L]

H

SCHUR COMPLEMENTS AND STATISTICS

. by

DIANE VALERIE OUELLETTE

i

- A thesis submitted to the Faculty

‘ of Gradudte Studies and Research,
in partial fulfillment of the
requirements for the degree of
Master of Science. ™

§
¢

Department of Mathematics !
McGill University
Montreal

%

Jply 1978

o,




-~
P e i athun
&

RN e

SCHUR COMPLEMENTS AND STATISTICS

. - by

DIANE VALERIE OUELLETTE

ABSTRACT

e ‘

i , . r
In this thesis we discuss various properties of matrices of the type

. s=n-cz‘1F,

)

which we call the Schur complement of E dn

/

! The matrix E 1s assumed to be nonsingular, When E -is singulaf or rec-

‘ i tangular we consider the géﬁeralized Schur complemgnt S= H~-GEF L‘yrhere

; ' E- is a generalized inverse of E . A comprehensive account of results
pertaining to the determinant, the rank, the inverse and generalized inverses
of partitioned matrices, and the inertia of a matrix is giveﬁ both for Schur
complements and éeﬁéralized Schur complements. We survey the known results

; dn a histo;ical perspective and obtain several extensions. Numerous applica-
tions in numerical analysis and statistics are included. - The thesis ends with

' an exhaustive bibliography of books and articles related to Schur complements.
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RESUME

\- ‘ .

-

Dans cette thése, on étudie les propriétés des matrices du type

, M ~ce My, !

que nous appelons le complément de Schur de E dans

£

o

7

' <

l

si 15 matrice E est non§inguliére.A Quand‘ E est singuliére ou

rectangulaire, nous considérons le complément de Schur généralisé

S=H-GEF, oi ‘E est un inverse généralisé de E .' On présente

des résultats concernant 1'inertie d'une matrice, le déterminant, 1e

rang, l'inverse et les inverses généralisés des matrices fractionnées
_pour les compléments de Schur et les compléments de Schur généralisés, )

Nous examinons ces résuitats dans une perspective historique et obtenons

plusieurs généralisations. Nous ineluons de nombreuses applications

en analyse numérique et en statistique. La these prend fin avec une

bibliographie compléte, des livres,et des articles se rapportant aux

compléments de Schur.
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Université McGill ‘ ) M.Sc.
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, .. CHAPTER I
£ INTRODUCTION AND NOTATTION

§1.1 Introduction. o : .

"In recent years, the designation "Schur complement” has
been applied to any matrix of the form D-CA 1B, THese objects.
have undoubtedly been encountered from the time matrices were

O first used. But today under this new name and with new emphasis
on thelr properties, there is greater awareness of the wide-~
spread appearance andﬂutility'of Schut complements."

- Cottle (1974). |

X

Our purpose in this thesis is to present a unified treatment covering both

the Schur complement

! f 4
3

R ]

a.n / s=H-GF
1 N A . ’
and the generalized Schur complement

+

(1.2) S=H-GETF,

gﬂéie E is a generalized inverse of E satisfying EEE = E . We discuss
various properties of matrices “of the type (1.1) and (1.2) and present both
early and recent results. We also show how Schur complements may be used to

obtain concise proofs of some well-known and some not so well~known formulas

Issai Schur (1917) appears to be the first author to explicitly consider
a matrix of the form (1.1). He used (1 1) to prove that

”

(1.3)° " B |E|. |B-GE™ ¥ |

\

where || deriotes determinant. \?he matrix E is assumed to be nonsingular.

We present (1.3) inATheofem 2.1,

~ » -
.

Emilie V. Haynsworth (1968, p. 74) appears to be the first author to

give the name Schur complement to a matrix of the form (1.1). eFollowing her,

we refer to !

v
¢

I - °
! : —
1.4 S =H- GE Iy

) v
i 1 , \J‘L

[ U S,
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as the Schur complement of E in A , where the partitioned matrix

1

: . E F “
(105) \A = . )
G H
The notation )
, o -1 .
(1.6) S = (A/E) = H-GE 'F

1) \
-

1s convenient. 7
/

We may consider the Schur complement of any nonsingular submatrix in A ,
However, for notational convenience, it is preferable to shift the nonsingular
submatrix either to the upper left-hand corner or to the lower right-hand
corner of A . This is'equivalent to pre-multiplication and/or post-

multiplication of A by a pefmutation matrix.

, \
_In the book by Bodewig (1956, 1959), the formula (1.3) is said (1956,
p. 189; 1959, p. 218) to date from Frobenius (1849-1917), who obtained, cf.
Frobenius (1908),

1.7) ' = h|E| - g'(adj E) £,
g b

. .
where adj denotes adjugate matrix. In (1.7) £ and g are column vectors
while h is a scalar. Boerner (1975) reports that Schur (1875-1941) was a
student of Frobenius. We present (1.7) in Theorem 2.3. -

Banachiewicz (1937) appears to be the first author to express~the inverse
of a partitioned matrix in terms of the Schur complement. When the partitioned
matrix A in (1.5) and the submatrix E are both nonsingular then the Schur
complement of E in A , (

(118) S = (A/E) = H-GE 1F | .

\
is also nonsingular, cf. (1.14) below, and

a9

e et &

wnst
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1 : -E FS

1

£1 4+ g lps”

(1.9) A =
1 -1

* -8 “GE S

Al

cf. Theorem 2.7.

Banachiewicz (1937) obtained (1.9) in Cracovian nétation;fwhere matrices

are multiplied column by column (see Appendix A for further details).

The formula (1.9) is often attributed to Schur (1917), cf. e.g.,

Marsaglia & Styan (1974b, p. 437), but~épparéntly was not %%scovered until

1937 by Banachiewicz. We will refer to (1.9) as the Schur-Banachiewicz

inverse formula.

© When the partitioned matrix A in (1.5) and the submatrix H are both
nopsingular, then it follows similarly that the Schur complement of H in A

(1.10) ' T=(A/H) = E - Fi Y6
is also nonsingular and
71 - it
(1.11) At = ‘ —

GT H ™ +H
When A, E and H are all three nonsingular then

1 . L)

s

1

(1.12) E-rie)y =5t E—lF(H—GE_lF)—lGE_

which was observed by Duncan (1944) and reestablished by Woodbury (1950).
Eguation (1.12) lead to formulas like, c¢f. Sherman & Morrison (1949, 1950),
Bartlett (1951), o

 (1.13) €+ g0 =T - E g e+ g'ETE)

cf. Corollary 2.6.

50

‘ Bodewig (1947) has shown that by estaﬁaishing a count of the number of

= e ettt it L bk e

'
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operations required, the usual method of calculating the determinant of ithe
partitioned matrix (1.5) ié preferable to Schur's formula (1.3). Bodewig
(1947) cl;ims, however, that the opposite is true when- the inverse is
calculated, cf. (1.9).

’ Louis Guttman (1946) established that, if the matrix E in (1.5) is
nonsingular, then )

= 2

(1.14) r»(A) = » = n(E) + r(H - CE L1F) = r(E) + r(A/E)

“ e &

¢
»

where r(-) denotes rank. We present this as Theorem 2.5 . In other words,
rank is additive on the Schur complement, cf. Marsaglia & Styan (1974a,

p. 291). Wedderburn (1934) and Householder (1964) gave related results on
rank, which turn out to be special cases of (1.14). See Theorems 2.6a and

2.6b ’ -

s

We conclude Chapter II by showing how Schur complements may be used to
prove theorems of Cauchy (1812) and Jacobi (1834).

In Chapter III, we discuss vgrious properties of the Schur complement
of a nonsingular matrix which have appeared more recently. It seems; cf. p
the survey paper on Schur complements by Cottle (1974), that from 1952

through 1967 no research papers with results on Schur complements were

o

-

In a study of the inertia of a partitioned matrix, Haynsworth (1968)

“showed that when the partitioned matrix A in (1.5) is Hermitian and E is

nonsingular, then

v <

(1.15) ~ InA= InE+ In(A/E) , .

that is, Inertia of a Hermitian matrix is additive on the Schur complenment.
In Theorem 3.1, we show how rank additivity and inertia additivity are

1

related. ,

#748

Crabtree & Haynsworth (1969) and Ostrowski (1971) prove that if we [/

Lomtrn o =

iy
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partition E as well, i.e.,a ' R
K L F
, [E | F 1
(1.16) . A= b ) 2w F, . ,
) G ! H - __-..\..._._.-._..._..:_
G1 G2 H
with E and K both nonsin}ular, then -
1.17) ) (A/E) = ((A/K)/(E/R)) ,

W
/ r

cf. Theorem 3.3. This result, called the quotzent property, has lead to
several determinant inequalities cf. Haynsworth (1970b) and Hartfiel (1973).

We conclude Chapter IIT by describing an interfiretation for the Schur
complement‘as the coefficient matrix of a quadratic form restricted to the

null sﬁace of a'matrix, as developed by Cottle (1974).

In Chapter. IV, we extend the fesults in Cﬁapters II and 111 to generalized

Schur complements, cf. (1.2). Let the partitioned matrix A in (1 5) and the
submatrix E both be square. If f leither

» . <
(1.18) r(E,F) = r(E) !
on ‘ . .
° . E .
(1.19) { r = r(E) .
, G fre
! ’ o
then -
: \
(1.20) |A| [E]- |H-GE F|
- ) '
for every g-inverse E , cf, Theorem 4.1 . e

Following Meyer (1973), Marsagiia & Styan (1974a), Carlson, Haynsworth °
& Markham (1974) and Carlson (1975), we establish several results on rank,
Among these, we show, cf. Corollary 4.3, ‘that rank is additive on the Schur

complement '

)

—— = -

——
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E F
A.21) ’ » = p(E) + (i - GEF) ,
’ G H 1 .

when (1.18) and. (1.19) hold.
F 2

Following Rohde (1965), Pringle & Rayner (1970), Bhimasankaram (1971),
Marsaglia & Styan (1974b) and Burns, Carlson, Haynsworth & Markham (1974),
we investigate conditions under -which the Schur-Banachiewicz inversion
formula (1.9) works with generalized inverses replacing regular inverses,
cf, Theorem 4.6 . '

! .

i

Following Carlson, Haynsworth & Markham (1974), we find that inertia

continues to be additive on the (generalized) Schur complement, that is,

.

- +
(1.22) In | . = Ing + Im(H~-F'E F) =InE + In(B-F'E F) ,
F' H . » -

where the partitioned matrix is real and symmetric, if

(1.23) : r(E) = r(E,F)-, ' ’ -
- . ) \ (:u*,'l '

cf. (1.18), where E 1is any g-inverse of E , cf. page 63.

~

The quotient property may be extended using generalized Schur complements

so that, if in (1.16) S
13 ‘ . E
(1,24) , r(E) = r(E,F) = r G‘ ‘
and K /
. K N
(1.25) . r(K) = r(K,L) = r u

o B« B

i L (et o n
v

'
T i ML b

- ——
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hold then (1.17) is still true. We conclude Chapter IV by showing how )
y | readily results like

Y T

. (1.26a) 1 - ¥6| = |1 - GF| o ;

- ! :

| and ‘ H S 3
1

g

(1.26b) - ¥(I - F6) = y(I - GF) !

may.be established using Schur complements. In (1.26b) y(+) denotes nullity.

¢ ’

Chapter V contains a number of algorithms for matri% inversion and for
generalized inversion which make use of Séhur‘compleéents.\ "The bordering
method" published in the book by Frazer, Duncan & Collar (1938), the variant
. given by Jossa (1940), and the 'second-order enlargement" method due to
Louis Guttman (1946) are described and are accompanied by/numerical examples! '
A similar method called "géometric enlargement", due to Louis Guttman (1946),
N .

{ % 1is also given. :
i

1

One of‘the most useful algorithms, perhaps, is that of partitioned Schur
complements outlined by Louis Guttman (1946) and later déveléped by Zlobec
& Chan (1974). Wilf (1959) elaborated a method of rank annihilations, while
Edelblute (1966) considered a special case of tﬂe above algorithm which

simplifiés the calculations'performed. ‘

4

Following Newman (1962) and Westlake (1968,,p. 31) we shoﬁ in Section 5.5

how Schur complements may be used to obéain the inverse of .a complex matrix;

e

using real operations only.

We also‘present an algorithm due to Zlobec (1975), vhich computes a
3 . - g-inverse of a partitioned matrix using partitioned Schur complements.
Generalized inversion has also been studied By Ahsanullah & Rahman (1973) who

have extended the method of rank annihilation.’

Further getails of some of these algorithms are given in the books by
Faddeeva (1959, pp. 105-111) and Faddeev & Faddeeva (1963, pp. 161-167, 173-

Q e,
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In Chapter VI, we describe the areas of mathematical statistics .in which
Schur complements arise. An excellent example of this is the covariance

matrix in a conditional multivariate normal distribution.

A In Section 6.2 we consider partial covariances and partial correlation
coefficients, and prove the well-known recursion formula for partial correlation
coefficients using the quotient property (1.17).

In Section 6.3 we study several speclal covariance and correlétion

structures; we easily evaluate, using Schur complements, the determinant, ranmk,

characteristic }oots, and inverse of each structure.

In Section 6.4 we show how a‘quaaratic form which follo&s a chi-squared
digtribution may be expressed as a Sehu}ltomplement. We extend this result
to show that the Schur complement in a Wishart matrix is also Wishart, and

- that the Schur complement in the matrix-variate beta distribution is also
beta, cf. Mitra, (1970).

We conclude Chéptef V1 and' this thesis by showing how the Cramér-Rao

inequality for a minimum variance unbiased estimator of a vector-valued
‘parameter may be proved using the inertia additivity of Schur complements,
ef. (L.15). ‘

’
7

The concept of Schur complement has recently been extended by Ando (1978)
as the matrix A

0 0
, €
(1.27) -1 IV
' 0 H-GE "F ‘ ,
he refers to
. E F ’
(1.28)
-1
G GE 'F

<

K]

' .
as a Schur compression. It follows at once that (1.27) and (1.28) are rank
‘additive, Efl(1.14). Ando uses these new definitions to extend the quotient

property (1.17). .We hope to consider other extensions at a later time.

PN

v e A
.
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: ( §1.2 Notation. ,
Q .

. . Matrices are denoted by capital letters, column vectors by underscored
lower case letters and scalars by lower case letters. An nXn matrix A may
- also be denoted by {a }

e 1j°1,3= l,...,

11,322,...,3 on the diagonal by diag (a 11°329°° "’ann) . I? particular,

the Kronecker delta,.e or

and a diagonal matrix whose entries are

1= {6 } represents the identity matrix with ¢
@ M ()ij

e the nx1 column vector of ones, e, or the nx1l columm vector with all

~

~i
elements zero except for unity in the ith position. The transpose of a matrix

A is denoted A' s with a' the row vector corresponding to the column vector
a . + The determinant is denoted by l'], the adjugate (or adjoint) matrix

by adb and the trace tr . Rank is denoted by r(*) and nullity by ¥(*) . We
call A a generalzzed inverse (or g-inverse) of A 1f AA™A = A , ¢f. Rao (1962)
‘and Rao & Mitra (1971). If, in addition, A AA™ = A” , or r(A) - r(A7) |, then
A = A; , a reflexive g-inverse. If in addition, the projectors AAF and

T

A;A .are both symmetric, then A = A" the unique.Moore-Penrose g-inverse of A .

_ We denote the characteristic roots of A by ch(A) , with ch (A) being the

3

A Y
P

jth largest when the roots are real. The inertia InA of a real Bymmetric

characteristic roots of A , v the number of negative and'&{the number of zero . ‘
. roots of A ., Thus for a symmetric matrix A we have that = + v = r(a) 2 the
rank of A , and § = Y(A) , the nﬁility of A . 1In this thesis, positive
definite (pd), positive semidefinite (psd) and nonnegative definite (und)
matrices are always real and symmetric. A matrix is 6d if v=6 =0, psd if

[ or: < O

ve=0and § 21, nnd if v= 0 . Some authors (e.g., Haynsworth, 1968) use
positive semidefinite Where we use nonnegative definite.

The symbol ~ following’a random variable means diétributed as. Other
symbols used in statistics are: E for expecteé value, V and cov fot variance
and covariance. We denote ‘the normal distribution by* N , the Wishart "°
distribution by w and the matrix variate beta distribution by B .

Finally we pbint out that (gqed) is used to inﬁicate the end of a proof,

o

matrix A is the ordered triple (m,v,8) , where n is the number of positive v
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CHAPTER 11
EARLY RESULTS ON SCHUR COMPLEMENTS

We are concertie?™with matrices of the form
' .
&

(2.1) -+ §=H-cEL

F.

Emilie V. Haynsworth (19684.p. 74) appears to be the first author to give
the name Schur\' complement to (2.1). Following her,,we refer to (2.1) as the
Schur complement of E 1in A , vhere t‘he'square matrix

v E' F
(2.2) A= .
) ¢ H
Time notation v

-1

(2.3) . S= (A/E) =H - GE F
is convenient,
§2.1 Determinants. ' &

The first explicit mention of a matrix of the form (2.1{ appears to be

' by Issai Schur, (1875-1941), who used (2.1) to préve (1917, Hilfssatz, pp

" (2.5) A=

216-7): v 7

THEOREM 2.1  (Schur, 1917). Let the matrix .E in (2.2) be nowsingular.
Then ' ' h h

E F

(2.4) = |El.|H - GE_lF] ,

G H

~

[

where || denotes determinant.

\

Proof (Banachiewicz, 1937, p. 51)., We may write

E F E 0 (I £ 1p

]

1 ]

s 6 H/ \¢ 1/\o H=-CEF

r

taking determinants, we obtain (2.4). (qed)

-

e

[

-

o e e i AR A
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'Si{milarly, it may be shown that if the matrix H .in (2.2) is non-
singular then ‘ | oo 7

E F

(2.6) = |u].]E - ™ Yo] .

G H
o ' /

In the‘nota;:ion (2.3) we thus see that -
. ) ‘/,
(2.7) ' IXA/EY| = |AI/IEl and [(A/H)] = |Al/fH]. ’

An immediate consequence of (2.4) and (2.6) 1s the following

l
COROLLARY 2.1, Let: F be mxn and G nxm., Then

N

lL - Fel = |1 ~ GF| )

A

(2.8)
Proof. Put E = Im and H = In in (2.2).{1 Then (2.8) follows at once
using (2.4) and (2.6). (qed) '

An alternate proof of (2.8), due to George Tiacd% is given in the
Appendix to the paper by Irwin Guttmad (1971).

THEOREM 2.2 (Schur, 1917). Consider the matrix (2.2), where E, F, G,
and H are all nxa , and )

.

(2.9) : EG = GE ,
Then * ' ‘
‘ - |E F
(2.10) Al = ’ = |EH - GF| .
. G M ’

Proof. Suppose first that |E| # 0. Then (2.4) holds. Hence

|Al = |EH - EGEYF| = |EH - GEE_lFI, using (2.9), and so (2.10), fr

follows. Now suppose that IVEHII = 0. Then |E+xI| # 0 for all x # -ch(E),

where ch(+) denotes characteristic root. Let

1

S T erte
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\ E+xI F
(2.11) B = ’ {
G H ]
then (2.9) ¢ (E+xI)G = G(E+xI). Thus T
(2.12) ’IB] = |EH+ xH - GF|
o
. as x + 0, the matrix B + A and (2.12) becomes (2.10). = (qed)

It is easily seen that (2.10) need not imply (2.9), since when F =0
and E (or H) 1is nonsingular then (2.10) holds whether or mot G is
chosen to co?mute with E , ’ \

An immeWliate consequence of (2,10) is that A is nonsingular if
and only if /EH - GF is non§ingu1ar.! In a paper by°Herstein and Small
(1975) it 14 shown that, fér a fairly!wide class R° of rings, if the ' ) i
matrix (2.%) is over R , where E, F, G and H are all nxn over J
R and (2.p) holds, then A is invertible if and only if* EH - GF - is ,

' invertiblet The authors staEe, as an example, that the result is true

S

when . R is a (right) artfnian ring.'

In the book by E. Bodewig (1956, 1959), the formula (2.4) is said
E (1956, p. 189; 1959,p. 218) to date from Frobenius (1849-1917), who obtained
the following theorem (1908, p. 405):

THEOREM 2.3 (Frobenius, 1908). Congider the matriz

: /e g
(2.13) A= 1, ,

p ) H .
J T :
where h <8 a scalar, f and g are colum vectors and E 18 a square 3

matrix. Then

'
g

(2.14) [A] = hiE| ~ g'(adjE)E ,
\ "~ ~

wvhere adj denotes adjugate matrix.

A AR AW O Yty Sipod g e e iy e -
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Proof. Suppose first that |E| # 0. Using (2.4),

(2.15)

follows.

(2.16)

(2.14) follows.

