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ABSTRACf 

Prediction of flow and stress pattern~ :n viscoelastic fluids flowing through channels of 

complex shape is of theoretical interest in non-Newtonian fluid mechanics but also of large 

practicaJ interest in the materials processing industry. The first part of this work presents a 

finite differcnce computational analysis of the 1. .., of an Upper Convected Maxwell fluid 

through various geometrically complex channels. The method of Boundary Fitted Curvilinear 

Coordinates is lIscd to remove the problem of boundary complexity from the tinite 

diffcrcnce solution of flow problems on arbitrary domains. Several elastic effects, such as 

vortex growth in contractions and vortex suppression in expanding sections are predicted. 

The second part of this Thesis is concerned with the modelling of the filling stage of 

injection molding in a cavity of complex shape with an insert. Non-isothermality, 

viscoelasticity and the presence of an advancing interface are dealt with in this section. 

Solution adaptive curvilinear meshes are used for the numerical solution of the model 

equéltions on a time-dependent domain. Stress, temperature, pressure, velocity and shear 

rate pïOfilcs within the cavity have be'!n obtained by this analysis. Parametric studies have 

revealcd the effect of key process characteristics on the pressure and thermal gradients 

dllring filling. Model predictions are compared to experimental results obtained on an 

injection molding machine. The model is able to predict with satisfactory accuracy the 

pressure cvolution as weil as the pressure gradients developing in the cavi.y during filling. 

Finally, a three-dimensional sn!!,;iion of the energy equation revealed the strong spatial and 

temporal variation of temperature within the mold in both the planar and the thickness 

directions, and allowed for an evaluation of the crystallinity development in the solidified 

material during filling. 
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RESUME 

La prédiction des plOfils d'écoulement et de tension pour \cs Iluides vIsl'oélastiques 

s'écoulant à travers des conduits de forme complexe est d'intérN tht'orique en Illecanique 

des fluides non-Newtoniens, mais aussi d'intérêt pratique dans \'indu~tfle de tral1~forl11ation 

des matérialiX. La première partie de ce travail présente une anaiy'~e par llltt('rl'I1Cl'S tinies 

de l'écoulement d'un fluide de Maxwell '1 travers plusieurs conduits de géométries 

complexes. La méthode des coordonnées curvilignes fixées aux limites est utilisée l;\Hlr 

éliminer le pmhlème des limites de domaine de la solution par dJtTérenl'c~ finies de 

problemes d'écoulement avec des domaines arhitraires. Plusieurs etfets élastiqucs, dont la 

croissance des vortex dans les expansions sont prédités. La deuxième partlc de cctte Thése 

est t,.:onsacrée à la modélization de l'étape de remplissage du moulage par inJcctlon dans 

un moule de forme complexe avec unt- obstruction. Les conditions non-Isot hcrmit'." la 

viscoélasticité et la présence d'une interface mohile sont traitées dans cctte ~cctl()n. Des 

réseaux curvilinéaires s'adaptant à la solution sont utilisés pour ia solution llulllcrique des 

équations dans un domaine qui est fonction du temps. Les profils de températurc, pression 

et vitesse à l'intérieur de la cavité ont été ohtenus par cette méthode. Dcs études 

paramétriques ont revélé l'effet de caractéristiques importantes du proc(:ùé Mir les 

gradients de pression et de température durant le remplissage. Les pr(~dlctions ùu modèle 

sont comparées a des résultats experimentaux ohtenus sur une machine de moulage par 

injection. Le modèle ~st capable de prédire, avec une précision satl~t;II~ante, l'évolution de 

la pression ainsi que les gradients de pression qui se développent dans la cavité durant le 

remplissage. Enfin, une solution tridimensionelle de l'équation d'énergie a révélé la forte 

variation spatiale et temporelle de la température à l'inténeur du moule dans la direction 

du plan et de l'épaisseur. Les profils de cristallinité ont été obtenus en utih~ant la modèle 

d'Avrami. 
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INTRODUcnON 

As the tide indicates, this study is eoncerned with the numerical simulation of 

viseoelastic flows in eomplex geometries. The ultimate objective, is to model the fi))ing 

of a eold mold of eomplex shape with a molten viscoelastic, erystallisable material 

sueh as polyethylene. 

This Thesis evolves in three largely independent steps, eaeh with its separate 

introduction, literature survey and summary sections. In part (1), the main ideas 

behind the concept ofboundary-fitted eurvilinear coordinates (BFCCs) and numerical 

grid generation are presented. This is a fairly new field that has seen extensive use 

in eomputational fluid dynamics but only Iimited use in the materials processing field 

(even though commercial software such as Phoenics are based on this concept). In 

part (II), BFCCs are used for the p.umerical simulation of steady state, isothermal 

flows of a Maxwell fluid in various compiex geometries. 

Part (III) is concerned with the modelting of the filling stage of injection molding of 

a mate rial obeying the White-Metzner constitutive model. Non-isothermal free 

surface flows are computed as the melt fill'i the cavity. In the first approach of this 

subject, the model equations are solved in a "gap-averagcd" sense, ignoring thermal 

gradients in the thickness direction and evaluating the state variahles on a 

"representative average plane". In section (111.4.6) a three dimensional solution of the 

energy equation during filling is presented, which, coupled with the non-isothcrmal 

erystaJJization kinetics model of Nakamura (1972,1973) atlows for a complete 

representation of the tpermal fields during filling, an evaluation of cry~tallinity 

development, as weB as for an estimation of the thickness of the solidified layer and 

its effeet on the pressure build-up during filling. AlI the computer programs 

developed in the course of this work can he obtained upon request from the Author 

and/or Professor M.R. Kamal, Dept. of Chemical Engineering, McGiIl University. 
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(1) NUMERICAL GRID GENERATION 

(LI) PRELIMINARIES 

Numerical grid generation has now become a common and often necessary link in the 

chain of events that lead to the numerical solution of partial differential equations 

(PDEs) on regions of arbitrary sha:,e. This is especially true in computational tluid 

dynamics, from whence much of the impetus for the development of numerical grid 

generation, but the approach is equally applicable to aIl physical problems that 

involve solution of partial differential equations on arbitrary domains. Numerically 

generated boundary conforming curvilinear meshes have provided the key to 

removing the problem of the boundary shape from finite difference solutions, and the 

sa me grids can be equally weIl used in conjunction with finite element codes. With 

such meshes, ail numerical algorithms are irnplemented on a unifonn square grid in 

the logical domain, regardless of the shape of the physical region. The method is 

equally applicable to steady state as weil as transient problems, Ytith rigid or 

deforrning boundaries. 

In the earlier years of computational fluid dynamics, most of the emphasis was placed 

on the development of stable, fast and accu rate fmite difference algorithms for the 

solution of the discrete forms of the governing PDEs. As a result, a large body of 

knowledge has accumulated in this area. On the other side, since most of the finite 

difference algorithms are based on rectangular computational grids, theii" application 

to flow (or in general field) problems with a complex boundary requires the 

introduction of new nodes at the intersections of the grid Hnes with the domain 

boundaries. Unavoidably, this causes sorne boundary grid cells to be smaller than the 

interior ones, and, consequently, difference formulae on these grids can produce large 

and irrcgular truncation errors which contaminate the solution. Given that in most 

flow situations large gradients oi the field variables exist near the boundaries, the 
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above-mentioned approach will give inaccurate solutions in the region where the 

highest accuracy is needed. 

For the above reason, solution of the model equations in a coordinate system, with 

the property that the boundary of the physical system coincides with coordlOate lines, 

is highly desirable. Spherical or cylindrical coordinates are cxamples of boundary 

conforming coordinate systems and have been used extensively ta facilitate the 

solution of certain types of flow problems. A relatively reeent development is the use 

of general curvilinear coordinate systems, so that the boundaries of the physical 

system, no matter how complex, coincide with coordinate lines (or surfaces in 3D). 

Two of the major advantages of such an approach are: 

(a) The boundary conditions can be applied accurately without any need 

for interpolation. InverseIy, when the location of the boundary is to be 

determined (eg, in free surface problems) this can be done more 

accurately in curvilinear boundary conforming coordinates than in 

Cartesian coordinates. 

(b) Since a general boundary conforming curvilinear coordinate system can 

always be constructed, so that, for any shape of flow gcometry the 

computational domain will be a uniform rectangular grid, aIl the 

existing knowledge on the finite diffcrence solution of POEs can be 

directIy applied for the solution of the transformcd flow equations. 

Even though finite elements are by far the dominant simulation mcthod in solid 

mechanics and the most commonly used method for the simulation of viscoelastic 

flow in complex geometries, last decade has seen a virtual explosion in the use of 

general curvilinear boundary-fitted coordinate systems for the solution of field 

problems in cornplex geometries, using the finite differencc method. Prohlemc; treated 

by the rncthod vary from aero- and general fluid dynamics to heat transfer, e1ectric 
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fields, marine and environmental engineering and structure analysis. The field of 

numerical generation of curvilinear coordinate grids is, itself, developing as an 

independent research area, as evidenced by conferences and publications devoted 

entirely to this subject. It holds a great promise as a key element in the solution of 

realistic flow problems, particularly with the development of 3D grids, adaptive grids 

and mu!tiblock grids. 

(l2) RECENT ADVANCES IN NUMERICAL GRID GENERATION 

A large number of papers has appeared in recent years conceming new ideas and 

methods in numerical grid generation. Among the subjects that seem to be of major 

interest is the use of multiblock configurations for the solution of field problems in 

very complex domains, where the connectivity between subregions is very important 

for a smooth solution ( Ohring (1983), Eiseman (1982, 1982), Steinhoff (1986), 

Thompson (1987)). The use of higher than second order systems, namely the fourth 

order biharmonic system, is also a subject that draws attention because it is promising 

higher flexibility in controlling the smoothness as weIl as the orLl1ogonality of the grid 

(Bell et al. (1982), Sparis (1985)). 

Orthogonal grid generation in two dimensional domains i~ an active research area as 

weIl (Ryskin and Leal (1983), Mobley and Stewart (1980), Haussling and Coleman 

(1981), Ascoli et al. (1987), Davies (1981), Potter and Tuttle (1973)). It seems 

however, that higher order systems will eventually substitute the second order systems 

for the construction of orthogonal grids because of their higher flexibility. 

ConformaI mapping-based and algebraic grid generation methods have advanced in 

recent years (Eiseman (1982,1982,1985,1988), Floryan (1985,1986), Inoue (1983, 

1985), Yang and Shih (1986). Finally, the increased need for 3D simulation, which 

approaches the feasibility point following the ever increasing use of supercomputers, 

has stimulated research in 3D curvilinear grid generation (Takagi et al. (1985), 

Marshall et al. (1986), Saltzman (1986), lem and ThompsoJl (1988)). In spite ofthat, 

much remains to be done in the theoretical treatment of 3D curvilinear grid genera-
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tian. It seems that, at this stage, the best approach is the use of multiple contiguous 

black structures, which will divide the complex region in simpler subregions (Miki and 

Takagi (1986)). 

(1.3) RECENT APPUCATIONS OF CURVILINEAR COORDINATE SYSTEMS 

It is out of the scope of this work ta discuss in length publications concerning the 

applications of curvilinear coordinate systems in computational fluid dynamics. An 

excellent review article on this subject with 341 references. covering the progress 

made up ta 1981 is that of Thompson et al. (1982). In the following the advunces 

made in recent years will be summarized and new trends and new areas of 

application will be iclentified. 

In the general area of computational fluid dynamics a large number of recent 

publications ~oncerns the simulation of more realistic flow problems in complex two

or three-dimensional geometries, using boundary fitted clirvilinear coordinate systems. 

A good example or the impact 0; numerically gent:rated curvilinear coordinate 

systems jn computational fIuid dynamics is a series of two papers by Miyata and 

Nishimura (1985) and Miyata et al. (1987). In the first paper, they solved the 3D 

incompressible Navier-Stokes equations for the flow around a shlp with free waves, 

using a traditional marker-and-cell fir.ite difference algorithm. As the authors 

comment, " .. although the agreement in wave geometry is satisfactory, the viscous flow 

is not solved due to the use of a rectangular inflexible mesh system .. ,", In the second 

paper, a general 3D boundary conforming curvilinear grid and highcr accuracy finite 

difference expressions was used and better res11lts were obtained, even though the 

Gontribution of the grid itself has not been explicitly evaluated by the authors. 

Further applications of curvilinear coordinate systems in fIow problems, always in the 

area of newtonian fluids, include analysis of fIow in 20 channels of arbitrary shape 

(Aubert and Deville (1983), Hung and Brown (1977), Pope (1978), Rangwalla and 
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Munson (1987), Garg and Maji (1988), Rapley (1988), Loeffler (1988), Shyy (1988), 

Fodemski et al. (1987), Yang and Shih (1986). Applications in the solution Jf the 

Navier Stokes equations in 3D include the work of Miyata and Nishimura (1987), 

Shyy and Braaten (1986) and Yang and Camarera (1986), while a simulation of free 

surface flows using a boundary conforming curvilinear grid has been reported by 

Asaithambi (1987). 

Since much of the impetus for the development of boundary conforming curvilinear 

grids !las traditionally come from the field of computational aerodynamics, a number 

of recent applications concems, naturally, the analysis of flow araund moving or 

stationary solid bodies (Thames et al. (1977), Thompson et al. (1974), Ohring (1983), 

Ogawa and Ishiguro (1987), Rapley (1988), Lapworth (1988), Olling and Dulikravich 

(1987), Tzaribas et al. (1986». Finally, the application ~f adaptive grids has been 

evaluated by Shyy (1988) and Eiseman (1987), who found that, for certain complex 

flows, the use of an adaptive grid smoothened the solution and dampened out 

instabilities, thus leading to a faster convergence (a Iso Thompson, (1985». 

Solutions of field problems using general curvilinear coord:'late systems have found 

applications in other areas, besides traditional fluid computations. Miki and Takagi 

(1986) used a 3D curvilinear grid generator in the solution of the 3D Poisson 

equation of electrostatics which simulates the field in the electron ~un of a colour 

picture tube. Ovinsky and Popel (1986) used a boundary fitteJ curvilinear coordinate 

system to simulate the motion of a particle of arbitrary shape moving in a channel 

of arbitrary shape. Glakpe et al. (1987) solved the 3D convection problem in a study 

applicable to nuclear reactor spent fuel shipping casks. In the field of marine 

engineering, Lï and Lu (1987) used a curvilinear grid to calculate the forces exerted 

by waves on large ~oastal and/or offshore structures, white Hauser et al. (1986, 1986) 

studied a part of the Hamburg harbour area by solving the s'Nallow water equations 

in a curvilinear boundary fitted grid. Hsu and Tu (1987) usee! a self-adaptive 

curvilinear grid to predict the aerodynamic drag in a tmnsonic projectile, white 
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Glekas et al. (1987) used general eurvilinear eoordinates to solve a problem of 

importance in environmental engineering, namely the transport of a passive 

contaminant in a hiUy terrain. Finally, Baba et al. (1987) obtained spectacular results 

regarding the viscous boundary layer development, flow separation and vortex 

shedding around an oscilla tory cylinder, solving the Navier Stokes equations in a 

general boundary fitted eurvilinear grid. 

(1.4) METHODS FOR NUMERICAL GRID GENERATION 

Il can be said, that the "modern era" of numerical grid generation started with the 

1974 paper by Thompson et. al. where they described what is now known as "elliptie 

grid generator" and used it to solve potential flow around Joukowski and Karman

Trefftz airfoils. Beeause of its versatility, ease of implementation and smoothness of 

the resulting grids, elliptie grid generation is now widely used for numerical grid 

generation, its major disadvantage being the need for iterative solution of the 

generating equations and, in general, the non-orthogonality of the resulting meshes. 

(1.4.1) Elliptic Grid Generation 

In an elliptie grid generation system, the physical (x,y) and computational (e,,,) 

coordinates are related through the following Poisson equations: 

(1.1) 

VZ" = Q(e,,,) (1.2) 

ln practice, we first define the reetangular (~,FI) domain and from this and the 

boundary correspondenee we determine the coordinates of the interior nodes. 

Therefore, the following set of equations is norrnally used: 
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(1.3) 

(1.4) 

where a,{J,l are functions of the transformation, given by: 

(l.S) 

(1.6) 

(1.7) 

J is the Jacobian of the transformation, given by 

(1.8) 

The functions P and Q are control (or distortion) functions used to control the 

distribution of the coordinate (grid) tines in the physical domain. According to 

Thompson et al. (1980, 1985), these functions can take the fonn of summations of 

decaying exponentials: 

P = Le.osign(~-e,)oexp(-c.·I~-~,1) - Lb.sign(~-~,).exp{-d.·I(e-e.)1 

+ ('1-".)11 0.5} 

Q = re.osign('1-'1.).exp(-c.·I'1-'1.1) - Lb.sign("-'1.).exp{-d.·I(e-eit 

+ ('1-"YI0.5} 

(1.9) 

(1.10) 

In the first expression, the effect of a, is to aUract e-lines to a specifie ~,-line, whereas 

the effect of b, is to aUract ~-lines towards the point (e" 'l,)' The intensity of the 

attraction is further determined by the coefficients c, and d" which dictate how fast 
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the attraction decays with distance (note that (e-e,) is the distance between the lines 

e and e" whereas 1 (e-e,)l + ('l-'lY 1 0.5 is the dlstance between points on a e-line and 

the point (e" '1,)') If P=Q=O, the Laplace eq:mtion is recovered. In this case,no 

attraction to coordinate \in es is imposed, and the form of the grid will be determined 

only by the distribution of the boundary nodes. In the absence of boundary curvature, 

the coordinate tines will tend ta be equally spaced (~moothing effect of the 

Laplacian), but will become more closely spaced over convex boundaries and less 50 

over concave on es. One of the attractive features of the Laplace system is that it 

produces the elliptie grid with the maximum possible smoothness. Further details on 

the fonn and functions of P and Q are given Dy Thompson et al. (1980, 1985). 

It is interesting to note that, while a Laplace system (Equations (1.1) and (1.2), with 

P=Q=O) gives, theoretically, a one-to-one mapping since it exhibits an extremum 

principle (guaranteeing that the maximum value~1 of the curvilinear coordinates occur 

on the boundary of the physical region), in the corre~ponding Poisson system (P,Q 

~ 0), the extremum principle may be lost. 'Therefore, a Poisson elliptie system cannot 

guarantee the construction of an one-ta-one mapping for arbitrary values of the P 

and Q. Nevertheless, the existence of an extremum principle is a sufficient but not 

necessary condition for that; thus, a Poisson system may give an one-to-one mapping, 

provided that sorne care has been taken for the selection of the control function P 

and Q. Sorne theoretical considerations on the uniqueness of the solutions of grid

generating PDE systems of second order have been recently discussed by 

Giannakopoulos et ai. (1988). This subject is further discussed in Appendix A.l. 

(L4.2) The Biharmonic System 

The elliptie system discussed previously, is by no means the only available elliptie grid 

generator. Thompson et al. (1985), Bell et al. (1982) and Sparis (1985) diseuss other 

alternative eIliptie systems. Of potential interest is a forth order system, generated by 

the biharmonic equation: 
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(1.11) 

(1.12) 

This system has the attractive properties of allowing specification of more boundary 

conditions than the second arder Poisson system. Namely, it allows specification of 

both, the location of the boundary points and the intersection angles between the 

coordinate lines and the boundary. This is not possible with second order systems 

(Laplace or Poisson), which allow only Dirichlet or Neumann boundary conditions on 

the boundary. So when a grid orthogonal on the boundary is desired, the angle of the 

coordinate lines at the boundaries must be specified at 90", and this deprives us from 

the choiee of mesh spacing. In that case, the grid lines will concentrate near convex 

corners and disperse near concave ones. Therefore, a fourth order system is a good 

cémdidate for the construction of orthogonal grids in cases where complete boundary 

correspondence is required. 

(L4.3) Other PDE-based Grid Generation Methods 

Beside the elliptie grid generatOI', parabolic and hyperbolic grid generation systems 

are also based on the solution of PDEs. In each of these cases, the grid is generated 

by numerical solution of a parabolic or hyperbolic set of PDEs, marching in the 

direction of one curvilinear coordina te between two boundary curves. In neither case 

can the complete boundary of the region be specified, the later being a property only 

of elliptie generation systems. Becam:e of the marching nature of these generating 

systems, both parabolic and hyperbolic grid generation are computationally faster 

than their elliptic counterpart which normally requires iterative solution. The 

parabolic system can be applied to generate the grid between the boundaries of a 

doubly connected region Ceg, the annular region between two cylinders), whereas the 

hyperbolic system allows only one boundary ta be specified, and is therefore of 

interest only in cases where the exact location of one boundary is not important (eg, 
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computationaJ grid for flow around a sphere, cyJinder, airfoiJ etc.). Hyperbolic systems 

can also be used to generate grids that are orthogonal to the boundary, and are 

particularly suitable for the simulation of external nows; a disadvantage is that mesh 

non-uniformities, originating from geometric discontinuities at the boundary will 

propagate into the field (charaeteristic property of hyperbolic systems). Similar effects 

are not present when elliptie generators are used, beeause of the smoothing effeet of 

the Laplacian or Poisson operators. 

(L4.4) Algebraie Grid Generation 

A class of grid generation methods that are not based on solution of POEs is the 

algebraic grid generation methods. These are interpolation or approximation 

procedures that relate a computational domain which is a rectangular parallepiped 

(square in 20, box in 3D) to an arbitrarily shaped physical domain with 

corresponding sides. TraditionaJIy, su ch transformations have been globally defined 

by anaJytic functions of a complex variable. In this case, the transformation yields 

conformaI coordinates -.vhich are inherently non-singular and ovec which the 

equations of fluid dynamics assume their simplest possible fonn. The fundamental 

limitations, however, are a 105s of control over the boundary point distribution and 

a practical restriction to two dimensions. According to Eiseman (1988), a suecessful 

way to define the interpolations is by means of univariate functions of the individual 

coordinates in the logical spaee, which are eombined in a Boolean sum to crea te the 

complete transformation. In general, however, it is obvious that there are as many 

ways to generate algebraic grids as are interpolation methods (Langrange, Hermite 

and splines being sorne of the most popular ones). It is impossible to cover ail these 

methods in this review. Further details can be found in Thompson (1985) and 

Eiseman (1988). 

A recent development is the control point formulation (CPF) proposed by Eiseman 

(1988). In a CPF context, a set of control points is established within the grid in such 
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a way that the best features of a Boolean sum and tensor product are incorporated. 

The CPF has the capacity to conform precisely to prescribed boundaries, while being 

able ta manipulate the configuration of the computational mesh through a rather 

sparse net of control points. The CPF has been used for the construction of 

interactively adaptive grids and a computer code (CFGRID) is available (Eiseman 

(1988». Algebraic grid generation is computationally efficient and as such, ideally 

suited for interactive and/or adaptive grids. 

(1.4.5) Mixed Grid Generation Methods 

Since elliptic grid generation is computationally expensive, it is customary, in 

commercial grid generators designed to work on PCS and workstations, to combine 

elliptic and algebraic grid generation techniques. Usually, an algebraic method is used 

for the construction of the initial mesh, while an elliptic generator smoothens the 

algebraic grid. 

In the context of this work, transfinite bilinear interpolation was used to supply a 

good initial guess for the coordinates of the interior nodes. This consi!,ted of two 

linear Langrange interpolations, each acting independently in each coordinate 

direction, therefore creating a multi-directional interpolation. The general fonn of the 

transfinite interpolation is: 

In Equation (1.13), ~ are Langrange polynomials and ris a position vector. 

Using the result of the algebraic interpolation as initial guess, the final grid was 

cnnstructed by solving the elliptie generating equations. Details of the numerieal 

solution are given in APPENDIX (A.I). A general procedure for the generation of 

a computational mesh, where interactive refinement is included, is described in Figure 

1 
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(1.4.5.1). 

(L5) ORTIIOGONAL AND NON-ORTHOGONAL GRIDS 

The following discussion concerns only elliptic grid generation systems. An orthogonal 

curvilinear coordinate system is one where the grid Hnes intersect at 90". Analytically, 

this is equivalent to the condition that the non-diagonal components of the metric 

tensor vanish, since in 2D, 

cos( 8) = 6/( a . .., )M (1.14) 

wherc (9) is the angle of intersection between coordinate Hnes and a,fJ and 1 are 

defined by Equations (1.5) to (1.7). 

ln general, a curvilinear coordinate system for the solution uf a PDE or a set of 

PDEs on an arbitrary domain dm:s not have to be orthogonal. Nevertheless, there are 

sorne advantages associated with the use of an orthogonal grid: 

(a) In orthogonal grids, the transformed equations will include fewer terms; 

namely, the mixed derivatives will disappear. 

(b) The application of Neumann boundary conditions is more straightforward in 

an orthogonal grid. 

(c) Severe departure from orthogonality may introduce large truncation errors in 

the numerical solution. 

There are basically two approaches in the construction of an orthogonal curvilinear 

coordinate system. Those based on the construction of the orthogonal grid starting 

from a non-orthogonal one (Davies, (1981), Potter and Tuttle (1973)), and those 
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based on solutions of PDEs. In the former case, a set of coordinate !ines of the non

orthogonal system is retained, while the other set is replaced by tines emanating from 

the boundary and crossing the fifst set orthogonally. According to this method the 

tine spacing can be controlled as in a non-orthogonal system using control functions, 

or by the distribution of the boundary points from whieh one set of !incs emanates. 

This method permits specification of nodes on only 3 out of the 4 boundaries of the 

system, which can be a problem in cases where the boundary values are taken as 

solution of a:1other problem (eg; in a non-isothermal flow situation where the 

temperatures on the wall are obtained as a solution of a separate heat transfer 

problem, or in the study of an interface between two immiscible fluids). III such a 

case, complete correspondence on certain boundaries is necessary, so that the 

coordinate lines on both sides emanate from the same boundary points- otherwise the 

application of matching conditions can be greatly complicated. 

In construction methods based on solutions of PDEs, best described in the paper by 

Ryskin and Leal (1983) as the strong and weak constraint method, the orthogonal 

grid is constructed as the solution of an elliptie system. This method yields conformaI 

mapping as the limiting \~ase when the distortion function is 1. The method is 

considered superior to conformaI mapping, since in conformaI mapping the require· 

ment that the distortion function be 1 can \ead to grids unsuitable for numerical 

computations. In summary, the strong constraint method can be used to generate or

thogonal grids in regions with a free surface, whereas the weak constraint method has 

to be used wh en the complete boundary correspondence is prescribed. In the 1ast 

case, whose practical importance was explained above, the distortIOn function cannot 

be determined a priori but has to be updated iteratively as part of the solution 

(Thompson, (1985». It has been shown by Ascoli et al. (1987), that separability of 

the distortion function is a sufficient condition for orthogonality of the gnd con

structed by the strong constraint method. Nevertheless, no such theoretical tool is 

available for the weak constraint method, and Chikhliwala and Yortsos (1985), who 
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have tested that method, found that it failed to give orthogonal grids of acceptable 

quality under conditions of complete boundary correspondence in regions without 

an axis of symmetry. 

