with equality occurring when /~=90° for pitch and when i=45° for roll.
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4.3 ANALYSIS OF THE TiPS MISSION

4.3.1 TiPS Spacecraft Parameters

As mentioned in Section 1.2.6, TiPS was launched 3 years ago. The primary
objectives of this tethered spacecraft consist of investigating the survivability of tethers and
the long-term decay of librations. Tables 4.11 and 4.12 display the parameters of the TiPS

subsatellites and tether, respectively.

Parameter Value Source
Mass (m,, m,) 37.7 kg, 10.5 kg [94]
Width (a,, a,) 0.67m, 0.55m [10]
Height (c,,c,) 0.32m, 0.23m [10]

Solar absorptivity (a) 0.2 Estimated
Normal accommodation coeff. (a,,, G,,) 0.85 [35]
Tangential accommodation coeff. (g,,, ;) 0.85 [35]
Phrameter Value Source

Mass (m,) 5.6 kg Deduced from other data
Radius (r) 1.125 mm [10]

Length (I) 4023 m [10]

Emissivity (e) 0.625 [91]

Infrared absorptivity (ag) 0.1 [91]

Solar absorptivity (a,,) 0.1 [(91]

Normal accommodation coeff. (0,,) 0.94 [91]

Tangential accommodation coeff. (g,) | 0.94 [91]

Heat capacity (k) 1400J/(kg*K) [91]
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Coeff. of thermal expansion (&) -0.000028/K [91]

Undisturbed temperature (T,,) 180K Average tether temperature
| Damping ratio () 0.1 [62]
43.2 TiPS Predeployment Phase
4321 External Forces

" For the range of altitudes covered by TiPS, the Earth oblateness force (0.1N)
dominates over the solar pressure force (10°N), lunisolar attraction (10°N), as well as
atmospheric lift and drag (107'N). As the TiPS tether is not conductive, there are no
electromagnetic forces acting on the system. The simulations to follow account for the effect
of Earth oblateness, aerodynamic forces, solar pressure and lunisolar attraction. For all
simulations to be performed in this section, the tolerance of the Gear integrator is set to
2X10°.

43.2.2 Orbital Motion Prior to Deployment

Following its May ‘96 launch, the TiPS spacecraft detached itself from the upper
stage and initiated tether deployment on June 20, 1996 at 10:34 GMT. The orbital elements
of the satellite are available on the TiPS webpage and are given at intervals of approximately
12 hours [95]. However, the exact position of TiPS at the instant f, when the deployment was
initiated was unknown. The simplest way to overcome this difficulty is to propagate the
trajectory of the system from a time (prior to deployment) when the orbital elements are
known, to {,. Following this procedure, the orbital elements of the spacecraft at ¢, - 3.0667
hours (Table 4.13) were propagated until {, (Table 4.14) using the simulation software.
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Parameter Value Source
Beginning of the simuiation June 20, 1996 GMT 7:30 [95]
Semi-major axis (a) 7400.653 km [95]
Eccentricity (e) 0.0003317 [93]
l True anomaly (6) 38.673° [95]
Inclination (i) 63.410° [95]
Argument of perigee () 162.241° [95] H

43.3

4.3.3.1

Long. of the ascending node (2

_ During the 42.5 minutes that deployment lasted, the deployer recorded the amount
of tether released using a tum counter. Figure 4.11 shows the variation of the tether length

Parameter Value
Semi-major axis (a) 7389.626 km
Eccentricity (e) 0.00055511
True anomaly (6) 147.449°
Inclination (i) 63.387°
Argument of perigee (@) 321.232°
Long. of the ascending node (£ | 171.251°

TiPS Deployment Phase

Tether Length History During Deployment
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171.610° [95] l



and deployment rate during the manoeuvre'. The deployment acceleration was obtained by
differentiating the deployment rate point by point and filtering the resulting acceleration profile
through a low pass filter. The overall length history (length, length rate, length acceleration)
is then used to integrate the equations of motion of the system during deployment (Chapter
2).
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43.3.2 Parametric Study of Deployment

The exact orientation of TiPS when deployment was initiated remains unknown.
However, it is believed that the initial pitch ranged between 10° and 50° while the initial roll
could have been anywhere between -30° and 30° [96). Furthermore, the post-deployment
pitch and roll amplitudes were thought to be approximately 40° and 25° respectively [10].
However, these values are subject to uncertainties of 7° in pitch and 15° in roll [97]!

In an effort to determine attitude of the system prior to and following deployment,
several simulations with different initial orientations were run. In all cases, the initial strain
and strain rate were set to 0 and the initial temperature and the damping constant were set

! This information was graciously provided by Jim Bamds of the NRL.
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to 180 K and 322 kNs, respectively. Table 4.15 shows the post-deployment pitch and roll
. amplitudes for several possible pre-depioyment orientations (a,, Y,).

