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ABSTRACT

We define a farmula m(?;?) in a first—-order language

L, to be an equation in a category of (—structures K 1f,

-~

for any # 1n K; and set

-+ -+
a

p="{p(3;a,); 1 € I, 3, € H3

there 1s a finite set IO‘C I such that for any
TeH—F in K,

-+ -

r§€1}¢(F;fa1) = ﬂierm(F;fal)-

We say that a camplete theory 7 is equational if any

formula 1s equivalent in 7 to a boolean combination of '
equatigns in Mod(7T), and we note that equational theories
are stable. ‘

Thus, we developra theory of-independence with respect
to equations in general categories of structures, which is
similar to the one i1ntroduced in stability (aﬁg actually
ident?%al to it in the case of equational theories) but
which, in our context, ha&e an algebraic charaéter.

We then compare the concepts introduced in gtabillty
theory to corresponding notions in the context of

. =
equational theories.



RESUME

_).
Nous disons qu’une formule m(?;t) dans un lanrnguage du

premier ordre L,\est une égquation dans une catégorie de L[—

s s R @,
structures ¥ si, A\\>

pour tout H d et tout ensemble

) p = 10(x;3,); i €I, 3a; € HI,

11l existe un ensemble fini IO é-I tel que pour tout

i H—>F dans K,

-+ -

ﬂiequy(F;fal) = ﬂjEIq;(F;fal).
Une théorie compléte est dite équationelle s: toute

formule est équivalente dans 7 a une combinaison boaléénne

d ‘equations dans Mod(T) . Aussi nous notons qu’une théorie

equationelle est stable. .
é [

Ainsi1, nous developpons dans{une catégorie de
structures donnée, une théofieode 1 "indépendence qui est
simlaire & celle introduite en stabiliteée (et en fait,
identique & celle—1a dans le cas des théories
équationelles) mais, qui a, dans notre contexte, un

9 ~
cara&%ére al geébrique.

Far la suite, nous comparons les concepts i1ntroduits

en théorie de la stabilité a des Coﬁcepts correspaondants

dans le contexte des théories équationelles.
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Introduction -

The work presented 1n this thesis grew out of

/

observations of the author made years ago to the ef;ect
that, in view aof 1ts applications, stabili;y theory '
can/shaould be developed in an algebraic context.

The general idea would be to find and to investigate
properties which confer to stable theories an algebraic
character; a systematic study of such properties would be
useful at the least for practical reasons if nat for

:

theoretical ones.
—

This thesis deals with chain condition properties in
variogus categories of structures.
To make this more precise let us first re—all a few

points on stable theories.

A complete first order theory T is stable iff there is
a cardinal A such that there are exactly X complete types
over any model of 7 of cardinality A.

This cardinality restriction on Eomplete types is
equivalent toiailucal combinatorial property on formulas
which,'in summary, means that we cannot define an order in

T.

More precisely,‘T is stable iff any formula m(?;?) has

o
-



the following (1adder) p%operty:

for any model # of T there is no sequence (3;)‘<w of

. 2> 3 =+ > ]
tuples in H such that Ai(nm(X;aj)AAEznﬂm(X;ai) is

cansistent in ¥ for any »n < w.
Furthermore, satiblity permits the definition of
canonical extensions of types, called non—farking .

extensions, in the following manner:

fix a large saturated model H; all subsets of H

considered below shall be subsets of cardinality strictly

less than the cardinality of M and the types shall be types

.

in tuples of variables of length strictly less than card®.
Let A ¢ H and let p be a complete type over A.

For ¢ and r complete types over H extending p write

T

gq=r if there is an automorphism o of M which fixes A and

such that  og = r; of course % is an equivalence realtion on

\ v

the %eﬁ\o? complete<£ypesﬂover M extending p. -

Noﬁ;stability ensures the existence and unicity of an

X

#—class €_ which has cardinality less or equal to

7
t N -

‘

2(ITI+*%)- The elenents 6¥ Cp are then called non—forking -
! o N I

s - . .

extensions of p to A. 4 l -
+ . . v I
More generally, if A € B € M, p a complete type aver 4 .

and ¢ a coﬁpleteftype over é, we say ¢'is a non-forking

extension of p to B or, that ¢ does not fork over A, if -
‘;_ v T '
there is an extension r of ¢ to M which is a.npon—forking

-~
I



b

extension of p.

R}
. L

This non—forkjng notion is best understood in terms of
a (ternary) relation of i1ndependence on the subsets of F:
for A € B,C ¢ i, we write B L C and say "B is
A

'independent from C over A" 1+ tp(B3C(C) is a’non—forking
exterision of tp{(ZB3;4) to C.

1
We intend here the word "independent" to convey the

/.
4

intuitive meaning attached to it. Thus, for instance, if T

s

~is the theory of infinite vector spaces over some fixed

.

field then (7 is stable and},

for A €< B,C ¢ H, A, B, C subspaces aof H

B LC iff the sum B + € 'is direct over A i.e. B N C
A B

»

- o “

" For a stable theary 7, thg following properties are

NS
s

true:
0. Given A < M and p, complete over A, there exists ‘a

T unique ~—class Cp as described above. o .

* oa

*

1. Monotonicity—transitivity: given A <€ B € C <« H and D

v,
k4

c H,

DJ Ciff D L C and D |l B. . . ‘
A B A - "

2. Local-character: given A,8B,C € =

BLCiffb L C for any-finite tuple of elements in
A A - )

3

e b e



B.
3. Symmetry: given A,B,C c If
Bl C iff C | B.
A A
4. If A c ¥ and ¢ is a camplete type over ¥ which does not

fork over A then, for any formula Q)(;c’;?) in £, the type

qtp = fpZymt € qvm € F, ¢ =0,13

2N
“?has finitely many distinct conjugates aver A.

5. If q is a complete type over B( € H), then there is A

€ B, cardA £ card? + X, such that q does not ‘fork over

A. ’

3

Note that pr‘opertieé 1. and 2. readily follow from O.
, Property 5. can be seen as dual to praperty 0. and
"stability", in the intuitive sense of the wn;"d as well as
in 1ts strict se:'tse, is equ‘ivalent to »fhe conjunct of O.

*

and 3.

- N
‘

Let us naw describe (without any proof) the relation

- 3 =
a 4 3, where 3, b are tuples of elements in # and # is an
#H

elementary Stjnbmodel of H, in two algebraic examples of

stable théuri es:

o

1. For 7 the theory of algebraically closed fields in a



;

fixed characteristic (so that here M 1s a fixed large

algebraically closed field and ¥ is an algebraically

<
closed subfield):
z‘l\\’ - -2 . (—) . l\ . . .. -+ )
a l b iff M{a> is linearly disjoint fram H<{b> over M,
H

where H<a> is the field generated by ¥ and a.

(Recall that if &« ¢ K,F, are subfields of H, we say K is

linearly disjoint from F over k iff any sequence of

elements in K which is linearly independent over &k
remains linearly independent over F.)

Equivalently,

2 LB iff for any fields K o H and F > H, K,F < W,

I
and any field homomorphisms

F1H<a>—3K and g:H<B>—F

such that ¥ and ¢ are the identities on #, there iIs

a homomorphi sm

h:M<a,B>—3K-F

such that hMIKa> = f and hMH<B> = g.
And under slightly different terms,

alb iff the set of algebraic equations that the
M

tuple 3 satisfy over M determines completely the set of
} .
=y

algebraic equations that 3 satisfy aver H<3§ i.e. ; N
‘ M
1ff the set of formulas

[P =0 P(R) € HIX1, B F (P(3) =003

is logically equivalent to the set



LP(D = 0), P(X) € H<BRT, A E (PL2) = 0) 3.

For 7 the model completion of torsion—free abelian
groups:

3L Db iff the sum H<a> + H<B> is direct over ¥ i.e.
T

iff H<3> M H<B> = H. (M<a>, the group generated by # and
.

Equivalently,

a2l b iff for any abelian groups F D H, 6 > H, F,G
H

< M, and group homomorphisms f:H<g>———%F, g=H<3>———%G
such that f and ¢ are the identities on # there is a

.

group homaomorphism
hiM<2> + M<D>—>F + 6

such that hMIKa> = f and APH<B> = g.

~

In different words, we have -

3 £ b iff the set of atomic formulas that.g satisfy.

M

over H determines completely the set of atomic formula

that a satisfy over H<B>.
(We remind the reader that the two theories given above

have elimination of quantifiers).

We notice in the examples above that the independence

~



relation (a .L g) is stated uniquely in terns of the atomic

H

fornulas, without mention of negated atomic formulas;: we

o

could say that, intuitively, a L b if a is independent from
- ” hd

g . . -+ ->

b over M with respect to the atomic formulas or that a | b

K

1ff 3 and 3 do not satisfy any atomic fornula over M which

is not implied by the atomic formulas over H that 3 (or 3)
satisfy on its own.

While, a prior:, ih arbitrary stable theories, the
independence relation makes no distinction between e.g.

atomic formulas and other formulas. For instance, if the

theory has elimination of quantifiers we would have, in

principle, that a2 L B iff a and b do not satisfy any
H

quantifier—free formula over K which is not “represented"

- -

i

by the quantifier—free formulas aover H that a (ar B
satisfy on i1ts own.
Note also that the ladder property given above of a

formula @ does not establish any distinction between @ and

p. Indeed, 'by compactness, the ladder property for a

formul a m(?;?) is equivalent to the following:

there is a natural number n for which, in any model ¥
<
of T, there is no sequence (g;)zfn of tuples in M, such ~

that the formulas

(X33.) AA (i3 ) P <
My ®Pixsa; i<icn ®(X5a, or I < n

are consistent in NM;



and this last property is clearly symmetric in ¢ and

_i(p_

Howéver, a8 crucial aspect of general algebraic
theories is that some formulas are distinguished and
considered "positive" while their negations are considered
"negative"; also most of the basic notions defined in these
theories, among which, notions of independence, mainly
depend on these formulas.

For instance, in the theory of fields, the fundamental
formul as are the algebraic equations; definitions or
results in this theory are usually stated in terms of
algebraic equations. Actually, in this case, we note that
an important distinction between the algebraic equations
and the inequations is the fact that the varieties (of some

fixed dimension n) in a given field F are the basic closed

sets of a noetherian compact topology on Fr.

'
o
4,

-~ 0

Es

. . Thus, in an attempt to abstract this notion of

~
-

> 3 . . .
positiveness we say that a farmula g(x3;t) is an equation in

. oo T if in any model H of 7, the intersection of a family of ¢-

- "definéble subsets of ¥ equals the intersection of a finite

~
‘ ~ -
i

subfamily.

-~ -

sdw LASEAN



In other words, m(;;?) is an eqﬁation if the set of

subsets of a model M which are definable by finite
conjunctions of i1nstances of g, satisfy the descending
!

i

chain condition.
. . > 3. . . .
Again equivalently, pix;t) is an equation if, in any

model H of T, there is no sequence (g.) of tuples in 4

I i<w

such that the formulas . i .

-+ - -+
Ai<nm(x;ai)AA12nﬂ¢(x;an) for n < w,

are consistent in M;

one should here compare this last version of a formula
being an equation to the 1 adder property: clearly the . -«

former implies the latter. {, . o

."}' 4 o

<

- More generally, a set of formulas S is said equatibpal.

v ‘
. e, -
> 7 2

if in.gﬁy model ¥ of T, the intersection of a‘family of S- P

definable subpsets equals the intersection of a finite

subfamily. N

4

For instance, in the theory of aigebrajcélly closed | J

- - L N
i

- - - - - - ) - * 4 . -
+ fields in a fixed characteristic, the .set ot algebraic ., , -~
A o f N . o
; .

A

. . ! R ~ M -+ Ty
equations in same fixed senquence of var1aple$ x 15 - .

equational. This follows immediately from“thehnoetheqian .

4
a S

property, FIx1 satisfies when F is a field. - i T

3 ’

Also, 1t is clear tha% equationality of a set of

formulas S in the theory T. makes the S—definbale subsets of

- = W -

* & model ¥ the basic closed sets of a noetherian compact

- . - +



topology on #, which, in the case gf fields, with-§ the set

3

of algebraic equations, is identified to the Zarisky

topology.

We say that a complete theory 7 is E—-equational ip\?
. . . <+ 3.
for £ a given set of equations if any formula 9(x;3;t) is

equivalent in 7 to a boolean combination of formulas Q(;;?)
in E3

7 is equational in x if there is a set of eguations E

‘'
-

such that 7 is F-egquational in x.

It will be easy to shaw that if 7 is equational in x

then 7 is stahle; we do not have an example of a stable

theory which is not equational in some ;.

L

In the*%besis, instead of a'complete theory 7, we
conéider-an’arbitrary category of L-structures for L a

S
fixed first—order language. Furthermore, all formulas

I, ,
considered shall be formulas in a fixed set A e.g. the set

of’quaﬁtifier—%ree {or existential etc...) faormulas; for

~
'

emphasis we say K,is a A-category.

"

We define the notion of 'an equation in K as follows:

\

given m(;;g) and w(;;g) formulas (in A) with,

parameters in ¥ € 0b(K), one has the notion



_-}
- m(x;g)ty w(?;g),

meaning that F F V?(m(;;f;)———év(?;fg) fér any
morphism f:H—3F in K.

Now, we say that m(?:?) is an equation in K if for any

#H in K and any set of the form

s i € I, 3, in H}

) for any I € Ij

similarly, we define the notion of an équational set

of formulas,‘in K.

A}
o

Our first task then is to develop in this setting a
theory of indepéndence with respect to sets of equations
which is identical to the existent one in stable complete

theories.
We go about this task in the following manner:,

given A € H € K and a set p of formulas (in A) in the

tuple of variables ? with parameters in H, we say p is

realized in K 1f there 1s f:H——2F in K such that the set

Y

fo(X;fa): @(x;a) € p3
1s realized in F; we say p is a type over Aif p is
consistent in K i.e. if any finite subset of p 1s realized
in K.

Let A €8 € H € K and p a type over A. Now,



-y

intuitively, as in the particular examples 1 and 2 ¢
described above, we would like an extension g of b to B, to
be a "nan—forking extension” of p to B with respect to a

set of equations S if g¢ does not imply any equation

(meaning a formula in §) which is not induced by p.

Two points remain unclear in the definition abaove:
first, what 'do we mean by "induced”? Second, are we to

cnﬁsiderffhe equations that g should not imply among the

Pt

formulas in S with parameters in By dmong the formulas in S

a

with parameters in H, or even among formulas in S with

parameters in F when given some morphism f:H—F in K?

We get by the first point by saying that q is a "non—

forking extension” of p to B with respect taoa § if ¢ implies

r
8

a minimal set of"equations: and to investigate the second
paint we ¥irst relativize the search for non—-forking
extensions, to the structure H#H. The exact definition is as

follows:

I+ r is a type Dver(B\iff

<+ 3
)y p € 5, 2 € H, rtg pix3c) 3.

Ltet ¢ be a gomplete type over B, g 2 p; then g is an

SH—niniBal extension of p to B iff for any complete type r
’ f

over 8, r = p, \
)

S

‘73 7 7

s s
= Qy = Ty-
! 4

The SH—minimal extensions play 'in our context the role
: \

' T .
that non—forking_extensions play in stable theories.

1



We show then that 5H4m1n1mal extensions of p to B
exi1st; and, 1if 5 1s equational, p has, up to SH—equlvalence

finitely many SH—minlmal extensions to B 1.e. there are SH—

“
~

minimal extensions, Gov " " a4,y of p to B such that for any

SH—mlnimal extension g of p to B there is i1 < n,Aqﬁ P

(qj)z, {c.¥t. I[I.A.13). These two properties should be

considered as weaker versions of properties O and 4
described above for non—forking extensions 1n stable

- \d

theories. .
5

Also we show {(c.f. II.A.12) that the monotonicity—~

transi1tivity property for SH—minimal extensions (see
property 1. above) holds when considering types aver "SH—
\ .

closed" subsets of H: for 5§ an equational set, a subset A

o~

of His SH—closed in H if for any type g over A, qz is

definable over A4, (note that for A arbitrary qﬁ 1s

equivalent in K to a single farmula in S5 with parameters in

H) .

As we pointed out above, S, -minimal extensians are

relative to the structure H; it is possible to have a

“

morphism f:H *F {(say here an inclusion), A € 8 CH, p a

type over: A4, q a type over B, such that q 1s an SH~m1pima1

extension of p to B but ¢ is not an SF—m1n1ma1 extension of

p to B. For that reason we define the n0t1én of S5~full

L



types: -

a complete type g over #H is S—full if for any morphism
- 5 s
fsH—F, (fp)F F f[pH].

And we ,show that, if p is over A and ¢ is an SH—

minimal extension of p to H which is S—full, then +for any
f:H——F {(say here an inclusion) such that fg is consistent

over F, g is an SF—minimal extension of p to H (c.f.

>

11.B.14); furthermore g has a unique SF—minimal extension

.

to F.

We say then that,qg is an SH—CDmponent of p and we

show {(c.f. II.B.8B) that, under some general assumptions on

N

K, as for instance that K is closed under unions of

countable chains, there is g:H—>6 such that for any S;-

minimal extension q of p to G, &g is an Sé—component of p.

’

)

The results mentioned above hold in arbitrary A-

categories. However, a most interesting example of a A-

category is the case where 4 is the set of all formulas and

K is the category .of models of a first—order (not

Znecessarily‘CDmpiete) theary with the M—elementary

embeddings, for F some boolean-closed set of formulas, for

-

morphisms. N .

1 -



We immediately check then that if H is a I, (M -closed

'structure in K then any complete type over # is S—full.

-

ot 1
The essential property useful to us in such a category

of structureg is a definability lemma (c.f. III.7) which

says that, - ) K

I+ A< H and ©'is a foriula with parameters in # such

that for any morphisms fl,fz:H———éF, fle I f26, then © is

definable over A.

«

This lemma is just a generalization of the caseé when T
is a campfate theory,:A C H, cardA < cardH and H is
saturated;‘the lemma then says that if © is invé}iant under
any automorphism of ﬁ over A, then'© is definable aover A.
It will follow from this lemma {(c.f. III.10) that,

o

for H a EI(P)—clcsed structure, p a complete type over
A< H, and 5§ an equational set of formulas in ', the SH—

minimal extensions of p to H are conjugates of each other

over A in the sense that, i+f 94 and q, are such extensions,
then there are fl,f2=H———9F such that
S, . S
Tilla gl g Tolla) s
that every subset of H is SH—closed in H so that the
monotonicity—transivity property for-SH—minimal extensions

holds when considering types over any subset of H;

and, that the lacal character property. holds for SH—

minimal extensions.



v <

Y L]

The properties of, S —minimal extension for S an Lim-

arbitrary set of equations will then be immediately

inferred from those of SH—minimal extensions for 5 an

equational set of formuias.
Finally the symmetry property appears to be a global

property, in the sense that it needs’ consideration of the

set of all equations,in K. It will be best discussed in‘

chapter IV and chapter V. ’

»J
\ C

‘ Let us only state here (c.¥. V.A.6) that the symmetry

prgperty will hold for Sy—minimal extensions when ' is the
, . :

set of all faormulas and 5 is the set of all equations in K.

r
~

Of course, all the results above apply tb‘the case
when K is the category of models of ‘a complete theory T
wiSh the elementary embeddings for morphisms. In
particular, when 7 is E-equational, whence stable, we will

show that EH—minimal extensﬁons of types (H a model of T)

1

' L
as introduced above iddﬁtify with qon—forking extensions as

introduced in stability theory.

»

Our concern throughout this thesis, has been t9 show
. /
that the notion of an equation well translates the idea of
positiveness we ‘mentioned above, and to show that this

notion relates in a natural way to algebra.

Eo ]



k.

7,
v ~ -

., Our general aim would be to attach to this notion,

1
properties and definitions which are familiar to (standard)

-~

equations in algé&bra.

y

vty

It will be easily seen for instance that taking an SH—

-

minimal extension-of a type p over 4 € H (for S
equational), is similar to-taking an "irreducible

‘component” (wWith respect to 5) of pg. ‘

More precisely, we will show (c.f. II.B.6) that

»

Pos=" "R,y are the SHﬁminimal extensions of p to H if+f

S s . s 5
ﬂpH 7 Vi{n(pi)H’ and for any 1@( n, (pi)H'# (pj)H.

* *,

-Note that (p;)ﬁ ié,SHrirreducible, in the sense that
for any @1,~m2 jﬁ S with parameters in H,

’ «

- PP
i fpifujﬁﬁmiywz = (Pj)glﬁ Py for 8 =1 or 2,
(this‘fnllpwg immeaiately from the fact that P is

-

complete). ' ,‘ - . .

-

In chapter O, we fix some notations, @ake precgsefthe
- - ’h h S '
setting in which we want to work and define thé»notion.pﬁ '
an equational set of formulas. DU T T -

In chapter I, we compare the ndtjén of equationality

1

to some natural variants as for instance. a formula having



finite height. We investigate the basic properties of
equational formulas and, as an application, prove that the
set of differential equations in the category of
differential fields with characteristic 0, is equational.

“In chapter II1, section A, we investigate SH-minimal

extensions of a type, show that such extensions always
exist (c.f. A.2), that they satisfy the monotonicity— -

transitivity property whenaconsidering types over SH—closed

subsets of H and that, for S equational, a type p over A

Cc B ¢ H has, up to SH—equivalence, finitely many SH—mimimal

extensions to B.
"
In section B, we define what S—irreducible and S—full
types are, as well as S—-irreducible and S—full structures.

We also define what an SH—component of a type is. We show

(c.f. 10) that if § is equational and K is w—conservative
then, given p over H there is a morphism f:H——=3F in_ K such

that fp is consistent in K and for any SF~minima1 extensian

LR
q of p to ¥, q? is an Sf—component of p. Finally, we show

that if K is inductive then for any H in K there is
f:H—3F in K such that F is S—+full.

In section C, we aobserve that the theory of'Sectians A
and B goes through in a very general ébstract context: we
then describe such a context. .

In chapter 111 we study the case of a A-category K of

models of a first-order theory 7 with the Melementary

~



I

embeddings for morphisms, where we assume A is the set of

all formulas in ﬁ, M 1s a boolean—closed set of formulas, S

clr, § = c1+(3) and K reflects 5. We show then, for S a set

of equations, that any EI(F)—closed structure # in K is S—
full and that any subset of such a structure is SH—closed

in H; furthermore we prove the local —character property for

SH—minimal extensions of types over subsets aof H.

In chapter IV, we introduce the notion of S-minimal

amalgam and relate 1t to SH—minimal extensions. We also

define the notion of a full set of formulas 1n a structure

H and prove the symmetry property for SH~minimal extensions

of types when § is full in H. Then, we discuss the

- «
existence of +full sets of-formulas. We prove in particular

that the set of all equations, in the category of models of
a complete theory with the elementary embeddings for
morphisms, is full in any given model. (For more details as

to the existence of full sets of formulas in cateqories

such as in chapter III, see [5.21). R

In chapter V, we consider the case of tﬁq category of

models of a camplete first—order theory T with fhg

i

elementary embeddings for morphisms. We consider the case

- T-stable and show that if p is a complete type over A € B

and ¢ i5 a non—forking extension of p to B then g is an SH—

minimal extension of p to B whenever § 1s a set of

equations in. 7. We define what an equational theory is. We



then classify equational theories in terms of equational
theories” having the d.c.c and équational theaories hév1ng
the d.c.c on irreducible types. We show that equational
theories with the d.c;c (resp. with the d.c.c on
irreducible tyﬁes) are totally-transcendental (resp.
superstable) and give (in both cases) criterioqs for the
two notions to be equivalent. We alsno characterize the
fgndamental order 1n equational theories in terms of

equations.

N
+
We have not investigated i1n the thesis the theory of
dimension introduced in stability theory (c.f. [M]1 or
* ' AY
[Shl). This, as well as applications of the results in this

thesis to some algebraic theories, will be undertaken in

{s8.21.

Although the motivation for this work comes largely
from stability theorvy, theltheoFy in thi1s thesis is, from a
logical point of view, independent of stability theory. In
particular the technical work 1in the thesis is self-
contained. However, frequent references are made, for
mpotiwvational purhoses, to stability theory. Although
efforts have been made to é;plain the relevant parts of

stability theary when the compaﬁssons are made, some

rex



\

\
»
v

famlliarlty with stabilit'y theory 1s necessary to fully
appreciate these connections.

Usetul i1ntroductory references to stability theory are
£mi, CP.13, LL,P], L[BI.

/

Unless gxpressly stated to the contrary, all the
results and concepts in this thesis are due to the author.
The notions of equation and equational theory have first

[ x (

been defined in [5.11.
7
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CHAPTER ©

oo

Preliminarios
In this chapter we fix the setting in which we want to
work and define the notions of equational and strongly

equational sets of formulas. We also give some examples.

Proliminarios.

a) Wa Fix onco and far all a firot-ordor languago Ly the
rulos of formation for formulas and tormo in L are tho
usual onoo. \x&

Py¥ex="* denote formulas in Ly H,H’ -+ denoto L-

structuresy 3,3;2,--- denote finito tuples of cloments
in giv;n L-structures.
We do not distinguish between L-structures and )
Wthéir underlying sets. ‘
We divide alf variablios in L in twe classes X and
T; and gcall the variables in X type variables, the

variables in 7 paramster variables.
+ 4 <
Unleas stated otharwisoo, XyYogXqg®"" denoto finite
tuples of type variables; .
L
t,u,tl,-'- denote finite tupleg of parametor

variables.



A formula ¢ is a formula in P4 if, whenever x is a

type variable, x occurs freely in ¢ iff x is mentioned

in ;; if in addition ?'is the finite tuple of free

parameter variable in g we write ¢ under the form
m(;,?).
' ’ -+

1§ 8 is a set of formulas in L, we let s* denate

the oot of formulas in ¥ which are in S.
=+ - -+
For s:t——>a an ovaluation function of ¢ into o
2 -

structure H, @l(x,a) denotes as usual the formula
obtained from m(?;?) by subgotituting 3 for ?r if 2 hago
its elements in A € H, we say m(?;g) is a formula with
parameters in A. m(gig) and m(g;?) are obtained from

@(;;?) in a similar manner. We frequently write o or

m(?) for m(;;?) or m(?:g), that is when the context
makes it clear which one is meant.

As always, given an L-gtructure H and a- formula
- . . -+

p(x) with parameters in H, we write "H F gp(a)" to
signify that the sentence m(g) in the language L with
new individual constants naming the slements of 3 ig
true in <H,3>;
PCH) = {3 € H'3H b (3. (n = length(x)).

‘A oet of formulas p in ¥ with parametérs in His

“d
B

realized in H if there is a finite tuple 3 of clements



bl

in # such that

HE (p(g) whenev_er ql(;) belcmg:s ta p. .
We fix a category K: the objects of K are L-strucutres
and the morphisms of K are maps between the underl&ing
sets of objects in Ky composition of morphisms is then
the composition of maps, and, for H in K, the idontity
morphism on H is‘tha identity map from ¥ into H.
'

Later on we shall consider aaditiunal agscumptiong

on X as.for instance that K is the catcgory of modolo of

a first order thecory with emboeddings or clementary

omboddingo for morphiomo.

To simplify the presentation we exténd K to the

category R which includes the subsets of structures in K
as objects and the fnclumipn maps between subsets of a

Y

gtructure in K as mofphisma:
- Object(R), = {(A,H)jH € K and A ¢ H}

- A marphism :(A,H)—>(B,F) in R is formally defined

as & morphism, denotﬁé again ¥, T:H——>F in K such that -
range(fpPA) ¢ B. [We mean by that, that f7: (A),H)-—-—-)(B,F)

ig identified to the triple <f:H———9F;(A,H)i(é,F)>].

Thus, the identity morphism idiCA,H)—>(AH) 18 .

formally defined as the identity morphism on H.

If 71 (A,H)—>(B,F) and g:(B,F)——(C,6) are in K
S0 that f:H—F and g:F—>G are in K than



g-f:(A,H)———%(C%G) is formally defined as the morphism
g "T:H—G.
For f:(A,H)—>(B,F) we let LA, ]1=(f(A) ,F).

Thus if f:H—>H is the identity on H and A € B € H then

T (AH)—>(BH) is a morphism in R and TL(AH) ]
= (A,H);lin that cése, we refer to ¥ ano an inclusion
map . -

Note that two morphisms f,g:(A,H)L-%(BﬂF) in R arc
idontificod if the morphiémn Feg:tH—3F arc cﬁual and not
just i¥ ¥ and ¢ take the same values on A. l

When there is no ambiguity, we write A instead of

{A,HY and T:A—B inst@éd of f: (A,H)——=>(B,F).

[P

If m«»m(;,g) is a formula in x with parameters in A

.
N

(A €8 and 7:A—>B is a morphism in K we let fp=q(x

,fg) (where 13 = <fa1,"',fan> when g = <a44°"",8,2).

Of course fp is a formula in * with parameters in B.

I p is a éat of formulas in x with parémefers in
A, we let fp«ﬂffm;m_é p3;

Welaay p is realized in K over (A,H) if there is a
morphism 3 (A,H)~—F such that fp is realized in F; p
is c;nsistent in K over (A;H) if every finite subset of
p is realized in K over (A,H); p is inconsistent in K if

P is not consistent in K. When no confusion arises we

just say p is realized (resp. consistent) in K instead



of p‘:i's realized (resp. consistent) ?/n K over (A,H). v
For A<= (A,H) in K, p=q (%) and/w@w(?) formulas in x
. with parameters in A, wé write @ Iz ¥ if for any morphism
TiH——3F, (fP)(F) € (fFy)(F). Write ¢ y- 34 iff o y] @nd viz
,m-‘ o
If p and q are sets of formulas in ? with parameters
in A, ¢ as abave, w;a write p iz m(?) if there is a finitek
subset p, of p such that Aoy Iz @3 » 'ﬁ q if pizg © for evory
8 € @ P q if pmq andqr;l-p.
If p and q are sots of formulas in X with paramoters

in A, or just single formulas, and p % ¢ we say that P is

equivalent to g in K.‘ .

More generally, for 9, w, formulas with parametffgrs in

‘A C H, gt (A,H)—>(B,G) a morphism in K we write ¢ tz v if
[ ) R

“* for ,any. morphism fi16—>F, ¥ ge(F) < f-gwiF); q)"a' w ﬂif P |-g-

v and iz ®-
. . . )

. In other words o v if go tx 9%, and 9 a',\ehif ge F gv.

N

g
> N ’

Note a;(lso that ¢ bF v i¥ff q)ri-:éf:y."
? R “ . * - ' R [}

Similarly, for p-and’'q as above define p G e if 9oty

t

99 and p 3 q if 9p'F 94.

L " - ” ' - -~
H

~
-

- ’
- #q E
' L

N ~

T e - . S .
. Remark. For p a set’of formulas in x with parameters in A
? * ¢



(A C H) p is inconsistent in K iff some finite subset of p

- ~

is inconsistent in K 1iff some finite subsetof p is not

realized @ iff there is a finite set {tpl;i €I}, (1

finite) of formulas in p such that (}’ = 3{’) y:] ViEIj‘pi'

2

-

Exampl os.

1. Let K be the categary of fields with field embeddings
- . -3 -+
for maorphisms (L = {+,",0,13); F a field. If glx) = (P{x)

= 0) and w(;{’) -=-(Q(;) = Q) are two algebraic equations in

? with coefficients in F then it 15 easily seen that
= -2 . & F r o i
plx) lF y{x) iff @p(F) <€ yw(F), where F is the algebraic
closure of F. It is clear also that a quantifier free

formula e(}*) with parameters in F is consistent in K 1f+

- 8(?) has a solution in f'\

2. The situation in 1. above can:.bé”generalized in the
AN

Followin‘g manner: let K be the category of models of a

" E an

\

first—-order theory 7 with embeddings for morphisms;

existentially—closed structure in K. If"cp(?) and V(?)‘

are quantifier—free formulas with parameters in £, then

PG 1 v () 1FF QY € wE) .

Al

Indeed, 1¥ 9(X) Iz v(¥) then obviously @(E) € w(E).

Conversely,“spppose PE) C w(E). q)(?) l'f \v(;) means

there is a morphism, i.e. an embedding, f:E—26 1n K,



~

such that q)z?)Aﬂw(?) iis realized in 6. Since E‘IS
. i . . -} -+ .
existentially—closed it follows that @(xX)A W (x) is

realized in £ i1. 'We conclude that (p(;:) 3 wix) .

3

Suppose now that 7 has tﬁe amalgamation property

and is closed under unions of increasing chains of

v he « - f 1

. ,e .
stractures.. Let F be a structure in K, @(x) and w(?)

quanitif’ier—free formulas with parameters in F.

S

Then, q)(?) r3 w(?) iff for some existentially—closed
structure £ in K and morphism e:f—3E& we have
. -3 -+
epl{E) C ew(E): clearly if @(x) IF wi(x) then for any

morphism e:F—>F, ep{E) < ew(E); so it suffices to
choose e with £ existentially-closed.
Conversely,,K suppose there is a morphism e:fF——3EF

withr E existenti\ally—-closed such that eg(f) < ev'(E); we
-+ > ,
want to show that g(x) tE vi{x) i.e. for any embedding
giF——6G (g@) (G) < (gv) (&)
let g:F—>G be a morphism in K. We know from what

- preceded that egq IE e¥- By the amalgamation property,
there are morphisms hl:E—-——}H “and hz:G——-——}H such that
hle = hzg. Since eg g ev, hl’eq)(hg) < hlev(H) i.e. hzgcp(H)

i
c hzgv(H). It easily follows that (gg) (G) C (gv) (G,

)

which is what we wanted.

i

4

IS -

The definitions below farmalize some of the properties

~

- 28._



used in the examples above.

1. Definition. Let A be a set of formulas in L, f:H—>F a

morphism in K. Then,
(i) f is A-olementary if for any formula m(?) in & with
parameters in ¥ and a a tuple of elements in H,
HE @) & F F folfa).
(11) f roflocts A i+ for m(?) and w(?) in A with paroamotors
in M,

folp fv (rosp. fofp (% # N3 (X =3 1 o)

=) @i v (rasp. ey (X # N3 (X =X g o).
(iii) K ig Arelementa?y (resp. reflects &) if every morphism
in K is A-elementary fresp. reflects A).
(iv) K has the amalgamation property (A.P. for short) if

]

for any morphisms fI:H—~—9F1 and fzzH———9F2 in i,
there are morphisms glaFl———96 and 92=F2———96 in K
such that

91Ty = 95775

Example. Suppose K is the category of models of a first-
order theory T with embeddings for morphisms and A is the
set of guantifier—free formulas. Then K reflects A iff T

: i
has the amalgamation property.

e T



Proof. Suppose K reflects A and F :iH—3F fo:H *Fy are

embeddings in K. We want to show the existence of

embeddings gl:Fl*——éG and 92:F2———96 in K such that gl'f1

= 92-f2. To simplify notation , write fl(h) = h and fz(h)

fr for h € H.

Let {ca;a € Fl} and {da;a € F2} be sets of individual

constants (not occuring in L), with c_ = db iff a = b € H.

a
Let Q(FI) be the set of quantifier—frge sentences 1in
L u {ca;a € Fl} satisfied in F1 when we interpret the
constant Ca by a in F1' Similarly, define D(Fz).

Clearly then, to amalgamate f1 and f2 in Kit suffices

to show the consistency of T U D(Fl) U D(F2).

I+ T U D(FI) U D(F2) is inconsistent, there is a
-+ ’ e
formula gq@{(c) in D(Fz) such that 7 LID(FI) Ueplc) is

-3
inconsistent, i.e. there i1s a guantifier—free formula p(x
-+ . . e i P . .
;a) with parameters in H such that @(x3;2) is realized in

F2 and m(;;g) is inconsistent in K over F1. This means, @(;

= . .
ya) ET_(; * ;), from which we deduce, using reflection,

-+ -+
x ¥ x

PX3E) b ¢ ).

But m(?;g) is realized in F2 1.

That proves one direction of the claim. The converse

easily follows from lemma 2. below. O



2. Lemma. If K has the amalgamation propdrty and A is a set of

formulas in £ such that K is A—-elementary, thHen K reflects

A- 1

Proof. Suppose K has the A.P. and K is A—elementary. Let

“!"I:H-—-——}F1 be a morphism 1n K, m(?) v \p(;) formulas in

‘

AULX =%, (X # x)} with parameters in H such that

fq)I-F-l—"fw: we want to show gt v, that 1i1s: fz‘p(F.’Z) (= fz\v(Fz)

g}

whenever f2: H——-)F2 is a morphism in K.
So let 'fz:H-—--—>F2 be a marphism in K and let
L
gy:Fy—6 and gn:F,—>G be morphisms such that

glfl = ngz. (91, g exists by A.P.). From flq) }—,_T,,flw, we

~
-

deduce that glflq)(G) < glflxp(G) or equivalently ‘921"2@(6)
¥

L ngzw(G). Since g, 18 A-elementary, 1t follows f2(p(F2)

-

< f2‘é'~(F2). ] ‘ ‘- ? Q

-

3. Definition. Lot S be a set of formulas in L, n a natural

number ,

(i) 8 ig equational (resp. n—strongly-equational) if for
) - P
any H,-x"and any set p of formulas in 5% with

o

parameters in H, there is Po C py Po finite (resp.
cardipy) < n) and pgy by P- ’

S' is gstrongly equational if there is a natural

! number m such that S ig m—strongly-equational.

- 31 —



: (ii) tp(;;?) is an equation (resp. n—strong—-equatian, strong.

A

equation) if {m(?;?)} is equational (resp. n-strongly-—

equational, strongly-equational).

4. Examples.

(i) Let F be the category of fields with field embeddings

for morphisms; L = {+,-,0,13. Let § be the set of

J

atomic formulas in L.
' "Claim. 8 is equational.

- “ Proof. Suppose H € K and

-+

- p = io; (x;al.); 1 € I, @ € S. 3. € H3. Each ?, (;;—a)i)

b

is equivalent i1n K to an algebraic equation

(Pi (}’;31.) = 0), where Pi is a polynomial in t}he'

variables ; with coefficients in H.

Since the ring of polynomials H[?] 1s noetherian,
t there 15 a finite set J € I such that far any 1 € I,

Pi is a linear combination of Pj's for jJ € J. It

follows that for any maorphism ¥ in I, fo is a linear

combination of fPJ’s for j € J. Clearly then, 1f Po
("“1

3 ' ' + -
{q)J;_r € J}y Pyl (Pijixza,) = 0) for every 1 € I,

i.e. bO lj # which is what we wanted. O



(ii) Let R Eg a fixed ring and let L be the standard

{anguagg of..-R—-modules.
A homomorphism of modules f:H—3F, is pure if

for“any positive primitive formula (p.p.f. in sﬁort)
@(X) and a € H, »

HEQa) & F F gp(fa).

In other words f is pure if ¥ is O-elementary with &

the set of p.p-f. o

Let Wh be the category of modules with pure

embeddings for morphisms.

Claim. Every positive primitive farmula m(?;?) is a

strong equation in NR'

Proof. For # an R—-module, m(H;g) (3 = {O,""*0>) i5 an
additive subgroup of H? (n = length;5=and m(H;Z) (3

€ H), if not empty, is a coset of @(H;o) in H". It
follows that for 2, g € H, m(?;;) and m(?;g) are

either equivalent 1n # or contradictory in H.

Since the morphisms i1n K are pure, in fact,J
either m(;;g) and m(;;gd are equivalent in K or

{m(;;g), ¢(;;3)} is inconsistent in K. The claim

.follows immediately. 1 )




(iii) If K is the cateqgory of models of a first-order theory

T with elementary embeddings for morphisms and E(;;?)

is a formula which defines an equivalence relation in

RS

madels of T then E(;;?) is a Z2-strong-equation.

sy -
"

5. Remark. Clearly, if s is equational and p is a set of

_’.
formulas in S¥ with parameters in H then p is consistent in

| /
Kiff p is realized in K. Thus the property of
equationality induces a compactness property.

Now, we could have defined the property of

, +
‘equationality only for those sets of formulas in % (with

parameters) which are realized in K. We would have then
that for p as above, p is equivalent to a finite subset
once p is realized in K. <

This property is, however in general too weak for what

hd

fo%lows, but it is worthwhiletféaring it in mind and
che;king at different stages ahat additional conditions oﬁk
K make this property sufficient to obtain analagous
results. -
¢

Exampla. Consider the ring of integers Z. Let K be the
category with singre_objecﬁ‘z and single mDrphi%m the
identity on #: L = {+,-,0,13%.

’ Let @(x,t) =3Fs({x = s-~t)Y. @ says "x is a multiple of
[ :

@ is not an equation: take p = {glx3k);k € Z3; p says



“y

“x is a multiple of all integers”, and clearly there is no

finite set Z, of integers such that "x is a mul?ﬁple of all

integefs" if¥ "x is a multiple of all integers in Eb“.

However , if p = {pl{x3al); f € I, a; € 23} 1s realized in
1

Z, then p is equivalent to a finite subset: for let k

realize p. Then a; divides k for any z € I. Since k has
finitely many divisors it follows that there are at most
The assertion has now become

finitely many distinct ai's.

obvious.

Note here that the formula @(¥;x) =ds(¥ = 5sx) 15 an

equation.

- 35 - ,



CHAPTER 1

: Basic Properties
|

We define the notions of an f-—-equational set and the height
of a set-of ftormulas, and compare these notions to

!
equational sets.

Then, we work out some basic properties of equational
sets and equational formulas. We show for instance that S

is equatianal i1f¥ the closure of § under positive boolean

-caombinations is equational (c.+f. 7), andp a formula w(?;?)

has a finite 2—height in x iff @(x3%) has finite' t—height

in € (cuf. B). ,

‘
~

" Finally we introduce saome terminology on typés and

[

complete types and give a criterion for equationality using

complete types (c.¥. 13). We ihen aﬁply’thig criterion to
- v

prove that in the category of;piffgqgntlally closed fields

f

of characteristic 0, the set of differential equations is
equational (c.f. application 2 after proposition 13).

L +

*

Throughout this chapter 5 denotes a set of formulas in

£ closed under substitution of parameter variables.
\

I+ A is a set of formulas in L we let c1t(a) denote

ts
-

the claosure of A under finite conjunctions, finite

disjunctions and substitiution of parameter variables; cl(A) -



denotes the closure of A under boolean’combinations and

°

substitution of parameter variables.

-

' Definitions. n, a positive integer

(1)

(ii)

E

S is f-equational (resp. 8-r-strongly-sequational) in &

(¢ for local) if for any H in K, ? and p, a set of

-
formulag in $% with paramaters in H, p is logically
cquivalent Iin H to a finito subsot (resp. to a finite

subset of cardinality leso or cqual to n).

S has B~hcight (resp. height) less than » if there is

no structure H in K, ¥ and sequenco (mi)i<n of formulas

-

-3
in 8% with parameters in H such that the formulas

”%(kmiﬁnmk faor 0 { k < n as well as the formula Aien®;

are consistent in H (resp. in K)

write 8-height(S) = n (resp. height(S) = n) if § has 2-

height (resp. height) less than n + 1 but not less than

n.
S has finite t-height (resp. height) if there iz a

natural number m such that § has 2-height (resp.

height) less than m; S has infinite 8—-height (resp,

height) otherwiage.
Thus, S has 8-height less than 1 if for any H in K

and @ in § with parameters in H, @ is inconsistent in

H.

