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ABSTRACT

Prediction of flow and stress patterns in viscoelastic fluids flowing through channels of
complex shape is of theoretical interest in non-Newtonian fluid mechanics but also of large
practical interest in the materials processing industry. The first part of this work presents a
finite difference computational analysis of the 1. v of an Upper Convected Maxwell fluid
through various geometrically complex channels. The method of Boundary Fitted Curvilinear
Coordinates is used to remove the problem of boundary complexity from the tinite
difference solution of flow problems on arbitrary domains. Several elastic effects, such as
vortex growth in contractions and vortex suppression in expanding sections are predicted.
The second part of this Thesis is concerned with the modelling of the filling stage of
injection molding in a cavity of complex shape with an insert. Non-isothermality,
viscoelasticity and the presence of an advancing interface are dealt with in this section.
Solution adaptive curvilinear meshes are used for the numerical solution of the model
equations on a time-dependent domain. Stress, temperature, pressure, velocity and shear
rate profiles within the cavity have been obtained by this analysis. Parametric studies have
revealed the effect of key process characteristics on the pressure and thermal gradients
during filling. Model predictions are compared to experimental results obtained on an
injection molding machine. The model is able to predict with satisfactory accuracy the
pressure evolution as well as the pressure gradients developing in the cavity during filling.
Finally, a three-dimensional solution of the energy equation revealed the strong spatial and
temporal variation of temperature within the mold in both the planar and the thickness
directions, and allowed for an evaluation of the crystallinity development in the solidified

material during filling.




RESUME

La prédiction des profils d’écoulement et de tension pour les fluides viscoélastiques
s’écoulant A travers des conduits de forme complexe est d’intérét théorique en mecanique
des fluides non-Newtoniens, mais avssi d’intérét pratique dans 'industrie de transformation
des matériaux. La premiére partie de ce travail présente une analyse par dittérences tinies
de I'écoulement d’un fluide de Maxwell A travers plusieurs conduits de géométries
complexes. La méthode des coordonnées curvilignes fixées aux hmites est utilisée pour
€éliminer le probléme des limites de domaine de la solution par différences finies de
problemes d’écoulement avec des domaines arbitraires. Plusieurs etfets ¢lastiques, dont la
croissance des vortex dans les expansions sont prédités. La dcuxi¢me partie de cette Thése
est consacrée A la modélization de I'étape de remplissage du moulage par injection dans
un moule de forme complexe avec une obstruction. Les conditions non-isothermie.,, la
visco€lasticité et la présence d’une interface mobile sont traitées dans cette section. Des
réseaux curvilinéaires s’adaptant 2 la solution sont utilisés pour ia solution numerique des
équations dans un domaine qui est fonction du temps. Les profils de température, pression
et vitesse 4 lintéricur de la cavité ont €té obtenus par cette méthode. Des études
paramétriques ont revélé Peffet de caractéristiques importantes du proccdé sur les
gradients de pression et de température durant le remplissage. Les prédictions du modele
sont comparées a des résultats experimentaux obtenus sur une machine de moulage par
injection. Le modele sst capable de prédire, avec une précision satistaisante, I'évolution de
la pression ainsi que les gradients de pression qui se développent dans la cavité durant le
remplissage. Enfin, une solution tridimensionelle de P'équation d’éncrgic a revele la torte
variation spatiale et temporelle de la température a 'intérieur du moule dans la direction
du plan et de I'épaisseur. Les profils de cristallinité ont été obtenus en utilisant la modele

d’Avrami.
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INTRODUCTION

As the title indicates, this study is concerned with the numerical simulation of
viscoelastic flows in complex geometries. The ultimate objective, is to model the filling

of a cold mold of complex shape with a molten viscoelastic, crystallisable material
such as polyethylene.

This Thesis evolves in three largely independent steps, each with its separate
introduction, literature survey and summary sections. In part (I), the main ideas
behind the concept of boundary-fitted curvilinear coordinates (BFCCs) and numerical
grid generation are presented. This is a fairly new field that has seen extensive use
in computational fluid dynamics but only limited use in the materials processing field
(even though commercial software such as Phoenics are based on this concept). In
part (II), BFCCs are used for the numerical simulation of steady state, isothermal

flows of a Maxwell fluid in various compiex geometries.

Part (III) is concerned with the modelling of the filling stage of injection molding of
a material obeying the White-Metzner constitutive model. Non-isothermal free
surface flows are computed as the melt fills the cavity. In the first approach of this
subject, the model equations are solved in a "gap-averaged" sense, ignoring thermal
gradients in the thickness direction and evaluating the state variables on a
"representative average plane". In section (I11.4.6) a three dimensional solution of the
energy equation during filling is presented, which, coupled with the non-isothermal
crystallization kinetics model of Nakamura (1972,1973) allows for a complete
representation of the thermal fields during filling, an evaluation of crystallinity
development, as well as for an estimation of the thickness of the solidified layer and
its effect on the pressure build-up during filling. All the computer programs
developed in the course of this work can be obtained upon request from the Author

and/or Professor M.R. Kamal, Dept. of Chemical Engineering, McGill University.
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(Il NUMERICAL GRID GENERATION

(L1) PRELIMINARIES

Numerical grid generation has now become a common and often necessary link in the
chain of events that lead to the numerical solution of partial differential equations
(PDEs) on regions of arbitrary shane. This is especially true in computational fluid
dynamics, from whence much of the impetus for the development of numerical grid
generation, but the approach is equally applicable to all physical problems that
involve solution of partial differential equations on arbitrary domains. Numerically
generated boundary conforming curvilinear meshes have provided the key to
removing the problem of the boundary shape from finite difference solutions, and the
same grids can be equally well used in conjunction with finite element codes. With
such meshes, all numerical algorithms are implemented on a uniform square grid in
the logical domain, regardless of the shape of the physical region. The method is
equally applicable to steady state as well as transient problems, with rigid or

deforming boundaries.

In the earlier years of computational fluid dynamics, most of the emphasis was placed
on the development of stable, fast and accurate finite difference algorithms for the
solution of the discrete forms of the governing PDEs. As a result, a large body of
knowledge has accumulated in this area. On the other side, since most of the finite
difference algorithms are based on rectangular computational grids, theii application
to flow (or in general field) problems with a complex boundary requires the
introduction of new nodes at the intersections of the grid lines with the domain
boundaries. Unavoidably, this causes some boundary grid cells to be smaller than the
interior ones, and, consequently, difference formulae on these grids can produce large
and irregular truncation errors which contaminate the solution. Given that in most

flow situations large gradients oi the field variables exist near the boundaries, the
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above-mentioned approach will give inaccurate solutions in the region where the
highest accuracy is needed.

For the above reason, solution of the model equations in a coordinate system, with
the property that the boundary of the physical system coincides with coordinate lines,
is highly desirable. Spherical or cylindrical coordinates are examples of boundary
conforming coordinate systems and have been used extensively to facilitate the
solution of certain types of flow problems. A relatively recent development is the use
of general curvilinear coordinate systems, so that the boundaries of the physical
system, nc matter how complex, coincide with coordinate lines (or surfaces in 3D).

Two of the major advantages of such an approach are:

(@)  The boundary conditions can be applied accurately without any need
for interpolation. Inversely, when the location of the boundary is to be
determined (eg, in free surface problems) this can be done more

accurately in curvilinear boundary conforming coordinates than in

Cartesian coordinates.

(b)  Since a general boundary conforming curvilinear coordinate system can
always be constructed, so that, for any shape of flow geometry the
computational domain will be a uniform rectangular grid, all the
existing knowledge on the finite difference solution of PDEs can be

directly applied for ihe solution of the transformed flow equations.

Even though finite elements are by far the dominant simulation method in solid
mechanics and the most commonly used method for the simulation of viscoelastic
flow in complex geometries, last decade has seen a virtual explosion in the use of
general curvilinear boundary-fitted coordinate systems for the solution of field
problems in complex geometries, using the finite difference method. Problems treated

by the method vary from aero- and general fluid dynamics to heat transfer, electric
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fields, marine and environmental engineering and structure analysis. The field of
numerical generation of curvilinear coordinate grids is, itself, developing as an
independent research area, as evidenced by conferences and publications devoted
entirely to this subject. It holds a great promise as a key element in the solution of
realistic flow problems, particularly with the development of 3D grids, adaptive grids

and multiblock grids.

(12) RECENT ADVANCES IN NUMERICAL GRID GENERATION

A large number of papers has appeared in recent years concerning new ideas and
methods in numerical grid generation. Among the subjects that seem to be of major
interest is the use of multiblock configurations for the solution of field problems in
very complex domains, where the connectivity between subregions is very important
for a smooth solution ( Ohring (1983), Eiseman (1982, 1982), Steinhoff (1986),
Thompson (1987)). The use of higher than second order systems, namely the fourth
order biharmonic system, is also a subject that draws attention because it is promising
higher flexibility in controlling the smoothness as well as the orinogonality of the grid
(Bell et al. (1982), Sparis (1985)).

Orthogonal grid generation in two dimensional domains is an active research area as
well (Ryskin and Leal (1983), Mobley and Stewart (1980), Haussling and Coleman
(1981), Ascoli et al. (1987), Davies (1981), Potter and Tuttle (1973)). It seems
however, that higher order systems will eventually substitute the second order systems
for the construction of orthogonal grids because of their higher flexibility.
Conformal mapping-based and algebraic grid generation methods have advanced in
recent years (Eiseman (1982,1982,1985,1988), Floryan (1985,1986), Inoue (1983,
1985), Yang and Shih (1986). Finally, the increased need for 3D simulation, which
approaches the feasibility point following the ever increasing use of supercomputers,
has stimulated research in 3D curvilinear grid generation (Takagi et al. (1985),
Marshall et al. (1986), Saltzman (1986), Kim and Thompsor (1988)). In spite of that,

much remains to be done in the theoretical treatment of 3D curvilinear grid genera-
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tion. It seems that, at this stage, the best approach is the use of multiple contiguous

block structures, which will divide the complex region in simpler subregions (Miki and
Takagi (1986)).

(I3) RECENT APPLICATIONS OF CURVILINEAR COORDINATE SYSTEMS

It is out of the scope of this work to discuss in length publications concerning the
applications of curvilinear coordinate systems in computational fluid dynamics. An
excellent review article on this subject with 341 references. covering the progress
made up to 1981 is that of Thompson et al. (1982). In the following the advances

made in recent years will be summarized and new trends and new areas of

application will be identified.

In the general area of computational fluid dynamics a large number of recent
publications concerns the simulation of more realistic flow problems in complex two-
or three-dimensional geometries, using boundary fitted curvilinear coordinate systems.
A good example of the impact o numerically generated curvilinear coordinate
systems in computational fluid dynamics is a series of two papers by Miyata and
Nishimura (1985) and Miyata et al. (1987). In the first paper, they solved the 3D
incompressible Navier-Stokes equations for the flow around a ship with free waves,
using a traditional marker-and-cell firite difference algorithm. As the authors
comment, "..although the agreement in wave geometry is satisfactory, the viscous flow
is not solved due to the use of a rectangular inflexible mesh system ...". In the second
paper, a general 3D boundary conforming curvilinear grid and higher accuracy finite
difference expressions was used and better results were obtained, even though the

contribution of the grid itself has not been explicitly evaluated by the authors.

Further applications of curvilinear coordinate systems in flow problems, always in the
area of newtonian fluids, include analysis of flow in 2D channels of arbitrary shape

(Aubert and Deville (1983), Hung and Brown (1977), Pope (1978), Rangwalla and
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Munson (1987), Garg and Maji (1988), Rapley (1988), Loeffler (1988), Shyy (1988),
Fodemski et al. (1987), Yang and Shih (1986). Applications in the solution >f the
Navier Stokes equations in 3D include the work of Miyata and Nishimura (1987),
Shyy and Braaten {1986) and Yang and Camarero (1986), while a simulation of free

surface flows using a boundary conforming curvilinear grid has been reported by
Asaithambi (1987).

Since much of the impetus for the development of boundary conforming curvilinear
grids has traditionally come from the field of computational aerodynamics, a number
of recent applications concerns, naturally, the analysis of flow around moving or
stationary solid bodies (Thames et al. (1977), Thompson et al. (1974), Ohring (1983),
Ogawa and Ishiguro (1987), Rapley (1988), Lapworth (1988), Olling and Dulikravich
(1987), Tzaribas et al. (1986)). Finally, the application of adaptive grids has been
evaluated by Shyy (1988) and Eiseman (1987), who found that, for certain complex
flows, the use of an adaptive grid smoothened the solution and dampened out

instabilities, thus leading to a faster convergence (also Thompson, (1985)).

Solutions of field problems using general curvilinear coord*nate systems have found
applications in other areas, besides traditional fluid computations. Miki and Takagi
(1986) used a 3D curvilinear grid generator in the solution of the 3D Poisson
equation of electrostatics which simulates the field in the electron gun of a colour
picture tube. Dvinsky and Popel (1986) used a boundary fitted curvilinear coordinate
system to simulate the motion of a particle of arbitrary shape moving in a channel
of arbitrary shape. Glakpe et al. (1987) solved the 3D convection problem in a study
applicable to nuclear reactor spent fuel shipping casks. In the field of marine
engineering, Li and Lu (1987) used a curvilinear grid to calculate the forces exerted
by waves on large voastal and/or offshore structures, while Hauser et al. (1986, 1986)
studied a part of the Hamburg harbour area by solving the s'wallow water equations
in a curvilinear boundary fitted grid. Hsu and Tu (1987) usec a self-adaptive

curvilinear grid to predict the aerodynamic drag in a transonic projectile, while
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Glekas et al. (1987) used general curvilinear coordinates to solve a problem of
importance in environmental engineering, namely the transport of a passive
contaminant in a hilly terrain. Finally, Baba et al. (1987) obtained spectacular results
regarding the viscous boundary layer development, flow separation and vortex

shedding around an oscillatory cylinder, solving the Navier Stokes equations in a
general boundary fitted curvilinear grid.

(L4) METHODS FOR NUMERICAL GRID GENERATION

It can be said, that the "modern era" of numerical grid generation started with the
1974 paper by Thompson et. al. where they described what is now known as "elliptic
grid generator” and used it to solve potential flow around Joukowski and Karman-
Trefftz airfoils. Because of its versatility, ease of implementation and smoothness of
the resulting grids, elliptic grid generation is now widely used for numerical grid
generation, its major disadvantage being the need for iterative solution of the

generating equations and, in general, the non-orthogonality of the resulting meshes.

(L4.1) Elliptic Grid Generation

In an elliptic grid generation system, the physical (x,y) and computational (¢,n)
coordinates are related through the following Poisson equations:

ve = P(¢n) (L1)
Vo = Q(¢n) (1.2)
In practice, we first define the rectangular (¢,q) domain and from this and the

boundary correspondence we determine the coordinates of the interior nodes.

Therefore, the following set of equations is normally used:
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aXeg = 2B Xeg + 1%y = -(P-xe + Q:x,)- T (1.3)
a-Yee - 2:6Yeo + 1Y = -(P-ye + Qyn)-J (14)
where a,g,7 are functions of the transformation, given by:
a = (%) + () 15)
B =Xe Xyt Ye-Yn (16)
v = () + 00 )
J is the Jacobian of the transformation, given by
I =Xe-Yn-YeXo (18)

The functions P and Q are control (or distortion) functions used to control the
distribution of the coordinate (grid) lines in the physical domain. According to
Thompson et al. (1980, 1985), these functions can take the form of summations of

decaying exponentials:

P = Te, .sign(¢-¢)-exp(-c. | ¢-¢,|) - Ibsign(é-¢)-exp{-d.|(¢-¢)’

+ (n-n.)'|*} (19)

Q = Ye,sign(n-n)-exp(-C,» [n-n,|) - Tbsign(n-n)-exp{-d. | (¢-¢)
+ (n-n.)’|*} (1.10)

In the first expression, the effect of a is to attract ¢-lines to a specific ¢-line, whereas
the effect of b, is to attract ¢-lines towards the point (¢, n,). The intensity of the

attraction is further determined by the coefficients ¢ and d, which dictate how fast
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the attraction decays with distance (note that (¢-¢) is the distance between the lines

¢ and ¢, whereas |(¢-¢) + (y-n)*]® is the distance between points on a £-line and
the point (¢, n).) If P=Q=0, the Laplace equation is recovered. In this case,no
attraction to coordinate lines is impaosed, and the form of the grid will be determined
only by the distribution of the boundary nodes. In the absence of boundary curvature,
the coordinate lines will tend to be equally spaced (smoothing effect of the
Laplacian), but will become more closely spaced over convex boundaries and less so
over concave ones. One of the attractive features of the Laplace system is that it
produces the elliptic grid with the maximum possible smoothness. Further details on

the form and functions of P and Q are given oy Thompson et al. (1980, 1985).

It is interesting to note that, while a Laplace system (Equations (I.1) and (1.2), with
P=Q=0) gives, theoretically, a one-to-one mapping since it exhibits an extremum
principle (guaranteeing that the maximum value: of the curvilinear coordinates occur
on the boundary of the physical region), in the corresponding Poisson system (P,Q
# 0), the extremum principle may be lost. Therefore, a Poisson elliptic system cannot
guarantee the construction of an one-to-one mapping for arbitrary values of the P
and Q. Nevertheless, the existence of an extremum principle is a sufficient but not
necessary condition for that; thus, a Poisson system may give an one-to-one mapping,
provided that some care has been taken for the selection of the control function P
and Q. Some theoretical considerations on the uniqueness of the solutions of grid-
generating PDE systems of second order have been recently discussed by

Giannakopoulos et ai. (1988). This subject is further discussed in Appendix A.1.

(L4.2) The Biharmonic System

The elliptic system discussed previously, is by no means the only available elliptic grid
generator. Thompson et al. (1985), Bell et al. (1982) and Sparis (1985) discuss other

alternative elliptic systems. Of potential interest is a forth order system, generated by

the biharmonic equation:
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V¢ =P(¢m) (1.11)
V'n = Q(&m) (1.12)

This system has the attractive properties of allowing specification of more boundary
conditions than the second order Poisson system. Namely, it allows specification of
both, the location of the boundary points and the intersection angles between the
coordinate lines and the boundary. This is not possible with second order systems
(Laplace or Poisson), which allow only Dirichlet or Neumann boundary conditions on
the boundary. So when a grid orthogonal on the boundary is desired, the angle of the
coordinate lines at the boundaries must be specified at 90°, and this deprives us from
the choice of mesh spacing. In that case, the grid lines will concentrate near convex
corners and disperse near concave ones. Therefore, a fourth order system is a good
candidate for the construction of orthogonal grids in cases where complete boundary

correspondence is required.
(L.4.3) Other PDE-based Grid Generation Methods

Beside the elliptic grid generator, parabolic and hyperbolic grid generation systems
are also based on the solution of PDE:s. In each of these cases, the grid is generated
by numerical solution of a parabolic or hyperbolic set of PDEs, marching in the
direction of one curvilinear coordinate between two boundary curves. In neither case
can the complete boundary of the region be specified, the later being a property only
of elliptic generation systems. Because of the marching nature of these generating
systems, both parabolic and hyperbolic grid generation are computationally faster
than their elliptic counterpart which normally requires iterative solution. The
parabolic system can be applied to generate the grid between the boundaries of a
doubly connected region (eg, the annular region between two cylinders), whereas the
hyperbolic system allows only one boundary to be specified, and is therefore of

interest only in cases where the exact location of one boundary is not important (eg,
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computational grid for flow around a sphere, cylinder, airfoil etc.). Hyperbolic systems
can also be used to generate grids that are orthogonal to the boundary, and are
particularly suitable for the simulation of external flows; a disadvantage is that mesh
non-uniformities, originating from geometric discontinuities at the boundary will
propagate into the field (characteristic property of hyperbolic systems). Similar effects

are not present when elliptic generators are used, because of the smoothing effect of

the Laplacian or Poisson operators.
(1.4.4) Algebraic Grid Generation

A class of grid generation methods that are not based on solution of PDE:s is the
algebraic grid generation methods. These are interpolation or approximation
procedures that relate a computational domain which is a rectangular parallepiped
(square in 2D, box in 3D) to an arbitrarily shaped physical domain with
corresponding sides. Traditionally, such transformations have been globally defined
by analytic functions of a complex variable. In this case, the transformation yields
conformal coordinates which are inherently non-singular and over which the
equations of fluid dynamics assume their simplest possible form. The fundamental
limitations, however, are a loss of control over the boundary point distribution and
a practical restriction to two dimensions. According to Eiseman (1988), a successful
way to define the interpolations is by means of univariate functions of the individual
coordinates in the logical space, which are combined in a Boolean sum to create the
complete transformation. In general, however, it is obvious that there are as many
ways to generate algebraic grids as are interpolation methods (Langrange, Hermite
and splines being some of the most popular ones). It is impossible to cover all these
methods in this review. Further details can be found in Thompson (1985) and
Eiseman (1988).

A recent development is the control point formulation (CPF) proposed by Eiseman

(1988). In a CPF context, a set of control points is established within the grid in such
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a way that the best features of a Boolean sum and tensor product are incorporated.
The CPF has the capacity to conform precisely to prescribed boundaries, while being
able to manipulate the configuration of the computational mesh through a rather
sparse net of control points. The CPF has been used for the construction of
interactively adaptive grids and a computer code (CFGRID) is available (Eiseman
(1988)). Algebraic grid generation is computationally efficient and as such, ideally

suited for interactive and/or adaptive grids.
(1.4.5) Mixed Grid Generation Methods

Since elliptic grid generation is computationally expensive, it is customary, in
commercial grid generators designed to work on PCs and workstations, to combine
elliptic and algebraic grid generation techniques. Usually, an algebraic method is used
for the construction of the initial mesh, while an elliptic generator smoothens the

algebraic grid.

In the context of this work, transfinite bilinear interpolation was used to supply a
good initial guess for the coordinates of the interior nodes. This consisted of two
linear Langrange interpolations, each acting independently in each coordinate
direction, therefore creating a multi-directional interpolation. The general form of the

transfinite interpolation is:

1(6m) = ¥ ¢a(€/M)o1(€0n) + T $u(n/T) 1(€sma) - TT. $a(6/1)+ ba(n/T)*T(€una) (113)
In Equation (1.13), ¢ are Langrange polynomials and r is a position vector.

Using the result of the algebraic interpolation as initial guess, the final grid was
constructed by solving the elliptic generating equations. Details of the numerical
solution are given in APPENDIX (A.1). A general procedure for the generation of

a computational mesh, where interactive refinement is included, is described in Figure
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(14.5.1).

(I.5) ORTHOGONAL AND NON-ORTHOGONAL GRIDS

The following discussion concerns only elliptic grid generation systems. An orthogonal
curvilinear coordinate system is one where the grid lines intersect at 90°. Analytically,

this is equivalent to the condition that the non-diagonal components of the metric
tensor vanish, since in 2D,

cos(8) = 8/(a-y)" (1.14)

where (9) is the angle of intersection between coordinate lines and a,8 and y are
defined by Equations (1.5) to (1.7).

In general, a curvilinear coordinate system for the solution of a PDE or a set of
PDE:s on an arbitrary domain doe:s not have to be orthogonal. Nevertheless, there are

some advantages associated with the use of an orthogonal grid:

(a) In orthogonal grids, the transformed equations will include fewer terms;

namely, the mixed derivatives will disappear.

(b)  The application of Neumann boundary conditions is more straightforward in

an orthogonal grid.

(¢)  Severe departure from orthogonality may introduce large truncation errors in

the numerical solution.

There are basically two approaches in the construction of an orthogonal curvilinear
coordinate system. Those based on the construction of the orthogonal grid starting

from a non-orthogonal one (Davies, (1981), Potter and Tuttle (1973)), and those
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based on solutions of PDEs. In the former case, a set of coordinate lines of the non-
orthogonal system is retained, while the other set is replaced by lines emanating from
the boundary and crossing the first set orthogonally. According to this method the
line spacing can be controlled as in a non-orthogonal system using control functions,
or by the distribution of the boundary points from which one set of lines emanates.
This method permits specification of nodes on only 3 out of the 4 boundaries of the
system, which can be a problem in cases where the boundary values are taken as
solution of another problem (eg; in a non-isothermal flow situation where the
temperatures on the wall are obtained as a solution of a separate heat transfer
problem, or in the study of an interface between two immiscible fluids). In such a
case, complete correspondence on certain boundaries is necessary, so that the
coordinate lines on both sides emanate from the same boundary points- otherwise the

application of matching conditions can be greatly complicated.

In construction methods based on solutions of PDEs, best described in the paper by
Ryskin and Leal (1983) as the strong and weak constraint method, the orthogonal
grid is constructed as the solution of an elliptic system. This method yields conformal
mapping as the limiting case when the distortion function is 1. The method is
considered superior to conformal mapping, since in conformal mapping the require-
ment that the distortion function be 1 can lead to grids unsuitable for numerical
computations. In summary, the strong constraint method can be used to generate or-
thogonal grids in regions with a free surface, whereas the weak constraint method has
to be used when the complete boundary correspondence is prescribed. In the last
case, whose practical importance was explained above, the distortion function cannot
be determined a priori but has to be updated iteratively as part of the solution
(Thompson, (1985)). It has been shown by Ascoli et al. (1987), that separability of
the distortion function is a sufficient condition for orthogonality of the gnd con-
structed by the strong constraint method. Nevertheless, no such theoretical tool is

available for the weak constraint method, and Chikhliwala and Yortsos (1985), who
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have tested that method, found that it failed to give orthogonal grids of acceptable
quality under conditions of complete boundary correspondence in regions without

an axis of symmetry.

