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ABSTRACT 

-t -t 
We define a fo~mula ~(x;t) i~ a f1~st-order language 

L, ta be an equat10n in a category of L-struc~ures KIf, 

for any H ln ~, and set 

i El, ~. E H} 
1: 

there lS a finite set 10 ·c l such that fo~ any 

We say that a complete theory T is equational if any 

formula 1S equivalent in T to a boolean combinatlon of 

equatip'ns in Nod(T), and we note that equational theorles 

are stable. 

Thus, we develop a theory of~indepen~ence with r~spect 

ta equ~tions in general catego~les of structures, which is 

similar to the one 1nt~oduced in stability (and actually 

ident~al to it iri the case of equational theories) but 

WhlCh, in our context, have an algeb~aic character. 

, t 
We then c~mpare the concepts int~oduced in stabillty 

theory to correspondlng notIons ln the context of 

equational theories. 
'a 
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RESUME 
Il 

-. -. 
Nous disons qu'une formule <jI(x;t> dans un language du 

premier ordre L, est une équation dans une cat~gorie de L-

pour tout H 

~ 9~ 
d~ tout ensemble 

structures '~ si, 

il existe un ensemble fini 10 c 1 tel que pour tout 

" 

-. 
ni E rQ) ( F; fa l ) • 

Une théorie complète est dite équationelle SI toute 

formule est équivalente dans T à une combinaison booléénne 

d'équatiQns dans Nqd(T). Aussi nous notons qu'une théorie 

équatio~elle est stable. 
J 

Ai nSl , 
'.; 

nous developpons dans 'une catégorie de 

structures donnée, une théorie~de l 'indépendence qui est 

simllaire à celle introduite en stabilité (et en fait, 

" identique à celle-là dans le cas çles théorl~s 

équationelles) mais, qui d, dans ~otre contexte, un 
1 ~ .-

cara~ère algébrique. 

Par la suite, nous comparons les concepts IntrodUits 

en théorie de la stabilité à des concepts correspondants 

dans 1 e contexte des théorl es équati onell es. 
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Introduction 

The work presented ln thlS thesis grew out of 

observations of the author made years ago ta the effect 

that, in view of lts applications, stability theory 

can/should be developed in an algebraic context. 

The general idea would be to find and ta investigate 

properties which confer to stable theories an algebralc 

character; a systematlc study of such properties would be 

useful at the least for practical reasons if not for 

theo~etical ones. -This thesis deals with chain conditiori properties in 

various categories of structures. 

Ta make this more precise let us first re~all a few 

points on stable theoriesa 

A complete flrst order theory T is stable iff there is 

a cardinal À such that there are exactly ~ complete types 

over any model of T of cardinality ~. 

This car?inality restriction on complete types is 

equivalent t~ a local combinatorial property on formulas 

which, ~n summary, means that we cannot deflne an drder in 

T. 

--J-~ 
More prec~~ely, T is stable iff any formula ~(x;y) has 

-' 1 

1 , 



the following (ladder) property: 

-t 
for any model H of T there is no sequence (a,) '< of 

l Z W 

-t-fo -t-fo 
tuples in H such that 1\,< IJI(X;d') "A, ..... 'cp(x;a,) is 

l n l l :!:on l 

consistent in H for any n < w. 

Furthermore, satiblity permits the definition of 

canonical extensions of types, called non-forking 

extensions, in the following manner: 

fix a large saturated model 1-1; aIl subsets of H 

considered below shall be subsets of cardinality strictly 

less than the cardinality of H ~nd the types sh?ll be types 

in tuples of variables of length strictly l~ss than cardH. 

Let A c H and let p be a complete type over A. 

For q and r compl~te types over H extending p write 

qZr if there is an automorphism u of H which fixes A and 

such th-at' uq = r; of course .z is an equivalence realti0rt on 

1 _ '- _,t 

the set, of complete types over if extending p. 

Now.'stability ensures the existencê and unicity of an' 
(, 

z-class C which has càrdinality le?s or equal ta p 

2( 1~I+No). ~he e,lefl'lt=nts ~f Cp are then called non-forking 

ex tensi ons of p to, ïi. 

More g~nerall.y, if.A c B c H, p a complete type over A 

. r~ \1 1 

and q a complete ,type o~er B, we say q.is a non-forking 

extension of p ta Bor, that q does not fork over A, if 
) 

there is an extension r of q to if wh~ch 

2 -
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i s a .r)on-forldng 
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.. ; 

extensi on o-f p. 

\ ) 

This non-fork~ng nohon is best understood in terms o-f 

a <ternary) r-el ation of lndependence on the subsets of H: 

for- A c B,e c li, we .write B J, C and say "B is 
A 

indep.endent fr-om C over Ali if tp<B;C) is a non-for-king 

exterisi on o-f t p <8; A) to C. 
f.· 
~ 

w~ intend here"the word .. i ndependent 10 to convey the 

intuitive meaning attached to it. Thus, for instance, if T 

_. is the theory of infinite vector spaces over sorne fixed 

l, 

field then <T is stable and>, 

= A. 

t~ue: 

for- A c: B,C c H, A, B, C subspaces of if 

B J, C iff the sum B + C ''is dir-ect over A i.e. B n C· 
A 

For a stabl e theory T, the fol1 ow~ ng prciper-ti es ar-e 

'1 

O. Given A c ïf and p, complete over- A, there exists 'a 

unique ~-class Cp as described above. 

1. Monotonicity-transitivity: given A C Bec c if and D 

c: H, 

D J, C i f f D .1 C an d D -1 B. 
A B A 

2. Local-character: given A,.B,C ~ /1 

B J, C iff b J, C for- anY-fini~e- tuple o-f elements in' 
A A 

- 3 -
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3. Symmetry: given A,B,C, c if 

B J, C iff C J, B 0 

A A 

4. If A c if and q is a cQmpléte type over H which does not 

fork over 
-J>~ 

A then, for any -formul a <p (x; -t) in L, the type 

~-7t -7 
qt'IP = (1jI(x;m) E q; m c if, t: = 0, I} 

,,)1 

~):hilS -f ini tel y many di stinçt conjugates over A. 

5. If q is? complete' type 'over ElLe H>. then there is A _______ . 

C. B.7 cardA ~ cardT + No such that q $IDes not -fork over 

A. 

Note that properti es 1. and 2. readi 1 y fol1ow from O. 

Propèrty 5. can be seen as dual to property O. and 

"stability", in the intuitive sense of the word as weIl as 

in lts strict sense, is equivalent ta the conjunc:t o-f O. 

BOd 5. 

, \ 

Let us now des,cribe (without any proo+) the relation 

-+ -,+ -+ -7 
a J, 0, where a, b are tuples OT Elements in if and H is an 

H 

elementary, submodel of /1, in two algebraic: examples 0-4= 

stabl e theori es: 

1. For T the theory of algebraically closed flelds in a 

- 4 -
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fixed cnaracterlstic (sa that here H 15 a fixed làrge 

algebraically closed field and H is an algebraically 

closed 5ubfi eld): 
1 

~ ~ J, "jj iff H<a> 
1 

is'linearly disjoint fram H<i> over H, 
11 

~- ~ 
where l1<a> is the field generated by 11 and a. 

<Recall that if k C K,F, are 5ubfields of H, we say K i5 

1 i nearl y __ di 5jalnt fram F over kiff any sequence of 

elements in K which is linearly independent over k 

remains linearly independent over F.> 

Equi val entl y, 

-} -+ 
a J.. b iff for any fields K :::> J1 and F ::> 11, K,F C H, 

11 

and any field homomorphisms 

su ch that f and 9 are the identities on 11, ~here is 

a homomorphism 

-+-+ 
h:H<a'lb>~K·F 

-t ,-t> such that hI"H<a> = f and hl"H<..b = g. 

And under slightly different terms, 

~a 1 -1- • • th t th ...... b Iff, the set of algebraic equatlons a e 
H 

~ -tuple a satlsfy over 11 determines completely the set of 
1 

-t. ,-t, -+ b~ algebraic equatians that a sat15fy over H(b> I.e. a J, 
11 

i ff the set of formul as 

i5 logically equivalent ta the set 

- 5 -
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2. For T the model completion of torsion-free abelian 

groups: 

;;: J., 6 if-f the sum 11<-:> + 11<6> is direct over H i.e. 
1'1 

if-f 11<;;:> n 11<6> = 11. (11<;:>, the group generated by n and 

-Jo 
a) _ 

Equivalently, 

;;: J., t if-f for any abelian groups F ~ 11, G ~ W, F,G 
11 

c 11, and group homomorphisms f:l1<t>~F, g:H<6>~G 

such that f and g are the identities on n there is a 

group homomorphism 

such that hN1<'it'> = f and hr'H<Ït> - g. 

In different words, we have 

~ 4 -Jo 
a J., b if-f the set of atomic formulas that. a satisfy_ 

H ' 

over H determines completely the set of atomic formula 

-Jo ~ 
that a satisfy over H<b). 

(We remind the reader that the two theories given above 

have elimination of quantifiers). 

We notice in the examples above that the independênce 

6 
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~ 
relation (a ~ b) is stated uniquely in teros of ~he atomic 

H 

formulas, without mention of negated atomic formulas; we 

could say that, intuitively, ~ J, b if ~ is Indepen~ent from 
11 

-Jo t a-t 1 ï! b over " with respect ta the atomic formulas or tha ~ u 

" -t' -t 
iff a and b do not satisfy any atomic TorDula over H which 

is not implied by the atomlc 
~ -t 

formulas over H that a (or b) 

satisfy on its- own. 

While, a priorI, in arbitrary stable theories, the 

independence relation makes no distinction between e.g. 

atomic formulas and other formulas. For instance, if the 

theory has eliminatlon of quantifiers we would have, in 

-t -t. -t -t 
principle, that a J, b 1ff a and b do not satisfy any 

" quantifier-free formula over H which is not "represented" 
t, 

by the quantifler-free formulas over 11 that 1 (or 6) 
satisfy on its own. 

Note a1so tryat the la~der property given above of a 

formula ~ do es not establish any distinction between ~ and 

'~. Indeed, 'by compactness, the ladder property for a 

-t -t 
formula ~(x;t) is equivalent ta th2 following: 

there is a natural number n for which, in any mod~l H 

of T, ther~ is no sequence (~.) , of tuples in 11, such --, 
l l ',n 

that the formul.,as 

-t -t -t -t 1-
1\ <. <JI (X; a . ) 1\/\. <- . < ,~ (x; a ) for <' n 

1 l il 1-1 n J 

are consistent in 11; 

- 7 -
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and this last property is clearly symmetric in ~ and 

-,~. 

However, p crucial aspect of general algebraic 

theories is that sorne formulas are distinguished and 

consldered "positive" while their negations are considered 

"negative"; also most of the basic notions defined in these 

theories, among which, notions of independence, mainly 

depend on these formulas. 

For instance, in the theory of fields, the fundamental 

formulas are the algebraic equations; definitions 9r 

results in this theory are usually stated in terms of 

algebraic equations. Actually, in this case, we note that 

an important distinction between the algebraic equations 

and the inequations is the fact that the varieties (of sorne 

fixed dimension n) ~n a given field F are the basic closed 

sets of a noetherian compact topology on Fn • 

, , 

Thus, in an attempt to abstract this notion of 

-4 -t 
positiv~ness we say that a formula ~(x;t) is an equation in 

- , T if in any model H of"T; the intersection of a family of ~-

-~def~n~b~e subsets of ~ equals the intersection of a finite 

subfami 1 y. 

"" 

, r 8 
,1" 
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-+-+ In other words, ~(x;t) is an equation if the set of 

subsets of a model H which are definable by finite 

conjunctions of lnstances of ~, satisfy the descending 
\ 
" 

chain condition. 

-+ -t Again equivalently, ~(x;t) is an equation if, in any 

-+ model H of T, there is no sequence (a,) '< of tuples in H' 
~ ~ w 

such that the formulas 

are consistent in H; 
" 

one should here compare this last version of a fo~mula 

being an equatio~ to the ladde~ property: clearly the 

former implie~'the làtter. 
, 

\, 
:'r 

j , 

, More generally, a set of 'formulas S is said equat,i01!al. 
, ~ - ( 

if. in ,~';y mode:} H of T,-/the intersection o-f a(family of 'S-
r " 

, 
defiAable supsets equals the intersection of a finite 

subfami 1 y. 
, 

For instance, in the theory of algebra~cally closed 
'. . '" ~" ..... , ' 

, field]> in a fixed S:h-aracteristic, the ,sét of,' ~lg~braic ,., >" " 

equations in sorne fixed sequen,ce of" vari~ple~ '1 fs 

equational. This follows immediately from·theAnoetherian 

property, F[1] satisfies wHe~ ~ is a f~eld. 

Also, it is cleàr that equationality of a set of . ~... ~ 

formulas S in the theory T., makes the S~def.inb'ale subsets of 

, a mod~l H the .basi c closed set? of a noeth'er-j arr compact 
.;;: .. ~ 

j' . ' 
, 

, '. t , . 

:. 

.'. 
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topology on 1'/, which, in the,case qf fields, with"S the set 

~f algebraic equations, is identi~ied to the Z,risky 

topology. 

We say that a complete theory T is E-equational 

for E a given set of equations if any formula e(~;f) is 

-Jo -)­
equivalent in T to a boolean combination of formulas ~(x;t) 

in E; 

... 
T is equational in x if there is a set of equations E 

such that T is E-equational 
... 

in x. 

-+ It will be easy to show that if T is equational in x 

then T is stpble; we do not have an example of a stable 

theory which is not equational 
-t 

in sorne x. 

In the "'tl;lesis, instead of al complete theory T, we 
.' 

consider ~n'arbitrary category of L-structures for L a . . -, 
fixed first-order language. Furthermore, aIl formulas 

", 
considered shall be formulas i~ a fixed'set 8 e.g. the set 

-
of quarttifie~-free (or existential etc •.• > formulas; for 

.... ~( 

emphasis we say K,is a ~cat~9ory_ 

We define the notion of 'an equation in ~ as follows: 
~ 

... ... -Jo -+ 
given ~(x;a) and ~(x;b) formulas <in 6) with. 

parameters in H E Ob (OC) , one has the notion 

- 10 -

, 1 



/' 

// 

-f- -f- -f- -t-f-
meaning that F F ~x(~(x;fa}~o/(x;fb} for any 

morphism f:H~F in K. 

-f--f-
Now, we say that ~(x.t) is an equation in ~ if for any 

H in ~ and any set of the form 

-f- ~ 
P = {~ <x; ai); i E I, 

~ 

a· 
l 

in H} 

there is a finite subset Po of p, such that 

~-f-
/\PO W ~ (x; ai) for any i E 1; 

similarly, we define the notion of an equational set 

of fprmul as, ';i n K. 

Our fir5t task then is to develop in this setting a 

theory of independence with respect tq sets of Equations 

which is identical to the existent one in stable complete 

theories. 

We go about th1S task in the following manner: 

given A ç H E K and a set p of formulas (in 6) in the 

tuple of variables i with parameters in H, we say p is 

realized in K if there lS f:H~F in K such that the set 

-f- ~ ~-+ 
{~(x;fa)= ~(x;a) ~ p} 

lS realized in F; we say p is a type over A if p is 

consistent in K i.e. if any finite subset of p 15 realized 

in IX. 

Let A ç B ç H E K and p a type over A. Now, 

- 11 -
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i~tuitively, as in the particular examples 1 and 2 

described above, we would like an extension q of p to 8, ta 

be ~ "non-forking extension" of p to 8 with respect to a 

set of equat ions S i,f q does not i mpl y any equati on 

(meaning a formula in S) whi'ch is not induced by p. 

Two points remain unclear in the definition above: 

first, what 'do we mean by "induced "? Second, are we to 

consi der: the equati ons that q shoul ci not i mpl y among the 
r' 

formulas in S with parameters in B~ ~mong the formulas in S 
, n 

wi~h parameters in H, or even among formulas in S with 

'parameters in F when given so~~ morphism f:H~F in ~? 

We get by the first point by saying that q is a "non-

forking extension" of p to 8 with respect to S if q implies 
, -

a oinioal set of equations; and ta investigate the second 

point we ~irst relativize the search for non-forking 

extensions, to the structure H. The exact definition is as 

follows: 

If r is a type over~t 

-t-t = {~(x;c); ~ E S, -tc E -t -t H, r tj:j cp(x;c)}. 

Let q be a complete type over B, q ? p; then q ls an 
':~ 1 

SH-Diniaal extension of p to B iff 

over B, r ::> p, 

for 
f 

\, 
/ _ S 

"1 rH" 
\ 

any complete type r 

Th~ SH-minimai extensions play'~n our context the role 
\ 

o 

l, . 
th9t non-forking~extensions play in stable theories. 

- 12 -



: We show then that SH~mlnlmal extensions of p to B 

eXlst; and, if S l~ equational, p has, up to SH-equIvalence 

flnitely ma~y SH-minlmal extensions to B I.e. there are SH-

ml~~al extensIons, qo' ···,qn-l of p to B such that for any 

SH-mlnimal extension q of p to B there is i < ,., , 

S (qi)H' (c.f. ILA.l'3). These two propertles should be 

considered as weaker versions of propertles 0 and 4 

described above for non-forking extensions ln stable 

theories. 
\ 

Aiso we show (c.f. II.A.12) that the monotonicity-

transltlvity property for SH-minimal extensions (see 

property 1. above) holds when considering types over "SH­
I 

closed" subsets of H: for S an equatl.onal set, a subset A 

S of H is SH-closed in H if for any type q over A, qH is 

deflnable over A, (note that for A arbitrary q~ IS 

EquIvalent in K to a slngle'formula in S with pârameters ~n 

#-1) • 
r 

As we pOlnted 9ut above, SH-minimal extensl.ons are 

relative ta the structure H; it is possible to hav~ a 

morphism ~:H~F (say here an lnclusion), A c B CH, p. a 

type aver;A, q a type aver B, such that q IS an SH-ml~imal 
, 

extension of p to B but q is not an SF-m~nlmal extension of 

P to B. For that reason we define the notIon of S-full 

- 13 -



types: 

a complete typ~ q over H is S-full if for any morphism 

And we~show that, if p is over A and q is an 

1 

S -
H 

mLnimal extension of p to H which is S-full, then for any 

f:H---7F (say here an inclusion) such that fq is consistent 

over F, q is an SF-minimal extension of p to H Cc.f. 
~:> 

II.B.14); furthermore q has a unique SF-minimal extension 

ta F. 

S We say then that,~qH i 5 an SH-component of p and we 

shaw (c.f. II.B.8) that, under sorne general assumptions on 

K, as for instance that K is closed under unions of .' 

countable chains, there is g:H~G sucQ that for any SG-

-S . 
minimal extension q of p ta G, QG, 1S an SG-component of p. 

The results mention~d above hold in arbitrary 6-

categori es. Howev~r, a most interesting example of a 6-

category is the case where 6 is the set of aIl formulas and 

K is the category,of models of a first-order (not 

. nece;ssaril y' comp,lete) theory wi th the r-elementary 

embedding~, for r some boolean-closed set of formulas, for 

morphisms. 

", 

- 14 -



We immediately cheFk then that i~ H is a Ll <r}-closed 

'structure in K then any complete type over H is S-+ull. 

,_ J 

The essential property useful to us in such a category 

of structure~~i~ a definab~11ty lemma (c.f. 111.7) which 

says that, 

If A c H and 9-is a formula with param~ters in H such 

definable over A. 

This lemma is just a generalization of the case when T 

is a complete theory,~A c H, cardA < cardH and H is 

saturated; the lemma ~hen says that if 9 is invariant under 
1 

any automorphism of H over A, then"9 is definable over A. 

It will follow from this lemma Cc.f. III.10) t~at, 

for H a Ll<r>-closed structure, ,P a complete type over 

A c H, and S an equational set of formulas in r, the SH-

minimal extensions of p to H are conJugates 0+ each other 

over A in the sense that, if ql and q2 are such extensions, 

that ever~ subset of H is SH-closed in H so that the 

monotonic1ty-transivity property for-sH-minimal extensions 

hoids when considering types over any subset 0+ H; 

and, that the local character propert~ holds for SH-

minimal extensions. 

- 15 -
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The properties o~ SH-minimal extension for S an 

arbitrary set of equations will then be immediately 

inferred from those of SH-minimal extensions for S an 

equational set of formulas. 

Finally the symmetry property appears to be a global 

property, in the sense that it needs'consideration of the 

set of aIL equations/in OC. It will be best discussed in 

chapter IV anp chapter v. 

Let us only state'here (c.f. V.A.6) that the symmetry 

p~qperty will hold for SH-minima~ extensions when r is~the 
1 

set of aIl formulas and S is the set of aIl equ~tions in OC. 

" 

Of course, aIl the r.esults above apply tb the case 

ywhen K is the category of models of,a c~mplete theory T 

with th~ elementary embeddings for ~orphisms. In 
ç. 

particular, when T is E-equationâl, whence stable, we will 

show that EH-minimal extensio.ns of types CH a model of T) , 

, 1 

as intr6duced above idcfotii'y with f"!0n-forking extensions as 

introduced in stability th~ory. 

Our concern throughout this thesis, has besn t9 show 
1 

that the notion of an equation weIl translates thé idea of 

positiveness we 'mentioned above, and ta show that this 

notion relates in a natural way to algebra. 

- 16 -
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'';, 

Our general aim would be to attach ta this notion, 
f, 

properties and definitions which are familiar to <standard) 

Equations 1n ~lgebra. 

It will be easily seen for jnstance that taking an SH-

minimal extensi'Orr-of a type p over A c H (for S 

equational), is similar tO h taking an "ir .... educible 

',compon~nt" (v./ith re~pect to S) of P~. 

More precisely, we will show <c.f. II.B.6) that 

for a.ny cP1' ',IP2 in S wi th parameters in H 7 

" l , J 

(this '-foJlows i~meéHately from the fact_ that Pi is 

campI ete). 

'. , . 

'. 

In chapter 0, we fi x some notati ons., make preci,se :the 
-~, - i' ". . 

setting in which we want to work and defioe the' natiàn p~. 

an equat10nal set of formulas. 
. 

In chapter l, we compare the ncit~pn of ~u~t~onality 
-, 

to some natural variants as for insta-nce, a formul-à having 

- 17 -
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finite height. We investigate the basic properties of 

equationai formulas and, as an application, prove that the 

set of d~fferential equations in the category of 

differential fields with characteristic' 0, is equational • 

. In chapter II, section A, we investigate SH-minimal 

extensions of a type, show that such extensions always 

exist <c.f. A.2), that they satisfy the monotonicity-' 

transitivity property when,considering types over SH-closed 

subsets of H and that, for S equational 7 a type p over A 

c B C H has, up to SH-equivalence, finitely many SH-minimal 

extensions to B. 

In section B, we define what S-irreducible and S-full 

types are, as weIl as S-irreducible'and S-full structures. 

We aiso define what an SH-component of a type is. We show 

(c.f. 10) that if S is equational and K is w--'conservative 

then, given p over H there is a morphism f:H----7F in,. CC such 

that fp is consistent in K and for any SF-minimal extension 

q of P to f, q% is an Sf-component of 
~. 

p. Finally, we show 

that if OC is inductive tryen for any H in OC there is 

f:H~F in K such that F is S-full. 

In section C, we observe that the theory of Sections A 

and B goes through in a very general abstract context; we 

then describe such a context. 

In chapter III we study the case of a ~category K of 

models of a fir~t-order theory T with the r-elementary 
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embeddings for morphisms~ where we assume 6 is the set of 

aIl formulas in L~ r 1S a boolean-closed set of formulas, S 

c r, S = cl+(S) and K reflects S. We show then, for S a set 

of equations, that any L 1 (r)-closed structure H in « is S-

full and that any subset of such a structure is SH-closed 

in H; furthermore we prove the local-character property for 

SH-minimal extensions of types over subsets of H. 

In chapter IV, we introduce the notion of S-minimal 

amalgam and relate it to SH-minimal extensions. We also 

o define the notion of a full se~ of formulas ln a structure 

H and prove the symmetry property for SH-minimal extensions 

of types when S is full in H. Then, we di5cuss the 
\f 

existence of full sets of'~ormulas. We praye in particular 

that the set of aIl Equations, in the category ot models of 

a complete theory with the elementary embeddlngs for 

morphisms, i5 full in any given model. (For more details as 

to the existence of full sets of formulas ïn categories 

.such as in chapter III, see [8.2]). 

In chapter V, we consider the case of the category of 

models of a complete first-order theory T with the 

elementary embeddings for morphisms. We consider the case 

T·stable and show that if p 1S a complete type over A c B 

and q is a non-forki ng extension Qf p ta B then q is an SH-

minimal extension of p to B whenever S 1S a set of ~'\ , /'" . "-~ 

equations in. T. We deflne what an equatlonal theory i s. We 

( 
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then classify equational theories in terms of equat~onal 

theories:havlng the d.c.c and equational theories havlng 

the d.c.c on irreducible types. We show that equational 

theories with the d.c.c (resp. wlth the d.c.c on 

lrreducible t!pes) are totally-transcendental (resp. 

superstable) and give <in both cases) criterions for the 
<>; 

two notIons to be equivalent. We,also characterize the 

fundamental order in equatio~al theories in terms of 
" 

equations. 

We have not investigated ln the thesis the theory of 

dimension introduced in stabillty theory (c.f. [M] or 

[ShJ). This~ as weIl as applications of the results in this 

thesis to some algebraic theories, will be undertal(en in , 

[5.2]. 

Although the motivation for this work cornes largely 

from stability th~ory, the,~heory in thlS thesis is, from a 

logical point of view, independent 9f stability theory. In 

particular the technical work ~n the thesls is self-

contained. However, frequent references are made, for 

motivational purposes, to stabili~y theory. Although 

-efforts have been made to explain the relevant parts of 

stability theory when the compaf.!sons are made, some 

- 20 -
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famlliarlty wlth stablllty theory lS necessary to fully 

appreclate these connections. 

Useful lntroductory references to stability theory are 

[M], [P.l], [L,P], [B]. 

( 

Unless ~xpressly stated to the contrary, aIl the 

results and concepts in thlS thesis are due to the author. 

The notions of equation and equational theory have first 
, ( 

been deflned ln [5.1]. 

/< 
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CHAPTER 0 

PraliminaricG 

In thlS chapter we fix the settlng in which we want ta 

work and define the notions of equational and strongly 

equational sets bf formulas. We also give sorne examples. 

;' 

Prolimi nûrioo. 

a) Wo fix cnco and fer aIl a firot-crdor languago LJ tha 

ruloo of formation for Tormulûo Dnd tormo in L ûra tho 

uaulli onoo. ~c ___ 

~,~.x··· deneta form~las in L; H,H',n··· danoto L-
, 

-+~-+ 
structuresJ a,o,e,··· donote finito tuplas of oldmento 

" 
in givan L-structures. 

We do not disting~ish betwemn L-structuros and 
" 

r 

",their underlying Dota. 

Wo divide aIl variablès in L in two claasee X and 
, 

T, and Œilll the variables in X typa variablo5, the 

variables in T parameter variable!:> .. ' 

......... 
Unlooo atated otharwiao, x,y,x1 ,··· donoto finita 

~upiOG of typ~ variables; 

-+.,.. 
t,u,t 1 ,··D denoto finita tuploa of parametor 

variables. 

- 22 -
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A formula ~ i5 a formula in : if, whenever x i5 a 

type variable, x occurs freely in ~ iff x i5 mentioned . 
in 1'; if in addition t ia the finite tuple of frae 

pararneter variable in ~ we write ~ under the forrn 

...,.? 
Ip(x,t). 

...,. 
If S is a set of formulas in L, we let SX danoto 

-+ thQ Qot of formulas in x which ara in S. 

For 
~ 4 ~ 

s:t~a ~n ovaluation function of t into a 

-+4 
structura H, ~(x,a) denotos DO usual the formula 

... .,... ... -+ ~ 
obtùinod from ~(x.t) by Qubotituting Cl for t.' if a hao 

...,....,. 
ito olamants in A c H, wo say ~(x;o) io a formula with 

...,..,... 
,(x;f) in a similar.manner. We fraquently writo Ip or 

-+ ...,.-,10 ....... 
Ip(x) for Ip(x;f> or ~(xpa>, that i5 wh on tho context 

makea it clear which one la msant. 

As always, given an L-structure H and a- formula 

-+ ...,. 
Ip(x) with parame,ter5 in H, we writa "H 1= "Ca)" te 

... 
signify that the sentence Ip(a) in the language L with 

... 
now individual constants naming the alemonto of a i5 

...,. 
true in <H,a>; 

'A oet of 
'J 
(1' 

raill ized in H 

formulas P 

if there i5 

- 23 -
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(n 1:1 length (x) ). 

in -+ x with parameters in H is 

... , 
a finite tuple a of elements .. 



in H such that 

-+ -+ H F ~(a) whenever ~(x) belongs to p. _ 

b) We ~ix a category k: the obJects of k ara L-strucutre~ 
, 

and the morphismo of K are mapg between the underlying 

sets of obJects in K; composition of morphisms ie then 

the composition of maps, and, for H ln K, tho idGntity 

morphism on H i5 tho identity mùp ~rom H into H. 
l ' 

Lator on we 5hall conoid~r additionûl aooumptionQ 

en C( <'lQ \-for inotanco 'thût ~ io tho c.utogory of medolo of 

c'l firot order thoory wit:.h omboddings or olomontary 

omboddingo Ter morphiomo. 

Tc simplify fhe presentàtion we axt~nd K to tho 

category R which includes the subsets ef structures in k 

aB abjects and the inclusion maps between subseta cf a 

structure in k as morphisms: 

- a~ j ec t:. (t(). la ( A, H) 1 H € le and A c Hl 

- A morphism ~: (A,H)~(B,F) in ~ i5 form~lly defined 

QS a morphism, denoted aga!n ~, ~:H~F i~ K such that 

range(f~A) ~ B. [We mean by that, that f: (A,H)~(B.F> 
> 

19 identified te the triple ~fIH~F; (A,H>j(B,F»J. 
'. 

Thua, the identity morphism idl(A,H)---?(A,H) 19 

formally dsflned as the idantity morphism on:H. 

If ~I (A,H)~(B,F> and g: (B,F)~(C,G)'ara in K 
so that f: H~F and g: F--?G are in le thœn 

- 24 -



g.~: (A,H)~(C,G) is formally defined as the morphism 
ù 

g·~:H~G. 

î= or .,: (A, H) ~ (8 , F) we 1 et ., [ (A, H) ] -=. (~ (A) ,F) • 

Thus if "IH~H i5 the identity on H and A c B C H then 

1': (A,H)~(B,H) ia a morphism in R and ~[(A,H)J 

= (A,H); in that case, we rafer ta ~ aD ~n inclusion 

map. 

Noto that two morphi_sms l' ,g: (A,H) ~ (B",F> in R arc 

idontiTiod if tho morphiomo f,g:H~F ûro oquûl ûnd not 

junt iT ., ûnd 9 tako tho oame valu~s on A. 

Whon there is no ambiguity, wc ,writo A instead OT 

,(A,H) ûnd f:A~B instead of "f:(A,H)---""(B,F>. 

\, ' 

-+... "+ If ~~~(x,a) ie a formula in x with parameters in A . 

è:s (), ... 
CA E 'K,) and f:A~B is a morphism in i\ WB let "'ql-='~(x 

\ 

... 
Of course .,~ ia a formula in x with parameters in B. . 

... 
If p i5 a sat of formulas in x with paràmeters in 

We say p i5 realized in K over (A,H) if there i5 a 

morphism ~: (A,H)~F such that ~p ia realized in F; p 

ig consistent in De over (A,H) if avery finita subeet of 

p ie realized in K over (A,H); p i5 inconsistant in K if 

p is not consiatent in K. When no confusion arises WB 

Just say p i5 realized (resp. cènsi5tent) in K instead 

- 25 -
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" 

of P i"s reali:a:ed (resp. consistent> in De over (A,H). 
,/ 

-+ / -+ ' .... 
For A-==-(A,H) in, CC, CP-=-ql(x) and IV-=''+'(X) formulas in )( 

with parameters in A, we write cp tA '+' if fer cany morphism 

f=H~F, (T'P) CF) c: (TIf/l'(F) - Write cp A II' iff cp lA ~nd '+' tA 

, cp-

H pand q are sets of formulas in ;: wi th parameters 

-+ 
in A., cp as above, we write P lA «p(x) if there is il finit'e 

subset Po of p suc:h that /\PO lA cp; P lA q if P tA e fol"" evory 

e E q; P Ji q if P lA q and q tA p-

... 
If P ~nd q are soto of formul as in x wi th paramotortl 

in A, or just single formulas, and P A q He say that p i5 

equi valent to q in CI:. 
( 

l" l' 
More ge~erally, for cp, IV, formulas with parame~ers in 

\ A c: H, g= (A,H).....-;.(B,G) ,a morp~ism in te we writo cp tg IV if 

1 

for ""r.tnY',morphism ":G~F, ""-gcp(F) c: "-gIV(F>; cp'~ '+' if cp rg 
," '\ 

0/ and /'V tg cp. 

In other wÇ)rds cp,tg,,+, icf gCPIG 9IV, and li! 9''11' if gcp G g'V. 
" 

, . -

r ' 

> ' , 

Note ~l gO th~t cp tH 'l', if f cp I(dH .'V. 1 _ 

~ ~ 1 t-

Similarly,' fol" p'andiq as a60ve define p tg q iof gPfG 

'\ ' .... 
r 

-). . 
"Remark.:For" p a set,'of'.:formulas 'in x wlth parameters in A 

, , 

, 
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( 

(A C H) P is inconsistent in K iff ~ome finite subset of p 

is inconsistent in 1( iff sorne finite subset 'of p is nat 

realized ::) iff there is a finite set {CP1;i E 'I}, (1 

fim te) of formulas in p such that (1 -+ 
= x) lA Vi E l ''Pi -

d 

Ex amp 1, Q!:>. 

1. Let c{ be the category of fields with field embeddi ngs 

for morphisms (L = {+,·,O.,l}); F a field. 
-+ -Jo If cp (x) .=. (P(x) 

-Jo -+ = 0) and ...,(x) ·=·(Q(x) = 0) are two algebraic equatian5 in 

-+ x with coefficients in F then it is easily seen that 

-+ -+ A A A 
cp(x) IF '1J(x) iff cp(F) C o/(F) , where F is the algebraic 

clasure of F. It is clear also that a quantifier free 

formula 8(1) with pal-ameters in F is consistent in IX iff 

8(1) has a solutlon in F. 

2. The situation in 1. above can;.b~~generalized jn' 'the 
\.". -, , 

following manner: let le be the category of models of a 

first-order theory T with embeddings for morp'h~sms;' E -an 

existentially-closed structure in K. 

are quantifier-free formulas with parameters ln E~ then 

-+ -+ 
'P(X) If 'Idx) lff qdE) C o/(E)_ 

-Jo -+ 
Indeed, lf 'P(x) ~ o/(~) then obviously ~(E) C o/(E). 

" -+ -+ 
Conversely, spppose ~(E) C o/(E). ~(x) ~ ~(x) means 

there is a morphlsm, i.e. an embedding, f:E~G in K, 

- 27 -
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\ 

-----~---------

~-t -t 
such that qJ(x)I\Î\f(x} .is realized in G. Since E IS 

-t -t 
eXistentially-clos,ed it follows that qJ(x)I\Î\V(x) is 

realized if) E tt. 'We"con~lude that qJci> lE \fI(1). 

~uppose ~Qw that T ~as the amalgamati~n property 

and is closed' under, unions' o-f increasing chains o-f 

-t ~ 
structures., Le~ F be a structure in K, qJ(x) and If/(x) 

quanitifier-free formulas with parameters in F. 
f 

Then, qJC;) ~ \fi ci> iff -for some existentially-closed 

st:ructure E in C( and morphism e:F~E we have 

eqJCE) c eqrCE): clearly if ql<1> IF 'Vei) then for any 

morphism e:F~E, eqtXE) c e'fl(E); sa it suf-fices ta 

choase e with E existentially-closed. 

Conversely"suppose there is a morphism e:F~E 
, , 

witI"Y E existentially-closed such that eqJŒ) c e'!'(E); we 

-+ ~ 
want ta show that q)(x) ~ \fI(x) i.e. for anyembedding 

g:F~G (gqJ) (G) c (g,+,) (G) 

Let g: F ~G be a morph i sm in K. We know f rom what 

p-:-eceded that eqJ lE e\f,' By the amalgamation property-., 

, 
h 1e = h 2 g. Since eip lE e\f, hleqJ(~) C hte\f(H> i.e. h 2 gqJ(H) 

c h
2

gWCH). It easily follows that (gqJ) (G) C (glfl) (G), 

which is what ·we wanted. 

The definitions below formalize some of the properties 

28 
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used in the examples above. 

1. De~inition. Lat 6 be û set o~ ~ormulas in L, f:H~F a 

morphism in ~. Then, 

-t-
(i) f is 6-o1ementary if for any formula ~(x) in 6 with 

-+ pnrùmetors in H and a a tuple of element9 in H, 

-+ -+ (ii) f rQflDct~ 6 if for ~(x) and ~(x) in A with parùmotoro 

ln H, 

(iii) ~ in 6-8Iementa~y (resp. re~locts 6) if overy morphism 

in ~ is 6-elementary (rosp. reflects A). 

(iv) k has the amalgamation property (A.P. for short> if 

9uch that 

Examplo. Suppose k is the category of models of a first-

order theory T with embeddings ror morphisms and b is the 

set of quantlfier-free formu~as. Then K reflects 6 iff T 
1 

has the amalgamation property. 
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Proof. Suppose C( reflects 6 and f 1 :H----=>F 1 f 2 :H----=>F2 are . 

embeddings in k. We want to show the existence of 

embeddi ngs 91: F 1'---"6 and 92: F 2----=>6 in K such that 9 1 -f 1 

= h for h E H_ 

constants (not occuring in L>, with ca = db iff a = b E H. 

Let ~(F1) be the set of quantifier-free sentences in 

L U {ca;a E F1} satisfied in FI when we interpret the 

constant ca by a in FI- Similarly, define D(F2 ). 

Clearly then, to amalgamate Tl and 7 2 in &( it suffices 

to show the consistency of T U D(F 1 > U D(F2 ). 

If T U D(F 1 ) U D(F2 ) is inconsistent, there is a 

-+ formula !pCc) in -+ D(F2 ) such that T UD(F1 ) U cp(c) is 

inconsistent., i . e. there is -+ a quantifier-free formula ~(x 

-+ -+-+ ;a) with parameters in H such that !p(x;a) is realized in 

-+-+ -+ 
F2 and ~(x;a) is inconsistent in ~ over F 1 - This means, ~(x 

-+ -+-+ 
.,a) ~ (x :1: x)., from which we deduce., using reflection., 

-+-+ -+-+ 
Ip(x;a) fJ:ï (x *' x). 

-+-+ But Ip(x;a) is realized in F2 U-

That proves one direction of the claim. The converse 

easily follo,",s from lemma 2. below. D 
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2. Lemma.. If K has the amalgamation propeirty jmd 6, is a ~et of 

formul ilS in L such that c( i s 6-el ementary, then ec ref l eet.s 

6. 

Proof .. Suppose C< has the A. P _ and t'( i 5 6,-el ementary. Let 

-7 -7 l' Tl:H~Fl be a morphism ln K., q)(x)., 'l'(x) formu as ln 
'-

-+ -7 ~ ~ 
b. U {x = x)., (x ~ x)} wi th parameters in H suc:h that 

50 let -(2:H~F2 be a morph'ism in IX and let 
• 

9 1: F 1 -----76 and 92: F 2-----3tG be morphi sms such 'that 

3. DeHnition. Lot S be il set 'of -formulas in L, n il natural 

number, 

(i), s.. in aquational (resp. n-strongl y-equational) if for 

-t-

eny H ".1--and any set.p of formul as in SX wi th 

parameters in H, there ig. Po c: p, Po finito (resp. 

"-

Sis strongl y oquati onal i -f there i s .:1 natuf"al 

number m suc:h that Sis m-strong 1 y-equati onal • 

- 31 -
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-+-,+ 
(H) €Il (x;t) is an equation (resp. n-strong-equation, strong, 

-+-+ squati on) if {cp (x; t ) lis equati onal (resp. n-strongl y-

)equati anal, strong 1 y-equat i onal ) • 

4. Exampl es. 

(i) Let F be the category of fields Ir.J1th field embeddings 

for morphi sms; L = {+, • ., 0., 1}. Let S be the set of 
'J 

atomlc formul as in L. 

\ 

Proof. Suppose H E K and 

-t-+ 
P = {(Pi (x;a i ); lEI, 'Pi E S. 

i 5 equi valent ln C( to an algebràic equahon 

-+-t 
(Pj(x;a i ) = a), where Pi is a polynomial in t;he 

-+ 
varlables x wlth coeffIcients in H. 

Sinee the rtng of polynomials H[:] 15 noetherlan, 

1:. there l. s a fi ni te set J c l such that for any lEI, 

p. is a linear combination of p. 's for J E J. It 
~ J 

fol1011115 that for any morphism f ln OC, fPl is a linear 

comblnation of t-p]'s for j E J. Clear-ly then, If Po 

i . e. Po lfï p WhlCh is what we wanted. C 
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(ii> Let R be a fixed ring and let L be the standard 

languag, o~.R-modules. 
r 

A homomorphism of modules T:H~F, is pure if 

for~any posiilve prim~tive formula (p.p.f. in short) 

-+ -+ cp(x) and a E H, 
t' 
;' 

-+ -+ 
H 1= q)(a) {:::} F 1= cp (Ta). 

In other words f is pure if f is ~elementary with 6 

the set o~ p.p.f~ D 

Let ~R be the category of modules with pure 

embeddings for morphisms. 

-+-+ Clûim. Every positive primitive formula cp(x;t) is a 

strong equation in ~R. 

Proof. 
-+ -+ 

For H an R-module, cp<H;o) (0 = <0,·· ·0» is an 

additive subgroup of Hn -+ -+ (n = lengthx)' and cp(H;a) 

EH), if not empty, is a coset of qlCH;:) in Hn • It 

-+ -+ -+ -+ -+ -+ follows that for a, b E H, cp(x;a) and cp(x;b) are 

either equivalent ln H or contradictory in H. 

Si nce the morphi sms 1 n D( are pure, in f a,ct , ) 

either cp(1;1) and ql(~;t) arE equivalent in K or 

-+-7 -+-+ 
{cp(x;a}, ~Cx;b)} is inconsistent in K. The claim 

.follows immediately. C 

\'. 

. . 
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(iii) If K is the category of models of a first-order theory 

T with elementary embeddings for morphisms and E<:;t) 

is a formula which defines an equivalence.relation in 

~~ 
models of T then E(x;t> is ~ 2-strang-equation. 

l' 

5. Remark. Cl earl y, ifS i s equati onal and pis a set of 

-Jo 

formulas in SX with parameters iri H then p is consistent in 
1 

OC if~ P is realized in K. Thus the property of 

equationality induces a compactness property. 

Now, we could have defined the property of 

-+ 
'equationality only for those sets of formulas in SX (wlth 

parameters) which are realized in OC. We would hâve then 

that for p as above, p is equivalent ta a finite subset 

once pis real i z ed in K. 

This property is. however in general too we~ for what 

follows, but it is worthwhile .bearing it in mind and 
-) 

1 ~ 

checking atJdifferent stages what additional conditions 

K make this property sufficient to obtain analagous 

resul ts. .,. 

Examplo. Consider the ring of integers Z. Let K be the 

category wi th singre_object Z and single morphifsm the 

identi ty on 1/:; L = {+, • ,0,1}. 

Let <p(x,t) -=-3,s(x = sot)'. <p says "X is a multiple of 

t". 

on 

<p is not an equation: take p - {~(x;k);k E Z}; p says 
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, v 

"x is a multiple of aIl integers", and clearly' there is no 

finite set 7_ of integers such that "X is a mult.~iple of aIl 
-U U 

integers" if-f "X is a multiple of aIl integers in Zo"-

Howeve .... 7 if P = (lp(x;a); i E 1, ai E 1l} lS .... ealized in 
1 

~, then p is equivalent to a finite subset: for let k 

realize p. Then ai divides k fa .... any i E J. Since k has 

~initely many diviso .... s it follows that the .... e a .... e at most 

finitely many distinct ai's. The assertion has now become 

ObVI0US. 

