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Nous présentons une analyse de la nécessité d'une symétrie d’échange 2-
3 dans la matrice de masse de neutrino en comparaison avec Pintervalle
expérimental admissible pour les parametres d’oscillations de neutrino. La
matrice symétrique, définie a une énergie appropriée pour un neutrino droitier
dans le modele de suppression de masse en dents de scie, subit une évolution
suite aux équations supersymétriques du groupe de renormalisation, afin
d’interpréter la matrice avec les énergies expérimentales. Nous discuterons
du status de la présence de la masse du neutrino dans le modeéle standard et
justifierons le contexte de cette analyse en examinant les mécanismes et les
éléments de preuve d’oscillations. Ensuite, nous parcourrons le mécanisme
en dents de scie, ainsi que le processus de renormalisation et son role de pont
entre les deux échelles d’ énergies disparates. Les équations du groupe de
renormalisation qui sont applicables seront présentées et la paramétrisation
des effets pertinents du groupe de renormalisation sera démontrée. Enfin,
nous décriverons des travaux antérieurs sur 'analyse de cette symétrie avant
de mettre a jour leurs résultats et d’étendre 'analyse au comportement global
dans 'ensemble des parameétres d’oscillations de neutrino & la fois solaire et

atmosphérique.
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We present an analysis of the requirements of a 2-3 exchange symmetry in the
neutrino mass matrix in comparison to the experimentally allowed ranges of
neutrino oscillation parameters. The symmetric matrix, being defined at an
energy scale appropriate to a right-handed neutrino in a See-saw scheme of
mass suppression, is subject to evolution under Supersymmetric Renormal-
isation Group Equations, in order to interpret the matrix at experimental
energies. By way of motivation we discuss the status of neutrino mass in
the Standard Model and justify the context of the analysis by examining
the mechanisms and evidence for oscillations. We then review the See-saw
mechanism and also the process of renormalisation and its implications for
bridging disparate energy scales. We present the relevant Renormalization
Group Equations and demonstrate the parameterisation of pertinent Renor-
malization Group effects. Finally, we review previous work analvsing this
symmetry before updating some of these results and extending the analysis
to its global behaviour in the space of both solar and atmospheric neutrino

oscillation parameters.
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Neutrino mass, its status in the Standard Model of Particle Physics, the related

phenomenon of neutrino oscillations and why the latter should be of interest.



“I have done a terrible thing, I have postulated a particle that

cannot be detected.”
-W. Pauli. [1]

Neutrinos are the most elusive and, consequently, least understood of the
fundamental particles. They thus attract intense theoretical speculation in
attempts to restrict their properties and hence make predictions that may
be put to experiment.

Primary to the puzzle of the neutrino has been the nature of its mass.
The particle was first hypothesised by Pauli (1931) in order to rescue the
conservation of energy in J-decay, where the energy of the emitted electron
was not fixed as would be so in the case of a two-body decay. [-decay was

originally thought to follow a two-body scheme, where:

N, N :
Energy conservation: Ey, = Ep + Es

Momentum conservation: g = P + (-p)

The parent nucleus A decays into its daughter B with the release of a positron
or electron (the [F-particle). Eg is restricted to ) = E4 — Ep and the three
momenta of the daughter nucleus and J-particle must be equal. There is only
one set of values for p and Ejy that fulfills these criterea. But the observed
electron spectra of these decays showed an energy deficit and shape which
Pauli recognised could be the signature of a three-body decay. Knowing that
a new charged particle would violate charge conservation in the decays, he
christened this particle the ‘neutron’. But this moniker was lost to the neutral
nucleon we know today and the neutral particle associated with 3-decay is
tow recognised as the neutrino.

As the neutrino was invoked as a near invisible carrier of energy, it was
natural to ask, how much of the latter would compose its mass? Pauli origi-
nally declared a very cautious upper bound of 1% of the proton mass, but it
was soon apparent that it would be much less. Thus S-decay presented the

most immediate means of searching for neutrino mass.



The principle behind such experiments is that, if neutrinos have a finite
mass, the mazimum energy of the charged products will fall short of the
Q-value (the released energy) of the reaction. That is to say, that in the
limit in which the neutrino is created at rest (in the rest frame of the parent
neucleus) its only influence upon the charged products is in depriving them
of its rest energy. This will manifest itself as a truncated f-particle energy
spectrum. The most favourable decay for this measurement is that having
the lowest (J-value because this will maximise the shortfall at the end-point
of the spectrum, relative to its total range. ‘

Inevitably this measurement also deals with effects from nuclear and
atomic physics and so a simplistic (low-Z) parent is prefered, in order to
limit uncertainities from these domains. To this end, Tritium decay (3H —
SHe" +¢e7), having the least 7 parent and the second least Q of all S-decays,
is an ideal forum for experiments in directly measuring neutrino mass [2].

Such experiments struggle with the fact that they seek to measure the
end-point of the 5 emission spectrum which, by the very nature of a three-
body process, occupies a vanishing region of phase-space. This means that
the rate of suitable events is very low. In addition the energy lost to the
recoil of the nucleus is unmeasurable. Nevertheless, they have succeeded in
placing an upper limit of 2.2eV (95% C.L.) on the electron neutrino mass [3],
but have never indicated a finite value.

Neutrino mass can also introduce more exotic effects. As we will discuss
below, if the neutrino’s mass is of the so-called Majorana type, it confounds
our notion of particle and anti-particle allowing a process called ‘neutrinoless
double f-decay’ (230v). Here the neutrino produced by S-decay is the same
as that which induces f-decay. Thus an individual nucleus can emit two
B-particles of the same type, by the internal exchange of a neutrino between
two of its comprising nucleons. The rate at which this process can occur is
related to the size of the Majorana mass and so measurement of this rate
can constrain the mass. The Heidelberg-Moscow experiment attempts just
such a measurement and predicts m,. < 0.34 (0.26)eV at 90% (68%) C.L.,

[4]Where mee 18 the effective Majorana mass of the electron neutrino.



However, in the case of mixing between the neutrinos of the three gener-
ations (the nature of which will be covered in more detail later), cancellation
between phases originating from the Majorana nature of the masses can mask
the true size of the individual masses and suppress the effective mass in re-
lation to them. Thus, this constraint does not necessarily supersede that
from Tritium f-decay. Recently there has been slight evidence for a non-zero
neutrino mass from the same experiment with the most optimistic case al-
lowing me, =0.11-0.56eV at 95% C.L. with a best-fit of 0.39eV [5], though
some doubt surrounds the validity of this claim. As vet there exists no firm
prediction of a non-zero electron neutrino mass and other neutrino masses

have an even more uncertain status.
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1.1 Neutrino mass in the Standard Model.

Matters were not as grave as Pauli feared. The interactions of the neutrino
are indeed heavily suppressed as a consequence of the very great mass of the
mediators of the weak force. Unlike electromagnetism, where the force can
be transmitted by the exchange of real photons at all energies, the massive
vector bosons (W*, Z%) exchanged in weak interactions result in an effective
four fermion interaction (the Fermi interaction) at low energies. Such an
interaction is suppressed by a factor of the reciprocal of the mass of the
exchanged particle, here a W* or Z°.

Despite this hinderance, after vears of work, Reines and Cowan success-
fully confirmed the detection of neutrinos in 1956 [6], by virtue of very large
scintillation detectors in close proximity to a nuclear reactor as an intense
source of neutrinos. Through the 1960’s a number of vital experiments were
condcuted on a massive scale using intense neutrino beams, in order to record
their interactions. These provided the results necessary to construct the ex-
change picture of the weak interactions, as it is outlined above, and the ac-
companying gauge theory of electroweak interactions, due to Glashow, Wein-
berg and Salam. This work culminated, around 1974, in the acceptance by
- most of the scientific community of the existence of weak neutral current in-
teractions,! whose effects are often concealed by coexisting electromagnetic
effects, except only in neutrino reactions.

These experiments could shed light on such details as coupling strengths
and the different interactions allowed by the charged and neutral currents.
However, at such large energies it was quite impossible to discern the effects
of the neutrino’s mass, if indeed it had any.

In the absence of detail, the question of mass in the neutrino sector of
the Standard Model ‘was built on some well motivated assumptions. The
neutrino mass was known to be extremelv small, quite below anything that

might be observable, so it was reasonable to assume it to be exactly zero,

!Those due to the exchange of the Z°, in contrast to the charged current interactions

resulting from W* exchange.



at least as an approximation. In addition, it was discovered that neutrinos

were produced ouly with left-handed chirality, vy:

VsV = VUL = VL (1.1)

which was later attributed to the (V —4) character of the weak interactions.?

That is to say, charged current interactions (i.e. those responsible for g-
decay) couple only states of ‘left-handed’ chirality.® However, chirality is not
conserved. This is because the eigenstates of chirality do not, in general,
coincide with those of helicity, which 4s conserved as an extension of angular

momentum conservation:
[0 p/pltbe = £7. (1.2)

o are the Pauli spin matricies. A state of definite helicity is thus a linear

combination of chiral states:

UF = aFyy, + b g, (aF) + () =1 (1.3)
Only in the massless limit, where helicity and chirality do coincide (o~ =
1,07 = 1), is the latter conserved. Any mass term would mix the chiralities
of a neutrino of definite helicity, generating a right-handed component for
any neutrino state. In the case that the right-handed component is that of a
neutrino (i.e. vg) the mass is the ‘traditional’ Dirac mass, akin to that of the
charged fermions. However, a right-handed neutrino would couple to none
of the gauge fields and so would not interact: it would be ‘sterile’. Thus, if a
neutrino carried a Dirac mass there would be an entirely redundant field in
the theory.
We can avoid introducing a right-handed neutrino by invoking a Majorana

mass. In this case the right-handed component is that of an anti-neutrino (i.e.

2Weak interactions are said to have a (Vector)—(Axial vector) structure after the
DyH[(1 = 7®)/2]W,b = Yy W, term in the weak Lagrangian.

3Such states are left-handed particles (xr) and their antiparticles which are, in fact,
9

right-handed states ((x2)¢ = (x“)r). Here ¢ = C¢7T = Cy~, where ¢ o 4° is the

/

particle-antiparticle conjugation matrix, and C o 7?7? is the charge conjugation matrix.



v$ = (v1)Y) This represents a mixing of particle and anti-particle and, in

the case of neutrinos, a consequent violation of lepton number conservation.
If such a mass was possible for charged fermions it would viclate charge
conservation, by mixing particles of opposite charge, and thus it is forbidden.
While charge conservation is the result of a fundamental gauge symmetry,
there is no such ‘guarding’ symmetry to ensure lepton number conservation.
But the latter is the result of an ‘accidental’ symmetry of the Standard
Model: an unintentional product of the requirements of gauge symmetry
and renormalizability. Thus a Majorana mass for a neutrino is bevond the
scope of the Standard Model.

The Standard Model escapes such peculiarities as those outlined above by
dictating that all neutrinos have exactly zero mass. Indeed, until recently, a
non-zero neutrino mass could have been regarded as surplus to requirements.

The Standard Model is very successful: of the twenty-five electroweak
parameters measured at the ZY resonance in eTe™ scattering (Table 10.4 of
[7]), all but one are in agreement with the Standard Model to 20 (95% C.L.).
But it cannot be a fundamental theory, because it contains almost. twenty
parameters which are determined only by experiment: within the SM there
are no predictions (or explanations) for their specific values. It has become a
goal of Theoretical High Energy Physics to try to explain these parameters
in terms of a deeper theory with the aim of predicting deviations from the
behaviour expected within the Standard Model. The great success of the
Standard Model attests to the difficultly of detecting such deviations but
one obvious realm of exploration is in assessing the assumptions made in the

neutrino sector.
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1.2 Neutrino oscillations.