It has been indicated (Ryskin and Leal (1983) , Rangwalla and Munson (1987)) that
the elliptic grid generation method of Thompson has the severe drawback of not
giving generally orthogonal grids. This is not considered such a serious problem. In
any case, a satisfactory degree of orthogonality can be achieved by proper selection
of the boundary points, and this can be sufficient for computational purposes
(Ferziger, (1987)). Furthermore, given the experience of Chikhliwala and Yortsos
(1985) who found that there is always a deviation from perfect orthogonality (due to
either the method of construction, the method of solution of the generating PDEs,
an improper selection of the distortion function, the geometry of the domain of
solution or simply numerical errors), it does not seem to be advisable to use the
simplified forms of the transformed equations (that is, drop the mixed derivative
terms). It is rather preferable to use the complete form of the transformed equations,
in grids sufficiently close to orthogonal, so that truncation errors are kept at a
minimum (Thompson, (1982)). Moreover, since it seems unlikcly that orthogonal
grids can be constructed in three dimensional problems (Ryskin and Leal, (1983)),
it would be beneficial to gain as much experience as possible with the general non-
orthogonal grids in the 2D case before proceeding to more complicated 3D problems.
Of course, care should be exercised that the deviation from orthogonality is not too

severe, or else problems might arise.

In this work, the general second order elliptic grid generation method of Thompson
(1974) is followed. However, it was found necessary in the solution of the pressure
equation with Newmann boundary conditions (see part I1I on injection molding) that
the grid be normal to the boundary of the flow channel. Boundary orthogonality is
easier to implement and less restrictive on the grid than complete orthogonality. The

construction of grids orthogonal to the boundary will be discussed in APPENDIX
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(A.1).

(L6) STRUCTURED - UNSTRUCTURED MESHES

In the classification of computational meshes one distinguishes between structured
and unstructured meshes. A structured mesh is one where some relation, imposed by
the generation technique, exists between the grid points. Structured meshes are
created by various mappings (conformal, algebraic, PDEs), while an unstructured
mesh is created in point-by-point fashion. In unstructured meshes, one has to define
its connectivity to surrounding nodes besides the coordinates of each node. All known
methods for solution of PDEs (finite differences, finite volume and finite elements)
can be used in conjunction with structured meshes. Only integral methods (finite
volume and finite elements) can be used on unstructured ones. Structured meshes are
very attractive because of their simplicity, both in their generation as well as for the
solution of the flow equations. However, for the solution of flow problems in
increasingly complex domains using structured grids, it is most often necessary to
break up the domain into many simpler blocks. In this case, the connectivity between
these blocks must be specified, i.e. an explicit table must be generated which denotes
the connectivity of the blocks as well as the coordinates of the grid points at the block
interfaces. When the number of structured blocks becomes very large, as is the case

of very complex domains, then the major advantage of structured meshes, i.e. their
simplicity, is lost.

Construction of unstructured meshes is independent of the complexity of the physical
domain; this makes them natural canc idates for very complex problems. However,
multiblock structured meshes have been successfully used in very complex domains,
such as on and around complex airplanes, propellers, submarines etc. Given the
inability of the unstructured meslies to support finite uifference flow solvers, it is
believed that structured meshes will continue to be widely used well into the next

decade. However, as more numerical methods shift to integral techniques (this is a
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fact already in aerodynamics) and the required geometrical complexity increases, it
is likely that more and more emphasis will be placed on the use of unstructured

meshes and/or hybrid meshes.

(L7) GRID GENERATION ON MULTIPLY CONNECTED DOMAINS

The application of the grid generation ideas presented in the previous sections is
straightforward when the physical domain is simply connected. Some special care
should however be exercised when transforming multiply connected domains, such as
domains with inserts. In the context of this study, it was necessary to generate grids
in multiply connected domains during the simulation of injection molding in a cavity

with an insert.

Three of the most popular methods for treating multiply connected domains are
depicted in Figure (1.7.1). The slab configuration (1.7.1.A) simply excludes from the
calculations all the interior points that fall on the insert; in this case, an insert of
arbitrary shape is transformed into a rectangle in logical space. The slit configuration,
shown schematically in Figure (1.7.1.B), transforms an insert into a horizontal or
vertical line. Special care should be exercised when using this configuration, since all
variables are double valued on the slit. In this case, no grid points are excluded from
the calculations. A third way that reduces the connectivity of the physical space is
shown in Figure (I1.7.1.C). A cut is introduced, which opens the field; upon
deformation of the opened domain one recovers the familiar rectangular
computational domain. In this configuration, care should be exercised so that points
on the two sides of the rectangular domain that correspond to the cut be assigned the
same values of independent variables. Regions of higher connectivity can be treated
similarly. For example, three inserts can be represeiited by three slits or three
rectangles. Reduction of the connectivity of a highly complex domain by means of
branch cuts can, however, result in extremely complex configurations. In this work the

slit configuration was used. Examples of grids generated by this method are given in
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Figure (L.7.1):

- -’

Methods for transforming multiply connected physical domains
into simple computational domains; (A) slab configuration, (B)
slit configuration, (C) reduction of connectivity using a cut.
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Part (11I).

(L8) VALIDATION OF THE TRANSFORMATION ROUTINES AND OF THE
LAPLACE SOLVER

The purpose of this section is to test the accuracy of the transformation routines as
well as the accuracy of the Laplace solver - the routine that solves the transformed
form of the Laplace equation. In general curvilinear coordinates, this is given by
Equation (1.15).

Vf = (a-fee - 2-8-f,c + v-£,)/ T + (v¢)-fc + (v') -, (1.15)

The Laplace solver is a key routine for the calculation of stream function, vorticity,
pressure and temperature (section (IIT) on injection moiding and (II) on viscoelastic
flow); it is therefore essential to establish the correctness of this subroutine.
Furthermore, since th= coefficients a, g, v, (v¢) and (v’p) are functions of the
coordinate transformation, it also essential to establish that the transformation itself

does not introduce errors that contaminate the results of the Laplace solver.

For this purpose it was decided to solve the Laplace equation in the annular region
between two cylinders with R,=1 and R,=10, subject to Dirichlet boundary
conditions:

f(R) = 2x and f(R,) = 1.01x (1.16)

An analytical solution for the Laplace equation under these boundary conditions is:

f(xy) = x(1 + (X + y)) (1.17)
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This was the only case in this study that the "cut" configuration was used for grid
generation. The cut was introduced along the line (1,0) - (10,0). To ensure continuity
of derivatives along the cut, it was specified that the ¢-coordinate lines are normal
on the n=1 and p=jmax lines. The resulting grid is given in Figure (1.8.1). The
maximum difference between analytical and numerical solution for the 19*31 grid of
Figure (1.8.1) and a convergence tolerance of 10* was 1.4 %. The average error was

0.8%. Use of a 31*31 grid reduced the maximum and average errors to 0.9 and 0.5%
respectively.

(19) SUMMARY

- The method of Numerical Grid Generation based on an elliptic generating
system was chosen for the construction of structured curvilinear meshes on
two-dimensional domains.

- The method was used successfully in simply and multiply connected regions.

- The correctness of the transformation routines and of the Laplace solver was

successfully tested against available analytical solutions.
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Figure (1.8.1):
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Curvilinear grid used for the numerical solution of the Laplace
equation in the annular region between two cylinders.
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(I) SIMULATION OF VISCOELASTIC FLOW

(IL.1) PRELIMINARIES

Elastic fluids, such as polymeric solutions or melts, exhibit a substantially different
flow behaviour compared with Newtonian or variable viscosity non-elastic fluids.
Certain elastic effects, such as rod climbing, the hole pressure effect, the development
of vortices in some entry flows, the die swell effect etc., can be attributed to non-zero
normal stress differences that are characteristic of elastic materials. Others, such as
stress relaxation, strain recovery and stress overshont are manifestations of the
memory of previous deformation that characterizes elastic fluids. It has been observed
that the deviation from Newtonian behaviour is strongest in flow through channels

involving abrupt changes in geometry.

Understanding and predicting complex viscoelastic flows is essential for the proper
design and optimization of key polymer processing operations. However, the theoreti-
cal analysis of viscoelastic flows poses many challenges. These include the need for
development of realistic constitutive equations, the development of proper numerical
methods for the solution of the model equations, which have been shown to be more
complex than their Newtonian counterpart, and the need for appropriate
discretization techniques that will be both flexible and accurate in mapping complex

flow fields. As of today, not all of the above subjects have been developed

satisfactorily.

One of the major complications arises from the inadequacy of the well-documented
Navier-Stokes equations of the Newtonian fluid mechanics to describe viscoelastic
flows. The complex molecular structure of viscoelastic fluids gives rise to stress fields
that cannot be predicted by the simple Newtonian viscosity. Therefore, the need has
emerged for development of constitutive equations that will be suitable for these

materials. Based on molecular theories, a number of such constitutive equations has
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emerged in recent years (Bird et al. (1987)). These equations can be of the integral
(explicit) or differential (implicit) type and relate the stresses with the kinematics of
the flow field. None of the equations proposed this far can claim success in predicting
all aspects of viscoelastic behaviour, especially in flowing polymer melts. The situation
is better in dilute polymeric solutions, but still much remains to be done before
completely reliable quantitative predictions for complex viscoelastic flows can be
made. Comparisons of the predictions of various constitutive models in different flow
situations still occupies a substantial part of the research in non-Newtonian fluid
mechanics (Armstrong et al. (1985)). In this work the Upper Convected Maxwell
Model (UCMM) was used. This choice is not justified because of its success in
describing real polymer melt behaviour, but mostly because it has been widely used

in previous simulations - thus giving some comiaon ground with previous research.

Viscoelastic phenomena appearing in simple rheometrical experiments are now well
understood and their theoretical prediction does not require sophisticated numerical
analysis. Therefore, and since the most interesting, theoretically and industrially, non-
Newtonian effects are observed in flows through channels of complex shape, the
major effort in computational non-Newtonian fluid mechanics has been directed
towards the prediction of viscoelastic effects in industrially important non-elementary
geometrical configurations, such as flow over a slot, through contractions and
expansions, flow between cylinders, around obstacles, corners etc.. In certain cases,
this introduces geometrical singularities which represent the second major difficulty

in the numerical solution of complex viscoelastic flows.

The third major problem in the simulation of viscoelastic flows is the fact that the
numerical solutions tend to break down when the elasticity of the material, usually
expressed by the Weissenberg or Deborah number, exceeds some critical value. The
problem, termed as the High Weissenberg Number Problem (HWNP) in the
literature, appears regardless of the discretization technique (finite differences or

finite elements, (Davies et al. (1984)), or the choice of constitutive equation, even
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though constitutive models which incorporate a retardation time have been found to
be computationally more stable than purely elastic models. Reported critical
Weissenberg numbers vary from study to study, but the symptoms behind the failure
are more or less common: spurious, field-wide oscillations of the field variables,
especially of the stresses, whose intensity increases as the elasticity parameter
increases. Josse and Finlayson (1984) linked this failure to the inadequacy of the
Galerkin formulation (in finite element solutions) to solve hyperbolic problems,
especially in non-smooth geometries (see also King et al. (1988), Marchall and
Crochet (1987)), Debbaut et al. (1988), Debbaut and Crochet (1986)). This of course
would not answer why finite difference solutions showed the same unstable behaviour,
and therefore a large amount of work has been devoted in relating the failure of
viscoelastic simulations to approximation errors, (Mendelson et al. (1982), Dupret et
al. (1985)), and to the change of type of the governing equations (Joseph et al.
(1985), Ahrens et al. (1987), Yoo and Joseph (1985)). Because of this change,
standard numerical techniques used in Newtonian fluid mechanics have been proven
inadequate for the solution of the mixed-type non-Newtonian problem. Recent
advances in this area include either switching algorithms that treat differently the
elliptic and hyperbolic regions of the flow regime (Song and Yoo, (1987), Choi et al.
(1988)) or the use of derived forms of the momentum equation that are explicitly
elliptic (King et al. (1988)).Other researchers (Lipscomb et al. (1987) and Apelian et
al. (1988)) have proposed the use of more realistic constitutive equations and
relaxation of the non-slip boundary condition as means of handling viscoelastic flow
problems with stress singularities (such as the stick-slip problem and the abrupt
contraction problem). A review of the state of the art on the origins and cures of the

HWNP has been given by Keunings (1986,1987).

Even though the problem is not settled yet, significant advances have been reported
recently by Crochet and coworkers (1986, 1987, 1988) and King et al.(1988), both
groups working with finite elements. Crochet and co-workers have focused on the use

of sub-elements to account for the very steep stress gradients appearing in many
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viscoelastic flows and on the use of streamline upwinding to take into account the
hyperbolic nature of the constitutive equation; they obtained convergent solutions for
very high values of the elasticity parameter in various contraction flows. King and co-
workers employed an explicitly elliptic form of the momentum equation and obtained
convergent results for high values of the elasticity parameter in stick-slip flows as well
as in flows between eccentric cylinders. From the above, it becomes evident most of
the advances in numerical simulation of viscoelastic flows have been reported in the
context of finite elements. This is not surprising, since traditional finite difference
techniques have difficulties dealing with complex shapes. However, successful use of
finite differences for the simulation of viscoelastic flows has been reported by Perera
and Walters (1977, 1977), Cochrane et al. (1981, 1982), Song and Yoo (1987), Choi
et al. (1988).

(I.2) FORMULATION OF THE PROBLEM
We are interested in the simulation of steady-state, isothermal fiows of an upper
convected Maxwell fluid in channels of complex shape. Adopting the stream

function/vorticity (y,») formulation of the equations of motion, we have to solve the

elliptic stream function equation:
vy = -0 (IL.1)
and the elliptic vorticity equation
Vw = Re- (9,0, - ¥,-w) + D(S) (11.2)
In (I1.2), Re is the Reynolds number of the flow (Re=,UL/y), p and x are the fluid

density and viscosity respectively and D(S) is a non-Newtonian source function, given

by equation (I1.3):
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D(S) = (S°-57), + (5 - (S (113)

and §°,S",S7 are the non-Newtonian contributions to the stress tensor (T). The

stream function (y) and vorticity (w) are related to the kinematics of the flow as
follows:

u = 3y/dy, Vv = -39/oX, w = av/ax - du/ay (11.3.a)

where (u) and (v) are the velocities in the x (longitudinal) and y (transverse)
directions, respectively. Throughout this Thesis, subscripts indicate partial

differentiation, whereas superscripts are reserved for tensor components.

The boundary conditions for stream function and vorticity at the inlet can be obtained

from a proper velocity profile. On the axis of symmetry, =0, and yp=constant. On
solid walls, y=constant and (w) will be obtained by:

s = (V') (11.4)

More details on the boundary conditions and their finite-difference implementation
can be found in standard books on Newtonian and non-Newtonian fluid mechanics

(Roache, (1976), Crochet et al. (1984), Crochet and Walters (1983)) as well as in
Appendix (A.3) of this Thesis.

To model the relation between stress and kinematics in the fluid, a constitutive
equation is needed. The Upper Convected Maxwell model used in this work consists,
in dimensionless form, of the following set of partial differential equations:

T=(1-2-We-u,) + We.(u-(T®), + v-(T%),) - 2We . T".u, = 2.4, (IL.5)

T(1-2-We.v,) + We.(u-(T?), + v-(T),) - 2We.T%.v, = 2.y, (IL6)




A

27

™ + We-(u-(T7), + v-(T?),) - We.-T".v, - We- T".u=v, + u, (L7
The pertinent dimensionless quantities are:

x=x"/L, y=y/L, u=u/U, v=v/U, T=TL/Uu (I1.7.2)

where starred quantities are dimensional quantities. In (11.5)-(IL.7), We is the
Weisenberg number, defined as We=1U/L, where (1) is a relaxation time of the fluid
and U, L are a characteristic velocity and a characteristic length respectively. The
discussion is limited to a single relaxation time. However, extension to a spectrum of
relaxation times is straightforward in the context of differential constitutive models,

by writing

T =11 (IL8)
where the contribution of each node T, obeys equations (I1.5) to (I1.7) with material

parameters A, and . The Upper Convected Maxwell model is a member of the

general family of differential constitutive models described by the generic equation:
A(T)- T + Az(sT/st) = p-v (11.9)

§T/st is an objective time derivative that is defined as a linear combination of lower

(T™) and upper (T,;) convected derivatives:
§T/st = a- TV + (1-a)- T, (11.10)
T™ = DT/Dt + T-wu" + vu.T (11.10.a)

Ty = DT/Dt - T-vu - vu". T (IL10.b)



D/Dt is the material time derivative
D/Dt = /ot + u.v (11.10.c)

The Maxwell model is obtained as the limiting case of equation (11.9) when A = 1,
I being the unit tensor. For a=0.0, 0.5 and 1.0 we obtain the upper convected,
corrotational and lower-convected Maxwell models. Viscometric data indicate that
suitable values for (o) are usually between 0 and 0.1; therefore the upper-convected
Maxwell model is preferably used in viscoelastic computations. When the model-
dependent tensor A is taken as a function of the stress tensor, other viscoelastic
models can be obtained from equation (I1.9), including the models of Phan-Thien &

Tanner when A = exp(eatr(T)/s)-1, and the Giesekus model when A =1 + gaT/u
(Keunings, (1987)).

(I1.3) NUMERICAL SOLUTION
(IL.3.1) Numerical Treatment of the Constitutive Equation

The first basic choice to be made in the numerical solution of the constitutive model
is how the elastic stress tensor S, whose spatial derivatives appear in the vorticity
equation (equation (II.2)), should be computed. We can either solve directly
equations (I1.5)-(IL.7) for the components of the total stress tensor (T) and then
calculate the elastic contributions numerically using equation (11.11); alternatively we

may substitute the transformation
T=S+2 (1L11)

directly into the constitutive model and then solve directly the resulting system of
hyperbolic partial differential equations. It should be noted that even though both

methods are mathematically equivalent, they are not necessarily numerically
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equivalent because of the different discretization errors involved at each stage.
According to the first method, the stress equations can be written as follows:

AT + We:sT" = 2BT” + F, (I1.12)
AT + WesT" = CT™ + BT" + F, (11.13)
AT + WesT” = 2CT" + F, (IL.14)
where

z = 4,(8/3x) - ,(3/3y) (IL15)
and

A, = 1 - 2We(a’y/axay) (IL.16)
A =1 (11.17)
A, = 1 + 2We(a%p/oxay) (11.18)
B = We(a%/ay’) (11.19)
C = -We(a'y/ax’) (11.20)
F, = 2(a*p/axay) (11.21)

F, = (a%/ay’) - (3'p/ox’) (11.22)
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F, = -2(a%/axay) (11.23)

According to the second alternative, the constitutive model may be written in terms

of the components of the elastic stress tensor (S) as:

AS* + WerS™ = 2BS” + G, (11.24)
ASY + WerS® = CS* + BS" + G, (11.25)
AS” + WerS" = 2CS* + G, (11.26)
where
G, = 2We( 2(a%/axay)* - (aylay)(a*ylax’ay) + (ay/ax)(a’y/axay?) +
(8%lay’)((a%lay’) - (8"¥/ax")) ) (11.27)
G, = -We( 2((a’/axay)((a*p/ay?) + (8%/ax)) + £((a*/ay?) - (8'¥/ax)) ) (11.28)
G, = 2We( 2(d%/axay)* + (aylay)(a'wlaxiay) -  (8y/ax)(8’p/axay’) -
(a"p/ax’)((a%lay’) - (3°¥/ox7)) ) (11.29)

The new complication introduced by the second method is the need for the
evaluation of third derivatives of the stream function. On a uniform square grid, these
derivatives can be evaluated using the following equations:

(8%/0X), = (bazy = 2buy + 2y, - $2)/20° (11.30)

(3°%/8Y"), = (byez = Zbyn + 291 - $y0)/20° (11.31)

(33¢/axzaY)-; = ('/’.n,m . 2‘/’.,,,1 + Wun - 2#’\;.1 - \(’km)/ZhJ (".32)




31
(8¥/ay*ax)y = (Brenger = 2¥ry + Yiorpr = 28y - Buap)/2h’ (I1.33)

Appropriate expressions are also available for boundary points. For example, on a
stationary, non-slip boundary, the expression for the third derivative of the stream
function will be (to O(h?%):

(393x")y = (buay - 2wy + 202, - ¥ua))20° (11.34)

The main advantage of the first method, that is of the evaluation of the total stress
tensor from the constitutive model, is that only derivatives of order up to second need
to be evaluated. On the other side, greater computer storage is required with that
method, since both the total (T) and the elastic (S) stress tensors need to be
computed and stored at all times. The work of Tiefenbruck and Leal (1982))
indicates that there seems little to choose between them from the standpoints of
accuracy and time of computation. in the context of this work, the constitutive model
was solved for the total stress tensor (T) and the elastic contributions were evaluated

by means of equation (II.11).
(11.3.2) Transformation of the Model Equations in Curvilinear Coordinates

In order to be able to solve viscoelastic flow problems in channels of arbitrary
geometry using finite differences, the model equations must be transformed in the
new, curvilinear coordinate system (¢,n). Applying the general transformation
relations presented in Appendix (A.3) in the two-dimensional case, we obtain the
following transformation relations for the derivatives appearing in the transformed
equations (in the following, (f) is a scalar and J is the Jacobian of the coordinate

transformation):

£ = (yafe - yef ) (I1.35)



32

fy = (Xf, - £ (11.36)

f“=

(o) fee = 2:¥eYnfoe + (ye) £ )7 + () Yee - 2:Ve YaYoe +
(y!:‘)2 ' yvm) ' (xn : fE - Xge fn)+ ((yn)2 Xeg - 2 "Ye Yo -Xne + (YE)2 ' xvm) : ('
Yo fe + ye- £)1P (1L.37)

() fee - 2exeXp-fpe + (X607 + [((6)Yee - 2:X¢-XpYoe +
(xe)2 Vo) (Xp-fe - % f)+ ((xﬂ)2 Kee - 2-Xg Xy Xpe + (xe)z Xon) - (-
Yo-fe + ye- £)IF (11.38)

[(XE'Yn + xn'Y€)'an - XG'YE'f'm - xn'yn'fﬂ]/‘lz + [(Xg'y.,,, - "n'yfn)/"2
+ (xn'yn'Jf B xE'Yﬂ'Jn)/JJ]’fE + [(xn'YEG - xE“YGn)/Jz + (xt")'E'Jn -
Xo-Ye- JT] £, (11.39)

In the case that the grid is non-orthogonal, the transformed form of the Laplacian

operator appearing in the stream function and vorticity equations will contain the two

second derivatives, as well as first and mixed derivatives of the dependent variables.

Namely, the transformed form of the Laplacian of a scalar (f) is:

V= (a-fee - 2:-8-Fpc + v -, )8 + (V) f, + (V') f, (11.40)
with

a = (xn)2 + (Yn)* (11.40.a)
B= (xe)(xn) + (Yn)(Y€) (”-40-b)
7= (X + (ve) (11.40.c)

Even though this adds to the complexity of the equations to be solved, it does not

alter their elliptic form, since it can be proven that an elliptic equation will remain

elliptic if transformed in another coordinate system, provided that the mapping is
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non-singular, i.e., as long as the Jacobian of the transformation is not zero (Appendix
(A.2)). The relative complexity of the transformed equations is a small price to pay
for the versatility offered by non-orthogonal grids. The appearance of other than
second derivatives in the transformed form of the Laplacian alters the S5-point
computational molecule usually employed in the numerical solution of the Laplace
equation. This is not the case in the transformed form of the constitutive equation,
since first derivatives are always transformed into combinations of only first
derivatives in curved space. However, implementation of the QUICK scheme requires
the use of non-traditional computational molecules. More details of the discretized

form of the model equations are given in the following section.

Use of the basic transformation relations between curvilinear (n,¢) and cartesian (x,y)

coordinates results in the following transformed form of the model equations:

@ Pee = 28:¥ne + 1 ¥on] - I7 + (VE) ¥ + (V) ¥, = (11.40.d)
[a wee-28  wag+7 - wpp}- I+ (V) - 0+ (V') - we=Re(w  ¥ywq - ¥ )J + D(S)  (11.40.e)
T™(1-2We - u,)+ Wej(u-y,-v-x,J(T™)+(v-xe-u -y )(T™),)I=2WeT” - u,+2u, (I1.40.f)
T(1-2We-v,)+ We[(u-y,-v-X J(T?) e+ (v - X0y )(T?), ) I=2WeT” .v,+2v, (11.40.g)

T+ We[(u-y,-v-x,)(T?) e +(v-Xe-u-y ) (T?), ) I=We[T*.v,+ T . u ] +v,+u,  (IL40.h)

with
au/ax = 3%/ayax = -av/ay (11.40,j)
au/ay = a'ylay’ (11.40.k)

av/ax = -a"y/ax’ (11.40.1)
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(IL3.3) Discretization of the Transformed Equations

The finite difference expressions for the first, second and mixed derivatives that have

been used in the discretization of the transformed form of the equations of motion
follow.