Qo Yo amp Yane
10° -50° 50.0° 18.5°
10° -30° 39.9° 10.6°
10° -10° 36.9° 3.4°
10° 10° 36.9° 3.4°
10° 30° 39.9° 110.6°
lj 10° 50° 50.0° 18.4°
20° -20° 35.6° 7.0°
30° -50° 4.7 19.9°
30° -30° 36.0° 11.0°
30° -10° 34.5° 3.5°
|'30° 10° 34.5° 3.5°
|Fso° 30° 36.0° 11.0°
30° 50° 41.7° 19.9°
50° -50° 40.5° 21.7° |
50° -30° 37.3° 12.2°
50° -10° 36.9° 3.9°
50° 10° 36.9° 3.9°
50° 18° 36.9° 17.0°
50° 30° 37.3° 12.1°
50° 50° 40.6° 21.7°
50° 60° 46.3° 26.7°
50° 70° 60.0° 30.7°
70° 70° 60.8° 33.6°
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These results are consistent with the findings of Glaese who also modelled the
effecté of transverse tether dynamics, but did not account for the effects of external forces
as accurately as the present formulation does [88]. To further demonstrate the agreement
among the results, Figures 4.12 and 4.13 show the evolution of the pitch and roll angles
during deployment as simulated by the author and by Glaese ([a,,Y,] = [20°,-20°).
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Fig. 4.12: TiPS Deployment Librations Fig. 4.13: TiPS Deployment Librations

Simulated by the lz\::lf)wr (9l =[20%  simulated by Glaese ([a.,v.] = [20°,-20°])
(90]

Examination of Table 4.15 reveals that the post-deployment pitch and roll amplitudes
are more strongly dependent on the initial roll than they are on the initial pitch angle.
Furthermore, pitch amplitudes of 40° (+/-7°) and roll amplitudes of 25° (+/-15°) are reachable
given the range of “probable” initial orientations (10°<a,<50°; -30°<y,<30°). For example, an
initial pitch and roll of 50° and -30°, respectively generate post-deployment librations of 37.3°
in pitch and 12.2° in roll. However, larger roll ampiitudes cannot be reached if 10°<a,<50°
and if -30°<y,<30°. In fact, the highest roll amplitude that can be obtained within that range
is 12.2°.

These findings are consistent with those of the NRL [98] and the roll amplitudes
reoorded using SLR techniques are likely to be erroneous. In fact, the TiPS team no longer
believes that the roll amplitude ever went beyond 7°! To tackle the total absence of certainty
on the initial roll amplitude of TiPS, it was decided to assume initial pitch and roil amplitudes
of 41° and 22°, respectively. This represents a compromise between the roll amplitude of 30°
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suggested earlier by TiPS analysts, and the maximum roil amplitude of 12.2° obtained from
the deployment simulations for “probable” initial spacecraft attitudes (10°<a,<50°% -
30°<y,<30°). With this presumption in mind, Figure 4.14 shows the librations of the system
in the early hours of the flight.

43.3.3 Tether Tension During Deployment

Figure 4.15 shows the evolution of the tether tension during deployment. The end of
the depioyment phase is indicated by an “@".

After deployment begins, the tension rises progressively from O N to approximately
0.05 N at the end of deployment. This quasi-linear increase of the tension is due to an
increase in GG forces as the tether length increases. At the moment when deployment ends,
the tether “jerks” and the tension reaches a maximum of about 0.14 N. After the initial “jerk”,
the tension cycles between 0.075 N to 0.15 N.

50 0.16 . . . , .
30

ol A N Y )\

A A Y/ A G L ¥

SRR N ELL

sl AL AL/ N /)T N[ 3

£ 1\ \AIR fooer

-':30 \ [ \_ / =\ .04} R e
<0 \// \/ u.oz/é S semmeeennd
'600 0.2 04 06 08 1 1.2 1.4 1.6 Dﬂ 0.;2 O.;l D.;G 0:8 1 l.;2 1.‘4 16

Time Since Depoyment Initiation (Orbits) Time Since Dapicyment Intiation (Ortits)
Fig. 4.14: Simulated TiPS Deployment Fig. 4.15: Simulated TiPS Tether Tension
Librations during Deployment

90



434 TiPS Station-Keeping Phase

4.3.4.1 Orbital Motion

The orbital elements of TiPS show both periodic and secular variations. As an
example of periodic motion, Figure 4.16 shows the evolution of the simulated semi-major
axis over the second half of the 250th day of flight.
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As shown in Figure 4.16, the semi-major axis undergoes periodic variations whose
peak to peak amplitude reaches 14.28 km. The period of these oscillations is 52.8 minutes
and corresponds to approximately haif of the orbital period (105.6 minutes). In other words,
the semi-major axis oscillates twice per orbit. This periodic variation is caused by the J, term
of the Earth oblateness force. Furthermore, this oscillation causes a change in the mean
motion n of the satellite. A sinusoidal fit on the above data reveals that the exact mean
motion of the satellite is 13.641 rev/day, as opposed to 13.645 rev/day for Keplerian motion.
This discrepancy is consistent with equation (2.47). Neglecting this seemingly insignificant
discrepancy would cause an error of 360° after 250 days.