Note here that the fo .... mula cp<t;x)·=·3s(t = SX) 15 an 

equation. 
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CHAPT ER 1 

Basic Prcpertie~ 

We define the notions of an l-equational set and the height 

of a set,'of ~brmulas, and cDmpare these notions to 

equatlonal sets.' 

Then~ we work out some basic properties of equational 

sets and equational formulas. We show for instance that S 

is equational i~f the closure of S under positive boolean 

. combinat,ions i s equati,onal -t-t 
(c.f. 7)~ and~ a formula ~(~;t) 

. -t -t-t , 
has a finite t-height ln x iff ~(x;t) has finite'i-height 

i n t ( c -. f. 8). 
, 
" . 

Finally we introduce some terminology on types and 

complete types and give, a criterion ,for equationality using 

complete types (c.f. 13). We then a~ply thi~ criterion to 
- v 

prove that in the category of'-differ;::entlally closed fields 
.1.... ..;:-- , . ~ 

of ch~racterlstic 0, the set of differential equations is 

equational (c.f. application 2 after p~oposition 13). 

Throughout :~hiS chapter S den otes a set of formulas in 
, 

vari ~bJ!es. L clos'ed under substitution of parameter 
1 

\ 

If 6 is a set of formulas in L we let cl + (~) denote 

the closure of 6 under finite conjunctions, finite 

disjunctions and subs~itùtlon of parameter variables; cl(~) u 
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, 
; 

denotes the closure of ~ under boolean'comblnations and .' 

substitution of parameter variabl~s. 

DeTinitiona. n, a positive int~ger 

(i) S 15 l-aquational (rasp. !-n-5trongIY7equational) in K 

Ci for local) if for any H in ~, t and P. a set 01 

-+ 
formulas, in S)( with paro.motors in H, p is logic,ally , , . 
oquivalont in H to a finite pub~ot (rosp. to a finlto 

5ubsot of cardinality 1050 or oqual ~o n). 

<ii> S has n-hoight (resp. hoight) las~ than n if thero i5 

no structure H' in ~, i and sequonco (~i)i<n of formulas 

-+ 
in SX with parameters in H such that the formulas , 

are çonsistent in H (resp. in k) 

write !-heightCS) = n (resp. height(S) Q n) if S has i-

height (resp. hsight> less than n + 1 but' not less than 

n. 

5 has Hnite i-height (resp. height) if there i9 a 

natural number m 9uch that S has t-height (resp. 

height) 10ss than m; S has infinite '-h~ight (resp, 

height> otherwige. 

ThuG, S has .t-height less than 1 if for any H in BI: 

and cp in S with parameters in H, 'Il i5 inconsistent in 

H. 
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1. Propos.! t ion. 

(i) S i5 not &-equational (resp. equational) in kiff 

there i5 a structure H in K~ and a countable sequence 

-+ 
(~n)n<w of formulas in SX with parameters in H such 

(reg~,. in E() 

(ii) S ig net 4-n-otrengly-aquational (roop. n-otrongly-

oqu~tional) iff oithor S io not 4-oquational (ro5p. 

-+ 
oqu~tional) or thora la " otructuro H in ~, x and ~ , ... 
finita net q of formulas in,Sx with paramoters in H 

much that q has cardinality n + 1 and q i5 net 

logically equivalent in H (resp. in K) te eny propœr 

Gubse't:. 

" 

Prccf. 

(i) Suppose S is not l-equational (resp. equational). Then 

-+ 
there are H E K, : and p, a set of formulas in SX with 

parameters in H, such that p is not logically 

equlvalent in H (resp. in K) to any finite subset. We 

construct a sequence (~n)n<w of elements in p by 
, 

induction on n in thls way: assume ~O'···'~n has been 

chosen. Since A.< ~- does not imply p in H (resp. in K) 
l_n l 

there is. a formula 0/ E P such that A-< ~-A'o/ is l_n .J. 

- 38 -



, 
consi'stent in H (resp. in K). Let <Pn + 1 -=-IJI. 

(<pn)n(w _thus constructed satisfies our condition. 

The other direction of the claim is ObVIOUS. 

(ii) Suppdse S is not t-n-strongly-equational (resp. n-

strongly-equational) but t-equational (resp_ 

, -+ 
equational). Then there are H E OC, x and p, a set of 

~ 

formulas in SX with parameters in H such that p is not 

logically Equivalent in H (resp. in K) to any finite 

subset of cardlnallty less than n ~ 1. But, by 1-

equationality (resp. equationality) P is equivalent in 

H (resp. in K) to a finite subset; let Po be such a 

subset of least cardlnality. Evidently, 

card(PO) > n. Let q be a subset of Po of cardinality 

n + 1. If q 1s Equivalent in H (resp. ~n OC> to a proper 

subset qo' it would follow thaf PO< = q U <Po,q» is . 
equivalent in H (resp. in OC) to a proper subset-

qo u (po,q), contradicting"the minlmality of PO. 50 q 

satisfies the conditIons of the claim. , 

The other direction of the claim is clear. m 

2. Corollary. We have the following diagram of implications: 

... 
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1 :3 

S has finite ~eight~S i5 strongly-equational~S i5 

squati onal 

2 4 

S has finito &-haight~S in i-ntrongly-equational~S io 
, 1 

Jl~C'!quati ona1 

Proof. The vertical implications as weIl as 3 and 4 follow , 

immediately from the definitions. 
, 

Proo~ of 1. Suppose height(S) = n but S is not n+1-
~, . 

strongly-equational. By lemma"1. ci), S i5, ëq~ati~nal ,(slnce 

\ 
S not equational is easily seen ta c?rytradict height(S) 

" -+-finite). By 1. (ii), if follows there are H,in K, x, and a 

-t-

set q of formulas in SX with parameters in H, q of 

cardinality n + 2 such that q is not equivalent in K to any 

proper subset. Let q = {~i;i < n + 2}. Our assertion on q 

clearly implies that the formulas Ài<k~iA'~k for any k, 

o < k < n + 1 as weIl as A m are consistent in K. But 1. {n+l .... i 

that means height(S) ~ n + 1. Contradiction. 

The proof of 2 is simllar. ~ 

. 
Remark. The implications given in the diagram above are aIl 

the possible implications that exist between the different 

terms of the diagram. 
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/ 

More specific~lly, ~f we let L consist of one binary 

relation R(x;t}, we can easily construct categories in 

which Ris, for instance, l-equational but not equational, 

or equational but not strongly-equational, etc ••. We 

consider sorne of the c~ses below. , 

a) Let IHI be an infinite set; (A.z')"' a sequence of subsets 
.z'l,.W 

of IHI; 

of IHI. 

(a.)"< a sequence o~ two by two distinct elements 
l .z W 

Let H be the structure obtained by interpreting 
1 

R(x;a i ' as Ai for.any i < w and R(x;b} as the empty set for 

any b in H distinct fram the ai's. Let K be the category 

with single object H and single morphism the identity 

'morphism on H. 

Assume Ai + 1 c A. for any i < w, clearly then R(x;t) 
:1= l 

is not t-equational in K. 

Assume A. c A'+ l for any i < w. Then R(x;t) lS t­
-01' l * 1 

strongly~pquational but has infinite height. 

b} Choose a family of infinite sets (IHi')i<w such that 

'Hi' ~ 1Hi+l' for any i,< w; a family of sets (Ai)i<w and a 

sequence (ai)i<w such that for any i < w, Ai C IHl l, ai 

For i ~ J < w interpret R(x~ai) IH' 1 and 
J 

denote the structure thus obtained, and let K be the 
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, , 

category wh~ch has the Hi 's for objects and inclusion maps 

for morphisms. 

Assume A
1
"+1 c A for any i < w and {a"~i < w} 1S a '* l ~ ", 

subset of HO. Th~n, R{x:t> is l-strongly-equational in K, 
" , 

has infinite t-height and is notequational in K. 

3. Corollary. If tbo objects of ~ arc tho modela of 0 firot 
" 

-+4 0 ... -+ 
ordor thoory T thon ~(x;t) ie n-oquational 1ff ~(xgt) hao 

finite ll-hQight •. ;-

Proof. Add a countable set C of new individual constants 

to L, C 
-i> 

~- {cj;i < w}. Consider the fol'''lawing sets of 

sentences in LUC: for n < w, 

'. 
Clearly Tw= Un<wTn. Hen~e, by compactness~ T U Tw is 

consistent iff T U Tn is consistent for every n < w 

(note, T n + 1 :J T n > .'- But T U Tn is consistent iff 1-

height(~) ~ Tl while by lemma 1. (i)~ T U Tw is consistent 

iff' ~ is not t-equational. The assertion immediately 

follows. 13 ,. 

4. ~amma. Suppose S closed undar finite conjunctions and 

disjunctions, and K reflects S. Then, for any morphiam 
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~ ~ 

~IH---?F in K and p, a set of formulas in'cICSx ) with 

parameters in H, p is consistent in K over H iff ~p is 

consistent in ~ over F. 

Proof. Clearly, if fp is r~nsistent in K over F th~n p 1S 

consistent ln ~ over H. 

Suppose p is consistent ln ~ over H but fp is not 

consistent in ~ over F. We might as weIl take p finite and 

-+ 
therefore a single formula in cl (SX). Writing p in normal 

form (up to equivalence in OC) we see that we can assu~e p 

1s a finite conjunction of formulas and negated formulas in 

-+ 
SX with parameters in H. Say p - A'EI'P .I\A'EJ'CP', land J 

l 1 J -' 

finite sets. 

Since fp is inconsistent in K, we have 

..L -+x) l'f J ' t ) ..,... 1. S emp y • 

inconsistent in K U. C 

Noto. If S is closed under fiOtte conjuoctions 7 

disjunctions, and S contains the formulas (x = x) for x a 

type variable thenlK reflects S iff K reflects cl(S). 

-+ 
Indeed, it is easy ta check that for S as above cl(S)x 

-+ ~ -+ 
= c!(Sx). Thus, if ~(1) and o/(x) are formulas in cl(S)x 
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wîth'parameters in H and f:H~F is a morphism such that 

Tep IF T'fi but IP t;t 'JI then, p = {<P"'IfI} woul d be conSI stent in 1( 

while fp is inconslstent in 'K. But that contradicts lemma 

Let us say that K is w-conservative, if for any 

structure H and morphisms g~:H~~H (~ < w) such that 

w-conservativeness is similar to closure under unions 

of chains, but here we do not request H to be a limit of 

the chain. 

<One could define «-conservativeness for arbritrary 

ordinals «, but we won't need more than w-

conservativeness). 

5. Lemma. Suppose in addition ~o the asumptions in lemma 4., 

that K is S-elementary. Let T_llft---7HO be a morphism in k 

and for i < «, Q a finite ordinal, ~~t Pi be a finite sot 

. -+ 
of formulas in~c~(Sx) with parameters in,H. If for every i 

< «, Pi i5 realized in K ~hen there exista a morphism 
! 

g:HO~G such that for avory i < «, g-f_1Pj ia realized in 

G. 

If in fact K ia w-conservative, thsn the claim aboya 
'i. 

holds with « = w instead of a finite ordinal. 
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Proof. Flrst, we const~uct by inductron a sequence of 
d' .. 

morphisms (f.).( (wheth~r o.'is finite or a. = w), 
l l « 

,< 

in Hi +1' where 

g . = f.of. • ••• af of 
l l 1-1 0 -1' (say g -1 - f -1 ) • 

g.p. is real ized 
l l 

Suppose the construction achieved up "ta i. By lemma 4, 
," 

~l-lPl IS consistent in OC, hence there eXlsts a morphism 

finis~es t~e inductIve step of the construction. 

if ~ is w-conservative pnd <X = w, H and hp are given by w-

-. ., 
conservativeness; If a. is finite, take H - Ha. and 

h" = f, •. • ... ·f . 
r- a.-1 tJ 

By S-el~mentariness, since giPi is realized in Hi + 1 

eve~y i < <X. Thus g = hO satlsfies our conditions~ 0 

" 

6. Proposition. Assume S closed undor iinite conJunctions, k 

r,ef 1 œcts Sand K i s S-01 ementary. Then, 

(1) i-height(S) = m iff height(S) = m. 

(11) If in addition K i5 w-conservative, then, 

a) S i5 t-equationa1 iff S is equational. 

b) S i5 t-m-strongly-equational iff S is m-strongly-

equational. 

45 
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/ 
( 

\ ') 
\ 

\ 
" ~ 

ProoT. 

(if Clea\-ly, ,,t-height<S) ;:: m implle7ï height(S>";:: m. 

(ii) 

Conversely~ height(S) ;:: m implies !-height<S) ;:: m: for 

m = 0, the "as!:5èrtion i,;t,.;triv~al. ~uppose m } O. Then, 

-t 
there are x,.H and. (<Pl)i<m' a sequence of formulas in 

-t 

Sx ~Hth parameters in H, such that 'the formul'as 

Following similar arguments to those in lemma 5, 

(the proof is exactly the same but for the fact that 

we don't need here S to be closed under disjunctions) 

we find a ny,-,-phism f':H~F suc'l, that the formulas 
(r' 

F. This of ,course implies that l-height(S) ;:: m which 

is what we wanted. 
; .. ,-~ 

Assume 1( is w-co"nservati ve 
~ 

a) If S is not .t-equational then clearly S is not 

equational. 

Conversery., suppose S is not,.s.quational. Then., 
.. " 

p 

~ 
by proposition 1. (i), tnere are x, H and (qJl')'< ' a ,. ~ w 

-t 
sequence of formulas in SX with parameters in H, 

TI < w. 

Using similar arguments to those in lemma 5 
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.1 

(the proof is exactly the same but for the fact 

that here we don't need S to be closed under 

disjunctians) we f·ind a morphism f:H~F such that 

in F. But that clearly implies that S is not i-

equational (as {f~i;i < w} is not equivalent in F 

to any finite subset). 

b) I~ S is nat ~-m-str?~gly~equational then clearly S 

is nDt m-strongly-equational. 

Conversely, suppose S is not m-strongly-

equational. If S is not equational then by a) S is 

not ~-equationa17 whence S is not t-stronly-

equational and we are done: 

If S is equational, then by proposition 1. (i>, 

there 
-Jo 

H and {QJi;i < 1 }, where, for a,re x, p - m + 

-t 

i < ID +" 1, qI. is- a form!-lla in SX with parameters in 
l , 

H, and p isgnot equivalent in k ta any proper 

subset. Again, fallowing similar arguments ta lemma 

5 we":find a morphism f:H~F such that fp is not 

logically equivalent in F to any proper subset. But 

that i mp 1 i es S, i s not i -m-strong 1 y-equat i an~l. a 

Let AS denate the closure of S under finite conjunctions. 

For n a positive integer, let 
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~, 

Cl n (S) - {1fo'-=:-Vi<~CPi ;lPi ES}. 

7. Proposition. 

-Jo 
(i) Hoight (SX) = 

-Jo 
height(I\(SX». 

(ii> IT S has height less than m - 1, than, for n ~ 2, 

~ ~ 
Cln(Sx) has height lœss thon nm, (for any g~von x). 

(iii) S io oquational iff cl+(S) io oquational. 

7. (bis) Propoaition. Tho analoguo of proposition 7 with the 

notions of i-hoight and A-oquationality. 

Proposition 7.bis follows from proposition 7 in this 

way:-consider for each object H in ~ the category KH 

which has for single object H and sin.91e morphism idH; 

observe that S is l-equational (resp. has i-hèight less 

than m) in kiff S is equational Cresp. has height less 

than m) in KH for every H in K. Now apply proposition 7 

For 
t 

ProoT of proposition 7. '" and 'V, formu~as with 

parameters in H, we wr-ite cp c '" if "'tH'" and '1' tri cp. 

-+ -+ 
(i) Clearly if height(Sx) ::: m then height (A(Sx» ::: 

show the converse we need first the following: 
\ 

1 

m. To 

For i < m, let 1fI- -=-"-EJ cp - where J- is a finite set 
J J 1 J l 
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J 
l 

è'> 

and q;'-<JEJ-> 
J ~ 

-Jo 'j' 

a formula in SX wlth parameters in H; is 

and ~uppose 

Then, we can find a sequence (i-> -~ such tha,_~ i-l l,m -' l 

E Ji and for any k < m - 1 

Moreover iO can be arbitrarily chosen. 

Proof of ({Jo). We choose~ji by inductio~ ~n i < m. 

Take iO to be any element of JO and suppose iO,···,ii 

have been chosen. We have 

hence I\kSiCPj/\'''''i+l is consistent in 1<. It follows 

that I\k< -fi) • A'cp. i s consi stent in IX for sorne 
_1 Jt J 

~ 

i E J i + 1 ; let then J i + 1 -=-j. Obviously "k$i+l lJ1it 

C Ak<' cp. • That oroves <*). 
_1 Jt . \ 

-Jo 

Now, if height<I\(Sx» ~ m, then by definition, a 

sequence (~i)j<m as above does exist with in addition 

the property that Ai<_m"li is consist'ent. 

\ 

But then the sequence <cp. )'( given by <*> is 
JI l m 

such that 1\- -k+!CP - C A-<k!P - and furthermore I\l-<m!PJ-1 
l~ JI 1_ Jt 

is consistent in K, since Aï<.m"lj t"j:f Al<m<fJj / That 

-Jo 

implies height(Sx) ~ m 
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\ ) 

-+ 
<iil) We cao assume S = SX'and by (i) we can assume AS = S. 

We Tirst show the Tollowing. ( 
1 , 

(+) For i' <: let 'If - =-V"EJ m -, where card";', = ~ and m_ 
l J ,'t"J 1'-/ .".1 

-+ 
is a Tormula in SX with parameters in H. Suppose 

that 

Then there is a sequence (jj}i<m' such that ji E Ji 

, - \ 
and Ai$k+1'Pj, C • I\i$kIPh Tor any k < m<'':'' 1. 

\. 

Proof of (+). By induction on ID. / 

For m' ~ '0 the assertion is 'tr.ivial. 

Suppose the assertion holds Tor m - 1, and 

(\fi i ) i <n. i s gi ven as above. 
'. 

For any k, 0 < k < there is Jk E JO such 

that -. 

A - A for if cp j t" i Sk 'fP i L cp j." i:5k -l'fi i : 

cp . AA . <k "'. H~ cp. AA . <k -1 \fi -J 1_ l J 1_ l 

for any j E JO' then 

i«VjEJoff'j)AA.lS,klf'k 'if (VjEJolPj)"Ai:5k-l'Pi i.e. 

which implies A-<klfl- H~ A--k 1"'- X. 1_ l 1::::= - .1 

For 0 < .l, k ~< Tl m wr i te i =k i f J i = j k • We 
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partitlon in this way the set {i,O < 1< n m} into n 

subsets. Since n 2: 2, one such subset l must have 

cardinality at least nm-l~ Let JO denote the common 

value of the ii's for i E. ~. 

1 fiE land k < i then Ip /\1\ .. <. -'l't C qI. /\1\" <klfl .. : Jo ",_1 Jo "'_ .. 

, 
CPjo). Let (ik>O<k~n"-l be an increasing sequence of 

elements in 1; let J(.o-=-CPjo and, for k < nm-l, 

By <*) (see the proof of (i» it folloHs there 

such that 

for any k < nm-l. Clearly now, the formulas CPi I\"'h ' 
_ 0 1 

1 S nm-l, can be consldered as formulas in cln(S); 

thus the induction hypothesis applies ta the sequence 

C I\-<'k (ql Np-) for 0 < k < m-l. 
1_ Jo 1i 

Upon observing that 

51 
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qI - , 
.Jo 

1 
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we conclude that 

for any k < m. That finishes the proof of (+). 

~ 

Now if Cln(Sx) has height greater or equal to n m 

then a sequence (o/i)t<n- such as glven in (+) does 

~ 

exist; let cp), be the sequence of formulas in SX with 

parameters in H given by (+). 

We have that A 0 <k. 0 A'. 0 is consistent for 
.1_.l~ .lUI 

any k < m - 1; in particular I\o<k"" A'cp. 1'5 
1_ JI lUl 

'1 

consistent for any le < m - 2 and "t<m-lIJlJI is 

consistent~ 

But that im~lieslheight(S) 2 m - 1, which is 

what we wanted. 

(iii) Clearly S is equational iff S U {(i = ;)}, 1 a tuple 

of v,ariables, is equatlonal. 
0,,1 ,1 
~" , 

On the other hand S is equational iff AS is 

~ 

equational: for if p IS a set of formulas in (AS)x 

with parameters,in H then, writing every formula in p 

as a con]unct of formulas in S, p is seen to be 

the form 
~ ~ -+ equlvalent to a set of q = {cp(y)A(X = x); • ~ 

~ 

formula in sy with parameters in H, ~ 
subtuple of a y a 

-+ 
x}. Applying equationality on the set of formulas 

~ ~ 
cp(y) mentloned in q, for each subtuple y separately, 

we find that p is equlvalent in K to a finite subset. 
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Thus, without 10S5 of generality we can a5~ume S 

containing the formulas (; = 1> and clo5ed under 

finite conjunction5. It follows that any formula in 

-+ 
(cl+(S»x is equivalent ta a disjunct of formulas in 

-+ 
Sx. 

Now, obviously, if cl+(S) is equational then S 

i s equat i onal _ 

Suppose Sis equational, but not c,l +,<S). Then 

-t 
there exists H, x and a sequenc~ (~n)n(w' ~n a 

-+ 
formula ip cl+(S)x with parameter5 in H 5uch that 

~n+l c ~n for every n < w. 

1 -t 
Write IJIO-=-Vi<mfPi' qli a formula in SX with 

parameters ln H. It is easy to see that for every n 

in~er that there i5 an .0 ( m and an infinite 

for every J < w. 

Repeat this procedure with the sequence (~-)O' ( 
J <") W 

• j 

instead of ("'n)n<w ta obtain <Ptl' qlJ 2 etc •.• 

Ultimately we get a sequence (qlt,,)n(w' <Pt. a 

-t 
formula in SX aver H such that 

- 53 -



for every " < w. 

This contradicts the equationality of S. m 

Remark. There are strongly equational sets S with cI 2 (S) 

not strongly equational: let L = {R}, R a 2-ary relation. 

Let IHI be an infinite set and <P,,>,,<w' <Q'f»,,<w two 

sequences DT chai"s of subsets of IHI such that: 

(i) For " < ~ p =. < Cn.) ., , il .=. (Dn.) ., wi th en., Dn. :.1\" 1 1 .... 1) " l .l<"n 1.1 

c IHI, 

en n' D". n 
i ~ Ci + 1 ' l ~ Di +1 , (i < " 

Hi) ,If n :1= ID then C~ n cj = 0, D~ n D"J = f!j, for any i 

< n., j < m. 

Choose an i nterpretati on of R in 1 HI such that the 

eT!'s and nn. 's, " < 4101., i < D, are the only interpretations 
.1 1 , 

in H of instances OT R (an instance of R is here meant ta 

be a formula of the form R(x;h)., h E H). Let H be the 

structure thus obtained., K the category with sIngle 

abject H and single morphism the identity on H. It is 

~easy ta check that R(x;t> i,s 2-strongly-equational ln IK. 

Fix " < w., Consider the sequence <Ei ) i <m in 

c1 2 <8(x;t»H where, Ei = c~ U D~-i-l <for simplicity we 

shall write Ci and Di for C~ and D~ respectively). 

,\ 

\ 
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1 • 
\ . 

We shall construct the Cl's and Di's in such a way that 
\~ ... 

n1:5nEi :;é ft and is not equal to any proper subintersectlon. 

Moreover it will be immedlate that thlS can be done Tor 

every n < w, preserving the conditions (i) and (ii) above. 

Thls then clearly implies that c1 2 (Rbqt» is not strongly 

equa t i anal. 

Construction of Ci and Di: let (B .. ),OSi, 
IJ 

j :5 n + 1, be pairlo'HSe disjoint, non-empty subsets 0+ H. 

Present the B. 's ln a (n+l)X(n+l)-matrix, 
IJ 

:. 8 1 1 , 8
1 

..., 
,~ B1 ,n+l 

8 2 ,1 B2 ,2 B2 ,n+l 
1 1 1 

1 J 

B"+1,2 B rr+l,n+1 

For l < n, l et Cl 
1 

be the union of the i + 1 first 

l ines of the matrix, whi le D. is the union of the i + 1 :z 

Tirst columns of the matrlx. 

Dl .=. 

l:5k:5i +1 lSk:5n+l 

l:5.1Sn+l 

Note that 8 (i <: TI) belongs to i +2, n+l-1 
• c 

EJ = C j U Dn -
J - 1 1ff j -4= l <since B i + 2 ,n+l-i is the meet 
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of the Ci + 2) -th 1 ine wi th the (n i + 1) -th col umn) _ 
f 

Thus ni E lE i once l en, for' if i € n\.I 
~ 

then B - 2 - cnE lE - wh i 1 e B - 2 1 - f:!-l + ,n + 1-1 i l 1 + ,n + -1 

Moreover-

n.< E-. 1 n 1 

~-+ 
Let qJ -=-IP (x; t ). Up ta no,", we have deal t ~ .. i th Q) as a 

formul a in "1; i nstanc,E1s of qJ have been for-mul as of the 

~-+-
kind IP(x;a) over sorne str-ucture Ha 

-+ It is clear however that, given a subtuple u of 

-; u t one can consi der li as the tupI e of type var-i ab 1 es 

- ~ -+-and the rest of the variables ln x U t as parameter 

vari ables; 
~ ~ ~ 

instances of !p are then of the form IP(u;c), C 

E H. Also, aIl definitions or pr-operties which apply ta qJ 

-+ ~ 
as a formula in x apply ta ~ as a formula in u. We 

-+ 
50metimes write IPu instead of cp ta underline the fact 

-+ 
that we consider cp as a formula in u. 

~ 

More for-mally, we say that cpu satisfies a certain 

-+ A 
property P or- that cp is •.•••• in u if the formula qJ, 

-+ obtained from cp by substituting u by type variables and 

- ~ ~ the re5t of the var-iable5 ln x U t by parameter 

A 

variables., satisfles P or that !p is 

-t -t-+-
For instance, !p i s an equation in t If cp (t 1; xl) 

~ -+ -+ ~ ~t 
(!P(t 1 ;X1 ) -=-qJCX;t>[tIXl]> 15 an equation .. 
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" 

8. Preposition. Let 

... 
Ci) '-height (tpx) 

... .,. 
«p-=-cp<xJt) 

,~ 

JC:J m i ff J-hei ght (cpt) CI :m. 
t -+' 

Cii) Assuming 'P i9 !-aquational, if «px is 1-m-strengly-

t oquation~l thœn IP ia n-m-strongly-aquùtionala 

Prcof. We prove (ii); the argumant for (i) is similar and 

i5 left to the reader (see 9 for a different proof). 

t Suppose 'Il is i-equational but not t-m-strengly-

-+ -+ 
equational. Sy proposi tien 1. (i i), there is H, a 07 ···' am in 

H such that for any k ~ m, the formula 

is consistent in H. 

Let bk realize ~k in H. We have the following dlagram 

of true statements in H: 
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-Jo -t 
lit (am-l; bm-l) 

Considering the columns of this diagram we obtain that 

for any 1., 0 S; .t S; m the formula 
1., " 

-jo -+ -+ -+ 
Ai Em+ 1-[i(P ( x ; b i ) A'ep (x; b.& ) 

-+ 
is real ized in H ~y 

-jo 

That easily implie5 !px i5 not !-m-at· 

strongly-equational. C 

Exampla. Let R be a noetherian ring with a unit, L the 

language of ri ngs., 1( the category wi th s~,ngl e object Rand 

single morphism the identity map on R. Consider the formula 
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q)(x;t)-=-3s(x = st); for a in R, ip(a;t> defines the set of 

dlvisors of a, while q)(x;a) defines the set of multiples of 
\ 
1 

a. 

r 

'JI i5 an equftion in ~: for i-f (ai) i<w is a sequence of 

elements in R, the Ideal <ai;i <~w> is finitely generated., 

" 
hence equal s <ai;z <. ~n > for sorne, n. It fo110,",,5 that' t 

divides ai for i < w iff t divide5 ai for l < n. 

How1rver, if R contain5 an infinite'sequence (ai)l'<.W such 

that al ~trictly dlvides <3i +l' take for instance R - 7D<71" 

~ jlnd a- = ,,;(2i; 1) 'f then cp is not equational in x. 
'J l 

Note tha-t; .in Zxll. there is an element a
lll 

=# 0 such that 

ai divides a w for every i < w, namely a w = (0,,1>, (in other-

words {cp(x;ai>;i <. w} is realized bya
w 

in R>. 
"" 

-+~ -+ -+ 
9. let ql-=-1jI <x; t>, ID = length x., n = 1 ength t and H E K. Let Li 

(resp. Lt> be the (obvious) semi-lattice whose underlying 

set is the class of subsets of Hm (resp_ H») which are 

-+ ~ 

definable by conjunèts of instances of !px (resp. IjIt) (an 

-Jo -t -+ -t 
instance of IjIt is a forme1'la of the kind cp(a;t)., a in H). 

a) Assume Ip is !t-equational 
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b) 

c) 

L-+ 
X 

The intersection mentioned in the definition of i}t 

above is finite because 0+ a":'equationality'. 

Simi l ar-l y, if 'Il is t-equati anal in i, ...,e def i ne the 

For X,Y E Li., X c Y ===} *t<X) J *t<y) . 

This 15' i mmedi ate, since 

',-+ -+ 
{qd b i ; H) ;,b i E X} c -+ -+ 

{qJ (b i • H) ; b i E Yl. .. 
Note that If. X 

-+ -+ *1!<X) for- i - "i<nlp(fI;a i ) then ai E every 

~t 

< n. 

, d) Suppose Y = 

E X. 

Then ., X c Y iff 6. E Y for every i < F) iff . .. 
l " r • . . 

, >, 'f 

-t 
E *f'<X) for j < k. a· every 

J 
, " 

Proof. 
-+ 

Clearl y., b i E Y for eve,ry i < n iff H F Ai <n 

-+ -+ -t 
j < k qJ (b i ; a j) i f + a J E *f' (X ) for every j < k. 

- 60 -



" 

\ 

( 

" 

-+ 
Obviously, if X c Y, then b. ( E X) belongs to Y for 

l 

every i < n. 

-+ -+ Conversely, if b. E Y for every l < n then a· 
l J 

E ~~t(X) for j < k and therefore, by definition of 

-+ -+ -t :-t 
*t!<X), a j E ql<b; H) for any b E X and j < k. In other 

~ E words, v 

c Y. Cl 

e) For X,Y E Li, X C Y ~ *t<X) :> *t<Y). 

We already"have one direction Ca». Suppose Y 

In c) we have noted 

-+ -+ 
that a j E *t(Y) for} < k. Hence, d

J 
E *t<X) for j < k. 

By dl, we conclude that X c Y. 
" 

As a corollar~ one gets another proof of lemma 

-+ 
8. (i), namely,that t-height(~x) = 

-+ 
l-height(~t). For it follo~s from e) that any chain of 

elements in Li of length m gives rise to a chain of 

elements in Ll of length m. 

10. Proposition. If ~<i;t) ie a~@.quational in i,and t, then *t 
) 
\ 

i~ û ~ual isomorphism from Li onta Lf with inversa *1. <By 

dual we Just mean the property atated in 9.0). ) 
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r 

o • 

Proof. We alread'y know from 9.e) above that *"l is a dual 

isomorphism from L1 into Lt- Remains te show that *1' is the 

inverse of *1' 

x = 

, '1 '--. 

,', 

We show *-:-*t is the identity~ on Lt. Let 

By definition, *1-*t(X} = 

From 9. c), iti E 1f-t(X) for ~ < n; hence ,u:::-*t<X) wC X_ 

On the other hand, by definition, 

~ ~~ ~ 
c E ,*t(X) iff H 1= qt(b;C> for aIl b E X. 

~ ~ 
Thus, c E *t<X) ~ X C qt<H;c); 

<, 

We conclude *::·*t<X) = X. D 

• 
The proposi tion b,elow giyes a cri terion for 

equationality using complete types. 

, First, we introduce~some new terminology. 

11. Torminclogy. let f:A~B be a morphism in R. 
A set p,of formulas in L with parameters in A is said 

consistent in K over f if 'fp is consistent ind<: over 8. 

Given a set 6 of fprmulas,in L, a" set p of formui'as in 

~ ~ 
ct(6x ) with pa~ameters in A is called a 6-type in x over f 
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if p is consistent in ~ over f; 

~ 
if f is an inclusion map we say p is a ô-type in x 

aver A. 

A 60type over T is a ô-type in sorne tuple of variables 

~ 
x over T. 

A 

Given morphisms f:A~B and q:B~C in ~, 6 as 

above and p an L-type over q, we let 

-+-t -+~ -+~ 
p~ô = {~(x;b); ~(x;t) E cl(61, and ~(x;b) E p}_ 

Clearly p~f is an L-type over q-T and p~6 is a 6-type 

over g_ 

If f is an inclusion map, we write p~A instead of p~f. 

A A-type p in i over f (f:A---7B> is A-complete if p 

is maximal, 

over T. 

~ 
with respect to inclusion, among 6-types 1n x 

12. Lemma. fIA---?B a morphism in ~ 

a) A oO-type p in 1, over ., is 6-complete iff for any -formula 

~ 

• in cl(~x) over'A, either ~ or ,~ belongs to p. 

b) .If P is an ~-completo L-type over B then ~~., Cresp. 

p~6) is L-complete (resp. 6-complete)~ 

"­
c) An L-type over ., can always be extonded to ùn L-complete 

L-type over "f. 

b3 

. ' 
""il q 

,~ 
~ 
1 
l 
l 
i 

: 
1 
] 

j , 
i 

'j 

! 

1 .. 
1 



Proof. 

a) For p and ~ As in a), necessarily either p U {~} or 

p U {-'~} is consistent over T: since P U {cp,} and 

P U {-'~} inconsistent over T means there are finite 

subsets Pl and P2 of p such that Pl U {~} and P2 U {-'~} 

a~e inconsistent over T, whence Pl 0 P2 U {~~~} is 
, 

( 

~nconsisten~ over f, contradicting the fact that p is 

consistent over T. 

Thus if P is ~~complete then~ by maximality, either 

~ or -,~ must belong to p. 

b) Follows immediately from a) 

c) 1s an Immediate application of Zorn's lemma.~ 

For the remainder of this chapter, by type or complete 

type we mean an L-type or L-complete L-type; 

for p a complete type over H we let 

S --+ -+ -+ P = {~(x;a); a E ~, ~ E S, P ~~} 

13. Proposition. The following assertions are mquivalant: 

\ (i) S i9 equational. 

-+ ... 
(ii) Far any structure H in k, x and complete type q in x 

over H, there is a finite subset qo of q such that qo W 
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Proof. (i)==Hii) is obvious. 
, 

(ii')=Hi): Assume (iD holds. Let H € K, P a set of 

-+ 
formulas in SX with parameters in H. We want to show the 

existence of Po c p, Po finite such that Po ~ p. 

If P is inconsistent in K then clearly such a Po 

exists. Suppose p is consistent. Let P be the set of 

..... 
complete types in x over H contalning p; by lemma 12.c), P 

i 5 not empty. 

Moreover, by assumption, for any q E P we can find qo 
l, ' 

p' '='p U {.., (AqO);q E Pl. ' 

Claim. p' is inconsistent in K. For if p' is con~istent, we 

can extend it ta a complete type q over H 50 that q E P. 

But then, ï(AqO) E p' c q and qo c q X. 

So p' is inconsistent. ~ence, there are q1, .'.,qn in P 

and Po a fini te subset of p suc:h that Po t'fl '1=1 (Aq~). On 

the other hand, for any i, 1 ~ i ~ n, 
i SI 

qo tj:j q w p; hence 

'1=1 (I\q~) tH p. We conclude Po tj:j p, which is what we 

wanted. CIl 

! 
, 1 

Proposition 13 enables us ta give another proof of 

7. (iU" namely: 

- 65 -



Corollary 1. S is equational iff R = cl+(S) i~ equational. 
1 

Proof. Indeed., let H E K and q ~a complete type in -: over , 

H./Then clearly qR,~ qS. Sinc~ S is equational there is a 

'R S finite subset qo of q suc,h that q 'if q li qO· We, conclude 

by proposition 13 that R is equationa}. 0 
; 

We close this chapter by giving two applications of 

proposition 13 which are somewhat typical. They both rely 

On the existence of a "division rule". The first 

application is almost Immediate (see I.4.(~» if one uses 

Hilbert's theorem which says th~t a polynomial ring over a 

noetherian ring is noetherian. Here, we give direct proofs. 

Application 1. Let~ Il{ = F be the category of fields with 

field embedoings. Then the set S of algebraic equations in' 

the variables {x 1 ,···,x} is equational. • n 

Proof. By induction on the number of variables n~' 
i 

Suppose the assertion holds for TI -,1. - 'Let--H he an 

t -+~ .. 
object in K and q a complete type in ,x' = <xl"'· .,xn> over 

" 

. , 
(up to equivalence in'K) of the form 

{(P =0); P E Il, where lis an ideal in H[xl'···'xn ]. 

Consider each element P of l as an el·ement of 

(' 
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E H[x 1 ,···,xn _ 1 ]. Let J = {P E 1: Up If. I}. It is easily 

seen that 

'. 

qS H qo U ql' where qo = {(P = 0); p E J} and 

ql = {Wp = 0); P E I,\J}. By the induction hypothesis ql is 

equivalent to a finite subset Pl. 

As for qo' choose Q E J of smallest degree i~,xn; 

denote thi 5 degree .by d (Q) • 

Indeed, given PEI, d(P) ~ d(Q), there is ID E w and a 

polynomial RO' such that 

UQ"p = U ·xm'Q + R with d(RO ) < d(P). P n 0 

the degree of RO in x n ). 
-- , 

Clearl y RO Eland \ 

If d(RO) ~ d(Q), we repeat the same process with RO instead 

«Q = 0) A(UQ * 0) A(R l = 0» IH <RO = 0); henee, 

«Q = O)A<UQ '* O)A(R l = 0» IH (P = 0). 
, 

Ul ti matel y we find Rn' Rn E I, d(Rn ) < d (Q) , whence Rn 
~ 

E J, and «Q = O)AWa '* 0) I\(Rn = 0» tH (P = 0) • The claim 

follows immediately. 

Now, since tfle formulas (Q - 0) and -<Uq =1: 0> belong to 
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, 
q, we conlude by proposition 13 that S iS'equational. a 

Let DFp be the category of differential fields of 

characteristic p with differential field embeddings. L is 

then the language of ~ields plu? a unary operation symbol 

d(-) representing the derivation function. 

Application 2. With ~ = OFO and S the set of atomic 

formulas in : = {xO'···'xn }, S is equational. 

Proof. The proof is similar to that of application 1 via a 

"division rule" for differential equations. 

Let H be a differential field. Recall, a differential 

polynomial P in : with coeff~cients in H, is a polynomial 

in a sequence of variable~ X with coefficients in H where X 
is of tl)e ~orm: 

x- < X • •• x dx •• ". dx • •• dmx • •• dmx > 
0' 'n' 0' 'n' , 0' , n' 

for sorne m <0 w. Let ordP (order of P in x n ) be the highest 

number m such that dmxn occurs non-trivially in P; let u p 

Thus, we can write the formaI equality o~ polynomlals: 

P = L':==ûI,upi where 1., for 0:5; i 5; r, is a polynomial in 
~" l 'l 

the sequence ,Of var i ab 1 es 

Ax .(. x dx ••• dx ••• dm-lx • •• dm-lx d"'x cl"" > :'! 0' , n' 0' 'n ' , 0' " n , 0 , •••• , xIJ _:1 
'- , 

~ 
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( 

m = ordP·, let l IdS ..,..r • l i-1 P = r an p = Li =1 1 i U P 

Note first that, sinçe a differential equation over H 

can be considered as an algebraic equation over H (H as a 

field) and since algebraic equations are equational in the 

category of fields it follows immediately that a 

< differential equation is equational in the category of 

differential fields (of any characteristic>. 

However, this does not entail that the set S of aIL 

differential equations is equational. Ta show that S is 

equational we need a division 7u1e on differential 

equations. Such a rule is given ~y lemma 5 of ch9 pter 1.8 

in [Kolchin] which we reproduce below: 

Lemma. (cf [Koi. 1.8]). For any differential polynomial P 

and m, 0 < m < w, dmp - S pdmu p l'las lower arder :than dmu p. 

Proaf of the lemma. Write P - Lf=QliU!' Then, 

Since every derivatlve of xn present in Ii is strictly 

lower than u p (i.e. Ii has a lower order than u p > and u p 

has a lower order than du p , we find that 

dP - Spdu p has lower arder than du p • This proves the lemma 

for m = 1. The lemma for arbritrary m follows quickly by 

induction on m. 
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., 

Back ta our proof~ Let H E DFO' Expanding polynomial 

expressions and using the porperties of the derivation, 

... -+ 
every atomic formula ~(x;a) with coefficients in H, can be 

written in a natural way in the form: 

where p~(1) is a differential polynomial in t with 

coefficients in H. 
) 
c 

(P~ is uniquely determined up to formaI 

equalityof polynomials). Let ord~, I~, S~, u~ denote 

respectively ordPIp'l Ip., SP.' and u p". 

-+ Let P be a complete type in x over H; let 

5 -+-+ -+ 
P = {!p(x;a); Ip E 5, a E H, P ~ !pl, 

q = {~ € 
5 " 

p ; <I~ = 0) f. p, u~ if:. Ol, 

Pl = {cp E p S ; u~ . - O}. 

Pl is the set of atomic formulas in p which do not 

mention (non-trivially) xn. By induction hypothesis, we can 

assume Pl equivalent in K to'a finite subset. Let 

, 
m = min{ord~; ~ E q}; let ~ be an element of q with 

j 

ord~ ~'m and such that Pep has lowest possible degree say r 

q 

Claim. <,Sep S - 0) ~ P • For, either r > 1, in which case 

ordSep - m, the degree of S!p in dmXn is strictly less than 
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,. , IS' = r -1 , whence (IS = 0) f. -p (since (lm = 0) f. p), 
• Ip, T 

and therefore Sm cannot belong to p by the minimal choice 
T t: 

of Ip; 

or r = 1 in which case SIp - IIp and (SIp = 0) ~ p since Ip 

E q. 

Considèr now an element ~ of pS 'Pl" Write 

1st case: st > m. Then, let 
f 

l l'd!-mP' (dJ.-wu ) k-l = 
(l p 

.-./(-1 i k l-m k-l 
- 2..i=oSpIi u(l + SpI(luQ - Ia"d P'ua 

- ~-1 1.$ .u i + l 'u k - 1 • (5 'U _ dJ.-mP ) 
1=0 1. P (l Q a p Q • 

By the lemma above we see that either ordRO < 1 or the 

degree of RO in ua is strictly less than k (Recall k is the 

degree of (l in ua)' 

Moreover, since (Q = O)A(P - 0) t"j:j (R = 0), (RO = 0) 

belongs to pS. On the other hand 

(R = O)A(P = O)A(Sp ~ 0) 'H (Q = 0). 

If ordRO > m, we repeat the same process wlth RO 

instead of a and obtain RI" Ultimately we find 

. Ro 7 R l ' . . . , R j , j < w, Rj E pS , l:-
l 

(R. 
J = O)A(P = O)A(Sp ~ 0) !Ji 
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~ 

(R j _ l = O)I\(P = O)I\(Sp :#= 0) tH ••• tH (G = 0), and ordRj 5 m. 

'Thus we have come down to the case of t 5 m. 

2nd case: ! = m and k ~ r. Clearly then, if 

than «. Moreover (QO = 0) E p S and 

(a
O 

= O)I\(P = O)I\(Ip if! 0) t'j:j (Q - 0). 

If the degree of QO is greater or equal to rand ordQo'= m 

we rep~at the same process with GO instead'of Q te obtain 

Qi" Ultimately we find 

(Qd ~ 0) I\(P = 0) ~<Ip ":1= 0) tH 

(Qd-l ,= 9)tdP = O)A(Ip :1: 0) fïl ••. t'fï (Q == 0), 

and, either ordQd < m or [ordQd - m and the degree of Qd in 

Up is strictly less than r]. 

3 rd case. i < m or [1 = m and k < r]. 

Claim. Pl t'fï (Q = 0). Indeed, by the minimal choice of P, (Q 

= O) cannot belong to q. Hence, either u Q = 0, in which 

ca~e 

(Q = 0) E Pl' or 

(IQ - 0) EpS, in which case 
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. , , 

.' 
by induction on the order of a and 'the degree of a in" 

U Q we 'é:qn assume "Pl tH' (QO = 0) and si,nce Pl t'j:j (la =, 0), we i 

i 
conclude Pl tjj «(1 = 0). '. 