For the first derivatives, central differencing was used in the interior of the flow

domain:
(af/e€)y = (fiy - £0)/2h (1141
(3ffan), = (£, - £,,)/2h (11.42)

Central differencing was found to work well in the momentum equations. However,
their application in the discretization of spatial stress derivatives resulted in an
unstable algorithm. This was expected since the stress equations are hyperbolic in
character. Appropriate discretization techniques that improve on stability and

accuracy will be discussed in the next section.

In the interior of the flow domain, the second derivatives appearing in the partial

differential equations for the stream function and the vorticity were discretized using

the following formulae:

(8'f/8¢?), = (L., - 2, + £, )/ (11.43)
(8flan®), = (£, - 2, + £, )M (11.44)
For the mixed partial derivatives, the following expressions can be used:

(3%/3€3m)y = (Funyer - Foayor = farpr + fouga)/4R2 (11.45)
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(3,{/3€a 'I)u= (fhuu +2fu'fun'fuu+ﬁ-ux‘ful'ff.u)ﬂhz (11.46)
(azf/af a ")U= ('frlJol'qu+fuol+fh lJ'fulJ-l+fu»l +f&u)/2hz (11-47)

On the boundaries, one-sided differences have to be used. These expressions for the
first and second derivatives follow (Collatz, (1966)):

(3f/a¢)e = (foyy + 4, -3£,)2h (second order) (1L.48)
(af/ag)e = (£, - fu)h (first order) (11.49)
(af/ae®) = (2f,; - 5L, + 4f,,, - £, (11.50)

In Equations (11.48) - (11.50) the subscript (w) indicates boundary values.
(1L.3.4) Stability of Finite Difference Approximations and Upwind Differencing.

The question of stability and accuracy is of major importance in the solution of
partial differential equations, particularly in the case of equations containing
convective terms. The simple one-dimensional convection-diffusion £quation hasbeen
used extensively as a model for the study of such equations. This equation, in one

dimension, is:

f, -a(X)ff, - b(x) = 0 (IL51)

The conventional approximation of equation (II.51) with central differences used in

the approximation of the first derivative is:

(26 +£)M° = a()f(f.~L.,)2h + b(x) (I152)
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This representation is stable when the local Grid Reynolds Number (| ,,]) satisfies
|| <1, where p,= 0.Sha(x)f. By choosing the mesh size (h) sufficiently small, it is
possible to always satisfy that stability condition. In practice however, mesh refinment
is not always feasible because of the increased requirements in computer time and
storage. This is especially true when we are solving systems of several PDEs in higher

dimensions. Therefore, there is a strong need for stable alternatives to the central
difference scheme.

The simplest alternative is to maintain the central difference approximation for the
second dcrivative in equation (I1.51) while using an one-sided approximation for the
first derivative. Usually, backward differencing is used when f>0 and forward when

f<0. The one sided difference is then always upstream or upwind of x, and the

alternative scheme is:

f(x) = £/, £>0 (11.53.2)
£(x) = (f.-f)/h, f.<0 (11.53.b)

This upwind scheme, termed "first upwind scheme” by Roache (1976), is
unconditionally stable for all values of the local grid Reynolds number. Its

disadvantage is that it has only first order accuracy, with a truncation error
T(x) = 0.5ha()fix)(x) + O(h?) (11.54)

The first term in this expression, which is O(h), is frequently referred to as "false
diffusion” or "artificial viscosity". It is larger than the true diffusion term in (I1.51)
when p,>1, and it results in a smearing of sharp gradients of the variable f. Another
method (Spalding (1972)) uses a mixture of central and upwind differences. If p<1,
the result is identical to central differencing, while if p,>1 the convection term is

approximated as in the upwind scheme. The advantage of this scheme is that it is
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unconditionally stable, it has no artificial diffusion when p,<1, whereas , when p>1
the false diffusion is proportional to the magnitude of (p-1). A third method (Gentry
et. al.(1966)) displays something near the unconditional stability of the upwind
differencing, while retaining the second order accuracy of central differencing when
the spatial variation in tlsz convective term (ff,) is small. This method involves an
averaging of velocities on either side of the mesh point, together with an upwind

approximation of derivatives. With reference to equation (41), we write:

£.6(x) = ()2 (1L55)

with

(fD(x) = (fuf. - fufo)h (11.56)

where, f,=(f+f,,)/2, f,=(f+{,)/2, and (11.56.a)

when £,,>0, f,=f, (11.56.b)
t-ﬂ<0’ frz:fhl (1156.0)

when £,>0, f,=f, (11.56.d)
f, <0, f,=f (I1.56.e)

Because of the false diffusion errors associated with first order upwinding and the
inherent stability associated with second order central differencing, none of the
methods described above are completely satisfactory for high values of the local grid
Reynolds number. There is always a decision to be made regarding the amount of

accuracy one is willing to sacrifice for stability and/or attainable computer times.

In the context of this work, the numerical approximation of first derivatives is crucial
in the fiumerical solution of the constitutive equations. It was mentioned earlier, that
the High Weissenberg Number Problem has been linked to the inadequacy of central

differencing in the numerical solution of hyperbolic problems. Other studies have also
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shown that the accumulation of approximation errors can lead to numerical
breakdown. It seems, therefore, that we deal with a problem which requires both,
accuracy and stability, features that most numerical schemes do not combine. The
performance of central differences for the approximation of convected derivatives in
the constitutive equation was evaluated at initial stages of this project and was found
very poor as far as convergence was concerned. For a 4:1 planar contraction flow, the
maximum attainable Weissenberg number was only around 0.1. First order upwinding
exteuded the convergence up to 0.32 for the same problem. In an attempt to extend
the range of convergence even further, it was decided to use a third-order upwinding
difference scheme (QUICK) proposed by Leonard (1979). This scheme has not been
previously used in numerical solutions of viscoelastic flows, but has performed well
in the modelling of highly convective flows (Ferziger, (1987)). Overall, use of the
QUICK scheme extended the range of convergence of the numerical algorithm up
to We=0.7 for the 4:1 sudden contraction problem with a reentrant corner (section
I1.5.1). However, its performance was better in non-singular problems (section 11.5.2)
where the range of convergence was almost tripled (from De=1.5 to De=4.2 in the

smooth 4:1 contraction R1 of figure 11.5.2.1).
(11.3.4.1) The Quick Upwinding Scheme

According to the QUICK method, the stresses at cell boundaries are obtained by a
third order asymmetric interpolation using one downstream and two upstream points.
This is equivalent to correcting a linear approximation of the cell toundary value by
a term proportional to the upstream curvature of the interpolated data. If f; and f,
indicate approximations of a function (f) at the points i+1/2, i-1/2 (which are the right
and left faces of the cell surrounding the point (i)), the QUICK scheme uses the

following interpolation formulae:

fr = (£+£.)2 - (£.+(,-2)/8 (11.57)
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f. = (f+£.)/2 - (£,+£-2£.)/8 (11.58)

As a result of equations (I1.57) and (I1.58), the derivative at the point (i) is
approximated by:

£0%) = (F.p - f)/h = (3f+3E,,-7€,+£,)/8h (I159)

Equation (I1.59) was used in the numerical discretization of the strcss equations. In
modelling boundary conditions with thc QUICK algorithm, both the wall value and
the wall gradient are needed at each end of the computational region. The boundary
stress values are usually given by a physical boundary condition. The boundary
gradient must be chosen to be consistent with quadratic interpolation between the
boundary value and the values at the first two interior nodes (f..,, f,,,). This

requirement gives:

(£ = (8L + 3K, - £..,)/3h (11.60)
Evidently, the extension of the QUICK method in two dimensicns is straightforward.

In that case, the appropriate discretization formulae in the (x) and (y) directions on

a uniform mesh will be:

(f)y = (3f, + 3, - M, + £,)/8h (11.60.a)
(£), = 3fy + M., - i, + £,.)/8h (11.60.b)
where the indices (i) and (j) correspond to the directions (x) and (y) respectively.

(IL3.5) Transformation and Discretization of the non-Newtonian Source
Function D(S)
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In traditional finite differences based on rectangular meshes in cartesian coordinates,
the non-Newtonian source function D(S) can be discretized based on the

computational molecule of Figure (I1.3.5.1.a). The corresponding formula for the
point (i,j) would then be:

D-.j = (Snlol.jﬂ'sniﬁl,j-l'sni-l,jﬂ"'Sn{-L}-l'yIQUM'*'g,iﬂJ-l+S”I-1J+l' HJI)/4' = S"MJ‘S'L
S+ S (11.61)

In the context of general curvilinear coordinates, first derivatives are the only new
derivatives introduced by the transformation of D(S). The computational molecule
will therefore remain unchanged if central or forward/backward differences are being
used for the evaluation of those first order derivatives. If the QUICK scheme is used,
the computational molecule will further include some new upstream points as shown

in Figure (11.3.5.1.b). The form of the function D(S) in general curvilinear coordinates

is, after considerable algebra:

D(S)= ASY, + BS",, + CS%, + DS, + FS% + L(5%8”),, + L (S~
$M)pn + Lo(S™8")¢¢ + L (S8, + L(S™5"), (11.62)

where

A= ((x)-Go))T (11.63)

B = ((x)-(ye))¥ (1L.64)

C= 2y,yexXx )T (11.65)

D = (-(x)D:+(y)Ds+(X)Ds-(y) DYV’ (11.66)

F= (D(x)-()Ds(x,)Ds+ (5, )D)F (IL67)
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(a)

i+l

i

i-1

i-1 j j+1
(b)
i+l
i
i-1
i-2
j=-2 j-1 j j+1

Figure (I1.3.5.1):  Computational molecules associated with the discretization of
the non-Newtonian source function D(S); (a) in cartesian
coordinates, (b) in curvilinear coordinates with QUICK
upwinding.
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D,= (xn)z‘YEE - 2'x€'xn'yv1€ + (xe)z'yvm) ("'68)

D,= (Xp)'Xee = 2:Xe Xy Xpe + (¥¢) -Xpn) (11.69)

Dy= () Yee - 2:Ye Yo Yne + (Ve Yon) (11.70)

D= (Yn) Xee = 2:Ye Yo Xoe + (V) Xon (1L.71)
L= (xf'yv) + xn'YE)/P (1L.72)
L= Xyl (11.73)
L= -x,-y/P (11.74)
L= (xe'yvm - xn‘YEn)/Jz + (xn'Yn'JE - ’(E’y')"ln)/"3 (1L.75)
Ly = (XqYee - XeYea)I' + (Xe eIy - %o Ve J)F (11.76)
(11.3.6) Solution of the Discrcte Equations

There are essentially two distinct groups of methods for the solution of the system
of algebraic equations resulting from the discretization of a partial differential
equation: direct and iterative methods. Direct methods are usually variations of
Gaussian elimination, making use of forward and backward substitutions. These
correspond to the decomposition of the coefficient matrix (A) into lower and upper

triangular parts (L and U respectively), so that:

A=L.U (11.77)

To be efficient, direct methods require very careful programming, especially when
large sparse matrices are considered. On the other hand, iterative methods have been

used extensively in the solution of the algebraic equations resulting from the finite
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differcnce approximation of partial differential equations. In fact, for very large
systems, they are the only feasible methods. Beside ease of programming, iterative
methods make good use of sparsity and structure and it is not necessary to store the
coefficient matrix but simply to generate the non-zero elements when they are
needed. In the context of this work, the iterative method of successive relaxation (SR)

was employed. For the solution of the linear system
Ax=b (11.78)

the successive relaxation method employs the following decomposition of the

coefficient matrix:

A = E + F, where (11.78.a)
E=D/a-L, and F = D/fa - (D-U) (1IL.79)
where D, L and U are the diagonal, lower and upper triangular parts of A
respectively, and (a) is a relaxation parameter, 0<a<2. If o<a<1 the method is
called under-relaxation, whereas for 1<a<2 the method is termed over-relaxation.
Overall, the iterative process will then be:

(D - aL).x**" = [(1-a)D + aU].x" + ab (I1.80)

The advantage of SR against the simple Gauss-Seidel iteration which utilizes the

decomposition
A=D-L)-U (11.81)

and the iterative algorithm
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(D-L)-x®" = [U].xM + b (11.82)

is that convergence can be accelerated with optimum choice of the relaxation

parameter (a). In the context of this work, both methods have been used with
success.

The computational molecules associated with the constitutive model are shown in
Figure (I1.3.5.2). (a) is the molecule corresponding to the Poisson Equation in
cartesian coordinates, while (b) is the computational molecule for the same equation
in curvilinear coordinates. (c), (d) and (e) are computational molecules associated
with the constitutive equation in curvilinear coordinates. In (c), central differencing
is used for the discretization of the spatial derivatives of the stress. (d) corresponds

to first order upwinding while (c) is obtained when the QUICK scheme is used.

For the solution of the stream function equation, and with reference to the

computational molecules of Figure (I1.3.5.2), the typical iteration will be:

1 1 1 i 1
'/’.JIHI = f(!bm-l[” ‘ y \b»ul" ! ’ 'b.-l‘jol["l ’ V’.,H[” l ’ *.,,um ’ '/’umm ’ 1/’.41,1"‘ ’ ¢'.u,jnmv "’ulrl)

(11.83)
where [r] is an iteration indicator.

Similarly, the iterative update for the vorticity at the grid-point (i,j) will be:

w I = fre1) [r+1] {e+1) {re1)

In U]
i g(%ul y Wiy y Wiyl y Wiy ’ qum ’ ‘A’umm y Wisly 9 Wisjel

D(S)“ ’ %le*ll ’ ll’m[m] ’ \bm,,l"“ ’ Vku‘ml) ("-84)

The stress values at the grid points are updated after thc iterative loop for the
determination of the kinematics has converged. The iterative update for the stress
components, with reference to the computational molecule corresponding to the
QUICK scheme, will have the form:
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(b)

(c)
i+l

j+1 j-1 Jj j+1

()

3 i+l i-1 j

j-2

Figure (11.3.5.2):

i-1 3 i+l

(a): Computational molecule used in the solution of the Poisson
Equation in Cartessian Coordinates, and (b), the corresponding
molecule in general curvilinear coordinates. (c-e):
Computational molecules associated with the numerical solution
of the constitutive equation: (c); Central Differencing, (d) First-
order upwinding, (e) QUICK scheme.
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'I‘U[Nl]= h(Tu.zlrﬂl , TU-I(N“ , TU#IM , 'I‘“U[r], THJ[rH] , T‘-ulnl] , * w) (11-85)
where T is the vector of the (unknown) stress nodal values:
T=(TT,T) (11.86)

with T* = {T"}, T = {T"}, T = {T%}
and ¢ and w being the vectors of the nodal values of vorticity and stream function

obtained from the solution of the equations of motion.
(1L.3.7) The Numerical Algorithm

The problem to be solved consists of a set of 5 non-linear, coupled partial differential
equations. The kinematics (Equations (I.1) and (I1.2)) form an elliptic system while
the constitutive model (Equations (IL5) to (11.7)) forms a set of three hyperbolic
equations. These equations are coupled through the kinematic coefficients in the
stress equations and chrough the non-Newtonian source function in the equations of
motion. This coupling is a major stunbling block in the numerical solution, mainly
because of the different nature of the two sets of equations. Two major approaches
have evolved in the literature for the solution of the pioblem: these are known as the
coupled and the decoupled methods. In a coupled approach, the discretized equations
are solved simultaneously for all dependent variables (¢, w and T), usually by means
of the Newton iterative scheme. In the decoupled approach, one solves separately for
(#w) and T. With known stress fields, the kinematics are updated and so on until
convergence. The major advantage of a decoupled approach lies in the breakup of
the total problem into an elliptic kinematic and a hyperbolic stress sub-problem.
Appropriate numerical methods that take into account the nature of the two sub-

problems can therefore te used. Both integral and differential constitutive models
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can be treated in the context of decoupled methods, whereas coupled methods can
only accommodate differential models. It has been stated (Keunings, (1987)) that the
major disadvantage of decoupled methods is the slow convergence of the successive
relaxation algorithms usually employed in the solution of the discrete systems and the
lack of intermediate information regarding the qualitative behaviour of the numerical
solution, usually obtainable from the Jacobian matrix in a coupled approach.
Published results indicate that both, coupled and decoupled methods suffer from high
computational requirements in CPU time. Study of the qualitative behaviour of the
solution can only be accomplished using Newton-Raphson iteration, but this can be

done in the context of both coupled and decoupled techniques.

In this work, the non-linear coupling between stresses and kinematics was accounted
for by separate solution of the corresponding equations, therefore adopting the
decoupled method. Each set of discretized equations was solved iteratively by a

successive relaxation algorithm.

It has been suggested by several authors (Crochet et al. (1984)) that values of the

unknown vectors be smoothed after each iteration by a formula of the form:
= (1. X"+ px? 0<p<l (11.87)

However, apart from smoothing of iterative updates of the boundary vorticity which
is some times essential for convergence, smoothing always reduces the speed of
convergence of the iterative algorithm. It should therefore be employed only if
convergence can not be achieved without it, as is the case when higher values of We

and/or Re are used or in geometries involving abrupt changes in the shape of the boundary.

Another point of considerable importance is the choice of the initial guess vectors.
For low values of the elasticity parameter,the quality of the initial guess will

determine the number of outer iterations required for convergence, whereas for
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relatively higher values of We the quality of the initial guess will determine whether
the algorithm will converge at all. Continuation with respect to the elasticity
parameter (We) is therefore advisable, even though continuation with respect to both
We and Re has also been reported (Walters and Webster, (1982)). Given the small
effect of the elasticity on the kinematics of a Maxwell fluid, at least for small
increments of the elasticity parameter, the algorithm that was utilized in the present
study employed a continuation approach, where the solution for a given We was used
as an initial guess for the next We (We,,,=We, + dWe), starting from the

Newtonian solution as the first guess. The computational algorithm can be outlined

as follows:

(a) Initialize by solving the Newtonian problem (We=0.0).

(b)  Update the Weisenberg number (We,,,=We, + dWe).

(¢)  Solve the stress equations ((I11.5) to (I1.7))) for the new We.

(d)  Update kinematics (solve equations (II.1) and (I1.2)), with stresses calculated
at the step (c).

(e)  Continue with steps (c) and (d) until convergence.

At each of the steps (c) and (d), iteration was terminated when the norm of the

iterative corrections, defined as:
NORM = [}, (x,™-x"")]** /N, N=number of grid points

was less than 10% For the outer iteration, a tolerance of 10" was usually employed.
If, at some stage, divergence was detected (usually that occurred in the solution of
Equations (11.5)-(11.7), step (c)), the increment of 'We was halved and the calculations
repeated, until convergence was obtained or until the required dWe became smaller

than a prescribed tolerance.

(11.4) VALIDATION OF THE NUMERICAL ALGORITHM
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The objective of the following section is to compare numerical predictions of this

work with available numerical and experimental results from the literature.

(114.1) Comparisons with Numerical and Experimental Results from
Literature.

The flow of Newtonian and Maxwell fluids in a bend and in a 4:1 sudden contraction
has been studied, amongst others, by Perrera and Walters (1977), Kawaguti (1969),
Cochrane et al. (1982) and Song and Yoo (1987). In this section, numerical
predictions of the present work are compared to numerical and experimental results

reported in these references.

Figure (11.4.1) shows the streamlines in a bend at Re = 48. Continuous lines
represent the present solutions, while (o) are results of Kawaguti (1969). It can be
concluded that the agreement is quite satisfactory. Calculated vorticity contours are
compared with simulations of Cochrane et al. (1982) in Figure (I1.4.2). Solid lines
represent the solution of Cochrane et al. while broken lines are results of the present

work. Again the agreement is quite good.

Figure (I1.4.3) is a comparison between computational results of the present work
and experimental velocity .asurements taken from Cochrane et al. (1982). The
agreement is very good for the transverse velocity, but poorer for the longitudinal
velocity. However, given the uncertainties involved in the experimental measurements,
itis concluded that the numerical predictions are in reasonablc agreement with those

experiments.

Regarding the flow of a Maxwell fluid, the predictions of this work were compared

to the simulations of Song and Yoo (1987). In general, very good agreement was
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Figure (I1.4.1): Comparison between the present solution (solid lines) and the
solution of Kawaguti (markers) for Newtonian flow in a bend.
Contours are values of the stream function.
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Figure (11.4.2): Comparison between the present solution (broken lines) and
the solution of Cochrane et.al. (solid lines) for flow in a bend
(contours are vorticity levels).




Figure (I1.4.3):
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Comparison between simulation results (solid lines) and
experimental velocity measurements from Cochrane et al.
(broken lines). U and V are velocities in the horizontal and
transverse directions respectively.
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observed, even though the numerical technique employed in this study did not utilize
a type switching algorithm. Sample comparisons are given in Figure (I1.4.4). Further
results for the flow in a bend and a sudden contraction, as well as qualitative

comparisons with existing simulations are given in following section.

(IL4.2) Quantitative Comparisons with Standard Software

As of today, the combined shear and extensional flow of viscoelastic fluids in
contractions and expansions has no known analytical solution. All the above
comparisons have been made with reference to published numerical solutions of
Newtonian or viscoelastic flows. Therefore, comparison of numerical results with
exact solutions is bound to be incomplete. However, along an axis of symmetry, the
flow is shear-free, and the constitutive model reduces to a set of two ordinary

differential equations.

We.u-(dT%/dx) + (1-2-We.u,).- T™ = 2.y, (11.88)
We.u-(dT/dx) + (1-2-We-v,).-T7 = 2.v, (11.89)
with T® = 0.

In the following, the results of the proposed computational algorithm along the axis
of symmetry (in this case the curvilinear grid covers the complete contraction (Figure
(I1.4.2.1)) and not only the upper half) are compared to the results obtained by
integration of Equations (I1.88) and (I11.89) using a standard and reliable ODE solver,
namely the IMSL routine IVPAG which utilizes Gear’s algorithm for stiff systems.
The velocities and velocity gradients appearing in the constitutive equation were
calculated by the proposed numerical algorithm, with second order accurate central

differences in the representation of au/ax. As can be seen in Table (IL.1) the
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Re=2.28
We=0.4

Figure (11.4.4): Predicted YY-normal stress patterns; solid lines from Song &
Yoo (1987), broken lines from present study. Contour levels

are: (A):-0.85, (B):-0.55, (C):-0.25, (D):-0.10, (E):0.1, (F):09.
Dimensionless quantities.
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Figure (I1.4.2.1): Curvilinear grid on the complete 4:1 sudden contraction,
used for comparison of the proposed numerical solution
with standard software
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()) Maximum Difference (%)
0.0 0.5
0.3 0.6
0.5 1.1
0.7 0.8

Table (IL1) Difference (%) between the two numerical solutions along the axis of

symmetry in an abrupt 4:1 contraction. The comparison is for the
dimensionless xx-stress.

-
L3
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agreement is very good.

(11.4.3) Grid Refinement Studies

It is known that the quality of a numerical solution depends heavily, besides the
numerical algorithm itself, on the finite difference or finite element mesh that has
been employed.For non-singular problems, like the ones considered in this section,
infinite grid refinement should lead to the correct solution of the problem - if such
a solution exists. However, because of computer time considerations it is not always
feasible o use highly refined meshes. The objective of this section is to examine how
much the numerical predictions change with varying grid size and configuration, as
well as whether these changes are localized or global. For this purpose the geometry
of a 4:1 contraction with a rounded corner and two groups of computational grids
have been employed. In the first, the grids have 11 horizontal lines and 42, 62 and
75 vertical lines (Figure (11.4.3.1)). The grids of the second g oup are the same as in
Figure (I1.4.3.1), but with 21 equidistant lines in the horizontal direction. The highest
concentration of nodes is in the entrance region, in an attempt to refine the vorticity
calculations in that area. Table (II.2) summarizes some results for the flow of a

Newtonian and a Maxwell fluid at Re=2.0.

The maximum value of the vorticity occurred near the entrance of the narrow tube,
at a horizontal distance of approximately, 4.85. The grid size did not appreciably
affect the location of this maximum. As is further explained in APPENDIX (A.4) the
wall vorticity is calculated by Equation (II.1) which requires numerical evaluation of
one-sided second order derivatives of the stream function. This is an operation very
sensitive to the grid size and shape near the wall, even more so near regions of strong
boundary curvature. This reflects into maximum wall vorticities changing with grid
size. It is interesting to notice that this difference is decreasing with increased

resolution, a trend suggesting convergent solutions. The strength of the calculated
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Figure (11.4.3.1): Meshes used for grid refinement studies in a 4:1
contraction with smooth edge.
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vortex decreases with grid refinement. Nevertheless, for the finer grids (d), (e), (f)
(Table(I1.2)), this change becomes progressively smaller, suggesting that the
calculated vortex is not a numerical artifact (on this point further evidence is given
in Section (11.5.2)).

The vorticities calculated in the vicinity of the corner along the i=imax-1 line were
much less affected by the grid size - the maximum differences being less than 10%,
and there was practically no difference at a distance further away from the wall.
Since, on no-slip walls parallel to the x-axis, the xx-normal stress is proportional to
%, it is understandable why published simulations show the wall stress to depend

strongly on the grid size and shape (Marshall and Crochet, (1987)).