Since

&
[

o . ‘ J

Al = (h - g'E7 D) |E|

g

AL = (adfEy/|E],

x # - ch(E). Let B ‘be defifned similarly to (2.11),

(2.17)

then

(2.18)

E+xI £
B = H
g' h

{B| = hlE+xI] - §’[adj(E+xI)]£ .

Now suppose that |E| = 0. Then |E+xI| # 0 for all

As X > 0, the matrix B+ A and (2.185 becémes (2.14). (qed) '

-

We not(ic/e that if h# 0 in (2.13) then using (2.6),

(2.19a) .

(2.19b)

when E .48 nxn ., When h =1 this simplifies further:

(2.20a)
(2.20b)

(2.20c)

e

[Al = hlE - fg' /bl

-1
.= [hE. - £g" /"7,

lAl = |E - fg'|
= |E| - 8' (adjE) £

= (1 - g'E D) IEl

>

W

-

" using (2.14) and (2.15). This leads at once to the following related result:

i




14—

.

THEOREM 2.4 (Bodewig, 1956, p.36; 1959, p. 42). [let the matrixz E be
nonsingular and let the matrix B have rank 1 . Then ~ .

(2.,21) |E+B| = (1+trE—1B)IEI .

where tr denotes trace.

Proof. Since B is of rank 'l , we may write

1
-

(2.22) ) B = fg'

~es

as a full rank decomposition. Then applying (2.20c) gives

(2.23) - |E+B| = (1+¢rE  £g") [E[ ,

and using (2.22), (2.21) follows. (qedl)

+ EY

When E is ‘singular Theorem,2.4 reduces to

’

COROLLARY 2.2 (Bodewig, 1956, p. 36; 1959, p. 42). Let the matrix E be
singular and let the unit rank matriz B be defined by (2.22). Then

(2.24) " |E+B] = tr[(adjE)B] = g' (adfE)E .

’

We will see later, in §2.4, how Schur complement;s are related to Jacobi's
theorem on the determinant of a minor (Jacobi, 1834; cf. Mirsky, 1955, p. 25).

§2.2 Rank. ‘ ’ ' ' .

Schur's determinant formula shows that the partitioned matrix

: E F\. \ ‘ .
(2.24a) A=
. P . G H

is singular whenever the ScYur complement S = (A/E) = H - GE-lF is singular

.

P o v M e AT STT e 1

i e

n‘_;‘,},"

S\
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o
4 v

(E is assumed to be nonsingular). This result may‘be strengthened to show .

that rank 18 additive on the Schur complement, viz.

4
(2.24b) r(A) = r(E) + r(A/E) ,

cf. Marsaglia and Styan (1974a, p. 291).

;o

~
a4 e o o icais A

THEOREM 2.5 (Louis Guttman, 1946). Let the matriz E in (2.2) be rion-
gingular. Then ‘ ]

. E F '

(2.25) r(A) = » = pr(E) + r(H - GE—lF) = r(E) + r(A/E) , .

G H ) '
where r(:) denotes rank. ; ;
Proof. Since E 1is nonsingular we may write, cf. (2.5), d

n E F\- /1  o\/e 0 1 B lp
(2.26) A= =l 4 1 ,
G H GE I/\0 H-GE'F 0 I

¢

which yields (2.25). (qed)

Using the notation (2.3), we may write, cf. (2.7),

1

(2.27a) N r(A/E) = »(A) - r(E) ,

" and when H 1is nonsingular, ' 3
(2.27b) r(A/H) = r(A) - r(H).

Theofem 2.5 readily yields

COROLLARY 2.3 (Louls Guttman, 1946). If A and E 4in (2.2) are both §
nongingular then the Schur complemertt (A/E) = H - GE'F s also non- . 3
singular, .

’
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In the book by Wedderburn (1934, p. 69) a rank reduction procedure
is presented\ which turns out to be a special ca,lse of (2.25). Let the
matrix H 'be nonnull. Then there cle:arly exist vectors g and R so
that a'Hp # 0. Consider the matrix

>

(2.28) | A=
: Hb H I £

a'’b a'H / a'
~y ”~

~

n
=
Land
piead
—
~—r
.

~

Applying (2.25) yields

(2.29)- r(A) = r(a'fp) + r(d - Hba'H/

/

a'Hb)

~ TN

r(H)

using (2.28), and so we have proved: °

{

THEOREM 2.6a (Wedderburn, 1934, p. 69). If the m({fmlac H+0, then there

exist vectors .a , b such that a'Hh # 0 and /
'}" -

(2.30) : o(H - Hpa'H/a'Hy) = r(H) - 1.

Theorem 2.6a was extended in the book by Houseﬂglder (1964\) as an

exercise.

THEOREM 2.6b (Householder, 1964, p. 33)., Let u and v be colum veators.
Then for A # 0 o '

(2.31) r(H ~ 53'/1) < r(H)

if and only if there exist vectors g and h seuch that y =Hp, vy =H'g
and A= a'th # 0 .

-

Proof, It suffices to prove the "only if" part. Consider the matrix

. ooy
(2.32) ‘ A= .
. \ u H

Atk sl A

e




. =17- —

Using (2.25) we obtain

i3
'

(2.33) (B s n(A)

1+ »r(H - g\{"/)\) <14+ r@)

3

7
&

when (2.31) holds. Hence r(H) = r(A) and so there exlst vectors a and

b . so that |
‘ {,
4 "
(2.343) Ay, v") =2a"(u, H) , \ i
?
A X \
(2.34b) = b,
u H
and thus u =1Hb, y' = a'l and A= ga'u=y'b=3a'Hy . (qed) ‘

Wedderburn (1934, p. 68) derived (2.30) using "the Lagrange method of

A a3y B € —

! reducing quadratic.forms to a normal form'", while Rao (1973, p. 69) refers to
" Theorem 2.6a as "Lagrange's Theoren'; for an extension see §4,6, Theorem 4.11.

v

§2.3 Matrix inversion.

Banachiewicz (1937, p. \54) appears to be the first a{xthor‘to study the
inverse of a partitioned matrix. The formula, (2.37) below, is often attributed
toLSchur, who, it seems, did Lot proceed further than the determinant formulas
(2.4) and (2.10). Banachiewicz (1937) obtained (2.‘37) in Cracovian notation,
where matrices are multiplied column by column (see Appendi?c A for further

details); he glso rediscovered Theorem 2.1 and proved it using (2.5). i

'

N b
: ’ {
B

THEOREM 2.7 (Banachiewicz, 1937; Frazer, Duncan & Collar, 1938, p. 113).
Suppose that ' .

(2.35) - A= v

and E are both nonsingular. Then the Schur complement

O | | S

o HOMING sk e n o

)




O

ey

R S

giving

which Woodbury (1950) reestablished.,

‘({
.-18- 0 i ’
(2.36) S=H - gElF : : ~ }
: E |
18 also nonsingular and !
o [ErE s ert plpgt T o ER 4
(2.37) o™ = "4 g = t 18 T(GE 7,-1).
-STTGE s 0o o0 -1

Proof. The first part is Corallary 2.3, To prove (2.37) we invert (2.5)

4 [ =%\t

(2,38) y A= ,
) 0 g1 Gl 1

J——

which yields (2.37). Aqed)
COROLLARY 2.4 (Duncan, 1944). Suppose that both A , given by (2.35), and
H are nonsingular. Then the Sehup complement

(2.39) T = (A/H) = E'- FH ig . ‘
n, ¢ . ’ v .
18 nonsingular, and % . ;

) 1 e o o\ [ 1 1 3
(2.40) A7 4, _ PR =| .- + ] T (-I,FE ). '
i o vt/ \wlg/" ’

ﬁotelling (1943), moreover, noted that if A, E and H are all non-
singular then ' ,

71 £ lps71 -
(2.41) ) A= , . —

g ert g1

which involves four inverses, while (2.37) and (2.40) each require only two
(cf. Waugh, 1945). Duncan (1944) observed that (2.37) = (2.40), so that *

©

(2.42) (E - m’lc)"'l,ﬁ E'1+E'71F(H - GE_lF)_lcE-l‘ ,

’
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THEOREM 2.8 (Woodbury, 1950). Let ;
’ E -FH
(2.43) A= . ’ r
L HC ° H

(2.44a)

(2.44b)

’

Q

e+7e) ! = £t - £ lrncn + neE " rn) “MhcE”

/;fE“l - E'lp(u'1+-cE'1F)”}cE‘

|

Proof. Since E 1s.nonsingular we may write

(2.45)

using (2.25); Assume H is of rank h', We~may write

(2.46)

t »

1

1

.

M

»(A) = r(E) + r(A/E) = »(E) + r(u-+HcE'lFH)

1

H =K'

The matrix A may now be written as

(2.47)
(2.48),

¢ «Then .

(2.49)_

LS

(2.50)

¢

i
3

(2.51)

[l

E —FKL'
A=
KL'G\. KL' o
I O E ~FK .
0 K/\L'G Ih
E -FK
'reA). = r

» \L'G Ih A

~

= p(H) '+ r(E4+FHG) .

o

Q -

as a full rank decomposition, where K and L have full column rank h .

1

0

-7 = r(gg:+\r(z+rfoc)

[y

LI

»

¢

.ahd let E be nonsingular. If either A or (A/E) is nonsingular then
A, (A/E.).' H and (A/H) are all\ nonsingular. Moreover,

I8

- el
e oo, s . -
v

r

.
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It is easily seen that (2.45) and (2.51) imply that A, (A/E), H and
E + FHG = (A/H) are all nonsingular when A, or (A/E), 1is nonsingular.
Hence, 'using (2.42), (2.44) follows.. (qed)

Woodbury (1950) implied that (2.44a) might hold if H 1is singular.

'Fi = (A/E)
are both nonéingular then by (2.45) A must be noﬁéingular. Thus, using
(2.51), the fact that both A tandrE-+FHG are nonsingular implies H _non-

However this cannot be for if E and its Schur complement H+HGE

singular.

w0

From Theorem 2.8 readily follows:

COROLLARY 2.5 (Woodbury, 1950). Suppose that

| E  “hf. “
(2.52) A=

A

and E are both nonsingular and h # 0. \ JThen the Schur complement

(2.53) (A/E) = h(1+hg'E7E) 4 0,

and the Schur complement

- (2.54) (A/h) = E+hfg'

ig nonsingular; and

Leg et/ (1 +ng'E ) .

o~

(2.55) | ~g+heg) L=l D nE
Woodbury (1950) observed that Johi W. Tukey independently found that
(2.56) (1+heg) ™t 4 1 - nfg'/(1+hg'D),

N

which follows immediately by substit ting E =1 in (2.55).

ik
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COROLLARY 2.6 (Bartlett, 1951). Suppose that both A , given by (2.532),
and E are nonsingular. Let h =1, Then the Schur complement
1+g'E"1f $£0, .

~ ~

(2.57) (A/E)

N EN

and the Schur complement

(2.58) ' (a/h) = (A/1) = E+fg'

s

" i8 nonsingular; and

(2.59) ~ E+5g") 7 = B - Elegr (14 gt ).

\

Sherman and Morrison (1949, 1950) obtained the following results,
which are all special cases of Corollary 2.5:

-
N

(2.60) (E+hgi§')"1 =g - hE_lgig'E-1/(1+hg'E_lgi), hg't le # -1,

~ ~i

-1

(2.61), (E+h§gj!)_l =gt - hE‘lggj'E‘14(1+hggE’1f), he'ElE 4 -1,
: R ~ .
. R R, T | -1 1
. 1] = - ' 1
(2.62) (E+hgigj) . =E hE ging /(l+hng gi), hSJ!E e ,L -1,

i

where g, denotes a column vector with all elements zero except for ¥
unity in the kth position.

The formula (2.62) shows what happens to the inverse ‘E_1 when the

scalar h 1is added to the (i,j)th element of E ; the modified matrix
191
the ith row of E then the modified matrix remains nonsingular t

* g'Ele, # -1, and then, cf. (2.60),

remains nonsingular < hg:;E_ # -1: If the row vector g' is added to

\

-1 -1 -1 -1 .- -1
' = _ ' '
(2.63) | (E+e,g') =~ =E E eg'E /(1+g'E si).

»

Hrtiom, ey GroneRLt T
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Similarly if the column vector £ is added to the jth column of E then
the modified matrix remains nonsingular < g' E-li # -1, and then, cf. (2.61),

3
(2.64) (E*f.%j)'l-‘- B E‘l‘ggj' E—l/(1+ng~1£).K

§2.4 Theorems of Cauchy (1812). and Jacobi (1834).-.

It .is well known (cf. e.g., Aitken, 1939, p. 53) that for ahy square

matrix A '
(2.65) AladjA) = (adjA)A = |AlT,
and‘so if A is nxn , taking determinants of (2.65) yields

(2.66) o ladial = 1a™7,

4

'
which, 1s due to Cauchy (1812). This result was extended by Jacobi (1834)
as follows (see alsc Aitken, 1939, p. 103): %

THEOREM 2.9 (Jacobi, 1834). Consider the nxu matriz

’ . E F
(2.67) . A= ,

where E 18 wxm. Let

.

: . \ E* F*
(2.68) A = adjA = ,
. G* H'k
L, . ,
where, E* <8 mxm. Then
(2.69) T RN T “m=0,1,...,n-1,

il

s 1o b o

oot & e e et o g T NN eeom 3 B e v s e A s W oo g
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Proof. When m =0 the matrix E disappears and (2.69) reduces to (2.66).
When m = n-1°'(2.69) is-trivially true. So assume 1l<msn-2. If [A| =0
then »(H*) Srr(ade) <1 1in view of (2.65), and wi;h n-m 2 2 it follows
that 1H*| = 0 and.so (2.69) holds. Now assume [A| # 0. Then (2.65)
implies that S ‘ v

i

(2.70) .. adia =.ala7t .

Suppose first that |E] # 0. We may write

(2.71) Cowt= Al -,

s R 4
using (2.37). Taking determinants, we obtain , \ ]
(2.72a) B = 1AM 1H - cE lp| = (A1 A/E) |

[y ¥

AP (AL IED,

(2.72b)

using (2.7), and so (2.69) follows. It remains only to consider the case
- when |[E| = 0. Suppose'then that |H*| # 0. Using (2.27b) shows that .since
IAl # 0, '

o

(2.73) n= rk&de) = p(u*) + r(adja/u*) = n-m + r(adjA/H*),

A\
)

and so (adjA/W*) 1is nonsingular. The inverse of the Schur complement of
H* in adjA 1is E/IAl, cf. (2.40). Hence |E| # 0, a contradiction.
Thus |E| = 0 implies IB*| = 0 and so (2.69) holds. (qed) !

Similarly, it may be shown that

) o

(2.74) " ‘ [E*| = (AI™]H]; m = 0,1,.,.,n-1.

o

“ . TR Eat B ¢ o, 1,
.- L v ey e e



CHAPTER III
[

RECENT RESULTS ON SCHUR COMPLEMENTS R

In the previous chapter we studied many early results pertaining

to Schur complements of a nonsingular matrix. ' ,

& av o <

We now proceed to discuss various properties of the Schur complement
of a nonsingular matri£ which have appeared more recently. It seems (cf.
Cottle, 1974) that from 1952 shrough 1967 no research papers with results |
on Schur complements were published. In fact the term "Schur complement"
appears to originate with Haynsworth (1968) in a study of the inertia of a

partitioned real symmetric matrix.

{
i

.

§3.1 Inertia.

t

The inertia of a symmetric matrix A 1is the ordered triple

- ¢ ' - . o ]

(3.1) : InA =-(mw,v,8),

where 7w 1is the number of positive characteristic roots of A , v the

number of negative and ¢ the number of zero roots of A . Thus m+vy = r(4),

) the rank of A, and 6 1is the nullity of A . Sylvester (1852) proved that

oo !

-
'

LS

(3.2) InA = InCAC'

\

for every ndnsingulaf matrix C, cf. Marcus and Minc (1964, p. 83). The °
equation (3.2) is called Sylvester's law of inertia..

’

THEOREM 3.1 (Haynsworth, 1968). C(Consider the (min) x (min) symmetric matrix

(3.3) ' CA

(

where E 18 mxm nomsingular. Then

]
-

(3.4) InA = InE+ In(A/E) .

\

[ R R
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Proof. We may write, cf. (2.26), .
‘ I o\/z F\L -E'F E 0
(3:5) . B = 4 N =
5! '
’ F'E In F H/\O /In 0 (A/R)
Using (3.2),
(3.6) . InB = InA ,

and since the characteristic roots of B are those of E and of (A/E),
(3.4) follows. (ged) '

A matrixaof the form X'X 1is said to be Gramian or nonnegatéve
definite (ond)., If X'X is singular, then it will be called positive
semidefinite (psd). 1If X'X is nonsingular, then it is called positive
definite (pd). Some authors (e.g., Haynsworth, 1968) use positive semi-

definite where we use nonnegative defdnite. In this thesis, positive definite,

7

positive semidefinite and nonnegatjive definite matrices are always symmetric.

We note that the symmetric matrix A 1s nonnegative definite # v = 0,

positive definite ¢ v = § = 0, positive semidefinite ® {v = 0. and & 2 1}.

9
#

COROLLARY 3.1 (Haynsworth,.1968). Congider thg symmetric matrix

(3.7 . A= ,

and let E be positive definite. Then

(3.8a), ‘A isnnd @ (A/E) 15 nnd
" (3.8b) A is psd ¢ (A/E) is psd {
(3.8¢c) [A 18 pd * (A/E) is pd.

-
S g At

b b irin A
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When E and H are.both nxn nonsingular then the difference

between ‘them has the same rank as the d%fference between their inverses, for

Y '

(3.9) . E-H=-HE"T - 1 D)E, - \%’
We now show that when E and H are both nxn positive definité‘andi

E - H is- positive (seml)definite then Hjl - E-l is positive (semi-)
definite also, See also Theorem 4.13. b

v

THEOREM 3.2. Let E and H both be nxn positive definite, and suppose:
that E - H 1ig positive (semi)definite. Then gt

- E_ld t8 positfpe
(semi)definite, and \

(3.10) rE-1) = @t - B, ’
Proof. Consider the matrix '
_ [(E 1 o
(3:11) - A = . '-l N (3 |
I H
n

where E, H_\1 are pd. Since E -H = (A/H_l) s ond and H ' is pd,

A 1is nnd by (3.8a). Also, since E 1s pd, (A/E) = H_l_- Eflg is nnd. (qed)

Haynsworth (1968) extended.Theorem 3.1 by considering the inertia of

partitioned Schur complements., We begin by partitioning the (m+n) x (m+n)-

symmetric matrix A as in (3.3), where E is mxm nonsingular. We then

compute the Schur complement S = (A/E) and obtain (3.4). We partition the

Schur complement

‘ E, F
" (3.12) - (A/E) = S.= ! 1 ,
o S \

. where ‘El is mIXml,‘nonsingular, and compute the Schur complement 8, = (S/El).

k£

S,

e

- ST
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© We obtain
(3.13) ‘ TnA =" THE+InE, +InS, .
We partition .
E, F,
"(3.14) 5, = 2 "2, ,
| B \
\ Fy H, , ,
where E, is \m,xm, , nonsingular. We compute 52 = (SI/EZ) and repeat

the procedure performed with Sl . We obtain

3 L —
|

(3.14a) InA = IhE-kInEl-FIhE2-+InSZ .