It has been indicated (Ryskin and Leal (1983) , Rangwalla and Munson (1987» that 

the elliptic grid generation method of Thompson has the severe drawback of not 

giving generally orthogonal grids. This is not eonsidered su ch a serious problem. In 

any case, a satisfactory degree of orthogonality can be achieved by proper selection 

of the boundary points, and this can be sufficient for computational purposes 

(Ferziger, (1987». Furthermore, given the experience of Chikhliwala and Yortsos 

(1985) who round that there is always a deviation from perfect orthogonality (due to 

either the methoù of construction, the method of solution of the generating PDEs, 

an improper selection of the distortion funetion, the geometry of the domain of 

solution or simply numerical errors), it does not seem to be advisable to use the 

simplified forms of the transformed equations (that is, drop the mixed derivative 

terms). It is rather preferable to use the complete form of the transformed equations, 

in grids sufficiently close to orthogonal, so that truncation errors are kept at a 

minimum (Thompson, (1982». Moreover, since it seems unlikcly that orthogonal 

grids can be constructed in three dimensional problems (Ryskin and Leal, (1983», 

it would be beneficial to gain as much experien:e as possible with the general non

orthogonal grids in the 2D case before proceeding to more complicated 3D problems. 

Of course, care should be exercised that the deviation from orthogonality is not too 

severe, or else problems might arise. 

In this work, the general second order elliptie grid generation method of Thompson 

(1974) is followed. However, it was found necessary in the solution of the pressure 

equation with Newmann boundary conditions (see part Illon injection molding) that 

the grid be normal to the boundary of the flow channel. Boundary orthogonality is 

easier to implement and less restrictive on the grid than complete orthogonality. The 

construction of grids orthogonal to the boundary will be discussed in APPENDIX 
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(Al). 

(L6) STRUCfURED - UNSTRUCfURED MESHES 

In the classification of computation al meshes one distinguishes between structured 

and unstructured meshes. A structured mesh is one where sorne relation, imposed by 

the generation technique, exists between the grid points. Structured meshes are 

created by various mappings (conformaI, algebraic, PDEs), while an unstructured 

mesh is creuted in point-by-point fashion. In unstructured meshes, one has ta define 

its connectivity to surrounding nodes besides the coordinates of each node. AlI known 

methods for solution of PDEs (finite differences, finite volume and finite elements) 

can be used in conjunction with structured meshes. Only integral methQds (finite 

volume and finite elements) can be used on unstructured ones. Structured meshes are 

very attractive because of their simplicity, both in their generation as well as for the 

solution of the flow equations. However, for the solution of f)ow problems in 

increasingly complex domains using structured grids, it is most often necessary ta 

break up the domain into many simpler blacks. In this case, the connectivity between 

these blocks must be specified, i.e. an explicit table must be generated which denotes 

the connectivity of the blocks as well as the coordmates of the grid points at the black 

interfaces. When the number of structured blacks becomes very large, as is the case 

of very complex domains, then the major advantage of structured meshes, i.e. their 

simplicity, is 10st. 

Construction of unstructured meshes is inde pendent of the complexity of the physical 

domain; this makes them naturai cane idates for very complex problems. However, 

multiblock structured meshes have been successfully used in very cornplex domains, 

such as on and around complex airplanes, propellers, submarines etc. Given the 

inability of the unstructured mes!.es to support finite uifference flow solvers, it is 

believed that structured meshes will continue to be widely used weil into the next 

decade. However, as more numerical methods shift ta integral techniques (this is a 
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fact already in aerodynamics) and the required geometrical complexity increases, it 

is likely that more and more emphasis will be placed on the use of unstructured 

meshes and/or hybrid meshes. 

(L7) GRID GENERATION ON MULTIPLY CONNECTED DOMAINS 

The application of the grid generation ideas presented in the previous sections is 

straightforward when the physical dO'llain is sirnply connected. Sorne special care 

should however be exercised when transfonning multiply connected domains, such as 

domains with inserts. In the context of this study, it was necessary to generate grids 

in rnultiply connected domains during the simulation of injection rnolding in a cavity 

with an insert. 

Three of the most popular methods for treating multiply connected dornains are 

depicted in Figure (1.7.1). The slab configuration (I.7.1.A) sirnply exc1udes from the 

calculations ail the interior points that fall on the insert; in this case, an insert of 

arbitrary shape is transformed into a rectangle in logical space. The slit configuration, 

shown schematically in Figure (1. 7. LB), transforms an in sert into a horizontal or 

vertical Hne. Special care should be exercised when using this configuration, since ail 

variables are double valued on the slit. In this case, no grid points are excluded from 

the calculations. A third way that reduces the connectivity of the physical space is 

shown in Figure (I.7.1.C). A cut is introduced, which opt=ns the field; upon 

deformation of the opened domain one recovers the familiar rectangular 

computational domain. In this configuration, care should be exercised so I~hat points 

on the two sides of the rectangular domain that correspond to the cut be assigned the 

~arne values of inde pendent variables. Regions of higher connectivity can be treated 

similarly. For example, three inserts can be represe:ned by three slits or three 

rectangles. Reduction of the connectivity of a highly complex domain by me ans of 

branch cuts can, however, result in extremely complex configurations. In this work the 

sHt configuration was used. Examples of grids generated by this method are given in 
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Figure (I. 7.1): Methods for transforming multiply connected physicaJ domains 
ioto simple computationaJ domains; (A) slab configuration, (B) 
slit configuration, (C) reduction of connectivity using a cul 
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Part (III). 

(L8) VALIDATION OF THE TRANSFORMATION ROUTINES AND OFTIIE 

LAPLACE SOLVER 

The purpose of this section is to test the accuracy of the transformation routines as 

we]) as the accuracy of the Laplace solver - the routine that solves the transfonned 

fonn of the Laplace equation. In general curvilinear coordinates, this is given by 

Equation (1.15). 

(1.15) 

The Laplace solver is a key routine for the calcula~ion of stream function, vorticity, 

pressure and temperature (section (III) on injection mokEr:g ~nd (II) on viscoelastic 

flow); it is thert>fore essential to establish the correctness of this subroutine. 

Furthennore, since th~ coefficients 0, p, 1, ('iç) and (v2'1) are functions of the 

coordinate transformation, it a1so essential to establish that the transformation itself 

does not introduce errors that contaminate the results of the Laplace solver. 

For this purpose it was decided to solve the Laplace equation in the annular region 

between two cylinders with RI=I and R2=10, subject to Dirichlet boundary 

conditions: 

(1.16) 

An analytical solution for the Laplace equation under these boundary conditions is: 

f(x,y) = x(1 + l/(t + y» (1.17) 
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This was the only case in this study that the "eut" configuration was used for grid 

generation. The cut was introduced along the line (1,0) - (10,0). Ta ensure continuity 

of derivatives along the eut, it was specified that the ~-coordinate lines are normal 

on the '1=1 and '1=jmax lines. The resulting grid is given in Figure (1.8.1). The 

maximum difference between analytical and numerical solution for the 19-31 grid of 

Figure (1.8.1) and a convergence tolerance of lOS was 1.4 %. The average error was 

0.8%. Use of a 31-31 grid reduced the maximum and average errors ta 0.9 and 0.5% 

respectively. 

(1.9) SUMMARY 

The method of Numerical Grid Generation based on an el1iptie generating 

system was chosen for the construction of structured curvilinear mcshes on 

two-dimensional domains. 

The method was used successfully in simply and multipJy connected regions. 

The correctness of the transformation routines and of the Laplace solver was 

successfully tested against available analytical solutions. 
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Figure (1.8.1): 
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Curvilinear grid used for the numerical solution of the Laplace 
equation in the annular region between two cylinders. 
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(D) SIMULATION OF VISCO~C FLOW 

(U.I) PRELIMINARIFS 

Elastie fluids, su ch as polymerie solutions or melts, exhibit a substantially dirferent 

flow behaviour compared \Vith Newtonian or variable viscosity non-elastie tluids. 

Certain elastic effects, such as rod cIimbing, the hole pressüie effect, the deveJopment 

of vortices in sorne entry flows, the die sweIJ effeet etc., ean be attributed to non-zero 

normal stress differenees that are eharaeteristie of elastie materials. Others, sueh as 

stress relaxation, strain reeovery and stress overshoot are manifestations of the 

memory of previous deformation that charaeterizes elastie fluids. It has becn observed 

that the deviation from Newtonian behaviour is strongest in flow through channels 

involving abrupt changes in geometry. 

Understanding and predicting complex viseoelastic flows is essential for the proper 

design and optirnization of key polymer processing operations. However, the theoreti

cal analysis of viseoelastie fJows poses mani chaJJenges. These include the need for 

development of realistic constitutive equations, the development of proper numerical 

methods for the solution of the model equations, which have been shown to be more 

complex than their Newtonian counterpart, and the need for appropriate 

discretization techniques that wiJ) be both flexible and accurate in mapping complex 

flow fields. As of today, not aH of the' above subjects have been developed 

sa tisfactorily. 

One of the major complications arises from the inadequacy of the welJ-documented 

Navier-Stokes equations of the Newtonian fluid mechanics to describe viscoelastic 

flows. The complex molecular structure of viscoelastic fluids gives rise to stress fields 

that cannot be predicted by the simple Newtonian viscosity. Therefore, the need has 

emerged for development of constitutive equations that wiIJ be suit able for these 

materials. Based on rnolecular theories, a number of such constitutive equations has 
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ernerged in recent years (Bird et al. (1987». These equations can be of the integral 

(explicit) or differential (implicit) type and relate the stresses with the kinematics of 

the flow field. None of the equations proposed this far can claim success in predicting 

all aspects ofviscoelastic behaviour, especially in flowing polymer melts. The situation 

is better in dilute polymerie solutions, but still much remains to be done before 

completely reliable quantitative predictions for complex viscoelastic flows can be 

made. Cornparisons of the predictions of various constitutive models in different flow 

situations still occupies a substantial part of the research in non-Newtonian fluid 

mechanics (Armstrong et al. (1985». In this work the Upper Convected MaxweJl 

Model (UCMM) was used. This choice is not justified because of its success in 

describing real polymer melt behaviour, but rnostly because it has been widely used 

in previous simulations - thus giving sorne coml.lOn ground with previous research. 

Viscoelastic phenomena appearing in simple rheometrical experiments are now weil 

understood and their theoreticaI prediction does not require sophisticated numerical 

analysis. Therefore, and since the most interesting, theoretically and industrially, non

Newtonian effects are observed in flows through channels of complex shape, the 

major effort in computational non-Newtonian fluid mechanics has been directed 

towards the prediction of viscoelastic effects in industriaJJy important non-elementary 

geometrical configurations, su ch as flow over a slot, through contractions and 

expansions, flow between cylinders, around obstacles, corners etc .. In certain cases, 

this introduces geometrical singuJarities which represent the second major difficulty 

in the numerical solution of complex viscoelastic flows. 

The third major problem in the simulation of viscoelastic flows is the fact that the 

numerical solutions tend to break down when the elasticity of the material, usually 

expressed by the Weissenberg or Deborah number, exceeds sorne critical value. The 

problem, termed as the High Weissenberg Number Problem (HWNP) in the 

literature, appears regardless of the discretization technique (finite differences or 

finite elements, (Davies et al. (1984», or the choice of constitutive equation, even 
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tbough constitutive models whieb incorpora te a retardation time have been found \~o 

be computationally more stable than purely elastic models. Reported critical 

Weissenberg numbers vary from stuc!j to study, but the symptoms behind the faiture 

are more or less common: spurious, field-wide oscillations of the field variables, 

especially of the stresses, whose intensity increases as the elasticity parameter 

increases. Josse and Finlayson (1984) linked this faiture to the inadequacy of the 

Galerkin formulation (in finite element solutions) to solve hyperbolic problems, 

especially in non-smooth geometries (sec also King et al. (1988), Marchall and 

Crochet (1987», Debbaut et al. (1988), Debbaut and Crochet (1986». This of course 

would not answer why finite difference solutions showed the same unstable beh,wiour, 

and therefore a large amount of work has been devoted in relating the faiture of 

viscoelastie simulations to approximation errors, (Mendelson et al. (1982), Dupret et 

al. (1985», and tn the change of type of the governing equations (Joseph et al. 

(1985), Ahrens et al. (1987), Yoo and Joseph (1985». Because of this change, 

standard numerical techniques used in Newtonian fluid mechanics have been proven 

inadequate for the solution of the mixed-type non-Newtonian problem. Recent 

advances in this are a include either switching algorithms that treat differently the 

elliptie and hyperbolic regions of the flow regime (Song and Y 00, (1987), Choi et al. 

(1988» or the use of derived forms of the momentum equation that are explicitly 

elliptie (King et al. (1988».Other researchers (Lipscomb et al. (1987) and Apelian et 

al. (1988» have proposed the use of more realistic constitutive equations and 

relaxation of the non-slip boundary condition as means of handling viscoelastic flow 

problems with stress singularities (such as the stick-slip problem and the abrupt 

contraction problem). A review of the state of the art on the origins and cures of the 

HWNP bas been given by Keunings (1986,1987). 

Even though the problem is not settled yet, significant advances have been reported 

recently by Crochet and coworkers (1986, 1987, 1988) and King et a1.(1988), both 

groups working with finite elements. Croçhet and co-workers have focused on the use 

of sub-elements to account for the very steep stress gradienti a ppearing in many 
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viscoelastic flows and on the use of streamline upwinding to take into account the 

hyperbolic nature of the constitutive equation; they obtained convergent solutions for 

very high values of the elasticity parameter in various contraction flows. King and co

workers employed an explicitly elliptic form of the momentum equation and obtained 

convergent results for high values of the elasticity parameter in stick-slip flows as weil 

as in flows between eccentric cylinders. From the above, it becomes evident most of 

the advances in numerical simulation of viscoelastic flows have been reported in the 

context of finite elements. This is not surprising, since tradition al finite difference 

techniques have difficulties dealing with complex shapes. However, successful use of 

finite differences for the simulation of viscoelastic flows has been reported by Perera 

and Walters (1977, 1977)} Cochrane et al. (1981, 1982), Song and Yoo (1987), Choi 

et al. (1988). 

(11.2) FORMUlATION OF THE PROBlEM 

We are interested in the simulation of steady-state, isothermal flows of an upper 

convected Maxwell fluid in channels of complex shape. Adopting the stream 

function/vorticity (ljJ,w) formulation of the equations of motion, we have to solve the 

elliptic stream function equation: 

(11.1) 

and the elliptic vorticity equation 

(11.2) 

In (11.2), Re is the Reynolds number of the flow (Re=pUUp), p and p are the fluid 

density and viscosity respectively and D(S) is a non-Newtonian source function, given 

by equation (11.3): 
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(11.3) 

and SD,~,SIJ, are the non-Newtonian contributions to the stress tensor (T). The 

stream function (1,6) and vorticity (w) are related to the kinematics of the flow as 

follows: 

u = ôl/Jlay, v = -ô1,6lôx, w = ôv/ax - ôulay (I1.3.a) 

where (u) and (v) are the velocities in the x (longitudinal) and y (transverse) 

directions, respectively. Throughout this Thesis, subscripts indicate partial 

differentiation, whereas superscripts are reserved for tensor components. 

The boundary conditions for stream function and vorticity at the inlet can be obtained 

from a proper velocity profile. On the axis of symmetry, toI=O, and y,=constant. On 

solid wal1s, l/J=constant and (toi) will he obtained by: 

(11.4) 

More details on the boundary conditions and their finite-difference implemcntation 

can be found in standard books on Newtonian and non-Newtonian fluid mechanics 

(Roache, (1976), Crochet et al. (1984), Crochet and Walters (1983» as weIl as in 

Appendix (A.3) of this Thesis. 

To model the relation between stress and kinematics in the fluid, a constitutive 

equation is needed. The Upper Convected Maxwell model used in this work consists, 

in dimensionless form, of the following set of partial differential equations: 

(11.5) 

(11.6) 
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T' + We.(u.(T'). + v.(T'),) - We.,....v. - We."",u,= v. + Uy 

The pertinent dimensionless quantities are: 

x=x'/L, y=y'fL, u=u'/U, v=v'/U, T=T'LlUIA 
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(11.7) 

(1I.7.a) 

where starred quantities are dimensional quantities. In (11.5)-(11.7), We is the 

Weisenberg number, defined as We=ÀU/L, where (À) is a relaxation time of the fluid 

and V, L are a characteristic velocity and a characteristic length respectively. The 

discussion is Iimited to a single relaxation time. However, extension to a spectrum of 

relaxation times is straightforward in the context of differential constitutive models, 

by writing 

T = L'Tt (11.8) 

where the contribution of each node Tt obeys equations (11.5) to (11.7) with material 

parameters Àk and Pt. The Upper Convected Maxwell model is a member of the 

general family of differential constitutive models described by the generic equation: 

A(T).T + À(.sT/cSt) = 11'1 (11.9) 

.sT/eSt is an objective time derivative that is defined as a linear combination of ]ower 

crI) and upper (T(I») convected derivatives: 

.sT/eSt = a·TI) + (l-a).T(I) (11.10) 

(11.10.a) 

T(1) = DT/Dt - T·vu - vuT·T (11.10.b) 

l 
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DlDt is the mate rial time derivative 

DlDt = a/at + u·v (11.10.c) 

The Maxwell model is obtained as the lirniting ease of equation (11.9) when A = 1, 

1 being the unit tensor. For a=O.O, 0.5 and 1.0 we obtain the upper eonvected, 

corrotational and lower-eonvected Maxwell models. Viscometric data indicate that 

suitable values for (cr) are usually between 0 and 0.1; therefore the upper-convected 

Maxwell model is preferably used in viseoelastie computations. When the model

dependent tensor A is taken as a function of the stress tensor, other viscoelastic 

models ean be obtained from equation (11.9), incIuding the models of Phan-Thien & 

Tanner when A = exp(ütr(T)/~).1, and the Giesekus model when A = 1 + f3).T/~ 
(Keunings, (1987». 

(ll.3) NUMERICAL SOLUTION 

(II.3.1) Numerical Treatment of the Constitutive Equation 

The first basie choice to be made in the numerieal solution of the constitutive model 

is how the elastic stress tensor S, whose spatial derivatives appear in the vorticity 

equation (equation (11.2», should be eomputed. We ean either solve directly 

equations (11.5)-(11.7) for the eomponents of the total stress tensor (T) and then 

caIculate the elastic contributions numerically using equation (11.11); alternatively we 

may substitute the transformation 

T=S+2d (11.11) 

direetly into the constitutive model and then solve directly the resulting system of 

hyperbolic partial differential equations. It should he noted that even though both 

methods are mathematically equivalent, they are not necessarily nurncrically 
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equivaJent because of the different discretization errors involved at each stage. 

According to the first method, the stress equations can he written as follows: 

where 

L = ~(a/ax) - 1/J.(a/ay) 

and 

AI = 1 - 2We(az1/J/axay) 

Az = 1 

Al = 1 + 2We(az1/J/axay) 

8 = We(a z1/J/af) 

C = -We(az1/J/ax:) 

FI = 2(aZy,/axay) 

Fz = (a 2y,/af) - (a 2y,/ax:) 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

(11.18) 

(11.19) 

(11.20) 

(11.21) 

(11.22) 
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(11.23) 

According to the second alternative, the constitutive model may be written in terms 

of the components of the elastic stress tensor (S) as: 

A$~ + WetS'" = CSII + BSY7 + G1 

where 

Gl = 2We( 2(a 1tjJ/axay)l - (atjJ/ay)(a3~/ax2ay) + 

(a 2tjJ/a'i)«a1,p/a'i) - (a2tjJ/ax'") ) 

G3 = 2We( 2(a 2tjJ/axay)Z + (atjJ/ay)(a 3,p/ax2ay) 

(a1l/J/ai)«a z,p/ay-) - (aZy,/ai» ) 

(11.24) 

(11.25) 

(11.26) 

(atjJ/ax)(aJtjJ/axay2) + 

(11.27) 

(atP/ax )( a Jy,/axayZ) 

(11.29) 

The new complication introduced by the second method is the need for the 

evaluation of third derivatives of the stream function. On a uniform square grid, these 

derivatives can be evaluated using the following equations: 

(11.30) 

(1I.31 ) 

(11.32) 
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(11.33) 

Appropriate expressions are also available for boundary points. For example, on a 

stationary, non-slip boundary, the expression for the third derivative of the stream 

function will be (ta O(h2
)): 

(11.34) 

The main advantage of the first method, that is of the evaluation of the total stress 

tensor from the constitutive model, is that only derivatives of arder up ta second need 

ta be evaluated. On the other side, greater computer storage is required with that 

method, since both the total (T) and the elastic (S) stress tensors need to be 

computed and stored at a11 times. The work of Tiefenbruck and Leal (1982)) 

indicates that there seems little to choose between them from the standpoints of 

accuracy and time of computation. ln the context of this work, the constitutive model 

was solved for the total stress tensor (T) and the elastic contributions were evaluated 

by means of equation (11.11). 

(11.3.2) Transformation of the Model Equations in Curvi1inear Coordinates 

In order ta be able ta solve viscoelastic flow problems in channels of arbitrary 

geometry using finite differences, the model eq!.1ations must be transformed in the 

new, curvilinear coordinate system (~,'1). Applying the general transformation 

relations presented in Appendix (AJ) in the two-dimensional case, we obtain the 

following transformation relations for the derivatives appearing in the transformed 

equations (in the following, (f) is a scalar and J is the Jacobian of the coordinate 

transformation ): 

f. = (y,l( - y(frJ/J (11.35) 

l 

1 



l 

~= 

[(y1)2.fee - 2·Ye·YI)·fl)e + (ye)2.fl)l)]/P + [«yl)2' YH -

(ye)2. Y'l'l)' (X'l' f( - xe' fI)+ «y,,)1. xee - 2· Ye' Y,,' xl)( 

yl).f( + Ye· f'l)]/J3 

[(~Y:fee - 2.x(.x".fl)( + (xe)2.fl)l)]/P + [«XI)2' YH -

(xe)2· Y'lI)·(x".f( - ~.fl)+ «x'lt,xee - 2,xe,~,xl)( 

YI)' fe + Y(' f'l)]/J3 
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(11.36) 

2· Ye . YI) . y I)e + 
+ (Ye)2,xl)")'(

(11.37) 

2· xe . xI) . y 1)( + 
+ (xe)2 . xl)l) . ( -

(11.38) 

fl'J = [(xe'YI) + x".y().fl)e - xe'Ycfl)l) - x,,·YI)·fee]/J2 + [(x('yl)l) - x"'Y(I)/J2 

+ (xl)·YI)·Je - x(·yl)·JI)/Jlfe + [(x'I'Ye( - x('y(I)/J2 + (xcYe·JI) -

x,,·Ye·Je)/J3].fl) (11.39) 

In the ease that the grid is non-orthogonal, the transformed form of the Laplacian 

operator appearing in the stream function and vorticity equations will contain the two 

second derivatives, as weIl as first and mixed derivatives of the dependent variables. 

Namely, the transformed form of the Laplacian of a scalar (f) is: 

with 

a = (X'l)2 + (yl)2 

fJ = (xe)(xl) + (YI)(Ye) 

'Y = (Xe)2 + (Ye)2 

(11.40) 

(11.40.a) 

(l1.40.b) 

(l1.40.c) 

Even though this adds to the complexity of the equations to be solved, it does not 

alter their elliptie form, since it can be proven that an e1liptie equation will remain 

elliptie if transformed in another coordinate system, provided that the mapping is 
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non-singular, i.e., as long as the Jacobian of the transformation is not zero (Appendix 

(A.2)). The relative compJexity of the transformed equations is a small priee to pay 

for the versatility offered by non-orthogonal grids. The appearance of other than 

second derivatives in the transformed form of the Laplacian alters the 5-point 

eomputational moleeule usual1y employed in the numerical solution of the Laplace 

equation. This is not the case in the transformed fOTm of the constitutive equation, 

sinee first derivatives are always transformed into combinations of only first 

derivatives in curved space. However, implementation of the QUICK scheme requires 

the use of non-tradition al eomputational molecules. More details of the discretized 

form of the model equations are given in the following section. 

Use of the basic transformation relations between curvilinear (",e) and rartesian (x,y) 

coordinates results in the following transformed form of the model equations: 

'P'(1-2We .vy)+ We[(u. y,,-v .x,,)('P')~+(v ·xe-u .y~)('fYY),,]/J=2We"PY .v.+2vy (11.40.g) 

with 

au/ax = aZy,/ayax = -av/ay 

aulay = aZy,lay 

avlax = -a2wa~ 

(I1.40.j) 

(11.40.k) 

(11.40.1) 
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(ll.3.3) Discretization of the Transformed Equations 

The finite difference expressions for the first, second and mixcd daivatives that have 

been used in the discretization of the transformed form of the equations of motion 

follow. 

For the first derivatives, central differencing was used in the intcriOT of the tlow 

domain: 

(11.41) 

(11.42) 

Central differencing was found to work weil in the momentum equations. llowever, 

their application in the discretization of spatial stress derivatives resulted in an 

unstable algorithm. This was expected since the stress equations are hyperbolic in 

character. Appropriate discretization techniques that improve on stahility and 

accuracy will be discussed in the next section. 

In the interior of the tlow domain, the second derivatives appearing in the partial 

differential equations for the stream function and the vorticity were discretized using 

the following formulae: 

(11.43) 

(11.44) 

For the mixed partial derivatives, the following expressions can be used: 

(11.45) 
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(11.46) 

(11.47) 

On the boundaries, one-sided differences have to he used. These expressions for the 

first and second derivatives follow (Collatz, (1966»: 

(aflae). = (-f..2J + 4f...1J -3f.J)/2h (second order) (11.48) 

(first order) (11.49) 

(11.50) 

In Equations (11.48) - (11.50) the subscript (w) indicates boundary values. 

(11.3.4) Stability of Finite Difference Approximations and Upwind Differencing. 

The question of stability and accuracy is of major importance in the solution of 

partial differential equations, particularly in the case of equations containing 

convective terms. The simple one-dimensional convection-diffusion equation bas been 

used extensively as a model for the study of such equations. This equation, in one 

dimension, is: 

fa -a(x)ff. - b(x) = 0 (11.51) 

The conventional approximation of equation (11.51) with central differences used in 

the approximation of the first derivative is: 

(11.52) 
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This representation is stable when the local Grid Reynolds Number (1 Pli) satisfies 

1 pd < 1, where PI= O.5ha(x,)f,. By choosing the mesh size (h) sufficiently small, it is 

possible to always satisfy that stability condition. In practice howcver, mesh rcfinment 

is not always feasible because of the increased requirements in computer timc and 

storage. This is especially true when we are solving systems of several PDEs in higher 

dimensions. Therefore, there is a strong need for stable alternatives to the central 

difference scheme. 