(IL.5) CASE STUDIES

(TL5.1) The 4:1 Sudden Contraction

In the following the steady state isothermal flow of a Maxwell fluid through a 4:1
planar contraction is studied. This geometry has been the subject of extensive study,
both computationally and experimentally (Cable and Boger (1978), Boger et
al.(1986)). A review is given by White et al. (1987). For this reason it serves well as
a starting point in testing the performance of the BFCC approach. The flow channel

has the following characteristics:

Upstream Radius : 2.0
Downstream Radius: 0.5
Total Length  : 10.0

The contraction was located at a distance 4.8 from the entrance. The inlet velocity

profile was the one used by Song and Yoo (1987):
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Wax Vortex Strength (%)
(a) (b) (a) (b)
(11%42) (a) 11.25 (12.02) 1.13 (2.05)
(11%62) (b) 14.02 (14.38) 1.04 (1.75)
(11*75) (c) 16.17 (16.43) 0.97 (1.54)
(21*42) (d) 10.99 (12.11) 0.48 (1.26)
(21%62) (e) 14.28 (14.51) 0.44 (1.22)
(21*75) (£) 14.93 (15.07) 0.42 (1.20)

Table (I1.2) Influence of Grid Refinment on Computational Results (a): Newtonian
Fluid, (b): Maxwell Fluid (De=1.7).
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u=0.375.(1.0 - y/4), 0<y<2.0

Previous research regarding the simulation of elastic flows in abrupt contractions

suggests the following:

(a)

(b)

(©)

The presence of singular stresses at the re-entrant corner renders the
computations very demanding in its neighbourhood. Grid refinement has not
solved the problem of numerical breakdown, and in certain cases it has an
adverse effect on convergence (Keunings (1986), Lipscomb et al. (1987)). The
treatrnent of the singularity at the re-entrant corner is a very important
research topic by itself. At this point, it is only mentioned that the nature of
this viscoelastic singularity has only been established for a second order fluid,
and therefore, proper techniques for dealing with the stresses at the
neighbourhood of singular points are, in general, not available.

The size and configuration of the computational grid have a remarkable effect
on both, mode] predictions and stability of the numerical solution (Davies et
al. (1984)).

Errors in the discrete (FD or FE) approximation of the stress gradients
appearing near the re-entrant .. i°r accunulate and lead to eventual
breakdown (Mendelson et al. | - Dupret et al. (1985)). These errors
increase sharply as the Weissenbery uumber increases, since, in that case, the
corresponding stress gradients become steeper. In an effort to deal with
unrealistically high stresses, Apelian et al. (1988) proposed the introduction
of a strain dependent relaxation time, that would allow the fluid to approach
Newtonian behaviour as the stress levels increase. On the other side, Marshall
and Crochet (1987) used stress sub-elements in order to obtain a more
accurate representation of the stress field. It is interesting to notice that this
partial grid refinement has resulted, in their work, in opposite results than a
global (that is, for both (),(¥) and (T)) grid refinement produvced in previous

publications. Whether this staggered discretization or the upwind
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differentiation that was employed is the reason for the dramatic improvement
in the convergence of the algorithm, is not clear.

(d) Beside affecting the accuracy of the stress evaluation, numerical errors are
further introduced in the model equations by the non-Newtonian source
function (D(S), Equation (3)), which includes second derivatives of the
components of the elastic stress tensor. This is the apparent reason why
integration of the constitutive equation with Newtonian kinematics gives
convergent solutions for higher values of the elasticity parameter than the
solution of the complete coupled problem. Davies (1984) has demonstrated
how such approximation errors are responsible for the loss of convergence in

Picard-type solutions of creeping flows of second order fluids.

Since the problem of treating a local singularity is out of the scope of this work, this
presentation focuses on the global characteristics of the flow and stress ficlds, rather
than on their specific values at the re-entrant corner. As expected at a singular point,
the corner values of the stresses and vorticity are very much grid-dependent.
Simulations with the various grids of Figure (I1.5.1.1) gave corner vorticities between
18 and 43, for Re=2.0 and Newtonian flow. In following section, results in "rounded”
4:1 contractions are presented, in an attempt to investigate whether any features of

the flow and stress fields are influenced by the presence of the sharp corner.

(115.1.1) Stress Patterns

The stress build-up and relaxation n an elastic fluid as 1t flows through a complex
channel are of major importance 1n several polymer processing operations. Warpage
can be the result of frozen-in stresses that were not give sufficient time to relax in
injection molded parts, while very high we ii stresses in extrusion dies can result in
surfoce deficiencies of the extrudate. It 1s therefore very desirable for design and
optimization purposes, to predict the spatial distribution of shear and normal stresses.

The distribution of the shear stress in tue 4:1 contraction is depicted in Figure




Figure (IL5.1.1):
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tA)

Grids constructed on a 4:1 sudden contraction; (A):
P=Q=0, (B): attraction to the upper boundary, (C) high
concentration of grid lines near the reentrant corner.
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(IL5.1.1.1) for two values of the relaxation time. The effect of the geometry is
manifested by the presence of a low shear region at the upstream corner of the
contraction. This region has been shown to decrease as the contraction becomes
more streamlined, but is relatively unaffected by the elasticity of the fluid. However,
as the elasticity of the material increases, the iso-stress contours shift slightly
downstream. This is expected, since for higher relaxation times, the fluid stress adjusts
more slowly to the changing velocity field. The shear and normal stress patterns in
a contraction for We=0.32 are given in Figure (11.5.1.1.2). Overall, it has been
observed, that increasing the fluid elasticity results in reduction of the size of the area
of negative T™. The yy-normal stresses near the center of the cavity also decrease in
absolute value as the fluid elasticity increases. All these results are in general
agreement with the simulations of Song and Yoo (1987), and Choi et al. (1988). The
1 on-smooth contours observed in these figures are artifacts of the graphics package.

No wiggles exist in the solution as evidenced by line graphs (Figure 11.5.1.1.3, 11.5.2.8).

The stress profiles along the axis of symmetry were practically unaffceted by the type
of kinematics used in the integration of the constitutive model.  However, the stress
profiles near the wall were found to be very sensitive to the kinematics of the flow.
Figure (11.5.1.1.3) gives a comparison of the stress profiles obtained when the
constitutive equation is integrated using Newtoman (dotted) and non-Newtonian
kinematics (solid line). Specifically, the non-Newtonian kinematics were obtained by
complete solution of the pertinent set of equations using the continuation approach
described earlier, with a maximum step size in the Weissenberg number equal to 0 01,
In the first case, the stress peak i1s much smaller and the stress undershoot
disappears. This shows that stress over- and undershoot are not inherent properties
of the constitutive model, but are rather induced by the specitic kinematics and the
specific geometry of the contraction This is further supported by the simulation

results of part (11.5.2) in rounded 4:1 contractions.
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Figure (IL5.1.1.1):

Dimensionless shear stress |T7| distribution in a 4:1
contraction. Solid line: We=0.7, broken line: We=0.01
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Figure (IL5.1.1.2): Dimensionless stress contours on a planar 4:1 contraction at
We=0.32 and Re=2.3.
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Figure (I15.1.1.3): Effect of kinematics used in the integration of the UCM model

on the dimensionless xx-normal stress along the i=11 coordinate
line. Solid lines correspond to viscoelastic kinematics; dotted
lines to Newtonian kinematics. Grid (A) of Figure (I1.5.1.1).




(11.5.1.2) Flow Patterns

In a specific flow geometry, inertia and elasticity are the dominant factors that
determine the form of the flow field. Keeping in mind that the effect of elasticity
should never be dissociated from the Reynolds number (Pilate and Crochet, (1977)),
the effect of the relaxation time on the form of the flow field at the entry section at
various levels of inertia is examined. Experimental evidence suggests that the vortex
activity in planar flows is rather weak compared to the axisymmetric flows. The

maximum vortex activity appears at very low Reynolds number, and reduces as the

inertia of the fluid increases.

Figure (11.5.1.2.1) gives the streamlines of a Newtonian fluid at three Reynolds
numbers. The predicted recirculation region decreases in both size and intensity as
the inertia of the fluid increases. There is practically no recirculation at Re=6.0,
whereas at near creeping flow conditions (Re=0.1) the relative strength of the
predicted vortex is 1.14 %. At Re=2.0 the relative strength of the vortex is reduced
to 0.76%. The corresponding streamlines for a Maxwell fluid are given in Figure
(11.5.1.2.2). It is interesting to observe that, in the viscoelastic case, a second vortex
appears at the lip of the contraction (lip vortex), which seems to be less affected by
the inertia of the fluid than the corner vortex. It has been suggested that this vortex
is a numerical artifact associated with the ad-hoc approximation of the corner
vorticity based on Kawaguti’s method. This vortex disappears when the corner
becomes streamhined (section 11.5.2), and that is an indication that the lip vortex

might indeed be a numerical artifact.
(11.5.2) Smooth 4:1 Contractions

In this section, the flow and stress patterns in 90° non-abrupt contractions are studied.

Such configurations are of practical importance, since a perfectly sharp corner is a
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Figure (11.5.1.2.1): Strc?amlines of a Newtonian fluid in a 4:1 abrupt contraction at
various levels of the Reynolds number.
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Figure (I1.5.1.2.2): Streamlines of a Maxwell fluid (We=0.7) in a 4:1 abrupt
contraction at various levels of the Reynolds number.
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mathematical idealization, having no counterpart in the real world. The types of
rounded corners studied along with the computational grids are shown in Figure
(11.5.2.1). The treatment of curved boundaries like the ones introduced by the smooth
edges of the contraction presents no difficulty in the context of boundary fitted
curvilinear coordinates. This is a great advantage of the BFCC approach, since it
allows a unified treatment of practically any kind of flow field, without the need to
resort to sharp corners in order to accommodate a rectangular finite difference mesh
or to tedious and often inaccurate boundary interpelations. In the following, the
creeping flow (Re=0.1), of an upper convected Maxwell fluid is analyzed using
various meshes. The problem of viscoelastic flows in planar contractions with smooth
corner has not received large attention in the literature, even though it is an excellent

candidate for meaningful grid refinement studies (Rosenberg and Keunings, (1988)).

Figures (11.5.2.2) and (I1.5.2.3) show the streamlines in the two 4:1 contractions of
Figure (I1.5.2.1) at various elasticity levels. It is obvious that both the size and the
strength of the corner vortex decrease as the re-entrant corner becomes more
streamlined. This is true for Newtonian as well as for elastic fluids. The strength and
size of the vortex increase with elasticity, a fact also observed experimentally in Boger
fluids (Boger et.al. (1986)). The predicted vortex strength was found to decrease with
grid refinement, as can be scen in Figures (I1.5.2.4) and (11.5.2.5). However, when the
grid refinement became too extensive, the reduction in the size and strength of the
predicted vortex was proportionally smaller. Furthermore, the increase in strength of
the secondary flow with elasticity was predicted in all meshes, regardless of mesh size;
this leads to the conclusion that the predicted recirculation is not a numerical artifact,
even though its specific strength is indeed grid dependent. In the smooth geometries
examined here, grid refinement also led to significant increase in the range of
convergence, contrary to what previous research has found for the sudden 4:1
contraction. This finding corroborates the assumption that the stress singularity at

points of strong boundary discontinuity is, at least partially, responsible for the High
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Figure (I1.5.2.1):




73

Re=0.1

0.4

(in vortex: 0.5005,0.501,0.502,0.503)

Figure (I1.5.2.2): Streamlines of a Maxwell fluid in the R1 rounded-corner
contraction at two elasticity levels
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Figure (I1.5.2.3): Streamlines of a Maxwell fluid in the R3 rounded corner
contraction at two elasticity levels
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Weissenberg Number Problem.

Figure (I1.5.2.6.A) gives the xx-normal stress along the wall for the two smooth
contractions at two ‘evels of elasticity. 21*42 grids were used in these simulations, It
is obvious that increasing (1) increases substantially the stress level in both
geometries. Furthermore, the sharper contraction (dotted line) is associated with
much sharper stress gradients than the smoother one (solid lines); this partially
explains the smaller limiting Deborah number in the sharper contraction (2.5 as
compared to 4.2 in the smoother contraction R1). The stress along the wall in the
smoother geometry R1 is further shown in figure (11.5.2.6.B) for a wider range of
elasticity. Of interest is the transition from fairly smooth to substantially oscillatory
response; this oscillatory behaviour signals the onset of numerical breakdown. The
xx-normal stresses along the 20th coordinate line (the one closest to the wall) are
shown in figure (11.5.2.7). Comparing to Figure (I1.5.2.6), it can be seen that the stress
response immediately near the wall is much smoother than that on the wall -still with

a small amount of overshoot.

The stress build-up and relaxation in the vicinity of the re-entrant corner is of large
practical interest, since this is an area of extreme conditions, where the fluid
experiences combined shear and elongational flow. However, non-isothermal effects
resulting from poor wall temperature control and/or viscous heating can influence the
accuracy of measurements in that region. Aldhouse et al. (1986) found that the
accuracy of birefringence measurements near the wall was severely affeted by non-
isothermality. On the other side, the behaviour of the stresses along and near the
centerline is interesting, because this region is reasonably free of thermal gradients.
Therefore, ccnterline stresses can be measured accurately and easily related to
velocity data. Figure (I1.5.2.8) presents the xx- and yy-normal stresses along a line
very near to the axis of symmetry (i=2, 21*42 grid, distance from centerline at entry

0.1). The xx-stresses increase and the yy-normal stresses decrease in absolute value
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Figure (I1.5.2.6):  Dimensionless xx-normal stresses along the wall in a 21*42 and
21*45 meshes in the geometries R1 and R3. (A): Solid line
corresponds to R1 and dotted line to R3; (B): Geometry R1.
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the geometry R3.
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with increasing relaxation time. In both cases, the stress maximum is shifted
downstream with increasing elasticity and the tube lerigth required for the stresses to
reach their downstream fuily developed values also increases. This behaviour is in
agreement with a theoretical analysis of the stress equations along the axis of
symmetry and also with available experimental evidence (Aldhouse et al. (1986)).
Stress contours in the contraction (R1) are shown in Figure (I11.5.2.9). The effect of
elasticity in the xx-stress patterns is further shown in figure (I1.5.2.10). Clearly, the
region of negative T, shrinks with increasing elasticity, while the stress level in the
downstream tube increases. The velocity along the centerline for the smoother
coniraction (R1) is also shown in Figure (I1.5.2.11) for a range of the relaxation
times. Velocity overshoot, characteristic of elastic fluids, is present; its intensity

increases with the relaxation time of the fluid.
(1L5.3) Flow in a 20:1 Tapered Contraction

In this section, the steady, isothermal flow of a Maxwell fluid in a 20:1 tapered
contraction is considered. This type of geometry, with walls that are not lines of
constant x or y in a Caitesian coordinate system, is rather very difficult to solve with
traditional finite differences. On the other hand, it is a routine problem, at least from
the discretization point of view, if one uses BFCCs. In the context of finite elements,
this problem has been treated by Marshal and Crochet (1987), who presented certain

features of the solution at very high Deborah numbers.

The geometry, along with the computational grid, are shown in Figure (11.5.3.1). Fully
developed velocity profiles have been assumed at the inlet and outlet sections and no-
slip walls. Sample results regarding the vorticity and stress distributions in this

contraction are given in Figures (11.5.3.2) and (11.5.3.3).

(I1.5.4) Flow in a non-Symmetric Channel
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It was argued earlier that the major incentive behind the use of BFCCs is the
simulation of flow in channels of arbitrary geometry. Ability to analyze flow problems
in arbitrary domains allows for the study of flow phenomena not only as functions of
the material parameters but also as functions of the flow channel itself. In the
follc .ng, the flow of a Maxwell fluid 'with We=0.7 through the non-symmetric
contraction of Figure (I1.5.4.1) is briefly analyzed. Since one corner of this contraction
is sharp and the other is smooth, the resulting stress and flow patterns are
significantly different from those in the symmetrical 4:1 contraction studied previously.
The streamlines are given in Figure (I1.5.4.2.A). Smoothening of the upper corner
results in the disappearance of the upper recirculation vortex. The fluid is pushed
upwards by the sharp corner and then converges into the downstream tube. This is
evident by observing the flowpath of a particle injected at the center of the upstream
tube (streamline with y=0.75). Qualitatively, this result is similar to experimental
observations by Evans and Walters (1986). This geometry-induced redistribution of
the velocity field affects significantly the stress patterns. Figure (I1.5.4.2.B) shows the
shear stress 11 the contraction. Evidently T” is not symmetrical, with higher shear

present at the upper half of the flow channel.

The first normal stress difference (N,) is shown in Figure (I1.5.4.3). Again the pattern
is asymmetric. Evidently, the lower part of the contraction is occupied by an extensive
region of negative (T™-T”); the region of negative (T™-T") in the upper part of the
channel is considerably reduced. From the N, patterns, it is evident that the fluid
experiences different deformation in the upper and lower half of the channel. In the
upper half, stretching in the longitudinal direction is predominant, whereas at the

lower half the fluid is mainly stretched in the transverse direction.

(IL5.5) The Contraction/Expansion Problem

In this section, a smooth 4:1 contraction/expansion problem is analyzed. This is an
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The geometry and the curvilinear mesh used in the study

of the 4:1 sudden contraction with asymmetric entrance
region.



1.2

Re=0.1

1.1

0.9
0.75
0.6

I
0.4 0.248

\ A
L

0.3 0.246 We = 0.3
0.25 l0.2445
Shear Stress
a8
0.3 z 0.1 Re=0.1
0.2 7N 15 5.0
o |
0.1 ) —"QT—:-:/;Q/_—:‘- 3
ads SUN
0.2 ' 3.0
Figure (11.5.4.2): Streamlines (A) and dimensionless shear stress (B)

patterns for a Maxwell fluid flowing through a 4:1 non-
symmetric contraction.



w«

91
Principal Stress Difference
Q.S
J 4
S
]
20.0

Figure (IL543):  Dimensionless principal stress difference (T™-T”) in a non
symmetric 4:1 planar contraction.



92

important problem in the polymer processing industry and has received considerable
attention in the literature (Perera and Walters (1977)). The geometry and the
computational grid are shown in Figure (I1.5.5.1). Because of symmetry only the flow
in the upper half of the flow channel is analyzed. The radius of the upstream and
downstream parts is R,=4.0, while at the tip of the contraction, tke radius is R,=1.0.
A fully developed velocity profile is assumed at the inlet:

u(y) = ugl. - (0.25*y)"), O<y<4

The length of the outflow region was determined, iteratively, as the length required
for stress and kinematics to reach the 99% of their theoretical fully developed values.
The computational domain was then adjusted accordingly. In this contraction
/expansion, the absence of a constant diameter section between the converging and
diverging sections, as was the case in Perera and Walters (1977) complicates the
problem, since the stresses which build up during the entry flow relax in an

environment of rearranging velocity in the downstream diverging section.

An interesting elastic effect in expanding flows is the suppression of the secondary
flow that is usually present in the expanding section at moderate and high values of
the Reynolds number, with increased elasticity. Figure (I1.5.5.2) shows the streamlines
in the geometry of Figure (II.5.5.1) at Re=12.0 for a range of the elasticity
parameter. Evidently, the intensity and size of the secondary flow is reduced as the
elasticity of the material is increased. Figure (I1.5.5.3) summarizes results regarding
the size and strength of the secondary flow at various elasticity levels. In that figure,
the vortex strength is defined as 100*(y...~¥.u)/¥.a) and the vortex size (here, the
relative detachment length) is defined as 100*(L/L,), with L, and L, being the
detachment lengths of the Newtonian and the elastic fluid. When the relaxation time
increases from 0 to 0.22, the vortex detachment length is decreased to about 80% of
the Newtonian value, while the strength of the secondary flow decreases from 3.8%
to about 2.4%.



93

7 AN

—7 // V4 A\ \\ A

]
] -
% 1 \\ \\ F A -
1 A\ N ~ %
Figure (I1.5.5.1): The geometry and the curvilinear mesh used in the study

of the contraction/expansion flow.



Elastic Vortex Reduction

Re=12.0
Yew=2.66... %“__"0'00
2.5
2. _\_\/2.3
e
 —— 0.5
» A=0.10

94

=0.15
b 1
7 78

A

M
p =022 ,: 2.68
| a | b: 2.69
c: 2.71
\/ d: 2.73
— f: 2.75

Figure (I1.5.5.2): Secondary flow in the contraction/expansion problem at

various elasticity levels. Re=12.0.



g
(=]

@
®

100

~ 90

95

Relative Detachment Length (%)

o~
K a36-
S 3.4 -
g 4
g 3.2-:
wn 3.0 -~
Nae8
=
o 26
>
2.4
2.2 ~ppenp—p—p—————p——p—p——— |
0.02 0.04 0.06 0.08 0.10 0.12 014 013 018 020
Relaxation Time (s)
Figure (I1.5.5.3): Vortex size and strength at various relaxation times in

the contraction - expansion geometry. Re=12.



96

The xx- and yy-normal stresses in the same geometry are shaw in Figure (11.5.5.4).
In both cases, the effect of elasticity can be seen in the slower stress decay to the
fully developed values in the expanding section. The xx-normal stress along the wall
as well as the wall vorticity are shown in Figure (I1.5.5.5) for a range of relaxation
times. Intercstingly, the peak in xx-stress increases dramatically with elasticity; this
increase is partially responsible for the numerical breakdown at higher elasticity
levels. Similar, but less severe behaviour is also observed regarding the wall vorticity.
Finally, the effect of inertia on flow patterns and vorticity distributions is shown in
Figures (11.5.5.6) and (11.5.5.7).

(11.5.6) Flow in a Bend

In this section, the flow of Newtonian and Maxwell fluids in a bend is briefly
analyzed. An extensive analysis of the flow of an Oldroyd - B fluid in this geometry
has been given by Perera and Walters (1977).

The geometry and the computational grid, which was constructed with coordinate
lines normal to the upper wall, are shown in Figure (I1.5.6.1). The vorticity
distributions in a Newtonian fluid at Re=48 and Re=16 are given in Figure (I11.5.6.2).
It can be seen that a region of high vorticity develops at the wall opposite of the
corner of the bend, whose intensity increases with fluid inertia. This is in qualitative
agreement with the work of Liou et al. (1984) in a curved bend. A detail of the two
vortices that form at Re=48 is given in Figure (11.5.6.3). The distribution of vorticity
in a Maxwell fluid at the neighbourhood of the re-entrant corner is shown in Figure
(I1.5.6.4). An elastic effect is a slight reduction of the vorticity near the wall
downstream of the re-entrant corner (Perera and Walters (1977) and Cochrane et al.
(1982)).

Some stress distributions in a Maxwell fluid flowing through a bend are given in
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Figure (I1.5.6.2):

Vorticity distributions in a bend at Re=48 (A) and
Re=16; (B) Newtonian flow.
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Figure (IL5.6.3):

Corner detail of the secondary flows in a bend at
Re=48; Newtonian fluid.
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Figure (11.5.6.4): Comer detail of vorticity contours in a bend. Maxwell
fluid; Re=16 and We=0.14.
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Figure (I1.5.6.5). An elastic effect in this case is the distortion of the symmetry of the

shear stress patterns around the re-entrant corner (see also Perera and Walters
(1977)).

(I.6) CONCLUSIONS

An analysis of viscoelastic flows in complex geometries using the method of
boundary-fitted curvilinear coordinates and finite differences has been presented. Use
of BFCCs allows great flexibility in the accurate discretization of complex flow fields,
therefore making the treatment of realistic flow channels straightforward. Simulation
studies in various 4:1 planar contractions using the upper-convected Maxwell model
revealed the effect of the fluid incrtia and fluid elasticity, as well as the effect of the
form of the entrance section on the flow and stress patterns. The lip vortex, usually
present in the numerical simulation of viscoelastic fluids in sudden cont:actions
containing a point of boundary discontinuity such as a re-entrant corner, sezms to
disappear when the corner is rounded. This corroborates the assumption that this
vortex might be a numerical artifact related to the use of ad-hoc methods for the
evaluation of the vorticity at a singular corner. Increased fluid inertia was found to
reduce the size of the corner vortex, but had a smaller effect on the lip vortex. The
computations were found to be reasonably convergent with grid refinement. The
growth of the corner vortex with elasticity in contractions with smooth edges was
found to be largely independent of grid size, being at the same time a strong function
of geometry. This indicates that the corner vortex is not a numerical artifact but a
characteristic property of the set of equations that model the flow of the Maxwell
fluid. Finally, the stress patterns at the entrance section depend heavily on both the

elasticity of the fluid and the specific form of the re-entrant corner.
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Figure (11.5.6.5): Dimensionless stress contours in a Maxwell fluid
(We=0.24) flowing through a bend at Re=4.0.
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() INJECTION MOLDING

(Il.1) PRELIMINARIES

Injection molding is an intermittent cyclic process used to produce uniform articles
in a mold. It is a widely used plastics processing operation, particularly for articles
involving a high degree of geometrical complexity. Injection molding products range
from large automobile, aerospace and computer parts to tiny gears or paper clips.
Inherent advantages of the process are its high degree of reproducibility and its utility
in producing a wide range of products, usually of very complex shape, economically.
Most polymers can be injection molded, including fiber reinforced engineering

plastics, thermosetting polymers and liquid crystal polymers.

The process consists of three steps. During the filling stage, the molten polymer is
forced into a cavity whose walls are maintained at a low temperature. When the
cavity is full, more material is packed into the mold to account for the shrinkage
usually occurring during solidification. After packing is completed, the material cools
and solidifies. The cooling process continues until the article is solid enough to be
ejected without damage. The cooling stage takes about 70-80% of the cycle time,
which makes it very important economically. On the other side, the thermomechanical
history experienced by the material during filling and packing is a major factor that

determines the ultimate properties of the molded article.