A

We may ‘continue this process by defining Ei+1 as the top left-hand

i i
' ‘ { . - -z
mi+lxmi+l nonsingular submatrix of the. (n jflmj) x (n j=1mj) Schur

complement Si = (Si~l/Ei)' The process stops as soon as a Schur complement,

Sk, say, 1s a scalar or has no top left nonsingulatr submatrix. Then
’ .
. k
(3.15) InA = InE+ Z InE,+InS, .
‘ ' / j=l j k ‘ '

§3.2 The quotient property and related determinant inequalities. -,

Consider the matrix ’ ' -
/.
{
E { - K L = Fl
(3.16) a=f -] =w wir |,
¢ H R
1 % i

bl

where E and K are nonsingular. Then the Schur complement (E/K) 1is a /
nonsingular leading principal submatrix of the Sthur complement (A/K); Crabtree
& Haynsworth (1969) and Ostrowski (1971) proved that

N

S 3any (A/E) = (AR @E/R)), L

which they called the quqtient property.

v



ey

.also holds. )

We note that thg parallel relationship

(3.18) ot = ey

bl Y ;
THEOREM 3.3 (Crabtree & Haynsworth, 1969). Consider the matriz (3.16), 1
where both E and K are nonsingular. Then the Schur complement (E/K)
is a nonsingular leading primcipal submatriz. of the Schur complement (A/K).
Moreover, (3.17) holds. . N

Proof. Since

NoF, m\ : ‘
(3.19) (A/K) = ' - K “(L,F.) ? \
G. H G 1
2 1
! ¥ - wlL E, - NK_lFl
(3.20) = -1 -1 >
G, ~G;K L‘ H - G K F

N - MK_lL = {E/K) 1s a leading principal submatrix of (A/K). Since-
[E] # 0 and |K| # 0, it follows, using (2.7), that

(3.21) [(E/K)| = |EI/IK],# 0, | ‘ ’

and so (E/K) is nonsingular. Also,

9

(3.22) ((A/K)/(E/K)) = H - (;1[('11«'1 - (‘G2 = G;_K-IL) (E/K)_l'(FZ. - MK-lpFl)

kL emo et ke Fl |
(3.23) = 1= (6],6,) P o1 .
(3.24) = §- GE 'F = (A/E), | s
using (2.37).  (qed) ’ . | | | ‘ 2
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cf. (3.7), and , ’ ‘ ;
Lo /K L
(3.26) B =
. L' N
are both (m+n) x (m+n) nonnegative definite matrices, where E and K . ;

(3.27) . ((A+B)/(E+K)) - (A/E) - (B/K) '

(3.28) F'E

an /
_ Haynsworth (1970b) extended Theorem 3.2 by showing thag if

E F .
(3‘.25) A= ’
F' H

>

are both mxm  positive definite, then

is nonnegative definite. To pfovg this we use the following: p

LEMMA 3.1 (Haynsworth, 1970b). ILet E and K both be wwm positive definite.

Then if F and L are arbitrary mxn matrices ,
/

1 1

F+L'K™

LR .

L- (F+L)' (E+K)'1(F+L)

18 nonnegative definite with the same rank as

(3.29) F-EL . S

Proof. We may rewrite (3.28) as follows:

. / E'l-(E+K)'1~ ~(E+K) "t F
(3.30) (F', L") _ _ - . '
’ ~(E+K) 1 o)t L

\




, (:T

1
1

\

#

Since E and K are pd so is E+EK-1E. Applying (2.42) with F =

H = -K then yields

(3.31) e+t - g

-l (E+1<)"l

positive definite, and so (3.30) may be written

(3.32) (F', L")

which 1s nnd with rank equal to the rank of F - EK

I
..1('1

E

THEOREM 3.4_ {Haynsworth, 1970b). Let

- . E
(3.33) A=
F'
and w
y N K '
(3.34) - B =
. : L'

1

‘ ‘ F
)' (E~+EK'IE-)"1(I, -EK"l) ( ) y

L.

L

(qed)

G=E and

both be symmetric (m+n) x (m+n) matrices, where E and K are both

mxm, If A and B are nonnegative dej“inz"te and E and X are positive

definite then

~

(3.35) ((A+B)/(E+K)) - (A/E) - (B/K)

18 nonnegative definite.

v

Proof. Since the sum of any two posi;:ive‘ (nonnegative) definite matrices is

positive (nonnegative) definite, E+K is pd and A+B is nnd. We have

(3.36) A+3B =(

80 that the Schur complement

E+K

F'+L'

F+1L
s
H+N

JPr——

s o™ e

B -+~ o
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(3.37) ((A+B)/(E+K)) = H+N - (F+L)"(E+K) L(F+1)

is nnd.  Hence

J

which is nnd from Lemma 3.1. (qed) ! :

o \

Consider the (m+n) x (m+n) matrices A and B defined by (3.33)
and (3.34),where E and K are both mxm. Haynsworth (1970b) proved that

if A and B are nonnegative definite and E and K. are positive definite
then

2

|A+3| Al [B]
(3.39) [(A+B)/(E+K)| =

2 — 4

IE+K] |E] K]

To prove (3.39), we use the following:

'

LEMMA 3.2. Let A and B both be uxn " nonnegative definite matrices.

1

(3.40) o . |A+B] = |A] + |B] . ( -

Proof. Suppose first that both |A] = 0 and IBl = 0. ,Then (3.40) clearly
holds. Now suppose that 1Al # 0. Then

(3.41) , IA+B] = |a][T+47 B
n .
(3.42) = |Al. T (1+ch, 4 1B)
. i=1 !
n 9_1
(3.43) « 2 [Al.[1+ T ch ,AB]
i
1=1
since the characteristic roots ahiA_lB 2 0. Using the fact that
: ntog -1 u
(3.44) Al.[1+ 1 ¢h A "B) = |Al[1+]A""B|] = |A] + [B] ,
: 1=1

(3.40) follows at once. (qed)

(3.38) ((A+B)/(E+K)) ~- (A/E) igy(B/K) = F'E'1F+L'K’1L - (F+L)'(E+K)'1(F+L),

L e et ettty ot Aborirs

~...4,,m«n~‘




LEMMA 3.3. Let: A and B ghoth be nn positive definite matrices and
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v
<$

let A-B be nonnegative definite. \ Suppose furthep that for 1i=1,...,n,

i

respectively. Then E, - K, is nonnegative definite and

(3.45)

COROLLARY 3.2 (Haynsworth, 1970b). Let A and B both be (m+n) x (m+n)
matrices dgfinedmby (3.33) and (3.34), where E and K are both mxm. If

A and B are nonmnegative definite and E and K are positive definite then

(3.46) °

E, and K, are the ixi leading principal submgtrices of A and B, S

i
i i

IEiI 2 IKiI , 1=1,...,n.

o

e SR SRR S

(3-39) hOZdS. % /
. &

Proof. From Theorems 2.1 and 3.4 it £gllows that ’
e \ © "& / :
lA+B| ! ' [
= [((A+B)/(E+K))| 2 |(A/E) + (B/K)| i
|IE+K]| ) - i
\ Al [B]
2 J(A/E)] + |B/R)| = — 4+ — ‘
IEl K] - !

using (3.35), (3.45) and (3.40). Hence (3.39) follows. (qed)

We may extend (3.39) using Lemma 3.3. :

E A

i

EOREM 3.5 (Haynsworth, 1970b). Let A and B both be nxn nonnegative
inite matrices. Suppose further that Ei and Ki » 1=1,...,n~1, are

the. ixi' principal submatrices in the upper left corners of the matrices

A and B respectively. }f El""’E;—l’Kl""’Kn—l are all positive 7
definite -then o
e %
n»—LIKi] n-1 |g | .
(3.47) |A+B| 2|alf1+ T |+ IBlf1+ = _1_ . ,
i=1 lEiI i=1 lKil ) -, !
ki [}

. L
%
v ’ ’ %
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Proof. We will use induction on n . For n=2,
‘ Q ) y, .
(3.48) |A+Bl = [E) +K;|.[(A+B)/(E; +K})| -

.

I ‘ :

,using (2.4). But

(3.49) |E1+Kll 2 IEll + lKll / .
b%/f3~48), and
’ , |A| IB |
(3.50) |(A+B)/(fl+Ki)| > o
. , IE, Ik |

1
i

by (3.39). Hence, (3.47) holds for n=2. Now assume that (3.47) holds
for A and B nxn. If A, and B, "are (n+1) x (n+1) nonnegative
definite matrices, and A = En and B = Kn are nxn positive definite

submatrices of A, and B1 s respectively, then’

. 1
!

(3.51)

'
4

1A, +B,| = [E +K I.] (4; +B,)/(E_+K )| :

using (2.4). But, by the inductive assuﬁption,

)
® ’ n-1 IKiI n-1 ]Eil
(3.52) IEn+Kn! > IEnl. 1+ 2 — J+ K |41+ =T —~
' ) =1 |E i=1 [K
/ ¢l I iI i | il
N L}
and by (3.39),
e |A1| IBll
(3.53) N I(Al-i-'Bl)/(E +K )] 2 +o—_—,
M n n
. . [E I IK_|
- n n
Hence Co .
. L .

.
i dpie s 30 oA N Ao
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(3.54)

&

IA1+B1I

v

-34- \ ‘
T n-1 Ik, 17 n-1 |E_| 1A, ] IB. |
E 1. [1+ 2 i #IK | |1+ i 1, 1
| tL 1E ] | =1 [K, | Bl K|
T -1 K| \ |E ] n-1 lKil
YA 1152 —— | 4+ n B L1 2 —— |+
L i=1 |E I_ IKn] i=1 IEiI
IK | n-1 |E,| n-1 |E,|
L &1 1+ 2 -1 14 I8, .| 1+ 2 1
IEnl i=1 IKil =1_ i
a1 IK, | E_11B,1 1K 1IA]
IAlI. 1+ —| + 2 + : +
=1 || K| IE_|
n-1 |E,|
IB L] 1+ I 1
- VY
i=1 tKil
n K | n |E, |
A, 1|1+ = &} + 0Byl 1+ 2 i
’ i=1 | 5\! i=1 'K1|_

1

Thus (3.47) holds for (n+1) x(n+1)| matrices A and B and the induction

proof is complete.

(qéd}

In the paper by ﬁaynsworth (1970b), formula (3.47).was established with
both A and B positive definite. . ‘

Cv

COROLLARY 3.3 (Haynswotth, 1970b). If A, B and A-B are nxn positive

definite matrices, then

(3.55)

Proof.

(3.56)

5

[A+B| > |A] + n|B| .

By Theoren 3.5,

lA+B| 2 |A]l, | 1+

n-1 |g

:

i=]
IEjL I

~

+  IBl~

1+ Z

-1
n IEiI

——

i=1
K, |

\
T edland Wi SR A
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But,, since A-B is pd, IE;LI > IKiI’ cf. (3.45). Hence

. n-1 lKil
(3.57) lA+B| > jal.|1+ T —— + nlB} > |A|l + nlB}.

i=1 lEil (qed)

Hartfiel (1973) has improved (3.47) using the following result: E[f

’ f(x) = ax+bxm1 , where. a,b > 0 , thlen min £(x) is achieved at
O<x<® ~

[

‘x = (b/a)é and so

t

(3.58) ) nin £(x) = f[(b/a)i] = 2(ab)% .

O<x<w ‘
THEOREM 3.6 (Hartfiel, 1973). Let A and B both be nxn nonnegative
definite matrices. Suppose further that Ei and K
the ixi principal submatrices in the upper left cormers of the matrices

Kyseeosk o ave all positive

i=1,,..,0~1, are

A and B , respectively. If vEl’“'
\
—definite then

b En"l s

: n-1 K, | IR A o
(3.59) [A+B] 2 [AlJ 1+ T —— |+ |Bl.| 14+ 2 — |+ (2 -2n)(ClAl.IBD)

\ g= \ N
1‘1 lEil i=1 IKi!

3

Proof. We will use induction on n . For n=2, (3.59) reduces to (3.47),
and so (‘3.59) holds for n=2. Now assume that *(3,59) holds for A and B

nxn . If A and B, are (n+1) x (n+1) nf.;nnegative definite, and A = En

1 1

.and B = Kn are nxn positive definite submatrices of A and B, respectively,

then, cf. (3.51),

(3.60) : IA1+Bll = I(En+1<n)|.I(A1+Bl)/(En+Kn)l .

1
‘But, by the inductive assumption, N

N

v n-1 [K_| ~0n-1 [E |

(3.61) I‘En+1<n! 2B .| 1+ Z S Y Ik 1|1+ 2 i . \
i=1 lEil . i=1 IKiI

o @ - myelax nt

—_—
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| - :
and using (3.53) it follows that
. n-1 IKiI n-1 IEil
(3.62) |A1+Bl| > [}aﬁl. 1+ 2 —— |'+ K |. |14+ 2 —
i=1 |E,| n i=1 [K, |
i i
- [A | B, |
SRCHEE SR NENIL Lo+ L
|E. | [K_|
n
n ‘ IKi}. A n IEil
(3.63) 2 IAll‘ 1+ 2 —— | + IBll. 1+ 2 —— )
: 1=1 IEil 1=l IKi‘I
. ’ n-1 [ Ik, | |E | B, 1 IK| ]
¢ + =z “i—'—P—'-’Bll + —'j;_-_LTIAll
| i=1 IEiI lKn| IKiI lEnl |
A, . IB.|]
s @ - Qe g D] 2 S|
n n
[E_| (K 1]
o N n_|
using (3.54), 'From (3.58) we see that '
. n-1 IKil.lEnl |E |.IKnl \ , 3
(3.64) Z B+ 1A, 1] 2 2-1)(1a, 1.18,1)*

=1 | 1B IR ] Ky 1 IE, | y

while using the arithmetic mean/geometric mean inequality, we have that

Al B, ] TSR N
(3.65) e S Y I Rl LN B
E | x| [ 1. IK |

Substituting (3.64) and (3.65) into (3.63) yields the lower bound:

+

n Ik | a1 g |
1+ = |4 |Bll.' 1+ 3 4 4 "

=1 |E, | : i=1 IKilr

14, 1.

1

’

+1

- 21)) (14118, 1)%,

3

3

as desired, since. 2(n-1) + 2(2nl—2n) = 2" -~2(n#l). Thus (3.59) holds for
(n+l) x (n+l) matrices A and B and the induction proof is complete. (qed)

¢
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In the paper by Hartfiel (1973), formula (3 59) was established when
both ‘A and B are positive definite,

COROLLARY 3.4 (Hartfiel, 1973). If A and B are nxn positive definite

matrices then

)

LR CENEUE SR
-

(3.66) '1A+fs| > 1Al + Bl + (2“—2)(]AI.IBI)i .

Proof. By Theorem 3.6, ’ . ’

. ’ n-1 lKil : IEil !
© (3.67)  |A+B] 2 |A+ IBl + = A}, —— + IB| . == ‘
i=1 [E, | 15
! : + @™ - my(lal. s}

L 2 [al + 18] + 2a-1) (1Al 1B} + 2 - 20) (Jal. 1)y |

/ using (3.58), which
- - n 3
= AL +71B1 + (27 -2)(JALLIBD)? . (qed)
Coroilary 3.4 allows us also to extend Corollary 3.3.

‘ COROLLARY 3.5, If A, B and "A-B are all nxn positive definite then

\ : ¢

. ¢

(3.68) [A+B] > [A] + (2"-1)1B] .

Proof. Since A-B -is pd, lAli > IBl% . Hemee (3.66) implies (3.68)., ' (qed)
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‘where D is diagonal mm and X has full column rank m . More generally,
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§3.3 Characteristic rogts.
o | ~ |
If the nxm matrix X of linearly independent characteristic vectors
corresponding to m roots'of An nxn matrix A is available, then the
remaining n-m roots of A are the roots of a Schur complement in the
matrix formed from.A by replacing’ m of its columns with X . Thus let
(3.693) AX = XD, .

o

consgider, cf, Hayﬂsworth (1970a),
(3.69b) AX = XB ,

where B is an arbitrary mxm matrix. Goddard & Schneider (1955) call
such an X a commitator and showed thqf m characteristic roots of A are

characteristic roots of B . o

THEOREM 3.7 (Haynsworth, 1970a). Let th;\;an matris

‘ _—
(3.70) A=( > . '
G H -

Y

©

Suppose further that B e an wm matriz and that X is an nxm matriz
of rank m , such that |

(3.71) ; AX =/ XB
and .
) .
| X
(3.72) x= 1
X,

where X, is an mxm nonsingular matrix. Then m characteristic roots of

1
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A are characteristic roots of B and the remaining. n~m characteristic

roots arescharacteristic roots of (G/Xl) where

(3.73) . C =

(3.74) 7= - .

is nonsingular., Hence, using (3.71),
S B X F
(3.75) J "AJ = 1

O‘H-XZX]_F ;.'

has the same characteristic roots as A , and the proof is complete.

~

(qed)

COROLLARY 3.6 (Haynsworth, 1970a). Let the matrix A have m linearly
independent (column) characteristic vectors corresponding to the characferisﬁic
Al,...,Am

nxm matrix X are the characteristic vectors and that X may be

roots (not necessarily distinect). Suppose further that the columns

of the
partitioned as in (3.72). Theh the remaining n-m characteristic roots of
A are characteristic roots of (C/Xl) where C is defined by (3.73)..

Proof. Since AX = XD , where D = diag(ki,...,lm); cf. (3.69a), 'Theorem 3.7 -

~directly implieslthe result. (qed)
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§3.4 Quadratic forms. -

An altetnate interpretation for the Schur complement is as the coefficient

matrix of a quadratic form restricted to the null space of a matrix.

THEOREM 3.8 (Cottle, 1974). C(onsider the quadratic form

. E F X

(3.76) " Q=1z'Az = (' y")
F' H 3

where A 1is symmetric and E is nonsingular. Let Qr' denote Q constrained

by the system of equations

v

(3.77) ’ Ex f Fy =0.
Then
(3.78) Qr = z'(A/E)X . .

", Proof. We may write

(3.79) - Q =\§'E5 + 2x'Fy + y'Hy .

Using (3.77) and the fact that E is nonsingular, we obtain

, (3.80) X = —E'le .

¢

Substituting (3.80) in (3.79), yields

(3.81) Q

L=y @ -FERy =y @/my .

AN

(qed) / . d
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_where K 18 nonsingular. Let

41~

o f/
In Theorem 3.8 we restricted Q to the null space of a submatrix of
A . More generally now let us restrict Q to the null space of the matrix

M= (K, L).s Thus Mg = Q . We obtain

THEOREM 3.9 (Cottle, 1974). Let Qg denote the quadratic form (3.76)

constrained by the system of equations

(3.82) kg +1y=0,

~

T

o ki
i L,
(3.83) B=| K' I F
l
.\ .l H

. 0 K :
(3.84) C = ; - /
: K' E . :

Then
(3.85) Q= y'(B/O)y .

Proof. Using (3.82) with K ﬁonsingular, we obtain ‘

1

(3.86) x=-K Ly .

Substituting (3.86) in (3.79), we have . ' p
‘ ' v ""'1' e Ly -1

(3.87) QS =y [H - 2L"(K ")F+L'(K 7)'EK L]y .

i BT

e T2 Ly e
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~

Since K 1s nonsingular, so is C and the inverse

‘ - ~&) et (K") -1
(3.88) . ¢t = 9 \
/ K 0
is obtained using (2.40). Hence ) \
’ Can et oo™ (1
(3.89) (B/C) = H - (L' F") 1
| K g F
cH4 L@ L - PR - L) E , |

/ .
and, so (3.87) = (3.85). (qed) i

We may combine Theorems 3.8 and 3.9 to“yield

THEOREM 3.10 (Cottle, 1974). Let Q, denote the quadratic form

" ’ ’ 0 K L\ Yw Co
" (3.90) Y'By = (wix\y) | K E F ]I x
? 1 \
a . L F H z
. constrained by (3.82), with E and K nonsingular. Let C be defined

as in (3.84). “Then

P
'

(3.91) q, =y @Oy ..
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( 'CHAPTER IV

RESULTS ON GENERALIZED SE€HUR COMPLEMENTS
. /

Vhen the submatrix E in the partitioned matrix

E F
(4.1) A= ’
' G H -

¢
is rectangular, or square but singular, then the definition (2.1) of Schur
complement cannot be used. Using generalized inversés, hovever, we may

define (cf. Marsaglia and Styanm, 1974a,b),

(4.2) | ls =H - GE F

as a generalized Schur complement of E in A , where A  is any solution to
*(4,3) ) ACA=A .

Following Rao (1962) and Rao and Mitra (1971), we will call A~ ;
generalized inverse (or g-inverse) of A . If A-A{*.— = A also holds,
then we will call A  a reflexive g-inverse.Hence, a g-inverse A  is
reflexive if and only if it has the same rank as A (cf. proof in §4.6).
A reflexive g-inverse A" such that AA and A A are both s;’mmetric is
unique and is denoted by A+ , the Moore-Penrose g-inverse of A . We note, ‘
however, that while a g-inverse and a reflexive g-inverse can always be
found for matrices with‘elements over an arbitrary field, the Moore-Penrose ,
g-inverse will only exist for those fields which have a "transpose" operator,
so that A'A and AA' are defined and have the same rank as both A and .
A

, and so that (A'B)' = B'A . Cf, Marsaglia & Styan 2?97%, p. 438).
Caxlson, glaynsworth & Markham (1974) considered matrices over the b

. complex fiéld and used the Moore-Penrose g-inverse E+ in_their ‘definit.ion

of generalized Schur complement. Other writers, such as Rohde (1965), Khatri

(1969), Meyer (1970), and Pringié & Rayner (1970), used (4.2) without giving
() it a néme. See also Hartwig (19‘76a,lb). \ ‘
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55.1 Determinants.