" T g et b



1. Proposition. -

(i) § is not f—equational (resp. equational) in K 1+f

there ig a structure H in K, and a countablelsequenca

) .
(mn)n<w of formulas in S¥ with parametarg in H such

that for any k& < w, Ai<k¢iAjwk+1 ig consiatent in H

(resq, in X) »

(ii) § igs not 8—~n—-otrongly—cquational {(rcsp. n-otrongly-

oquational) iff ecithor S is not f-oquational (rosp.

equational) or there is a structure H in I, ¥ and a

)
finite get ¢ of formulas in. 8% with paramoters in H

such that ¢ has cardinality n + 1 and ¢ is not
logically equivalent in H (resp. in K) to any proper

subset.

Proof.

’

(i) Suppose S is not ¢-equational {resp. equational). Then
-+ x .
there are H € K, x and p, a set aof formulas in s¥ with

parameters in H, such that p is not logically

equivalent in H (resp. in KY to any finite subset. We

-

construct a sequence (mn) of elements in p by

q(w

induction on n in this way: assume Py """ 0, has been

chosen. Since A.

i <n®; does not imply p in H (resp. in K)

there is,a formula ¢ € g such that AYaniAnv is

‘-



1

consirstent in H (resp. in K). Let Pppg =W

(mn)n<w_;hus constructed satisfies our condition.

The other direction of the claim is obvious.
{(ii) Suppose § is not i-n—-strongly—equational (resp. n-

strongly—equational) but &t-equational (resp.

equational). Then there are H € K, ; and p, a set of
; -+ ‘

formulas in S¥ with parameters in # such that p is not
logically equivalent in H (resp. in K) to any finite

subset of cardinality less than n + 1. But, by &-

equationality (regp. equationality) p is equivalent in

\

H (resp. in K) to a finite subset; let Pao be such a

subset of least cardinality. Evidently, )

Card(po) > n. Let ¢ be a subset of Po of cardinality

"

n + 1. If q is equivalent in H# (resp. in K) to a proper

subset 997 it would follow that Pt = ¢ U (po\q)) is

{

K

equivalent in # (resp. in K) to a proper subset.

90 U (po\q), contradicting” the minimality of Po- So ¢q

satisfies the conditions of the claim.

The other direction of the claim is clear. B

\

<
4

2. Corollary. We have the following diagram of implications:

P

P wi‘;ﬁ



. , 1 . ) 3
S has finite height—>8 is strongly—equational;——és is
| : I ' equational
i ! |
| ( ! ’ I
v 2 . v 4 v
- S has finite t-height—38 is B-strongly—-equational—»S is

i i

slequational

Proof. The vertical implicatinpé as well as 3 and 4 follow
immediately from the definii{oné. o
Proot of 1. Suppose QEighE(S) =n but § 1is not n+l-

strongly—equational. By lemma 1.(i)" S ié‘équaﬁibnal (since

s 1N

\
S not equational is easily seen to contradict heidht (5)

v

finite). By 1.(ii), if follows there are H.in K, %, and a

- : - !

set ¢ of formulas in 8% with parameters in #H, d of
cardinality n + 2 such that ¢ i; not equivalent in K to any
proper subset. Let q = {gp;571 < n + 23. Our assertion on ¢
clearly implies that the formulas ﬁ&(k@iAﬂwk for any k,

O <k < n + 1 as well as Acn+1®; are consistent in K. But

that means height(S) = n + 1. Contradiction.

The proof of 2 is similar. H

Remark. The implications given inbthe diagram above are all
the possible implications that exist between the different
terms of the diagram.



1

More specifically, if we let L consist of one binary
relatiaon R(x;t); we can easily construct categories in
which R is, for instancé, f-equational but not equational,
or equational but not strongly-equational, etc... We

consider same of the cases bel ow.

L]

a) Let IH| be an infinite set: (A;).. a sequence of subsets

I\W

of {H]; (ai) a sequence of two by two distinct elements

I€<w

of |Hl. Let H be the structure Pbtained by interpreting

~ 1

R(x;ai) as Ai for any I < w and R(x;b) as the empty set for

any b in H distinct fram the aj‘s. Let K be the cateqory

with single abject # and single morphism the identity

‘'morphism on H. ,

- Assume Ai+1 < A, for any I < w, clearly then R(x;t)
& 1

is not g&-equational in K.

- Assume A. C A. for any I < w. Then R(x3t) 1s &-
S S i+1

PRy
[

stronglyjéhuatianal but has infinite height.

b) Chaoose a family of infinite sets ('Hi')i<w such that

1H.
oz

sequence (aj)i<w such that for any 1 < w, Ai < IH1|, a;

I I<w

€ |H1|.
For { £ j < @ interpret R(xza;) as A, in I1H,1 and

Ri{x3;b) as the empty set for b € H,\{ai:i < 73}. Let Hi

denote the structure thus obtained, and let K be the

] € 'Hi+1' for any 1 < w; a family of sets (A.) and a

-~ 2
N
Rk Lk

ek



category which has the H ‘s for objects and inclusion maps

for morphisms.

- Assume A. C A Ffor any I < w and {a.:f < w}1s a
I+1 + I I

A 3

subset of Ho. Thén, R{x:t) is &t—strongly—equational in K,

I

has infinite g¢-height and is notequational in K.

- - -

-
’

3. Carollary. 1 the objects 94 K are the models of a first

. \

ordeor theory T fhen m(;;?) ig f-oquatianal i4F @(35?) hao

finito 8-height. ---

Proof. Add a countable set C of new individual constants

-

to L, C = {2i;i < w3}. Consider the fol-lowing sets of
sentences in L UC: for n < w,
-+ - 3 -+ = -+ -
Tn=={ BXAi<km( ;cj)Aﬂw(x;ck):O < k< n}T UC{ 3xAj<nm(x;ci)}

: -3 -+ - -2 =
Tw = { 3xAi<nm(x;ci)A1m(x;cn);O < n < wt.

Clearly TWE Un(an' Hence, by'compactness, T U Tw is

consistent if+ 7 U Tn is consistent far every n < w

(note, T, 27 )."But 7 U T, is consistent iff 2-
height(p) = n while by lemma t.(i), T U Tw is consistent

iff @ is not %-equational. The assertion immediately

follqws. %]

4. Lemma. Suppose S claosaed under finite conjunctions and

disjunctions, and K reflects S. Then, for any maorphiam

B



.

'

-3
fi1H—F in K and p, a set of formulas in-cl(S*) with

parameters in H, p is consistent in K over H iff fp is

consistent in K over F.

¥

Proof. Clearly, if fp is consistent in K over F then p 1s

consistent i1n K over H.

Suppose p is consistent 1n K over H but ¥fp is not

consistent in K over F. We might as well take p finite and

. 3
therefaore a single faormula in cl (8%). Writing p in normal

form (up to equivalence in K) we see that we can assume p

is a finite conjunction of formulas and negated formulas in

-3

$¥ with parameters in H. Say p = AiEImiAAj€Jﬂmi’ I and 7

finite sets.

Since fp is inconsistent 1n K, we have

NerT® IF Vies™?;

i

- =+ .
(we convene A; - @, =(x = x) if I is empty and VEEmejc:(x

# %) if J is empty).

By Feflection, we get Ner®i b Nieg®; i.e. p is

inconsistent in K . £

Note. If 5 is closed under finite conjunctions,

disjunctions, and S contains the formulas (x = x) for x a

theqlK reflects S iff K reflects cl (5).
-

Indeed, it is easy to check that for § as above cl (s~
° >

type variable

-3
= c1(5%). Thus, if m(?) and w(;) are formulas in cl($H) ™



with >parameters in H and fiH—=3F is a morphism such that

fo Ip Ty but @ b ¥ then, p = {gATw3} would be consistent in K

~

while fp is inconsistent in 'K. But that contradicts lemma

'

4.” R

Let us say that K is w—conservative, it +tor any

sequence of morph15m§ (fp:Hp—w—éHp+1)p<w in K there is a

structure H and morphisms gﬁ:Hp——~9H (¢ { w) such that

gg+1'fp = gp for any g < .

w—conservativeness is similar to closure under unions

of chains, but here we do not request H to be a limit of

the chain.

(One could define a—conservativeness for arbritrary
ordinals «, but we won’'t need more than w-

"o

conservativeness).

Lemma. Suppose in addition to the asumptions in lemma 4.,

that K is S-elementary. Let T_yiH—>H, be a morphism in K

and for i < a, & a finite ordinal,-lat p; be a finite sot

. -+
of formulas in“cl(8*) with parameters in H. If for every i

< a, p; is realized in K then there exists a morphism
¢ -

g:Ho———96 such that for every i < a, g-f_lpi is realized iIn

G.

If in fact K is w—conservative, then the claim above

1
holds with @ = w instead of a finite ardinal.



Vg

w

Proof. First, we consﬁ;uct by induction a sequence of

morphisms (f,) ..  (whethér o« is finite or a = w),

5

T.:H ——~9Hi+1, such that for every I < «, g;p; is realized

I°y
in H;,,, where ' h
g; = fi'fi—l ---- fo-f_l, {say gy = f_l).

Suppose the construction achieved up to 7. By lemma 4,

9,17, 15 consistent in K,“Bence there exists a morphism
fyeH,—3H; , such that f . -g, ;p, is realized in H{+1. That

finishes the inductive step of the construction.

Let H and (J“?p:Hp—-———-ﬁvi{)p<<x be such that hﬁ+1-fﬁ = hp:

if K is w—-conservative and « = «w, H and hﬂ are given by w—

e

conservativeness; 1f « is finite, take H = Ha and

= . . e alrag
hp T a—1 Tp. .

By S-elementariness, since a;p; is realized in Hi+1
for every I d.em, hi'gipi = ho'f_lpi is realized in H for

every i < «. Thus g = h, satisfies our conditions, B

Propaogsition. Assume S5 closed under finite conjunctions, K

reflects S and K ig S—-elementary. Then,
(1) g~-height(5) = m iff height(S) = m.
(11) If in addition K is w-conservative, then,
a) § is S-equational iff S is squational.
b) §is B—m—strongly—@&ﬁational iff § is mstrongly-

equational.

e N e e



Proof.

(1%

(1i)

Clearly, .t—-height(S) 2 m implies height(S) = m.

-~

Conversely, height(5) 2 m implies 8-height(S) =z m: for

m = 0, the assértion i< .trivial. Suppose m > O. Then,

- * T
there are x, H and‘(ml)i<m, a sequence of formulas in

.+ -
S¥ with parameters in H#, such that ‘the formulas

.

N eg®i AV, for k < m, and A, @, are consistent in K.

Following similar arguments to those in lemma 5,

(tﬁe proof is exactly the same but for the fact that

we don 't need here S to be closed under disjunctions)

[

we find a m--phism f:H—>3F such, that the formulas
I .
f(”¥<k?iﬁnmk) for k X @ and f(Ai<mmi) are realized in

F. This of course implies that g-height(S) 2 m which

i1s what we wanted.

e

Assume K is w—conservative
-

a) If S is not i-equational then clearly S is not

equational . )

[N

Conversely, suppose S is not{gquational. Then,

[+]

by proposition 1.‘(i)7 there are ?, H and (mi)j<w’ a

_’
sequence gf formulas in 5% with parameters in H,

such that AiSnmiAjmn+1 is consistent in K for any
7 o

n < w.

Using similar arguments to those in lemma S
\



k)

For n a positive integer, let

‘

(the proof is exactly the same but for the fact
that here we don’'t need S to be closed under

disjunctions) we find a morphism ¥:H—>F such that

the formulas F(A; o, @ Ap, .,) for n < w are redfized:

in F. But that clearly implies that § is not 8-

equational (as {fmi;i < w3} is not equivalent in F

<

to any finite subset).
I+ § is not Q—m—strgnglyﬂéquatiohal then clearly S
is not mstrongly-equational.

Conversely, suppose S is not m—straongl y—
equational. If S is not equational then by a) S is
not f—equational, whence § is not t-stronly-
equational and we are done.

If § is equational, then by Eraposition 1.1,
there are ?, H and p = {mi;i <m+ 13}, where, for
-+
I < m+.1, ®; ig a formula in S¥ with parameters in

H, and p is’not equivalent in K to any proper
subget. Again, following similar arguments to lemma
S we-find a morphism f:H——>F such that fp is not
logically equivalent in F to any proper subset. But

that implies § is not &-mstrongly-equational. O

Let A§ denote the closure of § under finite conjunctions.

- 47 -
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e

cln(S) = {¥=V;,®;39; € 53.

-~

7. Proposition.
. -+ ) -+
(i) Hoight (S%) = height (A(8¥)).
(i1) If 8§ has height less than m — 1, then, for n 2 2,
- N
cln(SX) has height less than nm, (for any given ?).

¥

(iii) § is cquational iff c17($) is cquational.

-

7. (bis) Proposition. The analoguc of proposition 7 with the

notions of 8-height and 8-cquatianality.

s

Proposition 7.bis follows from proposition 7 in this

way:. consider for each object H in K the category KH
which has for single object H and single morphism idH;

observe that § is 2-equational (resp. has f%-héight less
than m) in K iff § is equational (resp. has height less

than m) in KH for every H in K. Now apply propositidn 7

to KH.

. p ‘ .
Proof of propogsition 7. For ¢ and v, fDrmu%as with

parameters in H, we write @ < v if ®tF v and wtﬁ @.

-3 ->
(i) Clearly if height(5*) 2 m then height (A(5%)) = m. To

show the converse we need first the following:

(#) For 1 < m, let v, = STRAT; where J, is a finite set




.

' - .
and (f)'j(_re.?l-) is a formula in 5% with parameters in H;

and suppose

Nicp+1¥i € Ny for any kK < m — 1.

. . P

Then, we can find a sequence ("'i)i<m such th;ajyx 7y
f
A

€ Ji and for anyhk <m-—1
Ngk+1%j, © Ni<k®j,e

Moreover jo can be arbitrarily chaosen.

Proof of (#). We chooses -ii by induction on 1 < m.

Take jo to be any element of J0 and suppose jO’ ”"jj

3

have been chosen. We have - N
(

ot

“C
»Ppe<iviYe C Me<i¥k T O Mkzi%5, 8

hence AkSiq’j.A—'“'iH is consistent in K. It follows

that Akici‘pj./\_‘q’j is consistent in K for some

.

J € Ji+1; let then _i1.+1'==-j. Obviously Akﬂz'+1'p_i.

t
c Aki?imj.' That proves ().
4
Now, if height(A(Sx)) 2 m, then by definition, a

' sequence (wi)i<m as above does exist with in addition

>

the property that Aiem¥i is consistent.
But then the sequence (q’j,)i<m given by (#) 1is
such that Ai:'_Ck-*-lq)j, < Nick®i, and furthermore Niem®j,

is consistent in K, since ANidm¥i tH A1<mcpj‘. That

4

_)
implies height(s¥) 2 m

~



. -+
(i) We can assume S = 5% and by (i) we can assume AS = S.

-

We first show the following. N !

\
‘i o m —_ T
(+) For ' < n", le% vy V}EJumj’ rhere cardJi\v/% and LF

. -
''is a formula in S* with parameters in H. Suppose

-

-

-

that

.

mo_ 3.

Nicp+1¥i © Ny for any kK < n

* Then there is a sequence (jjfj<m, such that ji € Ji

( \ N
and AYSk+1¢j, C;Ajskmji f0r~?ny k‘f m— 1.
¢ -

o /

Proof of (+). By induction on m. .

For m ='0 the assertion is trivial.

Suppose the assertion holds for m — 1, and
(wi)i<n' is given as above. . -
. ) i
For any k, O < k < nm, there is T € Jo such
that ‘ -

P Micp¥y © P Mgy for if
PiMizk¥i B PiMisk—1Yi
for any j € J,, then
L‘L(VjEJo‘pj)AAxﬂkvk e (vjeJo(pj)AAiSk—lwi i.e.
YorMi<k¥i H Yo \isk—1Yid

which implies Ni<x¥i W Ni<k—1Yi R.

For 0 < 1,k < n™ write isk if j, = j,. We



-

9]

partition in this way the set {i,0 < 1 < n™} into n

subsets. Since n = 2, one such subset I must have

m—1

cardinality at least n : Let s, denote the common

value of the ji's for I G‘{.

I+ I € I and k < I then thoAAg_Sjwi < mjoAAEEng:
for @; My © “’j;""gsiﬂ“”g"ﬁ P, gskVe -

In particular @ Mg < Vg < P (since ijNWO ¥

mjo). Let (ik)0<k5n’“ be an increasing'sequence of

m—1

elements in I; let X, =@ and, for & < n ’

Jo
X1 TN e, (P5,0) (PUt I = 0). We have

- : m—1
ARSk+lx! < Ag<k*k for any k <.n -

By (#) (see the proof of (i)) it follows there
is a sequence (hk)ksnr*’ ik < hk+1 = ik+1 and h0 =0
such that

Nesicr1 (@ APR) € Ny (@ A, )

N

for any k < n™ 1. Clearly now, the formulas P AV

¢ = 2™, can be considered as formulas in clnkS);

thus the induction hypothesis applies to the sequence

(mjkoh.)O{!Sn**' In other words there 1s a sequence
(J3docg¢m Such that sy, € Jhl and
AiEk+1(mjoAmj,) < AiEk(mJo?wj1) for 0 < k < m1.

Upon observing that

q’JoAmjl ~ m]kohx < (pjoAvhc; = q’jo,




(iii)

we conclude that
N . C A [ 2
IZk+17 5, I =kt j,

for any k& < m. That {finishes the proof of (+).

-5

Now if cl_(5*) has height greater or equal to n™

then a sequence (wi)j<n' such as given in (+) does

—).
exist; let P;, be the sequence of formulas in 5% with

parameters in H given by (+).

) AN . .
We have that AlSka,A,mj.n is consistent for

any k < m — 13 in particular Aiikmj,Aij,, is
. 0

consistent for any k¥ < m — 2 and Ai(m—l@y is
1

consistenti
But that imdlies:height(S) Z2m— 1, which is

what we wanted.

Clearly S is equational iff S U {(x = 93, ¥ a tuple
* g

Y}

of variables, is equatianal.

On the other hand 8 is equational iff AS is

-5
. equational: for if p 15 a set of formulas in (AS) ™

with parameters.in H then, writing every formula in p

as a conjunct of formulas in 5§, p is seen to be

equivalent to a set of the form g = {Q(?)A(; = ?

;@

-+ .
a formula in S7 with parameters in H, ? a subtuple of

?}. Applying equationality on the set of formulas

- -
o{y) mentioned in ¢, for each subtuple y separately,

we find that p is equivalent in K to a finite subset.

©



-

Thus, without laoss of generality we can assumé S

caontaining the formulas (? = ?) and closed under

finite conijunctions. It follows that any formula in

._)
(C1+(3))x is equivalent to a disjunct of formulas in

_) -
sX,

k]

Now, obviously, if c1t(s) is equational then &
is equational.

Suppose S 1s equational, but not c1+j3). ThHen

o -
there exists H, x and a sequence Wpdpcwr ¥p 2@

-3
formula in c1($)* with parameters in H such that

< v, for every n < w.

N

Yo+t
i , -
Write Yo =Vicm®Pir ®; & formula in S with

parameters 1n H. It is easy to see that for every n

’

< w there is an I < m such that P;\Woep © @AY, e

infer\that there is an 10 < m and an infinite

subsequence (Wn,) of (wn)n<w’ Yne — Y01 such that

<
m!kon;u q’lo/\wn 114

for every 7 < w.

Let x. = PoAV, 5 X, is a formula 1n c1¥ (8.

J .7 R

Repeat this procedure with the sequence (xj)0<j<w

i

instead of (v to obtain Py, v Py etc...

n)n<w
Ultimately we get a sequence ((pg )n<w’ @ a

-3
formula in S¥ over H such that

2]

Lo o
&

e e 28T N i e



8., < Py,

for every n < w.

This contradicts the equationality of S.

Remark. There are strongly equational sets S with clz(S)
not strongly equational: let L = {R}, R a 2—ary relation.

<@Q_> two

Let |H]| be an infinite set and <Fﬁ>n<w’ nn<o

sequences of chains of subsets of |Hl such that:

(i) For n < o\ Pn=~(c’?)

= " . n n
Pli<n? Q= 0y) s, with &Gy Dy

c |HI,
c? ; c;?+i, D;.' ; D¥+1, (i < n - 1), cg,ug * B.

(ii) If n # m then CJ nc’}’=z, D} DD’;'=!3, for any i

< my 7 < m.

Choose an interpretation of R in [H| such that the
C?'s and D?'s, n < wy, I < n, are the only interpretations

in H of instances of R (an instance of R is here meant to
be a formula aof the farm R(x;h), h € H). Let H be the
structure thus cbtained, K the category with single
obiject H and single morphism the identity on H. It is
easy to check that R{x3t) is 2-strongly-equational in K.
in

Fix n» < w., Consider the sequence (Ei)i<m

C12(R(X;t))H where~Ej = C? U D:—i-l (for simplicity we

shall write Ci and Di for C? and D? Fespectively).

1

y

\\\ - 34 —
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AN

We shall construct the Cl’s and Dz‘ ‘s in such a way that

nz <n

Ei ¥ 9 and is not equal to any proper subintersection.

Moregver it will be immediate that this can be done +for

-

every n < w, preserving the conditions (i) and (ii) above.

This then clearly implies that c12(R(s:;t)) is not strongly

equational.

Construction of Cz' and D.: let (Bij)’ 0

-
=

1,

J &n + 1, be pairwise disjoint, non—empty subsets of H.

Present the BI.J'S 1in a {(ntl)>(p+l)-—matrix,

. By 1 Bij2 ———~—~ By ,n+1
. 8ot Bop ———— - By n+1
| | I
] | |
| | !
| | |
Bpe1,1 Bovi,2 — 7 77 Biri,nm

/
Far 1 < n, let Cl be the union of the i + 1 first

~

lines of the matrix, while Dz’ is the union of the i + 1

first columns of the matraix.

C,= U B, b,= U B,
15h<i+1 1=ksSn+1
1=i=n+1 12251 +1

Note that Bi+2,n+1—z (I < n) belongs to
EJ = Cj U Dn—_r—l 1ft 7 # :F (since Bi+2,n+1—i

. €

is the meet

e et e e e e 3 . -



‘of the (i + 2)—th line with the (n — i + 1)—th column).
{

Thus Nien€; ¥ NyeqE; once I ;C& n, for if I € n\I

'

1

then B C nieIEi while Bz’+2.,n+1—i = ni(nEi'

I+2,n+1—1

3 Moreover Ny¢pE; * 0 since 191"1 S MNiepEy-

-+ 2
Let g=g@(x3t). Up to now we have dealt with @ as a
formula in ;; instances of @ have been formulas of the
) +
kind g(x3;a) over some structure #H.

It is clear however that, given a subtuple 3 of

; U ? one can consider 3 as the tuple of type variables

and the rest of the variables in ? U ? as parameter

variables; instances of ¢ are then of the form «p(a’;E’), g

€ #H. Also, all definitions or properties which apply to ¢

as a formula in }’ apply to @ as a formula in 3. We

: -+
sometimes write (pu instead of ¢ to underline the fact

R . ->
that we consider @ as a formula in u.

. -3
More formally, we say that p” satisfies a certain

property P or that ¢ is =--=-= in 3 if the formula i;,

gbtained from @ by substituting 3 by type variables and

1

the rest of the variables in }' U ? by parameter

variables, satisfies P or that 6; is c====-,

For instance, p is an equation In ? 1f q)(?l;;l)

2>

-3 ~» -~
. J— . 54 -
(@ :x4) q:(x,t)[t‘xl]) 1s an equation.



e

8. Proposition. Let ¢«*m(?;?) .
{

2 P ‘
(i) B-height (p*) = m iff L-height(p’) = m.
. 2 o
(ii) Assuming @ is f-equational, if mx is g-mstrongly—

-3
cquational then Qt is S-mstrongly-equational.

the argumant for (i) is similar and

-

Proof. We prove (ii);

' is left to the reader (see 9 for a different proof).

=+ ’ ’

Suppose mt is 2-equational but not ¢—mstrongly-

. S .. . -+ = .
equational. By proposition 1.(ii), there is H, 35yt in
H such that far any & = m, the formula
-5
a

_)
k;tu

~a -+ =
wk(t)““”iem+1i@W(ai;t)Ajm(

is consistent in H.

Let bk realize Vi in H. We have the following diagram

aof true statements in H:

- 57 -



rd

- -+ <+ 2
Tolaniby) @lagsby) — - - — = = — - = — - @oa,:d,)
> 3 + = -+ =
m(a?;bl) Tplaysby) — - - = - - — == — — pla,;by)

I

Considering the columns of this diagram we obtain that

for any 2, O £ 3§ = m the formula
-+ -3 -+ =3
ﬁ&€m+1149(x;bi)Aﬁm(x;bg)
=

is realized in H by 3!. That easily implies mx is not &§—m—

strongly—eguational. 3
Exampla. Let R be a naoetherian ring with a unit, £ the

language of rings, K the category with Single object R and

single morphism the identity map on R. Consider the formula

- 58 —



plx3t) =ds(x =

~divisors of a,

4
st); for a in R, p(a;t) defines the set of

while @{x:;a) defines the set of multiples of

2.

Q is an equ;ation in t: for i+ (ai)i<w is a sequence of

-

elements in R, the i1deal <a1.;1' < w> is finitely generated,

»

hence equals <ai;1 {-n> for some n. It follows that:t

divides 2, faor I < @ iff t divides a; for 1 < n.

How?ver, if R contains an infinite’ sequence (ai)i(w such

L&Y

that a, strictly divides ‘ai+1, take for instance R = IxXZ,

and a; =~;(21;1), then @ is not equational in x.

-

Note that;\ in ZxXZ there is an element a,

N

# 0 such that

a; divides a, for every I < «, namely a, = (04,1), (in other
words {q:(x;ai):z' < w} is realized by 2, in R).

™

9. Let @=9(X;¥), m =length X, n = length £ and H € K. Let L3

-

(resp. L?) be the (obvious) semi-lattice whose underlvying

set is the class of subsets of #" (resp. H") which are
-3 =

definable by conijuncts of instances of q)x (resp. mt)

3

( an

? - + 3 <+ .
instance of ¢ is a formula of the kind @(ajt), a in H).

. . - Ing .
a) Assume @ is f—equatiocnal in f. We define a map

bt s v Ssadlas i 1

T ko o e g,




b)

c)

d)

| X ——— N {o(b,;H);b,€X3

(@(B,iH) =1{3 € H';H E @b 3D

N ~

The intersection mentioned in the definition of sz-?

above is finite because of f-equationality.

-

- . . -3 -
Similarly, if @ i1s f—equational in x, we define the

s 5 .
map #3: L?'-——:.OL;?.

For X,Y € L}’, X cy = *?(X) > %?(Y).

This is’immediate, since

fo(B,3M3b, € X3 < fptb,iM;b, € Y1

Note that 1f X = Ai(nmw'-"gi) then 31- € *?(X) for every I

L]

< n.

) - -3 -
Suppose ¥ = F‘li<qu(ﬁ;aj) and #2(X) = Ny p@(b;3H) 5, b,
€ X. }

Then, X € ¥ iff b, € ¥ for every i < n iff . -
_’ ' + A 0
a. € *?(X) tor every Jj £ k. . '

Proof. Clearly, b, € Y far every i < n iff HF A; .

) iff 3, € #p(O) for every j < k.



e)

10. Propasition. If @(?;?) ig f-equational in ?‘and ?, then g

i
\
Y

Obviously, 1if X € Y, then gi( € X) belongs to ¥ for

every I < n.

Conversely, if 3} € Y for every z < n then Zj

€ %?(X) for J < k and therefore, By definition of

*?(X), ;5 € m(g;H) for any g € ? and j < k. In othér

words, 3 € fy<km(H;3)) for any 3 in ?, which means X

cvy. O

For X,Y € L3, X © ¥ & #2(0) > #p(¥).

We already‘*have one direction (a)). Suppose Y

Qj<km(ﬂ;3;) and #g(X) 2 #2(Y). In c) we have noted

that 3, € #p(Y) for j < k. Hence, a, € #g(X) for j < k.

<

By d), we conclude that X < Y. )
As a corollary ane gets another proof of lemma

._}
8. (i), namely.that i-height (%) =

_) -
t-height (pt). For it follows from e) that any chain of

. . e .
elements in L? of length m gives rise to a& chain of

elements in L@ of length m.

-

)

\

is a dual isomarphism from L; onto L? with inverse %?. (By

dual we just mean the property stated in 9.e).

)

Q



11.

Proof. We already know from 9.e) above that #P is a dual

'

isomorphism from L; into L. Remains to show that *; is the

g N .
NG

inverse of #3. N

Trg

=%

We show #2-%3 is the identity on L3. Let

X = 0 @H;3,)

By definition, #2-#2(X) = N f@H;c,);c,; € #pCOML

From 9.c), 3; € #p(X) for 1 < n; hence #}-#p(X) . X.
On the other hand, by definition,

2 e wpu iff H E @(b;c) for all b € X.

Thus, € € #200 =3 X C @(H; )3

(2]

hence *?'*?‘*’ > Xf o

We conclude *?-*?(X) = X. &

o

. -
The proposition below gives a criterion for

equationality using complete types.

‘“ First, we introduce’some new terminology.

4

-

Torminology. Let f:A——8 be a morphism in K.
A set p.of formulas in £ with parameters in A is said
consistent in K over ¥ if fp is consistent in:K over B.

Given a set A of formulas.in £, a.set p of formuias in

_) .
cL(A¥) with parameters in A is called a A-type in s over

- 62 - n
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12.

if p is consistent in K over fj
. . . i R . -
if f is an inclusion map we say p is a O—type in x
over A.

A Atype over f is a A&—type in some tuple of variables

? over f. ,
~ Given morphisms f:A—>8 and g:B—>C in K, & as
above and p an L-type over ¢, we let
phf = {m(x;g); a in A, m(?;fg) € p3;
ohA = f(R3B); @(x3t) € cl(A), and @(x;B) € pI.
Clearly phM is an L—type over g-f and phA is a H-type

over g-.

If f is an inclusion map, we write plA instead of phf.
A A—type p in ? over f {(f:A—>B) is A-complete if p

. . . . . -
is maximal, with respect to inclusion, among A—-types in x

.

aover T.
£

Lemma. f1A—>B a marphism in K '

a) A H-type p in zlaver f is &Ncomplete iff for any formula

> : : .
@ in cl(AY) over ‘A, either ¢ or ¢ belongs to p.

b) .If p is an L—complete L-type over B then ppf fresp.

phd) ia L—-complete (resp. A-complete).

c) An L-type over f can always be extended to an L-complete

N
[l

L—type over f. . :

ad

ynn



Proof.

, a) For p and @ 4s in a), necessarily either p U {g} or
p Y {93 is consistent over ¥f: since p U {pF and
p YU {9} inconsistent over ¥ means there are finite

subsets p; and p, of p such that p, U {9} and p, U {7p3

are inconsistent aover ¥, whence plxw Py U fovipl is

’
‘inconsistent over f, contradicting the fact that p is

consistent over f.
7

Thus if p is A~-complete then, by maximality, either
@ or Tp must belong to p.

b) Follows immediately from a)

c) Is an immediate application of Zorn's lemma.D

For the remainder of this chapter, by type or complete
type we mean an L—-type or L-complete L-type;

for p a complete type over H we let

-+ = +
p° = f9(H1d;: 3 € H, 9 €5, piy ol

13. Propaosition. The following assertions are equivalent:

(i) 8 is equational.

=Y
(ii) For any structure # in K, ?'and complete type ¢ in x

.

! over H, there is a finite subsot 90 of ¢ such that 9 7

qS_



Proo+f. (i)==>(ii) is cbvious.

(ii)=2(i): Assume (ii) holds. Let H € K, p a set of

-3
formulas in ¥ with parameters in H. We want to show the

existence of Py € p, po\finite such that pO'ﬁ p.
I+ p is inconsistent in K then clearly such a Po

exists. Suppose p is consistent. Let P be the set of

complete types in ; over # containing p; by lemma 1Z.c), P

is not empty.

Mareover , by assumption, for any ¢ € P we can find 9

< g, 499 finite and o Ig qs. Let

pr=p U {Aqy)5q € P’

Claim. p’ is inconsistent in K. For if p’ is conuzistent, we

can extend it to a complete type q over H so that g € P.

But then, ﬂ(Aqo) € p’ € g and a5 € q 2.

So p’ is inconsistent. Hence, there are ql,-'=,q" in P

and P @ finite subset of p such that Poiﬁ'Vg=1(A4é)- On

/

b = Slﬁ p; hence

the other hand, for any 1, 1 = 1 £ n, qétﬁ-q
V?=1(Aqé)yﬁ P- We conclude Po g P> which is what we

wanted. &

Proposition 13 enables us to give another proof of

7.(i1), namely: '

B UV N Sy

Y e e e
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Corollary 1. § is eq;.n/atiunal iff R =cec1t(® is equational.

Proof. Indeed, let H €K and q-a complete type in ?'over

v

H. -Then clearly qR'ﬁ'qS. Since S 1s equational there is a

.
]

R

finite subset 90 af q such that é ﬁ qS 7 90" We conclude

\

by propasitiaon 13 that R is equational. H T
We close this chapter by giving two applications of
proposition 13 which are somewhat typical. They both rely
on the existence of a "division rule". The first
application is almost immediate (see I.4.(i)) if one uses
Hilbert s theorem which says that a polynomial ring aover a
noetherian ring is noetherian. Here, we give direct proofs.
Application 1. Let- K = F be the Eategory of fields with
field embeddings. Then the set § of algebraic equations in
the variable§ Ixyy--",x,F is equational.
J
Proof. By induction on the number of variables‘nf'
Suppose the assertion holds for n —,lf‘LeicH be an

3
¢

..
object in K and ¢ a complete type in x = <x1,---,xn> over

H. qs is (up to equivalence in"K)“o¥ the form

f(P=0); PE€ I3, where I is an ideal in H[xl,-'-,xn].

Consider each element P of I as an element of

H[xl,---,xn_l][xn]; let UP be its leading ‘ctoefficient, UP



PR

€ H[xl,"',xn_lj. Let J = {P € I: UP g I3. It is easily

seen that
90 (W) qqs where g = (P =0); PE J} and

9, = {(UP = 0); P € INJ}. By the induction hypathesis 94 is

equivalent ta a finite subset Pq-

As far A5 choose ? € J of smallest degree in X

denote this degree by d{(Q).

; S
Claim. (@ = 0)A(Y, # MApy b 9 -
Indeed, given P € I, d{(FP) 2 d(R), there is m € w and a

'

pol ynomi al Ro, such that

- = - mn ]
UQ P UP Xp Q + Ro with d(Ro) £ d{P. ﬁ
g
(d(Ro) = the degreefgf Ro in xn).
Clearly RO € I and \

(@ = O)A(Rb = Q)AlW, # 0) g (F = 0).

If d(RO) 2 d(Q), we repeat the same process with R, instead

of P. We get R1 € I, diRy) < d(Ry) and

Q@ = O)A(UQ * O)/\(R1 =0 (Ry = 05 hence,

=3}

I

{Q

<

OYALW, # OVAIR, = 0)) |7 (P = 0).
Rn

c I, d(Rn) < Jd@), whence Rn
: "

The claim

Ultimately we find Rn'

€ J, and ((@ = O)A(UG #* O)A(Rn = 0))|y (P = Q).

~

follows immediately.
(@ = 0) and (UQ ¥ 0) belong to

7

Now, since the formulas

:
B Vo e S
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q, we conlude by praposition 13 that s is ‘'equational. B

»

~

Let DFp be the category of differential fields of

characteristic p with differential field embeddings. { is
then the language of fields plus a unary operation symbol

d(—) representing the derivation function.

Application 2. With K = DF, and S the set of atomic

formulas in ? = {xo,-°-,xn}, S is equational.

Proof. The proof is similar to that of application 1 via a
"division rule" for differential equations.

Let H be a differential field. Recall, a differential

polynomial P in ; with coefficients in H#H, is a polynomial

in a sequence of variables X with coefficients in H where ? )

is of the farm:
X = <Xyt "Xy 2dXgy == gdX, st t 0 d gy m m 0 d X, >

for some m { . Let ordP (order of P in x ) be the highest

.\ﬁ

number m such that dmxn occurs nDn—trivially in P; let Up

1 i

= dmxn for m = ordP. )

Thus, we can write the formal equality of polynomials:
P = E;ionué where I, for o £ = r, is a polynomial in

the sequence of variables

3

~

m—1 m—1
yxo,'r/.,xn,dXO,-.-’dxn,-.-,d XO,-"‘d Xn’dmxo,--:o-,dmxn-)
4



——

m = ordP; let Ip = I_ and S, = 2§=1iliu£—l' \

Note first that, since_a differential equation over H
can be considered as an algeb?aic equation over H (# as a
field) and since algebraic equations are equational in the
category of fields it follows immediately that a
differential equation is equational in the category of
differential fields (of any characteristic).

However, this does not entail that the set S of all

differential equations is equational. Tao show that § is

equational we need a division 7ule on differential

equations. Such a rule is given by lemma S of chapter 1.8

in [Kolchinl which we reproduce below:

Lemma. (cf [Kol. 1.81). For any differential polynomial P

and my, 0 < m < w, a"p - Spdmhp has lower order than dmup.

]
Proof of the lemma. Write P = ff=off“£- Then,

— i
dP = Spdug + Z;:_Od(fi)up.

Since every derivative of x, present in Ii is strictly

lower than up (i.e. Ii has a lower order than up) and &P
has a lower order than duP, we find that

dar — SpduP has lower order than duP. This proves the lemma
The lemma for arbritrary m follows quickly by

for m = 1.

induction an m.

]

3,

S Sy
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Back to our proof. Let H € DFO. Expanding polynomial
expressions and using the porperties of the derivation,

every atomic formula m(?;g) with coefficients in H, can be
written in a natural way in the form:

o)

b
3
3
]

-
where Pm(?) is a differential polynomial in x with

coefficients in H. (Pcp is uniquely determined up to farmal

;
-

equality of polynomials). Let ordg, I@’ Sm, um denote

LR -

respectively ord?m, IP,’ SPH and uP;

Let p be a complete type in ? over H; let
PP = todsDs 9 €5, € H, piy 93,
q =1{p € pS;’(Im =0) € p, u_ # 03,

py = te € p7;5 u, = 0].
py is the set of atomic formulas in p which do not

mention (non—trivially) Xp- By induction hypothesis, we can

assume p, equivalent in K to’'a finite subset. Let

m =‘min{0rdm; @ € g}; let m‘be an element of q¢ with

\

orde —'m and such that P_ has lowest possible degree say r

@
1 m .
in d X - Let P Em. \
Q
Clainm. (‘S(p = Q) €& ps. For, either r > 1, in which case
ordS_ = m, the degree af Sm in dmxn is strictly less than



r,

and

of qj -

= 1 3 hich S =
ar r in which case ® I(p and (SQ

I = r'Im, whence (IS; = Q) € .p (since (IW =0Q) € p),

Se —
therefore Sw cannot belong to p by the minimal choice
! <

\,

=0) € p since g

€ q.

lst

i

N

Ro

degree of Ro in g is strictly less than k (Recall k is the

~1 i kK _ g .
= K55, Tub + S,Iqul — Ig=d

Consider now an element v aof ps\pl. Write

¢

- = I — 2
Pw =G = zf IiuQ’ Uy = d Xy

case: & > m. Then, let
t
L 3-m t—m
= -2 — - -
Sp Ip-d P-(d up)

k—1 _
t-m,,  k—1
F un

-1 i k=1, .. _ t—m
5f=ofi3p ug + Igalf Tl (s ruy — TP

By the lemma above we see that either ordRo < & or the

degree of @ in Un).

Moreover, since (@ = O)A(RP = O)}ﬁ (R = Q), (Ro = Q)

belongs to pS_ On the ofher hand

(R = O)A(P = O)A(Sp #* 0)|§~(Q = Q).

If ardRO > m, we repeat the same process with RO

instead of @ and obtain R,. Ultimately we find

ORO

(Rj

. 5
1R1""1Rj1 i < w, Rj € p7,y 4

= 0IN(P = O)A(Sp # 0) ti7

kB

LI

et i nany
o 5 Bt
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Qo = I Q—IQP-uz_f, the degree of Q, in u

(Rj—l = OIA(P = O)A(Sp #* 0)|ﬁ i 173 (@ = 0), and Drde £ m.

‘Thus we have come down to the case of § = m.

2nd case: 8 = m and kK 2 r. Clearly then, if

is strictly less

P P

n

than k. Moreover @y = 0) € pS and

(@, = OYA(P = O)A(Ip # O)tﬁ (@ = Q).

0

1+ the degree of QO is greater or equal to r and ordéo = m
we repeat the same process with Qy instead of @ to abtain

Q Ultimately we find

1-

@ see,@y, d < w, (@; =0) € p°,

Lt d?

(Gd = QIA(P = O)A(Ip 3 O)pﬁ
‘ (@, 4 = QAP = O)A(Ip #O) I g (@ =0,
and, either orde < m or [ordad = m and the degree of ad in

u, is strictly less than rl.

3rd,case. £ < mor [ =mand k < rl.
Claim. Py tg (@ = 0). Indeed, by the minimal choice of P, (@
= Q) cannot belong to ¢. Hence, either uy = 0, in which

case
(@ = Q) € Pys Or

(I, = 0) € 2>, in which case



-~

(IQ = O)A(QO = O)'F (@ = 0) where @ = @, + Iauz ((G0 = Q) € p

a2
£y

By induction on the order of @ and "the degree of @ in-

0 \

-

¢q we ‘tan assume -p, 7 (&5 = 0) and since p, I (I, = 0, w?

"

conclude Pyt Q@ = 0)." -

-

N

Combining the three cases abovg we deduce that

<

PYAFR = O)A(sp * O)A(Ip #0) [ (@ =0). ,

+

Since p, is equivalent to a finitte subset,

-

(P =0) €p, (5, #0) € pand (I, #0) € p,

.

it follows that there is a finite subset Po of p such that

p0|—-ps. By proposition 13 we conclude that S is

equational. 3

s

)3
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"Chaptar 11

-

SH-Minimal Extensions of Tybas N

We introduce in this chapter the notion of an §;,-

minimal extension of a type, for H a structure in K and S a

A

set of formulas in L. As we said in the introduction, SH—
. ) X

minimal extensions.play in our context the role that non-—-

forking extensions play in stability theory. .

v ) {

-

Informally speaking, given A € B C H, p a tyﬁé over A,
we are interested in extensiéﬁs q of p to B which do not
satisfy over B any relation with respect to the formulas in
S that is not induced by p. &e are bound then to consider
all possible relations with respect to fnrmulgs in & that ¢
might imply. . ’

uThpsxit would be ideal if we are able to find an
extension q of p to B such that for any morphism f:H——2f,
fg - implies a mIinimal possible set of formulas in S with
parameters in F.