The simplest alternative is to maintain the central difference approximation for the 

second d(.:rivative in equation (11.51) white using an one-sided approximation for the 

first derivative. Usually, backward differencing is used when f>O and forward when 

«O. The one sided difference is then always upstream or upwind of x., and the 

alternative scheme is: 

f.(x,) = (~-f~I)/h, (11.53.a) 

(11.53.b) 

This upwind scheme, termed "first upwind scheme" by Roache (1976), is 

unconditionally stable for ail values of the local grid Reynolds number. hs 

disadvantage is that it has only first order accuracy, with a truncation error 

(11.54) 

The first term in this expression, which is O(h), is frequently referred to as "fa Ise 

diffusion" or "artificial viscosity". It is larger than the true diffusion term in (11.51) 

when PI> 1, and it results in a smearing of sharp gradients of the variable f. Another 

method (Spalding (1972» uses a mixture of central and upwind differences. If PI< 1, 

the result is identical to central differencing, white if PI> 1 the convection term is 

approximated as in the upwind scheme. The advantage of this scheme is that it is 
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unconditionally stable, it has no artificial diffusion when PI"cl, whereas , when PI> 1 

the false diffusion is proportional ta the magnitude of (PI-l). A third method (Gentry 

et. al.(I966» displays something near the unconditional stabiJity of the upwind 

differencing, white retaining the second order accuracy of central differencing when 

the spatial variation in t!,;;: convective term (ff.) is small. This method involves an 

averaging of velocities on either side of the mesh point, together with an upwind 

approximation of derivatives. With reference to equation (41), we WTÎte: 

f· f.(x.) = (ff)J2 

with 

where, fr1=(~+f'+l)l2, fn=(f,+fl- l )/2, and 

when fr1>O, fa=f, 

fr1<O, f..z=~+l 

when fn >0, flz=fl- I 

fn<O, fa=fl 

(11.55) 

(11.56) 

(11.56.a) 

(11.56.b) 

(1I.56.c) 

(1I.56.d) 

(1I.56.e) 

Because of the false diffusion errors associated with first arder upwinding and the 

inherent stability associated with second order central differencing, none of the 

methods described above are completely satisfactory for high values of the local grid 

Reynolds number. There is always a decision to he made r~garding the amount of 

accuracy one is willing to sacrifice for stability and/or attainable computer times. 

In the context of this work, the numerical approximation of first derivatives is crucial 

in the raumerical solution of the constitutive equations. It was mentioned earHer, that 

the High Weissenberg Number Problem has been linked to the inadequacy of central 

differencing in the numerical solution ofhyperbolic problems. Other studies havt: also 
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shown that the accumulation of approximation errors can lead to numerical 

breakdown. It seems, therefore, that we dea) with a problem which requires both, 

accuracy and stability, features that most numerical schemes do not combine. The 

performance of central differences for the approximation of convected derivatives in 

the constitutive equation was evaluated at initial stages of this project and was found 

very poor as far as convergence was concerned. For a 4: 1 planar contraction flow, the 

maximum attainable Weissenberg number was only around 0.1. First order upwinding 

exteuded the convergence up to 0.32 for the same problem. In an attempt to extend 

the range of convergence even further, it was decided to use a third-order upwinding 

difference scheme (QUICK) proposed by Leonard (1979). This scheme has not been 

previously used in nLlmerical solutions of viscoelastic flows, but has performed weil 

in the modelling of highly convective flows (Ferziger, (1987». Ove rail, use of the 

QUICK scheme extended the range of convergence of the numerical algorithm up 

to We=0.7 for the 4:1 sudden contraction problem with a reentrant corner (section 

Il.5.1). However, its performance was better in non-singular problems (section Il.5.2) 

where the range of convergence was almost tripled (from De= 1.5 to De=4.2 in the 

smooth 4:1 contraction RI of figure II.5.2.1). 

(ll.3.4.1) The Quick Upwinding Scheme 

According to the QUICK method, the stresses at cell boundaries are obtained by a 

third order asyrnmetric interpolation using one downstream and two upstream points. 

This is equivalent to correcting a linear approximation of the cell coundary value by 

a term proportional to the upstream curvature of the interpolated data. If fR and fL 

indicate approximations of a function (f) at the points i + 1/2, i-l/2 (which are the right 

and left faces of the cell surrounding the point (i», the QUICK scheme uses the 

following interpolation formulae: 

(11.57) 
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(11.58) 

As a result of equations (11.57) and (11.58), the derivative at the point (i) is 

approximated by: 

(11.59) 

Equation (11.59) was used in the numerical discretization of the strcc;s equations. In 

modelling boundary conditions with the QUICK algorithm, both the wall value and 

the wall gradient are needed at each end of the computational region. The boundary 

stress values are usually given by a physical boundary condition. The boundary 

gradient must be chosen to be consistent with quadratic interpolation between the 

boundary value and the values at the first two interior nodes (fw.u f.+z)' This 

requirement gives: 

(11.60) 

Evidently, the extension of the QUICK method in two dimensions is straightforward. 

In that case, the appropriate discretization formulae in the (x) and (y) directions on 

a uniform mesh will be: 

(fll)oJ = (3fIJ + 3f,+1J - 7f .. 1J + f,.7J)/Sh (11.60.a) 

(11.60.b) 

where the indices (i) and U) correspond to the directions (x) and (y) respectively. 

(n.3.5) Transformation and DiscretÏzation of the non-Newtonian Source 

Function D(S) 
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In traditional finite differences based on rectangular meshes in cartesian coordinates, 

the non-N ewtonian source function D(S) can he discretized based on the 

computational molecule of Figure (11.3.5.1.a). The corresponding formula for the 

point (ij) would then he: 

DIJ = (SDI+IJ+I-SDI+lJ-l-SDlolJ+1 + S"\lJ-l-S"I+1J+1 + S"I+1J-1 +S"~IJ+I-S"~IJ .)/4. - S"I+ IJ-S'\ 

IJ+SIJIJ+I+SIJI,tI (11.61) 

In the context of general curvilinear coordinates, first derivatives are the only new 

derivatives introduced by the transformation of D(S). The computational molecule 

will therefore rernain unchanged if central or forward/backward differences are heing 

used for the evaluation of those first arder derivatives. If the QUICK scheme is used, 

the c.:.omputational mole cule will further incIude sorne new upstrearn points as shawn 

in Figure (II.3.5.1.b). The forrn of the function D(S) in general curvilinear coordinates 

is, after considerable algebra: 

D(S)= 

where 

A= 

B= 

c= 

D= 

F= 

AS"ee + BS"'I'I + CS""e + DS"" + FS"e + ~(SD-5")"e + Lz(sa-

5")'1" + ~(SD-S")H + L4(SD-S")e + Ls(SD_S")'I (11.62) 

«x"Y -(Y'lY)/P (11.63) 

«x()2_(YeY)/J2 (11.64) 

2(y 'IY cx"xe)/J2 (11.65) 

(-(x()D1 + (Ye)D2+ (xe)D3-(Ye)D4)/JJ (11.66) 

(D1(x'l)-(y,,)D2-(x,,)D3+(y'l)D4)/JJ (11.67) 
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Ca) 
i+1 

i 

i-1 

j-1 j j+1 

Cb) 

i+1 

i 

i-1 

i-2 
j-2 j-l j j+l 

Figure (D.3.S.I): Computational molecules associated with the discretization of 
the non-Newtonian source function D(S); (a) in cartesian 
coordinates, (b) in curvilinear coordinates with QffiCK 
upwinding. 
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... 

0 1= (X"y.ye( - 2.xe·x"·y,,e + (Xe)2. y",,) 

O 2= (x,,)2. Xe( - 2· xe' x,,' x"e + (ye)2. x",,) 

OJ= «y"tYe( - 2·Ye·y"·y,,e + (ye)2. y",,) 

0 4= (y"Y'Xe( - 2·Ye·y"·x,,e + (yeY'x"" 

(11.3.6) Solution of the Discrcte Equations 
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(11.68) 

(11.69) 

(11.70) 

(11.71) 

(11.72) 

(11.73) 

(11.74) 

(11.75) 

(11.76) 

There are essentially two distinct groups of methods for the solution of the system 

of algebraic equations resulting from the discretization of a partial diffcrential 

equation: direct and iterative methods. Direct methods are usually variations of 

Gaussian elimination, making use of forward and backward substitutions. These 

correspond to the decomposition of the coefficient matrix (A) into lower and upper 

triangular parts (L and U respectively), so that: 

A=L·U (11.77) 

To be efficient, direct methods require very careful programming, especially when 

large sparse matrices are considered. On the other hand, iterative methods have been 

used extensively in the solution of the algebraic equations resulting from the finite 
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differcnee approximation of partial differentiaJ equations. In faet, for very large 

systems, they are the only feasible methods. Beside ease of programming, iterative 

methods make good use of sparsity and structure and it is not necessary to store the 

coefficient matrix but sim ply to generate the non-zero elements when they are 

needed. In the context of this work, the iterative method of successive relaxation (SR) 

was employed. For the solution of the linear system 

A·x= b (11.78) 

the successive relaxation method employs the following decomposition of the 

coefficient matrix: 

A = E + F, where (11.78.a) 

E = Dia -l.., and F = Dia - (D-U) (11.79) 

where D, Land U are the diagonal, lower and upper triangular parts of A 

respectiveJy, and (a) is a relaxation parameter, 0<a<2. If o<a<1 the method is 

ealled under-relaxation, whereas for 1 <a <2 the method is termed over-relaxation. 

OveraJl, the iterative process will then be: 

(D - aL) .x'k+IJ = [(I-a)D + aU] .x/kJ + ab (11.80) 

The advantage of SR against the simple Gauss-Seidel iteration which utilizes the 

decomposition 

A = (0 - L) - U (11.81) 

and the iterative algorithm 
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(11.82) 

is that convergence can be accelerated with optimum choice of the relaxation 

parameter (a). In the context of this work, both methods have been used with 

success. 

The computational mole cules associated with the constitutive modc1 arc shown in 

Figure (11.3.5.2). (a) is the molecule corresponding to the Poisson Equation in 

cartesian coordinates, while (h) is the computational molecule for the same equation 

in curvilinear coordinates. (c), (d) and (e) are computational molecules associated 

with the constitutive equation in curvilinear coordinates. In (c), central diffcrcncing 

is used for the discretization of the spatial derivatives of the stress. (d) corresponds 

to first order upwinding while (c) is obtained when the QUICK scheme is used. 

For the solution of the stream function equation, and with reference to the 

computational molecules of Figure (11.3.5.2), the typical iteration will be: 

.J. (r+l) -
YIJ -

f(.~ (r+ 1) .~ (r+ 1) .1. (r+ Il .1. (r+ 1) .1. (ri .1. (ri .1. (rl.1. (r) (ri) 
"~IJ·I , "~IJ '''~1J+I , YIJ"I 'YIJ+I' 'f'i+1J-1 ''''+14 ''''+IJ+I , "'IJ 

(11.83) 

where [r] is an iteration indicator. 

Similarly, the iterative update for the vorticity at the grid-point (i,j) will be: 

w: (r+ll = 
IJ g( (r+l) (r+l) (r+11 (r+l) (r) (r) (ri (rI 

W-~IJ-I ,W;·IJ ,W;·IJ+I '<->1J-1 ,WoIJ+I' W;+IJ-I ,W;+IJ ,W,+t.I+I, 

D(S) .1. (r+11 .1. (r+11 .1. (r+l) .~ (r+ll) (11.84) 
IJ , "IJ+I '''oJ-I , "'+1.J , Y~IJ 

The stress values at the grid points are updated after the, iterative loop for the 

determination of the kinematics has converged. The iterative update for the stress 

components, with reference to the computational molecule corresponding to the 

QUICK scheme, will have the form: 
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Figure (11.3.5.2): 
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(h) 

j+l j-l j j+l 

(4) 

j j+l j-l j 

j-l j j+l 

(a): Computational molecule used in the solution of the Poisson 
Equation in Cartessian Coordinates, and (b), the corresponding 
mole cule in general curvilinear coordinates. (c~): 
Computational molecules associated with thl. numerical solution 
of the constitutive equation: (c); Central Differencing, (d) First
order upwinding, (e) QUICK scheme. 



-

1 

1 

T 
1 

rr [r+l)_ 
.l1J - h(T [r+l) T [r+!) T [rI rr Ir) T Ir+!) T Ir+!) .A. ) 

,1.1-2 , I.)-! , IJ+I , 11+1J' ~IJ , ~2J ' '" Co) 

where T is the vector of the (unknown) stress nodal values: 

with 'P" = {T'"IJ}' P = {1"\'}, 'f'Y = {'f'YIJ} 
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(11.85) 

(11.86) 

and • and Co) being the vectors of the nodal values of vort ici t Y and stream function 

obtained from the solution of the equations of motion. 

(ll.3.7) The Numerical Algorithm 

The problem to be solved consists of a set of 5 non-tinear, cou pIed partial differential 

equations. The kinematics (Equations (11.1) and (11.2)) form an elliptie system while 

the constitutive model (Equations (11.5) to (11.7)) forms a set of three hyperbolic 

equations. These equations are cou pIed through the kinematic coefficients in the 

stress equations and (hrough the non-Newtonian source functioIl in the cquations of 

motion. This coupling is a major stu llbling block in the numerical solution, mainly 

because of the different nature of the two sets of equé.tions. Two major approaches 

have evolved in the literature for the solution of the p.oblem: these are known as the 

coupIed and the decoupIed methods. In a cou pIed approach, the discrctizcd cquations 

are solved simultaneously for ail dependent variables (y" w and T), usually by means 

of the Newton iterative scheme. In the decoupled approach, one solves separatc\y for 

(y"w) and T. With known stress fields, the kinematie~ :ire updated and so on until 

convergence. The major advantage of a decoupled approach lies in the hrcakup of 

the total problem into an elliptic kinematic and a hyperbolic stress sub-prohlem. 

Appropriate numerical methods that take into account the nature of the two sub

problems can therefore te used. Both integral and differential constitutive models 
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can be treated in the context of decoupled methods, whereas coupled methods can 

only accommodate differential models. It has been stated (Keunings, (1987)) that the 

major disadvantage of decoupled methods is the slow convergence of the successive 

relaxation algorithms usually employed in the solution of the discrete systems and the 

lack of intermediate information regarding the qualitative behaviour of the numerical 

solution, usually obtainable from the Jacobian matrix in a coupled approach. 

Published results indicate that both, coupled and decoupled methods suffer from high 

computational requirements in CPU time. Study of the qualitative behaviour of the 

solution can only be accomplished using Newton-Raphson iteration, but this can be 

done in the context of both cou pIed and decoupled techniques. 

In this woric, the non-linear coupling between stresses and kinematics was accounted 

for by separate solution of the corresponding equations, therefore adopting the 

decoupled method. Each set of discretized equations was solved iteratively by a 

successive relaxation algorithm. 

ft has been suggested by several authors (Crochet et al. (1984)) that values of the 

unknown vectors be smoothed after each iteration by a formula of the form: 

(11.87) 

However, apart from smoothing of iterative updates of the boundary vorticity which 

is sorne times essential for convergence, smoothing always reduces the speed of 

convergence of the iterative algorithm. It should therefore be employed only if 

convergence can not he achieved without it, as is the case when higher values of We 

and/or Re are used or in geometries involving abrupt changes in the shape of the boundaJy. 

Another point of considerable importance is the choice of the initial guess vectors. 

For low values of the elasticity parameter,the quality of the initial guess will 

detcrmine the number of outer iterations required for convergence, whereas for 
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relatively higher values of We the quality of the initial guess will determine whcther 

the algorithm will converge at ail. Continuation with respect to the elasticity 

parameter (We) is therefore advisable, even though continuation with respect to bath 

We and Re has also been reported (Walters alld Webster, (1982)). Given the small 

effect of the elasticity on the kinernatics. of a Maxwell tluid, at lcast for small 

incrernents of the elasticity parameter, the algorithrn that was utilized in the present 

study employed a continuation approach, where the solution for a givcn Wc was used 

as an initial guess for the next We (We(I+I)= We(ll + dWe), starting from the 

Newtonian solution as the first guess. The computational algorithm can he outlined 

as follows: 

(a) Initialize by solving the Newtonian problem (We=O.O). 

(b) Update the Weisenberg nurnber (We'+I=We, + dWe). 

(c) Solve the stress equations «(11.5) to (11.7)) for the new We. 

(d) Update kinernatics (solve equations (11.1) and (11.2), with stresses caIculated 

at the step (c). 

(e) Continue with steps (c) and (d) until convergence. 

At each of the steps (c) and (d), itera tion was terminated when the norm of the 

iterative corrections, defined as: 

was Jess than 10-6. For the outer iteration, a tolerance of 10-4 was usually employed. 

If, at sorne stage, divergence was detected (usually that occurred in the solution of 

Equations (11.5)-(11.7), step (c)), the incrernent ofWe was halved and the calculations 

repeated, until convergence was obtained or until the required dWe became smaller 

than a prescribed tolerance. 

(ll.4) VALIDA 110N OF TI-IE NUMERICAL ALGORITI-IM 
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The objective of the following section is to compare numerical predictions of this 

work with available numerical and experimental results from the literature. 

(11.4.1) Comparisons with NumericaJ and Experimental Resu1ts from 

Uterature. 

The flow of Ne\\1onian and MaxweJ) fluids in a bend and in a 4: 1 sudden contraction 

has been studied, amongst others, by Perrera and Walters (1977), Kawaguti (1969), 

Cochrane et al. (1982) and Song and Yoo (1987). In this section, numerical 

predictions of the present work are compared to numerical and eÀperimental results 

reported in these references. 

Figure (11.4.1) shows the streamlines in a bend at Re = 48. Continuous lines 

represent the present solutions, while (0) are results of Kawaguti (1969). It can be 

concJuded that the agreement is quite satisfactory. CaJculated vorticity ~ontours are 

compared with simulations of Cochrane et al. (1982) in Figure (11.4.2). Solid lines 

represent the solution of Cochrane et al. while broken !ines are results of the present 

work. Again the agreement is quite good. 

Figure (11.4.3) is a compari~on between computational results of the present work 

and experimental velocity .asurements taken from Cochrane et al. (1982). The 

agreement is very good for the transverse velocity, but poorer for the longitudinal 

velocity. However, given the uncertainties involved in the experimental measurements, 

it is concJuded that the numerical predictions are in reasonablc agreement with those 

experiments. 

Regarding the tlow of a MaxweIJ tluid, the predictions of this work were compared 

to the simulations of Song and Yoo (1987). In general, very good agreement was 
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Comparuon betwecn the present solution (solid lines) and the 
solution of Kawaguti (markers) for Newtonian flow in a bcnd. 
Contours are values of the stream function. 
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Comparison between the present solution (broken lines) and 
the solution of Cochrane etaI. (solid lines) for flow in a bend 
(contours are vorticity levels). 



l 

Figure (II.4.3): 
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Comparison bctween simulation results (solid lines) and 
experimental velocity measurements from Cochrane ct al. 
(broken lincs). U and V are vclocities in the horizontal and 
transverse directions respectively. 
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observe d, even though the numerical technique employed in this study did not utilize 

a type switching algorithm. Sample comparisons are given in Figure (11.4.4). Further 

results for the flow in a bend and a sudden contraction, as weil as qualitative 

comparisons with existing simulations are given in following section. 

(0.4.2) Quantitative Comparisons with Standard Software 

As of today, the combined shear and extensional flow of viscoelastic fluids in 

contractions and expansions has no known analytical solution. Ali the above 

comparisons have been made with reference to published numerical solutions of 

Newtonian or viscoelastic flows. Therefore, comparison of numerical results with 

exact solutions is bound to be incomplete. However, along an axis of symmetry, the 

flow is shear-free, and the constitutive model reduces to a set of two ordinary 

differential equations. 

We.u.(dT""/dx) + (1- 2.We·lls)·-P- = 2·u. (11.88) 

We.u.(d'P'/dx) + (1- 2.We.v,).'P' = 2.v, (11.89) 

with'PY = O. 

ln the following, the results of the proposed computational algorithm along the axis 

of symmetry (in this case the curvilinear grid covers the complete contraction (Figure 

(11.4.2.1» and not only the upper hait) are compared to the results obtained by 

integration of Equations (11.88) and (11.89) using a standard and reliable ODE solver, 

namely the IMSL routine IVP AG which utilizes Gear's algorithm for stiff systems. 

The velocities and velocity gradients appearing in the constitutive equation were 

cakulated by the proposed numerical algorithm, with second order accurate central 

differences in the representation of au/ax. As can he seen in Table (11.1) the 



Figure (11.4.4): 
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Predicted YY-normal stress patterns; solid lines from Song & 
Yoo (1987), broken lines from present study. Contour levels 
are: (A):-0.85, (B):-0.55, (C):-O.25, (0):-0.10, (E):O.I, (F):0.9. 
DimensionJess quantities. 
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Figure (ll.4.2.1): 

ss 

Curvilinear grid on the complete 4:1 sudden contraction, 
used for comparison of the proposed numerical solution 
with standard software 
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P) Maximum Difference (%) 

= 
0.0 0.5 

0.3 0.6 

0.5 1.1 

0.7 0.8 

Table (II.1) Difference (%) bctween the two numcrical solutions along the axis of 
symmetry in an abrupt 4: 1 contraction. The comparison is for the 
dimensionless xx-stress. 
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agreement is very good. 

(11.4.3) Grid Refinement Studies 

It is known th"t the quality of a numerical solution depends heavily, besides the 

numerical algorithm itself, on the finite difference or finite element mesh that has 

been employed.For non-singular problems, like the ones considered in this section, 

infinite grid refinement should lead to the co.:ect solution of the prublem - if su ch 

a solution exists. However, because of computer time considerations it is not always 

feasible to use highly refined meshes. The objective of this section is to examine how 

much the numerical predictions change with varying grid size and configuration, as 

weil as whether these changes are localized or global. For this purpose the geometry 

of a 4:1 contraction with a rounded corner and two groups of computational grids 

have been employed. In the first, the grids have Il horizontal lines and 42, 62 and 

75 verticallines (Figure (11.4.3.1». The grids of the second g oup are the sa me as in 

Figure (11.4.3.1), but with 21 equidistant lines in the horizontal direction. The highest 

concentration of nodes is in the entrance region, in an attempt to refine the vùrticity 

calculations in that area. Table (11.2) summarizes sorne results for the flow of a 

Newtonian and a Maxwell fluid at Re=2.0. 

The maximum value of the vorticity occurred near the entrance of the narrow tube, 

at a horizontal distance of approximately, 4.85. The grid size did not appreciably 

affect the location of this maximum. As is further explained in APPENDIX (A4) the 

wall vorticity is calculated by Equation (11.1) which requires numerical evaluation of 

one-sided second orGer derivatives of the stream function. This is an operation very 

sensitive to the grid size and shape near the wall, even more so near 1"egions of strong 

boundary curvature. This retlects into maximum wall vorticities changing with grid 

size. It is interesting to notice that this difference is decreasing with increased 

resolution, a trend suggesting convergent solutions. The strength of the calculated 
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Meshes used for grid refinement studies in a 4: 1 
contraction with smooth edge. 
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vortex decreases with grid refinement. NevertheJess, for the finer grids (d), (e), (t) 

(TabJe(II.2», this change becomes progressively smaIJer, suggesting that the 

caJcuJated vortex is not a numericaJ artifact (on trus point further evidence is given 

in Section (11.5.2». 

The vorticities caJculated in the vicinity of the corner along the i = imax-l line were 

much Jess affected by the grid size - the maximum differences being Jess than 10%, 

and there was practicaIJy no difference at a distance further away from the waJI. 

Since, on no-slip walls parallel to the x-axis, the xx-normal stress is proportion al to 

i, it is understandable why published simulations show the wall stress to depend 

strongJy on the grid size and shape (Marshall and Crochet, (1987». 

(11.5) CASE S'lUDIES 

(11.5.1) The 4:1 Sudden Contraction 

In the following the steady state isothermal flow of a Maxwell tluid through a 4: 1 

planar contraction is studied. This geometry has been the subject of extensive study, 

bath computationally and experimentally (Cable and Boger (1978), Boger et 

al.(1986». A review is given by White et al. (1987). For this reason it serves weil as 

a starting point in testing the performance of the BFCC approach. The flow channel 

has the foJlowing characteristics: 

Upstream Radius : 2.0 

Downstream Radius: 0.5 

Total Length : 10.0 

The contraction was located at a distance 4.8 from the entTance. The inlet velocity 

profile was the one used by Song and Y 00 (1987): 
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Grid Wmu Vortex strength (%) 

(a) (b) (a) (b) 

(11*42) (a) 1l..25 (12.02) 1.13 (2.05 ) 

(11*62) (b) 14.02 (14.38) 1.04 (1.75) 

(11*75) (c) 16.17 (16.43) 0.97 (1. 54) 

(21*42) (d) 10.99 (12.11) 0.48 (1.26) 

(21*62) (e) 14.28 (14.51) 0.44 (1.22) 

(21*75) ( f) 14.93 (15.07) 0.42 (1. 20) 

Table (ll.2) Influence of Grid Refmment 00 Computatiooal Results (a): Newtooiao 
Fluid, (b): Maxwell Fluid (De=1.7). 



-. 

61 

u=O.375· (1.0 - '1/4), 0<y<2.0 

Previous research regarding the simulation of elastic Oows in abrupt contractions 

suggests the folJowing: 

(a) The presence of singular stresses at the re-entrant corner renders the 

computations very demanding in its neighbourhood. Grid refinement has not 

solved the problem of numerical breakdown, and in certain cases it has an 

adverse effect on convergence (Keunings (1986), Lipscomb et al. (1987). The 

treatment of the singularity at the re-entrant corner is a very important 

research topie by itself. At this point, it is only mentioned that the nature of 

this viscoelastic singularity has only been established for a second order fluid, 

and therefore, proper techniques for dealing with the stresses at the 

neighbourhood of singular points are, in general, not available. 

(h) The size and configuration of the eomputational grid have a remarkable effeet 

on buth, model predictions and stability of the numerical solution (Davies et 

al. (1984)). 

(c) Errors in the discrete (FD or FE) approximation of the stress gradients 

appearing near the re-entrant ~, l"r accUItlulate and lead ta eventual 

breakdown (Mendelson et al. . Dupret et al. (1985». These error& 

increase sharply as the Welssenberg Humber increases, since, in that case, the 

correspond mg stress gradients become steeper. In an effort ta deal with 

unrcalistically high stresses, Apelian et al. (1988) proposed the introduction 

of a strain dcpcndent reltLxation time, that would a]]ow the fluid ta approach 

Newtonian hehavlOur as the stress levels increase. On the other side, Marshall 

and Crochet (1987) used stress sub-elements in arder to ohtam a more 

accurate repre~cntation of the stress field. It is interesting ta notice that this 

partial griù rermement has resulted, in their work, in oppusite results than a 

glohal (that is, for hoth (w),(J/l) and (T) grid refinement produœd in previous 

puhlications. Whether this staggered discretization or the upwind 
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differentiation that was employed is the reason for the dramatic improvement 

in the convergence of the algorithm. is not c1ear. 

(d) Beside affecting the accuracy of the stress evaluation, numerical errors are 

further introduced in the model equations by the non-Newtonian source 

function (D(S), Equation (3)), which inc1udes second derivatives of the 

components of the elastic stress tensor. This is the apparent rcason why 

integration of the constitutive equation with Newtonian kinematics gives 

convergent solutions for higher values of the elasticity paramcter than the 

solution of the complete coupled problem. Oavies (1984) has dcmonstrated 

how such approximation errors are responsible for the loss of convergence in 

Picard-type solutions of creeping flows of second order tluids. 