When A 1s partitioned as in (4.1) and FE is'singular, then the

4

analogue of Schur's determinant formula (2.4)
x ' \

N E F - 3
(4.4) = |E|.|H - GE F|
. G H ‘
il , :\
need not hold, e.g.,
011 -
. (4..5)~' .._.l..._ = -1 # 0= IOl-ll - 1.0 -ll .
| ' 1101 ,

Sufficient conditions for (4.4) to hold, however, were obtained by Carlson,
Haynsworth and Markham (1974) using Moore-Penrose g-inverses. We exten%

their results to arbitrary g-inverses using the following:

‘ T v
é ' LEMMA 4.1 (Marsaglia & Styan, 1974a, p.,274, Th.5). For matrices over
; an arbitrary field:

s . ‘ i

{ (4.6) . 2(E,F) = p(E)+r([I-EE ]F) = r([1-FF ]E) +(F)
S - .
Sfor every E , F ', and . . ,
' E hd - ‘ - .
i 4.7) r( )= r(E) +r(G[1-E E}) = r(E[I-G G]) +r(G)
; : G

8
v

for every E , G . ‘ ’

4
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Proof. We may write )
~ 1 -EF\ | ‘

4.8) r(E,F) =r | (E,F)

’ o . I
4.9) = p(E,[I~EE ]F)
(4.10) = p(E) +r([I-EE ]F) ,

' I : '

gifice the column spaces of E and . (I-EE)F are virtually disjoint:
if a=Ep= (I-EE )Fc , then (I-—EE—)g =0 = (L-BE )Fg = a , as
I-EE- is idempotent. This proves the firsf equation in (4.6). The second

equation in (4;6) and both equations in (4.7) may be proved similarly. (qed)
Lot '

3

a

THEOREM 4.1. ILet the matrix

E F .
(4-11) A= ( , ) ,
G H ?

have elements over an arbitrary field and suppose that both A and E are
sqzlare. If either :

(4.12)- r(E,F) = r(E)

or * 4 . -
N E ' ‘ oy

(4.13) r = r(E) ,

‘, o G

then

(4.24) 1A} = B 1B GEF |

o
/

for every g-inverse E . S -

s e e i e B 3 e

e o e? e e e

e vt B b




.holds.” (qed)
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1

Proof. 1t follows from Lemma 4.1 that (4.12) implies , ‘ ‘

’ (4.15) - EEF =F

t

for every g-ihverse E . 1In this event, writing
-+

! [/E F\. /E o© I EF
(4.16) . A= ( ) = )
~ ¢ H ¢ 1/'\0o H-CGETF

and taking determinants yields (4.14), A similar proof works when (4.13)

*

We note that neither H-GE F nor its determinant is necessarily
invariant under choice of E , when either (4.12) or (4.13), but not both,
holds. However (4.14) shows that either |El = 0 or E is nonsingular
and B-GE'F = (A/E) = H-GE °F . |

When, however, both (4.12) and (4.13) hold (which is ‘so when A has the
structure \(4.60)‘below, €.8., A nonnegative definite), then H-CGEF is
invariant tmdef choice of E , since (4.12) ® F=EL and (4.13) = G=ME , for

?

some L and M . Hence GE F = MEE EL = MEL = MEE EL for every g-iaverse E .

COROLLARY 4.1. If A and H .in (4.11) are both square and if either

o

(4.17) (6,1 = r(H) o ,
or ( ‘
. F , . :
(4.18) » = »(H)r L
iy
then - N
(4.19) 1Al = |HI.|E-FH G| \ )

for every g-inverse H™ ,

e — R e
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We:note that neither (4.12) nor (4.13) is necessary for (4:14) to

hold, for if E is singular then (4.14) just says that A i¢ singular, ~
and if . '

! o 11 1 ’ |
. =y ‘
-(4.20) ca=l1 11 1 ..
101 1

th‘\’en both, E and A are clearly singular. It would be interesting to
find necessary and sufficient conditions for (4.14) to hold, viz., when
does. |E| =0 dmply [Al = 02

Carlson, Haynsworth and Markham (1974) refer to the result in Theorem
4.2 bélow as Sylvester's determinant formula.. We notice that this result

parallels that of Jacdbi (1834), our Theorem 2.9.

THEOREM 4.2. Consider the nxn matrix

1
. E F

(4.21) A= ( ) ,
{ . G H

swe

i

where E is mwxm , possibly singuglar. Let D= {d ij} » where
E £ .
(429 d,, = 315 1,1 = 1,2,...,0mm,
’ ij gl h - .

and £ g §i denote, respectively, the jth columm of F ‘and the ith row
of. 6 ,and H = {hij}. If eith'

-5

(4’.235

r(EF) = r(E) '
) . v
" *
or ) . ’
4 E
(626 O e

4

. g O 5 P «
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then
(4.25) . D= |E|l.(A/E) -

‘ * —
for every generalized Schur complement (A/E) = H-GE F and o

(4.26) Ipl = [EI™ ™ s .
Proof. Theorem 4.1 yields dij = lEl'(hij'-giE-fj)’ which gives (4.25)

immediately, and hence (4.26), since D is (n-m) x (n-m). * (qed)

o

*§4.2 Rank.

o

»

When A 1is partitioned:qs in (4.1) and E is singular, tﬁén rank

need not be additive on the generalized Schur complement, for

0o i 2
(4.27) r ——--1;--—- =2 ¢ r(0)+r(1-1.0.1) ,
1 |1

! ] i - 5
which equals 0 or 1 according as 0 is chosen as 1 or not 1 .
We may, however, following Meyer (1973) and Marsagli# & Styan (1974a),
establish the following: ' '

v

THEOREM 4.3. For matrices over an ariitrary field,

‘ E P\ ' 0 . (I ~<EE")F .
(4.28) r ( ) = p(E) + ur( R ) .
¢ H G(I-EE) H-GE F

“

Three different choices of E  may be made.

Proof. We note that

v

\ ~ /1 0 E F\ /I -EF E X
(4.283) = 3
/ -GE I \6 & o 1 Y X

where E is a g-inverse of . E , possibly different to E,
. N PR~ v




; (4.29) X =

and
[} ~
(4.30) ‘ K =
4 Then ) C 7

E F
. (4.31) r(
\ ¢ H

since-the columns (rows)

of X (rows of Y ).

(4.32)

()

\

(I-EE)F ; Y = G(I-EE) —

'
v

H-GEF L YE'F .

(E o) (o x)
r + r ,
: 0 0 Y ‘K .

of E are linearly independent of. the columns

Since

9

0 X I -EF ‘
\ 3 \ , , \
Y H-GEF 0 i/ -

* ) '

‘ (4.28) follows, except that the choice of E in Y ié the same as that

in H-CE F .

To relax this condiﬁion we note that with E#

as a g~inverse of

E (possibly different to E ), we have that

0
; (4.33) -
| { . G(I-E E)
| | )
. (4.34) T,
s ' G(I-E"E)
£ 1

< o

-0
(4.35) r _
G(I-E E)
is invariant under chgice

!

where S = ﬁ-—GE-F., and hence

X 0 X\/I-EE o©
= #
S G(I-E"E) s 0 I
X 0 X I-‘—E#E 0 -
S G(I-EE) 8§ 0 I .
x o x 4
S
S G(I—E#E) s/ |

\(E‘»
’ 3

of E . This completes the proof. (ged)
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Marsaglia and Styan (1974a, (8.5)) obtained Theorem 4.3 but required

that the E in the lower right cornmer of

‘ 0 (I-EE)F
(4.36) _
G(I-EE) H-GEF

must be either the E  in the lower left or in the upper right corner.“

COROLLARY 4.2. For matrices over an arbitrvary fie id,
- . /\
E F ‘E-FH G  F(I-HH)
(4.37) r =r(H)+ »r _
G H (I-HH )G 0

Three different choices of W may be made.

'

We may expand the rank of (4.36) using C‘orolla»ry 4.2 to obtain

~

' 0 (I-EE)F ' u v
(4.38) r _ = r(8)+r s
’ G(I-EE) S % W o
where
(4.39a) U= -(I-EE )FS G(I-EE) o
. (4.395) V= (I-EE)F(I-SS)
(4.39¢) W= (I-S5)G(I-EE) . . ’

8

We now use L

< -
v

LEMMA 4.2 (Marsaglia & Styan, 1974a, (8.3)). _For matrices over an arbitrary

field, - ‘ ) \ .
10 X\ - -

(4.40) ,( ) = 2(X) +r(Y) +r[(I-YY)S(I-X X)] .

. . Y S

any choices of X~ and Y- may be made.

m AT 555 o DA S Wt 500 -
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Proof. Using Lemma 4.1 yields . ‘ -

0 X *
(4.41) p| —=—-- r(X) +r(Y, 5)
Y S 0 I-XX

1

(4.42)

r(X) +r(Y, S(I-X X)).
Applying (4.6) gives (4.1;0). (qed) .
\ : oL '

We now exband-thé rank of (4.36) using (4.40) to obtain

THEOREM 4.4. For matrices over an arbitrary field,

: E F ,
(4.43) r ( ) = r(E) +r(S) +r(V) +r(W) +2r(2) ,
G H -
where |

(4.44) Z=(I-WHnr-vw ,

while U ,V and W are as in (4.39). The g-tnverses may be any choices.

|
)

Meyer (1973, Cor. 4.1) proved that

E F /
(4.45) » s r(E) +7(S) +r(F) +r(G) .
( . \CG H )

To see thig we notice that using (4.28) and (4.38) yields

v E F U v “
(4.46)]I r = r(E) +r(S) + r s '

v

Ay G H . W o

~

and

8 Bk o Stk s
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- U v
(4.47) r( ) < rp(UV) + r(W)
W o
(4.48) < r(U,V) + r(G)
(4.49) =r[(1-EE')F(-s‘G(Ih- EE), I-5 S)]+ »(G)

(4.50) < r(F) + 1) ,

'
13

which proves the inequality (4.45).
Meyer (1973, Th. 4.1) also proved:

THEOREM 4.5. For matrices over an arbitrary field

E F *
(4.51) r( ) = r(E) -i-(r(X) +r(Y) +r[(I-YY)(H-GE P)(I-X X)],
G H

\

where X and Y are as defined in (4.29). Any choices of g-inverses may
be made. 1 _ e ¢

Proof. Immediate by applying Lemma 4.2 to (4.28). (qed)

Marsaglia and Styan (1974a, (8.6)) obtained (4.51) but required the E~

in (4.51) to be the same as that chosen in X or Y. In view of our proof

of Theorem 4.3 this requirement is not needed.

+

<
t

! We will refer to

(4.52) S=H-CEF

' \

as the generalized Schur complement of E in A , relative to the choice

E , where

[}

(4.53) A .

A BT A R b Lo
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COROLLARY 4.3 (Marsaglia & Styan, 1974a; p.291, Cor. 19.1). For matrices

over an’ arbitrary field, rank is additive on the Schurhcomplement:

-

E F
(4.54) r = p(E) + r(H~-GE F),
G H s
where, E .isa partieular g-inverse of E , if and only if / ]
« (4 .55a) (I-EE)F(I-SS) =0
(4.55b) (I-SS)G(I-EE) = 0 ' *>
. E:
(4 .55¢) (I-EE )FS G(I-EE) =0 , - ‘
~ - - . a
where S =H-GETF , while E and 5 are any choices,of g-inverses.

Proof. Immediate from Theorem 4.4, (qed) - . k

Corollary 4.3 was proved by Carlson, Haynsworth and Markham (1974) with

E = E+ , the Moore-Penrose g-inverse. They assert that their proof can be .
used to cover the case where E is a reflexive g~inverse. See also Carlson ‘
(1975, Th. A). _ ' : . %

Y

-t We note that if the conditions in Corollary 4.3 hold, then [E[ =0
implies |A| = 0; cf. the discussion before Theorem &4.2.'

&
§4.3 QGeneralized inverses.
Our objective.in this section is to investigate conditions under which !
by

“the Schur-Banachiewicz inversion formula works with generalized inverses

A R b i 5

replacing regular inverses,

Consider

(4.56) A=

P
o4
v
*
S

and , |




RV

Ny T e o sy S

E +EFS GE- -ETFS

(4.57) B = - - - ’
-S GE S N .

where

(4.58) S=H-GE F .

Rohde (1965) showed that if A "is real and nonnegative definite then indeed
B 'is a g-inverse of . A . This result was extended by Pringle & Rayner (1970),

who assumed that A has the structure

K'k K'L
(4.59) A s
: L'K 0

and later by Marsaglié and Styan (1974b, Cor. 1) for

K'K  K'L )
(4.60) A= 1
Y N M'K N

cf. Corollary 4.6 below. More generally, Bhimasankaram (1971) and Burmns,
Carlson, Haynsworth and Markham (1974) showed that B =A" if and only if
the conditions (4.55) hold. Applying Corollary 4.3 we then get

THEOREM 4.6 (Marsaglia & Styan, 1974b, p. 439). Suppose that the matrix
A defined by (4.56), has elements over an arbitrary field, and that E
ie a particular g-inverse of E . Let the Sehur complement .S = H-GE F
and let -

_ E +E FS.GE  -E FS
(4.61) B = . ’ .

-S GE s : ,
Then :
(i) B is a g-inverse of A for a particular g-inverse s if and
only if rank is additive on the Schur complement (f.e., (4.54) holds), and

then B 1is a g~inverse of A for every g-inverse S .

(1) The g-inverse B 1is reflexive if and only if E and S arve

l‘ .
both reflexive. g~inverses. -t

(1i1) For complex A , B = A+, the Moore-Penrose g-invérse of A,
if and only if E =E ,5 =8 ,

o
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2 E )
(4.62) r ( ) = p(E,F} = r(E)

G/.

and
. ¥ .
(4.63) . r ( ) = p(G,H) = r(8)-= r(H-GE F) .
N H_ )

Proof. (i) Straightforward multiplication shows that ABA = A< (4.55);
and éo B is a g-inverse of A * (4.54) holds. .
(11) & (ii1). These proofs are straightforward but more lengthy:
we refer the reader to Marsaglia & Styan (1974b, pp. 438-9) for details.
. - (qed)
B 1‘ ' \ﬂ

Bhimasankaram (1971) and Burns, Carlson, Haynsggrth & Mafkham (1974)
proved that the matrix B defined by (4.61) is a g-inverse of A if and
only 1if (4.55) holds. |

Similarly it may be shown that if H is a p;rticular g-inverse of

D

H and T =E-FH G is the generalized Schur complement relative to the
choice H then

™ . ~TFH
(4.64)

(9]
]

” . -0 6T H 4+H GIEH
is a g-inverse of A for .a particular g-inverse T~ if and only if

)

4.65) % r(A) = r(H) + P(E-FH Q) , .

andwthen C 1is a g-inverse of A f;r every g-inverse T . The g-inverse
¢ is reflexive if and only if H and T are both reflexive g~inverses,,
For complex A, C = A+ ; the Moore-Penrose g-inverse of A , if and only if
=g ,1 =1, and |

o

F \
(4.66) r ( ) = p(G,H) = r(H)
H ‘ N
and x [
. | /E o
(4.67) r ( ) = p(E,F) = 2(T) = P(E~FH G) . =
1 G s

e i 5 Akt S S n b

g
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Since the Moore-Penrose g-inverse is unique, we obtain ‘

COROLLARY 4.4, Let the complex matrix ’ .

¢

(4.68) ;A= -

< and let

(4jzk/’ s;u-cf%, T=E-Fﬂb.

Then

1t gfpst .
(4.70) - A

’
atert st

the Moore-Penrose g-inverse of A-, if

E "
(4.71). . r ( ) = r(E,F) = r(E) = r(T)
« G
ond | | ]
F -
(4.72) r (¢H> = r(G,H) = r(H) = »(S) .

.Burns, Carlson, Haynsworth & Markham (1974) noted that the Moore-Penrose
: +
g~inverse of A is given by (4.70) if (4.61) and (4.64) equal A |, since

the Moore-Penrose g-inverse is unique. Moreover, Theorem 4.6 yields:

$

COROLLARY 4.5. Let E =E and .5 = s+, where’

(4.73) ’ s =H-cE'F = (a/m) ,

A being defined by (4.56). If (4.62) and (4.63) hold, then B = A' and

(74) | Cowtsht s aframht e .

-

e e
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+

Similarly, let H =H' and T = T  where
, .

(4.75) T=E-FH G = (A/H),
A being defined by (4.56). If (4.66) and (4.67) hold, then C = AT and

(4.76) wmht - whamht-n .

Burns, Earlson, Haynsworth & Markham (1974) proved that, if

472 G(1-E'E) = 0; (I-EENF

05

(4.77b) (1-ssM6 = 0; F(1-5s)

f
"

0, _—

, 5
/

where S = H-GE+F » then (4.74) holds. Using Lemma 4.1 it is easy to see
that (4.77a) = (4.62) and (4.77b) © (4.63). .

i
«

COROLLARY 4.6 (Marsaglia & Styan, 1974b). Suppose that the real matriz A
18 defined by
_ E F K'K K'L
(4-78) A = . =- .
G H M'K N

Then rank is additive on the Schur complement: :

(4.79) r(A) = r(K) +»(S) ,
where

‘ - +
(4.80) ’ S=H-GE F = N-M'KK L

18 independent of the chotce of g-inverse E . The matrix

b E +E FS GE. -E FS~
(4.81) B =

-S GE S

SR

ot ot
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, |
_ , 4
’ ’ . ’ i '
is a g-inverse of A for any choice of g-inverses E , S . PFurthermore,
+ , , . - - ;
B = A , the Mocre-Penrose g-inverse of A , if and only if E = E+,S = s+, 3

and

.

(4.82) r (F) = r(G,H) = P(H-CE'F) = r(5) . '
H

Proof. Since K'K(K'K) KXK' = K' , it follows that (I-EE)F =0 . Similarly,.
it may be shown that G(I-—E—E) = . Hence\(4.555 holds and so rank is
additive on the Schur complement (i.e., (4. 79) holds). The Schur complement
is unique since GE F = M' K(K K) K'L = M KK L . The conditions for B to
equal A follow since (4. 62) and (4.63) reduce to (4 82). (qed)

me s eiers

Rohde (1965) obtained (4.81) for a g-inverse of A , where A is defined
by (4.78) with- M= L and N =L'L . Pringle and Rayner (1970) also established

" thdt| B , given by (4.81), is a g~inverse of A , where A 1is defined by (4.7&)3
with| M

R e

L and N = 0 . The following corollary gives a different approach \\\A
‘to Rohde's result. See also Ruohonen (1973).

\ \ '
COROLLARY 4.7 (Marsaglia & Styam, 1974b). Suppose that the real nomnegative
definite matriz A tis defined by ’

E F K'K K'L
(4.83) A= 1= .
F' H L'K L'L

If any one of the following three conditions holds then all three hold.

e -y el
2 st

E F
(4.84) r = r(E) + r(4) ,
¢ F'
‘ © [ E E+EFs et -E'FS “
(4.85) “ . ,
P! -s tprgT s ,
E ~TFH" i
(4086) 9 ]
. o\ At et ‘
4
- / ﬁ
where the Schur complements of E,ardof H,in A, ;
\\ . ‘\/ . 4
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] (4.87). S=H-F'EF = L'(I-KK)L i
and ‘ ’ °
(4.88) T = E-FHF' = K(I-1LDK',

v

are independent of the choices of g-inverses E and H .

Proof. Since ’F(I-H-H)’= K'L(I-(L'L) L'L) = 0, it follows that
4

. F .
(4.89) ,< ) = r(H) ' ‘ :
. ‘ ¥

using Lemma 4.1. First, suppose (4.84) holds. Using (4.79), it follows that

3

R F
(4.90) n(S) = r(H) = »r ( )
H

/ ¢

and so (4.82) holds which implies (4.85). By the reverse argument, (4.85)
implies (4.84). The alternate arrangement in (4.86) follows from the
"symmetry? in (4.84) with respect to E and H. (qed)

§4.4 Inertia.

! Consider the real symmetric matrix

E F N ‘
Do
A= | , .
F' H S ‘

's singular, Then inertia need not be additive on the generalized

(4.91)

wherd E
Schur complement in contrast to the case where E is nonsingular (Theorem 3.1).
We find, however, that under certain conditions inertia does continue to be
;dditive on the (éeneralized) Schur complement. Tb*éeextbif we use the

’

following: \\\

¥ ' z ~
LEMMA 4.3. Suppose that the real symmetric nxa mairices A and B

(4.92) r(A+B) = ;(A)i-r(B) .

U rank additive: .

——




o
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O

il

Then

(4.93) = In(A+B) = InA+InB , .

where In denotes inertia,

Following Carlson, Haynsworth & Markham (1974, p. 172) by (4. 93) we mean
that w(A+B) = n(A) + n(B) and v(A+B) = v(A) +v(B) , where m(.) and.
v( ) denote, respectively, the number of positive and negative characteristic
Toots.

/

Proof. TFollowing (3.1) let

Ina = (m_, Vor 80 s rA) =4y sr
(4.93a) ,
InB = (m , Vs 5b) , r(B) =MV, = r, .

