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Abstract

The basic goal of the Aclaptive Optical Music Recognition system presented herein is to

create an adaptive software for the recognition of musical notation. The focus of this

research bas been to create a robust framework upon which a practical optical music

recognizer can be built.

The strength of this system is its ability to leam new music symbols and handwritten

notations. It also continually improves its accuracy in recognizing these objects by

adjusting internaI parameters. Given the wide range of music notation styles, these are

essential characteristics of a music recognizer.

The implementation of the aclaptive system is based on exemplar-based incremental

learning, analogous to the idea of "leaming by examples," that identifies unknown

objects by their similarity to one or more of the known stored examples. The entire

process is based on two simple, yet powetful algorithms: k-nearest neighbour classifier

and genetic algorithm. Using these algorithms, the system is designed to increase its

accuracy over time as more data are processed.
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Résumé

Le système de reconnaissance optique de la musique proposé ici a pour but de créer un

logiciel adaptif qui pennet de reconnaître la notation musicale. L'objectif principal de

cette recherche a été de concevoir une structure solide sur laquelle on peut construire un

système pratique de reconnaissance de la musique.

La force de ce système réside dans sa capacité d'apprendre de nouveaux symboles

musicaux et des notations manuscrites. En adjustant ses paramètres internes, le système

accroit sa précision dans la reconnaissance des divers éléments. Étant donné le vaste

éventail de styles de notation musicales, ces caractéristiques constituent l'essentiel d'un

système de reconnaissance de la musique.

La mise en oeuvre d'un tel système est basée sur le concept de « l'apprentissage par

l'exemple» : le système identifie des éléments inconnus en les comparant avec un ou

plusieurs éléments connus déjà emmagasinés. Le processus tout entier s'appuie sur deux

algorithmes simples mais puissants : l'algorithme du plus proche voisin et l'algorithme

génétic. Ces algorithmes permettent au système d'augmenter sa précision d'opération en

fonction de la quantité de données qu'il a traitées.
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1. INTRODUCTION

1.1 The goal

The basic goal of the Adaptive Optical Music Recognition (AOMR) project is to design

an adaptive system for computer recognition of musical notation that works with a certain

degree of user interaction. The focus of this research has been to create a robust

framework within which a practical optical music recognition (OMR) system can he

built.

1.2 Overall design

The AOMR system described here is composed of a database and three interdependent

processes: recognizer, editor, and learner. Operating on the scanned image of a musical

score, the recognizer locates, separates, and classifies music syrnbols into musically

meaningful categories. The classification is based on the k-nearest neighbour (k-NN) mIe

aided by a database of symbois and their features collected from previous sessions.

The output of the recognizer is corrected by a musically trained human operator using a

music notation editor. The editor can provide both visual and audio feedback of the

output. Glen Diener's Nutation, a public-domain music editor, which displays and

playbacks the resuit of the recognition process, was experimentaIIy used for this purpose.

Commercially available music editors may he used. The result is stored in the symbol

database used by the classifier and the leamer. This database can also he used as a basis

for constructing a representation of the score suitable for other applications. The Iearner

improves the speed and accuracy of future recognition sessions by continuously

rearranging the database and optimizing classification strategies.
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1.3 Adaptive systems

The Most interesting feature of this system is its ability to learn and adapt incrementally

to its environment. Rather than using statistical or detenninistic methods of pattern

recognition, commonly used by engineers and other OMR systems, an adaptive

exemplar-based system is used here to recognjze music scores.

1.3.1 What is an adaptive system?

An adaptive system is characterized by the ability ta undergo modification of its

behaviour in response to new conditions, demands, and circumstances of the surrounding

environment. For a recognition system, it means that the system will be able to learn

novel abjects and that it will continually improve its accuracy in recogni7.ing those

objects. Given the wide range of music notation typefaces, this is an essentiai comPOnent

for a music recognizer.

1.3.2 Implementation of the adaptive system

The present implementation of the adaptive system is based on an exemplar-based

incrementai learning system. An exemplar-based pattern recognition scheme classifies an

unknown object by comparing it ta the known examples aIready stored in its database.

"Incrementai" here means that the system learns gradually as new sampies are added to

the database.

Typically, a learning system is nurtured with training data. Once the designer is satisfied

with the perfonnance of the system, the various parameters of that system are fixed. In

other words, no modification takes place when the system is actually used in the field.

Here, no distinction is made between training data and real data: aIl incoming data are

treated as training data. and the system parameters are continually changing.

The reorganization of the recognition tactics, such as the parameter tuning, is managed by

the system itself rather than the human expert. This process seems to correspond ta

human incrementai development of expertise. The adaptiveness of the system is founded

on two very simple yet powerful concepts: k-NN rule and genetic algorithm.

Using these aIgorithnls, the system is designed to increase its accuracy over time as more

data are processed. The accuracy of the recognizer can he increased by having many
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examples and by selecting the appropriate importance attaehed to each feature used to

recognize the symbols. H required, the system can decrease the recognition time on its

owo. In the k-NN classification system the recognition time is proportional to the size of

the database. By redncing the size of the database, therefore, the recognition time can he

reduced.

Exemplar-based systems have often been criticized for their relatively large storage

requirement and for inefficiency. The recent dramatic increase in economically available

memory space along with similar increase in the speed of desktop computers have made

the use of exemplar-based systems quite feasible. It is not unreasonable to demand

megabytes of RAM, gigabytes of hard disk space, and a fast microprocessor.

Furthermore, the efficiency of this particular application is not crucial as manual

preparation of a score by a human copyist could take over an hour per page. AIso, as most

desktop computers are personaI computers (in other words, they are not used constantly)

there are Many free cycles that can be exploited by the learning system.

1.3.3 The advantages of an adaptive music recognition system

There are three main reasons why an adaptive music recognition system is desirable. It

should be able to recognize a large number of symbols and the arrangements of these

symbols that make up the score; it should he able to leam new music symbols; and it

should be able to recognize handwritten scores.

Similarities between the recognition of printed text and of music are often cited, yet there

are important differences. In music there is a basic set of symbols, sucb as rests, clefs, and

accidentaIs, that have fixed size and orientation, corresponding to the letters, digits, and

punctuation symbols in printed text. But unlike text, music scores contain many symbols

that vary in size and orientation, such as arpeggio marks, slurs, ties, barIines, pedaI

markings, and voice-Ieading Hnes. Also, noteheads are often grouped together with other

snch components as stems, flags, and beams. Thus, the recognition system for music must

he able to recognize a very large number of configurations of symbols.

Another very important difference is that in the case of alphabets, although there are new

font designs, it is unlikely that a new alphabet symbol will he added within the next few

years. Music notation on the other hand, is a more evolving system with new symbols
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continually being added. Consequently the set of music symbols is much larger than that

of alphabet symbols. Read's book of notation lists about four-hundred different symbols

that are currently in use (Read 1979). The leamer section makes the system adaptive both

to the evolving nature of music notation in general, where new symbols are created as

performance or compositional requirements dictate, and to specific notational "dialects,"

including handwritten scores and different historical notations.

Until very recently, most scores of new compositions were prepared by hand owing to the

expensive process of engraving music. These scores are generally of very high quality;

because music must be sight-read in real time, there is an enormous pressure to have the

music easily legible. Not only do perfonners tend to be discouraged by music that is

difficult to read, but the processing resources and time devoted to decoding the music

notation will presumably reduce the resources and time needed to perform it. For this

reason, many high-quality handwritten scores should he recognized by the system. And

there is another reason why machine recognition of handwritten notation would he

valuable. Beeause of the availability of music editing software on microcomputers today,

music that would onee have been eopied by hand is now often done on the computer. Yet

because of the awkward user-interface (screen, keyboard, and mouse), many musicians

prefer using the pen-and-paper method of setting music down, although they do

appreciate the output of high-resolution laser printers. Note that the user interface to

computers grew out of and remains a tool primarily for alpha-numerie input. Similarly,

many graphic artists and draftsmen still prefer the traditional working tools, not

surprisingly, since the tools these artists and craftsmen use have been tailored over the

years to their needs. Thus, an ideal scenario is to draft the musie by hand, sean it into the

computer, edit, if necessary, and then print it out.

There are other benefits to adaptive systems. Different copies of the system may evolve

along different lines, much in the same way as natural selection, each system developing

its own expertise according to the needs of the users. Consequently, a copy of the system

cao he made to specifications, either with a tabula rasa database or primed for one

particular notational repertüire, publisher, or composer. Another important advantage

from the designer's point of view is that various adjustable parameters in the recognition

process need not he predetennined. The wider implication of similar adaptive systems

both in music and other domains will he discussed in the conclusions.
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1.4 Applications

There are many areas of possible application of the machine-readable representation of

musical scores. For music publishers, it cao he used to produce new editions based on old

editions and maouscripts. It cao be used to preserve out-of-print editions for which the

master plates are either lost or no longer usable. It cao he used to create automatically

engraved-quality scores based on manuscripts.

Musicologists cao use it for various purposes including the preparation of scholarly

editions that compare concordances hetween maouscripts and printed scores. Perforiners

and composers cao use it for part extraction and transpositions, Braille translation,

automatic MIDI file creation, and thus automatic pJayback which in tom would allow

score-assisted recognition of musical performance via audio, and "what-ir' demos for

music theory and orchestration studies. Such a playback system would also allow for

computer-aided music practice in the form of intelligent music-minus-one for chamber

music, concertos, and conducting practices. It would aIso simpIify the preparation of

music psychology experiments such as the study of music expression.

Although sorne of these applications can he performed now with commercially available

music editing software, the tedious task of entering music maoually has hindered

development of most of these applications. For reviews of other methods of input see

Carter et al. (1988) and Fujinaga (1988).

Once a sufficiently large amount of music is scaoned and stored in a database, there are

further applications. Music scholars cao use the database to study musical structures and

style, either manuaIly or automatically. In the latter case, the computer cao he used to

verify algorithmic anaIytical tools and theories. Music publishers may establish an on­

demand music-score printing, where music can he printed on a customer's local printer.

In a multimedia environment, a database may he used for a low-bandwidth, high-quality

audio distribution system. Rather than sending high-bandwidth CD-quality audio on the

network, which may he difficuit because of the amount of data involved, scores cao he

sent to the local workstation, where audio is recreated locally through the use of

synthesizers. Also, music scores cao be searched and viewed on screens on the network

for browsing or sight-reading purposes where printed music is not necessarily required.
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1.S Design of the dissertation

In the next chapter, sorne recent papers on other OMR research will he reviewed. Many

of the image processing and pattern classification techniques used in the program are

explained in Chapter 3. Chapter 4 describes the program, and concluding rernarks are

presented in Chapter 5.
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2. REVIEW OF OMR RESEARCH

Until recently, research into OMR has been restricted to two MIT doctoral dissertations

(Prusslin 1966, Prerau 1970). With the availability of inexpensive optical scanners, much

research began in the 1980's. More recent research projects have been reported in issues

of Computing in Musicology (Hewlett and Selfridge-Field, 1987-94). An excellent

historical review of OMR systems is given in Blostein and Baird (1992). Here, sorne of

the Japanese-only papers and other research not covered in that review will he

summarized. Commercial software is now available from Musitek (MIDISCAN), Grande

Software (Note Scan), and Yamaha.

2.1 Aoyama and Tojo (1982)

This relatively early paper, published only in Japanese, contains many techniques that are

used by more recent research in optical music recognition systems. The system is divided

into three stages: input, segmentation, and recognition and syntax check. In the input

stage, the image is binarized, staffline height and staffspace height are obtained, and

stafflines are located. In the segmentation stage, the stafflines are removed and symbols

are segmented using connected component analysis. Finally the segmented symbols are

cIassified and verified.

The following observations about the music score are macle:

1) It is two-dimensional.

2) Spatial information is important.
3) Line drawing, image, and characters are mixed, and their position is not specified.

4) Because of fine lines, high resolution scanning is necessary.
5) Symbols having the same meaning may have different graphic representations,

e.g.,

6) SymboIs are placed according to spatial syntaetic ruIes.

7
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From the recognition viewpoint~ scores contain symbols that are
1) suitable for template matching and
2) suitable for a structural analysis method.

The input score is assumed to he printed and free of broken symbols, but can he of any

size (within limits) and staves May he bent or slightly broken. The system uses a 254-dpi

(dots per inch) drum scanner with 8-bit gray level.

The image is scanned twice. In the first scan~ groups of vertical scan lines are obtained (a

figure shows nine groups across the page~ each group containing a few lines separated by

1 mm). The staffIines are located as follows:

1) Binarization of the scan lines are achieved through the use of a histogram.
2) Y-projection of each group is taken, and if each group contains n lines, projections

with n or n-l pixels are considered to he staftline candidates.
3) By using the result of 2) and creating a histogram of black runs and white runs

from the staffline candidates, staffspace height and staffline height are obtained.
4) The candidates for stafflines are finalized using the information obtained in 3).

In the second scan, because of the large amount of information involved~ each staff is

considered separately. In each staff window, the picture is vertically run-Iength coded

(this is the direction in which the page is physically scanned in their drum scanner).

The system removes most of the staffIines~but to avoid excessive segmentation of

symbols such as haIf-notes and flats when the stafflines are removed, the regions of the

staffline Ieft and right of the mns adjacent to the symboI are marked so as not to he

deleted (see Figure 2.1). At the end, mns that straddle the staffline position and that have

the staffline width are removed.

Figure 2.1 Image after coarse segmentation (Aoyama and Tojo 1982).

Next, black noteheads are searched with a template on staffiines or between stafflines,

and temporarily removed if found. The black noteheads are only temporarily removed

because the real goal of this section is to find holes (in flats, half noteheads, and whole

noteheads). Once found these symbols can he marked so that when the rest of the

8
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stafflines are removed the symbols will not be fragmented. The holes are detected by the

system looking for short horizontal white runs between stafflines. Once the holes are

marked the black noteheads are restored, and stafflines are finally removed.

The resulting image is segmented through connected component analysis. The height and

the width of the bounding box of each segment are used to coarsely separate the

connected components ioto ten groups (see Figure 2.2). The height and width are

nonnalized using the staffspace height.

- ! •.
!.~ i ~
;1 :. Llf
;- hd l~1--Il mt

pj
;.l

.i Il.:il: ie:!!J)
-i i 1~li,1 rd
fi ::: 0
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2 'Ir · :... ,.ltiNg: ---- ••• r'i1T"! ~
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Figure 2.2 Coarse classification (Aoyama and Tojo 1982).

In the group with flagged notes and beamed notest flags and beams are separated from

noteheads by removing thin regions (stems). Analysis of the note configuration is

perfonned by way of features such as widtht heightt center of gravity, ratio of area 1area

of the bounding box, head count, flag count, and H-type (any of Il head-stem

configurations).

In another group of accidentais and rests, a tree classifier based on horizontal and vertical

run-lengths is used to separate the members of this class. A table containing infonnation

about relative position of components is employed to recognize composite symbols Ce.g.

~ ~ r."'I,:).
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Finally, syntax rules conceming the position of symbols and the constant number of beats

in a measure are used to double-eheck the recognition result. The spatial rules are:
1) key signatures appear after the clef syrnbol;
2) if there is a treble clef and key signature starts with a sharp, the sharp must he on

the top staffline;
3) accidentaIs appear to the left of the notehead.