The introduction of injection molding as a method for the processing of polymeric
materials goes back to 1872, when J.W. Hyatt obtained a patent on a piston driven
injection molding machine. Since then, improvements in the process, discovery of new
materials with desirable properties, advances in automation and an ever expanding
market for uniform finished articles have made injection molding a mature technology

with product applications scanning practically every sector of modern life.
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Unfortunately, our understanding of the injection molding process is rather sketchy.
A large part of the problem is the limited knowledge of the rheological behaviour of
molten polymers during the various stages of the injection molding process. Existing
constitutive equations cannot always yield reliable estimates of the stress fields
developing in a flowing polymer melt. Apart from that, the process itself combines
characteristics that make its analysis extremely difficult. It includes non-isothermal
transient flow with density variations, complex flow channels, free surfaces, structuring
and solidification coupled with flow and heat transfer. No analytical solutions for such
flow problems are known - or expected to be developed in the foreseeable future -
and thus numerical solution of the governing equations is the only way to deal with
the problem. This task becomes even more complicated by the extremely high flow
and cooling rates occurring during the injection molding process. Since a major
advantage of polymer injection molding is the ability to reproduce very complex
shapes, computational treatment of complex geometries is necessary for practical

applications of any modelling work.

In the absence of reliable design tools, trial and error methods have become the
dominant practice in the design of molds. To start with, this approach seems
inadequate in a time when everything moves towards higher efficiency and
automation. Furthermore, there are several practical problems associated with a trial-
and-error empirical mold design. Firstly, it can lead to significant capital losses and
long delays for the delivery of a certain product. Specialized knowledge that has
accumulated by inold designers over many years of service tends to be lost after the
specialist retires. Theoretical understanding of the process is seen as a means to keep
corporate experience continuous within the company and also speed up the process
of transferring that experience to new designers, beside being the only rational way
to ensure product quality and process efficiency. It should be realized that material
cost is the major contributor to the final cost of an injection molded product (typically
50% of the total cost). This means that improvements in the processing conditions

are not expected to contribute dramatically to the economics of a product - the
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process is material and not labour or energy intensive. The element of time (from
product conception to production), the need to maintain the continuity of the
corporate experience, and the increasing demand for quality control are the factors

that make the theoretical analysis and understanding of injection molding so desirab-
le.

Research done in the field of non-Newtonian fluid mechanics and rheology has led
to significant advances regarding our understanding of the behaviour of polymeric
materials during processing. As a result, a number of commercially available software
packages for the injection molding process has emerged. However, most of these
packages provide only rough approximations of the actual flow behaviour, as might
be expected if one consicers the complexity of the processes involved. Much remains

to be done before simuiation takes its place as a reliable desktop tool of the plastics
engineer.

(111.2) MATHEMATICAL ANALYSIS OF THE FILLING STAGE
(lm.2.1) Fluid Dynamics

Analysis of the filling stage of injection molding is of high practical importance since
the flow and thermal conditions during filling will determine several properties of the
product such as the formation of weld lines, the distribution of crystallinity and
orientation within the articie, the pressure requirements etc. The moldability of a
certain plastic, the required filling time, occurrence of short shots, jetting and
sinkspots, the optimum location of the gate(s) and other process characteristics can
also be assessed by a careful filling analysis (White and Dietz, (1979)). It is thus
justifiable that a very large portion of the theoretical work concerning injection

molding has been directed towards the filling stage.

In this work, the filling stage is treated as a fluid dynamics problem. Determination
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of the state wvariables is sought by numerical solution of the corresponding
conservation laws, coupled with a viscoelastic constitutive model. The equations
modelling incompressible flow in 3 dimensions and cartesian coordinates are as

follows.

Continuity:
ut+tv,+w,=0 (111.1)

X-momentum:

p(u + uy, + vu, + wu,) = -P,+F+(T%),+(T"),+(T=), (111.2)
y-momentum
(v, + uv, + v, + wv,) = -P, + F+(T7),+(T7),+(T"), (111.3)

zZ-momentum

p(W + uw, + vw, + ww,) = -P, + F+(T=),+(T"),+(T%), (111.4)

In equations (1IL.1) to (IIL.4) u,v and w are the velocities in the xy,z directions,
respectively. F*, P, F* are the body forces in the three dimensions. The thickness of
the mold is defined by the z coordinate, whereas x and y define the plane of the flow.
The stress tensor (T) is the total stress tensor which includes viscous and elastic
contributions. These stresses need to be determined by means of a suitable
constitutive model as will be explained later. In the following analysis, the effect of
the body forces will be neglected. Furthermore, the fluid velocity in the thickness
direction will be ignored, since its value is very small compared to the velocities in the
(x-y) plane, and hardly affects the total kinematics of filling. This is equivalent to
ignoring the fountain flow effect in the thickness direction, and is an assumption
introduced by the need to keep the flow computations two-dimensional. The fountain
flow, even though it is localized in a small area behind the advancing flow front and

does not affect, macroscopically, the filling of the mold, has been found to be one of
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the most important fluid dynamics features of the filling stage, influencing the
orientation and crystallinity distributions of the finished articles. This problem has
been treated extensively by Lafleur (1983) and Kamal et.al (1988). Complete analysis
of the filling stage that takes into account simultaneously the spreading flow into the
cavity and the fountain flow in the thickness direction can only be performed on a
three-dimensional basis. In the case of complex molds with thick sections, this has to
await advances in the generation of computational grids in three dimensional
domains, not to mention the computer time requirements. The present work is
confined to solutions of partial differential equations in two dimensional regions of
arbitrary geometry, and most of the simplifications introduced in this section are
results of this limitation. Only the energy equation has been solved in three

dimensions, still assuming two-dimensional kinematics.

After the above assumptions, the flow equations simplify to the following set of
partial differential equations:

p(u + w, + Vi) = P, + (T%), + (T7), + (T™), (111.5)
p(ve + uv, + w,) = -P, + (T?), + (T7), + (T), (111.6)
u +v,=0 (I111.7)

In these equations, the shear stresses in the z-direction (thickness) have been retained

since they greatly contribute to the dynamics of the process.

The pressure can be eliminated from equations (II1.5) and (IIL.6) by cross-
differentiation and subtraction. Introducing the vorticity (w) and stream function (y)

as:

€
i

V.- Y, (11L8)
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u=9ylsy , v=-aplox (111.9)

one obtains the following equivalent set of equations:

W= -w (111.10)
plw, + ¥, - ¥ ) = -F(T) (TML.11)
where F(T) is given by

F(T) = (T7- T%)y + (T)a - (T?)y + (T)a - (T7)y, (1IL12)

The left hand side of equation (II1.11) contains only convected vorticity terms. It is
generally accepted that partial differential equations with strong convective character
are more difficult to solve than equations with a strong diffusive character. This
means that the stability and accuracy of the discrete representation is more readily
assured in diffusion, rather than convection-dominated equations. Even though
equation (IiI.11) has been successfully solved as it stands (Gatski and Ramiey,
(1978)), in this work an approach first used by Perera and Walters (1977) will be
used. The objective is to introduce a diffusive term in the vorticity equation. This can
be accomplished by decomposing the stress tensor (T) into an elastic (S) and a purely

viscous (D) part as follows:

T=S8+uD (I11.13)

Following this decomposition, the vorticity equation can be recast in the following

quasilinear elliptic form:

p(x,y)-v’w + p-(w + ¥ W - By ) = F(S) (111.14)
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where F(S) is still given by equation (111.12), but instead of the total stress (T) one
uses the elastic contributions (S). In deriving Equation (II1.14), the viscosity has been
treated as a constant in the differentiations involved in (II1.12); however, (u) in
(111.14) is in reality a function of temperature and shear rate, and therefore location
dependent. Equations (I11.10) and (1I1.14) constitute the final set of working
equations for the modelling of the flow in the cavity. The boundary conditions for
stream function and vorticity, as well as for the rest of the state variables in injection

molding are summarized in Appendix A7.

(I1.2.2) The Energy Equation

One of the most important characteristics of the filling stage in injection molding is
the interaction between flow, heat generation due to flow, heat transfer from the hot
melt to the cold walls of the mold and heat transferred to the cavity by the entering
hot melt. This interaction determines not only the dynamics of the flow but also some

important product properties, such as the distribution of crystallinity and orientation
as well as the formation of weld lines.

Neglecting the heat of crystallization and assuming temperature independent thermal
conductivity and incompressible flow, the energy equation in three dimensions takes

the following form:
peCos (T, + usT, + veT, + w.T,) = ¢ + x:¥T (111.15)

In the above equation, (¢) is a heat generation term, given by the following

expression:
¢ = Tivu = T™u, + Tev, + T (u, + v,) + Teu, + Ty, (111.16)

For power law fluids, the dissipation function is given by
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& = u(Tr) (W) + (W) (I1L.17)

This expression, used by Kuo and Kamal (1976) and Shen (1984) makes use of the
assumption that the velocity gradients in the (x-y) plane are negligible compared to
the gradients in the thickness direction. In this work, the more general form of
equation (111.16) was used. This takes into account the velocity gradients in the (x-y)
plane as well as the gradients in the thickness direction and is also valid for a visco-
elastic fluid. Velocity gradients in the plane of the flow (x-y) might be important in

a mold with contracting and/or expanding sections.

In the light of the very high heat capacity of polymeric melts and their relatively low
thermal conductivity, equation (III.15) is convection rather than diffusion domirated.
In other words, this is a high Peclet number problem. For this reason, the quasi-
steady state approach widely used for the description of the flow during filling
(justifiable, considering that polymeric flows are practically inertialess flows) is not
applicable for the solution of the energy equation. In this case, the problem is indeed
transient, and if the solution is performed on a moving grid (as is the case in any
approach that uses a solution dependent mesh), this requires transformation of the
temporal, as well as of the spatial derivatives. This transformation is given in
Appendix A.3.

After the assumption of zero velocity in the thickness direction, the energy equation

reduces to the form:

p+Cpo(T, + u-T, + v.T)) = ¢ + x0T (111.18)

Equation (IIL18) is still a three-dimensional equation. To solve it in a two-
dimensional context, some approximation has to be made. Specifically, equation
(111.18) can be rendered two-dimensional by ignoring the thermal gradient in the z-

direction, assuming a uniform bulk melt temperature in the thickness direction and
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substituting the term («T,) with a heat loss term of the form «(T,),.,. This is
equivalent to assuming the presence of a thin thermal layer adjacent to the mold
walls and the existence of a bulk melt with a uniform temperature. This is a
justifiable assumption, since there indeed exists a thin layer of solidified material on
the mold wall. Its small thermal conductivity and the small duration of the filling
stage, along with the associated high dissipation and thermal convection also
contribute to the validity of such an assumption. Therefore, the final working form

of the energy equation, utilizing gap-averaged temperatures, is (Shen (1984)):
peCpo(T, + T, + voT)) = & + k+(T,).0s/b + £.V'T (111.19)

In the above equation (v°) is the Laplace operator in the x-y plane and all quantities

are average quantities in the thickness direction.
(I1.2.3) The Constitutive Model

To model the relationship between flow kinematics, fluid properties and stresses, the
White-Metzner modification of the Maxwell model has been used. This is a quasi-
linear constitutive model and allows the viscosity as well as the relaxation time to be
functions of the second invariant of the rate of deformation tensor and temperature

(Middleman, (1979)). In compact tensorial form, the White-Metzner model is:

T + A(T, + (w9)T - Tvu - w'T) = 4D (111.20)
The components of the velocity gradient teasor (vu), say a,, are:

a; = 3u/ax, (111.21)

whereas those of the rate of deformation tensor (D) are:
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d, = au/ax, + au/ax, (IL.22)

The relaxation time and the viscosity are usually connected through a modulus (G)
(Middleman (1979), Deiber and Schowalter (1981), Lafleur (1983)), so that

x = u/G (I1.22.)

Performing the tensor operations involved in (111.20), the following partial differential

equations are obtained for the components of (T).

AT, + u(T), + v(T?),) + T = u(u, + v)) +  A(T)y,
+(T)y, + (T=)v, + (T™)u,) (111.23)

A(T), + w(T), + v(T7),) + T(1-2aw) = 2u(y,) +
+22((T")y, + (T*)u,)) (111.24)

A((T), + u(T”), + v(T?),) + T*(1-2av,) = 2u(v,) +

+2((T7)V, + (TMV) (111.25)
AXCT®), + u(T®), + v(T=),) + T*(1-aw) = u(u,) + A(T)y, (111.26)
AT, + u(T), + V(T7),) + TY(1-av,) = u(v,) + A(T=), (111.27)

In the derivation of the above equations, use was made of the assumption that w=0
and T, = 0. Again, x- and y-axes correspond to the plane of the flow and (2) is the
thickness direction. As a result of this assumption the equations for the components
of the stress tensor in the thickness direction are independent of the stresses in the
(x-y) plane and can therefore be solved separately. As with the energy equation, the
stress equations are completely time dependent and have to be solved on a moving

grid. Even though this is a complication, the major problem in dealing with the stress
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equations arises from the fact that we cannot render them completely two-
dimensional , since we cannot ignore the shear stresses and velocity gradients in the
thickness direction. For this reason, gap-averaged values for the planar velocities (u)

and (v) are used. These average velocities are defined as follows:
<u> = 2b' [ u(xy,z)dz (111.28)
<v> = 2b'. [ v(x,y,2)dz (111.29)

It is furthermore assumed that, in the gapwise direction, the velocities (u) and (v) are
fully developed:

u(x,y,z)=u,(x,y)+(1.0 - (2z/b)**") (111.30)
V(X,Y,2)=V,(%,y)+(1.0 - (2z/b)**") (111.31)
In the above equations, (b) is the thickness of the cavity and s=1/n, n being the
power law index of the fluid. The fully developed profile assumption is a reasonable
assumption for the part of the flow field a few times the cavity thickness behind the

melt front. Again, the fountain flow effect in the thickness direction is ignored in this

analysis. The relation between u,, v, and the average velocities <u>, <v> is:
<u> = ys+1)/(s+2) (111.32)
<v> = vs+1)/(s+2) (111.33)

Based on the assumed fully-developed profiles, the gradients of u and v in the

thickness direction can be evaluated as:

u, = 2*'u(s+1)z'/b*! (111.34)
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v, = 25 +1)2/b! (111.35)

Again, gap-averaged values for these gradients have to be used, in order to render

the problem two-dimensional.

<u,> = 2<u>(s+2)/(s+1)b (111.36)

<v,> = 2<v>(s+2)/(s+1)b (I1137)

By means of the approximations introduced in equations (II1.28) to (II1.37), the stress
equations can be solved in a two-dimensional sense, still taking into account the
presence of shearing in the thickness direction. The equations to be solved are still
equations (I11.23) to (I11.27), where <u> and <v> are used instead of u and v, and
<uy,>, <v,> instead of u,, v,. Naturally, mean velocities <u> and <v> are used in
the energy and momentum equations, where the notation <> was dropped for the

ease of presentation.

(111.2.4) Viscosity Modelling

The shear viscosity is undoubtedly the single most important property in the
modelling of the flow dynamics in injection molding. In a non-Newtonian fluid the
viscosity is function of both the temperature and the shear rate. During the filling
stage, the shear rates vary from very high near the gate to relatively low at regions
of slow flow. Therefore, the power-law expression is not adequate to describe the
shear viscosity at all locations within the cavity. One way to account for that is simply
to consider constant viscosity at regions of low shear and a power law at regions of
higher shear rates. This was done in this Thesis. At high shear rates (above 1.0 s)

the following functional form for the viscosity has been used:

w(Tyy) = K(T) (I1/2)» (111.39)
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where (II) is the second invariant of the rate of deformation tensor and K(T) is a
temperaturc dependent consistence index. In the case that 5 components of this

tensor are retained, as is the case in this work, (II) takes the following form:

II = 4(u,) + 4(v,))' + (u, + v,)* + (w) + (v,)! (111.40)
For the temperature dependence of viscosity, an Arrhenius-type expression was used:
K(T) = A.exp(aAE/RT) (111.41)

For polyethylene Sclair 2908, which was used in the experimental part of this study,

values for the parameters of this model have been determined experimentally. The
results are reported in following section.

(I11.2.5) Pressure Calculation

The major advantage of using the vorticity/stream function instead of the
velocity/pressure formulation of the Navier-Stokes equations is that the pressure is
removed as an independent variable. Furthermore, use of the stream function
guarantees that the obtained velocity field will be divergence free, subject of course
to numerical differentiation errors. In the following, it is described how the pressure

can be recovered after the (y,0) and the stress fields have been computed.

It has been shown that evaluation of pressure by direct integration of equations
(IILS) and (1I1.6) in the x and y-directions, respectively, gives results that are
dependent on the integration path, and therefore unacceptable (Roache (1976),
Crochet et. al. (1984)). However, an elliptic Poisson equation for the pressure can be
obtained by differentiation of equations (II1.5) and (1I1.6) with respect to x and y,

respectively, and addition. The resulting partial differential equation for pressure is:
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VP = 2p+(u,ey, - Vo) + L(T) | (I11.42)

where L(T) is given by the following equation:

(T) = (T)a + (T7)y + 2:(T7)y + (T)a + (T)y, (111.43)

The form of this equation is the same as that of the vorticity equation at steady state,
the only difference being in the boundary conditions, as will be explained later.
Crochet et. al.(1984), point out that the existence of pure Neumann boundary
conditions for equation (I11.42) makes it a much less well-conditioned problem than
the corresponding Dirichlet elliptic problem. This reflects in iterative solutions
requiring excessively long CPU times to converge. Shen (1984) points out that the
solution of the pressure equation was the slowest part of their computational
algorithm for an approximate analysis of filling and stresses the need for a more
efficient solver of Meumann elliptic systems. Manero (1981) has shown that the
problem of slow convergence does not appear if the method of preconditioned
conjugate gradients is used io solve the discretized systems. In this work, the pressure
equation was solved by means of a successive relaxation algorithm. This computation
was by far the most CPU - intensive part of the computational algorithm, requiring
more than half of the total CPU time.

Beside its very slow convergence, equation (II1.42) is further complicated by the
presence of derivatives of T* and T in the thickness direction. The same derivatives
appear in equation (I11.12). Again, as with the derivatives of the velocities in the z-
direction, we need to resort to simplifications in order to keep the problem two-

dimensional.

Assuming that the power law behaviour is dominant over the elastic one, at least as
far as T" and T" are concerned, and using the results of equations (111.32) to (111.41),

we can obtain gap-averaged values for the gradients of T® and T" in the thickness
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direction.
<(T=),> = -4pe(s+2)s <u>pP? (111.44)
<(T%),> = -4u+(s+2)s <v>/p (11.45)

Therefore, the mixed derivatives of T and T" at the RHS of equation (111.43) can
be evaluated as:

(T=), = -4(s+2)b? (I(u <u>)/ax) (111.46)
(T, = -4(s+2)b%(3(u <v>)/ay) (111.47)

This approximation, by which the effect of the elastic part of T® and T" in the
development of the pressure profile has been ignored, is confined only to the
pressure evaluation. The xz- and yz-stresses reported elsewhere in this thesis have

been calculated by means of the viscoelastic defining equations (I11.26) and (111.27).

(I11.2.6) Previous Modelling Work on Filling

In past years, the thin cavity approximation has been used extensively to simplify the
analysis of the flow during filling of a mold. The resulting Hele-Shaw flow (isothermal
or non-isothermal) has been the subject of many studies. The assumptions underlying

the Hele-Shaw flow can be summarized as follows:

(a) Inertial forces are negligible compared to the viscous forces (the Reynolds
number is of the order of 0). This is reasorable in the light of the high
viscosity of polymer melts and has the attractive property of removing time as
an independent variable, thus making the numerical treatment of the

momentum equations easier.
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(b)  Surface tension and normal stress effects on the profile of the free surface are

negligible.

(c)  Viscosity, temperature, velocity and extra stresses vary strongly in the thickness

direction but only weakly in the flow directions.

(d)  The variation of pressure and transverse velocity in the thickness direction is

negligible.

Under these assumptions, the following set of equations for the pressure in the cavity
results (Kuo and Kamal, (1976)):

P, = a(u-u,)/oz (111.50)
. = a(uev,)/oz (IIL.51)

If it is assumed that the only mechanism of heat transfer is conduction in the
thickness direction, the energy equation simplifies to the following form (Kuo and
Kamal (1976)):

pelel, =0 + ke, .
C,-T T 11152

If heat transfer by convection in the (x-y) plane is also included, the energy equation
becomes (Hieber and Shen, (1980)):

peCpo(T, + uT, + v.T) = & + T, (111.53)
Of special interest in the context of simplified flow fields is the work of Kuo and

Kamal (1976) who obtained analytical solutions for the advancement of the flow front

and the development of pressure and temperature profiles during the filling of a
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rectangular cavity with a small gate. In a similar problem of a Hele-Shaw non-
isothermal filling stage flow, Ryan and Chung (1980) used the method of conformal
mapping to obtain solutions of the model equations. They reported results that

compare well with the earlier work of Kuo and Kamal (1976).

Nevertheless, analytical solutions can, at this time, only be obtained for certain simple
flows and simpie geometries. Therefore, most of the simulation effort has been
directed towards numerical solution of the governing equations; an approach that
makes use of the computational power of the digitai computer and allows great
flexibility in the degree of rigor of the model, the shape of the flow field and the type
of boundary conditions used. Numerical simulation of the filling stage, with various
degrees of physical detail has been done, amongst others, by Kamal and Kenig
(1972), Shen (1984), Hieber and Shen (1980) (inelastic Hele-Shaw flow), Kamal and
Lafleur (1982),(1986),(1986), Wang et al. (1987, 1988). Recently, Kamal et al. (1988)
presented a two-dimensional finite difference solution of a model for flow in the
thickness direction during injection molding of a cavity with a uniform rectangular
crossection, including non-isothermal crystallization, fountain flow, elastic and inertia
effects. The Marker-and-Cell method was used to track the advancement of the melt
front. More complete reviews on the subject can be found in Kamal and Bata (1983,

with 92 references) and White (1983, with 132 references).

In general, it has been observed that isothermal filling analysis can only give
acceptable results regarding the pressure distributions and filling times when the
cavity is thick, without sections where extensive wall solidification and viscous heating
during filling might occur. In any other case, the interaction between flow and
temperature fields will significantly affect the results of the analysis. The elasticity of
the melt does not seem to affect substantially the model predictions either.
Nevertheless, prediction of the microstructure of the product and consequently of its
properties requires the use of a rigorous model; this seems to be a new challenge in

the simulation of the filling stage of injection molding (Kamal, (1987)). A number
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of commercially available software packages has appeared in the past years regarding
the simulation of the filling stage {CADMOLD (IKV, Aachen, West Germany),
MOLDFLOW (C. Austin, Australia), C-FLOW (Cornell University, USA)). These
packages are mostly used for the prediction of filling times, pressure and stress

distribution, short shots and weld lines, and for the balancing of the delivery channels.
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(IIL3) EXPERIMENTAL
(IIL3.1)  Objectives

The objective of this section is to present experimental results regarding the
rheological characterization of the material used in the experimental part of this
Thesis, as well as data obtained during the injection molding of polyethylene (Sclair
2908) in a mold of complex shape. Experimental results in the same complex mold
have been used for validation of the computer simulation of the process. It was

decided that the cavity used in the injection molding experiments should have the
following characteristics:

a: Variable thickness
b: Converging and diverging sections
At least one insert

d: Walls composed of general curved segments

With these requirements in mind, the cavity of Figure (II1.3.1.1) was designed,
manufactured and used in a series of injection molding experiments. The upper part
of that figure gives the dimensions of the cavity in the thickness direction in cm. The
length of the cavity is 10.8 cm and its maximum width is 6.35 cm. The lower part (B)
also shows the location of the transducers in the cavity. This mold will be referred to
as "mold CR1" in the following. The rectangular cavity of constant thickness used by
Lafleur (1983) will be referred to as "mold R1". Appendix A6 summarises the
geometrical specifications of mold CR1.

(111.3.2) Material

The material used in the injection molding experiments is an injection molding grade

high density polyethylene (Sclair 2908) supplied by DuPont Canada. A rheological
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Figure (I113.1.1):

Complex shaped cavity used in the injection molding

experiments (A) and the location of temperature (T1,T2,T3)

and pressure (P1,P2,P3) transducers (B).
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characterization cf this resin was performed. In the computations performed in this

Thesis, the heat capacity (C,) and thermal conductivity («) are considered to be
functions of temperature (Lafleur, (1983)).

(IIL.3.2.1)  Rheological Characterization

The shear viscosity at a range of shear rates between 10? and 10* reciprocal seconds
was measured in a Rheometrics Mechanical Spectrometer (RMS) operated at the
cone-ard-plate mode and an Instron Capillary Rheometer type MCR. In the latter,
a capillary with L/D=40 and diameter 0.052" (1”=2.54 cm) was used. Viscous heating
and pressure effects can be minimized in such a capillary (Lafleur, (1983)). The true

shear rate was calculated using the Rabinowitz correction.