Since A and B are both nxn real symmetric matrices, there'exist real

nonsingular matrices § and T such that

\ . ‘
‘ J I"a 0 0 s.l ,
= t - 1
(4.9t5a)/ A SD,S (s, Sy 83) 0 Iva 0 5
’ 0 o 0, g!
0 63 ; 3
= v ! J
(4.94D) sls1 8282 )
* and
]
, / I“i) 0 0 T )
= ' = - 1
(4.953) B 'mbr ( 1 Ty T3) 0 Ivb 0 T,
0 0 0 T!
8, y 3
y = ' _ 1
(4.?5b) TlTl T2T2 . /
§
1 ‘

Dot ek el o e it e e
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\d ‘J% . - - ! ‘Z l
Using (4.94b) and (4.95b), we obtain
\ £ \ 1
= * _ L] LA |
(4.9‘63) A+I'5 slsl 8252 + TlTl T2T2 ,
. E
s ‘ L
- . In 0 ‘ 0 0 / S1
a
Ca ’ : 0 -I. 0 0 55
(4'.96b) = '(sl’ 82’ Tl, 'T2)G/ B a . i
’ PN : 0 0 I -0 T!
. ] ’ be of| 1
| - 1
’ \ (? 0 0 I lTZ
o \E A N .
{ .
L % + From rank additivity and from (4.96b), we gét b ‘
| § i . |
' ! " (4.97) r(A+B)' = ra+rb < r(Sf, 5;2, Tl’ TZ) < ﬂa+.va.+ 'lfb+v =raj-r
: ; o ,
. Hence there exists avmatrix U , say, n x (n—ra—rb), .80 that ’ -
) V= (8, T,S,, T., U) is fionsingular and writing
1 1 . 2 2 S'
i 1
I 0 0 I
' +
: ) ‘ ) \] 'ﬂ'a T[b , S,}
(4.98) A+B = (Sl, Tl, SZ’ Tz, m 0 -I‘J +v 0 .")_
a b T2
V 0 0 0 o
]
Lo completes the proof. (qed) !
- Y . ‘
' THEOREM 4.7 (Carlson, Hayn;,worth & Markham, 1974). Consider the real
AT symmetric matrix
: / E F T
(4-99) A;- . ‘
. . F' H )
s S Let E; be a symmetric reflexive g-inverse of E , and let the general;fzed
T Schur complement )
S ¢ 7
(,’) . 3 " L
n/ l
: 4 -
-...; ‘ . . \ &
—— < 0

b °

A

AT b Sk i AT At e o ateih




(4.100) S=H{FEF= AWE. ' .
‘ ' Then- P
H ,
, -XsX' 'V \ |
(4.101) . InA'= InE+ In(A/E) +In j , y
. V' {0 ¢ §
5 f 3
where f i

s R A

"

(4.102) " X = (1-EEDF and -V LX(I-s s

(4.103) r(E) ¥ r(E, F) : §

N
'
! Y '
¢
H \ ,
v [y
.
.

then S is& unique and

|
" and S; is a symmetric reflexive g-inverse of S . *‘wthemore, if

H ’
g »
* sy v

(4.104) ™ InA =|InE+ In(A/E) . ' ‘

Remark. The notation uspd in (4.101), as in (4.93), is taken to mean additivity
of the numbers of positiye charactéristic roots and of the numbers of negative ;

|
roots, but not necessarily of the numbers of zero roots.

* Proof. We may write , ’ oo

* ' ? * ! \ )
I 0 E -F\ (I -EF 'E X . |
| . (4.105) C_ . ) = , )" i
€ —F'Er 1 ! H 0 I X' 8
. since’ E; is a symmetric reflexive g-inverse of E .| Then by Sylvester's
law of inertia, cf. (3.2), we obtain | ‘
‘ : _ . E X\, “
(4.106) InA=In |- . . . ,
4 . x* S -
’( ‘ J | # | |
Q - R \' Cy : » -
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Using Theorem 4.3 yields 2
, 5
' E X E 0 0o x\ ',
4.107) r = p + r ;
X' s 0- 0 ©\X' s ‘
which, using Lemma 4.3, yilelds . .
. 0 x\ -
(4.108) InA = InE + In .
) x! ]
'However, we may write, cf, (4.1Q§)r !
0 X I Xs~ v v\ ./ 1 o0
(4.109) o = t _
‘ X' s 0 I V! S 'SrX’ 1

+ [ M
where Sr is a symmetric reflexive g-inverse of the Schur complement
S=(A/E), and U =‘—X8;Xf . Hence, using (3.2) again, we obtain

’ /0 X vy vy
. (4.110) In = In = InS+ In
) - \X' s AN V' 0

since
U v -xs;x' v ‘
(4.111) U =r(8)+r s '
’ c-\V' s A 0

using Cordilary 4.2 and lemma 4.3, Thus (4.101) follows at once. If

© (4.103) holds then Lemma 4.1 shows X =0 and so V=0 and (4.104)

follows. (ged)

~

When A 1is nonnegative definite then (4.103) holds, cf. (4.83), and
‘so‘ E and (A/E) are both nonnegative definite. Conversely, if (4.103)
holds and both E ‘and (A/EYy are nonnegative definite then A 18 nonnegative

definite (cf. Corollary 3.1). Moreover, we note that (4.103) implies

. (4.104) even when E_ ip (4.100) is replaced by any E~ , for then (4.105)

holds with X = (I-EE")F = 0 , while (A/E)

)
\

L}

H- F'EF = B-F'E'F  for

every E .

T TR A b 3R s AR e ¢ <

"“%Wv«,ﬁ%v‘wkw“ B N Wy it
4
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84.5 The quotient property and a related determinant inequality,
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The 'quotient property (cf. (3.17) in §3.2) may,

be extended using generalized Schur complements,

4

THEOREM 4.8 (Carlson, Haynsworth & Markham, 1574).

(6.112) -

if

(4.113)

and
(4.114)

¢

then

(4.115)

’

Consider the matrix

/x 1 ;
E | F .
TN VNt S [y VR
¢ | «H ;
v . 6, & |

’ B
r(E) = r(E, F) = r( )

. K N
r(K) = p(K, 1) = r( )

|
| K
r(x, 1, F)) = r(®) = r| M

|
¢

1

\ . ,
and the generalized LS"chwr complements (A/E) s (E/R),
uniquely determ‘rined, and

(4.116)"

(ﬂ/s) = ((A/K)/(E/K)) |

e

and  (A/K)

under certain conditions,

Femiire

r

T et laae et sy




Proof, From (4.113) and Lemma 4.1 we may write

(4.117)

s0 that

(4.118)

Thus

(4.119) °

P

F = EEF " and G=GEE,
_ /X
F1 = (K, L)E'F and G, = GE .

' - /X K
r(K, QL’/’Fli) = r(K, L) and pr M = p( )
. . G

Applying (4.114) yields (4.115). The uniqueness of the Schur complements

then follows, cf. remarks before Corollary '4.1.

(4.120)

’

(4.121)

i

80 that
(4.122)
while

(4.123)

for some matrices

R averee ot SO

K KL KF
° o

A=f ®K N F

o H
GoK y G2

L]

Lo’ Fo’ Mo’ and G, » To prove (4.116) we notice that -

(E/X) F, ~ M KF '
(A/K) = 2 oo ]
G, — C XL H -~ G KF
2 0 o 0o o

\

((4/R)/(E/R)) = H-G KF - (6, =G KL ) (B/K) ™ (F, - MKF ) ,

‘
’

(A/E)}. = H - (G K, ¢,)
fo) 2 MoK N

’

Using (4.115) we write (4.112) as




—— e —y T—

s

To see that (4.122) = (4.123) we use Theorem 4.6(1) to write, cf. also
(2.}7) and (3.23), )

ko ok \ K 0 K KL _
(4.124) °1 - + °) (/v (M _KK™, -1)
’ MK N 0 0 -1
0 .
Substituting (4.124) into (4.123) yields (4.122). (qed)

Carlson, Haynsworth and Markham (1974) also extended Theorem 3.4 using

generalized Schur conﬁ:lements. Let

* E F = \
(4.125) A=
4 F' H
and
' ' / K , L
4.126 B = ‘ '
( ) I _ | i ‘

both be symmetric (m+n) x (m+n) nonnegative definite matrices, where

E and K are both mxm. Then
(4.127) P(E) = r (@&, F) and r(K) =r(K, L) ..

The generalized Schur éomplements

s | !

(4.128a) (A/E) = H'- F'EF ‘
(4.128b) (B/K) = N - L'KL '

are, therefore, uniquely defined as is

4

(4:129) ’ ((A+B)/(E+K3) =H+N - (F+L)'(E+K) (F+L) ,

since A+B is nonnegative definite, cf. remarks before Corcllary 4.1.

»
L

m’i"
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THEOREM.4.9 (Carlson, Haynsworth & Markham, 1974). Let A and B be
defined as in (4.125) and (4.126). Then

(4.130) ((A+B)/(E+K)) - (A/E) - (B/K)
i8 nonnegative definite. ‘
Proof. Consider the matricks

(4.131) P= K and Q=

A Y

Then P, Q and P+Q are all nnd and so then is the generalized Schur

complement

¢

(4.132) \ ((P+Q)/(ﬁ+1<)) = F'EF+L'KL - (F+L)‘\~'(E+K)_(F+L) .

Following the prodf of Theorem 3.4 we see that (4.132) = (4.130) and the
proof is complete. (qed)

. Carlson, Haynsworth & Markham (1974) also extended Theorem 3.5 by -
allowing the principal submatrices E, and K, to be nonnegative definite.

4 i
The inequality (3.47), however, is only meaningful when the Ei and Ki
are all nonsingular. If we substitute lAl/lEil = I(A/Ei)| and

IB{/IKil = I(B/Ki)l then we abtain:

/f/ﬁ
THEOREM 4,10 (Carlson, Haynsworth &-Markham, 1974)7 Let A and B both
be nxn nonnggative definite matrices. Suppose further that E, and K, »

i=1,...,n, are the 1ix1 prineipal submatrices in the upper left corners of

the matrices A and B respectively. Then ' R
n-1
(4.133) |A+Bl 2 |Al+|Bl+ Z [I(A/EDI-IR: I+ 1(B/RK)I-IE ] &
) o 101K 201y

i

‘
Ed
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+

]

Proof. We will follow the proof of Theorem 3.5 and use induction on n .

For n = 2,

e e asant
'

(4.134)\ | |A+B| = lEl+Kll-I(fx+'B)/(El+K})| =

cf. (3.48) and the remarks before Corollary 4.1. From (3.40) we have

‘ ' {
(4.135) |E1+K14 p3 1E11+ lKlly , j
while . ) 1
(4.136) © L TAEB/E TR 2 TA/E) | +1(B/R)

’

follows from (4.130). Hence

v
'

(4.137) . |A+B|

v

CLE, T+ 1R D UC/E |+ 1®B/K). D

N

(B 1 TCA/B) L+ 1Ry 1L B/ L+ 1A/ - Ky + 10k -1 |

il

AL+ 1B+ W) 1K |+ @R By - 3

Thus (4.133) holds for n = 2 .

s

Now assume that (4.133) holds for A and B nxn . If A, and B,

are (n+l) x (n+1) nonnegative definite matrices, and A = En and

B = Kn are nxn submatrices of A, and Bl , respectively, then

1

(4.138) . lAl+Bl| = |En+Kn|'|(A1+B1)/(En+Kn)| .

~F * 5

But, by the inductive assumption,

&. L
) nl - . .
* E ! . L]
(14 139) lEn+Kn3 2 - [l(En/Ei')l lK1|+|(Kn/Ki)| lEi|]

_ a \ \i
) )
- @
“,. &




o

«

and by (4.130),

(4.140) C Ay BB AR | 2 IR ) |+ (B K ) ' -
/ ) - . .

Hence,

R n \
(4.141) lAl+Bll 2 {i‘f [I(En/Ei)I.IKiH|(Kn/Ki)|.lEill}{l(Al/En)l+I(Bl/Kn)l}

1
n - n ¥
= 1§1| (A /E DI ICE JE )L IR, | +1§l|(Al/,En) LI® /RDIIE ] +
n n '
1;‘31 LBy /KD ICE JED IR, [+ 151 LBy /R DT /KT IE |
n .
> I IA/EDLIE E)LIR T+ 14,
i=1
n
+ B, |+ 151[ USRI RN
n+1; .
= DI /JED LK+ (B /R)ILIE ] .
i=1 =

f§

)

Thus (4.133) holds for (n+1) x (n+1) matrices A and B~ and the inductﬁion‘

v

proof is complete. (qed)

Ay

§4.6 Other results.

3
y

In this section we present a numbér of miscellaneous results which
extend some of the theorems and corollat¥ies presented above.

In Corollary 2.1 we proved that if F is wxn and C is nxm then,
cf. (2.8), : \ ‘ :

~—

1

& 142) o = 11, - ¥6| = |I_ - cF| .
, , ¢ 1 o |

e - - V WTERE, |
o - - - - T Ll e B ey ot N o i B v Y
* L S TR 4 - e e L. 0

i



Using (2.4) and (2.6) we similarly obtain

M F
(4:143) = AL - Fol = IAL_|.IT_- GF/A]
- ¢ I
. n
and so - ~
(4.144) AL, - FG| = \"|AL_ - GF|.,
'xa? & ‘n

which shows that FG and GF have the same nonzero characteristic roots,
cf. e.g., Mirsky (1955, p. 200).
'Furthermore if we replace I in the lower right cormer of (4.143) by
M s F by -F, and G by -F', then
\

AL -F
m

-F' AL
n

®

2

“ = - = ,on —
(4.145) ‘lklml'lAIn F'F/A| A A Pﬂ F'F| ,

Y

and so the nonzero characteristic roots of
L2

-

4

, .0 F \
(4.146)
F' 0

A -

are the pairs of positivé and negative singular values of F , c¢f. Lanczos
(1958) . |

A similar result to (4.142), cf. Clin% and Funderlic (1976), is

. G147 © W, - FG) = ¥(I, - 6P,

where () denotes (column) nullity.
To prove (4.147) we use Theorem 2.5 to write




T . R

oy s A

.

(4.148) e[ P ) =n+r( - FC) =m+ (L - GH),
I . .
from which (4.147) follows at once.
The nullities o} I -FG and I - GF are'related to the ranks
F - FGF and G"- GFG . Using (4.28) and (4.37) we obtain |

|
F FG \
(4.149) - »r = p(F) +'r(G - GFG) = r(G) + r(F - FGF) ,
F G -

G
and
1 F .
(4.150) 1 =m+ r(F - FGF) = »(F) + r(I_- FG) .
6 F /- -
Hence
(4.151a) W(i - FG):= »(F) - r(F -"FGF)
(4.151b) / ' = »(G) - r(G - GFG)
(4.151c) = (1 - GF) ,
and ' ) -
. (4.152) r(F) - p(G) = r(F - FGF) - n(G - GFG).

AN

i
i
|

S

(4.153) C p(AT) = r(A) + (AT -ATAA) 2 n(A) ,

and so0

(4.154)\

]

of

v

. ) .
If 6=A, and F.= A" is a generalized inverse of A then (4.152) ylelds
1

9

il




.

om0

-

That is, a g-inverse A  of a matrix A 4s reflexive if and only if the
ranks of A and A are'the same, cf. Bjerhammar (1958; 1973, p. 383).
We may extend Theorem 2.6a (Wedderburn, 1934) which showed that if

H#0 then there exist column vectors 2 and b so that a'Hb # 0 and

(4.155) ‘ r(8 - Hba'H/a'Hp) = »(H) - 1 . .

THEOREM 4.11. Let the matrices A, B and H satisfy

LY

(4.156) r(A'HB) = r(A'H) =’r(HB) . .
Then
(4.157) r(H - HB(A'HB) A'H) = »(H) ~ r(A'HB)

for any choice of generalized inverse.

Proof. Using (4.28) and (4.37) we obtain | -
' H HB ’
(4.158) r = r(d) = r(A'HB) +r(™) ,
A'H  A'HB .
where
X .
, H - HB(A'HB)"A'H ~  HB[I - (A"MB) A'HB]
' (4.159) M= ‘
‘ [

T - A"HB(A'HB) ]A'H . 0

Using the rank cancellation rules of Marsaglia and Styan (1974a, Th. 2) we -

see that P
(4.160) r(A"HB) = r(HB) = HB[I - (A'HB) A'HB] = O
and

\ ! ™

—
4

o ot Sk AN S oMb Wt T o
1+
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~
»

A ]

\
|
\ A .
| , -
(4.161) " r(A'HB) = r(A'H) ® [I - A'"HB(A'HB) ]JA'H = 0,
N . \
since A'HB = A'HB(A'HB) A'HB. Hence (4.156) = (4.157) and the proof is

Y

complete. | (qed)

Rao (1973, p. 69) presents (4.157) as an exercise when A'HB is square
and nonsingular; this condition clearly implies (4.156). :

\

(1973) showed that the Schur complement of a nonsingular principal submatrix

in a ' symmetric idempotent matrix is also idempotent. We extend this result

in the following: !

5

-’

~ THEOREM 4.12. Iet

Y

. .
) E F ‘2 L]
(4.162) \ A= = A,
¢ /" ~
If
VA
. E .
(4.163) ?(E) = r(E,F) = p SR
' | e ) Ty
P =
theﬁ the Schur complement
(4.164) (A/E) = H - GE'F = (A/E)? \\
is invariant and idempotent under choice of E and

(4.165) C ra/E) =2 - 2 .

Pro6f. . From (4.162) we obtain

{

N
a

Jn a statistical study of the residuals from a linear model, Ellenberg -




— — —y—

" (4.1684) -

and (4.164) is proved, while (4.165) follows using Corollary 4.3. (qed3

(4.169)

o
.

] £y }
B P A L P M mem gl e om .

T 1

[E F EX + FG EF + FH ' x
(4.1‘66) S = R 2 IS N ) i
“\G¢ H GE + HG ., GF +H ‘

while (4.163) yields, using Lemma 4?1,

) : . . ‘ N
‘EEF =F and GEE = G

v

(4.167) -

P

Then. (A/E) = H - GE'F 1is invariant under choice
Hence, using (4.166) and (4.167),

for every choice of E..

- }
of E , cf. remarks before-Corollary 4.1.

'

§ oo et b % A

5 + GE FGE ¥ - HGE F..- GE FH
LY
(H - GF) + GE_ (E—E)EF- (G"—GE)EF—GE (F - EF)

\

H - GF + (GE'E)EF - (GEE)(EE~ F) - GE “F + G(EE~ F)

(4.168a) «(A/E),z

(4.168b)

(4.168¢c)

. ‘ -GEF+(GEE)F

W

H - GE—Frv(A/E) ,

; ¢

The special Ease of Theorem 4.12 considered by Elléﬁberg (1973) supposed

that A be smietric and E nonsingular., It is clear that whé%ntye
idempotent matrix A 1is symmetric then it is honnegative definite and so ‘
(4. 163) always holds.

A ¥ A'.

Moreover E nonsingular implies (4.163) even'if
< : .
When E is symmetric idempdtent but A 1is idempotent and not )

symeetric then (4 164) need not hold, for let . ' ’

¢ 3

e :
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1
. ~-
a
4

S

* .7 ' - Then A=A and
. * /
' ’ . 1 a b

(4.170) . . E =l ¢ d e

for argiﬁfary §ealars a,b,c,d,e,f,g .and h. Then

, &
! ¢ \ 49 &

, N 1 ’ 1 o\ -
- (4.171) N (A/E) =
' 1 , -e 1.