Given the large periodic variations undergone by the semi-major axis (a), determining
its secular variations requires one to “filter out” the periodic component. One of the possible
ways to achieve this consists of calculating the mean value of a over a certain period of time
(0.5 days). Figure 4.17 shows the “filtered” secular variation of the semi-major axis of TiPS
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as prédicted by the present formulation. On the other hand, Figure 4.18 shows the same
parameter as observed by SLR radars, but using a different filter (devised by NRL analysts).
This explains why the initial “filtered” semi-majors axes in Figures 4.17 and 4.18 differ by 2.2
km. Please note that the y-axis units are different in the two figures. However, what really
matters is the variation of the filtered or “nominal” semi-major axis during the prescribed
period of time. Over the first 250 days of flight, the observed nominal semi-major axis of the
orbit decayed by 537 m for an average decay rate of 2.15 m per day (Fig. 4.18). The present
model predicts a decay of 533.3 m for an error of only 0.7% (Fig. 4.17). This decay is mainly
caused by air drag. As the first term of equation (2.30) dominates cver the cther twe,
aerodynamic forces act mainly in the direction opposite to the velocity of the spacecraft. In
fact, the lift to drag ratio (L/D) for most satellites is of the order of 1/10 [6]. As a result,
atmospheric forces progressively drain mechanical energy from the spacecraft and reduce
the semi-major axis of its orbit. The decay rate depends on several factors including the
altitude, the solar activity, the spacecraft mass, shape, and surface area.

As expected, the present model outperforms analytical models and empirical
interpolation formulae. For example the model presented by Cosmo and Lorenzini [6] and
discussed in Section 2.5.1.6 (equation (2.40)) does not apply to TiPS because the
atmospheric density is too low. On the other hand, Boden's analytical model (equation (2.38))
predicts a decay of 503.6m which yields an error of 6.2%.
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The orbital eccentricity of TiPS undergoes periodic and secular variations. Figure 4.19
shows the periodic variations of the eccentricity as predicted by the present model. Unlike
the semi-major axis, the eccentricity oscillates only once per orbit with a peak-to-peak
amplitude of 8x10°. The graph below clearly shows that the eccentricity also undergoes
secular variations. The present formulation predicts an increase of the orbital eccentricity
from 0.0002 to 0.0024 over 250 days. This perfectly matches the observed variation of the
nominal eccentricity which reaches 0.0024 after 250 days of flight (Fig. 4.20). This increase
is caused by solar pressure [33].
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In contrast, the model predicts very slow periodic oscillations in the inclination (less
than 0.03°), but no net secular variations. These resuits are confirmed by the observed SLR
observations, which are very noisy (Fig. 4.21).
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As shown in Figures 4.22 and 4.23, the longitude of the ascending node shows a
secular variation of -2.651°/day, yielding a nodal regression of 663° over 250 days. This
rotation of the orbital plane is consistent with theory and is caused by the Earth oblateness
(equaiion 2.47). Figure 4.23 was constructed by the auihor from the record of the orbital
elements of TiPS over time {95].
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Longitude of the Ascending Node of TiPS SLR Techniques [95]

- Finally, the argument of perigee is expected to-show very little secular changes
because the satellite is in a “critical” orbit inclined at 63.4° (equation (2.47)). But as the
eccentricity of TiPS is negligible, the argument of perigee loses its meaning, since every
point along a circular orbit can be regarded as the apogee or as the perigee. As shown in
equation (4.2), this phenomenon cormresponds to a singularity of dwv/dt in the eccentricity [38]

%3%[ -cos0(1 +e-cosB)f, +sinB(2 +e-cos)Yf, ] (4.2)

Equation (4.2) is one the six Lagrange's perturbation equations for the orbital
elements. As mentioned in Section 2.2, these equations become singular for circular and
equatorial orbits. In the case of TiPS, using Lagrange’s formulation indeed causes the failure
of integration schemes. This constitutes a strong incentive for propagating the satellite
trajectory using the modified version of Broucke’s equinoctial elements instead of the
Lagrange perturbation equations.
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4342 Long-Term Librational Motion

As shown in Figure 4.24, roll librations decay quite rapidly over the first 10 days of
flight, but they diminish considerably slowly afterward. On the other hand, the pitch amplitude
continually decays in an exponential manner. These phenomena result from the coupling
between the longitudinal and the attitude dynamics of the system (equations (2.12), (2.13),
and (2.15)). Indeed, the librations of the system induce longitudinal oscillations which are
damped by tether damping. Hence, the system slowly loses librational energy over time. As
the coupling between pitch and strain is stronger than that between roll and strain, pitch
decays more appreciably than roll.
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Fig. 4.24: Simulated Decay of TiPS Libration Ampiitudes
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The rapid decay of roll during the first ten days is related to resonance. When the
libration amplitudes are small, the ratio of the frequencies of the two libration motions w/w,
is 2/\/3=1.1547: an irational number. However, when the libration amplitudes are large, the
ratio w/w, reaches a rational number (5/4). Under such conditions, the system tends to
transfer roll librational energy to pitch oscillations. By the principle of [east effort, this is the
“preferred” path of the system because it loses energy faster in this way. This resonance
condition is obvious in Figure 4.25, which plots pitch vs roll oscillations over the first day of
flight. Resonance disappears around the tenth day, as demonstrated by Figure 4.26, and
hence the rapid decay of roll stops (Fig. 4.24). Glaese obtained similar results [88].
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~ Although the trend of the simulated librations is correct (Fig. 4.24), the results do not
totally agree with the libration amplitudes observed using the SLR system [88] (Fig. 4.27).
In fact, the pitch and roll librations obtained from the SLR data appear to both decay similarly
with time. As explained earlier, this discrepancy is more than likely caused by inaccuracies
in the roll measurements of SLR’s. Indeed, it is believed by the NRL that roll librations may
never have exceeded 7° in amplitude [98]. Further simulations reveal that such a scenario
is very likely, for a 7° roll amplitude is consistent with the estimated pre-deployment attitude
of the system (10°<a, <50°, -30°<y,<30°. In light of these findings, Figure 4.28 shows the
decay of the librations for initial amplitudes of 41° and 7° in pitch and roll, respectively. For
this simulation, the tether damping constant is 403kNs.
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4343 Longitudinat Oscillations