Since the problem of treating a local singularity is out of the scope of this work, this 

presentation focuses on the global characteristics of the flow and stress fickls, rather 

than on their specific values at the re-entrant corner. As expected at a singular point, 

the corner values of the stresses and vorticity are very much grid-dcpendent. 

Simulations with the various grids of Figure (11.5.1.1) gave corner v()rticitie~ betwecn 

18 and 43, for Re =2.0 and Newtonian flo\\'. In following section, rcsults in "rounded" 

4:1 contractions are presented, in (ln attempt to inve~tigate whether any fL:.Iturcs of 

the flow and strc,>s fields are influenced by the presence of the sharp corner. 

(11.5.1.1) Stress Patterns 

The stress build-up and relaxation In an elastic tluld as It f1()W~ through a complex 

channel are of major Importance In several polymer procc~~lng operation~. Warpage 

can be the result of frozen-1l1 stresses that werc not give sufflcicnt time to relax In 

injection molded parts, wh Ile very hlgh Wé ii ~tre~se~ III extru:-'Ion LlIc~ céln re,>ult In 

surf?ce defIclcncies of the extrudate. It IS therefore very de~irélhle for dC'>lgn and 

optlmization purposes, to predl<:t the spatial dI~tflhution of ~h~ar anù normal ,>trc~'Ics. 

The distribution of the shear stress in tlle 4: 1 (. ontraction is deplcted III Figure 
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Figure (IL5.1.1): 
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lAI 

Grids COnstTUcted on a 4:1 sudden contraction; (A): 
P=Q=O, (B): attraction to the upper boundary, (C) high 
concentration of grid tines near the rcentrant corner. 
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(11.5.1.1.1) for two values of the relaxation time. The effect of the geometry is 

manifested by the presence of a low shear region at the upstream corner of the 

contraction. This region has been shown to decrease as the contraction bccomes 

more streamlined, but is relatively unaffeeted by the elasticity of the tluid. Ilowever, 

as the elasticity of the material increases, the iso-stress contours shift slightly 

downstream. This is expected, since for higher relaxation times, the tluid stress adjusts 

more slowly ta the changing veIocity field. The shear and normal stress patterns in 

a contraction for We =0.32 are given in Figure (11.5.1.1.2). Ovcrall, it has heen 

observed, that increasing the tluid elasticity results in reduction of the size of the area 

of negative P. The yy-normal stresses ncar the center of the cavity also dccrcase in 

absolute value as the tluid elasticity inereases. Ali thcse results are in gcneral 

agreement with the simulations of Song and Yoo (1987), and Choi et al. (19RR). The 

1 on-smooth contours observed in these figures arc artifacts of the graphic~ package. 

No wiggles exist in the soJuti'::>n as evideneed by liIle graphs (Figure 1l.5.1.1.3, 1l.5.2.8). 

The stress profiles along the axis of symmetry were practlCally unal'fLcted by the type 

of kinematics used in the integration of the con~titutlve mode\. 1 lowever, the stress 

profiles near the wall wcre found to be very sensitive to the kinematics of the tlow. 

Figure (11.5.1.1.3) glves a cumparison of the ~trcs~ prolde~ ohtailll:ù whcn the 

constitutive equatlon is intcgrated uSlIlg Newt0!1lan (dnlted) and non-Ncwtonlan 

kinernatics (solid li ne). SpcClflcally, the non-Newtonian kmc11J(\tlc~ were ()ht:llncù hy 

complete solution of the pertmcnt ~et of equatiom, using the continuation appfllach 

described earller, Wlth a max.II11UITI step ~ize III the Wei~~cnhcrg numhcr cqllal to 0 01. 

In the first ca~e. the stress peak IS llluch smallcr and the ~tre,>~ ulllkr~h()ot 

disappears. This sh()w~ that stress over· and unùer~hoot arc not lIlhcrent propcrt!e~ 

of the constitutive model, hut arc rather induccd hy the ~rcclfic kl!lematlc~ and the 

specifie gCO!llctry of the contraction Tlm is further ~upported hy the ~lIl1L1lati()n 

results of part (11.5.2) in rounded 4: 1 contractions. 
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Re=O.l 

~ - - - __ 4.0 --- ------------ -------

Figure (IL5.1.1.1): Dimensionless shear stress I~I distn1>ution in a 4:1 
contraction. Solid line: We=O.7, broken line: We=O.01 
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Figure (ll.5.1.1.2): DimensionIess stress contours on a planar 4: 1 contraction at 
We=0.32 and Re=23. 
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Figure (n.5.1.1.3): Effect of kinematics used in the integration of the UCM mode] 
on the dimensionless xx-normal stress along the i = Il coordinate 
line. Solid lines correspond ta viscoelastic kinematics; datted 
lines to Newtonian kinematics. Grid (A) of Figure (il.5.t.1). 
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(11.5.1.2) Flow Patterns 

In a specifie flow geometry, inertia and elasticity are the dominant factors that 

de termine the form of the flow field. Keeping in mind that the effect of elasticity 

should never be dissociated from the Reynolds number (Pilate and Crochet, (1977)), 

the effect of the relaxation time on the form of the flow field at the entry section at 

various levels of inertia is examined. Experimental evidence suggests that the vortex 

activity in planar flows is rather weak compared ta the axisymmetric flows. The 

maximum vortex activity appears at very low Reynolds number, and reduces as the 

inertia of the fluid increases. 

Figure (11.5.1.2.1) gives the streamlines of a Newtonian fluid at three Reynolds 

numbers. The predicted recirculation region decreases in both size and intensity as 

the inertia of the fluid increases. There is practically no recirculation at Re=6.0, 

whereas at near creeping flow conditions (Re=O.1) the relative strength of the 

predicted vortex is 1.14 %. At Re=2.0 the relative strength of the vortex is reduced 

to 0.76%. The corresponding streamlines for a Maxwell fluid are givcn in Figure 

(11.5.1.2.2). It is intcresting to observe that, in the viscoelastic case, a second vortex 

appears at the lip of the contraction (lip vortex), which seems to be less affccted by 

the inertia of the fluid than the corner vortex. It has been suggested that this vortex 

is a numerical artifact associated with the ad-hoc approximation of the corner 

vorticity based on Kawaguti's method. This vortex dlsappears whcn the corner 

becomes streamlmed (section 11.5.2), and that is an indication that the hp vortex 

might indeed be a numerical artifact. 

(11.5.2) Smooth 4: 1 Contractions 

In this section, the flow and stress patterns in 90" non-abrupt contractions arc studied. 

Such configurations are of practical importance, since a perfectly sharp corncr is a 
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Figure (ll.5.1.21): Streamlines of a Newtonian fluid in a 4:1 abrupt contraction at 
various levels of the Reynolds number. 
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Figure (Il.5.1.2.2): Streamlines of a Maxwell fluid (We=O.7) in a 4:1 abrupt 
contraction at wrious levels of the Reynolds numbcr. 
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mathematical idealization, having no counterpart in the real world. The types of 

rounded corners studied along with the computational grids are shown in Figure 

(11.5.2.1). The treatment of curved boundaries like the ones introduced by the smooth 

edges of the contraction presents no difficulty in the context of boundary fitted 

curviJjnear coordinates. This is a great ad\antage of the BFec approach, since it 

allows a unified treatment of practically any kind of flow field, without the need to 

resort to sharp corners in order to accommodate a rectangular finite difference mesh 

or to tedious and often inaccurate boundary interpolations. Jn the following, the 

creeping flow (Re=O.l), of an upper convected Maxwell fluid is analyzed using 

various meshes. The problem of viscoelastic flows in pl anar contractions with smooth 

corner has not received large attention in the literature, even though it is an excellent 

candidate for meaningful grid refinement studies (Rosenberg and Keunings, (1988)). 

Figures (11.5.2.2) and (11.5.2.3) show the streamlines in the two 4:1 contractions of 

Figure (11.5.2.1) at various elasticity levels. It is obvious that both the size and the 

strength of the corner vortex decrease as the re-entrant corner becomes more 

streamlined. This is true for Newtonian as weIl as for elastic fluids. The strength and 

size of the vortex increase with eJasticity, a fact also obscrved experirncntally in Boger 

fluids (Bager et.al. (1986)). The predicted vortex strength was found to decrease with 

grid refincrncnt, as can be scen in Figures (11.5.2.4) and (11.5.2.5). However, when the 

grid refinement became too extensive, the reduction in the size and strcngth of the 

predicted vortex was proportionally smaller. Furthermore, the increase in strength of 

the secondary flow with elasticity was predicted in ail meshes, regardless of mesh size; 

this lcads ta the conclusion that the predicted recirculation is not a numerical artifact, 

even though its ~pecific strength is indeed grid dependent. In the smooth geometries 

examined her~, grid refinement also led to significant increase in the range of 

convergence, contrary to what previous research has found for the sudden 4:1 

contraction. This finding corrobora tes the assumption that the stress singularity at 

points of strong boundary discontinuity is, at least partially, responsible for the High 
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The rounded corner geometry and part of the computational 
grids used in the simulations 
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(in vortex: 0.5005,0.501,0.502,0.503) 