\ | u g
) 2 .
is idempotent ® e = 0, Moreover (A/E) 1s not invariant ul&er choice of . E- ., .
".A theoren by Milliken and’Akdeniz“(T?T%), which showed that if H. and
E-H are botﬁ s&mmeqric nonnégative defimite watrices then the difference

b L X e

~

. ' . 0.
between the Moore-Penrose g-inverses

.
' ' . i 1 -
N .
v - ’ ~e

o . o ’ s 'Rv o
~(4.172) , G E+ is nnd ¢ r(E) = r(H) , L ‘

. * {
i

has been extended by Styan and Pukelsheim (1978), who use symmetric refléxive ’

t . ‘g-inverses rather’than Moore-Penrose g-inverses. See also Theorem 3.2 .
W

5 _\jgmmREM Q.13 (Styan & Pukelsheim, 1978), Let H and E -~ H be symmetric ' ;
. nqnnegative definite matrices. Them E 1is nonnegative definite and ‘ |
\ T - - . . N
. _ réﬁ,ﬂ)’ﬁ »(E) . Let Er and Hr Be symmetric reflexive g-inverses. Then
oo } ' S
’1 ) ’i’- ' .
LI - - N vy o - -
(4.1732 | . Hr - Er i8 nnd < EE_ = HHr
1 * ,tE \ N " |
‘and ‘then r(E - H) = p(H_ - E ) . ' :
., iﬂ T . ' . :
~ PP '\:? EE i - ‘ . ’ f ‘ k)
Proof. - Using Theorem 4.7 it follows that o \ ;
" . } ' ‘ - :
o ' a3 .
(\b . ‘ v -
X1 ° ¢
i ’ ¢ ! A ’
P , v 0 J b . h
L { <
- " s

©
P




© o

*

»

o E H \ S
(4.174) In( ) ¥ InH + In(® - H) ,
v “ H H '

9

Y

and so E ~:is nnd and P(E,H) = r(E) since the partitioned matrix in (4.174) k
M 14
is nnds Moreover \ . '

6

4 E EE_ v
(4.175) In( ) = IvE+ InH - E;) .

- -

. E’:E Hr /ﬁr [ {
’ I ! )

using Theorem 4.7 agaﬂ\ and the fact that r(E,EB;) = p(E) . ' b

Let EE_ =HH . |Then : ”
R X r

’

r E ., HHr ] ,
(4.176) In( _ . ) = In( ) = InH_+ In(E - H)
EE H : r :

“ o

r

using Theorem 4.7 and choosing (H;); =H . Thus (4.175)

(4.176) and

H - E is nnd and »(E - H) = 1r'(Hr - Er) :

Now, let H; - E; be nom{egative definite. Then the partitioned matrix
in (4.175) is nnd. Thus ) )

e " R
(4.177) » "’(ErE’“r) r’(Hr) )

which, in turn, implies

N ’

T~ !

(4.178) FI - gr(ﬁr) ]ErOE =0 \ . P
so that, choosing (H;)— =H, . T ot ~
(41179{ ) ErE = HIHEI‘E =HH,
v | \’ » ’
. ; : - ‘
' s . R .

e bl S b i s

e e P




&

. : -

since r(E,H) = *‘I'(E) . Transposing yields EE; HH; (qed) - i

¢ i
,

COROLLARY 4.8 (Milliken & Akdeniz, 1977). ILet H and E - B' be symmetric
Then

3

nonnegative definite matrices.

H - E' is nnd © 2(E) = (1) .

o \

\
Proof. 1f gt E+ is nonnegative definite then

\

“{(4.180)

(4.181)

Is
0

follows from (4.17\3), and

s
1 -

»(E) = n(EE) = p(i'H) - n(H) *.

\

(4.182)

®

i

. Now, suppose »(E) = p(H) . Then Theorem 4.13 implies tha}: r(E) = r;(H) =

2

" r(E,H) . Then E
: ) g
' !
(4.183)> E=M'E and A= EE'W.
| , .
So, postmujtiplying the first equation™n (4.183)-Hy ET yields /
f . > e

(4.1843) v’ = mitEE’ = (mtEEh):
»
o+
(4.18D) = (EED) ' (")
. (4.18hc) - = gEHH = m' ,, ;
and the proof; 1s complete. {qed) , 0 L
- ' \ﬁ ’
Note that »(E) & r(H) does not always i;mply that ’H; - E; is non-

negative definite.

For example, let
‘ Ay

-

<




g

, ’ 1 .0
(4.185) E=Hﬂ< ),
~ 0 0

s

which is nJPnegative definite so that

‘ V)
(4.186) E-H-= ( .
. 0 0
\ .
Then ) \ '
l’- ' n X - l X B
(4.187) ) ) Er = ( 2)
. x x
for some scalér x and \
, Co - 1 -y
> (4:188) : - Hr = ( i’ 2) \
. . - y y v
for some scalar| y . Hence ‘
s
i s ‘ N - 0 y—x o)
o - -
(4.189) Hr Er§ ( / 9 2) ‘
: y-x y =X
is nomnegative definite if and only if  x =y . But
- _ _ r x\ /1.y
(4.190) . . EE_ = HHr g ( ‘ )_= (
& e X \o' o \0 0

-4

N . - - . - *
r(E) .=-r(H) does not always imply that Hr - Er is nonnegative definite,
—
T

the condition EE;

always does.

).

if and only if x-= y . Frgm this example, we conclude that, althéughk

™




I

e

N \ 3 b (

In a study of the existence of a nonnegative defir'lit_e matrix with
prgscriqbedl characteristic roots, Fiedler (1974) based his proofs on a lemma,
which Dias da Silva (1976) found "interesting 'enough"‘ to repo;‘t in full in ‘
Mathematical Remiews. A rather simple proof of this lemma is possible

using Schur complements. °®

<
N

Y

THEOREM 4.14 (Fiedler, 1974). Let A be a symmetric mxm matriz with

- characteristic roots Gpy Ogyeeny O, and let u be a normalized charac~

vt

teristic vector corresponding to - @y .. Let B be a symmetric n*n matriz
with characteristic roots B Boseens B, > and let v be a normalized

characteristic vector corresponding to B Then, for any ~ , the matriz
l ,

V . ) A'/ i Yw' v [‘
H ’ 3 I ~ ‘
(4.191) . M:\( ' '*) ‘ .
Yvu' B " "

’

has characteristie roots LTPRR ,6m,-B£, . Bn » and the characteristic zjodt?

of

. o | ‘ ul“ Y L \ .
<(4.192) : . -

™ Q
' Q
. -

Proof. The characteristic polynomial A

A= AT yuv' ;T

(4.1938) . p= . )
) . 'ng! B - AL | )

(4.193b) = |A = ATLIB = AT - yyu'(a - AD 'l

| E I ;

using (2.4) and so )

(4.194) P=1a-21l.B- A1~ y’zm';’(c;l - Tt , -

w,
£ ' e
o

" ~ . “

[
4 *

-




%
| o .
-80-

v . ‘ {
since (A ~ AI)B = (ul - A)E . .Hence
(4.195) p = 1A= ALl 1B = A - v'w'/(a, = VI,
since u'y =1, and so

. |

(4.196a)  p = |A =~ AT|.|B.~ AL|.|T - y2(B - m‘-l",.fx'/@“'l -]
(4.196b) = 1A =118 = ATLIT = vow' /Ly = (B - M

\

o

since ugB - AI)Z = (81 - A)v . Hence

v

A - I ygx'L

(4.197a) p= ) ‘ k
) . ‘YVU' B - )\I
) m - n .
(4.197b) = T (o4 - A). T (8, - A).[(a1 - x)(a1
12 j=2 J '

@
-
a
A A
o

VR

et i s e

1Y

(qed)

Theorem 4.14 may be used to find the characteristic roots of .a special ' ;

correlation matrix structure, cf. the remarks after (6. 70)
4
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E ¢ . CHAPTER V !
‘ . NUMERICAL MATRIX INVERSION USING SCHUR COMPLEMENTS
.‘;‘.w , .- . _— =;L.~gj?
‘ A number of algorithms for matrix inversion use Schur complements. :
The earliest of these is probably the "bordering method" published in the coe
book by Frazer, Duncan and Collar (1938).
. ¢ . 7 3
0“[ . .
) §5.1 The bordering method. K . 1 )
sConsider the matrix - . E . ' M
L 3 ° ' k/
| : 11 .12 0 P1n j
‘ v a a see @ . )
; sy Lo %21 P22 wm | y . {
: 1 %a2 " % * "
: ' “ \ ¢
’§ The method proposed by Frazer, Duncan and Collar (1938, p. 1#) considers w
[} (N
' the principal leading submatrices ) ; “
\ B
) ) 819 e+ By N - % o
(5.2) . Ei=( ceserasenareees 1y 1=1,2,...,n, .
ail\ "8 aii ’ 0 !
g
, a
1 .«
» Ei""l see
F (5.3) =g, : a , 1=2{3,...,n, .
‘ ’ - . i-1,1 '
"4 e B1 0t 4,11 44 )
‘ .
i ‘ 4 { ‘
§ ) ’ It’ ' E 1 fi l l
“(5.4) = ¥ , 1=2,3,...,10,
] r «
Coe 8i-1 i - \ e
. . [ ¥ . N )
“ N { ) \ * ' ' :‘v ‘ & ) E y ”
() where gi_f (ali".“’ai-,l,i) | and .gi—l = (ail"?"ai,i—l‘ 3B = agy
~ - ' -
Assuming Ei—l known, we can apRly (2.37). Then
3 3 . . . ¢ ; 3 e
' ‘ . : = i ’
[ ’w ‘ ’




P——

» \ f
“ 5 3 -3
Q5.7 a=l2 a4 4 o
\ 3 2 1
we write . \\\\“~\m¢w ‘ ¥
“ - [E,, £ "
(5.8) a=( 2 2,
) ) a )
N §,2 33 i N A
. ) P .
o !
where . K
4 4 ' B .
. ' 5 3y . o)
(509) . * \ EZ = < !
2 -4 .
. ' \g& \ o : . ' .
= (= t ' = . . = : . "
£2 ( 3,4)~ » By (3,2) and 844 1. ,“ ' o
@ . i > t;‘ \

-82—

=
/-1 -1 A -1 ,
1 ByatBion By Bion Biaa/sil By1 Bi1/8i
(5.5) <E, = : ,
L. -g! E-1 /s 1/s
, Bi-1 "1-1'%111 1-1
here s = 3 - g! E-i f s i=2.3 Define s = a g
M 1-1 ~ 341 T Byl Bi-p Riey P FTEeTaec el o - 31

This method requires that all the E 's (i=1,2,...,n) be nonsingular.
Hence, if one or more of the Ei's is singular, i=1,2,...,n (i.é., when
at least one Schur complement %fhl = 0), then we can find a permutation

L

matrix , "
(5.6) M= ( ,
1 =2 N ) .

where {11,12,...,1n} is a peymutation of {1,2,...,n} , such that all the
principal submatrices in ITA .are nonsingular. Baving obtained (II A)_1 s
we postmultiply by Il to obtain A“1 .

" Example 5.1. To find the inverse of

v




\ . , ~83- '
To apply (5.5) we compute:
. ‘ 2 3 g
4 3 = ==
(5.10)° . -E;l - __1__7,( ) - 13 26 ’ £ “
‘ ’ , 26 \2 -5 1l =5
\ ‘ . k o4 13 26 ,
4 3 ~3 0 b
G Sk () )( )( )
| 2 -5/\4 -1
! 4 - -3 - ;
-1 1 1 !
.12 ! = = . = - -
] ‘l ) o ngZ’ T 3 2 (2 _5> 56 (16 1) L \
, 8 -1, oo
\ 3 SERRT !
)
@ ! A 1 0
= -~ ' - ‘= - =
. (5.13) 8, = 83 ~ B, E2 52 1-(3 2) 3,
, , - -1
’ T & 3 0 E
Lople gl - L 1 ] |
(5.14) E2 +E2 52 85 E2 /s2 5% ( ) + 76 ( ) (16 1)/3 ., .
2 =5 -1
2 3 ’
e} 1 12 , 9 _ i‘i 76 {i
: " 78 .5 1| - !
. . R "’10 "’14 39 39 .) §
O\ - [
Hence W 2 3 9 ‘ i
12 9 0 . 13 26 ) :%
e -1 1 5 7.1
(5:15) A " = 73 10 -14 26 T % 3
; "'16 l 26 .—-g- -!:- l’
39 78 3 o0 i
A variant of the above method was given by Jossa (1940), who showed that, »,
N when E;_l:l is known, then the following operations yield E;l = {alz’%} s
i=2’3’--',n. Define "ai’l = 1(811' For i=2,3,---’ set ‘ \\
! - b N
8
» L 2
\
] | o
' ' ¢ .
4
1 , ‘}
- ; &\
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: S, % . S :
i
|
7 ] =1 |
- (5'16) ki B~ hfl ai 1 ahi H k=l,2’ccu,i-1, '
A% i i i—l ) o
- G.1D e eyt Eoay ) S
v : .,h =1
(5.18) Captapte k=1,2,...,1-1, 3
' i-1 . ' ' g
g (5.19) : afll”ft ﬂai”(f'z a a;’:i) ) : 2=1,2,...,1-1, %
h=1 g i
' o . §
. 9' o 1
(5.20) 31;’ = ai_’_i + rk.i i 2, ‘k,2=1,2,...,1-1. , ;
}
] - ! g
The above e%\;’ations may be obtained simply by rewriting (5.5) in scalar ;
' : notation, . . S
4 ' %
N 4 i
E ‘ Example 5.1 (repris:e). Using Jossa's method, we obt:qin ) ’
| "' |
- | ai’l =1/5 3
: 1,1 .12 x
1 o st le agatay T ayg) = 0
= e ’ = an ’ !
Typ =78y’ Ay, =3/ (5.16) PR S T I : |
2 13 %
" " 3,3 ‘ CoL 3
=1/(ay, +ay; 12) ~5/26  (5.11) aj =1/, 3ty T 4 Fag,Ty0) = 1/3 o
. % { ’
1,3_ 3,3
. a =a 'y . =0
arr?=aZ2 - 326 (5.1 3 3 13 :
2 2 12 .
. [812*1,3 a§’3r23 =1/3
Y ‘ B ™ ( {
3,1_ ,
e 3¢ Lia )*——16/78
Dl 22, Ll o 5190 %3 3 3 "31"2 T2 2
2 H 2 21 1 . 3’2- 3’3( 1,2+ a _ 1/78 '
(33 T3y (a8 Yagpdy %) = [78%-
(L,1_ 1,1, - :
[Ty e 3:k=4/26 = 12/78
L
1,2 1,2 3,2 .
L a 8 =3/26 = 9/78
al’l = a1’1+r 32«,1 = 4/26 (5.20)4 3 "2 F13%
2 1 1272 -
? ‘az’l 2"}l-l- 3 1==—10/78 .
3 T8 YTk :
' . . = alr?_ 2.2+ 3 2_°
/ , 93 T8y Frpyay = -14/78 .




Hence, we obtain (5.15).

Louis Guttman (1946) called this bordering method "first order
enlargement" in view of the partitioning (5.3) adding a single row and

column to Ei;l v We nSw consider the partitioning with Ei—2 bordered .
by 2 rows and 2 columns: . ¥ ' @
I 1,141 4,1
4
Ei—z . 8 e LN ) > 8
(5.21) E, = 859,41 42,1
| %4-1,1 7t Fan,a-2 ) %4-1,1-1 i-1,1
3,1 - 8y,1-2 84,1-1 a1
Eya Py ’ {
= . H i-= 3,4,...,[1 N i
%Gi-Z Hi
whére )
- a, a
(5.22) R Ll L L
i-2 = . . <1 (1-2) x 2
- a, ., a ‘
o \%32.41 P24 L,
' 23,0 "t qga1,e2 | :
(5.23) G, , = ' 1-1,1- 2 x (1-2)
. x 2,0 7 e
N . ’ a ) P a B
(5.24)" = [ TR A c i o2x2,
' 24,1-1 844 ) ¢ )
Assuming E;_z known, we can apply (2'.37). )
b
- * ?
» % ’
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Example 5.2. To find the inverse of the matrix A defined by (5.7) using the

method described above we wrifle

\ %
% e f‘
. (5.25) a=( Y L), .
where e, = 5, £1 = (3,-3), §£ = (2,3)" and
\ ) A
(5-26) ! Hl = .t
. . 2 1
/ °
‘ The Schur” complement S = (A/el) is given by . \
‘\: \ .
?ﬁ 44\ 4 (2 3 3
; (5.27) s = = G =37 2]
b : 2- 1/ 2 \3 - L
N & 5 5
_ «
Applying (2‘37){ we obtain ‘
/ 2 -1 -1
. 1le, + (1/el)f!s ~-£1'S /e
(5.28) O b v~ B AT 'R
st e s~
=11
To apply (5.28) we compute:
7 PR
’ 14 26 71
_ : a4 -5 5 35\ ["% 3
(5.29) el %) L T1)
5 5 78 3
1426 -
' X 9 3 ‘
(5.30) el 1 \ (= 0 =(= 0
\ £15 /e m 35 (3 -3) 1 a6 78 26
5 5 )
® 14 _26 H =10 -2
(5.31) sgle =l 0 SR Y
” -1 26 g _16 -2
X 5 5 78 39
’ ° 2\ .
- an 20c0e-l _ 1L 9 )2,12,=£
(5.32) Vey#(1/e)bys "g= 5-5 (g 0 \3) = '557 13
) , ‘ \
Hence, we obtain (5.15). | ’
‘ ™
| | \ '
j \ — ’ 4 X

&
n R I v R h A et s e d

P




§5.2 Geometric enl?rge%ent,
’ The method of "geometric enlargement" due to Louis Guttman (1946) allows
the inverse of the matrix A in (5.1) to be obtained by successively

‘constructing the inverses of the principal submatrices S

-
L ked 4w ARG b B ¢ LSRR e RO IR AN RS SGo-

. 1 0 i *
(5.332 .. -E21 = L RRCRELY v 21 x 21
‘ ‘ 41,0 0 221,21 7
v
\ ‘ 3 E, F \ N
(5.34) = o . > i=1,2" ’['2'] . .,%
6 B/ S «
Assuming E; is known, we can apply (2.37). If" i=1, then’ ) E
a a ;
(5.35) A A .
{
o -7\ %22 3
' setting El = a,) » we see ﬁhat "geometric enlargement' reduces to "first-
order enlargement". Also, if i=2, 'we have ’ \
+ h ¢ f
N n %12 %13 Cu4 0
, a a a a,,« .
(5.36) . g, 21 azz 323 az4 \\
‘ - ‘ 831 %32 33 P ) v
. (1 %a2 w3 %ua \
and E,. is defined by (5.35); here;‘the “geometric enlatrgement” reduces to ‘ ;
"second-order enlargement".. z
. N %
§5.3 Partitioned Schur complements, -
' - 1 ’ ‘ l . ‘i
' ! + ,
We begin by partitioning the nxn nonsingular matrix .
e - g AR
‘. 5.37) .. A= s ’ ’ |
y » ¢ H \ <3
) \ .
) : ‘ .
\ e i
3 . 3
| “~ N { ! ) bt
v 7 N . \.p
3 T - i
+ [ - * 3
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where E 1is noxn0 s nonsingular, and readily invertible (e.g., n = l or 2,
‘ i . —
E diagonal). We then compute .the Schur complement = (A/E) and 1if it-is

easily invertihle,ﬁ then we compute A using the Schur-Banachiewicz formula

(2,37). Otherwise we partition the Schur complement
t E, F , .« . ’
(5.38) s=(1 1}, / . J
| \ 6 . ! ‘
. where "El is nxng o, nonsingular, and readily invertible. We now compute ’
the Schur complement l = (S/E Iy, and if it is easily invertible then we
compute § 1, using (2.37), froﬁ which A -1 follows using (2.37) 'again.

. Otherwise we partition

Y " . . . ,

E F '
(5.39) , s, =( 7 21 Lo
. Gz Hz o o ) ) . ‘.‘
where E2 is n2 9 s nonsingular, and readily invertible We compute
= (8 /E2) and repeat éhe procedure performed with S1 . And sp on. ..
Writlng ( ) ° L. i
E .' F :
(5.40) ’ v Sk = ktl ktl l; k=l',2,ﬁ.@ «ssm-1, . ‘ N
i . Ce1 e/ S ‘ ,
he forward £ ';' 1gorith K =u vhen 5%~ (s . /E) 1
the forward part ‘o t 1521 algorithm stops at = m when o o-1" “m 8 .

n-2.
and proceed backwards computing in turn each

-1
K using Sk+1 and (2.37), with S ,s . -

A_l follows using (2.37),again. Louis Guttman (1946) sketched the above
alggrithgﬂntth n =1 §r 2 ; k=0,1,h.,m. Zlobe? and’ Chan (1974) gave full '

easily invertible. At most m = Some. m+l E-matrices will have been
We thow invert Sm

k=n-1,m-2,...,3,2,1,0,

inverted.

inverse S*l;

k
}
details with all n, = 1 ; tHey also state that their "prdgram in APL -~ X
‘consists of ohly seven lines". ' L ST e
| . ‘ o .
5 ;: ,- . ! »
x‘/
"Q\ I ’ N
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Example 5,3. 'Find the inverse of

* . A .,5 % 3 -3
(5.41) A=(2 -4 4 |
‘ o2 1

using partitioned Schur complements. .
The forward part.
\Wé may write

. e. f'
(5.42) A= .
g H

wI;ere: e =5(#0), £' = (3,-3)'y E' = (2,3) and

o7 -4 4
(5.43) C )
2 1

=+
n

“4 4 1 2 '
(5.44) S = - % (3,-3)
2 A3
| L2 2
\ , - 5 5
(5.45) ‘ Y
5 5,
Partition S as follows
. e, f
(5.46) \ s 1 1),
S g M/
r s
.26 _2% 1, _
where 91"'?("0)’f1"'5"’g1»5’h1 5

Hence,
3

s YLy e

(5.47) . s, = 14/5 - (1/5)(-26/5) "1 (26/5) = 3.
, A ‘

3

¥

S




-

] v
\
~90- :
¢ i - i}
The backward part. . o, -
l/sl = 1/3 .' Applying (2.37), we o_btaifx . . ”
UNNS - :
e | 78 - 3
(5.48) A S = 1 1)
78 3 :

Applying (2.37) again, we obtain (5.15).
§5.4 Rank anmnihilation. . <

We express the nxn nonsingular matrix A as the sum of a nonsingular
matrix D and the sum of h matrices each of rank one (cf. Wilf, 1959),

: : | >

-— - h R 0

(5.49) - A=D+Efg .