Combining the th~ee cases above we deduce that . , 

Slnce Pl i~ equivalent ta a fin~te sub~et, 

/ (P = 0) E p, (Sp 'if: 0) E P and ( Ip '* 0) E p, 
, c 

it follaws that there is a finite . subset Po of p such that 

S 
Po r- P • By proposi t:i ôn 13 we conclude that S is 

equational. Cl 
" 

( 
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ChaptDr II 

SH-Minimal Extensions 04 Types 

We introduce in this chapter the notion of an SH-

minimal extension of a type, ior H a structure in k and S a 

set of formulas in L. As we said in the introduction~ SH-

minimal extensions. play in our context the role that non-

forking extensions play in stability theory. 

" Informally speaklng~ given A c B c H~ p a type over A y 

> ; 

we are interested in extensions q of p to B which do not 

satisfy over B any relation with respect to the formulas in 

S that i5 not induced by p. We are bound then to consider 

a{l pbssible relations with respect to formulas in S that q 

might imply. 

Th~s ,it would be ideal if we are able to find an 

extension q of p to B such that for any morphism T:H~F~ 

fq~implies a minimal possible set of formulas in S with 

parameters in F. 

We divide the problem into two parts: 

First~ given A c B C H, P a type over A, we 

investigate those extensions oF p to B which imply a 

minim~l possible set of formulas in S with parameters in H. 

Such extensions are called SH-minimal extensions of p to S' 
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) , 

and will be the objectrof study of section A. 

We show then, that SH-minimal extensions of p to B 

always exist (c.f. proposition 2), that, for S an 

equational set,_ there are,'up to SH-equivalence, finitely 

many such extensions '(c.f. theorem 13) and that the 

propertyof monotonicity-transitfvity holds.for such 

extensions w~en considering types over sets which are SH-

crosed in H (c.f. theorem 12). 

Second, we consider the types q (over sorne structure 

F), for which, intuitively, aIl the formulas in S (with 

parameters in sorne G, when given' T:F~G) that q implies, 

are represented in q. More precisely, we calI q S-ful1 

(c.f. B.7) if for any morphism g:F---7G and ~ a formula in 

S with parameters in G, 

\ 
where 

1) 

,~ structure F is S-fUllét~ every co~plete type over F 

is S-full. 

Then~ given a type p over A C H we investigate the SH-

minimal extensi~ns q of'W to H such that p U q~'iS S-full. 
\ 

If q is such an extension, we~Call,q~ an SH-component of p. 

, 
In section B,\ we define S-full types, SH-components 

and S-ful1 structures. We show (c.f. 5. <ii» that if-p i5 
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/ 

~ d 

over A c H and q is an SH-minimal extension of p to H which 

, 
is S-full, then for any morphism T:H-----?F such that 1'q is 

consistent in OC, 1'q is an SF-oinioal extension of p te TH; 

furthermore, we show that if S has finite height or that S 

is equational and K is closed under unions of countable 

chains then there is' a morphism T:H-----?F such that fer'any 

SF-minimal extension r of p te T, r~ is an SF-component of 

p, (cwfw theerem B.l0)" Finally if K is closed uoder unions 

of chains then for any H in K there is T:H-----?F such t~at F' 

is S-full. (In chapter III, we make the connection between 

S-full structures and existentially closed structures). 
) 

It is apparent aIl along this chapter that the general 

theory of sections A and B goes through in a very general 

abstract setting that has nothing to do with structures or 

formulas; in section C ~e describe such a setting. 

-, 

Section AI SH-Minimal Ertansians 
) 

O. Preliminaries. 

Wu fi~1 a class A of formulas in L closed under baalean 
\{~.~ 

cambinat,iano and subBtitution of par,amater variables" 

Unl €!aa Gt,ated' othœrwi se, aIl farmul as consi dered are in 1 

~ a type ahall Mean a ~type and a complet~ type shall 

rnean a ~complete ~type~ 
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1 

---------- -------'\.-----,-~------

l' 

Tho motivation for fixing 6 ia that in goneral, 

given a cûtogory ~, wo only work with a'pûrticular type 

of formulae o.g. quantifior-froo, oxiçtontiql, paoitivo 

o~iotontial otc ••• with tho aasumptiono or rooulte on ~ 
, 

doponding only on Guch formulas. 

Wo oometimeo caU C( a 6-cllte90ry"to underlino tho 

choi CG 'of 6. 

S lG a fixed subset of ~ which ia clossd under finite 

conjunctions, disjunctions and uubstitutions of parammter 

variablœ\3. 

" S usually stands for an equational set or il set of . 

oquations. 

Sivan A E K, we shûll consider formulas with parameters , 

in A up to oquivalence in k over A; in other words we do 

Noto that if ~:A~B ls in R, :, ~ in A and 

If R la a Bet of formulaa in A, we let D~(A) denoto 

... 
the set of formulas ih ~ with parameters in A 

(considered up ta equival,once in k over A), i.D. 
~ 
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(, 

Sivan A C 8 E ((, P and q tYPOG in -: ovor' A, 1140 'lot 
p , 

Ll l, ... 
~:A~8 ta a morphimm in i~' p'and q types in x over f, 

wœ let P~ - (~P)~, we Bay p and-q are Sf-equivalent if fp 

/' - / 

.v 
Example. Let,T be the theory, of one equivalenee relation 

E(x;y) with two ela.ses; one. infini~e. the other, of 

,cardi nal i ty n. Let 1( be- the categor~ of mOdel s of T ",i th 
, 

elementary embeddings. ~ the set of aIl formulas. S 

+ := cl <E:(x; t) ) • 

1 

Let 11 be a model of T, a E 11, and p a'typè over H. if 

p = {;E(x;a)} then 

p~ = {E(x;b); b E H, H F 'E(b:a)J. 

If P says, the claS5 of x contains more than n 

elements then 

p~ = {E(x;b); b E f1 the class of b is infinite}. 

\ 

1. Definition. Siveh A C Bec € ~, p a typa ove,.. A and q A 
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f) 

/ 

complota type! ovor B oxt.onding p, wo oay q io -an Sc-oiniDlJl 

axtansion 01 p to El if for any complota type ql ovor- B 

f' 

oxtonding p, 

q~ :> (q'l)l~ ~ q~ = S 
(ql) C· 

(Of cour~e haro p, q and ql are typon ln Q common tuplo of 

... 
veriablen x). 

Given 1':A---?B and gIB---?C morphisms in i(, p a type 

over g." and q a complat~ type over g, (ccf. daflnition of 

type in 1.11>, wœ Gay q i. A~l 5g-mini.al extension ol p ta 

'f if gq ,(au Il type OVElr g(8» ie an SC-minimal e)(tmn5ion, of 
1 

gfp to 9(8), i.e. whenover ql ie a complete typa over 9 

eHtending p to 'f, 

" If 9 (resp. f) is an inclusion map Ne say 9 ia an SC-

(rasp. 5
9
-)/ minimal extension of p to ., (resp. to S) 

2. Proposition. Givmn Bec E K, p a type in i ovar Band ql a 

ucomplete typa over B extending p, therm ie an ~C-minimal 

Praof. For simplicity write qS instead of q~ for any type 

q over C. 
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\ 
''-. 

Let Q = {qS; q a complete type over B extending p and 

We.are searching for a minimal element <minimal for 

inclusion) in Q. 
, ' 

'S 
Let 1q«)«<1 be a decreasing chain of elements in a 

( . S S 1.e·
o 

qa S qp whenever ~ <<< < ;\). 

Let· 2 = {e € D::(8); there is CIl € D~(C), e rc cp and 

Consider the set q - p U {'8; e € œ}. 

Clalm. q is ël type over C. 

Ind~ed, suppose q i~ inconsistant. Then, there are 
\! ':' 

130'··" ,en - l in 5!, p te 9 0 V·· ·ven - l " Let Q)O"·· ",«Pn-l € Ds(i)~ 

such that 8 i te !Pl~ for i < ri and CPi f. n«(l q~. Si nce (q!> i s 
,1 

decrC?dsing, ther~ is p < 1, 'Pi f. q; for any i < n. But q .. 
/ .. 

i s campI ete and q,.. ::> p; hence'9 for some i < n, e i E q,.; 

hence 

q,. r!Pi )ta That sho .... s q is consistent and proves the claim. 

\ 

Let q' be a completa type over B extending q Cc.f. 

1.12.c». 
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\ 
J 

\ 
" 

Claim. 

then e te Ip for some e E q '". If cp f. naO. q~ then e E 2 and 

'e E q which contradicts the consistency o~ Q'. Thus ~ 

E 

So we have shown that (qS )'a<À has a mi norant ln Q. We 

conclude by Zorn's lemma that.Q admits a minimal element. B 

Note that it +ollows from proposition 2 that 1f 

T:A~B and g:B~C are morphisms in K, p n type over 97 

and qt ~ complete type over 9 extending p te then there 

is an Sg-minimal extension of p to 7 such that (ql)~ ::> q~. 

Indeed, it suf+ices to apply proposition 2 to 9TP and 

gql as types ober gB (note that gql is complete over g8). 
\ 

We find then an Sc-miOlmal extension q' of g7p ito g8 Slich' 

that 

::> (ql)~. But that means q -=q'l"g is an 5g -minimal 

" extension of p to T (note gq = Q'), and (q )S ~ qgS. 
1 9 

:;;. Lemma. Let A. c B E K. 8i van a complete typa p over A and a 

typa qo ovor A with P~ :::> (qo)~' there 19 €A camplmta typa q 

.! 
ove,. A extending qo !Juch that P~ :::> q~. 
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Cl aim. q,. i 5 consi stent over A. For if not, 'there are 

!Pi ~ p ~ <1 S; i S; n) and q<\. tj ~ =1 cp l 

Henc~, <qO) ~ lA ~=l tll.,a (recall we had fi xed S $uch that 

cl + (S) - S). 
\ 
\ 

By completeness of p., it follows that for sorne i, 

S 1 ::;; i S; n., p A- t- CPi X. So q 1 i s consi stent over A. 

Now let q be a complete exten'sion of ql to A. Clearly 

q~ c P~. BI' 

Let A C BeC CH, P a type over A ( = <A,H) >., r a 
, 

type over C. In v,iew of a monotoni(:ity-transitivity theorem 

for SH-minimal extensions., one expects that if r is an SH-

minimal extension of p to C then rr'-B s!",ould be an SH-

. minimal' extension of p to B. But this is not the case in 

general as we can have si tuations of' the kind: rand q 
1 ... 

\, 

complete types over C, rand q SH-equivalent bût rt-B and 

ql"B not SH-equivalent. 

Subsets ' B of C in which slJch si tuati ons do not 

occur are called SH-closed in C. Lemma 5 justifies this 
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termlnology. 

First, the exact definitlon, 

\ 

4. Dofinition. Sivan A c B E ~, wo gay A is Sa-closed in B i-f 

5. 

-+ -+ 
for any x l.lnd Pl' ql complete type!] in )( over B, 

'" 1 

\ 

P~ ;) q~, where P œ Pll'A and q .... Q 1 i"A. 
, , 

If 'f'::A--?>B ia a morphiem in R, we say A is S.,-closed 

in B if 'f'A ie SB-c:loued in B <i",e. if whcnever Pl' ql lare 

c:omplete types over B wi th (Pl) i ::> (q 1 ) ~ then P~ :::> 

r 
P :::IllI Pl ~f' and q l:1li Q'll'"f) • 

We .wi 11 see in chapter V that if K is the category of 

models of- a fi rst-order theory wi th el ementary embeddings 
p' 

and if S is equational ïn E< then for any model 11 in D( and A ~ 

C H., A is SH-closed in 11. 

Lemm&. Let .P~ A:;;---?B be a morphi sm in k. Then, A 15 Sf-

cloGed in B iff fer type P 
... 

f and any complete in x over any 

formula cp in P~ therl1 is ra Tormula e in DCA) such that, 

P~ IIJ fa and 'f'e 1lrP. 

l,f in addition S is squational in K them A ig Sf-

closed ln B iff for any P complete over f, if P~ is nct 
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j 

ompty thon P~ in oquivéÎlont te il oingle formula fe for !lome 

e in D (A) • 

Proof. Suppose A is Sj-closed in B, p is a complete type 

-+ S 
in x over f and ~ E Pf- Let 

qo = P~ U {''fe; e E O(A) and 'fa lB 'P}. 

Suppose qo is consistent in K over B. Then, we can 

S extend qo te a complete type q1 over B. Sinc:e qI ::> PT' by 

lemma '3 (since (ql)~ J (fp)~ = s Pf) there is a complete type 

Pl over S B, Pl ::> fp and (qI) B 

By Sf-closure, i t f~llows that q~ :::> p~, where q 

- q...... H CES h - h m t.h 1- S a E- q such that - 11'. en e!JI qt-' W lC eans ere 

fe ts cp. But then 'fe E qo c q 1 x . .. 
Thus qo must be inconsistent in K. Therefore there are 

formulas e ... e in O<A) such that 
1" 'n 

Let 9-=-'1=1 ai· We have a E fH A), p~ lB 1'9 and fG lB cp- That 

proves one direction 0+ the assertion. 

Conversely, suppose f satisifes the right hand side 
'"1". ... , 

{ 

term of the assertion. Let Pl' qI be complete types 

./ 

t, 

- -+ ln x 



S If ~ E qf' then, by assumption, there is e E O(A) such 

have that Pl ~ fe. Therefore, by completeness, e must 

belong to P~ It follows that fp ~ ~ i.e. ~ E'P~. We 

conclude P~ :::> q~, which is what we wanted. 

Finally, if S is equatlonal, then given a complete 

type P over A, P~, if not empty, is equivalent in k ta a 

single formula ~ in DS(B). Hence, A is Sf-closed in B iff 

for any complete ,type p over A with P~ non-empty, there is 

a formula 9 in DCA) such that, P~~ f9ra P~ i.e~ f9 B P~. m 
)'f 

\ 

In short, lemma 5 says that, for S equational, A ~s Sf-

closed in B iff for any p, complete over f with P~ ~ e, P~ 

i s' "definable" over A. 

6. Proposition. Let ACe E R, S aquaticnal in k. Than, thmre 

io B, A C Bec, card(8) S card(A) + card<A> + NO and B ia 

Proof. We first construct by induction a sequtïce (Ai)l<W 

such that, for l < W, 
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and, for P complete over A, pSC _ pS C A,..\- Suppose Ai has been 

constructed, we want to construct Ai+l" Observe first that 

there are at most card (6)' + card (Ai) non-Sc-equi valent 

c~~9Iete types over Ai: indeed, to every complete type p 

over Ai' one can assign a formula 8 p in O(A i ) such that 

5 9 p rc PC. Since there are at most card(Ai ) + card(ô) such 
\\ 

" formulas, the claim follows_ 

Now, for every p~, where p is complete over Ai' there 

is a finite set a such that pSC "'" pS • for pSC is CAlva· 

equivalent in K to a single formula ~ in OS(C). 

a to be the set of parameters in ~_ 

Take then 

It easily follows now that we can find a set Ai + 1 , Ai 

c Ai + 1 cC, cardAi + 1 :S card (Ai) + card (6) ::; card (A) 

+ card(6) + NQ, and such that for any p, complete over Ai' 

This finishes the construction of Ai+l and 

hence of 

Let B = u-< A~. Then B satisfies the required 
~ W,l 

,! 
properties: clearly B has the right cardlnality. 

Furthermore, if p is a complete type over B, then there is 

9 e p, e~ P~; choose l < W so that e e p~Ai; then 

s S • Pc ë (p~Ai)C and therefore by the choice of Ai+l' 

P~ ë (p ~Ai ) ~,..\; thus P~ ë P~. Hence, for any p complete 
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" ' 

over B, P~ is equivalent in C< ta a single formula in DS (8). 

We conclude by lemma 5 that B is SC-closed in C., Cl 

A 

No'to. If ,il c CEl( and S =, UiEIS i where each Si is 

,equational, then, using a similar argument to that of 

proposition 6, one cfl,P find a set B, A C B, C C, card(8) 

!f. cardCIA U 61 1 ) ,+~, and Bis SC-c:losed in C. (The point 
, " 

ta observe i s that if A c A' C C and pis, complete over A' 
~, . 

th~n, since P~ UiE1P~', there is a set Po = {ai; i E I} 

l' , S 
of formulas in D(Ai ) such that Po te PC. Now., cardpO 

!f cardI; it folloHs there are at most card( lA U 61 1 ) non-SC-

Equivalent complete' types over AI. One constructs then a 
" '. 

sequence CA(l) a<}.' À = (card1 + ~O) + similar to the sequence 

required conditions. nn fact, if l is countable., we can 

sti Il fi nd B wi th cardB $ cardA + card6 + No.) 

7. Remark. In fact, it will be suf-ficient for what follows to 
\ 

conslder- a weaker notion of S-closure than that gi ven in 

definition 4. Namely, if the property stated in definition 

4 hol ds whenever He assume in add i ti on that Pl and q 1 are 

respectively SB-mlnimal extensions of P and q to B. 

Such a notion could be interesting if one Intends, in 
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... 

the study 0+ t{ to consider only those types" which' are 

real ized in t( (see 0.5). 

We will assign the sign (+) in front of each 

proposition which uses only this weak'er notion. The reader 

may ignore i tif hè wi shes. 
"1 

8. Lamma (+). Let A c B E l;i(,e, A SB-c:lasmd in B. 'Gi ven a complete 

type p Dver A and a type qo over A with pi :::> S 
CqO'B' thant 

l 

le a complete type q over A extending qo and !Juch that P~ 
S 

:> qs- (CDmparœ with lemma 3) 
,,~ f' 

ProoT. Let Pl be an SB-minimal extension of p t(il 8. We 

have 
- -

:J (qo)~' Sy l~!"ma 3 there is a complete 

t 1 t d . h th t ') S (' ) S· ype q over B ex en Ing qo and ,suc a - (Pl B ::>. q S. 

Let q = q' .... A. Sy proposition 2 th7re IS an SB-minimal 

extension qi of q to B such that (q')~ :J (q1)~. 

We have now 7 

" . 
Pl and 41 are 

1 

S and q and, ( Pl) B :J 

repecti vel y 

o ') 

SB-"'mi'ni mal 
, l 

extensions of p 
? 

By ~B-closure~ it follows that ~~ ::J.> q~. Sinca q :::> qo' 

, 
q satisfies .the conditions of the claim. Il 

9. Definition. Let' A c: B E iC. Sivan a. type p ove" A and a 

: 

88 
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( 

an SI-minimal .Mt'en.ion of P~ ta A if S (Pl) B ~ Pg and for 

Any complet. type ql o~ A, 

S [(ql ) B :;) P= and S 
(Pl) a ~ 

SI 
(Ql'B l ... S 

(Pl) B - (Ql,-g·, 

If ~.A~B is a morphism in i, p a type over ~ and Pl 

exten.ion of p~ to A if ~Pl' a •• (complete) type over ~A, 

Pl • complet. type over A. Than Pl 1. sB-eq~iv.lent to~.n 

Sa-minimal .Mt.n.ion of P to A iff (Pl)~ is an Sa-mlni.al, 

'Proof. ,Suppose Pl is SB-equivalent to an 5 8-minimal 

extension pl! of P ta A. In other words (Pl >i II (P')~, which 

in fact implies ~Pl)~ =-(p/)g. 

S S 5 S Suppose no ... (Pl) B =>" (q 1) Band <ql) B :> PB'" ... here ql is , 

a complete type oyer A. 

By lemma S, there is P2' complete over A, such that P2 

.. 
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( 

.. 
... . 

( 

, 

, \ 
ext'ends P and (ql)~ 

-- 1 

extension 0+ P ta A we deduce that (P2>i ='(p'>i, whence 

.. 
S S • (PI>B = (ql)B· That proves one direction of the claim • 

• 
S Conversely, suppose (Pt)B is an SB-minimal extension 

S S S at_PB ta A. in particular (Pl)B => PB. By lemma 8, th,ere is 
... 

a complete type p' ov~A- extending P and s4fh that (PI)~ 

=> (P'>~. By proposition 2 we can assume P' is an SB-minimal 

= (P')~ i.e. Pl is SB-equivalent to p', which is what we 

wanted •• 

A, Pi a complete type ov.,. A and P2 a complete typ. ov.,. 8 
l' 

wlth Po C Pl c P2. 
.J 

Then, P2 15 an 58-minimal .x tensi on of Po to B iff P2 " 

i. an S~minima~ extension of P.l te B and Pl is an $8-

minimal extension of Po to A. 

Proof. Suppose P2 is an SB-minimal extension of Po to B. 

Then, clearly P2 i~ an SB-minimal ex~ension of Pl te B 
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'p 

, 

( 
/ 

sinc:e P2 1 Pt :::> Po; 

" on the ''èrther hand, 

complete extension of Po to A, by lemma 8 <since (P2)~ 
\ '" 

. '. 5 
:::> (qt)B' there is a complete extension q2 of qt to B such 

that (P2)~ :::> (q2>~ <Sy proposition 2 we c:an assume q2 is an 

SB-minimal extension of qt ta B>. 

Sinc:e P2 is an SB-minimal extension of Po to B, it 

Po to A. 

.... 
Convers~y, suppose P2 is an SB-minimal of Pl ta Band 

.\ 

Pl is an SB-minimal extension of Po ta A. 

Po to B then, by S~I,oS5ure of A, (note ~hat by proposition -

2 we can assume q2 is an SB-minimal extension of q2~~)' .. 

.' ... 
. '. But 'Pl is an .. S8-minimal extension of Po and ql ::> PO' 

5 . 5 
1, thus (-p 1 ) 8 = (q) ,) 8· 

, .< 

, 

te B. Sinc:e (qz>i ::::> '(qt'i = (pI,>.i, we cenc:l~dé- (P2)~ 
# 1 

" 

f 

('p )5 
1 B 

s ' , 
)" (q2) B- That shoWS P2 is an sB~minim~l Etxtensibrf of Po to : 

, . 

r~ 

, -' 

. . 

,.' 

" 1 . , . 
.... 

1 

• J \ 



l, 

.' 

.l" 

.' ,', 

( 

" . 
, 1 

'. ' ,-
f ,.-1 ., 

.. " 

• B •• : 
'r r 

" 

t ",lJ \~. 

12. Theor.meMonotonicity-trAnaitivity) .­-. '. 

... 

Po a tyPJt 'over A, Pl 'A compilit. typ~ ov.r ,.A,- P2 • c;èmP:l~t.; 
'.. ~... .J 

tVrf- aV.r B; ~ Po C Pl C '2. '~~pp'a.1! A''-and .B Ar •. ,SB-,c-l~~.d in 

c. Th.~, P2 i~ ~n SC-:minimAl .>et.neion of 'PO' .ta B iff P2 
~. , 

.. 1 J _ 

ia an SC-mi.n,jmAl eMtenaion of Pl t'Ô S Anq. Pl ia An, SC"'"t· .. 
l , 

~, . 
lIIini ..... l .Mt.nsion Jof Po ta A. r j. 

, , . 

Proof. L~~ !3 Ge ~n ·sè~mrni~a~ eK~ension'of P2, t9 é. . ; " , 

. CkmsÎder' the' following stat~ments: 
... ..: ... . 

Jo .... J' 1 

, , . ." , 
• J 

,> 

. , 

" -
f " 

1 -.1 r' 

". 
'>. 

.' 

. . . 
J • 

... ~ 1 ",' 

1. P2 ~s an' SC-mihimal.extensipn of Po tb B. 
.. S Io:t '!:" ,.... ,.... • f' 

.. 
"' .. ' -. . .) ~ . 

2. P3 is an ~c""min:[-il\al extension' ci-t; Pj te ~ ar\d, ).is an Sc-
r ." " 2 . . : , 

mini~~l extension of ,RO t.o ~~ " 
• 1 

3. P3' '"i s an SC!...minimal'" El!xtensi,on' ,of -'PO' te C.· 
; ~ ... - ., 1,. '1 ," -1 _ 

" . -
.. "" .. , .. 

4. P3 ~s an ~C-minimal .extensi0!l of_,P"-ît,9 C, am~ 'Pl 1'5 \afil SC;:: 
, 1 " 

min,i filaI exte~df\' of PO, to_ A. 
, , , 

l,t '- j /. 

P3 i 5 an ... Sc-;li ni mal: ex t;.éilsi on of P' ~to C . 'p 'r i s ~n S -
/"' -~, • '. 2.,-' c,," 

l, 

, . .. 

minimal extension I!Jf" Pirt'o Band ,Pl,is a.." Sé"':mi~iïia~i 
, , 

e)(t~{lsion of Po ta A.,',. 
, ~ 

6~,,... ;'"2 li s an sc-minim~l· e~tensl'-o~' of Pl te "'B, and Pl is 
r 

minimal ext~~s~pn of Po to A. 
',,' r" \. •• 

, " 

.', 

, "-
.... 

.. ' 
'" . 

92 

... , 

/1 

, , 
/ 

',' 

, \ 

I~ 

" 

" .. , 
: . 

! • 

t, 



.. ~ 

o. 

.. ' 

" 
jI,' 

,. . " .. 
~ ,1 ,,' ... " 

., . 

, .~.' 

- " 

( 

.' ,--<t- I 

\. 

~ . . 

, ,'le 

'. 
'" " 

\, 

r 

'. , 

By lemma 11 applied to P3 Ne have successively, 2P+3, 

3~ and 4~; S~ is obvio~s • .... '1 
W~clude -1~ which is Nhat Ne Nant.d_ • 

A 
Not •• Siven morphisms f:A~B and g:B~C in K such that 

over 9'f, pl,a complete type over g'~ and P2 a complete 

,A. 
typ~ over g, P2 ~ fPl ~ fPO' it~follONS from theorem 12 

, "\ , , 
~, ,:Ii)' 

, \ 

that P2 is an-Sg-minimal extension of~O ta f iff P2 i5 an 

5 g -minimal extension of P,l to f and,: Pt is an Sg .f-minimal 
r... 'r 

,.' 

'. 

ext-ensi-on of Po ,to A. lndeed, c::onsi~c:I@r_ the types 9 o~eQ_,~ver 

then complete and, by aS5umption 9 -fA and g8,are SC-closed 

in C. Thus ~heorem 12 appli~s: gP2 i5 an 5 C-minimaJ 
, , 
~xtension of gOfpo te g8 iff gP2 is an SC-minimal eKt~~5~on 

~ of 9 "fPl to gB~' and 9 "fPl is an SC-minimal extension of' 

gOfpo ta g"fA. Translating ,what prec::eded in tarms of Sg.f~ 

:-1" 

minimal and Sg-",inimal'i~extension5 (see definition 1) Ne 

obtain what He wanted. , 
"'\'- ,-'-

.' 
J, 

,. 

13. Th.ar.m. Suppo •• S i •• qu.tion.l in k: L.t fIA~--~jB b •• . ,-
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~ 

.,: 

( 
-1 .:. 

.( 

;; 

'. 

~. 

, <'1 . , 
.1 ... 

A. In ath.,.. wards, th.~~ .Mist qo' . ··,q,,-l' ,Sf-llini ".1 ~~/ 4. l "-./ r~ 

eXtension. af p ta A such th.t for .ny Sf~.ini".l .Mtenston 

q o-F p ta A, th.,.. is i < n, q~ i (qi)~. 
,1 .ri ' .... 

I~."f.c:t, rith th. qj'S as ~.bDV., N4I have 
, ~. . ... . , 

P~ J Vi <" (qt)~· 
~ 

Pr~f~ Let Q be the~et ~ ~i-mi?imal extensions of p te 

A. Consider the set 
. 
" 

cD~lete type ql ove< f., By proposition 2 (applied ta fql ,i 
, 

over ~A) there is an S8-mi~imal)extension q' of:~qO to ~~ 
"".-,.",' 

such that 

~ 

(t:ql)~ ::> (q')~. Irl other t~ms, thÈ!re i~ an S'f~min~mal 
-

e)(ten~ion q of qo ta A, <take q == q' ('fF, such that (ql)~ 
~ , 

Since S is equational, (ql)~ is êtluivalent te a s;'ngle,' 

S .formula in D(8). Therefore, by definitién of (ql)~' there 

is a formula e in ql such>,~hat felB(ql)~; hence ~elB q~. 
" 

f But q € Q ~ ~/t f'611 o~s, by def i ni ti on (Jf q()t thal--,g', 

" } .... 
E Q''O, whence 'é' E'- q 1 lt. 

.... '" . 
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• 

" 

'. ," 

• t> 

( 

" 

.,,-

<j-" '"' 

Thus qo is inconsistant èver 
), , 

'. 

-F .. 

.. 
',V .. ... ~ 

't' 

That 

60 , ••• .,9"_1' formula, in DtA) .. such that.~ 

. 'l_~ T ',,_d:' r, , , 

• 
lIt@sns there are 

lt folloHS that for any q, complete over 1'""q Etxtending p, 

L 
<-'~ such 

~ ~l _ 

that q If ai' and ther~fore' 1'q ~(qi )~. there is i 

In particular, if q is an Sf-cain~l<ma.l extension o-f p to 

A\, we find that ·for some j < ~., (q) ~ = 

that,.·up ta S.,-equivalence, tlo ,···,Q,,-l enumerat'e~cal,l the 
j 

Sf-minimal exten~ioris of p to A. 

We have nOH. 
... 

~ 

" 

l 

1. 
'. 

1'p lB vj<r,et t1ï V;<n (~Û;~,- ~ .~ 

~---.-------~-~~~-'"'- -~-----------

i. e. on the other hand, since qj :> P, , 

, , 
. '\ .... 

, (i, 
:.. \... 1.)' l " 

R.mark • 
" ,~, ~ 'b 

If Ne are to deal only ... ith tf1bse types ... hich- are 
" 

~ ,1 "j- -..... '1 

realized in le and define equtilti:onali:l;y o-f , S only with 
'. . , 

respect to such types (see 0.5) then; for 
:: 

simî lar result a , . 
;.. 

to theorem 13 to go thraugh Ne need the f 014 o ... i ng .. 
conditions: " 

A E K and p i ~\ a type over A suc:tr .thaf ~~r:- any r S A-
. -~ 

minirnal extension q of p to A, qf'S 
. .... 

is 'realized in k over A 

(recal'l -+ ... 
qt-S = {lp(x;a) 