It was first suggested by Bruno Pontecorvo (1957)[8] that neutrinos could os-
cillate: that after a given type of neutrino is produced it may transform into
another before detection. At the time this seemed a curiosity and unlikely
to be realised in nature. Indeed, it was not confirmed until 1962 that the
neutrinos of the different generations were, in fact, distinguishable [9]. And

4 conservation

at that point it seemed likely that lepton generation number
would forbid oscillations. But in the past decade the phenomenon has at-
tracted renewed interest for reasons that will be discussed below (see Section

1.2.3).

1.2.1 Mechanism.

Oscillation is due essentially to the differing time evolution of the various

mass eigenstates (v;) of which a given flavour state (v,) may be composed.”
va(t)) = > Uilv(1) (1.4)
J :

Such mixing arises from a mismatch between the basis of flavour states and
that which diagonalizes the mass matrix. When the basis is rotated from that
of the massive states into that of the flavour states, off-diagonal components

appear in the mass matrix.

vy
Latass = (01, 10, 3)[diag{my, ma, m3)] | 1 | + h.c (1.5)

3

= (U, 1, 0. ) V]diag(my, ma, mg)[ VI | v

*Initially L, and L, and later, after the discovery of the third generation, L, also.
®Here @ = e, i, 7. In general there can also be any number of sterile neutrinos, their

multiplicity not being limited by measurements of the Z width which limits the number of
light (m < 90GeV") neutrinos to three, without ambiguity. However, here I will discount

them because experiment disfavours them, as we shall see below. Accordingly j = 1,2,3.



If we consider the charged current interactions:

Ve
Leo = 60771 =) v, | Wy +he (1.

vy

7

"y
~1
N

and assume that no other interactions involving charged leptons reveal lepton
sector mixing, we may confine mixing to the neutrinos, as is done for down

quarks in the quark sector of the SM:5

Loo = (é;ﬂ;T)Lﬁf’)\V Vo Wy + h.c. (1.8)

2%
3 L

Here, V. = U the Maki/Nakagawa/Sakata (MNS) matrix [10]: the lepton
sector counterpart to the Cabibbo/Kobavashi/Maskawa (CKM) matrix [11]
of the quarks, which accounts for flavour violation in the weak interactions.

Oscillations will manifest themselves as a conversion between the neutrino
flavours. A flavour eigenstate can be identified with a specific mixture of mass
states, and as the mass mixture evolves a neutrino may be described by a
changing combination of flavours. The probability of observing a neutrino of

flavour 3, at time ¢, after the production of a v,, at t = 0, is given by:
Py = |{wslva(t)f® (1.9)

As noted, oscillation occurs due to the time evolution of the mass eigenstates,

so it is instructive to re-cast FP,g:

Paz = | 303 Ul (Ol () (1.10)

= |20 3 Unilizs exp —iEt (i 0) 5 (0))f (1.11)

Where E; is the energy of the jth mass eigenstate. Now, with

1. (wlvy) = iy,

5This amounts to allowing the charged fermion mass and flavour eigenstates to coincide.



< ¥ 7 n n—1
20 3 i 2 by = 2 @i+ PIRD P G100k + arby]
3. Re[z] = (z+2)/2

and discarding the imaginary components of the product of mixing matricies,

which are CP violating terms, we have:

n
Py = Z UsUaiUsiU%,

(n—1)
25 S Relly U BB o
J=1 k=(j+1)

n
- E L,@i ail/pily;

+2 Z Z [Re (U5, Ung UsiU] xcos(Ajkf,)} (1.13)
J=1 k=(j+1)
= ZD&UMWZ
(n—-1) ’
12y Z [ReL Ui UskU] (1 = 2sin2(A 7,Lt/2))}(1.141)
J=1 k=(j+1)
= ’Z%i
(n—1) n
45 Y [Re U3, UaiUsiU) x sin2(A ]kf/Q)] (1.15)
J=1 k={j+1)

The first term simplifies to 04 and Ay = E; — Ej, which in the relativistic
limit” yields Ay & (p 4+ m3/2E) — (p+mi/2E) = (m] — mi)/2E, where,
also, t = L the distance travelled.

Here we see the origin of the term neutrino ‘oscillations’: the terms that
lead to metamorphosis of the neutrino type are sinusoidal, with arguments
of the tvpe (m; — my)L/4E and amplitude Re[U},Us Uy Uz

"This is certainly reasonable given the upper bound on neutrino masses from direct

searches, in comparison with the energy spectra of typical weak decay processes.
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The latter is a product of mixing matrix elements that controls the

‘strength’ of the oscillation which, in a simple two-neutrino scheme, takes

the form:
cosf  siné
U= , (1.16)
—ginf cosé
so that:
Pog = G — (2645 — 1) sin?(26) sin®( At/2) (1.17)

and we may thus assume 0 < § < 7/2 and A > 0 without loss of generality,
for the case of two-neutrino oscillations in a vacuum.

The phase evolution of the probability is somewhat more complex: it
depends upon the differences between the squared masses® , (m? — mj) =
Am?k. This may be understood as follows. If a neutrino is produced in a
given flavour state which is a linear combination of exactly degenerate mass
states (e.g. in the SM where all neutrinos have identically zero mass) the
time evolution of those states is identical, and the state remains unaltered.
Thus neither mixing nor massive neutrinos are by themselves sufficient for
oscillation to occur: it is essential that there be a difference among the mass
eigenvalues. Consequently, if neutrino oscillations are observed then their
must exist at least one massive eigenstate, even if the others have exactly
zero eigenvalues. Indeed, oscillations are insensitive to the absolute value of
the masses involved and hence cannot directly place an upper or lower bound
on the mass.

The structure of the harmonic terms in the probability allows us to distin-
guish between the various scenarios in which oscillations are observed. The
scale of the squared mass difference, in relation to the energy of the neutri-
nos involved and the distance over which they are allowed to evolve before
observation, sets the number of cycles that the neutrino state will undergo.

Specifically, there are three cases of interest:

e Am?k > 4FE/L: the harmonic term varies very rapidly and generally
cannot be distinguished by experiment. Such terms are averaged over
((sin?(2)) = 1/2).

#The nature of the mass, be it Dirac or Majorana, does not affect this result.

11



e Am}, ~ 4F/L: this case is very favourable for observation. Variations
in L and E on the scale of the experiment will result in observable

phase shifts which provide detailed information concerning { m? —mi).

e Amj, < 4F/L: the phase of the harmonic term is little changed with

respect to the initial state and oscillations are not observed.

1.2.2 Matter effects.

The foregoing discussion has related to vacuum effects: those occuring during
the free propagation of neutrinos. However, additional effects arise from
the presence of matter. As neutrinos travel through atomic matter they
may partake in coherent elastic scattering with the protons, neutrons and
electrons of which it is comprised. These interactions do not directly change
the neutrinos but the nett result is that a potential energy term is introduced
into the Lagrangian of the neutrinos which will affect their evolution in matter
[12]. Interactions with nucleons (protons and neutrons) are through the
neutral current only and so their contribution is identical for each of the three
active neutrinos. Electrons will also contribute through the neutral current
but in addition they will interact through the charged current exclusively
with electron neutrinos. Thus electron neutrinos will experience a potential,
V., different to that felt by muon or tau neutririos, Vx, and this leads to
differences in their evolution within matter.

Consider a system consisting of two neutrino mass eigenstates, v o with
eigenvalues m, 2, which, in vacuum, are each a mixture of the electron neu-
trino, v,, and another active neutrino, vx which may itself be a combination

of muon and tau neutrinos:

v cos sinf Ve
= _ . (1.18)
Vo —sinfd cosf Ux :
In the presence of matter the differing reaction potentials for the v, and vy
components will alter the mass eigenvalues and the compositions of the mass

eigenstates [12]. [13]. This amounts to defining an effective mixing angle, 6,,,

[
3]



and effective masses, yy .0, in matter:

u, = _”_’@_?_:;,_72’1_5 4 E(V, 4+ VX)
$%\/(Am? cos 20 — 2E(V, — Vx))2 + (Am?sin 26)? (1.19)
where Am? = m3 — m?, E is the neutrino energy and 6, satisfies:
tan 26, = Am” sin 26 (1.20)

(Am?cos20 — 2E(V, — Vx )

As noted above the neutral current components of V., and Vy are identical,
so that their difference is simply the charged current contribution which is
proportional to the electron number density, V., and the effective coupling of

weak interactions at low energy, Gy the Fermi coupling [Wolfenstein; 1978]:
V, — Vx = V2GpN.. (1.21)

Due to the small size of G a very great density of matter is required to
introduce observable effects through the reaction potential.

In general the density of matter will vary and thus the effective masses
and mixing are essentially instantaneous quantities which will vary in time.
Evolution of the mixing angle introduces its own distortion in the system
such that the instantaneous mass eigenstates, the states associated with the
mass eigenvalues o, will mix and are no longer the instantaneous energy
eigenstates which must be considered in examining the evolution of the sys-
tem. This mixing is proportional to the rate of change of the effective mixing
angle, ,, and thus for slowly varying 6y, this effect is negligible: the so-called
adiabatic case when 6, < Ap?/AE. |

A consequence of (1.19) and (1.20) is that, for a given neutrino energy,
a condition of least difference between the effective masses coincides with

maximal mixing at a resonant density, p:

V2Am?2 _
P = mCOS 26 (122)

O varies between the # at low density and Z — § above the resonant density.
It changes most rapidly close to the resonant density such that non-adiabatic

effects may appear.
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The existence of the resonant density has important implications for the
evolution of neutrinos as they progress through matter. Consider electron
neutrinos created in the core of the Sun and having a vacuum mixing angle
§ < w. Models of the solar interior suggest an approximately exponential

decrease in density away from the centre:
No(ry = N (0)e™"/™0, ry=r./10.54. (1.23)
We may then classify three scenarios:

e p> N,(0): matter effects are neglighle and solar neutrino oscillations

behave as in the case of evolution in a vacuum.

e p 2 N.(0): neutrinos do not experience the resonant conditions but
matter effects will be significant. Density does not vary sufficiently
quickly to introduce non-adiabatic effects so that at each point the
effective mass eigenstates may be treated as the energy eigenstates
in the usual way. Evolution proceeds by the same mechanism as in

vacuum but with the parameters adjusted bv the presence of matter.

e p < N.(0): electron neutrinos will be produced in the solar core with
0 > m/4 such that they consist primarily of the v, eigenstate and vice
versa. The neutrinos then pass through the resonant state and their
behaviour here depends upon the adiabaticity. In the adiabatic case
there is little mixing between the 14 and v, states and as the v, state
passes through resonance and on to the surface it gains primarily vx
character because 6, drops below 7/4. For small 6 the transformation
of v, flux to vy is actually enhanced: this is the MSW effect [12], [13].
In the non-adiabatic case the mixing between the instantaneous mass
eigenstates in the large 6,, region around resonance weakens the MSW
effect: e.g. an energy eigenstate that could be associated with 1, in
a region of small 8, above resonance, will acquire some v character
during resonance, increasing the component that will boost v, flux at

the surface.



It is apparent from the preceding dicussion that matter effects introduce a

rich and complex structure into the problem of understanding solar neutrinos.

1.2.3 Evidence.

Interest in neutrino oscillations has been arcused in the last decade by puz-
zling experimental results. In 1967 the Homestake experiment [14] began to
measure the flux of electron neutrinos from nuclear fusion reactions in the
core of the Sun. Such an endeavour is by no means trivial and requires a
very large detector and a great deal of patience. The results were surprising
in that there was an apparent deficit of around two-thirds compared to the
flux expected from models of the Sun’s structure and the nuclear processes
at its centre. For some time this was the only experiment in the field, as the
data slowly accumulated in favour of this deficit.