We diéide the problem into two parts: L

First, given A ¢ B € H, p a type over A, we
investigate those extensions of p to B which imply a
minimal possible set of formulas in $§ with parameters in H.

t

Such extensions are called SH—minimal extensions of p to B

-
\l..,‘
¢ P



and will be the object of study of section A.

We show then, that S, -minimal extensions of p to B

always exist (c.f. proposition 2), that, for $§ an

equational set, there are, up to SH—equivalence, finitely

many such extensions (c.f. theorem 13) and that the
property of munotonicity—trans;tivity holds .for such
extensions when considering types over sets which are SH—

o

cypéed in # (c.f. theorem 12).
‘ Second, we consider the types ¢ (over some structure

F), for which, intu;tively, all the formulas inxg (with

parameters 1in éome G, when given f:F—>G) that q implies,

are represented in ¢. Mare precisel&, we call q S—Tfull

{c.f. B.7) if for any marphism g:f—>»G and @ a formula in

S with pa?ameters in G,
L s
99 17 @ == flqgl iz @, N\

where ) -

. A structure F is S—fulléif every complete type over F

is S—full.

Then, given a type p over A € H we investigate the SH—

minimal extensibns q of ip to H such that p U qgﬁis S—full.
& \

s - ’

I+ g is such an extension, we)callﬁqﬁ an SH—cumponent of p.
In section B, we define S-full types, SH—comeneﬁts

and S—-full structures. We show (c.f. 5.(ii)) that if.p is

-79 -
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d

3
b
over A C H and g is an SH-minimal extension of p to H which

is S—full, then for any morphism f:H——>F such that ¥q is

consistent in K, fg is an SF—mininal extension of p>to TH;

! furthermore, we show that if § has finite height or that S
is equatianal and K is closed under unions of countable

chains then there is a morphism f:H—>F such that for'any

SF—minimal extension r of p to.f, rg is an SF—component af

Py (c.f. theorem B.10). Finally if K is closed under unions

of chains then faor any H in K there is f:H——>F such that F:
is S~full. (In chapter I1I, we make the connection between
S—full structures and existentially closed structures).

It is apparent all afong this chapter that the genéral

-

theory of sections A and B goes througbh in a very general
abstract setting that has nothing to do with structures or ]

formulasy in section € we describe such a setting.

o |

Saction A: QH—Minimal Eétanaiuna
) ‘ ,

O. Preliminaries.

- We fix’ a class A of formulas in L closed under boolean
iy

combinations and substitution of parameter variablaes.

Unleas Btated‘otharwigg, all formul as congidered are in
43 a type shall mean a O~type and a completi type shall

mean a H—complete O-typa,




~
s

\ The motivaotion %nr fixing A is that in general,

given a catogory K, we only work with a particular type
of formulac c.g. quantifior-froo, oxiétantiql, pooitive
oxioctential mtc...“witﬂ_tha aaaumptioﬁs o rosulto on K
daopending anly uﬁ such forﬁulas. ,

We sometimes call K a &—cotegory ' to underline tho

* choice of A.

- § ig a fixxed subset of A which ié closed unﬁer finite
conjunctions, disjunctions and substitutions of parameter
variables.

S usually stands for an equational set or a set of”

equations.

- Givan A € Q, wae shall consider formulas with parameters

in A up to equi&alenca in X over A; in other worda we do

not distinguish between g(¥X;a), a in A, and @(¥33)/q.

Noto that if f:A—8 is in €, 3, B in A4 and

$

@(*38) 7 w(X;B), then p(X3fa) z w(¥37D).
A g we

If Rig a gset of formulas. in 4o, wd let DQ(A) dencte

-
the set aof formulas ih R with parameters in A

(considered up to equivalence in K over A), i.o.
[ 4

A=t ED s 3 oGhD € R, T € 4y

{ oRcay = upnfa.

o

3
2l s

ot el L

=L VI



We lot D3(A) =DSA and DA =024,

- Bivon A c B € &, p and q typas in ® over, A, wo lot
g = (o € 03(B);1 215 on
. . I .. 8 s .
W say p and ¢ aro SB equivalent if pp g 9g- if

] t\
f:A———?B is a marphiam in,ﬁ, p and ¢ types in ? over 7,

wa let pf = (fp)g; wa say p and-q are Sf-equivalané i+ 7p

‘and fq are Sg-equivalent i.e. if p$ 1 q?.
Vs .

- e
Example. Let,7 be the theory, of one equivalence relation
E{x5y) with two classes, one, infinite, the other, of
cardinality n. Let K be-the category of models of T with

eleméntary embeddings, A the set of all farmulas, S

Y

=cl(Eqxst).
Let M be a model of T, a € H,’and p a’type over M. if

p = {E(xza)} then ) C .

A

' ph, = {E(x3b); b € M, H F TE(bia) 3. /

If p says, the class of x contains more than n

elements then

py = {E(x3b); b € H the class of b is infinite3.

-
1. Dafinition. Given Ac B c C € Q, p a type aver A and ¢ a

-~



i

h}

R

complete type ovor B oxtonding p, wo say @ is ‘an Sc—minimal
extoension of p to B if for any complete typé 9y bver B

. .
oxtending p,

«§ > @pf = of = wpi.

(0Of course here p, ¢ and 9, ara typas in a common tuplo of

1

variables 3).

Biven 7:A—3>B and ¢g1B——>C morphisms in ﬁ, p a type
over g*f and ¢ a complete type over g, (c.f. definition of

type in I.11), we say q ia an Sg-miniaal extension of'p to

f 1¥ gq (ag a type over ¢g(B)) is an Sc—minimal extension of
* /
gfp to g(B), i.e2. wheneaver -2 is a complete type over ¢

extending p to 7,

S S

s s
g 2 qg)g =% q5 = (qy)

[l
If ¢ (resp. ¥) is an inclusion map we say ¢ iz an SC—
(resp. Sg—f minimal extension of p to ¥ (resp. to B)

inat&éd of ¢ is an Sg—minimal extension of pjto fa

2. Proposition., Biven B € C € &, p a type in ¥ over B and q, a

- complete type over B extending p, there is an_SC—minimal

1

extension q of p‘to B such that (ql)g 2 qg.

¥
Y
- Proof. For simplicity write qS instead of qg for any type

q over C.

A

¢

et s




SN VR

Let @ = {qs; q a complete type over B extending p and

a® < q33. .

N

We. are searching for a minimal element (minimal for

inclusion) in @. -

-

N .

Let '(qg)aﬂt be a decreasing chain of elements in @

5 ¢

(i.e. az S qf whenever g < a < A).

Let-& = {6 € D}B); there is @ € D3(C), Oz ¢ and

\ e

S
® & Ngeadgd-
Consider the set ¢ =p U {79; © € &3.

Claim. ¢ is a type over C. .

Indegd, suppose ¢ i< inconsistent. Then, there are

!
) / S
1" *2€,_y iN B, P Ip OVt VO, . Let ggy @,y € DO(C0)

. » N . s, .
1; far I < n and ®; ¢ nao\qq. Since (qa) is

such that 61- ik
decreasing, theré is g < A, P, € q;‘i; for any I < )n But qp
{
is complete and qp- 2> p; hence, for some £ < n, 91. € qp;
: , : |
hence ' i

n

cr‘3 - 9 #. That shows ¢ is consistent and proves the claim.

\z

Let q/ be a complete type over B extending q' (c.f.

v

I.12.c)»). ° .
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I3
'

\

AN
i1 S S s . , s,
Claim. (¢g*)° < Gy for any &« < A. For if ¢’ (g 0, @ € D7 (O),

then et-c- @ for some O € gq’. If @ € ﬂao‘qg then & € & and

19 € q which contradicts the consistency of q‘. Thus @

€ n“;\qi. The claim is proved.

So we have shown that (qs)a<A has a minorant in Q. We

conclude by Zorn‘'s lemma that. @ admits a minimal element.

u

Note that it follows from proposition 2 that 1f

fzA——>»8 and g:8——>C are morphisms in D?, P a type over gf

and q4 a camplete type over g extending p t¢ then there
is an Sg;minimal extension of p to ¥ such that (ql)g ) qg.

*\ t

Indeed, it suffices to apply proposition 2 to ¢gfp and

g9, as types ober gB (note that 949, is complete over gB).
. ‘) i
We find then an Sc—mimmal extension g’ of gfp fto g8 such

1

that y

(gql)g > (q')g. But that means g=¢q’'I'qg is an Sg-minimal
/
i

extension of p to ¥ (note gq

= q’), and (ql)g > qg.

3. Lemma. Let 4. c B € K. Given a complete type p over A and a

type qqo over A with pi - J (qo)z, there is a complete type ¢
. J

' s s
over A extending 99 such that P 2 age

- 81 -
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Proof. Let ¢, =49 U {pi: ¢ € p>

(A) and ¢ € pyi.

Clainm. qy is consistent over A. For if not, there are
"0, € DO A,

S . .
®; € p3 (1 £3 £a) and qc&rﬁ y;=1m1

\ S -
Hence, (qg);tg V¥=1q’15 (recall we had fixed S such that

. d, [
c1ts) = 8). i

Therefore p"S:I 1 V?=imi .

By completeness of p, it follows that for some i,

1

14§ <09, pﬁ,t— 9, ®- So q4 is consistent over A.

Now let ¢ be a complete extension of 9y to A. Clearly

S
& <o

.

Let ACB CC < H, p a type over A ( = (AH)), r a
type over C. In view of a monotonic‘ity—transiltivi ty theaorem

for SH—-minimal extensions, one expects that 1f r is an SH-—

minimal extension of p to C then rpB8 should be an SH—

}

minimal extension of p to B. ABut this is not the case in

gener.'%ll as we can have situ'ations of the kind: r and ¢
\

N

complete typés over C, r and ¢q SH—equivalent but r M8 and

a8 not SH*equivalent. ’
)
Subsets B of €C in which such situations do not

occur are called SH—-clcrsed in C. Lemma S justifies this



-

W

terminology.

First, the exact definition,

.\ N
Dofinition. Givan 4 € B € R, wo say A is Sg-closed in B if

for any ? and Pyv 94 completo types in ? over B8,
o :

\

(pl)g > (dl)g vz pg > qg, where p = p;MA and q q4 A,

\

If f:A—>B is a morahism in ﬁ, we say A Is Sf—clbsed

in B if ¥A is SB-clcmed in B (i,e. if whenever Pys qq are

S S

3 7 > q,( whare

complete types over B with (pl)g > (qi)B then p

i

4

l

1
We will see in chapter V that if K is the category of

4 .
p = plhf and ¢q qy 7).

models of a first-order theory with elementary embeddings
" . o
and if S is equational in K then for any model ¥ in K and A

3

cCH, Ais S”-—closed in H.
- ¢

Lemma. Let. %2 A7——>8 bhe a morphism in K. Then, Ais S,f-

closed in B iff for any complete type p in :v’ over ¥ and any

formula @ in p? there is a formula © in D(A4) such that,

pg tg O and 19 |gq). -

If in addition § is equational in K then A is S,-

cloaed in B iff for any p complete over f, if p1s, is not

¥

5



ompty thon pg is cquivalent to a single formula 76 for como

©in DA .

Proof. Suppose ‘A is Sf?—-closed in B, p is a complete type

in ; over ¥ and p € p?. Let

' @g = p3 U {fe; © € DIA) and fOI5 @l

Suppose 9 is consistent in K over B. Then, we can

extend 90 to a complete type q, over B. Since q, > p?, by

lemma '3 (since <q1)g > (fp)g = pf) there is a complete type
s S
py over B, py 2 fp and (ql)B > (pl)B’

By Sf-clchsure, it follows that q? > p?, where @

t

= qqMf. Hence ¢ € q?., which means there is @ € g such that

fer§ ®. But then 79 € 90 € 94 .

-

Thus 9o must be inconsistent in K. Therefore there are

formul as ©yy""*,9, in D(A) such that

e

>3]

Let ©=V!_ 6. . We have © € DCA), p3? I 7O and O 5 p. That

<

proves ane direction of the assertion.

Conversely, suppose f satisifes the right hand side

i s
term of the asseri;ion. Let P1+ 4y be complete types in ?

over B such thaf (p)5 2 (q,73; let p = p,IM and q = q,M.
4

~



pre——

If ¢ € Q?, then, by assumption, there is © € D(A) such

S - s - S s
that 9 tg T and f6|§ @- Since ¢ < (ql)B c (pl)B < py we

have that Py g fO. Therefore, by completeness, © must

belong to p. It follows that fpig @ i.e. o € p3. e

caonclude pg > qf, which is what we wanted.

Finally, if S is equational, then given a complete

type p over A, p?, if not empty, is equivalent in K to a

single formula @ in D°(B). Hence, A is Se-closed in B iff

!

for any complete type p over A4 with p? naon—-empty, there is

a farmuila © in D(A) such that, p§|§ fet§ p? i.e. O ] pg. ]
" '

{
In short, lemma 3 says that, for S equational, A is Sf—
closed in B iff for any p, complete over f with pg # 9, p?

is "definable" over A.

°

4. Propogition. Let A € C € R, S equational in K. Than, there

is 8, ACB € C, card(8) & card(A) + card(l) + N, and & is

Sc-clcsad in C.

Proof. We first construct by induction a sequ??ce (Ai)1<w

4

©

such that, for r < «,

AO = A, Ai c Ai+1’ card(Aj) s card(4) + card(a) + No

- 89 -




and, fér p complete over A, pg = Pﬁni. Suppose Ai has been
constructed, we want to canstruct Ai+1“ Observe first that
there are at most card(A) + card(Ai) non—SC—equivalent
cqulete types over Ai= indeed, to every complete type p

over Ai’ one can assign a formula eb in D(Ai) such that

P

A

=] |E-pg. Since there are at most card(Ai) + card (D) such

formulas, the claim follows. ’

Now, for every pg, where p is complete over Ai' there

is a finite set 3 such that p2 x py .37 for pg is

equivalent in K to a single formula @ in DS(C). Take then

a to be the set of parameters in o.

It easily follows now that we can find a set Ai+1’ Ai

i+l © C, cardﬁi+1 £ card(Ai) + card(A) £ card (A)

+ card{a) + Nb, and such that for any p, complete over Ai'

2

pg ol pgul. This finishes the construction of Ai+1 and
hence aof (Ai)i<w‘

let B = Ui<wﬂf' Then B satisfies the required

!
properties: clearly B has the right cardinality.

Furthermore, if p is a complete type over B, then there is

e € p, etf pg; choose 1 < w so that © € phAj; then

pg z (pPAj)g and therefore by the choice of Ai+1’

pg Vol (pPAj)g“‘; thus pg Yl pg. Hence, for any p complete



over 8, p(s: is equivalent in K to a single formula in 05 (B).

We conclude by lemma 5 that B is Sc—closed in C.. O3

Noto. If Ac C € K and S = U;e1S; where each §; is

"

. equational, then, using a similar argument to that of

proposition 6, One can find a set B, A CB <« C, card(B)

€ card(]A U AII) + RO, and B is Sc~closed in €. (The point
. N

.

-

to observe is that i1¥f AC A’ ¢ C and_}: is. completeﬁ over A’

9
’

then, since pg ~ UiEng” there is a set py, = {6;5 1 € I3
’

of 'formula‘s in D(AI.) such that PoIF pg. Now , cardpo

< cardI; it follows there are at most card(lA U AII) non—SC—

equivalent complete types over A4‘. One constructs then a .
%

sequence (Aa)o:<7(’ A = (cardfl + "Xo)+ similar to the sequence

(Ai)i<w in 6 and shows that B = U«(k'qa satisfies the

required conditions. (In fact, if [ is countable, we can

still find B with cardB £ carddA + cardd + NO.)

Remark. In fact, it will be sufficient for what follows to

\
consider a weaker notion of S-closure than that given in

definition 4. Namely, if the property stated in definition

4 holds whenever we assume in addition that P4 and q, are
respectively SB—m1nima1 extensions of p and q to B.

Such a notion could be interesting if one i1ntends, in



type q’ over B extending % and such that. (p1

the study of K to consider only those types which are _

realized in K (see 0.3). ! s

\

We will assign the sign (+) in front of each

I3

proposition which uses only this weaker notion. The reader

L4

may ignore it? if hé wishes.

-

©
'

v ° C‘ . n
Lemma(+). Let 4 < B € 'R, A SB-clnsad in B.:Biven a complete

type p over A and a type 9o Over A with pg ) (qo)g, thare
v !

iz a complete type q ovaer A4 extending 9o and such that pg

=) qg. (Compare with lemma 3)

~¢

Proof. Let py be an SB—minimal extension of p tp B. We

have (p)3 > p3 > (g0 5. By lemma 3 there is a complete
)
)g > (g’) -

Let ¢ = ¢’ MA. By praoposition 2 there 1s an SB—mini&tal

axtension qy of q to B such that (q‘)g > (ql)g.

¢

Py and 51 are repectively SB—“?ni‘nimakl nexteru%icm';—'. of p

[

and g and, (pl)g o (ql)g_ i r : "

We have now, '

t\.

By Sg—closure, it follows that gy  qp. Since ¢ > qg,
. oo
g satisfies the conditions of the claim. B

[3

>
-

Definition. Let' A < B € R. Given a type p over A and a

G R - IR i .
> 2 _'
.



. i g

10.

Q/

A

complete type py over A extending p, we say that (pl)g is

»

an SB—minimaI nxtrnsinn~of pg to A if ‘P1’§ = pg and for

any complete type q, over A,

S

s S S4 S y
)B > (ql)B] - (pI’B - (ql) .

[(ql)a > pg and (p1

If f1A—8 is a morphism in ﬁ, p a type aver ¥ and Py -

v

a complete type over ¥, we say that (pl)g is an Sf—minimal
extension of p§ to A if fpl. as a (complete) type over fA,
and fp (as a type over TA) are such that (fpf)g is an SB-

minimal extension of (fp)g to fA. - ' ¢

3

Lemma(+). Let A C B € ﬁ, A Sa-clos-d in B3 pra type over A,

py & complete type over A. Than Py is SB-Qquivalnnt to-an

Sa—minimal extension of p to A iff (pl)g is an Sp-minimal .

’

axtension of pg to A.

-

Proof. Suppose Py is SB—equivalent to an SB-minimal
. ’ s S .
extension p‘ of p to A. In other words (pl)B 5 (p )8’ which

in fact implies (pl)g =.(p')g. h

Suppose now ‘P1’§ D‘(ql)g and (ql)g o pgg where 41 is

a complete type over A.

-

By lemma B, there is P>, complete over A, such that P

&
-

b

- 89 - ,
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-

extends p and (ql)g o (pz)g. We have now (p’)g‘F (pl)g

= (bl)g D'(pz)g. Since po extends p and p’ is an SB-minimal

4

extension of p to A we deduce that (Pz)g ='(p’)g, whence

(pl)B = (ql)g.'That proves one direction of the claim.
&® a

Conversely, suppose (pl)g is an SB-minimal extension

s o . S S 3
atﬁfB to A. in particular (p1)8 > pge By lemma 8, there is

”—c—.
a complete type p’ aver A extending p and sygh that (pl)g

Pl (p’)g. By proposition 2 we can assume p’ is an SB—minfmal

extension of p to A. By minimality of Py we deduce (pl)g

’

= (p')g i.e. Py is SB-equivalent to p’, which is what we

wanted. N

~ /a-t’

VL

Lemma (+) . Letg; c B E ﬁ, A SB—cfnsnd in Bj Po & type over

A, Py A complete type over A and po & complete type over B
¢

with py € pg € pé.

~

-

v
Then, Po is an SB-minimal extension of Py to B iff Py
is an Sg~minimal- extension of p, to B and p, is an Sg-

minimal extension of Po to A. v ‘

I

Proof. Suppose P> is an Sg—minimal extension of Po to B.
Then, clearly Po is an SB—minimal extension of Py to B - -




since p, 3 Py 2 Pos
N\
on the ather hand, if (p,)3 > (q;)5 where q, is_a

S

complete extension of Po to A, by lemma B (since (Px) g
L

> fdi)g) there is a complete extension 9> of 94 to B such

that (p2 B > (q2)8 (By proposition 2 we can assume 9> is an

Sg-minimal extefdsion of q, to B).

Since P is an SB—minimal extension of Po to B, it
follows that (p2)g = (qz)g.‘By SB—closure of A we conclude
S _ . .S

o~

(p1 That shows Py is an SB—minimal extension of

S g

Py to A. e - - -

w

. Conversaly, suppase Po is an SB—minimal of Py tofb and

3

]

py is anASb—minimal extension of p, to A.

If (pzlggb (qz)g where 9o is''a complete extensjon of

Pg to B then, by Saﬁglosure of A, (note that by Proposition X

=

2 we can assume 9 is an SB—minimal extension of qZPQ), -

(pi)g 2 (ql)g*where 9 = QZPA. 4

’ . »
‘ '1But'p1 is an Sp-minimal extension of bo and q, 2 Po?

,thus (pl)g = (qlog. . " &gﬁf " .

¢

By lemma 10, (p5)3 is an Sp-minimal extension of (p,)3

v

to B. Since (qz)g > }ql)g = (pljg, we concludé-(pz)g

“ r s
- . Ll g

ﬁ (qz)g. That shows P> is an Sé&minimal extensibr of Rq to

’ t

’

T

[ TONF, S

e b Z e W, Y e
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LA

) . . < .
- : - ‘ g o
.B. m . ‘ T
. ‘ © o - A T T
e
N 42 . ? * S ) st X
12. Thcor.m(Monotoni:ity-transitivity) (+). Let AC B cC € R,- .
k. '

Po & type ovcr A, Py ‘a complct- typ. over -A,- p2 a ;omplctr

.

« twfh over By Po € p1 < Py %upposc A" and B are, SB-rclasod 1n

C. Th-n, Py is an Sc-—mnimal extdnsxon of po to B H-F p2 , .
is an Sc-minjmnl axtension of Py to B and, Py is an SC"‘" ' .": “
YR S z . “ - - . -t - B t
i minimgl ox%.nsinn of py to A. - : . S
o > . . . ' , :; U' . ~ , * R i
t « - e -~ , *
» - ~ 7 [ oo ! Lt L
Proo-F. Let p3 be an S”chmi/n'ima]: extension’ of P tg ¢. . et )
- a . - ‘ y Y oy s
- » . ‘. ;o
GDnsu:ler the following statements. , s ' L
. . » . . . ¥ :“: . ] -
A 1. P2 is an Sc—m1n1ma1 exten51pn’ of po tb B. v.l‘ "'" ) s oy ¢
o . ¥ L ) " . T ) -t e )
2. pz is an Scr-mxnfmal extrensicm of p5 to C and wp2" is ér! Sc—
:' v . J: b AN . 2
min al exten51an of p0 ‘to B. R . A Lt
# » \ ; £ -y . - ‘ o * \" . ¢ 4 - ’ LN
3. pgis an Sp-minimal- extension .of -py to C.” T
e § e S, ' . ” LA e ’
<’ . . s Yo . " A ! “ N 7 ’ T
o4, pz is an S.—minimal .extension o{‘,p’—f‘*tp C amc/l P, is am Sc-; .
¥ ‘ ™ . M ‘ [ L . N
Pl - Vad 1] . 4 ..
N minimal exter\\s'dﬁx af po_t'o A. S A T . S
. ‘ t Sy /. o v .t e > NERE
- M : . L. LI — .
P- px is an ﬁc—mxnfmal,exi‘:ensxonpoﬁ P2 to‘lC,. 1’2‘_15 an SQ, .- .
- " ¢ ! - ’ ‘ ' : -, - . 7 ‘ » N
“ minimal exiension &f pl'rto B and p'l,is an SC—mipin‘té,ll ) -
B d . , . . l , N v
extension of Po to A. .. . . - , v - .
1 LN ' N ~c , ‘e [ ’
631., p2 is an Sc—m1n1m31~e')?tens1cm of Py to -8B and Py is ar(S-C— "
pa s s § ~ r ’(. . t,
minimal extepsien of Po to A. N oo
. LT . \—' . o ! ) . e ‘
: ’ll' - - ) ) - , * I3 ’ 3\ , ~ “ ," -
5 . . -
¢ E'e K } - v v
;~\’ . . 7 \) "‘ 3 s
! ’ ) . \/ ’\ ’
_ - . . \ . ;
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- :‘i - 92 j - -l { k . . *\T » ~ , 4




W

* ’ 3
By the chgice of Px, obviously 12,

e

By lemma 11 applied to Pz we have successively, 233,

[
3¢ and 4¢45; S is obvious.

We _conclude 136 which is what we wanted. B

Note. Given morphisms f: A—>B and g:8—>C in K such that

Alis Sg_f-closed in C and B is Sg—clo§ed in C; Pp & type

over ¢g-7, py @ complete type over g-f and py a complete

,f{é.
type over g, P 2 fp1 2 Tpos it follows from theorem 12 »
2 N - "“
that p, is an-sg—minimal extension of g, to f iff p, is an

Sg-mlnlmal extens1oﬁ of Py to andﬁ‘p1 is an Sg_f-m1n1ma1
= " iy

extension of Po to A. Indeed, consfﬁgr_the types g-ngquer

=4,

S5
By

g-fTA, g‘fpl over”é-fA and gp, over gB. gfp1 and gp, are
then complete andfby assumption ¢-fA and ¢gB.are Sc—clased
in €. Thus theorem 12 appligs: gpro is an Sc-minima}

Extension of g-fpo to gB iff ap is an Sc—minimal extension

af g-fp1 to ¢B:and g-fpl is an SC—minimal extension of N\

(RS A AU

g-fpo to g-fA. Translating what preceded in terms of Sg-ff

.
minimal and Sg—minimaléextensions (see definition 1) we

‘.
T T

~

obtain what we wanted. , ' .

\ ‘ . ‘
N Bt ¢ - 3’ . < -
L A . .

Theorem. Suppose S is equational in K. Let flﬁ———§é>bl a

& »

morphism in R and p a Eype in ; over . Then, up to Sf-

Ll

P !
+f

P J

3 .
~ &

I
Vi Sor o s Baglat e

-l
L3
-



o

.

.t
Ars

i

et

o
equivalence, p has finitely many Sf-minuul axtensions to
. &4
A. In other words, there exist g5, °°*yq,_1+ Sy minimal p

K3 ~ b
% ‘ .
axtensions of p to A such that for any Sf-"ninimal extension

q of pto A, there is i < n, q5 § (q)%-

't -, . ‘er‘s'
In fact, with the q;°'s as @Wbove, we have

AR

s . s
Pr & Vicn'ay)e-

¥ ' s' 4“-" L‘!{"

Proofp Let @ be the_set of %&-minimal extensions of p to
A. Consider the set T T -

L4

9o = P= v {78, & € D(A) and fe|§ qf gor some q € @}

. ,« .
] ‘i‘ N
[ _.;"V'

Supbose 90 is consxstent over f. Extend 90 ‘to a

e

complete type qy ovecif, By proposition 2 (applied to %ql ‘ﬁ
over fA) there is an SB*miqimalxextension q’ of fqo to 74
( ";‘.x‘

such that . - A
B

S & ’ &

(fq,) Q > (q')g. Ifn other térms, there is an Sf-mxnxmal B

extengxon q of 90 to A, (take g = q Pff such that (ql)g

.
> qi‘r

-

¥ _Since S is equational, (ql)i is equivalent to a single.

R 8

&

formula in D(B). Therefore, by definiticn of (q,)3, there

.is a formula © in a4 such that fe;gwa)ﬁ; hence f8|§ q?.

Vg o i ¢ .
But ¢ € @, it follows, by definition of gy, that 7®e.

N /

€ q%, whence ﬂé'é‘ql o. . < :
. .,k “ ,'v! +

=¥

LYY ¥ i ..
£ - . -

- 94 -
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p*

. Ay, we find that for some i < n, (q)f = (qz

e

Ry

Thus 9q is inconsistent over . That means there are
LY 3 -

~

8

01" " “98_1 s formula.,é,-r in D(A) .such that,

..

fei"é'(qz f for some q; € ‘@ (i < ) and p k7 1(,,@1

It follows that for any gq, complete over f.:q éxtending P

- ~\

there is i <®p such that qfr ©;, and therefore: fq |§-(qm)S

In particular, if q is an Sf—minima_l extension of p to

g

»3. We conclude

that, up to S.f-equival ence, goy""" 1954 enumeratg’"aii the

s J
S;-minimal extensions of p to A.
We have now, x
1“ i fp r- i< e m (q )S, . '{ -.,‘p:‘.;
- "‘;"4,"” n i<n 11’ C -

i.e. F’S |§- i<n 9 )?, on the aother hand, since q; 2 p, '

<qi>§g— pf G < mg

therefore, p? B vi<n(q'1- )—f'y

d .
- h b - : . r
' .
ﬂ 3 A

'

anark. I we are to deal nnly mth those types which ‘are
@ A N
realxzed in K and define equatlonallty uf S only with

P ‘o

respect to such types (see 0.5) then, for & éimi‘l'ar result

o
&

!
"

¢

to theorem 13 to go through we need the foldowing

“ 4

Fd
¥,

conditions:

3
Via

@4

A € K and p is a type over A such that for any §,—

minimal extension q of p to A, gqI'S is realized in K over A

(recall gPfS = f{p(¥33) € q; p(xX3t) € c1(S) 3.

Ha.

d ) -95 - . N
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T

o

2
b

'
-

& k] )‘ ; -
G
,are realized in K aover A. - 4, &\

Exunplis. :

TTa)-Let L consist of one binary relation <; )

/

K] ' i ) nl ) ' th '
, equivalence, finitkly many SA‘—minimal extens%ons to A which

0 P

>
*

% s [) k3
The, following is: then true: p has, up to ‘SA_

1 {

£

¢ *,

] 0
e [ B
3w v

2:

1 ~
S =cl¥((x > ¢)). Define the usual order on n <v

-y

if n is an initial segment of v. Let # = (‘¥2,<) be the

structure thus obtainegd. K %
o N

Let A be the, set of all formulas in L and let K be

the A-category of models of Th(M) with elementary

embeddings.

v

.

"

¥

A

c1 eaAr'l:/ $ is not equational in K.
Consider trE/t\ype over (G.,H),

p = f£3tLh(t) > nIAx > t)]; n < w}

where (h(t) > n) means Ittt t, < &, < ===t <L,

N

It is easy to .see that for each n € “2, the type

pn={x>nhn;n<w}

determines an Sy—minimal extension of p to M,

Fﬁrthermare, for n,v. € “"2, n #v implies p_ U P, is

U]

-

inconsistent in K. It follows that p has 2% SH-minimal

~ '\_

i '
extensions to H4. -

: b) Let 7 be the theory of linear orders, A t{he set of all

qu;ntih‘er—‘freg formulas (in L = €<3) and K the &




\

Y

- ) X’ ’ /
category of models of 7 with embeddings for morphisms. )

1

»

Let S = cl¥{(x > )3, 8 =c1lVt L > ), (x < 813

' Elearly, neither S'nor 5’ is equational in K. Let

‘Hj€~K and-p a (A—z—coméletﬁ type in x over M which is
Jhot\réalized in M.

Y p is then equivalent in K to a type Py of the farm A

. - s
[8

Po = fix > a); a € I} U {(x < b); b € J}
where I and J are subsets of # such that a < b whenever

a€landd € J. .

Now let f:M—>N be a morphism in K. p has a unique

J
Sn—minim§1 extension to ¥, namely the type

p; =1{(x >fa); a € I3 U Lx < b); b EN, b > Ta

for all a in I3}.

However , any complete t?ﬁé over N extending fp is

an S}-minimal extension of p to f. |

c) Let L = {{,+,°,0,13, A the set of quantifier—free .
formulas in L and K the A-categary of ordered fields )
with ordered field embeddings forwmorphisms.

Let S be the set of algebraic equations in L. § is
equational (for the same reasons as for K = F). Let |
f:H——>F be a morphism in K. Consider th; type p over

p = {lx > o), (P{x} =0)%

)

where P(x) is some polynomial with coefficients in H,

e L et e e

such that P(x) has a positive raoot in some extension af™

R R S

=n 97 -
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v

S\

"~

3

First, note that p is a type over ¥ (for p has a .

root in the real closure of H, whence p has a root in

[

the real claosure of F).

Now, the SF—minihal‘extensiuns of p to aré'the
8 ~

r

types of the form .

Py F f{ix > 0), Q(x) =013}

where @(x) is an irreducible component of P(x) in F
which has a positi&e root in some extension of F.

One observes here that there is a morphism

g:F—>»G, for instance the embedding of F into its real

s closure, such that the S;—minimal extensions of p to g°f

are the types of the form, ,

r

Py {(x = a); a € G, 2a >0 and a is a root of £I.
. .

0f course then, for any morphism e:6—>E, pa‘hhs a

unique SE4minima1 extension to e.
s

The observation above w%ll be seen in section B to

foflow from a general statement (see theorem B.8).R

Suppose § =S_= U S where, for every n < w, S_

w n<w n n
is an equational set of formulas, Sn = c1+(3n), and Sn
B Sp+1- Let f:A—>B be a morphism in K and p a type iéi

-+ :
x over . Consider the following partially-ordered set

(T,<): .

- 98 -
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A o

*

(]

"I4 5 -
T=14g,n); » £ v, ¢ is an (5)) ~minimal egension

of p to AT U £(p,—1)3; .

-

for O £ n,m < w, (qyn) £ (@°,m) if n £ m and

>

@3 € @ ‘ , ,

2

(p,—1) £ (q,n) for any 0 £ n* £ w.

(Sa (q,n) = (g¢’,m) O = n,m £ w, if n = m and (q)hf'

== (ql)gl)- L

- (T,£) satisfies the following properties:
1. Given —1 £ n < m £ w and (g,n) € 7T there is (q’,m

€ T such that (gq,n) £ (g’ ,m.

7

2. Given —1 s n < m £ w, and (¢’ ,m) € 7 there is (q,n)

€ 7 such that (¢,n) £ (g’ ,m).

v

3. (T,%) has finitely many elements at every finite

level.

Indeed, given —1 < n < m < @ and (q,n) € T, by

-

proposition 2 there is an‘(Sm)f—minima'l' extension q¢’ of

. . .
p to A such that (q)f’ > (q,;S.! But then (q),f-' > ‘(q’)g‘

and, since ¢-is assumed an. (Sn)f—minimal exterision of p,
. I3 : -

we deduce tl{ét*‘(q)g' = (q')g‘. Thus (g7 ,m) € T and {(q,.r)

4 ] :

£ (g’,m. That praoves 1. o ! .
Given -1 € n{ m £ w and (¢’ ,m € T, by proposition

? there is.an (Snif?giniqal extension of p to A such

§

m) .

{
 that (@3> > ()3, S0,(q,n) €T and tq,m <
- D .
That proves 2. . - .
F» - 99 - *
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1

It follows from property 2 that i¥ (q,n).€ T then

(g,n) is at the n + 1-th level, i.e. thg (n + 1)-th

L

J -
level in 7 is constitudted of the (s ) c~minimal

extensions of p to A. By theorem ‘13 we deduce property

.

3.

"

Remark. We will see in chapter III that for K the category !

of models of a complete theory with elementary embeddings,
. »

if p is a complete type over a subset of A then (7,%£) has ’

A}
a

more precise properties as for instance the fact that (7,3)

5

oy .
is a tree (c.f. 111.14) (i.e. (q,n) & (q, sn) implies there
is no (¢¢,m) in T such that ¢q.n) €-(q',m> and (q,,m — 1

< (3',m). This will follow from the fact that, in that

case, if (q,n) and (ql,n) belong to 7 then (g,n) and (qi..,n)
are in some sense conjugate of each. other. . BEN

- « v

Alsa, lemma 14 below will have mare precise versions
/A a
(c.f. II1.17). ’

T r

M

Lemma. Let § = Un(usn' f:A—B8 and p be given as above.

Suppose 9, is an'sf—mi“nimal extension of p to A. Then there

is a sequence (q,), , Of types over ‘¥ such that,

~

for n < @, q, is an (Sn)f-minima} extension of p to A, 3

S. "Sn*' S »
(qn)f o (qn+1’f ' and (qw)f ™= lJ"(”(c';”).,f -

- , ¢ - '
Prc;o-F. Let (7,5) be defined as-above; clearly (qw,w)we\T.
o~ . s
" 4 }

. — 100 -
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7 ”Ei’liﬂ.“ q" is consistent over f. For if not, t;her'eh are

. ')V
0 . &'
Let . .
(T9:€) =1(q,n) € T; (q,n) £ (q,,@) 3.
By property 2 of (T,5), T, is infifite.

2 -

" From property 3 of (7,%) “(see above) we deduce that

f

c;‘(TO,S) has finite branching at finite levels.. It follows by

° 1 4 .
Ktnig "s lemma that (TO,E) admits an infinite branch .

Write q; for q if (q,n) € E.. Let

q'=p U {9; © € D;(A) and O W"*ﬁnrj_.sqn—te;——--——. - -

S S0n
® in D (?)\ Un(u(qq)f}'

e

Y

3

07 """ 16—y’ 1N DAY and @G, "+ s@y_y in D% (BI\ U, (2,05
such that ) ) . ‘
- ¥ :’}
‘ S O 15 9y (< K) and p kg V; ;. .

y ° N
]

<

Since q, > p, we have that O FVick©;5 bY ‘completeness and
~ ‘a

since q, is consistent over f, it’ follows that q, 150, for

some I < k; hence.fqmt—g— P; i.'e. P € (qmgi' ) &8
Let ¢” be a complete type over f extending q’. We
9, - ~

o

‘ i s ! ] S '.; s
clearly have‘ (q le < Un(u(qn)f"sp
sa (g3 c{“Un<w(qn)§' c é?.’”;py "minikality of q we

LY
>

conclude that - (q")g = qf. hence q? = U,,(g,(qn)f‘" L

% B
! R,

4

Let m < @ be such that ®; € D (B) for all i < ku ..

v

N '
R e R e A,

ok
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1

ey

Py

—_— "ng

s
2 o, - - B - s

. . ~
15. Praposition. SuPpase s =1t Ui<wT1) where each Tx' is an

aquational set of formﬁivcn a morphism f:A——8 ™ R
and a.type p in }' over f there are at most 2% non-sf—

squivalent S;f-minimal extensions of p to A.

B

Proof. Let 5, = c1™ ¢ U;¢pT;)3 then, by proposition

I.7.(i?i), Sn is qu?tional, Sn c Sn+1 and § = Un(u ne By

lemma 14, if g is an S,-minimal extension of p to A then
oy 5

/ -y -

= Yeolap)¥ wl?ere each 9, is an (Sn)f*minimal
extension of p to A. By proposition 13, for each n < w, p

A

has finitely many non~isn)f-equivalent (Sn)f—minim‘al

A
LX. -

extensions to A. We conclude that p has at most 2% non—S .-

-

equivalent, Sf—minimal extensigg:—; to A. B

rom -
> NN

-
-
S ":
1

. [Note. In fact, with p and™f_as in the proposition

. above but withsS = cl7( U, T,)y whare I is an arbitrary
s o~ P - 1€l i N

infinite in¥eéx settand T, is eguational ("€ I),-Bfie can

-

-

A, - < - xY
e P > e

o *
-

e

, gl , )
show thgre are at most 211,' ".npnrsf—equivalantg Sf—minimal
-

-r ~

extensions of p to .A4j]

‘e
L)

Tiwpd e o .

g

16. Theorem. Suppose 5 = e1*¢ U;e1S;) where for each i € I, SI.
' xS

-

I
1
-
Qo
N
|
7
i
4
§
}

e
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v
s

is anlnquational set of formulas. Given a morphism ¥:B—>C
\
in R and a complete type p. in X over Ty there is a set A
+

Cc 8, of cardifality at most' card(I) if I is infinite and

finite if I is finite, such that p is, up to Sf-

oquivnlgqc-, the unique Sf-minimnl extension of phA to B.

Proof. Let I* be the seteof finite subsets of I. Clearly

S = U,;cr8,, where S, =cTr( U, ,5.), and p3 = y S
JEI T € %9 i€J7i’" Pt JEIPf -

Now, by préposition 1.7.(iii), S; is equational for J € I*

thus, there is a single formula SJ in D(B) such that feu|5,

B

p,se’-

Let A be the éeb'af parameters octuring in the

formulas ©,, J € I*. A is clearly finite if I is finite and

@
z ‘

of cardinality at most cardI if I is infinite.. .
On the ather hand, f(pPA) [z p3. It easily follows

that, up to S,-equivalence, p is the unique, S;-minimal

extension of phA to B. B ) : '
w

Example. L = {3}, < a binary relation, S the set of

quantif1er—free-farmulas in L, K the Arcategnry Df llngarly*

ordered structures wlth embeddxngs for mQrphlsms\

z

s =c1Vifix > )»P. L

\) Clearly § is .not equational in K. .. oy

Let # € K. The set {(x > 3); a € H} determines a

-

.
. : .
} .- 5
A .
,
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Y . 4

unique (A—) complete type p over H.
- <
One easily checks that p is an SH—minimal extension of

' -

plA, for A < H, i¥f A is cofinal in H .
(i.e. Vb € H 3a € A (a 2 b)).
Thus, if H admits no- cofinal subsets of strictly less

-~

cardinality, then there is na sef A € H such that card(A) ¢

< card(H4) and p is an SH~minima1 extension of plr4A to _H.
* \
r

4

Section B: Irreducibility r

¢
e

}
'

Definition. Let A € K and ¥ a set L formulas in D(A) which
is closed under finite conjunctiong and disjunctions. Let »

be a type or just a single formula over A. We say p is &-
+

irreducible i+ far any Py195 in &,

(PIZ ®1Vey) = (p iz @40 OF P Ig 02);5

p is said 3-full if p is B-irreducible and for any o

A

in ¥, |

(Pl o =+ (pNERZF . — .

Example. Let K = F_(the category of fields), F € K and p a

’

type in x aver fF. Let # be the set of algebraic equations

‘

with coefficients in F. Then, with Qpix) the polynomiaL

-

over F




ke

I3
w

2 1

A

-

i

irredusible iff @_(x) is an irreducible polynomial in Flx];

-, p .
_ p is B full i¥ a;,
- . ¥ .
some rion—-zero element in F. .
AN . -~ ~ -~ ¢

y For A, &8, p as in definition 0 16t u
¥y

¥

1
4

-’
.

of smallest degree such that ﬁlf (Qp(x) =0), p is &-
~ P

complefe if for any @ in ¥, either g or g belongs to p.

<

1. Lemma. 4 and .¥ as in definition 0. Let p be a type in %

t

.
e® 7 ot .

N

aver A. Then p is B-irreducible iff there is a complete v

type g over A extehding p and sich that of x p% 1£f ther

is a !-complntn”typé q. over.A extending p and such that

1

i I

kY

i
.

is irreducible aqa (a.Qp(x) = 0) € p for

: N - “r ” -
Proof. Let'q, =p U p* U t7g; 9 € 3%, ¢ € po1.
1 . -

~

4

-~

v
»

q, is consistent in K iff for any formilas mo,"-imn_l

N
»

-3
in ?x, i{.@i ¢ p! (1 < m) Epén p U pijﬁ Yi(n”ﬁ' In other

words, since Pz »p

N e S ‘ -’ v €« .
formul as “ee in 5, if V. . thern . for
Do 1@1,_! v P fz 1(,.@1_‘ ‘ 4 fz P,

v A

P

v 9y is consistent in K iff for any
t

- 4

Y

~

s say that p is &

some i < n i.e. iff p is ¥-irreductible. _ P
- [ 3K 5 3 o ¢
Now, any complete (resp. i—complate) type q over A -
‘ i F_ & - |
extending p and such that g~ e mggt'extqu q,- On: the

L)

a

\
- ~
’
+
¥ y i
.