Although not implemented, the possibility of recognizing expressive markings (pp,

andante, a tempo, etc.) by their character count is suggested.

2.2 Maenaka and Tadokoro (1983)

Maenaka and Tadokoro aimed at building a system that would he portable, compact,

easy-to-use, and inexpensive. To meet these design goals, they used an 8-bit

microprocessor (MC6809) and a TV camera as input device. They mention the possibility

of using a facsimile machine as an altemate inexpensive input device. The overall system

architecture is shown below (sec Figure 2.3).

416x480x2

i.n~rn.1 bu.

%/0

c:hanne1

Bb1.t a1.CJ:'o
proce.aoJ:'

HC6809

{

Figure 2.3 Overall architecture (Maenaka and Tadokoro 1983).

Since the maximum address space on an 8-bit processor is 64K bytes, which is not large

enough to address the entire image information, a separate independent memory is used

for the image. Although the memory had the capacity to store 1024(H) x 512(V) x 4-bit
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of video information, the cameraIs hardware limitations resulted in only 416(H) x 480{v)

x 2-bit subset of usable memory.

A simple memory access method is devised to access a pixel and its square neighbouring

pixels 50 that filtering, projection calculations, and other basic pattern recognition

algorithms can he performed efficiently. The TV camera is equipped with zoom lens and

close-up lens is fixed on a camera stand. Three standard 1QO-watt lamps are used for

lighting. Due to camera limitations, sheet music size of A4 format had to he divided into

four sections. Adjusting the gain and the bias of the analog-to-digital converter and the

lighting eliminated the need to use the histogram method or notchless binary

transformation method for preprocessing. A simple fixed binary threshold method was

sufficient for successful pattern recognition. Yet, because of the optical characteristics of

the close-up lens, the four corners of the images were baclly distorted. The paper also

discusses the problem of the change in the aspect ratio during the acquisition.

The processing time of the system will he of an order of magnitude slower than if it uses

a minicomputer system; hence, an effort was made to keep the processing algorithms

simple and to avoid excess access to large image areas. It was decided not to implement

expensive algorithms such as high-order pattern matching and spectral analysis.

The following symbols are considered a bare minimum set of music fonts and are used as

recognizable objects: treble clef, bar Hne, double barline, repeat barline, final barline,

whole note, half note, quarter note, eighth note, sixteenth note, beamed eighth and

sixteenth notes, whole rest, half rest, quarter rest, fiat, sharp, natural sign, and dot of

prolongation.

In arder to find a fragment of the target object, the pattern in the ith space of a staff, Si (x)

is defined as:

S;(x) =f(x,ys(x» + (2.5 - i)a),

{
0, if pixel is white;

where f(x,y) =
1, if pixel if black.

ys(x), is the position of the middle line in the y-direction (the vertical axis), and a is the

space between stafflines.
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P(X) == I,Sj(X)
i=O

counts the number of spaces, at x, contained in the object fragment. P(x) can he used to

locate a symbol but it can also he used for classification.

To track the position of the five stafflines the following algorithm is used. B(i) shows the

correlation against the position of the current five lines and is defined as

S N

B(i) = I,I,f{x+ j'Ys(x)+(2-k)a+i)
j=1 ;=0

i = (l,O,-I).

IfB(l) > B(O) > B(-1)~ Ys(x + 1) = Ys{x)-1.

IfB(-1) > B{O) > B(1) ~ Ys (x + 1) =Ys(x) + 1.

Thus the position of the middle stamine at the next position, Ys(x + 1), is incremented or

decremented by 1 relative to Ys{x), the current position of the middle staffline.

Because a simple method usually means shorter processing time, the fixed-point

sampling method and the Sonde method (counting of black-to-white transitions) are used

for recognition of the objects.

The objects are first coarsely classified into three groups. At any point x if P(x) > 0 and
4

I,[Si(X) * Si {x + 1)] > 0 (to allow for noise), then the abject is classified as follows:
;=0

Class A if P{x) =1,

Class B if P(x) = 2, and

Class C if P{x) ~ 3.

To further cIassify the abject, certain numher of fixed regions are sampled to find any

black pixels. For example, to find eighth rests, six regions are sampled. The six-bit long

vector is compared with the standard pattern. If a series of tests fails, the object is

considered to he a musical note and proceeds to the next stage. The size of the region for

sampling is adjusted according to the size of a staffline height.

12



( 2.2.1 Classification of notes

If P{X), which is a note candidate, has the value 1 or 2, it is either stem-Iess or bas stem

up (remember that P(x) basically counts spaces that have black pixels in them), so that

the smallest i with Si =1 is chosen as the possible position. If P{x) ~ 3, it is considered

to he a note with stem down, and thus the largest i with Si =1 is chosen as the possible

position of the notehead.

Given i, there are still three possibilities for the position of the notehead: the notehead

can he in the space, on the line above, or on the line below (see Figure 2.4). Ta precisely

determine the position of the notehead, the area below and above the enclosing stafflines

is traced.

;i..~

(Sl.-L) -----

Figure 2.4 Possible position of the notehead (Maenaka and Tadokoro 1983).
(

Ca)

ez/o

(b) (c)

(

The existence of stems and flags cao he detennined by sampling fixed neighbouring

regions. To distinguish between a black notehead and a white notehead, two different

aIgorithms are used depending on whether the note is placed on the staffline or between

the staffIines.

For the notehead between two staffIines, the Iines equidistant from the two stafflines are

scanned from left ta right. If the black pixel changes ta white before the notehead ends

the note is considered white, otherwise it is considered black. For the notehead that is on

a staffline, the area around the notehead is scanned vertically to look for black-ta-white

transition. This scan is perfonned severai times at different positions a10ng the horizontal

axis. If ooly a very small number of vertical scans have the transition, then it is

considered black; otheIWise it is considered white (see Figure 2.5).
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Figure 2.5 Finding white noteheads (Maenaka and Tadokoro 1983).

2.2.2 Classification of beams

When there is a beam, P(x) ~ 1, 50 that the existence of beams must he checked before

proceeding with classifications for notes and rests. The vertical SUffiS of black pixels are

calculated for regions wider than the width of a notehead. If there is a sudden change in

the SUffi, the position is notOO, and P(x) is reducOO by one and then passed onto one of

the three classes (see Figure 2.6).

1 1

aWllR«aumz. : la*'! ., ,~. ~'J l'
aumR»awr&L: ta'" '75'· i!,."

Figure 2.6 Finding beams (Maenaka and Tadokoro 1983).
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2.2.3 The output format

As real-time process was not possible and as there was no need to share the data, the

output was coded in a way convenient to the sound generating device (MIDI was not yet

available).

2.2.4 The experimental results and observations

The various algorithms are coded in Pascal and simulated on a computer system with the

same microprocessor; thus it is estimated that it ran probably ten times slower than if

everything had been coded in an assembler language and if a specialized memory access

method had been used.

2.2.5 Recognition results

Because of the poor quality of the image and the noise, sorne of the algorithms are not as

robust as eXPeCted. Also, owing to the large number of parameters involved, such as

weights for the fixed sampling and beam windowing width, the correct choices were

difficult to find. Further, the values had to he changed depending on the contrast level of

the input image. The error rate is reported to he less than 1 error per image (114 of page);

the accuracy can he increased by increasing the sampling points, but that aIso results in

increase in process time. The process time for 3 measures of music containing 1 quarter

note and 23 beamed eighth notes was 4 minutes and Il seconds. In general, depending on

the score, it took 4 ta 10 minutes to process one line of monophonie music.

2.3 Kim, Chung, and Bien (1987)

This paper presents a complete OMR system using a TV camera as input and mechanical

robot for playback. Unlike the WABOT-2 system (Matsushima 1985), this one is

designed to recognize music scores with different font size under poor illumination and

without special hardware. The five major processing steps are: preprocessing, coarse

classification, fine classification, music syntax check, and interface to music performing

device.

The music symbols recognized include: flagged and beamed notes and rests up to 16th

note value, treble and bass clef, single and double bar lines, sharp, flat, natural, five
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simple time signatures, and key signatures up ta three accidentais. The system also makes

the following assumptions:
1) music symbols are darker than background;
2) music symbols are randomly distributed on the staves; and
3) the distance between two symbols is Iarger than a quarter of the staffspace.

In preprocessing, an input gray-image is enhanced by the 3x3 Laplacian convolution

operator:

H=[=: ~; =:]
-} -} -1

ta remove blurring between adjacent symbols.

The staff detection algorithm is as follows:
1) Create histogram of average gray-leveI of horizontallines.
2) Assign threshold that maximizes the expected value of the between class variance.
3) Label horizontal lines as staffline candidates depending on the threshold.

A gray-Ievel input image is converted ta a binary image by adaptive thresholding. At the

same time each staff nucleus (staff and symbols belonging ta that stafO is separated from

the others.

Ta remove the staftlines, each point x on a staftline, is kept if the vertical neighbourhood

satisfies one of three conditions: If only one pixel above is black, or if both of two pixels

below are black, or if the four pixels above and four pixels below contain at least five

black pixels. Otherwise, the point x is removed.

X-projection is used for symbol segmentation. Coarse classification is perfonned on each

segmented symbol using the height and the width of the minimum bounding box after

normalization by staffspace height. The symbols are classified into one of the nine

groups. Four of the nine groups or regions in the height/width space (Prerau 1970) need

no further processing since there is only one type of symboI within these classes. For the

rest of the classes, fixed partial template matches and the Sonde method are used ta

finalize the classifications of the unknown symbols. Simple music syntax is invoked ta

check and correct relative duration and pitches of notes.
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2.4 Martin and Bellissant (1991)

In the project by Martin and Bellissant (1991) a neural network is used both for staffline

removal and connected component object classification.

2.4.1 Skew correction

For the skew correction of stafflines, the concept of chord is introduced. The chord of

orientation 8 in P is the discrete !ine segment of sl0Pe 8 inscribed in connected

component C, where P belongs to C (see Figure 2.7).

• cr..c..

Figure 2.7 Chord of orientation 9 in P (Martin and BelIissant 1991).

The chord length L(P, 8) is defined as the distance between the two boundary points of C

that intersect with the chord. In the continuous case, there would be an infinite number of

chords of 8 at P, but the number is finite in a discrete case, and if one limits 8 to he ± a

few degrees, the number is greatly reduced.

Assuming that the whole page is skewed al sorne number of degrees ("Iess than one

degree practically" [Martin & Bellissant 1991b, 418]), ail points in the center column of

the entire image are considered P and a few values of 8 are examined to find Po and 80
so that L(Po, (0) is maximized. Then rotation with -80 center at Po is applied to the

entire image for deskewing. The chord length is calculated using an efficient line-tracing

algorithm.
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2.4.2 Finding and tracking the staves

Coarse approximation of the position of the staffline is derived by taking the y-projection

of the entire unskewed image. This information is used to erase stafflines not overlaid by

music symbols. Also, the upper and lower bounds of each staffline are computed,

enabling greater accuracy in evaluating the position of the noteheads.

To erase the stafflines, each column is scanned; if a black run-Iength is found near the

position of the y-projection histogram, has similar width and does not belong to a symbol,

then it is erased. The problem is how to detennine if the black rens belong to a symbol or

note In other words, the black run has the width of the staffline but it may he part of a

symbol, e.g., slues, bass clef, etc. To solve this problem, a lar~er context is considered.

Ideally, if the point does not belong to a symbol, there will only he one "long" chord at

the horizontal, i.e., at 9 =o. Yet in practice, due to noise and distortion, the longest chord

may not actually occur at 9 =0, so a multi-Iayered neural network with 228 inputs using

gradient back propagation is used to recognize whether a point belongs to a symbol or

not. The window used for chord calculation is SOx30 pixels centered at the center of the

possible staffline (the black-run). This prevents most of the points belonging to a symbol,

but also part of staffline, to he erased. The procedure also leaves sorne points not

belonging to symbols intact. That artifact will he removed at a later stage.

Apparently, the notes are classified by sorne ad-hoc rule-based system using elliptical

shaped template matching. The vertical and horizontal Sonde method is used to count the

number of flags and beams attaehed to noteheads and stems. The other symbols are

cIassified by thinning the symbols which are then processed by another neural net. After a

classical thinning operation is performed, sorne points are marked as endpoints, junction

points, and "bending" points. The minimum eoclosing rectangle, which has been size­

nonnalized, is arbitrarily partitioned ioto windows. A set of binary valued variables is

used as input to the net. There are two classes of variables. One is of the type (t, w),

where t is one of end point, junction point, and bending point, and w is a window. The
other type is of the fonn (w;, Wj ), i ~ j, for ail i and j, where (wi' W j) = 1, if at least one

segment of the skeleton bas one of its extremities in w; and the other in wj , otherwise

(w;,Wj) = O.
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The neural net used here seems to include a decision-tree building algorithm to include

specialized hidden ceUs that are connected only to certain input ceUs (features), as weIl as

totally connected hidden ceUs, those that are connected to aIl input ceUs.

The authors conclude, despite the reported 96.5% recognition rate of the net, that

uperformance in the classification area is less impressive when compared to statistical

methods; we noticed, as others before, that a nearest neighbour classifier is usually

enough to reach the same recognition rate [as] best multi-Iayer perceptron.... But it should

he noted that nearest neighbour can also he implemented as multi-Iayer automata

networks" (Martin and Bellissant 1991b, 1109).

2.5 McGee and Merkley (1991)

The subject of recognition is lined notation of chant with square neumes (see Figure 2.8).

The elimination of four staffIines is performed by finding "sufficiently long" thin

horizontal lines. At the same time they are straightened. Classification is performed using

a set of bounding rectangles for each neume. The authors have also experimented with a

Uthin-line corling" method originally developed for fingerprint identification for neume

classification. The input resolution is 300 dpi.

Figure 2.8 Sample notation (McGee and Merkley 1991).

2.6 Sicard (1992)

Sicard uses a rather Iow-resolution 100 dpi input. The staffline detection uses a y­

projection and fails if the skew is more than ±100
• The entire page seems to be rotated

and stafflines are removed ~'using an algorithm similar to [Roach (1988)]." Different

algorithms are specialized for different classes of symbols: vertical run-lengths are

calculated for finding thick Iioes (beams); verticallines (stems and barlines) are located

by using the x-projections; accidentai identification involves a thinning algorithm;

noteheads are localized using "edge detection, break-point extraction, and diameter
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evaluation methods" (Sicard 1992, 575); and other symbols are identified using

templates. Sicard reports an average 97% accuracy, where the 3% error is attributed to

notehead location errors, with a process time of about three minutes per page on a Sun

SPARC workstation.

2.7 RAMIT (1992)

Yadid-Pecht et al. use a neural network, named RAMIT, to recognize music symbols.

The net used is a one-dimensional version of the two-dimensional Neocognitron

(Fukushima and Miyake 1982). The Neocognitron is a multi-Iayered net that has variable

connection between the cells in adjoining layers. It is shift-invariant, and selectivity to

defonned pattern is adjustable. The net can leam supervised or non-supervised. RAMIT

has two hidden layers in addition to the input layer, which presumably responds to each

pixel. Layer 1 responds to "horizontal lines of Il x1 pixels and Layer 2 responds to three

elements of Layer 1" (Yadid-Pecht et al. 1992, 128). During the preprocessing, the skew

of staffline is determined, and coarse rotation of the whole page is performed. For finer

adjustment, the stafflines are sheared.