,,' 
, .... -

~~~ 

"; 

€ 
-+ -t 

q; tp(x;t) 
c' 
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" .. r ~l 

.~.;!" ' • ., 

. .. 

., 
\' 

.,1 
, 1 

/ 
/ .; 

\ 1_. '\1 , '.'1~ , , .. " ' ,.., 
~'" .... 

t~ 
:J. .li' _ , ~ "1 

~ t '..,~ 
'\ 

The,. foll owing i SI: then true: p has, up ta 'S A­

,equi,valence, Hnaèly ...... y SA, .. ini;';,,1 ~xt~,,~OJ1~ te 

are real iZ:d in k over ~A. "1, ~\ '(><, 
[ 

' .. 
Exa.pl ••. 

l.-

-r 
~ 

A which , 
'. 

,~ 1 

~Let L consist a~ ane binary relation <; 

/ 

~ := cl +( (x > t». Define thè .~sual arder- a:l' <w2 : 1) < y " 

'" if 1) is an initial seg~ent of Y. Let ~ -

structure thus obtaine~. 

Let 6. b'e t'he, st;!t of a} 1 farmul as in L ànd let 1( be "­

the A-categ~ry o~, ~odels bf Th(~) with elementary 

ellbeddings. 
, ~ 

_._----~_._-~- - . . ._" - --.----.. 

". .. 

" 

/ . ' . . .. 

~"'l" 
. 

~-\ .: '. 

.: 
" 

Cl ear.l y 'S i s not equat i on:al in k. 

Cansi der t~).pe over ({J,If,), 
" é 

p = {3t ( (h (t ) > n) A (x > t) \) ; n < w} 

where (h(t,) ~ ,D) means .. 3tO •• -tn to < "1 < ••• < tn < t. 
. \ 

It is easy tO,see that for each q e w2 , the type 

PI) = {x > I)~n; n < w} 

determine~ an Sil-minimal ~xtension of p to & 

inconsistant in K. It folloHs that p has 2w ~~-minimal 
.' , 
~ 

exten~ïons to H. 
~ . 

" b) Let 7 be the theory of linear orders, Ô the set o~ aIl 
" ... 

qlllantih'er-free farmu~!'ls (in L = f<}) and k the I:r 
"Jo • ~of'~ 

~1. 

" 

1.,. 

.. 
J 
l' 

~, 

-,96 -
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," 

v ........ 

( 

\ 

"- , 
cat~gdr"y of. models of T with embeddings for mérphisms • 

. , Let S :II: cl +{ (x > t)}, S' = cl + {(x ><t) , (x < 't)}. 

1;:'1. ear 1 y, nei ther S nor S' i s equat i onal in le. Let 

H':e,,, iflnd\'p a (A-~-complete" type in x over H which is 

,ihot 'r.aalized in If. 

P ts then equ~valent in ,,'to a type Po of the form 
'. 

Po~ = {(x > a); a e I} U {(x < b); b E J} .. 
where l'and J ~e subsets of If such that a < b "fhenever 

a Eland b € .J. 

New let ~:H---7H be a morphism in K. p has a unique 
.] 

SIf-minim~1 extension to ~, na.ely the type 
t 

Pl ={(x }~a>; a E I}U{(x< b); b EH, b >~. 
-- ----- -----------

for aIl a in Il. 

However, any complete t~ over H extending ~P is 

an Sf-~inimal extension of p to ~. 

c) Let L = {<,+, ·,0,1)-, Il the set of quantifier-fret! . 
" 

formulas in Land " the ~category of ordered fields 

with ordered field embeddings for morphisms. 

Let S be the set of algebraic equations in L. S is 

equational (for the same reasons as for K = F>. Let 
''\ 

~:H---7F be a morphism in le. Consider the type p over 

H, 

P = {<x> 0), (P(x) - 0»)--

. 
where P(x) is some polynomial with coefficients in H, 

such that P(x) has a positive root in some extension o~ 

i ..... 

" 

1 



H. 

( First, nof'e that p is a type over ., (for p, has a ~ 
... ~ " 

root in the real closure of H, whence P has a root in 

the real closure of F). 

'" Now, the SF-minimal'extensions of p to "f are the 
'v 

types o-f the -fo .... m 

Pl F {(x> 0), (Q(x) = O)} 

where Q(x) is an irreducible camponent o-f P(x) in F 
, 

which has a positive root in seme extension of F. 

One observes here thae there is a morphism 
1 

g:F---?G, for instance the embedding of F into its real 

J closure, such that the SG-minimal exten5ti.ons of P to g." 
are the types of th~ form, 

Pa,G {ex = a); a E G, ëi > 0 and a is a root of~}. 

Of course th~, for any morphism e:G---7E, Pa has a 

unique SE~minimal extension to e. 

The observation above will be seen in section B ta 

follow ~rom a general statement (see theorem B.8) •• 

1.' -. , 
Suppose S = Sw = Un<wSn whe~e, for every n < w, S~ 

is an equatianal set of formulas, Sn = + cl (Sn)' and Sn 

and p a type in~ C Sn+l: Let f:.A~B be a morph~,sm ï·n k 

-t-
X over "f. èonsider the following partially-ordered set 

eT ,:$): 

( 

98 
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J 
-" 

t ., {( q , n ); n :S w, q i li an 

of P to Al- U {(p,-1)}; 

". for 0 S n,m S w, (q,n) S (q' ,ml if n ~ .. and 

(p,-!) S (q,n) for any 0 S n'- S w. 

(So (q,n) :: (q' ,lit) 0 S n,lit S w, if fl,:= .. and (q)S. 
~ ~ 

1 -

(T ,S) sati sfies the following, properties: 

1. Si ven -1 S n < 1ft S w and (q,n) € T there is (q' ,.) 

E T such that (.q,n) S (q' ,ml • 
/' 

2. Si van -1 Si n < lit S w, and (q' ,lit) € T there is ~q,n} 
- - - -~ - -_._- -

E T such that (q,n) S (q',.). 

3. (T,S) has finitely many elements at every finite 
-, 

level. 

Indeed, given -1 :S n < ,.. Si w and (q,n) € T, by 

t' 

P to A such that' (q)~. :> (q') ~.~ But then (q).~. :> ,(q' )~. 

and, ~inc:@ q. is assumed an - (Sn).,-minimal exteli.sion of 'p,_ 
, ~ ) 

c, 

" 

we dedJ.lce that (q) S. 
~ -, ., - (ql )~ •• Thus (q' , m) E T and (q,n) 
1 

S Ttiat 1. 
~-

(q' ,m). proves . 
~ 

( 

Siven -1 S n <. m S w and (q' y~) ET,"' by proposition 

t there is ... an (S~).,~in_im,al extension of p to A.suc:h .. . . 
that (q' )~. :> (q)~ •• So, <q,n), E T and (q,n) S 

" ~J 

1 ~-~ - . 

~,,\.lrt) .' 

That proves 2. 

99 



, , 

( 

, 

-. ' 

It fallows from property 2 that i-f (q,~),.E T then 

(q,n) i5 at the n + 1-th level, i .e. th~ (n + 1)-th . - ~ ) < 

level in T is constituted of the (Sn)f-~inilRal 

, ; 
extensions of p. to A. Sy theorem '13 l'le deduce property -

3. 

R...ark. We will see in chapt'er III that for k the category 

of model S 0+ a campi ete theory wi th el ementary e1Jlbeddi ngs, 
.. 

if P i,s a complete type over a subset of A then <1,5) __ "as 

j more precise properties as for instance the ,fact that C1 ,~) 
~\ 

is a tr:ee (c.f. l1I.14) (i.e. (q,n) ;1 (q1 ,n') implies there 

,1:$ hO tq/ ,m) il' T such that fq-,n)- ~--(q' ,Rrl- and (qi,n-) 

:5 (~, ,m» . This .... i 11 -folIo,", from the fact that, in that 

case, if (q,n) and (q1,n) belong ta T then (q,n) 'and (qi"n) 

1 
are in some sense con j ugate of éach. other_ 

, . 
Al so, 1 emma 14 belo,", wi Il have more preci se versi ons 

(c.f. III.17). 

i ..... quenc. (qn) n<w o-f t>/p .. ÔVItr 'of such that, 
". 

far ft < w, qn is an (Sn) .,-minimal- a)(tansion of p ta A, ~ 

, 
Praaf. Let' (T,S) be d~fined as~above; clearlY (q~,W)' -€ T. 

'-

, 

,,\ 

< 



' ... 

• 

( 

. 
"{. 

q 
, 

'1 

( 

/ 

- . 
1"""''''.- 'i ... "" ;,~( .. '.-~ .. ~ .... .,. ... - :-~~~:>i~J._~·/~~~<··'!.~ .. J.,~~~h,; "'f}"'~. 

.'-
Let ... . 

.. 
(TO,S>-==-{(q,n) € T; (q,n) S (qw'W)]-. 

By property 2 of (T,$), 7:0 is" irHûiite •• 

From property 3 of (T ,$) ..... (see above) He deduce that 

e;.(TO,$) has finite bra~chin9 at finite levels' •• rt follows by 

'" KO!'i.9· s lemma that 
f . 

(T 0,$) admi ts an infini te branch l!. 

__ i te q ~. for q if (q ,n ) € e ~. Let 
" n. 

'" -._----------L-

~ --, iî 

q" i 5 consi stent over .,. For i ~ not. 1;I'lere are 

, 
such that .. , .. , 

" " ~ ------ / Vi <k9 r t 9 i lB qti (i < k) and Pif 
\ 

: 

Let m < w b,!! such tha,t .-Z. 
€ DS·(B) for a11 i < k .; ~, a 

Since qm ::> p.: we· hav~ tha\. qm l:f'Vi<k~; by comphi!teness and 

since qm is consistent over ". it' fol.lowlii that ",. ~i for 

Let qll be â complete type ov~r f extending q'. ~ 

clearly have (qi')~ <:: 

~~ 

Sa (qn)~ C/ .• Ùn<w(qn)~· c ~;:~-::~y:· ... iniia-ality o~ q Ne 

conclude that" cqn) S - qS hence qS., := f. - ." \, 
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15. 

... ~. 'tIt .... 

'+ " Proposition. Suppose S - cl ( Ui<wTi) wh.r ••• ch Ti i. an 

~u.tion.l ~et of fOr~Giv.n a morphism f:A~B ln 
, ~ 

and a.typ. p in x over f th_re ara at most 2 w non-Sf -

Proof. + Let Sn = cl (Uj <n Ti); then, by proposi ti on 

I.7.(i~i) ~ SD is equational, SD C SD+1 and S = 
''-' , . 

lemma 14, if q is an Sf~mA~imal extension o~ p ta A then 
1 "..')l .. - .... l. ~ 

extension of p to A. Sy proposition 13, for each n < w, p 
'-­

~ 

has ~initely many n~~-(SD)f-equivalent (Sn)f-minimal 

extensions ta A. We conclude that p has at most 2w non-Sf -
--c' 

equivalent, S,-minimal extensi~~~ ta A •• .. '" 
.... 

1",' 

.... [Not •• In fact, with p and· .. f .... as in the proposition 

.J'l" • • ~ ,~-

',' ~.ov,!! but W1 t~;-~~ =:~ ( Ui EIT i)" where 1 i&- an arbi trary .- , 
;" . . 

infini te .!.nhex se~'and Ti i5 equéltional (,1'" E 1), -r3iie can 
~;" ..... ~ L.. _ ••• 'too. -Dl,.'" .p _ • ~.,. '" 

.~~~. ~hgr!... ar..:.,:t m";~:2H,ln~n~s~'-~Ui val_') Çminimal 
extensions of p toAJ. '.' ,.' , .. __ ,-

~ .' , -... 
-',,1" 

16. Theorem. Suppose S - cl+( UiEIS j ) wh.ra for •• ch i E t, Si ... , 

---
- 102 
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i. An equA~ionAI set of formulAIh Biven A.morphi.m ~18---+C 
, 

in e and a complete type p. in : over ~, th.re is a •• t A 

C l, of cardinality at mo.t' card(I) if l i. infinite And 
J 

finit. if l t. finite, such that pts, up to S~-

equivalenc., the unique Sf-minimAI extension of p~A to 1. 
i\ . "'. ~ 

Proof. Let 1* be the set~ of finite subsets ~of 1. Clearly 
• p 

Now, by pr8posltion 1.7.(~ii), SJ i5 equational for J E 1*; 

thus, there i5 a single formula eJ in 'D(8) 5uch that feJ Ië ' 

pS" ., . 

Let A be the sit of par_meters~c~uring in the 

formulas SJ!. J E 1*. A i5 clearly finite if l Is finite and 

l' 
of cardinality at most cardI if,I is infinit,e., 

( 

" ' 
S On the other hand, "(p~A) rc p~. It ~~sily folls~s 

tnat, up ta S.,-equivalence y p i5 the Unique,S.,-mini~t' 

extension of p~A ta B. • 
~/ 

" 
EXAmple. L = {<l, < a binary relation, 6 the .set of 

- . . r (..... , 

quantifier-free-formulas in L, k th~ tr.category of, linJ!,arly­
l ' . . :' 

ordered stru:tures with embedd~n9s fpr marPhiSmS\ 

S = cl+({ex > t)}). 

~ ctearly 5 is ,not equationsl ~n k. 

Let H E K. The set {(x> a), a E Hl det~rmines a 
d , 

f· , 
" . 

'"7 103 
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, \ 

~ '. ~ 

unique (6,-) complete type p over H. 
• 

One easi~y checks that p is an SH-minimal extension of 

pt-°A, for- A c FI, iff A is cofinal in H 

(i. e. "'lb € H 3a E A (a ~ b». 
o 

THus, if H admits n~cofi~~l subsets o~ strictly less 

cardinality., then ther~ ~s no selA c H such that c::ard(A>' 

< cardCH) and p is an SH-minimal e~tension of pt-A tofl. 
'-

1 

1 

Section BI Irr.aucibility ( 

and • &.~.t l) fa~.ul •• in DCAI which 

is clo.ad undar finita conjunctions .nd disjunctions. Lat p 

be A type or Just • single formula over A. W ••• Y P is ~-

P is •• id .-full if p i •• -irraducibla and for Any. ~ 

in _, , 

(p lA cp) .... (p n - fjl qa>. 'f 

EKAmple. Let k = F. (the category of fields), F € IÇând p a 
• 

type in x over F. Let ~ be the set oT algebrai~ equations 
' .. 

with coeffici'ents in F. Then, with Qp'(x) the polynomia!. 

over F 

l . 
~.1 , 

0( 
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,. 

, 

\ . 

~ «- ~ 
/ 

~i 
, 

" 

of smallest degree such th~t P ~ (~p(x) ; 0), p is §-

\ 

irreduàible iff Qpex) is an irreducible polyno~al in ~[x]; 

P i,s ~full ïf Q~ is 
\ 

irreducib~e and (a.~pCx) ~ 0) € p for 
\ ~ ,,, . ; f 

some non-zero erem~nt in F. 
\. 

, 
For A, §, P as in definition 0 l~t us~say that p is §-

complete if for any ~ in ~, either , or',~ belongs to p. 

Let pt: = {cp € ~; ,p fA cp}o 

, 

av!,.. A. ThtIM, P i~ .-lrreduc:ibl. iff th.r. ls'. complet'. u 

typ~ q o~.r A ~xte~dinQ p ~d .üch that ql A p. ~ff th.r. 
, ; 

f •• I-complete '"type q~ aver.A .xtendihg p and such th.t 
'\ 

1 ,.. 1 
q A p ., 

r , 

\ ' 

. " . -+ 
Praof. = p U fJ.,i U {'qJ; cp E .x, cp E p.}. 

" 
i s c:onsi stent in kiff for any formtil as • q t~ .~ \. ~O' •• ·''Pn-l 

-+ 
in .x, if.lpj E pl Ci < ~) ~hèn p U p~~ Vj<n~~o In other 

.. 
1 ~ 

words, since P lA p , ql i's consistent in Kiff for any 
• 

some j < n i.e. fff p is i~irreductible. 
i ' 'i-' 4' 

~ow"any complete (resp. i-compl~te) type q over A 
r 

extending p and such that q~, A' P~ m~~t'7' ex~e!ld qtO O~I~ the 

..,' 
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" 

( 

" 

).~ 

.. ' 

). 

. , , 

.- , 
J' 

other hand, any complete (resp:·.-è·ontpl~te) b/pe1q'fJver' Ai . " 
>t .) ~ _' • 

'il- extending Ql.ris suc" that ~ - qf ~ "'p~ T#h l' h n' A 1 A • ",e c a.lm as ow 

,.:~., .' 

2. 

;\ 

II" ., 

" 

, ! 

become cl ear . • • , 1 

" 

Not •• ~ith the not'âti~n of lemma 1 p is lI-irreducib}e iff 

pli is ~-irreducible: sinçe, li being closed und~~ 

d · . t··L 
• '"', p ~A mt'''m2 l' ff pli I-A ISJUnc Ions, Tor any !Pl' IP2 ln ~ I~ T v T lA 

-, . 
.' 

l , 

i • 

D.-f i ni ti'cn. Biven .. morphism fJA----+B in ~ and e, a formula 

ln 0(8), .... say: '.~ '. -

e 1. S-def i nabla if thera is a formula cp ~}n D~ (8) .uch 
~ " 

that e i qt; 
.,"", 

e i. f-da-finable if th.r. i-. A formulA • ,1n'_ DCA) ,auch 
0" f 

J";' 
that è i ".,; 

, 
~~ . < 

, ,- e is (S,1') -definable if e i. S-definabl. Ar1d 
n' ~ .' ' 
d.'Hnabl •• r" ". 'r , - ., . , 

If l' ie an inchlsion m.p, WII · ... Y e i. A-definable. 

(S,A)-definabl.) inst •• d of e is 1'-d.finabl. (r •• p~ 
;1- (f .. ' .. 

• ~ Il 

,', 
" ' 

1., .... ' 

.qu.tion._r .nd p is a typ .• cyer ~ ~h~n .. p; 1. (S,(»-
, ' 

"",.definabl •• 

,. .' 
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1)- , 

'-

" 

,', 

J 

,.-'1 i, 

'\ " ..... ~" 
, 1 

. '1 

"J 

)' 

'; 

J, 

"'f 

,-, 

. , 

\ , 

" 

( 

l ' 

1 

; 
j 

'\ 

,/ 

-.~ 

..: 

, 

" 

.; 

~\ ,;- t' . 

.l ' ': 

, 

~ 1". 1 ' 

Praaf: Let f, A,and p satisfy the hypothesis of the lem~a. 

By theorem A.13, p h.a.s, tip to ~Sf-equi\alence, finitely many 
}' ! 'l" 

l, 

Sf-minimal.' ~)(tensions, say P~>·· 'Pn-l' and P~ B Vi<D (Pi)~· 

By lemma A.~, since Pi (i < n) is a complete type and A is 
~ 

S.,-~losed in, .B, thére is a formula ai in D(A) such -·that 

. (S,f)-defina~le •• 
'----

'.., 
" 

4. , D.finitton. L.t .,.A---+B b •• morphism in e, ,P • type ov.r 
), 

• 1. 

l , 

(i) ~ ••• Y p i. (S,~)-irr.ducibl. if "p i •• -irr.ducibl. 

for ,_ th •• et af (S,~)-d.fin.bl. formulas in D(8). 
, 

(ii) P i. S.,-irr.ducibl. (re.p. S~-"ull) if .,p i. 1-
, 

irr.d~c{ble (r •• p •• -full) far ... DS (8), .r 
1, •. 

If ., iS.an inclusion map. we •• Y P i~.~jS,A)-
• J t ... · . . . 

irr.c:lucibl. (r.sp. ,SS-irrilducibl., SB-full) iri.t. •• d 

,'" 
JI.. • pi" (S ,.~)i;';,i rredûci bl. (re.p. 

" 

, .' 

of 

s't..:' ' 
Nat •• With ,th~ 'jlotation$ abave, pi . .,. S.,-irreducible if.f fp 

" \ 

is (S,S)-frreducible • 
t • ~... ' 

Âl"so, P i's S~-ir;r..educibl~~ p i5 (S ,f') -irreducible~':' 

... 
~'107 
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.' . -, 
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. ~, 

;-

'~-. } 

( • t-, 

1<" 

If~ • 

. ,. , ,. 

_1", .c. 

5. Prop.osi ti on. ., 1 A~B • morph i 5111 in fè ;:, p • t yp. ever .,. 
'\ • tt!-

,\ 

. } 

(i) A •• uming ~ is S.,-closed in Band S i5 eq~tional, p 16 
• 1I1l' .... \. ;:a. 

(S,f)-irreducible iff p ha., up t~ S.,-.~uival.nc., a 

unique S.,-1II1n1mal extension q te A, and in fact q i. 

such that q~ i p~, iff th.r. is a cdmpl.te type q over 

., .xtanding p ~ith q~ J p~. 
~, i 

~ 

(ii) P 15 S.,-1rraqùcible iff p ha., ~p ta S.,-equiv~len~, a 
\ '. ,_ 

unique SB-minimal extension' q to f, and, q i.ï.ucft. that 
tl' (; ,~ 
~'J 1,!-

~ ... 

q~ J P~. If in Addition p is S.,-full thenier is "ch, 
'" .'-

Proof. . , 
) 

(i) Let FI be the sét of (,S,l'),-de'.fin~ble formulas in D(8). 
"/, 

11'." .b 

mean~ that l'p~is FI-irreducible. 

ST-minimal extensions of p, to ~.~ bY,Jheorem A.13 we 
4 J !.i .. -;. . ~ 

have P~ B Vi<n(qj>;- H~nce ip ra Vj(n(qj>;. st lemma,3 

each 'J,qi)~ ~i.~ equj,valent to a formula in !i; it follows " 

," , " 
" . 

S by !i,;::i rreduci bi,li ty t.hat Tp lB (c?i)., for scme i < n. , 
v 

~ ~ülearly then, q~ is, ,uP to S.,-equivalence, the unique 
j , Q ~!~' 

s S ST-minimal extension, c;'f p ta A; and since (qi)T lB 'Pi' . 

j" 
l, 

. ,.. 

,,' . 

" 
't 

'1 , , 

" " 
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Suppose p, has;;u~'to S~-eqûivalenc~, a unique S~-

.. ' S 
minimal extension q ta A then, by theorem A.13, PT B 

, , , 
~ .... 

q~ Thus, there"1'is a \-omPlete ty.pe q'Jover A, q :::> p, 

1, .. • ..... 

Finally~'" suppose there iS" a .complgte type q over T . ' " 

extending p 5uch that p;' 'fi q~. ' 

, 
If Tp ~ ~lV~2~ where ~1~ ~2 E ~ then f~.~ .1V.2. 

- - .. ~ 
.1' ~2 being in ~, they are equivalent to form~las 

~4 ~ JI. 

,'in' D(A); it follow5 by completeness th!at 'f'ci fBtPi for i 
" 

= 1 or 2. 

~1' ~2 bei ng in., tJ:ley' are equi val ent to formu'l as 

in DS 
(B) ; ,hence, (~q,> ~ lB ,,~i..i. e. q~ lB .i. Therefore 

P; fi' !Pi· We conclude that p is (S,f'):"irreduci:ble. 

.' 

<ii) We ha~ve already' noted "above ,tha~ p i5 S~-irreducible 

1,.' , 

,-

, . 
i-ff ~p is (S,B)-irreducib~e i.e. 'iff fp i5 (S,idB~-

" irreduc:ibl!!~ By. (i) (appl ied to ~p and idB>", ~p i5 

~ , 
(S,idB)-irreducib~~~if-f fp has a un~que SB-minimal 

" '1 • 'r, " , 
" 

extension of q to B, and q 1'5 such that q~ B (f'p)~, 

i .. e. 
~ ~ > r ~ 

if-f p has a unique SB-minimal extension to 'f, and 

q SB l'V pS' 
B . ~. 

" , 

, " 0'# ,. ~~ 

'~e conc:lude 'tti~t ,p is ST-:irr~ducible if'~ p has a 
" '. .... -l,.. \.. \~ 

" , ' :'" 
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, 'f ~ 'U 1 $ 
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, ' 

, >, 

-' . ...,. 

t./ \> 

uniqué SB-minimal ext'ension q ta 'f, and in factO 
'. 

q SB S B Pf· 
'. 

.~ ',' 

If' p is actually"S~-full then p~ li 'f<p n OS (A»; 

ii ", 1" 

q~ so the S B-m'i n i mal e>$,tensi.on bf P to 'f is such that ..., 
B 

S 0 

'f"(p n D, CA> > ._, 

" 
l, 

" o. prbpo.itlon. Let ~IA~B be in K, • the set of (S,'f)-', 

, , 
" 

\ 1 
dafinable formula. in 0(8), P .. type ovar 'f. A •• ume S is 

\~ 

.qu.tion~l and A i. Sf-clo.ed in B. Let 80 ,···,8n- 1 be .-: 
.. 

irreducib,le formula. in • ancf l.t PO,··· "p-1 be c:omplete 

" 

Then, Po,··:,Pn":::'l are, uk,'to Sf-equiY.lenc:e (illl) the 
.J • \ 
r • 

d~.tiric:t. S'f-mÙti,m~l ext-'~5ion. of P to A iff P~ 1 Vi<nei' 
1 ) • ;'1 

and 
, 

~i tri ej Ci~ .. " j). 
< 

~ 1 -
.~. 

Proaf. 
t
By thèoret;n A.,,13, 

minimal ext~nsions. ",Of p ta A' then pS "'B V (P)S i e 
.J. f i<n i 'f •• . : ~ ~.... . P~ II 

" 

vi<nai; and of course"'since"(Pi)~t§ 
, f 

S (Pj>., Ci :ri: j), we hav.~ 
i • ~. 

è i ~"e{,'}<i :ri: j). " :" 

'f 

Conversely, sUPP'~se P~ B vi<nei and ei ttf. aj (i :ri: j). 

";:' l ~ ~, 

Let q be an S~-minimal extension of p to A; we have that 

"' 
,: .' , - 110 , . 
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• 1 

, -

J 

1 

' .. ~~ 

" 

- -... :\~;.~ -- '. -.,. "" .... , 

f'q lB vi<~ai. NON a j , being in ~, is equivalent to a 

formula over f'A; hence, f'q ~~ing complete over f'A, f'q ra ai 

for some i < n i.é~ q~ ~ (Pi)~. It follows, by minimality; 

t,hat q~ = 

Thus, the Sf'-minimal extensions of p to A are among 
tI 

the Pi's (i < n). Suppose one 'of the Pi '5, say PO' is not 

an 1t-minimal extension of P; then, by proposition A.2 

110 - \..' 

there is an Sf'-minim.al extension q ,'of p" to A sLolc:h that 
.' 

S S (PO>f' ~ q.,. By what prec:eded, there 'is i, o :~.'i < n, suc:h 
., 

x., • 

, 
Not .... , Let 'f and ~ be as in proPpsition 6; S equational and . ' 

A Sf-closed in B. 

Given a in ~ there is • in DCA) such that a i 'f •• 

<,Thus, a is ~-irreduéible iff • is (S,f')~irreducible iff (by 

proposition-S. (i» t~ere is a complete ~ype p over ''f such 

that P~ B ~~ B (.,~)~ B ei· But a being S-defin~b{e ~'B a. 
" , 

We c:onclucle that a is ~-irreduc:ible iff ther.e" ~s. a 

complete type"'p over 'f such that P~ B~~. SO, in proposition 
/ .. 

6 above, the existence of the' types p. was already ensured" 
1 

by the assumptions on S .. 1 " , ), 
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7. Definition. Let A E ~, P A type over A • 

" .... iI 

(' 

(i) We s.y p is S-j,.,..ducibl" (re.p. S-full') if p is Sf-

ln ~ such that p is consistant ovar f. 
-.' 

(ii) Let "IA~B be A morphi~.:_in te such that p is over .,. . , 
1 

q a complete 'type over B. w. say q~ is An S.,-co.ponftnt 

of p, or that q~ i,., an ~B-component of .f in CAse f i • 
r , 

-, " .~-

an inclusion map, if q~ :) S fl~ i. an SB-minimal 
'" Pf' 

'f 

,'extension of P~( - (fP)~) to B (saa definition A.2) .nd 

, . 
" . 

". 

~ 
EXAmple. Let L,= {Ri(x;t); j < _w}, A the set of aIl 

"formulas in' L ;and T the theory' s,",ch that, H is a model of T 

if: 

f 1. For any a E H, Ro(H;a~ - H. 

2. For a ,'$ E If, j 2: i, 

.. ' 

Rj(W;~) n Rj(H;b)/~ H ~ Rj<H;a) C Ri<H;b). 

3. For any a, b e H, j ~ i, Rj <If;a) ~ ,Ri <,H;b). ' 

" ~ 

4."For any a, b, ,c E H, if Ri + 1 <H;a) C Ri <H;c), Ri + 1 <H;b) 

r" 

C Ri (H;c) and Ri + 1 (l1;a) ~ Ri + 1 (H;b) then' 

Ri (H;c) = Ri + 1 (H;a) U Ri + 1 (l1;b). -, 

5. For any a E H, j )'ï, there is b E H such that , 

- 112 
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.. 

'. 

-!" .;. t '~~ ~ ...... ' ,~, ,~,,":; 

... 

Rj(H;a) C Rj(H;b). 

l' '\ 

,. 

Let k be the ~ategory 9f models of T with embeddings 

. +. . + 
for morphisms; S = cl ({Ri (x;t); j < w}), Si == cl (Ri). 

, 
Clearly S is not equational, while Ri aAd hence Si is 

equationa~ for every i < ~ (for it follows from 2 that for 

any a, b- in H, either 

Let H be a structure in k in which~there is a sequence 

~i)j<W such that p = (Rj(x;a j ); i < w} 'iS consistent; let 

irreducible (j > i) i'~f Ri.(H;-(a j ) cannot ,be written in H as 

a disjunction of 2 j
- i distinct Rj-defi'nflb1e s~ts if-f 

;' 

R. (H;-(a .) does not contain 2 i -i distinct RJ.-de-finab. le sets •. 
l. ....,... ~ ... " 

1 

It -follo~s that-pi is n~ Sj-irreducible, for we cao 

., 
alway~ -find a morphi~m "f:H~H in K such that Ri (H;"fa j ) 0 

contains 2 i - i
t
distinct Rj-definable sets. 

( 

p howe~er:;-, i~ S-full; for if "fi1f~N is a morphism in 

, Ir 

K with'p'consistent over "f, and a, b are elements in H such 4 
:; : '~ ...... J 

~hat "fp W Rj(x;a)VRi(x;b) for sorne i, J 'then either 
( 

fp U (Rj(x;a)} is consistent,in k, in which case 

Ri, Ex;faj ) ïi RJ<-x;a) , whence f(p n OS(H» t;;; Rj,(~;a) , 

,'- ~ 1 .,.1 - ' 

- .113 
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, j 

. , 

J' 

, 
• 

l 

r 

, , 

\, 

... .. 

l , 

fp U Ri(x;b) is ~onsi$tent:in which-case 

f(p n DS(H» tri Ri(X~b)\: 
, 

, ,Now, 
... 

9ne can check that P~,Js an SH-min~mal extension 
, 1 

'. , 
, y • 

definable subsets,~and in that case P~'i~~~n SH-co~ponent 

of p. , 

B. Remark.: 
f 

a) In ~efinition 7.(ii) above, we can assume without 1055 ~ -....... 
. " '., 

of generali,ty" that; il extends p. For- ~e know (by' 1 emma 
.t 

" 1 
A.~O appl~ed to Tp ,an~ q as types over 8, and since B i~ . - . 
SB-c,ipsed in B)- that.: c:ii is an SB-minimal extension of 

, ' -1 

'-
of P -to T. 

} 

, . \ 

f, A. 

b) If ":A~B i~ in/ ~ an"~s ,a~ type~over ., which is ST-_ . , , 
full, it is ea~y to e~trnd p té a.comp}ete type q over ., 

..... 
suèh that q is, Sf-f'ull_ana .q~~ B P~:\ indeéd~ til·, ... .--.-.... 

.' 
'an 'ST-minimal extension of ,p to A;, +by ,p'(..oPDsition (i) 

. q is'such that q~ B P~. 
, 

However, unless ~ has ~he amal~amati~ property and, 
. ~ 

k',.is· 6-eletmentary., if, p..-is a type over A which is $-' , , 

", , 
lull, it does oUt necessarily follow,that 'p ca~ be 

114 
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. " 
extended to a complete type q over A such that q iS~S-

- ~. 

;l.o ,full and qAS A-- pSA. • 7 (" , - This explains why in d~lnition • Il) .. . 

we only request Tp U q: to be S-ful~. 

In case k has the A.P., k is ~elementary and p' is 

an S-full type over A. We let ~ be the set of formulas e 
'A-

in D(A) for whrth there is a morphism g:A~C in k and 
~ 

a formula cp in D (C) such that g9 fë cp and gp ~ 'P.' 

r 

C~.im. qo is consistent in K over A. For suppose p~ 

, 
Vi<nei; ai E • (i < n). Let g:A~Ci be morphisms and 

CPi be formulas in D(Ci,) such that"gai tC,- qri and 
f "i 

.' , 
g.p L-L. cp. (i < rt).'u 

l IC, 1 

, <j 
d.·g. = d-.·g. (i, j < rd. It follows that 

1 1 Jt...r , 

''-:''f',,, 

Theref ore, by 

'some i < 11;' hence, 

" 
x. (Note that we have used al1.oalon~. the fact <e;..f. ,,~4) 

, ~-

.that if ~ is a type over H and T:H~F·is'in k the~ r 

is consistent over T). That proves the'~laim~ 
" 

New, let q be a complete type oover A,extending.qO. 

.,' 
it ',is easy to see thàt q is 5-ful1 and tA'at in fact, for' 

any morphism g:A~C, 

115 
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.... _, 
.. ~ ,"\l!'~~ ~.r- , 

,:J •• 

.... 

'"J,.).' I~ , , 
.~, .... --

_. 

So, if K has, the A.P. and K is 6ïelementary, He can 

take the following as a definition of Sf-components: 

given f:A~B, p a type river f and q a complete type 

oVrFr B, He say q i,S an Sf-component of pif q i s an SB-

minimal extension of p ta f Hhich is S-full. 

c) With the notations of 7.(ii), if qi ~.an S.,-component 

,< 

of pOthen for any morphism g:B-;7fC sÛch that fp U q~ is 
..... 

consis~ent over 9 w~~nave 

$~ S 
Indeed, sLhce fp, U q8 is S-full, 

but ('fp U q~) -ft OS (8) = ('fp n DS (B» U q~ = q~ 

(since fp n f)S(B) c p~ c qS) • 
B ' 

He conclude, 
~ -. 

.tr~ _ 

qS)S ë 9 (q~) • (Tp U 
B 9 

In particula'r ('fp U qS)S S' 
B 8 - qB-

'" 

.... 

- ' .. , " 

,> 
, "t... 

9. Proposition. Giv.n marphisms ~IA~8 and 9IB~C in ~, p 
• 

P2 a complet. type- over C such that, (Pl): is an Si: 
.. ~: 

.J 

116 - <l --<1:_ 
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\. ' 

es' J c:ampon.nt ~af P and (P2)Ç is an ~c-nli:,ryi ... al .xt.".ian O'f 

(P1)~ (or .quival.ntly (s •• th. proof) '2 is',an SC-minimal 

.xt.n.lon of ~P U (Pt)g) ta ~ tH.D (P2)~ ls an Sg.~­

C:QmpCMent of p. 

" , .. 
Proaf. SUPPO$" p',' Pl t P2 s.atisfy, the hypothes~s t;)f ',the 

." 
o , , 

praposi.ti on • 

Note fi rst that by remark 8, c) '. 

("fp U (p )5)S ..., gr (p' )Sj 
1 B g C 1 B , .,. 

i.e. '[g("fp U (Pl)~)]~ :ë'tg[(Pl)~]; 

so S S S 
(P2)C is an SC-minimal extension of [g'('"fp U 9'1)S)]C ta 

C; by lemma'A.I0 (since C is SC ..... c;:~osed in<C) it; .fol10~s 
, . --that P2 is SC-e Quiva1ent to an SC'"7mi n,~ mâ1 ,extension of 

" , 

S ., 
"fp Ul (Pl) 8 ta g. J 

~ 

There-fore, without 10ss of generality., WE! çan assumé 
.. l ' j 

P2 1s an ,SC-minimal extensi'on gf ':'p 'lU: ,(pi~i t~" g~ 
"r' ,Q . Il; ~ \ 

t \ 1 • i' 

< .. S ' 
Dy p'ropasït ion 3. ,U i ) , " si nce ., p, ~ (è i"',> 11 ,i s, ~-f,~ll,. ,we 

,.-.... , ' J>­

I 

mûst have 

It fctJ.llows: 

, " l,. 

.. , , ' 
_ 1; 

(P2)~,ê' C1i'U'(Pl)'i1': ë':9[('pt>Zl'.',· 
, t ',., .. ~. 1 

J ~ , ' . ' 
/' ~ , 

.. ' 

" , , 

- .117 -

~" 0 

, . " 

1 

, 

l' .' 

, 
" 

i 
~ , l 

\ , , 

• 1 
-1 ' 

1 

, 



\ 1 

1 

j 

.~ 

( 

' .. 

/ 

, 
\ r 

; 

2. g"TP Y (P2)~'iS S-~ull: since , . 

',. .and'·'fp U (Pl)~ is S-:full. J .,. 

3\P2;'~ i 5 an SC-mi ni .. .,1 ex tensi 01> of p! :f' f or suppose 

'( , (c'P2)~ ::> (q2)~' q2 a 't:emple~te type over C such that' (q2)~ 
\J ',' 

J P~.'f; since (P2)~ C g«Pl)~] we get (P1>i ::> (q~)~.? p~ 

,1 ~ 
,5" J S 5 5 S 

PT tD ~; hence (Pl>B B (Ql)B' and (P2)C ::> (Q2'c-' 
4, ,) ( 

::> g[ (P.,J~ )~).; since (P2)~ in an SC-minimal ex'tensi.pn oT 

....J 
we 

compenent eT p •• 

, 
.. 

10. Tn.arem. Let H E K, P a type in -: over H. SUPs::'9s. S is 

~.tlon.l, k r.~lect. $ And k .ati5~i •• one o~ th. 
~. 

~ollowing canditions~ 
..... , 

a): S i. the clo.ure under-finit. di.junc~io~s o~ A set Sl 

,b) K' 1. w-con •• rvative (see chapter l before lemma ~ for a 

" definition of w-con.ervativen •• ,'. , , 

, 
~ Th.n, there is • morphism ~IH~F in 

-" 118 -

, 

suc:h th"t P ,1 s 



, .... 

. , 
, 

) 

" , 

\ 
( 

'", 

" l' , 
con.let.nt Dv.r of 4Ind, .f':2r .ny .... sr-mi ni m.l .H t.nsi on q of p 

" 

" 
,-

.\ ~ ...... 

Proof. ~ssu~ 5 rs eqùationàl and K refl~cts s. For q a 
\' 

t 

'" Jo tY~,o"er G ( € lC'l",let *q denet. the f().~lo",ing assertion', 

H Jo... "t... • * q: Il t.here i s a morph'i sm g: G~E' in K-, such that: -q i s 
'" 

'~onsi~ent over 9 and, for any SE-~inimal extension r of q 
1 ,.. 

'5 ta 'g, r E i s {"iin Sg..!·component of q". 
),... ",;,,' .,' 

be, up to,I·S E-eui val ence, the, SE-mi ni mal extensi ons of q to 
. " 

g~, (by t~eor,~fIl'.A.13 applied te gq, there are finitel/y many 
," . ':",' 

such e~~j::ensi~nS). Let'~i = gq U.,~~i)~ (i < n). Then, if *q 

does nDt hDld, there is ~ morphism e:E~D" i'n k and i < n 
,~... '1: 

" such ,5~r == e Cr i) ÏS' consistent in 1( and '*r !~oe5 not 
, ! 

hold. 
" 

Proof 1. Suppose the assertion of the claim is 

- / , 
fa,lse. We construt::t by"induction on i 

morphisms e:1 ~ E i~Ei:'-l Ci, .( n) , EO .:;: 
t 

,,' If f' (oi < - ')'-" 
== e i . e i -1 ••• e 0 n) 'I.'.~-~-1 i 

,,,. 
SE ~-mfnimal extension of f. 1r. tg e· ,.. 1- l ,. 1 

(r/)~.l+l is an ~4-component of ~i-lri; 

l ' 

,1 

< n."a sequence 

E, such that: 

= idE! and ri 

, 
Ci < n) then . ". 

: ! of ~ \. 

,', 

" 

of 

is an 

.. 
, . 

"'-r' 

. " 

, , 

,~ 
t • 

! 

" 

\' 

·1 
'-ft 
'~ 

'j 
~,1 

'l 
" 

~l , 

li, 
~ 

fi 
" , , .-

,If 
"/ 
j 
0 

~ 
il 
~!i , , 

.r " 

1 

i 
i , 
1 

! , 
l. 

i 
j 

1 
~l , 



·f 

) 

• l' 

,. , . 

( 

~, , , 

, :' 

" 
" 

" 

\ 

, . 
" '"\ ',' 

and furthermore, q is consistent ovër Tj·g (j,~ n). 
J)<q /l. - • ... 

.. Suppose the constract ion ach i eved up to j - 1 (j < n); 

. 1 et r ='..,. 1 r .• 
~- l 

If r is consistent then, by assumption * must hold; r 

i.e_ there is a morphism d:Ei~D such that r is 

J 

consistent over d and, for any Sn-minimal extension r' of r 

to d, (rl)~ is an Sd-component of r_ in tha~ case take e i 

- d. Since r is consistent over d = el' and r = T, 1r, 
1- l 

o 

::> f i - 1 -gq we see that q i's consistent over e j -1'i_1·g i.e_ 

over fi ~g-

If r is inconsistent take e j = idE' then q is 
~ A 

consistent over fi-g = 1'i-l·g by the inductlon hypothesis. 
t, 

, 

This'finishes the inductive step of the construction. 

, Now, 1 et f = l' n-1 .g; f: G~En. q is consistent over ., • 

Let Pn be an SE -minimal extension of q ta 1'; :t.:e't' - ' , , 
-' 

" 

over Ej extending q. 
, , 

By proposition A.2 there is i < n such that 

S 's 
(PO)Eo ::> ~qi)Eo' whence PO::) ri· It fo;110ws that Pi 

::>f. tr,. 
1- l ... ' 

, Again, 1 by propositl.';n 'A.2 there is an SE -mi ni mal A·. 

/, 

,J' 

::> (r 1 ) ~HI; by the chai ce of the sequence (e i ) i <n' we have . 
. , 

120 

, \ ' 



." ..... . , 

( 

:,'f" 

" 

(+) 

" 

.. 

-" ~;I, '. f- .~~ ," " 

..... '" '<'f"~~ "";'. ~,.,~ _ ... ~ ••• ~". .. ~ ....... ~,'lI,""'-:,"f')-rJ I, ... ~"" ~~".J~f • .... ·f'\.>~~).,T;,.:~~'1P! ~ .' ., 
,. ...... " 

./ " .- -, ~ 
:~ 

" . , 
~ ... , ) 

is an Se 1,l...component of T. lr1·. _ 1 1-

r't- ' 

.' , 

, T ..or f.'~\ '!... 

On the other han~, since Pn is an SE.~minimal 

extension of q te T and 
\'. 

'.J ," ; 

.... P,., ::> h ,.t:.l["-:.''''· U (r' )ES ] ::> Tq, 
> " l l l . I+S 

'J~' 

... , 

.. 

\'t /' 
(++) P,., is an SE.:....minimal extens;io~ of T.r. U (r')S to 

, . " Z l E 1+' }o 

hi+ï·"· "'- ~! .. 
Since Tir i U (r') S is S--full it fol'lows that 

." E,+! 

(P,.,)SE~ .... h, ·~·[(r'.)S ]. by reflection He deduce that 
" E. z+1 Eu, ' 

r~~ 

(r' ) S • So we can assume r' := Pz' +1 •. E,.I 

'. 

By (+), (++) , and proposi tion 9 (appl ied t,o P = 04r 

~ < t 

is an 'Sh -component. ;..of T. Ir,. In particular , . . , z- l 

h··""1r. U (p )ES is$-full. ::" i- ~ ",., · , ' 

, ,. 

c 

We 

r 

B~~~ h i ·1' i-1 r i = ~,.,-1 (g~ ,U (qi) ~~ ,an,d :f ,.,~1 ( (qi)~) 
Ît 

s ! .: \1 '5 
(P,.,) E.· So we actually have that Tq U,(Pn)E. is S-full. 

... 
deduce that 5 

(P,.,)E. is an S.,-compo')ent o'.f q. 

, ' 

We have shown that the mor;phi'sm ":G~E,., is such thàt 

q is consistent over ., and, for any SE.-minimal extensioq 

~.('JI 

~n of q to f, 5 
(Pn) E. is an s.,-component of q. In other 

wQrds * holds. x. q 
.t .. 

~.!, This ends the proof .of claim 1. 
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'f"; '~ . ' 
, . 

\ 

1 L,' 

" ... ' 

'" ' . 

( 

t. 
\ 

''',-

, -

, 
'" 'f, 

'< ....... 

" 

,> \ 

" 

- 1 

l " 

- . 
" 

" 

. " 

l, 

.,' r, 

~ ') \ 

.' CIAi., 2. If q is a ty@~' Over G ( € le') aNd q' ,:i5'not S-f.,ul.l ',. 
• (:) ", l, , 

.... ' .. ri> -t ~ . .. 
'l, • J 

the., there i5 a morphism g:G~E' sikh;,tbat q ls, consistent 
, '~ ~!, ' .. 

1 .over g and for a'lY~' campi e.te' extension l' of gq t'o E, 
A • 

• 'II; • ~ 'i \ r' • ~ 1 

k .... ~ ~, ... 'I{~~r' 

1 1 1'~ t( "g (q ,n 1)5,(G) ') i':;d g ('q 'nA ~~ (G» tt r~. 
" . 

• 1 

, ' " . 
Proof of'el.tm 2. Suppose-q i~ not 'S-E.uil'; them there is a 

" 

.... r. 

- :-'~ l ' ,,,.... ..\. \. ,1, 

morphism g:G~E such that q is cohsistent over; 9 'and q i5 
,....' .. ,,\:1\, ... , 1~'-c,' 

... 

-l, 
.' 

not:Sg-fUll. In other terms, there are for,m~]~s 91 and ~2 

" in I)s(k) such that ,- \ 

~~~~ ~J 

·-igq"tFlplVCJI2' g(q nI)5(G» t'tep! clIQd <j(q 1"I1)5(G';) tf1ll2 • 

'{' 

~o""', if r'iis a complete type over E exten~hn,g q then 
, 

y , 

l' ~ 1II1Vlp2; hence, b~ c:ompleteness, ei~~he:r' r Ir' CPl or r'.rr-. IP2.:::"" 
. . ,. ',-

In any'case, we haye , , 

, ' 

r 

~, 
" \~ 

'"'.~ ~ 

'.,1" 

" " 1 \ '.} 
Thu$ g s~tjsfiés our conditions. 

'. /,-

~, 

'. I, 

, " 

. , 

, 
Claim 3. Suppose p is a: 'l;ype over H such 'that * ' does nct', 

"' li P ~ " 

Il ' 

l ,4..' 

" 

'-, 

. , 

'. A" 

.... .; 

ho14'· Then there i s ~ sequenc:e of morphi s)ns" 
l, 

". 

= id", and a sequence of tyr!es <Pi) i<w' Po - P 
- 0 • .t 

. 
such that: JI , , 

....... , .. 
.-\ . 

, ! •• "1 
-Pi is a type ~'v!r ~!!i such tha~ "PI does not hold and, 

~ ... 
• • : •• " - J 

if' S ::;:,cl+<S:.t),·.then' 
,- ....... . 

\~ 
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• Ii , 

'. 
" , ! 

'. ~Y. "i , J 

~ ,', 
1 

, -j ~~'1~~(/'- ! l " 

','n 
, 0 

" 

..... .. 
1 
'"i'<' 

1 • 

~.; .. 
" 

'\', ,-"{'" 
-;", 

,'" tt 
..... 'l, 
"l, \. 1 

"li. ; ... 

1 ... ~ ... 'f J ; , \' \.: ,0 1 ~ 

~ . 
,,' 

" 
" 

J . (,'; 

.fi+l"~·~i ~{t;~'(Hi)) ~i+l 'Q' DS'(Hi~I)· 
.J; 

, , 
,', 

, ,:.. I~: ,Pr~f" of cl.dm 3. We construct (fi) i,<w and (p")"< l l W 
by 

, 
" 

,iin,duction on i < w. S~ppose the construction of (fi) and 
• • 4-

. .'i~iJ} .~ith 'its required properties ,pchieved up to i < w. 

"Since *p "does net hold, p. is'not S-f~ll. Ther'efore, 
, , l ~ , 

by claim 2', there is a morphis", g; Hi--"EJE such that Pi is 
" 

: ' 

conSi'~tent over g ànd f()r\. any complete extens1-on q cf Pi ta .. . , 

,,, 

" 

g, ~ 
... J , 

J " 

·ey cl.alm 1. the.'re.is'tim SE-mïnim~i";xtensioc=a q. o,f"'p; .. \ ' ~ .. 
",ta 9 and a mor:-pt!tsm.e:~,~D suct:!, tlTat" f.or ~iJ 

.1 .~ ~. J 7 ~ 

:f:_ ~'~'ï 'U (q i ) ~~hd,r. ... e (r i »'. ~.'i!ii 
'\ 1 

f 

d< 

con~istent-~~ K and * 
"' ,-< r. 

~ 

. { 

, 
'f ,~... - l ,~,. + .. 

:::;~ tPg and 1Pi+l = r;' ~uppose S ,=, el ($1). 
, l " l '" . , 

. Since r. e~ t'en~s Pi to" e -g, 
'} ~ JI', 
" ~r 

.; 'l'rJ:: .... 'l' ~ ~ 
,1 

r ~ ,DS1 <b)' Iii -e --g.(Pi ,Il. fjS.'-(,Hi ),)~ 

, 
" . ' 

• r 

" 

.... . , 

(, . 
~ 

-. ~ .. 

''', 

, , 
'F 

j't' 

',i' , -' 
" , . ~ .. - , . - ... '" 

":~ 1 ~ 

Bl'! the other :band, , 
~ • Ii, J, , 

. .-
1 Ifor' if net .. then, 

" , 
~ 

'. 

, ' 
, , 

\00. --' 

-;" 
, .. 

'. , ~·g(;i :0~~~1:(Hi'>'~ lu r:, ~ OSI(p> fJr' ~~.(qi)JI{; 
'" ' t, ~ \ ~ , .... : .J 

.. 

'. 

qi bei..ng ccmpl'et~ ov.er :~~ .. (qJ)~>'- E 

,. 

1 , 

',. 

l':" 
.! ' 

't 

l ". ~' 
,...~ I:~ r· 

-' - 123 -<~ .. 
.... , ',' 

.~:~ -

", 5 ' 
(q .,) E;' thl,ts 
'1. ',-

1-

, '-' , 1 

" 

... 

, " .' ~;, 

, ' 

.i, " j: . 

l, 

". 

'1 
1 

;' r ... 
-""'r "1 



, 
, . 

/ 

, 

../ 

" 

" . 

, 
~ -: 

", 
... -_ t, ..... 

, 
\ 

'y 

, " 

ryJ., 
" 

f .:. , 
: ~~ ,~~ 

• t ~~t~ ... ;"·-~1·.! ':: J4.~.., • tJ;~ t 

mdrphism g. 

\""":,, ... 
('l·~'9 

~l 'It • ...: ... 

ThUS,\ Pi+1 and f'i+1 as çhosen satis-fy the required 

candi uons\ 
, 
\ 

Proa-f of t.he thear.m. Suppose candi tion a) (resp. candi tion 

b» hol.ds whil'e *p doe!i not. hold. We want ta show a 

ccÎntrêldiction. 

. , .... '\ 
Consid~r the sequenc~s (f' .) . < and 

.1 ~ JJ 

, , 
constructed in claim 3~, up ta TI + 1 (resp. UR to ~) , 

~ " 

, t 

' ... 
Lèt G € k, and l'let 9i:Hi~G be morphisms in k such 

1 L .,.".;.., 

.that g i +-1 • .f' i +1 (resp_ for i .<~ w): t1ike 
\' 0-1> 

+ 1 
- 1 • 

. , ,-

\. 1 • " 

for .. instance"1 GI;:;:= ~TI+'r ~nd g.j = f I?:t.-l •• , •• ., i (resp~ G and 't~e 

~ l .'!t"~: 
morphi SIM •. "if i are given: t:ty y-con.rvati ven~ss). ,~ 

" ~ .. _ • .A q:, 
" w'ê have, 

, '. 

,-I~ 4 "!..." 

,'0, gj'+l (Pi'+l n nS'(Hi+l n tG 9i (Pi n DS , (H~'~')-'-, .' 
..... 1 .1\ 

and Ç.by re-fl~ctian), 

for i <:'/) + 1, ~resp: .i < w). 

The i mp li cati ons :.;lbove i mpl y that 51 (c. f: 1 ... 7. <i» 

" 
has .. heï ght;:, greater' or equal ta n (resp., taki ng S = 5 l' S, "i,·s 

, -
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" 

, ,. 

• , 

-! 
.., l ." 

'. ~ 
, 

-' 

,-

, , 

" 

,1 
\ 

", 

J),., 

f . 

. " ~- ) 

,-,. 
! • 

'" 

" 

.... 

t', 
.' 

t 

,1 ~ ., '~: <} ~ .... ~~ __ .... ,.., ~~lKr:''!'>-'t';r.~~ t 

1 Jt"' . 

not equatienal) Jt. 

, ,We cenc 1 ude that * p must hol st, 

wanted •• 1 

f ' 

, . , ~ 

which is what we 

... .;,-

Let f:A~F 'be in k and
L 

p a type over 'f such' that, ,.for 

~any SF-minimal extension q OT P ta f, q~ iS,an Sf-component 

~ 

of p. The proposition belo~ investigates in what measure 

\ 

are the ~., ... components of p intresical,ly defi"ed: 
' . 

. , 
~ 1,,! Propdsi ~ion. Let 'f., A~F ba in 2, p a, type ave,. A such 

• 1 

'T 

th.t for .ny SF-einimal eKt.nsien q of p ta f, q~ is An' S.,-
. ' 

-i. .. '. 't 

~ p'and,\Qiven, .1IF~E·&nd .2IG~E such that .i~f~A 

- "2·g~A .n~ Pl i. consistent aver "2' thftrfl i. an SF-
, , 

, ~ " 
\ 

,~ S S 
. minimal eKtenBion q of p ~a ., such that "1 (qF) l .Znp l) G) • 

( " 

, 1 

Proaf. CRecall that if ·14=, CA,H), then the Imorphism 

T:A~F is formally defined as a morphism ":H~F and , . . . . 
....; f ... 

,~' si mi 1 ar1 y far~;.g: A---7G" 50 that the equal i t Y el ·'''l''A . , , 

" 

, F e'2·gr-A~is strictly"weàker th an the equality .. el-" = . , \ 

\ .. - Let t;, 'g, el"., è 2 ,. p and Pt satisfy the hypoth'esi5 of the 

. " 

.... i 

• 4;. 

v 

12:;:; 
, 
" .. 

" 

'" 



',> 

.. 

.( 

.. 

gp U'(Pl)~ is ~.-full; hence, by proposition A.5. CiO 

applied to e 2 .<gp U' (Pl)~)' gp U (14~ an SE-minimal 

.. 
• extension P2 ta e.2 such that 

. . 
(P2)~ Ë e 2 [ (gp U (Pl)~) n DS(G)] f e2«Pl)~)· 

By proposi tion 2, S 
(P2)E is an Se:i'.g-component of p; in 

, 
extension of p ta e 2 "g or equivalently, te el of. By 

proposition A.2 there is an SF-minimal extension q of p to 
l' 

s S T 5uch that <P21'e 1 ) F ;) q F"- Sa we have 

OC It easily follows that P2 is an SE-mini'!'al extension of 
~/ 

fp U q~ to e l - But q% is an S l' -é::'omp0 f1-ent of •• P; hence ,. 
'. 

f'; U.q~ is S-full; hence, by proposition "S. (ii) Tp U q~ 

has, up ta SE-equivalence, a unique SE-mïnimal extension q' 

to el and (ql>~ E el(q~). 

\Thus,. (P2) ~ E (q',> ~ E el (~~) . 

. ' 
~ \ 

12. Definttion. H E k. Wè say H is S-i~r~ucibl. if .v.~y 

"complet. type over H is S-ir~educibl.; 

( .. 
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~, 

l ' . , ' 

, 

, t 

. 
) 

" ... ~, ............. , -', , --<' 

,\ 

sub •• t Po of P~ Po 'u P~ 151 S-full. ' , 

-' , . .... 
In particular if H îs S-'-full then every complète type') 

over H ,is S-full. We pave an immediate converse in case~ 
"f 

reflects 611.' '.~ 

type over'H 1. S-full. 

--Praof. One direction has already b~en proved. 

Suppose &very complete type over H is S-full. Let ,P be 

a complete type bver H, PO'c ~ and ~:H~F an arbitrary 

morphism in k. Since, K reflects 6~ P is'-..consistent over ~ 
.~ 

-----(c.f. 1.4)~· Sirice P is~S~-full, we easily deduce thl'at 

,.. 
,PO U P~ i s Sf-full. Thus PO' U P~ i 55 S.,:-f}'l-l "".f9r 'any 

morphism ~:H~F i. e. 
>-, 

~ 

, - , ,. 

r Po U P~ ts s.-fuil.~ 

We conclude that H is S-full. , 

. . , 

-' 

\, 

, ' f - ,"* 
li 

' .. 