The shear viscosity at high shear rates (typically above 1.0 s') was modelled with a

power law expression:
p = A.exp(aE/RT).4™ (111.54)

The parameters A, AE/R and (n) were calculated from the viscosity data using
standard regression analysis. Figure (I11.3.2.1.1) shows viscosity data obtained for the
polyethylene Sclair 2908 injection molding resin and the regression data used to
calculate the flow activation energy (AE) and the coefficient A. The power-law
coefficient was found to be slightly dependent on temperature. An average value of
0.755 was used in all simulations. Figure (II1.3.2.1.2) gives the dynamic (complex)
viscosity in the low shear rate region, as obtained from RMS experiments. The
viscosity data from INSTRON and RMS measurements were in good agreement in
the range of shear rates where the two methods overlapped. The storage and loss

moduli at various temperatures were also obtained by RMS and are reported in
Figure (111.3.2.1.3)
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(1I11.3.3) Equipment

(I133.1)  Injection Molding Machine

The experimental work was carried out with a Danson-Metalmec reciprocating screw
injection molding machine in the Department of Chemical Engineering at McGill
University. The specifications of the machine are given in Table (I1I13.3.1). The
machine was operated in the semi-automatic mode, using the corresponding timers
to specify the injection, holding and cooling times. The mold was cooled with tap
water whose temperature varied seasonaly between 18° and 23° C. The barrel

temnperatures in the front and rear sections were controlled by Gulton on-off

controllers.
(I1133.2)  Instrumentation

The pressure in the cavity was measured at three locations by Dynisco pressure
transducers. One was located near the gate and the other two at intermediate
positions in the cavity. The locations of the transducers are shown in Figure
(I111.3.1.1.B). Another pressure transducer was mounted at the nozzle to monitor the
corresponding pressure. A linear velocity (TRANS-TEK, Model 112-001) and a linear
displacement (Markite, Model 4709) transducers were used to monitor the motion
of the ram, and, indirectly, measure the flowrate to the mold. A grounded junction
thermocouple projecting into the polymer melt from the screw tip was used to
measure the melt temperature at the nozzle. Three thermocouples flush mounted in
the mold cavity were used to monitor the temperature at the mold surface; their

locations are also shown in Figure (I11.3.1.1.B). The calibration equations for these

transducers follow:

Cavity Pressure #1: P(Psi) = 284.33*(mV) + 11.8 (111.54)
Cavity Pressure #2: P(Psi) = 88.65*(mV) - 196.4 (111.54.b)
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Machine Model: Danson Metalmec 60-SR
Capacity: 21/3 oz (66.1 g)
Screw Diameter: 1.375 in (0.035 m)
Screw L/D Ratio: 15:1
Screw RPM: 40-150
Clamping Force: 60 T (53386 KN)
Hydraulic Pump: Sperry-Vickers Vane Pump
Electric Motor: 20 HP (14.92 kW), 3 phase, 50 Hz
Servovalve: Moog A076-103, 10 gpm (10 cu.m/hr) flow

at 1000 psi (6.9 MPa)

Table (1.3.3.1):  Specifications of the injection molding machine.
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Cavity Pressure #3: P(Psi) = 434.86*(mV) - 103.2 (111.54.¢)
Nozzle Pressure: P(Psi) = 462.92*(mV) - 51.2 (111.55)
Velocity Transducer: V(cm/s) = 0.209*(mV) - 0.004 (111.56)
Displacement Transducer: L(cm) = 0.615*(mV) - 1.223 (11L.57)

(II1.3.4) Experimental Conditions and Procedure.

Experiments were performed for a range of the process variables. For the purpose
of illustration, four such experiments, designated as HP6, HP7, HP8 and HP9 are
reported and will be used in later sections of this Thesis for comparison with model
predictions. The melt entry temperatures (measured at the tip of the screw) were
200° C, 202° C, 235° C and 235° C, respectively. In order to simulate these
experiments, the cooling rate was taken to be uniform throughout the faces of the
mold, with an average heat transfer coefficient of 68 Btu/ft/hr/F (386 W/m’K) in all
experiments. (Gao, (1989), Mutel (1990)). This is a simplification of the actual
situation in the mold, where the cooling rate can be fairly non-uniform, depending
on the design of the cooling channels. In the absence of heat flux distribution data
however, the assumption of uniform cooling rate is a reasonable approximation.
Before injections were started, the injection molding machine was allowed to heat up
and the barrel temperatures stabilize; that usually took 30-35 min. Then, 10-20
injections were performed without data acquisition, so that a thermal steady state was

attained in the working machine. After that, data acquisition commenced.

(I1.3.5) Certain Experimental Observations

The purpose of this section is to present selective experimental results of injection
molding experiments of polyethylene in the complex-shaped mold, in an attempt to

illustrate certain aspects of the filling stage.

(M.3.5.1)  Pressure Variation
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A typical variation of cavity pressure at the gate and nozzle pressure during an
injection molding cycle is given in Figure (II1.3.5.1.1.A). In all experimental
conditions, the nozzle pressure rises very fast and then remains roughly constant until

filling and packing are completed.

Both cavity and nozzle pressure values drop finally to atmospheric levels at the end
of cooling; however, the cavity pressure drop is slower than that at the nozzle; this
is a result of the retraction of the screw after the gate is sealed and the dominance
of cooling in cavity pressure control. The variation of the cavity pressure at the gate

during filling is more specifically given in Figure (111.3.5.1.1.B).
(I11.3.5.2)  Progression of the Melt Front

The progression of the melt front into the cavitr in both cases can be observed
indirectly by monitoring the response of the thermocouples. Typical results are shown
in Figure (I11.3.5.2.1). The effect of melt temperature on the melt progression speed
and filling time can also be seen in Figure (111.3.5.2.1). As expected, higher melt

temperature results in faster filling due to the corresponding lower viscosities.
(I11.3.5.3)  Shape of the Advancing Front

A number of short shot experiments was performed in order to determine the
evolution and shape of the melt front during filling. Figures (II1.3.5.3.1) and
(I11.3.5.3.2) show short shots obtained for various injection times. The melt
temperature was 200° C and the speed valve opening 5/12. Initially, a nearly
semicircular filling pattern is observed. This becomes only slightly curved as the melt
front reaches the middle part of the cavity. The shape of the free surface becomes
more complex as the melt closes behind the obstacle, becoming flat near the end of
filling. Figure (111.3.5.3.3) shows short shots that illustrate the detailed evolution of

the shape of the melt front as it closes behind the obstacle and the formation of a
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Figure (I11.3.5.3.1): Experimental short shots showing the evolution of the shape
and location of the free surface during filling.
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Figure (II1.3.5.3.2): Experimental short shots showing the evolution of the shape
and location of the free surface during filling,
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Figure (I11.3.5.3.3): Experimental short shots showing the evolution of the shape of
the free surface behind the obstacle and the formation of weld
line.
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(I1L4) SIMULATION RESULTS

The objective of the following section is to identify, through computer simulation, the
spatial and temporal variation of key process parameters such as pressure,
temperature, filling patterns, velocity and stresses during the filling stage. Comparison
of such predictions with experimental data will be performed in the next section. A
21*21 grid was used in all these simulations. Validation of the model predictions
using successive grid refinements has not been done in this section, mainly due to
computer time limitations. However, the core subroutines of the computer code
(kinematics, geometrical transformations and QUICK upwinding for the stresses)
have been tested with extensive grid refinement in part (II) of this Thesis. The
accuracy of the Laplacian solver, critical in the calculation of pressure, has been
tested against analytical solutions in part (I). These, along with the reasonable
agreement between simulations and experiment (see next section) have convinced the

author that the proposed model is numerically correct.
(I11.4.1) Progression of the Melt Front

The computational treatment and tracking of the free surface have been dealt with
in Appendix A.4 (section A.4.7). Predicted filling patterns in the complex-shaped
cavity are given in Figure (I11.4.1.1). It can be concluded, with reference to the
experimentally observed filling patterns (section (I11.3.5.2)), that the computer
program is able to simulate the movement and the shape of the free surface with
success. It was found that the filling pattern was independent of the parameters of
the process, such as the injection speed and the melt flowrate, at least for the range
of variables that was studied. The shape of the free surface was mainly determined
by the geometry of the mold. For comparison, predicted filling patterns in a simple

rectangular cavity are shown in Figure (I11.4.1.2).
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The continuous generation of a computational grid at every time step following the
advancement of the free surface is a key issue in the present numerical simulation of
the filling stage. Figures (II1.4.1.3) and (II1.4.1.4) show computational grids
constructed at various instances during the filling of the complex shaped cavity. The
computer program was able to automatically generate suitable computational grids

following the advancement of the free surface with no need for interruptions and/or
adjustmcnts.

(I1.4.2) Variation of Cavity Pressure with Time
(Il14.2.1)  Effect of Ram Velocity

Figure (111.4.2.1) gives the predicted pressure-time profile at two locations in the
cavity, for two values of the ram velocity (or, equivalently, the melt flowrate). In these
runs, an average heat transfer coefficient of 68 Btu/ft'/F/hr (386 W/m’K) was
assumed, uniform along each face of the mold. Cavity CR1 was used in these

simulations. It can be seen that increased ram velocity results in shorter filling times

and significantly higher pressures.
(Il1.422)  Effect of the Geometry of the Cavity

Figure (I11.4.2.2) shows the computed pressure-time history at the location of
pressure transducers P1 and P2 at three geometrical configurations of the cavity,
designated here as TE2, TE9 and TE1S. All configurations have the same planar
shape as cavity CR1. Table (111.4.2.2.1) lists the thickness distributions of these
cavities. The two groups of curves in Figure (I11.4.2.2) correspond to the predicted
response of pressure transducers P1 and P2. Clearly, the geometry TE1S with the
smallest thickness is associated with larger pressures. A cavity of uniform thickness
is associated with the smallest pressure and the smoothest pressure-time profiles.

Figure (111.4.2.2) allows for an evaluation of variations in the thickness of the cavity
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Figure (I11.4.2.1):  Effect of ram velocity on pressure-time profiles at two locations
in the cavity CR1 (corresponding to the locations of transducers
P1 and P2). T_,=200° C.
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dimensions (cm)

cavity (a) (b) (c)
TE2 0.32 0.26 0.20
TE9 0.32 0.32 0.32
TE15 0.32 0.127 0.05

Table (I11.4.2.2.1): Dimensions of cavities used in simulation studies.
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on the pressure-time profiles.

(Il1.4.23)  Effect of Melt Temperature at the Gate

The temperature at which the melt enters the cavity is another important process
parameter. Its effect on the computed pressure history at two locations in the cavity
is given in Figure (111.4.2.3), for two melt temperatures (200" and 235° C). In Figure
(111.4.2.3) P1 and P2 indicate predicted pressures at locations corresponding to those
of pressure transducers P1 and P2. Higher melt temperature at the gate results in
lower gate pressures; this is expected, since higher melt temperatures correspond to

lower melt viscosities. The cavity considered in these simulations is cavity TE9.

(I11.4.24)  Effect of Material Properties

Figure (I11.4.2.4) gives predicted variation of pressure in cavity CR1 at a location
corresponding to that of the gate transducer (P1). Curve (A) is obtained using the
power law parameters reported by Lafleur (1983). In curve (B) the power law
parameters are as reported in section (I111.3.2.1) of this Thesis. The variation of ram
velocity with time in this simulation is represented by three linear parts: for
0<t<0.55s, 1.1 em/s<U ,,<1.25 cm/s; for 0.55s<t<1.3: 0.7 cm/s<U,,<1.1 cm/s; for
1.3s<t<2.01s, 0.375 cm/s<U,,,< 0.7 cm/s. Use of higher power law constant (0.822
in (A) compared to 0.755 in (B)) results in higher gate pressures. The qualitative
form: of the pressure-time profile, which reflects changes in the geometry of the mold,

remains unaffected by the specific values of the material properties.
(111.4.3) Pressure Drop in the Cavity During Filling
(IIL4.3.1)  Effect of Ram Velocity

The pressure drop at two instances during filling of the complex cavity CR1 is shown
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to the locations of transducers P1 and P2).
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Figure (I11.4.24):  Effect of power law parameters on the pressure-time profile at

the gate; (A) parameters as reported by Lafleur (1983), (B)
parameters determined in this study. Cavity CR1.
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in Figure (I11.4.3.1) for two values of the ram velocity. These profiles are obtained
along the i=5 (lower part of the cavity) and i=16 (upper part of the cavity) grid lines.
With reference to Figure (I11.4.1.3), these are horizontal (left -to-right) coordinate
lines emanating from the gate and terminating at the free surface. Notice the slight
differences in the pressure drops along these lines. Even though these differences are
numerically very small, they appear consistently in all simulations. This leads to the
conclusion that they are manifestations of the non symmetric nature of the flow
rather than numerical artifacts. It can alsc be observed that higher melt flowrate

results in larger pressure drop in the cavity.

(111.4.3.2)  Effect of the Geometry of the Cavity.

The effect of geometry on the pressure drop in the cavity is given in Figure (111.4.3.2).
Clearly, the cavity of the smallest thickness (solid line) shows the largest pressure
gradients. Because of the smaller cavity volume, the melt front travels faster in the
cavity TE15 (compare the intercept of the solid and broken lines (corresponding to
cavities TE15 and TE9 respectively) with the x-axis).

(IN.4.3.3)  Effect of Melt Temperature

The effect of melt temperature at the gate on the pressure drop along the line i=16
(upper part of the cavity) is given in Figure (111.4.3.3). Lower melt temperatures
result in higher pressure drops due to the increased viscosity of the melt. In these

runs, cavity TE9 was used.
(111.4.3.4)  Effect of Material Properties
Figure (I11.4.3.4) gives predicted pressure drops in the cavity along the i=16

coordinate line at t=1.34 s. Curves (A) and (B) correspond to the material properties

and processing conditions discussed in section (I11.4.2.4). Use of the material
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coordinate line.
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(1983), (B) parameters determined in this study.
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parameters reported by Lafleur (1983) results in a higher pressure drop in the cavity.

(IIL.4.4) Temperature Drops in the Cavity During Filling
(IIL.4.4.1)  Effect of Ram Velocity

Figure (111.4.4.1) shows the temperature profiles along the same coordinates lines as
in Figures (111.4.3.1), for two instances during filling at two values of the ram velocity.
These are gap-averaged temperatures. At some distance from the gate, the lower part
of the cavity (solid lines, i=5) becomes progressively cooler than the upper part
(i=16). Simulation has revealed that, in this particular cavity, the material flows faster
in the upper part, supplying more hot material from the gate. Viscous heating is also
stronger there, and this accounts for the higher temperatures in the upper half of the
cavity. These temperature differentials are small in this geometry, but can be
significant in other geometric configurations and/or molding conditions. Simulation
can help balance these temperature differences by judicious choice of the design of
the cooling channels. From Figure (I11.4.4.1) it becomes evident that higher ram
velocity results in smaller temperature drops in the cavity. This is a result of the
combined effect of shorter residence times and higher viscous heating associated with
higher melt flowrates. For the case with the higher melt flowrate (U,,,=1.4 cm/s), the
temperature drop is less than half the temperature drop corresponding to the case
with half the ram velocity (U,,=0.7 cm/s).

(1ML.4.4.2)  Effect of Geometry

Figure (111.4.4.2) gives the effect of the shape of the cavity in the thickness direction
on the temperature profiles along the line i=16. At the front section of the cavity,
which is the same in all configurations TE2, TE9 and TE1S5, the temperatures are
identical. Significant differences occur however in the rest of the cavity as the

geometrical configuration changes. In cavity TE15 the temperature passes through
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(1M.4.2.2.1)).
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a minimum at the end of the thick front section; after that, due to the higher viscous
heating and smaller residence times associated with the thinner section, the
temperature increases. The constant thickness cavity TE9 shows the lowest
temperatures along i=16. This is probably due to the longer residence times, with
some possible effect of the reduced viscous heating associated with that cavity, since

in all three cases the conditions, including the cooling rate, are the same.

(1114.4.3)  Effect of Material Properties

Figure (I11.4.4.3) gives predicted temperature profiles in the cavity along the i=16

coordinate line at t=1.34 s and t=091s. Curves (A) and (B) correspond to the
material properties and processing conditions discussed in section (111.4.2.4). Use of
the material parameters reported by ILafleur (1983) results in slightly higher

temperatures in the cavity.

(111.4.5) Spatial Variation of Certain Characteristic Parameters

Appendix {A.5) gives predicted variation of key process characteristics such as
stresses, velocities in the two plane directions, viscosities and deformation rates at
three instances during filling. Mold TE9 was used in all the results of Appendix A.S.
The cooling rate was 85 Btu/ft/F/hr (482 W/m’K), the melt temperature at the gate
235° C and the ram speed 1.0 cm/s. Certain results will be presented and discussed

in this section.

Figure (I11.4.5.1) gives predicted temperature contours at t=1.6s in both cavities TE9
and CR1(variable thickness). These are gap-averaged temperatures. In both cases,
the temperature gradients are strong only near the gate, the rest of the cavity being
essentially isothermal - in a gap-averaged sense. The upper part of the cavity is
warmer than the lower part, and this is largely due to the shape of the mold in the

X-Y plane, which induces a preferential flow of melt in the upper part of the cavity.
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Figure (I[1.4.5.1):  Spatial variation of temperature at an instant towards the end
of filling (t=1.6s). Heat transfer Coefficient: 482 W/m’K; Ram
velocity 1.0 cm/s; T,,=235° C. Mold TE9(A) and CR1 (B).



e

163
Comparing parts { *) and (B) in Figure (II1.4.5.1), it becomes clear that a variation

in cavity thickness results in slightly higher melt temperatures at the corresponding
part of the cavity.

Figure (111.4.5.2) gives the spatial variation of viscosity and rate of deformation (the
second invariant (II) of the rate of deformation tensor is defined by equation 111.40)
in cavity CR1. Comparison with the corresponding Figure (A.5.7) in Appendix A.5
obtained for cavity TE9, it becomes clear that reduced thickness results in higher

deformation rates and slightly reduced viscosities in this part of the cavity.

Figure (I11.4.5.3) gives the shear stresses T* and T in cavity CR1 for the same filling
conditions. It can be seen by compaiing with Figure (I11.4.5.5.A) that the gap-
averaged shear stresses in the thickness direction are substantially higher(about 10
times) than the XX-stress in the X-Y plane. Figure (I111.4.5.4) shows the distribution
of the longitudinal (U) and transverse (V) velocities in cavity TE9. This figure
confirms that the geometrical configuration of this specific cavity results in faster melt
flow in the upper part of the cavity; this is in agreement with the slightly higher
temperatures predicted for that part. Finally, Figure (I11.4.5.5) gives the xx-normal
stress and the longitudinal velocity in cavity CR1. Reducing the thickness of the
forward part of the cavity results in higher xx-stress and longitudinal velocities as

compared to the constant thickness cavity TE9.

(111.4.6) Three-Dimensional Thermal Analysis

(IIL4.6.1)  Rectangular Cavity - Thermal Profiles

In this section, results regarding a three-dimensional solution of the energy equation
(Equation (IIL.15)) during the computational analysis of the filling of a simple

rectangular cavity of constant thickness are presented. From the coordinate

transformation point of view, the curvilinear grid constructed on the x-y plane at each
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Figure (I11.4.5.2):  Spatial variation of viscosity (A) and rate of dcformation
(expressed by II, (B)) in cavity CR1. Heat transfer Coefficient:
482 W/m’K; Ram velocity 1.0 cm/s; T, =235° C.
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Figure (I114.5.3): Predicted spatial variation of shear stresses in the thickness
direction (T and T%). Cavity CR1. Heat transfer Cocefficient:
482 W/m’K; Ram velocity 1.0 cm/s; T_,=235° C.
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Figure (I11.45.4):  Predicted planar distribution of longitudinal (A) and transverse

(B) velocities in cavity TE9. Heat transfer Coefficient: 482
W/m’K; Ram velocity 1.0 emys; T_, =235 C.
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point during mold filling was expanded in the thickness direction so that the vertical
cartesian coordinate (z) and the vertical curvilinear coordinate coincided. A 21*21*10
grid was used, with 10 nodal points in the thickness direction. The temperature
boundary condition at the facs, of the mold was taken to be Equation (A.4.29),
whereas the sides (edges) of the mold were considered adiabatic. The edges of the
cavity, as points of melt/metal contact are also potential areas of heat exchange.
However, in the particular mold used in the experimental part of this Thesis, the
cooling channels run parallel to the faces of the mold, and this is the area where
previous measurements of heat transfer coefficient have been made (Gao, (1989),
Mutel, (1990)). The melt flow is also much slower in the vicinity of the perimeter of
the cavity, as compared to more central locations. It was therefore decided that it is
more realistic to treat the edges of the mold as adiabatic rather than assign to them
the same heat transfer coefficient that was used for the rest of the cavity - or any
other arbitrary value. This adiabatic condition along the edges of the cavity has also
been used in the 2D simulations of the previous section. The lower temperatures
usually occurring near the edges of the cavity are not due to cooling through the
edges but mainly a result of the longer residence times of the melt in that region and
the limited heat convection. The heat transfer coefficient was taken to be 284 W/m’K.
The ram velocity was constant during filling and equal to 1.0 cm/s, the cavity
thickness 0.32 cm and the melt temperature at the gate was 235° C. Figures (111.4.6.1)
and (I11.4.6.2) show the spatial variation of temperature towards the end of filling at
4 planes parallel to the walls of the mold. The distance DZ in each figure indicates
the distance from the wall. The lower part of Figure (111.4.6.2) corresponds to the
centerplane of the cavity. Clearly, the strongest temperature gradients occur at the
plane nearest to the wall. As the centerplane is approached, the cavity becomes more
and more isothermal, with the most uniform temperature distribution at the
centerplane (where the maximum temperature difference is about 1° C). Near the
walls of the mold, the spatial variation of temperature is strongly non-uniform. The
central part of the cavity is at higher temperature, due to heat supplied by the hot

melt at the gate and the small thermal conductivity of the melt. These results show
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DZ=0.032 cm

DZ=0.064 cm

Figure (I11.4.6.1):  Predicted distribution of temperature at the end of filling of a

rectangular cavity, at two planes in distance DZ from the wall
of the mold.
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Figare (111.4.6.2):  Predicted distribution of temperature at the end of filling of a
rectangular cavity, at planes in distance DZ=0.0378 inches from

the wall of the mold and along the centerplane of the mold.
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that even in that simple geometrical configuration, a complete thermal analysis in
both planar and thickness directions is essential for a meaningful understanding of
the thermal history of the material during filling, including the formation and growth
of a layer of solidified polymer at the cold mold walls. In the graphs of figures
(111.4.6.1) and (111.4.6.2) the y=0 line is an axis of symmetry. Small discrepancies from

that symmetry are due to the contour generation by the graphics package and reflect

the irregular spacing of the grid points.

Figures (111.4.6.3) to (111.4.6.5) show the temperature profiles across the thickness of
the cavity, along three grid lines starting from the gate and terminating at the free
surface. Line i=2 is the one closest to the edge of the mold, whereas line i=6 is
between the edge and the centerline (the notation is similar to that of section
111.4.3.1). For the purpose of illustration, the thickness of the cavity has been
multiplied by 10 in these figures. Again, the strongest thermal gradients occur along
the line i=2 (nearest to the edge), while the centerline is characterized by higher
temperatures. With reference to Figures (1114.6.3) to (111.4.6.5), it can be concluded
that at the end of filling, and with the conditions described above, no significant

solidification has occured.
(I14.6.2): Complex Cavity - Microstructure Development During Filling

The three-dimensional thermal analysis outlined in the previous section allows for a
detailed evaluation of the development of microstructure in crystalline (or semi-
crystalline as is polyethylene) systems during filling. The relevant theory and in
particular the analysis of non-isothermal crystallization in terms of data for isothermal
crystallization has been developed by Nakamura et.al. (1973). On the assumption of

isokinetic condition, the fundamental equation has the form:

+
x(t) = (1.0 - exp(-(JK(T)-dt)")) (1114.6.1)
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cavity has been multiplied by 10 for the purpose of illustration.
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In the above equation, x(t) is the relative degree of crystallinity at time (t), m is the
Avrami exponent, and K(T) is related to the isothermal crystallization rate constant
(k(T)) through the relation K(T)=(k(T))".

Regarding the polyethylene used in this study, Lafleur (1983) has reported the

following crystallization parameters:

Avrami exponent: m=2
Rate constant: k(t)=exp(-406.66+2.5981-T-0.004 - T*), T in K.

The fractional relative crystallinity (xy(t)) is related to the ultimate crystallinity (x,)
through the relationship xx(t)=x(t)x Lafleur (1983) also reports the following
empirical relationship for the temperature dependence of x,,, where it is assumed that

no crystallinity develops above 121° C.

(%) = Ay + AT + A, T,  TinC

with: A,=97.81 For80C < T< 114C
A, =-1.462
A,=0.0100

and  A,=2223.20 For114C<T< 121T
A,=-34.274
A,=0.13441

The Nakamura non-isothermal crystallization model was used for the calculation of
crystallinity development during filling in a "slow filling" simulation run in cavity CR1.
The conditions were of the slow filling corresponding to experiment HP7 (see next

section). The heat transfer ccefficient from the melt to the mold was taken as 538
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W/m’K, higher than the experimental value of 356 W/m'K in an effort to produce

some observable solidification during filling.