2.8 Miyao et al. (1992)

The two interesting features of this system are that it incorporates a music notation

grammar to aid in recognition, and that, unlike most systems, the stafflines are removed

after the notes (including noteheads, stems, flag, and beams) are extracted. (The

description of the research is available only in Japanese).

Three observations are made about music notation characteristics:
1) The position of the clef, key signature, and time signatures can he predicted from

the position of the staff and bar lines.
2) Other symbols, including dots, ties, slurs, tenuto, accent, staccato, fermata, etc., are

positioned relative to stems, barlines, and notes.
3) The size of symbols are relative to staffspace height.

The system finds the position of the staves, then notes are searched and removed. After

the stafflines are removed, the remaining symbols are coarsely grouped according to their

size and position, and symbols are classified by using structural features or template­

matching.
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A piece-wise Iinear Hough Transfonn is used to find the staffline based on the staffline

and staffspace height calculated from vertical black and white run-Iengths. Bar Iines that

span two staves are located using x-projections. The black noteheads are extracted using a

rectangular mask (staffspace height x width of notehead, which is 2 x staffspace height).

The position on the stafflines and another between the stafflines are scanned with the

mask. White noteheads are distinguished from black noteheads by the number of white

pixels in the mask area. The half note and whole note are distinguished using template

matching.

Note candidates found outside of the staff are verified by searching for ledger Iines. If no

ledger line is found, the candidacy is revoked. Given a notehead. stems are searched by

looking at the left and the right edges. If a stem is not found, the note candidacy is

rescinded as weil. Notational mies such as "no three stems to a noteheadt9 are applied to

make sure that recognized symbols are grammatically correct. The number of flags and

beams are detennined by counting the number of black runs near the stems. After

removal of the stafflines, connected components are grouped. by the height. width, and

relative position from the middle staffline. Ail measurements are normalized with

staffspace height.

Coarsely grouped fixed-size symbols are further classified using 6x6 meshed templates.

The symbol is divided into a 6x6 mesh and each mesh is represented by the ratio of the

number of black pixels to white pixels. The thirty-six numbers are represented as a vector

and compared with the vectors of prototypes using Euclidean distance measures. The

unknown symbol is classified to he the same as the closest prototype above a certain

threshold. Unclassified symbols are reconnected by inserting the stafflines that are

removed. and then distance calculation is repeated. For size-varying symbols, such as

slurs and dynamic hairpins, vertical and horizontal run-Iengths are used for classification.

Finally, spatial mIes are used to finalize the classification decisions.

An accuracy of 93% to 98% with a processing lime of 3 to 20 minutes per page using a

Sony (NWS-82 1) workstation is reported. The input scanner has a resolution of 240 dpi.
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2.9 Modaynr et aI. (1992)

The bi-level system described here uses morphological algorithms for symbol detection at

a low-Ievel and a high-level module that verifies the output of the low-level module and

then incorporates notational syntax to aid in the spatial positioning of the symbols. The

authors cIaim that the recognition task can be perfonned in near real time and achieves

accuracy in excess of 95% on the sample they processed, with a peak accuracy of 99.7%

for the quarter and eighth notes.

Sorne of the assumptions made include:
• The stafflines are equally spaced and there are five fines to a staff.
• The size of the different symbols is relative.
• The image does not have a large skew.
• The notes are proportionally spaced relative to note duration.
• AccidentaIs are placed directly in front of the note they alter.
• Stems, in general, go down when attached to the left of the note. They go up when

attached to the right of the note.
• The stem length is normaIly the length of one octave.
• A quarter rest is at the center of the staff.
• A half rest touches the third line above, while a whole rest touches the fourth

staffline below.

To locate stafflines, the image is opened with a 35-pixel wide horizontalline, but the

stafflines are not removed. The structuring elements employed throughout this symbol

detection phase would "loosely" follow the shape of the medial axis (the skeleton) of the

feature shape being sought. This is done to incorporate a certain degree of tolerance in the

detection process. Thus, a few missing foreground pixels, broken edges, blurred corners,

etc., do not affect the output of the symbol detection process.

The system is able to recognize twelve symbols: treble and bass clefs, sharp, flat, whole

notehead, haIf notehead, quarter notehead, eighth rest, quarter rest, stem, beam, and half­

beam. The system runs on an MVI- Genesis 2000 image processing workstation and

takes 2 minutes to process a 512x480 image.

22



(

(

(

2.10 Kobayakawa (1993)

A very efficient recognition system (10 seconds per page) is described. This is achieved

by actively searching for common music symbols. The system consists of Sun SPARC 2

and Ornron Luna workstations, the latter being connected to a 200 dpi scanner and a

Yamaha DX7 MIDI synthesizer.

To locate the stafflines, thirty-two verticallines spread across the page are scanned for

black runs. Any roDS whose length is less than the median of the black ron lengths are

considered as a candidate for a staffline. For each of these candidates, the image is

scanned horizontally and if a horizontalline is found to cover 70% of the score width

then that line is considered a staffline. These stafflines are removed if there is a white

pixel a certain distance above and below the center of the stafflines.

To locate the black noteheads, the image is scanned horizontally for black runs at

staffline positions and center point between the staftlines. Two maxima are found from

the histogram of these run lengths. The maximum with few pixels ("about 2 pixels") are

considered to come from verticalline segments (stems and barlines) and the second peak

("about 15-18 dots") is assumed to he contributed by black noteheads. In the rhombic

(diarnond-shape) region aronnd the center of the longer runs, the number of black pixels

is counted. If the count is greater than 95% of the region then it is considered to he a

black notehead.

The sharp and the natural signs are distinguished from the noteheads by determining that

the distance between two nearby vertical Hne segments are close together. The barlines

are separated from other verticalline segments because of their height being the same as

the height of the staff or longer. If these barlines are close together they are considered

double barlines, in which case, two small dots indicating repeat signs are sought. The

remaining verticallines are considered stems if they are close to a notehead or if there are

noteheads between the two endpoints of the line segment.

After the stems are removed, the side opposite to the noteheads is scanned in the vertical

direction to look for flags or beams. H any black pixels are found, a connected component

is assembled. If the width of the component is less than twice the width of the notehead

and the slant (presumably the angle of the Hne connecting midpoints of the left and the

right edges of the component) is steep, then it is considered a flag.
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The remaining symbols are recognized using template-matching. These templates are

prepared from various example scores, edited with a bit-map editor, then encoded in run­

length format. The reported recognition rates are:

Scenesfrom Childhood. op. 15/6 (Schumann): 99.6%
Fantasie-Impromptu, op. 66 (Chopin): 98.3%
Turkish March (Mozart): 94.8%

2.11 Roth (1994)

The system consists of the following seven steps.

2.11.1 Rotation

To correct skews, the image is rotated by shearing horizontally and vertically. The actual

amount of shearing is determined manually.

2.11.2 Vertical run-Iength statistics

The median lengths of vertical runs of black and white pixels are used to estimate the

staffline height (from black runs) and the staffspace height (from white runs). The size of

ail the staves on a page is assumed to he the same.

2.11.3 Locate and delete stamines

The stafflines are located by searching for groups of five Peaks in the y-projection, then

they are tracked from the middle outwards to get accurate y-position in each image

column. This operation corrects slightly skewed or bent stafflines. Once located, the

stafflines are deleted from the image. In arder not to affect symbols too much, Iines are

deleted only when their width is close to the overall staffline height.

2.11.4 Locate and delete verticallines

By examining the x-projections of each staff, verticallines are located. This task is

refined later through application of the technique of mathematical morphology. Note that

any vertical line segments (thin abjects) are rernoved, which include stems, bar lines, and

lines within sharps, flats, and naturals.
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2.11.5 Connected component labeling

The remaining components are identified. A list of components and references from each

pixel ta the component it belongs to is created. "A fixed space above and below the staff

is included in the region of interest, the total height of the region is three times the staff

height. This a1lows for recognition of up to four ledger lines. For this region connected

components are derived" (Roth 1994, 18).

2.11.6 Symbol recognition

Before symbols are classified, "separated white notehead (due to staffline removal) are

merged and connected black noteheads (due to chorcls) are separated using heuristics"

(Roth 1994, 19). In addition, Roth employs a fairly complex decision tree to cIassify

various music symbols using the following features: height, width, area, and center of

gravity. The location with respect to other components, vertical lines, and stafflines is

also taken into consideration.

2.11.7 Lipsia document generation

Finally the recognized element is reproduced using the Lipsia music notation editor.

Preliminary but successful use of mathematical morphology operators is also reported.

2.12 Summary

Although many innovative OMR systems have been developed over the last decade, there

are major limitations to their use as practical OMR. As mentioned, the number of

different music symbols commonly used exceeds four hundred, yet, most of the available

programs can recognize no more than a few dozen symbols. This is a serious limitation

because these programs are not designed to learn new symbols. The lack of learning

capability limits the recognition of handwritten music as weIl. The automatic recognition

of well-formed handwritten music will he extremely useful for musicians. The AOMR

described here overcomes these limitations by incorporating a flexible leaming

mechanism thus enabling it to recognize virtually unlimited numbers of music symbols,

including handwritten manuscripts.
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3. TECHNICAL BACKGROUND

3.1 Pattern recognition system

In general, a pattern recognition process consists of three major phases (see Figure 3.1).

Segmentation .... Feature
~ Classification- Extraction

Figure 3.1 Pattern recognition system.

In the segmentation phase, objects to be c1assified must he found and isolated from the

rest of the scene. This is accomplished by partitioning a digital image into disjoint (non­

overlapping) regions. Features are sets of the measurable properties of a given symbol,

such as size and shape. The feature extraction phase measures these properties, producing

a set of measurements called feature vector. A decision regarding the classes to which the

object belongs is macle during the classification phase. Classification is based on the

features vector.

3.2 Pattern recognition system design

During the designing stage of a pattern recognition system, strategies and algorithms to

he used for each of the three phases in pattern recognition must he determined.

3.2.1 Object locator

An object locator is a set of algorithms that isolates the images of the individual objects

in the complex scene. In music recognition this is not a trivial problem. Stafflines conl)ect
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most of the symbols. Also, there are sorne music symbols that are made up of dis­

connected components: for example, bass clef, ferma~ and octavo lines. Furthennore,

many symbols such as beamed notes are made up of more elementary objects: noteheads,

stems, and beams. In AOMR, run-length coding (Section 3.5), projections (Section 3.6),

and connected component analysis (Section 3.7) are used along with other specialized

algorithms ta remove the staffiines then segment the symbols.

3.2.2 Feature selection

Feature selection involves deciding which features oost distinguish among the various

object types and should thus 00 measured. (For features considered in AOMR see Section

3.9 below.) The procedure of selecting "good" features is not formalized; as Castleman

states: "frequently intuition guides the listing of potentially useful features" (Castleman

1979, 321). Coyer and Van Campenhout (1977) rigorously showed that in determining

the oost feature subset of size m out of n features, one needs to examine ail possible

subsets of size m. For practical consideration, sorne non-exhaustive feature selection

methods must he employed. Many methods exist for finding near-optimal solutions to

this problem in a finite time, such as sequential forward selection, sequential backward

elimination (Kittler 1978), and branch and bound algorithm (Narendra and Fukunaga

1977, Hamamoto et al 1990). The latter method guarantees the optimal features subset

without explicitly evaluating all possible feature subsets under the assumption that the

criterion function used satisfies the "monotonicity" property. Unfortunately, in AOMR

there is no guarantee that this constraint, or even the more relaxed uapproximate

monotonicity" (Foroutan and Sklansky 1987) can he met. Furthennore, although branch

and bound can reduce the search space drastically, the calculation may become

impractical in cases where there are many features (more than 10-20). It should aIso he

noted, however, that Hamamoto et al (1990) have shown that the "monotonicity"

constraint need not he satisfied in arder to obtain successful results in practice.

The problem becomes more complex as Cash and Hatamian (1987) have shown. The

weighting of each feature used in a similarity measure can markedly improve the

recognition rate. In other words, the optimal use of features involves not only choosing

the correct subset of the features but how much of each feature should contribute to the

final decision. In the branch and bound method, the goal was to find a set of binary

weights for the features (0 or 1), but the problem now is to detennine the weights which
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can he any real number. InAO~ the genetic aIgorithm (3.11) is used to find the near­

optimal set of weights from this infinite possibility.

3.2.3 Classifier

Designing a classifier consists of establishing a mathematical basis for the classification

procedure and selecting the type of classifier structure.

Pattern Classifiers

~~
Statistic

~~

Syntactic

Parametric Non-Parametric

(

(

Figure 3.2 Different types of pattern c1assifiers.

There are two major types of pattern c1assifiers: syntactic and statistic. The latter can he

further divided into parametric and non-parametric classifiers and any of them can he

trained with or without supervision (Figure 3.2).

Syntactic pattern classification explicitly exploits the composite nature of a shape in the

classification process. Syntactic pattern classification is based on obtaining a grammar

relating certain strings of patterns to each other. For example, a grammar can he

constructed for describing an eighth note consisting of a notehead, a stem, and a f1ag.

Statistical classification is based on a statistical measure of shapes. A classifier that

assumes a probability distribution fonction of a given sample is called a parametric

classifier. The Bayes classifier is an example of parametric classifiers. The non­

parametric classifiers do not assume any probability distribution functions of the given

sample. The k-NN classifier descrihed helow falls into this category.

3.2.3.1 Classifier training

Once the basic decision rules of the classifier have been established, the particular

threshold values that separate the classes must he determined. This is generally done by

training the classifier on a group of known objects called the training set. A number of
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abjects from each class, previously correctly identified, constitutes the set. The

measurement space is partitioned by decision lines that minimize the error of the

classifier when tested with the training set. The idea is that if the training set is

representative of the abjects to he encountered in the field, then the classifier should

perform about as weil on the real objects as it did in the training set.

3.2.3.2 Performance evaluation 1Error·rate estimators

The process of learning requires a method of evaluation or self-monitoring. A learning

system must be able to evaluate its own performance so that it can be improved. Here the

leave-one-out error rate estimator is used to evaluate the expected error rate of the

classifier. This estimator is a special case of the general c1ass of cross-validation error

estimates. In k-fold cross-validation, the known abjects are randomly divided into k­

mutually exclusive partitions of approximately equal size. The objects not in the test

partition are independently used for training and the resulting classification is tested on

the corresponding test partition. The average error-rates over aIl k partitions is the cross­

validation error-rate. Thus, when k is one, every sample in the training set is classified

using ail the other samples in the set.

3.3 Nearest neighbour classifier

Loftsgaarden and Quesenbery (1965) proposed a very useful and simple method for non­

parametric estimation of the probability density function p(X) of a random variable X

from N observations of X. This method is known as the k-NN method. The application of

this method to the classification problem is the k-NN rule that classifies an observation

with unknown classification by assigning it ta the c1ass most heavily represented among

its k-nearest neighbours.

3.3.1 Bayes probability of error

Let each of the abjects ta he classified helong ta one of M classes denoted by
Ci' i = 1,2, ... ,M. Let P(Ci)denote the a priori probability of occurrence of abjects

belonging ta class Ci. Let x =(XI,x2' ... ' xd ),x E Ed denote the set of d measurements

(features) made on an object and let p(XI Ci) denote the probability density function of x

given that the pattern on which x was observed belongs to class C:. Then it is weil

known that the decision rule that minimizes the expected probability of error (mis-
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classification) in making a decision on xis to choose class Ci if:

p(xICi)P(C;) > p(xICj)P(Cj ) for aIl j * i.