-/ =1~

-

The matrix D is easily invertible, e.g., diagonal. Clearly h < n. Let"

us write
E.=D s ] 1
0 . )
1 =D+ f1 o )
(5.50) ’ .
A E, = E

=1,2,...,h-1

M) M \ H l
Eh = A, \ N
-1 ol T | ‘
Then we compute, in ‘turn, EO s E1 ,...,Eh = A using (2.59),
T R | -1 , ’
5.51 E = E 1+ g'E] '
(5.51) 3T Ein - Bahgta /O gEhe)

where




[ —

=

O

(5'. 52)

Al . E}:l-‘

-

(5.55) "

&

by rank annth

1+gjjlj$‘ j=‘l,...,h.

]

By < &4» a'nd h =n. Then

b
~3 3’ =
n
A=14+ Z (A- De,e!
j=l( ‘)Mjgj
2 EO = I‘
=3 - t
Ep =1+ (A-Dgpef
(5.53) : \
y . = E + A - I . = 1 .oy
By =Bt (A-Digeys 3= Leom
En = A »
Hence .
(5.562) B =1 - (A~ Dgglla ’
(5.54b) gl - E_1 - 1;3—1 (A - I)e,e /(1 + e! ( - De,) ,
o J j-1 j-1 jjjl jjl ~J
Ezxample 5.4. Find the inverse of
5 3 -3 )

ilation.

~~

‘;I‘his method requires that all the E,'s (3 = 0,1,...,h) be nonsingular;

]

Edelblute (1966) considered the special case of (5.49) with D = I,
= (A~ Ie,

= 2,%4.,0,

ntnin e bR
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We write,
3 .
(5056) A=T14+ p f: 'g' , °
‘ ‘ 4=1 1 i

vhere £ = (4,2,3)', £, = (3,-5,2)", and f3 = (-3,4,00" . .Them

\

4
(5.57) El=1-| 2 Ja o o5
i 4 3 /

1 o0 o 1 0 0

5 L .
(5.58) =t 2:1 o]=5|-2 5 o].

-3
< -3 0 5
z 0 1
. & .
Thus, using (5.51),
y -1 _ -1 -1, _ -1 .
(5.59) E,=E/ - E (A I)gzngl /a ,
where ¢
i 3
: ‘ : ' 26
(5.60) a=1+ (—%;1,0) -5 )= -5
: 2
so that . ‘
¥
3
-1 -1, 5 -1 -2 _
(5.61) E, = E~ + 61 '-5 ( 3,1,‘0) =
‘ 2

T S



L s £ T 05T
v
|
!

3 1
-1, 1 -2 ’ ‘
N (5|.62) = El_ + 5—6" —31 ( 5’1’0)
1 3
: L, .
§ 2% 0 0 /-6 15 0
' 5 (5.63) ) -1 -52 130 0 | + A 62 ~155 0
. : 130 130 :
! -8 0 130 -2 5 0
, Y 3-°0 ‘ |
(5.64) =2l 2 5 o).
E T 26
/ -16 1 26 .
Hence . ' . )
' " ‘ 1 1 - 1 1 | 3
. ‘ (5.A65) A= ;33 = Ez - E, (0,0,1)}32 /b, . p !
[i4 !]
z ' ‘w ' & |
! vhere
-3
. _l \ }
; (5.66) b =1+ (0,0,1)E, 4 |=13.
0 .
Thus ‘ . j’
, 0 ‘ 1
- . 1 . 1 1 3
N - — = 1
(5.67) , AT =E," - -5 | ! (-16,1,26) ;o
2 5
Q . |
~ v -

) . TR TPV Sl =
o e i
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A i ~—
, \ 1
i
1 , (5] i
. |
v . _9[4.— : “
/ { ’
| 2L ,
/S‘
12 9 0 R o
iy \
(5.68) ) =g (-0 -1 26 [, :
3 -16 1 26
{
' cf. (5.15).
v i -
¥ . o
' . §5.5 Complex matrices.
‘\‘ 3 L]
. ~ Let the nxn complex matrix E + iF , where E, F are both real
matrices, be nonsingular, and let us write its inverse as K + 1iL , where
., 'K and L are real. Then, cf. Newman (1962), Westlake4(19?8, p. 31)»
. ' E F K L I O
' . (5.69) = .
. ’ ! -F E -L K 0" I
‘i Thus, we note that E + 1F is nonsingular if and only if
~I
: \ .
S h . - R %
: ) E F' 3
T (5.70) A= N 1
-F E ‘ {
. {0
is nonsingular. If E d1s nonsingular, then E + iF 4is nonsingular if and’ 3
4 - .
only if the Schur complement (A/E) = E + FE lF is nonsingular, cf. 2.4), ;
and then . §
/o ‘ :
«(5.71) K=(E+ FE’IF)“I, L = ~E YF(E + m’lp)’l, g
- N T;;
: / i
i cf. (2.37). 5
4

If E -is singular we may rearrange the columns of A 1in order to
obtain a submatrix in the top left-hand corner which is honsﬁngular. This
is possible since (5.69) implies that r(E,F) = n.
the nice pattern in (5.70) would usually be lost. _

J 7 »

But by this rearrangement,

\
D e R S S S §
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§5.6 Generaiizein inversion by pazztitioned Schur complements.

a
i

~,

/ ' » .
- We begi? as in %5.3 by partitioning the rectangular or singular matrix
E F F

(5.72) ¢ . A= .
. G H
/;7' X -

'A - ]

where E 1is noxn6 , nonsingular, and readily invertible (e.g., n, = 1or

J . , .

2, E 'diagonal). We shen dimpute the Schur complement S = (A/E) and if
it is’easy to find a g-inverse of § , then we compute (cf. Zlobec, 1975) °
a g-inverse A" using, cf. (4.28) and (4.61).

I3

{

/
THEOREM 5.1. If .
1 .
[E F .
4 (5.73) A=
¢ G H
and E is nonsingular then ;
- - 1 -1 - >
s el 4+ g lrseet -E s _
(5.74) ° - _ J=n :
, N —S GE S
- . ‘ ,/
1

‘where S =H - GE "F . , . '

Otherwise we -partitiofi the Schur complement .

N E F
’ S 1 1
(5 .‘75) S = ’
‘ Gl H/ - o

vhere El is nIan , nonsingular, End readily invertible. We now compute

the Schur complement Sl = (S/El) , and 1f it is easy to find an §

" oM '

1

¢

a

R T e el

!
a

R SRS

vi

PN

itk T -
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. '(“. /. - B-’
then we compute S using Theorem 5.1, from which follows using Theorem

5.1 again, Otherwise we partition '

(5.76) ' i S =

where E2 is n2xn2 , nonsingular, and readily invertible. We compute

S2 = (Sl/EZ) and repeat the procedure performed with Sl' And so on.

Writing ‘ "

K+ Tkl
(5.77) s = S k=1,2,00.,10-1,

Gern M

o @

the forward part of this algorithm stops at' k = r when. Sr = (sr_l/Er)
has a, g-inverse S; which is easy to find. At most r = r(A). We npw

X o\ k=r-1,r-2,...,
;+1 and Theorem 5.1, with § = §;. A" follows using

proceed backwar&é computing in turn each g—inverse~gs
%

3,2,1,0, wusing S

Theorem 5.1 again.

i
3

Example 5.5. Find a g-inverse of v 7
' . : 9 |
W 2 1 2
(5.78) ' | ‘A=l 2 0 2- E
- 0‘ 1 0 \

using partitioned Schur complements. The matrix (5.78) is clearly singular .
and has rank 2. We may partition (5.78) as

(5.79) / A= ;

[ IR S e e

(RN P
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A3
'
(-]

Q

ey

/ ; — —
- / ; 4
o7 ‘ . z
‘\;
. . Ji
* [ ‘\ ,' ]
where e=2, £'~= a,2) , g= (2,0)' and %
‘ i
y : 3
n , 0 2 k ...
{5.80) , ‘ B = & . g
, 1 0 ;
’ {
, Then %
H
4
£

¥

T 402 L {2 -1 0 | ;
(5.81) S = (A/E) = ) -5 ) (1,2) = . ‘
1 0 “\o ‘ 1 0 ’

Noting that

: -1
(5.82) 5 = ( ) (1 0)
, N .

we see at once that
*

© - - . ' %

1 ‘
( ) -1 =5,
0

the Moore~Penrose g-inverse of S . Hence we use Theorem 5.1 to compute

(5.83) .

oj=

1 1 + 1 +
. . * E+Z(1:2)S\(2’0)' :'"2'(1,2)3
(5.84) A = vy
~357(2,0)" s (

A}

=
1
e

n
[

q
N‘nggg ]
0o }
{/’”“"\

~
.- MH g WWWWWJ:‘M:M\M po# el Ealadal
AR - _
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B

()

. where\ a , b and c¢ are arﬁitrary scalars. Thus a = -1/2 and b

-98-

If we had not noticed the factorization (5782) we could partition (5.81) as

’

|
]
. |
(5.85) § = [ ~=md-—
i
1
|

1

|
f
]
(5.86) ‘ s~ = ...._...+...._ .
!
|
1

\ - »
S B

L

Hence, agailn using Theorem 5.1, we obtain the alternate g-inverse

~

1,1 peao  -lagse
b laose,0 Saos
(5.87) AY = \
Lom ~
, A —ES (2,0)‘ ' ¢ S /
1
1 7 1

\

A third g-inverse of A may be found by noting that any g-inverse of S '

must have the form

-

_ _ a l+a \
(5.88) ) . s = ,
, - b c ' '

’

i
[¢]

]
(=]

yields st , while a ; -1l and b=c¢=1 yilelds § Letting a = b =- =0

H

t

ety P % A A A S S b Bt

:,;
1

[

e

e - T

Bt
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we obtain ‘ v
_ f{0-1
(5.89) ‘ S = ’
‘ ’ o o/ -
and using Theorem 5.1 again yields o
1 1 §
= = .
| ) 2 2
(5.90) ‘ A= 0 0 1
O 0 0

§5.7 Generalized inversion by rank annihilation. '
1 ".1
When 1 + g'E "f # 0,
(5.91) (E + fg')'1 - g1 E‘lgg'E'l/(l + E'E"lg) , A

of. (2.59) and (5.5}), was used repeatedly in §5.4 to find the inverse by

rank annihilation. When 1 + g'E—lg = 0 , it follows that (cf. Ahsanullah

& Rahman, 1973) E--l is 4 g-inverse of E + £§' , as 1s easily verified.
We express the nxn matrix A as in (5.53) and we write

, Ia 0 0 0
(5.92) A=T+(A-1) + (A~ 1I)
0 0 0 I
n-a .
with
I .0
a
(5.93a) Ea =1+ (A-1) =
0 0
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v E - Ia
(5.93b) . =1+
» ™ G
- ' E O
(5.93¢) =
: G I
n-a

where A is partitioned as usual, cf. e.g. (2. 2), with E axa .

Ahsanullah & Rahman (1973, p.3),

(5.94) IE | =0
a

:To prove (5.94) we note that

(5.95a) r(E) = r(E) +n-a
(5.95b) ' <p(A)+n-a
(5.95¢) <a+n-a=n.

n—-1 and E

If r(A) S

1}

r(d) <a<nl?%.

is nonsinguiar for all j

. -1 |
1<3j3<n-1 then En—-l = A , More generally,let

I

are nX(n-r)

o 1 ]
(5.96) A=D+ F1G1 + FZGZ ,
where Fl and Gl are n><r , F2 and G2
If D+ Flci (= Er say) is nonsingular then
(5.97) (D + F,G! )
l 1
To prove this, consider
D + F.G! F
(5.98) . M= e
1 § - 2
G2 -1~

.

{

Then, cf.

such that

P B w  d it Fa Oopery b )

Lowy gt

P v

ald rQ) =

PR

31 AR VRS it &

ESTA0

AR

L~

b et




[

Then ¢ ) °
' ot
= -~ 1 °
(5.99a) r(M) = n \H,/‘h\+ FiG) + F,65) . ‘
> (5.99b) =n-1+7rA) =
. ' ’ -1
= 1 - - T, 1]
(5.99¢) r+ FGy) + r(-E _ - 6)(D +F,6)) "F,)
: -1
- ' {
(5.99d) n + r'(In_r + cz(n + FlGl) Fz) .
~Tits y '
, -1 .
10 ' ' - . .
(5.100) In-rk + GZ(D + Flcl) F2 0 ,
P !
Now let E =D + Flci . Then . KN
-1 ~1 .
5.101 = ' )
‘ (‘ a) AE A (Er + FZGZ)Er (E_+ cmz)
' = 1 ~1 ]
(5.101b) (L, + F,63E ) (B + F,65) .
= t ' -1 '
(5.101c) . E + cm2 +F,G) + FZGZE F,G, -
It follows' that ’
(5.102) AE;lA = A B (T + CJE] lg 265 =0

which 1s implied by (5.100).

-4

¥

Hence the proof is complete.

! " Thus if
4 ' T n ’
(5.103) , A=D+ Zfgl+ I fgf \
! 12178 ey~
8o that D + Z fig is nonsingular and r = r(A) then
1=1 )
A r 4 i .
. (5.104) D+ Zf g ) = A . - y
’ L1841
O i=1"

1
R e b = 2 vt

- o

T WA o b R,

e




M
et e Y. BTN s
.

using (5.91). Then g!E_
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,( ‘ d
0 . N s - . \‘ °
1f p=1,f = (A - I)e1 s By =€ (5.103) may not be possible. - For example,
1f \ ' B
2 1 2 BT . °
L ! F .
(5.105) * - CA={ 2,1 2 -}, rank=2 ¢
. . Vs .
“\3 0 '3 : A
: N
1 1 2
h ' o
(5.1 - e ' g v
/( 06) , I+| 2 Je;+| 0 ]e) 2 el .
3 0 2
~ ? v
We may write - K
, 2 0 . 0
(5.107) B =21 0
‘ 3 0 1/
s N 1 .
. . ki ) oﬁ‘
and its inverse ' : L
— 1 | - w ‘l
-1 . . ¢
(5.108) | B, =I'-| 2 Jei/2 \
_ \3 .
1 \
| R 5 0 O
(5.209) . =1 1 o0
. / ' - o
3
= 0 1
v 2
[

\

l 1
~il£i=-1;i=2,3,as/, , s

\ .
\ .
/ A




(5.110)

and '

(5.111) -

' Moreover,

(5.112)

and

(5.113)

Hence Ezl £ A .

1

(5.114)

and so

~-103-

1 :
ek "(A - 1)52'=~(—1’1’0) 0 |=-1

\

‘ . )
\

A -1 - = -':'3‘ ' a -

. 2
1l
—1\ 3 o 3 .
! - == T = =
S3E1 (A 'I)EZ ( 2,O,l) 0 5 £0 .
0 *
In fact,
1
= 0
2 1 2 > 0
AE;1A= 2.1 2 )1 1 o Ja
-3
3 0 3 ) o 1

L e

L R NN i AR T b S b

P PN SN

e B G Sk o

PO
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<
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-

cf. (5.105).

(5.115)

v wi e O e i
3

3

e
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oo CHAPTER VI

STATISTICAL APPLICATIONS OF S€HUR COMPLEMENTS

w

The Schur complement -arises in a number of different areas of-
mafhematibal statistics. As observed by Cottle (1974, p. 192) "the
multivariate normal distribution provides a magnificent example of how the
Schur complémént arises naturally",

; . |

56.1 The multivariate normal distribut,ion.%

Let the random vector

(6.1)
4 ’ ~2

2
]

follow a p-variate normal distribution with mean vector

By : . .
(6.2) ) Vo= ~

) “
and covariance matrix ' ' ‘

‘ !
(6.3) yo [ , \
( Z:21 z22

where 222 is positive definite. Then the con@itional distribution of x

glven Xo is multivariate normal with mean vector
_ -1
(6.4 87T TP Gy - By

and covariance matrix the Schur complement of 222 in Z ,

' - _ "'l
(6.5) /Ty = Iy = kT

b i S
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’
To prove this result we note first that the joint distribution of

-1
6.6) % = 21508

%y

is multivariate normal with mean vector

' -1
po =% T p .
6.7) 1 12 22~2 . :
)
and covariance matrix 6 X
(Z/Z,) 0 } :
, (6.8) 22 , x
. o - I ‘
: ~1
-2 :
cf. (2.26). Hence % 1222252 is distributed ¥ndependent1y of %,

and so its conditional distribution given X, is the same as its uncon-.

given x, is multivariate nérmal with

ditional distribution,” Thus X 2

1
vector (6.4) and covariance matrix (6.5).

/

mean

+ ﬂ
Consider now the density function of the multivariate narmal distribution

6.9) 2 = 202 el eem Tl Gw

»

cf. Anderson (1958, p.-17). Then the above result cohcerning the conditional

distribution of X given X, yields

€100 G = ey lxy) 605
thus ‘ P . ) ' ‘
6.11) 2 = G )1IT, ,

) cf. (2.6)’ and

>

Ny

b 2 e oo v SR
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. \ R L -1,
(6.12)  (x-0)'Z 7 (x4 = (x;-v)) "' B/Z,,) T(xg) () EZZ(X Hy)
r
To verify 46.12) directly we Use (2.40) to write
I : 1 0 0
v \ 7722721 22

7

Substituting (6.13) into the left-hand side of (6.12) yields the right-hand
side directly, since

. . ) 2 E
When 222 is posgitive semidefinite and '‘singular, the covariance matrix
of ¥ is also singular, cf. Corollary 4.5, and so % does not have a
density function. Using generalized inverses, however, we may evaluate (cf.

Rao, 1973, pp. 522-523) the joint distribution of

X1 = Z1%0%
(6.15) 3 &
. 52
cf. (6.6), as multivariate normal with mean vector '
B, - % T u
(6.16) ~1 12 22~2
m
and covariance matrix (6.8), where . ~
. y )
% 3=3. -% 5 : J
, 61D (2/2)) 11 2:12 22221 M g
is the generalized Schur complement of Z 22 in 23 cf. (4.2). From (4.52)

we see that (6.17) is unlique for all choices of g-inverse 222 . It should

* be noted that

3

(6'¥8) 222222212 zﬁZ

-

R N TRPR

R K e

L o

<
B T TS A et B e

e i
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is needed to establish that the off-diagonal blocks in (6.8) are still 0 .
The equation (6.1?} is equivalent to & '

M n

(6.19) ‘ r(Z

12° 22) r(Z

22) » . 1

/
‘

/ , »

in view of Lemma 4.1, and (6.19) holds because of the nonnegative definiteness

of . E . It is interesting to note that (6 19) is Jus% the condition for

consistency of ] /

v

(6.20) 'A222 =212 , . ' o

which is analogous to the "mormal equations'" in regression analysis.

v

It follows at once that the conditional distribution of % given

lid

is multivariate normal with mean vector

(6.21) =u + Z

12722 By Hy)

1

[

14

(6.4), and cbvariance matrix (6.17): The meam vector (6.21) is unique
provided Xy ~ By lies in ‘the column space of 252 (with probability 1), in
view of (6.18). This is assured by the distribution of X, T Ho being mu%ti_
variate normal with mean vgctof Q and covariance matrix 222 . *

Cottle (1974, p. 195) gives an inféresting interpretation of the "quotient
property” for the multivariate normal distribution. See also Anderson (1958,

s

p. 33). Let the random vector

.,
1]

(6.22) / X =

L]

N

< I - 1 -
L U i

i s A T ¥ty SR T
.
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Suppose that we have the conditional dfstributio?,\ of X and
I
How do we find the conditional distribution of égf given %,
' }

Let us partition the covariance matrix of x as

v E
o I B
(6.23) L I By Fy o
Iy I3 Iy
and write
z p)
" (6.24) “s.=| 2 B .
2&3 E Z M R
« 32 933
_ Then (3.17)(yields - ‘
(6.25) | (2/22&3) = ((2/233)/(22&3/233)).

Thus the ¥onditional distribution of X given %, and X3,

X

~

distribution of
. ?52

sequentially. . '

§6.2 Partial correlation coeffictents. .