Figures 4.15, 4.29 and 4.30 show the longitudinal oscillations of TiPS tether at three
different stages of the flight. Figure 4.15 plots the tension during and immediately after
deployment and hence shows the transient behaviour of the tether. Figure 4.29 shows the
tether vibrations once the transient dynamics have decayed (5 orbits after deployment).
Finally, Figure 4.30 displays the tether tension 90 days into the flight.

The most important conclusion to draw from these graphs is that the ampiitude of the
strain oscillations decays with tether librations (see also Figure 4.24). In fact, the TiPS cable
reaches its maximum tension of 0.15N approximately 1.2 orbits into the flight. At this
moment, the librations are very large, the transient dynamics of the tether have not yet
decayed, and the peak-to-peak amplitude of the tension oscillations reaches 0.08N. By flight
day number 90, the maximum tension drops to 0.114N and the peak-to-peak amplitude of
tension oscillations is only 0.01N. This large reduction in the amplitude of tension oscillations
explains the diminution of librational damping over time. In equation (2.15), the de/dt term
dictates the amount of damping. Lower longitudinal oscillation amplitudes imply lower values
of de/dt and hence, a lower amount of damping. Therefore, the decay rate of librations
decreases with time.
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Given that the largest peak-to-peak tension amplitude of 0.08N corresponds to a
strain variation of 0.0004, this means that the maximum length variation generated by
longitudinal oscillations is approximately 1.6m.

4344 Tether Temperature

The simulated tether temperature (Fig. 4.31) shows wild variations that do not follow
the expected behaviour [6]. These unexpected variations are due to the large amplitude of
the pitch and roll oscillations, which constantly alter the angle between the tether line and the
Sun. The maximum and minimum tether temperatures are approximately 210K and 130K,
respectively. Given the length of the TiPS tether (4023m) and its coefficient of thermal
expansion (-.000028/K), this temperature differential of 80K leads to a maximum thermal
elongation of S9m: almost 6 times the maximum mechanical elongation (which occurs
immediately after deployment). After 90 days of flight, the ratio of thermal to mechanical
elongation reaches 45! In other words, thermal strains influence external torques on the
system more strongly than mechanical strains.
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Fig. 4.31: Simulated TiPS Tether Temperature
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CHAPTER 5

EFFECT OF ELECTROMAGNETIC
FORCES ON TETHERED SYSTEMS

5.1 INFLUENCE OF SYSTEM AND MISSION VARIABLES ON EP
5.1.1 Preliminary Considerations

The study now focuses on the effect of electromagnetic forces and torques on the
motion of conductive tethered systems. The first step in this investigation consists of
determining the induced EMF, current, and the corresponding Lorentz force for different
combinations of mission parameters.

As mentioned by Forward, Hoyt and Uphoff [8], the best tether material for
electromagnetic propulsion is aluminum, for this metal combines low density and high
conductivity. However, aluminum has such a low emissivity to absorptivity ratio (0.1) that its
equilibrium temperature due to solar radiation alone reaches 716K [100]. This temperature
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is very close to the melting point (933K). Therefore, a bare aluminum tether would unlikely
be suitable because solar heating and ohmic dissipation could cause creeping or even
melting. To alleviate this difficulty, the aluminum wire should be covered with some high
strength tether material or coating with a much higher emissivity to absorptivity ratio. This
non-conductive component would provide strength and a “cooler” environment for the
aluminum core. Nevertheless, the coating should not impede on the capability of “bare”
tethers to capture ionospheric electrons.

The parameters of the subsatellites (m, is a parallepiped and m, is a sphere), of the
tether, of the atmosphere, and of the baseline mission are shown in Tables 5.1 to 5.4,
respectively.