It is aIse known that the resulting Bayes probability of error, which is optimal, meaning

that the error is the smallest possible, is given as:

-
P~ =1- Jmax;[p(xIC)P(G:>]dx.

Ta be able to use the above Bayes decision rule it is required to know the a priori

probabilities PCC;) and the class conditional probability density functions p(xl Ci) for

all i.

3.3.2 Non.parametric classification

Non-parametric decision mIes, such as the k-NN rule, are attractive because no a priori

knowledge is required concerning the underlying distributions of data. In the non­

parametric classification problem, we have available a set of n feature vectors taken from

a collected data set of n objects (the set of pre-classified samples) denoted by {x,e} =

{(xI'81),(x2 ,82 ),· •• ,(x ll ,8,J}, where Xi and 8; denote, respectively, the feature vectoron

the ith object and the class label of the ith object. The labels 9; are assumed to be correct

and are taken from integers {1,2, ... ,M}, i.e., the patterns May belong to one of the M

classes.

3.3.3 Nearest neighbour rule

The nearest neighbour search consists in finding the closest point to a query point among

N points in a d-dimensional space. The NN rule assigns an unclassified sample to the

same class as the nearest n stored, correctly classified sample. The ooly means by which

the NN method can improve its performances, given a similarity measure, is by

increasing the number of training set patterns: these then have to be stored and compared

individually with any test patterns presented to the system. The most interesting

theoretical property of the NN rule is that, for any metric, and for a variety of loss

functions, Iarge-sample risk incurred is less than twice the Bayes error.

Let x be a new object (feature vector) to he classified and let x~ E {"" x2 ' ••• , XII} be the

feature vector closest to x, where closeoess is measured by sorne similarity measure snch
as Euclidean distance between x and x~ in E d

• The nearest neighbour mIe classifies the
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unknown object to class 0;. Let P; (NN) = Pr{0 *o;} denote the resulting probability

of misclassification (error), where (J is the true c1ass of X, and let P,(NN) denote the

limit of P; (NN) as n --+ 00. 1has been shown by Cover and Hart (1967) that as n~ 00,

the nearest neighbour error is bounded in tenns of the Bayes error by:

Thus, the probability error of the NN-rule is bounded above by twice the Bayes error.

Therefore the asymptotic probability of error of the NN mIe is close to optimal.

(Asymptotic here refers to a very large number of samples). Furthermore, using a suitable

modification such as the k-NN rule, one can decrease the probability of error ta c10ser ta

the optimal.

The main criticism directed at the NN method is the large amount of storage and the

resulting computation involved because it stores all the sample data. Thus there has been

considerable effort in uediting" or "thinning" the data in an attempt to store only a subset

of il. Sorne of these techniques are described below.

3.4 Modified k-NN cIassifiers

The apparent necessity to store aIl the data and the resulting excessive computational

requirements have discouraged many researchers from using the mIe in practice. In arder

ta combat the storage and computation problems, many researchers, starting with Hart

(1968), propose schemes to "edit" the original data so that fewer feature vectors need he

stored. These schemes are based on the idea of selecting a small representative subset of

the training set so that NN classification with the reduced subset achieves a performance

that is close to or better than the performance of NN classification with the complete set.

3.4.1 Condensed k-NN

The editing procedure creates a decision boundary defined by a small number of samples

belonging to the outer envel0PeS of the clusters. Clearly, sampIes that do not contribute to

defining the boundary--e.g., thase deeply imbedded within the c1usters-may as weil he

discarded with no effect on subsequent performance. This is the idea behind the

( condensing technique frrst suggested by Hart (1968).
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The goal of condensing is to construct a consistent subset which, when used as a stored

reference set for the k-NN rule, eorrectly classifies all remaining points in the sample set.

The following a1gorithm creates a consistent subset:

1) Setup two bins STORE and GRABBAG.

2) The first sample is placed in STORE.

3) The second sample is classified by the NN rule, using as a reference set the

contents of STORE. If the second sample is classified correctly it is placed in

GRABBAG; otherwise it is placed in STORE.

4) Proceeding inductively, the ith sample is c1assified by the current contents of

STORE. If classified correctly it is placed in GRABBAG, otherwise it is placed

in STORE.

5) After one pass through the original set, the procedure continues to loop

through GRABBAG until termination, which can oceur in one of two ways:

a) GRABBAG is exhausted.

b) One complete pass through GRABBAG with no transfer to STORE.

3.4.2 Edited k·NN

Edited k-NN was introduced by Wilson (Wilson 1972, Wagner 1973), criticized by

Penrod and Wagner (1977) and modified by Devijver and Kittler (1980). An editing

aIgorithm is used to reduce the number of pre-elassified samples and to improve the

performance of the rule:

For each i:
1) Classify sample Si' using k-NN rule as though it has not been

c1assified.
2) If S; is mis-elassified then discard it.

Thus the edited k-NN edits out "poor" samples and not ooly reduees storage requirements

of the k-NN for the future classification of unlabeled samples but aIso daims to have a

better asymptotie Perfomlance. Mer the criticism of Penrod and Wagner (1977), mostly

on Wilson's leave-one-out procedure, Devijver and Kittler (1980) modified it based on

"holdout" or partitioniog technique:

1) Malee a random partition of the sample set into N subsets SI'S2'··· ,SN.
2) Classify the patterns in Si using S(i+I)modN,i =1,2, ... ,N.

3) Discard ~ll the patterns from the sample that were mis-elassified at step 2.

32



(

(

Furthennore, they suggested the multi-editing method where the algorithm above is

repeated until the last iteration produces no editing.

3.4.3 Other improvements

Dudani (1976) introduced a k-NN rule called the distaoce-weighted k-NN mie. This is a

k-NN classification rule with the facility to weigh more heavily the evidence of samples

nearer to the unknown observation. This is intuitively appealing and promised more

accurate results, albeit at the expense of more computation overhead.

In a recent paper, Parthasarathy and Chatterji (1990) showed that for large sample-size

problems, the oost performance of the traditional k-NN mIe with a mechanism to resolve

ties (either by randomly choosing the winner or by finding one more neighbour to break

the tie) is comparable to the performances of Dudani' s classifier and is preferred because

of the improved computational efficiency.

The use of the k-NN role in practical applications has been frequently ruled out because

of the storage and cornputational complexity. The difficulty cao he partly remedied by

fast algorithms for searching nearest neighbours.

In the effort to make the computation more efficient, Ramasubramanian and Paliwal

(1992) have proposed an algorithm, based on work by Vidal (1986), ta reduce the amount

of distance calculations when searching for nearest neighbours. By pre-ealculating the

distance between all the Iibrary points and sorne arbitrary-fixed anchor points in the

space, then using triangle-inequality, much of the distance calculations between the

unknown sample and the stored samples can he eliminated. Experimental results show a

savings of over 90% in calculation time. The penalty for this method is increase in

storage of O(n(m + 1», where m is the number of anchor points used. Because of the

rather large n used in AOMR, probably a small m would be preferable. If m =1, it will be

possible to order the vectors for an even faster search.

3.4.4 Voronoi diagram and Gabriel graph

Optimal selection of those samples that define the boundary with the complete set can 00

( obtained using Voronoi diagrams. Unfortunately construction of a Voronoi diagram is
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quite demanding in terms of storage and computational complexities. A similar Gabriel

graph can he used which seems to exhibit performance similar to the Voronoi diagram,

yet is much less demanding with respect to storage and computation. The worst case for

Voronoi diagram calculation for n elements in d dimensions will take at least O(n[dl2))

time, while computation time for the Gabriel editing algorithm is between o(dn 2
) and

o(dn3
) (Bhattacharya et al. 1992).

3.5 Ron-Iength coding

Run-Iength coding is a simple data compression method where a sequence of identical

numbers is represented by the number and the length of the rune For example, the

sequence {3 3 3 3 5 5 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6 6} can he coded as {(3, 4) (5, 2) (9,

12) (6, 5)}. In a binary image, used as input for the recognition process here, there are

only two values: one and zero. In such a case, the run-Iength coding is even more

compact, because only the lengths of the runs are needed. For example, the sequence

{ 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 Il} can be coded as {7, 4,

13, 8, 2}, assuming 1 starts a sequence (if a sequence starts with a 0, the length of zero

wouId he used). By encoding each row or column of a digitized score the image can he

compressed to about one tenth of the original size. Furthermore, by writing programs that

are based on run-Iength coding, a dramatic reduction in processing time can he achieved.
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( 3.6 Projections

Projections are the count of black pixels a10ng para1lellines. Here, only the count along

the verticallines (x-projections) and horizontal lines (y-projections) are used (see Figure

3.3).

+y-projection

-l=I

(

x-projection

Figure 3.3 X- and y- projections.

The generalized projection transfonn, called Radon transform of g(x,y) at (s, 6), for the

two-dimensional case is:

[Rg](s, 8) = Jg(s cos 6 - usin 6),ssin 8 + ucos 6)du.

This is the integral of g along a line that passes through the point (scos 6,ssin 6)with

slope -ctn6 (Herman 1979, 81-104). When 6 is TC 12 and 0, the transforms result in x­

and y-projections, respectively:

[R,g](s, TC /2) =fg(u,s)du and [R,g](s, 0) =fg(s,u)du

In the discrete case, given P(i,j) of an m x n digital image, the equations above become:
m

X(j) =}2P(i,j), 0 ~ j ~ n and
;:;0

/1

Y(i) = }2P(i,j), 0 ~ i S; m
j=O

{

In the early part of this research, the projections were used extensively for the music

recognition process. Currently t the projections are used only during the process of

staffline detection.
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3.7 Connected component

The connected component is an important concept in image segmentation when

determining if a group of pixels is considered to he an object. A connected set is one in

which ail the pixels are adjacent or touching. The fonnal definition of connectedness is as

follows:

Between any two pixels in a connected set~ there exists a connected path

wholly within a set.

Thus, in a connected set, one can trace a connected path between any two pixels without

ever leaving the set.

Point P of value 1 (in a binary image) is said to he 4-connected if at least one of the

immediate vertical or horizontal neighbours also has the value of 1. Similarly, point P is

said to he 8-connected if at least one of the immediate vertical, horizontal, or diagonal

neighbours has the value of 1 (see Figure 3.4).

(

••••

(

Figure 3.4 Possible neighbours of 4- and 8-connected components.

Two a1gorithms to find connected components in a binary image are explained below.

The first method requires two scans but is simple. The second method, the one that is

currently implemented in AOMR requires only one scan, but recursion is involved.
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3.7.1 Method 1: Two-pass connected component labeling

The main task is to label each point in each component with a unique value. In the first

scan, for each black pixel P, the three neighbouring pixels above and the left-hand pixel

ofP are examined (see Figure 3.5).

1) If all four are not labeled; P gets a new label;

2) if only one of them is labeled, then P gets that label; or

3) if two or more are labeled, then P gets one of the labels and the fact that

the labels are equivalent is recorded (Le., they belong to the same

component).

••••
Figure 3.5 Pixels examined on the first scan.

At the end of the first scan, every black pixel has a label, and labels in different 8­

connected components are guaranteed to be different. Within a componen4 however,

there may be several different labels. The equivalent pairs that were recorded are sorted

ioto equivalent classes and one label is chosen, arbitrarily, to represent that class, and

therefore the component. In the second scan each point in a component will receive the

same unique number (see Figure 3.6).
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Input

A A A

A A A A A

A A A

After scanning the [mt row:

B B C

A A A A A

A A A

After scanning the second row:

B B C

D D D C E (0=8)

A A A

After scanning the third row:

B B C

D D D C E

D F C (E= C)

After the second scan:

B B C

B B 8 C C

B F C

Figure 3.6 Two-pass connected component labeling.

3.7.2 Method 2: Depth-first tree traversai

Since the entire page is converted to vertical run-length representation in AOMR, an

aIgorithm to find connected components using this representation was developed.

The goal of this analysis is to label each pixel of a connected component with a unique

number. This is usually a time-consuming task involving visiting each pixel twice,

labeling and re-Iabeling (see above). By using graph theory (depth-first tree traversaI) and

the vertical black run-Iength representation of the image, the processing time for finding

connected components can he greatly reduced.
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Here is the overall aIgorithm:

1. AlI vertical runs are first labeIed, UNLABELED.

2. Start at the Ieftmost coIumn.

3. Stan at the first run in this coIumn.

4. If the run is UNLABELED, do a depth-first search.

5. If oot last run, go to the next run and repeat Step 4.

6. If oot last column, go to next column and repeat Step 3.

The basic idea, of traversing the tree structure, is to find ail runs that are connected and

label them with a same number. A run X on columo n is a father to another run Y. if Y is

on the oext column (0 + 1) and X and Y are connected. Y is calIed a child of X. In a

depth-first search, ail children of a given father are searched first recursively, before

finding other relatives. such as grandfathers. Note that, a father can have any number of

sons and each son may have aoy number of fathers. Also, by definition of run-Iength

coding, no two runs in the same column cao he connected directly. The result is a

representation of the image that is run-Iength coded and connected-eomponent labeled.

providing an extremely compact. convenient, and efficient structure for subsequent

processing.

3.8 Features

Features are sets of the measurable properties of a given symboI. The feature extraction

phase measures these properties, producing a set of measurements caIled a feature vector.

There are many special characteristics of music scores that cao be exploited to select

appropriate features that may aid in the classification. Scores are often shared in the

orchestra and in the church, and therefore tend to he rather large and have gross and

global graphical features so that they can he read from a distance. The scores are aIso

meant to he read in real time; thus, they are designed to he read quicldy which also led

the designers of music symbols to concentrate on global features rather than on details.

The following features are currently us~d in the AOMR. system: width; height; area of the

object (Ao); and area of the bounding box (Ab =width x height); rectangularity: Ao 1Ab,

which represents how weIl an object fills its bounding box; aspect ratio: width 1height,

which cao distinguish slender abjects from roughly square or circular objects; number of

hales, and normalized central moments which provide a more detailed numerical

description of the shape.
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Other potential features are Iisted below but are not currently implemented (Figure 3.7).

One of the reasons they are not currently implemented is that most of these require

boundary points. Because boundaries in many music symbols can he noisy and broken9
features involving boundary points were thought to he unreliable. But if these boundaries

can he smoothed (by filters)9 or if the broken parts of symbols can he restored before

features are extracted9then features below, involving boundary points9should becorne

useful.

Perimeter: length of boundary

Radii: Rmin, Rmax are the minimum and the maximum distances9
respectively9to boundary from the center of mass

Eccentricity or elongation: Rmax 1Rmin

Euler number: number of connected region - number of holes

(perimeter)2
Roundness or compactness: r = 9

4n(area)
for a disc, r is minimum and equais 1

Fourier descriptors

Chain coding

Figure 3.7 Features not used in AOMR.

3.8.1 Moment

Moment is one of the main features used in AOMR and it has many attractive attributes.

The moment techniques have an appealing mathematicai simplicity and are very versatile.