-

v

LI e W R PR AN

P 1 5 e it .

BNy, i, NS 3 AR AL A,
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4 ’r i ¥
: . L
r ¢ ' - s "
other hand, any complete (resp. §-compleote) tQpe‘q;aver'Aé
. ' £ _ % - s
extending q, ris suck that q§ %91 AP -,The claim has now ‘
™, S, - ‘o a
. i ;
became clear. B \)\5&' S ' .
" - LN

)’ Y

Note. gﬂith the nut’ai:ién of lemma 1 p is B~irreducible iff
p® is B-irreducible: since, % being closed under -

- <

disjunctions, for any @, m; in %, p|z-m1VW2 iff pifﬁ ‘0

.

¢1V@2- ) . /

- ’ ’

2. Definition. Biven a morphism f34—>B in KR and ©, a formula

in D(B), we say: . ’ ,g - -
. Ois S-:dnfinable if there is a formula @ in o% @) ;uch
that ; gFe r - «l
| 6 is f-definable if there is a formula v in D(A) such
"that Bié Tv; L I 1 ' Lo
R D ] , . : N
.. @is(s,f)-definable if © is S-definable ard 7- |
‘ rﬂ definible. ‘jk ‘ w -
If f is an inclusion ﬁﬁp, we say © is A*definisle.‘
(resp. (S,A)~definable) instead of © is f—g-f;n;blu (resp.
(S,f)-definable). g - \ U h 5
; ‘ P . +

4 . a
o

3. Lemma. If f1A—8 is in K, 4 is Sp-closed in B, S is

squational and p is a type aver A #han-pg is (s,ggf

< " definable. : T

s
& »

RN
«

=




- . . T

Proof. Let f, A and p satisfy the hypothesis of the lemma.

\i“, a1 By theorem A.13, p has, up tnﬂsf-eunQalence, finitely many
2 '1'\ : > '““ S i’ ;
N ; Sf~m1n1ma1 extensxons, Say Py aPpq1 and Py ¥ z(n(pz -

H N & Y

/ L By lemma A.S,'éince p; (i < n) is a complete type and A is
- S * - ’ "

‘ ' v Sf-closed in B, thére is a formula G& in D(A) such ~that

S

(p;)3 § 79.*Thus p3 § £(v,.,8,), which implies that pJ is

T «+ {§,f)—definable. A
M - " A ,.— - \___—_-ﬂ

~ ! . R ’ “
N

. 4. Dwfinition. Let f14A—>B be a morphism in K, p a type over
\ At /

15 - »
' (i) We say p is (S,f)-irreducible if fp is 8-irreducible
. o, for & the set of (5,7)-definable farmulas in D(B).

ttii) p is Sf-irrcduciblo (resp. S,—full) if fp is &~

LAY

s+ '~ irreducible (resp. E-full) for ¥ = D5(B).

‘!.,

If f is.an inclusion map, we say p is~($ A)-

-
¢

ANE o irreducible (resp. Sa—irrhducibln, Sa—full) inlt-nd of

. o * p is (S,7f)Vsirredacible (resp. Sf-irrlducibln, Sg-

.
P

full).. o o y

\

Note. With ;hqgﬁotations’abnve, p is Se—irreducible iff fp
E'; T .‘ A L
is (8§, 8)-frreducib1e.

tl.l

Also, P is S —1rreduc1blewa% p is (S, f)-irreducible) "

. -
2 Y "
"~ - 1
~ s
] Ay L
re . AL HY S &
S,
.
( ’ ‘~ - »
* ! . w
, IS e
[ W — “
.
- “

!

I o « .
SR o S E Ty bt Bt et To 4 g R a8
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Qi

A
NN 3
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>

S. Proposition. fiA—>B8 a morphism in R;xp a type over fr.
Al LM

(i) Assuming A is S,-closed in B and S is equational, p is -

v Y

(Syf)—irreducible i#f’p has, up Ep Sf—lguivnfnncn, a
‘ f T % 7:1 -
unique Sf—minimal extension g to A, and in fact ¢q is

such that qf g'pf, iff there is a c&mplnte type q over

. s S »
7 extendin with .
Q%P { s H Pr

(ii) p is Sf-irruqﬂcible iff p has, up tao Sf-cquivﬁllnéﬂ, a

A,

{: & - M ' T

unique Sg—minimal extension q to 7; and ¢ isfsuc?»that

.":‘ 17-5 ‘ .
qg -1 pg. If ;n addition p is Sf-full then;q is such -
';
s S Ay, 3

ttut ap g TP nob M?.f)' i "

Proof.‘ o .

A

. ’ , )
(i) Let & be the set of GS,fl—de$ingble formulas in D(R).
EA I
’ Suppose p is (S,f)-irreducible. By definition, it

. ¥ .
¢ # N

mead% that ¥p.is F-irreducible. Let’qo,---,qn__1 be”the

Sf—minimal extensions of g‘to 4;'by Fheorem A.13 we

.

3

it . K&
w

J
e

S s ; 5
have Pr § Vi<n(qi)f‘ Hénce fptE VE(n(qi)f‘ B* lemma 3

each éqi)g,iﬁ equivalent to a formula in %#; it follows

N -
P »

by i;irreddcibility that 7p g (qi)§ for some i < n.
I3 R ’

t

)

~ ‘Clearly then, qi

t »
N

is, up to Se,~equivalence, the unique

»

Sf—minimal extensionlgf p to A; and since (qi>§1§‘p§,‘

-

2

LT
i

T



<

.
<
Pl

"
2
:- A
< k]
4
-
¢
£,
« 4
A
)
.-
.
(ii)
.
¥
—
X
3
‘X
h (SN
< [
.
H
¥+
-
'
[
e
&
' ¢ ~
‘x .
, .
PR .

A -~ Y . - v owms 3 # e
c b .
.
4 4 “l." b ~,
+ - LA s
" <t
w . A A
. : ©o 3 §
. N " . k3
[} S S A e W
we have ({(q. o . : .
Ul B Pr- o ‘
Lh -t
A

Suppose p,has;ahﬁ'to Sf~eéﬁivalence, a unique Sf—

minimal extension q¢ to A then, by theorem A.l3,’p§ g

I

q%: Thus, there’is a gomplete type q¢ over A, q > p,
sych that p3 §¥¢§. . o

Finally%:éuppase there i a FcﬁﬁLete type q over ¥
- 1
: s _ .5 ‘ -
extending p such that Py B 9¢- ,
.o Z
If fpig mlvmz; wheré& 7 95 € F then quE PyVe,.

Py 9 being in &, fhey are equivalent to fo#mqlas

’

4 D(A; it follows by completeness that fq tgw; for i

i v ¥ p
A

= 1 or 2. N ,
5 < x .
Y

Py P be{ng in &, they are equivalent to formul as

. s s . s
in DY(B): hence, (fg) S Y - .. Therefore
. e » Talpig 9; 97 ig 9

*

PZ kg »;. We conclude that p is (3,f)-irreducible.

We hqye already'noted”above‘that pis Sf-irreducible

R
r

iff fp is (S,B)-irreducible i.e. iff fp is (S,idgz—

A s
irreducible. By (i) (applied to fp and idg) fp is

fp has a unique SB-minimal

oy
(5,idg)-irreducible“if+f
. ; O e \ , ‘
fp) 3,

extension of ¢ to B, and'q’fs such that qg 1
i.e. iff p has a unique Sp-minimal extensién to f, and
A ? N .

Vo

9 B Pr- . c . »

\
> Y ’ i

4

+ .

aa

Iy
- My

W
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bl

1O

. types over 7 such that (p5 g €, i < n.

v g b o .
:nfqué Sg—minimal exfénéiun q to ¥, and in fact:
. : - p
98 B Pf- - 3
I p is actually 'S,~full then p3 5 f(p N D5cAN);
2 so0 the SB—Aénimal e&t;nsion of p to ¥ ig such that qg

o

-

e noSa.m

N
“ 4

+
. ¥

»r

6. Proposition. Let f1A—>B be in K, # the set of (S,f)—
k‘v

definable formulas in D(B), p a type over . Assume S is

e

equational and A is S,-clased in B. Let eb,-¥-,eh_1 be -

~ .

1rrnddciq1n formulas in ¥ and lat Pory " sPpy be complete

~ " s . S
e Then, py,**"4Ppy aFe, Up to S,~equivalence (all) the
distifct S,~minimal extensions of p to A iff P53 § Vy(n©;
v ) T ' . ¥
; and ©; i ©; (i ' J).
)

”

J

. i : H
A 3

e Pro?§. ,By theorem A.13, if pgoy--",p,_4 aré the distinct S,—

-

PH3 i.e. o2

o}

.af p to A then p? 7 Vi

ngpxmal er?gnsznn; : i<n

_— . -

—_— o . RERN k2 ol
vi<n€&;‘ané of course, 'since (pi)§t§ (pj)g (I # j), we have

' L S *
5 : y

Vi<n61' ann!’ 61- pgej (i # j).

.el.pgejz (1 # j).

Conversely, supﬁpse p? g

—t

/
f

S}rminimal exgension of p to A; we have that /

[

"Let ¢q be an

-r /[
|

R

P




- ¥ b sen i e s Lo By ek €
hS , T G e R e e T e

- ew -

fqtg V}<;€&. Now ©;, being in %, is equivalent to a
tl, formula over fA; hence, fq gging complete over fA, fq]§vek

oy

for some i < n i.&. q? > (pi)f. It follows, by minimality;

that q? = (pi)ﬁ.‘
Thus, the Sg—minimal extensions of p to A are among

the p,’s (i < n). Suppose one of the bi's, say pgs is not

an %f—minimal extension of p; then, by proposition A.2

¥

#

there is an Sf—miniﬁal extension q:of p to A suchlthat

(po)$ > q?. By what preceded, there is i, 0 < i < n, such
" that ¢5 % (p.)5. We have then (p )2 > (p.)S i.e é“'— o
9r B Pity- W Pyl Pilf 1-8. S5l ©; -
- } S
\ 14 .

cNoti, Let f and ¥ be as in proposition 6; S equatianal and
A S;—clnsed in B. o ’ »

o - Biven © in ¥ there is v in D(A) such that © g fv.

£r e P ca T o fras

Thus, © is !—irreduéiblé iff w is (S,f)~irreducible iff (by

3}
proposition#5. (i)) there is a complete type p over 'f such T
| ¥
But © being S-definable 63 x ©.

S .5 . S
K that Py § Y5 B (fv)B B eg.

i

»m

We conclude that © is 3—irreducible iff there is a
complete type p over f such that p§ gie. So, in proposition
. B S
6 above, the existence of the types p; was already ensured-"

by the assumptions on 6&.%

5

R S

ooy " . b




. %

7. Definition. Let A € R, p a type over A.

(i) We say p is S-irreducible (resp. S—full) if p is Se—

irreducible (resp. Sf-full) for any morphism 7:1A—>8

in R such that P is consistent over ¥.

(ii) Let f:A—8 be a morphiiﬁg}n K such that p is over 7;
x .
S

P q a :ampl.f.'typp over B. We say qp is an sf—co.ponéﬁt

of p, or that qg is an $B—camponent of‘f in case f is

.
i ’ e e

s

Aan inclusion map, if qg > p?, qg is an Sg-minimal -

-

«

. axtension of p?( - (fp)g) tao B (see definition A.2) and

p U 3 is s-full.

~ e
- -

e * .
P ' -

e

Example. Let L‘= {Ri(x;t); i < wl}, A the set of all

“formulas in L ‘and 7 the theory such that, ¥ is a model of T

& A

if: L -

4. -

1. For any a € M, RO(H;a) = M.

K

2. For aden, jzi,

Rj(ﬁ;a) N Ri(H;b)/¢ g = Rj(H;a) CﬂRi(H;b).

3. For any a, b € #, j # i, R;(H;a) # R; (H3b).

-
P

A.”For any &, b,.c € M, if Ri+1(H;a) c Ri(H;c), Rj+1(ﬂ;b)
c Rj(n;c) and Rj+1(H;a) # Ri+1(ﬂ;b) then'
Ri(H;c) = Ri+1(H;a) U Ri+1(H;b).1

S. Far any a € #, j > i, there is b € M such that

- 112 -

o



R;(H3a) < R, (H3b). ’ LJ/}
) kN \ - -
Let K be the Acategory of models of T with embeddings
for morphisms; S = c1T (R (x;¢); I < D), §; = cl¥(R;).

Clearly S is not equatiunal,’while Rj and hence Si is

L]

equational for every I < « (for it follows from 2 that for .

any a, b in H, either .

R; (M3a) = R (M3b) or R,(M3a) N R, M3b) = @Y.

Let M be a structure in K in which -there is a sequence

Y

{a. i)ic¢e Such that p = {Rj(};ai); I € wl is consistent; let

w

-

p; = {Ri(X;ai)}'
Given f:#—N in K, we see.that p; is (S},

irreducible (;j > I) iff R;(N;fa;) cannot be written in N as

a disjunction of 2771 distinct R;-definable sets iff
, . . /'
R; (N;fa;) does not contain 277 distinct R;-definahle sets..

.
<
It follows that‘pi is n Sj—irreducible, for we can

always find a morﬁhism f:i—3N in K such that E&(N;fai)v

- ’

contains Zj“ifdistinct R;-definable sets.

;
p howevennis S—full; for if FIH—>N is a morphism in

K with” p'‘consistent over ¥, and a, b are elements in ¥ such

-

that P Iy R;(x33) VR, (x3b) for some i, J§ then either '(/%'
1

fp U IR, (x52)3 is consistent in K, in which case

~

.o . x . . s .
Rifx,fgj) N Rj(x,a), whence f(p N D (ﬁ))lﬁ Rjix,a), or

LY

S



[

A

i ~ -
- 'rr
] " / . *
Tp U R;(x3b) is consistent’ ifi which tase ‘ —et”
s , - . . < »
fp N D (H))lﬁ Ri(x;b). - =

1 ’ hY

~ . »~

+3
x ~

- ’
© ».Now, one can check that pﬁ{js an S"-minimal extension
-~ P ]

» =

of p; ta M if for.any j > i, R;(M3a;) contains 247 R~

e s
»

.o . L) . - .
definable subsets, and in that case pg is an S”—compunent
; L. . .
of p.. ' - O A .
AGaadit 4 ‘\1
iy
- Mt
] ) A
{Rpmarks{ . v -

-

r

a) In definition 7.(ii) above, we can assume without loss =

oy

. ~

of generality” that g extends p. For-we know (by lemma
. e lb

!

- :
* *

SB—qused in B)-that»dg is an SB—minimal extension of P¥
‘ . A ’* v

- g P . - - v

to f iff } is Sg—equivalent to an_SB—@}nimal‘ExtqpsiDn

d ¢

v

k4 g s )
of p-to ¥. ‘ \ “

. -
i ’
’ . ra

[

b) If f:A+~—B is in K and g-is a type-over f which is S.—
PR ;- T . g

to
\

full, it is eaéy to Ewténd p to a complete type q over ¥

Y ) “ (S - -
such that ¢ is Sg—full _and qi‘g pff indeéd, ta ta be
< - ' ’ yd ' ) .

. 'an'Sf—minimal extensidn of p to A;'by,ﬁ}opnsitiun S/(i)

- ' - S — S h ‘ & \k : ’
g is'such that 9 § Pf- . \ . -

’

However, unless K has the amalgamation property and.

Sy - s
K-is A-elementary, if p’is a type over A which is S—- -

- i L .
full, it does not necessarily follow that p can be

¢ f - Sow

e,

T

. ’ ‘ v
A.10 applied to fp and ¢ as types over B, and since B is

bl
v
.

L]

o

. -

LA v

o

e

—E
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A
@

. e
-
~ P
*

- m

b s ey & e e

N s

° ~o

2

e R e

-

oty e Db RS 8 S TR,
e 4 ‘

v

extended to a complete tybe q aover A such that g is(%—

full and qi Pg'

This explains why in definition 7. (ii)

we only requést fp U qg to be S—full.

‘

In case K has the A.P.,

K is Arelemenféry and‘p’is

an S5—full type over A. We let % be the set of formulas ©

in D(A) for whfth there is a morphism g: A—3C in K and,

- »
a formula @ in D(C} such that gBtr ¢ and gp]# Q.

~ -

Let g5 = p U {9; © € ¥3.'

r

Claim. 93 is consistent in K over A. For suppose P

\3<n6&;

e& € %® (I < n).

betong———écj be morﬁhisms and

¢; be formulas in D(C;) such that 'gel. F- @; and .

g;P @{— ®; (i <m.

By A.P. we can find morphisms d;:C;~—>D ‘such that

<]

d;*g; =d;-g; (i, i < n). It follows that

2

o
>

e >

e

Therefare, by S—1rreduc1b111ty, d. 91
some i < nj- hence, by &-reflection (c.f. On2) 4 glp|z—-miv

X. (Note that we have used all..along the fact (é.f.lg§4)

is consistent aover f).

Now, let ¢ be a complete typenover Aﬁextendingaéo.

it i5 easy to see that ¢ is S—full and that in fact, for -

v d.-giprﬁ

any morphism g: A—>C,

S

Vi<n9i "9i9; "5

-’

that if r is a type over H and f:H—>F .is in K then r

That proves the elaim.

N
B

L(ndzwl

iy d;9; Fbr -

.

-

A

T otet

w

)

PR ATRES T S

=
E
7
b
z
5
e
A
&
3
¥
3
4
.
b
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97 7 P ¥ flp N DA,

“f -
. 3 o
o z

Sa, if K has the A.P. and K is A-elementary, we can

e

\

5 ’ ) ’ take the following as a definition of Sf—cumponents=

given f:A——>8, p a type over ¥ and q a complete type

,1.‘ ov¢r 8, we say ¢ is an Sf—cnmponent of p if q is an SB—
v -

minimal extension of p to ¥ which is S—full.

¢

I

€) With the notations of 7.(ii), if ¢ i&.an So—companent

of p then for any morphism g:B—i;é% stich that fp U qg is

- oo
v

Wyt

consistent over ¢ weThave

= 8,8 5, - - ¢
(f U ) ~r ( )- —
. P g g C 79 y
Indeed, siﬁce fp U qg is S~full, -
5,5 %Sy A°pS (a5 e ~ .
(fp U qB)g z ggffR%}TQB)“QLD (B)1; “

e S
- RN

but (fp U g3 T oS5d = (rp N 058 U qf = ¢

{since fp N DS(B) < p? C qg); we conclude, -,
%
¥ .
o 5,5 . S
(Fp U qB)g T 9¢p)-

In particular (fp U qg)g = qg.

3
1

N

- 9. Propulitibn. Givan morphisms *i1A—>8 and g:B—JfQC in R, P

a type over ¢g-f, Py & complnfé typ;uaver g cxtcpginq p, and
. Po & complete type over C such that, (pl)g is an Sf—

=

KN
L

A
-

gk




, v ]
' . - , o
Q ) - ;
B i
. ] - g t . . i
component of p and (pz)c is an Sc-mtnimal extension of i
(Pi)g {or equivalently (see the proof) P is an Sc-miniﬁal f
. U N s _ <
extension of fp U (91)8) to g then (pzxc is an sg,f , %
. N ' i
caoamponent of p. : o . ’ E L
Proof. Suppose p, Py, p, satisfy the hypothesis of ‘the ) é
, s S "
proposition. ' , ‘ . . ) 3
Note first that by remark 8,c), ' \ H
. (fo U (0395 ~ gfp 3] ?
1°B'g T 9t'P1’8 . :
' H
. Ed
’ . S,.8 -, S 3 :
.. [gl(fp U ( ) I~ ( ; :
( i.e. [g(fp pl)B ]G E.QE pl)B]’ . ¢ . %
so (p)> is an S.-minimal extension of [g(fp U (p))13 to i
2’c ¢ noor tette M 2Py’p'c ¢}
C; by lemma A.10 (since ¢ is So—closed in'C) it follaws }
that p, is Sp-equivalent tu’an chhin;ﬁél‘extenkion of 1 §
fp U\(pl)g to g. , . C -
Therefore, without loss of genérality,'we can assume
P is an Sé—minimal extension of ;:l’p“Uq (pl)g’ td’lxg'; ;
By proposition 3.(ii), since 7p We(p}D§ is S—full, we . 1
must have C ‘}, L : o D P . si
¢ e +
s oL ’S“)S e 8 Ve {
(pYA = (Fp U (p,) ~agl(p,) o’
P2)r E ' p Y tpy B 9 7C. 9‘[ P‘l }?] i
It follows: ' i s 3.é  , 3 R ,f ff
O I 4p2)'§ > pg.f;isince' . I N R Lo T
. | L J / ; ;
S . ceni k) 8,8M™ S-, i
. t(pz)‘c C (fp U .(pd)'g)g 3,(fp)‘g. . 3




.
! ¢ [

-~

* 2. g-fp &’(Pi)g'is S—full: since ’ I
X ﬂ 4

'g+fp U (pzfg‘g g fp Uglip P21 7 glfp U (p 7] A
. *, S . 1‘
> and Tp U (py)n is S-full. v - -

k4

3. pz)g is an Sc—minimal extensi?q of pg;f= for supposé

. /j?yz)g > fq2)g’ G a tomplex? type over C such that (qz)g

l“'\/ ]
g > p5 _; since (py)3 x gLip,)37 we get ()3 > ()3 > p3
g-f’ 2'¢c © 1’8 1’z 1'z.> Pr

N
where g, = q,lgp but (pi)g is an Sg—minimal extension of

'pg to f; hence (pl)g B (ql)g, and (pz)g o (qz)g‘
4, de
> 9[$94>§]; since (pz)g in an Sp-minimal egtensipn of

i

TR B (oS = s .
e (pydg, we infer that pz)c = (qz)c. o

‘We conclude from 1,2 and 3 that (py)3 is an Sg.f

component of p. R v
, 1.4

~

- +

10. Theorem. Let # € K, p a type in ¥ aver H. Suppose S is

Qquational, K reflects $§ and K satisfies one bi the

. following conditions:

-~

a); § is the closure under finite disjunctions of a set §,

¥

which has finite’ height; say height (§,). < n.

0
W v - »

\ b) K'is w-conservative (see chapter I before lemma 5 for a

«

3

definition of w-conservativaness). g

L
’

_ ‘ » ¢ ¢ 2
* Then, there is a morphiam F3H—>F in such that p is

A




- “ - Rl - rﬁ-vrm. Lave DL O - R
- Aj .
~ ;%‘
A HEEEN - :
? . 5 - - ) . ¢
consistent over 7 and, for any Sg-minimal extension ¢ of p 5
o / 5 ) 4
’ to fy q° is an S,-component of ) ' .
o - L v F 3 f p_9 p' —— «\ 4{‘/
» : o 3 ﬁ
- y - x ~ o .
‘- > Prco-F: Assume S i's equational and K reflects S. Far q a ;
’ [ ‘ ¥ IS ?3_
,\* typg over G ( € K) let *q denote the following assertion, E
- e = RS - o . Lg
. *q: "there is a morphism g:G—3€ in K- such that-g is X4
Y . ‘Consi stent /over g apd, for any SE—@inimal extension r of ¢ ;
” " to 7w, rg is“an Sg'-i‘cnmponent of q". R
i L & . §
’ * - SP - ’ 4
hl ‘ . AL , 3 ;‘?
. - . Claim 1. With g:6—E %nd q a type over g, let Y R T .
“ be, up tu'*~"S£—eﬁiv:alence, the,SE-—minimal extensions of q to
A o
ot Y ‘f
g, (by theorem-A.13 applied to gq, there are finitely many }
’ r T e _— S,
such extensions). Let*ri =gq U (qi)g (i < n). Then, if *q .
does not hold, there is a morphism esE—D'in K and 1 < n :
. - . i : ” L
such t;ut\r = e(r;) i consistent in K and % ’does not ;
| - . . . L.
hold. . : . .
- %
Proof of/claim 1. Suppose the assertion of the claim is i
_4a\lse./we cor'istruct by ‘induction on i < n.a sequence of e 5
morphisms e :£,——E,,, (. < n), Eg = £, such that: |
’" i 7 o e ;
I f; = e;ce;  vmeq (i < n)Jf_, =idg, and r’ is an :
Sg .~minimal extension of f,_,r. to e, (i < n) then :
- i I = i T -
\\ N CEN : ,: . :
’ (")gj,, is an Sfel—component of fi—l'i? -
! Lo ) ; {
R £ :
I , §
. - 1179 -
b I ;

T
*
v
I Il WD i R Ao

v
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8

, TR .
v . -

' J a . - R
' ¢ Ce e wer o . s - ag f4 e e AT

" and furthermore, q is consistent over T;9 U < m).

\ S Suppose the construction achieved up to i — 1 (i < n);

let r =F._,r..
i—1%i —

1f r is consistent then, by assumption *r must hold;

RS

i.e. there is a morphism d:Ei—-)D such that r is

' #
consistent over d and, for any SD—minimal extension r’ of r

to 4, (r’)g is an S,d—compcment of r. in that case take e;

= d. Since r is consistent over d = e; and r = 7, _r,
R .
= fi—l ~gq we see that ¢ i's consistent over e; -1’1-_1 ‘g i.e.

v

’ - S—
over f.-g.

If r is inconsistent take e; = idE‘, then ¢ is

consistent aover fj ‘¢ = T;_,°9 by the inducfion hypothesis.
o, Wl ‘ ' .
v This finishes the inductive step of the construction.

' Maow, let ¥ = fo 195 T:6—E . q is consistent over ¥.

Let p, be an SE.—minimal extension of q to f; li‘e;(:‘

i

Py =p M U <u' n) where hz‘ = e, 1 €pp "€ P; is a type

. aver Ei extending ¢.

Vs

By proposition A.2 there is i < n such that W

(po)go > fqi)go, whence. P 2 r;- It follows that Py

I 3
‘1

o f. . AN
fz—-lrx ~

Again, | by proposit'iém ‘A.2 therse is an SE“’-mihimal o : s
“' \ ’

. s
extension r’: of fi;f:—l’i to e; such that (p; ) o

> (r’)gm; by the cl;vfﬁice of the sequence (e;);.. , we have :

”

- Y

i
N

- 120 — ‘ :
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N

™ s

- “= e P e e e a e :‘ by MR ,-:w' et e ¥ RASERR "> TL Wmﬁw
v T - o ',', A
i ’ rA o 7 "
‘ 4 ” '
. -, [
(+) (rHs i i . . T
Vg, 18 an ?e. component of ¥, _,r.. \

-
B a
A

' : - , PO ¢ -
On the other hand, since p, is an 5 ~minimal

extension of ¢ td ¥ and

-~

, .:{ i , S ) - “a
\Pp 2 hygyfiry U rfig 1 2 fa,
R AP : s
(++) P, is an S’E.—mlmmal extensr_‘op‘ D-F firz' U (r )Em to
hiars , o .
' - ’ J ’ r
Sinde fr; U (r/)F  is S—full it follows that -
(pn)g = hﬂfi[(r'.)gm]; by reflection we deduce that
{(p. )s'~ -4 (r")S S0 we can assume r’ = .
i+1"Ey Era Ein® Piv1--

[Sa

By (+), (++), and proposition 9 (appliéd to p = our

f; qrjs Py =our p.. . and p, = our p;) it follows that p,

< R
is an 'Sh‘—cdmpongnt %‘nf f;_qr;- In particular .

Byfygrg U (p,)E. is S—Full. o

s D Sl’
fn--l (g? u (qi)E_) ‘an'(d 'fn-—'l”qi)E) .

W

! 2 : , v :
c (pn)s - So we actually have that fq U.(pn)g is S—full.
‘ *
We deduce that (P ’E is an Sf—compoqent 0~F q.

t v

We have shown that the morphism f:6-——E, is such that

q is consistent over ¥ and, for any SE -minimal extension

p, of q to f, (pn)g is an S.-component of q. In other

»

words % _ holds. X.

q

& .

This ends the proof of claim 1. o o

' %
.,a;q . 3

-~ J- . ! , -

- 1’21 - - ‘ . ¥

. .

W

e B e

3 s

X o R

Gk B BT e T B

e
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- Crlaim 2.

then there is a morphism g:= G-:——)E such that q is. ccms:stent

,over g and -Fnr any. comple.te extenslon r nf aq to E,

v S ¢ .
. rE e g(q nosw)) and g(qnq (6)) 'Z"E'
e, L 2l ‘V‘_ a ' ‘_}; . B ;\;vl:‘; .- . N
Proof a+¥- claim 2. Suppuse q is not S-Eull- then theére is a

‘o~

“x .
- AEY "
B . Sy
.29 e
\ . .
'
hd N
- & -,
. R K
- veg L
\4\

(2

morphzsm e G———-—-—)E such that q is cohszstent ‘over, el and q is

>

not.Sg-full. In other terms, there are formulas ‘Pi and ®s

J

-

Tod

L 9T wyves, 9l ND36)) 1f @y and gq N D56 g,

®

L Now, if r'iis a complete type over £ e:%tend'ing ¢ then

in DS(E) such that

i

RN
)

.

>

-

vt

If q is ‘a tyge aver G ( € K) abd q, 15)not S—-full,

1o s
. . el
2 ' ° S
A M .
N e § MRS T B
)
N
Uy 4

“

v

¥

IS |

" ~ G

A% v I

\ 4y

3

4

|-E- q:1ch2, henc:e, by compl eteness, e1ther r l‘g ¢y or r @2.
sty . 3
In any ‘case,\ we have L : - ) '“
o T - A TR :
"t ritEp gta ND°(G)3 and gta.n sz(s)xpgrg. Lo ]
) oy Y Ta - | )
. Thus g satisfies our conditions. - . A
- P ' i ., ! S . K o ot ~
' = . - > L. i
’ : R ¥ e "
" Claim 3. Suppose p is a: type over H such 'that *P‘ does not . ok
by ! ; ' r
.,;r ™~ ' ~ 3 Lt
hold. Then there is a sequence of morphisms ves t MEART .
. “ - ', . . i -
(fg'+1=ﬂi"—r_)Hi+1)~;<u" p o
A - 4 LA
Ho = H fo = 1dn , and a sequence of tyrges (pz i<w? Pop = P
such that- N * \ : T
1 " ~ .' 4 - S - . R i en B
Jpl is a type over H, such that . does not {1013 and, .
W . - . “ "
if 5 = c1tis) ftﬁ SO | “ ‘
i = 51 s .then - - - ", .o
' - o , ‘u - “. § w » .
K nn (H Jl-——-'f (p~N DH.)) and . ° b
l+1 ' 1+I ') * pi‘ . . i T u
- . - . ’ ‘\’_. ~ ‘ . . -
. - q v A . ‘
. ’.1. N <@ A ‘ * R
Jl - 122 - < : . ‘f‘s
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Prfaof of claim 3. We construct (F ). .

'

’

and (p by

I 1<w
4

induction on i < w.

Iy

S{uppd}se the construction of (fz') and
g . .

. ‘
L ' 1

.

‘ (pzf) 'Qith ‘ritsirequired properties achieved up to i < w.

~ v -

L
S
,

,

Bince *

m'does not hold, p; is not S—full.
v IS

4

.

by claim 2, there is a morphism g:H,—>F such that p; is

Therefore,

-
N 5

*

- 1

con&istent over ¢ and for any complete extension q of Pg to

&

-~ «

~ [

o
s

5 498 g g(p; N D5 (H)) and gp, 0 D) B g

~
. ’

’ -

-By ¢laim 1, thére\is‘t‘an SE—m'inimél'.;extensioﬁ q; i_:fw‘pi

N

¢

'..tn q and a marphism e:E—3D such “that,

e

—

for r

K
b

- 5
v
K
s

r 15 conszste

.,

Z.gp. U (qx)SC%nd r

¥
nt -

%

e(ri ):.,'

5 o
K

o iy ¥

<5

4

dqes no)t . hol‘d .

<

P

10 -‘%9'9 and p; .y =r." Suppbse S’

v

: ) = &1 ('31)‘

*
2

e
.

Bihce r. ext‘endspx to e~ q,

(%

4

‘

o ks .
5 g w "

r 0 DS’(D) r—ke 'g.(pz 'n,os'w 1y,

: .

On the nther‘ hand, P ,

- v

e-gtp, MBS W g r 0 DSHDY
- Y - Y hid ~
N 4o 3 ¢

}
not, then, s

eegips (1 DSUCH. Y § A 051 D) fm (g .3
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.ergtp; ND%CH)) |5 ettq)3)s by reflection; it follows

gtp; N O°(H 1) 1z (q,)7 which contradicts the choice of the

marphism g.

Thus,\ P and 1"“_1 as chosen satisfy the required
L

, conditions

N
¥

\

i
Proaf of thé theorem. Suppose condition a) (resp. condition

b)) holds whi le #, does not hold. We want to show a

-
-

contradiction.

Consider the sequences '(fi)if.so and (p;) ;. .,

A

constructed in claim 3, up to n+ 1 (resp. up to w),

-
4

-

v (recall height(S;) < h). _ : v

P b
- . -
.

P Let 6 € K and-let 91‘”1""'“:96 be morphisms in K such

Y

S

kthat g;‘_;;q '9’1-_,_1 =9 for i < n + 1 (resp. for I £e w) s tiakF

e . y ( o 2
. for instance 6\ = ':'n-t-‘,? Vand g; = f!?:’:l--‘--fj (resp. ¢ and *tt!e

- -
~

.t L vy oo ! Y - % -
- v - - ! &‘ » ’ L i

morphisms gf are given by y—-cone;,ervauveness) -
. v “ . :

e A g
=, - - Y . I A
" 1 1 >
We have, t . —
. R . o« v
N d " > PN
2

’ Yoo - : s .
N . . l"’ gi+1(Pj+1 no I.(Hi'l‘l)) '@' 91 (Pl- M DS‘ (Hl-“')-)~,— LT
ST and (by reflecti\o‘n) ’ ‘ ‘ - “
.. (o, N 0% .1 ( N DSuH. )
. 9; Py iVVIE 9141 i+l

for i <'h + 1 (resp. 1 < w).

The implications .above imply that S, (c.f. I.7.(i))

has height, greater or equal to» (reép, ‘taki;-ng 8§ =584, 8.is
f A o Ve A - N

- [
3
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_:i,
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\‘
not equational) ®. . - - \
. ES J
' . We conclude that #, must hold, which is what we
wanted. W ' ,/ . T

o
-

: Let f:A——F be in K .am:lL p a type over ¥ such that .for

>

~any SF—minimal extension q of p to 7, qg is_han Sf-companent

£ .
of p. The proposition below investigates in what measure

are the S\f-—componerits of p intre\sical(ly defir\ed:

&

o
¢ . K

' I

.11, Proposition. Let 71A—>F be in R, p a type over 4 such
that for any SF—minimal extension ¢ of p to T, qg is .n's,—

compon-ntldf p.”’ ';'h-n. given g:A—>G in K, p,, a complete
typc\o;mr G dxi;nnding p such that (pl)g is an Sg—cnmponcnt

M

of p and, given clafHE -and e5:G—>E such that e :7MA

= e¢x-glA and py is consistent over e,, there is an Sp-

“minimal extension q of p to 7 such that e, (qg) F 02((91)2).
-

Proof. (Recall that if ~.74~=)-(A,H) y then the morphism

Py

f:)}——;-?F is formally defined as a morphism f:H—>F and

“

' similarly for. gsA—G, so that the equality e, -fMA

= e’z-gl‘A‘is strictly' weaker than the equality e, f = €5°gq).

~ *

v« L Let fy G, €44+, &9y p and p, satisfy the hypotl';e's.is of the

T o N
‘ N
- - I

; pr'op“usiti’ém. Since (pl)g is an Sg—companent of p,

y

. AL e A

RN

PP

SNtk AL & AR e ki e S




12.

ap U‘(pl)g is §-full; hence, by proposition A.5. (ii)
applied to es(gp U (pl)g), gp U (py) s has an SE—minimal
extension po to e such that
s _ s s - S
(pE)E S e2[(gp U (pylg) 0D G ] g ez((pl)G).

By proposition 2, (pz)g is an Sei‘.g-—&omponent of p; in
S

F is an SE-minimal extension of ps to

particular, (p2 ez g

€5°g. Si‘nce- Po extends p, Po is actualiy an SE—-minimal
extension of p to €n°g Or equivalently, to el-f. By

proposition A.2 there is an SF—minimal extension q of p to
. »

f such that (pzhe1)§ > qg\ S0 we have

Py 2 el'(fp V) ‘-7?) > el"fp.

- L4

It easily follows that Po is an SE-minicpal extensiaon of
e L

fp U qf- to e, - But qf. is an Sf—'c'dmpoqent of .p3; hence

fp U-q2 is S—full; hence, by proposition S.(ii) fp U q7

has, up to SE-equivalence, a uniqgue SE—m“inimal extension ¢’

2

S, s
to €y and (q )E E el(qF).

sfhus,‘ (pz)g F (q‘ﬂ)g F el(qg).

~ S, 5
We conclude, e2((p1)6) E e"1 (qF). ]

: ~

Definition. M € K.% We say H is S—irreducible iH’ evary

.complete type over H is S-irreducible;

o




R L R T i o SR L

. R N T R R L L g I it
L]
. L.
. R "

H is S-full if for eavery complete type p over H’gnd_ [,

: subset p, of p, pn U p> is S—full. : .
0 o Yoy u

-»

N

“.\1»" R
In particular if #H is S-full then every complete typé-

v over H is S—full. We have an immec{iate converse in case?‘l(

b

reflects 4,

[
-

r PO

Is;

13. Lemma. If K reflaects A then H is S—-full iff u\mfy complete
o N L. 4

A *

type over ' H is S—full. - .

. < . ;,n_ —
) Proof. One direction has already been proved.
. . “ .

Suppose every complete type over H is é—full. Let p be

a complete typehbver H, po'c p and f:H——>F an arbitrary ~ »

morphism in K. Since K reflects &y, p is~consistent over ¥

(c.f. 1.4), Sirce p i§¥Sf—fu11, we easily deduce that

. »~ : ; g B ’ '
- ' Po U pg is Sf—full. Thus po' U pg is Sf;--f‘,ul‘l rfgr ‘any -
morphism f:H—F i.e. Y ' Co .
. ‘ " . '.‘ r
_ S 1 e i1 - :
“ P to U pH is & "Fuil‘- . ‘ : L -
, LY e ) ﬁ
We conclude that # is S—full. ®m .V >
LN A * \‘, S A —
. < L L :

. ¥
. ; ‘
Example. In K = F (the category of fields with field,
embeddings, c.f. 0.4.(i)) with § the set,of alg&ﬁraic
' P
equations, A the set of guantifier-free formulas, any

~

algebraically-closed field H is S—fuyll: for if p is a . .

camplete type over H, H © F and Py ;‘ P are algebrai,g;

& N \

- - v
. 3
( R . . )
A , - * <
.
.

g

<
i T g o




14 Properties of S—-Fullv,‘structures;’ H € K.~
4 s

»

equations with coefficients ‘in F such that p l-,;- Py VP, then

4 pg rfr'(plvq‘;zvvi{nviq'where \viatére algebraic equations with :

-~

. &
coefficients in H and v, € p. Now /\pg defines an

irreducible var:i ety in 4, hence /\pﬁ defines an irreducible

¥ ,

var1ety in F. It follows that pﬁr— cp ~Fnr i =1o0or 2 (since

pgl;é v; for any i < n).M

W

f
1

If fact we will see in chapter III that there is in ‘e
general a sfrong relation between S-full structures and

- existentially—closed structures. For _instance if K is the
\.. 1] L% A}

categury Df models of a h(rst-nrder- theory wi th elementary
o \_

embeddi’ngs far mor'ph1sms then any 5tructure in Kis S-—full

i

(c.f. 11I.3)
A >

(i) If H# is S—-irreducil:]le ,(respn.' S~full?) then for any

morphism fiH—>F and cumpléte.-type pover f, p hasy
! up ta*SF—eq;.livalem:eés, a unique SF—miniméi extension 'q
# ’ . ¢
4to f; moreaver q is such that .
, R T
Qg F p§ (resp.' q? &~ f(ps) g.'ps)

(ii) I+f H 15 S$—full then far any morphxsm fe H——)F, His Sf—

- 2 WA

Xy
S - y -
N

closed in F. e - V % ) -
\ ‘ ! ’ll.

(111) ‘If H is S—full p is a type over H and q is an SH

. Ty
o
! s oy

* 4 !
N . ~ N
“ -"128 - G
v K
i P

X
-
~1

s
v ¥
vy, .- i, vt . PRI - P o e 0t SRR S AT b aRRES
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thereis a structure H_ in K and marphisms g, : H—>H, (i < @) such

[

o

.
a7

. M B
SO — et s b s o o o R M i o
. )
" F “
a

) |
.. minimal exténsion of p to H then q}; .is an S,-component -

of p. ’

a

e [ ~ -

Proo#f. -

(i) Follows immediately frod proposition 5 and the fact

that any complete type over H is S-—irredui:ible' (resp.,

- °

S-full). . -
i ) - < - ) . -
(ii) From (i) we have that for any mdrphism f:H——>F and. P
- =] ";; —;\-‘.‘-‘_
. any“complete type p over f, - ) Q., f < e , f\
'.5: F f(pfi)‘ < f(D(H)). The claim now follows from lemma
. * ) v ’ ’ - &
. A.S ) R .
(iii) Immediate. M - T
: ) .

Let us say K is inductive if-¥or any sequence of

morphiéms‘: (fij=Hi__9”j)f<j§§w in K (a an ordinal) with ﬁu-ﬁj =%

! <

that g 'fij= g; (iéfr;’j Ca) and  (H 1 = iq“gi(lii); we

i

write .

(Hy, g;5 i < a{) = colim(H;, fz:’.; i< «. -
({Inductiveness 'is just the analogue of closure under
v * .
unions of chains). | ‘ . . v
l (24

.. 7 The theorem below proves the existence of ' S-full

i

-

. . 5
structures under general assumptions.

-~

L - 129 -
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-
~
¢ -

<

a v s
e

15. Theorem. Assume S is eguational, K reflects S and- K is

o
~ .

A} ia . o
( a " inductive. Then, given Hy € K, there is.a morphism

fiHy—>H such that H is S—full. . -

" ’
- o

Proof. We construct by induction a sequence T

(hj;;Hj_—')Hi+1)i<w such that for any t‘xns P; OVE"_‘_?hi- and

e i s - .-
SHM :‘1n1mal extension g of -p tp h;, qy,.,-1s anr"shl S .