E)(Ampl •• In k - F (the category 0'; 'fieLds with field 1 

.. 
embeddings; c.f. 0.4. (i» with S the set.of algebraic .. ~ 

- " equations, A the set of quantifier~free for~ulas, anv .. 
algebraically-closed field H is S-f~l~: ~or i~ P i$ a 

complete type over H, H 'c F and .1; .2 are algebrai~ 

, ~' ,-

r , ~< 

i • 

-: 127.­
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" ( , r' ........ . 
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. -..... , 
l ' 

, 

) 

,> 

/ .-

" '" --

~ . ~ 

... (: 

l' 

, , 

, , 
~ 

" .~ "'II/'}" ""'~I\P .~_R,.. ",,~"';:11l'$1" '}.o' .~:::~"...; 

J 

equations wi th c:oeffic:ient,'s :in F suc:h tha,t 11 IF CPl YCp2' then 

coeffidents in H and .t E p. '~~w I\p~ defines an~ 

irreducible va~iety in H, hence Ap~ de~ines an irreducible 

S vari~1;.y in F. I-t fo11oHs that PH'F CPj for j = 10r 2 Csinc:e 

P~ qt "'i for any i < n') •• 

, 
In f act we wi Il see in ch'apt.er II 1 that there i sin 

general a s~rong relation betwe~n S-full structures and 

ex~stentially-c:losed struc:t:'ures. For,.instance if k is the 
...... t 1 -lI\., _ 

c:ategory of mlXlels' _of a fÏ(rst-or,der theory with elementary 
... if , • '-

" ~" '1~ - ' " ." ~ 
embeddings for morphis~s then any structure in K is S-full 

.. 
.. 14.:\Prop .... ti •• Q.f S-fuU<',st:ruc:"tures: H € K.~ 

, . 
... 

(i) If H is S-irreducible ,(resplo S-fu~l') theo,for any 

" 
morphism f~H~F and complete ,type P over f, p has. 

" , 

( 

'4.:0 f; moreover q is such that .J 

\ 
" 

q~ P~ Cresp.' q~ ~ ., (pS) 5' , 
F F H FPf'~:' . , .. 

... , *. 
(ii) If H is S-full then for any morph1sm ":H~F, H is S.,-: 

:>- r \ , ::,. 
.::: . 

close~ in F. ' " 

~ '. -!' 
, j 

(iii.> IIf H is S-f'ul1, 
)-

p is a, type over H and q is an SH-, 

" ~~1 
, . 

) Ydir; 
~ 

'" 41 , , 

" .. ~ . , .. 
, , 128 .' , 

" " ' .. 
" 

, -t J- .... 
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~ .. , ., 
Ir 

>.. ~ 
/ 't 
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.-

minimal ex't.ension of p 'to H then q~ ,~s an SH-cotnponeflt . 

of p. 

P.raaf. 

(i) . FOJ,:l ONS i mmedi atel y from Proposi ti on 5 and the fact"-
. 

that any compl~te type ovèr H is S-irreducible" (resp_, 

S-full) _ 
ç; 

(i i ) "From ( i) we have" that -f or any m~Î"'ph i sm 'f": H----7F and. 
o 

~' 

no.., f~llows fram leauaa 

A.~ • J\ 

(H i) Immedi ate. • 

, .. 
(.> 

Let us' say " is i nduc:ti ve i-f ,~or any sequence o-f . . 

1'-0_ 

ci-"-,=­
:r 

~--~ .... 

mO~Phi~fA~ (f iJ:H,j----..:;Hj)i<j~·(I. ~n K (a ~n ordinal> ~ith .fj.oTij ~~k 

the ... e 1.5 a. structure 'H(I ... in le and morphisms <!~.:Hi--?H4 (i .< q) su.c!'/"'"' 

that g'; -fij = gi (i~ J < (1) and tHal = ,Ui<.agi (Hi); we 

. write 

=: col i 1ft (H ., f .. ; i < 
~ ~J 

(1). • 

<Induçt.iv,eness 'is just the analogue of closure under 
, ; 

,.; 'ur,li'ons 'of chains);, 

" :' The 't:f1eorelft belo.., proves the existence ~o-f S-full 

. ~ 

struc'tures under generèit1 assumpti ons. 

1 • 

" ." 
, 

~ , 

.. 



'\ 

,. . 

15. Th.orem. A •• u .... S is equatfonal, It" rafl.ct. Sand," is 
""' ... 

'f.HO----:'H, such that H i. S-~ull. -~~, 
.'; 

Praof. We construct by induction a sequence ...... " 

(hi iHi ----">Hi + 1 ) i<w such that for any ty.Q~ '~"-' over~,":hi' and 
• , _,1 

. .." 
SH -minimal extension q of p tp hl" qS is an~ - .,L.-. 

1+1 H,.,,' , hl 
~7'" 

component of P (i < w). 
, . 

Suppose ~or aemoment the conatru~~ipn done. Let th~n '"-
.c.-- ... 

... ...." 

- ,.c 

Claim. H ig- S-full. 
,T,y! ;r .. 

Inde~d; given a complete type P oyer H and Po c p, 

.... 
PO'U P~ is S-fullz là~ let f:H---?F be irt K, ~l' '~2 in 

... 
OS(F), sueh that "(PO U P~) If "l Vlp2 'anp Po U P~ is 

',j ~ 

consistent over 'f. 

~ ...of' S .. 
Sinee 5 is equatio~al. ~~~~equivalent to a single' 

formula ,in "S(H,.; so thers"is a..,finite subset q o~ Po U P~ 
_~e'''' 

1 suc:h that q~ fi P~ and "q IF 'Pl V"2; moreover, since H 

= 

• 
q~H''<l n OS(gj (t!j»" '-"'Let q. = qt-g. V <_~)t-.. 
~ J~_ J 

.. .. 

We have 

- 13.,Q 

.. " 

) 

" c 



.. 

., 

( 

1 

l ' 

by r'eflectian i t. -faÙows that. , , 

(c7 Z
0 )hS/'" ho «q of) S ) '.., (Ql

o+l)HS,.,-
HHI l' l H, HHl • 

,Y , 

.• ,." ,Tt'tus , t7i+l is an SHI .. ,-mini~al' ext~nsian of qi 'ici hi; 

hence (qi+1) ~H! is an Shl-c:ampanent a'fi qi' which in 
'!,~ 

partic:ular implies that 

Naw 
\ , 

• 1> 

f·9 i +1 «q i +1 ) ~/:') IF • j for j == 1 or 2. ~eJ)~e' 1" (q~).1F' .~ j 

or 2 whic:h is what for j = 1 o~ 2 i.e. "'(P.,~) fF • j for.. j == 1 , , 

we wanted. 
, ' , 

" 
~On.truction of (~i)i<w.;Suppose the const.ruction 'achieved ' 

enumerate t~e,types,over Hi- We co~struc~. qy induction on 

« < l., ,the séquences 

f «: F Q, ~F ex+l) Cl<>' and <1;«:F(J ~F ex) P<t;«?- suc:h that: 

- Fa == Hi' dO =: idHJ' an~ ~H/1fp =: 4«, ' t= ~~+, . 
For « limit, 

(F ex' d",.~ ,. '< ex) = c:olim'(F,;' '~;.s<1rS Cl). 
, . 

-If ~P<l is inconsist~nt in K oyer Fq.' ., Cl'= idF~ 
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{ 

_" 1 

( 

~ t~_ •• r':;."'''~'' • :.>1"ttlNi(.rt ".1 ... : .• ;~1(~ "f~'t'(r"JI;"'IJ"~""I~~I:.~Jt~1i~(~ • .,.. ... ",,, ":,1" 
• ~ • - '" .. t t-

1 -'" l' 

" 
,~ 

Ii ~P« is cons~$tent in K ove~ Fa' fa is such that"~~p« 

is'c,onsistent over Ta. and fer .... any s;" ~mi.ni"al' extension y 
.+1, h .. 

" < 

fa is given by theorem 8. 

Let (Hi +l' ea; tt ( ~) = COli~(F«, ,c:I,sa; P<I1( ~); hi = eO· 

We have te show that hi:Hi~Hi+l satisfy the required 

property pf the sequence (hi)i < w= $0 let p be a type over 

(/; 

hi' say p - Pa (a ( ).), and let q be an SHt.,"'minim<ll~ 

extension of p te hi.' 

Sy proposi~ion A.2, there is'an SF -minimal .+, 

extension r of 1 iàPa ta tu (fa:F«~Fa+1) such that 

----' 
(qU+l)~ •• t ::> r~ •• ,. Clearly then, q is an SH,+,-minimal 

" 

On the other hand', by construction, r S
F .. , is an 

By reflectien, we deduce, 
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( 

0' . 
'"".U't~ ·~~"""#t~-~.,,,,,,. .... ~ .. ç .... v.~ .. ~ .. ~,~......,~~ .. , .. 

/ 

" 

", 
(q 1)5 ;.." r S 50, w~4might as wéll assume r 
, Cl+ F •• , F •• , :F •• ,· 
~ ~ :' . 

= qCl+l and th~~~fore r is consistent over ~«+1. 
, 

By proposi tic;m 9 i t follows that qS. . is an S -
t_+' e. 

component of d • h nc qS i s an Sot f ïXJ.p Cl" e e H,.l H,-c mponen 0 

." , f 

(' 

S.ction CI Th. Ab.tract Cont.xt 

A~ Ne observed in the introduction to th~s chapter, 
, t 

" ,the general theol""y.pf sed:ions A and B goes through iri a . 
,t ~'\ 

, ' r-

very general abstract'context that has nothing to do with 

either structures or formul~~. 
,j 

o. The abstract context can be dèscribed as f0110"s: 
, " 

~ , 
" 

c' 
" 

We hâve a, an abstract c~tegory ca will stand for a 
-:: 

, " 
category of IL-structures . - in 'the case we are reall ~ , 

i nterested in); 
G 

two functors 

D:lA----""7 Boole ( =; ~category of boolean aI gebrauS > 
v \ 

D:a~ Dist. latt. (= category of distribut v 

lattices) and a naturaI transformation 

5uch fhat for each A E QbCa> (Db (a> the class of abjects in 

li 
,,,' 

/ - 133 -
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, Î 
,~' 

. ' 
< • 

~~~R ,~ .. ~ .... : ,,_ , ... ! ...... ~\y. 

::. 

'1 

Q), i A is a (l-l)-distribative lattice homomorphism Cof 

\. oS <A) into D(A» • 

, , 
. 

In other words, we have 'an assignment: 

A 1 ) O<A). 

whichito ev~ry object A in a assigns a boolean alg~bra 

o CA), '(do not confuse yet the notati on 0 CA) wi tlJ that of 

the .set.. of formulas with parameters in A; A he~e "is not 

necessarily a structure) 

and an assignment 

• t,.' . '. 
t/ 

fHA) 

I----~) io (T) 

OC8> 

~hich te every morpni~m "=A~B in a assigns a 
\ ~ /~ 

boolean ~lgebra homomorphism D("):D(A)~D(B), 50 that 

DUd) == id ~~d D(",~gr~':"" OCT) -O(g)_ 
,/ 1 

The a~sigoments above defin~ the functor D. 
(j , . 

1;,. 

. ,. 

Similarl~\for OS: now OSCA) is a distr~buti~e lattice . , 
' . . ' . 

a(ld OS(f) is a distributive lattice homomorpf:lism. 
1 . 

Finally the assumptions on i mean we have an 

" assignment .~hich td,. every A E ObClU assigns a (1-1)­

distributive lattice homomorphï'sm 
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~' 
ilr ;, 
l' 

f 
1 , 
:1 
" ''3" 

~ . , 

~ 
~ 

k' 

" 

, ~ 
• 1 
\ 

',' 

... 
t~ 

-", 

, ." ,t. 

" 

( 

oS (A) _1 .... · A--~)f)(A) . . 
" 

',' 

such that, for aU A---=-"-~)8' in !l,,: the diagram . 
1\ 

, 4 

, '. , 

commutes. 

~ 

1. Now, in the context of se.ctions A and ·B i. e., if, k i 5 a 

,fi 

/ ,', 

... 

Î\,' 

catego~y of structures, Il. is a boolean-closed set of· ' 

formulas and S is ,a set of formulas in A with 5 ~ cl+(S) 

" -+ then, far,a fixed tuple of variable x, 

:, we 
.... 

let a stand for k;, , . , 
f~r A E o~<a>, O<q> (in the abstract context) stands 

.. ~.' 

for 01<A) (in the context ~f sections A and B, i.e~ the set 

of formulas in,~ with parameters in A considered up to 
<. 

equivalence in K; D1<A) is considered as à boolean algebra 

in the obvious,way>. Note for instance that for ~, ~ in 

D'(A~, ~ S 'It' 1ff II' lA 'tI, (wheré:$ denotes the usual partial 

order in the boolean algebra O(A»; 

for ":A~B a morphism in ~, OCT) i,rsuch t~at 
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J' 

"/fl'''';~«;~1~ ... ~:'t\'?1!'m1'~~~~~''~~' , , "f, 
, .,~ .. • IJ" I~ 

;<.' • 

'. 

, ":-+4 ..... 4 
,D(f) (cpOqa» = cp(X';ta) 

of! ')r '~ .. , 

(i n,. the abst-r act context) 
~ 

- D~(A), (D~(A) consider~~ as a distributive lattid~ in the 

. " finally for A E Ob(Q> , i A is the obvious embedding o~ 

" l We shall re~er to the context just descr~beq above, 

when no confusion arises, by the symbol k and calI it the 

'" "standard" context. , . 
'. , 

, 
2. SAèk to th. oeneral context. We define, 

OS, is equa'tion,al if for aU A E a, OS(A) , (as a 

ÎÎl' ' 
distributive lattice) has the descending cha~n property 

.. 
(Le. there is no 'sequence (aj'i<w of elements in DS(,~'\~, 

, 
, '{ _. such that~ai+l < ~i for ani i < w). 

,p , 

a reflects DS if for aIl T:A~B in Q, OS(f)~iS 
r:~ '" 

i nje~to<i ve. 
~ . 

J. A type over A ( E a) is a "ft.,Iter-base" in D(A): i.e. Jo 
\, 

a set of elements in,D(A) such that aIl finite 
.\ 

i nter'~ecti ons o~ el ements o~ i tare '* H." (Not~ thàt' 'this 
lof ... '" "" 

c, 
~ 

is the same as consiste~cy in the st~ndard caseJ under t~e' 
, ' 

;. . 
, " 

above translation in 1); 

", . a co.plete type is an ultrafilter in ~,D(A). , \ 
'p 

One uses the notation p ~ in.the general context; 

( " ~... . 
, 
1 
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"'" 't" 

(~ 

• 
t • 

,( 

", 

'. 

, . 

" 

y, 

\' 

~ ( 

" ". 

• 

," r, ... 
~ 

.... j"< 

here .p 
'" '. ,- ~ "-

eLement 

, 

, J 

is a typ~ over A, cp i5 a "formul.à Dver Ali i.eo: ah 
.. ~ ! 

of CHA). 
, , 

y J (\ 

P t-tP m~an5 that for 
1. 

I\p 1'. .. S "'CP. 

sorne finite p' C p, 

. ~ ..... 
" ....... :where Ap,' i-s th& in"l:.ersectiOr;i, of the~'elemelnts' of p/ 

'} . . , 
and S is'·th~ usual pa~tïal order în the boolean algebra 

~ . . 
f)(A) ';' " 

'. 1 

typÈf over 
. \ 

Si ven ":A--78, p a A : ,.nci q a ty,fte ·over S, 
, . 

\ 

l~t 
.,. 

.... , .. 
TP = {ofcp; cp E pl, q ... ., ::;: {cp E D(A); fcp E', q'}; 

, ,. 
• 

WB say p is a type over f'or p is con$1stent over ~ if 
. , . , 

fp is a.type over S;-

P~ = {cp E 05 (B); fp r- cp}, p~ 

" For" as abôve, A is S.,-closed in B if fôr âny 
,. 

complete types p' and q' over B, 

" where p-=-p'l'T' and q-=='q'I'T'. 

. . 
. 
,_" "1 

, , 

(' 

Siven f:A--7B and g:8~C in a, p a type' over f ancf" 

.~ a complete type over il, exten~ing p ta ." we s~y that~' 

15 an 5 g-minimal extension of p to f iff for any c~mplete 

s 
- (ql)go 

• • 

,Of course, one easily checks that, under the 

...... 
tran~lati9" g~ven above, (when a stands fdr k, etc ••• ), the 

. 'd~finition5 that preceded coincide with those given in th~ 

~ 1 

1 
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J' 

., 
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, ' 
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( 
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.. l.J.,~ 

.' ' 

, < f 
..,' ;.i .. 

.;standard case. -

We reproduc~,below the analogues of' theorems A.2, A.12 
~. ... ). ", , ~ " ,. 

and A.13 in the abstract context; their proofs are exactly . 
-

the same a~ those given in the standard context. 
/ 

1 
3. Th.oram. Sivan ~:B~C, p _ tyba Dv.r.~, ànd qi _, co~pl.te 

" ci...... "t-

4 ~ ~ , 
4. ThtlOrem. Let ~:A--:'B and gi'B~C b. mor:phisms" in ~.-such 

l \ '1. ~ 
-"'" -

.., that A is Sg .. ,,-Clos.d in C and B is Sg-Cia •• d ln C, Po a \ 
, '. 

h " .. 

type ove,- g.~, Pl.- complete type av.,. g.~, P2 a complete 

type aver g, P2 ::> "Pl ::> ~Po· Then P2 i. an Sg-minimal J'!" 

:. extension of Po ta ., ~ff "2 is an S9-minimal extension of 
:l ~~ 

'" • 
Pl ta ., and 

~~7 
Sg • .,-minimal extension of Po ta A. 

'" '\ 
., . 

'If" 
v 

, ~. 

'''-

DS .f 

5 .. ThtlO,-.m. Suppose is equational. Let ":A~B ba in a, P 

,extensions of p ta A such that for Any S.,-minimal 8xtension 

',pf P to A, th.,.. is j < n, q~ il (qj)~. In fact, wi th the 
," 

" 

r" 

In a simila,- f~shion one defines in the abst,-act 
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• U*"~~ "'r~"'Jo.,~'t't1 ...... "74" ~lJI'"''-''' ~,. ..,. . ,. 
) t' • 

~ '; 
.... 

, 
context S-full anél S-irreducible types as wall as S-full 

~~, , , 

st .... uctures etc'; •• ... . 
d 

For ,instance, given f:A~B i'n a, p a type ove,. f, p 
r , 

'. is S-full, if f~r'-!~~ ,~, CP:Z in ... OS <:8), 

. , fp t- CP1 VCP2 ~ f[p n OS (),I)] 1-' 'Pi for i := 1 or 2; , 
" 

\ 

and similar~y, the results of ,seé-,tion B have theï,. 
, " , 1 

analogues in the generai context. , 

'. 
ô. Not •• In the statemel"lts o'f the, 'd~finitions 'ali\d theorftm5 

w ) ".... r ~ --

above there is no mentjon of ao~ tuples o~ variables. Thus, 
.. 

'. 
we can apply theorems 3, 4 and 5 to the following 

situation: .' , -', 

Let'·K, 6 and S be given as in section A .ind suppose 6 
~ , 

and S contain the formulas (~'= y>, y any variable. 
" ., 

", ~ -L F ' -'-. 
1X::X a, , ; po.ssible infin-ite, tuple of variables. , -

'" , . F A E K
À.,' ...... ... ... ' 

or~ cp(y;a) and ,,<z;b) formulas with paramete~s 

in A, write .... 
" . 

--if 

...... ...... ......... ... 
cp (y ; a) A (z = z) A ,,( z; D'" A (y == y); 

., 

\' Clearly = is an.equivalence relation. 

,r ..... 
Now, l~t a stand for K; 

, 
.. , 

for A E a, let D(A) (in the.abstract cQntext~ be-the 

(obvious)'boolean algebra whose underlying set iS k 

( 
139,-
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( 

" ' -:: !.'\";(. .~ '. ~ ~. 

l, 
'\ 

.-
{ (~ -+ ~a E A -+ , ~ -+ ~ y;a)/=; and y a subtuple OT x), 

let DS~A) be the distributive lattice whose underlying 

set is ". " 

\ 
1 

( 
\ 

~ 

-+ -+ -+ -+ -+ 
(qJ<y;a)/=; a E A, • E S anç y a subtuple of x). 

Far f:A---?B, let 

. -+-+ -+-+ -+ -+ 
~ote that if ~(y;a) = ~(z;b) then ~(y;fa) 

that,D(f) is a weIl defined homOmorphism of boolean 

algebras. ~et OS(f) = O(f)~DS(A). We refer' to the context 

just described above by the symbol K/=. 
, . ... " 

With the settin"g.,above, for A € il, 
, 

a type p/= (the notation p/= will-be explained later on~, 

over A becomes a set of '~formulas" ~(~;;;)/= with parameters 

in A and with y a subtuple of : such that any finite subset 

of p/= is consistent over A; 

/ .. 1 A l' f f (-+ -+) . D A p :: is comp ete over " or any QI y;a /= ln () , 

-+-+ • -J'" 
either QI(y;a)/= belangs to p/= or 'QI(y;a)/: belongs ta p/=; 

," 

A 'l 

Given f:A---?B in K, " 
.-, 

(P/=)~ - {~ € DS <8> , p t- qO, 

i.e. 

(p/=)~ -+-+ b -+ 
subtuple 

~-+ 

= {QI ()!; b) /=; E B" cp E S, Y a of x 

and for some Po c p/=, Po fi,ryite, -FPO t- ~}. 

" 
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", 

. "\. 

, , 

( 

(1 

, ..... 

\.' ~. ,1 

" 

'., . , 

" 

1 • , , 
\ \ 

\ 

,i ' 

, 
I~ 

, l' 

"J& .. ... _ 

~ , .. ", -+ ~ .~~ 
["'fote ,that, for' eCz;c)/= and Ip(y;l:»/= in D(B> , 

"'\ ' , ,-' 

'~ ~ -. -+ -+ ' ( 
9Cz; c) /=- H ("y; b) /= in a if' 

-+ -+ -+, -+ ,'....;. -+ -+ ( ..' 
e(~;c»)!(,~y' ='y) lB'cpj~;b)l\(z = z) Cin the standard context) J 

/' 

: 1 . , 
, , 

.. ~ow, cr.e can app'ly to K/=, the del'initions .and theorems 
( . .. , 

, " 

• 'g.i vèn above' in thE!!' general context. - , , 
,- \ 

\ '. ,'" 
,,-For,instance, given A C N,E-k, and p/= à' type over A 

"'" ' -+ r , ( 
(wit~ x a ~oss~bly infinite tuple of variables), we can 

"1 speak of' ~H":'in~nimal extension, of .,,/= to H, and, say, "the 
... . " 

mOAotonocity~tr-ansitivity theorem tc.f. theorem 4) applies 
,. , 

t'o sucti types. 

1 
Note that if -: .' is finite, 'them for aIl practical uses, ,,' . 

'---~ a type p/= over A ( .:i GO as defiped ln k/= can be ' 

-+ 
considered as 'a type in x over A as dèfined in the ~tandard 

~ 

context k •. In Tact the map which to a type p/= over A • 

. ' -+-+ -+-+ 
corresponds tl)e set p.:::·tcp(x;a) ;cp(x;a)/= E p/:::} is' one-to-

~ 

one from the set of type7i over A Cin 1(/=), onto' the set of ' 
.... " 

f -+ -
types in x "9ver A Cin k) • 

l' -
1 1 

Furthermore, one can ea,si l.y check the following: 

P is complete (in the sta~dard sense) iff p/= is ." 
..... 

complete; if r:A~B is in K, and q'is a compl~te type in 

"1 ;;'ver A, then q ïs an Sr-minil!lal ex~~sion -,?f p to A (in' 
- . { ,. - , . ,.,., 

le) iff q/= is an ST-minimalJextension of p/:: to A Cin k/=>. 
, 

.,. 

141 -

./ o 

" " 

\ 

" 

* , , 
~ , 

J 
1 



" ' a.. 

.. 

~ • ~ 1 

More generally, if x 15 Infinite, then a~type p/='ôve~ 
r ~ : ~<t-' -' " 

, " > 

A ( € a) in k/= can be considered as a consistent set ef ", 

-+ -formulas (in k) in subtuples of x wlth parameters in A; to 

p/~ we correspond the set, 

. , . 
-+ .... -+ -+ 

p -=-{~ (y; a); y a .Slibttipl e o'f x, 
... 

4-+ 
cp (y} a) /= € p.} • ., 

This lead. us te gener·alize.the noti~~"'"Of ~a type, in, 
,~ 

the standard contè~t K, to inc~ud~ typ~s in infini~e tuplas 

of variâbles. 

i.f i j.s an inf,in~ te1:,u~.lé", o~ vardables ··ant1 A € K, we 
.: / .... ~ 

define a type p in : oyer A to be a consistent set of 
- ... 

, -+ J .... , .. , "-

formul 'as in subtupl es of )(> wi th par'illJleters in A; and we 1 E!t 
,~ 

"1 

-t.... 4 4 
p/=--.{~ Cy; a) /~; cp (y; a) €' pl, 

(clearly p/.=' is a type i~ 'k/=)~ -" .' "" , .(-

We then app ~ y on 5uch .t ype5 p the tarmi ntJ~Qgy app 1 i ad 
.... 

on the types p/= in k/=. 

Th'us, for instance, (for p as aboya) we say, p. is 
~ ~' 

complete if p/= ~ s complete -<in '.Î(/=>, i. e.4. pis complete if' 

4-+ ,4 -+ 4 
for any Tormula ~Cy;a}, y a 5ubtuple oT x and a tn A, 

1 -, 

-+4 -+4 
either ~(y;a) or '~Cy;a> belong ta p; 

'- . 
, .' 

given (4 -+ ,-+ 5ubtuple OT "i, .-+ 
€ A, ~y;a),ya a 

" \ 

-+-+ ·if 
-+-t K,.,'--:: • follo"'5 that :'P lA cp(y;a) p /= t- cp ( y ; a> /= in it PtA 

"" 
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'. 

(~ 

',' - . , , , 
_'-_K _ ....... _____ " __ .. _ .... ~~~~~r ...... ~?~~,,.. .... - ....... ~ 

. ' 

... 

" .(y;:> if there is a formula 9(1;6) in p such that 

O(~~) (~ ~> ' ~~) (~ ~) ..., z; u 1\ y = y lA cp (y; a 1\ z = Z ; 

.. 1 
givén T:A~B, g a compl,ete type Qver ", q is .. , 

minimal extension of p to A if q/= is an S:'-mi'n·i;"i..l 
.' 

'. 

., 
. 

extension o~' p/= t? A, i .e. q~is an S1'-minimal .extension oP· ..... 
! u "'-, .. . ~ ) .... 

P to A if .for a,ny complete typê q~ over {, ~xtend~ng p, 

etc ••• ' 

• 
Also, the theorems~whi~h apply to types in K/~,~apply 

to types in K. 

..,. A -t, 
For instance, gi~n~T:B~C in K, p a type in x over 

" . ", <tpoSi-Sibly infinite)~ q'1 -a comf;llete ty~e ~ver l' 
... 

~ 

,,,' _~e~t~ding p, there i~ an S.,-mlnimal extension q of p~ to A .... 

such that <q1>; :::> q;: indeed, by thearem 3 applied in"k/=, 
"... 

there iS,an S1'~inimal ~tension q/= of p/'= ta A su~h that 

·(ql~)~ ::> <q/=>;; under tha translation descri,bep abo,:,e, 
J .~ 

"" "'1. - . ~ ~II 
this means, q 'is an Si-minimal ex~e~sion of p to A~and 

" 

• 

·'R~k. 

~ . A" • 

(even if x is infinitl\t), giNen f':A~B in k; if A is 
" 

S.,-closed in B !in the standard sense) then A iS,.S.,-clased 
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1 , 

1 

.', 

, .­., 

"-

-.;-

,in B (in the.new setting). 
"1 

Indeed, lemma A.5 still holds in Kr:::. Suppose p/= is a 

complete typ~ (in K/::) over A, cp € DS (8) af!d. cp € P~ i. e. 

J .~ ~ 

-fp.l= r-.jp. By definition, this me,ans there"i's a finite 
," 

~ .,... -+ 
subset Po of p/= such that t'PO ~ ,. ~~y "·:!I:·qt(y;b)/=, y a -

,. -+ -!", --., 

subtuple of x. i ~ .. f.ollows easi 1 y. that there i s a .fini te 

-+ tuple. of variabl'es z and "a c;:omplete type q',' in the 

-+ standard sens~, in z ove; A such that 

qf'/= c p' /=, and 

-+~ -+ -+ q"1B cp(y;l»A(Z = z), in the standard sense • 

Sine. ~ ~s 5~-closed in e, in the standard sense, 

'-+-+ 
there i s 9(z; a) "in q' suCh that 

5 -+-+ -+~-+ 
(q' )., lB e<z; a) H (y; I;j) A(~ -

in the standard sense~ 

Thus, p/= t- 9/= r- cp/= (in K/=>. 

.... z), 

, 
By lê'mma 5, w~ eoncludé that A is S.,-elosed in B (ln 

othe neH setting>. 
. ~ ,-...,. 

-,~ 
",$' 

r~.., 

.1"'( ~7( 

\ 

. , ~ . l'tî -
/ 

h" ~ 
Q, 

" , "" 
'? , 

.~ "'. 
"... 

o • f. 
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CHAPTER III 

, " 

Let 6 be the set of ail f ormul as ,yi n L,; 

r denotes cl fixed set of formulas in L, t - cl (~) ,; 

contains.the formulas (x - x)y x a variable,~ and r is 
_.J 

closed SUbstitU~f (any) variable (50 if 
. ... 

E r under tp(x) 

then cp (t> € r etc ••• ); 

S is a fixed set of formulas in r, S = cl+(S>, (S will 

stand for a set of equations). 
" 

We study in this'chapter the case when k'is the ~ 

category of m~dels of a first-order theory T with 'the r­

elementary embeddings (c.f. O.l.(i» for' morphisms and K 

r-eflects S. 

Mainly, we investigate SH-minimal extensions of types 

for H a L1 <r)-closed structure (i.e. a structure for which 

any formula in r with parameters in H is realized in kiff 
n 

it is r-ealized in H). 

We show then, that H is S-ful.l (c.f. 3) a'nd that any 

subset of H is S~-closed in Hf whenever S 1s a set ~ 
)., 

equations (c.f. 11). Furthermore, for S.a set of 

equations~ SH-minimal exte~sions have ,the lOc~l-character 

pr-operty (c.f\ .17>. 
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~ 

Let us gi ve a sket:ch of the argument's ~ed te prove 

the results,stated above: 

first we show (c.f. lemma 7) that if A C H and l e is a 

r ' t , 
formula in D ~H) whic:h is A-invariant <i.e. for, a~y ~,~: H~F" 

with \"A.;;~fA, fle F f 29), then è"~iS A-definable (i .e. there 
, , 

is ~ in'D<A) suc:h that 9 H ~). 

Next, given a c:omplete type P over A c H and Po an SH~ 

minimal extension' of P to H for S an equational set of 

formulas He let Pl'··· ,Pn-l be the SH-mirÎimal exten'sion of 

• S "., S ' 
P to H such that (Pi )/H i s an A-conjugate of (PO) H (i.~. 

and 
there are "O"!l:H~F,.fc/A=i"AVfO~(PO)~] 'j! "'i(Pi)~]). We 

C"\ 
show then that Vi<n(Pi)~ is A-invariant, whence A-

H. It folloHs also that the Pi's (i < n), are (aIl} ~he SH-

minimal extensions of p ta H. '" ' 

Conversely, we show (c.f. 12) that if p is aS above, 

and Po i,s a complete type over H extending p such that 

,1 ~::: :a~::: y o:~~ A-conjugates th;ôpo i s. an SH-

.. . Finall;y, if p is a c:omplet.e type, over A and Po is an 
--<- 0" 1 

SH-mini,mal ex:tension of p to H for S an equatipnal set 

then, from what prece'ded, (P.o> ~ has fini tel Y' many' A-

~,-

. \ 
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l , 

... 
" 

, , 
L.. ;... ~, 

conjugates;-~nce, if ~ c S, (Po)~ ha!> fin!itely many A-
T' 

conJugates; henc'7 Po is an RH-minimal extension of p to H. '. 

This sketches-the proo~ of the local-character 
~ ----- - ~ 

• 
property of SH-minimal extensions for S an equat~o~aI"set. 

For S an arbitrary set of equations, the argument is 
( 

slightly more sophisticated. (c.f. ·15 and 17). 
l , 

" 

'( -{. ~' 

- 1:1 (f) d.rio~ •• t~·e'. clasur. of r und.r eMistential 
, ,.r 

quantifi .... s (i .'fi. ~t1 (r) i. ,the .et of formula. of th.' .. " .. ..,.' . 
farm 3",SC"" Il) ~h.re e E r> J 

a formula in 1:1 (r) is alsa called a 1:1: (r)-fara.ula • .-

A structure H in K~. Ilcr>-c~os.d if far Any formula e 

in Il cr> ~ith paramete,.s in H, e is realiz" in le iff e 
-----'\ 

1 -
---------j. r.al i z~ . in H. .____-------------------

~-
.~~ 

Given H in J'_~~L (H> -L U {ca_ .. E H~,- where c. 1. an 
, 

individual can.tant nat accuring in Land c. "cb far. 

----.... - -
JI 

di aQ CH) -{ee~ .. ), eei) E r, H'" ee:)~... / 

CI •• rly, for F E K, F i. a model of diaQ(H) iff , . . 
th.".,ia a r-el ... entary embeddinQ (~enc:e a mo~phi.m ln 
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." 
1 

, 
k} Tram H into F. 

,~ . , 
f 

In II.C.6 we generalized the notion of a type to 

.. 

; 

,- ,-
include types in infinit~ tuples of variables: a type in an 

-f. 
infinite tuple x over A-is a consistent set of formulas in 

-f. 
subtuples of ~ with pa~~meters ln A. Furthermore, we have 

shown how ~he terminology and results of the pr.eceding 
.. 'l ). 

chël'pters ...apply ta such types; in particular, the 

monotonicity-transivity p~operty. 

We recall (c.f .. ,II.C.6> that for P a type in an 
" ..... "'!: M 

~ A 
in1inite tuple x over T, when f:A~B is in k, 
. 

s- ... ~ -f. -f. .... ... -+ 
Pf'<=-i:qJ(y;a>; y a subtuple of X; a € A, cp € S, T.P lB cp(y;a) l, 

h .... -f. fa e .... -f. (a .... H ere fp ~ .(y;a) means there is a ,rmula (z;a) 

€A 
-+, f-f. 0 , z a subtuple 0 x), Wh1Ch is a finite conjunction of 

formulas in p and such that 

.... -f. ....... ........... .... 
9(z;f'a)I\(Y = y) tB cp(y;a)ACz = z); 

... 
a complete type q in x over T extending p is the," al') 

'Sf-minimal extension of p to A iff for any complete type q'. 

-+ in x over T,' extending p' 

,J, 
q~ 

.-
-" 

If P is a type 

-t subtuple of X He let 

-. 

, " 

::> (q' ) ~ ==t 

in 
.... 
x aver 

-' 148 

q~ -

A ( € 

(q 1 )~. 

.... 
k) 

,/, , 

and 

,. , 

'r' 

-+ 
y is a finite 

'. 
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·c 
, . 

;. , 

. , . ~ 

-+ -+~ 
P""y-{cp(y;a) € pl; .. 

, "'f-' 

clearly, if p is cè'fnplete over A then 50 'is ,pt-i. · ,. ,. 

Proaf. Clearly, . '. 

Sy compactne!;s, ,there is a f!'-sehtence 'J.(~·t ·t ) in , a' b 

" ~ 
L<H) ~c a tuple of individual c~rystants in L(H) disjoint 

fra. ta and t~) such that '~.- . 

Hence" 

\ i. e. 

-+ -+ -+ -+ -+ -+ Thus 'l'(t;u) ·=-3vJl(v;t;~) satis-fies our conditions •• 

structur: •• 
.. 

(i) Th.n any typ. ov~ H 1 •• typ.·av.r ~·(1~ •• i. 
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t, 

"~.,,>~~)$ir;f~"~j~:rq , ~:r~r.;t~'tI' .. \~Y'I:~.~rp"·~" ...,.,. .... ~,..r\~, \ >!l 

1" 1 ~. 
·~r, ~.of;t'l~~vr-v-." \,,~~r ~~/1\.~(lAt·"(' .... '?"1"r;lW;.,._~~1j~'i'V~J3,"-:"~""t .. tf~':~~~~ , 

(i i ) > f reflEt. 6.. 

. '. 
praOf\ .. 

(i) I?S~ffices ',;'~o show that i-f e(;;"i:) is a formula i~ O<H> 

such that 
-t-t 

TSCx;a) fF -t -t 
(x :ri: x) tben 

-t-t 
e(,x;a) 

-t -t W , il: x. 
• t, 

'T -t -t -+ -t 
Sy 1, is Suppose. eCX;Ta) f(:xP x. lemma there a 

1:1 (r> -Jo 
formula "dt) such that F t= 

-+ ,,(fa) and 

7 
• -Jo -t -t~ -t-t 

t= lf'f-.t)~'9'x(eCx;t)---Hx ~ x» .. 

Since H is 
t " -t ~ 

El (r) -c 1 os~d and F' t= If' Cf a), H t= If (a ) • 
',) - 1 

li. .--' t' 

g:,H~G is il morphism in .K, G t= " (g'it) , ,\ Hence, whenever 
, 

-t -+ -+ -t-+ 
and therefare G t= "'x(e(x;ga)~'(x :ri: x». 

. 
Ne conclude 

" 

(i i)· Suppose e and cp are formul as in D <H> such that fe ~ Tep. 

Then fCeAïcp) is: inconsistent in " over F. It Tollows 

.. 
from (i) that 9"'111 is inconsistent in K over H· Le. et;:; 

'P. 

Thus, f reflects 6. • 

--

Any I:1 (r)-c:lo •• d atructura Hin le is S-full. 

Praof. Let H be ~1 •• ,I:l cr> -closed structure in k, p a 
\ 

v. 

.... 150' - .. 
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(j,,"'''', 
" 

~ 

'''1, • 

" 

.A . 

\ ' 
l 

,. 

<0 

" 

. , 

'>, 

complète type in -+~ H,. We want ta show Po U P~ xaver Po cp .• 

\ 
~s S-full. 

Sd let ":H~F be a morphism in 1( with Po U P~ 

such that 

We need ta prove that T(P~) fF 'Pio -for i = 1 or 2. let 

by proposition 1.7. (ii), 51 is "equational. Hence there is a, .q 

SI ' Sl formula I! in D (H) such that PH ïi 1. 

- contradiction. 

Since 1( reoflects S there is a morphism e:F----:;;E such 

Now let . 

e E Po U P~ such that 

-,+-+ 
By lemma 1 there is a 1:1 <r)-oforlÎlula ,,(t';u) in L such that ! . , 

-+-+ F' te: ,,(a;b) and 

•• 
" '..\. 

-+ -+ 
Since " E LI <r>,. E 1= ,., (ea; eb). We have 
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,,, 
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\ 
")"~'7'1lIlWt'j,Wf'S";t"'~~.:!F;;J""J.r'""1'&"t:.~~.~~-J<.-;'''''~'''.('''! "'-,'\.'l.,..'i":;..x, .... ~-"'1'1~.~~-.!:",..,,~, .... ~~~{""'~ 

'-

formula 

,t 

i5 realized in H. .." 

In other words there are 1;upl es t and d ln H such that 

2. .... -t -t. -+ -+ -+ -+ -+ -+ -t 
H F Ip(C;d), H 1= 3x!i(X)A'IP l (x;c) and H 1= 3x!I(x) A'IP2(x; d) • 

But then 

i.e. . . 

hence 

~- . 

.. 
L. 

--

-+-+ and thereTore, by ccmpleteness, either p ~ IPl(x;c) or 
"-

-+ .... 
p. IH IP2(x; c); 

realized in H •• 

, 

(. 

4. Carollary. If K ha. el.m.~Ary embeddings for morphism., 

(i ••• if r 1s the set of aIl formulAs) and'f 15 a •• t of .. 

equAticns then any structure tn"1e i .•. Any model of T 1. S-

full. 

-"152 



~ . 

, . 

~: 
" " 

,~ 
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. , 
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" 

( 

"J. 

(. 

• , ' 

Praaf. ,FolloHs immediately fram proposition 3 and the fact 

that in this case any model o~ T is E1 <r)-closed •• 

5. Proposition. Let hIA.--+H and ~IA---+F b. morphism. in i, 

A E Q, H and :F 1::1 <r)-clo.ed st'ructure. in " which Ar. S-

full, p • type over A which is consistent cver ~ and g. 

(' 

: 

Praof. Sinee H and Fare assumed S-full, for any Sff­

(resp. SF-> ';'inimal extension q of p to h (resp. ta T), q~ 

(resp_ q~) is an Sh-component (resp_ Sf-compon~nt) of p. 

S In particular, (Pt)H is an Sh-component o~ P_ 

By corollary 2, P is consistent O,ver 91-

It follows,,,by proposition II.B.ll that the;re exists an 
.~ 

Sf-minimal extension P2 of P to f such that 

". 

cr 

Not •• In proposition 5 above, if S is a set of equations, then by 

pr.oposi t i O,n 3, H and, Fare S-of ull once fi -and Fare I:\ <r>-

- 153 ..:. 
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closed .. 

...... ~:I?'f'"-~f~· .. ;:;: ... ,~ $, 

Of 

, 

il'. O.fini ticn. L.t A cHE k, 

\ 

, . 
>. , 

J e a formula in O(.H). W •• ay e i. A-invariant if fer:', 
~ , . 

Any morphisms ~lIH---7F and ~2IH---+F such that ~l~A - ~2~A 

N. have ~ la ., "2ê. 

Equivalent.ly" e is A-invariant if for eny iso.orphis. 

alH---+F .n~ morphi.m. 911F~G and 921H---+G such that 
\ . 

Indeed, to obtain the second version frem the fi\st, .apply 

~:t_~ersion from the second, apply ~t~e $.econd ver.sion te 

CT = idH, gl = "f 1 , 92 = "2-
If 'hIA~H i. in ~.~ .ay s( e D<H» 1. h-inVariant 

'-if a i. h(A)-invariant. 

7. L.4Iftt4II&. L..t A cHe k.· 

1 
( 

-+-.+ , 
e(xJ~) a formula in D(H}. Then e i. A-inva,..iant iff ~ 

is A-definable U ,a, th.,... f~ r" in D<A), aH.). If, e 

E Dr (H) and e 1. A-invariant then in fact th.ra is a .. 

formula" ln I:1 <r> Nith param.ter. in ;II .ucb that e 'j{:" • 

. "" 

.. 
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t'\ 
ci 
:1, 

~; 

t-
[i-
C ... 
~~ 
t, 
" 
" 

~ 
~. 
(. 
'i , 
, 
c 

C , 
\ 

~ 

?' , 
~ 
1 

'" 
,... ~~~";ëf.'JtiIft!ii!::ftWa.; 'iCI ~i"";;:\~f'i'.""'t~~~rlL"'~~""""'~"""-r>T"""""~~"'~_ ........... ~~f~o(tj.:.'~'1~lr.r<l, .. ·J·,.....~·~t~,'O.~~'l~~~'({i~':m:;ff,t'tt.~~~~ _ ~ 

, 
1 

.. 

t . 
, , 

\ 

< , 

;-

( , ., 

, 

, 
Proaf. It is eatiiy to see that if e is A-definable-- then e 

is A-invariant. 
1) 

Conversely" suppose' e is A-invariant. Let aH be an 

isomorphic copy of H; a, the isomorphism from H onta aH. 

Then, by (the second version) definition of' A-invariance: , 
\ 

J' T U di ag (H) U di ag ( aH) U {(c a == C ua); a E A} t= 

l ' 
By compactness, it follows therè is a sentence 

elements in H~, such that 

" 

-;:, 

\ -

Consider the formula 

Cil' E DCA»; 
• 

~ ~ ~ . * ~ 
lengtht == lengthb, lengtht 1 = lengthD 1 , Crecal! h 

" 
1 • 

C' 

Fo,.., givem a morphism ":H~F in k and d in F suC;h 

that F F 9Cd;"$'>, ,we have that 

" 

:. 

" . 
- 155 -
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1 

" 

8. 

" 
) 

:' '., ", 

~ ~ .... • !... ... 
• +>*..-f!>.VâJ<~)·~~~·-"'l ""~~I>.-4""'[""-1~ .. ~ ~~~""""""-::~F"~~~~"#lft"~1-'.~':';~;L-~~~ ~ 

i,. e. 

. 
-t .J 

F t= \fr(<1;'f'a). 

., 

,-+ -+ -+ Thus F t= VX(Te(X)~T'V(X». Since f Nas arbitrary~ it 
: 

folloHS that et;; '1". 

' .... 
Conversely, given'a morphism T:H---tF and ~ in F~such 

r .... 
that F F 'V(d;T:>"there exi~t (by definition ~f ~) 6' and ~ 

fi" tupI es in F such that 

So nCH Ne have 

,-+,-+ ~ -+ 
F t= cp(Th;fa)l'\qI(h';'f'a); .. 

frcm ~(*) above i t folloHS that. 

Since T was arbitrary, we deduce that .~ e and .. 

conclude, eH •. 
'" ' 

( , 

Finally y it is clear that if e is in 
'v.---'~ 

defined i 5 in 1:1 (r). • 
... --

Dei ini t.i an, Let A c: H E le; Pl"' and "2 t. Yp •• 
1 

av ... H. 

P2 is an A-conjugat.. of Pl if ther •• ra. lIIarpht sms 
<, 

.nd'f2IH~F such th.t Pl tB,consistant ove,. f l , 

" 

- 156 -
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( 

. .. 
iln lsomorphi sm cri H~F 'And tnOrphi ..... 9 11 F----'+O And 

,~ "'", _J'" , 

~~~ g2IH~G such thAt aPl is consistent ove,. 91' -cr 1 -cr,.A 

J" 
Indeed te obtain thersec~nd version frem the ~irst, take 

~ . 
a = idH, 91 =., 1 and 92'= 1"2;' to obtain the -fir-st -version 

from the second, take ., 1 = 91 a and 1'2 == 92. 
, . 