Dimensions (a,,c,, r,) .5m, .8m, .6m
Mass (m,, m,) 50kg, Skg
Load resistance (Ohm 0

Tether core material Aluminum (2219-T851)
Core density (kg/m?) 2850

Core resistivity (Ohm*m) 27.4X107%

Tether radius (mm) 0.2

lonospheric Plasma Temperature 1000 K

Electron Density Profile (10" e/m? 0.9*sin(©) + 1.1

Note that the tether radius quoted above would generate a non-negligible tether
resistance. This effect would complicate modelling and has been neglected in most
documented investigations [24, 25, 26, 71].
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Semi-major axis (km) 6978 (600 km alt.)

Eccentricity 0

Inclination

Tether length (km)

0
5
System pitch (deg) 0
0

L System roll (deg) _

Note that for the above system orientation (a=y=0), the component of the Lorentz
force along the x’-axis always vanishes (Fig. 2.1).

A number of simulations are carried out to determine the effect of various factors on
the induced EMF and current, and on the corresponding Lorentz force. The effect of each
factor is determined by varying its value, while holding the value of all other factors constant.
The following sections (5.1.2 to 5.1.5) discuss the major findings of these simulations, which

assume complete reversibility of current flow in conductive tethered systems.

51.2 Effect of Tether Length

According to Forward, Hoyt and Uphoff [8], tether lengths for EP (Electromagnetic
Propulsion) applications should range between 5 km and 20 km. Such tether lengths are
necessary to insure that the tether remains taut at all times. Figures 5.1 through 5.4 show
the effect of tether length on EP variables. They display the average EMF, the mean current
at m,, and the average Lorentz force (in orbital coordinates), for both insulated and bare
tethered systems.

As shown in equation (2.50) and in Figures 5.1 and 5.2 below, the induced EMF is
the same for bare and insulated systems and increases linearly with tether iength. On the
other hand, the induced current at m, and the Lorentz forces are 1 to 2 orders of magnitude
larger for bare tethers than for insulated tethers. As mentioned in Section 2.5.4, this results
from Debye shielding in insulated systems and clearly demonstrates the superior capability
of bare tethers to capture ionospheric electrons.
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The current in insulated systems follows the expected .528th power law behaviour
(Fig. 5.1, equation (2.52)). This inference is further sustained by Figure 5.5 which plots the
variation of mission variables for insulated tethers on a log-log scale. As Lorentz forces are
proportional to both the current and tether length, they approximately follow a 1.528th power

law behaviour (equation (2.57), Fig. 5.1, 5.5).

As for bare wire systems, the induced current at m, grows with the 1.5th power of
tether length (equation (2.57,2.59), Fig. 5.2, 5.6). By virtue of equation (2.54), this implies
that Lorentz forces should vary with the 2.5th power of tether length, which they indeed do
(Fig. 5.4, 5.6). This more rapid growth of available power and Lorentz forces constitutes a
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. major advantage of bare wire systems over insulated tethers.
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513 Effect of the Semi-Major Axis

As shown in the Figures below, the altitude of the spacecraft strongly influences the
various EP variables (induced EMF and current, Lorentz forces).
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Once again, the induced EMF does not depend on the nature of the tether (bare of
insulated), but merely on its length and position relative to the Earth (Fig. 5.7). In fact, the
voltage induced across the system decays with the 3.74th power of the geocentric altitude.
By virtue of equation (2.50), this resuit is consistent with first order approximations [6] which
predict a 3.5th power decay of the EMF caused by the 0.5th power decay of orbital speed
and the 3rd power decay of the dominant term of the Earth magnetic field. The slight
discrepancy between the simulations and approximate results is due to the higher order
hamonics of the magnetic field. Figure 5.11 further demonstrates the exponential decay of
the induced EMF.

10

nduced EMF (VoRs)

10’

10’
Semi-Major Axis (km)

Fig. 5.11: Log-Log Plot of the EMF
Variation in Conductive Systems Due to
Geocentric Altitude

104



Since the tether current in insulated systems varies with the 0.528th power of the
EMF (equation Z.52), first order approximations predict that the induced current would decay
with the inverse of the 1.85th power of altitude. Nonetheless, simulations show that a more
refined model ¢f the magnetic field leads to a 1.74th power variation with the altitude. As for
bare wire syste: s, first order approximations predict a 1.75th power variation of current with
altitude. On the 2:her hand, the present model yields a 1.87th power decay. Finally, previous
studies estima' : that Lorentz forces vary with the 5.54th and 5.25th power of distance for
insulated anc iare wires, respectively. However, simulations show that electromagnetic
forces actuaily .acay with the 4.85th and 4.98th power of the altitude, respectively.
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5.1.4 Effect u. the Orbital Inclination

The eii -t of the orbital inclination on EP variables is shown in Figures 5.14 to 5.17.
The orbital inc. ::ation strongly influences the average voltage, current, andLorentz forces.
As a matter ¢i i...i, the EMF and current reverse direction in retrograde orbits. Furthermore,
the magnituuc .. : the EP variables reaches a minimum along nearly polar orbits and is larger
for inclinatici: -f rei than /. Indeed, the speed of the spacecraft with respect to a frame
moving with th= magnetic field of the Earth is larger for retrograde orbits than for direct orbits.