-

compcfnent of p (I < w).
] p

Suppose for a_ moment the canﬁ)t_::_’ug_!:ipn done. Let then ..
. (Hy g;5 £ < w) =colimH, . hppi <)o .
. 4 -
e . . ' i

e ve

. e ) .
\ .  Claim. # is S—full. | - « S

) ‘ Indeed; given a complete type p over H and py € P, 3

St

Po U pj is S—fulls $&r let f:H—>F be i K, @, @5 in = ]
- ' 05 (F), such that flps U pS) = @,w ‘and po U pS is ‘
. Py QPH F 91Veo ane Pq Py . .
. AN
consistent over f. - .
- = \ L2 2N 3w o
g v G o T -
. Since § is equationpal, QH,L; etjui valent to a single-

- - ypy . -
- -~ Wy
RS -

- formula in ﬂS(H)‘; s0 there-is a..finite subset g of Po u pg

.
L]

- ' such that qg 7 pf, and fq IF ®1Voo; moreover, since H
j\w

= Ujcu9; H;), there is i < w' such that ¢ = qig; (H;) ane\

-

S . s = - ar e g
H N D%g ) Tt q; = qrg; G <-ér.

We have ' ~ T
b/ - s s s " s >
: ;0@ 7 W F 9%, F9+1 9ia0R,08

- .
1o
h ’
. > v
.- : -
. . - . s - o
R -

- -~ 130 -




[
e

?

‘hencg ‘%*—1’3,., is an Shl-companent of qi which in

since hif‘j U (qi+1)H,.. ‘15 S—full, it follows that —
] S b 3 .
,f'gi*l((qi-&l)ﬁ,’, ) IF ?; for Jj = 1 or 2. l-!egqe- f(qH)‘lpr ?;

for j =1 or 2 i.e. f‘(pg) IF P, for. j = 11or 2 which is what

s . L

! 4 - . g L o hta e e b

eviony A T G e FRTIBRS ity T AT iy o Gn b oy g R e YRR R W TN Feve e, #seredops wysetrgini At ﬁ« LR o
d . -

7

. ) N ;
by reflection it follaws that T 4
o T
3|
s _ s, . s
(qi)h: Hiu by ((QI)H:) H:_u (qi"'l)Hu:'

. s . B

" Thus, 4;,, is an S, -minimal extension of g¢; %6 h;;

L)

L
particular implies that hiq; U (q;,.9)5 is S—full. e

i .
Noaw f /./ - .

¢ =

. s .
C Ty thidy U G000 IF T E @ Vag;,

k%ﬁm‘ﬂ%&‘" SR

'

L)

a i

o
v ¢

we wanted. . N ¢ ) o,

—~~a

el 1 ¢
s

Construction of (h‘f)'f <y SuPpose the construction achieved . -
up to i ~ 1 < w, (h, = idy o H_y = Hp). Let (p) o
enumerate the \t‘ype‘s' aover Hz" We cnnétrucj:, by induction on

t

a £ A, the sequences

FatF o F gti)aca and (d,:F, ——-)F )p<«<35“‘:h t‘jhat;

-~ Fg =H;, dg = idm' an_d%-dxp=% y = iy - - EE 5

It -

- For « limit, o

(F_, d dpy 3B<TS @) . _ -

« p < a) = ca11m(F

P«’. P’
- 1f qupa is incbnsistent in K over FQ, fq~= idF‘

-



Loed o . 11 * “ . .
nISS IR w o, o s woaer %t . R L R I R AR e At "N‘;’fc Y R T e
’ ° . et

t ‘ «
. B a

i . v \q ‘ , R Vo .
1 N . .
1 - - L. .
. - v ’ - n °
.‘1( [ R . ,‘ .
- L~ I+ a.fapa 1skcunsx.5tent in K aver F_, f_ is §uch that GaPax . .
) is"consistent over f_ and for-any SF: ﬂ'—miniﬁal extension 4
- L3

s - s

q\gf %p“ ta fQ, qf..ﬂ is an Sf.—componente od g.p,. !

a S

- =
LA

f“ is given by theorem 8.

Let (H;,,, €55 @ < A) = culi/r‘n(Fq, 'dﬂc; p<x< A3 h; = eq-

We have to shaw that hx””z’_—aﬁi+1 satisfy the required
property of the sequence (hi’i ¢ w° S0 let p be a type ovér
&

say p = p, (@ < A), and let g be an SHM-'minim‘alt

by

. extension of p to h;.
. - . ‘
Let Ay = ql‘*ea (recall é_ :F —H; . 4).

By proposition A.2, there is an Sg,,,~minimal

extension r of‘gdpa to 7, (f«=F“-——->F“+1) such that

'—"J 1 ®
 t@geq)i., > rf_. Clearly then, qis an Sy -minimal u
f extension of %_,_1;9“ u r'sM to e .-
r

©

On the other hand, by construction, r?m is an Sg -

. . . ‘ S
. component of ¢ .p 5 in partl«:‘}{lardc“*_lp“ Urg

is S—full.

avl
* °/ Whence, by propasition A.S5.(ii),

s’ s .8 - s
MHyer Henr ea+1[(‘§c+19a U rF.u)F-n] Hiyy eu_'_l[rr.“].

By reflection, we deduce,
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K]

N

0.

A

s .
Qar1’F,,, For "Fuu
‘t"‘

_ ! J 4 . . - N
= Quet and th%refqre r is consistent avef“éa+1.

component of qcpa; hence qﬁh‘ is an SH;fbmponent of '
4Py i:-2. Of p;‘= p; which is wpat we wanted. B *‘;
N L ; L ot “
; 3

o’ e =) X3
o o g e SR AR R
4

" s e v e Sl B wp e e
7 .
, o

1

Yt o o N

' , ; / o
5 So, wé“might as well assume r

L

’

By prop051t19n 9 it follaws that qéf 'is an Se-

i 3 - -
R A e e B A e e SR RS 1S T e vt A <t

Section C: The Abstract Context

P .
. el
f = v

~

As we observed in the introduction to thﬂs chapter,

L e A e S

.
the general theary of sect1ans A and B goes thraugh in a ’
very general abstract cogt;xt that has noth1ng to da with . 4
either structures or formulas. ; . \[ - .;

¥ i
ﬁ 2 d : ,yi =
The abstract context can be described as follohé; . §?’ “ ;:’?

We have &, an abstract chtegory (@ will ;tand“fai a '’ .
catfgory Df/L—strquu;es in‘éhe case‘we are really‘d )
interested in); ‘;_ : . o ]

two functors / , X

D:0——> Boole ( = ”cétegory'o¥ boalean algepraé)

D:@—> Dist. latt. ( = category of distributive
lattices) and a natu;al transformation ‘

i:pS5——p
such that for each A4 € Ob(Q) (Db(a)ithe class of objects in e
. ) ‘ N cedT
¢
P - 153 - Ca }
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< A) iA is a (1—1)*distribdtive lattice hamomorphism (af

* 5w into DCA). _~

In other words, we have 'an assignment:

A p———> D(A).

which ‘to every object A in Q@ assigns a boolean algebra
D(A), (do rot confuse yet the notation D(A) with that of
the set of formulas with parameters in A; A he;e~is not

necéssarily a structure) ’
“ A

and an assignment .

-~

" A DA
‘. fl p—— *1D(f) .
' '8 v . DB : ¥

B
B .
. te Y‘
o
4 ) ' * %
-] N " x

which to every morphism f:A——B in & assigns a
1 :
boolean algebra homomorphism D(f):D(A)—>D(B), sa that

D(id) = id and D(f:g)'= D) -D(g).

F I

The aééignmeﬁts above define the functor D. o

o
.
Y

Similarly for D°: now D°(A) is a distributive lattice /.

and 05(f) is a distributive lattice homomorphism.

*

Finally the assumptions on # mean we have an

¢

assignment which to every A € Ob(Q) assigné a (1—-1)- &

-

distributive lattice homnmorphiém




¢ ES

Foomm “"*‘:-Wsm;‘x:*m e B pou | e

et by e~ -
;4’ fas - :-' i
£ ) ~

i . ‘ )

e ~ ' oSt —A—5pcm ’

‘i: ¥ @ . T -

:’:; i,:)’ ’ﬁ . . - . . — "k‘.

%’ s , . N .. &

S ) o ¢ P . . .
¢ such that, for all A———i-—és‘xn &, the diagram -
s g

1

4 - ¢ '

‘§ S pS () — 4 3p(a) ‘ :
- oSchr| D :
b5 (8) F: 30 (8) ‘
. commutes. L
- /m v -

3

1. Now, in the context of sections A andiB i.e., ;f~K is a

category of structures, A is a boolean—closed set of '

: formulas and S is @ set of formulas in A with § = c1t(s)

tﬁen, for a fixed tupl; of variable ?,

+ —

o uy P ! ) P o) .
BT oo , we let @ stand for K;. ’
B . » ) *

p for A€ Qﬁ(a), D(d) {in the abstract context) stands

1;" . :
for DZ}(A) (in the caontext of sections A and B, i.e. the set

y of formulas in. ¥ with parameters in A considered up to

I3 f .

equivaleﬁce in K3 D;(A) is considered as 4 boolean algebra

\

in the obvious way). Note for instance that fer 9, v in

blﬁz, P Snv iff oz v, (where < denotes the usual partial

-

order in the boolean algebra D(A));

for f:A—>B a morphism in R, D(f) iw such tbéf
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above translation in 1]j; R N . . : )
" a complete type is an QItrafilter ineD(A?.; Ty %' -
) One uses the notation p o in,lhe general‘cant;gF;J .

- »
“ b

~
¥

“
¢ <

DA (p(X33)) = g(X3fa) (3 € A).

Similarly, for A4 € &, D5(A) (in,the abstract context)

T +

= 05(A), (03(A) considered as a distributive lattice in the

=

obvious way), and D (f) = D(F) DS (M)

<

finally for A € Ob(), i, is the obvious embedding of

D§(A) into Dy(A),

We shall refer to the context just described above, '

- N :

when no confusion arises, by the symbol K and call it the &
]

"standard" context.

Back to the gensral context. We define,

PS is equational if for all A € &, DS(A)'(as a

distributive lattice) has the descending chain pro%%rty "
| N e

(i.e. there is no sequence (a;); . of elements in Ds(ﬂl:

14

such that.a; ., <-a; for any' i < @).

@ reflects D% if for all f:A——B in @&, D3¢ is | ' . '

injective. ’ o

;. A type over A ( € Q) is a nfilter-base" in D(AY: i.e. +

e

a set of elements inD(A) sucﬁ that all finite .

N
intersections of elements of it are # O.” [Note that this

is the same as consistency in the standard casq; under éhe'

-
- 4 »
.
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R I .‘,)th,t.gf,f., "*“-‘l‘"’“«?«w"v e :;,, mdreer ";"‘""ﬁ“""rr**ﬂ )m e s "‘:, . . ‘. . -
§ | oL ' o - v L ’ . i
;if:' =ty . .&; “ -~ 5 . ! L e * - ! 'I
%5:‘ v, N ) N M P
g,“,# N e .. . . F . ' [
" T Lo ' here p is a type over A, @ %s a "formula over A" i.e. an
: ¥ = R ., -t k . ' . \' T : o "
- ik element of DA). pro means that for some finite p’ C p,
“ - v . AN » - . )
}(é:‘ ’ . : * .‘ Api‘ﬁshm, lk ’ ‘f
W, ¥ - .k {
£ . « Ty ) . . ~ P 1 o !
H . 7 ‘where Ap’ is the intersectiori of the elements of p’ B
»i ;“: . and £ is"the usual ﬁaxtial order in the bao{ean‘algebra -
5 . F} - ¢ N . - ‘. " s . : “‘i /\ )
S : DA & . N .
; ‘- ¢ t . ) N
] Given f:A—>8, p a type over A and q a type over B, N
L IEt ' .1 h . ) ' ‘ ":‘ M
: fp = {fp; @ € p3, qM = {p € D(A); fo €.q33 o
! - !\: st ) B ' . E
X we say p is a type over f'aor p is consistent over ¥ if NN
) fp is a.type over Bj- , - ’ s "
. S
« ,' ~ s S . )
‘ | P = f0 € DSBYs fo - ®3, pf =pPg. + 1 R
) . . v : E
o . For f as above, A is Sy—closed in B if fdr any ' ;
- » « §
A, . M N
=  complete types p’ and q‘ over B, - \' i
« * & « N s ‘: , 3
s S ’ S S Q’ +
(p')g > (q )ngf:)q.f? - 4 )
. ' .« where p=p’PMf and q=q’Pf. o s ‘ . -
. . 1 ! ) R
L - . Given f:A——>B and g:B—>C in &, p a type aver ¥ and,,
! q a complete type over ¢, extending p to ¥, we say that ¢ ’ 'g
' ; . is an Sg-minimal,extension of p ta f iff for any complete
t ' . ‘ ‘ L -
type qy over g extending p to *, if qg > (ql)g then qg i
% . ’ . % -
v , " ~ S
¥ . ’ = (ql)g- e )5
- ) { |
¥ " ]
- .0f course, one easily checks that, under the !
5 P . tranélatipn given above, (when & stands for ﬁ; etc...), the
e . "definitions that preceded coincide with those given in the
) ( R . ) - , ' Lt ., ’ Lo,
. - 137 -~ '
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sstandard case. -
.&
-

4

We reproduce. below th

and A.13 }n the abstract Eontext; their proofs are exactly

!
v

the same as those/givéﬁ in the standara context.
. : { <
, 3= Theorem. Given f:B——>C, p a type over . and qi a complete
L L f

e analogues of theorems A.2, A.12

“type over f extending p, there is an S,-minimal extansion q

H,

) A s ." s s '
of p to B such that (0% > q5.
‘\ &

b ‘
i

>

3 . - ~ R
4. Theoram. Let 7:A—>8 and ng———?c be morphisms:in gjsuch
.that A is Sg.p-closed in € and B is sg—ciosld in C, 60_.\
tybn aver g-*f, Py.8 complete type ovcrhq-f, Py & cn&plnté

type over ¢, Py 2 fp1 > fpo. Then Po is an Sg—minimal DE

nxt-ngian of pop to T 1Ff Pp is an Sg—minimal extension of

ﬁ; to ¥ and Py is _an S__.~minimal extension of p, to A.

g

L4

S. Thnprcm. Suppose o5 is .quatiogal. Let f:A—B be in &, p

a type over ¥. Then, there exist dor°" " 19p—1> Sf—minimal

4

A

-
.

23

-extensions of p to A such that for anycsf—minimal axtension:

<

4

_of p to A, there is i < n, a3 g (q;)3. In fact, with the

4
I~

q;’'s as above, p? -1 i<n(¢;»$.
s .
In a similar fashion one defines in the abstract

’

A “»
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context S—full and S-irreducible types as well as S—full

structures etc... . '
v - ‘. )
For instance, given ?:A—f—aB in @, p a type over ¥, p

r
~ ° 3

~

. . b - e
is S—full if fnrﬂépy Qs P xq“Ds(B),
for o,vo, =3 flp N D5 (A1 9, for i =1 or 2;

v ' X
and similarly, the results of section B have their

A} - .

« - ' J
analogues in the general context. -

- '
& .
a LIRS

s =

Note. In the statements of thefdéfinitions‘amd theorems

v 9

ab5ve there is no mention af.anyftuples of vaF}ables. Thus,

ha¥ ~

we can apply theorems 3, 4 and 5 to the following
situation: i -

[ -

lLet K, A and § be given aslin section A dnd suppose A

#* .
and § contain the formulas (¥ = y), y any variable.

“‘\

Fix:;'é, possible infinite, tuple of variables. :

%‘k‘ -

For-A € f; m(?;g) and v(?;g) formulas with parameters

in A, write ST . - .

My
4

¥

if ‘ .

Y1 W(?;géA(? = ?);

Clearly = is an-equivalence relation. j
i kS

¥

Now, let Q& stand far ﬁ; }

- for A € @, let D(A) (in the,abstract context) be the

(obvious) boolean algebra whose underlying set is. .

\ s
o+

L ~
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Wy :”W:"?\‘r,‘ [

Xy

vt > LI syt O et n st weRgat 2 e BT R 4 S T Ve

! . o .S N , -
‘.‘g, (
~ <, < . -~
{9(y33) /%5 2 € A4 and y a subtiple of X3,
et 05 be the distributive lattice whose underlying
set is .~ .
4 i
-+
{@(?;a)/ﬂ; a2 e A, ¢ € S and 7 a subtuple of ?}.
. For f:A——B, let

) D(f)(m(;;g)/#) = m(?;fa)/#.
{

i
-3

Note that if @(y;a) = w(Z;B) then @(Y;fa) = w(Z;7h) so

that D(f) is a well defined homomorphism of boolean
i -

algebras. Let DS(f) = D(f)hDS(A). We refer to the context

just described above by the synibol K/=.

-

With the setting above, for A € a4, s

a type ps/z (the notation p/= will be explained later ank,

i

" over A becomes a set of "formulas"” m(?;g)/z with parameters

in A and with y a subtuple of x such that any fihite subset

s
n)’ -~
. 4 ¢ -

4

¥ -
of p/® is consistent over A;

p/% is complete over ‘A if for any m(;;g)/y in DA

A
.

either m(?;:)/é belongs to p/ /= or “m(?;;)/ﬁ belongs to p/®;
a o . . . ¥
Given f:A—>B in K, K

-

. ol =19 € 05y, o w3,
i.e. - oL L. ,

(p/®)3 = {@(7;B)/%; B € B, 9 €S, ¥y a subtuple of x

A

and for some Po € B/, Py finite, Tpo - @3-

H
* . =

o




E

v
“ '
-~ . , F

e e

.
L I e e
N

~ ) -
. ~f Vo1
R ¢ 5
.- . H
“ | I
- \.,_\ - “ to o
~ . [Note.that, for 6(Z;&) /= and @(y;B)/% in D(B), '
Y . - . c . ‘
- "3 » ‘ i
) OZ; ) /2 oty b) /% in A if i
- e ¢ -
OZ DAY =) 5 @Y3BIAGZ = 2) (in the standard centext)]

S Ea i ‘0 !
} +

:-\/{ ’
’ - £
LR

_ Now, we cén’épﬁly'to K/, fpg definitions .and theorems

LY -

: , . o -~
~ ‘' given above in the general context. *

NN - A + -

‘. -For.instance, given A4 C N.€.K, and p/= a type over A

» .
r N -

' " , .
(with_; a possibly infinite tuple of variables), we can

N .

speak of Syiminimal'extensinn of p/®% to H, and, say, the

[} -

monotonocity-transitivity theorem (c.f. theorem 4) applies

A >, -

"~

to such types.

’

*
o

Note that if x i¢s finite, then for all practical uses,
* : 4 ) . '
a type p/= over A ( € Q) as defined in K/% can

~ -~ 7

considered as ‘a type in 4 over A as defined in

be
the standard

\
.In fact the map which to a type p/% over A,

*

context K.

_corresponds the set pc@{m(?;g);mtz;g)/x € p/=3 is one-to-

B 4
.
.
f
- M +
v n
. o A
-4, x
vt
i
. .
. '
X
- B ~
- -
. A" -
. N
\ b ‘\\ 3
4 »
T ’
M
T
’A \‘
A ¢ N
-
&
3 s
"
- »
~ o [}
¢ ER)
. R [
N
-
-
.
-(. ~
P s
»
«
; 7
’
i “\

one from the set of types Bver A (in K/%) onto the set of.

~ -
n x-pver A {(in K).
t : LI 4

Furthermore, one can easily check the following:

type% i

p is complete (in the stardard sernse) iff p/= is ?U

complete; if f:4A—3B is in 2, and g-is a complete type in

' * 3

I r
? over A, then q is an 5.-minimal extension of p to A {in’

-

. 1 b
. , L3 . 7
K) iff ¢/~ is an S,-minimal extension of p/% to A (in K/%).
4
- ' 4 '
. - \
'. ! . " - )
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' N i
More generally, if }’_is infinite, then a.type ps/R overs

. L, - 7 ! . ] e ) =
i A ( € Q) in K/% can be considered as a consistent set of

fgrmulas (in K) in subtuples of X with parameters in A; to

-
. ]

p/% we correspond the set . .

“

- - -+ - > 3
p=1{ply;al); y a subtuple of x, q:(y(;a)/'-': € pt.

) - This leads us to ’gener:al ize the notionwof a type, in.
the standard cunt:ext ;C, to include types in infinite tuples.“
\ of variables. — ’ o ~
— ., _ 1 T 0
, If x is an in-ﬁinit'e tuple;of variables *and A € K, we
& T )
o L ) define a type p in ;r} over A ‘ta be a consisten‘_tm set of *
’ farmulés in subtuples o{-’ ; wi*'th par'a:;}ei;e}"s in ;, and we let ~
. ‘ - S = : -
pr/a={e(y;3) /%; ®(y;a) €03, ° ‘
(clearly p/% is a t;:pe in K/%)3 #*, T ’
* ! We then apply on :_ﬂ;l(:h .t:.ypés p the terminolggy applied .
on the t;lrpes pr/% in K/#.’ JRTEEN : o & -' » | .
, . . Thus, for instance, (for pb as abc;‘inz) we say, p-is - -
- complete if p/% is complete 1(‘in',i'C/z), i.e.p is complet‘e if
fcn;' any formula «p(?;g)‘ y ;‘a subtuple of ¥ and a in A, -

either qs(?;:) ar -1(p(?;;) belong to p;

- e

given q)(y;g) y ? a subtuple of ?, 3 € A,

A

]

' . P e if psE @Y /% in KR, it follows that p g

~ 4




N 0

Ead

Mag L FEES t - :
Lt VO R o homp et R - . . e e - e st ok T A A -

@(¥;3) if there is a formula ©(F;B) in p such that . ) 71

-3

iﬂ,a L STHBIAY =) 7 e DAE = 3

- i y 5
given f:A—>8B, q a complete type over f, q is g 7
» Y R N _— i

minimal extension of p to A i+ gq/% is an S}-mfﬂih}f

. extension of p/= to A4, i.e. g-is 2n Sf-miniﬁal extension of

3 ¢

p to A if for any complete type q’ over f} extending p,

af > qF = af = @h,
EtC--.-’ I - .7 ~ “ ¢ ’

Also, the theorems whith apply to types in K/%, apply i

to types in K. ey o ’ ,

.

gl

For instance, g{&bn f:B—3C in ﬁ; p a t§pe in ?'over v

[

f, (? pussfbly infinite); qi a complete type over f

.
2

. b Exténding p;rtheré is an Sf—minimal extension g of p to A ' :

e e ’ such that (ql)g > q?: indeed, by theorem 3 applied in’K)z,
- F

there is_an Sfﬂminimal extension q/= of p/% to A such that

Iqlfﬁ)s > (q/%)ﬁ; under the translation described above, :

3 :ﬁ'
‘e

“this meéns,ad‘is an Sf*minimal extension af p to A and

oy

o

(903 > ¢3, which is what we wanted.

- Remark. ' . . .
. . . ‘ ‘

(even if ¥ is infinite), given f:1A—B in K, if A is

- S,~—closed in B (in the standard sense) then A is S —closed

. . _
.
.
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. s
{in B (in the new sétting).

>
(} Indeed, lemma A.S5 still holds in Ky/®. Suppose p/% is a

complete type (in K/®) over A, 9 € DS(B) an'd’ p € pg i.e.

fp/® —,8. By definition, this means there s a finite

L b

subset Py of p/® such that TPy - 9. Say m--=-m??;35/=, ? a -
/ . - s .,
subtuple of x. it .follows easily.that there is a finite
0 o
tuple of variables Z and ‘a complete type ¢’, in the
. standard sense, in }’ over A such that
. AE qi/-"- c p:/z’ anq
3 : »
e, — 9’ 15 m(;;g)/\(? = #), in the standard sense.
2 \ ) - e
Since A is S.f-closed in By, in the standard sense,
. = ' - .
~ there is e(?;fa’) 4in q‘ such that . - -
) (@315 D) e BIAGE =D,
[4
. in the standard sense.
Thus, p/~ - /2 - @/% {(in K/2).
. iy “
By lémma S, we conclude that A is Sg—closed in B (in
¥
N ° the new setting). 2
/ . . ,
4 - .
/ Srmg . n e
/ . e s
‘ - e ¥
; & %
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CHAPTER III

[
The First-Order Case

Let A be the set of all formulas in L;
" denotes a fixed set of formulas in L, M = cl(f?;

contains. the formulas (x = X), x a variable, and T is

closed under substitufion of (any) variable (so if b(?) Er

then g(f) € I etc...);
S is a fixed set of formulas in ', § = c1V(S), (S will

stand for a'set of equations{.
We study in this’'chapter the case when K is the Ar”'
N

category of models of a first—order theory 7 with the '

elementary embeddings (c.f. 0.1.1{i)) for morphisms and K

reflects S.

Mainly, we investigate Sy -minimal extensions of types

“for H a ZI(F)-closed structure (i.e. a structure for which

any formula in " with parameters in H is realized in K iff
it is Eealized in #).
We show then, that H is §—full (c.f. 3) dnd that any

subset of H is SH—closed in Hg whenever S is a set
S
equations (c.f. 11). Furthermore, for S.a set of -

-

equations, Sy—minimal extensions have. the loc§}—character

LY

property (c.¥\.17). ’ k a

%
7

sy s b

.




¥ M

v T N Ly g ‘ P o . RS i £
AP PIO  eWR T MR T o A L B A O I O AL N A SR PN S ‘&"‘:‘:?“,“’}ff’?;"‘aﬂﬂﬁ:‘:ﬁﬂﬁ;&:‘??ﬁ At RRAME A WRERTHE

v

=3

Let us give a sketch of the argumentsﬂhﬁed to prove
the results stated above:

first we show (c.f. lemma 7) that if A € H and' © is a

formula in Dr£H> which is A-invariant (i.e. for ar:\/ f;,fi:H-ﬁ)F

with §fA=£ M, 7,0 g ;0), then € is A-definable (i.e. there
is ¥ in " H(A) such that © gY-

Next, given a Ebmplete type p over A € H and Py an SH7

[y

minimal extension of p to H ?or S an equational set of

formulas we let Pi+"""+Pp_y be the SH~miH3ma1 extension aof .

[ ] |4
p to H such that (pi{g is an A—cunjuéate of (pb)ﬁ (i.e.
. and s : T
there are 74,7 s H—F,£M=§M VL (po) 71 7 £,0(p D). We

N\
shaw then that Vv, . (p;)5 is A-invariant, whence A- -

v

definable, whence PG Vf(n(pi)i' - T
It follows that pﬁ.g VE(n(pi)ﬁ and A is SH—clcsed)in

H. It follows also that the p,‘s (i < n), are (all) the S,-

x>

minimal extensioﬁs of p to H.

Conversely, welshow (c.¥. 12) th;t if p is as above,
and p, is a complete type over H extending p such that
(po)ﬁ has finitely many'A—conjugétes th;;\Bb is an Sy~
minimal\ ex ;n ion of p.

IFina{}y, if p is a complete type.over A and Po is_an

SH;minimal extension of p to H for S an equatipnal set

5

1then, from what preceded, (py)y has finitely many A-
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¥

3 - L = .
%;'1(5 cunjugates;“hence, if R c 8, (po)ﬁ has finitely many A- '

conjugates; hencq Po is an Rﬁ-minimal extension of p ta H. ™

This sketches-fhe proof. of the local-character A

, property of SH—minimal extensions for S an equational’ set.

For S an arbitrary set of equations, the argument is

slightly more sophisticated. (c.f. 15 and 17).

LAY

0. Preliminaries. . . ; o

- &,y S, K and Tuﬁru¥f1x.d‘as above.

-
-

- £ (M dndot;s thn{clnsurn of I under existential

¢

! S quantifiers (1:i;}£1<r) is the set of formulas of the’ N

form 3NO(MP) whera © € )} - Co
a formula in £j(M) is also called a E,; (M) -formula. '

- "~ A structure H in K is tltr)—c;bscd if for any formula ©

in I,(") with parameters in H, © is realized in K iff ©
{ o

is realized in H. T ‘ ‘

///

- Given H in_ngg/}c%/iih)-L Uifc,; @ € H}, where c; is an

1ﬁdividua1 constant not occuring in L and c_ #» <h for a

\p % b €H; if & m<ay," ",a,> is a tuple of nlmn’lnt.t i H, .

w4
-

! T ] lnt,3:1~<c;‘,---,c..>.' ‘

* diag(h) ={0(Ny 6N €M H &Y. |
\ . Clearly, for F € K, F is a model of diag(H) iff Lo

there is a Melenentary ambedding (uﬁ.n:. a mocphisd in o

» o »
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4.

rsqbtuple of 3 we let

§ . *s
¥ v

PR

K) from # into F.
& ‘e I

- . .
I3

In II1.€C.6 we generalized the notion of a type to

' . -
include types in infinite tuples of variables: a type in an
infinite tuple ; over A is a consistent set of formulas in

subtuples of * with parameters in A. Furthermore, we have
shown how the terminology and results of the preceding

chébters~aﬁb1y to such types; in particular, the

~

monotonicity—-transivity property.

We recall (c.f. .II.C.&) that for p a type in an’

¥
1

ip¥inite tuple X over f, when f:A—>B is in f,

.

p?Q*{m(?;g); ? a subtuple of ?; 3 € A, p € 8, fp|§ ¢(?; ) 3,

where fp|§-¢(?;3) means there is a formula 9(3;3) (3

-

€ A, ? a subtuple of ?), which is a finite conjunction of

+tormulas in p and such that S

-

- -+ -
a z =2z

HZTDAY =7 Iz a(¥sD AL )3

J

s

a compléte type g in ? over T extending p is then an

'Sf—minimal extension of p to A iff for any complete type q’.

in ? over f,-extending p
; i q? > (q’)? =#'q§ = (q')?.

\ '

ads

If p is a type in X over 4 ( € K) and ¥ is a finite

Tia,

e,
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MY =£@(y;a) € p3; .
.T-"\

- clearly, if p is complete aver A then so is .ply.
b 2

’ ‘ 3

1. Lemma. Let ¥ € K, 6(?;:), Q(?;33 formulas in D(H). Suppoji

i

e(%13) Iy 9(¥;B), then therm im a I, (M-formula w(&3d) such

that # Rk w(a3®) and g .

T k VoWLy (E3d) —VX (8( X3 £) ——=—3g(X32)) 1.

Proo@. Clearly,

Y- T Udiagl) F VX(O(R;E ) —3e (X3S, )

By compactness, there is a F-sentence x(*ﬁzg;ZS) in

L) (2 a tuple of individual cngstaﬁt’s in L(H) disjoint

from 2; and 25) such that ///A * ‘ . T

T U X252, F vR(OG:

Hence,,

-+ - + 3 - 3
ca;cb)-——QVx(G(x;ca)———awtx;cb)),

\\ i.e.

Thus v(?;

*

e

2. Corollary. f:H——>F a morphism in K§ H Qfxi(r)-cloind’

structure. . L, - .

(i) Th-n.any type over H is a type over 7 (i.m. iI‘

B T R Y SO mr;»,wmw
'

SR Sabim 4




’
B i S e
i - - s

EN

consistent over f).

‘; : (ii) f reflects A.

T » .
e . . b, « ¢

. Pl"Dﬂf\
. ) ' . “\..‘ . e I 3 . T . -
(i) It suffices to show that if O(x;a) is a formula in D(H)

such that 7O(X;3) fr (X # X) then O(%;3) I ¥ # x.
e . :
X#x

Supposef'e(?;fg) tr . By lemma 1, there is a

£, (M) formula w(¥) such that F k v(fa) and h a

T E v@)—WK@GGH — (X # ).
| R N -
Since H is EI(F)—closqd and F F w(fa), H F wv{a).
‘) " . -

W
x : Hence, whenever g:kH-—t-—)G is a morphism in K, G F v(g:)
and therefare 6 F Vx(0(Xjga)—(X # ). we conclude
. o i @ M.

(ii)- Suppo;'.e © and @ are for:mulas in D(H) such that fel}e Q.

Then f(6AT@) is’ inconsistent in K over f. It follows

i

o from (i) that ©a7p is inconsistent in K over Hi.e. =1

.

¢

Q.
Thus, ¥ reflects A. B P .

Y

¢ - "
»
- f

.~ : 3. Proposition. Suppose every formula in S is equational. Then

. any E, (M) -closed structure H'in K is S-full.

Proof. Let ¥ be a E,(M-—closed structure in K, p a
SR

. ) -

1 . . ¢ < _ -
T .~ . T g‘i )
’ ~ ’ - 150 - :
- L J

st

o z
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complete type in ¥ ‘over Hy Py € p- We want to show p, U pg
is S—full. ’ .

- i,

54 let f:H——>F be a morphism in K with po U pf

BTN S Do T W

U

.

consistent over ¥, and ®y (}’;3), mz(}’;g) formulas in DS(F) é
such that ' . . ) , A%
Tlpg U p3) I oy (X3 3) vy (X35 :

We need to prove that f(pg) lFo; for £ =1 or 2. let .

n 3

5,1 = cl"'({ml(?;?),cpz(:;a) 33 since 9 and @, are equations,

[ Y
by proposition I.7.(ii), Sy is equational. Hence there is a

- &

formula B in D' (H) such that pJ' 5 E.

“

Suppose 2 IF 9, and T® |¥ 9,3 we will show a N\
-contradiction.

~

Since K reflects S there is a morphism e: F—>»E such

that efiA"eq;l and ef!/\"ecpz are realized in £ (c.f. I.\AI.S)'.

Now let . ' -

| .
S
0 € Po U Py such that
O Ir @, (X33) v, (X:5) .

By lemma 1 there is a Zl(r‘)—forﬁlula w(?;ﬁ) in £ such that

F E w(E@;B) and
—T F vl

30) — VR (O () ——Dg, (F3 DI v, (X3 8)) - e

Since v € El(l‘), E E w(eg;eg). We have



N
- Sl o i . \
TR PRy R e et g R M S SRR 1, g AR Y (G075t i B B e R T e i g
N T

Sy > 3 s 9 = - 2 93
— EF 3tu,y1x2v(t;u)Ae'fi(xl)/\"‘cpl(xl;t)/\e'1"§(x2)/\"'q)2(x2;u).

' i#" Tt . et
(ﬁ - T SGince H is El(r‘)-—clqsed, it follows that the )’.‘1 (-

-

formula
B ARG DA (x50 A L39) Ay (X5 )
™~ t 6

-
'
'I‘

is realized in H. - t

In other words there are tuples Z and 3 i-n H su‘cl'; that

=

HEw;d), H E XEBCOAR, (5D and H k IXEGD A, (D) .

L

. But then 5
o ' - T;§WQ~a%&3wf%$)
i.e. |
, ) Bq_,- tp1"|(}’;g)w2(?;3) ’
hence : R
S -
P 'Ti' Py (?;E’)lezt;;g) ) T
.
and therﬁfnr;a, by completeness, either p g @4 (}’;E’) or
LI pl,—_,— q:z(?;g);
o i.e. either F(y pg’ m q:lt;r’;g) or iz p‘g‘ - mz(;;a), '

contradicting the fact that N, (}’;g) and i/\“q:z(?;g) are

- . X
realized in H. R . Y

4. \Corollary. If K has elementary embe‘ddcings for morphisms,

(i.@. if T is the set of all formulas) and \S is a set of

“ , ‘
' equations then any structure in K i.e. any model of 7 is S-
. " Tfull.
. ' - 452 -




4 O
" - R §
& ) . ‘
& ‘ y
Y e
: : ‘ ;
@ 4 Proof. Follows immediately from proposition 3 and the fact ;
£ ]
: (; ) that in this case any model of 7 is I, (M) —closed. B
% R .. ' .
S. Proposition, Let A3 A—>H and f:A—>F be morphisms in R, 3
A€ R, H and :F t1 (M -closad structures in K which are S-
_, ; full; p a type over A which is consistent over 7 and g¢.
-1
g Then, given QIIH——)G and qst—-—)G such that gl-hl'-A
: ‘ = g,°fPMA and an Sy-minimal extension p, of p to h, there is
: an S;—minimal extension p, of p ta 7 such that ‘ ,
N i
' i
$
¢ 9L [T 7 9ol o) f1. «
: |
.f: L3 p‘ 4" ' ' - 1 ( v N '
};' Proof. Since H and f are assumed S—full, for any Sy—

by

y e wiemg T

YR i ot smemn et v e

-

(resp. Sp-) minimal extension ¢ of p to A (resp. to ), q¢5

B

R (resp. q?) is an Sh—cnmponent (resp. Sf—compongnt) of p.

In particular, (pl)ﬁ is an Sh—component of p.
By corollar9 2, p is consistent aover g-

It follows by proposition II.B.11 that there exists an

%F—minimal extension Po of p to f such that

2 . S
- 9ol (P 3l 5 g,l(p Rl W | s,

o

Note. In proposition S above, if § is a set of equations, then by

-

propositiaon 3, H and F are S—full once ﬂ-and F are zl(r)-

. : ”

- , ) - 153 =
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closed. ¢

-~ 4 I

Definition. Let A c H# € K, o
] © a formula in D(H). We say © is A-invariant if for .

any morphisms f1|H-—--)F and fZ:H-—-—-)F such that fihA - 'f.‘-_;l*A
we have 7,0 7 126, —_—
Equivalently, © is A-invariant if for any Isomorphisa

ag:H——>F and morphisms ¢,:1F-—~—>G and g,1H—>G such that
gl"'cer = g,MA," wa have ¢,ad0 9‘.29.‘ - -

&

+ B
\ ‘

N

- o

Y

Indeed, to obtain the second version from the 'Fil’:St, .apply

the first version to fl = g40 and. f, = ¢g,; to obtain the .

-

ﬂs@; version from the second, apply the second version to .

g = idH, ¢y = fl’ 95 = 'fz.

o 7.

Fa

—— B
— "

If hiA—>H is in K .wa say ©( € D(H)) is h-invariant

> -

if © is h(A)-invariant.

Lemta. Lat A € H € K.
O(¥;B) a formula ih D(H). Then © is A-invariant iff ©

is A-definable (i,a, there is % in D(A), @ 5 v). If @

€ DP(H) and © is A-invariant then in fact there is a

formula v in E, (M) with parameters in A such that © 7




TR

Ky € SRR

RN SR a

ke

ey 4k

e o SRRV IRERT Y ey
.

Y

*

Proof. It is eagy to see that if © is A-definable then ©
i_é A-invariant. ; ) g

™ w s . ’ .
Conversely,. suppose © is A—invarjiant. Let oH be an

T

isaomarphic copy of H; o, the isomorphism from H onto a¥.

Then, by (the second version) definition of A-invariance:

¥

S T U diag(H) Udiag(al) U flc, =c ,); @ € A3 k

“ - 5
‘ Bx;c,) —30(X; 2’0,3» . / :

—_—

By compactness, it follows there is a sentence
tp(-c’.,;;?a) in diag(H), where a € A and A = 5’&5’1 a tuple of

LY

elements in #\A, such that

-

DT U pd,38,), 038,03 U €2, =S 01 K
-+ 9 9., ’
-~q~ G(x;cb) (--—-)‘e(x;cqb) -
b ~ ¥ o
v Consider the formula

¥ @) =3, 0 Drmp (E~F 33, (v € DA

1 ength? =1 engthg, 1 eng*l:.hi:)1 = ] eﬁgth?i s f(recall 4

4 )

Sw

3 > :
—bbi)- . 1,

X!

t
A

- -
X:a

Claim,, é(;;g) A d.

Fou;‘, given a morphism f:H——>F in K and 3 in F such
. . ' . .
that F F ©(d;fb), we have that

F E @(fR;7a) (since 9(2,:2,) € diag(H)), and theréfore

}

©F p 3,00 D Ap (BT 57D Lo~ »

. - 155 - *
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- . .

=

>

«
4

-

&
i.e. F E widsra). g
- f - - -+ ) s .
(. Thus F F Vx(fO(x)—>fv(x)). Since f was arbitrary, it
follows that erﬁ ¥. ' /
»
Conversely, given a marphism f:H—3F and d in F, such ,
. : - N

that F k w(ds7¥3), there exist (by definition of ) b’ and
v \

R’, tuples in F such that , .

>y

F EOd:B ) A s .

So now we have

\ ' _ : F EQURifIAgR 5fa); S
from%*) above it follows that v N
F E VR(O(Z; D) e—30(X38')). - ~ s

Since F F ©(d;b") we,get £k otds: fB).” Thus N
L F E VRl (h—re().

Since ¥ was arbitrarvy, we deduce that w i & and N
e} ’ ‘
conclude, © "o

*,

. o i
Finally, it is clear that it @ is in OF (#) fhen v as
o

defined is in I, (") . W

LS

\

8. Definition, Let A € H € K; p‘gﬂ‘and po types over H. We say

po is an A-conjugate of Py if there are morphisms f!:H-—-—)F

£

and'fzsﬁ-féF such that p, is consistent over fie TMA

- le*A and 4Py 4 Topoy.

- o Equivalwnntly, Po is an A-conjugate of p; if there is

- . ~

%

. - 156 - .
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5,
A
- - «

an isomorphism o1H—>F and morphisms g, 3F~—>G and

N

i. ' K gotH—6G such that op; is ec'onsi_ltcnt over ¢,, 9, oM

= 92M and 9205 g 9,074

DL

Indeed to obtain the,second version from the first, take
, . ;
o= idH, gy =T3 and g,-= -3 to obtain the ¥irst wvefsion

from the second, take 't"1 = g40 and f2 = g5.

1f hs A—>H -is in e',”l' Py as above, wae say Po is an-

h-conjugate of Py+ if po, is an h(A)-conjugate of "1“
5

W0

3 > k]

Lemma. Biven A ¢ H € R, with ¥ £, (M -closed, A-conjugation

is an equivalence relation on the set of types over H.

<@
v

‘? >~

Proof. 'Reflexivity ancfl symmetry: are immediate.

Suppose p;, po, ps3 are types over H such that p, is ap

ES B
A-cohijugate of Py and px is an A-conjugate of Po- Hence, by

definition, there are marphisms ¥, ,f,:H—F and

gz',gsm-—-—gs such that ¥,pA = fyMA, g5M = gzPMA and
: , _ \ &
1Py F TPy 92P2 F 93P3- '
Since H is El(r‘)-closed, we can find morphisms
- ° . . |
hy:F—>E and hz:6—>E in K such that': {’1'7-2 = hzgo- Let

e = hl'f; and ex = h3-g3; we have

3 , ’ o : X

5 B
s




v
' elbﬁ = hi'flbﬂ = hl'fzhﬂ = hs'ggbA ==e3PA, ﬁnq

€1Py F Py "Tof2 F oh3t99P2 Foe3P3 R
We ;:cmclu:i; Px is an A-conjugate of Py ]

10. Theorem. Assume S is eguational. Let hiA—H be in K with "

’ d-ﬂn,bl-.

H El(r')-clo:nd; p & complete type over h, py an S"—minimnl .
extension of p to A. Then a complete type P, over H, '
extending p to h, is an Sy-minimal extension o@ p.tao h iff

(pz)ﬁ is an h—conjugate of (pl),s_,. Moreover (p)g is h%-
- \J.'k 4 .

b

e
Ve -
*

o

L ¥
Proof. Suppose pz_is complete over H# and (pz)g is an h-

-~

conjugate of (pl)ﬁ. Then there are morphisms f,*H—>F and

e
. , /
fo:l—>F such that f,-hPA = 7,~hMA and*fitfpl)ﬁ) 7

S) - f&>

fz((pZ)H , L ‘
Let 9y (resp. q2) be anASF—gninimal extension of 24 =

f

tresp. ‘p,) to f, (resp. f,). Since H is I, (M-closed, H is

) ) . )
S=—full (by proposition 3); hence (c.f. II.B.5.(ii))’
s . S, S, s

(GIF g TUp ) 7 Fallp) ) ¥ ().