Figures (I111.4.6.6) and (111.4.6.7) summarize some results of this simulation regarding
the crystallinity development during filling and the associated three-dimensional
thermal field. Figure (I11.4.6.6) shows the crystailinity (x,y) on a surface thiit passes
through the k=2 (immediatelly adjacent to the lower mold face) nodal points in the
thickness direction. Since the thickness of this mold (CR1) is not constant, the points
of figure (II1.4.6.6) do not fall on the same physical plane (as is the case in figures
(I11.4.6.1) and (111.4.6.2)). These points define a "logical plane" with common index
(k). The distance of these points from the mold walls is, naturally, smaller in the
thinner sections of the cavity. At time 4.82s almost 20% of the crossectional arca of
the mold has been occupied by solidified rnaterial - with the exception of a small
region near the gate. The crystallinity distribution within this solidified layer is largelv
uniform for the largest part of the mold, with two weak maxima in the middle section.
Crystallization at the forward part of the cavity is favored by lower temperatures. In
the mid-section however, longer residence times favor the development of
crystallinity, whereas higher temperatures tend to slow it down. Overall, the interplay
between these two opposing forces seems to favour the development of higher

crystallinity in this section compared to the forward part of the cavity.

Figure (111.4.6.7) shows the temperature profiles along the "logical plane” k=2 and
along the logical centerplane. Along the plane k=2 solidification is almost complete.
However, the same simulation run confirmed that the solidified layer did not reach
the plane k=3. Higher grid refinement in the thickness direction would be a way to
capture in greater detail the development of crystallinity within the solidified layer
during filling. Use of finer meshes however reached the limits of the computational

capacity of the VAX 11/780 computer used in these simulations.
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Figure (II1.4.6.6):  Crystallinity profile along the logical plane k=2 towards the end
of filling of cavity CR1. Cooling rate based on h=538 W/m’K.
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Figure (I11.4.6.7): Temperature profiles along the logical plane k=2 anq on the
centerplane (k=6), towards the end of filling of cavity CR1.

Cooling rate based on h=538 W/m'K
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(I1L.5) COMPARISONS OF MODEL PREDICTIONS WITH
EXPERIMENTAL DATA

The purpose of this section is to compare experimental measurements collected
during injection molding experiments of polyethylene Sclair 2908 (section (111.3.2)),
carried out on the molding machine described in section (I11.3.3) with predictions of
the computer program. Data collected during each injection molding run supply
information regarding the ram velocity (and indirectly the melt flowrate to the mold),
the ram displacement (used along with the ram velocity measurement for validation
of the corresponding data), the pressure and surface temperatures at a total of six
locations in the cavity. The surface temperature data are used to monitor the
advancement of the melt front in the cavity. The response of the pressure transducers
can be used for the same purpose but with lower accuracy, given the large area ot
these transducers whose radius is 0.35cm. The pressure measurement at the gate and
the pressure drop within the cavity are the primary data that will be compared to

model predictions.

Figure (I11.5.1) gives the experimentally measured ram velocity during experiment
HP6. This was the entry condition supplied to the computer program. In all
experiments, the ram velocity profile exhibits the characieristic shape of Figure
(ITL5.1). This is because the injection molding machine was operated at a constant
hydraulic pressure mode. This resulted in ram speed decreasing as more material is
injected into the cav:ly, since the resistance to the flow increases. Figure (I11.5.2) is
a comparison between experimental (solid line) and predicted (broken line) pressure
variation at a location near the gate (the coordinates of that location are
(x,y)=(1.27c¢m,0.0cm), which coincides with the center of the pressure transducer).

The melt temperature at the gate was 200° C.

Figure (1I1.5.3) is a comparison between predicted and experimental pressure drops
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Figure (IIL5.1): Experimental ram velf)city profile during the filling stage
corresponding to experiment HP6.
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pressure drops in the cavity. Experiment HP6.
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in the cavity at various instances during filling. Computationally, these profiles are
obtained along the i=5 (lower part of the cavity) and i=16 (upper part of the cavity)
grid lines (Figure (II1.4.1.3.)). The horizontal bars in this graph show the
corresponding experimental values. It can be concluded, along with Figure (111.5.2)
that the agreement is quite satisfactory at all times. The program seems to
underpredict the pressure towards the end of filling. The computed pressure drops
deviate from the almost lincar drops observed in a rectangular cavity of constant
thickness (Lafleur, (1983)); this 1s due to a number of factors, most important of
which are the change in the dimensions of the mold along the longitudinal direction
and the non-isothermal nature of the flow. The pressure gradient is higher near the
gate where the melt velocity 1s higher (section AB in Figure (111.5.3)). The local
pressure gradient (DP/Dx) in the part corresponding to the section of the cavity prior
to the area of reduced thickness (BC) 1s significantly lower. The area corresponding
to the thinner part of the cavity (CD) is characterized by a larger local pressure
gradient compared to BC but smaller than the pressure gradient near the gate; this
can be explained if one considers the smaller melt velocities in the forward part of

the cavity.

Figure (I11.5.4) shows the temperature profiles along the same ccordinates lines as
in Figure (111.5.3) and for the conditions of experiment HP6. These are gap-averaged
temperatures. The melt enters the cavity at 200° C. In Figure (II1.5.4) the three
dotted curves correspond to the coordinate line i=5, whereas the three solid curves
to i=16. Several observations can be made with regard to Figure (I11.5.4). Firstly, at
any location along the lines i=5 and i=16 (as well as throughout the cavity), the
material is cooled with time. This can be seen by observing the relative position of
the curves corresponding to t=1.32s, t=1.76s and t=2.33s. This effect is more
pronounced for points away from the gate, since the area near the gate is
continuously fed with new hot material. In a small region around the gate, the melt
temperature is practically uniform in both the upper (i=16) and lower (i=5) parts of

the cavity. After 0.15’ (1’=2.54cm) from the gate however, the lower part of the
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cavity bc mes progressively cooler than the wpper part. This can be further seen in
Figure (1I1.4.5.1) which shows contours of temperature at various instances during
filling. Simulation has revealed that in this particular cavity and towards the end of
filling, the material flows faster in the upper part. Viscous heating is therefore
stronger there and 1esidence times are shorter. This, together with the supply of more
fresh hot melt compared to the lower part, accounts for the higher temperatures in
the upper haif of the cavity. These temperature differentials could be minimized by
proper design of the cooling system of the mold. Also note in Figure (II1.5.4) that
near the melt front the temperature differential between the upper and lower part

of the cavity decreases.

Table (I11.5.2) is a comparison between predicted and measured times at which the
melt front reaches each transducer in the cavity, for experiments HP6, HP7, HP8 and
HP9. It can be seen that the agreement is quite satisfactory. Such a good agreement
is not surprising here, since the experimental melt flowrate is used as the inlet
condition in the simulations. However, this agreement confirms that the ram velocity
(or displacement) is a good measure of the melt flowrate in the mold (or,
equivalently, that compressibility effects in the nozzle are not significantly degrading
the quality of that measurement). Furthermore, this good agreement proves that the
frequent rearrangement of the free surface nodal points for smcoth grid generation
purposes (see Appendix A4) does not contaminate the accuracy of the movement of

the free surface.

Figure (I11.5.5) shows the ram velocities corresponding to experiments HP8 and HP9.
Experiment HP9 is a "fast" filling whereas HP8 is a slower filling. The melt
temperature in both these runs is 235° C. Figure (II1.5.6) gives a comparison between
predicted and experimental pressure variations at the gate for these runs. The
agreement is fairly good for both cases in the initial and intermediate stages of filling
but becomes progressively worse towards the end of filling. The divergence between

predictions and experimental data at the last stages of filling is smaller in the faster
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T1 T2 T3
HP6 0.48 1.33 2.31 Experiment
0.48 1.32 2.27 Predicted
- 0.75 1.73 (%) Difference
HP7 0.78 2.9 5.23 Experiment
0.77 2.94 5.18 Predicted
1.28 1.67 2.87 (%) Difference
HP8 0.81 2.62 235 Experiment
0.81 2.61 232 Predicted
0.00 0.38 1.28 (%) Difference
HP9 0.37 0.92 1.65 Experiment
0.37 0.91 1.62 Predicted
0.00 1.08 1.82 (%) Difference

Table (I1L5.2): Comparison between predicted and experimental times required
for the melt front to reach the temperature transducers T1, T2
and T3 in cavity CR1.
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Figure (I11.5.5): Experimental ram velocity profile during the filling stage

corresponding to experiments HP8 and HP9.
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filling case HP9. This might be due to the smaller solidification associated with
shorter filling times. The pressure drops along the cavity at various instances during
filling are further shown in Figure (I11.5.7). The corresponding temperature profiles
are given in Figure (I11.5.8). There is a small but interesting qualitative difference in
the temperature profiles of Figures (III.5.8.A and (II1.5.8.B). The temperature
corresponding to the faster run HP9 seems to show a little overshoot at intermediate
locations within the cavity; this behaviour is absent from the profiles corresponding
to the case HP8. Since all conditions between these experiments are the same but the
filling time (or melt flowrate), it is concluded that this is a viscous heating effect.
Figure (I111.5.9) shows predicted (dotted) and measured (solid lines) pressures at the
locations of the three pressure transducers in the cavity. These results correspond to
run HP9. Again the agreement is quite satisfactory, especially for the second and

third transducers.

Finally, Figures (II15.10) to (IIL.5.13) give experimental and simulation results
regarding the experiment HP7 which was performed at a very low melt flowrate. The
agreement between theory and experiment becomes rather bad towards the end of
filling. Upon inspection of Figure (I11.5.13), it becomes clear that the gap averaged
temperature in the cavity towards the end of filling is relatively low. It was thought
that there could be a significant amount of solidification in this experiment which had
not been taken into account in the two-dimensional simulation. However, simulations
using a three-dimensional thermal analysis code that would take into account the
reduction of crossectional area of the mold due to solidification, based on a heat
transfer coefficient of 68 Btu/ft’/hr/F (386 W/m’K) uniform throughout both faces of
the mold, showed that there was no significant solidification - that could be resolved
with grids having 10 grid points in the thickness direction. Use of linear temperature
interpolations between the mold walls and the adjacent grid points was used to
determine, approximatelly, the thickness of the solidified layer and the consequent
reduction in crossectional area. This approach resulted in a pressure profile that

deviated only slightly from that of a two-dimensional simulation (Figure (II1.5.11)).
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This points to the direction of reexamining in detail the heat transfer in the mold and

in particular the possibility of strong spatial variation of cooling rate along the faces

of the mold. More experimental work is needed in this direction.

(11L.6) SUMMARY

A model for the simulation of the filling stage in injection molding has been
developed. The model considers viscoelastic, non-isothermal, transient flow with an
advancing free surface in a cavity of complex shape with an insert. The location of
the melt front is determined in the course of the computations; following that, the
computer program automatically generates suitable curvilinu 2~ computational meshes
in the region of the cavity covered by the melt. Based on the above model,
parametric studies were performed, which revealed the effects of key process
characteristics such as melt flowrate, melt temperature, material properties and mold
geometry on the pressure and temperature gradients in the cavity, as well as on the
pressure history near the gate. The spatial distribution of velocities, stresses and
temperatures was also evaluated at various instances during filling and various
geometrical configurations. A three-dimensional analysis of the thermal problem
during filling, coupled with two-dimensional kinematics in a rectangular and in a
complex shaped cavity, resulted in a detailed description of the temperature field,
which is of considerable complexity even in geometrically simple situations. Coupling
of the Nakamura ron-isothermal crystallization kinetics model allowed for a
calculation of the crystallinity development within the solidified polymer layer during

filling.

Predictions ot the model have been compared to experimental data obtained during
the injection molding of high density polyethylene, whose complete rheological
characterization was performed, in a cavity of complex shape. The model predicts
reasonably well the experimentally measured pressure-time profiles at three locations

in the cavity, as well as the progression of the melt front. The model predictions
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deviate the most from the experimental data towards the end of filling and for
experiments with long filling times; consideration of the reduction in mold
crossectional area during filling did not improve substantially the predictions of the
program. A possible reason for this discrepancy might be inaccuracies in the
calculated melt flowrate at the gate toward the end of filling due to noise in the ram

velocity signal as well as poorly defined thermal conditions along the mold walls,
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(iv) CONCLUSION

(IV.1) Conclusions

This Thesis has presented a finite difference numerical simulation of viscoelastic flows
in complex geometries. A number of steady state flows of an upper convected
Maxwell fluid have been studied numerically; this study has revealed the effect of
elasticity, inertia and geometry on the structure of the stress and flow fields. Vortex
growth with elasticity has been predicted ir contractions; grid refinement studies have
shown that this growth is independent of the size of the computational grid,
depending strongly on the geometrical configuration of the channel. In expanding
flows, the elasticity of the fluid is found to r¢ ‘uce the size and strength of the

secondary flow.

The same numerical techniques with geometry-adaptive remeshing have been used
for the simulation of the filling stage of the injection molding process. Non-
isothermality, shear thinning viscoelastic behaviour and the presence of an advancing
free surface of complex shape are issues that have also been dealt with in this part.
In the two-dimensional version, the numerical scheme solves the conservation and
constitutive laws on the plane of the flow; howevei, velocity, thermal and stress
gradients in the thickness direction are included in the analysis in a gap-averaged
sense. This has allowed for consideration of both plarar and gap-averaged stresses
in the development of the pressure in the cavity, and, for the first time, for a
comparison between the magnitude of planar and gap-averaged stresses in a
geometrically complex situation. The latter are predicted to be about ten times larger

than the planar stresses - for the cavity and the filling conditions studied.

A completely three-dimensional solution of the energy equation, coupled with the

Nakamura model for non-isothermal crystallization kinetics, two-dimensional
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kinematics and stresses, has been performed in a rectangular and in a complex-
shaped cavity. This analysis allowed for a detailed description of the thermal
conditions in the cavity, as well as for the development of microstructure during filling
- the later for very slow injections with relatively high cooling rates. The results of the
3D simulation showed that thermal fields can be considerably complex even in a
cavity of a simple shape. In the case of the rectangular cavity, this means that
treatment of the filling stage as a flow problem between two infinite flat plates is
representative of only a small part of the real process. In this sense, the present work
on injection molding can be seen as fusing together and expanding the best
characteristics of previous research done at the Polymer Processing Group at McGill,
and in particular the work of Kuo and Kamal (1976), which modelled the spreading
flow in a rectangular cavity using non-isothermal potential flow theory, and the work
of Lafleur and Kamal (1983) which modelled in detail the flow of a viscoelastic melt
between two infinite flat plates. Furthermore, the use of boundary fitted curvilinear
coordinates has allowed for the modelling of the filling stage in a complex cavity

which includes an insert; this adds a new dimension in the modelling capabilities of

the Group.

Model predictions have been compared to experimental measurements obtained in
an injection molding machine. Melt front progression data and pressure data were
in reasonably good agreement with model predictions. The material used was an

injection molding grade polyethylene; its rheological characterization has been part
of this work.

(IV.2) Recommendations

Based on the experience gained during this study, the following recommendations for

future work can be made:

(1) The three-dimensional model produced in this work can be used in
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conjunction with existing models for the packing and cooling stages. This way
three-dimensional distributions of crystallinity in the final product, thermal
stresses and pressure vanation during the complete injection molding cycle can

be determined.

Extend the stress calculation in three-dimensions. At a first stage, this can be
accomplished by considering fully developed inelastic (power-law} velocity
profiles across the gap, therefore ignoring the fountain flow effect.
Consideration of completely three-dimensional kinematics in the context of the
stream function / vorticity formulation is tedious; it might be advisable to use

the velocity/pressure formulation in a three-dimensional simulation.

Improve the efficiency of the pressure SOR solver by considering techniques

such as the method of conjugate gradients.

Consider alternative viscoclastic mndels, particularly models that include a
retardation time, since their use might improve the stability of the stress
iterative solver. Their prediction should however be compared to experimental
data in simple flow situations before any effort is made to incorporate them

in the model.

Enhance the physical description of the process by considering stick-slip flow
on the mold wall, particularly near points of high stress concentrations. The
effect of shear and elongatinnal stresses as well as the effect of pressure on
the crystallization kinetics of polyethylene could also be tested experimentally
and incorporated in the model. The rheological description of the resin could

further be enhanced by considering a spectrum of relaxation times.

The present model can be modified to include the delivery channels in the

analysis. This can be done by changing the flow field so as to include the
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delivery channels (which can be of arbitrary planar shape, but not of an
axisymmetric shape; in the later case modifications in the core routines will be
needed). This is expected to improve considerably the quality of the moael

predictions, since the nozzle pressure can be used instead of the meit flowrate
as a boundary condition,

At the experimental level, investigate the spatial distribution of the heat
transfer coefficient along the faces of the mold. Incorporation of spatially

variable cooling might improve the quality of the model predictions,
particularly in situations with long filling times.

(IV.3) Novel Contributions

&)

(2)

3

G

Part (II) of this work presents the first application of the method of boundary
fitted curvilinear coordinates for the finite difference simulation of viscoelastic
flows in complex geometries. All previous work in complex geometries has
been done in the context of finite elements, with finite difference solutions

confined to geometrically simple situations.

The QUICK upwinding scheme has not been previously used in the modelling

of viscoelastic flows.

Certain cases studied in part (II) of this Thesis, such as the flow in
contractions with a rounded or non-symmetric corner have either not been

analyzed before or have attracted only limited attention.

It is the first time that both planar (shear and elongational) and gap-averaged
(shear only) stresses have been considered in the modelling of the flow of a
viscoelastic material in injection mold filling. Consequently, this is the first

time that the relative magnitudes of planar and gap averaged strzsses that
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develrp in a viscoelastic material during filling have been quantified.

This is maybe the second application of the method of boundary fitted
curvilinear coordinates with adaptive remeshing in the modelling of transient
free surface flows during injection mold filling (Subbiah et al. (1989)), and the
first that utilizes a viscoelastic model. To the Author’s best knowledge, it is the
first study that, in the context of BFCCs and injection molding, tackles the
problem of an insert and the first work that couples a filling analysis of a
complex mold with three-dimensional crystallization kinetics. Even though the
amount of crystallinity (and solidification) that develops during filling is very

small, it can be very important in the final properties of the finished article.

All data reported in this Thesis (in rheological characterization and injection

molding) and all computer programs used in the simulations are original

contributions.
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LIST OF SYMBOLS

Time-temperature superposition shift factor

Components of the velocity gradient tensor(Eqn.lll.21)

Viscosity Coefficient (Eqn. 111.41)
Model dependent tensor (Eqn. I1.9)
Coefficient introduced by Equation 11.16
Coefficient introduced by Equation H.17
Coefficient introduced by Equation 11.18
Thickness of the cavity

Coefficient introduced in Equation 11.19
Coefficient introduced in Equation 11.20
Heat capacity

Coefficient defined in equation 1.66
Diagonal matrix

Coefficient defined by equation 11.68
Coefficient defined by equation 11.69
Coefficient defined by equation 11.70
Coefficient defined by equation 11.71
Non-Newtonian source function (Eqn. I1.3)
Rate of deformation tensor (Eqn. 111.22)
Components of the tensor D (Eqn. 111.22)
Material time derivative (Eqn. 11.10.c)
Deborah number (De=\7, . )

Matrix defined by Equation 11.79
Coefficient defined by Equation (11.67)
Matrix defined by Equation 11.79
Coefficient introduced by Equation H.2
Coefficient introduced by Equation 11.22
Coefficient introduced by Equation 11.23
Functional values at mid-cell locations
Storage Modulus

Loss Modulus

Coefficient introduced by Equation 11.27
Coefficient introduced by Equation 11.28
Coefficient introduced by Equation 11.29
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Grid spacing (Equation 11.34)

Indices in finite difference discretization
Second invariant of D (Eqn. [11.40)
Jacobian of the coordinate transformation (Eqn. 1.8)
Isothermal crystallization rate
Consistency index (Eqn. Hl.41)
Characteristic length

Lower-triangular matrix(Eqn. I.77)
Coefficient defined by Equation (11.72)
Coefficient defined by Equation (I1.73)
Coefficient defined by Equation (11.74)
Coefficient defined by Equation (11.75)
Coefficient defined by Equation (I1.76)
Norm of iterative corrections in SR algorithm
Power law index (n=1/s)

First normal stress difference(T™*-TYY)
Control function (Eqn. i.1) and Pressure
Coatrol Function (Eqn. 1.2)

Gas law constant

Reynolds number (Re=pUL/u)

Position vector

Inverse of power law index

S$=(5*%,8¥Y,8®)  Elastic stress tensor
T=(T*TYW,TY)  Total stress tensor

T(1)
T
-
T|(")
t

u,v,w
<u>,<v>

Upper convected derivative(Eqn. 11.10.a)
Lowrer convected derivative (Eqn. 11.10.b)
Temperature(K)

Truncation error (Equation 11.54)

Time(s)

Velocities in the x,y and z directions(cm/s)
Gap-averaged velocities(Eqn.111.28 & 111.29)
Characteristic velocity

Upper-triangular matrix

Weissenberg number (We=\U/L)
Cartesian coordinates




Greek Letters
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Transformation coefficient (Eqn. 1.5)
Transformation coefficient (Eqn. 1.6)
Transformation coefficient (Eqn, .7)
Objective time derivative (Eqn. 11.10)
Activation energy (Eqn. 1Il.41)
Curvilinear coordinate

Curvilinear coordinate

Thermal conductivity (W /mK)
Relaxation time(s)

Viscosity\Pa.s)

Density(Kg/m3)

Grid cel! Reynolds number
Langrange polynomial (Eqn. 1.13)
Viscous dissipation (Eqn. 111.16)
Stream function

Vorticity
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(A1) Numerical Implementation of Elliptic Grid Generator

For the numerical solution of the grid generating equations ((I.3) and (1.4)), the
derivatives of the spatial coordinates (x,y) with respect to the curvilinear coordinates
are discretized using central differences in the interior of the flow domain and one-

sided, second order accurate differences on the boundaries.

() = (KuyXag)/2h (A11)
(Xoly = (XgorXya)/2h (A12)
Ol = (¥iy)/2h (A13)
Ol = (YyorYua)/2h (A.14)
(a%/88%)y = (Kany - 2y + X )/ (ALS)
(%an2), = (Ryas - 2%y + X,)/h? (A16)
(8%/8631)y = (Kongr * Kirger = Xjr + %y )/4AN (ALT)
(6Y18€%)y = (oery - Yy + Yo)/i? (A.1.8)
(8y/an")g = (yar - 294 + Yy’ (A19)
(3/863n)y = Yiegor = Yoorgor = Yoot + Yura)/4h* A (A.1.10)

Since the boundary correspondence is given, the generating equations need to be

solved only in the iaterior of the domain of interest. Therefore, in this case, there is
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no need for the use of special difference expressions at thie boundaries.

The discretized form of the generating equations was solved using an iterative
successive relaxation algorithm. Iterative changes were smoothened by means of a

factor (w) as follows:

£ = wef® + (1-w) £ (A.1.11)

where the superscript (n) indicates functional values a: the nth iteration. The
convergence of the iterative solution was usually rapid without stability problems. The
only problems were ¢uzountered when improper values for the coefficients e,c,b,d in
the equations defining the control function P and Q were being selected. For
exampic, if attraction to an n-line (say 5,,.) was desired, too high a value of (e)) would
impose a very strong attraction on the nearby coordinate lines. This would lead to
some of the n-lines crossing the 5 line, resulting in numerical instabilities and an
unacceptable grid. Similarly, a very small value of the decay coefficient (c) would
result in attraction even to distant n-lines, and usually in an unacceptable grid. Figure
(A.1.1) shows some of the problems associated with unreasonable values for the

distortion functions.

The concentration of coordinate lines in areas of interest can, besides a proper choice
of P and Q, be controlled by a proper distribution of the boundary nodes. Figure
(IL.5.1.1) shows parts of three grids used in the study of flow in a 4:1 contraction.
Grid (11.5.1.1.a) was constructed with P=Q=0 and a fairly uniform distribution of the
boundary nodes. In grid (11.5.1.1.b) P and Q were calculated so as to give a higher
concentration of coordinate lines near the upper boundary. Finally, Grid (I1.5.1.1.c)
was constructed with P=Q=0 and a higher density of boundary nodes near the

reentrant corner.

(A11) Grid Orthogonality at the Boundary
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Figure (A-1.1): Some of the problems associated with unreasonable values of
the distortion functions in Poisson-type elliptic grid generation.
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When Neumann boundary conditions are to be used, as is the case in the solution of
the pressure equation in the modelling of the filling stage in injection molding,it is
desirable to have a grid that is normal to the boundary. In the context of second

order elliptic generating systems, this can be accomplished in two ways:

(a) Keep the boundary points constant and place the interior nodes in a manner
that assures orthogonality. This can be accomplished by proper selection of
the control functions. (Thompson et al. (1985))

(b)  Move the boundary points so that the coordinate lines intersect the boundary

at right angles.

In this work method (b) was followed. Its application was facilitated by the fact that
the boundary of the flow channel consisted of lines with explicitly known parametric
equations. Therefore the location of the boundary points for orthogonality could be

easily determined by geometrical considerations.



(A2) Coordinate Invariance of Partial Differential Equations

The objective of this section is to prove the following theorem:(Lapidus & Pinder,
1982).
Theorem: The sign of the discriminant of a second order partial differential equation

(p.de) in two independent variables is invariant under non-singular transformation
of coordinates.