By equations _.50), (2.52), (2.54), and (2.59) this generates larger EMF's, currents, and
Lorentz forccs
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In light of the resuits presented so far in this chapter, the average value of F, has
been shown to always remain negative. The explanation for this is quite simple: the
electromagnetic force has the tendency of bringing any conductive object to “rest” with
respect to a coordinate system centered at the Earth and rotating with the magnetic field.
Whether its trajectory is direct or retrograde, any spacecraft moving at orbital speeds in LEO
is bound to travel much faster than the magnetic field (400-500 m/s at the equator). Most
importantly, this means that regardless of the inclination, it is impossible to raise the orbit of
a spacecraft in a circular orbit by continuaily applying maximum electromagnetic thrust. In
fact, a circular orbit can be raised only if the tangential (y') component of the perturbative
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force is positive. For altitudes beyond the geostationary orbit, the speed of the magnetic field
becomes greater than the orbital speed. A spacecraft travelling along one such trajectory
could potentially use the magnetic field of the Earth to obtain both thrust and “free” electrical
power. However, the low intensity of the magnetic field at these altitudes may very well
undermine the potential of this application. On the other hand, this concept could reveal very
attractive for propelling a spacecraft in orbit around Jupiter: a planet with a very strong
magnetic field and most of its moons above the “jupitostationnary” orbit.

This leaves only two possible ways of using electromagnetic forces to raise the orbit
of a LEO spacecraft: current phasing and EMF reversal. Phasing refers to a procedure in
which the tether current is judiciousty controlled as a function of the position of the spacecraft
along its orbit. By applying the right current at the right moment (with the help of a variable
load resistor), one could potentially raise the spacecraft orbit. The second option consists of
using a series of batteries to reverse the direction of the induced EMF and provide a positive
F,. However, this possibility is highly impractical, since one would have to work against an
EMF of the order of hundreds or even thousands of Volts. The PMG experiment {6]
constitutes the only example of such EMF reversal. Indeed, the planners of this mission
connected several batteries in series to generate an EMF of approximately 80V, which was
higher than the voltage induced by the motion of the 500m tether through the magnetic field.
On the other hand, all applications considered in this Chépter require much longer tethers
(>5km) to ensure longitudinal stability. Such long cables make EMF reversal very difficult
because motional EMF’s reach very large values.

5.1.5 Effect of Orbital Motion

The motion of the spacecraft along its orbit causes large periodic variations in the
various parameters studied. For exampie, Figures 5.18 and 5.19 show the variation of the
induced voitage for an 18 km long tether in a typical 1SS orbit as simulated by the author and
by other researchers [26].
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Two types of oscillations can be detected from the above graphs: a 24 hour variation
due to the rotation of the non-uniform magnetic field, and a higher frequency oscillation due
to the motion of the spacecraft along its orbit. Low altitudes, long tethers, highly inclined, and
eccentric orbits all contribute to large variations in EP variables.

5.2 BIT DE IN CT TIC PULSION

5.2.1 Preliminary Considerations

As mentioned in the Introduction, the tethered de-orbit concept proposes to capitalize
on the Faraday effect to decay the orbit of dysfunctional satellites and spent rocket stages.
The range of tether lengths required to keep the tether taut (>5 km) allows the flow of very
high currents (0.5 to 5 Amp) through the tether with EMF’s in the kilovolt range. If
uncontrolled, these high currents generate large Lorentz torques that destabilize the
librations of the system. To exemplify this phenomenon, Figure 5§.20 shows the librations of
a 5 km long conductive tethered system without a load resistance (R,,.~0) flying along a
circular and equatorial orbit at an altitude of 600 km. The other parameters of the spacecraft
of interest are as in Section 5.1.1.
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Stabilizing tether librations while decaying the spacecraft orbit as rapidly as possibie
requires a sophisticated control system. Although far from optimal, the control scheme
chosen for the following simulations is relatively simple. It consists of an ammeter and a
varistor working in concert to keep the maximum current at / = (0.2 + 0.1"sin(36)) Amp. The
38dependency helps stabilize roll oscillations [6]. To further suppress libration amplitudes,
the tether current is cut whenever pitch or roll reaches an amplitude larger than 20°.

5.2.2 Results and Analysis

To demonstrate the effectiveness of the proposed current/libration control scheme,
Figures 5.21 and 5.22 show the “controlled” librations of an “electromagnetic tether” flying
at an altitude of 1500 km along a circular orbit for two different inclinations: 0° (Fig. 5.21) and
85° (Fig. 5.22). As expected, the libration amplitudes barely exceed 20° in both pitch and roll.
Hence, the above control scheme effectively stabilizes tether librations.
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Let us now examine how rapidly EP can decay the orbit of a given object. Figure 5.23
displays the evolution of the semi-major axis and perigee for the specimen spacecraft
presented in Section 5.1.1 and control system introduced in Section 5.2.1. The satellite
initially orbits along an equatorial and circular orbit at an altitude of 1500 km. For this system,
the deorbit time is 21 days.
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As pci.d out by Forward and Hoyt [77], deorbit rates decrease drastically for nearly
polar orbits > :use the magnetic field orientation is unfavourable to orbit decay near polar
latitudes. Thi: ~:.znomenon is exemplified in Figure 5.24, which shows how the semi-major
axis and per’; -2 take much longer to decay for a similar spacecraft initially flying along a
circular orbit . .n altitude of 1500 km and inclination of 85°.