When other experiments sensitive to solar neutrinos began, in the late
1980’s and early 1990’s, it became apparent that tﬁis was genuinely due to
a neutrino deficit and not an artifact of the experiment. Though there was
some variation between experiments in the observed flux, ranging from ~ 0.3
to ~ 0.6 of that which was expected, the shortfall was beyond doubt. In light
of the success of the SM, these results called into question our understanding
of the solar interior and the various fields within physics which overlap in
this domain as embodied in the Solar Standard Model (SSM) [15]. However,
recent results from helioseismology [16] support predictions of the SSM sug-
gesting that the origin of the neutrino deficit lies in assumptions within the
SM.

Experiments.

Existing experiments fall into two categories: radiochemical and water
Cerenkov.

The first relies on the transmutation of nuclei in a bulk sample into ra-
dioactive species, by the absorbtion of neutrinos above the energv threshold

of the reaction. For instance Homestake [17] uses a large tank containing



some 615 tonnes of CoCly, of which the *'Cl component (approximately
3.6 x 10%°mol) may be transformed into *"Ar, an unstable isotope with a
half-life of 34.8 days. The Argon so produced, being a noble gas, can easily
be separated from the bulk fluid and its quantity determined by the event
rate measured in the gases extracted. Similar in concept are the Gallium
detectors, the first of which was SAGE [18] | starting in 1990, closely follwed
by GALLEX [19] in 1991, the latter bieng replaced in 1998 by GNO [20].
They use ™ Ga, as either a liquid metal or as a salt in solution, which may be
converted into radioactive *Ge. The principle advantage of all of the above
detectors is their great sensitivity, especially the Gallium experiments which
have the lowest energy threshold of all. However, all of these experiments
can only measure the total flux of electron neutrinos: they are blind to the
trajectory of the incident neutrinos and are unable to detect those which
are not of the electron type. The latter is critical, because neutrino oscilla-
tions will preserve the overall flux of neutrinos but change the proportions
of flavours which comprise it.

For these properties we must turn to the second type of experiment. The
forebear of this field was Kamiokande [21] which did not begin its life, in 1987,
as a neutrino experiment, but rather as a nucleon decay experiment, testing
the limits of Grand Unified Theories such as Supersvmmetry, which will be
discussed later. In fact, in the original conception of the detector, neutrinos
were a source of unwanted background noise. As interest in the solar neutrino
problem grew, the experiment changed its emphasis to neutrino detection and
was upgraded to SuperKamiokande (SK) between 1995 and 1996 [22].

These experiments detect the recoiling charged leptons (electrons or muons)®
produced by the interaction of neutrinos with the bulk matter of the Earth
or the detector. This is achieved by the use of photo-multipliers to detect the
faint Cerenkov flash emitted as the recoiling lepton passes through the detec-
tor volume. This method has the advantage of being able to resolve events
as they happen and also to reconstruct the direction of the lepton from the

pattern of light detected. However, to generate the Cerenkov glow a given

9Tau particles decay too rapidly to be observed directly.
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lepton must exceed the effective speed of light for the medium through which
it is travelling. Thus only the most energetic neutrinos will be able to trigger
events in these detectors but the more energetic the event the more light will
be emitted as Cerenkov radiation and this provides the technique with some
energy resolution.

SuperKamickande relies on the detection of charged leptons which may
be attributed to inelastic neutrino scattering, but these must be charged
current events which precludes the measurement of 7 neutrino flux. The
Sudbury Neutrino Observatory (SNO) which began operation in late 1999
[23] will account for this weakness by using heavy water (D,O) as the core of
a spherical Cergnkov detector. The neutron in each deutirium nucleus will be
sensitive to neutral current interactions which, for sufficiently energetic neu-
trinos, will lead to the disintegration of the nucleus. Such events may then
be detected from the eventual decay or capture of the resulting free neutron.
Crucially, this sensitivity to the neutral current will provide a perfectly bal-
anced measure of the entire flux of active neutrinos, which all experience an
identical neutral current interaction. This is the first measure of the total
flux and will prove wether or not neutrinos are changing character or are
simply under-produced [24].

The energy sensitivity of water Cerenkov experiments has revealed an
energy dependence in the neutrino fluxes [22]. In addition directional in-
formation has shown a zenith angle dependence in the flux of atmospheric
neutrinos [25], which translates into a dependence upon the distance from the
production site in the upper atmosphere. Thus the varying detection rates
must be explained by an energy and distance dependent phenomenon which
supresses the expected vield of events for a given neutrino type. Neutrino

oscillations are just such a phenomenon.

Results.

Following [26], a first approximation in examining the experimental evidence
for neutrino oscillations is to assume a simple process of oscillation between

only two neutrino types. Such an approximation suggests a small squared
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mass difference drives the solar neutrino oscillation (1077 — 107%V?) and
a much larger one the atmospheric oscillation (107%eV?). Both scenarios
also favour large mixing angles, which is to say that the original flavour
state in each contains a significant component of the two mass eigenstates
involved, though experiment excludes maximal mixing for solar oscillations
(tanf: # 1). Specifically, there are a number of separate regions in the
space of solar oscillation parameters any of which could account for the solar
neutrino problem. This diversity arises from the myriad scenarios involving
matter effects which will affect the evolution of electron neutrinos generated
at the Sun’s core. Of the various possible scenarios we will consider only
the two most likely: LMA and LOW. Experiment defines a single region in
the atmospheric neutrino parameter space, where matter effects have little
significance and oscillations proceed as in vacuum. The most recent best-fit
values for atmospheric [26] and solar [24] neutrino oscillations are shown in
Table 1.1.

Scenario Atm. LMA LOW
Am*/eV? 126 x 1072 | 5.0 x 107" | 7.9 x 1078
tan? g 1.42 0.42 0.61

Table 1.1: Best-fit oscillation parameters.

In addition, the assumption that either solar or atmospheric neutrinos
oscillate with a sterile neutrino species is disfavoured.

The preceding analysis turns out to be largely correct. Of course three
active neutrinos are known to exist and the mixing scheme should incorporate

this. For these purposes the MNS matrix is parameterized as follows:

. o b
€12€13 512C13 s13¢7"

U = —512Cp3 — C12523513€"  C12Co3 — $12523513€"  S23C13 (1.24)
812593 0126235136z5 C12893 — «5‘1202381367‘0 €23C13

Where: sz-j(cij) = sin#;;(cosb,;) It is conventional in the three neutrino

context to take o as the mixing angle for solar neutrinos and 3 that
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for atmospheric neutrinos. Generally, 0 < §;; < 7/2 and so, in order to
cover the whole range, experimental analyses will express mixing in terms of
tan#;; = t;;, as in Table 1.1. The Dirac phase, ¢, may be set to zero or 7 to
preclude CP violating effects due to imaginary components. Both Majorana
phases have been set to zero as they cannot influence oscillations [27].

As implied previously, harmonic terms in the conversion probability with
disparate mass differences are not influential simultaneously but will come
into play individually, under different circumstances depending upon the
magnitude of £/L. Thus in constructing a universal picture of oscillations
it can be assumed that the solar and atmospheric scenarios are largely unre-
lated because they occur at quite different scales: in experiments sensitive to
solar neutrino oscillations the atmospheric type oscillation is averaged over
and in atmospheric experiments the solar type oscillation is negligible.

The two schemes are however related by one parameter, namely 63,
which results in slight deviations from the decoupled, two neutrino, schemes
for the solar and atmospheric oscillations mentioned above. In this con-
text, the CHOOZ experiment [28], which aimed to register the disappear-
ance of electron neutrinos originating from a nuclear power plant, places
an upper bound on 63 of ~ 9° (90% C.L.), assuming large Am?;. The
latter assumption is quite reasonable here when we consider the condition:
AmZ, + Am3, = Am}, =~ Amj,. All the currently available data for so-
lar and atmospheric oscillations favour small values of #,3 and the CHOOZ
experiment reinforces this trend. Thus, the large mixing of both solar and
atmospheric neutrinos is preserved in the three-neutrino mixing scheme.

One artifact of this mixing scheme is that the fit to data is satisfied
equally well for two mass hierarchies. The first is the normal hierarchy,
analogous to the charged lepton sector or the quarks where: m; < my < ms.
But an inverted hierarchy is also admitted, where: m3 < m; < mo and
|Am2, | = —Am3, > 0. The condition of m; < my is common to both
hierarchies and this is due to the fact that the prefered regions in the solar
parameter space are possible because of the MSW effect, which requires that

the electron neutrino be lighter than the muon neutrino.



Neutrino oscillations describe well the missing solar and atmospheric neu-
trinos and this constitutes the first evidence of massive neutrinos and hence
physics bevond the SM. Such New Physics should explain various peculiar
characteristics, such as the near vanishing mass (in relation to other masses
in the SM) of the neutrinos, but also the structure of their mass spectrum
and the pattern of mixing: the so-called 'texture’ of the flavour mixing ma-
trix. It is our task to assess the predictions of a possible texture as it is
understood in the background of a likely scheme of New Physics.

The following chapter will outline some of the New Physics, namely the
See-Saw Mechanism and Supersvmmetry, in addition to techniques neces-
sary for translating this scheme into the realm where experiments are made,
namely Renormalisation. The final chapter will deal with their application
to the problem at hand: the analysis of a so-called 2-3 exchange symmetry

of the neutrino mass matrix, due to C.S. Lam [29].



The See-saw mechanism indicates that neutrino physics could probe very high
energies, renormalisation allows the extrapolation of predictions from such scales

and supersymmetry provides a possible window to the dynamics there.
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2.1 The See-saw mechanisi

The masses of the neutrinos are puzzling by their minuteness in relation
to other masses in the SM. Specifically, the inclusion of a neutrino with a
finite, but very small, mass into a given generation will extend the mass
spectrum of that generation over many more orders of magnitude. For the
first generation, consisting of the electron and the v and d quarks, the mass
ranges from 0.5MeV to ~9MeV: 2 little more than one order of magnitude.
When the electron neutrino is introduced, with a mass certainly less than
~2eV, the mass spectrum must cover at least six orders of magnitude.

Now, the mass scale of the first generation is already very small in com-
parison to the origin of fermion masses in the SM, namely the Higgs boson
Vacuum Expectation Value, v ~100GeV ([30], also Section 2.2.3). But to
explain simultaneously the smallness of the first generation masses and, in
addition, the extreme smallness of the electron neutrino mass in a simple
manner is not trivial.

The See-saw mechanism [31] proposes that the Dirac mass (d) of the
neutrino is intrinsically of a similar scale to that of the SM, but that the
observed mass (that of the mass eigenstates) is suppressed by a very large
Majorana mass, M, of the right-handed neutrino. The Dirac states of the

neutrino, vy, couple through a mass matrix, M:

vgMuyy = (sz V—R)(SZ ;{) (Z;) (2.1)

= 7mDum (2.2)

Where v, are the mass eigenstates so that D is diagonal with eigenvalues
~ %7 and ~ M. The admixture of chiralities for eigenstates in the mass
diagonal basis is ~ %, so that the light neutrino state is predominantly left-
handed and thus the mass is predominantly of Majorana character, as might
be expected. It is especially interesting that the lightest neutrinos, those
that will be observed, have acquired masses even though the left-handed
neutrinos, those of the SM, have none.

This simple scenario allows us to make a prediction for the Majorana
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mass of the right-handed neutrino. For d ~100GeV and m,(obs.) <leV we
can expect M 2 10"GeV. This is a remarkable result and strongly suggests
that neutrino physics may be an excellent probe of the physics that exists at
energies far bevond those directly accessible to modern experiments,

This scheme may be extended to include multiple generations [32], where
the components of M in (2.2) are matricies themselves. The components
representing the right-handed neutrino masses may or may not be identical,
but it is simplest to assume that they are similar. Furthermore, it is reason-
able to assume that if the mixing matrix between the generations exhibits
some degree of symmetry below this scale, then this symmetry will itself be
generated at this scale. That is to say that at the scale at which the light
neutrino masses are defined, the texture of the mixing matrix generated along
side them will be defined by a specific texture. It is attractive to consider
that the texture so defined will obey a symmetry indicative of a more funda-
mental relationship between the generations. But this symmetry may not be
immediately apparent at lower energies because the behaviour of neutrinos
will actually be different between the vastly disparate energies of, on the one
hand, where the fundamental theory is defined and, on the other, where the

experiments are carried out.