Figure (11.5.2.2): Streamlines of a Maxwell fluid in the Rl rounded-comer 
contraction at two elasticity levels 
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Streamlines of a Maxwell fluid in the R3 roundcd corner 
contraction at two elasticity lcveIs 
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2.5 ~-----------------------. 

~~~~~~II~~~~~~ 
0.0 0.0 0.5 1.0 1.5 2.0 2.5 4.5 

Figure (ll.5.24): 

De 

Effect of fluid elasticity (De =.\ ·7-J on vortex strcngth 
in various meshes for the roundcd corner geometrics RI 
and RJ. The vortex strength is detined as the (%) ratio 
of the circulation in the vortex to the total flowmte 
through the contr"dction. 

a 
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0.5 1.0 

Figure (ll.5.2.5): 
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R3(21·45) 

2.0 2.5 
De 

Effect of fluid elasticity (De=.\'l-J on vortex size in 
various mf'.shes for the rounded corner geometries RI 
and R3. 
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Weissenberg Number Problem. 

Figure (IJ.5.2.6.A) gives the xx-normal stress along the waJ! for the two smooth 

contractions at two !evels of elasticity. 21* 42 grids were used in these simulations. It 

is obvious that increasing (À) increases substantially the stress level in both 

geometries. Furthermore, the sharper contraction (dotted line) is associated with 

much sharper stress gradients than the smoother one (solid lines); this partially 

explains the smaller Iimiting Deborah number in the sharper contraction (2.5 as 

compared to 4.2 in the smoother contraction RI). The strl.:"ss along the wall in the 

smoother geometry RI is further shown in figure (II.5.2.6.B) for a wider range of 

elasticity. Of interest is the transition from fairly smooth to substantially osci!latoI)' 

response; this oscilIatory behaviour signaIs the onset of numerical breakdown. The 

xx-normal stresses along the 20t h coordinate line (the one closest to the wall) are 

shown in figure (11.5.2.7). Comparing to Figure (11.5.2.6), it can be seen that the stress 

response immediately near the wall is much smoother than that on the wall -still with 

a small amount of overshoot. 

The stress buila-up and relaxation in the vicinity of the re-entrant corner is of large 

practical interest, since this is an area of extreme conditions, where the tluid 

experiences combined shear and elongational flow. However, non-isothennal effects 

resulting from poor wall temperaturc control and/or viscous heating can influence the 

accuracy of measurements in that r~gion. Aldhouse et al. (1986) found that the 

accuracy of birefringence measurements near the wall was severely affe;~ted by non

isothermality. On the other side, the behaviour of the stresses along anJ near the 

centerline is interesting, because this region is reasonably free of thermal gradients. 

Therefore, cc:nterline stresses can be measured accurately and easily related to 

velocity data. Figure (11.5.2.8) presents the xx- and yy-normal stresses along a tine 

very near to the axis ofsymmetry (i=2, 21*42 grid, distance From centerline at entry 

0.1). The xx-stresses increase and the yy-normal stresses decrease in absolute value 
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Figure (ll.S.26): Dimensionless xx-normal stresses along the wall in a 21*42 and 
21*45 meshes in the geometries RI and R3. (A): Solid line 
corresponds to RI and dotted line to R3; (B): Geometry RI. 
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Figure (11.5.21): Dimensionless xx-normal stresses along the i=20 
coordinate line (c1osest to the wall) in a 21·42 mesh in 
the geometry R3. 
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Dimensionless xx- and yy-normal stresses along the i=2 
coordinate Une (near the centerline) for various values 
of the relaxation time in the geometry R3. 
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with increasing relaxation time. In both cases, the stress maximum IS shifted 

downstream Wlth increasing elasticity and the tube length required for the stresses to 

reach their downstream fuily developed values also increases. This behaviour is in 

agreement with a theorctlcal analysis of the stress equations along the axis of 

symmetry and also with available experimental evidcnce (Aldhouse et al. (]986). 

Stress contours in the contraction (RI) are shawn in Figure (11.5.2.9). The effcct of 

elasticity in the xx-stress pattl;'TnS is further shawn in figure (II.5.2.lO). Clearly, the 

region of negative T IX shrinks with incre?:;ing elasticity, while the stress Icve1 in the 

downstream tube increases. The veloci.ty along the centerline for the smoother 

conlraction (R 1) is also shown in Figure (11.5.2.11) for a range of the relaxation 

times. Velocity overshoot, chmacteristic of elastic fluids, is present; its int<.~nsity 

increases with the relaxation time of the tluid. 

(n.5.3) Flow in a 20:1 Tapered Contraction 

In this section, the steady, isothermal flow of a Maxwell tluid in a 20: 1 tapered 

contraction is considered. This type of geometry, with wans that are not Hnes of 

constant x or y in a Cartesian coordinate system, is rather very difficult to solve with 

traditional finite differences. On the other hand, il is a routine problem, at least from 

the discretization point of view, if one uses BFCCs. ln the context of finite elements, 

this problem has been treated by Marshal and Crochet (1987), who presented certain 

features of the solution at very high Deborah numbcrs. 

The geometry, a!ong with the computational grid, are shown in Figure (11.5.3.1). Fully 

developed velocity profiles have been assumed at the inlet and outlet sections and no

slip walIs. Sample results regarding the vorticity and stress distributions in this 

contraction are given in Figures (11.5.3.2) and (11.5.3.3). 

(n.5.4) Flow in a non-Symmetric Otannel 



82 

g f e c 
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Figure (11.5.2.9): Dimensionless stress contours on the contraction RI. Re=O.l 
and l=0.67S. Contour values are (in alphabetical order): For 
r-; 10, 3, 2,1, 0.5,0.3,0.2,0.1,0,-O.lS,-O.2 For "P'; 0.7, 0.6, 0.4S, 
0.3,0.15,0,-0.15,-0.3,-0.4,-0.6. For T'; 3, 1.5, l, 0.75,0.5S, 
0.45,0.35,0.2. For rr--1"); 10,4,23, 2,1,0.5,0.1, 0, -0.2,-0.4 
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Figure (II.5.2.10): Effect of clasticity on the dimensionless xx-normal stress in the 
contraction RI. Re=O.I 
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Figure (II.5.211): Centerline velocity in the roonded corner contraction RI at 
various elasticity levels. 
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Figure (n.5.3.!): 
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The geometry and the cumlinear mesh used in the study 
of the 20: 1 tapered contraction. 
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xx-normal stress, 20:1 Contraction, We=O.15 
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yy-normal stress, 20:1 Contraction, We=O.15 

Figure (ll.5.3.2): Dimensi?nless xx- and yy-normaJ stresses in a 20:1 tapered 
contraction at We=O.15 

86 



1 

1 

T 
• 

87 

Vorticity, 20:1 Contraction, We=O.l 
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Figure (ll.5.3.3): 
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Vorticity distnoutions in the 20:1 tapercd (",ontraction at 
We=O.1. (B): Corner detaiI. 
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It was argued earlier that the major incentive behind the use of BFCCs is the 

simulation of flow in channels of arbitrary geometry. Ability to analyze flow problems 

in arbitracy domains allows for the study of flow phenomena not only as functions of 

the material parameters but also as functions of the flow channel itself. In the 

follr .ng, the flow of a Maxwell fluid with We=O.7 through the non-symmetric 

contraction of Figure (11.5.4.1) is briefly aîlalyzed. Since one corner of this contraction 

is sharp and the other is smooth, the resuJting stress and flow patterns are 

significantly different from t hose in the symmctrical4: 1 contraction studied previously. 

The streamJines are given in Figure (II.5.4.2.A). Smoothening of the upper corner 

results in the disappearance of the upper recirculation vortex. The fluid is pushed 

upwards by the sharp corner and then converges into the downstream tube. This is 

evident by observing the flowpath of a particle injected at the center of the upstream 

tube (streamline with ~=O.75). Qualitatively, this result is similar to experimental 

observations by Evans and Walters (1986). This geometry-induced redistribution of 

the velocity field affects significantly the stress patterns. Figure (II.5.4.2.B) shows the 

shear stress ~.l the contraction. Evidently 'P1 is not symmetrical, with higher shear 

present at the upper half of the flow channel. 

The first normal stress difference (Nt) is shown in Figure (11.5.4.3). Again the pattern 

is asymmetric. Evidently, the lower part of the contraction is occupied by an extensive 

region of negative ('fD-'PY); the region of negative ("f'a-'PY) in the upper part of the 

channel is considerably reduced. From the Nt patterns, it is evident that the fluid 

experiences different deformation in the upper and tower half of the channel. In the 

upper half, stretching in the longitudinal direction is predominant, whereas at the 

lower half the fluid is mainly stretched in the transverse direction. 

(11.5.5) The Contraction/Expansion Problem 

In this section, a smooth 4: 1 contraction/expansion problem is analyzed. This is an 
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Figure (115.4.1): 
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The geometry and the curvilinear mesh used in the study 
of the 4: 1 sudden contraction with asymmetric entrance 
region. 
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Figure (D.S.4.3): Dimensianless principal stress difference cr--1") in a non 
symmetric 4: 1 planar contraction. 
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important problem in the polymer processing industry and has received considerable 

attention in the literature (Perera and Walters (1977). The geometry and the 

computation al grid are shown in Figure (11.5.5.1). Because of symmetry only the flow 

in the upper half of the flow channel is analyzed. The radius of the upstream and 

dùwnstream parts is R1=4.0, while at the tip of the contraction, t~e radius is Rz=1.0. 

A fully developed velocity profile is assumed at the inlet: 

u(y) = \10(1. - (O.2S*y)Z) ,0<y<4 

The length of the outtlow region was determined, iteratively, as the length required 

for stress and kinematics to reach the 99% of their theoretical fully developed values. 

The computational domain was then adjusted accordingly. In this contraction 

/expansion, the absence of a constant diameter section between the converging and 

diverging sections, as was the case in Perera and Walters (1977) complicates the 

problem, since the stresses which build up during the entry flow relax in an 

environment of rearranging velocity in the downstream diverging section. 

An interesting elastic effect in expanding flows is the suppression of the secondary 

flo'N that is usually present in the expanding section at moderate and high values of 

the Reynolds number, with increased elasticity. Figure (11.5.5.2) shows the streamlines 

in the geometry of Figure (11.5.5.1) at Re= 12.0 for a range of the elasticity 

parameter. Evidently, the intensity and size of the secondary flow is reduced as the 

elasticity of the material is increased. Figure (11.5.5.3) summarizes results regarding 

the size and strength of the secondary flow at various elasticity levels. In that figure, 

the vortex strength is defined as 100·(,_-"-)/;....) and the vortex size (here, the 

relative detachment length) is defined as 1 00* (L...ILn), with Ln and Le being the 

detachment lengths of the Newtonian and the elastic fluid. When the relaxation time 

increases from 0 to 0.22, the vortex detachment length is decreased to about 80% of 

the Newtonian value, white the strength of the secondary flow decreases from 3.8% 

to about 2.4% . 
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The geometry and the curvilinear mesh used in the study 
of the contraction/expansion flow. 
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Elastic Vortex Reduction 

Figure (11.5.5.2): 
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Secondary flow in the contraction/expansion problem at 
various elasticity levels. Re= 12.0. 
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The xx- and yy-normal stresses in the same geometry are shnw in Figure (11.5.5.4). 

In both cases, the effect of elasticity can he seen in the slower stress decay to the 

fully developed values in the expanding section. The xx-normal stress along the wall 

as weil as the wall vorticity are shown in Figure (11.5.5.5) for a range of relaxation 

times. Intercstingly, the peak in xx-stress increases dramatically with elasticity; this 

increase is partially responsible for the numerical breakdown at higher elasticity 

levels. Similar, but tess severe behaviour is also observed regarding the wall vorticity. 

Finally, the errect of inertia on flow patterns and vorticity distributions is shown in 

Figures (11.5.5.6) and (11.5.5.7). 

(0.5.6) Flow in a Bend 

In this section, the flow of Newtonian and Maxwell fluids in a bend is briefly 

analyzed. An extensive analysis of the flow of an Oldroyd - B fluid in this geometry 

has been given by Perera and Walters (1977). 

The geometry and the computational grid, which was constructed with coordinate 

Iines normal to the upper wall, are shown in Figure (11.5.6.1). The vorticity 

distributions in a Newtonian fluid at Re=48 and Re= 16 are given in Figure (11.5.6.2). 

It can be seen that a region of high vorticity develops at the wall opposite of the 

corner of the bend, who:;e intensity increases with f1uid inertia. This is in qualitative 

agreement with the work of Liou et al. (1984) in a curved bend. A detail of the two 

vortices that form at Re=48 is given in Figure (11.5.6.3). The distribution of vorticity 

in a Maxwell fluid at the neighbourhood of the re-entrant corner is shown in Figure 

(11.5.6.4). An elastic erfeet is a slight reduction of the vorticity near the wall 

downstream of the re-entrant corner (Perera and Walters (1977) and Cochrane et al. 

(1982». 

Sorne stress distributions in a Maxwell f1uid flowing through a bend are given in 
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Figure (ll.5.5.4): Oimensionless ;0:- and yy-normaJ stresses a)ong the axis 
of symmetry in the contraction/expansion geometry for 
a rc1Ilge of the tluid elasticity at Re= 12. 
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Figure (ll.5.5.5): Wall values of the dimensionless xx-normal stress (A) 
and of the vorticity (B) at a range of the fluid relaxation 
time. Re=l2. 
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Effect of inertia on flow patterns in a 
contractinglexpanding flow of a Newtonian fluid. Part 
(C) shows the actuallength of the computational domain 
used in the simulations. 
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Figure (11.5.5.1): 
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Effect of inertia on vorticity distributions in a 
contractinglexpanding flow of a Newtonian fluid. 
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Figure (ll.5.6.1): 
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The geometry and the curvilinear grid used to study the 
flow in a bend. The grid lines are nonnal to the upper 
boundary of the bend. 
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Vorticity distnbutions in a bend at Re=48 (A) and 
Re= 16; (B) Newtonian flow. 
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Corner detail of the secondaJy flows in a bend al 
Re=48; Newtonian Duid 
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Figure (ll.S.6.4): Corner detail of vorticity contours in a bend. Maxwell 
fluid; Re=16 and We=O.14. 
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Figure (11.5.6.5). An elastic effect in this case is the distortion of the symmetry of the 

shear stress patterns around the re-entrant corner (see also Perera and Walters 

(1977». 

(ll.6) CONCLUSIONS 

An analysis of viscoelastic flows in complex geometries using the method of 

boundary-fitted curvilinear coordinates and finite differences has been presented. Use 

of BFCCs aUows great flexibility in the accurate discretization of eornplex tlow fields, 

therefore ma king the trcatment of rcalistic flow ehannels straightforward. Simulation 

studics in various 4:1 planar contractions using the upper-convected Maxwell model 

revealcd the effect of the tluid ifl(~rtia and fluid elasticity, as weil as the effeet of the 

form of the entrance section on the flow and stress patterns. The Hp vortex, usually 

present in the numerical simulation of viscoelastic f1uids in sudden cont :actions 

containing a point of boundary diseontinuity such as a re-entrant corner, se~l11s to 

disappear when the corner is rounded. This corrobora tes the assumption that this 

vortex might be a numerical artifact related to the use of ad-hoc methods for the 

evaluation of the vorticity at a singular corner. Increased fluid inertia was found to 

reduce the size of the corner vortex, but had a smaller effect on the lip vortex. The 

computations were found to be reasonably convergent with grid refinement. The 

growth of the corner vortex with elasticity in contractions with smooth edges was 

found t0 be largely independent of grid size, being at the same time a strong function 

of geometry. This indicates that the corner vortex is not a numerical artifact but a 

characteristic property of the set of equations that model the tlow of the Maxwell 

fluid. Finally, the stress patterns at the entrance section depend heavily on both the 

elasticity of the tluid and the specifie form of the re-entrant corner. 
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Dimensionless stress contours in a Maxwell fluid 
(We=O.24) Dowing through a bend al Re=4.0. 
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(ID) INJECfION MOlDING 

(DI. 1 ) PRELIMINARIES 

Injection molding is an intermittent cyclic process used to produce uniform articles 

in a mold. ft is a widely used plastics processing operation, particularly for articles 

involving a high degree of geometrical complexity. Injection molding products range 

from large automobile, aerospace and computer parts to tiny gears or paper clips. 

Inherent advantages of the process are its high degree of reproducibility and its utitity 

in producing a wide range of products, usually of very complex shape, economically. 

Most polymers can be injection molded, including fiber reinforced engineering 

plastics, thermosetting polymers and liquid crystal polymers. 

The process consists of three steps. During the ftlling stage, the molten po1ymer is 

forced into a cavity whose walls are maintained at a low temperature. When the 

cavity is full, more material is packed into the mold to account for the shrinkage 

usually occurring during solidification. After packing is completed, the material cools 

and solidifies. The cooling process continues until the article is solid enough to be 

ejected without damage. The cooling stage takes about 70-80% of the cycle time, 

which makes it very important economically. On the other side, the thermomechanical 

history experienced by the mate rial during fiIling and packing is a major factor that 

determines the ultimate properties of the molded article. 

The introduction of injection molding as a method for the processing of polymerie 

materials goes back to 1872, when J.W. Hyatt obtained a patent on a piston driven 

injection molding machine. Since then, improvements in the process, discovery of new 

mate rials with desirable properties, advances in automation and an ever expanding 

market for uniform finished articles have made injection molding a matule techno]o&'Y 

with product applications scanning practically every sect or of modern life. 
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UnfortunateJy, our understanding of the injection moJding process is rather sketchy. 

A large part of the problem is the limited knowledge of the rheological behaviour of 

molten polymers during the various stages of the injection molding process. Existing 

constitutive equations cannot aJways yield reliable estimates of the stress fields 

developing in a flowing polymer melt. Apart from that, the process itself combines 

characteristics that make its analysis extremely difficult. It includes non-isothermal 

transie nt flow with density variations, complex flow channels, free surfaces, structuring 

and solidification coupled with flowand heat transfer. No analytical solutions for su ch 

flow problems are known - or expected to he developed in the foreseeable future -

and th us numerical solution of the goveming equations is the only way to deal with 

the problem. This task becomes even more complicated by the extremeJy high flow 

and cooling rates occurring during the injection molding process. Since a major 

advantage of polymer injection molding is the ability to reproduce very complex 

shapes, computation al treatment of complex geometries is necessary for practical 

applications of any modelling work. 

In the absence of reliable design tools, trial and error methods have become the 

dominant practice in the design of molds. To start with, this approach seems 

inadequate in a time when everything moves towards higher efficiency and 

automation. Furthermore, there are several practical problems associated with a trial

and-error empirical mold design. Firstly, it can lead to significant capital losses and 

long delays for the delivery of a certain product. Specialized knowledge that has 

accumulated by mold designers over many years of service tends to be lost after the 

specialist retires. Theoretical understanding of the process is seen as r. means to keep 

corporate experience continuous within the company and also speed up the process 

of transft-rring that experience to new designers, beside being the only rational way 

to ensure product quality and process efficiency. It should be realized that material 

cost is the major contributor ta the final cost of an injection molded product (typicaUy 

50% of the total cost). This means that improvements in the processing conditions 

are not expected to contribute dramatically to the economics of a product - the 
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process is material and not labour or energy intensive, The element of time (from 

praduct conception to production), the need to maintain the continuity of the 

corporate experience, and the increasing demand for quality control are the factors 

that make the theoretical analysis and understanding of injection molding so desirab

le. 

Research done in the field of non-Newtonian fluirl mechanics and rheoingy has led 

to significant advances regarding our understanding of the behaviour of polymerie 

materials during processing. As a result, a number of commercially availahle software 

packages for the injection molding process has emerged. However, most of these 

packages provide oniy rough approximations of the actual tlow behaviour, as might 

be expected if one consic.'ers the complexity of the processes involved. Much remains 

to be done before simu~ation takes its place as a reHable desktop tool of the plastics 

engineer. 

(m.2) MATHEMATICAL ANAL YSIS OF TIIE FIlLING STAGE 

(m.2.1) Fluid Dynamics 

Analysis of the filling stage of injection molding is of high practical importance since 

the flow and thermal conditions during filling will determine several properties of the 

product such as the formation of weld lines, the distribution of crystallinity and 

orientation within the articie, the pressure requirements etc. The moldability of a 

certain plastic, the required fimng time, occurrence of short shots, jetting and 

sinkspots, the optimum location of the gate(s) and other process characteristics can 

also be assessed by a careful filling analysis (White and Dietz, (1979)). It is th us 

justifiable that a very large portion of the theoretical work concerning injection 

molding has been directed towards the filling stage . 

In this work, the filling stage is treated as a f1uid dynamics problem. Determination 
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of the state variables is sought by numerical solution of the corresponding 

conservation laws, cou pIed with a viscoelastic constitutive model. The equations 

modelling incompressible flow in 3 dimensions and carte sian coordinates are as 

folJows. 

Continuity: 

li. + v, + w. = 0 (111.1) 

x-momentum: 

(111.2) 

y-momentum 

p(v. + uv. + vv, + wvz) = -P, + P + ('fIIJ). + (T"), + ('J'1Z), (111.3) 

z-momentum 

p(w. + uw, + vw'l + wwz) = -PI + F+rra).+('P'),+(ra), (111.4) 

In equations (111.1) to (111.4) u,v and w are the velocities in the x,y,z directions, 

respectively. P, P, F are the body forces in the three dimensions. The thickness of 

the mold is defined by the z coordinate, whereas x and y define the plane of the flow. 

The stress tensor (T) is the total stress tensor which includes viscous and el as tic 

contributions. These stresses need to he determined by means of a suitable 

constitutive model as will be explained later. In the following analysis, the effect of 

the body forces will he neglected. Furthermore, the fluid velocity in the thickness 

direction will be ignored, since its value is very smaU compared to the velocities in the 

(x-y) plane, and hardly affects the total kinematics of filling. This is equivalent to 

ignoring the fountain flow effeet in the thiekness direction, and is an assumption 

introduced by the need to keep the flow computations two-dimensional. The fountain 

flow, even though it is localized in a small area behind the advancing flow front and 

does not affect, macroseopieally, the filling of the mold, has been found to be one of 
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the most important fluid dynamics features of the filling stage, influencing the 

orientation and crystallinity distributions of the finished articles. This problem has 

been treated extensively by Lafleur (1983) and Kamal et.al (1988). Complete analysis 

of the filIing stage that takes into account simultaneously the spr~ading flow into the 

cavity and the fountain flow in the thickness direction can only be performed on a 

three-dimensional basis. In the case of complex molds with thick sections, this has to 

await advances in the generation of computational grids in three dimension al 

domains, not to mention the computer time requirements. The present work is 

confined to solutions of partial differential equations in two dimensional regions of 

arbitrary geometry, and most of the simplifications introduced in this section are 

results of this limitation. Only the energy equation has been solved in three 

dimension~, still assuming two-dimensional kinematics. 

Mter the above assumptions, the f10w equations simplify to the following set of 

partial differential equations: 

peU. + Ulla + vu,) = -Pli + ('PI)a + (1"'1 + ( ..... ). (111.5) 

(111.6) 

lla + v, = 0 (111.7) 

In these equations, the shear stresses in the z-direction (thickness) have been retained 

since they greatly contribute to the dynamics of the process. 

The pressure can be eliminated from equations (111.5) and (111.6) by cross

differentiation and subtraction. Introducing the vorticity (w) and stream function (l/I) 

as: 

lA) = va - li, (111.8) 

a 



u = a~/ay , v = - a~/ax 

one obtains the folJowing equivalent set of equations: 

where F(T) is given by 
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(111.9) 

(111.10) 

(III.11) 

(111.12) 

The left hand side of equation (111.11) contains only convected vorticity terms. It is 

generany accepted that partial differential equations with strang convective character 

are more difficult to solve than equations with a strang diffusive character. This 

means that the stability and accuracy of the discrete representation is mare readHy 

assured in diffusion, rather than convection-dominated equations. Even though 

equation (111.11) has been successfully solved as it stands (Gatski and RamIey, 

(1978», in this wark an approach first used by Perera and Walters (1977) will be 

used. The objective is to introduce a diffusive term in the vorticity equation. This can 

be accomplished by decomposing the stress tensor (T) into an elastic (S) and a purely 

viscous (0) part as fol1ows: 

T = S + ~D (111.13) 

FolJowing this decomposition, the vorticity equation can be recast in the foHowing 

quasilinear elliptie farm: 

(111.14) 
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where F(S) is still given by equation (111.12), but instead of the total stress (T) one 

uses the elastic contributions (S). In deriving Equation (111.14), the viscosity has been 

treated as a constant in the differentiations involved in (111.12); however, (lA) in 

(I1I.14) is in reality a function of temperature and shear rate, and therefore location 

dependent. Equations (IILlO) and (111.14) constitute the final set of working 

equations for the modeJling of the tlow in the cavity. The boundary conditions for 

stream function and vorticity, as weIl as for the rest of the state variables in injection 

molding are summarized in Appendix A7. 

(m.2.2) The Energy Equation 

One of the ma st important characteristics of the filling stage in injection molding is 

the interaction between flow, heat generation due to flow, heat transfer from the hot 

melt to the cold walls of the mold and heat transferred to the cavity by the entering 

hot melt. This interaction determines not only the dynamics of the flow but also sorne 

important product properties, such as the distribution of crystallinity and orientation 

as weIl as the formation of weld lines. 

Neglecting the heat of crysta11ization and assuming temperature inde pendent thermal 

conductivity and incompressible tlow, the energy equation in three dimensions takes 

the following form: 

(111.15) 

In the above equation, (~) is a heat generation term, given by the following 

expression: 

(111.16) 

For power law fluids, the dissipation function is given by 
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(111.17) 

This expression, used by Kuo and Kamal (1976) and Shen (1984) makes use of the 

assumption that the velocity gradients in the (x-y) plane are negligible compared to 

the gradients in the thickness direction. In this work, the more general form of 

equation (111.16) was used. This takes into account the velocity gradients in the (x-y) 

plane as weil as the gradients in the thickness direction and is also valid for a viseo

elastic tluid. Velocity gradients in the plane of the flow (x-y) might be important in 

a mold with contracting and/or expanding sections. 

In the light of the very high heat capacity of polymerie melts and their relatively low 

thermal conductivity, equation (111.15) is convection rather than diffusion dorninated. 

In other words, this is a high Pec1et number problem. For this reason, the quasi

steady state approaeh widely used for the description of the tlow during filling 

(justifiable, considering that polymeric flows are practically inertialess flows) is not 

applicable for the solution of the energy equation. In this case, the problem is indeed 

transient, and if the solution is performed on a rnoving grid (as is the case in any 

approach that uses a solution dependent mesh), this requirt::s transformation of the 

temporal, as weil as of the spatial derivatives. This transformation is given in 

Appendix A.3. 

After the a5sumption of zero velocity in the thickness direction, the energy equation 

reduees to the form: 

(111.18) 

Equation (111.18) is still a three··dimensional equation. To solve it in a two

dimensional context, sorne approximation has to he made. Specifically, equation 

(111.18) can be rendered two-dimensional by ignoring the thermal gradient in the z

direction, assuming a uniform bulk melt ternperature in the thiekness direction and 
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substituting the term (II: T Il) with a heat loss term of the form II:(T')'_b' This is 

equivalent ta assuming the presence of a thin thermal layer adjacent to the mold 

walls and the existence of a bulk melt with a uniform temperature. This is a 

justifiable assumption, since there indeed exists a thin layer of solidified material on 

the mold wall. Its small thermal conductivity and the smalt duration of the filling 

stage, along with the associated high dissipation and thermal convection also 

contribute ta the vatidity of such an assumption. Therefore, the final working form 

of the energy equation, utilizing gap-averaged temperatures, is (Shen (1984»: 

(111.19) 

In the above equation (v2
) is the Laplace operator in the x-y plane and all quantities 

are average quantities in the thickness direction. 

(DI.2.3) The Constitutive Model 

To model the relationship between flrJw kinematics, tluid properties and stresses, the 

White-Metzner modification of the Maxwell model has been used. This is a quasi

lioear constitutive model and allows the viscosity as weil as the relaxation time to be 

fun ct ions of the ~econd invariant of the rate of deformation tensor and temperature 

(Middleman, (1979». In compact tensorial form, the White-Metzner model is: 

T + .\(Tl + (uV')T - 1\7u - vu11) = pD (111.20) 

The components of the velocity gradient te.1Sor (vu), sayaiJ, are: 

aij = au/ex, (111.21) 

whereas those of the rate of de forma tian teosor (D) are: 
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(111.22) 

The relaxation time and the viscosity are usually connected through a modulus (G) 

(Middleman (1979), Deiber and Schowalter (1981), Lafleur (1983», 50 that 

(111.22.a) 

Performing the tensor operations involved in (111.20), the foUowing partial differential 

equations are obtained for the components of ('Ij. 

~«""")I + u(T'). + v('PY),) + ....,. = JJ(Uy + v.) + ~«T-)u. 

+CP)u, + (T-)v. + (1"')u.) 

~«'P")I + u('P"). + v('fD),) + r-(1-2~u.) = 2JJ(uJ + 
+2>.(crr)u, + ('fD)u.» 

~«T")I + u(1"). + v(1"),) + T"(1-2~vy) = 2JJ(v,) + 
+2).«T')v. + (~)VI» 

(111.23) 

(111.24) 

(111.25) 

(111.26) 

(111.27) 

ln the derivation of the above equations, use was made of the assumption that w=O 

and T &1 = O. Again, x- and y-axes correspond to the plane of the flow and (z) is the 

thickness direction. As a result of this assumption the equations for the components 

of the stress tensor in the thickness direction are inde pendent of the stresses in the 

(x-y) plane and can therefore be solved separately. As with the energy equation, the 

stress equations are completely time dependent and have to be solved on a moving 

grid. Even though this is a complication, the major problem in dealing with the stress 
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equations arises from the faet that we cannot render them eomptetety two

dimensional , since we cannat ignore the shear stresses and velocity gradients in the 

thiekness direction. For this reason, gap-averaged values for the planar velocities (u) 

and (v) are used. These average velocities are defined as follows: 

<u> = 2b-l
• fob12 u(x,y,z)dz (111.28) 

<v> = 2b-l
• fob12 v(x,y,z)dz (111.29) 