The method of moments provides a robust technique for decomposing an arbitrary shape

into a finite set of characteristic features. In general, moments describe numeric quantities

at sorne distance from a reference point or axis. Moments are commonly used in statistics

to characterize the random variable distribution and in mechanics to characterize bodies

by spatial distribution of masse Here9the image is considered to he a two-dimensional

density distribution function. Moments have a very interesting property that can be stated

in the following theorem.
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Moment Representation Theorem:

The infinite sets ofmoment {mpq , p,q = O,I, ...} uniquely determine f(x,y) and vice
versa.

What this means is that any image can he completely described by an infinite series of

numbers. In practice this is not feasible, yet being able to obtain a series of numbers,

especially the low-order moments that descrihe a shape, is nonetheless very useful. In

fact, the low-order moments tend to describe more global shape characteristics than

higher-order moments which tend to he noisy and unreliable shape descriptors in digital

images.

Prokop and Reeves state that "a major strength of this approach is that it is based on a

direct Iinear transformation with no application-specifie lheuristic' parameters to

determine." On the other hand, Ua major limitation of the moment approach is that it can

only he directly applied to global shape identification tasks" (Prokop and Reeves 1992,

458). This fits precisely with the objectives of music symbol recognition where global

shape is the most distinguishing feature, as opposed to, for example, alphabets or Chinese

ideograms where the details are more important. The objects of recognition using

moments in other machine classification systems include aircraft (Dudani et al 1977),

ships (Smith and Wright 1971), buildings, and bridges (Gilmore and Boyd 1981). Note

that these objects are classifiahle by global shapes.

3.8.1.1 Cartesian moment defmition

The two-dimensional Cartesian moment, mpq , of order p +q, of a density distribution,

f(x,y), is defined as

mpq = JJxPyqf(x,y)dxdy.

The two-dimensional moment for a (M x N)digitized image with discrete density

distribution g(x,y), is

M-IN-I

mpq =I,I,xPyqg(x,y).
z=o y.=o

A moment set of order n consists of aIl moments, mpq , so that p + q ~ n and contains

t(n + I)(n + 2) elements.
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Various types of moments are available (orthogonal, rotational, and complex moments, as

weIl as moment invariance). Here, relatively simple normalized central moments are used

as only the size and location invariance is needed for music symbols; orientation

invariance is not required.

3.8.1.2 Properties of moments

The low-order moment values represent well-known fundamental geometric properties of

a distribution or a body.

3.8.1.2.1 Zeroth-order moments: Area
The definition of the zeroth-order moment 17100, of the image g(x, y),

M-IN-I

"'00 = L Lg(x,y)
z=O )'=0

represents the total mass or the area, if g(x,y) is binary, of the given image.

3.8.1.2.2 First-order moments: Centre of mass
The first arder moments, {~o' Inol }, are used to locate the center of mass of the object.

The coordinates of the center of mass (x,y) are given by

H the object is moved so that the centre of mass is at (0, 0), then the moments computed
for that abject are referred to as central moments and are designated by J.l pq' The central

moment of order (p + q)becomes

M-IN-1

J.l pq = LL(x - x)P(y - y)qg(x,y).
z=o y=O

(Note that J.l1O = J.l01 =O.)
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( The nonnalized central moments denoted by 11pq are invariant to size:

-!!..eLl1pq - r'
J.loo

where

p+q
r=--+l, p+q=2,3,...

2

These nonnalized central moments are invariant to the scaling and translation of an

image.

3.8.1.2.3 Second-order moments
The second-order moments, {17lo2,~ l'1nw}, known as the moments of inertia, can be used

to determine the principal axes of the object, where the principal axes may he described

as the pair of axes about which there are the minimum and the maximum second moment.

Other useful object features involving the second-order moments include:

( Orientation:

Oriented bounding rectangle: the smallest rectangle enclosing the object that is

also aligned with its orientation.

Best-fit ellipse:

Eccentricity :

the best-fit ellipse is the ellipse whose second moment equals that

of the height.

indicates the distribution of the mass.

(

E =~(J.l--=20=---~J.l...;;;02~)_2+_4.;....J.l~1I
area
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Radii ofGyration : '~e radii of gyration about the origin is the radius of a circle

centered at the origin where aIl the mass may he concentrated"

(Prokop and Reeves 1992,440):

ROGcom = ~Jl20 +Jl(Jl
J.loo

3.8.1.2.4 Higher-order moments
The two third-order central moments, {J.l30,P03}' describe the skewness of the image

projection. Skewness is a c1assicai statistical measure of a distributionls degree of

deviation from symmetry about the mean. Two of the fourth-order central moments,
{J.l40,P04}' describe the kurtosis of the image projection. Kurtosis is a classical statistical

measurement of the "peakedness" of a distribution.

3.8.1.3 Moment computation

In the actuaI software implementation of moment caIculation the following equalities are

used to drastically decrease computation time:

J.loo = mao
J.l'1IJ ="'-20 - xm10

J.lm =1ncn - YTnoI

J.ll 1=m,1 - Ym.o
J.l30 =~ - 3x~ + 2x

2m,o
PI2 = lnt2 - 2y"'t 1 - X1nm + 2y2m,o

#21 =~I - 2xlnr 1 - YTnm + 2x2mal

J.103 =mm - 3Y1nm +2x
2m,o

3.9 Similarity measure

Once the features of the objects are measured and assembled ioto a vector, a method to

compare these vectors for "similarity" is needed. There are many ways to define

"similarity" or "closeness" of two vectors. Since these are subjective tenns, the similarity

measure that results in accuracy and efficiency is chosen. Unlike other classifiers, where

one measure is decided in advance, for adaptability purposes many different measures

cao he implemented in AOMR. Hence different measures cao complement each other in
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classification design (in terms of confidence levels). In different environments sorne

measures may he more useful than others.

3.9.1 Common metries

Three common metrics used are called City-block, Euclidean, and Chessboard, these

being special cases of the Minkowsky metric which is defined as:

Note: The variable x represents the known vectors in the stored Iibrary and y represents

the unknown vector to he classified.

City-block (p =1)

Il

dl = L/x; - Yil
i=1

Euclidean Cp = 2)

(

Il )1/2
d,. = ~(Xi _ y.)2

Chessboard CP = co)

d =Maxlx. - y·1
- ieN ' r

Another metric proposed by Chaudhur et al. (1992) is defined as:

1 n

dN = Ixixy - Yixyl + n -ln-2J.i~lxi - Yil·
2 I~UY

where IXi - Yil is maximum for i =ixy, and

LaJ indicates the integral part of a, i.e., the largest integer S a.

The following similarity measures require statistics about the existing feature vectors

already in the library.
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3.9.2 Mahanalobis distance

Il (- )2
d" =L Xi-Yi

i=1 ci;

This measure (Cash & Hatamian 1987,303) is attractive because the number of

comparisons required is constant regardless of the size of the library.

3.9.3 Weighted normalized cross correlation

(Cash & Hatamian 1987,303)

Il

LWix;y;
R =---;==.......;=...1 _

where wi are the weights.

Sorne of the possible definitions for the weight are:

1 _ a. a.
wi =~,W; = Gi,Wi =-,'1' andw; =~.

G i Xi Gi

3.9.4 The problem of evaluating weights

The weights cao he used in measures other than the weighted normalized cross

correlation (3.9.3). For example, weighted Euclidean distance can he defined as:

(

Il 2) 1/2

d2 = ~ w;(X; - y;) ,

where wi are the weights.

Those features that are found ta he more reliable than others should he given more

importance when making classifications. The idea behind this is to try to make the intra­

class distance as small as possible. For the Euclidean distance measure, weights cao he

adjusted so that the more reliable features make larger contributions ta the distance

between two feature vectors. The problem now is how ta select the appropriate weighting

factors.
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Determining which weights will result in the most accurate classification is an extremely

compute-intensive task, for the optimal set can only be obtain by examining ail possible

combinations (Foroutan and Sldansky 1987). Fortunately, the task can he perfonned both

through background processing and by using idle resources of workstations on a network.

The exhaustive search for optimal set of weights, however, remains intractable (testing

with five different values for weights for all features would take severai thousand years

on the fastest workstations available today). Sorne improvements can be made to speed

up this calculation as described below, yet, the vast improvement for this problem came

from applying the genetic aIgorithm in the selection process as explained in Section 3.10.

3.9.5 Reducing similarity measure computation time

As Bryant (1989) notes, it is aImost never necessary to finish the distance calculations,

since the current minimum distance is known. In summation-type similarity measures,

one can exit the loop when the running total exceeds the minimum distance a1ready

calculated.

BYreordering the feature vector in descending values of the weights, further increase in

the efficiency of the calculations can he obtained, since the features with higher weights

will contribute more to the final distance than those with smaller weights.

3.10 Genetic a1gorithms

Genetic algorithms (Holland 1975, Davis 1987, Goldberg 1989) are used here to find the

optimal set of weights for the feature vectors during distance calculations. With the

henefit of this aIgorithm, the entire AOMR system has a greater chance of survival. It

allows the system to find, within a reasonable amount of time, the near-optimal set of

weights, whereas under normal circumstances, the exhaustive search would take too long

to find such a set.

Genetic algorithms are currently used in problem-soIving systems based on computa­

tional modeIs of the evolution of individual structures via processes of selection and

reproduction. More precisely, genetic algorithms maintain a population of individuals

that evolve according to sPecific ruIes of selection and other operators such as crossover

and mutation. Each individual in the population receives a measure of its fitness in the

environment. Selection focuses attention on high-fitness individuals, thus exploiting the
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available fitness infonnation. Since the individual's genetic information (chromosomes)

is represented as arrays of binary data, simple bit manipulations allow the implementation

of mutation and crossover operations.

The entire process may he described as follows (see Figure 3.8):

1) Evaluate the fitness of all the individuaJs in the population.

2) Select parents, recombine the Ugenes" of the selected parents to produce

offspring.

3) Perturb the mated population stochastically (mutation).

4) Discard the old population and iterate using the new population.

Each individual in the population is evaluated for its fitness using a fitness function.

Given a particular individual, the fitness function retums a single number; this is the

primary place in which the traditional genetic algorithm is tailored to a specifie problem.

Eva1uat.
Population

Termlnate? ...........

no

Select
Parents

Produce
Offspring

~utate

Figure 3.8 overal1process of genetic algorithm.
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During the reproductive phase of genetic a1gorithms, parents are selected and mated,

producing offspring that will comprise the next generation. A selection operator is used to

favor the fittest parents for reproduction. High-fitness individuaIs May he used several

times for reproduction and low-fitness individuals May not he used at aIl. When two

parents are selected, their chromosomes are recombined to produce new offspring using

crossover and mutation operators.

Crossover operators exchange substrings of two parents to obtain two offspring. The

purpose of the crossover operator is to combine useful parental information to forrn new

and, one hopes, better performing offspring. Such an operator can he implemented by

choosing a point at random, called the crossover point, and exchanging the segments to

the right of this point. For example, let

Parent 1 = al a2 a3 a4

Parent 2 = bl b2 b3 b4

aS a6 a7

bS b6 b7

and suppose that the crossover point has been chosen randomly as indicated by the colon.

The resulting offspring would he:

(
Child 1 = bl b2 b3 b4

child 2 = al a2 a3 a4

aS a6 a7

bS h6 b7

(

Crossover rate is the probability per individual of undergoing recombination.

Mutation randomly alters each gene with a small probability, typically less than 1%. This

operator introduces innovation into the population and helps prevent premature

convergence on a local maximum. The evolution is terminated when the population

attains certain criteria such as simulation time, number of generations, or when certain

percentages of the population share the same function value.

Genetic algorithms have been successfully applied to solve Many optimization and other

computationaIly intensive problems (Davis 1991). In music, genetic aIgorithms have heen

used for timbraI design (Homer et al. 1992, Homer et al. 1993, Takala et al. 1993, Vuon

and VaIimaki 1993) and as a compositional aid to generate pitch patterns (Homer and

Goldberg 1991).
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4. DESCRIPTION OF THE PROGRAM

In this chapter, general workings of the AOMR software is described. The program is

divided into seven sections:

1. Staff removal
2. Text removal
3. Segmentation
4. Feature extraction
5. Classification
6. Score reconstruction
7. Leaming phase

Given an optically scanned page of a music score, the system first locates and removes the

staves. The textual materials, such as lyrics and expression markings are also removed.

The remaining syrnbols on the page are then located and separated from one another for

classification. The classification is dependent on the shape of each symboI. The numerical

descriptions of the shape are called features, the calculation of which is called the feature

extraction. Once the features of the symboI are detennined, they are used for

classification, which means assigning symbol names ta unknown abjects. The score is

then reconstructed ta visually verify the accuracy of the classifier. Finally, the system

attempts ta improve its performance in the leaming phase.

4.1 Staff detection and removal

One of the initial challenges in any OMR systems is the treatment of the staves. For

musicians, stafflines are required ta facilitate rearling the notes. For the machine, however,

they becorne an obstacle by making the segmentation of the symbols very difficult. The

task of separating background from foreground figures is a unsolved problem in many

machine pattern recognition systems in general.

There are two approaches to this problem in OMR systems. One way is to try to remove

the staff1ines without removing the parts of the music symboIs that are superimposed. The

other method is to leave the stafflines untouched and devise a method to segment the

symbols (Carter 1989, Fujinaga 1988).
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In the AOMR system described here, the former approach is taken, that is, the stafflines

are carefully removed, without removing too much from the music symbols. This decision

was taken basically for three reasons: 1. Symbols such as ties are very difficult ta locate

when they are placed right over the stafflines. (See Figure 4.1). 2. One of the hazards of

removing stafflines is that parts of music symbols may he removed in the process. But due

ta printing imperfection or due to damage to the punches that were used for printing

(Fujinaga 1988), the music symboIs are often aIready fragmented, without removing the

stafflines. In other words, there should he a mechanism to deal with broken symbols

whether one removes the stafflines or note 3. Removing the stafflines simplifies many of

the subsequent steps in the recognition process.

Figure 4.1 Tie superimposed over staff.

4.1.1 The complexity of the process

The following procedure for detecting and removing staves may seem overly complex, but

it was found necessary in order to deal with the variety of staff configurations and

distortions such as skewing.

The detection of staves is complicated by the variety of staves that are used. The five-line

staff is most common today, yet the "four-Hne staff was widely used from the eleventh to

the thirteenth century and the five-Hne staff did not become standard until the mid­

seventeenth century, (some keyboard music of the sixteenth and seventeenth centuries

employed staves of as many as fifteen Iines)" (Gardner 1979,28). Today, percussion parts

may have one to severa! lines. The placement and the size of slaves may vary on a given

page because of an auxiliary staff, which is an altemate or correction in modem editions

(Figure 4.2); omaments staff (Figure 4.3); ossia passages (Figure 4.4), which are

technically simplified versions of difficult sections; or more innovative placements of

slaves (Figure 4.5). In addition, due to various reasons, the stafflines are rarely straight and

horizontal, nor parallel to each other. For example, sorne slaves may he tilted one way and

another on the same page or they may he curved.
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Figure 4.2. An example of an auxiliary staff.

(

......-...
., ~

(

Figure 4.3. An example of omament staves.

Figure 4.4. An example of ossia staff.
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4.1.2 The reliability of staffline_height and staffspace_height

In order to design a robust staff detector that cao process a variety of input, one must

proceed carefully, not making too maoy assumptions. There are, fortunately, sorne reliable

factors that cao aid in the detection process.