23



2.2

enormalisation and running couplings.

All experimentally observable parameters are determined by the careful mea-
surement of quantum mechanical processes. These processes are described
by perturbation theory, in that, to a first approximation, a guantum field
theory involves only free fields and interactions are a perturbation to this.
This is represented in the structure of the theory by defining a coupling con-
stant g < 1 which characterises the intrinsic strength of the perturbation.
The perturbation expansion on g provides many possible structures, of in-
creasing complexity, for any given interaction. The lowest order form is said
to be tree-level from its simple branch- like structure in its representation as
a Feynman diagram, where each vertex represents a factor of g.

For example, consider an experiment to measure the coupling of two
currents, i.e. the intrinsic likelihood with which they will interfere with one
another. The two currents may be arranged so as to pass into close proximity
under approximately free motion. Any scattering will be due to their inter-
action. The lowest order process of this form in Quantum Electro-Dynamics
(QED) may be depicted by Fig.2.1, where a fermion current (vector) and an

external current (X) interfere by the exchange of a virtual photon (wave).

(

Figure 2.1: Scattering in QED at tree-level: exchange of a single photon with

an external current.

The Feynman rules allow us to relate the diagram to an expression for
the Lorentz invariant amplitude of the process it represents, from which the

probability of the process may be determined. For the above example the
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rules give:

—iM = ig? (@ u) () (5 ), (2.3)

where the term in the first set of parenthesis is the current under observation,
the last term in parenthesis is an external current which causes the scattering
and g is the coupling we wish to measure. The external current implicitly
carries a factor of g from the coupling to the virtual photon. The middle
term is associated with the internal photon propagator and depends upon
the momentum exchanged between the currents, g.

Higher orders will have more verticies but an identical set of external

lines, and hence a more complex internal structure:

Figure 2.2: QED scattering diagrams at the next-to-lowest order: (a) vacuum

polarisation, (b) fermion self-energy and (c) vertex correction.

Each possible structure is indistinguishable to experiments, which can
measure only the approximately free, real particles represented by external
lines. Thus, in the observation of a given process the experimental measure-
ment encompasses all possible forms of the interaction (see Fig. 2.3).

In order to faithfully represent a given process, as it is observed, we
must include all possible diagrams. However, it is convenient to describe the
process as a tree-level diagram and we might assume that it is a simple matter
to include the contribution of higher-orders by re-defining some property
at the tree-level, for instance the coupling in Fig. 2.3. Consequently the
observed coupling, ¢, will not correspond directly to that in the Lagrangian

of the theory. Rather the Lagrangian will contain a bare coupling, g, which
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Figure 2.3: The observed coupling is a sum over all possible scattering pro-

cesses.

is not ‘dressed’ by higher-order effects. Furthermore, as we are working in
perturbation theory so we need include only a few higher-order terms to
successfully relate g and gq.

In fact this approach is by no means trivial. The simplest higher-order
diagrams containing even one loop only, result in infinite contributions to g.
In principle this is not catastrophic as individual contributions are inherently
unobservable. However, to vield a finite value of ¢ the infinite contributions
would have to cancel with a quite implausible delicacy, to all orders of the
perturbation expansion. To escape this difficulty, the infinite terms may be
concealed by a careful re-definition of the bare coupling in a process known as
renormalization. Firstly we will look at how these infinities may be contained
by regularization and then we will examine the consequences for observables
of this indeterminacy of the theory. This discussion will be restricted to the

one-loop level.



2.2.1 Regularization.

When evaluating a diagram, Feynman rules require the integration over the
full range of each internal momentum. The rules also require for each ver-
tex a factor of a Dirac delta-function, enforcing momentum conservation at
that vertex. At tree-level these rules are sufficient to define all momenta in
the diagram and leave a single delta-function which embodies momentum
conservation among the external lines. However, at the one-loop level one
of the internal momenta remains undefined after all of the delta functions
have been taken into account. Thus in the final evaluation of the diagram
there remains an integral over an infinite range of momenta. The latter is the
origin of the infinite contributions to the observed coupling indicated above.

Looking again at coupling in QED scattering processes to one-loop, we

consider:

Figure 2.4: Scattering in QED to one-loop.

The one-loop contribution here is solely due to vacuum polarisation as
the fermion self-energy and vertex correction cancel exactly by the so-called
Ward Identity (p.197 [33]).

The Fevnman rules yield:

. . — ”’ZQ,:, , “?9 —ngou v y
M = igh(ayte) =g+ — T = |G /90),  24)

The second term inside the square brackets is the dressed propagator and

carries the contribution of vacuum polarization to the process. I®? records
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the effects of the loop:!

o8 _ [ AP gl @l s i+ m)
= o [l S e G e
d'p (T (f+ m)y*(p = g+ m)] ,
2 ] °
= —g /%(%)4{ 2 —m2[(p - )2 — m?] } (2.6)

Each loop introduces a factor of -1, so here I=1. The trace derives from the
loop structure and the fact that the matrix indicies contract at each of the
verticies; the space-time indicies are free and must contract with the photon
propagators.

After the angular integral, (2.6) has the form [ |p|*p/|p|*, which will
diverge as indicated previously.

A simple means of combatting this anomaly is to restrict the integral to
a finite range of momenta by imposing a cut-off. The integral is thereby
regularized, in that it is no longer divergent. This form of the diagram may
now be manipulated in the usual way in calculating scattering cross-sections
and the like. Of course the cut-off is an artificial and arbitrary constraint
in the theory and in order to cast the final result into the correct form the
cut-off must be sent to infinity.

This is certainly a crude and direct means of containing the divergence
but it does have an equally straightforward interpretation. It may be seen
as indicating that the theory is well defined only at low energies, where the
momentum of internal lines is small because the the exchanged momentum
must be small. This implies that the anomalous behaviour is linked to our ig-
norance of more fundamental physics at higher energies and shorter distance
scales.

Though this scheme of regularization lends valuable insight, it is flawed.
By the uncertainty principle an upper limit on momentum implies a lower
limit on position, which effectively discretizes space-time and so violates
translational invariance: a fundamental symmetry. Furthermore there is also

violation of local gauge symmetries which are a cornerstone of all successful

i{p+m) i(p+m)

P FomErn D order to avoid fermion

'For clarity the ie prescription, where

propagator poles, is left implicit.
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theories of particle physics.

Fortunately other, more subtle, schemes of regularization have also been
developed. One of those that automatically respects local gauge symmetries
is dimensional regularization, which avoids singularities by the expedient of
changing the space-time dimensionality of the problem.

Consider:

&xom T(n) sn-Dr2 -

All loop integrals can be reduced to the form of the LHS, with D = 4, by Fey-
naman parameterisation. This procedure reduces the product of quadratic
terms in the denominator of an expression, due to propagators in the loop

(as in 2.6), to a sum of terms, following the rule:

1 1 21 Zn—1
T I’(n+1)/dzl/ dzg.../ dz,
1
X

[ag + (a1 — ag)z1 + ...+ (an — Q1) 2"t

(2.8)

This form allows use of the standard integrals in Appendix A.

Then we may generalise to I = 4 — 5 and the loop integral will be well
defined by the RHS for integer n > D /2 or for any non-integer n, specifically
small 7. Of course all terms within the integral now exist in a space for which
D # 4. This includes the Dirac matricies whose interpretation in non-integer
dimensions is by no means clear, but all results are eventually interpreted
in the n — 0 limit, in which case all relations are reduced to the familiar
four-dimensional form. The general I trace and contraction theorems are
summarised in Appendix A.

Continuing with the example of QED scattering, we may re-cast (2.6) for

general D:

%% = _ 2 / d”p {TT[”/Q@ +m)y*(p =+ m)] } (2.9)

et 2 - m[(p - )% — m?]

Using the trace thecrems on the numerator and Fevnman parameterisation
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on the denominator vields:

g / " / FD)p* = ¢®)p° + (° = ¢")p* + [m? —P(pw}]g“ﬁ}}
0 77‘) p? = m? + (¢* — 2pg)2]?

(2.10)

We can make the substitution p = k + gz:
o8 = —go/ d~/de o )4 Qka)k“/f?g“ﬁ]ﬂ(q%(’* 1) +m®)g*]

/i
1

2:(z =~ )% — ¢%9°) | x - . 2.11
+22(z = D(¢%¢" — ¢°¢™") ¢ ¥ 2~ ga(s —1) =] (2.11)

Here all terms in the numerator linear in & have been dropped as they will
be zero by
Using the standard integrals we see that the two terms in square brackets

are equal and opposite and thus we are left with:

1 = g A d {;gi [22(1 - 2){¢°¢" — ’¢*")

inP2T(2 — D/2)

X - 2.12
(@2 —2) — P DP 212
= i(¢*¢" - ") (2.13)

Now we examine the case of D =4 — 1. Using:

(2 :
() ==-—9+0@). 214
n
and:

572 = gins +O(), (2.15)

we find that in the limit of 5 — 0 where regulation is removed:

. 2 1 ! ‘
16 = 5t | 55— 1) = 5 / dzz(1 = 2)Infg*s(1 - 2) = m?)]. (2.16)

We see clearly that there is a finite contribution to scattering from vacuum

polarisation as well as the troublesome divergence.
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2.2.2 Renormalization.

We would like to encapsulate the contribution to scattering of the vacuum
polarisation diagram by redefining the charge at the tree-level, as indicated
in Fig. 2.5.

With this in mind, from (2.3} and (2.4), we may define:

. ; ——Z'g,ql/" _

9 gw) =~ gé[guﬁgmlaﬁ q;J (2.17)
—

~ 95 [QUV‘}—]LWE}{I (2 18)

~ galgw)l ~ 1(¢?)] (2.19)

In the final step we have omitted terms in [, that are linear in g,, as
current conservation forbids them from contributing to interactions. In order
to define the empirical coupling ¢ without reference to the bare coupling gy,

which introduces the divergent terms, we must rearrange (2.19) to find g¢ in

Figure 2.5: We absorb vacuum polarisation into the definition of the observed

charge.
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terms of g. However (2.19) explicitly depends upon ¢° and so the expression
must be evaluated at a specific value of ¢ = i in order to define precisely go.
Thus:

g = g (WL = 1) (2.20)

Note that the exact choice of p is entirely arbitrary. We may now define g
by substituting {2.20) into (2.19):

g'a) = g (W)L = T(W*)] 71 =~ I(e?)] (2.21)

where ¢*(1t) may be defined by experiment and I is proportional to g which,

by (2.20) to first order, is equal to ¢*(p). So, expanding gives:

92 (q) = g*(w)[1 + I1(1*) = 1(g%) + O(g")]. (2.22)

and g(g) is now a renormalised coupling. Now:

&

2 1
2 —9"
W) ~ g% = 53 /é dzz(1 - 2)
X {ln(pﬁz(l —z) —m?)

~In(g*2(1 - 2) - m?)], (2.23)

so the divergent terms proportional to 2/n (recall (2.16))have cancelled and
thus the definition of g% is now finite, as promised.