It is furthermore assumed that, in the gapwise direction, the velocities (u) and (v) are 

fu))y developed: 

u(x,y,z)=Uo(x,y).(1.0 - (2z/b)l+l) (111.30) 

v(x,y,z)=vo(x,y).(1.0 - (2z/b)1.1) (111.31) 

In the above equations, (h) is the thickness of the cavity and s= lIn, n being the 

power law index of the fluid. The fully developed profile assumption is a reasonable 

assumption for the part of the flow field a few times the cavity thickness behind the 

melt front. Again, the fountain flow effeet in the thickness direction is ignored in this 

analysis. The relation between Uo, Vo and the average velocities <u>, <v> is: 

<u> = Uo(s+ 1)/(s+2) (111.32) 

<v> = vo(s+ 1)/(s+2) (111.33) 

Based on the assumed fully-developed profiles, the gradients of u and v in the 

thickness direction can be evaluated as: 

(111.34) 

c 
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(111.35) 

Again, gap-averaged values for these gradients have to be used, in arder ta render 

the problem two-dimensionaJ. 

<u.> = 2<u>(s+2)/(s+ l)b (111.36) 

<VI> = 2<v>(s+2)/(s+ l)b (111.37) 

By means of the approximations introduced in equations (111.28) to (111.37), the stress 

equations can he solved in a twa-dimensional sense, stiJJ ta king into accaunt the 

presence of shearing in the thickness direction. The equations to be solved are still 

equations (111.23) to (111.27), where <u> and <v> are used instead of u and v, and 

<u.>, <VI> instead of Ua, VI' Naturally, mean velocities <u> and <v> are used in 

the energy and momentum equations, where the notation < > was dropped for the 

ease of presentation. 

(m.2.4) Viscosity Modelling 

The shear viscosity is undoubtedly the single most important property in the 

modelling of the flow dynamics in injection molding. In a non-Newtonian fluid the 

viscosity is functian of both the temperature and the shear rate. During the filling 

stage, the shear rates vary from very high near the gate to relatively low at regions 

of slow flow. Therefore, the power-law expression is not adequate to describe the 

shear viscosity at alliocations within the cavity. One way to aceount for that is simply 

to consider constant viscosity at regions of low shear and a power law at regions of 

higher shear rates. This was done in this Thesis. At high shear rates (above 1.0 S'I) 

thf! fol1owing functional form for the viscosity has been used: 

,,(T,'}) = K(T) (11/2)(I ... Yl (111.39) 
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where (II) is the second invariant of the rate of deformation tensor and K(T) is a 

temperaturi: dependent consistence index. In the case that 5 components of this 

tensor are retained, as is the case in this work, (II) takes the following form: 

(111.40) 

For the temperature dependence of viscosity, an Arrhenius-type expression was used: 

K(T) = A. exp(ÂE/RT) (111.41) 

For polyethylene Sclair 2908, which was used in the experimental part of this study, 

values for the parameters of this model have been determined experimentally. The 

results are reported in following section. 

(m.2.S) Pressure Calculation 

The major advantage of using the vorticity/stream function instead of the 

velocity/pressure formulation of the Navier-Stokes equations is that the pressure is 

removed as an inde pendent variable. Furthermore, use of the stream function 

guarantees that the obtained velocity field will be divergence free, subject of course 

ta numerical differentiation errors. In the fo))owing, it is described how the pressure 

can be recovered after the (1/>,11) and the stress fields have been computed. 

It has been shown that evaluation of pressure by direct integration of equations 

(111.5) and (III.6) in the x and y-directions, respectively, gives resuJts that are 

dependent on the integration path, and therefore unacceptable (Roache (1976), 

Crochet et. al. (1984». However, an elliptic Poisson equation for the pressure can be 

obtained by differentiation of equations (111.5) and (111.6) with respect to x and y, 

respectively, and addition. The resulting partial differential equation for pressure is: 



<. 

vtp = 2p' (u.,v, - vs'u,) + L(T) 

where L(T) is given by the folJowing equation: 
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(111.42) 

(111.43) 

The form of this equation is the same as that of the vorticity equation at steady state, 

the only difference being in the boundary conditions, as will be explained later. 

Crochet et. al.(1984), point out that the existence of pure Neumann boundary 

conditions for equation (111.42) makes it a much less well-conditioned problem than 

the corresponding Dirichlet elliptic problem. This retlects in iterative solutions 

requiring excessively long CPU times to converge. Shen (1984) points out that the 

solution of the pressure equation was the slowest part of their computational 

algorithm for an approximate analysis of filling and stresses the need for a more 

efficient solver of Neumann elliptic systems. Manero (1981) has shown that the 

problem of slow convergence does not appear if the method of preconditioned 

conjugate gradients is used to solve the discretized systems. In this work, the pressure 

equation was solved by means of a successive relaxation algorithm. This computation 

was by far the most CPU - intensive part of the computation al algorithm, requiring 

more than half of the total CPU time. 

Beside its very slow convergence, equation (111.42) is further complicated by the 

presence of derivatives of ']'II and -pa in the thickness direction. The same derivatives 

appear in equation (111.12). Again, as with the derivatives of the velocities in the z

direction, we need to resort to simplifications in order to keep the problem two

dimensional. 

Assuming that the power law behaviour is dominant over the elastic one, at least as 

far as l' and T" are concerned, and using the results of equations (111.32) to (111.41), 

we can obtain gap-averaged values for the gradients of l' and rpz in the thickness 
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direction. 

(111.44) 

(111.45) 

Therefore, the mixed derivatives of,... and 'J'I at the RHS of equ:ltion (111.43) can 

be evaluated as: 

(111.46) 

(111.47) 

This approximation, by which the effect of the elastic part of ,... and 'fY' in the 

deveJopment of the pressure profiJe has been ignore d, is confined only to the 

pressure evaluation. The xz- and yz-stresses reported elsewhere in this the sis have 

been calculated by means of the viscoelastic defining equations (111.26) and (111.27). 

(ID.2.6) Previous Modelling Wort on Filling 

In past years, the thin cavity approximation has been used extensively to simplify the 

analysis of the flow during filling of a moJd. The resulting Hele-Shaw flow (isothermal 

or non-isothermal) has been the subject of many studies. The assumptions underlying 

the Hele-Shaw flow can be summarized as follows: 

(a) Inertial forces are negligible compared to the viscous forces (the Reynolds 

number is of the order of 0). This is reasorlable in the light of the high 

viscosity of poJymer melts and has the attractive property of removing time as 

an independent variable, thus making the numerical treatment of the 

momentum equations easier. 
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(b) 

(c) 

(d) 
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Surface tension and normal stress effects on the profile of the free surface are 

negligible. 

Viscosity, temperature, velocity and extra stresses vary strongly in the thickness 

direction but only weakJy in the Oow directions. 

The variation of pressure and transverse velocity in the thickness direction is 

negligible. 

Under these assumptions, the following set of equations for the pressure in the cavity 

resuIts (Kuo and Kamal, (1976»: 

(111.50) 

(111.51) 

If it is assumed that the only mechanism of heat transfer is conduction in the 

thickness direction, the energy equation simplifies to the fol1owing form (Kuo and 

Kamal (1976»: 

(111.52) 

If heat transfer by convection in the (x-y) plane is also included, the energy equation 

becomes (Hieber and Shen, (1980»: 

(111.53) 

Of special interest in the context of simplified Oow fields is the work of Kuo and 

Kamal (1976) who obtained analytical solutions for the advancement of the flow front 

and the development of pressure and temperature profiles during the filling of a 
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rectangular cavity with a small gate. In a similar prob1em of a Hele-Shaw non

isothermal filling stage flow, Ryan and Chung (1980) used the method of conformai 

mapping to obtain solutions of the model equations. They reported results that 

compare weIl with the earlier work of Kuo and Kama1 (1976). 

Nevertheless, analytical solutions can, at this time, only be obtained for certain simple 

flows and simple geometries. Therefore, most of the simulation effort has been 

directed towards numerical solution of the governing equations; an approach that 

makes use of the computationa1 power of the digitai computer and allows great 

tlexibility in the degTee of TigOT of the model, the shape of the tlow field and the type 

of boundary conditions used. Numerical simulation of the fi11ing stage, with various 

degTees of physical detail has been done, amongst others, by Kamal and Kenig 

(1972), Shen (1984), Hieber and Shen (1980) (inelastic Hele-Shaw flow), Kamal and 

Lafleur (1982),(1986),(1986), W~ng et al. (1987, 1988). Recently, Kamal et al. (1988) 

presented a two-dimensional finite difference solution of a model for flow in the 

thickness direction during injection molding of a cavity with a uniform rectangular 

crossection, inc1uding non-isotheTmal crjstallization, fountain flow, elastic and inertia 

effects. The Marker-and-Cell method was used to track the advancement of the melt 

front. More complete reviews on the subject can be round in Kamal and Bata (1983, 

with 92 references) and White (1983, with 132 references). 

ln general, it has been observed that isothermal fiUing analysis can only give 

acceptable results regarding the pressure distributions and filling times when the 

cavity is thick, without sections where extensive wall solidification and viscous heating 

during filling might occur. In any other case, the interaction between tlow and 

temperature fields wi1l significantly affect the results of the analysis. The elasticity of 

the melt does not seem to affect substantially the mode! predictions either. 

Neverthe]ess, prediction of the microstructure of the product and consequcntly of its 

properties requires the use of a rigorous model; this seems to be a new chaIJenge in 

the simulation of the filling stage of injection molding (Kamal, (1987». A number 
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of commercially avaiJabJe software packages has appeared in the past years regarding 

the simulation of the filling stage (CADMOLD (IKV, Aachen, West Germany), 

MOLDFLOW (C. Austin, Australia), C-FLOW (Comell University, USA». These 

packages are mostly used for the prediction of filling times, pressure and stress 

distribution, short shots and weld Unes, and for the balancing of the delivery channels. 
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(llL3) EXPERIMENTAL 

(1D.3.1) Objectives 

The objective of this section is to present experimental results regarding the 

rheological characterization of the mate rial used in the experimental part of this 

Thesis, as well as data obtained during the injection molding of polyethylene (Sclair 

2908) in a mold of complex shape. Experimental results in the same complex mold 

have been used for validation of the computer simulation of the process. It was 

decided that the cavity used in the injection molding experiments should have the 

following characteristics: 

a: Variable thickness 

b: Converging and diverging sections 

c: At Jeast one insert 

d: Walls composed of general curved segments 

With these requirements in mind, the cavity of Figure (111.3.1.1) was designed, 

manufactured and used in a series of injection molding experiments. The upper part 

of that figure gives the dimensions of the cavity in the thickness direction in cm. The 

length of the cavity is 10.8 cm and its maximum width is 6.35 cm. The lower part (B) 

also shows the location of the transducers in the cavity. This mold will be referred to 

as "mold CRI" in the following. The rectangular cavity of constant thickness used by 

Lafleur (1983) will be referred to as "mold RI". Appendix A6 summarises the 

geometrical specifications of mold CRI. 

(m.3.2) Material 

The material used in the injection molding experiments is an injection molding grade 

high den:~ity polyethylene (ScIair 2908) supplied by DuPont Canada. A rheologieal 
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Figure (llI.3.1.1): Complex sbaped cavity used in the injection molding 
experiments (A) and the location of temperature (fl,T2,T3) 
and pressure (pl,P2,P3) transducers (D). 



127 

characterization cf this resin was perforrned. In the computations performed in this 

Thesis, the heat capacity (Cp) and thermal conductivity (le) are considered to he 

functions of temperature (Lafleur, (1983». 

(m.3.2.1) RheologicaJ Characterization 

The shear viscosity at a range of shear rates between 10"1 and 10+] reciprocal seconds 

was measured in a Rheometrics Mechanical Spectrometer (RMS) operated at the 

cone-and-plate mode and an lnstron Capillary Rheometer type MeR. In the latter, 

a capi11ary with L!D=40 and diameter 0.052" (1"=2.54 cm) was used. Viscous heating 

and pressure effects can be minimized in such a capillary (Latleur, (1983». The true 

shear rate was calculated using the Rabinowitz correction. 

The shear viscosity at high shear rates (typically above 1.0 S'I) was mode lied with a 

power law expression: 

" = A. exp(AEIRT) . ...,(ftol) (111.54) 

The parameters A, ÂEIR and (n) were calculated from the viscosity data using 

standard regression analysis. Figure (III.3.2.1.1) shows viscosity data obtained for the 

polyethylene Sclair 2908 injection molding resin and the regressÎon data used to 

calculate the tlow activation energy (AE) and the coefficient A The power-Iaw 

coefficient was found to be slightly dependent on temperature. An average value of 

0.755 was used in al1 simulations. Figure (lII.3.2.1.2) gives the dynamic (complex) 

viscosity in the 10w shear rate region, as obtained from RMS experirnents. The 

viscosity data from INSTRON and RMS measurements were in good agreement in 

the range of shear rates where the two methods overlapped. The storage and loss 

moduli at various temperatures were also obtained by RMS and are reported in 

Figure (111.3.2.1.3) 

a 
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Figure (DI.3.21.1): Shear viscosity data obtained for the resin Sclair 2908 
(INSTRON capillary measurements) and the associated power 
law parameters. 
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Figure (Ill.3.2.1.2): Dynamic viscosity data for resin Sclair 2908. RMS experiments. 
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(ID.3.3) Equipment 

(ID.3.3.1) Injection Molding Machine 

The experimental work was carried out with a Danson-Metalmec reciprocating screw 

injection molding machine in the Department of Chemical Engineering at McGill 

University. The specifications of the machine are given in Table (111.3.3.1). The 

machine was operated in the semi-automatic mode, using the corresponding timers 

to specify the injection, holding and cooling times. The mold was cooled with tap 

water whose temperature varied seasonaly betwee" 18" and 230 C. The barrel 

temperatures in the front and rear sections were controlled by Guiton on-off 

controllers. 

(ID.3.3.2) Instrumentation 

The pressure in the cavity was measured at three locations by Dynisco pressure 

transducers. One was located near the gate and the other two at intermediate 

positions in the cavity. The locations of the transducers are shawn in Figure 

(III.3.1.1.B). Another pressure transducer was mounted at the nozzle ta monitor the 

carresponding pressure. A tinear velocity (TRANS-TEK, Madel ] 12-00 1 ) and a linear 

displacement (Markite, Madel 4709) transducers were used to monitor the motion 

of the ram, and, indirectly, measure the tlowrate to the mold. A grounded junction 

thermocouple projecting into the polymer meIt from the screw tip was used to 

measure the melt temperature at the Dozzle. Three thermocouples flush mounted in 

the mold cavity were used to monitor the temperature at the mold surface; their 

locations are also shown in Figure (1I1.3.1.1.B). The calibration equations for these 

transducers fol1ow: 

Cavity Pressure #1: 

Cavity Pressure #2: 

P(Psi) = 284.33·(rnV) + 11.8 

P(Psi) = 88.65*(mV) - 196.4 

(111.54) 

(11I.54.h) 

a 
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Machine Model: Danson Metalmec 60-SR 

Capacity: 2 1/3 oz. (66.1 g) 

Screw Diameter: 1.375 in (0.035 m) 

Screw lID Ratio: 15:1 

Screw RPM: 40-150 

Clamping Force: 60 T (53386 KN) 

Hydraulic Pump: Sperry-Vickers Vane Pump 

Electric Motor: 20 HP (14.92 kW), 3 phase, SO Hz 

SelVovalve: Moog A076-103, 10 gpm (10 cu.m/hr) flow 
at 1000 psi (6.9 MPa) 

Table (llI.3.3.1): Specifications of the injection molding machine. 



r 

Cavity Pressure #3: P(Psi) = 434.86·(rnV)· 103.2 

Nozzle Pressure: P(Psi) = 462.92·(rnV)· 51.2 

Velocity Transducer: V(cm/s) = 0.209·(rnV)· 0.004 

Displacement Transducer: L(cm) = O.61S·(mV). 1.2~3 

(m.3.4) Experimental Conditions and Procedure. 
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(1l1.54.c) 

(111.55) 

(111.56) 

(111.57) 

Experiments were performed for a range of the process variables. For the purpose 

of illustration, four such experiments, designated as HP6, HP7, HP8 and HP9 are 

reported ami will be used in later sections of this Thesis for comparison with model 

predictions. The melt entry temperatures (measured at the tip of the screw) were 

2000 C, 2020 C, 2350 C and 2350 C, respectively. In order to simulate thcse 

experiments, the cooling rate was taken to be uniform throughout the faces of the 

mold, with an average heat transfer coefficient of 68 Btu/ftZ/hr!F (386 W /m2K) in all 

experiments. (Gao, (1989), Mutel (1990». This is a simplification of the actual 

situation in the mold, where the cooting rate can be fairly non-uniform, dcpending 

on the design of the cooling channels. In the absence of heat flux distribution data 

however, the assumption of uniform cooling rate is a reasonable approximation. 

Before injections were started, the injection molding machine was allowed tu heat up 

and the barrel temperatures stabilize; that usually took 30-35 min. Then, 10-20 

injections \v'ere pcrformed without data acquisition, so that a thermal steady state was 

attained in the working machine. After that, data acquisition commenced. 

(m.3.5) Certain Experimental Observations 

The purpose of this section is to present selective experimental results of injection 

molding experiments of polyethylene in the complex-shaped mold, in an attempt to 

illustrate certain aspects of the filling stage. 

(m.3.5.1) Pressure Variation 
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A typical variation of cavity pressure at the gate and nozzle pressure during an 

injection molding cyc1e is given in Figure (III.3.S.1.1.A). In all experimental 

conditions, the nome pressure rises very fast and then remains roughJy constant until 

filling and packing are completed. 

Both cavity and nozzle pressure values drop finally to atmospheric levels at the end 

of cooling; however, the cavity pressure drop is slower than that at the nozzle; this 

is a result of the retraction of the screw after the gate is sealed and the dominance 

of cooling in cavity pressure control. The variation of the cavity pressure at the gate 

during fi11ing is more specifically given in Figure (111.3.5.1.1.8). 

(In.3.5.2) Progression of the Melt Front 

The progression of the melt front into the cavit:' in bath cases can be observed 

indirectly by monitoring the response of the thermocouples. Typieal results are shown 

in Figure (111.3.5.2.1). The effeet of melt temperature on t~e melt progression speed 

and filling time can also he seen in Figure (111.3.5.2.1). As expected, higher melt 

temperature results in faster filling due to the corresponding lower viseosities. 

(111.3.5.3) Shape of the Advancing Front 

A number of short shot experiments was performed in arder to detennine the 

evolution and shape of the melt front during filling. Figures (111.3.5.3.1) and 

(111.3.5.3.2) show short shots obtained for various injection times. The melt 

temperature was 2000 C and the speed valve opening 5/12. Initially, a nearly 

semicircular filling pattern is observed. This becomes only slightly curved as the melt 

front reaches the middle part of the cavity. The shape of the free surface becomes 

more complex as the melt closes behind the obstacle, becoming flat near the end of 

filling. Figure (111.3.5.3.3) shows short shots that illustrate the detailed evolution of 

the shape of the melt front as it c10ses behind the obstacle and the formation of a 
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Figure (ill.3.5.3.1): Experimental short shots showing the evolution of the shape 
and location of tbe free surface during filting. 
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Figure (m.3.5.3.2): Experimental short shots showing the evolution of the shape 
and location of the free surface during filling. 
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Figure (ID.3.5.3.3): Experimental short shots showing the evolution of the shape of 
the free surface behind the obstacle and the formation of weld 
line. 
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(IIL4) ~iMUlATION RESULTS 

The objective of the following section is to identify, through computer simulation, the 

spatial and temporal variation of key process parameters such as pressure, 

temperature, filling patterns, velocity and stresses during the filling stage. Comparison 

of such predictions with experimental data will he performed in the next section. A 

21·21 grid was used in ail these simulations. Validation of the model predictions 

using successive grid refinements has not been done in this section, mainly due to 

computer time 1imitations. However, the core subroutines of the computer code 

(kinematics, geometrical transformations and QUICK upwinding for the stresses) 

have been tested with extensive grid refinement in part (II) of this Thesis. The 

accuracy of the Laplacian solver, critical in the calculation of pressure, has been 

tested against analytical solutions in part (1). These, along with the reasonable 

agreement between simulations and experiment (see next section) have convinced the 

author that the proposed model is numericaUy correct. 

(m.4.1) Progression of the Melt Front 

The computational treatment and tracking of the free surface have been dealt with 

in Appendix A4 (section A4.7). Predicted filling patterns in the complex-shaped 

cavity are given in Figure (111.4.1.1). It can be concluded, with reference to the 

experimentally observed filling patterns (section (111.3.5.2», that the computer 

program is able to simulate the movcment and the shape of the free surface with 

success. ft was found that the filling pattern was inde pendent of the parameters of 

the process, such as the injection speed and the melt f)owrate, at least for the range 

of variables that was studied. The shape of the free surface was mainly determined 

by the geometry of the mold. For comparison, predicted filling patterns in a simple 

rectangular cavity are shown in Figure (111.4.1.2). 
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Figure (ID.4.1.1): 
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Predicted filling patterns for the comp)ex cavity TE9 (Table 
(Ill.4.221) at various me)t Oowrates. Ât:: 0.044 • 
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Figure (ID.4.1.2): 
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Predicted fiIling patterns in a rectangular cavity of constant 
thickness. ~ t • 0 .O~q 
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The continuous generation of a computational grid at every time step fol1owing the 

advancement of the free surface is a key issue in the present numerical simulation of 

the filling stage. Figures (IH.4.1.3) and (111.4.1.4) show computational grids 

constructed at various instances during the filling of the complex shaped cavity. The 

computer program was able to automatically generate suitable computational grids 

folJowing the advancement of the free surface with no need for interruptions and/or 

adjustmc;ïts. 

(ID.4.2) Variation of Cavity Pressure with Time 

(ID.4.2.1) Effect of Ram Velocity 

Figure (111.4.2.1) gives the .)redicted pressure-time p"ofilc at two locations in the 

cavity, for two values of the ram velocity (or, equivalently, t!te melt tlowrate). In these 

funs, an average heat transfer coefficient of 68 Btu/ft1/F/hr (386 W/m1K) was 

assumed, uniform along each face of the mold. Cavity CRI was used in these 

simulations. It can be seen that increased ram velocity results in shorter filling limes 

and significantly higher pressures. 

(ID.4.2.2) Effect of the Geometry of the Cavity 

Figure (111.4.2.2) shows the computed pressure-time history at the location of 

pressure transducers Pl and P2 at three geometrical configurations of the cavity, 

designated here as TE2, -;'E9 and TEl5. AlI configurations have the same planar 

shape as cavity CRl. Table (111.4.2.2.1) 1ists the thickness distributions of these 

cavities. The two groups of curves in Figure (111.4.2.2) correspond to the predicted 

response of pressure transducers Pl and P2. Clearly, the geometry TElS with the 

smallest thickness is associated with larger pressures. A cavity of uniform thickness 

is associated with the sma]Jest pressure and the smoothest pressure-time profiles. 

Figure (111.4.2.2) allows for an evaluation of variations in the thickness of the cavity 
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Figure (llI.4.1.3): Computational grids constructed automatica1ly at various 
instances during filling of mold CRI, along with mesh indexing. 
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Figure (ID.4.1.4): ComputationaJ grids constructed automatically at various 
instances during fiIling of mold CRI. 
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Figure (III.4.2.1): Effect of ram velocity on pressure-time prames at two locations 
in the cavity CRI (corresponding to the locations of transducers 
Pl and P2). T ... =2OO' C. 



T 
1 

• 

147 

20.7 ~ __________________________________________ ___ 

17.2 

13.8 

U,..=0.71 cm/s 

(solid: TEH») 

(dots: TE2) 

(broken: TE9) 

P 6.89 
.~ 

> 
~ 

U 3.45 

O~~~~~~~~~~~~~~~~~r-~T-~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
Time (sec) 

1.4 1.6 1.6 2.0 

Figure (lll.4.2.2): Effect of the geometIy of the mold on pressure-time profiles al 
two locations in the C3vity (corresponding to the locations of 
transducers Pl and P2). T .. =200' C. 



148 
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b 

dimensions (cm) 

cavity (8) (b) (c) 

TE2 0.32 0.26 0.20 
-

TE9 0.32 0.32 0.32 

, 
TElS 0.32 0.127 0.05 , 

{ 

Table (IDA.2.2.1): Dimensions of cavities used in simulation studies. 
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on the pressure-time profiles. 

(m.4.2.3) Effect of Meil Temperature at the Gate 

The temperature at which the melt enters the cavity is another important process 

parameter. Its effect on the computed pressure history at two locations in the cavity 

is given in Figure (111.4.2.3), for two melt temperatures (2O<r and 235 0 C). In Figure 

(III.4.2.3) Pl and P2 indicate predicted pressures al locations corresponding to those 

of pressure transducers Pl and P2. Higher melt temperature at the gate results in 

]ower gate pressures; this is expected, since higher melt temperatures correspond to 

lower melt viscosities. The cavity considered in these simulations is cavity TE9. 

(lll.4.2.4) Effect of Material Properties 

Figure (111.4.2.4) gives predicted variation of pressure in cavity CR 1 at a location 

corresponding to that of the gate \ransducer (Pl). Curve (A) is obtained using the 

power law parameters reported by Lafleur (1983). In curve (8) the power ]aw 

parameters are as reported in section (111.3.2.1) of this Thesis. The variation of ram 

velocity with time in this simulation is represented by three linear parts: for 

0<t<0.55s, 1.1 cm!s<Urom < 1.25 cm/s; for 0.55s<t< 1.3! 0.7 cm/s<U....,,< 1.1 cm/s; for 

1.3s<t<2.01s, 0.375 cm/s<Uram < 0.7 cm/s. Use of higher power law constant (0.822 

in (A) compared to 0.755 in (B» results in higher gate pressures. The qualitative 

forn:. of the pressure-time prafi]e, which reflecls changes in the geometry of the mold, 

remains unaffected by the specifie values of the material properties. 

(lll.4.3) Pressure Drop in the Cavity During Filling 

(Ill.4.3.1) Effect of Rarn Velocity 

The pressure drop at two instances during fiJ1ing of the complex cavity CR 1 is shown 
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Figure (111.4.2.4): Effect of power law parameters on the pressure-time profile at 
the gate; (A) parameters as reported by Laf.leur (1983), (B) 
parameters determined in this study. Cavity CRI. 
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in Figure (111.4.3.1) for two values of the ram velocity. These profiles are obtained 

along the i = 5 (lower part of the cavity) and i = 16 (upper part of the cavity) grid lines. 

With reference to Figure (111.4.1.3), these are horizontal (le ft -to-right) coordinate 

lines emanating from the gate and terminating at the free surface. Notice the slight 

differences in the pressure drops along these Hnes. Even though these differences are 

numerically very small, they appear consistently in ail simulations. This leads to the 

conclusion that they are manifestations of the non symmetric nature of the flow 

rather than numerical artifacts. It can aIse be observed that higher melt flowrate 

results in larger pressure drop in the cavity. 

(111.4.3.2) Effect of the Geometry of the Cavity. 

The effect of geometry on the pressure drop in the cavity is given in Figure (111.4.3.2). 

Clearly, the cavity of the smallest thickness (solid line) shows the largest pressure 

gradients. Because of the sm aller cavity volume, the melt front travels faster in the 

cavity TElS (compare the intereept of the solid and broken lin es (corresponding to 

eavities TElS and TE9 respectively) with the x-axis). 

(m.4.3.3) Effect of Melt Temperature 

The effeet of meh temperature at the gate on the pressure drop along the li ne i= 16 

(upper part of the cavity) is given in Figure (111.4.3.3). Lower melt temperatures 

result in higher pressure drops due to the increased viscosity of the melt. In the se 

runs, eavity TE9 was used. 

(111.4.3.4) Effect of MateriaJ Properties 

Figure (111.4.3.4) gives predicted pressure drops in the cavity along the i= 16 

coordinate line at t= 1.34 s. Curves (A) and (8) correspond to the material properties 

and processing conditions discussed in section (111.4.2.4). Use of the material 
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Figure (III.4.3.1): EfIect of ram velocity on pressure drop in the tavily CR t al lwo 
instances during filling. T .. =2OO" C. 
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parameters reported by Lafleur (1983) results in a higher pressure drop in the cavity. 

(Ill.4.4) Temperature Drops in the Cavity During Filling 

(Ill.4.4.1) Effect of Ram Velocity 

Figure (III.4.4.1) shows the temperature proft)es along the same coordinates !ines as 

in Figures (111.4.3.1), for two instances during filling at two values of the rarn velocity. 

These are gap-averaged temperatures. At sorne distance from the gate, the lower part 

of the cavity (solid lines, i=5) becomes progressively cooler than the upper part 

(i= 16). Simulation has revealed that, in this particular cavity, the material tlows faster 

in the upper part, supplying more hot material from the gate. Viscous heating is also 

st ronger there, and this accounts for the higher temperatures in the upper half of the 

cavity. These tempe rature differentials are smalt in this geometry, but can be 

significant in other geometric configurations andlor molding conditions. Simulation 

can help balance these tempe rature differences by judicious choice of the design of 

the cooting channels. From Figure (111.4.4.1) it becomes evident that higher n~m 

velocity results in smal1er ternperature drops in the cavity. This is a result of the 

combined effect of shorter residence times and higher viscous heating associated with 

higher melt flowrates. For the case with the higher melt flowrate (U...." = 1.4 cm/s), the 

ter.1perature drop is less than half the temperature drop corresponding to the case 

with half the ram velocity (UrMI=O.7 cm/s). 

(ill.4.4.2) EtIect of GeometJy 

Figure (111.4.4.2) gives the effect of the shape of the cavity in the thickncss direction 

on the temperature profiles aiong the line i= 16. At the front section of the cavity, 

which is the same in aIl configurations TE2, TE9 and TElS, the temperatures are 

identical. Significant differences occur however in the rest of the cavity as the 

geometrical configuration changes. In cavity TElS the temperature passes through 

a 



1 

>f 

" 

202 

-}) 200 -w 
~ 

=' ai 198 
~ w 
~ 

m 196 
E-t 

194 

202 

-~ 200 -w ... 
::s as 198 ... ., 
~ e 196 G,) ... 

194 

t=O.45. 
..... 

t=O.901 

(saUd: 1=5) 

(broken: i= 16) 

U ... =O.71 cm-y. 

2.54 5.08 7.62 10.16 

..... i=18 

................... ~...... ......... t=O.948 : 1A _1. 
. ..................... U ram .... ·f' 

"'81 
.............................. 

i=5 ~nm:O' cm/_ 

2.54 5.08 7.62 10.16 

Distance in the Flow Direction (CM) 

158 

Figure (Ill.4.4.1): Effcct of cam velocity on temperature drop in the cavity CRI 
at two instances during filling. T Id = 200'" C. 



1 

1 

1S9 

200~--------------------------------~ 

" u • -
199 

4) 198 ... 
B as ... 
8. 197 
S 
~ 

196 
t=2.07s 

1. 27 2.54 

T •• =200· C 

U,..=0.71 cmls 

t= 1.88s 

--- -----------------

3.81 5.08 6.35 7.62 ~.89 10.16 

Distance in the Flow Direction (CM) 

Figure (lTI.4.4.2): Effect of the mold gcometry on tcmpcraturc drops at various 
instances during fi1ling, along the tine i= 16. Sotid line: cavity 
TE15; datted:TE2, and broken line TE9 (rerer ta Table 
(m.4.2.2.1) ). 



160 

a minimum at the end of the thick front section; after that, due to the higher viscous 

heating and smaller residence times associated with the thinner section, the 

temperature increases. The constant thjclmess cavity TE9 shows the lowest 

temperatures aIong i= 16. This is probably due to the longer residence times, with 

sorne possible effect of the reduced viscomj heating associated with that cavity, since 

in ail three cases the conditions, including the cooling rate, are the same. 

(111.4.4.3) Mect of Malerial Properties 

Figure (111.4.4.3) gives predicted temperature profiles in the cavity along the i=16 

coordinate li ne at t= 1.34 sand t=0.91s. Curves (A) and (B) correspond to the 

material properties and processing conditions discussed in section (111.4.2.4). Use of 

the material parameters reported by Lafleur (1983) results in slightly higher 

temperatures in the cavity. 

(111.4.5) Spatial Variation of Certain Otaracteristic Parameters 