9. 'L ... a_ Bivttn A c: H E, ~, with 'H 1:1 (r)-c:l~slld, A-conJuQAtion 
i" ", 

is an equtvalenc. ,.elaition on the At 0" typ •• av .... H. 

Proof. ~Reflexivity and symmetrY'are immediate. 
1 

'" Suppose Pl' P2' P;s are types over 11. such that P2 i5 i&(1 

#. 

A-conjugpte of Pl and P,3 is an A-conjugate of P2" Hance, by 

definition, there are morphisms "1,1'2:H--7F and, 

" 

Since H is El cr> -closed, we c,n .fi,nd morphisRtS 
\ 

h 1:F---.?E and h3 :G----7E in 1( such that hl ·"2 = h3 -9 2- Let . ' 

.. -
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. . 

,.(~. 
'- . 

1 > 

". 

, 
: ' 't 

+, 
, 

> . 
" 

:1 
b 
1 

'. 

() 

o , 

• r 

. 

. .' 

. ,-
Il .. ' 
;_ f 

" , 
•• "Q ~.. ~ ~ 

.-' ..... , , 

(: 
. ~ ~ 

. , 

... 

... 

" 

'r 

.' . 

.. 
~ :' 

"-' 
,; , ~ 

~ 

. \ 

" . 

" 

e l P1 E hl ·"2P2 Ë h3 ·g~P2 E e3P3'" 
o 

We conclude P3 ie an A-conjugate of Pl'" • 

~ 

(P2)~ i. an h-canjugat. of (Pl)~. Ma~.av.; (P)~ i. 

~ 

• ft ~ 

c:t.finabl •• 

" 

Suppose P2. is complete over H and 

. 
~ ~ 

t. ~ 1 S 
'f'2:I1~F such that 1'1 ·hl"A = "2- h I"A and" Tl «Pl)H) F 

. S .. J . , 
1"2«P2)H)· 

1 
f'-) 

r 

• 1 

., 
Let. ql (~esp. q2) be an· ~F-~inimal extension of p.·t 

~. 

(~esp • 

• 
'S-full (by pr-oposi tion 3>; hence (c: f. II JO BoOS. Ci i) )' 

, ' Now H is S1' -closed . , and Sf.-~~d in F (c. f. 
..... ,. 

h 

t.ransit.i~~ y CII.A.12) 1 1 • B. 14.. (i 0.> ; hence, by Q'l is an 
r-

Il • 

' .. 
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" 

( 

;. 

( 
~ .. 

. . 

--

'. 
, " 

,.. 

S 
(q2) F F -5 

fq 1) F' q2 is an ,SF-ml ni mal extension 'of p té f.2 ·h. 
(' 

1 

Dy monotoni~i ty "HI.A.12) it féUows th~t Pz. i s an SH-' 

", 
praves one direction o~ ~),C tensi 6n 

, 
rkat minimal of p to h. 

1 -the clai.m .. 
. " 

Suppose now P2 is an' SH-minim~l.~èxtensi~n of P to IJ. 

LetIQo,····"qn_1 b'e-, up t~ SH-equi'valence, aU the SH'-::, 

is an' 
" 

h-cordugate of (Pl)~"- (by II.A:13 there '~r~.:finitel'y many 

5uch exteASipns); 

, . 
cJ 

,let e---v.{ (q. ;HS,; 
l n ~ . 

~ 

Clalm. e'i s h-i nvë;t.ri.ant." , 

" 

ProQf of t.h. clatlft. Let '1, '''2~H~F be ~Qr~h"iSaU5 in K,.· 
, ~~: -~--,-

• 
,such that "'1 "hl'-A '="2"hf'A; "je ha'V~to'shO~ fla r '2a . 

• • D 

...' By pr;op~si ti on 5, for each i < ft theree i s. an SH7'"', 

" '. 
minimàl ,éxtension qi of P, to h such that 

, . 

:.~ut t.hen, by pefinition, (qi)~, is an ~-conju~at~:Of. ( 

( ,).S 
qi H" whence (by lemma 9),an ,?-çon~ug~te of 

there is j.( ft such th~t· 

'. , 
, . 

'1 

. " 

.' 

.. 
- .(q~)~ , S ..- (q j) H" 

,'/ . 
If 

~"':"' 159 
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l't easil y foU oW!ji that 'there i s' a permutat'i an 'r of n 

such that 

Clearly then 

'S S, S 
"l(Vi <n(Qi)H) F "2(Vi <n(q'ri)H) F "2(Vi <n(qi)H)' 

'I! 

We conclude "19 F "29, which is what we wanted~ 

By lemma 7 it folldws that e is h-definable i.e.'there 

is ~ in D(A) such that e H h~. 

Obv.iously, (qi)~ tg e (any i < n); henee qi tj:; h't'. 

Therefor'e 

on' the qther hand, 

'. 

~, - f" We cencI ude that. 
, ,-----...,.., , , . . 

i ~~ ~ .., 
P~ iï h'fl if Vi <n (Q.i)~· 

-,-
r 

• 'r 

It fàlla~s~easily that, up ta SH-equival~nce, the 

types qi Ci < n) ·énumerate ail the SH-minimal extensions of 

, 
p te h (c~ f. n, 

'l', 

, , . 
Foinally, sinee P~ if h~, P~ is h-defi~able •• 

• t ' ... 

" 

• QI " ' ,,1 
" 

\ 
- 160 - , 

, ' 

; 
~, ' . \ 



, 

\ 
\ 

1 
,~ + 

.' 
C 

œ ... mfq"*"""~""'I"'''~~~r''''~~."''''''t",,"~~~pllt(îfr~~'1f,,,f'''Jl!II'II~~~~~_~_~IIi'''',~~~ , 

. -
clos.d structur. in k. If S i .... t of .quatians, th.n'A 

i. Sh-clo.~ in H. 

Praof. By II.A.5, A is Sh-closed in H iff for any complete 

type 
~ 

p OVler h 'and cp in oS (H) 

~jthat P~ 1)1 he 1)1 op. 

such that hp ~f9 ther. is, e in 

DCA> 

But, if hPtH cp then p~s Iïï cp ... here S 1 - cl + «(cp}), and 

by theorem 10, p~1 is h-definable i.e. p~1 H he for some e 

in D(A). The conclusion is now clear •• 

SO, if S is a set of equations and H is 1:1 <r)-closed, . ",-

any subset of H i5 SH-clo5ed in H. thus, the monotonicity-

transitivity theorem (II.A.12) applies to SH-minimal 

extensions of types over subsets of H. 

Theorem 12 belo ... intuitively says that, (giv~ 

h:A~H, paver h, Pl complete over H), Pl is an SH-

5 minimal' extension of p ta h i:ff (Pl) H is "almost over h" .. 

.. 
The exact definition of "almost over" will be given in 

c~apter v. 

type ov.,. H, eHtendin; P ta h. Then Pl i. an SH-minimal 

, . 
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.xt.nsion of p to h iff th.ra are P2'···'~n' complete typ •• 

over H ext.nding p such th~t (Pi)~ is An h-conjugat. cf 

Proof. suppose- Pl is an SH-mini,mal extension e-f p te h. 

Let Pl' ••• ,P,., be, up te SH-equi valence, aU thè ~H-mi.nimal 

extensions o-f P ta h. By theorem 10, (Pi)~ is an h-

ccnjugate 0" (Pl)~' (1 SiS n). By proposition 5, for any 

i S n, there is i, .. " 

1 S j S n, such that 

That prcves one direction of the claim. 

Conversé 1 y , suppose there ar~ P2,···,Pn such as they 

satisfy the right hand side term of the claim. LetJ 

\ 

e is h-invariant: -for i.f "1"'f2:H~F are such thàt 

Sy lemma 7 it follows that e is h-definable i.e. ·there 

i5 ~ in DCA) 5uch that e H h~. Now of course e ~o Pl; hence 

~ E p, for hp C Pl. Thus hp IH e i. e. 
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It 

" 

. " 

,- 1 

It follows that at least one of the Pi's~is an SH-

minimal extension of p to h (c.f. II_~.ô). By theorem 10, 

S . 
since the (Pi)H are assumed h~conjugate of each other , it 

follows that aIl the Pi's and in particular Pl' are SH-

minimal extensions of p to h. 
~ 

• 
13. Corollary. Le~ S,' h and P be a. in theor •• 10 and suppo •• S 

cont.in. the formula. (x - x), x Any Yar~abl •• let Pl be an 

1 ... ... 

'SH-minimal extension of P ta h. Say p is • type in x, let y 
, 

b. a subtuple of -: and R c: S, R - cl+'(R). Thlln (Pl";) is an . 

... 
(R)H-minimal extension of p"y ta h. 

i 
Proof. ~Let us st:-o~ first that if ql and q2 are cd'tnplete 

~ 

)t types oyer H and 71'~2:H~F are morphisms in k such that· 

. S S 
T1 [(qt)H] F T2[(q2)H] 

~J 
then 

j • 

" . 

"l[(rl)~] F T2[(r2)~]' 

-+'t. -+ 
~here r 1 = ql~Y and r 2 = q2~Y' 

. '. , . 

Indeed, suppo~e q1' Q2' Tl' 7 2 aré given as'above. 

We have that 
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... .. 

r . 

• 
sin~e S co~tains the formulas (x = x), it easily 

fo110ws that 

Now, ReS implies R is equational; therefore, by 

proposition 3, H is R-full. In particular r 1 is R~I-fUll. 

Sinc:;e 

1"2[(r2)~] c OR(H) and 'ft (rI) tF ~2[(r2):J, 

we deduce that 
,-

Sy sym~etry, we get 

We conclude 

which is what we wanted. 

\ 
\--

" 

. , 
, , 

_ Sack to our proo-F of th. c:oroll.ry: by propolii ti on 12, 

.since Pl is an. SH-minimal extension of p' to h, there are 

P2' ,. ~ • ,p TI' camp 1 ete types Qver H 

'S' 5 
('Pr) H is an h-conjugate of (Pl) H 

with 1"1·h~A = l"~·h~A·and 1 SiS nt there is j~ 1 S j S, n, 

such that .. 

Let ri = ~i~~. Then, using~he claim above, we see 
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1 !S j !S n such .;t.hat 
t' .... ~...- ... 

We canclude by proposition 12 that r 1 is an RH-minimal 

exteris'ion of p t:o h •• 

.. 
14. Proposition. Let S be equati-anal, hIAA.-~)H in 2 with H 

equivalent SH-minimal extensions of p te h. Then 

Proof. Let Q07 ·--,Qn-1 be, up ta SH-equivalence, 'aIl the 

SH-minimal extensions oT p ta h. 

" .. 
Let e be a single Tarmula 'in DCH) such that 

, . 
" 

9 li V{(qi>'~A(Qj)~; i 7 j < n 7 i ;1: j} 

(just consider (qi)~ and (Qj)~ as single formulas). .. 
; 

J 
. , 

CI.im. 9 is h-invariant. ,- . 
• 1 

we 

J 
Indeed, let tl,f2:H~~)be such that f 1 ~h~A 

want ta show -(1 9 F -(29 • 

By proposi tian S, Tor any i < n there is l . 
l < n such 

that 
r 

(' 
Os S 1[(qi)H] IV fZ[ (q.t

l
) Hl. F 

.. 
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, 
.:1 

The map i ~I----~)li is therefore a permutation of D. It 

, 
Sy lemma 7 we d,edpce that e fi h~ for some 'II in DCA>. 

Suppose hp U {~},is consistent. Then, by completeness, 

'II belongs to p; hence hp !H 9. Since Pl extends p, Pl W e 

i .I!. 

. , 
:) , S S 

Dy c","", l et '"':~ss i t f 011 o"s th~( P 1 tg (q i. I_H" (q j 1 H for 

some i ,i < D, i :it: j. 

Thus 

\ 

by minimality of Pl we must have 
" 

,-, 

.We conclude that hp U {el must be' i~consist~nt in K, 

which means that for any i,i < ~, i'~ j 

inconsistent in K •• 

.. 
\ 

" 

• 
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, 
1 

. , 

(
' . . 

" . 

J 

-"'-

( 

. _. 
" 

A ~~~~"T~~-~-~-l 

. 
complat. typa in a (pos.ibly infinit.) tupi. of variabl ••. 

~ ~ ~ 
xJ (xj)jEI a family of finita .ubtupla. of x and qi' far i 

- y 

El, an (Si) H-minlmal aKt."'.ian' of pt-1i ta ~ (qi i. a typa 
~ 

le. Th.n q-hp U {qi l''Si' i E Il i. consistant in le. 

Proof. To prove the consistency of q it suffi~es ta assume 

.-+ 
,x is a finite tuple and 1 is finite. S is then, equational. 

~ . ., 
Let r be a complete extension ef qo to H. Sy II.A.2 

there is an SH-minimal extension Pl of P to h such that 

Sy corollary 13, P1 t--:i is an Si-minimal' extension of 

. \' pl-+ 

~~i 
'since it'is contained in r. By proposition 14, it folloHs 

that 

We conclude that 'tj."r~ q, ,which implies that q is 

consistent. • 
~ 
\ ~ 
(, 

Nota., With the notations of proposition 15, clearly 

-+ ~ 
(ql"x.) l'S. =q:t-S .• Thus for any i El, qt-x .. i5 an (S'.;)'H-

l l l l .6.6 
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.. 

minimal extensÙm o-f P~ii to h. 

D 

16. L.mma. L_t. S, h and p b_ .s in proposition l~'; l.~ Pl lb.'. 
. \ '/ 

campl.t- typ_ OVItr' H .xt.ndinçh'p ta h. rh.n P1 i. \n SH-

minimal _Mt.nsion af p ta h iff for' Any i ,e 1 and finit.-

U. ..... .. \ 1 
subtupl. y of x, Pl~Y i. an (Sj)H-minimal _Mt.~.iDn of p ta 1 

h. 1 

Proof. 
... 

Suppose Pl~Y is an (Si)H-minimal extension of p ta 

t .' ... ... 
h for any i E 1 and -finite subtuple y of x. 

NON, if q is a complete type over, H-extending pOto h 

with 5 
(Pt) H :li q: then for any 

... 
Y and i E l, 

f ... diE Dr any y an .& 1.-

But cl~arly 

and 

q~ if U {(q~y)~'; .~ a subtuple of .i, i E Il. 

is an 

~H-minimal extension of P to h. 
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Conversely, suppose Pt is an SH-miniaral extension 

t ... -+ to h. By II.A.2, far any finite subtuple y of x and any 
" 

E: I, there is (Si) H-::-minimal extension q - .... of 
... 

an p~y to .l,y 

such that 

(Pl .
.... "'y) SH' ..... (q -+) S, l' -' • H-l,y 

and q-='hp U {q- ....... S-; i € I, ya finite subtuple of -:}_ 
.1 ,y .1 

of p 

i 

h 

. / i 
aince qo C Pl' qo is consistent in K; hence by l 

proposi'tion t5, q is consistent, (write S = cl+( Ui,'?i,y) 

1 

'if nec~ssary, where Si ,y = Si>. 

Let ql be a ~omplete'extension of q over H; clearly 

(ql)SH ~ U. -+(q. -+)SH' n .1 ,y .l,y 

Since f'or any i, i, 
c./ 

(qj ,y)~' C (P1I"y)~1 C (P;)~, 

we have'that S 
(ql >,H C 

. 5 
(p 1> H- By sH-min~.litY~ 

·deducé 'l:hat 5 
(p 1) H' = .. «(?t)~; hence 

~ 

(Pt l'y> ~' = (q 1 l'y> ~' = q. -+l'S - _ 
.1 ,y .1 

.Ne 

... 

We concU,de' that Pt l'y is an Si-minimal extension of. P 

-+ ... 
ta h for any i in 1 and subtuple y of x •• 

.:.. 169 
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17. 

.1 

.,;l"', 

, . 

Th_a,. •• (local charac:t.,.) • L.t S - cl + ( uie l~ i) ·wh.,.. far 

0> 

Any i E l,: S1 -Cl+($1) and Si i. lIquational and suppas. S 

cantain. th. formula. (x -x), x Any variabl.; A c B CH., H' 

ta J:t(r)-c:loUd st,.uctur:. in '" complete typa 
' ! .. 

P • in x av.,. 

A" -: p~."lbly Infi'ni te; Pt' a complete, typa av.,. B .)(t.ndi~Q 
n 

p. 

Proof. Let P2 be an SH~minimal, extension o~ Pl to H. 

Consfder the following ass~rtions: 

1. Pl is an SH-minimal extension~ of p ta 8. 

2. P2 is an S~-mini~al extension of p ta H. 

r--.. ' ~ 

(P2 l"Y'> is an (Si) H-minim~l. extension of "'P""y t~ ,H ior any 

i in 1 and fIni te subtuple j of i. 

tt· 
... 

is,an (Si ),H':"'mi~imal 
.... 

S for i ,P1l"Y ext~nsion of pI'y to any 
\ , 

in ',r and finite subtuple 
... 

of 
... 

y x. 
." Je 

Now, by eorollary 11, fi' is SH-elosed in H;' henee by 
0 

the monotonieity-traositivity theorem (c.f. Il.A.12 and' , ,.r. , 
: 4 ~'n 

1 • 

\ 
\ 

, " 
, , , 

, , , , 

Il.C.b) ) we find that 1.. P> ~. 

From lemma 15 we have that 2.~ 3. 

By monotonicity .(II.A.12) applied te the 
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• 
, 

and th~ equat~onal sets Si we f~nd 3.~ 4. 

We~conclude 1~~ 4. which is what we wanted •• 

Jij, , t 

We close this chaptar o~ a nullstellansat2 type o~ 

resul t 0"': 1:1 <r> -:-closed structures. 
\ " 

i , . 
18,_ ,Prapa.i'tian. Lat H ba a 1:1 (~)-,J:l~~ad struc:'ture in ka 

( 

'" o far .. u1.. in S. A •• u .... ., is iln ,aquiltion. Thltn' th.,.a is • , 

-+ "" .\~'I!' 
s~uanc. (cû i<n of parut.ta". ln H, suc:b th.t far .li.V 

" 
,1. ' ~ 

marphism ~IH---+F And tupla ~ in F, 

' . 
. ' , 

J :; .. 
, Praaf. -+ -+ "-+ 

Choose ~O,·~·,cn-l in ~(H;a) such that 
". 
{' 

~! 

;, 
" - ... 

~ 

t , ... !t. -+ .; 
cO' ••• ,cn ..... 1 C!:an be 50 chosen because .(x;f) is iln 

p .; 
equation in f (c.f. 1.1;3). 

j 
We show that (Ci)ï<n satisfias ~he conditions of 

1 -,* 1 

1 

. \. the proposii;.ién. 
~ 

! 
l' , 

f 
, 
" 

Let "f: H~F be in 1( and;: in F." 

. " .. 
'. . ' 
1 

" 
• :'.( 

i' _ 
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D f,._ 
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. t- - _ 

j' 

, ,. 

, . ) 

, '9 

". 

-.. 

" , . 

,b 
• r;-', 

, , , : 

.. , .. 

Cl ' 

. 
" ' 

Il ,'- .. 

" ,1 

:) , . \... 
, ~" ". , .. 
, ~: J Î • 

, , t,.. ~ 

• ê 
.' 

• l" 

- \ 
:- If ~ ',~~, 

,,.b ".; ., • , 

, ... -;,:' .1. ;. 
." t f 

., '1. 

" 

- ~~ 

,M!L\IIbtl ta ,&.1Ii LI i Z?_.7;J' 

... 

. 
\-+ ~ 

_~(x;6}: for suppose" the contr.ary holds, i.e. 

Q , 

then thera is a morphis~ g:F~G sueh that 

~ -+' :", . -+ ~ -+' -+ -+ ~ 
G 1= 3t3xJ\i <~ 'fi (gTC i ;'t) Np !.x;IJ.,~.tf'::'" Cx; t ~. 

'. 

Sine. H is Ll,(r> ,closed, it follows thera exist~ a 

9ü~ cl~arly, if H P'Ai<»'fI(ti ;?) then 
~ , 

~ , , :-t -t:.... ' ... -t ,'~-1- -
,'H J= 'dx(cp(x;a)~'fI(x;a», contradiction .• 

~" . ~ ... 

, , 

~~ ". '" 
\- -

CQt"o11.r~" ,Wit.h ., y, ',H •• .rin praposi;ion ~ .bov_, th.".' 

, \. "" -+-
i ••• equanca (Cj)i<n of par.mat.a,.. in H such th.t.' 

.' 

". 

j 

~. . -+ -+ -t-' -
Pr~al.,ichoose cO'·.··,cn- 1 in cp(H;a) as'in t.heorem'la above., 

", 

" 

" 

. 
, Î , 

-+' -+' 
sinee for any morp~ism T:H~F. F p Ai<n~(Tci;Ta). 

-the converse follows immediately -From theorem 18 •• 

l" , ' 

'~;:J ,~",'-, ',: 1 

~ , , -!t:·. ." "': t. Î 
" 172 " 

. , 

, 
w" t· .. ~ 

.' , 
" -
'h" .... ::,.:- ~ 

.".-1..; ~~'":~" - ,( \" 
.' # l '.\ ,. '1 

-- - - ' - ~ - • ~ ~r -, \ ............ \L _ -1 ~ 
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. ( 
. \ 

-~ - \ .,' 

j" 

'. , 1 

f " " 

, ' 

Let uS'quickly give ~n id.a of haw the symmetry 

property ~ill be proved for RH-mini~al' extension~ ai Jtypes 

:(H E' JO ; "hen far i nstan~e le i s . the categary of flt;Jdel!> of a 
. 

c9~plete theory i with elementary embeddings, and whera R 

is a set of equatians such that 'any' formula in L is 

...... ' 

equivalent in T to a boalea" cambinatian of formulas in R~ 

. , , ... -
St~ t. We thON that if 5 is a symmetric ~.t.Df formulas. 

,.) 
( . . f 'C 4 ~t € S t.. 4 -+ € A B th 1.e. 1 cp x; ) .. en qtCu;y) S> al'!,d ,c ,e cHen 

cp(B;C) ,'is an SC-.ini.al extension of tpCB;A) ta C iff 

tpCC;B) is an SB~minimal extension of tpCC;A) ta B; 
"~ 

St., 2. Since ~e ~re in fact interested in SH-_ini.al 

~ . Î 
extensions, we consider sets o~ fo~~ulas ~(,~~Ch that for 

, , 
~ny B C H, and any complete 'type p over A, p~ H P~; WB say 

the" that S is full in 'H. We note that if S is full, A C B 

.C H and p i5~ type over A then the SB-.ini.al extensions 

a+ P ta B coincide with the SH-.ini.al extens10ns of p to 

\ , ;' 

J 
" 

,- 173 
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/ .. 

J 

Stllp 3., For S sy~metric and ,full, and A C B,e 'C H we deduce 
f 

fram step 1 and step 2 that tp(8;C) is an SH,.iniaal. 

e~tension of tp(C;A) ta B. 

) 
)-

Stl!lP 4. We show that the set of all 'equations in k is 
\ ' 

symmetric a~d full. 
'. 

Bt~ s. We show that if S i5 the .et of ail squations in k 

A c 8 c H~ p a type over A and R ls as above then the RH-

. 
• iniaal extension of p to 8 coincide with the SH-minimal 

extensions of' p to- B ... __ , 

Bt~ 6. We deduce the symmetry preperty far RH-mini .. l ,/ .,.. 
extensions frem step 3, 4 and S •• 

ln this chapter, we preve step 1, 2 and 3 in arbitrary 

4rcategories. The~ we discuss the existence of full sets of 

formulas in~enèral. 
/' 

t 

11 

contain. th. fa\~uli~ (x - x), x Any variable, S 1. aaid ta 

b. symmatric if 
, -+ ~ .... 

for Any formula ~(x;t), ~x belongs ta S iff 

t belongs ta S ., 1 
(i .a. , .,(1.t) b.long. ta S iff .,(t1 .11 ), 

- t'J\,,:~ 

Il .. , 
i v 
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-
belang. to S). 

... 
_=~" fOl'"~la obt"ain.d fraI' • by .ub.tituting u by typ. variabl .. 

.. nd th. r •• t"of th. variabl •• "in -:4 by p .. r ...... t.,. variabl .. 

i.inS). 
/, 

" 

of variable.land a •• ume S is .ymmatric. W. writ. 

• / o ' ... ... ... ... ... ... ... ... S(x1 ;x2 ) - {cp (y l' Y2' ; Yl' Y2 subtupl •• of xl' x2 " 
'1 

r.,sPIKtiv.ly, and 
... ~ 

"<Y1· t 2" in S1. 
JI 

Thu. ;iv.n A E Il, typ. in ... ... 
av.... A, (by P a x 1"'x2 

f 
definl tian) 

...... j 
~ ... ... ... ... ... -+ p n 5(x1,x2 ' - {cp (y l' Y2) ~E PJ cpCY1JY2' E S(xl pc2')· 

Cp n s ,'1 ~2) i s • ..t cf formul ... wi thaut par.,.4.,..,. -

o. D.f i ni ti on •• Lat A E fè, ... ... po •• ibly infinit., disjoint xl' x2 , 
1 , 

tupI •• of v .. riabl.s, 
...! , 

.. typa Pl • type in Xl Icver A and P2 .. 
... ... ... . 

in x 2 cver A; q • completa type in xl .... x2.pv.,- A .Kt.nding 

~ t\ Pl U P2. 

( 
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\ 

( 

if. ~.n.v.,. ,. i. comp-l.t. type in 
... ... 

h extttndinQ a x t ""x2 ov.,. 
/1 .. 

Pt U P2' .uch that 

q n~::t '::2'- => ,. n ... ... 
seX t 'X2' 

th." 
1 

JI. ... , ... .. ... -+ 
, q n S(Xl'X2) - ,. n seXtX2). 

~ 
.... ay q 'i. an S-'fr •• .... 19 ... of Pl and P2 av.,.. A if 

Let A,B C H € k. We denote by tp(B,A;H) the class of types 

obtained in the ~0110w1ng ~anner: 

to every element b in B, assign_ a variable x b (xb ~ Xc 
'>' \ 

,if ~ ~ c) and let -: = <xb ' b € \B>. The,n consider the type 

-+ 
(in x) 

• 
p; = {cp (;.; ~); cp e16, -: E A, it € Band H 1= qJ <;il; 1) 1 .. 

1 

(Note t~àt 'pi is ·complete). 

50 tp(B,A;H) is the cla~s of types p;:, as described 
. , ' 

-+ above, when we vary the choice of the tuple x. 
1 

However, when there is no ambiguity, we will con~use 
.; 

tp(B,A;H) with any one of its representatives and 

consequently apply to tp<B,A;H) the terminology and 

notations applied on types. 
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) 

" 

( \ 

. . 

\ 
For instance, we will write tP~(8,A;H), meaning that 

Ne' have beforehand ictentified t~(B,A;H) with one of its 

representatives~p and let tP~(B,A;H) = P~. Sim~larly, if A 

. c 8 C'H and C C H, we say that tp<C,B;H) is an SH-minimal 

extens'ion o.J;:;:.c,A;ln ta 'B if; once' chosen representatives 
'l, ,,~ 

" q and p of t'p(C,B;H) and tp(C,A;H) (in the same tuple of , , 

) 
variables:: = <xc' c € C», q is an SH-minimal ,extension of 

P to Bio 

• When it is well-understood which structurè (H) is 

considered, He "rite tp<B;A) instead of tp(B,A;H) 

If A C B,e C H, tp(B ~ e,A;H) denotes the following 

i 
tuples of variables which are in one-to-one correspondence 

with Band C respectively. Then 

-+ -:+-+-+ 
tp(B 0 C,A;H) = r9<xt,xt,a) E D(A); H ~ a(b,c,a)~. 

'1~ Th.orem. As.ume S is symmetric. Gtven A C 8 c H and A c C 

c H, 

the-following assertions are .quivalentl 

a) tp(B,C,H) is ~ SC-minimal extension cf tp(B,A;H) ta C. 

_!> tp(C,8,H) is an SB-minimal extension cf tp(C,A:~) to B. 
(-

c> tp(B 0 C,A;H) is an S-minimal amalgam cf tp(B,A;H) and 

tp(C,A;H) over A. 

If in addition k is a. in chapt.r III, S is a .et 
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( 

1 

of .quations, 1 i. th ••• t o-f (S,A) -definabl. formula. 

and Hi. 1: 1 (r) -c 1 D.ed • 

d) tP. (8 0 c ,AP) i. an S-minimal amalQam Df tpl (8. A) and 

tp1cC,A) Dver A. (Recall, for p Dv.r A, 
"'-" ,. -

; f 

Proof. 

di sjoint. 

~ 

.Suppose c) holds and tp~ (8;C) J q~ where q is a 

cDllplete ty~e\ir:' -:1 over C e)(~ending tp(B;A). Let r be 

:::.. ~ 
the following type in xl~x2 over A: 

It is easy to check that r is complete and that r 

extends tp(B;A) U t:p (C; A> • 
\ 

Furthermare, if fP (xii", f) is in S and fP (xlt,x;p belongs 

-+ 
ta r, tf\e'h by definition of r, qdxii;c) € q i.e. 

€ tp(B 0 C;A). 
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\/ 
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~ , 

definition o~ S-mini~al amalgam ~ follows that 

' ... -+ ' ...... 
tp<B Oç;A) n S(x 1;x2 ) = r n Sjx 1;x2', \ 

~ich easily implies that tP~(B;C) 

That shows at holds. 

-+ ... Suppose a) holds and r is a 'complete type in x1-x2 
" 

over A extending tp<B:A) U tp(C;A) (resp • . 

. 
...... ...... S·" -+ ... . qo = tp (B;A) U {'CP(x6;C); CR(X$;c) € f) (C) and tp(Xï:.;xt> f~ • 

CIal •. q is consistent. For if not, there are formulas 

, 
n, 

... ... 
suc:h that cp i' (X6; c) E rand 

-+ 
tp <B;A) 'H Vi <nCPi (xb~C> (note, .... e should have taken 

... ~ -+ 
can always c:ome batk ta a single tuple b and a single , 

... 
tuple c by just adding dummy variables if nec:essary to 

.1 
CPi); thus 

where R 

~ 
-+ .... Henc:e there is 9<x6;a) in -+ tp<b;A) such that 

. C(' 
, ' 
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.. 
1 

0, 

l' 

\" 

d' 

50, 

-+.... ....... 
h~ve H ~ X (~; c > ;. 1. e. X (a; xt> E tp (C; A>. Now r extends 

, , 

... 
tp<B;II> U tp,(C;A);'h~nce'" contains t.he fcr'mulas e<xitja> 

by completeness of r it follows t~~t 'Ii (Xil'ixt> E r 

for some i < n X. 

Th~t proves the claim. 
" 

50 qo is consisten~; let q be a 'complete extension 

S S" -+. S 
of qo over C. Then., qc c .tPC (8; C): for- if rp (xit; c) E qc 

E tp~(8;C). 
" " 

Thereiore., by SC-minimality oi tp (8;C>, 'we must haVI! 

q~ =tp~(8;C>, which in its turn implies that 

. ' .. 

We conclude, tp(B OC;A> is an S-minimal amal~m.of 

tpCB;A> and tp(C;A). 

a) ---7d) (assuming K is as in section A, S is a set of 

equations and H is El (r> -closed) -

The argument is exactly similar to the argument used 

in the proof of a)~c) up ta the point (*> in the claim 
h 
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1 .~ .. 
> 

(
, ... 

" 

'. 

( 

that point in the fOllowing man~er: sinee for every i < n, 

III.A.ll, A i~ RH-closed in H, so that (c.f. II.A.5) 

"there is a single formula .(~t;1) in D5 (H) such that 

sequence <3j >t<M of parame~ers in H such that, if 
; .... 

'\ 

.~. 

Therefore, X(a;x;!). € t.pJ.(C;B>. Now r extends 

tP~H(B;A) U tp~(C·A)· hence r contains the formulas H '., , 

completeness of r it follows t~at ~i(xt;xt) € r for seme 
'l 

i < n. X. That preves t~ cl ai m. 

The rest of the proof is the same as that of 

a)~c) (after the claim). 
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, , 
By symmetry Ne get b)--~)~c), c)~b) and b>---4)~d). 

( Finally, d)--~)~c): follows immediately from the 

definition of S-minimal ama19am and the facts that 

_ '2. R.caark. '1"heorem 1 ab ove states a partial result on the syrnmetry 

of S-minimal,extensions (see Introduction). The theorem, 
" 

lacks in the fact that is deals only Nith the case tp(B';Cr 

is an Sc-aini_al extension of tp(B;A>, and not with the case' 

tpCB;C) is an ~H-aini_al extension of tp(B;A). Of course 

this lack disappears if it so happens that SH-.ini.al 

extensions and SC-aini.aI extensions are identical, or ev.n 

extensions for some well-chosen set of formulas R. But let 
o 

us be more explicit: a generalization of the notion of S-

closure (say, for S equational) would be the following: 

" 
given A c B c H € k, r c 6, we say A is (rB,SH>-closed in,H 
~ ! 

if for any complete typj p over A, P~ is equivalent ta a 

single formula in Dr(B). 

Most interesting is the case A is (SA,SH>-closed in H, 

which implies that for any complete type p over A, p~ H p~. 

It is clear then that, for p a type over A and q a complete 

. J 

lBl . . 

, , 

.1 
-1 

1 
\ 

1 , 
\ 

1 

J r; 



, 

\ 

" 

( 

. typé over A; q is an ~H-'min~mal minimal extension of p. 't.O~,A 
n' ,1 

if~ q' 15 an S A-~inimal ~xt.ension of p t.o A. 

'We can ask the fol1owing questions: suppose A is SH-

èlosed in H and S is equational, is there a set of formula 

for any '. compi ete type paver A? 

Sinc~ 'A is SH~cla'sed' ... 1t i5 equivalent 'to an (S',A)-, . 
definable. formula~ "thus" t.he lat.t.er question a,.ounts to the 

ability .of uni-formly defining over A t.h..' (S,A)-de-finable 

formuias; ,i.e. we ask whether there i5 a set. of fo~mulas R 
, , 

such thatO any formula, in DR(A) is S-de.finable and any '(S,A)": 

definable for~ula is equivale~ to a formula in DR(A). 
l' 

" It i. ther.fare i mpartant, ..men.v.,. Vi v.n a â-c:at.Qary 

,k, A c: H .nd a , •• t of equati'ons S, ta inv •• tigat. 'thit (S,A)-
. 

definabl. fo,.mula. in O(H). 

3. EXAlllpl.;. Let te be the cat~gory of models of T with 
~ . 

elementary embedding5, 6 the set of aIl f(jrmulas and S a 

set of equations. Consider the following kind o'f formu:l~s 

~~ ~~ ~~ ~~ ~~ 
X (x; t) ,=·9 ( x; t) J\3u'Vx (9( x; t) ~(--~)cp (x; u) ) , 

where a is an arbitrary formula and 'P i5 in S; let R 

be the set of 5uch formulas. (Note that R :::> S). 

Clearly, ,given A C If € K, :: in A and X as above, if 
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. , 

, , 

-~--,,---.... ., - ... - ,,-........... ,,---___ , ..., .... -I\' .. -~ ...... ...,--. _. ___ ._._, _. __ ._._u « 

-+ -+ '!t)' x (x; a) i s consi stent then there i s lj in If su~h that 
Q 

H F V:(X(-:;-:)~(--~)cp(:;it}); thus any'instance clf X over A 
• t ' 

" .Q 

is S-definable,' and therefore 'R is a set of equa.tians. 

-+ .... 
ConVersel y, if" (!X'; c) is, (S,A)-defin.abl~, then by 

.' '1 ~ -+ . 
definition there is e(x;a). in DCA) and 9(1;6) in DS 0') su ch 

, -+-+" -+-+ ,-+-+ 
that lV(x;~) 'il EHx;a) li tpC~~b)" it follows ea5ily that , 

C-+ -t) , v (-+ -+) " x;c ,ii' .... x;a where 

-+-+ -+~ -+-+ -+'!t -+~ 
X (x; t- ) -=-eex;.t) l\:3u'v'x'cecx; tJ.·E"(--~)1P ex; u) ) • 

Thus any (S,A)-definable formula in DUf> is' equ~valent 

ta a formula in OR(A). '\ 

> 

Now, by corOnarYm.l1 , A is SH-closed in H; ~t 

of 

"follaws that. if p is a complete type over A, ·s 
P'If is (S,A:> ...:J 

Qi 

definable. We conclude from what preceded that P~ li 
R, • P;.q. 

. 4. Let: k be as icn chapter III, H E k, S 4' set of equations. 

Con5ider the formulas X of the kind 

-. -+ -+ -+ -+ -.-+ 
). X ( x; t) .=. 3u cp (x; u ) i\", (U ;, t ) , 

o~. ! 
" -+ (-+ . -+ ~. . whe .... e cp(x;u) 1S in Sand \tI(u;t) 15 a 

J 

'. 

-. -+ -+, -+ -+ -+ -+ SU.... -+ . 
such that. (*> T t= 'II (u; t) "", Cv; t) ~'Vx (cp (x; u) oE-(--~9cp (x;v) ) .. 

---
Let:'R be the set of s~th formulas. 

(i) Claim. lof X is as abovEt, "1 is 'in H and x(1;"1) is Il 

,. 

consistent in H then x(1;it> - is, S-definable in H: ,far 

~ -." .... 
let. b in H suc" that H t= X(b;a), .then in lacl:: 
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• -+-+ -+-+ 
X(x;a) 'il tp(x;b). 

Indeed, let f:H~F be in k, since ~ E E1(r>, 

1 
1.-+ -+ 

F ~ ~(rD;fa). We easily deduce that 

The converse, i.e. the fact that 

-+ -+ -+ -+ -+ F P ~x(X(x;fa)~~(x;fb» follows immediately 

from the property (*) of ~. 

-+ -+-+ -+-+ 
We conclude that F P Vx(X(x;a)~(----~)IP(x;b». 

Hi> Claim. 
-+ 

If H is Et Cr)-closed, X is ~ above, a is in H 

-+-+ -+-+ 
and X(x;a) is con~istent in k then X(x;a) is S-

....... 

definable in H • .. 
Indeed", sl·n~e X(x-+·,t-+)· 1 1· ~ cr> d H - lS a Tormu a ln ~1 an 

-+-+ -+-+ is ~l(r)-closed, X(x;a) is consistent in K if~ X(x;a) 

is consistent in H. The claim now follows from Ci >. 

Note that for H arbitrary, if xct;1> ~s consistent in 

K then there is a morphism f:H~F such that fX is 

consistent in F, whence by (i), fX is S-definable in 

F. 

(iii) Claim. R is a set of i-equa~ions: follows immediately 

from Ci). 

(iv) Claim. Siven A c H and ~(t;t) a formula in D(H> which 

is 
-+-+ 

(S,A)-definable, there is a formu~a X(x;a) 

-+-+ -+-+ 
tp(x;c) 'il X(x;a). 
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( 

• 

( 

.' 

\ 
lndeed, Slnce ~(1;t) is S-definable, we can 

f 
assume ~ E S; since ~(~;t) is A-definable, there is a 

-+-+ . ..-+-+-+-+ 
formula gex;a) ln DCA) such that 9(x;a) H ~(x;c). 

-+-+ 
By .lemma ur.l there i s IV Cu; t) in r l (r> such that 

-+ -+ H t=:= 'V(c;a) and 

-+ -+ -+ -+ -+ -+ -t-T F lV(u;t)~~x(9(x;t)~(-----+)~(x;u». 

It follows easily that 

and 

-+-+ -+-+ -+-+ -+ -+-+ -+-,+ 
~(x;c) il X(x;a) where X(x;t> --·3u(cp(x;u)I\I,,(u;f>, 

-+ -+ 
Clearly X(x;t> E R. 

Cv) Cl&im. If A cH and H is Lt(r>-closed then for any 

complete type 

ç:y claim 

p over A, 

Ci i ), any 

P~ 
_ R 

~A 
formula 

R ..... 
H PH" 

in P~ is S-definable; 

By corollary 111.11, A lS SH-clo~ed in H; hence 

P~ is CS,A)-deflnable; by claim (iv), it follows that 

\ 

------~ 
------------

Conclusion. Siven A c B c H, H Ll Cr)-CIOsed~-a~e over 

-----~ 
A, q a type over B extending p, q is ~H-minimal 

~ . 
.---/ 

extension of p to B if~n RB-miniMal extension of P 
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to B. (For, ~Y claim (v) '1 given complete extensions ql and 

\ 
q2 of P 'to B 

'" ',,-
',-

S 
(ql ) H => S 

(q2)H ~ 
R 

(ql) B ::> (q:z,:). • 
. , 

In view of what preceded, we make the following definition. 

5. D~inition. Siven H E k, • s.t of formul •• R i ••• id to b. 
full in H if for .ny A c H .nd compl.t. type p over A, p~' H 

b. Theorem Csymmetry). Assume S i. symm.tric .nd full in H. 

Sivan A c B c H .nd Ace C H, th. foilowin; •••• rtion., .re 

equi "(Alant • 
~ 

a) tpCBpC) i. an SH-mi r:-i mal .)CtaDsi on of tpCB.A) ta C. 
, . 

b) tpCC;B) is an SN-minimal .xtension of tp CC; A) ta B. 
"J' 

c) tp (8 0 C,A) ~.n S-minimal 
\ 

amalo.m of tp ('B. A) and 

tpCC.A) over A. 

, 
Pràof. Follows immediately from proposition 1 and the fact , 

that,'S being full, tp(B;C> i5 ~H~minimal extension of 

tp(B;A> ta C iff tpCB;C) is an SC-minimal extension of 

. . 
tp(B;A) to CJ similarly with tp(C;B}. • 
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Il 

~, 
~ot •• In 4 above, (giv~n that 5 lis a set of equations, te is 

as in chapt!!!'" lU and H is I:1 ,(r>-closed), we have construccted 
r " 

from S in a natural way a set of t-equations R which is 

~ull in H. However, givén that S is sy~metric, R, a priori, 

is not necessarily symmetric, and 'therefore theorem b does 

nct. app 1 y to R. 

If te has elementary embeddings for morphisms." then we 

can still "close" S to a set of formulas Rw which is 

symmetric and full in H in the following manner: 

Construct ( Ri ) i < w by i nduct ion such that·: RO = S, and 

for i < w Ri is a set of equations, 

- R2i+1 is full in li: R2i+i is obt~ned. by applying the 

argument ,Jn 4 where we replace S by RZi ançl let RZi + 1 

= R. 
,lolo 

RZi~l is then a set of t-equations; hence., the 

morphisms in k being elementary, ~i+l is a set of 

equations. 

+ = cl (S2i) where 

1 

(By 1.8. (i» R2i is a set of l-equations; hence, the 

morphisms ip 

k being elementary" RZi is a ~et of equations. N~w let.Rw 

= U. < uR .• rt i s easy te check t hat RI.. i s a set; o~' 
... l ,_ Z. "" _ " . 

equations which is sy\metric,~nd full in H. . /' 
l' 
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Note that Ne used above the elementariness of the 

morphisms in k to identify t-equationality and 

equationality in k. (The same argumént does not immediately 

apply in case the morphisms in k are Just r-elementary as 

in cHapter 111; however, a similar argument in that case 

can still be worked out, but needs the direct study ~ the 

~ssential properties of S used in 4 to construct R, 

(c.f. [5.2]». 