’

In Section 6.1 we saw that (2/222) , the Schur complement of Z

the covariance matrix

J Iz =\ -
626 | n "1z ‘

E21 E22

i

™
fl

is also a covariante ma.,trix.. Anderson (1958, p. 29) defines the elements

of (2/222) to be partial covariances.

/

5 ey U AWK b ey s W M e wk m e

X, given x

and x
~

22

?

is the conditional

. . d i
%, given (;52|;53) In other words we may condition

IS

WMW‘;\.»M.G R

§ M g RS ok e

Wik

K sl Pl Facrye €T

g
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Writing

- @,
6.27) (2/222)—{013.} s

we may define the pugdial correlation coefficient as

v

o (2) _ (2) (2) (2)\% \
(6.28) 1] oij A (Gii Ujj ) ’
provided oii) >0 for all 1 (which is assured when Z 1is positive definite).

1

- ) : - ,
The diagonal elements of the covariance matrix Z are the variances
of the components of the underlying random vector - x . When these variances

are all positive we may form the correlation matrix of x as

R R

(6.29) R=a"tgpt o[ 11 12 ,
Ryp Ry
where
Y % \ ‘Al . O
(6.30) b = diag(o.) = )
. il
) 0 A2

say, is the diagonal matrix of standard deviations. If the Schur complement

-+
(6.31) (R/R,,) = i{rij },
then ., ¥
@) _ (2, (2 (2}
(6.32) ‘ Pyy = Tyy Mg ,

i.e., the matrix of partial correlation coefficlents is also the correlation
matrix formed from the Schur complement in Ithe original correlation matrix.

To prove (6,32) notice that

RS T (RS SR |
2 By Zyn8y) 8,728,

o

\

’ |
- - '
(6.33):  Ryy =RyyRpoRpy = 8 By - Fppd

-1 1
by EZ, )8

Enopts RS W usts
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We may exploit the quotient property, cf. (6.25), to obtaip a recursion
-formula for partial correlation coefficients (cf. Andersom, 1958, p. 34).

Partition the random vector

%]
pT:3 v
(6.34)

W

=1 % ’
X3

, Ly

where x, 1is a scalar, and vrite

13R338237 (215 ~ Ry 3R33855

e

e 2

Y B B2 Ryg
(6.35) R = giz 1 Pas
o\ R P Ry
Then, using (6.25), we obtain
) (p,,-R
(283), _ _ - o, R12
(6.36) oy '} = Ry = RygRyy Ry )
(3) (3
r Y,
(6.37) - Yy - 22
_(3)
22
Hence .
. (3) (3) (3)
: P — 04y 05T
6.38) pﬁm . 19 7 P42 Py
) 3),2 3),2.3
a -1 e h

cf. (34) in Anderson’(l958, ﬁ. 34),

- ' -
223833 B23

mw”” I g e e TS0t



1
7 1
| Loty R
. _ by /
(6.39) R = Plo 1 ] P93 /
e e
’ I R
. P13 B3 3
fv .
Then the Schur complement ~
- . /“’
1 = ! - -aq! -
[ TRz Ry Py T Ry Ra R
(6.40) (R/Ry) = | ,
. - At -
P12 ~ 213 B3 Ro3 1 =253 %5 Ry3
and so / N\ ¢
\ .,/
L ,
’ (6.41) NOM P12” £13 %3 B3
: 12 v p 3 S 3 '
(1-py3 By 01907 (4 = 293 Ry 259
When R .is nonsingular, we may obtain an alternate formula for pig) using
R--l From (2.40) we may write '
-1
* t ) . (R/R ) -
-1
6.42) Uy =rtep g
“ . - 1
r and ' !
1 g7t o ot RL
| _ 4 P23 B3 R23 P1p % P13 B3 fa3 |
| ‘ (6.43) ‘(R/R) T = 6 ) JI®RIRY
| i p ol R p 1 -0, R p '
12 , 13 73 R23 ~13 73 <13 5
Hence N
4
p12
3 _
(6.44) P12 i1 223 ° :
(p"7p7V)

Now suppose that x

-112- -

[y

in (6.34) is also a scalar, and partition

the negative of the corresponding correlation coefficient in R—l' {note that

the ninds sign has been dropped in (4g. 2.8) in Rao, 1973, p. 270).

©




-

e

e .

-113- :

§6.3 Special covariance and carrelation structures.

I3
There are several special covariance and correlation structures that

arise in statistical applications. For example, consider the following ,

correlation structure

o

(6.45) , R= (1-p)I_+pee’ .

which arises, for example, in the one-way randém-effects analysis of variance

(cf. e.g., Scheffé, 1959, p.225). Consider the model

~

(6.46) y

13 =u+ a, + uij s j= 1,...,ni, 1=1,...,k,
i
with )
4 -
k
(6.47) ‘ n= 3 n, .
. i=l,
‘ + : A ... ee '
We assume that the g n ranéom variables al, s3, 5115075, ’uknk all
have zero mean and are uncorrelated, and that .
(6.482) - V() =ol, 4-1,.0k
. . a’ yeeny ;
2 , .

(6.48b) . V(uij) =07, j= 1,...,ni, =1,...,k .

= = ' . Then th variance
Let ¥y {yij}j=1,...,ni and vy = {y,}i,...,k + Then the co ¢
matrix of y is

° L]
. . 2 2 (ni)l(nif

(6.49) : diag (o InjL +oe e )i=1,...,k ’

(ni‘) . / v ‘
where e is the mn,xl vector of ones.' The correlation matrix of Y4
is, therefore, of the type (6.45), with . '
’ ’ 2,, 2, 2
(6.50) ) p = qa/(o +0))

—

o

-eow

B

ey et i
-

2 ot

PN,
N e R kR A b
PN LIS £
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1

this is called the "intraclass'" correlation between yij and yij' s where
j+3 . If nsm, = .= =m then (6.49) becomes

(6.51) . Ik ® (O' I + 0c e(m) (m) ) , .

kl
e

where @ is the Kronecker product.

It is of'interest to obtain, in closed form, ex_pressions for the deter-
minant, inverse, and characteristic roots of a correlation matrix with
structure like (6.45). The determinant and inverse, for example, occur in
the density function of the multivariate normal distribution, cf. (6.9).

The determinant of the nxn matrix R given by (6.45) is

(6.52a) IR] = |(1-p)I_+ pee'| = (1-p)"|T_ + pee'/(1-p)]
¢ . n auad n o~ .
(6.52b) o= (1-p)"[1 + pn/(1-p) ]
(6.52¢) * = (1—9)‘?'1[1 + (-1,

x .

using (2.8). Thus R - is ndnsingular provided p # 1 or -1/(n-1) , and

-1 .
. then we may compute the inverse R using the formula (2.59), i.e.,

o

(6.53) | o w e aor +eee1™
12 } l _ p . 7 5
(6.530) T-p'n "IV 7IL + pn/ (0]
=11 - pee - :
(6.53c) , 1—p{1n pee /[1 + p(n 1 . .
: / ) 3/
We may find the characteristic roots by solving ‘ <\{;)
. ' , [
(6.54) IR = AT 1= 1(1-p-N)1 + pee'l = 0. °

1

Using (2.8), we obtain,

»

s e

e AN e B

e

el o
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"

(6.55) JIR = AL |
n

(1-p-1)""F (1-p-Mmp)

and so the characteristic roots are 1l-p with multiplicity n-1 and
14p(n-1) with multiplicity 1.

The matrix R defined by (6.45) is positive definite if and only if

all the characteristic, roots are positive, i.e.,

(6.56) -1,
i . ©n-1

As n+  the region of allowable negative‘values of p decreases to, 0. For
intraclass correlation, however, p > 0 , cf. (6.50).

. Another special correlation structure, called the multivariate exten-

sion of intraclass correlation b§ Sampson (1978), is

)
I ® pe(m)e(n) !
< m ~ ~ . .

v .

(6.57 - R=\ ' )
) CYNC

B

o

which arises, e.g., in the two-way balanced fixed effects analysis of vari-

ance, Assuming one observation per cell the design matrix may be written as

5 ‘.

‘ L, @' -
° ~ ~1 n

(6.58) X = : T} .
D™ 1,

3

cf. e.g., Scheffé (1959, p. 100), where gik) is the kx1 vector with 1
in the ith cell and 0 elsewhere.. The matrix X is mmx(mn) , where m, is

the number of rows and n <+he number of columns in the experimefital @esign.,

Hence ’ L

B s o

ot Dby it s

e

e
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* (6.59) is singular. Using (2.25), moreover, we see that

-116-

(6.59) L oxxes ;
. S(n)s(m)

When the vector y of observations on the dependent variable has covariance
. ) ‘

matrix 0?1 , then X'y has covariance matrix o°X'X . The corresponding

~

correlation matrix has the structure (6.57) with p = (mm)&i,, which is
the maximum value of p so that (6.57) be nbnnegative definite, cf. (6.70)

- below. Ve

The determinant of (6.57) is . '

o
T ' o S(m)s(n) '
(6.60a) ' | = |In’_ ﬁp2s(n)s(n) |
pg(n)g(m) \ I
. 2
(6.60b) =1-mp”,

N )
psingv(2.4) and (2.8). Thus (6.57) is singular ¢ 02 = 1/(mn) , and so

(6.61a) B0 = 2(X'X) = m+ ,,(m“I'n _ ms(n)s(n)' /)

(6.61b) p o+ (- e ™™

'The Qatrix Cn = In - Es'/n may. be called the "centering matrix"L cf. Sharée
‘& Styan (1965). The corresponding correlationmatrix #s the intraclass.corre-
lafion matrix (6.45)‘With p = -l/(ﬁ—l) ; this value of p is the lowest so
that (6.45) ‘'remains nonnegative definite, cf. {6.56). Using (4.147), however,
we see thg‘ the‘centering matrix ha§ nullity 1 and hence has rank n-1 .

Thus the des matrix (6.58) has rank { : , ‘ o

6.62) | . r®=m+n-1. S

F s S TR LA

o




gy e
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To compute the inverse of

"E(m).%(n) ‘ T

I
" 2
(6.6 R = o . et UG, -
pe® @' \
‘4 we use (2.41) and the Schur complements :
: '
(6.64) s =R/ =1 - mple@e M
= ¢( - 2 (m) (m)'
(6.64b) T = (R/In) ~\Im - mpTete ,

and their inversés : \ -

o

(6.65a) st =1+ mpZe™e™ /(1 - unp?) .
" (6.65b) | =1+ npZe™e™ /(1 - mp?) |

L1

which may be found using (2.59). Hence

I, + mo’e®e™ jaomp?) T pe®@ Mg 2

1

-pg(n)g(m) /(1—mn02) I+ mng(n)g(n) / (1~mnp

-1
(6.66) R' = |
» 2)

ae
To compute a generalized inverse of (6.59),

| - - RORO
(6.67) 'X'X = '
e (n)s(m) mI_

3
!

we may use (4.61) since (6.67) is nonnegative definite. The Schur complement

) .

%

]
1.
;
;?

ST,

- TSR S TN o PPes 4325 R

- 1
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¢

-~

t (6.68a) (X'X/ﬁlm) = m(In - E(n)s(n) /n) = an‘ ,

\ where Cn is the centering matrix, cf. (6.61). Since Cn is idempotent
it follows that C_=C and so C./m = (X'X/nI )" . Hence
n n n ‘ n

/
i

I /n 0 , '
(6.68b) = (X'%)" .
Y ¢ /m

g
}
{ ‘ . (-0 pg(m)g(n) '

<
At g

-~

The characteristic roots of (6.57) may be obtained from !

(3

PR PR

(PPN

' (6.69a) - IR-2A1 , | =
. mn '
; ' ' ps(n)s(m) ‘ (l"A)Iun

* (6.69b)

f

@-HPIA-HT - pPme ™™ Ja-n)

J e

(6.69¢)

- AR T
e

A-H™1 —pPne™ ™ /1))
' 1

[ (6.694) n = a-0™ @02 - o%m] /

, using (2.4) and (2.8). Hence, the characteristic roots of (6.57) are,l with

multiplicity min-2 , and 1t p/mn, each with multiplicity 1. Thys (6.57)
is positive definite if and only if N

-

[ ) (6.70) : —(mn)'i‘ <p'< (mn)“i .

N {
We note that the correlation structure (6.57) is a special case of that

M considered in Theorem 4.14. In (4. 191) set A = Im » B=1 3 then /
u = m-is(m) is a normalized characteristic vector of A corresponding to

a unit root, ‘Similarly v = n-%e(n) for B . Hence put:® y'= Q(mn)i .

Then the chara{cteristic roots of (6.57) are 1 with multiplicity min-2 and
.ghe two roots of ‘

} *

o - -

i
i
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i
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< 1 p(m,,)i)
oyt 1 /]

lef, (4.192).

§6.4 The chi-squared and Wishart distributions.

In this section, we will discuss results pertaining to distributions

of certain statistics which Rac (1973, p. 189) states as being "fundamental

to the theory of least squares".

Consider the general linear model with normality

‘ ) 5
(6.71) 3~ Nxy,o'1)

where X has'rank r . The residual sum of squares g
(6.72) 5, =7y'y - y'X(X'X) X'y = g[l - X(X'X)7X'ly

)]
is the Schur complement of X'X in the matrix

; X'x X'y X' ‘ ,
(6.73) - ( ”>=< ,>(X’Z)‘

AR A Y

Hence,

¢

(6.74) h S~ oy

e n-r °*

!

central chi-squared with n-r degrees of freedom, cf. Rao (1973, p. 189).

Now consider the multivariate ge;xeral linear model with-normality,

(6.75) - Y=X+T0,

/
Y

where Y and U arg¢ nxp with rows following independent p-variate normal

s
i T e 4+ AR A 4k
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A
3

distributions with covariance matrix ¥ . The residual matrix of sums of

squares and cross-products

v
[ -

(6.76) 5, = Y'Y - VXQX'OX'Y = Y'[I - XX'D K'Y~

is the Schur complement of X'X in the matrix

' -/ X'X X'Y X' <
(6.77) < )‘= ( ) (X, Y) / '
Y'X Y'Yy Y ) ‘
and . . ' .
. 3 4
(6.78) Se ™ wp(n-r,z) ; .

the p-variate central Wishart distribution with n-r degrees of freedom
and scale parameter . £, cf. Rao (1973, p. 534). When p =1, then X = 02 and
(6.78) reduces to (6.74). ‘

To prove (6.78) we may use the following result, cf. Rao (1973, p. 536).
Let the random nxp matrix . Z have independent rows each normally distri-
buted with covariance matrix Z, Suppose E(Z) = Q. If A is a nonrandom
symmetric nxn matrix then

(6.79) : W=2'AZ ~ wp(f,Z)

+
-

\
if and oniy if A= A2 and AQ = 0 , and then’ f = r(A) . Clearly
I -XE'X)X"=M M2 and (M) =n - r(X) = n-r . Since § =\XP , then
AR =MXT =0, i

A somewhat different result concerning the Wishart distribution of a

Schur complement may be obtained from (6.79) by setting A = I and parti-
tioning

°

(6.80) Z= (leZZ) ’

’
LI A » - oo */yzpwnumcﬁﬁm
- - . Ce . B . ER—— . . w N R
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where Zl~ is nxp1 and Z2 ‘dis nxp, and n > p . Then

' Ay 7'z

(6.81) w=<11‘12>. :
1 -
L2 232

2 — 4
‘T P ‘
(6.82) Z= ) N
z z o
/ 21 22
. ‘ and suppose 9 = E(Z) = 0 . Then
' ~ - b
(6.83) (W/z3z,) wpl(n rz,(z/zzz)) >
1 - E
where r, r( 22) . ¢
To prove (6.83) we consider
’ ' ' ' Tt /
+ (6.84) rlgy/zzzz) = 271 - 2,(Z;Z,) 23 \

, 5
~

Moreover given 22 the'rows'of Zl are Independently normally distributed
3y -
withMcovariance matrix '(2/222) , while

‘

(6.85) E(lezz) = 22222221 R

cf. (6.17) and (6.21). Then (6.83) follows at once since 22 has rank

i
P(Ezz) with probability 1. Rao (1973, p. 539) proves (6.83) when 222 is
positive definite,/while Ruohonen (1976) establishes (6.83) using Moore-
- Penrose’ g-inverses, ) g

Mitra (1970) derives a result analogous to (6.83) for the matrix-variate

beta distribution. Let Wl and AWZ be independent px%p random matrices
such that

0O (6.86) WU G s 11,2,

o

S Tt nine g e
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and kl + k2 2p. Then W=W, +W,  1is positive definite with ‘probability

1 2
1 and we may define ‘

R -
(6.87) B=W WIW Bp(kl’kz) ’
the p-varlate beta distribution with kl R k2 degrees of freedom. If we
partition e )
B . B
(6.88) B = ( 1 12) :
' LY,

where Bll is P *py and B22 is Py*Py » then the Schur complement

\ . .
(6.89) (B/B,,) ~ Bpl(kl,kz—rz) ,

the p,-variate beta distribution with ky s kyoTy degrees of freedom.

.

v

§6.5 The Cramér-Rao inequality.

-

Let” L SERRREY be independently and identically distributed as the
, ~ ~n

random vector x , whose distribution depends on the unknown parameter

vector 0 . Then the score vector is defined as

(6.90) s = 3log L / 38 ,
3

where L denotes the likelihood f&nction of XiseeenX dLet‘ t be an

unbiased estimator for 6 , i.e.,
(6.91) , E(t) =8 .

Then the random vector

N

& S
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PR Y]

(6.92) Ty

e

has, under certafn regularity conditions, mean vector

) 0
' (6.93) . U= v
- ~ &
6
and covariance matrix structure R
: | ST "
(6.94) Z = ( ) .-
I )

/

1f Ell is positive definite then it follows from Theorem 3.2_that-the

Schur complement

; ‘ 1 \
. Z/Z =X - ,
(6.95) (2/2) = %, - 2
° 4 LY
s nonnegative definite, If, then, an unbiased® statistic Eb , say, can

jbe found with covariance matrix EI; = [V(alog L/ 32)]—1 then %EO is the
mintmm variance unbiased or Markov estimator of 6 . This result is usually
‘called the Cramér-Rao inequality, though Sverdrup 21967, p. 72) and Savage
(1972, p. 238) claim that it is due to Fréchet (1943). ’

3

To prove &(s) = 0 and cov(s,t) = I we note firét that

[}

(6.96) . /L dx . ..dx =1,

4

_which implies that, under appropriate regularity conditionms,

A TR oy e e
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.\ (6.97a)

(6.97b)

where dz =

(6.98a)

(6.98b)

(6.98c)
(6.984d)

(6.98¢)
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4 s = ..a_.
)
dx. dx, ... dx Moreover,
~1 "~2 ~n
cov(s,t) = E(st') = {E(sicj)}
= Slog L t L dz
a8, j ~

In particular, 1if

(6.99)

2
y ~ NXy, 0'1) ,

~ where X has full column rank, then

(6.100)

‘

L= (2n0%) 73" exp{-3(y - X1)'(y - Xy) /5%,

Id

(6.101) log L = -3n log 27 - n log ¢ "§(Z - X)) '(y - Xx)/o2 ’

(6.102)

(6.103)

s = 3log L/3y = X"(y - Xy) = —(X'Xl -

V(s) = X'X/o? ,

X'y)

~

v
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(6.104) = a“(xX'x) .

The maximum likelihood estdmator of y 1s i 'Y

O s

(6.105) § = @ xy .
\ ~ ~ ; .
‘ and this has covariance matrix (6.104), Hence, §¥ 1s the minimum variance i
haed il
unbiased or Markov estimator of vy . ~ '
\
, . ; .
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APPENDIX A ~
CRACOVIANS

: . \
Following Banachiewicz (1937, p. 45) we define the Cracovian product of

an mXn matrix A and an m x p matrix B as

(A.1D) ; P=A°B={Prs}» S
where prs is' the imner product of the rth column of B with the stZ column

= at At = a! Rt
of A . Hence Prs . gs A.B %r e B'A g, » 80 that
(A.2) A oB=3B'A

is a p X n matrix. It follows at once that

v

(A.3) : Im‘o B=B' and Ao L =\A .
Banachiewicz calls the’identity matrix I "Idem" , remarking that his earlier
usage of "Imvers” "ziehen wir ausdrilicklich zurlick™. -

It is found convenient to drop the symbol o in (A.3) so that
\

(A.4) o Io A=TA=A", | :
sincé\the middle form in (A.4) "nicht yorhandeﬁ ist" in ordinary matrix algebra,
Thus . . N ‘ .

(A:S) \ = __— o

cf. (2.7), op. cit., p. 47. Transposition of a Cracovianm product reverses

the order, for

(A.6) . I(AoB) = (Ao B) =(B'A)' =A'B=B.A.
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