Appendix (A5) gives predicted variation of key process characteristics such as 

stresses, velocities in the two plane directions, viscosities and deformation rates at 

three instances during filling. Mold TE9 was used in ail the results of Appendix A.S. 

The cooling rate was 85 Btu/ff/F/hr (482 W/m2J<.), the melt temperature at the gate 

2350 C and the ram speed 1.0 cm/s. Certain results will be presented and discussed 

in this section. 

Figure (111.4.5.1) gives predicted temperature contours at t= 1.6s in both cavitieh TE9 

and CRI(variable thickness). These are gap-averaged temperatures. In both cases, 

the temperature gradients are strong only near the gate, the rest of the cavity being 

essentially isothermal - in a gap-averaged sense. The upper part of the cavity is 

warmer than the lower part, and this is largely due to the shape of the mold in the 

X-y plane, which induces a preferential flow of melt in the upper part of the cavity. 
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Figure (III.4.5.1): Spatial variation of temperature dt an instant towards the end 
of filling (t=1.6s). Heat transfer Coefficient: 482 W/m~ Ram 
velocity 1.0 cm/s; T -*=23S- C. Mold TE9(A) and CRI (B). 



T 
! 
}. 

163 

Comparing parts ( "\ and (B) in Figure (111.4.5.1), it becomes ctear that a variation 

in cavity thickness results in slightly higher me1t temperatures at the corresponding 

part of the cavity. 

Figure (111.4.5.2) gives the spatial variation of viscosity and rate of deformation (the 

second invariant (II) of the rate of deformation tensor is defined by equation 111.40) 

in cavity CR 1. Comparison with the ~orresponding Figure (A.5.7) in Appendix A.5 

obtained for cavity TE9, it becomes c1ear that reduced thickness results in higher 

deformation rates and slightly reduced viscosities in this part of the cavity. 

Figure (111.4.5.3) gives the shear stresses 'fD and ~ in cavity CR 1 for the same filling 

conditions. It can be se en by compaling with Figure (III.4.S.S.A) that the gap

averaged shear stresses in the thickness direction are substantially higher( about 10 

times) than the XX-stress in the X-Y plane. Figure (111.4.5.4) shows tl:'" distribution 

of the longitudinal (U) and transverse (V) velocities in cavity TE9. This figure 

confirms that the geometrical configuration of this specifie cavity results in raster mclt 

flow in the upper part of the cavity; this is in agreement with the slightly higher 

temperatures predicted for that part. Finally, Figure (111.4.5.5) gives the xx-normal 

stress and the longitudinal velocity in cavity CRI. Reducing the thickncss of the 

forward part of the cavity results in higher xx-stress and longitudinal velocities as 

compared to the constant thickness cavity TE9. 

(1lI.4.6) Three-Dimensional ThermaJ Analysis 

(ill.4.6.1) Rectangular Cavity - Thennal Profiles 

In this section, resuIts regardint; a three-dimensional solution of the enerbry equation 

(Equation (IIUS» during the computational analysis of the filling of a simple 

rectangular cavity of constant thickness are presented. From the coordinate 

transformation point of view, the curvilinear grid constructed on the x-y plane at each 
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Figure (III.4.5.2): Spatial variation of viscosity (A) and rate of deformation 
(expressed by Il, (B» in cavity CRI. Heat transfer Coefficient: 
482 W/mlK:, Ram velocity 1.0 cm/s; TIIId, =235° C. 



.. 

165 

Tu - KPa 

Tn - KPa 

Figure (111.4.5.3): Predicted spatial variation of shear stresses in the thickncss 
direction cr- and 'P"). Cavity CRl. Heat transfer Cocfficient: 
482 W Im1.f{; Ram velocity 1.0 cm/s; T .... = 235' C . 
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Figure (m.4.S.5): Predicted distnbution ofT' (A) and longitudinal vclocity U (B) 
in cavity CR 1. Heat trans{cr Coefficient: 482 W/m

2

K:, Ram 

velocity 1.0 cm/s; T ... =235' Ca 
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point during mold filling was expanded in the thickness direction 50 that the vertical 

cartesian coordinate (z) and the vertical curvilinear coordinate coincided. A 21·21·10 

grid was used, with 10 nodal points in the thickness direction. The temperature 

boundary condition at the faep
.) of the mold was taken to he Equation (A4.29), 

whereas the sides (edges) of the mold were considered adiabatic. The edges of the 

cavity, as points of melt/metal contact are also potential areas of heat exchange. 

However, in the particular mold used in the experimental part of this Thesis, the 

cooJing channels run parallel to the faces of the mold, and this is the area where 

previous measurements of heat transfer coefficient have been made (Gao, (1989), 

Mutel, (1990». The melt flow is also much slower in the vicinity of the perimeter of 

the cavity, as compared to more central locations. It was therefore decided that it is 

more reaJistic to treat the edges of the mold as adiabatic rather than assign to them 

the same heat transfer coefficient that was used for the rest of the cavity • or any 

other arbitrary value. This adiabatic condition along the edges of the cavity has also 

been used in the 2D simulations of the previous section. The 10wer temperatures 

usually occurring near the edges of the cavity are not due to cooling through the 

edges but mainlya result of the longer residence limes of the melt in that region and 

the limited heat convection. The heat transfer coefficient was taken to be ~84 W/m2K. 

The ram vcJocity was constant during filJing and equal to 1.0 cm/s, the cavity 

thickness 0.32 cm and the melt temperature at the gate was 2350 C. Figures (111.4.6.1) 

and (111.4.6.2) show the spatial variation of temperature towards the end of filling at 

4 planes parallel to the walls of the mold. The distance DZ in each figure indicates 

the distance from the wall. The lower part of Figure (III.4.6.2) corresponds to the 

centerplane of the cavity. Clearly, the strongest tempe rature gradients occur at the 

plane nearest to the wall. As the centerpJane is approached, the cavity becomes more 

and more isothermal, with the most uniform temperature distribution at the 

centerplane (where the maximum temperature difference is about 1° Cl. Near the 

walls of the mold, the spatial variation of tempe rature is strongly non-uniform. The 

central part of the cavity is at higher temperature, due to heat supplied by the hot 

mclt at the gate and the small thermal conductivity of the melt. These results show 
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Figure (m.4.6.1): Predicted distnbution of temperature at the end of filling of a 
rectanguJar cavity, at two planes in distance DZ from the wall 
of the moJd. 
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that even in that simple geometrical configuration, a complete thermal analysis in 

both planar and thickness directions is essential for a meaningful understanding of 

the thermal history of the material during filling, including the formation and growth 

of a layer of solidified polymer at the cold mold walls. In the graphs of figures 

(III.4.6.1) and (111.4.6.2) the y=O line is an axis of symmetry. Small discrepancies from 

that symmetry are due to the contour generation by the graphies package and rctlect 

the irregular spacing of the grid points. 

Figures (III.4.6.3) to (IlI.4.6.5) show the temperature profiles across the thickncss of 

the cavity, along three grid 1ines starting from the gate and terminating at the free 

surface. Une i=2 is the one closest to the edge of the mold, wh creas tine i=6 is 

between the edge and the centerline (the notation is similar to that of section 

IlI.4.3.l). For the purpose of illustration, the thickness of the cavity has hecn 

multiplied by 10 in these figures. Again, the strongest thermal gradients occur along 

the tine i=2 (nearest to the edge), while the centerline is characteriz~d by higher 

temperatures. With reference to Figures (IIIA.6.3) to (III.4.6.5), it can be concluded 

that at the end of filling, and with the conditions described above, no significant 

solidification has occured. 

(ill.4.6.2): Complex Cavity - Microstructure Development During Filling 

The three·dimensional thermal analysis outlined in the previous section allows for a 

detailed evaluation of the development of micro;3tructure in crystalline (or semi

crystalline as is polyethylene) systems during filling. The relevant thcory and in 

particular the analysis of non-isothermal crystallization in terms of data for i~otherll1a) 

crystallization has been developed by Nakamura et.al. (1973). On the as~umption uf 

isokinetic condition, the fundamental equation has the fOfm: 

t 
xR(t) = (1.0 - exp(-(fK(T).dtt) (111.4.6.1 ) 

o 

2 
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ln the above equation, xR(t) is the relative degree of crystallinity at time (t), mis the 

Awami exponent, and K(T) is related to the isotherrnal crystallization rate constant 

(k(T» through the relation K(T)=(k(T»1/1II. 

Regarding the polyethylene used in tbis study, Lafleur (1983) bas reported the 

following crystallization parameters: 

Avrami exponent: m:.:2 

Rate constant: k(t)=exp(-406.66+2.5981.T-OJ)04.T1
), T in K. 

The fractional relative crystallinity (xR(t» is reIated to the ultimate crystallinity (Xw) 

through the relationship xR(t)=x.,(t)lx.nr. Lafleur (1983) also reports the following 

empirical relationship for the temperature dependence of x., where it is assumed that 

no crystallinity deve)ops above 1210 C. 

with: Ao=97.81 

AI=~1.462 

A2=O.Ol00 

and Ac, = 2223.20 

A 1=-34.274 

Az=0.13441 

T inC. 

For 80 C < T < 114 C 

For 114 C < T < 121 T 

The Nakamura non-isothermal crystallization model was used for the calculation of 

crystallinity development during filling in a "slow fj1ling" simulation run in cavit) CRI. 

The conditions were of the slow filling corresponding to experiment HP7 (see next 

section). The heat transfer coefficient from the melt to the mold was taken as 538 
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W/m~ higher than the experi'11ental value of 356 W/m'K in an effort to produce 

sorne observable solidification duril'g filling. 

Figures (111.4.6.6) and (111.4.6.7) summarize sorne results of this simulation regarding 

the crystallinity development during filling and the associated three-dimensional 

thermal field. Figure (111.4.6.6) shows the crystallinity (x,y) on a surface that passes 

through the k=2 (immediatelly adjacent to the lower mold face) nodal points in the 

thickness direction. Since the thkkness of this mold (CRI) is not constant, the points 

of figure (111.4 .6.6) do not fall on the same physical plane (as is the case in figures 

(111.4.6.1) and (111.4.6.2)). These points define a "logical plane" with common index 

(k). The distance of these points from the mold walls is, naturally, smaller in the 

thinner sections of the cavity. At time 4.82s almost 20% of the crossectional area of 

the mold has been occupied by solidified material - with the exception of a smalt 

region near the gate. The crystallinity distribution within this solidified layer is largely 

uniform for the largest part of the mold, with two weak maxima in the middle section. 

Crystalli2ation at the forward part of the cavity is favored by lower temperatures. In 

the mid-section however, longer residence times favor the development of 

crystallinity, whereas higher temperatures tend to slow it down. Overall, the interplay 

be tween these two opposing forces seems to favour the developmcnt of higher 

crystallinity in this section compared to the forward part of the cavity. 

Figure (111.4.6.7) shows the temperature profiles along the "Iogical plane" k=2 and 

along the logical centerplane. Along the plane k=2 solidification is almost complete. 

However, the same simulation run confirmed that the solidified layer did not reach 

the plane k= 3. Higher grid refinement in the thickness direction would he a way tn 

capture in greater detail the development of cry:.:tallinity within the solidified layer 

during filling. Use of finer meshes however reached the limits of the computational 

capa city of the VAX 11/780 computer used in these simulations. 
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(7.) crystalltnlty at k=2 and t=4.82s 

Figure (ID.4.6.6): Crystallinity profile along the logical plane k=2 towards the end 
of filling of tavity CRI. Cooling rate based on h=538 W/m2JC. 
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Tempera.ture (C) at k==2 and t=4.82s 

Temperature (C) at centerplane and t=4-.82s 

Figure (ID.4.6.7): Temperature profiles along the logicaJ plane k=2 and on the 
centerplane (k=6), towards the end of filling of cavity CRI. 
Cooling rate ba3ed on h=538 W/m~ 
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COMPARISONS Of: MODEL PREDICfIONS WITH 

EXPERIMENTAL DATA 

The purpose of this section is to compare experirnental measurements collected 

during injection molding experiments of polyethylene ScIair 2908 (section (111.3.2)), 

carried out on the molding machine described in section (111.3.3) with predictions of 

the computer program. Data collected during each injection molding run supply 

information regarding the ram velocity (and indirectly the meh flowrate to the mold), 

the ram displacement (used along with the ram velocity measurement for validation 

of the corresponding data), the pressure and surface temperatures at a total of six 

locations in the cavity. The surface tempe rature data are used to monitor the 

advancement of the melt front in the cavity. The response of the pressure transducers 

can be used for the same purpose but with lower accuracy, given the large area ot 

thcse transducers whose radius is O.35cm. The pressure measurement at the gate and 

the pressure drop within the cavity are the primary data that will be compared to 

model predictions. 

Figure (111.5.1) gives the expcrimentally measured ram velocity during experiment 

HP6. This was the entry condition supplied to the computei program. In a1l 

experiments, the ram velocity profile exhibits the characleristic shape of Figure 

(111.5.1). This is because the injection molding machine was operated at a constant 

hydraulic pressure mode. This resulted in rarn speed decreasing as more material is 

injected into the cav:~, since the resistance to the flow increases. Figure (111.5.2) is 

a comparison between experimental (soIid line) and predicted (broken Hne) pressure 

variation at a location near the gate (the coordinates of that location are 

(x,y)=(1.27cm,O.Ocm), which coïncides with the center of the pressure transducer). 

The melt temperature at the gate was 200" C. 

Figure (111.5.3) is a comparison between predicted and experimental pressure drops 
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Figure (IIL5.1): Experimental mm velocity profile during the filling stage 
corresponding to experiment HP6. 
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in the cavity at various instances during filling. Computationally, these profiles are 

obtained along the i=5 (Iowcr part of the cavity) and i=16 (upper part of the cavity) 

grid lines (Figure (III.4.1.3.». The horizontal bars in this graph show the 

corresponding experimental values. It can be concluded, along with Figure (III.5.2) 

that the agreement is qUlte satisfactory at ail times. The program seems to 

underpredlct the pres~urc towards the end of filling. The computed pres~ure drops 

deviate from the al1110st IlIlcar drops observed in a rectangu)ar cavity of constant 

thickness (Lafleur, (19R3)); thls IS oue ta a number of factors, most important of 

which are the change in the dimensions of the mold along the longitudinal direction 

and the non-i~othermal nature of the flow. The pressure gradient is higher near the 

gate where the melt velocity IS higher (section AB in figure (III.5.3)). The local 

pressure gradient (DP!Dx) in the part corresponding to the section of the cavity prior 

to the area of reduced thickness (BC) IS significantly lower. The area corresponding 

to the thinner part of the cavlty (CD) is characterized by a larger local pressure 

gradient compared to BC but smaller than the pressure gradient near the gate; this 

can be explained if one considers the smaller melt velocities in the forward part of 

the cavity. 

Figure (111.5.4) shows the tempe rature profiles along the sarne cGordinates lines as 

in Figure (111.5.3) and for the conditions of experiment HP6. These are gap-averaged 

temperatures. The melt enters the cavity at 200" C. In Figure (111.5.4) the three 

dotted curves corrc~p()nd to the coordinate line i=5, whereas the three solid curves 

ta i= 16. Several ohservations cart he made with regard to Figure (111.5.4). Firstly, at 

any locatIOn along the lines i=5 and i= 16 (as weIl as throughout the cavity), the 

mate rial is cooled with time. This can be seen by observing the relative position of 

the curvcs corre~p()nding to t= 1.32s, t= 1.76s and t=2.33s. This effeçt is more 

pronounced for points away from the gate, since the area near the gate is 

continuously fcd with new hot material. In a small region around the gate, the melt 

temperature is practically uniform in both the upper (i= 16) and lower (i=5) parts of 

the cavity. After 0.15' (l'=2.54cm) from the gate however, the lower part of the 
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cavity h( mes progressively cooler than the upper part. This can be further seen in 

Figure (111.4.5.1) which shows contours of trmperature at various instances during 

filling. Simulation has revealed that in this particular cavity and towards the end of 

fi1llng, the material tlows faster in the upper part. Viscous heating is therefore 

stronger there and residence times are shorter. This, together with the supply of more 

fresh hot melt compared to the )ower part, accounts for the higher temperatures in 

the upper haif of the cavity. These temperature differentials could be minimized by 

proper design of the cooting system of the mold. Also note in Figure (111.5.4) that 

near the melt front the temperature differential between the upper and lower part 

of the cavity decreases. 

Table (111.5.2) is a cornparison between predicted and measured times at which the 

melt front reaches each transducer in the cavity, for experiments HP6, HP7, HP8 and 

HP9. It can be seCH that the agreement is quite satisfactory. Such a good agreement 

is not surprising here, since the experimental melt flowrate is used as the inlet 

condition in the simulations. However, this agreement confirms that the ram velocity 

(or displacernent) is a good rneasure of the melt flowrate in the mold (or, 

equivalently, that compressibility effects in the nozzle are not significantly degrading 

the quality of that measurement). Furthermore, this good agreement proves that the 

frequent rearrangement of the free surface nodal points for smooth grid generation 

purposcs (see Appendix A4) does not contaminate the accuracy of the movement of 

the free surface. 

Figure (111.5.5) shows the rarn velocities corresponding to experiments HP8 and HP9. 

Experiment HP9 is a "fast" filling whereas HP8 is a slower filling. The melt 

temperature in both these runs is 2350 C. Figure (111.5.6) gives a comparison between 

predicted and experimental pressure variations at the gate for these runs. The 

agreement is fairly good for both cases in the initial and intermediate stages of filling 

but becomes progressively worse towards the end of filling. The divergence between 

predictions and experimental data at the last stages of filling is smaller in the faster 
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HP6 0.48 

0.48 

HP7 0.78 

0.77 

1.28 

HP8 0.81 
l 
l 0.81 

0.00 

HP9 0.37 

0.37 

0.00 

Table (Ill.5.2): 
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1'2 1'3 

1.33 2.31 Experiment 

1.32 2.27 Predicted 

0.75 1.73 (%) Difference 

2.99 5.23 Experiment 

2.94 5.18 Predicted 

1.67 2.87 (%) Difference 

2.62 2.35 Experiment 

2.61 2.32 Predicted 

0.38 1.28 (%) Difference 

0.92 1.65 Experiment 

0.91 1.62 Predicted 

1.08 1.82 (%) Difference 

Comparison between predicted and experimentaI times required 
for the melt front to reach the temperature transducers Tl, TI 
and 1'3 in cavity CRI. 
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filling case HP9. This might be due to the smaUer solidification associated with 

shorter filling times. The pressure drops along the cavity at various instances during 

filling are further shown in Figure (111.5.1). The corresponding temperature profiles 

are given in Figure (III.5.8). There is a small but interesting qualitative difference in 

the temperature profiles of Figures (III.5.8.A and (III.5.8.B). The temperature 

corresponding to the faster run HP9 seems to show a liule overshoot at intermediate 

locations within the cavity; this behaviour is absent from the profiles corresponding 

to the case HP8. Since an conditions between these experiments are the same but the 

filling time (or melt flowrate), it is concJuded that this is a viscous heating effect. 

Figure (111.5.9) shows predicted (dotted) and measured (solid Unes) pressures at the 

locations of the three pressure transducers in the cavity. These results correspond to 

run HP9. Again the agreement is quite satisfactory, especially for the second and 

third transducers. 

Finally, Figures (111.5.10) to (111.5.13) give experimental and simulation results 

regarding the experiment HP7 which was performed at a very low melt flowrate. The 

agreement between theory and experiment becomes rather bad towards the end of 

filling. Upon inspection of Figure (III.5.l3), it becomes c1ear that the gap averaged 

temperature in the cavity towards the end of filling is relatively low. It was thought 

that there could be a significant amount of solidification in this experiment which had 

not been taken into account in the two-dimensional simulation. However, simulations 

using a three-dimensional thermal analysis code that would take into aceount the 

reduction of crossectional area of the mold due to solidifjcation, based on a heat 

transfer coefficient of 68 Btu/ft2/hr/F (386 W/m2J() uniform throughout both faces of 

the mold, showed that there was no significant solidification - that could be resolved 

with grids having 10 grid points in the thickness direction. Use of linear temperature 

interpolations between the mold wans and the adjacent grid points was used to 

determine, approximatelly, the thickness of the solidified layer and the consequent 

reduction in crossectional area. This approach resulted in a pressure profile that 

deviatcd only slightly from that of a two-dimensional simulation (Figure (111.5.11». 
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This points to the direction of reexamining in detail the heat transfer in the mold and 

in particular the possibility of strong spatial variation of cooHng rate along the faces 

of the mold. More experimental work is needed in this direction. 

(111.6) SUMMARY 

A model for the simulation of the filling stage in injection molding has been 

developed. The model considers viscoelastic, non-isothermal, transient flow with an 

advancing free surface in a cavity of complex shape with an insert. The location of 

the melt front is determined in the course of the computations; following that, the 

computer program automatically generates suit able curvilinL:!" computational meshes 

in the region of the cavity covered by the melt. Based on the above model, 

parametric studies wcre performed, which revealed the effects of key process 

characteristics such as melt flowrate, melt temperature, material properties and mold 

geometry on the pressure and temperature gradients in the cavity, as weB as on the 

pressure history near the gate. The spatial distribution of velocities, stresses and 

temperatures was also evaluated at various instances during filling and various 

geometrical configurations. A three-dimensional analysis of the thermal problem 

during filling, coupled with two-dimensional kinematics in a rectangular and in a 

complex shaped cavity, resulted in a detailed description of the temperature field, 

which is of considerable comp\exity even in geometrically simple situations. Coupling 

of the Nakamura non-isothermal crystallization kinetics model allowed for a 

calculation of the crystallinity development within the solidified polymer layer during 

filling. 

Predictions ot the model have been compared to experimental data obtained during 

the injection molding of high density polyethylene, whose complete rheological 

characterization was performed, in a cavity of complex shape. The model predicts 

reasonably weB the experimentally measured pressure-time profiles at three locations 

in the cavity, as we}! as the progression of the melt front. The model predictions 
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deviate the most from the experimental data towards the end of filling and for 

experirnems ",ith long filling times; consideration of the reduction in moId 

crossectional are a du ring filling did not improve substantially the predictions of the 

program. A possible reason for this discrepancy might he inaccuracies in the 

calculated melt flowrate at the gate toward the end of filling due to noise in the rarn 

velocity signal as weil as poorly defined thermal conditions along the mold walls. 
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(IV) CONCLUSION 

(IV. 1 ) Conclusions 

This Thesis has presented a finite difference numerical simulation of viscoelastic flows 

in complex geometries. A number of steady state flows of an upper convected 

Maxwell fluid have been studied nUilierically; tbis study has revealed the effect of 

elasticity, inertia and geometry on the structure of the stress and flow fields. Vortex 

growth with elasticity has been predicted ir contractions; grid refinement studies have 

shown that this growth is îndependent of the size of the computational grid, 

depending strongly on the geometrical configuration of the channel. In expanding 

flows, the elasticity of the fluid is found to ft ; [Ice the size and strength of the 

secondary flow. 

The same numerical techniques with geometry-adaptive remeshing have been used 

for the simulation of the filling stage of the injection molding process. Non

isothermality, shear thinning viscoelastic behaviour and the presence of an advancing 

free surface of complex shape are issues that have.! also been dealt with in this part. 

In the two-dimensional version, the numerical scheme 30lves the conservation and 

constitutive laws on the plane of the flOW; howevel, velocity, thermal and stress 

gradients in the thickness direction are inc1uded in the analysis in a gap-averaged 

sense. This has al10wed for consideration of both plar.ar and gap-averaged stresses 

in the development of the pressure in the cavity, and, for the first time, for a 

comparison between the magnitude of planar and gap-averaged stresses in a 

geometrically complex situation. The latter are predicted to be about ten times larger 

than the planar stresses - for the cavity and the filling conditions studied. 

A completely three-dimensional solution of the energy equation, cou pIed with the 

Nakamura model for non-isothermal crystallization kinetics, two-dimensional 
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kinematics and stresses, has been performed in a rectangular and in a complex

shaped cavity. This analysis allowed for a detailed description of the thermal 

conditions in the cavity, as weil as for the development of microstructure during filling 

- the later for very slow injections with relatively high cooling rates. The results of the 

3D simulation showed that thermal fields can be considerably complex even in a 

cavity of a simple shape. In the case of the rectangular cavity, this means that 

treatment of the filling stage as a flow problem between two infinite flat plates is 

representaH·.e of only a sman part of the real process. In this sense, the present work 

on injec.tion molding can be seen as fusing together and expanding the best 

charactelistics of previous research done at the Polymer Processing Group at McGiIl, 

and in particular the work of Kuo and Kamal (1976), which mode lied the spreading 

flow in a rectangular cavity using non-isothermal potential flow theory, and the work 

of Lafleur and Kamal (1983) which modelled in detail the flow of a viscoelastic melt 

between two infinite flat plates. Furthermore, the use of boundary fitted curvilinear 

coordinates ha:; allowed for the modelling of the fil1ing stage in a complex cavity 

which includes an in sert; this adds a new dimension in the modelling capabilities of 

the Group. 

Model predictions have been compared to experimental measurements obtained in 

an injection molding machine. Melt front progression data and pressure data were 

in reasonably good agreement with model predictions. The material used was an 

injection molding grade polyethylene; its rheological characterization has been part 

of this work. 

(IV.2) Recommendations 

8ased on the experience gained during this study, the following recommendations for 

future work can he made: 

(1) The three-dimensional model produced in this work can be used in 
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conjunction with existing models for the packing and cooling stages. This way 

three-dimensional distributions of cl)'stallinity in the final product, thermal 

stresses and pressure vanation during the complete injection molding cycle ean 

he determined. 

(2) Extend the stress calculation in three-dimensions. At a first stage, this can be 

accomplished by considering fully developed inelastic (power-Iaw) velocity 

profiles acrass the gap, therefore ignoring the fountain flow effect. 

Consideration of completely three-dimensional kinematics in the context of the 

stream fl'Hction 1 vorticity formulation is tedious; it might be advisable to use 

the velocity/pressure formulation in a three-dimensional simulation. 

(3) Improve the efficiency of the pressure SOR solver by considering techniques 

su ch as the method of conjugate gradient~. 

(4) Consider alternative viscoclastie mf')dels, partieularly madels that include a 

retardation time, sinee their use might imprave the stability af the stress 

ïterative solver. Their prediction should hawever he eompared ta experimental 

data in simple flaw situations before any effort is made to incorporate them 

in the model. 

(5) Enhance the physical description of the process by considering stick-slip flow 

on the mold wall, particularly near points of high stress concentrations. The 

effeet of ~hear and elongatiQnal stresses as weil as the effect of pressure on 

the crystallization kinetics of polyethylene could also be tested experimentally 

and incorporated in the model. The rheological description of the resin could 

further be enhanced by considering a spectrum of relaxation times. 

(6) The present model can be modified to include the delivery channels in the 

analysis. This can be done by changing the flow field so as to include the 
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delivery channels (which can be of arbitrary planar shape, but not of an 

axisymmetric shape; in the later case modifications in the core routines will be 

needed). This is expected to improve considerably the quality of the mooel 

predictions, since the noule pressure can be used instead of the melt flowrate 

as a boundary condition. 

(7) At the experimental level, investigate the spatial distribution of the heat 

transfer coefficient along the faces of the mold. Incorporation of spatially 

variable cooling might improve the quality of the model predictions, 

particularly in situations with long filling times. 

(IV.3) Novel ContrIbutions 

(1) Part (II) of this work presents the first application of the method of boundary 

fitted curvilinear coordinates for the finite difference simulation of viscoe1astic 

flows in complex geometries. Ail previous work in complex geometries has 

been done in the context of finite elements, with finite difference solutions 

confined to geometrically simple situations. 

(2) The QUICK upwinding scheme has not been previously used in the modelling 

of viscoelastic flows. 

(3) Certain cases studied in part (II) of this Thesis, such as the flow in 

contractions with a rounded or non-symmetric corne,,, have either not been 

analyzed before or have attracted only limited attention. 

(4) It is the first time that both planar (shear and e)ongationa) and gap-averaged 

(shear only) stresses have been considered in the mode11ing of the flow of a 

viscoelastic material in injection mold filling. Consequently, this is the first 

time that the relative magnitudes of planar and gap averaged str :!sses that 
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develrp in a viscoelastic mate rial during filling have been quantified. 

(5) This is maybe the second application of the method of boundary fitted 

curvilinear coordinates with adaptive remeshing in the modelling of transient 

free surface tlows duripg injection mold fùling (Subbiah et al. (1989)), and the 

first that utilizes a viscoelastic modeI. To the Author's best knowledge, it is the 

first study that, in the context of BFCCs and injection molding, tackles the 

problem of an insert and the first work that couples a filling analysis of a 

complex mold with three-dimensional crystallization kinetics. Even though the 

amount of crystallinity (and solidification) that develops during filling is very 

small, it can be very important in the final properties of the finished article. 

(6) An data reported in this Thesis (in rheological characterization and injection 

molding) and ail computer programs used in the simulations are original 

contributions. 
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(V) LIST OF SYMBOLS 

al Time-temperature superposition shift fac.tor 

al] Components of the velocity gradient tensor(Eqn.III.21) 

A Viscosity Coefficient (Eqn. 111.41) 

A(T) Model dependent tensor (Eqn. Il.9) 

Al Coefficient introduced by Equation Il.16 

A2 Coefficient introduced by Equation Il.11 

A3 Coefficient introduced by Equation 11.18 

b Thickness of the cavity 

B Coefficient introduced in Equation Il.19 

C Coefficient introduced in Equation Il.20 

Cp Heat capacity 

o Coefficient defined in equation Il.66 

o 
Dl 
O2 
0 3 
04 
D(S) 

d, 0 

dlj 

D/Dt 

Diagonal matrix 

Coefficient defined by equation Il.68 

Coefficient defined by equation Il.69 

Coefficient defined by equation Il.70 

Coefficient defined by equation 11.71 

Non-Newtonian source function (Eqn. 11.3) 

Rate of deformation tensor (Eqn. 111.22) 

Components of the tensor 0 (Eqn. 111.22) 

Material time derivative (Eqn. II.I0.c) 

De Deborah number (De=>'7max) 

E Matrix defined by Equation Il.79 

F Coefficient defined by Equation (11.67) 

F Matrix defined by Equation Il.79 

F 1 Coefficient introduced by Equation Il.2 

F2. Coefficient introduced by Equation Il.22 

F3 Coefficient introduced by Equation Il.23 

fR,fL Functional values at mid-cell locations 

G' Storage Modulus 

G" loss Modulus 

Coefficient introduced by Equation Il.27 

Coefficient introduced by Equation Il.28 

Coefficient introduced by Equation Il.29 
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1 h Grid spacing (Equation Il.34) 

i,j Indices in finite difference discretization 