To O(g"). all we have done is add the counter-term I(i?) to the original
definition of (g?) (2.19). However, the cost of removing the indeterminacy
of the divergent terms is an apparent dependence upon the choice of u. Of
course £ is arbitrary, so a physical quantity such as g cannot depend upon
it. The solution to this quandary is in recognising that we may regard a
variation in p as instead a change in the scale of ¢g. Consider the small m
limit of (2.23):

2 [ p
I - I(®) = —5 [ dzz(1~2)In (—) : (2.24)
™ Jo \ ¢

If we transform p — pe®, this is identical to ¢ — ge~? and it is now apparent

that we should regard the coupling ‘constant’ g as being dependent upon the
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momentum transfered in a given reaction : g is a so-called running coupling.
In effect, renormalization asserts that an empirically derived coupling will

vary, depending upon the energy scale at which it is observed.?

2.2.3 Running couplings

and the Renormalization Group.

The behaviour of running couplings now forms an important component of
the search to understand more fundamental physics. The running behaviour
is encapsulated in the Renormalization Group Equations (RGE’s). In general
these are a set of differential equations that link the variation of physical
properties across the energy scale of a given theory. Thus they provide a
means of extrapolating the predictioné of a theory to (or from) experimentally
accessible energies.

RGE’s are derived from the independence of any physical property from
a re-definition of y, the Renormalisation Group (RG) itself being the group
of transformations of . Among the RGE’s is the so-called #-function which

describes the running of a coupling and for the above example may be defined:

5(9)2/@; = 0 (2.25)

VIFTE =T agelid) - 1) (220

What interests us here is the RG evolution of neutrino masses and mix-
ings. In the SM, fermion mass is generated through the Yukawa coupling,
hy, of a fermion, f, to the Higgs scalar, ¢ =. Due to spontaneous symme-
try breaking at low energies, the scalar acquires a vacuum expectation value
(VEV), v, which replaces ¢ in the Lagrangian, generating terms which are

realised as masses, m;. [30]

?This behaviour also applies to other fundamental properties such as the mass of par-

ticles and normalization of wave functions, to which renormalization will also apply.
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Liass = h’ffR@fL + h.c. (227)
= (vhy) frfL + h.c. (2.28)
'T?’LffRfL + h.c. (2 29)

These couplings are responsible for the masses of the fermions and the
composition of the mass eigenstates (i.e. the mixing matricies). As with the
gauge couplings which transmit forces, the Yukawa couplings evolve accord-
ing to the RG and this inevitably effects the mixing matricies. The RGE’s
that operate in the SM at one-loop level are due to Cheng, Eichten & Li [34].

Those for the Yukawa couplings are:

d 3
167 =Yy = ( ~ N b g?) + TeBY Y]+ 3Y Y] + VoY

3
“YoY) - —YDYE)YU (2.30)

+
d 3
167 =Yy = ( S Ichg?] + TBY Y] + 3, Y] + YY)

k=1
3 3 +
+2YpY] - SYuY| )Y (2.31)
d 3
167T2.CTt.YE et ( Z{CEgk] —+ Tl [BY[/ YU -+ ?)-S./'[)S-f.f -+ YEYT }
k=1
3 .

where t = In(u) and Y is the matrix of Yukawa couplings for each type of
SM fermion, with components h;;. F, the fermion type, can be any of £, U
and D corresponding to charged leptons, up- and down-type quarks® ; ¢ and
J are species indicies corresponding to the individual members of one of the
fermion types: e.g. F' = E allows i,j = e, u, 7, however in this case (and
F = U) the mass matrix is diagonal so that ¢ = j. Also, there is dependence
upon the gauge couplings ¢x: £ = 1,2, 3 for the SM SU(k) gauge symmetries.

% are summarized in Table 2.1. The gauge couplings evolve according to:

égk
dt

3Up-type are u, ¢ & t; down-type are d, s & b.

16022 = b, g3, (2.33)
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F k
12
E15/4 9/4
U | 17/2 9/4
D|5/12 9/4

oo 00 O W

Table 2.1: ¢4 in the Standard Model.

k
1 2 3
by | 41/6 24/43 -7

Table 2.2: b, in the Standard Model.

Which vields analvtical solutions:

()
gi(t) = W, (2.34)

with by listed in Table 2.2.

The trace terms in (2.31)—(2.32) are due to the Yukawa equivalent of the
vacuum polarisation diagram (recall 2.2) and the others are related to the
various self-energy and vertex correction diagrams, some of which involve the
gauge bosons.

A most intriguing result of the latter energy dependence is that the cou-
pling strength of the three successfully quantised fundamental forces! tend
to converge at some very large energy scale, though they do not meet at a
single point.

Of course the neutrino should also be included now and especially at the
scale of the right-handed neutrino mass, where the neutrino Yukawa coupling
must surely be significant. But, at such vast energies we expect new physics

to be in effect and the form of the RGE’s will be altered as a consequence.

4Those that have been formulated as gauge theories.



2.3 Supersymmetry.

Considering the re-definition of the bare terms in the previous section, it
is clearly unsatisfactory that there should be contributions to the bare La-
grangian that diverge as the regularization is removed. If the corrections
are many orders of magnitude greater than the observed parameters, the fine
cancellations between loops and counter-terms begin to look quite unnatural,
a situation known as fine-tuning. But if the divergence is sufficiently weak,
these contributions need not be troublesome. For instance, if the divergence
of any diagram is only logarithinic, the corrections to the bare terms may be
sufficiently small, even for very large values of a cut-off (or vanishing # in di-
mensional regularisation), that fine-tuning may be avoided. To achieve this,
it is prudent to seek theories which inherently counter-act possible power-law
divergences.

This is the case for Supersymmetry (SUSY). Here each of the known
fermions of the SM has a bosonic counterpart. The rationale is that their is
a relative minus sign between the correction due to a bosonic and a fermionic
loop. Thus, with identical Yukawa couplings ensured by some deeper sym-
metry, these divergences are automatically cancelled, in much the same way
as the Ward Identity insures the cancellation of the vertex correction and
self-energy contributions to scattering.

In general SUSY introduces for every known fermion (boson) a bosonic
(fermionic) counter-part and the related particles are grouped into chiral
(vector) ‘supermultiplets’ [35]. SUSY is a symmetry under transformations
within these supermultiplets and corresponds to replacing all fermions in
the theory with their bosonic counterparts and vice versa. In pure SUSY
the components of a supermultiplet share the same couplings and masses,
ensuring the cancellation of the Higgs self energy quadratic divergence as
mentioned above. But no scalar particle with a mass identical to any of
the SM fermions has been detected, and so it is clear that this symmetry is
broken, if it does indeed exist in nature. However at higher energies, where

all particles begin to seem identically massless SUSY may well manifest itself.
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It is thus in the high energy regime that we may assume SUSY to be a valid
theory and use its structure to predict the renormalisation group evolution
of physical properties to (or from) more fundamental energy scales.

An important additional feature of the SUSY model is the existence of
two Higgs doublets. As the SM is defined, the Up-type fermions® couple
directly with the only Higgs but, in order that the Yukawa couplings be
gauge invariant, the Down-type fermions® must couple to the conjugate of the
Higgs, io2H*. However, requirements upon the form of the SUSY Lagrangian
preclude this possibility and consequently SUSY features H, and Hy which
impart masses to the Up-" and Down-type fermions respectively. In general
the VEV’s, v, and vy, of the two Higgs will not be the same but are related to
the effective VEV of the SM: v = \/m E= 'U\/Sin2 5+ cos? 5. Thus, an

important parameter in SUSY models is tan g which is the ratio of the two

VEV’s. Its significance is that, because the masses of the known fermions
and the SM VEV are known to reasonable accuracy, it translates into the
relative sizes of Up- and Down-type Yukawa couplings.

This is essential knowledge in studies of RG evolution within the context
of SUSY which represents the only existing means of connecting the latter’s
predictions with experiment. furthermore, particular variations of SUSY
prefer specific ranges of tan § and overall it may vary from ~1 to ~60.% For
instance, certain boundary conditions, such as h, = hy = by, require tan 3 to
be large.

We are specifically interested here in the evolution of the Yukawa cou-
plings, whose one-loop RGE’s in SUSY are listed by Grzadkowski, Lindner
& Theisen [36]:

5Up-type quarks only, in the SM.

SDown-type quarks and charged leptons.

“Up-type quarks and now also neutrinos.

8tan § tends to be larger than one in order to accomadate the fact that the top-type

quark masses tend to be larger than the down-type’s.
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Table 2.3: by in supersymmetric models.

167 ;-YL = (* i{cﬁ,gg] +TBY Y] + YNYL
k=1
+3YUY[T; + YDY})> Yy (2'35)
6r2ly, = (~i[ck A4+ Tr3Y YL+ YY)
df D s ng Dip Eipgp
+3Y, Y +YUY1)YD (2.36)
, d &
167 =Yy = ( Z ek g?] + Te[3YY) + YY)
+3YNY] + YrYE) Y (2.37)
3
16#%\(}3 = (_ ;[cgg};} +Tr3Yp Y] +YpYL]
+3YEEJ£;)YE, (2.38)

where the neutrino has been included as F=N. The gauge couplings still
evolve according to 2.33 and 2.34. Though the coefficients b, have changed:
see Table 2.3

In comparison to the SM RGE’s, we may note differences in the structure
of the trace terms, where their arguements have been segregated into Up-
and Down-type Yukawa couplings due to the exclusive coupling of the two
Higgs. Also, the relative strengths of the gauge couplings have been altered:
see Table 2.4.

The latter is a feature of SUSY which greatly improves the convergence of
the gauge couplings at high energies: a state known as unification. Beyond
this there are schemes in which the Yukawa couplings too are unified. Such

theories which promise to unite many apparently disparate couplings are
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F k

1 2 3
E| 3 3 0
N| 1 3 0
U |13/9 3 16/3
D|7/9 3 16/3

Table 2.4: ¢k in supersymmetric models.

refered to as Grand Unified Theories (GUT). Another promising feature is
the robustness of predictions of the top mass, which correponds to an infra-
red fixed point of the theory. That is to say, the value of the top mass varies
little across many variations of the theory.

SUSY is thus a promising candidate for a deeper theory, going bevond the
SM but remaining in touch with some of its features. It comprises a suitable
background in which to model the physics of the right-handed neutrino, and
hence of neutrino mass, as it is envisaged in the see-saw mechanism. Using
this background we can hope to translate the relationships that are possibly
realised at very great energies into predictions of behaviour at experimentally

accessible ones.

39



Renormalisation parameters for the neutrino sector, a possible texture and how

it compares to the experimental situation.
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3.1 enormalisation of See-saw scale symme-

tries.

Following Ellis & Lola [37] we assume some simple fundamental texture of
the neutrino mass martrix to exist at a scale appropriate to the right-handed
neutrino mass, Mp, in see-saw schemes. In a background of SUSY dynamics,
renormalisation effects will rotate this texture as it is observed at some lower
scale, Msysy , where SUSY gives way to the SM.

We note that below Mp the Dirac-character neutrino Yukawa couplings
are integrated out, leaving the effective neutrino mass matrix, M’ which
evolves according to:

SWZ%M' - ( — kg2 Tr[3YUYg}])M'
% ((veYhm + M (YpY])T) (3.1)

Where, for clarity, the sum over k is implied. Assuming that the trace across
the up-type quark Yukawa couplings is dominated by the third generation
(i.e. the top), we may recast (3.1) in component form:

1 d, 1

—_— A = k2 2
A.