7. Propoeition. If k i. th. cAt.Qory of model. of a complete 
• 

equations in k, then S is .ymm.tric' and full in Any Qiven 

structure in k. 

Proof. Suppose 'P,1;f) is an 'eq""ation; by c:orollary 1.3 qt' 

h.:ts +inite t-height'; by propos,ition 1.8. (i)" it follo..,s that 

t ' t 
~ has finite t-height; by elementariness qt has finite 

.... 
height; hence''P t is an equation. 

~ .... -+ 
Thus, if 'Px E S then ~t ,E S; i. e. S is symmetric. We 

have shown in 3 that there i s a set o~ equati ons R , R';:) S 

(up to logical equivalence), and R is full in any given 

structure H. Si nce Sis the set of aIl' equat ions, i t 

\... -, ,,'" . 
fol IONS that R ~S (up to logîcal equivalence of formulas) 

and therefore Sis full in any gi ven structure of le. • 
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. 1 

CHAPTER V 

n 
Th. Ca •• of a Compl.t. Thebry 

", 

In t'IIfii s chapter, we assume le i s the. A-category o-f 

models of a,complete first-order theory T with the 

elementary embeddings for morphisms and where 6 is the set 

'of aIl formu\as in L.', 
+ ' S is a fixed~et of equations, S = cl (S) and S 

contains the formulas (x = x) ,_ x any variable. 1 

Theorem C.b and corollary C.7 in this chapter, have 

been proved jointlv by the author and A. Pillay (c.f. 

lP.SJ) • 

S.ction AI Pr.liminari •• and Summary , , 

" 
. We fix a large saturated model H; without 1055 of 

generality we restrict ourselve~, in the study of k, to the 

\ 

category of elementary submo~els of H which are of 

cardinality strictly less than that of H. 

AlI sets and models con5idered shall be subsets a~d 

elementary submodels of'H of cardinality strictly less than 
II> 1 

/ 

cardH. 

/ 

. , 
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By a type P, we mean a type over 'Fi in possibly an 

irlflnite tuple of variables; tp (A;B) -<=:.'tp (A.,B,'Fi). If p is k 
.5>' 

type, We let pS ._p~; and Ne tal k of S-minimal extensions 

instead of S;:;-mlnlmal extensions. 

We ,.t-ite cp r IV, (resp. cp .... : IV), instead of «II Ijf If', 

(resp. cp 'li IV)., and t= cp., i nstead of If t= cp; equl val enc:e 

means logical equivalence in H and consistency means 

consl stency in H. 

Let XC If; we say that)( is a definable set}if there 

-+ -+ -+ -+ -+ 
is a formula,cp(x;a) such that, X = {c; t= cp(c;a)} CIn 

principle ~e should say X is a definable c:lass, sinc:e cardX 

can ,equal.cardH; but 'in that instance, it will be clear 

what is m~ant). We do not distinguish between formulas and 

the sets they define. 

By an automorphism we mean an automorphism of 'Fi; i+ A 
_ o' 

.C H, an automorphism over A is an automorphism which' keeps ' 
(1 • 

A i nvari ant. 

I~ P and q are types., (or Just sin9le formulas), we 

say that q is an A-conJugate of p If there is an 

automorphism a over A such that ap ..., q :",where ap 

-+ -+ -+-+ . . = {cp(x;aa); cp(x;a) E p}); p l~ almost over A if P has, up 

to equivalence, flnitely many A-conJugates. 

[Note that the notion of A-conjugation defined.above 
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\1 
- " '1 ", 

.. '\11 
t 

\ \-. 
and the notion given in chapter lIt (c.f. 111.8) coincide , 

#~~, ~ 

when dealing with types over submodels o~ N, (this follows 

immediately from the saturation property of H>, but we 
" Il 

should be careful of i~entifying the two ~otions when 

/ 
dealing with arbitrary types over H, (unl~s the theory is 

stable).] 

R .... rk. If P is a type and a is an automorphism" then pS 
• 

'crpS i ff for any cp ES, p~ ..... api. where § = cl + (cp); since .I! 

. 

is equatiory.al, p~ is Eiq_uivalent to a single formula in 

DS(M) so that the statement pS - upS is equivalent ta an 

" infini te conjunction of' first-order statements. Later on we 

will use the observation above in compactness arguments. \ 

Let us now sujmariz~ in this cèntext some of the 

é '""" defini tion~ and results given in the p~eceding chapters. 

~l 

th.r. i •• finit ••• t 10 c l, .u~h th.t 

" 

niE Io{X i J i e Il - niE1{x i • i el). 

(Not. that th. definition abeve co1ncideswith th • 

...J 
r.c;ular d.firii ti on of '.n .quaUonal •• t in k bec.u •• of 'If 

. ~~ ~~ 
A formula cp(xJf) is an equation if {qI(Xlt)} is 
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equat~anal. Let u. cali. d.finable 4et X a cla •• d .. t if X 

t. d.finabl. by' an t:n~t.ance of an eqUati't. 

Note. It is easy to chéck, by cqmpactness, that a definable 

set )( i s closed if for any fami 1 y ()( i) i Elof conjugat,es 04= 

X <i. e. of 0-conjugates of X), there is a fini te subset 10 

of {, such that, 

n {Xl': i El] = -0 n {Xi; i El}. 

1. Definition. (c.f. Il A.O and 111.0). 

(i)- Si ven a -t-yp. 

1 

" 1 Bi v~ typ.. p and cJ'Ift"w •• ay p and q .,.. $-

.quivalent if p and q a,.. SN -equivalent i ••• if pS -

Ci i) Si v.n A C Bee, p a type ov.,. A and q a' complete type 

" . 

eMtensian af p ta B if fo,. Any exten.ion ,. of p te B, 

q~ ::> ,.~ ... q~ - ,.~.\ 
f 

q i. an S-minimal .Mt.n.ian of p to B if q i. an 

SN -minimal .Mt.n.ion of p ta B. 

J 
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2. Proposi tian. For Any A c: 11' and type paver A, if S i. 

Proof. Sy 111.11 A is Sil -closed in if: the rest follows by 

II.A.3 .• 

3. nefini tian •• 
/~ 

(il (c.f. II.8.4) Siv.n a type p and A C H, w •• ay p i. A-

irreducibl. if P i. (S,A)-irr.ducibl. i ••• if, for Any 

P i. full if p is S~ -full i .•. if P is 

--( .. '(cp(::,:) E p. cp 

E Sl). 
1-) . 

~ ~ 

Hi) (c.l~ II.8.7) A •• t A c: H i. i ....... ducibl. Cre.p. :full) 

if 'v .... y compl.te type over A is irreducibl. (re.p. 

full). 

4. Proposition. 
" 

(i) L.t p be a typa over A. Th.n p is A-irr.ducibla 

admit., up to S~.quival".nc., a. uniqua S-minimal 

e)Cten.ion 'q to A (q i5 th • .n 5uch that qS ..., pS) if~ . 
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th.r. is a compl.te type q ov.r A, ext.ndinv p .and 
1 

'.uch ~h.~ qS _ pS. 

(i) Every mod.l in ~ is full. 
• 

'\ . 

Proof. (i) is a restatement of II.B.S. (ii) and (ii) 

follows from 111.3 •• ( 

v.ri.ble.; suppose S i •• qu.~ion.l. Th en , 

(i) p has, up ta S-equivalenc., finitely Iftany 5-.1,n1 .. 1 

/ 
Hi) Let eO'··· ,9n - 1 , be A-irr.duc1bl'. (S,A) -definabl. 

ov.r A such th.t p: - 9 i , (i < ft). (Note ~h.~, by 

proposit~en 4.(1) the Pi ' •• lwav. exi.~). 

Then, up te S-equiv.1enc., PO,···,Pn-1 .re (.11) ~he 

distinct S-minimal ex~.nsions of~to A if~ 

Thu. lt i. sugge.tive 1;0 thi'nk of the S-min~m.l 

.xtensions of p ~o A •• the ~irreducib1e component. of p 

~o A. 

Proof. 

" 

For (i) 

') 
/' 

c. f,. 
" 

II.A.13 and for <iq 
...--...-J/J 
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-
(i) Honotonocity-tr.nsitivity. Sivan A c Bec, Po a type 

av.,- A, Pl a co~plat. type aver ~ and P2 a complet. 

af Pl ta C and Pl i • .n S-minimal e~t.n.ion a-f Po ta 

B. 

,Ui) Locel-char~ct.r • 6ivltn A C B end C cH, tp (c, Il) i. en .. 
S-.inimal eKt...ttilion a-f tp CC, A) ta B iff for any 

. 
'formula cp in,.:'l .nd Any fi ni ta tuple t o-f el.ment. in 

-+ . .... 
C, tp(c;8) i.

c 

a .-minimal aKt.nsian af tpCcJA) to B., 
..,here • - el + <t,) • 

(i in Sy ••• try. 6iv.n that. S i. the •• t. of al1 equations, A 
/' 

C B end A cC, tpCB,C) i5 an;S-min:j.mal aKtan_jon'of 
.. 

tpCBJA) ta C iff tpCC,8) ts an S-minima1 ext.ensian a-f 

tp CC,A) t.a 8. ,) 

.".. 

(\i 

.. 
'\ 

Praof. (i) folloHs frem II.A.12 <see aIse Il.B.16>; (i i ) 

fellaHS from 111.17 and <iii> follaHs froln IV.6'and.IV.7 •• 

.. 
Nat. •. Later on we shall gi ve di fferent #"tatements of the. " 

symmetry property than that gi ven above. 

, . 
7. Th.o,.em. L.t A c 8, P il complete type av.,. A • 

\-'f 
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(i) < L.t.q "'. complet:. type ov.,.. B ext:'.nding p. Th.", q 

l,. an S-mi ni mar ex t.n.i on of p to B .i ff for Any .j 
.fi r 

fo,.mul. in S, q- i. almost: A, ' + cp ov.,. wh.r. 1 - cl (.>. 
(ii) SUPPDtI. B i. • mod.l, ~nd ql and q2 a,.. S:"mlnimal 

e"ten.ion. of p ta B, th.n q~ and q~ .,.e A-conJuQat •• 
.. 

of .ach oth.,.. 
f 

Proof. 

(i) Sy the local-character property (c. f. 6. Ci in, !"E! c:arr----

assume wi thout loss of general i ty S = cl + (cp), -for soma 
6 

fdrmul a cp; . and consequefntl y toile can assume Sis 

,equati anal. 

1 .. t c •••• · Bis a model. Then .. the cl aim folloNS -From 

IH. 12. -

minim~l extensions of q ta some model /fI =>' 8; by" 

Suppose q is an S-minlmal ,el<t,ension of p to B. 

Then 9 by tran5itivity, qi is an S-min~mal exten~ion of 

• J 

P to If, (i < n); i t .fol10"'5 from the 'firs~. \1'Gà'Se that' 
/ ' -~ 

. / 
(qi)S is àl~ost over A, for any; i < n,. He!1ée qS 

V'( (q.)S J-s' almost over A. 
l n l 

Con ver sel y, suppose qS is a1most over A; let 
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j < m, be aIt the distinct A-conjugates of qS 

( 1 
(o-. an' automorphlsm! over A). Then 

J '\J. 

invariant, Whe~efinable. It folloHs that P r 

have that 

, 

Sy th~orem 5, it folloHs that at least one 0+ the 

~jqi's (i < n, j < m> is an S-mlnlmal extension of p 

to W. Since, aj is an automorphism over A, we deduce 
'--

that at least one of the qi's, (i < n), is an S-

minimal extension of p to H. We conclude by 

monotonicity that q is an S-minimal ~xtension of P to 

B .. 

(ii) By the local-character property, q1 and q2 are ~ 

+ minimal extensions of p to 8 whenever ~ ='cl <.) and ~ 

E S. '.' 

~ 

By 111.12, for any ~ in S ~-:. q~ ~n~~q~ are A-
l l 

It f~llpws;f y an easy 
"f 

'l' 
1 conjugates o~ e~ch other. 

compactness argument, that qf ~nd q~ ar~ A-conjugates 

of each othef,. (Note that qI = U {~î; cp ES}) •• 

. ( 
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Section BI Stable and Equation.1 Theorie. 

We recall that T is ~-stable, (l a cardinal>, if for 

any set A of cardinality ~, there are ~ complete types (in • 
l' 

a o single variable) over A; T is stable if it is ~-stable 

+or some cardinal ~. 

We recall also that if T is stable then there is the 

notion of non-forking extension of a type which satisfy 

properties 0.- S. mentioned in the introduction to this 

thesis. We 5hall state ~gain, as facts of stability theory, 
----

these and further properties when needed. 

Oe-f i nit i on. Let 
... 
'1( b. a -fini te tuple o-f variable •• We .ay T 

... .- ... is $-equational in K if Any -formula in K is equi val ent in T .. 
to • boal.an combination o-f formula. in sX, T i. s-

, ' .. 
equational if T i5 S-equational in every tupi. x. 
,. .... 

T i. equational (re.p. equation.l in K) if thefe i. a 

.at of equatlons R such that T 1. R-.quaUonal (~ •• p~ R-

ExamPle •• ) 

a) The theory ACFp (of algebraical,ly closed fields 9f 

, 
chara~teristic p) is S-equational with S the set 0+ 

atomi\ formulas. (see 1.4. (i> ) • ' 

b> The th~ry DCFO (of differentially closed fields of 
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) 
-~ 

characterisitic 0) is S-equational}with S the set of 

atomic formulas: indeed, it i5 a fact that DCFO has 

elimination of quan~ifiers (c.f. [Sa] 40.3) an~ we know 

(see applicati~n 2 at the end of chapte~ y) that any 

differential equation is an equation in DeFO' 

e) Any complete theory of mo~e5 is S-equational with 5 

the set of posltivie primitlve formulas: it·is a fact 

that any complete theory of modules has elimination of 

quanti fiers up to positive primitive formulas (c.f. [ll) 

and we know (see 0.4.(ii» that positive primitive 

formulas are equations. 

Let us finally say witheut proof th~t the theory of 
J 

$eparabl y clOSEid fields of ~ i ni te p.; shov invariant is 

equational .in ~ single v~ri~~e x. 
1 

There are mapy possible variations on definition 1. 

For instance we could define T is S-equational if T is 

stable and for any A c Band cbmplete type p ~ver H, p does 

not fork over A iff pfs does not fork over A; or that T is 

S-equational in a given model H if any definable subset of 

H is equivalent to a boolean eombination of S-definable 
, 

subsets of H. AIse. SOrne of the results below de hold with , , 

su ch definitions. . , 
,. 

1. Proposition. T is equational in x iff .very dafinAble 

sub •• t of ~ .quai. a boal.art cambination O~·Clà •• d •• ts. 

, ' 
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Proof. Obviously, if T is equational then every,definable 
~ 

set equals a boolean combinati~n of'closed sets. 

Conversely, suppose ~y qefi~ab~e set eqUaIS'~a boolean ~ 

combination of closed sets. Let.S(x;t) be an arbitrary ~ 

, 
formula and let 

~- ~ '$ ' ... 
~ = {~(x;t) e cl(E); ~(x;t) ~ 9(x;t)}, 

• 1 

where E is the set of 'all equations. 

Considèr 

... -+ -+ 
p (x; t) -=-i:-9(x; t)} U {'cp (x; t); cp E ~}. 

/ 

" 

Suppose p(x;t) is consistent; let a, g reali~e p. 
, 

-+ -+ CI.lm. tp(a;b)~E r tp(a;b). 

More -generat 1 y we show that .. for Pl and P2 complete v 

; . 
(by proposition IV.7> E is full in H; hence (Pl)E 

Now let qi be an E-minimal extension of Pl to H. Since 

a 

~P2 to H such,that (q:)E ~ (q2)E. Since q2 ~ (P2)~ = 

(by rI.A.3) there is a 'complete extension q3 of Pl to H 

follows that (q )E = ,1 

200 

E 
(q~) • 

. 
J 

, ' 
1 

\ 

1 

t· 
,~. 



. ( 

( 
1 

( 

Therefore ql~E = q2~E. Since by assumption every definable 

subset of N is equivalent to a boolean combination of 

instances o.~., formulas in E '~f clèJseti. s~tS) we deduc.e 

that ql = Q2' Hence Pl = P2' which proves the claim. 

. ... ... ...... 
Let ~<x;b} E tp(a;b)~E, and ~(x;b) r e(x;b). Write 

... • -. t ,+,(x;t>-=·y < !\., cp .. (.v;t> Il, t .. = O,l,cp .. E E. 
J m l <,. n 1';;1 ,1 J l ] 

-. -+-, .... ... 
Let &'<t),=·V'x('V(x;t>-...,.e(x;t»; we have 1= &,<b). 

-+- .,..... ... ... 
• Let ){<x;t)·=·'V(x;t)/\ct(t>; c:learly X(x;b) E tp(a;b>., and 

-. ... 
){ (x; t) t- 9(x;.t). 

" 

Moreover we c::fim write XC><;f>':='Vj(m!\j<n'+'ii<x:f>tu , 

wher e ,+,. • --- m .' . (x: f) /\ct (f > i ft· . = 0 ( 
lJ Tl] , IJ' ~ 

... 
It is easy to check that '+'jj(x;t) is an equation. Thu$ 

.,.. ... 
~ E cl(E); henee X(x;t> € ~, and therefore, 'X(x;b) 

-+-E tp(a;b) Jt. / 

.,.. 
Therefore p(x;f) is inconsistent i.e. there are 

in. 
CPO,···,cpn!~such thât CJ)i(X;t> ~ t(x;f) , (i ( n), and 

... 

, , -+-
Thus, 9Cx;t) 

" We;'ccinlude T is E-equational in x •• ~ . ' 

Of course a similar result tt proposition 2 holds if, 
7 
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,1 

" 
", J ( 

," 
" 

" '7 ' 

' .. 

( 

,-, . 

'. instead of a single variable xi we consider a tuple of 
L 

variables. 
J 

, f, 

, . '> 
1 t 

Question. Does T equational'in x imply T equational in any 
, .' 

tuple:of variables? 

'PrQpQsition. If T fis S-eqùÀtional in : then T t •• table. 

\ ' 

. 
Proof. Suppose T is S-equational 

.... 
in x. Let A c H and p a. 

-+ 
compl~te type in x over A. We have:p pl'S anq pl'S i5 

,completely determined by the set {pl'.; ~ E S1; hence p is 

cOfl'pletel y deter'mined by {p~; cp € S}. 
~~ 

Now, for cp E S, P~ is equivalent to a sin91e, fpr~ula 
J ,-

in DS(A). 
~~ 

, . Since cardVS (Al 
~ 

~,cardS + cardA, we deduc~ that there 

are less than or equal to (cardS + cardA)ISI complete types 
, . 

'in 1 over A. In particular, if cardA = l ~ cardS, and llSI 

~:'l, we fi nd ttiat" there are ). compl et~ .'~ ypes in -: ove... A 

i.e. T is l-stable •• 

.... 
Thus if T i5 equational in x, we can speak of non-

f'orki~g extensions of types." ,~! J 

~ 

, ~e recall the fdllowing properties of non~forking 

extengions of types (see propertie~ 0 and 4 in the 

1;; , . 

L "t~ 
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. 
i ntroducti on) • 

• Given A C H, p. complete type over A in the finite 

.4 -+-
tuple x, q a complete ext~nsion of p to H, then 

(i) q is a non-forking extension o~ p iff q has less or 

equal than 2' TI +14 A-conjugatesi 

(ii) If q is a non-forking extension of p then for any 

...... 
formula 9(x;t>, q~e has finitely many A-conjugates. 

.. 

Furthermore, non-forking extensions of types satsify 

the monotonic~ty-transitivity property. (see property 1 in 

the introduction). / 

3. Th.orem. ~,et T be st.abl., A c S, p a complet. t.yp. over B 

and,R _ •• t of IIquitions. If p doe. not fork over A, th.~ P 

1. an R-minimal extension of p~A to S. If T i. actually R-

i',.... ... 
equation.l in x and p 1. a type in x th.n in f.ct, p do •• 

, " , ) 

not fork over A iff P i5 an R-minimal extension of p~A to 

S. 

'Proof. By monotonicity-transitivity ,applied to non-forking 
"'\" 

and R-minimaL extensions, we can assume with~ut 10ss ~f 
't 

genera1ity that B = H. 

If P is a non-fork~ng extension, of p~A ta 8, then by 
;-.,. 

pr'operty'(ii) givert above,' f,?r a.ny formula qt"in R, pf'cp has 
,\ 

finitely many A-c~njugates. ,Since cp 
'~ 

is an squation, p~~ is 
'. '.' ~ 

. + = él (cp); it felloHs completel y determ'i ned by p~ where.;;Œ 
r;: ~' 
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, 
1 

that p~ is almost over A.' We deduce from theorem A.7.(i) 

that p ~s an R~minimal extension of p~A. 

Suppose ï is R-equational in : and p is a type 
~l 

in x .. 

We have already shown that if p is a non-forking extension-

of p~A then p is an R-minimal ~xtension of p~A to B. 

Conversely, if p is an R-minimal extension of p~A to 

B, then by theorem A.7.(i), for any ~ in R, p~ is almost 

+ ~ 

over A, where ~ = cl (~). It follows that p~~ has ~initely 

many A-conjugates. Since T is R-equational, p - U {p~~; ~ 

€ R}; whence P has at most 2 1T1 +NO A-conjugates. We 

conclude that p is ttnon-forking extension of p~A •• 

Remark. (for stable theories) , one can prove the theorem 

obove directly, without +irst investigating the properties 

oT R-minimal extensions (c.f. CP.SJ>. Then, one deduces 

the properties of R-minimal extensions from those of noo-

forking extensions. For instance, the following theorem, 

, 
4. 'Thearem (symmetry). Suppose T is S-equationtt:1, A C '11, i, if 

'·tt ... ~ S 1 tif in n. Then, tp< •• A U b) is an -minima .x ens on a 

tp(i.A) to A U if if" tp(if.A U 'i) is an S-minimAl ."tltOsion 

~ \,. ... 
of tpCbJA) ta A U a. 

", 

Can be seen as a corollary o~ th~rem 3 and the symmetry 
<-

"; property of né:Jn-forking extensions. 
.. ' 
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For completen~ss sake however, we will prove below 
/ 

theorem 4 without the use of any pre-given result of 

stab~lity theory. 

First, some lemmas, 
" .t.,; 