Il Second invariant of 0 (Eqn. 111.40) 

J Jacobian of the coordinate transformation (Eqn. 1.8) 

k(T) Isothermal crystallization rate 

K(T) Consistency index (Eqn. 111.41) 

l 

L 

li 

l2 
l3 
l. 

ls 
NORM 

n 

NI 
P 
Q 

R 

Re 

Characteristic length 

lower-triangular matrix(Eqn. Il.77) 

Coefficient defined by Equation (11.72) 

Coefficient defined by Equation (11.73) 

Coefficient defined by Equation (11.74) 

Coefficient defined by Equation (11.75) 

Coefficient defined by Equation (11.76) 

Norm of iterative corrections in SR algorithm 

Power law index (n=1/s) 

First normal stress difference(TXX
- TYY) 

Control function (Eqn. 1.1) and Pressure 

CO.ltrol Function (Eqn. 1.2) 

Gas law constant 

Reynolds number (Re=pUl/ p) 
r Position vector 

s Inverse of power law index 

S=(SXX,SYY,Sxy) Elastic stress tensor 

T = (TXX, TYY, TXY) Total stress tensor 

T(I) U~)per convected derivative(Eqn. Il.lO.a) 

T (1) lo~:'er convected derivative (Eqn. Il.l0.b) 

T T emperature(K) 

T1(x) Truncation error (Equation Il.54) 

t Time(s) 

u,v,W 

<u>,<v> 
U 

U 

We 

x,y 

Velocities in the x,y and z directions(cm/s) 

Gap-averaged velocities(Eqn.III.28 & 111.29) 

Characteristic velocity 

Upper-triangular matrix 

Weissenberg number !We=XU/l) 

Cartesian coordinates 
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l Greek Letter. 

~ 
7 
6/6t 

AE 
'1 
e 

Transformation coefficient (Eqn. 1.5) 

Transformation coefficient (Eqn. 1.6) 

Transformation coefficient (Eqn. 1.7) 

Objective time derivative (Eqn. 11.10) 

Activation energy (Eqn. 111.41) 
Curvilinear coordinate 

Curvilinear coordinate 

Thermal conductivity(W /mK) 

Relaxation time(s) 

Viscosity(Pa.s) 

Density (Kg/ m3) 

Grid cel! Reynolds number 

langrange polynomial ([qn. 1.13) 

Viscous dissipation (Eqn. 111.16) 
Stream function 

Vorticity 
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A1.I 

(Al) Numerical Implementation of Elliptie Grid Generator 

For the numerical solution of the gr id generating equations «1.3) and (1.4)), the 

derivatives of the spatial coordinates (x,y) with respect ta the curvilincar coordinates 

are discretized using central differences in the interior of the f10w domain and one

sided, second arder accu rate differenccs on the boundaries. 

(XJ)IJ = (~+IJ-x,.14)/2h (A1.I) 

(~)IJ = (X;.)+,-~t)/2h (A.1.2) 

{yj}1J = (y'tlJ-Yl-lJ)/2h (A.1.3) 

(Y,,)IJ = (Y1J+I"YIJ-l)l2h (AJA) 

(a~a~2)tJ = ("'+14 - 2xu + ~tJ)/hl (A1.5) 

(Ô~Ô,,2)&,J = ("'.i+l -~ + XI).,)/h2 (A.l.6) 

(a~aeal'J)1J = (x,+1J+1 .. )(,014+1 "x,tl)o\ + Xol.J•1)/4h2 (A1.7) 

(a'ylae2)tJ = (YI+lJ - 2YlJ + y, IJ)/h2 (A.1.8) 

(a'yla,,2)iJ = (ylJ+l - 2YIJ + YI) t)/h2 (A 1.9) 

(a'ylaeal'J)1J = (y1+1Jtl " Y.o1J+1 "Y'tl.r1 + YolJ.I)/4h
2 

A (A. 1.10) 

Since the boundary torrespondence is given, the generating equations need ta be 

solved only in the interior of the domain of interest. Therefore, in this case, there is 



. , 

AI.2 

no need for the use of special difference expressions at the boundaries. 

The discretized fonn of the generating equations was solved using an iterative 

successive relaxation algorithm. Iterativ'! changes were smoothened by means of a 

factor (w) as follows: 

(A.I.ll) 

where the superscript (n) indicates fllnctional "nlues a'. the nth iteration. The 

convergence of the iterative solution was usually rapid without stability problems. The 

only problems were eta '!ountered when improper values for the coefficients e,c,b,d in 

the equations defining the control function P and Q were being selected. For 

exampic;, iÎ attraction to an ,,-line (say "rer) \Vas desired, too high a value of (ei) would 

impose a very strong attraction on the nearby coordinate Hnes. This would lead to 

sorne of the ,,-Hnes crossing the "rel line, resulting in numerical instabilities and an 

unacceptable grid. Similarly, a very small value of the decay coefficient (c,) would 

result in attraction even to distant ,,-Iines, and lIsual1y in an unacceptable grid. Figure 

(A.l.l) shows sorne of the problems associated with unreasonable values for the 

distortion functions. 

The concentration of coordinate \ines in areas of interest can, besides a proper choice 

of P and Q, be controlled by a proper distribution of the boundary nodes. Figure 

(11.5.1.1) shows parts of three grids lIsed in the study of flow in a 4:1 contraction. 

Grid (1I.5.1.1.a) was constructed with P=Q~O and a fairly unifonn distribution of the 

boundary nodes. In grid (II.5.1.1.b) P and Q were calculated so as to give a higher 

concentration of coordinate Hnes near the upper boundary. Finally, Grid (II.S.1.1.e) 

was constructed with P=Q=O and a higher density of boundary nodes near the 

reentrant corner . 

(A1.I) Grid Orthogonality at the Boundary 



Figure (AI.I): 
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Some of the probJems associated with unreasonable values of 
the distortion functions in Poissonptype elliptic grid gencration. 
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When Neumann boundary conditions are to be used, as is the case in the solution of 

the pressure equation in the modellillg of the filling stage in injection molding,it is 

desirable to have a grid that is normal to the boundary. In the context of second 

order elliptic generating systems, this can be accomplished in two ways: 

(a) Keep the boundary points constant and place the interior nodes in a manner 

that assures orthogonality. This can be accomplished by proper selection of 

the control functions. (Thompson et al. (1985)) 

(b) Move the boundary points so that the coordinate tines intersect the boundary 

at light angles. 

ln this work method (b) was followed. Its application was facilitated by the fa ct that 

the boundary of the flow channel consisted of Iines with expIicitly known parametric 

equations. Therefore the location of the houndary points for orthogonality could be 

easily determined by geometrical considerations. 
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(Al) Coordinate Invariance of Partial Differentiai Equations 

The objective of this section is to prove the following theorem:(Lapidus & Pinder, 
1982) . 

Theorem: The sign of the discriminant of a second order partial differential equation 

(p.de) in two independent variables is invariant under non-singular transformation 

of coordinates. 

This proposition is fundamental in the theory of partial differential equations. It 

guarantees, that an emptie, for example, equation will remain elliptie after a non

singular transformation of coordinates, even though the transformed form might 

inc1ude additional terms not present in the original equation. In this work we are 

particuJarly interested in the transformation of the Laplace operator appearing in the 

Poisson equations for the vorticity and the stream function. In curvilinear 

coordinates(~,'1), the transformed form of the Laplacian operator of a scalar (u) is: 

(A2.1) 

where the coefficients are functions of the coordinate transformation. The general 

second order partial differentia] equation of the form 

(A2.2) 

defined in w, can be elliptie, hyperbnlic or parabolic, depending on whether the 

discriminant 

(A2.3) 

is negative, positive or zero respectively. If the sign of the discriminant changes in (0), 
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then the equation is of the mixed type. In the theory of partial differential equations 

there is a fundamental distinction between those of elliptie, parabolic and hyperbolic 

type. Each type has different requiremems as to the boundary or initial data required 

to assure existence, uniqueness and contmuous dependence on initial data; that is for 

the problem ta be well posed. These requirements are weil known for each of the 

above types of equations, and many analytical and numerical techniques have been 

developed for solving the various types of equations, including non-linear equations, 

subject ta suitable boundary conditions. However, for the equations of mixed type 

much less is known and it is usually difficult to know even what the proper boundary 

conditions are. It becomes therefore apparent that il is crucial to establish that the 

type of a general partial differential el!uation of the form of Equation (A.2.2) is 

coordinate system invariant. 

Let the new coordinates (e,'1) be related ta the old (x,y) coordinates by: 

e = e(x,y) '1 = '1(x,y) (A.2.4) 

The Jacobian of this transformation will he non-zero, since we are interested in non

singular transformations 

(A.2.5) 

Because of this, the inverse relations also hold 

x = x(e,'1) (A.2.6) 

Using the chain rule, one can calculate the derivatives of the function (u) appearing 

in (A.2.2). Substituting in (A.2.2), one can get the transformed equation in the new 

coordinate system. This will be 
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(A2.7) 

where the derivatives of order les~ than two were dropped since their coefficients do 

not affect the sign of the discriminant. It can no\\' be proved that the discriminant of 

equation (A2.7) is 

(A.2.8) 

This results shows that the sign of the discriminant remains indeed unaffected by the 

coordinate transformation . 
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(A.3) Review of Transformation Relations 

A complete presentation of the relations involved in the transformation of derivative 

and integral operators from one curvilinear system to another can be found in 

Thompson et al. (1985). Su ch expressions for the basic derivative operators of fluid 

mechanics are given in this section for the sake of completeness. Both conservative 

and non-conservative forms are inc1uded. 

(A.3.1) Conservative Relations 

Divergence: v·f = J"1l:(Jal.f). (A3.!) 

Gradient: vf = Jtl:(Jaif). (A3.2) 

eur}: vxf = JI l:(Jalxf). (A3.3) 

Laplacian: vIf = ~[al. (J alf)xl]i (A3A) 

(A.3.2) Non-conservative Relations 

Divergence: v . f = !;a'. f.. (A3.5) 

Gradient: vf = l:a'f Il (A3.6) 

in view of (A3.6), the (v) operator can be written, in generai curvilinear coordinates, 

as: 

v :: !;alea/ai) (A3.7) 
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i 
eur): 'lxf = l:alxf. 

Laplacian: 'l2f = ~i.al~ + ~I.(al).~ 

A3.2 

(A3.S) 

(A3.9) 

In the equations (A3.1) to (A3.9),x', i=1,2,3 are general curvilinear coordinates, 

whereas al, i = 1,2,3 are the contravariant base vectors corre~ponding to these 

cuIViUnear coordinates. The contravariant bes vectors are defined as: 

al = vi , i= 1,2,3 (A3.l0) 

In equations (A3.1) to (A3.10) bold letters indicate vectors, non-bold letters are 

scalar quantities and aU the summations are over i= 1,2,3 and/or j= 1,2,3. 

(A3.3) Transformation of Temporal Derivatives 

Equations (A3.1) to (A3.1O) refer to spatial discretization. With moving grids and 

time dependent equations however, as is the case during the modelling of the filling 

stage of injection molding, the time derivatives need to be considered as weil. For the 

tirst time derivative, the transformation relation is: 

(A3.11) 

where the subscripts outside the parentheses indicate the spatial variable being he Id 

constant in the time differentiation. The term ~ is the grid point speed. With the time 

derivatives transformed as in Equation (A.3.11), only time derivatives at flXed points 

in the logical space will appear in the equations and, therefore, ail computations can 

still he done on a flXed uniform mesh without interpolation, even though the grid 

points are in motion in the physical space. 



A4.1 

(A.4) The Boundary Conditions 

(A.4.1) Preliminaries 

The importance of the boundary conditions in computational f1uid dynamics cannot 

be overstated. Besides affecting the accuracy and stability of computational 

algorithms, the type of boundary conditions is an important factor that win determine 

the predicted f10w patterns. Mter aIl, aIl the fantastic Dow phenomena in gases and 

liquids are solutions of the sa me set of partial differential equations, namely the 

Navier Stokes equations and it is the difference in initial/boundary conditions and 

flow parameters such as the Reynolds number that create the great variety of 

observable f10w patterns. In the solution of the coupled viscoelastic problem, the type 

of boundary conditions can greatly affect the results and the stability of a 

computational algorithme 

(A.4.2) Boundary Conditions for the Stream Function and Vorticity 

The boundary conditions for the stream function are of the Dirichlet type. Since solid 

boundaries and axes of symmetry are streamlines, the stream function is defined as 

follows: 

~ ... = constant ~~ = constant (A4.1) 

ln the inlet of a flow channel, (!JI) and (c.» can be determined by integration and 

differentiation respectively of the inlet velocity profile. In general, it will be: 

lf .... (y) = fu .. (y)dy , (0)-.... = - au..Jay (A.4.2) 
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The evaluatio:~ of (t}, and w) at outflow boundaries is not as straightforward and has 

been the subject of considerable research (Roache, (1976». Use of improper outflow 

boundary conditions has been shown to result in catastrophic instabilities that 

propagate upstream from the outflow boundary and destroy the solution. 

When the length of the outflow section is sufficiently large, it is reasonable to assume 

a fully developed profile and extract (1/1) and (w) in a similar fashion as in the inlet. 

However, it has been shown (Paris and Whitaker, (1965» that the less restrictive 

condition 

v= 8l/J/ax = 0 and 8w/ax = 0 (A4.3) 

allows greater accuracy for comparable computational meshes. This outflow condition 

has been used in this work. 

(A4.21) Evaluation of Vorticity on Solid Boundaries 

The evaluation of vorticity on solid walls is maybe the most important and sensitive 

computational boundary condition. One possible way ta obtain boundary values for 

vorticity is by expanding (1/1) in Taylor series from its wall value C1/InU): 

(A4.4) 

where HOT stands for higher order terms lhat are neglected in the following analysis 

and the subscript (w) indicates wall values. Assuming non-slip conditions 0n the waJls, 

and using the equations defining (1/1) and (w), one obtains 

(A4.5) 

where the subscript (w+ 1) indicates the point c10sest to the waH, and (h) is the 



1 
A4.3 

normal distance between points (w) and (w+ 1). Equation (A4.5) is a first order 

approximation of the wall vorticity. This fonn has been rep0l1ed by Thom as early 

as 1928, and has been widely and successfully used since then. It has been found ta 

give results that essentially equal ta those of higher arder forms (Roache, (1976», 

when first order accurate discretization of the derivatives of (y,) and (w) is used. 

However, when second order central differences are used, application of equat50n 

(A4.5) has been found to undermine the accuracy of the global scheme (Gupta and 

Manohar, (1979». Second order approximations for the wall vorticity have therefore 

been proposed. Two of these forms, introduced by Jensen (1959) and Woods (1954) 

respectively are: 

(A.4.6) 

(A4.7) 

Discussions on the relative merits of first and second arder formulae for the 

evaluation of the wall vorticity can be found in Crochet et al.(1984) and Roache 

(1976), each with nurnerous references supporting each side. It has been said 

(Crochet et al. (1984» that in the case of viscoelastic flow, thG introduction of the 

non-Newtonian source function (terrn D(S) in equation (11.2» which is first arder 

accurate because of the backward differences usually used in the discretization of the 

stress derivatives in the constitutive equation, removes most of the merits of using a 

second order accurate formula far the wall varticity - unless the Weissenberg number 

is very small, in 'Nhich case the problem is essentially a Newtonian one. In the Iight 

of possible instabilities induced by second order forrnulae, it has been suggested 

(Crochet et al. (1984» to use the mare reliable, even though less accu rate, equation 

(A4.5). However, use of the higher order accurate QUICK scherne in the 

discretization of the stress equatians makes the applicatiun of second arder vorticity 

approximations a meaningful alternative. In the context of this wark, bath first and 

second arder boundary approximations have been used with success. 
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All the previous formulae for wall vorticity are based on straight walls that are 

parallel to either the x- or the y-axis. Roache (1976) shows how approximations for 

wall vorticity on a solid boundary that forms an angle with the axis of the tlow can 

be derived. However, that method is not of general use on curvcd boundaries. In the 

cantext of this work, the wall vorticity on general curved solid boundaries has been 

evaluated by the following defining expression: 

(A4.8) 

In general curvilinear coordinates, (e,17) the RHS of equation (A.4.8) can be written 

as: 

(A4.9) 

where aU derivatives are defined on the wall (w) of the flow channel and o,fJ,.., are 

given by equations (1.5) ta (1.7)). Since (1/1) is constant along the wall, equation 

(A4.9) reduces to: 

(A4.1O) 

It can further be shown that on solid no-slip walls it will always be (al/J/ae) = O. 

Therefore, equation (A.4.8) simplifies ta: 

(A4.10.a) 

A similar boundary condition has been used by Liou et. al. (1984) for the evaluation 

of the wall vorticity in a bent with curved walls. When a first order approximation for 

the derivative (a11/J/ae1
) is used, it can be shawn that for a boundary parallel ta the 

x (or y) axis, equation (A.4.lO.a) reduces ta equation (A.4.5). Both first and second 

arder one-sided approximations for the partial derivative in (A.4.1O.a) were used, 
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resulting in two different formulae for the wall vorticity. The second order formula 

is (Conatz (1966»: 

(A4.10.b) 

Use of a first order expression for the second derivative (t/lH). results in the 

following wall vorticity approximation: 

(A4.10.c) 

The second order expression (equation (A4.10.b» was found to be less stable than 

the first order formula (A.4.10.c). However, both methods worked weIl in geometries 

that did not involve boundary discontinuities such as a reentrant corner. Smoothing 

of iterative changes based on equation (A.1.1I) with relaxation parameter (w) 

detennined by trial-and-error was necessary in certain cases with the second order 

formula but not with equation (A.4.10.c). Both methods gave essentiany the same 

results in smooth geometries. 

At a point of boundary discontinuity, the directional der.vatives (x'!) and (y'!) are 

undefined. In su ch a corner, the vorticity was calculated using the well-known 

Kawaguti method. 

(A.4.3) Boundary Conditions for the Stress Equations 

The boundary conditions for the total stress will be derived from the constitutive 

model by proper selection of (u), (v) and their gradients. On solid, no-slip walls, 

u=v=O and the upper convected Maxwell model reduces to a set of algebraic 

equations which, upon solution, yields the following expressions for 'fu, 'P, T'Y. 
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where ci = (uJ2 + va'Uy, and the subscripts denote partial differentiation. 

A4.6 

(A4.1l) 

(A4.12) 

(A4.13) 

These expressions are valid on any non-slip boundary. On boundaries parallel ta the 

x-axis, the above equations further simplify to: 

ra = 2We.(u,)2 (A4.14) 

T" = We.(u,)2 (A4.15) 

and T'" = ra = -pa = 0 (A4.16) 

On boundaries parallel to the y-axis, we get: 

'P' = 2We.(va)2 (A4.17) 

T" = Vie.(v.)2 (A.4.18) 

and -ra = 'pz = -pa = 0 (A4.19) 

On axes of symmetry the constitutive model simplifies ta the following set of ordinary 

differential equations: 

~.u·(d'fD/dx) + (1 - 2·,\·Ua)·T .. = 2~'11a (A.4.20) 



1 l.u.(d1"/dx) + (1- 2·l.V,).T" = 2p.v, 

with 1'" = 0, indicating that an axis of symmetry is a shear-free line. 

(A.4.4) Boundary Conditions for Pressure 

A4.7 

(A4.21) 

The boundary condition for the Poisson equation of pressure along the edges of the 

cavity is the following Neumann condit:on: 

aP/an = L, (A4.22) 

where the term Lp in (A.4.22) is calculated from the momentum equations. The 

approximation aP/an::: 0 is also frequently used. This is a mild approximation, since 

the constant pressure region is confined to the very vicinity of the solid boundary. 

The existence of Neumann condition requires transformation of the normal derivative 

to the curvilinear coordinate system. In a general, non-orthogonal system, this leads 

tu a boundary condition of the form: 

s(x,y).(aP/ae) + h(x,y).(ôP/a,,) = 0 (A4.23) 

This type of boundary condition will feedback in the iterative algorithm and possibly 

destabilize its convergence. Initial experience in this respect confirmed that possibility. 

However, in the context of a coardinate system that is normal to the boundary, either 

s(x,y) or h(x,y) will disappear and the boundary condition will retain its simple 

functional fonn. For this reasan, it was decided that in the analysis of the injection 

molding normal-to-the-boundary curvilinear coordinate systems were used. Their 

construction has been discussed in APPENDIX (Al). 

At the inlet of the cavity the pressure gradient ean be obtained by simply considering 

fully developed one dimensÎl.mal flow between two flat plates with distance equal to 
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the thickness of the cavity at the gate. The resulting pressure drop will then be: 

p. = [2Q( s + 2)/bW]!1J
·) • (2k/b) (A4.23) 

In A4.23, k is the consistency index of the polyrner and Q is the melt flowrate at the 

gate. (b) is the thickness and (W) the width of the cavity at the gate. In A.4.23, 

s=1In. 

(A.4.5) Boundary Conditions at the Free Surface 

At the filling stage of injection molding particular attention should be placed on the 

description of the free surface. A local force balance provides the following boundary 

condition on a free surface: 

n.T = (2·HJCa)n - P.n (A4.24) 

where (n) is the outward unit vector normal to the surface, 2H is the surface 

curvature and p. the ambient pressure, usually taken as zero. Ca is the capillary 

number, defined as the ratio of viscous to surface tension forces (Ca = wU/À). Since 

in molten polymers the viscous forces are dominant, lICa - 0, and equation (A.4.24) 

simplifies to the no-traction condition: 

n.T = - P n • (A4.25) 

In the case that the curvature of the free surface is small and the stresses follow sorne 

power Iaw expression, that is when elastlcity effects on the shape of the free surface 

are ignore d, the boundary conditions at the surface can be written as (Laneur, 1983): 

P = p. + 2p'(u.) (A4.26) 
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(A4.27) 

Application of the boundary conditions (A.4.26) and (A.4.27) is relatively 

straightforward in the context of a (u,v,P) solution. However, in the context of an 

(1jI,w) solution, there exists a difflculty in formulating the boundary conditions at the 

free surface in forms that can be used computationally without affecting the stability 

of the numerical scheme. Tanner (1983) states that no successful application of the 

(1jI,w) solution in fn'e surface flows is known. In this work the values of the stream 

function at the free surface were obtained as in an inflow/outtlow boundary by 

integrating the appropriate velocity profile, in a manner similar to the one used by 

Subbiah et al. (1989). At each time step, the velocities used in these forms were 

obtained by differentiation of the lP-field at the previous time level. Comparison of 

computational results for the shape of the free surface with experimental profiles 

obtained with short shots shows a very good agreement. This verifies that in injection 

molding, with the associated very high flow rates, the shape of the free surface is 

determined main1y by the geometry of the cavity and the ove rail kinematics of the 

flow, rather than by conditions prevailing at the vicinity of the free surface. 

(A4.6) Boundary Conditions for Temperature 

At the inlet of the cavity the me1t temperature is assumed to be uniform: 

(A4.28) 

On the faces of the mol d, the following condition ïs used: 

(A4.29) 

where le. is the thermal conductivity of the melt, T o is a reference temperature and 
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h is the overall heat transfer coefficient. Again, the subscript (w) indicates wall values. 

(A.4.7) Computational Trcatment of the Free Surface 

For a successful continuous marching solution of the model equations during filling, 

it is essential to be able to generate il proper computational grid at each time step. 

Besides orthogonality at the mold walls, which will ensure accurate representation of 

the pressul>! boundary conditions, a proper gr id should have a relatively uniform 

distnbution of nodes. In general, we wish to avoid uncontrollably large or small 

concentrations of grid nodes; il relatively uniform distribution is a good, if not 

optimal, compromise. It is fairly simple to generate automatically an equidistant 

distribution of boundary nodes on the mold walls, but not 50 simple on the free 

surface. The difficulty lies in that the location of the melt front is not known a-priori, 

and therefore, no parametric expression is available. This problem was solved by 

providing for the generation, at each tlme step, of a suitable interpolant for the 

sequence, say {x,y), of the surface points. Then the grid nodes were rearranged at 

equal intervals on this interpolant. With equally spaced nodes on 3114 boundaries of 

the physical domain, a Laplace generating system always produces a smooth and 

uniform mesh. Amongst the many available interpolants (such as lenst squares 

polynomials, piecewise polynomiab, cublc ~phne~ and general B-splines of ktb arder), 

it was found that the B-splines were the mast consistent and accurate in preserving 

the shape of the interpolated data. 

By consistent, it is mennt that the interpolant should perform well - thnt is, represent 

the shape of the melt front with minimum dbtortion - at nny location into N,,;! cavity 

(from almost semicircular near the gate to ~lIghtly curved in the middle of the cavity 

and more complicated at the wake ot the ohstacle). The question of nccuracy is 3 

more subtle one. ln least squares polynomwl approximations we can always 

determine a measure of deviation of the mterpolant from the interpolated data, 

usually in the fonn of summation of squares of deviations. However, general 
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conditions are not known for the exact behaviour of spline interpolants (de Boor, 

(1978». Therefore, the various interpolants were assessed by observing plotted results 

before and after interpolation. 

AB-spline is specified by supplying its breakpoint sequence and its order. The spline 

interpolant will then satisfy: 

(A,4.30) 

where aJ are the spline coefficients and BJ denotes the j-th B-spline of the desired 

arder with respect ta the specified knot sequence. More details on splines and 

specificaUy B-splines can be found in de Boor (19','d). To avoid wiggles in the shape 

of the melt front, low (second) order splines were used. 

The reason for the necessity of rearnmging the surface grid points can be understood 

with reference to Figure (A.4.1). The kinematic condition at the free surface is: 

dx/dt = u (A,4.31) 

. where x and u are position and velocity vectors respectively. Because of the curvature 

of the free surface and the existence of fountain flow, the surface points will regularly 

tend to move outwards (Figure (A.4.1.a». When this happens at each time step, 

many grid points tend ta concentrate near the contact point and fewer near the 

center. Ultimately, the grid becomes unsuitable for computations. In the case that the 

contact point is not moving (Figure (A.4.1.b» as the result of a no-slip boundary 

condition, at sorne instant one grid pOint will collapse ta the wall, defining a new 

contact point. In this case the surtace nodes have to be rearranged in order to 

continue the computations. Another possible case is shown in Figure (A.4.1.c). 

Encountering a change in the curvature of the mold wall, sorne intermediate surface 

points might touch the wall first. Again, an automatic rearrangement of the surface 
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Figure (A.4.1): 
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Situations aTlSmg during mold filling that neccssitate 
rearrangement ot free surface nodes for succcssfui continuation 
of the computations. 
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points might touch the waJl first. Agnin, an automatic rearrangement of the surface 

nodes is necessary for successful continua tion of the computations. Other cases where 

rearrangement of surface nodes is required is shawn in Figure (A.4.2.a) and (A.4.2.b). 

Application of the no-slip boundnry condition at the contact point results, 

maeroscopically, in an apparent rolling of the free surface on the mold walls 

(Mavridis et al. (1988)). This representation of the motion of the free surface gave 

results that compare very weIl with experimental evidencC!. Figure (A.4.3) is a detail 

of the computational advancement of a free surface in the case of flow between two 

paralleJ planes. The free surface is 'rolling' on the wnIls with no need for artificial slip 

to be irnposed at the contact point. The alternative deterrnination of the contact point 

as the point where the free surface intersects normally the mold wall (Shen (1984), 

Subbiah et al. (1989)), gives melt front shapes that ean be highly unrealistic. 

, 
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Figure (A.4.2): 
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Other situations where rearrangement of the grid nodes on the 
free surface might be necessary. 
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Figure (A4.3): 
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A4.15 

Computational advancement of the free surface in the case of 
flow between two parallel planes, displaying the rolling motion 
of the free surface. No-slip conditions are imposed on the walls. 
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(AS) Further results on the spatial variation of key process parameters 

during injection mold filling. 

The purpose of this section is to present, in Figures (A5.l) to (A5.IO) further results 

on the spatial and temporal variation of key process characteristics during filling of 

the mold CRl. For more details on the conditions du ring these runs refeT ta section 

111.4.5. These results iIIustrate the capabilities of the computer program produced in 

this work to give a large amount of information regarding temperature, viscosity and 

shear rate variations, stress distributions etc. at every instant during filling. The three 

instances chosen to be presented here show sorne of the characteristics of the almost 

radial flow at early stages of filling (t=0.8s), the flow around the obstacle (t= 1.2s) 

and the flow towards the end of filling (t= 1.6s). 85 Btu/ft2/F/hr == 482 W/m'l!K. 
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Figure (A.S.l): 
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Spatial variation of or- and (1"--1") at t=O.8s. Heat transfer 
Coefficient: 482 W/mlJC; Ram velocity 1.0 Cm/Si T .... =235· C. 
Mold TE9. 
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Figure (A.5.2): 

AS.3 

.u*10-a (Pa.s) 

Spatial variation of the second invariant of the rate of 
deformation teosor (A) and of viscosity (B) during the filling nf 
cavity TE9 at t=l.~. Predicted values. Beat transfer 
Coefficient: 482 W/m'tf<:, Ram velocity 1.0 cm/s; T __ =235· C. 
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Figure (A5.3): 
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Ta (KPa) 

T" - (KPa) 

Spatial variation of .... and 1'" stresses during the fi1ling of cavity 
TE9 at t= 1.2s. Predicted values; Heat transfer Coefficient: 482 
W/m2J<; Ram veJocity 1.0 cm/s; T .. =23.s- c. 
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Figure (A5.4): 
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Spatial variation of T" (A) and transverse pl anar velocity (B, in 
in/s) during the filling of cavity TE9 at t= 1.2s. Prcdictcd values. 
Heat transfer Coefficient: 482 W/m~ Ram vcJocity 1.0 cm/s; 
T .... =23S·C 
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Figure (A5.5): 
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AS.6 

U - (in/a) 

v - (ln/s) 

Spatial variation of longitudinal (U) and transverse M planar 
velocities at t=O.8s. Ca~'ity TE9. Heat transfer Coefficient: 482 
W/m~ Ram velocity 1.0 cm/s; T ... =23S- C. 
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Figure (A5.6): 
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AS.7 

~·10'" Pa .• 

Spatial variation of the second invariant of the rate of 
deCormation tensor (A) and of viscosity (B) during the filling of 
cavity TE9 at t=O.8s. Predicted values. Heat transfer 
Coefficient: 482 W/m~ Ram velocity 1.0 cm/s; T .. =235' C 
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Figure (A5.7): 

AS.S 

.~ 

Spatial variatic·~ of the second invariant of the rate of 
deformation teosor (A), and of viscosity (8) at t= 1.6s during 
filling of mold TE9. Heat transfer Coefficient: 482 W/m'lK; Ram 
velocity 1.0 cm/s; T .. =23st C. 
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Figure (A5.8): 
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A5.9 
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-5. 

Spatial variation of T- and fP"~1") at t=l.6s during the filling 
of mold TE9. Heat transfer Coefficient: 482 W Im2K:, Ram 
velocity 1.0 cm/s; T .. =235' C. 
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Figure (A5.9): 

AS.lO 

TZIt - KPa 
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Spatial variation of T- and 'fi' stresses during the filling of cavity 
TE9 al t== 1.65. Predicted values. Heat transfer Coefficient: 482 
W/mt-g:, Ram velocity 1.0 cm/s; T .. =23~ C. 



(A6): Dimensions of the Complex Cavity Used in Injection Molding 

With reference to figure (111.3.1.1). the following part contains the cartesian 
coordL1ates of the points which define the perimeter of the cavity CRI. The 
thickness dimensions have been given in part (III). 

al: 0.0. -0.397) 
b: 0.317. -0.9525) 
c: 5.08. -3.175 
d: 7.78. -3.175 
e: 10.795. -0.9L5) 
f): 10.795. 3.175) 
g): .905, 3.175) 
hl: (0.0. 0.397) 

Obstacle: 
Part bc: 
part de: 

Centre at (6.43. 0.476). radius=0.749 
Arc with c.entre at (-4.29. -16.83). radius=16.51 
Arc with centre at (11.43. -4.92). radius=3.97 

Ali dimensions in (cm). 
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A7.1 

(A7): Boundary conditions in injection mold filling 

The following table summarizes the boundary conditions used in the modelling of the 

fi1ling stage of injection molding. "Edges" indicate the side walls of the cavity that 

form its perimeter in the x-y plane. Walls are the two faces of the mold through 

which most of the heat transfer takes place. 

Entrance Edges Walls Free Surface 
Variable 

Stream A.4.2 A.4.1 A. 4.3 
Function 

Vorticity A. 4.2 A.4.10.a A. 4.3 

Stresses From proper 
('l') velocity (ô'1'/ an) =0 (ô'1'/ôn)=O 

profile 

Temperature A.4.28 Adiabatic A.4.29(*) Adiabatic 
(T) 

Pressure A.4.23.a (ôp/an)=O p=O. 
(P) 

(*) This boundary condition is only applicable in the 
three-dimensional solution. In the 20 solution, a 
heat flux source term is used instead. 