The thickness of stafflines, the staftline_beight, on a page is more or less consistent. The

space between the stafflines, the staffspace_height, also has smaii variance within a staff.

This is important, for this information can greatly facilitate the detection and removal of

stafflines. Furthennore, there is an image processing technique to reliably estimate these

values. The technique is the vertical run-Iengilis representation of the image.

If a bit-mapped page of music is converted to vertical run-Iengths coding, the most

common black-runs represent the staffline_height (Figure 4.6) and the most common

white-runs represents the staffspace_height (Figure 4.7). Even in music with different staff

sizes, there will be prominent peaks at the most frequent staffspaces (Figure 4.8). These

estimates are also immune to severe rotation of the image. Figure 4.9 shows the results of

white vertical run-Iengths of the music used in Figure 4.8 rotated intentionally 15 degrees.

It is very useful and crucial, at this very early stage, to have a good approximation of what

is on the page. Further processing cao he performed based on these values and not be

dependent on sorne predetermined magic numbers. The use of fixed threshold numbers, as

found in other OMR systems, makes systems inflexible and difficult to adapt to new and

unexpected situations.
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Figure 4.6 Estimating staffline_height by vertical black rons. The graph shows that the

staffline_height of 4 pixels is most prominent.
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Figure 4.7 Estimating staffspace_height by vertical white runs. The graph shows that the

staffspace_height of 14 pixels is most prominent.
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Figure 4.8 Estimating staffspace_height by vertical white runs with multiple-size staves.
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Figure 4.9 Estimating staffspace_height by vertical white runs of a skewed image. The

music used in Figure 4.8 is rotated 15 degrees.
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4.1.3 The process

The locations of the staves must he detennined before they can he removed. The first task

is to isolate stafflines from other symbols to find the location of the staves. Any vertical

black runs that are more than twice the staffline_height are removed from the original.

(See Figure 4.11, Figure 4.10 is the original). A connected component analysis is then

perfonned on the filtered image and any component whose width is less than

staffspace_height is removed (Figure 4.12). These steps remove most objects from the

page except for slurs, ties, dynamics wedges, stafflines, and other thin and long objects.

The difference between stafflines and other thin objects is the height of the connected

component; in other words, the minimal bounding boxes that contain slurs and dynamics

wedges are typically much taller than the minimal bounding box that contains a staffline

segment. Removing components that are taller than staffline_height, at this stage, will

potentially remove stafflines because if the page is skewed, the bounding boxes of

stafflines will a1so have a height taller than the staffline_height. Therefore, an initial de­

skewing of the entire page is attempted. It is hoped that this would correct any gross

skewing of the image. Finer local de-skewing will he performed on each staff later. The

de-skewing, here, is a shearing action; that is, a part of the image is shifted up or down by

sorne amount. This is much simpler and a lot legs time-consuming than true rotation of the

image, but the results seem satisfactory. Here is the algorithm:

1. Take the narrow strip (currently set at 32 pixels-wide) at the center of the page and

take a y-projection. Malee this the reference y-projection.

2. Take a y-projection of the adjacent vertical strip to the right of the center strip. Shift

this strip up and down to find out the offset that results in the best match to the

reference y-projection. The oost match is defined as the largest correlation

coefficient, which is calculated by multiplying the two y-projections.

3. Given the oost correlated offset, add the two projections together and make this the

new reference y-projection. The offset is stored in an array to be used later.

4. If not at the end of the page, go back to Step 2.

5. If the right side of the page is reached, go back to Step 2, but this lime move from

the center to the left side of the page.

6. Once the offsets for the strips of the entire page are calculated, these offsets are

used to shear the entire image. (See Figures 4.13 and 4.14).
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Note that because the run-Iength coded version of the image is used for shearing, only one

operation per column is needed, making the operation extremely efficient.

Assuming DOW that the image is relatively level, Le. stafflines are horizontal, taller

components, such as slurs and dynamic wedges, are removed. The filter here is still rather

conservative, since if a long staff Hne is still skewed, as a component, it may have a

considerable height (Figure 4.15). This precaution is needed because staves on a page are

often distorted in different ways.

The result now consists of mostly staffline segments, sorne flat slurs, and flat beams. At

this point, y-projection of the entire image is taken again (Figure 4.16). The derivative of

the y-projection is used ta locate the maxima in the projection (Figure 4.17). Using this

infonnation along with the known staffspace_height, the possible candidates for the staves

are selected. For each of these candidates, x-projection is taken to detennine if there is

more than one staff, by searching for any blank area in the projection. Also a rough idea of

the left and the right edges of the staff can he determined from the x-projection (See

Figures 4.18 and 4.19).

At this point, the run lengths of the region bounding a staff, are calculated in order to

obtain a more precise estimate of the staftline_height and staffspace_height of this

particular staff. Also, a shearing operation is performed again to make the staff as

horizontal as possible.

Using the y-projections employed during the shearing process, the vertical positions of the

stafflines can he ascertained. By taking an x-projection of the region defined by the

stafflines, the horizontal extents of the staff are determined.
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( Figure 4.16 Y-projection of Figure 4.15.

67



(

- ·50....•

---~- -~J~~~ - ---. ::=-=:---:.~-.:._- --==_---. = - - e.--. _---- -- ---. ---~---

- c a ..
:1_,. _

-:..E...- - -:...--= ==---.--- ~--- -====------ = .= ==== - ======-::;j••":_=
:.:~ - --=. -=-=- = = _-= -~ =.-_- __ _-:1---- -- - ---- -~---- -

- --- ...-..------=s--:

- --=
: : :-------

-.-- -=- - - .:::: -c::

=

==--------==-=-=--:-_--:: : :---- ~: =-=====
====.-~=-=-=-==-======:..=.=======

>-==-
.-----. .­------ --- - ----. _-_-__ ::.: _-_-__-__-_. -__~~':.':.':.':.':._-_-_-- =_ =.=.:=.- ==s.ï E..:

-

{
--=:

-~---~ ~
'==~.=====~:s;:.:====~=_---:;=-====----cs-_____ _:::s" _.=.== =-=

-1==""-
-- ----- ---------------------

:a

:'.=.=--------= .:::~~~~~~:...:=:g~-------- ----
~ c. ......

~

--=-!35!~=S.·_.···_..;v;,
:--

-
--

:t )

(
Figure 4.17 Y-projection (maxima only) of Figure 4.15.
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Figure 4.18 An example of staves placed side-by-side.
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Figure 4.19 X-projection of the top staves of the second system in Figure 4.18.

The next step. knowing the positions of the stafflines, is to remove them. Since the image

now consists mainly of staffline segments (Figure 4.20), the strategy is to delete

everything but the stafflines; then the image can he XORed with the original image so