*» " Now H is Sy,~closed and Sfi—Tjgd in F (c.¥f. )
) : }

i)); hence, by transitivity (II.A.12) g, is an SI-:-

II.B.14. (i

P

minimal extension of p to fl-h. Since 'thr‘A:-—" fzhrA and

N ]
): ’ - ~

b . e - ~ 7
g

T , - 158 -



. . . ' / .s
,(qZ)F F tqy)py Q3 is an Sp-minimal extﬁnsio'n of P tcn f2
B? monnton1c1ty <I1. A 12) it follows that Py is an SH

- "

mxn:mal extensxon of p tu h. Tllfat proves one direction af
the claxm.

-

Suppose now p, is an'$H-miriimal f‘éxtenéicm of p to h. ’
¢ ’ - .
Le_t'éo, Y be, up to SH—equi'valenc'e, all the SH
, minimal extensions of p to h such-that (qz)g (i'< n) is an
h-conjugate of (p, 3, (by 11.A.13 there are ¥initely many '
. ‘ ' £ . ’
such extensipns); 1
‘s . .
v, alEt e V (h‘ql)ﬁ' . o v
o n . . -
o ' PR - : ‘ 3
Claim. ©is h-invariant. T = .
> - : .
Proaf of the claim. Let fa,fz.H—-——a»F be morphxsms in K, ) ' .
g : , '3
: - ST 3
such that fl-M*A = fz-hwl; we havg,.to shcm 4 6 F fze. :
“'By proposxtzon S5, for each I < n there is an Sy ‘ . *
minimal extension q; of p to h such that o e S L3
. i i . , . v . . R « :3‘;,; i
s s, o o -3
I ngl“"i’u’ fz“"z’ﬁ R |
But then, by definition, (q )f,‘ is an h-conjugate of : IR
(q; )‘,S‘., whence (by lemma 9)  an h-conjugate of (p1 He Hence | .3
there is j.< n such that- ‘ e : \ c ‘
- : R R L
.o ; R " ‘ o o - .
. 1859 - O o o '
’ o = S . p s y co
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T , e : w),l’

-

" It easily follows that there is. a pe;ﬁutation T of n
("m | such that
h D ‘

Clearly then

S, . S .
fl((qi)H) 3 fZ(Qti)H) i < nm).

. S, . s ' S
"1 F 2V Gy F T2Via 900
We conclude fle ¥ f29, which is what we wanted.

. : . By lemma 7 it follows that © is h—definable i.e. there

is ¢ in D(A) such that & 't hw.

Obviously, (q,)5 g © tany i < n); hence q, iy hy.

o

Therefore .

| : _ ‘ , _ R - s
o ot Y E quh = p and pf:—'hw|— Vien9ily-

On' the other hand,

~ hw ] vi(p(qi)g“ﬁ E {since q; extenés P ta M.

.-+ We canclude that o .
v " N ‘\_)K/ ) : i & ’ \ B P 14
AP ' ' . L aS .

— S
Ph H " T Vi<n 9y~
g _ - - It follows,easily that, up to §,-equivalence, the’
types e, {1 <'n)=Enumerate all the SH—minimal extensions of

pta h (csf. I11.B.6). H'ence_ (pz)g ~ (q';)g for some i < n,

which‘ﬁeans that ‘92’3 is an h-conjugate of (p;)g; -

1 [N »
s B Y «

Finally, sinée pf i hv, pg &s h—definable. B

DL 5 ) - 1

- +
W

. "
' i w . e

- f 11. Corollary. Let @:A—f—ék be a morphism in g kith“H a z§(r>~

N " i - . ‘ "
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closed structure in K. If § is a set of .qditinnl, then A

is Sh—clnlnd in H.

Proof. By I11.A.5, Ais S,—closed in H iff for any complete

type p over h and @ in DY (H) such that hp|R§P there is © in

D(A) sua‘ﬂthat pf‘; 7 "Og o.

But, if hf'ly ® then p's’. t7 ® where S, = c1*({eD, and

by theorem 10, pg' is h—definable i.e. pg’ 't h© for some ©

in D(A). The conclusion is now clear. R

>

So, if 5 is a set of equations and H is ZI(F)~c105ed,-
any subset of H is SH—clused in H. thus, the monotonicity-

‘transitivity theorem (II.A.12) applies to Sy-minimal

*

| extensions of types over subsets of H.

~ Ll

Theorem 12 below intuitively says that, (given

hiA——>H, p over h, Py complete over H), Py is an SH—
L)

. minimal' extension of p to A iff (pl)fl is "almost over h".

The exact definition of "almost over" will be given in

chapter V.

-

' 12. Theorem. Let S, h and p be as in theorem 10j py & complete

type ovu} H, extending p to h. Then Py is an S”—minimal

°

To- 161 -
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Scad
Sa
3y

s ' s
such that 7, {{p,)y) fzt(pj)“).‘

@

~ J -

extension of p to h iff there are p,,---,p , complete types

over H sxtending p such thgt (p1>ﬁ is an h-conjugate of

(pl)g (1 <1 <n) and for any morphisms fi.fZ:H———eFﬂwith

T,°hPA = f,chPA and any i, 1 S i S n, there is j, 1S Jj Sa >

Praof. suppose  p, is an SH-minimal extension of p to A.
Let p,,***,p, be, up to Sy-equivalence, all the §y-minimal

extensions of p to h. By theorem 10, (pi)g is an h-

conjugate of (pl)g, (1 £i €n). By proposition 5, for any

morphisms f1=f2=H———9F and any i, 1 & is n, gpere is‘j,

"1 £ j £ n, such that

\

; S S
Tilp g g Tl g ..
That proves one direction af the claim. 5

Conversély, suppaose there are po,°t*,p, such as they

satisfy the right hand side term of the claim. Let”

s S, . .
O=Vi<i<n P21 ' J \

© is h—invariant: for if figfzzﬁ———éF are such that
fl-hrA = fz-hPA then it is easily seen that f1 F fze.

By lemma 7 it follows that 6 is h-definable i.e.:there

is v in D(A) such that © # hw. Now of course © §°p1; hence

v € p, for hp < Py- Thus hp]ﬁ 8i.e. .

» o




e
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B I o

B T P
-
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e S Ry

Te

4 s
ke tpvici<n P g-

~

. It follows that at least one of the pi‘sﬁis an SH—

minimal extension of p to b (c.f. 11.B.6). By theorem 10,

since the (pi)g are assuhed h—-conjugate of each other , it

follows that all the p;’s and in particular Py, are SH—

minimal extensions of p to h. ‘ . .
4

L3 »

13. Corollary. Lat S, h and p be as in theorem 10 and suppose S

cantains the formulas (x = x), x any variable; let py ba an

[ .
'S”-minimal extension of p to h. Say p is a type in :: let ;

s

be a subtuple of : and RC S, R~ c1+(R). Then (plr;) is an

(R) -minimal extension of pPY to h. S

1 ( \\,.,\.-“ L8
i
Proof. Let us show first that if ¢, and g, are cdmplete

;; types over H and fl,fzzﬁ———eF are morphisms in K such that

. Sy s
T100q )]  Fallaz)yl

J

then
“ Ry R ‘

ih _ -+ % d - - |

where r, = qlhy and r, = qzhy.

Indeed, subpuqe 943 oy Ty, T, are given as’'above.

We have thai .
“ g '
. -

— s _
T4qy) 17 ToL(q5) s o
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L
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L]

rs o : since § contains the formulas (x = x), it easily
(’a’ - follaws that
» " ) 4

R
fl (rl) F f2[ (rz)H].
Now, R € S implies R is equational; therefore, b\}

proposition 3, H is R-full. In particular r, is Ry —full.

R
Since . .
’ FfLr-0R1 c oRwy and 7, (ry) Yoo Ry
2L rady a 17y I Tl radyl,
we ‘deduce that R . . ° ‘
1 ,‘; \\
fler R ot : L Y
-«
) By ss;mt;netry, we get
. ) R R
P Taltra)pd 7 F04r )30, '
- We conclude ‘ . h
Cter R o R »
o fl[(rl)Hq F fz[(rz)HJQ 4

which is what we wanted. /\ “ ’

_Back to our proof of the corollary: by proposition 12,

since p; is an S,-minimal extension of p to h, there are

Pss*"*yp,s complete types over H extenfling p, such that
(‘pi- 3 is an h—conjugate of (pl)ﬁ and, any fl,f2=Hf——9F

with f +hM' = fohlM'and 1 £ i £ n, there is j, 1 £ j < n,
. o

(\ such that -
: S, . s, - '
flt(pi)H] F fz[(pj)H]-

ey

Let r; =p; [\?. Then, using the claim above, we see

.

that ('1')2 is an h—conjugate of (rl)ﬁ and for any

.
! - - - +
1
“
- .
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¥ ! Indeed, let f,,f,:H—<—F be such that 7, hMA = f,-hMA;

—

fl,fzzH-——éF with f,-hMA = f2~hrh énd 1 £7 = niihere is
(.... 1 £ j 2 n such _that ~

) “Cer A RT o R

flf(ri)H? F f2[(rj)H].

We conclude by proposition 12 that ry is an RH-minima]

extension of p to h. B

<)
s

» - [

14. Proposition. Let S be Qquatfnnal. h1A—>H in R with #

zl(r)—clouud, p complete over h, Py and pp NON SH-

equivalent SH—minimal extensions of p to h. Then

hp U £<p1>§, (p5) 5} is inconsistent in K.

Proof. Let q5,--",q,_3 be, up to SH-eduiva1ence, ‘all the

. SH-minimal extensions of p to h.

¢

-

Let © be a single formula 'in D(H) such that -

© S B A ” . .
e " v{(qi)‘HA(qj)ﬁ; I < mn, I #j3}

(just consider (qj),s, and (qj)g as single formulas). , -

|

©

»

.. ' Claim. © is h-invariant.

,\
e
.

)

By proposition 5, for any 1 < n there is !i < n such

we want to show fle F T'ze.

? ' = A ettt e

. that ‘
AEFRF1 Ie

;
s it o i » N f
DBt TR ok e solire Mintel s | a4 mek L a ) e AN dGXAe dn 2 o A e

’ S, . s
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Since' K reflects S, if i #Jj then 1; # 1. A
F 2 . - ! -
(: R ' The map i r——-——)li is therefore a permutation of n. It

clearly follows that ;8 g f,6. That proves the ¢laim.
By lemma 7 we dﬁe&yce that & " hy for some w in D(A).

Suppose hp U {03 .is consistent. Then, by completeness,

.,

,“ ¥y belongs to p; hence hp g 8. Since Py extends p, Py l;l- =]

i.e.

Pyt v{(q’i)f,./\(qj‘)g; iyi<n, i# ik

By completeness it follows thai:z;ry1 77} (qin)-,S,A(qj)ﬁ for .

ot *

some i.Ji < n, I # j. ' ;

Thué

Pyt (q;)f and Pffii “?j’ﬁ?'

. by minimality of Py we must have

s _ S s g, s "
! (pl)H " (qi)H and (pl)H y (qj)H, .

- " whence (qi)g q (qj)g X.
i 3 AY
.We conclude that hp U {93 must be inconsistent in K,
which means that for any i,j < m, i'#j hp U {(qi)f,/\(qj)f,}

f

is inconsistent in K. In particular hp U {(p)pA(p;)53 is
inconsistent in K. W

?

15. Proposition. Let § = c1%( U, ;) where for each i € I,

RN
Y
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§; = c1*<si) is equational, and § contains the formulas

L4

(x = x), x any variable; h:A—H in R, H ti(r)—clas-d; p a
complete typi in a (possibly infinite) tuple of variables.

¥3 (¥;);e; a family of finite subtuples of X and q;, for i
- " ¥

€ I, an (Si)”—minimal axtehsion of ph?} to p (qi is a type

in ¥;). Suppose qo=hp U £(q,;)5s { € I} is consistent in

K. Then q=hp U {qihsi; I € I} is consistent in K.

Proof. To prove the consistency of g it suffices to assume

1; is a finite tuple and I is finite. S is then,equationa%.l

L\ L) , .
Let r be a complete extension &f g, to H. By II.A.2
there is an SH—minimal extension Py af p to h such that

)3, .

.

s
n 2 (py

By corollary 13, pIP;} is an Si—minimaf extension’ of

‘Q:‘;"i to ’h. Now, hp U {(pll\}’i)g', (qi)g‘} is consistent

‘since it is contained in r. By proposition 14, it follows
that
-3 N -3
(plrxi)gf ﬁ‘fbi)g' and thergfore (plbxi)PSi = qirsi.
we‘cnnclude that Q$p% G, 'which implies that q is

cnnsistﬁrt. ]
{
y

¥ .
Note. With the notations of proposition 15, clearly

* s b 4 . .
(qP;})PSi = q;MS;. Thus for any i € I, qM¥; is an (S;),-

“ae
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- | . minimal extension of pl*?i to h. | .
19.‘L-mma. Let S, h and p be as in proposition 13; le pl/ﬁe’a

complnt'- type over H extending.p to h. Then py is rn Sy~

' minimal extension of p to h iff for any { € I and finite.
{

subtuple ¥ of X, pir? is an (S;),-minimal extension of p to

. h.

I3

Proof. Suppose plb? is an (Si)é—miniMal extension of p to
. . . .. - -
h for any i € I and finite subtuple y of x.
. Now, if q is a complete type over H .extending p'to h
with (pl)S > qg then for any ? and i € I,
L : ’ 4 S,.
3 (pll‘y),, = (ql‘y) H
hence by'(Sj)#—minimality,
i Y . -3 g .
S ‘ (plry)glg.(qhy)gl
- for any ? and I € I.:
But clearly .
CporS o S, 2 i (i e > o
(p1 U {(plby) : v a finite subtuple of x, i € Iy . .
and
qg gy {(ql‘?)ﬁ‘; \? a subtuple of _;(’, i € I3.
It follows that (p,)5 7 Qg whi::h shows that p, is an
Sy-minimal extension of p to h. L
" . ;

- 168 - .
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Conversely, suppose py is an S”—minimal extension af p

§

to h. By I1.A.2, for any finite subtuple ? of % and any i
1Y
€ I, there is an (S;),~minimal extension q; 3 of Py to h
. v N

such that

!

(plr?)ﬁ' > tq; ’;,)s,_

Let gqo=hp U {(qi,;ﬁg‘i i € I, ? a finite subtuple of\

X3 ' ‘
and ¢=hp U ta; #S;s i € I, Y a finite subtuple of »3.

v/
Since 90 € Py 9 is consistent in K; hence by

proposition 15, q is énnsisient, (write 5 = e1™¢ U& ;si ;)
) 9

s

‘if necessary, where §. 2 5:).
. Y 4 1

Let qi be a ;nmplete'extension of q over H; clearly
’ s 8,
(ql)H Pl Uj,;iqi'?) .

Since for any i, ¥, '

4 .
. _
(qi’;’)g‘ c (M © (3,

:

we have that (q,)5 < (p)5. By S,—miniRality, we

‘deduce ‘that (py)y = (q,)5; hence

' - . -+ , ,
(y MDF = tq, PN 5 = a; 5, TN

We conclude that plr? is an Sj—minimél extension of p

to h for any £ in I and subtuple ? of ?. ]

~ 169 - . o

-

e




~

<,
9

.
%~ A .
L Y X v e g " . . o IR SOy T ik ca
I e Rl S R St s R L SR R T S R e T
- YL

A o

b

- »
.

17. Theoram (lacal character). Let 'S = c1¥¢ Ui‘elsi’ ‘where -Fnr;

~

=3

%
(,«» any I € I, Si - cl*(si) and Si is lquational‘and suppose S

contains the formulas (x = x), x any variable; A € B ¢ il,, H

a 21 (r‘)—clos‘d structure in Kj }r‘a complete type ln/; over

. A, ; possibly infinite; py'a complete type over B extending -
. p.
' Then, p, is an S,-minimal extension of p to B iff for
2 - -+ - +
~ any i in I and finite subtuple y of x, pby is an (Sx‘)H"
. ‘ . N ;
minimal extension of ppPy to 8.
- ‘ . l - ﬁ- ’

Proof. Let’p2 be an Sy-minimal extension of Py to #H. : Py

Consider the following assertions:

1. Py is an SH*minimal exteﬁsion’nf p to B. .

2. pp is an Sy-minimal extension of p to H.
-3 : { ! ' ‘ [\.;
3. {poly) is an (S;), -minimal extension of -ply to H for any .

" i in I and finite subtuple ¥ of . : .
< " L. . - . .
4. .plry is.an (Si)H—tmmmal extension aof phy to B for any 1

D

in I and finite subtuple y of x. ,
, . » * ! . -~
Now, by corollary 11, B is Sy~closed in H; hence by

[

A the monotonicity—transitivity theorem (c.f. 11.A.12 and .
s : - .
) - , ‘g‘n : , ' ° E
. S % T11.8.08) ) we find that 1.6 2.
. { . , , .
S 5 +« From lemma 15 we have that 2.& 3. K J/. , }5#
) Lo ) _ . ' ’ iy

. '+ By monotonicity .(11.A.12) applied to the types p My
‘ 2, ,

- e , - .»?
. ( ‘ . lA 3 ‘\ : Ad’. ’
o ; ' S 5

-\
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_ and the equaticnal sets S, we find 3. & 4. S

e - 4

We’conclude 1.&3 4. which is what we wanted. W

-

v

v
L

v 9 ’
- ]

' We close this chapter on a nullstellensatz type of

R Lt

6 ¢ . :
o K result on I, (M-closed structures.
S . ’ ' . &
i : - . L 4 ,
o : 18. Proposition. Let # be a I, (M -glosed structure in K;
L} - . N “ B .
‘ @(¥33) a consistént formula in DI.(H) and v(3®) a
o formula in S. Assume Q‘v is an equation. Thern there is a, ) )
: . , ’ ) ’ - " . '&\& '
i seaquance (civ)i(n of parameterns in H, such that for any
i ' ' N - , ’ ’
: ) marphism fi{H—>F and tuple 3 in F,
' - . v . - 1Y
P I v (D) F kA e aD) . ¢
;;‘ a ) ‘ ’ [ ‘4 .
g "Proof. Choose 30, o -,:::,_1 in 'qa(H;:) such that
\«;7L o . ,“" .
, . Riea¥ i3t 5 Atwiit), 2 € tp(H%:)};
3 L .
3 L] ’
: 20""'211-*1 can be so chosen because \lr(;;?) is an }
s ° . . = .
§ . : equatlon in t (C-‘f. I-B)- ) *
. . {
' " We show that (c;);., satisfies the conditions of )
i . . ¢ ° ' -
% ‘ R ) ) . !
R . the propositien. oL .
. *  Let fiH—F be in K and b in F.. :
; . )
, I @(F373) [z w(X3B) then F k.A, w(fZ;38): for
i , R . T, . ) ‘a." . t
“ . e . JRT SN . .
. .. clearly: F F'Ai<,!tp(fc1-;fa)a:,
g' ( . ' , B3 o -
o e 1 _‘ 171 — *y o
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' . . ’ _Cun\'rersely, if F t= A, <nv(fc1,b) then q;(x,fa) F
0, B k, ) .
A e . ; , .\y(;;g): for suppose the contrary holds, i.e.
T
“ ) F l= I\ <n\y(fc ,3) and q)(;;fg) 'f v(?;g); -
SRR then there is a morphism g:F—>6 such that
; T . ) B A qu(?;gfg)A"v(}’;gg)
7 and of coir i;" £2.3gb h
: - L and of course 6 l'—‘kl\i,(nw(g"ci,g ). We have
‘3‘ - L ‘””-)
) T R G l= 3t3x1\-<nw(g-fc ?)/\q)g;;gfa)ﬁ,/\‘“"v(;;t;. y
oo : Since H is L, (") closed, it follows there exists a
e ;"Euplg 3d-of elements in H such that,
»_%\“""‘ ,',, -_ _ . ' l' u‘ ( .
T B A wte3d) and H B e (R AW (G . ) Q
: R ‘.0 But clearly, if # E A <nv(c ;) then ‘
- '-ﬁ, : . i g 4 * ‘ ) 1;_"( -
s H n= Vx(qh(x a)——-:up(x sd, cuntradmtmn. n :
. . ° s o . e v '
. I g . . e ’
. v -- 19! Corollary. With ¢, v, H as in proposition S5 above, there
’ * : ! ‘ z o v - ‘ N .
i is a sequence’ éj"x’(n of parameters in H such that
° O Y -+ +
. ' T betp(x;a)-—-—i\r(x;\t)) RN TINATIARE
e ‘oo B ) . , B \
. Lo o Prqof.:g Choose c;,"°"yC,_y in @(H;a) as in theorem 18 above..
o L . e v, L Then, ’ g \
SR o o ' + -+ -+ - ‘ +
-y .): " SO ) Vx\(m(x;a)——rav(x;t)) yri Ai(n"(ci;t)' ]
T T A { . ‘ ..
J e since for any morphism f:H—>F, F F Ai(nm(fgi;f;)'
. ’ 1 ’ i ! "
e L , - o " The converse follows immediately from theorem 18. M '
(o
Sy D ) ,
e ':/ . s f ; ™
L "f't T R . h * ,
. gy : - 172 - ’ *
Aoy [ ! A\
: ' I' Tero M o _— ;
’ e v ) ,T' ..4’;. / ' I - 4 ‘:
—s__'__‘__'_ ———— — ?i : D [ .:‘-‘1; S l ‘ - 0 ’/\ \\ - ' K )
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The Symm;try Property

Let us quickly give an idea of how the sfmmetrf

‘ property @ili be pravéd for RH—minimal'extensiang ot itypes

XH € K), when for instance K is.the category of models of a
cpmplete theory 7 with elementary embeddings, and where R

is a set of equations such that ‘any’ formula in L is ‘fi

equivalent in 7. to a boolean combination of formulas in R,

i ‘ “

- s "t‘
? ' e

Step f. We show that if $’is a symmetric 3et.nﬂ formul as.

4

(i.e. if g(x;¥) € S then @(U3y) € $) and A C B,C C H then

tp(B;C);is an Sc--inilal extension of tp(B3A) to C if+

‘ tp(C;B) is an SB?miqimal extension of tp(C;A) ta B;
1

!
3

\

8tep 2. Since we are in fact interested in Sk—linilal -

extensions, we consider sets oﬂ formulas §!such that for,

any B ¢ H, and any complete’type p over A, pg % pg; we say

then that S is full in H. We note that if S is full, A C B

?

€ H and p is&k type over A then the SB~ninina1 extensions
of p to B coincide with the S, —minimal extensions of p to }

B-‘ ‘ LY




étlp 3. For s symmetﬁic and full, and A € B,C ‘¢ H we deduce

¢
from step 1 and step 2 that tp(B;C) is an S ~minimal.

@

extension of tp(B;A) to C iff tp(C;B) is an SH—-inf-ai

) ~
w that the set of all equations in K is
. y e ' i ’ - <]
symmetric and full. - ,

-

éxtensian of tp(C3A) to B.

. A

Step 4. We sho

Step 5. We show that if § is the set of all equations in K

A(C BcCcH, pa typé over A and R is as above then the RH—

minimal extension of p to B coincide with the SH—minimal

- &

extensions ¥ p to-ba_ﬂﬂ

Stwp 6. We deduce the symmetry property for RH-mininaljf
. , ) : -

extensions from step 3, 4 and 5. B :

’

In this chapter, we prove step 1, 2 and 3 in arbitrary
O-categaries. Then we discuss the existence of full sets of

formul as in;genéral. "
- .

. *

o

9
I
/

i

Preliminaries. A is.a boolean—closed set of formulas which

. i
contains the fogmuli; (x = x), x any variable; S is said to
: ' ! -+ x
be symmetric if for any formula @{(x3t), 9" belongs to S iff

7 i
wt belongs to S (i.e. Q(?;?) belongs to S iff w(?ly}lt

! N
1
¥ | | )
.
”]ﬂﬁ oy
! ,
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¥

-

-
— _ & ' . s
belongs ta §).
ra
S is said completely symmetric if for any formula

! ’?‘.’ . -> .
), if ¢~ bll\gr?,ta $ then qY belongs to ¥ for any
& /

subtuple o of X~ f¢i.e. if (D) bnljghs to S then the.

fnr:nuln obtained from ¢ by substituting 3 by typa variables

and the rest .of the variasbles 'in i""t’ by parameter variables

is in $.

"

Let ?1 and :2 be, possibly infinite, disjoint tuples-

of variables and assume § is symmetric. We write

¥ | S
-+ -+ <+ -+ - -+ -+
S(xl;xz) - {qa(ylyyz); Yi» Y subtuples of Xg9 Xg'

rn(dplctiv,lly. and p(?lg?z)' in SJ}.

’ + = ’\/J
Thus given A4 € ﬁ, p & type in X{~Xy Over A, (by
’

definition) : -
y 4 «
-+ -+ 4 -
P NS Ry = {9V 3720 € ps 0(Y 1Y) € S0 1
+\ > -
(p N S(xi\i\xz) is a sat of formulas without paramiters).

(,‘ 14

Definitions. Let A € R, ¥,;, ¥,, possibly infinite, disjoint
|

+

v {
tuples of variables, p, a type in ?1 over A and po a type

in ?2 over A; q a complete type in ;’1~}’2 aver A cxtundiné
Py v Po- N

We say g is an S—wminimal amalgam of Py and pp over A

- 175a~
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A
if, whenever r is a complate type in ?1 ~:2 over h sxtending
N /! ) .
e & ; 4
v t L 21 U Poy such that
o +j’ <+ < ] “
. q n;S;Fxlgxg) >r N S(xigxz)
. then : R
. . .\
N . Tq NSy = r N SR,
. 8 |
We say g is an S—free amalgam of p; and py over A if
for any complete type r in ;1-*:2 aver A sxtending Py v Pay .
. .
‘ @ NS 3xy) hr N SX Xy, -
Let A,B € H € K. We denote by tp(B,A;H) the class of types
obtained in the following manner:
¢ to every element b in B, assign a variable X} (xb 3* X
\\ ‘ . "
-_if ﬁ # ¢) and let ; = <xb, b €'B>. Then consider the type
- (in 3 .
’
S L e PR = e(Rgi®; 0 6;‘6, 2€ A,bEBand H m}s’;;s 3.
. | , )
. o N ]
, (Note tHat p3? is ‘complete). /
45“ ' ' - So tp(B,A;H) is the class of types p3}, as described
above, when we vary the choice of the tuple x.
e ' ) However, when there is no ambiguity, we will confuse
! %
tp(B,A3;H) with any one of its representatives and

consequently apply to tp{(B,A4;H) the terminology and

notations applied an types.

- 175b- ‘ .
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Ctype: let x; = {x,; b € B> and ?é = <x_; ¢ € C> be disjoint

&

. .
. \\
-

For instance, we will write tpg(B,A;H), meaning that

we have beforehand identified tp(B,A3H) with one of its

[N

representatives®p and let tpg(B,A;H) = pg. Simjlarly, if A

.€c B<cH and C € H, we say that £p(C,B;#H) is an Sy~minimal

. ) ‘ .
extgpsion ni-ggzé,A;H) to 8 if, once chosen representatives
\ \ ’ L3
q and p of tp(C,B;H) and tp(C,A;H) (in the same tuple of
3 »

variables x = <x_, ¢ € C>), ¢ is an S5,-minimal extension of

p to B.
* When it is well-understood which structure (H) is .

~

considered, we write tp(B3;A) instead of tp(B,A3;H)

If Ac B,C c H, tp(B U C,A3;H) denotes the following

o

’ ;
tuples of variables which are in one-to—one correspondence

with B and C respectively. Then f

tp(B O C,A;H) = {O(xg,x2,a) € D(A; H F 6(5,C,a) 3.

Theorem. Assume S is symmetric. Given Ac B c H and A c C

c H, ’
the following assertions are equivalent:

a) ¢p(B,CjH) is an Sc—minimal extension aof ¢tp(B,AijH) to C.

-

}y) tp(C,BjH) is an Sp-minimal extension of ¢p(C,A:H) ta B.

J i

’c) tp(B U C,A;H) is an S~minimal amalgam of tp(B,A;H) and

tp(C,A3H) over A.

1f in addition K is as in chapter III, 5 is a set

- 176 -
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/
of equations, ¥ is the set of (5§,A)-definable formul as

and H is L, (M -closed. -

d) tp(8 O C,AfH) is an S-minimal amalgam of tp¥(854) and

tp‘

(C3 A) ovm: A. (Recall, for p over A,
. “ -

p' = {g € &E; p?ﬂ- 3} and note that with the assumptions
of d) ,Ifor p a type over A, p! " pﬁ. Y
. ﬁ *

S

Proof. Let 3'(1 = <xp3 b € B>, :2 =x.3 ¢ € C>; ;:'1 and ?2

disjaint. ' S~

. ] J
N .

.Suppose c) holds and tpg(B;C) > qts: where q is a

complete ty;:e\ip 3(’1 over C extending tp(B;A). Let r be

,
the following type in ;1 ,-.}’2 over A:

o

ro= {0(xy ,%.,37 € D(A); O(xp/C,a) € q3.
It is easy to check that r is complete and that r

extends tp(B3;A) U tp(C;A). ) \

Furthermore, if @‘Xs’;?) is in S and- q;(x-*,x‘c*) belongs

&

to r, theh by definition of r, tp(xg;-c’) € g i.e. <

plxgs <)
€ ¢35 hen (xP;2) € tp2(B3C) and ther;efore {(xpy x)
qcs ce @{xpg; P ib; ) Pixpiic

)
€ tp(B U C;A).

-
X

Thus tp(B O C5A) N S(¥3%,) O r N S(¥;53X,05 by

t

-177 -
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2

definition of S-minimal amalgam it follows that
¢ <> T

tp(B OC;A) N Six,5x5) =71 N Sfx 3x5), \ i

. which easily implies that tp2(B;C) = gp.

That shows a’ holds.

- ar—x) ' « " | \_ |

Al

Suppose a) holds and r is a 'complete type in :1'&'2 .

over A extending tp(B:A) U tp(C;A) (resp.

tpﬁ(s;m U tpg(C;A)) such that ¢p O C;A N S(}’l;'}z)

> r N S(¥;X5). Consider the set ‘ S

. 3 Q ”
qp = tp (B A U {9(d); a¥gsd) € D5(0) and @ (X2 € A3,

1. |

Claim. g is consistent. For if not, there are formulas

s 2, - 1
®; (X3 ih D), i < h, such that @, (x2;C) € r and p

3

) (note, we should have taken

. R ’
tp(B; A) g Vi<n®; (xg;c

farmulas q:i‘,(xg‘;::’i) with different tuple 31- and gj but we

can always cc:me batk to a single tuple 3 and a single

tuple 2 by just adding dummy variables if necessary to’

.

P; ); thus

[

R

0 ol B g v, e G,

' where R = c1+({q;1. (xg;?); I < nP.

. Hence there is 6(?5’;3) in tp(g_:A) such that

s .

R
-l
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so, if X(a,x-’) -=Vx'g(6(xg $3) —V z<nq’1 xg :\"'c*)), we

"have H F X(332);. i.e. X(33;¥) € tp(C3A). Now r extends

tp(B;A) U tp(C3A); hence ¥ contains the formulas e(xg;:)
N .
and X(a;xz_’). But clearly

-
G(Xb,a) AX(a;xE’) g Vv

i<n®i (Xp3X2)3

' by completeness of r it follows t&gt ®; (x-g;xg) € r

, for some i < n XA

That proves the claim.

3
v

. Sa 90 is consistent; let ¢ be a complete extension

of q, aver C. Then, @z < tpC(B C)- for if q)(xb,c) € q2

. then necessar11y4”¢p(xb,x-’) e r N S(xl,xz), hence qg(x-’-x*)
€ tp(B U C;A N S(xl,xz) which 1mp11es qa(x-’-c)

€ tpiB;0).
* s
Therefore, by Sp-minimality of tp(8;C), we must have

qp = tpZ(B;C), which in its turn implies that

: <> - e I 4
tp(B U C;A) N Sxy5%x, =r N Slx;5x5).

Wea conclude, tp(8 UC;A) is an S—minimal amaliamlnf
tp(B3;A) and tp(C;A).
-~ a)—>d) ({(assuming K is as in section A, S is a set of

equations and H is Zl(r‘)—closed)-

The argument is exactly similar to the argument used

in the proof of a)——c) up to the point (#) in the claim
h
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where we hadotpﬁlg;A)|y V3<n¢j(xg;2). We continue from

that point in the following manngr: since for every I < n,
@, is an equation, R = :1+({mi;i < n}) is equational; by

I11.A.11, A is Ry-closed in H, so that (c.f. II1.A.S)

‘there is a single formula m(:g;g) in D%(#) such that

) 7 @(¥g33). By corollary III.18, there is a

»

sequence (a;)i<m of paramegers in ¥ such that, if

- A’
"xﬁi?"*V}<n¢j‘x3;?’;

e -3 -
Vxg (@ (Xg; @) —3v g ¥ g Ai<nv(3i,;t).

So, if X(33¥) =VIR(@(Xp;3) —Iwlxg; ¥, we have

HEX(@350) i.e. X(F5x) € tp(C;A) and
- - -+
X(a;xg) # be(m(xg;a)—~—9V}<nqi(xg;xg)) ] Ai<nv(3};xg).

=
Therefore, X(a;xg).e tpﬁiC;B). Now r extends .

0

tpz(B;A) u tpz(C;A); hence r contains the formulas

@lxp;a) dnd X(35x2).
b ’ -
But clearl&, m(xg;g)Axcg;xg)|ﬁ-V}<n¢i(xg;x2); by
campleteness of r it follows that mi(xg;xg) € r for some

- %
I { n. M. That proves bhs\claim.

The rest of the proof is the same as that of

°

a)——>c) f(after the claim). -
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‘"= By symmetry we get b)——>c), <)—>b) and b)—>d).

.'2. Remark. Theorem 1 above states a partial result on the symmetry

AV ’f 8

?

- Finally, d)——>c): follows immediately from the

definition of S-minimal amalgam and the facts that

tpAB3A) > tpz(B;A) and tp(C;A) > tp,fcc;m. (]

Lok g

af S-minimal extensions (see Introduction). The theorem

”

o

lacks in the fact that is deals only with the case tp(B;¢)

-

is anIBC—-inilaI extension of tp(B;A) and not with the case

tp(B;C) is an Sh—nini-af extension of tp(B;A). Of course

this lack disappears if it so happens that SH-nininaJ ) o

extensions and Sc—nini-al extensions are identical, or even

if'SH—lininal extensions are identical to Rc—linilal

extensions for some well-chosen set af formulas R. But let\
us be more explicit: a generalization of the notion of S-
closure (say, for § equational) would be the following: N

givenh AcCBCHE K, "c A, we say A ié.(FB,SH)—closed }n,H‘
7’ R )

if for any complete tﬁbé p over A, pg is eqdivalent to a
single formula in D' (B). (
Thus A is Sy—closed in H iff Ais (AW,SH)—closed in H.

Most interesting is the case 4 is (SA,SH)-closed in H,

which implies that for any complete type p over A, pﬁ '] pg.

It is clear then that, for p a type over A and ¢ a complete

.

PV
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v ‘
- type over A, ¢ is an Sy-minimal minimal extension of p to A
‘: : g i—ﬂf q'is . an S —minimal extension of p to A.
. N N - ‘ , ' ! . ,
We can ask the following questions: suppose A is SH—

closed in H and § is equational, is there a set of formula

. R, R D'S, such that R is equational and A is (R ,RH)rclaséd

in H? Mpre',over, 'is it\possiﬁ:le to choaose R so that pz‘;"pg
. . N .

for any complete type p over A?
Since A is S”-yclosed, Pz is equivalent ‘to an (5,A)-, .
: . ) " , \

definable formula. Thus, the latter question amounts to the

+
* <

ability of uniformly defining over A the) {(§,A)-definable

formulas; i.e. we ask whether there is a set of formulas R

-
4

such that any formula. in R a is S-definable and any ES,A)—

‘ ~ definable formula is equivalest to a formula in DR(A)‘\.
il . . -
It is therefore important, whesnever given a A-catagory ‘
Ky ACH and a set of equations S, to investigate the (5,4)-

-, definable formulas in D(H) .

i

3. Example. Let K be the category of models of T with
elementary emI;eddings, A the set of all formulas and S a

¢

set of equations. Consider the following kind of formulas
X (X3 D) =0 (X3 8) ATUVR(O(X; 1) e—p (X38)) , ‘
where © is an arbitrary formula and @ is in S; let R

be the set of such formulas. (Note that R = S).

\ Clearly, given A Cc M € K, 3 in A and X as above, if

1
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;3) is consistent then there is b in ¥ such that S

¢ [ s
- -+ -+ = Y
{, ‘ M F V;(X(x;a)i—-——-aw(x;b?); ‘thus any’ instance, of X over A
. ' ' is S-definable, and therefore R is a set of equa,ti‘ans._

Coriversely, if w(#;0) is (5§,A)-definable, then by

B e CaREale e - 2

L . .
definition there is ©(X;3). in DCA) and @(¥;B) in DS (M such

o

' | ‘ that v(¥;2) 3 O(X; ). it follows easily that

=+ ,
° - yi{x3cC) ,;‘,"X(

SEy R

X GG =0 (X3 ATaVR(O( X3 T) e—3p (X3u)) .

Thus any (S,A)-definable formula in D(#) is ehuivalent

- A
<
-,

- to a formula in DR(A).*'\; >

. ' Now, by coroflaryil.i1, A is Sn-closeci in #; it
. . . ' Y
R "4ollows that if p is a complete type over A, b;‘;’ is (S‘,A_)-3
. ' , . 8 | .
" definable. We conclude from what preceded that p,s; 1 pﬁ n -

LY ‘. 4 ~

®

J T

~—
’

K
m s

’ . ~

O S g —
£

i - -

‘-4, Let K be as in chapter III, HE K, § a: set d{-,equations.

Consider the formulas X of the kind

D) =3dp ) aviag ),

o OR g - 4
——
~

.,
. Xlxs
N ° I

- where’ q)(;;(a) iis in 5 and w(z;?) is a foqmyla in L, (M)

"

- |
ABEK T L AP e A Dages T 4

. . ) , 5 .
: . such that (9 T F v(@:D)Aw (F30) —vr (@ (3 ) B (337 .

; . : Let *R be the set of such formulas. .

(i) Claim. If X is as above, a is in H and X(xX;3) is

[

L - consistent in H then X(X;2) is S—definable in H: for

let b in H such that #H X(D32), .then in fact

- o
-
s . .
\ “
- ¥ ~ I3
N - . '

¢ . - - - . *
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(ii)

(1ii)

(iv)

-

S 5o

ANy
PO Ry

Sy AT
o

ki

Indeed, let f:H—>F be in K, since w € XI(P),

F FE v(#g;fg). We easily deduce that
F E VX (@(R3FB)—X(X3Fa)).
The converse, i.e. the fact that

F E VX(X(X;Fa)——@(x;7b)) follows immediately

A~
from the property (%) of v.
We conclude that F E VYx(X(¥33) e—3p(X3b)).
° 3
Claim. If H is E; (M -closed, X is ag above, a is in H

and X(xX3;a) is consistent in K then X(¥;3) is S-
P

definable in H.
»

Indeed, since X(¥;%) is a formula in I, (M) and H

-

is I, (M -closed, X(;;g) is consistent in K iff X(;;g)

is consistent in H. The claim now follows from (i ).

Note that for H arbitrary, if X(X;3) is consistent in

K then there is a morphism f:H—3F such that fX is

consistent in £, whence by (i), X is S—-definable in

F_’

Claim. R is a set of t-equations: follows immediately

from (i).

.

Claim. Given A € H and @(¥;2) a formula in D(H) which

is (S,A)-definable, there is a formula X(X3;a) in

’

->

that o(xX;2) 5 X(¥;3

).

BT A

Pea

Pt stz 4 R
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Indeed, since m(?;g) is S—-definable, we can

|

assume @ € S; since m(:;g) is A-definable, there is a

formula ©(%:3) in D(A) such that ©(%;3) g @(¥;0).

By lemma UL1 there is v(@;%) in £,(M) such that

T

H F v(g;g) and

4

T F v D) —ov 0GB e—a(xsu)).
It follows easily that
T E v D av (53 8) —v% (p (R dfe—>q (x5

and

2.2) where X(E) =3a (e Avia; D),

P(X33) 7 X(x3
Clearly X(x3%) € R.

(v) Claim. 1f A € H and H is ZI(F)—clnsed then for any

_ R R
complete type p over A, pg HPaH Pu- -
g/;y claim (ii), any formula in ps is S—definables;

s R
hence py Iy Pp I Pa- -
: ©

By corollary II11.11, A 1s SH—closed in H; hence

S is (5,4 -definable; by claim (iv), it follows that

Py
R .S
Palg Pu-
//7
///

"

Conclusion. Biven A ¢ B € H, H EI(F)—closedt/g/a/f;;e over
rad

T
A, q a type over B extending p, q.ig/aﬁ/éH—minimal

-’
e

extension of p to B iff/g/;s/éh RB—minimal extension of p

— 185 -~




o

1

a
R L T
» e S et

to 8. (Faor, by claim (v), given complete extensions 94 and

{
q, of p ta B
- \_

W
LR

B3

\,
AN

(q,05 2 a1} & @R > @phH. = , :
PR

In view aof what preceded, we make the following definition.

Definition. Biven H € K, a sat of formulas R is said to be
fulllin H if for any A < H and complete type p over A, pﬁ'g

0.

-

‘ 4

Theorem (symmetry). Assume S is symnetric and full in H.

Given AC B Cc Hand ACC € H, the following assertions are

aquivalent. _ 1
5, 1Y
a) tp(B3C) is an SH-minimal axtension of tp(B3jA) to C.

b) tp(C3B) is an S”-minimal extension of tp{(CsA) to 8.

4

©) tp(B O CjA) M an S-minimal amalgam of tp(BjA) and

tp(C3 A) over A. PR

-

1]

Proof. Follows immediately from gkopos{tion 1 and the fact

that, S being full, tp(B;C) is ;gégﬁ—minimal extension of .

‘ ~

tp(B3;A) to C iftf tp(B;C) is an Sc—minidal extension of

“

tp(B3;A) to C; similarly with tp(C:B). N

-
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Note. In 4 above, (given that S 'is a set of equations, K is

as in chapter ]Il and # is E,(l)-closed), we have constructed
, -

from 8 in a natural way a set of t-equations R which is
"full in H. However, given that S is symmetric, R, a priori,

is not necessarily symmetric, and therefore theorem 6 does

) ©

not apply to R.

If K has elementary embeddings for morphisms, then we

\

can stil{ "close" S to a set of formulas Rh which is

symmetric and full in H in the following manner:

.