(02 +12)) (3.2)
Where i, = e,p,7. To determine the effect of the RG evolution, we may
integrate between the scale at which we define the matrix, ¢ty = InMpg/Mg,

and the scale close to that at which we currently make observations, #; =
1n]w'SUSY /_A[R

/t1 1 t1
A = / Adt (3.4)
1o M J to '
£y gA ]
/ d(inM),) = / Adt (3.5)
ig ig
oy
EH(JMH(f]))Z‘j — in(l‘/ff,(to))ij = / Adt (36)
to
(M'(t1))s; _ gg%f[ftto] kg2 4303+ L (h2 +h2)dt.] (3.7)
———————————m;j > )



Where m' = M'(#;). One-loop renormalisation effects may thus be charac-

terised according to:

t1 ko2
[, = eieli e
i t
I, = ew7 iy hidt (3.8)
; ]
it 244
Ij — eg,:fffo h;dt

I; generally will be less than one and the most prominent effect is in the
third generation as h, is the greatest of the three. The first generation is
essentially unaffected and I, is close to one.
Now:
M'(t)y -
s

Thus we may define the RG-evolved effective neutrino mass matrix:

mL 1e My, /ey my Il
M'(t) = I, x | ml /T w1, m, /LI (3.10)
My Il D, mi I
Ellis & Lola have calculated /; for My = 108GeV, Msysy = 1TeV and
a specific set of initial values of h,: in effect, a range of tan 3. The results

are tabulated below (Table 3.1) with the ratio I./I,, whose significance will

be explained in the following section. The left-hand side of the table con-

h, I, 1, 1./, |tanf
3.0 0.826 0.9955 0.8297 | 58.2

1.2 0.873 (.9981 0.8747 | ~ 35
0.48 | 0.9497 | 0.9994 0.9503 | ~ 40
0.10 0.997 | 0.99997 | 0.9970 | ~ 13
0.013 | 6.99957 | 1.00000 || 0.98997 1 1.0

Table 3.1: I, and 7, with approximate values of tan 5.

tains selected results from Table 1 (p.8) of [37]; the right-hand side contains
estimates of the correlation with tan  which are the authors own, except for

xl

the least and greatest which are noted in [37]. The author has attempted to
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replicate these results in order to relate more reliably tan 8 to k., and hence
I./1,, in the intermediate range. However, the author acquired consistently

smaller values for both I, and I, and thus defers to [37].
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3.2 Constraints from a simple See-saw scale

neutrino symmetry.

Some symmetry of the neutrino mass matrix is assumed to exist at the see-
saw scale, where right-handed neutrinos acquire a (huge) mass. A symmetry
will impose specific constraints on the mixing parameters which characterise
the texture. Such constraints should simplifv interpretation of the matrix by
inter-relating the mixing parameters. ,

As discussed above, renormalisation effects will rotate the mass matrix
to some extent, such that the symmetry realised at high energies is no longer
exact at experimental energies. Consequently, the symmetry constraints will
be somewhat weakened.

Our task is to determine whether the constraints due to a given symme-
try are consistent with the experimentally determined values of the mixing
parameters. We will compare the empirically derived mass matrix with the
renormalisation-group-distorted form of a chosen see-saw scale symmetric
mass matrix, henceforth the RG-matrix.

We assume the RG-matrix to be correct and use it as a theoretical basis
in which to inter-relate the mixing parameters and thereby predict the exper-
imentally less certain parameters from others, which are known with more
accuracy. A comparison of these predictions to the experimentally allowed
region is an effective measure of the feasibility of this model. Furthermore, it
is instructive to analyse the variation of the predictions as the input values

are varied across their experimentally allowed regions.

3.2.1 Symmetry relations.

After Lam [29], we begin by assuming that there exists, at the scale of the
right-handed neutrino mass, an exchange symmetry between the second and
third generations in the neutrino mass matrix, m’. The neutrino mass matrix

is expressed in the mass-diagonal basis of the charged leptons, such that:

m’ = umu’ (3.11)



where m is the diagonal matrix of neutrino mass eigenvalues and u is the
MNS matrix as defined in (1.8)

This so-called 2-3 symmetry requires:

i !
m,, = -—m

f’“ . r (3.12)
My, = Mg,

The minus sign in the first expression is necessary to maintain the convention
of positive mixing angles. In order to fulfill these relations m’ contains four

free parameters and takes the form:

a b —b
m= b f e (3.13)
-b e f

with eigenvalues f+e and [f —e+a£+/(f — e — a)? + 86%]. This fixes the
MNS matrix to the form:

7] S1 0
u=| —%s e L (3.14)
— \/Z-L1 \/5 1 \/5 .

=S 50
and the solar mixing angle, #;5 = 8, will be a positive solution of cot§y, =
f—e—a®/(f—e—a)?+8?/2v20.

Thus the exact symmetry makes no demands upon either the mass spec-

trum or the solar mixing angle as these may be accomadated with a suitable
definition of the four free parameters in (3.13).

By comparing (3.14) with (1.24) we may note that this symmetry fixes the
2-3 mixing angle (3 = 02) as exactly 7/4: a state of maximal mixing. Also,
the 1-3 mixing angle (613 = f3) must be exactly zero. These predictions are
in agreement with the current results of neutrino oscillation experiments, but
as we have seen the texture of the matrix will evolve according to the RGE’s,
somewhat loosening these restrictions but also inter-relating the constrained
parameters with those that remain indeterminate under the exact symmetry.

Applying the RGE’s, as in the previous section, the symmetric matrix is

distorted as it is observed at the scale ¢ = {;:

m = Ml(fo} — M’(tl) (31:))
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Scenario. Parameter.

tan?d | Am? (eV?)

Atmospheric || 1.6 | 3.0 x 1073
LMA 0.4 3.0x107°
LOW 0.8 1.0x 1077

Table 3.2: Original best-fit values of the oscilation parameters [38].

and the symmetry requirements may be re-cast.in terms of (3.10) as:

M N\? M., I .
(M’ ) T, I, (3.16)
eu S p

The right-most expression, henceforth % = R, follows directly from (3.10)
and is dependent upon tan 3: it ranges from 0.8297, corresponding to tan 5 =
58.2, t0 0.99997, for tan § = 1 (Table 3.1). It characterises the strength of the
RG effects and will be exactly one in the absence of them: deviation from 1 »
is an indication of RG evolution. The other two expressions are complicated
functions of the the mixing angles and masses, or, equivalently, the mixing
angles, mass differences and least mass, my.

The approach of [29] was to fulfill the first equality of (3.16) and then
determine the appropriate value of R. This relation was formulated in terms
of the experimental best-fits for the solar and atmospheric mixing parameters,
as presented in [38] and repeated here for convenience (see Table 3.2), and
a value of the least mass between 0 and 2eV, in keeping with the tritium
B-decay results. Then the veracity of this relation was tested for ¢3 below
the CHOOQOZ limit. If the first relation could be satisfied the second was used
to determine K which was finally compared to the limits imposed by Ellis &
Lola.

An interesting result was that the symmetry relations (3.16) could not be
reconciled with the limits on R when the least mass was less than approx-
imately 0.025eV. In effect the symmetry is incompatible with a least mass
below this value, if the renormalization effects are indeed accounted for by
SUSY dynamics.
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Since the publication of [29], new experimental data ([24], [26]) has altered
the best-fit values of the oscillation parameters which were used as inputs
for this study. The new values are listed in Table 1.1. Here we take the
opportunity to explicitly update the minimum allowed least mass for the
LOW and LMA scenarios, see Table 3.3. Experimental developments now

effectively rule out the SMA scenario. We note that the lower bound on my

Scenario || mg(eV) tan? fy I/1,
LMA 0.01507 0.2753 0.829724

0.0431 0.02633 0.92852

LOW 0.01614 | 0.5758 x 107% | 0.829687

Table 3.3: Revised values for the lower limit of my.

due to I, /1, has decreased somewhat and that the associated value of tan® @
is considerably larger in both scenarios. In fact, it exceeds the CHOOZ
boundary of tan?8; < 0.026 by an order of magnitude in the LMA. As a
result, in the latter case it is actually the CHOOZ boundary which imposes

the lower limit upon my and so, simultaneously, a lower limit upon 1../7,.

3.2.2 Global analysis.

We now seek to extend the work of [29] by considering the case that the
symmetry relations (3.16) may be fixed using input values removed from the
experimental best-fit. As we have seen in Section 1.2.3, neutrino oscillation
experiments have succeeded in determining allowed regions surrounding the
best-fit points in the parameter space of the neutrino mass matrix. To a
greater or lesser degree, anywhere within these regions could explain the ob-
served behaviour of neutrino fluxes. The degree of certainty to which a point
in the parameter space agrees with experiment is marked by the Confidence
Level (CL). Thus the parameter space is divided by CL boundaries, within
which it can be stated, with a given CL, that the true value of the parameters

is located.



The solar and atmospheric parameters (one mixing angle and one mass-
squared difference each) are confined to closed regions by the CL boundaries.
The solar and atmospheric results thus provide us with definite ranges for
four of the parameters: 8;, Am3,, 6, and AmZ,. The remaining mixing angle,
f3, and mass, myg, are restricted onlv by an upper bound. In the context of
this model, the symmetry relations will now impose additional limits on these
tWO parameiers.

By requiring:

M N? M.

0 = (—T) ol (3.17)
M, M,

= R, — Ry, (3.18)

and expressing this relation using values culled from the allowed regions of
the solar and atmospheric parameters, we obtain an expression in 63 and
mg. We may select a value of 6; (mg) and solve numerically for mqy (83).
To determine the accompanying value of R we may simply substitute the
solution so obtained into either B, or R».

The exact form of (3.18) depends upon the mass hierarchy used. In much
of the following we assume that the neutrino mass spectrum obevs the normal

hierarchy:

my = mg < mg = /M3 +Am; < ms3 = \/mé + Am3, -+ AmZ,.  (3.19)

This assumption follows from [29] where it was shown that the inverted

hierarchy:

mz = mg < m; = \/m% — AmZ, — Am3, < my = /mi — Am%,, (3.20)

where AmZ, < 0, cannot satisfy the bounds on R. Specifically, it can be

shown that, for the best-fit values of the atmospheric and solar parameters,
the inverted hierarchy vields R > 1 in this model, which is disallowed by the
assumption that Msysy < Mpy. as may be seen from the structure of I,
and I, (3.8), which demands the maximum value of R cannot exceed 1.
The interdependence of the three parameters under (3.18), for the best-fit

values of Table 1.1, is shown in Fig. 3.1 for the LMA scenaric and in Fig. 3.2
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Figure 3.1: Behaviour of (a) log#: and (b) R against mg/eV in the LMA

scenario.
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scenario.



for the LOW scenario. The upper panel in each figure shows logi? against
mg with the CHOOZ boundary of t < 0.026 (90% CL) marked; the lower
panel of each shows R against mg with the upper and lower limits on R,
0.8297 and 0.99997 respectively.

An interesting feature is that here we have two distinct solutions in
tan? @5 = ¢2 for both scenarios. These correspond to positive and negative
values of ;. Although, by definition, 0 < 3 < /2 these two sclutions are
still allowed because the Dirac phase, ¢, in (1.24) appears always and only
in conjunction with sin f5. Thus, the apparent 63 < 0 solutions may instead
be associated with the case of § = 7 and so maintain d; > 0. We find the
latter case reproduces the results of [29] when using the data of Table 3.2.
Note that R is plotted for both sclutions in each of the two scenarios but the
curves overlap as to be indistinguishable.

We are faced with four cases cousisting of two solutions, + and — (for
83 > 0 and 63 < 0 respectively), in each of the two scenarios, LMA and
LOW. Each case, henceforth, may be refered to individually as (LMA, +),
(LMA, —), (LOW, +) and (LOW, —); or they may be grouped into both
LMA [LOW] solutions as (LMA, £) [(LOW, +£)], or into the + [—] solutions
of both scanarios as (L, +) [(L, —=)].



We may note several general trends:
e t2 decreases for increasing my in all case
2 g mg in all cases.
e % is asymptotic to a minimum value at large my in all cases.

e 73 is somewhat larger for (LMA, —) [(LOW, —)] compared to (LMA,
+) [(LOW, +)].

e 13 is significantly larger for (LMA, +) [(LMA, )] compared to (LOW,
+) [(LOW, —)]

e R behaves identically for both solutions of (LMA, %) or (LOW, +): it

increases with mg and is asymptotic to 1 at large my.