In Fic.. :s 5.23 and 5.24, one notices that the semi-major axis and perigee decay
smoothly ove.  ost of the manoeuvre (when Lorentz forces dominate), but suddenly drop

at the end ¢/ ... : .ight (when air drag becomes dominant). Deorbit times of 21 days (for an
equatorial c .. . ind 101 days (for a nearly polar orbit} compare extremely well with the
dozens to !!* . ..ads of years required for air drag to decay the spacecraft orbit alone. On
the other hiz.. . e ballast and conductive tether total 20 kg of the total spacecraft mass.
This excee .  : 5.6 kg of Hydrazine-N,O, fuel required to deorbit the 50 kg spacecraft.
Therefore, - = . . magnetic propulsion is not as effective as rocket propulsion to deorbit very
small sate!.... . .0 LEO. This result is totally independent of the control scheme used to
stabilize tet!.=r . stions. Indeed, the control system only influences the deorbit time, not the
“Terminator - . .. " system mass. However, the same EP system (a 5 kg tether measuring
5 km with .. .. ballast) can deorbit a 1000 kg satellite initially flying along a 1500 km
circular and . ..orial orbit within 380 days. In fact, for a given control system, the deorbit
time is inve. . .roportional to the spacecraft mass.

Time (days)

Fig. 5.24: EP Orbital Decay for a Spacecraft
Initially Flying a Circular Orbit at an Altitude of
1500 km and an Inclination of 85°
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On the other hand, a rocket system designed to accomplish a comparable task would
require more than 110 kg of fuel. Further analysis reveals that for the system and rocket fuel
described above, EP is more weight efficient than rocket propulsion when the spacecraft
mass is larger than 90 kg.

But still, one must bear in mind that the reentry time for rocket propulsion is half of
the orbital period (approximately 1 hour), while the reentry time of EP system can vary from
weeks to months or even years.

in conclusion, for the control system described in Section 5.1.1, EP is more weight
efficient for orbital decay than rocket propulsion when the spacecraft mass is larger than
approximately 100 kg. However, the reentry time for “Terminator Tethers” (weeks to months)
largely depends on the libration control scheme and is much longer than that of rocket
systems (1 hour).
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CHAPTER 6

THE DYNAMICS OF SPINNING
SPACE
TETHERED SYSTEMS

6.1 PRELIMINARY CONSIDERATIONS

While librating systems have been abundantly investigated over the last 30 years,
very few studies have focused on the dynamics of spinning tethered systems. Schuitz and
Vigneron [51,52] have determined that the combined effect of longitudinal tether damping,
gravity gradient, and aerodynamic drag causes a net decay of the rotational rate of spinning
tethered systems. On the other hand, Carroll [81] maintains that thermally induced tether
length variations are likely to cause random variations in the rotational rate of spinning
systems. This Chapter partly aims at resolving the debate through simulation of the BOLAS
system.
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6.2 B ION SCENARIO AND PARAMET

The BOLAS proposal is outlined in section 1.4.2 and aims at investigating ionospheric
plasma, and the long term dynamics of spinning tethered systems. Table o.1 presents the
parameters of the BOLAS subsatellites. The tether proposed for BOLAS is identical to the
TiPS tether (Table 4.12), but measures 100m and is assumed to have a damping coefficient

of 45.8 kNs. Table 6.2 presents the initial conditions for the flight simulations.

Parameter Value Source

Mass (m,, m,) 74.8 kg, 76.3 kg [101]

Width (a,, a,) 0.36m, 0.36 m [101]

Height (c,, c,) 0.74m, 0.74 m (101)]

Solar absorptivity (ag,) 02 Estimated

Normal accommodation coeff. (G,,, 0,5) 0.85 [35]
|LTangential accommodation coeff. (0;,. Op) 0.85 [35]

Variable Value Source

Beginning of the simulation Dec. 1st, 2001 GMT 00:00 | {101]

Semi-major axis (a) 6943 km [101]

Eccentricity (e) 0.030966 [101]

True anomaly (8) 180°

Inclination (/) 103° [{101]

Argument of perigee (w) 335° [101]

Long. of the ascending node ({2 90° (101]

Pitch (a) 45°

Pitch rate (da/df) 0.62527°/sec (10w) [101]
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Roll (1) 10°

Roll Rate (dy/df) 0
Strain (¢) 0.0027428 Equilibrium strain
Strain Rate (de/df) O/s Equilibrium strain

|

Tether temperature 180 K Minimum temperature

In the simulations, the tolerance for Gear's algorithm was chosen to be 0.000002. -
The duration of the simulation is 180 days and the solar activity index is 150.