Construct (Ri)i<w by induction such that1'Ro =5, and
for I < w Ri is a set of equations,

- Ry;,q is full in H: Ro;+1 is obtained by applying the
argument in 4 where we replace $§ by R2i and let sz*l

S
= R. R2i;1 is then a set of t-equations; hence, the

morphigms in K being rlementary, R2i+1 is a set of

H

equations.

- Ry is svmzf{;lc:riet Ry; = c17(S,,) where o *
5 = -+ =
SZi = {m(tlﬂxl); p(x;t) € R21_1} U R2i~1'

3
(By I.8.(i)) R,; is a set of t-equations; hence, the

morphisms in

»

K being elementary,,RZi is a set of equations. Now let Rw»

i

U, ,R;+ It is easy to check that R, is a set of =

equations which is syqpetric~§nd full in H.
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~
Note that we used aoné tﬁe elementariness of éﬁé '
morphisms in K to identify t-equationality and
equationality in K. (The same argument does not immediately
apply in case the morphisms in K are just N—elementary as
in chapter I1l1; however, a similar argument in that case
can still be worked out, but needs the direct study of the

éssedtial properties of S used in 4 to construct R,

(c.¥+.05.21)).

Proposition. If K is the category of models of a complete ¢

theory with elementary embesddings and § is the sat of all

equations in K, then S is symmetric and full in any given

structure in K.

T

Proof. Suppose m(;;?) is an equation; by corollary I.3 ¢
hds finite t-height; by proposition I.8.(i)" it follows that

3 . -+
mt has finite t—-height; by elementariness wt has finite

™

height; hence‘m is an equation.

k- -> -+ .
Thus, if ¥ € S then o' € S; i.e. S is symmetric. We

ty
have shown in 3 that there is a set of equations R , R2> §

(up to logical equivalence), and R is full in any given
structure H. Since § is the set of all equations, it

. o E) )
follows that R\gag'(up to logical equivalence of formulas)

and therefore S is full in any given structure of K. ®
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CHAPTER V

o

The Case of a &omplat. Thebry

In t®Wis chapter, we assume K is the &-category of

~

models of a complete first-order theory 7 with the

elementary embeddings for morphisms and where A is the set

‘of all formJﬁas in L.§,

- H
S is a fixed-set of equations, § = ct*(5) and s

contains the formulas (x = x), x any variable. '

~
”

Theorem C.46 and corollary C.7 in this chapter, have

been proved jointly by the author and A. Pillay (c.f.
—— * ‘ﬁ

TP.SD). -

Sq:tinn AQ Preliminaries and Summary

We fix a large saturated model H; without loss of

generality we restrict ourselves, in the study of K, to the
. v .. e )
category of elementary submodels of M which are of ,

cardinality strictly less than that of #. ,

All sets and models considered shall be subsets and

‘
s

elementary submodels of H of cardinality strictly less than .
- /

s . ’ L

cardH. -

./
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By a type P, we mean a type over ¥ in possibly an .
- infinite tuple of variables: tp (A;B) =tp(A,B,). If p is & :

B

vtype, we let pS_=p'S_;= and we talk of S—-minimal extensions

instead of Sg—minimal extensions. . .

We ,&'ite Qf{—wv, (resp. ¢ ~ ), instead of ¢ by ¥

(resp. ¢ '} v), and F g, instead of M F @; equivalence

N

means logical equivalence in ¥ and consistency means

consistency in M.

Let X C M; we say that X is a definable set /if there

1 is a formula,q)(?;g) such thaf, X = {2; F m(g;:)} (In

principle we should say X is a definable class, since cardX

can equallcard®; but in that instance, it will be clear -

P4

what is meant). We do not distinguish between formulas and
the sets they define.

By an automorphism we mean an automorphism of _Tf'; if A

.c #, an automorphism pver Ais an automorphism which keeps

A invariant. . . “

If p and q are types, (or just single formulas), we ,

say thét q is an A-conjugate aof p 1f there is an

automorphism o over A such that op ~ ¢ {where op

‘
M '

= {m(?;a’g); q)(;(’:g) € p}); p is almost over A if p has, up
to equivalence, finitely manyr A—-conjugates.

[Note that the notion of A—conjugation defined -above

- 190 -
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~~~

and the notion given in chapter III (c.f. III1.8) coincide
) o A >
when dealing with types over submodels oﬁkﬁ, (this follows

1mmedxate1y fram the saturation property Pf ﬁ) but we

should be careful of identifying the two Aotlons when

>

/
dealing with arbitrary tyges over H, (unless the theory is

stable). ]

2

Remark. If p is a type and o is an automorphism, then ps ~

‘aps iff far any @ € S, p! ~ api where # = c1V(p); since ®

is equational, pi is qquivalent to a single formula in

e

Ds(ﬁ) spob that the statement pS ~ ops is equivalent to an
infinite conjunction of first—order statements. Later an we 1

»

will use the cbservation above in compactness argumenis. \

A

Let us now summarize in this context some of the

, =~
definitions and results given in the preceding chapters. .

0. Dcfinitinng (cafa 0.3). A‘g-t of formulas R is equationdl j
"if for any family (xiﬂ)z'el of R-definable subsets of W,
there is a finite set I, < I, such that
”;erof"f’ I € J} = anI{XI-; I € I3,
(Note that the dn{iéition above coincideswith the o
regular d.fjﬁition of an aquational set in K”éeﬁausn of N (f

b-ing saturated and lemma I.1.(i)). N

7

A formula m(;;?) is an equation if fm(?;?)} is
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Jr—-

1
. Py

squational. Let us call a definable set X a claosed set if X

is definable by an instance of an -qu.uaz.

Note. It is easy to check, by compactness, that a definable

set X is closed if for any family (X;) ;e of conjugates of

X (i.e. of S-conjugates of X)), there is a finite subset Io

S -
of I, such that,
N {Xz-: i € 1:0'3--—- N X;5 1 € I3.

-
.

1. Definitions (c.¥. I1,A.0 and III.0).

]

(i)-Given a-type pand Ac K, we let v

Xia)§ 3€E A Q€ Sand p @D N

P5-to

let ps-—pﬁ.

éivcp/ types p and yfywe may p and ¢ are S—
equivalent if p and q are SN —equivalent i.e. if ps ~
as. ) >

(ii) Given A C B ©€ (C, p a type over A and q a’'complete type

over B extanding p, we say ¢ is an Sc-minimal

extension aof p to 8 if for any extension r of p to B,

qg > rg ) qg -rgn

-

/
q is an S-minimal extension of p to B if ¢ is an

SF -minimal extension of p to B.

£4

3
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Prop#iition. For any A ¢ ¥ and type p over A, if S is

*

equational then ps is squivalent to an A-definable ormula.

Proof. By IIl.11 A is SF —closed in ¥:; the rest follows by

¥

II.A.3. W

Definitions.
,////

(i) (c.f. 1I.B.4) B;vcn atype p and AC K, we say p is A-

irreducible if p is (S,A)—irreducible i.e. if, for any

(S,A)-definable formulas @, and @, in o
) .

P 9;Ve, = p |~ @, OF p = @5}
p is irreducible if p is N-irreducible.

P is full if p is SF -full i.e. if p is
(]
' - D
irreducible and p° ~ p N DS(M ( = (p(Xja) € pj @ '
€ §)).

%}

5. IS ' “a
(ii) (c.f. II1.B.7) A set A ¢ ¥ is irreducible (resp. full)

if pvery complete type over A is irreducible (resp.

full).

4. Proposition.

(i) Let p be a type over A. Then p is A-irreducible ié; p

admits, up to S-efuivalence, a. unique S-minimal

-

-+

extension ¢ to A (¢ is then such that qs ~ ps) iff




Fr

—~—

_there is a complets type q over A, ;xtcndinb p and

/

' ‘such that q” ~ pv.

(i) Every model in ¥ is full.

LY

Proof. (i) is a restatement of II1.B.S.(ii) and t(ii)

follows from III.3. ® ' (

S.—Thecrem. Leat A c ¥, p a type in a finite tuple ¥ of

é

variables; suppose S is squational. Then,
(i) p has; up to S-equivalence, finitely many S—minimal

extensions to A. . .

—

/
(ii) Let €y1°°°+8,_,, be A-irreducible (S,A)-definable

il

formulas in ;, and let P " "1Pp—y be complete typas

over A such that pj ~ e;, (i < n). (Note that, by
proposition 4.(i) the pi’s always exist). | *
Then, up to S-equivalence, p,,***,p,_; are (all) the
distinct S-minimal -xtu;siaqs qf’?ﬂta A iff
PS ~ Vi(n©r and ©, £ O, (i ® j).
Thus it is suggestive to think of the S-minimal

extensions of p to A as the A-irreducible components of p

to A.
/
Proof. For (i) c.f. II.A.13 and for (ii) c.f. II.B.6. W
- 4 ND
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6. Theorem, ) ' .

{1)

ii)

(iii)

Prootf.

Honotonocity—-transitivity. Given Ac B ¢ Cy pg @ type
over A, Py 2 :afplot- type over pand py a complete '
type over C, P 2Py O pgy then p, is an S-minimal

extension of py to C iff p, is an S-minimal extension

of Py to € and Py is an S—minimal extension of Py to

N

4

B.

Local-character. Given A c B and C ¢ H, tp(C3B) is an
-

S-minimal exterdsion of tp(CjA) to B iff far any

formul a Q. 1":%% and any finite tuple Z" of slements in

C, tp(Z3B) ix a F-minimal extension of tp(c3A4) to B,

where = cl"'(g).

Symaetry. Given that S is thg set of all nqt:utians,/n
c Band A cC, tp(B3C) is am S—minimal extension of
tp(B3A) ta C if+f ‘tp(C;B) ts an S—minimal lxt;nsion of

tp(C3A) to B. >

L 4

(i) follows from 11.A.12 (see also fI.B.1é&); (ii)

follows from 111.17 and (iii) follows from IV.6 and. IV.7. B

A
-

-

Note. Later on we shall give different gtatements of the.
. ’ 3
symmetry property than that given above.
7. Theprem. Let A c B, p a‘:omple{:- type ovar A. )
. 0\ .
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, \
(i) Let gqMe a complete type over B extending p. Then, ¢~

r

is an S-minimal extension of p to B iff for any *

formula ¢ in §, q! is almost over A, where ¥ - cl"'(cp).

(ii) Suppose B is a model, and q, and q, are S—minimal

3

extensions of p to B, than qf and qg are A-conjugates

of each aother. y

v

’~

Prqo# . ‘ . -

(i) By the local-character property (c.¥. 6. (ii)), we cam—

assume without loss of gensrality S = cl"'(q)), for some

formula ¢@; -and consequently we can assume S is

L 4

-equational .

15t Case.. B is a model. Then, the claim follows from

S ITI.12.

- ©

2nd case. B is arbitrary. Let gy " " "1, be the S-

minimal extensions of ¢ to some model # D B; by
- .‘ . > S N | S

theorem 5. (ii), q Vz'-(n(qi) .

Suppose q is an S—minimal extensgion of p to B.

Then, by transitivity, q; is an S-minimal extension of ,

pto M, (i < n); it.follows from the ‘firsj:_ggége that
3 / -

(q;05 is almost over A, for any i < n. Hence ¢° ~
’ s . : R,
Vien $9;) ig almost over A. D C o
1
Conver 5ely, suppose qs is almost over A; let : ﬁ
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(ii)

.

U-qs i < m, be all the distinct A-conjugates of qs

/4
s, .
. | . —
(Gj an automorph1§Q.over A). Then VJ<m(a}q ) is A

invariant, whegz;*;]definable. It follows that p

L2,

s - . s . S
Vj<m(°jq ). Assume # = M. Since ¢q i(n(qi) , we

have that
)S

Pr Y (i
1<n

By theorem 5, it follows that at least one aof the

*c}qi's (i < n, j < m is an S—minimal extension of p

to 4. Since, o; is an automorphism over A, we deduce

J N

that at least one of the q; s, (I < m), is an S-

minimal extension of p to M. We conclude by
monotonicity that ¢ is an S-minimal extension of p to
BQ

By the local —character property, q4 and q, are F—

t

minimal extensions of p to B whenever & ='tl+(m) and ¢

ne

€ S.

By II1.12, for any @ in S, ¢F ang %%

. z )
conjugates of each other. It Follpw§¢’ Yy an easy
s

are A-

compactness argument, that q? énd qg are A—conjugates

of each othep. (Note that q; = U iq3; @ € SH. ®
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Section B: Stable and Equational Thecriaes

We recall that 7 is A-stable, (A a cardinal), if for

any set A of cardinality A, there are A complete types (in ‘

g . B
a, single variable) over A; 7 is stable if it is A—stable
for some cardinal X.

a

We recall also that i¥ 7 is stable then there is the

4
»

notion of non—-forking extension of a type which satisfy

¥

s »
properties 0.— 3. mentioned in the introduction to this

e,

thesis. We shall state again, as facts of stability theorvy,

S

~—

these and further properties when needed.

PR,
It Bl RO

O. Definition. Let x be a finite tu]:;l- of variables. We say 7

»

—~
is S-equational in ;r’ if any formula in : is equivalent in T

-+ .
to a boolean combination of formulas in S¥, 7 is S-

equational if 7 is S—equational in every tuple .

-
ChowEERE BT e e el

T is equational (resp. equational in ) if thcr“c is a
set of equations R such that 7 is R-equational (r;osp'. R- '
- ) f
aquational in x). i
. «c
) R
Examplns.) ' - ,“ §

a) The theory ACFp {(af algebraical}y closed fields of

[y

¢
ord

characteristic p) is S—e&uatinnal with S the set of , ~f‘

F P

~
\ ; .
e e

SN A

atomic¢ formulas. (see I.4.(i))..

b) The thepry DCF, (of differentially closed fields of

s

&

oo b
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characterisitic 0) is S-equational)with S the set of

atomic formulag: indeed, it is a fact that DCF, has

elimination of quantifiers (c.f. [Sal 40.3) and we know
(see application 2 at the end of chapter f) that any

differential equation is an equation in DCF,.

c) Any complete theory of modiles is S—-equational with &
the set of positivie primitive for@ulas: it is a fact
that any complete theory of modules has elimination of
quantifiers up to positive primitive formulas (c.f. [Z1)
and we knaw (see 0.4.(ii)) that positive primitive
farmulas are equations. o

Let us finally say with?ut proof thet the theory,of
separably clased fields of finite & shov invariant is

equational in » single varia%pe X
/-

»

There are many possible variations on definition 1.

For instance we could define 7 is S—equational if 7 is
stable and for any 4 € 8 and cbmplete type p over B, p does
not fork over A4 iff pl'S does not fork over A; or that 7 is

¥
S—equaticnal in a given madel M if any definable subset of

‘M is equivalent to a boolean combination of S-definable

subsets of #. Also, some of the;(esuits below do hold with

such definitions.

Yo

Proposition. 7 is equational in x iff every dafinab{b

subset of ¥ equals a boolaan combination of closed sets.

: - 199 -
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4

P to H such .that (g

Proof. Obviously, if 7 is equational then every definable

set equals a boolean combination of closed sets. » ' . ,

Conversely, suppose any definable set equals-a boolean
. : ‘ & NN ; //i
combination of closed sets. Let .8(x;t) be an arbitrary 4

s

¥ . N
farmula and let .

- $ -
T = {p(x30) € cliB); @ixiD) - O3, °

i

where £ is the set of ‘all equations.
Consider

p(x;?)==£e(x;?)} ) {1w(x;?); @ € £3.

Suppose p(x;?) is consistent; let a, 3 realize p.

Claim. tpCasBIPE | tpla;b).

More generally we show that. for py and p, complete.

-

%

types in x over 3, if pyME = pyME then py = p,.
Indeed,léuppose plrE = per. Then (p1)§ = (pz)g; but,
. ) .

(by proposition IV.7) £ is full in ¥; hence (pl)E ~ (p1)§,

= (& | _ .

fa
1

apd (pz)E ~ (pz)g. So (pl)E

Now let ql(be an E-minimal extension of Py to H. Since
g, > (p )E, (by ITI.A.3) there is a cpmpfete'extensian q, OFf
I 2 . 2
[

E

3 E. since q, > (p)E = (pE,

> (qu
(by TI.A.3) there is a'complete extension gz of p, to ¥
. E E E E. - e P :
such that (¢~ > (q3)”. So ()" > (q3) s by m;nlmalxtw it !

o N

follows that (g )E = (q )E, whence (q )E = (q )E = (q )E.
‘1 3 1 2 3

-~ 200 -
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Therefore q e = qoM. Since by assumption every definable

subset of ¥ is equivalent to a boolean combhination of

”m

instances of formulas in E r(t‘ .e. of closed sets) we deduce

that 91 = 4- Hence Py = Py which proves the claim.

Let wix;B) € tplasbIME, and wix;b) - O(x3b). Write
. - :
mt.j(x;t)t”ht.. = 0i1,0,;; € E.

—’
vixst) =V,<mNi<n g

Let ¢ () =Vx(¢(x;8)—>0(x31E)); we have F §(B).

Let X(x;?) -=-v(x;?)M‘(?); clt::aarly X(x;g) € tp(a;g)‘, and

-

X(x;?) + 9(x;_?). w o

: ' i --) e 't .‘+ tl!
Moreover we dan wrlte X(x3t) Vj(m’\i<n"'ij(x’t) »

¢

. 3 =+ . _ 2
where \vjjc:q,jj(x,t)l\&(t) if tij = Q, g

~ .
and v, ; (xs) -=-q)1.j(x;t)\rlu?) i, =1,

It is easy to check that vij(x;?) is an equation. Thus

- [l Q

X € cl{E); hence X(x;?) € #, and therefore, "X(x;g)
€ tp(a;g) ) & ) L ;

Therefore p(x;?) is inconsistent i.e. there are

l'ﬂ Q LY

By = *»0, S ¥such that @; (x;%) |- 6(x;8), (i < n), and

Ofx; 5 = Vicn®; (X3 .

ey [
A

L e,
Thus, 6(x;t) -~ Vien®i (x3t).
We‘canlude 7 is £-equational in x. W ...

-
LS

Of course a similar result t% proposgticn 2 holds if,
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o

instead of a single variable x; we consider a tuple of

variables.

L/

-

T
| e ]

GQuestion. Does 7 equational in x imply 7 equ;tional in any

tuple ‘of variables?

1

:Prappsition. If Tiis S-equational in ? then 7 is stable. '

¥

Proof. Suppose T is S—équatinnal in ?} let Ac H and p a.

complete type in x over A. We have!p ~ pPS and plS is

\'completely determined by the set {phPop; @ € S3; hence p is

completely'deteémined by {pg; 9 € S3.
: ‘ - e

Now, for ¢ € §, p% is equivalent to a single formula

J

in 0%, l

“«

. . Since cardDS(A) . cardS + cardA, we deduce that there

are less than or equal to (cardé + t:':eu"dll)lsl compkete types

-

‘in % over A. In particular, if cardd = A 2 cardS, and alsi

~

=" A, we find tﬁatﬂthere are X completg‘gypes in ? over A

'
2

i.e. T is A-stable. W ' - o

Thus if T is equational in ?, we cah speak of non-—
forking extensions of types. '

Y o
‘We recall the follaowing properties of non—forking

extensiaons of types (see propertieg O and 4 iH the

v

A B s M e TSN, § WA G 1 R Bt b 5 L it v
.ty vty »
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‘Jl

‘?(oaf. By monotonicity—transiéivity'appliad to non-forking

introductién).

o

4Given A < H, p complete type over A in the finite
t : - o

LIS . —
tuple x, ¢ a complete extension of p to #, then

(1) ¢ is a non-forking extension of p iff qgq has less or

equal than 2’7'*%Q A-conjugatesj;

(ii) If ¢ is a non—forking extension of p then for any

formul a e(?;?), qhMO has finitely many A-conjugates.
Furthermore, non—forking extensions of types satsify
the monatonicity-transitivity property. (see property 1 in

the introduction). ’

Theorem. let T be stable, A € B, p a complete type over B
and R a set of equiations. If p dows not fork over A, then b

is an R-minimal extension of pPA to B. I T is actually R-

~

hquatinnal in * and p is a type in ¥ then in fact, p does
’ : )
not fork over A iff p is an R—minimal extension of pPMA to

1
R ’ - .
' s *‘ El

N
¥

.

A

) ‘ -~ .
,and R-minimal. extensions, we can assume withaut loss of
4

€

° 4

generality that & = #. :

1f p is a non—forking extension. of ph4 to B, then by

’

property (ii) giveri above, for any formula @¢’in R, pPe has

finitely many A-conjugates. Since @ islan equation, piho is

% .

completely QEterained by pi where & = él+(m); it follows

a ¥
re
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Thetrem (symmetry). Suppose 7 is S-equational, A cH, a, b

property of non—forking extensions.

-
*

that p§ is almost over A. We deduce from theorem A.7.(1i)

that p is an R-minimal extension of plA.

’ !
Suppose T is R—equational in : and p is a type in ;h

We have already shown that if p is a nan-forking extension
o+f pﬁA then p is an R-minimal extension of pMA to B.

Conversely, if p is an R-minimal extension of plA to

B, then by theorem A.7.{(i), for any @ in R, p~ is almost

over A, where & = c1+(m). It follows that pihe has finitely

many A-conjugates. Since 7 is R—-equational, p -~ U'{phm; P

€ R}; whence P has at most 2|T|**% A-conjugates. We
conclude that p is iynon-forking ext?nsinn af prA. B
Remark. (for stable ;heories), one can prove the theorém
aobove directly, without first in;estigating the Préperties
of R-minimal extensions (c.f. C[P.S1). Then, one deduces
the properties of R—minimal extensions from thosg of non-

forking extensions. For instance, the following theorem,

<

-

in . Then, tp(:;A 9 3) is an S—minimal extension of

’ tp(':;ﬂ) to A U B ifé tp(B’;A U is an S-minimal extension

1,
W

of tp(BjA) to A U 2.

Can be seen as a corollary of théprem 3 ahd‘the symmetry

A
1
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For caompleteness sake however, we will prove below

. N )
theorem 4 without the use of any pre—given result of

™

stability theory.

First, some lemmas,
. B ;/

ty

Lemma. Suppose 7 is S-equational in :, AcHl, pa complaﬁe
type in ? over A and ¢ an S-minimal extension of p to H.

\
Then, for any formula 6(?; ?)', qM© has finitely many A-

conjugates.

’

Proof. By theorem A.7.(i), for any formula @ in S, q§ is

almost over A, where & = c1V(p); hence gqlp has finitely

many A-conjugates. it follows that for éﬁy finite set S0 of )

ﬁormu1a§~in S, qMSy has finitely many A-conjugates.
. L =3 . . .
Now, given -a formula ©(x3t), since 7-is S-equational

2

in ?, there fs a finite set So of formulas in §, such that

)

6 € cl(54). But qrSy i.e. thl(S } has 41n1te1y many A—

conjugates; we easxly conclude that qhe has finitely many A-

conjugates. A

A

-

* -
’

Lemma. Suppnse T is Sﬂaquatiunab in ¥, ACB, & in A,

lnngtha = lcnqthx. Let E bn the set of all squations in ’(

Thcn the followxngjassertxnns'aro eaquivalent: )



R P S N,

1. ¢p(@38) is an S-minimal extension of tp(a1A) to B.
2. tp(: U A3B) is anys—mini;al extension of tp(: U A3A) to :
3. tp(: U_A;B) in an E-minimal extension of _tp(‘: U AjA) to

BI =
s

Proof. By A.&.(ii), since S < E, if tp(a U A;8) 1is an E-

#

minimal extension of tp(; U A: A to’ B tHen tp(g U A;B) and

f
' \

tp(;;B) are respectively Sﬁﬁinimalﬁexteﬁsions of

tp(a ubA;A) and tp(a;A) to B.
In other words we have 3.—> 1. and 3.—3> 2..
Similarly, 2.—> 1.
Remains £o§5how 1.—> 3.. Suppose 1 halds.

P -
By monotonicity-transitivity we can assume without :

loss of generality 8 = H. _

Let ¢ be a tuple in A and let @(R~yiT) € £ lengthy i

= lengthg. By lemma 5, tp(;;B)rm(;;?A?) has finitely many A;

~

conjugates. It follows easily that tp(;ﬂg;s)rw(;;?;?) has

finitely many A-conjugates. We deduce, by A.7.(i). that
tp(gﬂg;B) is an E—-minimal extension of tp(;?g;A) to B.

§*
Since 2 was arbitrarily chosen in A we conclude by A.4. (ii)

that tp(g U A3B) is an S—minimal extension of tp(g U A; A
i

to 5. W
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Proof of theorem 4. By lemma &, if ¢tp(ajA U B) is an S-

minimal extension of tp(g;A) then tp(g U Az4 U B) is an E-
v .

minimal extension of tp(; U A3A), where E 'is the set aof all
equatjons; since £ is full, we deduce, by A.6.(i), that

-+ -+ . .. L < - -
tp(b U A,a U A) is an E—-minimal extension of tp(b U A;A).
By lemma & again we conclude, tp(g;g U A is an §—-minimal

. 3
extension of tpibs;A).
The converse is given by symmetry of the argument

above. N ‘

Lemma. Suppose T is S—equational, A ¢ B, ¢ c N such that

tp(C3;B) iz an SB-mini@al extension of tp(C3A). Then tp(C;B):

is an S-minimal sxtension of ¢p(C3A). .
Proof. - Suppaée.tps(C;B) b p%: where p is a complete type
over' B extending tp{C:A).

Then of course tpg(C:B) > gg. By SB—minimality it

S S

'follows that tpg(CsB) = pgs hence, 7 being S-equatiaonal,

tp(C3;B) = p, whitch implies tbS(C;B) = pS. Thus tp(C3B) is

an S-minimal ‘extension of tp(C;A). B
Corollary. T S-equational, A € B, A ¢ €, such that ¢tp(C;A)

is S-irreducible (resp. S-full). Then, the follaowing

assertions are equivalent:
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a. tp(C:B) is an Ss-minimal extension of tp(CiA).

b.-tp(C3B) is an S—minimal extension of tp(C3A). ) -

.

- tp(C3A) |- tpR(C3A) (rawp. tpR(CyA) - tp3(C1B)).

Proof. By lemma 7, a—>»b. By proposition A.4.(i), b—>c.

Finally, c—>a is clear. ®

Theorem. Suppose 7 is S-equational, A C B and A € C. Assume

moreover S is symmetric. .

Cun‘{;er the following assertions:

a. tp(B U C3A) is an S—free amalgam of‘tpﬁ(B;A) and

S .

S N

tpi(C;A) ovar A.

b. ¢p(B O C§A) is an S—free amalgam of tp> (BjA) and
¥

tbS(C;Af aver A. .

c. tp(B O C3A) is an S—free amalgam of tp(BjA) and tp(C;A

over A. : f‘

d. ¢p(C3B) is an Sa—minimal axtension of tp(Ci1A).
e. tp(CiB) im an S—minimal extension of tp(l;A)..

Then, a—3b—3c—3d—e.
: r )
If in addition ¢p(Cj3A) is S-irreducible then b, c, d,

and ® are equivalent; if tp(B;A4) and tp(C; A) are S-full

then all the assnrtigﬂb are equivalent. -

s

el s fnr

YR e d ke
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-

. -
v

. Proof., a—3b—3c is immediate, for tp(C;A) > tpS(C;A)
7
Ssm o oSz,

> tp3(C3A), and ¢p(B3A) > tp

P
-

T c——3d follows from proposition IV.1 (since S—free

amalgams aré a fortiori $-minimal amalgams.
LI

d——e follows from lemma 7. 4

So wé have a—>»p——>a3c—>d—e.’

o

Suppose tp(C;A) is S—-irreducible. Then,
e—b. Suppose e holds. Since tp(C;A) is assumed S-

irreducible, by proposition I1I.5.(ii), we have that

tp(C3A) | tp°(C;B) s in particular tp(CiA)— tpg(CiB) .

s

Let X, =<x,; b € B> and . X, =<x_; ¢ € C> and r a

A3

complete type fn ;IA;é over -A extending

°

tpS(B3A) U ¢p (C3A); we want ta show

. -

/ R
. 4 3 =+ =+
tp(B O C3A NSix3x5) € r N Six 3x5) o

Sa-let g(Xp;¥2) € tp(B U C;A) N S(x 3%, i.e.

F o(B;2) and @(¥p;) € S; >
we already noted that, tp(C;4) — ¢pp(C;8); hehce
i tpic; A tpg(g;B) and therefore

»
“

054 A) = 035

It follows there is a subset R aof § which is

o

equational and such, that tpR(gih)|— Q(E:?g),

J




B Let ©(33%2), 3 € A, be such that © ~ tpR(Z;4); thus ©
i, ies S-definable and the formula
> -3 - - -
X(xg;a)¢=vwg(e(a;x2)———%m(xg;xg)) .

‘ j
. is satisfied by gv

"

By ITI.19, X(¥p;3) 1s S-definable;

thus tpS(B34) - X(X;3). Sihce also tp” (C3A)

g

L]

- pR(G A 1 0as¥, we deduce that r - X (323 2) AS(T5 x ).

¥
Now, clearly X(xp;a)A®(a;xd) - PixPsx2) .

f s
Thus @(; 3 € r. ) ;/
Since we already héve b——>c——>d—e (from the ;irét
part of the proof), we conélude that if fp(C;A) is §-
irreducible then b; c, d and e‘are equivalent.
Finally, suppose'tpr;A) and té(C;A) are S—fuil; tﬁen- 
. &
sy tp°BfA) ~ tp5(B;A) and tpS(C;4 ~ tpS(CiA ..
b—>a has now become immediate. d
b Since, S—full =3 S—irreducible and we already know

a——b, we deduce from what preceded that‘iﬁ that case all

.

© »

the assertions are equivalent. N -
-y,
I

1. Suppose 7 is a universal theory which .is S—equational

- Exampl,s.

with § = cl*(At). Let # be a submodel of H, a,b € H. For

™
— A - —
- 3 € M, let H[?] denote the substructure of # generat;i\

>
- (2.

— - 5
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e

by # U £3; H[Z] is a model of T.

Given Nl > M and N2’D M "1’ N2 madels af T, a map

f:Nl———iﬁz is a "homomorphism” over M if fMM = id, and
. - -+ .
for any atomic formula @(x) and c 1q“N1,

E@(c) = [ glfc).

Then, tplaz¥® U b) is an S—minimal %gtension of

!

£plas#) iff for any N > H, N a madel of T, f :H[al—>N
and f2=H[b]———9N hamaomorphisms over M, there is a
homomorphism f:M[a,b]l——>N over M such that fpMM[a] = fl

and fMLb] = . f

-yl

* Indeed, since M is a model, tp(a;M) and tp(b;M) are

S—full. Now tplazM U b) is an S—-minimal extension of*

V)

tpla;#M) if+f tp(M U azM U b) is an S—minimal exténsion of

-

tp(M U a;M) i+f (by theorem 7) tp(M U a OMUbB:M is an
i <
]

S-free amalga& of tpg(H U asM and tpi(H U bsi).

. To conclude the proof of the claim, it suffices ta
translate what S—free amalgam means in terms of

~—

homomorphisms, (noting that for HiNo, 2 M, there is a

homomorbhism f:N1~——9N2 aver M iftf tpg(ﬂl;n)

< tpDHyz) . T
2. Suppése 7 is a complete theory of modules and S is the

™

closure under conjunctions and disjunctions of the set

of positive primitive formulas; we already noted 7 is S~

)

R V' 4
e J

(o ) ) ) ‘ /
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10.

11.

equational.

Now suppose that ¥ and N are pure submodels of &

such that the sum M + N is direct (i.e. # N N = {0} and

M+ N (g pure in M; then tp(H-N) i€ an S-minimal

extensﬁbn of tp{H: @) to N (1.e., M and N are independent

over o).

t

Indeed, it is easily seen that, since # N N = {03

-,

‘and M + N is pure in H, tp(# O N;8) is an S~free amalgam
of tp(M;8) and Ttp(N; D). It follows from theorem 7 that

tp(M3N) is an S—minimal extension of tp(M;8) to N.

- ,

Note. With the notations of thearem 9 above, but with S an
3
arbitrary set of equations (7T not necessérily S5-

equational), and tp(C;A) S—zrreduc;ble, the assertxon

c—3b still holds. Furthermore,(1f tp(C A) and tp(B A) are

.

S5-full then the assertion e———%a strll holds. Indaéd, in

\the proof of e—>b (resp. e—~—9a when tp(C A) and tp(B; A)

arexs—full) above we only used the *act that S is a set .of-

\
t

equatqu\. S
- 1. ?

o
\ ° ¢ B I ‘»!“
- '
B

~ T ) )
Cnrnllary. L-t\T be stabln, " a mudnl, H '€ B and M c Cy Ra’

b

symnatric set of e.u\a:‘an!. If tp(B;C) is a nan-—forkinq

‘

-xt-nlian‘af tp (B3 H) mn tp(B O C;m is an R—freae amalggm
_,AJ H X’. ) noe ., hY
of tpﬁm;m and tpgtC;H) éw-r . Z : :

1
" [N °
o f -

! < '
' . \ ! - . -
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. *

Proof. Since R is a set of equations and M is a model,

tp(Bs K) and tp(CiM) are R—full.—By theorem 3, i+f t:p(E;C)

. \

does not fork over #, then tp(83C) is an R-minimal

extension of tp(B;n);'_ hence, by note 10, tp(8 O C;#) is an

R-free amalgam of tph(B;M) and tp5(CiM). W

' ’
In fact, corollary 11 characterizes a set of equations

+ in a stable theory. - ' ' i

-
-

.

" . To explain what we mean let us first define a formula

m(;;?) to be fundamental in T (T stable) if;

% N . -
whenever M is a model and ;, 3 are in M such that

« —} *
gp(g;H U B’) does not fork over # and F cp(g;b) then, for

any a’, B’ in W such that ¢p(azH) = tp(a’;#) and tp(B’-;m

=’tp(l—7”;H),l we have F (p'(g’;g').

It is easy to check that, for R a symmetric set of

for;mufas, R is a set of fundamental furnlulas iff whenever #

3
e

is a madel and a, b are in' # such that gp(é';n.u 5 does hat

fark over ¥ then tp(f U 3 O M U B34 is an R—free amalgam
' =23 L, d -3

of tp(M U azH) and tp(M U b3 M) . ~

ch—,%.h\ ,

\
T e

. ’ e "
[Proof. Suppose R is a set of fundamental .formulas, and r |

‘ a complete extensiar\ qf tpin U g;H) UtpM U 3;}1) over M.
£
4

Suppose @(X3y) € £p(M,U 3 OH UBiM and @ (D) € Ry .

let 2 and 3 be tuples in # U 3 and # U E’)resp'ectively, such

i

&

1.




‘12.,

"then, for ‘any"fur'mtjla q:(?;?) there is a formula dm(?;g), c

that F @(c;d). If ¢p(a;M U B) does not fork over M then

tp(H U 3;” U 3) does not fork aver M; hence tp(g;n U 3)

does not fark over #. Sir;;ce @ is fundamental and

E @(l;jd), it follows that q@(x;y) € r. Thus ¢tp(M U a U °
-2 . -»

# U biM) is an R-free amalgam of tp(# U az#M) and

i"p (M U B;H).
The converse follows immediately from the definition

of R-free amalgam.]

We will use in the theorem below the following fact of

" stability theory: if 7 is stable, M ¢ B ¢ H, p a complete

“

type over ¥ and ¢ a non—forking extension of p over B,

-

-

in M, such that for n in B, @(xXin) € q iff E de(nid); we
say that ¢ is anheir (:;f P

Vo t ‘ N »~
‘11

Theorem. 7 stable. A formula m(?a?) is an equation iff
Q(;; ?) im fundam-nta(l -

¢

Proof. By corollary 11, if p is an eduation then whenever
H.is a muﬂel, ’;, B’ are in ¥ such that tp'(;;ﬁ U B’) does not

fork aver M,
A ) =¥ \’-) "“."‘ ‘ e
tptMUa UM UbsM) is a E—free amalgam of |
., , A
tpi#M U asM) and tp(# U bsH), where & = cl” ({9™,9" ). It

.

)

Ca
!

b3
- e

B P




follows that ¢ is fundamental.

Conversely, suppose @ is fundamental. Let # be.a model

v
\

and p 3 complete type in % over M. -

-

Since 7 is stable there is a formula dm(?;g) v ? in M

)

such that for m in M

) € p & E dpimie).

Claim. p U dcp(?;g) |nm q)(}';?).

3 s

Indeed, let 3’ ~B realize p(X)_U {do(f;c)3. Let 3 be
- -+ . ’ . . -2 .
such that tplaz# U b) is a non—foarking extension of p(x);
then tp(a334 U D) is anheir of tp(aiM) which implies, for n
in M U -b’, ‘
@(R3n) € tp(azM UD) & E dp(nse).
Since FE dep(b:cd), p(x3b) € tp(azM U B). We have,

F qw(g;g) and tp(;;H U 3’) is a n::m—fnrking extension of

il

tp(3;Mm . It follows from the definition of a fundamental

formula that F q:(g';g‘), proving the claim.

By compactness, we deduce there is a finite subset Po

of p suchf that, Po U d«p(?;g) ~ m(?;?).

.

Furthermore, since for any m in M such that um(?;g) B

E

‘ 5 A
€ p, we have that F dms;;;c), we get

Py PR-

We Have shown that for any model # and complete type p

aver M there is a finite subset Po of p such that %, p#.
-~ . i N

-




£

~

- Gection C; Rank and Height .

T -

Preliminaries. For sihpl{city we assume in this section

)]

card? = Nb. Let us recall some faqts and definitions of

stability theory. (For more details c.f. [M] and [P.11).
- 7 is said w—stable if for any infinite cardinal A ana any

int A of cardinality A, there are A—many complete types

b

aver A.
-Tis sqid superstable if there is a cardinal p such that
for any cardinal A 2 ¢ and any set A of cardinality 2,

there are {:many complate types over A.

= The Morley-rank is defined as follows: (by induction on

L]

a). . .
- - for any type p, MR%p) 2 O. | '
- for a limit, MR(p) 2 a 1€ MR(p) 2 p for any p < a.
—~— for p a finite type, MR(p) 2 a + 1 if there is a

sequence (p.). of contradictory types extending p and
I'i<w .

such that HR(pi) 2 .

- for p arbitrary, MR(p) 2 a + 1 if MR(py) 2 a+l for any’

L.}

~r finite subset of p.
We write MR(p) = @ if MR(p) 2 & and MR(p) Z a + 1}
MR(p) = w0 if MR(p) 2 a for evary a. If MR(p) = a, the.

/
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£ M

Morley-degree of p, nh{th we d.né%é‘ﬁy*nd(p), is the
max{mum (finite) ﬁabb;r of cuntradt:tory types extanHing

g and of Marley*rank &, N ‘ ' ' A
Fact 1; If pis a complete type ovar Aand q is a non-

furking extension nf p to B > A, then MR(q) = MR(p).

Fact 2, T is u—stablt,iff HR(—) takes its value in On. o

The Lascar-rank is defined on complate typcs over subsets
‘ °, e . ‘
of H, as follows: (by induction on a).

- Up) 2 O for. ady complete type p over a set.

- for a limit, U(pY 2 o if U(p) 2 g for any p < @

"~ Utp) 2 @ + 1 if there is a forking extension:of p (aver

i

some set) such that Ul(g) 2 a.

¢ ;

Write U(q) = a i¥ U(q) 2 a and U(q) Z a + 15 Ulq) o #

= o0 if U(q) 2 a for evEry ordinal a.

“s ' I3

Fact 3. If P is camplete over A'and ¢ is a non—fnrking .
LJ "
extension of p over-B8 > A, then U(p) = U(q). 5,

N

Fact 4. 7 is superstable 1§, U(—) takes its values in On.
The fundamental order (2) on complete types over models

is defined ns follows:

given p and ¢, complete types over thie models ¥ and e
k¢ . .

N reaspectively, we:write p2gqgif be’any farmul a m(;ﬁ;) "
v s

Tu, o

in p there is ? such that m(*-*) is in q.

‘Fact 8. If q is a non-forkxng uxtqns:ons of p thun q2p

¥

(and clearly p 2 q).~ .

Fact. 6., if p 2 q, where g is a cn@plntextng uvef ﬁ'thnn‘

there is an automofphism‘q such that p <'oq. ' ,,5

H
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Definitions.

T s g2 e m e v SO S L T I A il e T
T ' " ! 3
Nz 1
2 e AN
N
12 A
w ' g
: . 4 .
[
i - ‘
LN 4 1 ] s
' 3 3 ;
- § “'(
' :
nS = %
said positive if p <~ (M) \
. : - wp A o
e i \\_\ h ::
3 t . ¥
Yo . e i . ¥
ie N
v - ;
AR
i [
f . 4

(i) We say (7,5) has the d.cic. in ¥ if S* is @quational

<0 ’ “:: . “ep = ,.J' . y :{
- (recall % ='{fp{xjt) €5H. , 5 :
. é A: N o ?
tu) (T,S) has’ the d.c.c. on irr‘cduc;blo types in ¥ if there
1: _no infinitq dnscundinq chain of irrcductbln poiitiv. \ ;
typds in. : i.e. if ghera is no sgquanc- “’1’1‘(&: of '
N tyﬁes i.n * over W such that pi c o, py is §-
" irr‘cduciblu, Pisy |— pi and P: p‘ p“,l, -For I € w " . v
. Say (T S$) has the d.c.c. (rnsp. d.c.:. on irrnd,q.u:iblc
- , o , - L e
typgsi it (T,S) has the ‘d.c.c. (resp. d.c.c. on irreducible . .

. 5 -~ ) R
_types) in any x. )
- & . ‘ O’. ' ‘. }

(d.\.c. stands for, "descending chain condition™). . . :

{
o 4 .
1

l B w

. , /,,{- kb )
Note.. Since a type ¢ ovér ¥ is S-irreducible iff there is a

dampl ete type q’

¥

¢,
" ]

v -
e, . a s

ovér H extending ¢ and sich’ that (q")s«

¥

-/-T/‘.bal.&«., Sl ok et T b e g w3 4 o

=.‘q3,« (7,5) has the d.c.c. on irreducible typesg iff there
; % X = ; . :
, - »t \\‘_~H: i :
s o . = i
. is no sequence (Pj)i{w of complete types over # such that - vy
' ’ . . ‘ ’ + 5 ¥ M k2 +
. s ’ . # . %
“ » S S, C . -
4 s ! p + > p ’ ‘ ‘ * %
. ) ) i+l = i ‘ ) - .
® 4
' s ¢ ’ " : .
, N I \ . i
ERY W Y] 5 R § ‘ :
: P ey ‘ 4 - ' b .
Exampl es. . ¢S ’ N :
’t B ’T‘ 'I *
\ e ENT = 3 ‘ |
. * ’ ’ J, ' ¢
1
. -t - 218~ : ™ p . )
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¥

“written as a finite ynion of cosets of G, since q is 5-

{

a) (ACFn5,S) and (DCF,,S) hdve the d.c.c., for § the set of

<

quantifier—free positive formulas (see the end of
.

chapter 1). .

b) Let 7 be a cqmpiete thear& of ﬁndules,'s the set of.

positi\ve primitive formulas. Then (T,S) has the d.c.c.

on irr\ducible types iff there is no descending chain

(G

ili<y of S—definable subgroups (of H) such that 6;e1

has in*&nite index in G;-
Indeed, suppase p and q are irreducible positive types
such that pt+— q and ¢ ¥ p. Then for any @ in g there is vy

in p such that v~ ¢ and ¢ ¥ . Now @ and v are instances

of“positive ﬁrimitive formulas so tﬁat @ and v detine

ar

cosets 6f S-definabhle groups Gm and Gv respectively (see

0.4, (iiX).