The last point may be understood in terms of the increasing value of my
diluting the effects of the mass differences as the mass spectrum tends towards
degeneracy. The original symmetry (3.12) exhibits complete freedom in the
mass spectrum, as is seen in the eigenvalues of (3.13). A completely non-
degenerate spectrum will require all four of the parameters in (3.13) to be
defined, whereas a completely degenerate spectrum requires only f and e. In
this sense there is more freedom in the degenerate case and so it is closer to
a state compatibile with the original symmetry and in conjunction with this
the renormalization effects must be weaker and therefore R closer to 1.

It is interesting to note that {3 does not approach zero. In comparison to
the resolution of modern experiment, which prefers #; = 6° (¢3 = 0.011) but
with no statistical weight over 3 = 0 [26], the range of #2 for all solutions,
except (LMA, —), is easily consistent with zero, which is a prediction of the
original symmetry. However, renormalization running explicitly breaks the
symmetry and prevents 3 from reaching exactly zero.

The (L, —) solutions exceed the CHOOZ boundary for sufficiently small
myg. However, for (LOW, —) the lower R bound is reached before this occurs.
These factors are the origin of the exclusion of my = 0 in [29]. Returning
to the results of Table 3.3, we recall that (LMA, —) violates the CHOOZ
boundary for mg < 0.0431 which corresponds to R < 0.92852. Comparing



this relation to Table 3.1, we note that this implies that (LMA, —), at the
best-fit point of the existing experimental data, is incompatible with tan 3 2>
45 .

Of interest too are the constraints on R imposed by the upper bounds
upon my. There is a selection of upper bounds on mg from tritium (3H)
beta-decay [3] and 250v [4] and we tabulate R against these limits in Table

3.4. For larger values of my discrepancies between (LMA, +) and (LOW, +)

Scenario. Upper Bound.
280v 68% CL | 2500 90% CL | 3H 90% CL
0.26eV 0.34eV 2.2eV
LMA 0.99671 0.99806 0.99995
LOW 0.99673 0.99807 0.99995

Table 3.4: Upper limits on R due to large mass constraints on the neutrino.

are reduced and at each of these limits the corresponding values of R are very
similar between the scenarios. The tritium f-decay bound allows R to be as
large as 0.99995 which is very close to the theoretical maximum of 0.99997.
The 250v bounds are more restrictive and require R < 0.997 which may be
interpreted as tan 5 2 13. Although, the tritium $-decay result is the more
trustworthy, the 200v bounds do demonstrate the potential of the model for
placing limits upon the choice of tan 5. This will be more relevant when the
next generation of tritium S-decay experiments [2], which aim to probe the
sub-eV domain, begin to take data.

The behaviour described above is in the case of the best-fit values of the
solar and atmospheric oscillation parameters. For the most part the general
properties will remain unaltered as the input values depart from this ideal
case. However, details such as the asvmptotic value of 5 or the exact values

at which certain boundaries are crossed will vary.
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Figure 3.3: Contours (broken) of (+%3)% =0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20, 50,
100, 200%107° for mg = 0.26eV in the space of solar parameters (Am3, /eV?
against t2) around the LMA region (90, 95%CL).

3.2.3 Space of solar parameters.

Firstly we will examine the dependence of the model upon the solar param-
eters. We determine how the model varies across the space of solar param-
~ eters, keeping the atmospheric ones fixed at the best-fit. It is obvious from
the different specific behaviours of the two solar scenarios that there is some
dependence upon the solar parameters. This dependence is illustrated in Fig.
3.3 and Fig. 3.4, which show contours of t3 in relation to the LMA region of
the solar parameter space.

Generally, the model turns out to have only very slight dependence upon
t,, which is a consequence of &, being undetermined by the exact symmetry,

before RG effects are taken into account. More significant is the dependence
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Figure 3.4: Contours of (—#3)% =0.001, 0.002, 0.005, 0.01, 0.02 (broken) and
0.026 (solid) for mg = 0.26eV in the space of solar parameters (Am2, /eV?
against #7) around the LMA region (90, 95%CL).
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upon Am3,, which essentially accounts for all differences between the two
solar mixing scenarios. We note that, for fixed mg, ¢3 and R both increase
with increasing Am3,, though R varies very slowly.

Fig. 3.3 shows contours of 3 for mg = 0.26e¢V which is the upper limit
(68%CL) on myg from the Heidelberg-Moscow experiment. These contours
represent the solution of ¢3 > 0. They are superimposed upon the vicinity of
the LMA scenario, the allowed region of which is indicated at 90 and 95%
CL by the closed curves (inner and outer respectively) which surround the
best-fit marked by a diamond. Between the 90%CL boundaries 3 varies
between 0.2 x 1075 and 5.0 x 107%. Although this is-more than an order of
magnitude, the entire range is easily consistent with existing limits on 3, as
was discussed previously, and cannot be tested in the forseeable future.

Fig. 3.4 likewise shows contours of #2 for mgy = 0.26eV . Here, however,
the solution of t3 < 0 is represented. Overall the trend is very similar but,
as expected, 2 is much larger. In fact it exceeds the CHOOZ boundary
(solid curve) in the large Am3; part of the LMA region. The 90 and 95% CL
boundaries shown are calculated in [24] under the assumption that ¢3 = 0.
However, studies such as [26] indicate that the LMA region is altered little
even for 3 as great as 0.05 [26] and so it is still reasonable to compare the
LMA boundaries shown with the contours, even up to the CHOOZ boundary.
With this value of myg, all Am3, > 8.32 x 107° within the LMA 95%CL
boundary are excluded by the CHOOZ limit. A larger value of mg makes
little difference to the position of the CHOOZ boundary. On the other hand,
if my were smaller #2 would be boosted and the CHOOZ boundary would
migrate towards smaller AmZ,, eventually encompassing the best-fit point.
This is the origin of (LMA, —) exceeding the CHOOZ boundary.

3.2.4 Space of atmospheric parameters.

Now we turn to the atmospheric parameters. We keep the solar parameters
fixed at their best-fit values and examine the behaviour of the model for

variations in Am2, and 2.



Here the dependence upon the mass-squared difference, AmZ,, is the more
simple of the two parameters. As it increases, for fixed my, 2 and R are
both suppressed. Again, in this model moving away from degeneracy is tied

to stronger RG effects (smaller R).

Behaviour at tanf, = 1.

The dependence upon the mixing angle, 2, presents special circumstances.
R depends more strongly upon #2 than on the other parameters and as the
latter falls, with fixed mg, R increases. Now, when 6y = 7/4 there is exactly
maximal mixing between the second and third generations, which is a pre-
diction of the symmetric matrix before RG effects are introduced. Thus, this
corresponds to the case of no RG evolution so that R = 1 when # = 1 no
matter the values of the other parameters. Crucially, this means that R > 1
for all 2 < 1 (see Fig. 3.5) and this region, which represents up to half of
the experimentally allowed atmospheric parameter space, is forbidden by the
model.

This raises the spectre of the inverted hierarchy which, we recall, was

disallowed by the upper bound on R for the case of best-fit values as inputs.
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Figure 3.5: R against t3: B > 1 for ¢2 < 1, under the normal hierarchy.
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Figure 3.6: R against t3: R > 1 for £ > 1, under the inverted hierarchy.

But it is reasonable to assume that if (R — 1) changes sign at t3 = 1 for the
normal hierarchy the same will be true for the inverted, and so there will be
an allowed region for the latter where ¢2 < 1. This is indeed the case, as is
seen in Fig. 3.6, but we will not study this region in detail as it excludes the
best-fit value.

Now, in the limit of vanishing 5, where solar and atmospheric mixing
decouple, the experimentally allowed region in the atmospheric parameter
space is symmetrical about ¢2 = 1 because two neutrino vacuum oscillations
depend upon sin® 26, which is symmetrical about § = 7/4. With this in
mind, it is interesting that this model predicts small 83 but also excludes one
of the resulting redundant regions of the parameter space. We will examine

this a little more closely in the conclusion.



The behaviour of ¢3 at {5 = 1 is also noteworthy. One might now expect
that with ¢ty = 1 recreating the exact symmetry, we would find that it coin-
cides with ¢3 = 0. This is not quite true. As we approach t; = 1 from large
to the behaviour of #; is quite different between (L, +) and (L, —) (see Fig.

3.7 and Fig. 3.8 respectively). In the former case t2 drops towards zero

.
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Figure 3.7: log((+t3)?) against t3 across ¢3 = 1.
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Figure 3.8: log((—1#3)?) against t3 across {3 = 1.



and in the latter it actually diverges. But, when approaching t3 = 1 from
small ?,, the roles are reversed. Thus, at exactly ¢, = 1, 3 is ill-defined and

consistent with zero.
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Behaviour in the full parameter space.

The distinet behaviours of (L, +) and (L, —) around ¢} = 1 lead to quite
different trends across the full parameter space as shown in Fig. 3.9 and Fig.
3.10. Note that, following the previcus discussion, we have discarded the
R > 1 region which also avoids the divergence of ¢3 for (L, —).

Fig. 3.9 shows contours of ¢ for the #3 > 0 solution, superimposed
upon the experimentally allowed region. In accordance with our previous
observations, {2 = 0 at #2 = 1 and it is apparent that #; is easily consistent
with zero across the entire displayed area of the parameter space. Thus the 90
and 95% CL boundaries shown here (the closed curves) are those calculated
in [26] at t3 = 0.
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Figure 3.9: (LMA, +) contours (broken) of (+#3)* =0.5. 1.0, 5.0, 10.0,
50.0, 100.0 x107° for my = 0.05¢V, in the space of atmospheric parame-
ters (Am32,/eV? against 3) with the allowed region shown at 90 and 95%CL
for 2 = 0.0.
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Figure 3.10: (LMA, —) contours of (—#3)? =0.001, 0.002, 0.005, 0.01, 0.02
(broken) and 0.026 (solid) for mp = 0.05eV, in the space of atmospheric
parameters (Am2,/eV? against £2) with the allowed region shown at 90 and
95%CL for ¢3 = 0.01.
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Fig. 3.10 also shows contours of ¢, but these are calculated from the
t3 < 0 solution. The divergent behaviour along ¢3 = 1 is clear as the CHOOZ
boundary is exceeded for all small 2.

These plots are representive: (LOW, &) will exhibit similar trends but
will be characterised by much smaller #2. Thus #2 will be consistent with zero
across most of the parameter space for all of the solutions except (LMA, —),
for which the CHOOZ boundary is violated across a non-negligible region
at small #3. This will lead to difficulties in comparing (LMA, —) with the
results of [26] which are presented in terms of planes of constant #2. We will

address these difficulties later.



Considering (LOW, =) and (LMA, +), for fixed my, the lower R bound
excludes an area of large 2 and large Am2. At lower values of my, the
excluded area expands as in Fig. 3.11 and Fig. 3.12. Thus, the lower R
bound is mobile (as mg varies) but the upper bound is essentially fixed very
close to t2 = 1. When the excluded area expands to include the best-fit (Fig.
3.12), which is marked by a cross, we have the minimum myg prediction. In
essence, for larger values of myg there is better agreement between this model
and experiment. As mg decreases more of the experimental region is excluded
and the level of agreement worsens, until the situation becomes untenable
when the best-fit point is excluded.

With this in mind we can claim that Fig. 3.11 represents a state of 95%

agreement with experiment. Thus, we may state 0.01614 < my < 0.0500

o, v,
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Figure 3.11: (LOW. +) contours of R =0.84, 0.86, 0.88, 0.90, 0.92, 0.94,
0.96, 0.98 (broken) and 0.8297, 0.99997 (solid) for my = 0.05eV, in the space
of atmospheric parameters (Am32,/eV? against 12) with the allowed region
shown at 90 and 95%CL for 3 = 0.0.
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Figure 3.12: (LOW, +) contours of R =0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96,
0.98 (broken) and 0.8297, 0.99997 (solid) for my = 0.01614eV, in the space
of atmospheric parameters (Am32,/eV? against ¢2) with the allowed region
shown at 90 and 95%CL for 2 = 0.0.



with 95% CL. Now, Fig. 3.11 and Fig. 3.12 are indicative of the behaviour
of (LOW, &) and also of (LMA, +). So, in this way we may formulate
prefered ranges for myg in each of these solutions, which are listed in Table
3.5.