5. Lemmill. Suppose T is S-equationai in i, A c Tf, p a complete 

type in ~ over A .n~ q an' S-minimAl ext.nsion of p to W . 
.... ~ \ 

Th en , for Any formula e(x;t>, q~e ha. finit.Iy many A-

conjugat ••• 

Proof. By theorem A. 7~. (i}, for any formula Ip in S, q~ is 

, " + almost over A, where ~ = cl (Ip); hence q~Ip has finitely 

'" many A-conjugates. it follows that f~r any finite set 50 of 

~~~rml.ll\ in 5;' q~5o, has fir:'itel.y 'many A-c~n'jUgates. 

' ....... 
Now, given·a formula e(x;f> , since T~is S-equational 

., 
.... 

in x, there is a finite set 50 of formulas in S, such that 

e~€ cl(SO). But q~So i.e. q~cl(SO) has finitely many A-

conJugates; we easily conclude that q~e has finitely m~ny A-

conjugates. • 

. ' 
... ... Tf 6. Lemma. S'="Pllo •• T is S-I,-quation41' in x, A.c 8, a in , 

'. , 

~'... .... ' lengt.h. - l.ngttu. Let E b. the •• t of a11 equfltions in 1'. ' 
1 1 

'Then th. following\Assertions '.re equival.ntf 
' .. 

/ 
1 

1 
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-+ () -+ 
1. tp(a.B) is an S-mi~im.l extension of tpCa,A) ta B. 

2. tp(: U A;S) i •• n~S-minim.l .~t.n.ion of tp(: U A,A) ta 

B. 

" 

Praaf. By A.b. Hi), sinc:e S C E, if tp(t U A;B) 'is an E-

~ ~ 

minimal extension Qf tp(t U A;A) t~~B ttlen tp(; U A;B) and 
( 

tp ('i:; B) are respecti vel y S~inimal :'exteri~j.ons of 
" ... ... 

tp(a U A;A) and tp(a;A) to B. 

In other words we have 3.~ 1. and 3.~ 2 •• • J 

Similarly, 2.~ 1. 

Remains to~how 1.---7 3 •• Suppose 1 holds. 

By,monotonic~~y-transitivity we can assume without 

10ss of generalit~ B = H. " 

-+ -+ -+-+ -+ Let c be a' tuple in A and let .(x-y;t> E E lengtny 

... -+ -+-+-+ - lengthc. By lemma 5, tp(a;B)~~(x;y-t) has finitely many A-
/' 

tonjugates. 
-+-+ -+-+~ 

It folloNS easily that tp(a~7;B)~~(x~y;t) has 

finitely many A-c:onjugates. We deduc:e, by A.7. (i). tha~ 

" 
-+-+ -+-+ ' 

tp<.a ..... c;B) is an E-minimal extension of tp(a ..... c;A) to B. 
i· 

Since ~ was arbitrarily chosen in A Ne conclude by A.ô. (ii) 

... -+ ' that tp(a U A;B) is an S-minimal extensipn of tp(a U A;A) 

to B •• 

", - 20ô 

, 

; , 
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minimal extension of tp(t;A) then tp(t U A;A U~) is an E-

-4 
minimal extension of tp (a U A;A), where E 'is the set of aIl, 

equat\ons; since E is full, we deduce, by A.6. (i), that 

tp(~ U A,1 U A) is ~n E-minimal extension of tpct 0 A;A~. 
-4-4 

Sy lemma ~ again we conclude, tp(b;a U A) is an ~-mi~imal 

extension of tpCt;A). 

The converse is given by symmetry of the argument 

above. • 

7. Lemma. Suppose T i5 S-equational, A ~ S, C c H-~uch that 
. , 

tpCC,B) 'S an SS-mini~al extension of tpCC,A). ~h.n tp(C,B)' 

i. an S-minimal .Kt.n.io~ of tp(C;A). 
, 

\ 

.. ' 

S . S" , Proof.' Suppose.,tp (C;B) =>p .. , where pis a co~plete type 
,'~ 

over'B extending tp{C;A). 

Then of. ,course tP~CC:B) ::> p~. Sy SB-minimality it 

'folloHS that tP:<C;B) - P:; hence, T being S-equational, 

tpCC;B) = p, which implies tpSCC;B) = pS. Thus tp(C;B) is 

an S-minimal 'extension of tpCC;A) •• 

8. Corollary. T S-equational, A C B, A c C, such 'that tpCC,A) 

is S-irreducibl. <r •• p. S-full). T~.n, the followinQ 
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a. tpCC;8) is an SB-minimal .Htansion of tpCCJA). 

b.~tp(C,B) is an S-mlnimal .Ht.~sion of tp(CJA)~ 

e. tp(C,A) t- tP;(C;A) (,. •• p. tP~(C,A) t- tP~(C,B);. 

Proof. By lemma 7, a~b. By proposition A.4. (i), b~e. 
/ 

Finally, e~a is elesr •• 

9. Theo,..m. Suppose T is S-.qu.tional, A c B and A C C. A •• um. 

mcr.ov.~ ~i •• ymm.tric. . 

Coniide,. the following •••• rtion •• 

tP~(CJA) ov.r A. 

b. ~tp(B 0 CJA) i5 an S-fr ••• malgam 04 tpSCBJA) .nd ~ 
J 

" 
ov.,. A. 

d. tp CC; B) i. an ~B-minima1 aHt.nsion of tp (CfA). 

e. tpCC.B) i. an S-mlni.a1 .Ht.n.ion of tp (C,A). , 

Then, a~b~c~d~ •• 
,... 

If ln addition tp(C;A) 1. S-ir,..ducibl. then b, c ~ d, 

and a a,.. aquiv.1.nt, if tp(B;A) and tp(C;A) a,.. S-~ull 
. 

th.n ail th ..... ,.ti~. Ar. aquivalant. 

'. 
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Proof. a~b----"'') ... c i s i mmedi ate, for t p te; A) :J t pS CC; A) 

c )d follow$ ,f~om proposition IV.1 <since S-free 

amalgams aré a fortiori S-minimal amalgams. 
~ 

d~e follows from' lemma 7. , . . 

Suppose tp(C;A) is S-irreducible. Thèn, 

e--7b. Suppose e holds. Since tp(C;A) is assume'd S­

irreducible, by pr~po$ition II.5~(ii>, we have that 

tp(C;A) r tPS(C~B)~ in particular tp(CtA'r tP~(C;B). 

t pS (8; A) U t pS'(C; A>; we wijllt ta show 
/ 

~-+ -+ -+ 
F ~(b;c) and ~Cxt;~) E S; 

, 
already noted tha~tp(C;A) r tP~ (C; B) ; we , . . 

. -+ 
tp(c;A) t- S -+ tPBCc;B) atld therefore 

~ 

t,,,~,<t: A) S ..J- o 

~ tPB(c;B). 

It follows thére is a subset R of S which 

R-+' -+-+ equationpl and sucn that tp (c~A) r ~(b;xt)~ 

\' , 
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,( 

-+-+ -+ R-+ Let eCa;xt>, a E A, be suc::h that e .... tp <C;A); thus e 
)0"' 

i~ S-definable and the formula 

-+ -+ -+ -+ -+ X Cx~; a > -=-Vx-+(9(a; x-+) ----.,.cp-(x .... /j; x-+) ) 
u ccc 

i5 sati5fied by 6 .. ," 
-+ ~ 

By 111.19, X(x6;a> 15 S-PQfinable; 

R-+ -+-+ -+"'-+ .... tp (c;A) r--: G(a;xt>, we deduc::e that r r- )(x'6;a)I\G(a;xt). 

-+ -+ -+' Now, c::l earl y X,<x6; a> I\e( a; xt> t- !JI (xit'; Xi> . 

Sinc::e 'we already have b~c~d~e (+rom the fîrst 
, 

part of the proof), we conc::lude that if tp(C;A) is S-

irreduc::ible then b; c, d and e are equi~alent. 

Finally, suppose' tp(B;A) and tp(C;A) are S-full; the~ 
.lq 

tpS(BtA) ~ tP~(B;~) and tp5(C;A) - tP~(C;A)._ 

b~a has now b@come Immediate. 
v 

Since, S-full ~ 5-irreducible and we already know 

a~b, we deduce from what prec::eded that in that case aIl 

the assertions are equivalent •• 

Example •• . 

;' 
1 

o • 

1.rSuppose -T is a univer5al thèory which"i~ S-equational 

with S = c::l+(At>. Let ~ be a submodel'of H, a,b € H. For 

-+ - -+ , ' \. 
c E H, let H[c] den ote the substructure"of 'Fi g~ne!,",ate" 

..l') 
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( 

by H u {t}; H[t] is a model of T. 

Siven Hl J H and H2 J H Hl' H2 models of T, a map 

f:Hl~H2 i5 a ,"homomorphism"'over H if ft-H = idH and 

f . f ......... H or any atom1C: ormula tp (x) and c ur l' 

,-. 

.... .... 
F ~(c) ~ F ~(fc). 

Then, tp(s;H U b) is an S-minimal e~±ension of 
t 

tp(a;H) iff for any H ~ H, H a model of T, fl:H[a]~N 

and f2:H[bJ~H homomorphisms over H, there is a 

homomorphi~~ 1':H[a,bJ~H over H such that f~H(sJ = 1 1 

and f~H(bJ = 1'2 • 
..... J 

Indeed, since H is a model, tp(a;H) and tp(b;H) are 

S-full. Now tp(a;H U b) is an S-minimal extension of~ 

tpCajH) iff tp(H U 8;H U b) is an S-minimal extènsion of 

tp(H U 8;H) iff <by theorem 7) tp<H U a 0 H U b;H) is an . " \ 

S-free amalga';; of tP~<H U 8;H) and t:P~(H U b;H). 

\ 
To conclude the proof of the claim, it suffices to 

translate what S-free amalgam means in terms of 

homomorphisms, (noting that for H1,H2 J H, there i5 a 

',1 

" 
2. Suppose T is a complete theory of modul.es and S is the 

closure under conjunctions and di.sjunctions Of the set 

of positive primitive formulas; we alrèady noted T is S-

- 211 -
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equational. 

Now suppose that H and H are pure submodels of H 

such ~hrt the sum_H + H is direct (i.e. ~ n H = {Ol> and 

If + H (s pure in' If; then tp (H;H) i~ an S-minimal 

extensibn of tp(~~B) to H <i.e., -H and H are independent 
- '------, 

over 0). 

Indeed, it is eas~ly s~en that, sfnce H n H = {Ol 
.... , 

'and, H + H is pure in if, tp<lf '0 H;B) is an S-free amalgam 

of tp(H;B) and ~p(H;B). It follows f~om theorem 7 that 

tp(H;H) is an S-minimal exteh~ion of tp(H;B) ta H. 

10. Note. With the notations of theorem,9 àbove, but with S an 

" , " 

11. 

arbitrary set of equations (T not ~eçessarily s-

equational>, and tp (C; A) S-irre(;hJcible, the assertior;". 

'-

c~b still Roids. F:urthermore" "if, ~,p(C;A) and ~p~B;A) are 
, , . 

S-full then the assertion e~a sti'll holds. 'l, nd.eé~, i.n 
, ' , 
'~~e proof of e~b (resp. e~a ,when t'p(C;A) and 'tp(B~~)" 

, 

ar~',S--ful1) ab ove we only used tn~ f~ct thci't "S.'is a set ,of, 
'", ' '>1.' ' dt. 

equati.'Ms. 1,.Q,., : " ._~ ~', 
, - ~ . ',' , , 

( ~ .. ~ 

"-

CCi~cll.ry. L~T be stilble,'" -&:Înot1.1~ If,'c B .. nd',1f C C, Ra' 
, "" 

~Y._"iC _et of ~.ttcn •• ' :'If,' ~P(BI:i:1 ,is .~ori-f.".kinQ 
.)Ct.nslon' of tp (BJ If) ~.n tp <8 0 C;If) l.s an R-fr, •• ~malg_m 

• 1" f 

of tP~,(Blif.l ."d tP~(C';1f1~61(..,. /f;'f' ' • 1 ~" 

. '. 
,,\, 

, " \ 

" 
, , 
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Pr~of~ Since·R is a set of equations and H is a model, 

tp(B;H) a~d tp(C;H) are R-full. By theorem 3, i~ ~p(B;C) 

does nct fork ~ver H, then tp,<B;C) is an.R-minimal 

~ :. 

," 

extension of tp(B;H)~ henee, by note 10, tp<B 0 C;H) is an 

R-Ir~e' 'a .. ~ '''~ tp~'(JI; Hl and tP~(C, Hl •• 

In f~ eorollary 11 ~haraeterizes a set of equations 

in a stable theory. 

To explàin what we mean let us first d~fine a formula 

"'+ ~ , 
cp(x,;t> te be funda.ental in T (T st.able) if;' 

~ .r -+ . .,.. 
whene~er H is a model and a, D are in H such that 

-+ -+ ' -+4-
~,p(a;H U b) does net fork.over 11 and t= cp(a;b) then, for 

.-+ '-+ - -+ -+, -+ any a', b' in 11 5uch that tp(a;l1~ = tp(a';H) and tp(D111) 

~ ~ l ' .-+ -t. 
='tp(D';I1), we have t= cp(a';b'). 

It i5 ~asy to check that, for- R a symmetric set of , 

fo~muias, R is a set of fundamental formulas i~f whenever If 
~ 

-+ ~ " 'Ti -+ -+ . is a madel and a, 0 are in such that tp(a;H,U &) does hot - . , 
~Q~k over H then tp(H Ù ~ 0 11 U t;H) is an R-free amalgam 

" , 

1 

Suppose R is a set of fundamental formulas, and r ; . , .. 
-+ -+ a complete extension of .tp(11 U a;l1) U tp(11 U 0;11) over H.; 

.. I~ 

-+-+ " -+.o."'; -+ -+-+ Suppose cp(x;y) E tp(H,U a u 11 U b;l1) and .<x;t) E R; 
t '" ~ 

let';! and d be tuples in H U -: and If !J ~ respectively, such 

J. 
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... 

tp(H U ~;H U 6) does not fork over H; hence tp<t;H U 6) 
" 

does not fork over H. Since. is fundamental and 

F • ('t;;j) ,- it follows that .<i;;> € r. Thus tp<l1 U -: U • 

H U t;H) is an R-free amalgam o~ tp(H U t;H) and 

, '-:+ 
tp(HUD;H). 

The converse follows immediately from the definrtion 

of R-free amalgam.] 

We will use in the'theorem below the following fact of 

. sta6ility theory: if T'is stable, H C B C W, p a complete 

tYRe ~ver If and q a non-forkin9 extension of p over B, 

" . ....~ ~-+ .... 
'then, for any formula ~<x;t) there is a formula d.<f;c), c 

'. -+ .'........ .... .... 
in H, such thât for n in B,4 cp(x;n) € q iff 1= d~(n;c); He. 

, 
say t~at q is anheir of p. 

" 

PrcClf. By corol,l ary 11, if cp i s an equati on then whenever 
~ " 

~ 'i .. 

If .j.s a mOdel, '-:, g are in if such that tP'(-:;1f U 6> does not 

fork over H, 

tp"(H' U -+a' .... H U b-+!. H)' . :II: f 1 f . .." \J , 1.5 a :0::- ree a,ma gam 0 : 

-+ ~ 

tpOf U ~;H) a!)d tp(H U 6';H) ~ where • ;;:: ci+({cpx,cpt})., It 

" 

" . 

, . 

- ~14.-

.' 
:', .1" 

" . , , 

, 
'~ 

1 
" 

l 
.' f 

, 1 

1 

l , 
", 

, ; 



( 

""',' 

o 1 
follows that ~ is fundamental. 

Conversei y, ~uppose ~ i s fundamental. Let If be,~.a model 

..... 
and p Q complete type in x over H. 

-+ -+ -+ 
Since T is stable there is a formula d~(t;c), c in H 

such that for 
-+ 
m in H 

-+-+ -+-+ 
cp(x;m) E p +=:} t= dq)(m;c). 

-+-+ -+-'io-
Cl.lm. p U dq:)(t;c) t- cp(x;t). 

-+ -+ -+ -+-+ -+ 
Indeed, let al"""b realize p(x) .. U {dcp<t;c)}. Let a be 

-+ -+ -+. 
such that tp(a;n U b> is a non-forking extension of p(x); 

-+.... ,-+. -+ 
then tp(a;H U b) is ahheir of tp(a;lf) Wh1Ch implies, for n 

.,-+ 
ln H U b, 

, -+-+ -+ -+ -+-+ 
!p(x;n) € tp(a;H U b) <=*'~ P dcp(n;c). 

Since 
-+-+ ......... -+ .... 

p dqdb;c) , qtex;b) E tp (a;11 U b). We have, 

-+ tp(a;If). It follows from the definition of a fundamental 

,formula that F cp(-;';~, proving the claim. 

Sy compactness, . we deduce there is a finite subset 

oT suc~ that, 
-+-+ -+~ 

p Po U dcp (t ; c) t- cp(x;t) .. . . , 

-+ -+-+ 
F.urthermore, .~ince for .any m in H such that ,cp(x;m) 

€ p, we have that 
-+ ~ , 

p dcplm; c), we get 
1 

Po 

We have shown that for any model H and complete type p 
.; 

over If t~ere is a finite subset fo of p such that ~O t- pt· 
" 
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l' 
We conclude by proposition 1 .. 12 that cp is an eq~ati,on •• 

oK' 

Section C, Rank and H.ight 

p,..liminari.es. Fa,. .impl~cit.y .... a.sum. in t.hi ••• ci:ion 

cardT S NQ. Lat us ,.ecall some f.cts and definition. of 

.tability theary. (Fa,. ma,.. detail. c.f. [Ml and CP.l]). 

- T i. said w-s~abl. if fa" Any Infinite cardinal ~ and Any 
) .: " 
•• t A of cardinality ~, the,. •• ,.. A-many compl.te typ •• 

T i. s.id sup.,.stable if the,.. i. a ca,.dinal p .uch that 

for Any ca,.dinal ~ ~ ~ and Any .et A of ca,.dinality A, 

the,.. are A~many complete typ •• av.,. A. 

The Mo,.ley-,.ank i. deflned a. folio ..... (by induction on 

Gl) • 

- fa,. any'typ. p, M~p) ~ o. 

- fa,. Gl Itmit, MR(p) ~ Gl iff MR(p) ~ , far .ny , < «~' 

- fa,. p a finit. type, MR(p) ~ Gl + 1 lf th.,.. is a 

•• quence (Pi}i(w of contradicto,.y typ ••• ~t.ndin9. p and 

such that MR(Pj) ~ «. 

fa,. P arbit,.a,.y, MR(p) ~ Gl + 1 lf MR(PO) ~ «+1 fa,. Any' 
\ ., 

finit. sub •• t of p. 

w.. write MR(p) - (II if MRCp) ~ Q and MR(p) ~ CI + 1, 

f!1R(p) - III if MRCp) ~ «for eve,.y.ct. If MR(p) - Gl,' th., 

1 
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"'1.7\ ..... ;;. 

.' 
" . 

MOr'l.y-deg,.~. Qf, p, which w. denct:..ï bY'MdCe>, .is the 
'C 1.... .... ,\ . . 

ma)(lmum (fi nfte) ',numbo.r' of cOfltradt.c:tory types .)(~.nèUng 

p and of MorleY~rank·a. 
, " 

FÂct 1.' If P is a complete typa CV III" .il '.and q i~, a non- ~ 
, r;j.' 
'\ forktng .)(t~n.ion· of p to B ;".4{, then l'1R<q>' - MR'Cp). 

1 . 

. ,Fact 2. T is w-stabl.it Hf, :t:tR~-) take. 1t. vt1il1ue in On • .. , , 

The Lascar'!..rank ts d"fined on c::omplete typ •• ov.r .ùb •• t. 
~ ~ \ ,.t. 

of 11, &5 follows: Cby induction en «). 

UCp> ~ 0 for, arly complete type p over a set. 

'- fer « limit, U(pt, ~ « if U(p)'~ fi for Any , < Cl. 
-- ..... --.. 

, , 
'. 

- UCp) ~ Cl + 1 if there i5 a forking .)(tens10ntof p Caver 

seme set) such that U(q~ ~ G. 

" Write U(q) '. Cl' ïf U(q):<"i! Cl and UCq) ~ Cl + 1; Ù'(cP, ", ), 

" 
- œ if UCq) ~ Cl for .vary ordinal Cl. , , 

, 
( ,,... 1 ., .. 

Fact 3. If p is complete over A 'and ~,iBa non-forking 
" ~ ~ .... , , . ) 

e)(t:.n,fl1on of p ov.r~ B ;., A, t.hen U(p> - U.(q>. 

l (;. 

Fact 4. T 1s superstable iff U(-) takes its yalu •• in On. 
, 

- The fundamental '''arder (~) en c:~mplete types ove .... , medel. 
f, 

1. deUnad 'as follows: 

Q1ven p and q, complete types aver th~ models H and 

" , "'1'-+ H' respect~vely, we-.~rite p ~ q if ofor"'any formula cp(x.m) -, 
" >, 

1n p thera is : such that .(1;:) ia in q. 
" -

.. 1'0-

Fact 5., If q is a nen-ofarl<ing .xt"n~ion. of p then q ~ p 
.\ 

(and clearly p ~ q) .'. 

Filct·ô. if p ~ q, where q ia a ceppl .• t.'typ~ over iif then 

(' 
thera i. an automorphism a such that p Caq. , 

r . 
,,'. 
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............ , ,~~ J~ ... 

, ", 

., 
'+" - >, 

j 

j . ' 
" . 

" " 

1 'f' 
" " . 

, . , 

: : A "~yp; p ois saicl po~itive if p C'''~S (H). 
fi S. 

\ , , 
'. 

" 

o. Dafini t.ians. 

1 

"\ 

" 

" 

,. 

'. 
',l, 

o 

~ 

q,i) (T.S~ hil."th. d.ç.c.'.on irraducibla tYP!ls,in :if t.h.ra 

- .... ' 

... 'o"typ •• in.x i.a.'if ther. is ~c:' .~~~.J1ca (Pi)i(w o-f 

type. in -: aver "H such that p;' C oS (If), p { i. s- , 
~ r e 1\., • ~ 

., 

" 

, , 

• Say 11,S) ha. th. d.c.e • 
" " . 

(re.p.' d.c:.c. an irr.d~c:ibl. 
. \ 

typ~s~ if (T ,~) .h~s ~h. 'd.e.e .. 
j' 

d.e.c. on ~rr.ducib.l. , \ 

' . .... , 
. typ •• ) in Any ,x. 

, 0 

.\ . ~.c: ~ stands for;··." ~"c:.n~1 nlJ .~~ .. I n c:~di t l "(1") • 

,< ...".-~' <-
Not •• , Sinee a t,ype q ovéF H is S-irreducible iff tnere is a 

, 

comp,lete type q' Oyer ifextending'~ and,~.:&ch'that (~/')S 
lS' , . r 

.,'q ,"- (T,S) has the' cj~c.c .. on irdi!ducible ,types ~ff there 
~, c' .. r ""'. 

, \ 

, 
1- t;., , 

• 1 .. 
\ ' .. 

'. 
'"/ 

, / 

j. • 

" 

. . , 
~.' ~o 

'1 1 

" , 

/ ' . • '" , ' 

" 

, ' " 1 

; 
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a) (ACFO'S) and <DCFO'S) have the d.c.c .. , for S the set of 

quantifier-free positive formulas (see the end of 
't ,-

chapter' 1). 

" -
b) Let T be a cqmplete theory of modules, ,S the set of, 

,~, 

Posit~ve primitive formulas. Then (T,S) has the d.c.c. 

1 

on irrrducible types iff there i5 no descending chain 

(G i ) i <4 of S-def i nabl e sllb'groups (of H> such that G i +1 

has inf~nite in~ex in Gi • 

Indeed, suppose p, and q are irr-educible positive types 

such that p r- q and q ~ p. Then for any cp in q there i s 'fi 

in P such that '+' r- cp and q '" \fi'. Now IP and '+' are instances 

" , 
of positive primitive formulas sa that cp and.., define 

cosets of S-definable groups G~ and G", respectively (see 

0.4: (i i ) ) . 

" 

Moreover G.., c, G (ft)".., r- cp) and G,+,' has infinite inde)( 
qJ - ;; 

in G.,,: for if G~ has Hnite, index' in Gcp' 't,hen ép ~an be 
~ , { ,,' "1 

written as a finitel:lnion of casets of G..,; since q j's' s-

irreducible"ahd cp € q:'it would follow that one of these 
" , 

, , 

c~sets belon9 ta q, whe~ce te p; 50 there is a coset X of ~,' 

~ , 

G,+, which 'belong ta l! and ,q; but \fI.~ P and \fi is a caset of , . 

G., hence ne'cessar,i 1 y X = '.., (i f not X n Ifo! = fI and pis . . 
i nconsi stent);~ therefere \fi E q K. 

It 1011ow5 ea~ily' that if (Pi) i,k.w is a sequence of 

positive ir~eouct~le types with Pi+l r- Pi and Pi ~ Pi+l 

219 -
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., l 

'. 

( 

\ 
" , 

.H < w) we can build a chain (6 i ) i<w of S-definable groups 

, l 

Conversely if ~Gi)i<w is a chain of S-definable groups 

1'0 

as ~above, 1 et 

Pi -=-Gi 1 U, {G; Q an S-definable subgroup of Gi 

" J of fin~te index in Gi ). 

t 

~ 
? Then (Pi)i<w is a sequence of positive types such 

that: , 

then for some G in Pi' Gr- Ui<nXi i.e. G C Ut<nXj; aiso 
.' 

without 1055 of generality we can assume Xi C G~ It 

" , 

follow5 (by~ Von Neumann's lemma) ·that G C UjEJXj , J c n, 
, 

, ' 

where for eath j E J, X. 15 a coset tif' a subgroup G(X
J
.) 

,J 

, , 
of t?f bf finite i~dex in Gi ;' he,nce for j ~. J, GO(j) E Pi 

and therefore G' = Gn '~EJG(Xj) EPi; now clearly , 

G'n Ui<nXi\is empty un~~ss G' C Xi for 50",~ .. i < TI; we 
:. '" 

conclude that Pi t- Xi for some i < h. 

~ 

,1 Pi+l t-,Pi= for \f G is a subgroup of Gi of finite index 
• 1 

'" 
in Gi then G n G i +1 i,s a subgroup of G i +1 of fi ni te indel< 

, . 

Pi. tr Pi+l: for P'j tr Gi :" l (Gi + 1 having infinite index in 

G. ). 
1. 

Thus (p ) is ·a· desc:ending chain .'of irr.:-edu, cible i 1<w ' , 

.;' .. 
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(, 

'" posi ti ve types. 

t .... 

1. Th.ar.m. Let T be S-.quational i~ x. 

~i) if (T,S) ha. the d.c.c. in : th.n T is tatally 

Hi) if (T,S) hA. the d;c.c on irreducibl. type. in -: then T 

i. superstab 1 .". '. 

Proof. 

(tl Suppose (T,S) has the d.c.c. -+ in x. Let A be'a set' of 

-+ cardinality ~ 2 NQ. A complete type p in x over A is ~ 

\. .. 
completely determined by P~; since S is eqù,tional P~ 

is equivalent to a single formula over A. 

It follows there are at most À ( = cardD(A»-many 

-+ ,complete types in x over A. Thus T i5 totally 

transcendental. ' 

-+ (ii) Suppose (T,S) has the d.c.c. on irreducible types in x. 

-+ Claim. For any set C and complete type q in x over C 

there is a finite subset A of C such that q is :an S-

minimal extension of q .... A to C. ' 

• 
Indeed, suppose the c)aim is false; we first 

construct by induction, <pn i -< w) a sequenc:e 'of sets 

........... 

221 



qi+l is not an S-mirimal extension of qi to A.t,t;l-

Take AO any fini te subset o-J H and qo = q .... AO. 

) Suppose the construction of ,(Ai) and (qi>: achieved 
• 

up to i. Since the claim is supposed false, q'is not an 
, ,t 

S-minimal extrension Of qf'Ai = qi. 

By theorem A.6.(ii>, it folloW5 there is a formula 
'. 

cp in S such that q is not a ~ininimal extension of qj' 

/+ 
where ~ - cl (cp). Hence, there is 'a finite subset B'~f 

H, B J A. such that qf'B is not à ~minimal extension, of 
~ . , . 

qi to Bl therefore (by A.6. (ii» qf'B is not an S-

minimal extensi,on of qi to B. Thus (qf'B) S ,.... q1 (sin'ce 
, 
\ ' 

q .... B ::> qi) and q; '17" '('qt-B) S (for if q,; t- <q/"B)'S, q/"B 

,., would be ao 'S-minimal extension of qi to Bh 

Let Ai + 1 = Band qj+l - q/"B. This finishes the 

7.. ' 

inductive step of tMe construction. 
~\ 

'-

Now, He construc;::t by i nduct i on a sequence '(Pi) j < w 
. " .... 

S S of comp.1et~ types over ïI such that Pi+l ::> p .• and Pi is 
~,' ,J . 

an S-minimal extension o:f ajqi to if fqr some 

automorphism ai of H. 
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, """, 

Let Po be an arbitrary S-minimal extension of qo 

ta H and, suppose th~ ~bnstructI on of Pi achi eved l,!.P to 

i. Let q' be an S-mu1.imal extension af O"j qi+l ta H; 

Hence, by II.A.3, there is an S-minlmal extension q'. of 
1 

(1'.q. to If such that (q/)S ::> (ql.)S. Furthermore (q,)5 
1 ~ l 

" 

[. 
= (q>:') S then q' would be an 5-·z 

would follows that qi+l i'5 ân S-minimal extension of qi 

to Ai+l X. 

Nciw., by i nduct ion hypothesi 5 P j i s an S-mi ni mal 

extension of CT lq j' te H. Th"us, by A. 7. (i O., there i s an 

autemorphism " over Ai sucfJ that 't"qi = P,e 

~~ " 

Then, 'tq' is an 5-mini'm~1' extension of 'rCTj Qi+l. 

(for q' -was chosen an S-minimal extension of CTj qi+l) ' 
, 

" and 

o 

Let O"i+l. = ~(1'i and Pi+l =. "'-q'. This finishes the 

inducti ve step oi' the constructi on of 
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Î 

S 'But o~ course, the sequence (Pi) i<w ~s constructed 

above contradicts the d.c.c. on irreducible types. The 
• 

c:laim is now proven • 

't 

From the claim we deduce that the number of 

complete types in 10ver a set C CT c:ardinality ~ is at 

most the number of triples <A,p,q> where A is a tini'fe 

subset of C, pïs a camplete type over At"d q is an S-

minimal exten~ion of P to C. ~ 

cle.ar0here are ~-many finitë subsêts of c; and 

over a finhe set there are àt most 2No-many complete 

.ty~~ I.-A.15, a type over Chas at mcrst 2 No-many s­

minimal extensions ta C. 

~e conclude there are 

compl~te types in,1 ovar C, 

superstab 1 e. • 

'\ 

at most 2No + l-many 

which proves T is-

Naturall y, one i s interested in the CCM1verse of 

theore1n (i), ~Ii i). 

F~r in~tance, if T i~a complete theory of, mOdu~es and\ 

S is the set-of positive primitive form~las then it is a 
'"' 

'fa,~t (c. ~. CZl) that T is" total 1 y transcendent~l if\. thère 
, , 

i s no i n~ i ni te descendi ng chai n'of S-defi n~b 1 CI! subgroups, 

'" anc::f T ie superstable ,iff there is ~o infinite descendi'ng 

" • 
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( 

~r:~f·'7~,t~.t~f"' ,I-Jo- ~p .... Il'~ ~.~ ~,~\ .. ~·.t 1 

1 
.. , -;'";.' .. "'\·-'11";.r~ 1" 

chain <G j ) i<w of 'S-definable subgroups with Gi + 1 of 

infinite index in Gi • Thus, in that, case, T is totally 

transcendental iff (T,S) has the d.~.c and T is superstable 

iff (T,S) has the d.c.c on irreducible types (see example 

b) above>. " 

Hewever, in general, the converses of 1.(i) and 1.(ii> 

are false ~s the following example shows: 

Let L = {Pi;i < w}, Pi a unary predicate symbol, and 

let T be the complete theory w~ch says: 

T is clearly S7""equational where S == cl+({Pz'.o; j '( w) 

and T is aIse tetally~transcendentai. But (T,S) does ~ct 
l ' 

have the d.c.c. on irreducible typ~~; fQr the, sequence 
. , 

,(Pj)j(w',where Pi = {Pi (X)}",6 is clearly a descending chai., 

of positive S-irreducible types. 

, On the ether hanp, i t i s obvi DUS" that T i s R-, 

d.c.c.-:, 

,The following question then arises: 
J 

Qu •• tion. Siven a totally-transcende~tal (resp. 

superstable) equational theory T, can we find a set of 

equàti9ns R such tha~ T is R-equatLonal and (T,p> has .the 

d. c. c. <r:.esp. d. c. c.;; '<-on irreducibl e types) ? 

We do n~t know the answer to this question; Ne ~hall , 
" 
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'\ - -,., ,'. 
, . 

~ 

give below c:ritt:i!ri'ons for'an S .... equational tctally 
l ,1.t' , 

, 
transcendt:i!ntal thecry (resp.' superstatlle) ta have the 

Ji 1 

d.c.c. on 'f (resp. the' d.c.c. on irreducible types). 

2.' D.fini tians. 

~) 

(*'.~ ai ven d.finabl ••• t.. X and Y, we •• y )( fiM •• Y if .ny. 

~utomarphi.1n 0' whiC:" "fiM~. $.tNi$. X lfix •••• twi •• Y 

•. J 
(i •• ~ 0')( - 'X ~/ aY - y). , ' 

.' (i i) A "'ami 1 y (X i ) i El of definabl ••• ~. i. an if1variant 

" - , ~ 1 

definabl .••• 'ts ,i. a .•• quence (Xi) i'<w of S-def.inable 

.et. such ·that (Xi) i<w is an invariant fami,~y and' 

"" 
. , 

....... ... ... wh.,..' 'cr i. an Autamorph i sm, th.n !p, (xI.) - • (xI a.) • ' , 

, ' 

Suppo~e ,'cp (i; 1) -+ -. 
PrOOf. -r Ip (x; aa). The'; we carl' easily 

'-+ '-+-+ -+ 
construct a'sequenc:e (a<~ ) i <t4i such that lp(x;êli + 1 ) r Ip(x;a) 

, P 

~-+ . 
and lp(x;a i + 1 ) '/ «p(x;a j ); bl;l.~ th~t contradicts 

~qùationaiit:y. 
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.' 

4. Lemma. Let X And Y be non-empty dafinabl ••• ts. say X 

Th.." if X is A-d.finabl. (A c:. 1J) ~ -.o~ is Y. 
1 

J 

If in addition'. is .~. equ.tion then th.ra is • 

" ~ . , 

Prccf. Since X~fixes Y, it is clear that if X i5 A-

defi nab le then Y i 5 i nvar i ant over A,; hence Y i s A-

definable. _ 

Suppose in addition that ~ is an equation. By I.9.d) 

there is q ,finite sequence cO,···,cn~l of elements in 

-Jo 
cp (x; a) such that 

J ' -Jo 
i~ other words, cO'·· ·"cn- 1 are such that cp (xi.a) 

the smallest ~-definable set cDntai1i~9 cO,···,en-l. 
1 

CI.lm. For any element b in Y, we have 

is 

\. For, suppose b' ,dO' ••• ,dn - 1 are elements such that 
\ 

, r 
1 et a be an automorphi sm 5uch that crb = b 1 and ac i 
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the smallest ~-definabl~ se~ containi~g dO,:··,dn _ 1- Since 

1 

tht.~ 
, ( -+ -+ 

Le. a ~i xes 
' .-+ .. cp x;aa) cp(x;a) qt(x.;a). 

\+ " , . 
,\ -+ By assu,mpti on it follows rr fixès Y = ~(x;b). Sinee 

~ -+. -+-+ F ~(b;D), we have F ~Cb';ab). We conclude F'~(b';b), 

which proves the claim. 

Therefore, for any element b in Y there is a formula 

"'b(x""YO ...... ·'··""Yn-l' in tpCb ..... c 1 ..... •• • ..... c n - 1 ) sueh that . , '\ 

i. e. 
-

, -+{-+ 
3YO···Yn-l~b(x'YO···'Yn-l)AAi<nqt(Yi;al t- ~(x;b); 

!' 

and clearly 

F :3YO···Y;"':'lj(.b.(b'YO'···'Yn-l)A".i<nCP(Yj;t>. 

By. compactness, we deduc~ that for some b O,···,bm-l 
" ' 

We conclude, 
< ' 

T~rmlnolo0Y. ~e say that a defina~e [set X contt~s an 

infinite deseending chain of S-de~inable sets if there 
, 

" 

is 

an infinite desc:ending chain (Xi)i<~ of S-definable sets 

such that X J XO• 1 
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\ 

l,>, , . , . , , 

A descenc:Hng chain (X.) .. ( of S-definable sets is said 
l l W 

minimal' if ther:r is a ,sequence, (lPi) i<w of formufas 'in S 

minimal (for inclusion) among ~i-definable sets which 

contain an infinite descending cha)n of S-definable sets. 

s. Lemma. If there are Infinite descending chain. of S­

de~inabl •• ets, th.re are minimal infinite de.ëendin; 
, 

chains of S-definable .ets. 

Praaf. Suppose there are infinite,descending cha~ns of s-

definable sets. 'We construct by induction a descending 

chain (X.).< 'of S-definable sets such t,hat, for i ( W, 
1 1 W 

, + ~ 
there is 'Pi E'S, Xi is ~i-def,inable (ii := cl ~('Pi»' Xi 

o 

contains an infinite des,cending chain of S-definable set.s 

'and.Xi is minimal (for inclusion> among 'ij-definable sets 
, ' 7' 

which contain an infinite descendin~.chain of ,S-definable' . . ~ 
• 

sets: 
, , 

suppose take 'PO .=. (x = x) and 'X .=. (x = x) and the 
" Q,. . (, .. 

" 

construction done up to i. ,;r--. ' 
Clearly thait-e is Y c Xi such that Y contains an 

:1: 
~ 1 • 

" infinii:'e descending chain of S-deti nalH,e sets and Y is IP-

definable, for some IP E S~' 

l \ , 

Since i = cl+(qJ) is equational, it follows there is a ( 
to 

1 . 
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§-~efinable set X C X., X contains an infinite deseending 
~ l \ , . 

,chain of S-definable sets and X is minimal as such. Let 

\. 

Obviously (Xi)i<w is minimal •• 

" 

Net._ If (Xi)i<W is a minimal descending chain of S-

definable sets the", for i < w, Xi + 1 fixes Xi- For if a is 

an automorphism which fixes setwise Xi + 1 then aX j n Xi 

" . 
J Xi + 1 whieh tmplies that aX j n Xi cantains an tnfinite 

descending chain of S-definable sets. Now, if Xi is §i-

definable; it follows by the minimal choiee of Xi t~at 

Thus aX i == Xi. 

... ,1 ~ il~ 

; Thêcir.em 'ô and,"corallary 7' below have been proved 
'- " ,~ f; 

jaintly by the author and A. Pillay tc.f. [P.SJ). 
'1' 

(' 4 

-6. Theor.m. L.t T ba totally tran.~~dant.i and S-~u.tion.l. 
P, 

Th.l'f, (T,S) ha. the d~c::.c:. ITT thara .,.. •. no inTinitJi 

invariant d •• c::ending chain. of S-d~in.bl ••• t. in N. 
, 
, ~ 

Proof. Suppose there are'no invariant de5cending chains of 

S-definable' sets and (Xi)i<w i5 a descending cha~~ of S-

, ,. 
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definable sets; we wi l,L, show a contradiction. 

By lemma 5 we can assume (Xl') -< is minimal. By the 
, l W ' ' 

note above, for any i < j < w, X j fixes Xi; thus, if for 

lt follows that, given i < w, Xj does not fix Xj for 

almost ail j, i < j < w, (for if there is an infinite 

for ,any n < w, the~ (Xj.>n<w is an invariant descending 

chain of S-definable sets .>. 

We can now ea~i 1 y fi nd a subseque~ce, (Xi.) n< w of 

(, 

(X.).< such that for any n < w, Xz' does"not fix Xl' • 
l l ~ • .+1 

Let Yn = X. , and let un
1 be an automorphism which 

1. 

fixes Yn but not Yn+l' (n'< w>; let u~ = id (on H). For ~ 

y c Yu~n' Suppose Pu is inconsistent. Then, for some 
, 'V f"'n + 1:1: .. , .. 

. n < W· and 1)0,···,1) 1-1 E <w2 , 1) k not i ni ti al segments o-f :~ 
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c, 
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, ' . " "'* 

(k < .&) 1 
,'" , 
, , 

. 
Clearl y, y 1o't-n contai,;s an infini'te descending ,chain of 

S-definable set~;~it follows ea~ily ,t~at for som~ k < J -, 
'\ 

Ylo't-n n Y~l contains ah i~finite descending chain of S-

definable sets. 

Write 1} ~·J)k. Lei; m be the smallest poss,ible, such that , 

q(m) ~~ 1o'(m); then Y1o't-m+l n YI}t-m+l ~ Yyt-n n Yq " whence 

Ylo' t-m+l n YI}~m+l c:onta~ns -an infinite desc:ending 'chain of S-

definable sets. 

But Y1o't-m+l and YJ)t-m+l are distinct co~jugates of Ym; 

it follows that for sorne automorphism u, aYm ~ Ym and 

aY~ n Ym cQntains an infinite descending chain of S-

definable sets. 

By the minîmal c:hoice of Ym it fellows that GYm n Ym 

= y mi. e. \ Y m C [J'y m; but of COurse [J'y m sati sfies the saml! 
" . .. 
minimal property, as Ym 50 that aYm C Ym. Thus aYm = Y~'X. 

,Plo' 'is'therefere cons~stent. 
~i ~ 

contradictory; 50 we h~ve 2 W-many types over a countable 

set (the set of"parameters in the YIl's), thu~ c:ontradict~~g 

, ( 

the'fact that T is totally transcendental. That proves one 

direction ,of the theprem. 

The c:qnverse is obvious •• . , 
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1. 
) 

.. 

·' 

, , 

,~ot •• In fact, in the proof of 'th~orem Ô, we have shown the 
>, , 

follo~ibg; if T is as in theorem 6 and (Xi)i<w iS,a minimal 
1>. 

descending chain of definable ~ets "then there is a 
1 

~ubsequence of 

chain • 

(X'.)"( which is an invarïant descending 1 1 W 

7. Corollary. AAsume in addition to the a •• umptions of thearem 

. ' 

6 that T is NO~cat.gorical. Then C7,S' ha. th. ~.c.c. 

Proof. if eXi'i<w is an invarian~ descending chain of 

definable sets, we can assume aIl the sets X. (i < w,)' "' . 1 

defined over the same finite set o,f par-ameter-s A; but then, 

~y NQ-categoriéit~, there are at most finitely many~ 

distinct sets definable over A 50 that the sets Xi' (i < w) 

are almost aIl equal X. Thus, there àre no invariant· 

descending chains of definable sets. 

We c~e by theorem ~. • 

;...--t'..v---___ --
....... <~ .. 

From now on, we assume T is S-equational in:~sin9Ie 

variable x, and aIl types considered sHall'be types in x • 

We'make such a convention just for- notational simplicity; 

aIl the results below have analogues in cas8_~ s-

equational in 1 and the types considered a~e types in t. 

Consfder the fol1owing height function on irreducible, 

" 

., 
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, ~: 

\. 
'. 

types Cdefined by induction on ordinals). 

( ' 
, . 

. ~''''' 
- h(O' ~ 0 for aJI irreducible types. 

hep> ~ 1,.1 a ljmit, ~f hep) ~ « for aIl « < 1. 

- h(p> ~ « + 1 Jf there ts an irreducible type q such that 

. . 
,t',' 

Wri te h (p) .- - ~ '-i of h (p':,-' ~~--;,.' and) h Cp ?"-;t «+1; 
, . 

,. hep) = œ if hep> ~ Cl for aIl « EOn. 
" 

Clearly, h(-) ta~es aIl its values in On iff (T~S) has 

the,,:d.c.c. on irreducible types • 

. Natprally, we would like to compare the functiqn h to 

'the Morley rank or the U-rank. We are lead then ta 
> 

investigate in what measure ~s the increase of height of 
,..-

irreducible types'related te non-minimal extensions of 

types. 

Definitions. 

(i) Similarly ta definition 2, ;iv.n type. p and q, "or 

single fo~mul.s, .... .ay that p fixe. q i.f whan.v .... fi i. 

~ an automorphism, with ap - p, th.., crq - q. 

.1, (i i) If P i5 an irraducibl. type .... let 
'-

lnv(p>, _ pS U ("XJ )( is S-definabl., pS tr )(,' and pS fiM_ 

(, 

Note. If P is a type over A, X a definable set and p fixes :X" 

then X is A-defi,nable, for obviously X is A-invariant. 
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( 
One can aIso'show, using compactness, that p fixes X 

iff there is a formula in p which fixes X~ 

In particular if p is an irreducible type which is 
1 

definable over A then every set in Inv(p) is definable over 

A. It easily follows that if p is complete over A then P r 

Inv(p). (Note that pS fixes Inv(p». 

J 
Recall that a type ~ is irreducible iff there is a 

;' 

~Qmplete type' p' over if such that Cp,)S - pS; moreover p' 

is the unique S-minimal extension of p ta if •. 

Natation. For p an irreducible fype, we denote by p the S~ 

minimal extension of p to H; we have pB ~ pS. 

9. Proposition. Let p and q be irreducible complete types over 

A, SUC" that qS t- pS. Than, 'thera ts an a.utomorphism a such 

that apS - pS and aq .xt.nds p 1ff qS U Inv(p) i. 

Obs.rve" tt1at qS U 1 nv (p) i s const stant 1 f th'are i!l no 

" ~ j , 

. 
Proaf. Let p' be'an S-minimal extension of p to some model 

H (n containing the domain over which p is defined>. Then 

(pl)S _pS and I~v(p') = Inv(p). Thus~ without 1055 of' 

generality, we can assume p is a complete type over a model 
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11. 
<, 

> Suppose qS U Inv,(p> is consistent. 

Then-there is an automorphism a such that apS _pS and 

. " s 
aq U P is consistent. For ,suppose this is not the ea~e; . , 
then,' by eompactness~ t,l"lere are S ... c;:tt:!finable sub~ets 

, , 

S 
P '. 

y..= , f) faX, a an automorphism whieh fixes~~pS}. 
'. 

Sinee X is S-definab1e,,. y can·be written aSi a finite 

intersection of eonjugates of X, wh~nee Y i~ S-definable. 
~ . 

Cl earl y p; 'f i xes Y, moreover p'S tr Y, for Y t-' 

u.< 'X.. Th'us 'Y E Inv (pl. 
~ D ~ ~ .-' , 

", . . 
On the other hand,\. qS t- Y, ~ince.qS t- aX fôr an~ 

'. , 

automorp~i~"; a whi,eh -fixes pS. 

-/ Hence qS U Inv (p) is "inconsistent ,Jt. 
, . 

Sa there is an a~tomorphism a whièh t~xes pS an~ such 

that aqS U P i ~ eon!f.i stent. 
,', 

~, 

It follO~$ that aq extends p: for if not, the~e are S-
J • 

., 
~ 

Ui<DYi. Hence, ~~here are S-definable subsets 

'v 

"Xo ,···"Xm-l of 'Î!., S~èh tha~: Xi ~ P i.e.'pS 17 Xi <i < m), 

1 ... 'Jo 

," . 
• 

~ 
1 
" 

't ,j 
} 

'. 
,fi , 
'1 

l 

1 
j 

" 

~1 

, 
1 
~ 
1 

1 
. l 

J 

1 
l 

" i f 
. f 

J 
i 



( 

0. 

h J' - ~ " , 

/ 
By irreducibility'of aqS (which follows from the 

, , 

irreducibilityof qS) we-deduce that, either uqS r Yi for 

some i < n and that contradicts the choice of Yi' or 

uqS r Xi for some i < m and that contradicts the 

consistency of aq$ u p_ So pq does extend p 

This p~oves one direction of the claim. 

Conversely, suppose there is an automor.phism a which 

fixes pS and such that aq exten~~ p. 

As we noted above, p r Inv(p). 

Now, since a -fixes pS a';d pS fixes Inv(p) ,/..0" fixes 

Inv(p); hence u-1 -fixes Inv(p). , ' 

Finally, since'aq extends p, aq U Inv(p) is 

consistent; hence 

a-1 CaqS U~'Inv(p}) - q U Inv(p) .. 

i5 consistent •• 

l ' 

Nat •• With p and q as i~ proposition"one should compare 

the condition qS U Inv(p) being consistent, to the property 

of one group having infi~ite index in another group. Here, 

qS U Inv(p) consistent lntuitively means qS ha. infinite 

237 



,~ 
,~ 
{: 
;;r 

" '. 1 , 
~(t' 

" 
;;, 

,1 

In fact the following i~ true: given that qS U Inv(p) r ' ~ 

t ' 
i s I;tonsi stent, then for any S-definable 'set X, wi th pS IT ;(, 

there is an àutomorphism a such that apS - pS and 
10 , , 

aqS U {'X} is consistent. (For if aqS"f.- X foC, al:l a as 

\ . . , ~ , 
3 ,. ;, 
,> 
! 
", 

above, then qS r. gaX. 

',,"fol 

gax i,~ S-definable and pS ~ 
u 

4 .' 'J 
thus , gcrX E ~nv(p), contradicting thé f~~t that 'J 

J 
" 

q;; U Inv (p) i s consi stent) •. 
.. ,j 

" 

To 91've an even better approximation :pf the notion of 
. , 

"infinite index" one needs ta speak of ph Arbitrary S-

definable set (nat nece~sarily irreducible) having ~I 
! 

" 

"infinite index" in another S-definable set; this 1s , . 
l 

possible but requires defining Inv(p) for an arbltrary type 
... ..l' , ~ - , 

P (c.f. [S.2]). We~ shall nct deal here J\th such nat~ans. 

1 

1 

- ' f.lx •• 'pS and .uch that aq t •• fcrkinQ ext.nsion of pf'A iff -
qS U Inv (p) i. con'.i st.nt. . . 
Procf. We can assume without 10ss of geci~rality that p is .. 
a compl~te type over a model If (stae beginn.ing of the prcof , 

of proposition 9). 
~ . 

Suppose qS U Inv(p) is 'consistent. Sy pr~po~tion 9 

( 
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\ 

there ~s an automorphism a which fixes pS and such that aq 
\ 

pS~ aqS. We conclude that oq is a non-minimal extension' 

B.3. 
whence, tiy proposition ,a forking extension, of p~A. 

The converse follows immediately from proposition 9. 

, .,. 

11. Th.or.m. Let' T .b. superetable. Then, (T,S) has the d.c.c. 

on ·irreducible. ~ypes iff th.ra 15 no lnfinite desc8nding 
, . 

chain (Pi)i('w' ~f,ir.:educibl. positive types such that 

Pi+l U,Inv(Pi) is .inccn5istent for Any i < w, i.e. iff 

th.ra is no infinite sequ.nce (Pi)i<w of irraducibl. 

Pi + 1 t- Pï' Pi t7'P i + 1 and, 

t 

Proof. Suppose,there is no infinite descending, chain 

,<ti)i<'W such as ab ove and suppose (qj)i<w is an 'infinit:e 

descending chain of irreducible positive types; wEi! w'ill 

show a contradiction. 
, ~. 

Note first that for any i < j < k < w, if,qj U Inv(qi) 

is inconsistent then qk U Inv (qj) is i ncon\.i stent , (since 
r-"""'" 

qk U In\'(qi) r,- q.t U Inv(q.».' 
1. -

lt: follows that there i~s i < w such that for any i, i 
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( 

< j < w, qj+l U Inv(qj) is consistent: for ~f not we 'easily 

construct an infinit~ (increasing) sequence (ij)j<w such 

that Qi,+l U Inv(qi,' ~s inconsisteBt for any j < W; 

\ . 
whence, from the note above, qi' U ,Inv'(qi,' is 

'+,1 

inconsistent for any j <IW. But that means the sequence 

~irreducible positive types with Pj+l .U Inv~Pj) inconsistent 

._ L::.-' , 
fer aIl j < w, th'";Ycontradicting our assumption_,' 

So we'might as weIl assume (qj)i<w is such that 

qi+l U Inv(qi) is consistent for aIl i < w. 

We construct now by induction a sequènce of types 

(p")"< sucl;1 that Pl" is a complete type dver a model 11.;; .z Z W 4 

Pi" = uiqit'Hi for'" sorne automorphism ai' (p' . ) S ..., u. q " and 
~ ~ ~ 

Pi+l i s a forking extension' of Pi. 

For j = 0 take /fo an arbi trary model and Po == qot'HO;' 

suppose the construction of (Pi) done up te i. 

~1 
qi+l U I~v~Uî Pi) is consi~tent. By theorem 10, there Is 

an autamorphisffi T such 
S " 

that ~qi+l is a forking extension of ,," l, 
a,forking extensio~ of Pi-
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(,~ 

\ 

( 

"> 

Ji' 

e)Ctension of Pi- Let Pi+l =-O'i+1 Qi+ll'l!i+l; Pi+1 t.hus chosen 

satîsfies the required properties, and so ends the 

inductive step of the construction_ 

But, the sequence <Pi)i<w constructed'above, 

contradicts superstability (see Fact 4). 
, 

This shows one direction of the claim. The conver,se is 

" 
obvious. '. 

12. Th~r.m. L.t p, q be cD~pl.ta ~YP •• over the modal. n and H 

r •• pectively. Than, p ~ q (~, the fundAmental or~er, s •• 
• 

pr.l1minari.s> iff ~h.r. i. an Automorphism a such th.t 

aqS t-PS and crqS U Inv(p) is consistant. 

Proof. Suppose P ~ q. Then P ~ q, and therefore 

(see Fact ô) there is an automorphism CI such that P C aq. 

It i5 clear the~' that aqS t-"" pS and érqS U Inv(p) is 

consistent (for p r Inv(p». 

Since qS J qS, i t . fOpOWS that aqS t- pS and. 

ClqS U Inv(p) is consistent. 

~onversely, suppose ClqS r'pS and aqS U Inv(p) is 

consistent for some a~tomorphism CI. Then, by· proposition 9 

applisd ta uq~ there is an autamorphism ~ such that ~aq 

extends p~ 

It ~ollows that p 2 Taq, an~ since ~aq 2 q ~ q (for q 
," 

is a non-forking e)Ctension of q'J see Fact 5), we conclude 

1 • 
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t:hat n ~ q •• ~ 
, ~~-"" 

J 

" 
" 

13. Proposition. Let: (T,S) have t:he d.c.c~ The followino 

•••• rt'ien. ara equi valent 
, 

1. For a~y irr.ducible pa.it1ve type p, MR(p) - hep). 

2. 'For Any irreducible 'type Pt MR(p) - I1RCpS) and MdCp) 

- Md (pS) - 1. 

3. For .ny type p, MRCp) - MRCpS) and MdCp) _ MdCpS). 

~. For aoy irred,:!cible positive typ •• p and q, if q I"':"-p .ndl 

, r 
p f74 q then HR(q) < MR (p). 

Proof. Note first that for any 'irreducible'~type, 

MR(p) :S hCp) '(for if HRCp> ;e Cl + 1, then pS, which" is 

~quivalent to a single formula, contains infinitely many 

~ 

distinct e~mpletè types over if of Morley rank gr~ater or 
..___- I~ 

equal to «. Henee, there i5 necessa~-an'irredueible type 

------~-

------q 5ueh that, qS ~-ânêf----;S tr qS i.e. h(q) < h(p), and HR(q) 

--------
~ a. The elaim now follow5 immediately by induction on 

MR<p». 

1 ~ 4: immediate . 

4 ~ 2: Suppose 4. hold5; let'p be an irreducible type. 

Clearl y MR (p) 

" 
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",'i,. ~ 

On the other hand, i? ~ € P then pS~ can be written 

as a disJunction O? formulas o? the 'form '4I-='p S IIA_< ''P-_ ~ ,R l 

where qJi is S-definable., pS rr qJi and CPi t- pS Ci < n>. 

"New., CPi can be written as a tLnite disJunctien of 

irreducible positive types (c.? A.5); say qJ. -=:·v.< q~. 
l J ml J ., 

for ·any i < n; 

HRCpS). Thus 

MR(pS~) = MR(p~) fo~ any cp in p. We cenclude MRCp) 

Finally, it is c1ear that MdCp) S; MdCpS). Suppose 

MdCpS) > 1; then there is an irr-educible type q such ·that' 

MRCqS) = MRCq) = MRCpS), which contradicts 4. 

H~nce Md(p> = Md<pS) = 1. 

2 ~ 4. Suppose 2 holds; let p and q'be' irreduciqle 

positive.types such that q r p and p rr q. 

Cle~rly MR(q) S MR(p>. • 1 

If I1RCq> = MR(p) then C'considering p and~q as single 

formulas) MR,<pA'q) < MR<p> ~ for Md<p> = 1. But Pt- pA'Cf, 

,since pS ...,. p; thus MR(p) < MRCp) 
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.

,-" , , ,:'" ,', '1". 

(~ 

1 

1 ~1 , 

" -, 
( 

(~ 

. :(.,- . . 

,~. cO'ltradicting 2. 

,~ 

. , 

\ 

-. 

. 

. . 
.... 

'---'" , ' We cdhclude that MR(q) < MR(p).· 
\ ~ 

2A4~3: Suppose 2 and 4 hold ; let p be an arbitrary type' 

and let PO,·· ·,Pn-l be its minimal extensions to H. Sy A.5, 

pS .., Vt(n(F!t)S. 

50 there is i < n such that ~R(PS) = MR(pf>. By 2 

S; MR(p). Since p r- pS we conc:lude MR(p> 

Let, q be a complete type o~er H exten~,ing pS and such 

that MRCq) 

extension Pi 
1 

'If p~ tr 
l 

of p ta 

5inee q J pS there is an S-mtnimal 

~ 
.. j , 

- s S H ch that q J Pt le.f. II.A.3). 

2, MRCq) = MR(qS), it- follows MR(q) < MR(pS), c:ontradicting 

~. 

the choi ce of q. -hence qS ..... p~ • 
J 

ln particular q extends.p; 

moreover, 

MRCq) - MR(pS) == MRCp). 

We showed that if q is a complete ~tension of ~s to'n 

o.f Morley rank equal the Morley . rank of pS then q extends p 

and MRCq> = MR<.p). , 
" 

~t fol 1 ows that Md (pS) S Md (p> , whence MdCpS) = MdCp). 

'. 

~ 
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( . ,.., 

-.t', 

, , 

3 ~ 2: Suppose 3 holds; let p be an irreducible type. We 

have immediately that MR(p) = MRCpS). Since pS ,., pS, we 

also have ~) = MdCpS); since MdCp) = 1 we ccnclude that '. Md (p S ) = 1 and Md (p ) = 1 ( f or -Md (p ) S Md (p S) ). • 

Application. The simplest kind of equations are the 
A 

equations which have height at most 1 (c;f. 1.0, for 

-+ ..... 
definition of height> i.e. those formulas ~(x;~) such that 

,l.I '> 

Any two instances of cp are ei ther equi val ,ent or 

contr adi ctory. 

Suèh formulas havè been called normal by A. Pil1ay, 

and consequently a t~eory which ~s S-equational in : with ~. 

'a set of normal formulas is called S-normal in '1 (c.f. 

[P.2l"). 

For exampl"" any complete theory of modules is 5-

normal with 5 the sét of p.p.f. 

A normal set is a set which is definable by a normal 

formula. By compactness, orie shows that a definabïe set X 

is normal iff Any conJugate of K either equals X or is 

disjoint from X. 

formula X(x), without pAram.ters, such that 

245 



~~t;e.~~~P'~.:!!'f".~~'!'~~:{""'""W1"'J."'~,..t';';''''4.ffl\~'''U''~I''J~'''~~~~~+~q.<l.1f'""'';l'r~~~~~~_ ~:,.I"" 
ph 1 ... ~ ... 

CI 

-t 
Preef. 

-Jo 4 
~uppose ~(x;b) ~ixes ~(x;a!. Let c be an element 

'. -J. satis~y'lng ~(x;a). Then, 

.,.. ... 
{9(x) E tp(c;B)} U {'!'Cx;l)}t- cp(~a): 

iF, ~ • 

i=or if (i'is an elemert such that tp(d;B) == tp<C;B) and 

, -J. 
~ '!'<g;b), then there is an automorphism<; u with ac = d. 

From 
-J. ... 

~ '!'CC;D), we get ~ \f(d;a't>; also ,by assumption we 

,', 

• fx; b> and ~ (Ji(; ail) bei ng non-contr ad i ctory, we deduce 

-Jo -t 
<by normality) that 'I/(x;b) and ",(x;ub) are equivalent; 

hence u fixes 'I,(X;"t> , and therefore a fixes q,(x;ii>" i.e. 

cp(X;:) - rp(x;a1)'. Now 1= cp(t;:t); hence ~ cp(d;u:t) and 
1 

finally F cp (d;1> , which is what we wanted. 

So there is a formula ac(x) in tpCc;B) such that ,. 

and oi= course we have 

By compactness we deduce that 

-+' ,"' where A is a finite set of elements realizing ~(x;a). 

... ... 
We conclude that cp(x;a) ,., /tCx)'\'l'Cx;b) , where 

The converse is immediate •• 

, ( 
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Cor'ollary. Let T ba S-normal in x. 
, \\.. 

':.,' 

(i) Let p t'lnd q be irreducible types ... i th qS t-' pS, and pf'S 

complete over B. Than qS U lnvep> is consistent ~ff 

qS U pf'S i.' cons! stent. 
,. 

<ii> Lat p ba • co~pl.ta typa o~r B; consid~ the 

f0110w1n9 ha1ght functian hp on irreducibla typ.~ 

~)(t.ndjng p: 

hp(q) ~ 0 for Ali 1rraducible type. q ~ p. 

hp<q) ~ )., ). l1m1t, if h p ('{) ~ Cl for AlI Cl < ). • 

hp (q) ~ Cl + 1 if thara i,~ an irreducible typa r 

axtanding p such that r S t- qS and qS "" r S • 

F 

Than, for Any complete type q over soma modal, 

axtending p, UCq) ~ hpfq) (U the La.scar':'ra.nk). , 

(i i'i) Let p and q be 'complete typ •• over the models If and N 

r •• pectlvely. Then p ~ q iff th.re i5 an automorphism 

cr such that aqS t- pS And pt-S - ql"J. 

Praof. 

(i) Clearly Inv,(p) r P~g; thus if ~s U Inv(p) 15' . ' -. 
consistent then 50 is qS U p~B. 

Now if qS 'U 1n~'(p) ,iS' inconsistent then there i's 

an S-:-definable'set' X such that pS tr X, pS fixes X and 

qS t- X. It Tollows ,,<by compactness) that a certain s-
" , 
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set. Z def i nabl e over B. We have that' 'qS t- X n y and 

pS fT X n Y; hence qS t- Z and p tT Z (for pS 17' y n Z 

= K n y and pSt- y) which implies 'Z € p~0. We 

conclude that qS U p~B is inconsistent. 

(ii) Clearly hp<q) ~ U(q); we show by induction on the 

ordinal ,a that hp<q) ~ a implies U(q) ~ Cl. It will 

follow U(q) ~ hp(q) and therefore U(q) = hp(q). 

Suppose the assertion true for ail , < o. 

For 0 = 0 or (l limit the assertion is abvious;, 

suppose hp(q> ~ (l + 1. Then there is by definition of 

hp' an irreducible type q' extending p... such that (q' >5 t-

hp<ql) ~ a. Sy taking a minimal extension ta a model 

if necessary we can assume q' is a complete type over 

a model. By the induction hypothesis, U(q') ~ (l. 

By (i). <ql'S'u Inv(q) 'is,consistent; hence, by 

, theorem 10, there is ah automorphism a such that aq' 

is a forking extension of ~, an~nce 

U(aq/) = U(q') = U(q6) ~ Cl we conclude that 

lJ(q) ~ Cl + 1. f. 

(i i i) ,If ais ,an automorphi sm such that aq5 t- pS, and pt--S 

= qt'-S then aqS U .p~0 is .consistent; hence, by Ci).,. 
l' 
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aqS U Inv<p) iS'consistenti TBY theorem 12 it ToIlONS 

that p ~ q •. 

/ If P 2: q then cleariy p('-e = q~0 ànd by theorem 12 

theré is an automorphism a such that aqS t- pS •• ' .. , 

R.m.,.k. For modules, the translations oT formulas anq types 

play a similar role to conjugate~ of formulas and types. 
c • 

More explicitIy, if T ',is a complete theory of modules, 

then, given a definable set X ,and an element a we let 

-+­
aX~{ab; b E X}. Note that if X is definable by ~(x;a) then 

. . 

If p is a type we let a'p = {aX; X E pl. 

Now, similarly ta definition '~, one says. that p fixes 

.' 
X by translations if whenever a is an element~such that ap ~ 

~ 
~en aX = X. Also, for S the set of positive primitive 

formulas, and for p an (S-)i~reducible type, one defines 

and pS fix~s X by translations}. 

And similarly ta proposition q one shows that, for p 

and qD irreduc:ible types wi th qS r- pS, qS U Invtr (p) is 
1 

consistent iff t~ere is an element a such that aq extends 

p; we get aiso analogues of theor-ems 10, 11 and 12. 

are,', S-1'ef i n ab 1 e , 

r: ;! 

/ 

i. e. c:osets of But, if X and Y 
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groups, and y c ')( the," ')( fixes )' by translations iff X = Y. 

.. ' " It follows that for p an irreducible type Invtr(p) 

= pS, and therefore,. if qS t- pS, thén there is always an 

element a such that aq extends p. We deduce for instance 

(from the analogue of theorem 10) that if qS j- pS a'nd pS 17' 

'~~ then there is an,' element a such that aq is a fO~~~~ 

extension of p; it follows easily that U<p) = h(p) for any 

comple.te typ~ over a mQdel H. 

Th. important paint ta und.rItn. is th.t, in v.n.,.a1 

.~v.br.ic: transfor:maUons C •• g. the transl.tians' far 

lIOdul.s) which could play .. .iinilar roI. ta automorphi ._ 

(c.f. [9.2]). 
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