>

Moreover GW C~Gm (for v — o) and Gw'has infinite inde
in G$= for if G: has finite ipdex in Gw,'then @ can be

1 Y

o
» P I3 v -
\ < * +

3
3

irreducible 'and @ € q.it would follow that one of these

v L]

‘cqséfs belong ta q, whence to p; so there is a coset X of

-

GQ wﬁich"belung to p and .q3 but v € p and ¥ is a coset of

»

G hence nécessanil& X ="y (if not—X Ny =8and pis

w?
inconsistent)  therefore v € g M.

It follows easily that if (p;);;  is a sequence of

- positive irreducible types with p;. ., p; and p; b* p;,4

i
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i

3 .
Ai < w) we can build a chain (Gi)x‘<u of S—definable groups

with Gz’+1 < Gi ancj’Gi.‘_1 has infinite index iQ 61..
[ . 3 \
Conversely if (6;);.. is a chain of S-definable groups

()
as labove, let
a

'

Ps --*Gl-,U_ £6G; G an S-definable subgroup of 61-

“ ﬁ} s ) of finite index in Gi}' c ,

. Then (pi)-i<u is a sequence of pésitive types such

el
that: * .
v [' ‘ L
- P; is S—irreducible: for i+ p; uKnxi, XI. S—-definable,

]

then for some G in p;, G~ U1-<nxj i.e. G ¢ u1.<nx1.; also

s

without loss of generality we can assume X; € 6. It

s

follows (by. Voi Neumann's lemma) -that 6 C UjEij' J < n,

’

where for each j € J, X; is a coset of a subgroup G(X;)

of G, of finite index in 6,3 hence for Jj € J, 6(X;) € p,

and therefore G’ = Gn 'ﬂjeJG(Xj) € p;; now C].E&I"'IY

G'n Ui(nxikis empty unless G’ < X; for some, i < n; we

conclude that p;t— X; for some i < n.

1
2

T Pijyy Py for if 6 is a qsubgrnup of Gi of finite index
i3 ¢ b’ '
in G; then 6 N 6;,4 1% a subgroup of G;,, of finite index
in G;.4- o ‘ ' o
‘_, Pi B pyyqt for Px Tl 61';'-1 ‘Gx'+1 having infinite index in

61-). . . . k i ] ¢

]

Thus (pl- )i<w is a: Jescending chain .of 'ill-'r:edg.lcible

T

~
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Sbsitive types.

1. Thaorem, Let 7 be S-squational 15 X

(i) 1§ (T,S) has the d.c.c. in ¥ then T is totally

transcendental.

(ii) if (7,S) has the d.c.c on irreducible types in X then T

is superstable. . . e

Proof .

(i) Suppose (T,S) has the d.c.c. in x. Let A be a set of

(ii)

cardinality A =2 Nb. A complete type p in ; over A is -

.
completely determined by pﬁ; since § is equational pﬁ

is gquivalent to a single formula over A.

It follows there are at most A ( = cardD(A))-many

complete types in x over A. Thus T is totally

v
14

transcendental.

Suppose (T,S) has the d.c.c. on irreducible types in x.

Claim. For any set C and complete type ¢ in X over C

.there is a finite subset A of C such that g is an 5-

minimal extension of ¢iA to C. -
Indeed, suppose the claim is false; we first

construct by induction (on i< ) a sequence of sets

.

(Ai) and a sequence of typesn(qi)i<w«such that:

I<w

- 221 -
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-~

Cﬁ.f\/\f\ S

Ai is finite, A; © A; 4 < B;

) |

9;+1 is not an S—mieimal extension of ¢q; to Ai,fl'
Take A, any finite subset of ¥ and g, = qlA,.
0 0 0 .

/ . Suppose the construction of {A;) and (qix achieved
%

up to I. Since the claim is supposed false, ¢'is not an

a

S-minimal extension of qui =q;-
By theorem A.6.(ii), it follows there is a formula

» @ in 8 such that ¢ is not a #F-minimal extension of -y

i i Jer
where & = c1+(m). Hence, there is a finite subset B of

M, B > A; such that gMB is not a F-minimal extension of

*

q; to By therefore (by A.6.({ii)) qIB is not an 5-

s S LN
. to B. Thus (qIB)} F q; (since

minimal extension of q;

]

3 ' '
qrB o ¢;) and q§1f'kqb8)s (for if qf[— (qPBYS, qhB

" would be an S-minimal extension of q; to B): VLo

3 » "
T

Let A,,, = B and q;,; = qM. This finishes the

s +

inductive step of the construction. C

B ‘.
wa, we construct by induction a sequence Ypi)i<w
. . i

3
1 P

of complete types over ¥ such that P>

i+l ;‘Qf, and p; is

- 1Y
»

an S—minimal extension of o;9; to ¥ for some

automorphism o; of #H. S

-
oy
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* and - =

Let py be an arbitrary S-minimal extension of 90

ES

to # and, suppose the construction of p; achieved yp to

» v

1. Let g’ be an S—m1n,i;na1 extension of T,q; 41 to M;

since gy afs

s s 5 S
(Uiqu-l) = (crjqj) and (g’)" > (u-jqi) .

Hence, by I11.A.3, there is an S—minimal extension q;- of

o;q; to M such that f(q’)S > (q;.)s. Furthermare (g’)
v
then ¢’ would be an S-—

s

S S

# (@)%, For if @5 = (g}

minimal extension of 0;q; |and by moenotonicity 995 w1
would be an S—minimal extepsion ot o,q; to «:rI.A1.+1; it
would follaws that Tiat is an S—-minimal extension of q;

to A‘Ii_._1 .

Now, by induction hypothesis p; is an S—minimal

extension of ogq; to H. Thus, by A.7.(ii), there is an,

autamorphism T over Az’ such thHat Tq; = P;-

Then, Tq‘ is an S-minimal extension of To.q,
» *q , _ i95+1.

(for q’ .was chosen an S5-minimal extension of o.q. ¥,
. ) ATi+1

S .8 _ 5., .S 5
tq*) : ‘(‘rqi) = pi,(ifor (q’? ;(q;.) .

1 z

.

Let o;,, = to, and Pi+1 =T’ This finishes the

inductive step of the construction of ”’i’i(w'




S

~~

see

~

4

But of course, the sequence (st')z'<w as constructed

above contradicts the d.c..c. on irreducible types. The
claim is now proven.

v
4

From the claim we deduce that the number of

complete types in }’ over a set C of cardinality A is at
most the number of triples <A,p,q> where A is a finite

subset of €, p 'is a complete type over Asand ¢ is an S-

°

minimal extension of p to C.

Clearfy there are A-many finité subsets of C; and

over a finite set there are at most 2“’-—m‘any complete

tym_ll.ﬁ.ls, a type over C has at mgst 2"‘—many 8-

minimal extensions to C.

We conclude there are at most 2“? + A-many

- <
b

compl gte types in,; over C, which proves Tis-

superstable. M )

-

“
'

Naturally, one is interested in the converse of

theoremn (i), (ii).

Fl:or instance, if T i\\:-'.‘*a complete theory of modules hndi
S ig the set of positive primitive formulas then iy@t is a
'f:aFt (c.€. [Z1) that 7T is totally transcendental iffythere '
isj no infinite descending chain of S—definable subgrodps,

N
stable iff there is no infinite descending

and T is super

)
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chain (6;) ;.. of ‘S-definable subgroups with Gifl of

_infinite index in 6;. Thus, in that case, 7 is totally

transcendental iff (V,5) has the d.c.c and 7 is superstable

iff (7,8 has the d.c.c on irreducible types (see example

s

b) above).
* However, in general, the converses of 1.(i) and 1.(ii)
are false as the following example shows: . N

Let £ = {P;3i < @}, P; a unary predicate symbol, and

q

let 7 be the complete theory which says:

Pie1

C Pi and'Pi\F}+1'is infinite.
T is clearly S-equational where § = c1+({P}; i< u})\Rh

and T is also totally-transcendental. But (7,5) does not

have the d.c.c. on irreducible types #pr the sequence

‘upj)i<w,,where p; = {Pi(x)},bis clearly a Hescending chain

of positive S—-irreducible types.

' On the other hand, it is obvious that T is R-:

equational, where R = c1+(£ﬂPi(x)}), and (T,Rﬁohas the

-

d.c.c.-

fThe following question ?hen arises:
GQuestion. Given a totall&—transcendental (;ESD- /JK%‘
superstable) equational theory T, canrwe find a set tﬁ
equations R much that 7 is R—equational and (Tyﬁ) has the
d.c.c. (resp. d.c.c::on irreducible types) ?

We do nét know the answer to this question; we shall

\
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give below criterions fur‘pn«S%quational tatally

transcendental theory (resp. superstable) to have the °

. . - LI
d.c.c. on x (resp. the d.c.c. on irreducible types).

1
- +
>

v

2. Definitions.

(xi Bivun definable sets X and Y, we lay‘x fixes Y if any.

u

automorphxsm o wﬁ//9/fixus srtuiso X . fixes sutwin. Y

LY

(i.e. oX -’ ) 4 aﬂ/aY = Y),

1

1i) A family (X;),., of definable sets is an invariant

family if for any i{,j € I, X; fixes X}.

‘
-~

Thus, an infinite invariant descending chain of:S-

N v 1o

definable sets is a sequence (X;), . of S-definable
sets such that (X;);.. is an invariant family and '

—~

A}
. ‘ @

3. Lemma. Suppose mﬁ?;?) is an nqdation and m(ggg)l— ¢(?;a:)r

‘where o is'nn automorphism, thcn‘q(;):) ~ m(?;c:). - ‘5'

Proof. Suppose m(x D 7 m(x-aa) Then we can eésily

construct a: sequence (a )1<w such that m&x, 1+1) k—m(x,a)

and g(x; al+1) 7 @(x3ja;); but that contradicts

$

eduationality. , , -



Lemma, Let X and Y be non—empty definable sets; say X

- gix;3) and Y = v(x;g). Suppose X fixes Y.

?

Then, if X is A-definable (A < H);'la‘is Yo .
/ .

I1f in addition ¢ is ar equation then there is a

formul a Mx"’o""'yn—i) such that v(x;g) ~

C I A T NN NN Y VPR TR
: Proof. Since X fixes ¥, it is clear that if X is A-
definable then Y is invariant over A; hence Y is A-
definable. ) . L2

. Suppose in addition that @ is an equgtion. By 1.9.d)
" there is a finite sequence <:o.,---,cn__._1 D% eiements in )
m(x;g) such that

b

E Apea®lc ;80— @ (x; ) —0(x;8));

-

id other wcn"«:l-_--a,“':0,-"J.,ve:n___1 are such that m(xig) is

the smallest g-definable set cnntaid?ng Cb""'cn—i'
{

Claim. For any element b in‘Y, we have

' A . . -+ -~
{e(x,yo,---,yn_l) € tp(bﬂcoﬂ--1ﬂcn_1)}AAj<nm(yi;a)|—lv(x;b).
v For, suppose b’,do,---,d"__1 are elements such that
\

tplb~cgn=-ra, ) = tplb/~dg~=" ~d, 1) and FE A @(d;52)5

let o be an automorphism such that ob = b’ and oc;

. xS
‘=d; (i < r). Then, dg,"-*,d,_4 are such that @(x;0a) 1is

‘- 227 -




infinite descending chain of S5-definable sets if there is

o

“~
W e Ve N L S
i

. . * T % ; ‘
the smallest q)—definablé set containing do*""dn—l' Since

F Ai(nq’(di;g)’ it follows q:(x;a'g) p—wp(x;%g); by 3, we infer

‘., . ' o

that q;(x;a'g) -~ q)(x;:) i.e. o fixes q)fxl;-a’). * : o
i (»ﬁ * 4
' A
By assumption it follows o fixes ¥ = w(x;g). Since

E wib;B), we have E w(b’;0b). We conclude Ew(b ;B),

which proaves the clainm.

o '

Therefore, for any élement b in Y there is a formula

xb‘(x"yoa-o“'-"yn__l) in tp(bﬂclﬂ'-'*cnl_l) such \that

. . - 5
x, (x,yo, '"'Yn—-i) AAz-<nq:(y1-;a) - vixs;b)

i.E- i

! -
370" Vp—1Xp (Xa¥0" " "1V py? AAj<n?(yi;ai - wix3b);

o b

. and clearly
) s, -+
F E’YO' TR XpPaYor Tt Yy ) AN (LY iR

By compactness, we deduce that for some boy=""yb
Al

m—1

x g P -3
vixsb) ~ Vi(mBYGT Va1 ¥p, (XY Tt a Vg ) M p® Y 53D .
We conclude, A o

PN

- . -+
wix,0) ~ Jyg oy, XX Vg1 " sV APy 5D,

:vhere X = Vi(mxb,' ]

{

Terminology. We say that a definabjle set X contti/.s an | o

an_infinite descending chain ‘x1’1<$ of S—-definable sets

SUCh that x > XO- R ¢ i ‘{ ' X’;
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\ .
* A descending chain (xi)i<w of S—definable sets is said
-~

minimal if there is a,sequence.(mj)i<w of formulas in §

such that X; is i&—defﬁnable, where ¥, = c1+(mi), and X; is

’

minimal (for inclusion) among §i—definable sets which

contain an infinite descending chain of S-definable sets.

o

Lemma. If there are infinite descending chaina of S-
definable sets, there are minimal infinite desélndfnq

AY
chains of S-definable sets.

i ]

Proof. Suppose there are infinite descending chains of §-
definable sets. We construct by induction a descending

chain (X;),. - @f S-definable sets such that, for I < @,
. . . . + ke
therg is @; £'s, X; is B;,-definable (¥; = Cl,(mi))’ X;

]
°

contains an infinite degscending chain of S-definable sets

¥

and X; is minimal (for inclusion) among ¥;-definable sets
. Cor

- which contain an infinite descending chain of S-definable'.

i
£

sets: ' ) o

N 4 ’
take mocw(x = x) and’xo=w(x = x) and suppoge the

M
i

construction done up to i. -7

o

Clearly there is ¥ € X, such that ¥ contains an

£ I

"infinite descending chain of S~deﬁ§néﬁye sets and ¥ is @~

definable, for some @ € S. he Y

¢
-

Since & = c1+(m) is equational, it follows there is a



N g ; , \
[ Tave
#-definable set X g X;, X contains an infinite descending
' \

A}

chain of S—-definable sets and X is minimél as such. Let

-\g .

Obviously (Xj)

Xjpq =Xe

jcw 18 minimal. W

e

Note. If (X;) ey 15 a minimal descending chain of S—

definable sets then, for i < «, Xi+1 fixes Xi. For if ois

an automorphism which fixes setwise Xi+1 then oX; N Xi

5> X, . which implies that axi'n X; contains an infinite

I+1

descending chain of S-—-definable sets. Now, if Xi is Ei_‘

definable, &, = cl¥(g;), then oX; N X, is alsa ¥, -

definable; it follows by the minimal choice of Xi that

1y,

Xi 0 aX; = X;. Hence X, € oX; and ?imilarly Xi co i

X
° . ®

Thus oX; = X;. | L .

had @ s
kThédﬁéq-éland;cornilary 7 below have been proved
LY y

jointly by the author and A. Pillay Jc.f. LrP.S1).

&

g

Thers, (T,S) has the d¢c.c. iff there are no infinite

invariant descending chains of S-definable sets in A.

«

- ; .,

. ~ A
L)

Proof. Suppose there are no invariant descending chains of

S-definable sets and (X;) is a descending chain of S-

i{w
&
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i

Y

¥

definable séts; we will show a contradiction. .
By lemm§.5 we can assume (X;) is minimal. By the
vy
note above, for any I < j < w, Xj fixes X;; thus, if for
. .

I<w

jsk > i, X; fixes. X, and X,, then X, fixes X, and X, fixés

X,
J , N A

It follows that, given i < @, X; does not fix x; for
almost all i, i < j < w, (for if there is an infinite

sequence Updpcwr 1 < Jp < Jpgy € @, such that X; «fixes Xj

LY

for any n < w, then (X.) is an invariant descending

Y n<w
chain of S-definable sets X). . ﬂ\

We can now easily +ind a subsequence‘(xi )n<u of
3 ) /

(xj)i<m such that for any n < w, Xi. does not fix X&.ﬂ.
Let ¥, =X, , and let u% be an automorphism which

fixes Y, but not Yn+£’ (n"< w); let ag = id (on M). For y

€ "2, let YU = aan wher

2

. : ' -1 s
o’n = U'g(o’ -o';i(l-) .-.".0.2(" 3 cﬂ:: 1d.

Claim. For v € Y2, the set , ) o

po=LY. .3 0 ¢ @} U V.3 1 € <92, 3 not an initial segment of v}
v v ] n¥ 0 ) :

t '

a
. - ’\
e

is caonsistent. . o

Proof of tﬁc claim. Note‘firs% that,,ior n < Wy, "

Yvrn+1 < Yvhn' Suppose P, is inconéistent. Then, for Bgme

.n < wand ng,"rt,n,_, € <“2,uﬁk not initial segments of ¥

e

B




ok

T UNUER g e e B S e e P S w Ay &

[

N

e R ) S e iy, B e gy o g -owtgir g ahange " SRR 1y 5 I R T T L AT
¢ .
© ¥ . '
. ® - e L, 3
d .
- * :

-]
Ehelmy 30" ord

kS
~_
«e

g ) \Yvrn

ey S

¥ Y

contains an infinite descending:chain of

s -

Clearly, van

«

S-definable setsj. it follows easily that for some k < ¢

v

Y N ¥, contains an infinite descending chain of 5-

vin
definablé 5e£§.

Write n=n,. Let m be the smallest poséjble, such that

o Bl SR e ke ™ - o -
MDA R o v e o3 0 Wi BB " T & apen gt o T

n(m);# v{m); then vam+1 N Ynhm+1 2 Yvrn g Y“,‘whence

b

st T e vt 1y

Yvhm+1 n Ynﬁm+1 conta%nS/an infinite descending chain of s-

.

definable sets. "

P

But Y, .., and Ynhm+1 are distinct conjugates of Y 3 ‘ :

it follows that for some automorphism o, oYy * Y,, and

oYm N Ym contains an infinite descending chain of S5-

definable sets.

Il

By the minimal choice of Y, it follows that o¥, N Y_

PR

but of course qu satisfies the same )

= Ym 1.e.\Ym < aYm,
b .
! E

minimal property as ?m so that aYm c Ym. Thus aYm = Ym‘x.

P, is therefore consistent.

¥ »

Now, clearly, for v # g €.92, p, and p_ are

N o s sy T

contradictory; so we have 2"—many types over a countable

set (the set of -parameters in the Yn's), thus contradicting

~

+ . ( ! N
the fact that 7 is totally transcendental. That proves one .

°

direction of fhe theorem.

The converse is obvious. B
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following; if 7 is as in theorem & and (X;)

o [}

=Notd. In fact, in thé proot D*lthgoreﬁ &, we have shown the

> i<y 15 a minimal

N

Hescending chain of definable sets then there is a

3 A v
subsequence of (x})i<w which is an invariant descending

'

chain.

Coraollary. Assume in addition to the assumptions of theorem

- thgt T is Nb*catagorical. Then (7,8) has the d.c.c.

Proof. if (X;), .. is an invariant descending chain of
definable sets, we can assume all the sets Xi i < W) hY

defined aver the same‘finiée set of parameters A; but then,

v
-

by Nb—categoridity, there are at‘must finitely many€3
distinct sets definable over A so that the sets X, (i < )

are almost all equal ¥X. Thus, there are no invariant
descending chains of definable sets. ’ -

We c?;}yg; by theorem 6. W - ‘
: }//“

- - — -
V-4 : ? /’/?.f,
From now on, we assume T is S—equational in ‘@ single

variable x, and all types considered sHall be types in x.
We make such a convention just for notational simplicity;

all the results below have analogues in case. T _is S5-

equational in ? and the types.considered are types in ?. .
v o

Consider the following Beighﬁ function on irreducible.
. - i

f

i

G I I Y A DRt S U By
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“8. Definitions.

,
N J
4

-~

types (defined by induction on ordinals).
- h(0} 2 O for a}]l irreducible types.

- hip) = 6, ¢ a limit, if h(p) 2 a for all a < &.

- hip) Z a+ 1 if there is an irreducible type ¢ éuch that
- N

@ - 2%, p° 1 ¢ dna hig) 2 a.
Write h(p) = a if h(p) 2 a ang>h(pi‘l at+1;

hip) =w if hi(p) 2 a for all a € On.

4

. Clearly, h(—) takes all its values in On iff (7,S) has

the,d.c.c. on irreducible types.

- Naturally, we would like to cbmpare the function h to

the Morley rank or the U-rank. We are lead then to

investigate in what measure is the increase of height d?

irreduéible types related £E non—minimal extensions of

A

v

,

types.

-

- kS

)

(i) Similarly to definition 2, given types p and ¢q, or just

single fo(mulas, we may that p fixes ¢ if whenever o is

* an automorphism, with ap ~ p, then og ~ q.

(ii) If p is an irreducible typa we let

S

X

Inv(p) = p° U {X3 X is S—definable, p> p* X, and p° fixes X3.

o

&

Note. If p is a type over A, X a definable set and p fixes X,

then X is A-definable, for obviously X is A-invariant.
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One can also show, using compactness, that plfixeé X

Il
4

iff there is a formula in p which fixes X.
In particular if p is an irreducible type which is
definable over 4 then every set in Invi(p) is definable over o

A. It easily follows that if p is complete over A4 then p —

Invip). (Note that p° fixes Invi(p)).

‘ ] Recall that a type p is irreducible iff there is a
y
éomplete type' p‘ over K such that (p’)5 -~ ps; moreover p’

~

is the unique S-minimal extension of p to ¥.

Notation. For p an irreducible gype, we denote by p the S-

minimal extension of p to M; we have pS ~'ps.

R

-
.

9. Praposition. Let p and ¢ be irreducible complete types over
A, such that q° I p5. Then, there is an automorphism o such

s s

and oq extends p iff q

that op’ ~ p UlInvip) is

cunsistcni.

Observe” that ¢° U Inv(p) is consistent if there is no

S-definable set X such that ps|f X, pS fixes X and qsl— X.

Proof. Let p’ beran S—minimal extension of p to some model

M (M containing the domain over which p is defined). Then
(p’)S ~ps and Iﬁv(p') = Inv(p). Thus, without lass of "

generality, we can assume p is a tomplete type over a maodel
Y k1

%
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v

.
.
S

)

n I

Nr \J»‘ .
« - -
‘

h &
-
e 3
‘

Suppose g7 U Invip) is consistent. .

v
'
1

$ ~ps and

Then -there is an automorphism o such that op

¥

dns Up is consistent. For suppose this is not the case;

]

then,; by compactness, there are Svde{inéble subset;

“

ov "X, of M such that X, € p (i < @) and

qul— L&<nxj for any automorphism o such that aps'w ps. .

+

Let X = U, . X  and . )“ g ‘ .

I I

Y-,

n‘{aX, o an automorphism which fixesaps}.

Since X is S-definable, Y can-be written as a finite

g

intersection of conjugates of X, whence ¥ is S—definable. -
Clearly pfl¥ixes Y, moreover ps|f Y, for Y L&<nxi and
kY . e‘ &

’
[N

PP Ui X. Thus Y € Invip).  ©

On the other hand,“qst— Y, sincg4qs|—-ax for any

autumorpﬁiém o which fixes ps. . .
s s et '
Hence ¢° U In¥(p) is inconsistent .
So there is an aytnmnrpﬁism o which fixes ps and such
that aqs Up is congistent. - *

It follows that oq extends p: for if nat, there are S-
definable sets'Yo,---,Yn_l, Y; € oq i.e. awslf Yi and

<« . . -
[ N

cqs UpH L&(nyi' Hence, -there are S-definable subsets
: b
Xo»***sX, 4 OF # such that, X; € p ie PP X, U<m,

1

s

VM @ AFREEEHETe ot T AP I At of o S B TR Y e

ak

L i tba L i s e L P %y L

T et €

AP R LA

'
Arrwerea %8, \Wis

s

= atr
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and oq y

s S,

But aqsf— pS (since oq r-aps and aps ~p
c ]

so oq- - Ui(nYiU Ui(mxi'

By irreducibility of uqs (which follows from the

irreducibility of q°) we deduce that, either og® |- Y; for

some f < nr and that contradicts the choice of Yyy ar

’oqsl— Xi for some I < m and that contradicts the

v

consistency of ch&S U p. So og does extend p

This proves one direction of the claim.

Conversely, suppose there is an automorphism o which

fixes pS and such that oq extends P-

.

As we noted abave, p — Inv(p).

Now, since o fixes p° and p° fixes Inv(p), o fixes
—1 ‘ v

Inv(p); hence o fixes Invip). -
Finally, since oggq extends p, oq U Inv(p) is

4

cansistent; hence
, -1 s - ~
’ . o “(og” U Invi(p)) q U Invip).
is consistent. W ' ‘

<

Nate. With p and ¢ as in proposition,, one should compare

|

the condition qS U Inv{p) being consistent, to the property
of one group having infinite index in another group. Here,

s

qS U Inv(p)~cansi5tent intuitively means g~ hag infinite
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index in pS, . ‘ B
. [ . =
- N

’iﬁﬁﬁ ~ In fact the following is true: given that qS'U Inv(p) 5

H

is consistent, then for any S-definable set X, with pslf X,

-«

BT S

. there is an automorphism o such that ap® ~ pS and . | CTs
i ) . \ e

og® U {IX3} is consistent. (For if o¢> |~ ¥ for all o as

e ok

.

.+ above, then ¢° - (QoX. (X i# S-definable and p° ¥ QoX}

s e

thus 7 QoX € Inv(p), contradicting the fact that

. /-\ ’ ) ;},‘ T
- @ u Inv(p) is consistent).. o

“t ¥

N -
L At e SRk

»

To give an even better appraximation’of the notion of

SRR - -

E

"infinite index" one needs to speak of g@n arbitrary S-

definable set (not necessarily irreducible) having

Soride a0 i MR

"infinite index" in another S-definable set; this is

. ‘ possible but requé;gs defiping Inv(p) for an arﬁitrary type

-

p (c.f. [5.21). We shall not deal here Jkth such notions.

&’

‘ 10;fthqaﬁhm;nLct'p and ¢ be irreducible types over A such that

. s s s s '
- q° — p~ and p¥ p* @7« Then, thers +is an automorphism o which
'fix-s‘ps and such that oq is a forking extension of pPA iff

$ s -

¢° U Inv(p) is consistent.

e
~ 4

Proof. We can assume without loss of genkrality that p is

r
~

a complete type over a model M (see beginning of the praof.

. <

of proposition 9). ) ; ‘ ‘4

Suppose qs U Invip) is consistent. By prapogition 9
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04

there is an automorphism o which fixes p® and such that oq
\ ~

extends‘p. Clearly tﬂen (aq)st— ps and, sincekps|f-qs,

s

pslf oq- . We conclude that ogq is a non—-minimal extension

L B.3.
whence, by proposition ,a forking extension, of phA.

A

The converse follows immediately from proposition 9.

.

Th-orem._ﬁoé';.be superstable. Then, (7,S) has the d.c.c.
6n-irr¢duci$1¢~€ypes iff there is no infinite descending
chain (pi)i{wAé%ii;reducible positive types such that
Pisy v Inv(pi) is inconsistent for any I < w, i.e. iff

there is no infinite sequence (p;) ., of irreducible

‘pasitive types such that v

Pivq = Piv Pj V‘Pi.ﬂ_ and, .

for i { w, there is x‘, pilf Xi, P fixes Xj and

¢

p‘-,'_i"'xi- ‘ )

Proaof. Suppose there is no infinite descending chain

4¢i)i<w such as apbve and suppose (qi)i<w is an 'infinite

descending chain of irreducible paositive types; we will

show a contradiction.?

Note first that for any i < j < k < w, i#lqj U Invig;)

is inconsistent then g U Inv(qi) is inconsistent, (since

. ” o~

g Y In\(qi)|7-qf u Inv(qi)).:

It follows that there is i < w such that for any Jj, i

- 239 ~
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- ¢

< J < w, 9+t 9 Inv(qj) is consistent: for if not wg'easily’

construct an infinite (increasing) sequence (ij)j<u such

-

that g,

i,+1 U I"V(qi,) is inconsistent for any J7 < w;

F

whence, from the note ab6¥e, q;ﬁd U,Ianqu) is

inconsistent for any J <'w. But that means the sequence

«

(P;)icw = 45, j¢ 15 @n infinite descending chain. of

irreducible positive types with pj+1.u Inv(pj) inconsistent
_, ‘ .

for all j < w, thv;/é;:;radicting our assumption. .

So we ‘'might as well assume {q;? is such that

I{w

9; 41 U Inv(qi) is consistent for all I < w.
¥

We construct now by induction a sequéence of types
. L]

(Rj)i<w such that p; is a complete type dver a model M,

i

o - 3 S -
p; = chjrni for some automorphism ;g (p;) a}qi, and

P;i4+y is a forking extension of p;-
For i = O take M, an arbitrary model and pé = qobno;
suppose the construction of (p;) done up to I.

s

Note that, since p; ~ o,;q;, Invip;) ~ Invio;q9,;); so

941 U Inv(a?qpi) is consistent. By theorem 10, there is

an automorphism T such that tq,, . is a forking extension of
S o P N u
a?lpi. Thus o,%q; ., is a,iarFing extension of p;.
{
qet O;4q = 0;%; choose #;, ., > #, such that
. /]
! S 8 . de ;-
(°i+1qi+1{ﬂi+1) 041974, and ;41941 M; 4y is a forking

@

t
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extension of p;. Let p, =0, ,q; M; 5 p;,, thus chosen

satisfies the required properties, and so ends the
inductive step of the construction. l

But, the sequence (pi)i<w constructed above,

contradicts superstability (see Fact 4).

This shows one dire:iion of the claim. The converse is

obvious. 'R

1

s

Theorem. Let p, ¢ be complete types over the ﬁodels M and N

respectively. Then, p 2 q (2, the fundamental order, see

9
preliminaries) iff there is an automorphism o such that

cq3|~ps and oqs U Inv(p) is consistent.
' A\

Proof. Suppose p = gq. Then p 2 q, and therefore
(see Fact 6) there is an automorphism o such that p € ogq.

S

It i clear theﬁ\that aquJ p- and dqs U Invip) is

consistent (for p — Inv(p)).

S

37 a°, it fallows that ogS — p° and.

Since ¢

uqs U Inv(p) is consistent.

s s

and og

Conversely, suppose aqsi—rp U Invip) is

i consistent for some aytomorphism o. Then, by proposition 9

applied to oq, there is an automorphism T such that Tad

extends p. -
It *olla&s that g 2 t&q, and since Tog =2 q 2 q (for q

is a non—forking extension of q, see Fact 9), we conclude

. - 241 -

°
f

o YRS




Y
BT TN A

13.

that g 2 q. W ’ [

PFapusitiun. Let (7,5) have the d.c.c; The following

assertions are equivalent

1. For ahy irreducible pesitive type p, MR(p) -rh(p;.

2. For any irreducible type p, MR(p) = MR(p>) and Md(p)
- ﬁdtps) -1,

3. For any type p, MR(p) = MR(p>) and Md(p) = Md(p).

4. For any irrldgcibln positive types p and ¢, if q |~ p and

§

_ pp~q then MR(g) < MR(p). *

Proof. Note first that for any irreducible type.

AMR(p) < hip) (for if MR(p) 2 a + 1, then ps, which'is

equivalént to a single formula, contains infinitely many

~

Y

f distinct :qmpleté“types over M of Morley rank greater or

equal to a. Hence, there is necgggg;i}y’ga‘irreducible type

ey

P
q such that ¢° — p%-and p° 1 ¢° i.e. h(q) < h(p), and MR(qQ)

Z a. The claim now follows immediately by induction on

=

MR(p)). .

-

1 &> 4: immediate

-

4 ——> 2: Suppose 4. holds; let ' p be an irreducible pre.

1
-

Clearly MR(p) £ MR(p>).

.
©
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A

' as a disjunction of formulas of the form w=p

)

s

S

On the other hand, i¥ 9 € p then p°Ap can be written

s
Mi<n P50

y ~: T — |
where P; is S—-definable, pslf @; and ®; ps i < n).

"Now , @; can be written as a ﬁgnite disjunction of

¥ 1 4 3 « =z ‘i .
irreducible 9051t1ve types (c.f. A.3); say ®; V}<nqu' e
: f s s i ' i

Thus qj]—-mi = p~ and p b‘qj; hence, by 4., MR(qj) .

< MR(pS) for any i < n and j < my; hence MR(mi) < MB(ps)'

for .any £ < nj;

hence MR(¥) = MR(pSan; . T0;) = MR(p5). Thus
MR (p5Ap) = MR(sS) for any @ in p. We conclude MR(p)

= MR(p>).

A}

. Finally, it is clear that Md(p) = Md(ps). Suppose

N
e

Md(ps) > 13 then there is an irreducihble type ¢ su&h'théF
qsl— ps, psff qs and MR(q) = MR(pS). Fram what preceded
MR(q%) = MR(q) = MR(p®), which contradicts 4.

Hence Md(p) = Md(pS) = 1.

2 —> 4. Quppnse 2 holds; let p and q 'be' irreducible
positive.types)such that g+ p and p ¥ q. ’ ]
Clearly MR(gq) < MR(p). .

If MR(q) = MR(p) then (considering p and.q as single

P

formulas) MR(pAIq) < MR(p), for Md(p) = 1. But p |- pAlq,

since p° ~ p; thus MR(p) < MR(p) i.e. MR(p) < MR(p®) .

B
S
e

Faa
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now e

N

contradicting 2.

We conclude that MR((;;) < MR(p‘).~ CTT

- e . K
" )

»

2A—>3: Suppn«:se 2 and 4 hold ;3 let p be an arbitrary type

and let pnyy--*,p, 4 be its minimal extensions to H. By A.S5,

s _ s

P Vi<n 857
So there is i < n such that MR(p®) = MR(p}). By 2

i

MR(p5)» = MR(p,); since p; > p, MR(p,) € MR(p). Sa MR(p®)

£ MR(p). Since p |— ps we conclude MR(p) = MR(ps).

‘ . L s
- Clearly Md(p) < Md(pS). , '

s

+

and such ;

-

Let, ¢ be a complete type over H extending p
that MR(g) = MR(pS). Since q o p° there is an S-minimal

~ extension p; of p to ﬁ7C§h that ¢° 2 p? tc.f. I1.A.3).

/
S

14 p3 * ¢°, then, by 4, MR(¢®) < MRGD) € MRS By~

2y, MR(g) = MR(qS), it follows MR{gq) < MR(pS), contradicting
the choice aof ¢q. hence qs '"‘pf. In pa;rtit:ular q extends .P3

4

\ moreover, .

MR(q) = MR(p) = MR(p). FAEI

We showed that if ¢ is a complete #ttension of p° ta A

S

of Morley rank equal the Morley‘ rank of p“~ then q extends p

and MR(q) = MR(p).

A

It follows that Md(ps) & Md(p), whence Md(ps) = Md(p). .
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3 ——> 2@ Suppose 3 holds; let p be an irreducible type. We

have immediately that MR{p) = MR(pS). Since ﬁs ,,pS’ we

also have Ud{(p) = Hd(ps); since Md{p) = 1 we conclude that
¥ J
Md(p®) =1 and Md(p) =1 (for Md(p) < Md(pS)). W

A

Application. The simplest kind of equations araxthe

equations which have height at most 1 (c.f. 1.0, for

definition of height) i.e. those formulas p(;;?5 such that
any two instances of @ are either equivalent or

contradictory.
IS .
Such formulas have been called naormal by A. Fillay,

and consequently a theory which is S-equational in ;'wi;h S .

‘a set of normal formulas is called S-normal in % (c.f.

rP.21). .

For example, any complete theory of modules is S-
normal witﬁ S the set of p.p.f. |

A normal set is a set which is definable by a normal

formula. By compactness, ore shows that a définabie set X

is narmal iff any conjugate of X eithe} equals X or is"
5

~. disjoint from X. ‘ - .

Lemma. Let @(x;a) and wix;B) define normal sets and ¥

Plx; @) - wix3B). Then wix;B) fixes @(xja) iff thare is a

formula x{x), without parameters, such that

- 245 —
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'

LB ~ wixsB)Ar(x) .

: i;;ss )
- . 5 ' -
Proof. Suppose y(x;b) fixes @(xja). Let ¢ be an element -

14
- satisfying tp(x;g). Then,

£0(x) € tplc; NI U Iy I - @A) :
i m L3
R ’ far if d'is an element such that tp(ds@) = tplc; & and

F v(?;g), then there is an automorphism o with oc = 4.

3 .

From F v(g;g), we get F \r(?;dg); also by assumption we

have F v(?;;’).
v('x;g) and \y(x;ug) being non-contradictory, we deduce
(by normality) that w(x;g) and yixs; ob) are equivalent;
; 2 . -+

hence o fixes w(x3b), and therefore o fixes g(x;3;a), i.e.
q)(x;g) ~ m(x;cr?)'. Now F m(?;g); heﬁce [ q)(g;a';)) and
_ > _ )

finally F cp(g;a)., which is what we wanted.

So there is a formula O, (x) in tplc; @ such that

- ec(x)/\w(x;g) pu qa(x;g)

\

and of course we have F Qc(c)Aw(c;g).

By compactness we deduce that

i
- /

-+ 2
pix3;a) ~ vcEAec(x) Ay (xsb)
where A is a finite set of elements realizing q;(x;gi.

We conclude that tp(x;g) ~ x(x)/\\v(x;g), where

x{x) *-'—"»VceAec {(x).

The converse is immediate. R
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* Corallary. Let 7 be S~normal in x.
e

( , . (i) Let p and q be irreducible types with qs - ps, and phg

complete over @. Then qs U Invip) is consistent {iff

¢° U pM@ is consistent.

»
(ii) Let p be a complete type over &; consider the

following height function A, on irreducible types

, p
extending p:

hp(q) 2 0 for all irreducible types q 2 p.

hp(q? 2 A, A limit, if hp(i) 2‘ a for all a < A.

%

I . hp(q) 2a+1if there is an irreducible type r

extending p such that rs | qs and qS b rs.
Then, for any complete type ¢ over some model ,

L ) extending p, U(q) i‘h (g) (U the Lascar-rank). .

P
(1ii) Let p and q be complete types over the models ¥ and N

.

raspectivily. Then p 2 q if+ there is an automorphism

o such that aqs P ps and pphg = qpgd.

Proof. | ' o - b »

' (i) Clearly Invi(p) I pPd; thus if gs U Invip) is: ‘
~t:onsi«_--.i:'aant: then 51; is q° IU aho. |
Now if g5 v Inv(p) ‘is(inconsistent then ther-..e is

an S-definable set X such that p°> p# X, p> fixes X and

qs - X. It follaws .(by Acumpactness)‘ that a certain S5-

v
,or ' =
Vo
“ o ~
- @
- s B




(ii)
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set Z definable over &. We have that'q® - X N Y and

h_.an irreducible type ¢’ extending p.such that (q‘)

@, ¢® 1 @)% and | o

° a model. By'the induction hypothesis, ¢(g’) = «. 4 3

' theorem 10, there is an automorphism o such that oq”

definable sat Y in ps fixeé X; hence ¥ fixes X N ¥. By

'

the lemma above we deduce that X N ¥ =Y N Z for some

PP XNY; hence ¢S - Z and ppr 2 (For PP 2 Y N 2
=X NY and p° I ¥) which implies 2 € plg. We

conclude that qS Uphrg is inconsistent.

Clearly hp(q) 2 U{(q); we show by induction on the
ordinal &« that hp(q) 2 a implies U(g) 2 a. It will

follow U(q) = hp(q) and therefore {(q) = hp(q).

Suppose the assertion true for all g < a.

RS- e

For a =0 or a limit the assertion is obviousj;, . §

suppase hp(q) 2 & + 1. Then there is by definition of

-

P

hp(q’) Z a. By taking a minimal extension to a model

if necessa?y we can assume q¢‘ is a complete type over
_ By (i). (¢)% U Inv(g) 'is consistent; hence, by

is a forking extension of g, and _since
Ulog’) =< U(q’) = U(g*) 2 «x we'conclude that
Uig) 2 a + 1. S ..

I1f o is .an automorphism such that aﬂsl—-ps, and ph&

= g then aq® U phg is consistent; hence, by (i),
) h




g

B T B SRR ) Em s b et e e R By 1 PR TR e F LAY i
i R K . PRI T TR L ELEat K g ARG e L S i'ﬂ‘
- 4

*

Uﬂs U Invi(p) is~cansisteﬁt.¢éy theorem 12 it follows
C

that p 2 q.,

4

/1% p 2

q then clear{y ph@ = qIrF 4nd by theorem 12

there is an automorphism o such that ows|—-ps. m’

EY

RS

Remark. For modules, the translations of formulas and types

play a similar role to conjugates of formulas and types.

Mare explicitly, if 7T'is a complete theory of mo&ﬁles,
then, given a definable set X and an element a we let

aX=1{fab; b € X}. Note that if X is definable by p(x;3) then
1“ . N —1 _) '
aX is definable by pla “xja).
If p is a type we let ap = {aX; X € pl.

-
>

Now, similarly to de%inition"?, one says that p fixes

X By translations if whenever a is an element .such that ap ~
~ T\~
';\fﬁen ax = X.

Also, for S the set of positive primitive

formulas, and for p an (S—)irreducible type, one defines

Invtr(p) = p% U {IX; X S—definable, p° p* X

and ps fixés X by translations}.

And similarly to propositidn Q9 one shows that, for p

S U Invtr(p) is

[

and q irreducible types with qsr— ps q
consistent iff there is an element a such ﬁhét ag extends

p; we get also analogues of theorems 10, 11 and 12.

v

But, if X and Y areﬂs—?éfinable, i.e. cosets of
. o #

) !
/ f )

-«
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N\ =
- groups, ;nd ¥ ¢ X then X fixes ¥ by translations iff X = Y. )
i» i Itu follows that for p an irreducible typa'Invtr (p)

= ps, and therefare, if qs ~ ps, thén there is always an

element a such that aq extends p. We deduce for instance
: t

v

(from the analogue of theorem 10) that i+f qS P pS a‘nd ps ra

“ ‘4:1,S then there is arrfelement a such that aq is a furkiw

- ?

extension of p; it follows easily that U(p) = h(p) for any

m:'mplate type over a model If.

Tha impor';tant point to underline is that, in general
'algnbrgic equational theories one should investigate
v'al,glbraic transfor;‘mations (;.g. the translations for ‘ ‘

modules) which could play a similar role to automorphisms

e, ¢ (c.f. [8.2]).
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