6.3 NALYSIS OF THE BOLAS MISSI

6.3.1 Perturbation Forces

Throughout the range of altitudes flown by BOLAS, Earth oblateness (1N) and solar
pressure (10°N) forces remain fairly constant. On the other hand, eccentricity effects cause
aerodynamic lift and drag to vary by a factor of 1000 from 10°N at apogee to 10°N at
perigee. Lunisolar attraction and electromagnetic forces are neglected. The orbital, attitude,
thermal, and longitudinal dynamics of BOLAS are simulated over 180 days.

6.3.2 Orbital Motion

~ Aerodynamic forces have a very strong effect on the orbital trajectory of BOLAS.
Indeed, atmospheric drag causes a decay of 23.7 km in the semi-major axis [Fig. 6.1].

As is the case for TiPS, the semi-major axis of BOLAS also undergoes periodic

variations [Fig. 6.1]. The period and amplitude of these oscillations are 2w,, and 18 km,
respectively.
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Furthermore, the eccentricity decreases from 0.031 to 0.0266 as a result of the
combined effect of air drag and solar pressure [33}]. Consequently, the apogee of the BOLAS

orbit drops from 780 km to 720 km. Finally, the orbital inclination decreases by 1° over six
months due to atmospheric rotation.

Earth obiateness causes a drift of the line of apses and of the nodal line. Variations

reach -2.87°/day for w and 1.60°%day for Q. These results agree with approximate theoretical
results (equation 2.47).

6.3.3 Attitude Motion

As shown in Figure 6.2, the pitch rate of the system undergoes two distinct periodic
variations: a short period oscillation induced by the spin of the system, and a long period
oscillation caused by the spacecraft orbital motion.

- The frequency of the short wavelength variation is 20w, (twice the spin rate). Its
oscillations peak when the system is aligned with the local vertical, and reach a minimum
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when the satellite crosses the local horizontal. In their analysis of the BOLAS proposal,
Schultz and Vigneron [52] also noticed this phenomenon.

in contrast, the long period oscillation is caused by the orbital motion of the
spacecraft. Indeed, orbital eccentricity and thermal expansion combine to cause tether
stretching which, by conservation of anguiar momentum, causes variations in the spin rate
of the system. In their investigation of the BOLAS proposal, Schultz and Vigneron did not
notice this long period oscillation because they did not consider the orbital eccentricity and
the thermal dynamics of spinning tethered systems [52]. Their analysis predicts a net
decrease in the pitch rate. They attribute this energy loss to the interaction between tether
damping and gravity gradient forces [52], and to air drag [51].

The present model predicts random variations of the average spin rate, but an overall
increase of 0.0017%/s (0.27%) over 180 days. In other words, the positive torque induced by
external perturbations dominates over the negative torque generated by tether damping,
gravity gradient forces, and aerodynamic drag [81].

Roll oscillations remain marginally stable near 10° throughout the flight [Fig. 6.3]. The
period of the roll oscillations is approximately 11w, not 2w, as is the case for gravity-
gradient stabilized systems. This comes as no surprise, since linearizing the roll equation of
motion (2.13) reveals that the frequency of roll oscillations should be about [(Wyy, + Wee)? +

3wer]"; which is approximately 11.1Wwqy, SiNce Wy, = 10w, in the present case.
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Fig. 6.2: Simulated Pitch Rate of BOLAS Fig. 6.3: Simulated Roll Oscillations of

BOLAS
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CHAPTER 7

CONCLUSIONS

A detailed mathematical model and a software have been developed to analyse the
long-term effects of the low Earth orbit environment on tethered systems. The software
predicts the trajectory and the attitude of the system, as well as the temperature and the
longitudinal vibrations of the tether. The program accounts for the effects of atmospheric lift
and drag, asphericity of the Earth (zonal and sectorial harmonics), solar and Earth radiation,
electromagnetic forces, lunisolar attraction, and material damping.

The thesis extends previous research work in the field using more detailed models
of external perturbations, and a refined integration scheme (Gear's method). Particular
attention was given to the three major external forces influencing the dynamics of tethered
systems: atmospheric forces, Earth oblateness effects, and electromagnetic (Lorentz) forces.
Furthermore, analytical solutions were provided for the problem of atmospheric drag induced
shift of the equilibrium angle.

Experiments were also carried out to gain further insight on the material properties
of SPECTRA, a commonly used space tether material. It was found that this material has a
highly non-linear stress-strain relationship and that its properties are highly dependent on the
tether loading history.
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It was noted that the present formulation can predict the long-term motion of non-
conductive librating tethered systems (such as TiPS) with greater accuracy than previous
models. The simulation software is also used to study the behaviour of spinning tethered
satellites. For example, it was found that unlike what was previously thought, the overall
spinning rate of the proposed BOLAS system does not undergo any net reduction.

Finally, the results show that electromagnetic propuision applied on bare conductive
tethers can deorbit spent rocket stages and dysfunctional satellites over 100 kg at a lower
“weight cost” than traditional rocket systems and much faster than atmospheric drag.

Looking onward to the future, the author recommends to conduct further research in
the area of electromagnetic propulsion. For example, a bare tether could presumably be used
to simultaneously control the orbital elements and the librations of tethered systems. This
would virtually eliminate the need to consume chemical fuel to control and later deorbit
spacecraft.
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