that. in effec~ the stafflines are removed.

~~~~~~~-~~~ ---~_ _ __ _ _ __ ~ ---- - ~-~~:;[ =-_"=--c!ëSS"_-_- _--=- -====_-__ ~--:.s- _-!! ~ _

Figure 4.20 Isolated staff, from sixth staff of Figure 4.15.

At this point, the staftlines are assumed to he fiat, 50 any components taller than the

stafflines cao he removed (Figure 4.21). This operation differs from the similar operation

perfonned on the entice image, since the more accurate staffline_height that applies to this

particular staff is now available.

-==-===== ==::======~=--== - ---~- - -- -- -- -- -;:; • ---- -=; =------.;;;-- ------- -----~---- -- ---
Figure 4.21 TaU connected components removed.

Also, given the exact positions of the stafflines, components that are between the stafflines

are removed (Figure 4.22).

The result is XORed with the original image. Given two bit-mapped images A and A',

where At is a subset of A (At is derived from A), an XOR operation has the following

important property: AlI black pixels in Al are removed from A. For example, Figure 4.22

and Figure 4.23 are XORed resulting in Figure 4.24.
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Figure 4.22 Objects between the stafflines removed.

Figure 4.23 The original sixth staff of Figure 4.10.

(

(

Figure 4.24 The result of XORing Figures 4.22 and 4.23.

Several examples of the staffline removal are shown in Figures 4.25 to 4.36. The time the

program takes to remove the stafflines, including reading the input image and writing the

resultant image, of 32 pages of differeot types of music, was approximately 20 minutes, or

less than 40 seconds per page on a Sun SPARC 2. Ali of these image processings, such as

filtering and XORing, are petfonned either on the run-length codes or connected

components and oot directly on the bit-map, thus making computations extrernely

efficient.

4.1.4 A note on scanning resolution

The resolution of scanning is 300 dpi (dots-per-inch) which seems to he satisfactory for

standard piano music or instrumental parts that may have eight to ten staves per page. The

300 dpi resolution, however, is not fine enough for orchestral scores or miniature scores.

For these types of scores, scanning resolution of 600-1()()() dpi is needed. IdeaIly, the

thinnest object (usually the stems) should have the thickness of three to five pixels.
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( Figure 4.25 Stafflines removed from Figure 4.10.
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Figure 4.26 Stafflines removed from Figure 4.14.
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Figure 4.27 Stafflines removed from Figure 4.18.
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( Figure 4.29 The original.
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Figure 4.30 Stafflines removed from Figure 4.29.
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Figure 4.31 The original.
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Figure 4.32 Stafflines removed from Figure 4.31.
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Figure 4.33 The original.
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Figure 4.34 Stafflines removed from Figure 4.33.
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Figure 4.35 The original.
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Figure 4.36 Stafflines removed from Figure 4.35.
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4.2 Text removal

In arder to lessen the burden on the classifier, text, such as lyrics and perfonnance

indications, is removed as much as possible. The intention is ta use a separate program,

specialized for optical character recognition, ta process the texts on the page.

Text is distinguished from musical symbols by using the characteristics that text symbols

have basically the same height and are placed side by side. The problem here is similar ta

finding texts in document image analysis (Nagy 1989), where texts need ta he separated

from graphics in maps (Taxt, Flynn, and Iain 1989), newspapers (Akiyama and Hagita

1990), and drawings (Fletcher and Kasturi 1988), or when locating destination address on

envelopes (Jain and Bhattacharjee 1992; particularly difficult here are finding address

labels on the newspapers and magazines delivered by mailing).

Simple yet effective heuristics are used ta locate texts, which cao appear almost anywhere

on the page. First, perfonn a connected component analysis on the entire page. Second,

determine if each connected component May qualify as a letter; if so it must further

qualify to he a letter within a ward, i. e., a single letter is not removed as dynamic

markings such as P, f, or numerals for tuplet notation or fingerings cao he processed by the

AOMR program.

Here are the criteria for a letter:

1. That its Uaverage height" and "average width" are larger than sorne predetennined

minimum value. (this lower limit will skip punctuation markings, which are

considered separately.)

2. That its aspect ratio (height 1width) is within a certain range. This step is needed to

remove slurs and pedaI markings; it a1so removes sorne connected letters.

Note that staves and everything attached to them become very large connected

components and are discarded by the second criterion.
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Here is the criterion for a letter within a ward:

If another letter can be found that is horizontally close ta it~ it is considered a letter

within a ward. The closeness depends on the size of the letters.

The result of the above processes are three classes of connected components:

1. Those considered as letters belonging ta a ward.

n. Those that were too small ta he considered as letters.

m. Those that were possible letters, but rejected because no other letters were found

that were close to il.

The connected components in Class II are revisited to see if they may he punctuations

(period, comm~ quotation mark~ etc.) belonging to one of the letters in Class 1 by the fact

they are close ta them.

Although these simple mies help to eliminate most words on a page, as shawn in Figures

4.37 to 4.47, there are two kinds of cases where this a1gorithm fails. One is when letters

are connected to each other. These result in the Iow aspect ratios, because they have

relatively wider width than a letter. The other is when the letters are touching the staffline,

in which case the elimination is difficult because notes that are attached ta staves may

easily he mistaken for letters.
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( The Ba}·liffli Daughter of Islington

loa.
_'_êl
He - loved tb~ bay - Iifrà clallght - Ûdearn:&t Und i~ 11 - hae - tOIl.

U' TI
10. No, Ilut at ail - y _ lime ~~ waaJd AD· Y cuaD - lt"a-aacc: to hi... .bow.

( 1 ~ wu 1 youm. and a weil bekwed youth, 6 Sbc put off ber IOWD of ,my,
And he wu a squift'I SOlI. And put ou ber pugisb uti~ i

He loved the ba.ylifrs dauprer dar, Shc"s up rD &il' London coae.
That lived iD IslillllaA. Her trUe lem: to require.

2 But lhe wu coy, and wouJd not believc 7 As she watt aJonc the l'OIcl,
Thar he did love ber ta. The~ beinI bot and dry,

No. aor Ir IDY timc sbc wouId 1"I1ctt WIS the awaœ of ber truc love..
Any COWltalaftœ 10 bim show. Al lenph came ricfiq by.

3 But ..ben bis frieads did undenraod 8 Sbe step( rD~ u ml Il any tale,

His foad acl faoIiah miDd. And loat him by the bridle rina ;
They sent him up ta (air LoadoD, • 1 pray)'OU, tiDd sir.lÏ\'C me one penny,

An IJ'Pl'CDtiœ for tG biDd. Ta eue my weuy 1ïmb.'

.. And wben he bad beeo RftD JOIII yea~ 9 • 1 prilbee. sweethean. ClllSt mou teU me
. And bis love he bad DOl seea, VIbcre mat chou WIIIt bom ? •

• M:my 1 reu bave 1 shed Cor ber lite • At lsfiD&ton, kiDd sir,' uid the,
Wha the liale tboulllt of me: ' Whc~ 1 have had many a SoCOm.·

~ Ail me maicII of IlIinpn 10 • 1 prithcc, SftCthean, anal mou (cU me
Wcar rarch 10 .pan and pli, ; 'IAcIhcr rhou dost know

AU but die blylifrs daupru clar ; The biylilrs dluahlcr of IsliftltOll ? '
Sile so:mJy stc* Iny. • Shc', dead, sir, IonClgo.'

( Figure 4.37 The original with text.
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( The Balliff~ Daughter of Islington

, .......1., ..... fil ... o... '1'1•• IW. CJI.".m taU._

Ther••a~ a )'O'ltJa, &ad a weU - bc-lov - rd ) 011Ua,AJld b~ .... sqaire',

la.. He - loved tll~ bay - liffà c1aaght - er dur 'nlat Und ill _ II - liDC . tOD.

But Ihe "'U coy ud wouJd lot bc - Ueve tbat be did love _ ber

10. No" Rut at ail - lime .lie wouJd AD-~' c"an - tt'a-Iacc ta hi.. show.

( n.ere -as 1 yauth. lDd • wdJ bc10Ycd ,oum,
And he wu • squire'. IGD,

He loved lM bayliJf's dau&bœr dar,
TJulr Iiftd iD Illiqum.

But she wu coy. and wouIcI GOt bdieve
"I1UIr he did loft 11ft lOt

No.. nor.r IDY rime sbe wouJd
Any œuntenanœ CO bim sho....

But .ben tus frieods did andentlDd
His foad lDd footisb miDcI,

They sent bim up to rm LDadcm,
An 11'prcDtice for 10 bind.

And when he bac! bccn lCftD Jonc yars,
. And bis love he !lad DOl secn,

• May • leu bave J shed for 11ft sake
\l'ha she littl~ thouCbr of me.'

AIl the lIIIids of IJJiDpm
Wear fonJa 10 sport and play i

AIl but the t.ylilrs daUlhtcr clar i
Shi: tceraly stale ...,.

She put otr ber IOWD of1fty,
And put GD ber pugisb attire ;

SlIe's up ID &il' London eoœ.
Hcr truc 10ft to require.

As she wall aJoac the l'OIeS,
The wathcr beiDc bot and dry,

Thcrc wu shc awue of ha' uue love,
At Ien&th came ridiq by.

Sbe srept tG him,a mi u any rase..
AJId root hint by the bridle rina ;

J pray)'OU, tiDd sir, IÎft me one penny,
To eue my weu)' limb.'

1 prilhœ. sweethan, c:ansl mou tell me
Wbere mat rhou WIll born ? '

• At Islinpon., kind sif,' SlIid sM.
C WheR ( haft had many 1 scom.·

la ( prithft. swcerheut. anst thou leU me
~ mou dost know

The t-yJiJf"s dauahrer of IslinpOll ?
• S~'S dad, sir, 1Gn1_IO.'

( Figure 4.38 Texts extracted from Figure 4.37.
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Figure 4.39 Text removed from Figure 4.37.
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Figure 4.40 The original with text.
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Figure 4.41 Text extracted from Figure 4.40.
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Figure 4.42 Text removed from Figure 4.40.
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i~utdme

imaae Pruœailll lime
SCRen correction âme
oulput time (proc:wed musical notation)

(

(

(

/
/'

o d. TYJ)OIrapbical irregularitics in soun:c:
_ aaff line inconsisœncies (gaps. inqular densicy)
_ warpilll of vertical or horizonral fines
_ incomplete outlincs (of notes. rem. clefs. accidenlaJ sigos)
_ incompleœ falUng of black objectl (notebcads. bcams)
_ OYerlUDS (aems ruMing put beams. ea:.)
_ presence of spurious objects (dots. blobs. grainy background)

o e. Superimposition of abjects:
_ slur crossing stem
_ l1ur rouchinc notehead
_ aem ctOSSil1l dynamics marlcing
__ noœhads in a toile clUJCer

s. Plc:ase sem either one of Ibc musical exa.mples bclow or an optionaJ item (sec Ill) and
record:

L _

b. _
c. _
d. _

1. Handel

Andante larghetto

=lI'~.~~ Pu ' ....U_-:;:-~-~

Il. Clementi

Figure 4.43 The original with text.
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o d. TYIJOIriphica1 irrqularities in source:
__ Italf Une ioconsiscenc:ies (PPS. irreaular density)
__ wupiDl of YerticaI or horizotUa1 lines
__ incompIete oudincs (of nota. ralI. clefs, accidenraJ signs)
_ incompleCe filling of blEt objcds (noteheads, beams)
__ OY'CmllIS (srems ruMing put barns, ete.)
_ presence of spurious objeccs (docs, blobs, painy background)

o e. Superimposilion of objects:
__ slur crossing stem

_ slur fDUChina nt'œhead
_ stem cmssing dynamics marking

noœheIds in a toile c1usœr

input lime
imqe proœaiDldme
screen conection time
DUIpUl time (procesRd musical nolation)

C. _

d. _

8. Please scan either one of me musical eumples below or an optionaJ item (see Il J) and
record:

L

L Handel

ADdaDte larghetto

(

Il. Clementi

Figure 4.44 Text extracted from Figure 4.43.

(
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Figure 4.45 Text removed fram Figure 4.43.
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Figure 4.46 The original.
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Figure 4.47 StaffIines and texts removed from Figure 4.46.
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4.3 Segmentation

Segmentation is the process where symbols are separated from each other. This task is

accomplished by the connected component anaIysis of the page after the stafflines and

texts are removed. The analysis naturally separates the symboIs because, by convention,

MOst music symbols are not connected. In practice, however, symboIs do touch and, of

course, notes in a chord touch each other (see Figure 4.48).

Figure 4.48 An example of attached music symbols.

In most pattern recognition systems, the segmentation stage precedes the classification

stage, i. e., aIl the symbols are separated before being classified. In order to successfully

segment symbols, it is necessary to know in advance, the characteristics of all the

symbols. Since this is not possible in an environment where symbols May he connected in

various ways, such as chords and beamed notes, and new symbols may he introduced, a

more flexible method, which allows further segmentation during the classification stage, is

implemented. The taetic deployed is explained in the Classification (4.5) section. Prior to

the classification, each connected component is analyzed to extract its features.

4.4 Feature extraction

Features are the quantifiable aspects of a given symbol and are sets of the measurable

properties of the symboI. The feature extraction phase calculates these descriptions,

producing a set of measurements called feature vector for each connected component.

The following features are currently used in the AOMR system: width; height; area; area

of the bounding box (width * height); rectangularity: Ao 1Ab, which represents how weIl

an object fHls its bounding box; asPeCt ratio: width 1height, which can distinguish sIender

objects from roughly square or circular objects; average number holes per horizontal and
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vertical scan lines; and nonnalized central moments, which provide a more detailed

numerical description of the shaPe.

4.5 Classification

This phase uses the k-nearest neighbour (k-NN) classification technique to detennine the

class of a given unknown syrnbol on the basis of its feature vector. There are many

reasons why the k-NN classification scheme is well-suited to this application. Aside from

its simplicity and intuitive apPeal, the classification requires no a priori knowledge about

the underlying distribution of syrnbols in the feature space. This enables the system to

learn new classes of symbols. Furthermore, a symbol class may occupy two or more

disjunct regions. This is important because sorne musical symbols such as beams and slurs

vary greatly in their shape and size; and other symbols such as the quarter rest and the

tenor clef have completely different shaPeS dePending on the music publishers (see Figure

4.49). Finally, the most significant reason for using this classifier is its ability to Ieam; that

is, its accuracy improves as more data is collected.

(

(

Figure 4.49 Examples of quarter rests and tenor clefs by different publishers.

As described in 3.3, a measure of the distance between an unclassified symbol and

previously c1assified symbols is calculated between their feature vectors. The class

represented by the majority of k-closest neighbour is then assigned to the unclassified

symbol. Typically, such classes are actual music symbols, such as treble clef, notehead,

and eighth rest, in which case, the program moves on to the next object. There are,

however, four SPeCial classes of symbols that require further processing. These are:

1. STEM_COMPLEX (notes, chords, beamed notes)
2. CURVES (ties, slurs)
3. SPLIT_X
4. SPLIT_Y
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( 4.5.1 Stem_complex

When a connected component is identified as a stem_complex, stems are automatically

removed. The connected component is scanned horizontally and any wide black runs are

removed. Then a connected component analysis is performed on the resulting image, and

components that are narrow and taH are then marked for deletion in the original image (see

Figure 4.50). Simply removing short horizontal black runs will not work because many

things including flags will he removed (see Figure 4.51).

r r .1
. -

Figure 4.50 Removing stems from beamed notes.

{
L-

Il

(

Figure 4.51 Removing stem from an eighth note.

4.5.2 Curves

In order to numerieally define the shape of ties and phrase marks, the Bezier eurve,

originally developed for automobile designs (Heam and Baker 1986, 195), is used. Bezier

curves can define many types of curves with only four points (two endpoints plus two

intennediate points) and are used widely ;n the computer-graphies field. Furthermore, the

Bezier curve is implemented in the PostScript language, used for score reconstruction

below.

In engraved-quality music, the phrase, slurs, and ties are not simple curves. They are thin

at the ends and thicker in the middle. The algorithm to find the Bezier points of a curve
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works oost if the curve has single pixel thickness. Thus, the phrase marks and ties are first

"thinned" using a thinning aIgorithm. Thinning aIgorithms are used in many pattern

recognition problems such as fingerprint identification (Kamesawara and Rao 1978), logic

and electricaI schematic interpretation (larris 1977), and character recognition (Kumar et

aI. 1991). Thinning is a method of reducing the width of a digitized pattern to a single

pixel. The classic aIgorithm by Zhang and Suen (1984) is implemented here.

Given the notation of 3x3 window around point Pl :

the aIgorithm uses two passes as follows:

1 . Pixel Plis deleted from the digital image if it satisfies the following:
a) P2 * P4 * P6 = a (i.e., if anyone of the pixel is 0)
b) P4 * P6 * P8 = a
c) A(Pl) = 1
d) 2 <= B(P1) <= 6

2 . In the second iteration, pixel Plis deleted if it satisfies the following:
a) P2 * P4 * P8 = 0
b) Pl * P6 * P8 = 0
c) A(Pl) = 1
d) 2 <= B(P1) <= 6

Where, A (Pl) is the number of 01 patterns in the ordered set P2, P3, ... , P9, and
9

B (Pl) = I,Pi.
;=2

In order to use the curve-fitting algorithm, one of the end points must he found. This is

accomplished by searching, from top to bottom, and left to right, a point that only has one

neighbour. Once the endpoints are located, the Ieast-squares method is used to find the

two Bezier control points (Glassner 1990).
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Predefined symbols called SPLIT_X and SPLIT_Y which, when identified, direct the

recognizer to further segment a given symbol either horizontally or vertically. The

separation of the SPLIT_X and SPLIT_y symbols uses the minimum values of x­

projection and y-projection, respectively. (See Figures 4.52 and 4.53). This method results

in an efficient and robust recognition of the near infinite configuration of chords and

attaehed symbols.

(

Figure 4.52 X-projection for SPLIT_X

4.6 Score reconstruction

Figure 4.53 Y-projection for SPLIT_Y

(

Elementary score reconstruction is attempted to visually verify the accuracy of the

classifier. The output is a PostScript file with x- and y-coordinates of the symbols. For

staftlines, bearns, stems, and bar1ines, the two endpoints and the thickness of the line are

provided. For slurs and ties, two endpoints along with two Bezier points are indicated so

that the PostScript interpreter can draw the curves (see Figures 4.54 and 4.55). The output