This proposition is fundamental in the theory of partial differential equations. It
guarantees, that an elliptic, for example, equation will remain elliptic after a non-
singular transformation of coordinates, even though the transformed form might
include additional terms not present in the original equation. In this work we are
particularly interested in the transformation of the Laplace operator appearing in the
Poisson equations for the vorticity and the stream function. In curvilinear

coordinates(¢,n), the transformed form of the Laplacian operator of a scalar (u) is:
V= farug - 2-8-u, + yeu, )T+ (V) u + (Pn)-u, (A.2.)

where the coefficients are functions of the coordinate transformation. The general

second order partial differential equation of the form
a.u, + 2b.y, + couy + dey, + ey, +fiutpg=0 (A22)

defined in w, can be elliptic, hyperbolic or parabolic, depending on whether the
discriminant

a=b-asc (A23)

is negative, positive or zero respectively. If the sign of the discriminant changes in w,
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then the equation is of the mixed type. In the theory of partial differential equations
there is a fundamental distinction between those of elliptic, parabolic and hyperbolic
type. Each type has different requirements as to the boundary or initial data required
to assure existence, uniqueness and continuous de pendence on initial data; that is for
the problem to be well posed. These requirements are well known for each of the
above types of equations, and many analytical and numerical techniques have been
developed for solving the various types of equations, including non-linear equations,
subject to suitable boundary conditions. However, for the equations of mixed type
much less is known and it is usually difficult to know even what the proper boundary
conditions are. It becomes therefore apparent that it is crucial to establish that the
type of a general partial differential equation of the form of Equation (A.2.2) is

coordinate system invariant.
Let the new coordinates (¢,n) be related to the old (x,y) coordinates by:

¢ = £&(xy) n = n(xy) (A2.4)

The Jacobian of this transformation will be non-zero, since we are interested in non-

singular transformations

J = 3(&m)a(em) = €,omy - &yom, (A2.5)
Because of this, the inverse relations also hold

x=x(&n) ¥ =y(Em) (A.2.6)
Using the chain rule, one can calculate the derivatives of the function (u) appearing

in (A.2.2). Substituting in (A.2.2), one can get the transformed equation in the new
coordinate system. This will be
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A'u€‘ + ZB’uﬁ’ + C’u'm + eeeene = 0 (A.2.7)

where the derivatives of order less than two were dropped since their coefficients do

not affect the sign of the discriminant. It can now be proved that the discriminant of
equation (A.2.7) is

8 =B?- AC = a1 (A28)

This results shows that the sign of the discriminant remains indeed unaffected by the
coordinate transformation.




(A3) Review of Transformation Relations

A complete presentation of the relations involved in the transformation of derivative

and integral operators from one curvilinear system to another can be found in

Thompson et al. (1985). Such expressions for the basic derivative operators of fluid

mechanics are given in this section for the sake of completeness. Both conservative

and non-conservative forms are included.

(A.3.1) Conservative Relations

Divergence: v.f = J'g(Ja'-f),

Gradient: vf = J'z(Ja'f),

Curl: uxf = J* g(Ja'xf),

Laplacian: v = g=[a'. (Ja'f)¥]x

(A32) Non-conservative Relations

Divergence: v.-f = za'.f,

Gradient: vf = zaf,

(A3.1)

(A32)

(A3.3)

(A3.4)

(A3.5)

(A3.6)

in view of (A.3.6), the (v) operator can be written, in general curvilinear coordinates,

as:

v = za(a/ax)

(A.3.7)
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Curl: uxf = za'xf, (A.3.8)
Laplacian: v = sza'.af + ==a'.(a),f, (A.3.9)

In the equations (A.3.1) to (A.3.9),x, i=1,2,3 are general curvilinear coordinates,
whereas a, i=1,2,3 are the contravariant base vectors corresponding to these

curvilinear coordinates. The contravariant bes vectors are defined as:
ad=w,i=123 (A.3.10)

In equations (A.3.1) to (A.3.10) bold letters indicate vectors, non-bold letters are

scalar quantities and all the summations are over i=1,2,3 and/or j=1,2,3.
(A3.3) Transformation of Temporal Derivatives

Equations (A.3.1) to (A.3.10) refer to spatial discretization. With moving grids and
time dependent equations however, as is the case during the modelling of the filling
stage of injection molding, the time derivatives need to be considered as well. For the

first time derivative, the transformation relation is:

(£)e = (£): + vfo(x)e (A3.11)

where the subscripts outside the parentheses indicate the spatial variable being held
constant in the time differentiation. The term x, is the grid point speed. With the time
derivatives transformed as in Equation (A.3.11), only time derivatives at fixed points
in the logical space will appear in the equations and, therefore, all computations can
still be done on a fixed uniform mesh without interpolation, even though the grid

points are in motion in the physical space.
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(A4) The Boundary Conditions
(A4.1) Preliminaries

The importance of the boundary conditions in computational fluid dynamics cannot
be overstated. Besides affecting the accuracy and stability of computational
algorithms, the type of boundary conditions is an important factor that will determine
the predicted flow patterns. After all, all the fantastic flow phenomena in gases and
liquids are solutions of the same set of partial differential equations, namely the
Navier Stokes equations and it is the difference in initial/boundary conditions and
flow parameters such as the Reynolds number that create the great variety of
observable flow patterns. In the solution of the coupled viscoelastic problem, the type
of boundary conditions can greatly affect the results and the stability of a

computational algorithm.
(A4.2) Boundary Conditions for the Stream Function and Vorticity
The boundary conditions for the stream function are of the Dirichlet type. Since solid

boundaries and axes of symmetry are streamlines, the stream function is defined as

follows:

¥u = cOnstant y,, = constant (A4.1)

In the inlet of a flow channel, (¢) and (v) can be determined by integration and

differentiation respectively of the inlet velocity profile. In general, it will be:

Yau(y) = Jun(y)dy, Vo = = QU /3Y (A4.2)
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The evaluatio:: of (¢, and ) at outflow boundaries is not as straightforward and has
been the subject of considerable research (Roache, (1976)). Use of improper outflow
boundary conditions has been shown to result in catastrophic instabilities that

propagate upstream from the outflow boundary and destroy the solution.
When the length of the outflow section is sufficiently large, it is reasonable to assume

a fully developed profile and extract (y) and () in a similar fashion as in the inlet.

However, it has been shown (Paris and Whitaker, (1965)) that the less restrictive
condition

v=3y/ax =0 and 3dwfex =0 (A4.3)

allows greater accuracy for comparable computational meshes. This outflow condition

has been used in this work.

(A4.21) Evaluation of Vorticity on Solid Boundaries

The evaluation of vorticity on solid walls is maybe the most important and sensitive
computational boundary condition. One possible way to obtain boundary values for
vorticity is by expanding (y) in Taylor series from its wall value (¥,,.):

¥ou = ¥y + 8y (3y/3y), + 0.5-(ay)+(3’v/ay’), + HOT (Ad.4)
where HOT stands for higher order terms that are neglected in the following analysis
and the subscript (w) indicates wall values. Assuming non-slip conditions on the walls,
and using the equations defining (y) and (), one obtains

Wy = '2(¢v¢l < ¢w)/h2 (A‘4'5)

where the subscript (w+1) indicates the point closest to the wall, and (h) is the
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normal distance between points (w) and (w+1). Equation (A.4.5) is a first order
approximation of the wall vorticity. This form has been reported by Thom as early
as 1928, and has been widely and successfully used since then. It has been found to
give results that essentially equal to those of higher order forms (Roache, (1976)),
when first order accurate discretization of the derivatives of (y) and () is used.
However, when second order central differences are used, application of equation
(A.4.5) has been found to undermine the accuracy of the global scheme (Gupta and
Manohar, (1979)). Second order approximations for the wall vorticity have therefore
been proposed. Two of these forms, introduced by Jensen (1959) and Woods (1954)

respectively are:
e = (/2 + 41 - TH2)M (A.4.6)
Gy = 3(Yoes - BIHE + 0,2 (A.4.7)

Discussions on the relative merits of first and second order formulae for the
evaluation of the wall vorticity can be found in Crochet et al.(1984) and Roache
(1976), each with numerous references supporting each side. It has been said
(Crochet et al. (1984)) that in the case of viscoelastic flow, the introduction of the
non-Newtonian source function (term D(S) in equation (II.2)) which is first order
accurate because of the backward differences usually used in the discretization of the
stress derivatives in the constitutive equation, removes most of the merits of using a
second order accurate formula for the wall vorticity - unless the Weissenberg number
is very small, in which case the problem is essentially a Newtonian one. In the light
of possible instabilities induced by second order formulae, it has been suggested
(Crochet et al. (1984)) to use the more reliable, even though less accurate, equation
(A.4.5). However, use of the higher order accurate QUICK scheme in the
discretization of the stress equations makes the application of second order vorticity
approximations a meaningful alternative. In the context of this work, both first and

second order boundary approximations have been used with success.



Add
All the previous formulae for wall vorticity are based on straight walls that are
parallel to either the x- or the y-axis. Roache (1976) shows how approximations for
wall vorticity on a solid boundary that forms an angle with the axis of the flow can
be derived. However, that method is not of general use on curved boundaries. In the
context of this work, the wall vorticity on general curved solid boundaries has been

evaluated by the following defining expression:
o = (V). (A4.8)

In general curvilinear coordinates, (¢,7) the RHS of equation (A.4.8) can be written

as.

(V) = (12w + avde -28-950)/T + (V'€) 4y + (Vi) (A-4.9)

where all derivatives are defined on the wall (w) of the flow channel and a,8,y are

given by equations (1.5) to (1.7)). Since (¥) is constant along the wall, equation
(A.4.9) reduces to:

(V). = a-gedP + () ve (A.4.10)

It can further be shown that on solid no-slip walls it will always be (ay/a¢) = 0.
Therefore, equation (A.4.8) simplifies to:

= (V) = T2 ((%0)" + (¥0)) e (A.4.10.2)

A similar boundary condition has been used by Liou et. al. (1984) for the evaluation
of the wall vorticity in a bent with curved walls. When a first order approximation for
the derivative (3%/3¢?) is used, it can be shown that for a boundary parallel to the
x (or y) axs, equation (A.4.10.a) reduces to equation (A.4.5). Both first and second

order one-sided approximations for the partial derivative in (A.4.10.a) were used,




A4S

resulting in two different formulae for the wall vorticity. The second order formula
is (Collatz (1966)):

(beed = (26 = S¥onr + 4002 - Br)/i? (A.4.10.b)

Use of a first order expression for the second derivative (y), results in the

following wall vorticity approximation:

w = 2% ((x%,)" + (50)) (oo - B (A4.10.c)

The second order expression (equation (A.4.10.b)) was found to be less stable than
the first order formula (A.4.10.c). However, both methods worked well in geometries
that did not involve boundary discontinuities such as a reentrant corner. Smoothing
of iterative changes based on equation (A.1.11) with relaxation parameter (w)
determined by trial-and-error was necessary in certain cases with the second order
formula but not with equation (A.4.10.c). Both methods gave essentially the same

results in smooth geometries.

At a point of boundary discontinuity, the directional derivatives (x,) and (y,) are
undefined. In such a corner, the vorticity was calculated using the well-known
Kawaguti method.

(A4.3) Boundary Conditions for the Stress Equations

The boundary conditions for the total stress will be derived from the constitutive
model by proper selection of (u), (v) and their gradients. On solid, no-slip walls,
u=v=0 and the upper convected Maxwell model reduces to a set of algebraic

equations which, upon solution, yields the following expressions for T7, T?, T”.
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T = 2.(u, + We-(u,v, + 2. (0) + (W))/(1 - 4.0’ x)) (A4.11)
T = (4 + v, + 2-We-(4,-v, + u,-v,))/(1 - 4-a%- 1) (A4.12)
T? = 2.0 + We-(u,-v, + 2: (0, + (v)D/(1 - 4-a%2) (A4.13)

where o’ = ()’ + v,-u, and the subscripts denote partial differentiation,

These expressions are valid on any non-slip boundary. On boundaries parallel to the
x-axis, the above equations further simplify to:

T = 2We.(u,)* (A4.149)
™ = We.(u)? (A.4.15)
amdT"=T"=T"=0 (A4.16)

On boundaries parallel to the y-axis, we get:

T = 2We.(v,)? (A4.17)
T = We. (v (A.4.18)
and T= =T =T =0 (A.4.19)

On axes of symmetry the constitutive model simplifies to the following set of ordinary

differential equations:

A-u-(dTdx) + (1 - 2:2u) T, = 2u-1, (A4.20)
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A-u-(dTdx) + (1-2-2-v)-T, = 24, (A4.21)

with T® = 0, indicating that an axis of symmetry is a shear-free line.
(Ad4) Boundary Conditions for Pressure

The boundary condition for the Poisson equation of pressure along the edges of the

cavity is the following Neumann condition:

aP/an =L, (A4.22)

where the term L, in (A.4.22) is calculated from the momentum equations. The
approximation aP/an = 0 is also frequently used. This is a mild approximation, since
the constant pressure region is confined to the very vicinity of the solid boundary.
The existence of Neumann condition requires transformation of the normal derivative

to the curvilinear coordinate system. In a general, non-orthogonal system, this leads

tu a boundary condition of the form:
s(x,y)+(&P/a¢) + h(xy)(aP/an) = 0 (A.4.23)

This type of boundary condition will feedback in the iterative algorithm and possibly
destabilize its convergence. Initial experience in this respect confirmed that possibility.
However, in the context of a coordinate system that is normal to the boundary, either
s(x,y) or h(xy) will disappear and the boundary condition will retain its simple
functional form. For this reason, it was decided that in the analysis of the injection
molding normal-to-the-boundary curvilinear coordinate systems were used. Their
construction has been discussed in APPENDIX (A.1).

At the inlet of the cavity the pressure gradient can be obtained by simply considering

fully developed one dimensivnal flow between two flat plates with distance equal to
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the thickness of the cavity at the gate. The resulting pressure drop will then be:

P, = [2Q(s+2)b*W]™. (2k/b) (A.4.23)

In A.4.23, k is the consistency index of the polymer and Q is the melt flowrate at the

gate. (b) is the thickness and (W) the width of the cavity at the gate. In A.4.23,
s=1/n.

(A-45) Boundary Conditions at the Free Surface

At the filling stage of injection molding particular attention should be placed on the

description of the free surface. A local force balance provides the following boundary
condition on a free surface:

n.T = (2.H/Ca)n - P;n (A.4.24)

where (n) is the outward unit vector normal to the surface, 2H is the surface
curvature and P, the ambient pressure, usually taken as zero. Ca is the capillary
number, defined as the ratio of viscous to surface tension forces (Ca = u-u/). Since

in molten polymers the viscous forces are dominant, 1/Ca ~ 0, and equation (A.4.24)
simplifies to the no-traction condition:

n.T=-Pn (A.4.25)
In the case that the curvature of the free surface is small and the stresses follow some

power law expression, that is when elasticity effects on the shape of the free surface

are ignored, the boundary conditions at the surface can be written as (Lafleur, 1983):

P=P,+ 2(u) (A.4.26)
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pe(u, +v) =0 (A427)

Application of the boundary conditions (A.4.26) and (A.4.27) is relatively
straightforward in the context of a (u,v,P) solution. However, in the context of an
(yw) solution, there exists a difficulty in formulating the boundary conditions at the
free surface in forms that can be used computationally without affecting the stability
of the numerical scheme. Tanner (1983) states that no successful application of the
(,») solution in free surface flows is known. In this work the values of the stream
function at the free surface were obtained as in an inflow/outflow boundary by
integrating the appropriate velocity profile, in a manner similar to the one used by
Subbiah et al. (1989). At each time step, the velocities used in these forms were
obtained by differentiation of the y-field at the previous time level. Comparison of
computational results for the shape of the free surface with experimental profiles
obtained with short shots shows a very good agreement. This verifies that in injection
molding, with the associated very high flow rates, the shape of the free surface is
determined mainly by the geometry of the cavity and the overall kinematics of the

flow, rather than by conditions prevailing at the vicinity of the free surface.
(A.4.6) Boundary Conditions for Temperature

At the inlet of the cavity the melt temperature is assumed to be uniform:

Teoy) = Tou (A.4.28)

On the faces of the mold, the following condition is used:

ke(T.)w = K(T.-T) (A4.29)

where k, is the thermal conductivity of the melt, T, is a reference temperature and
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h is the overall heat transfer coefficient. Again, the subscript (w) indicates wall values.
(A4.7) Computational Treatment of the Free Surface

For a successful continuous marching solution of the model equations during filling,
it is essential to be able to generate a proper computational grid at each time step.
Besides orthogonality at the mold walls, which will ensure accurate representation of
the pressuie boundary conditions, a proper grid should have a relatively uniform
distribution of nodes. In general, we wish to avoid uncontrollably large or small
concentrations of grid nodes; a relatively uniform distribution is a good, if not
optimal, compromise. It is fairly simple to generate automatically an equidistant
distribution of boundary nodes on the mold walls, but not so simple on the free
surface. The difficulty lies in that the location of the melt front is not known a-priori,
and therefore, no parametric expression is available. This problem was solved by
providing for the generation, at each time step, of a suitable interpolant for the
sequence, say {xy) of the surface points. Then the grid nodes were rearranged at
equal intervals on this interpolant. With equally spaced nodes on all 4 boundaries of
the physical domain, a Laplace generating system always produces a smooth and
uniform mesh. Amongst the many available interpolants (such as least squares
polynomials, piecewise polynomials, cubic sphines and general B-splines of k,, order),
it was found that the B-splines were the most consistent and accurate in preserving

the shape of the interpolated data.

By consistent, it is meant that the interpolant should perform well - that is, represent
the shape of the melt front with minimum distortion - at any location into t}.2 cavity
(from almost semicircular near the gate to shightly curved in the middle of the cavity
and more complicated at the wake ot the obstacle). The question of accuracy is a
more subtle one. In least squares polynomial approximations we can always
determine a measure of deviation of the interpolant from the interpolated data,

usually in the form of summation of squares of deviations. However, general
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conditions are not known for the exact behaviour of spline interpolants (de Boor,

(1978)). Therefore, the various interpolants were assessed by observing plotted results

before and after interpolation.

A B-spline is specified by supplying its breakpoint sequence and its order. The spline
interpolant will then satisfy:

Yi = ZaBy(x) (A.4.30)

where q; are the spline coefficients and B, denotes the j-th B-spline of the desired
order with respect to the specified knot sequence. More details on splines and
specifically B-splines can be found in de Boor (19/8). To avoid wiggles in the shape

of the melt front, low (second) order splines were used.

The reason for the necessity of rearranging the surface grid points can be understood

with reference to Figure (A.4.1). The kinematic condition at the free surface is:
dx/dt = u (A.4.31)

- where x and u are position and velocity vectors respectively. Because of the curvature
of the free surface and the existence of fountain flow, the surface points will regularly
tend to move outwards (Figure (A.4.1.a)). When this happens at each time step,
many grid points tend to concentrate near the contact point and fewer near the
center. Ultimately, the grid becomes unsuitable for computations. In the case that the
contact point is not moving (Figure (A.4.1.b)) as the result of a no-slip boundary
condition, at some instant one grid point will collapse to the wall, defining a new
contact point. In this case the surtace nodes have to be rearranged in order to
continue the computations. Another possible case is shown in Figure (A.4.lc).
Encountering a change in the curvature of the mold wall, some intermediate surface

points might touch the wall first. Again, an automatic rearrangement of the surface
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(C)

Figure (A.4.1): Situations arising during mold filling that necessitate
rearrangement of free surface nodes for successful continuation
of the computations.
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points might touch the wall first. Again, an automatic rearrangement of the surface
nodes is necessary for successful continuation of the computations. Other cases where

rearrangement of surface nodes is required is shown in Figure (A.4.2.a) and (A.4.2.b).

Application of the no-slip boundary condition at the contact point results,
macroscopically, in an apparent rolling of the free surface on the mold walls
(Mavridis et al. (1988)). This representation of the motion of the free surface gave
results that compare very well with experimental evidence. Figure (A.4.3) is a detail
of the computational advancement of a free surface in the case of flow between two
parallel planes. The free surface is 'rolling’ on the walls with no need for artificial slip
to be imposed at the contact point. The alternative determination of the contact point
as the point where the free surface intersects normally the mold wall (Shen (1984),

Subbiah et al. (1989)), gives melt front shapes that can be highly unrealistic.
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Figure (A.4.2): Other situations where rearrangement of the grid nodes on the
free surface might be necessary.
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Figure (A.4.3): Computational advancement of the free surface in the case of
flow between two parallel planes, displaying the rolling motion
of the free surface. No-slip conditions are imposed on the walls.




(AS) Further results on the spatial variation of key process parameters
during injection mold filling.

The purpose of this section is to present, in Figures (A.5.1) to (A.5.10) further results
on the spatial and temporal variation of key process characteristics during filling of
the mold CR1. For more details on the conditions during these runs refer to section
I11.4.5. These results illustrate the capabilities of the computer program produced in
this work to give a large amount of information regarding temperature, viscosity and
shear rate variations, stress distributions etc. at every instant during filling. The three
instances chosen to be presented here show some of the characteristics of the almost
radial flow at early stages of filling (t=0.8s), the flow around the obstacle (t=1.2s)
and the flow towards the end of filling (t=1.6s). 85 Btu/ft¥F/hr = 482 W/m*/K.
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Figure (A.5.1):

(Ta~Tn)*10™* Pa.s

Spatial variation of T= and (T™-T”) at t=0.8s. Heat transfer
Coefficient: 482 W/m’K; Ram velocity 1.0 cm/s; T,,=235° C.

Mold TE9.
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Figure (A.5.2):

I1*10™ (s™)

Spatial variation of the second invariant of the rate of
deformation tensor (A) and of viscosity (B) during the filling of
cavity TE9 at t=1.2s. Predicted values. Heat transfer
Coefficient: 482 W/m’K; Ram velocity 1.0 cm/s; T_,=235° C.



Figure (A.5.3): Spatial variation of T* and T” stresses during the filling of cavity
TE9 at t=1.2s. Predicted values; Heat transfer Coefficient: 482
W/m’K; Ram velocity 1.0 cm/s; T.,=235°C.



Figure (A.5.4):

Spatial variation of T" (A) and transverse planar velocity (B, in
in/s) during the filling of cavity TE9 at t=1.2s. Predicted values.
Heat transfer Coefficient: 482 W/m’K; Ram velocity 1.0 cm/s;
Taa=235°C.
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Figure (A.5.5):

Spatial variation of longitudinal (U) and transverse (V) planar
velocities at t=0.8s. Cavity TE9. Heat transfer Coefficient: 482
W/m’K; Ram velocity 1.0 cm/s; T.,=235"C.




Figure (A.5.6):

11*10°* (o™

Spatial variation of the second invariant of the rate of
deformation tensor (A) and of viscosity (B) during the filling of
cavity TE9 at t=0.8s. Predicted values. Heat transfer
Coefficient: 482 W/m’K; Ram velocity 1.0 cm/s; T_,=235* C.




Figure (A.5.7):

11*107° (s™)

Spatial variaticn of the second invariant of the rate of
deformation tensor (A), and of viscosity (B) at t=1.6s during
filling of mold TE9. Heat transfer Coefficient: 482 W/m’K; Ram
velocity 1.0 cm/s; T .=235° C.



Figure (A.5.8): Spatial variation of T= and (T™-T”) at t=1.6s during the filling
of mold TE9. Heat transfer Coeflicient: 482 W/m’K; Ram
1 velocity 1.0 cm/s; T,=235' C.




Figure (A.5.9):

A5.10

Spatial variation of T™ and T” stresses during the filling of cavity
TE9 at t=1.6s. Predicted values. Heat transfer Coefficient: 482
W/m’K; Ram velocity 1.0 co/s; T,,=235° C.




(A6): Dimensions of the Complex Cavity Used in Injection Molding

With reference to figure (111.3.1.1), the following part contains the cartesian
coordinates of the points which define the perimeter of the cavity CR1. The
thickness dimensions have been given in part (Iil).

a): (0.0, —0.397-2)
b): (0.317, -0.9525
c): (5.08, -3.1751
d): (7.78, -3.17%
e): 10.795, -0.9525
f):

10.795, 3.175)
g): 1.905, 3.175)
h): (0.0, 0.397)

Obstacle:  Centre at (6.43, 0.476), radius=0,749
Part bc: Arc with centre at (-4.29, -16.83), radius=16.51
part de:  Arc with centre at (11.43, -4.92), radius=3.97

All dimensions in {cm).
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(A7): Boundary conditions in injection mold filling

The following table summarizes the boundary conditions used in the modelling of the
filling stage of injection molding. "Edges" indicate the side walls of the cavity that
form its perimeter in the x-y plane. Walls are the two faces of the mold through

which most of the heat transfer takes place.

Entrance Edges Walls Free Surface
Variable
Stream A.4.2 A.4.1 - A.4.3
Function
Vorticity A.4.2 A.4.10.a - A.4.3
Stresses From proper
(T) velocity (4T/a4n)=0 - (3T/3n)=0
profile
Temperature A.4.28 Adiabatic  A.4.29(*) Adiabatic
(T)
Pressure A.4.23.a (édP/8n)=0 - P=0.
(P)

(*) This boundary condition is only applicable in the
three~-dimensional solution. In the 2D solution, a
heat flux source term is used instead.