Solution. Range. (eV)

90% CL 95% CL

(LMA, +) | 0.01507 < mg < 0.0468 | 0.01507 < mg < 0.0499
(LOW, 4) || 0.01614 < my < 0.0470 | 0.01614 < my < 0.0500

Table 3.5: Prefered ranges of my for (LMA, +) and (LOW, +).

Note that these ranges are significantly more strict than those currently
imposed by both tritium S-decay and 280v experiments.

The above behaviour in the atmospheric parameter space is for a fixed
value of mg, which leaves {3 as a free parameter. This is reasonable for all of
the solutions except (LMA, —) because t3 remains small across the region of

interest. But to compare (LMA, —) with experiment we must fix 3.
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For fixed {3 the model becomes verv sensitive to variation of the atmo-
spheric parameters. This may be understood by recalling the asymptotic
nature of {3 at large myg, and that when the input parameters are varied the
asymptotic value will be altered.

Consider Fig. 3.13:
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Figure 3.13: The asymptotic behaviour of #3 against mg: the lower curve is

calculated at the best-fit, the upper curve is at t3 = 2.0.

we choose a specific value of t3 at which to examine the solutions of the
model. If the inputs are varied in such a way that one of the solutions
becomes asymptotic close to this value, we will see my varying very rapidly,
for even small changes in the asymptote: i.e. small changes in the input
parameters. Indeed, it becomes impossible, at any reasonable resolution, to
distinguish mgy ~ 0.2eV from the direct-search bound of mg = 2.2eV (see
Fig. 3.13).

Going a step further, it is apparent that certain values of the inputs, will
not allow a solution for a given value of t3: the asvmptote of the solution
will be greater than the chosen value of # within a certain region of the
parameter space.

Consequently, with fixed ¢ we find that (LMA, —) is insoluble within
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a region of the atmospheric parameter space, at the boundary of which myg
diverges. The forbidden region is at small ¢2 for all Am3,. This is apparent
in Fig. 3.14, where the close spacing of the left-most contours, namely 0.1

and 0.2eV is indicative of the divergence close to them.
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Figure 3.14: (LMA, —) contours of my =0.005, 0.02, 0.05, 0.1 and 0.2eV for
(—t3)? = 0.01, in the space of atmospheric parameters (Am2,/eV? against
t3) with the allowed region shown at 90 and 95%CL for #3 = 0.01.
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Of special interest are the contours of R as seen in Fig. 3.15. R = 0.9999
coincides with the divergent boundary of myg, as might be expected from the
asymptotic behaviour of R at large mg. The lower bound of R is quite nearby
and in effect only a narrow band of the experimentally allowed region is in

agreement with the requirements of the symmetry here.

1e-3 2.0 3.0 4.0 5.0 607.0 90

Figure 3.15: (LMA, —) contours of R =0.8297 (right) and 0.9999 (left) for
(—t3)% = 0.01, in the space of atmospheric parameters (Am32,/eV? against
t3) with the allowed region shown at 90 and 95%CL for 3 = 0.01.
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Figure 3.16: (LMA, —) contours of R =0.8297 (right) and 0.9999 (left) for
(—t3)? = 0.026, in the space of atmospheric parameters (Am2,/eV? against
t2) with the allowed region shown at 90 and 95%CL for #5 = 0.01.

If #2 is altered, the width of this band varies little and so there is no
means of identifying a favoured set of parameters as was the case for (LOW,
+) and (LMA, +). For example in Fig. 3.16 we see that the band between
the R boundaries now contains the best-fit point (cross) and there may be
marginally less overlap with the experimentally allowed region, compared
to Fig. 3.15, but this is far from certain. We conclude that there are no

particular limits on the (LMA, —) solution, using this means of analysis.



A 2-3 exchange symmetry within the neutrino mass matrix, as it is defined
at an energy scale appropriate to the See-saw mechanism and below which
Supersymmetry is dominant, is consistent with current experimental data,
as it is understood within the context of neutrino oscillations. The simple
relationships of the exact 2-3 symmetry become quite complex under the
influence of Renormalization Group running through the Supersymmetric
regime. Through this process the parameters of the mixing matrix are inter-
related, altering and distributing the effects of the original symmetry to in-
clude much of the matrix. In addition, the dynamics of the Renormalization
Group Equations introduces new relationships and constraints. In this way,
the possible range of tan 5 can restrict the size of a mass eigenvalue and the
allowed range of the mass can then have its own effect upon the choice of
tan 3.

Of particular interest is the robustness of the prediction of a minimum
neutrino mass, first introduced in [29]. If the 2-3 symmetry is realised in na-
ture and Supersvmmetry does replace the Standard Model at higher energies,

we have found that we can claim:
0.01614 < my < 0.05 (3.21)

with 95% Confidence Level. This statement is not only more stringent than
current experimental bounds but also accessible to experiments planned for
the near future [2].

By reflecting back the requirements upon mq and 3 we have been able

to comment upon the relevance of tan 8 in the context of this model. A

71



general result is that tan § 2> 13, though this depends upon assumptions
within the anaylsis of 260v. Additionally, for (LMA, —) alone there is a
further constraint: tan 8 < 45, which comes from the inherently large values
of #2 in this solution.

Other qualitative properties are equally important. The fact that this
model distinguishes markedly between #3 > 0 and 63 < 0 or, equivalently,
¢ = 0 and 7 gives us, at least in principle, a direct means of determining the
Dirac phase in the neutrino mixing matrix.

Also, part of the LMA region in the solar parameter space is ruled out by
the requirements of the symmetry in conjunction with the CHOOZ boundary,
but the best-fit point remains within the allowed area.

Finally, perhaps the most interesting feature of this model is that it effec-
tively halves the experimentally allowed region in the atmospheric parameter
space. Furthermore, for the normal hierarchy, the symmetry prefers that part
of the space containing the experimental best-fit and predicts the current
condition of a very small but non-zero reactor angle. Experimentally, the
svmmetry of the atmospheric parameter space is itself broken by the non-
vanishing reactor angle. For the 2-3 model the symmetry is broken by RG
effects and a non-vanishing reactor angle is the result. It is intriguing that
both broken symmetries should prefer the same region of parameter space

and with the same criterion of non-zero 85.



Contraction and

elations.

In D dimensions the set of f(D) x f(D) (f(4) = 4) y-matricies is:
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Standard Integrals.

After Feynman parameterisation we may use the following:

/&Dk—————-—k“ =0
. (;{72‘{—8)"’ -

deﬂZ‘f__ — nD/2 Fin—-(D/2)-1) g
. ’ (k? -+ 5)71 — 2f<7l) (D721
aD]q___i‘i_.._ — pD/? Cn—(D/2)-1) D
(k2 +s)m | 5T (n) prorg oy

=J
=N



[1] F.Reines from the Preface of ‘Spaceship Neutrino’ (Cambridge Univer-
sity Press, Cambridge, 1992), by Christine Sutton, xiii.

(2] A. Osipowicz et al. (KATRIN Coll.), (2001) hep-ex/0109033.

(3] J. Bonn et al., Nucl. Phys. Proc. Suppl. 91 (2001) 273.

[4] H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147,
[5] H. V. Klapdor-Kleingrothaus ef al., (2002) hep-ph/0201231.

[6] F. Reines, C. L. Cowan, Jr., Phys. Rev. 92 (1953) 8301;
C. L. Cowan et al., Science 124 (1956) 103.

[7] D. E. Groom et al. (Particle Data Group), Eur. Phys. J. C15 (2000).
[8] B. Pontecorvo, J. Exptl. Theoret. Phys. 33 (1957) 549.

9] G. Danby et al., Phys. Rev. Lett. 9 (1962) 36.

[10] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870

[11] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531;
M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

[12] L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
[13] S. P. Mikhevev and A. Yu Smirnov, Yad. Fiz. 42 (1985) 1441.

i14] R. Davis, Jr., D. S. Harmer and K. C. Hoffman, Phys. Rev. Lett. 20
(1968) 1205.

~J

Q1



[15] J. N. Bahcall, H. M. Pinsonneault and S. Basu, Astrophys. J. 555 (2001)
99§,
A. R. Junghans et al., Phys. Rev. Lett. 88 (2002) 041101;
J. N. Bahcall, M. C. Gonzalez-Garcia and C. Penia-Garay, (2001) hep-
ph/0111150.

[16] G. Fiorentini, B. Ricci and F. L. Villante, Nucl. Phys. Proc. Suppl. 85
(2001) 116;
J. Christensen-Dalsgaard, (2002) astro-ph/0207403.

[17] B. T. Cleveland et ol., Astrophys. J. 496 (1998) 505;
K. Lande et al., Nucl. Phys. Proc. Suppl. 77 (1999) 13.

(18] V. N. Gavrin et al. (SAGE Coll.), Nucl. Phys. Proc. Suppl. 91 (2000)
36.

[19] W. Hampel et al. (GALLEX Coll.), Phys. Lett. B 447 (1999) 127.
[20] M. Altmann et al. (GNO Coll.), Phys. Lett. B 490 (2000) 16.
[21] Y. Fukuda et al. (Kamiokande Coll.), Phys. Rev. Lett. 77 (1996) 1683.

[22] S. Fukuda et al. (SuperKamiokande Coll.), Phys. Rev. Lett. 86 (2001)
5651.

(23] A. B. McDonald et al. (SNO Coll.), Nucl. Phys. Proc. Suppl. 91 (2000)
21.

[24] J. N. Bahcall, M. C. Gonzalez-Garcia and C. Pefia-Garay, (2002) hep-
ph/0204314.

[25] T. Toshito et al. (SuperKamiokande Coll.), (2001) hep-ex/0105023;
W. W. M. Allison et al. (Soudan Coll.), Phys. Lett. B 449 (1999) 137;
M. Ambrosio et al. (MACRO Coll.), Phys. Lett. B 517 {2001) 59.

[26] M. C. Gonzalez-Garcia and Y. Nir, (2002) hep-ph/0202058.



[27] S. M. Bilenky, J. Hosek and S. T. Petcov, Phys. Lett. B 94 (1980) 495;
P. Langacker, S. T. Petcov, G. Steigman and 5. Toshev, Nucl. Phys. B
282 (1987) 589.

[28] M. Apollonio et al. (CHOOZ Coll.), Phys. Lett. B 466 (1999) 415,
[29] C. S. Lam, Phys. Lett. B 507 {2001) 214.

[30] F. Halzen and A. D. Martin, Quarks and Leptons, John Wiley and Sons
(1984) 0471887412

[31] R. N. Mohapatra and G. Senjanovié, Phys. Rev. Lett. 44 (1980) 912.
[32] E. Kh. Akhmedov, (2000) hep-ph/0001264.

[33] F. Mand! and G. Shaw, Quantum Field Theory, John Wiley and Sons
(1993) 0471941867

[34] T. P. Cheng, E. J. Eichten and L. F. Li, Phys. Rev. D 8 (1974) 2259.
[35] H. Murayama, (2000) hep-ph/0002232.

[36] B. Grzadkowski, M. Lindner and S. Theisen, Phys. Lett. B 198 (1987)
64.

[37] J. Ellis and S. Lola, (1999) hep-ph/9904279.

[38] M. C. Gonzalez-Garcia, M. Maltoni, C. Pefia-Garay and J. W. F. Valle,
Phys. Rev. D 63 (2001) 033005.

-3
=3