of the recognition process cao he used in various applications, see for example,

Wilk (1995), which generates MIDI data.
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4.7 Learning

The primary goal of the leaming phase is to improve the accuracy of recognition.

Enhancing the efficiency of the recognition is a secondary goal for the foIIowing reasons:

1. After an initial training period, the recognition task can he performed without

human intervention through background processing and, if necessary, on multiple

computers.

2. The speed of processing is directly related to the number of features used and the

number of symbols stored in the database. The size of random-access memory

(RAM) commonly found on today's computer limits the practical size of the

database. For example, if 20 features are used for each symbol, and if each feature

requires 4 bytes of storage (80 bytes per symbol), then 100,000 symbols would

occupy 8 megabytes ofRAM. Using Sun SPARC 2, the processing time is

estimated ta he about 500 ms 1symbol, so that for a page containing 1000 music

symbols it would take 500 seconds, or about 8 minutes.

3. It is estimated that the proofing of a page of music by a trained editor would take,

depending on the complexity of the music, anywhere from a few minutes ta an

hour (Carter 1994b). Since most OMR systems do not claim, including AOMR,

100% accuracy, the result must he checked by human editors. Therefore, the

processing lime for an OMR system need only be comparable to that of a human

editor.

4.7.1 Limiting the size of the database

Since there is a physical upper limit to the size of the database that can he stored in RAM,

there must he a mechanism to reduce the size of the database while maintaining the

accuracy. Thus, the Editing (3.4.1) and the Condensing (3.4.2) methods to reduce the size

were implemented. Although bath of these procedures were successful in reducing the

size of the database, the accuracy suffered as the result of the reduction in the size of the

stored library.
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4.7.2 Accuracy

The main characteristic of the k-NN classifier is that, in theory, its accuracy increases as

more data is accumulated. Simply storing classified symboIs in the database increases its

accuracy. Another way to improve the classification is by using different distance

measures. At any time during the development process, different distance measures can

he tested to see which one of the available methods achieves the best result. This

approach makes the system flexible, using the oost type of distance measure for the

particular environment.

Although it is not complicated or time consuming to try a handful of different measures,

selecting the optimal weights used in sorne of the measures is very difficult. This is the

problem of assigning relative importance of the features when calculating the distances

within the feature-space.

In many classification applications, the features are "selected," hence the tenn feature

selection. In this process, whether or not a feature is used in the distance calculations is

equivaient to deciding whether to assign 0 or 1 as the weight of each feature. This

selection process requires a total of 2f number of combinations of weights, where fis the

total number of features.

The performance or the rate of accuracy of a set of weights is detennined by the "leave­

one-out" method, which means that, for each symbol S in the database, S is assumed to he

unknown and the remaining symbols in the database are used to identify S. If the result

corresponds to the true identity of S, then the system is said to identify the symbol

correctly. Ali members of the: database go through this procedure to calculate the global

accuracy of the system.

Determining the set of weights that will result in the most accurate classification is an

extremely computing-intensive task, for the best set cao only he obtained by examining

ail possible combinatiolls (Cover and Van CamPenhout 1977). Furthermore, the weights

of the features cao he varied (using reai numbers) so that the co~plete set of possible

combinations are virtually infinite. With the currently available computing power,

exhaustive search using a relatively small database would take years to calculate. An

extremely elegaot and practical solution to this problem of selecting near-optimal weights

is provided here by using the genetic algorithms.
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4.7.3 Application of a genetic algorithm

To illustrate the use of a genetic aIgorithm (see 3.10 above) for finding a good set of

weights, five randomly chosen pages of music are used. DATA A is created from Figure

4.54 and Figure 4.56; in DATA B, DATA C, and DATA D, the symbols from Figure

4.57, 4.58, and 4.59 are added respectively. In other words, the symbols from each page

are combined sequentially to create the four datasets, thus, DATA D, for example,

contains all the symbols from the four pages. Figure 4.60 shows, for each dataset, the

number of different classes, total number of symbols, and the time required to find three

best sets of binary weights exhaustively, i. e. by testing aIl possible combinations.

:>
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Figure 4.56 The page is used to create DATA A aIong with Figure 4.54.

{

105



(
17

2QuartettinD
far :nrd VIo1ba. VIcIa _ VialoDcdlo

KY lU (IH"

QamertoI-J

1'itll..aIltI

'" 1&
r ~ -- Ir_ __ ,J.~

-.1 f 1 P -- Ir 1 p - r

" 1&
~ - t.

IJ 1 p - r p .-.:::-- .. r-

J , r p r

~ r- I

s -.
)", .. e~_~ ___ ' , --~_... __ .~ ~*.J. ...~ 1 , - • .c~.j. ••11

IJ P 1

" ~

~
----- -- i~ -.-.. -- . , - - i~

-.-.. ~- 1 r

p 1

, - , r

{

,
" 1&
~ ---- ~... - _--...

I~ - ~i

" il

~
......~- ~ ~

- ~I

\ .'fI .,;

., tH. au... Hf.J-7 ...~ ....co-- t-YJ) .............. t t .abrkM _: ...... ., hl.......'l -.4 ...........

.. ..,~. Verwan. S. X -.4 VUL

Figure 4.57 Sample page used ta create DATA B.
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108



(
The symbol distribution of DATA D, assembled from the four pages, is shown in Figure

4.61. The features currently implemented are listed in Figure 4.62. For each dataset, the

recognition rates (the rate of 1.0 would mean 100% accuracy) using only one feature are

shown in Figure 4.63 using I-NN classification scheme (k =1). Unfortunately, these

results are not particularly useful because the combinations of the best individuai features

do not guarantee best results. For example, the feature 4 (x-centre of gravity) is used in all

three of the top three sets for DATA A (Figure 4.64), yet by itself it is the second worst

feature (0.366412). Conversely, the feature 2 (area) is the top performer by itself in

DATA B (0.7000405), yet it is not used in two of the top three sets of weights (see Figure

4.64). The only way to find the set of features that result in the best recognition rate is by

trying out all possible combinations. Since there are 15 features used here, there are

32767 (215) possibilities for the binary weights, and the calculation of the recognition

rates takes inordinate amount of rime as shown in last column of Figure 4.60.

number of classes number of symbols processing time

DATA A: 19 524 24 hrs

DATAB: 29 1235 6 days (estimated)

( DATAC: 32 1745 12 days (estimated)

DATAD: 32 2538 25 days (estimated)

Figure 4.60 The size of each dataset and the processing rime to find the optimal set of
binary weights.

(
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

count
94
14
12
33
96
20
26

5
5

16
22

135
6
6

32
19

9
168

68
5

24
5

119
21

794
33
83

7
99
96

447
19

Dame
sharp
flat
natural
trebleclef
dot
eighthflagdown
eighthflagup
sxflagdown
conunontime
piano
forte
barline
heavybarline
wholenote
quarterrest
eighthrest
halfrest
beam1
beam2
beam3
stemsegment
brace
slur
halfnotehead
quarternotehead
quarternotehead-ledger-below
quarternotehead-ledger-middle
quarternotehead-ledger-above
splitx
splitY
beam_complex
ledger_complex

(

Figure 4.61 Symbol distribution of DATA D.

o width
1 height
2 area (width * height)
3 volume (pixel count)
4 x-centre of gravity
5 y-centre of gravity
6 u20 normalized central moments
7 u02
8 u11
9 u30
10 u12
11 u21
12 u03
13 n_holes_vertical
14 n_holes_horizontal

Figure 4.62 Currently implemented Iist of features.
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DATA A:
100 a a 0 a a a a a 0 a 0 0 0 0 287/524 0.54771
a 100 0 a 0 a 0 0 a a 0 0 0 a a 400/524 0.763359
a a 1 0 0 a a a 0 0 a a 0 0 a 0 0 389/524 0.742366
000 1 0 0 0 0 0 0 a a a a 0 a a 313/524 0.597328
o a a a 1 0 a a 0 0 a 0 a 0 a 0 a 192/524 0.366412
000 0 a 1 a a 0 0 a 0 a a a a a 223/524 0.425573
000 a a 0 1 0 a a a a a a a 0 a 256/524 0.48855
000 a 0 a a 1 a a a 0 0 0 a 0 0 358/524 0.683206
o 0 0 0 a 0 0 0 l a 0 0 0 a a 1) 0 328/524 0.625954
a 0 a a 0 a a 0 0 1 a 0 0 0 0 0 a 251/524 0.479008
000 0 0 0 a 0 0 0 1 0 0 0 0 0 0 260/524 0.496183
o 000 0 0 0 0 0 0 0 1 0 0 0 a 0 182/524 0.347328
o 000 0 a a 0 0 0 0 0 1 0 0 0 a 281/524 0.53626
o 0 0 0 0 0 a a 0 a 0 0 a 1 a 0 a 309/524 0.589695
o a a 0 0 a 0 0 a 0 a a a a 1 0 0 269/524 0.513359
000 0 0 0 0 a 0 0 a 0 0 0 0 l 0 378/524 0.721374
o 0 0 0 0 0 0 0 0 0 0 a a a a 0 1 270/524 0.515267

DATA B:
1 000 0 0 0 0 0 0 0 0 0 a a 0 0 696/1235 0.563563
o 100 0 0 0 0 0 0 0 0 0 0 0 0 0 824/1235 0.667206
a a 1 0 0 0 a 0 0 a a 0 0 0 a 0 0 865/1235 0.700405
000 l 0 0 a 0 0 0 a 0 0 a 0 0 0 661/1235 0.535223
o 0 a 0 1 0 0 0 0 0 a 0 a 0 0 0 0 422/1235 0.3417
a 0 0 0 0 1 0 0 0 0 0 0 a 0 0 0 0 486/1235 0.393522
o a 0 0 0 0 1 0 0 0 a 0 0 0 0 0 0 637/1235 0.515789
000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 808/1235 0.654251
000 a 0 0 a a 1 a a a a a a 0 a 576/1235 0.466397
a 0 a a a a 0 0 a 1 a a 0 a a a a 537/1235 0.434818
o 0 0 0 a a 0 0 a 0 1 a 0 0 0 a 0 518/1235 0.419433
o 0 0 0 a 0 0 a 0 0 0 1 0 a a a a 427/1235 0.345749
o 0 0 0 0 0 0 0 0 0 0 a 1 0 0 0 a 643/1235 0.520648
o 0 0 0 0 a 0 0 0 0 a a 0 1 a 0 0 685/1235 0.554656
o 0 0 0 0 0 0 0 0 a a 0 0 0 1 0 0 577/1235 0.467206
o 000 0 0 0 0 0 0 a 0 0 0 a 1 0 789/1235 0.638866
o 0 0 0 0 a 0 0 0 0 0 0 a a a 0 1 633/1235 0.512551

DATA c:
1 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 962/1745 0.551289
o 100 0 0 0 0 0 0 0 0 0 0 0 0 0 1108/1745 0.634957
o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1138/1745 0.652149
000 1 0 0 0 0 0 0 0 a 0 0 0 a a 880/1745 0.504298
o a a 0 1 0 a 0 a a a a 0 a a a 0 551/1745 0.315759
a a a 0 0 1 a 0 0 a 0 a 0 a 0 a 0 618/1745 0.354155
o a a 0 a 0 1 0 0 0 0 a 0 0 0 0 0 833/1745 0.477364
000 a 0 0 0 1 0 0 0 0 0 0 0 0 0 1026/1745 0.587966
o a a a a 0 0 0 1 0 a a 0 0 0 0 0 714/1745 0.409169
o a a a 0 0 0 0 0 1 a a 0 0 a o 0 685/1745 0.39255
000 0 0 0 0 a 0 0 1 0 0 0 0 o 0 649/1745 0.37192
o 000 0 0 0 a o 0 0 1 0 0 0 o 0 587/1745 0.33639
o 000 a 0 0 0 o 0 0 0 1 0 0 o 0 810/1745 0.464183
o 0 0 0 0 0 0 0 o 0 0 0 0 1 0 o 0 899/1745 0.515186
a 000 0 0 0 0 a 0 0 0 a 0 1 o 0 757/1745 0.433811
o 000 a 0 0 0 o 0 0 0 0 0 0 1 0 1054/1745 0.604011
o 000 0 0 0 0 o a 0 a 0 a a a 1 833/1745 0.477364

DATA 0:
1 a a 0 0 0 a 0 0 0 a a 0 a a 0 0 1190/2538 0.468873
o 100 0 0 0 0 0 0 a 0 0 a a 0 0 1422/2538 0.560284
o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 o 0 1517/2538 0.597715
000 1 0 0 0 0 0 0 a o a 0 0 o 0 1190/2538 0.468873
o 0 0 0 1 0 0 0 0 0 0 o 0 0 0 o 0 696/2538 0.274232
o 000 0 1 0 0 0 0 0 o 0 0 0 o 0 835/2538 0.328999
o 000 a 0 1 0 0 0 0 o a 0 0 o 0 1123/2538 0.442474
o 0 0 0 0 0 0 1 0 0 0 a 0 0 0 a a 1304/2538 0.51379
o 000 0 a 0 0 1 0 a o a 0 a o a 922/2538 0.363278
o a a a a a 0 0 a 1 a o a a a o a 939/2538 0.369976
a 0 0 0 0 0 0 0 0 0 1 o 0 0 0 o 0 862/2538 0.339638
a 000 a 0 0 0 a 0 0 1 0 0 0 o 0 785/2538 0.309299
o a a a a 0 0 0 a 0 0 o 1 0 0 o 0 1045/2538 0.411742
a 0 a 0 0 0 0 0 a 0 0 a a 1 0 o 0 1235/2538 0.486604
a 000 0 0 0 0 0 0 0 a a 0 1 o 0 1001/2538 0.394405
o 0 0 0 0 0 0 0 0 0 o 0 a 0 010 1384/2538 0.545311
o 0 0 a 0 0 0 0 0 0 o 0 a 0 001 1062/2538 0.41844

Figure 4.63 Recognition rates for individual features.
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DATA A:
111 0 1 1 0 0 1 0 0 0 0 1 1 0 1 511/524 0.975191
101 0 1 1 1 1 1 0 0 0 0 1 1 0 1 511/524 0.975191
011 1 1 1 1 0 1 0 0 0 0 1 1 0 1 511/524 0.975191

DATA B:
110 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1213/1235 0.982186
110 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1213/1235 0.982186
111 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1213/1235 0.982186

DATA c:
111 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1714/1745 0.982235
111 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1714/1745 0.982235
111 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1714/1745 0.982235

DATA D:
110 1 0 1 1 0 1 1 1 0 0 1 1 1 1 2456/2538 0.967691
111 1 0 1 1 1 1 0 0 1 0 1 1 1 1 2456/2538 0.967691
111 1 1 0 1 0 1 1 1 0 0 1 1 1 1 2456/2538 0.967691

Figure 4.64 The best three set of weights for accuracy found by genetic aIgorithm
for each dataset.

Furtbermore y ideally the number of stored symbols in the database should be much

greater. For example, using 25000 stored symbols is not unreasonable, since it wouId take

about 2 Mbytes of storage (80 bytes per symbol) and if there are 1000 symbols on the

page of music, processing lime would he about 4 minutes. Finding the optimal set of

features for this database, howevery would take over six years!

This is why the application of a genetic a1gorithm (GA), which finds the near-optimal set

of features in much less time, is essential. The results of the four datasets using GA are

shown in Figure 4.64. The search for each dataset was stopped after 12 hours. Although

these may not he the hest sets (for DATA A, an exhaustive search confirmed that these

are indeed the hest sets), the obtained accuracy in the range of 96% to 98% seems more

than acceptable.

The necessity of using a GA becomes more evident as there are two further refinements

that can he made to the classification process: using a different k in the k-NN

classification and using non-binary weights. In the results above the k was set to 1, but

other numbers can he used. Figure 4.65 shows the hest sets for k =3 and k =5 for DATA

A, where there are slight improvements (compare with Figure 4.64). Also, any real

numbers can he used as the weights for each feature. Implementing this would increase

the calculation lime astronomically, yet, as shown in Figure 4.66, the accuracy is
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improved over the binary weights. Figure 4.65 used four possible weights (0, 0.25, 0.5,

and 0.75), thus the total number of combination is increased to 4 15 or over one billion.

The calculation for DATA D in this case, would take over 2000 years! Nevertheless, the

power of GA methods are such that very good sets (exceeding the accuracy of the binary

weights) were found within 24 hours.

DATA A (k=3):
1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 508/518: 0.980695
1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 508/518: 0.980695
1 110 1 1 0 1 1 0 1 0 1 1 1 0 1 509/520: 0.978846

DATA A (k=S):
o 0 011 0 0 1 1 0 0 1 1 1 1 0 1 501/512: 0.978516
o 0 a 1 1 0 0 1 1 0 1 1 1 1 1 0 1 501/512: 0.978516
o 0 011 0 0 1 1 1 1 1 1 1 1 0 1 501/512: 0.978516

Figure 4.65 Recognition rates for DATA A using k=3 and k=5. Note that sorne
samples are rejected because a majority of neighbours could not he
established. This occurs, for example, in the 3-NN case, ail three nearest
neighbours are from different classes.

DATA c:
.75 .50 .00 .50 .00 .50 .50 .50 .50 .75 .50 .75 .50 .25 .00 1618/1634: .990208
.75 .25 .00 .75 .25 .50 .50 .25 .25 .75 .50 .75 .50 .50 .75 1618/1634: .990208
.75 .75 .50 .75 .25 .25 .25 .75 .50 .00 .25 .25 .50 .75 .75 1616/1634: .988984

DATA D:
.75 .75 .75 .75 .00 .25 .25 .75 .50 .00 .75 .50 .00 .75 .75 2465/2538: .971237
.75 .75 .50 .75 .25 .25 .75 .75 .50 .25 .00 .00 .25 .75 .75 2464/2538: .970843
.50 .75 .00 .75 .00 .25 .25 .50 .25 .50 .75 .00 .25 .75 .50 2464/2538: .970843

Figure 4.65 Recognition rates for DATA C and DATA D using four possible weights
(0, 0.25, 0.5, and 0.75).

In general, using the binary weights and the k set to l, the accuracy of the AOMR

system is between 95% to 100% depending on the complexity of the music, the quality

of typesetting or handwriting and the size of the database. The processing time is 5 to 15

minutes per page, proportional to the number of symbols on the page and the size of the

database.
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5. CONCLUSIONS

5.1 Future work

S.l.l Problems

The ultimate test for an adaptive system is to observe passively its perfonnance in various

environments. From the designer' s point of view, this was difficult ta achieve because of

the designer's desire to make the oost possible system before it is completely released

iota the field. The tendency has beeo to watch the system evolve for a while, and then as

soon as a problem develops, the system is modified and the process begins again.

The next step in the development is to make the system run on its own. Sorne of the

operations-the genetic algorithms, for example-are manually initiated. Also, the

evaluation of different similarity measures is not automatic. These different components

must he completely integrated and made autonomous.

5.1.2 Extensions

In this research, the accuracy and the efficiency of the recognition were monitored

through the learning system. This can he easily extended so that the accuracy and

efficiency of various leaming strategies are monitored and optimized. There are certain

parameters in the genetic algorithm such as the mutation and crossover rate that can be

adjusted. For error estimation, only the leave-one-out method was used here. There are

other methods that can he implemented and assessed. In other words, the system explores

other Ieaming methods and evaluates their performance. This is the concept of learning to

leam.
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5.2 Final thoughts

In order to understand music or other manifestations of human nature, one must be aware

of the bias and limitations of the investigators themselves and the tools used for the

inquiry. The common seriai type of computer and the associated programming language

are based on procedural and formaIized models of thought. In our education,

formalization, reductions, and generaIizations are extremely valued. In fact, these are the

summit of characteristics of intelligence, at least in the modern Western world. Perhaps

influenced by this, in the history of artificial intelligence, major efforts have gooe ioto

establishing formalization of humao thought and perceptual processes, searching for sets

of rules. Yet, in many disciplines, building rule-based models of human understanding of

our worId have not been successful. For example, formalizing music has been very

difficult, despite maoy attempts made by music theorists over the years. There is an

alternative approach, however. Numerous philosophers and psychologists believe that

many concepts are leamed directly by examples and not by cules. The proposed system

here is based on that idea and the feasibility of such a system for music notation

recognition has been demonstrated.

Exemplar-based adaptive systems cao potentiaIly he applied in many fields where solving

problems by formalized role-based system has failed. In the field of music alone there are

various possible applications. Music structure recognition (phrase, modulation, themes,

motives), timbre identification, pitch detection, and tempo tracking are sorne of the areas

where the adaptive system can he used for enriching our understanding of music.
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