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A.bstract 

Kinematically redundant manipulators composed of a rigid-link, rigid-joint robot and 

a structurally flexible arm on top of which the former is located constitute a new 

paradigm of long-reach manipulation systems. In order to have the end-effector of 

such a system faithfully follow a preplanned path, one should be able to reliably 

monitor the motions of the flexible submanipulator due to its elastic deformations. 

To this end, it is proposed that redundant point-acceleration measurements made on 

the rigid-robot base be used in an extended Kalman filter to estimate the fiexural 

states of the flexible submanipulator. More specifically, this is do ne by processing the 

above-mentioned acceleration data in a novel pose and twist estimation technique, 

formulated in this thesis, to obtain those of the tip of the flexible arm; the pose 

and the twist data are then utilized as the measured outputs for the observer. Of 

course, the state-output relations should be linearized; the linearization is performed 

in closed-form. 

The mathematical models of the flexible and the rigid submanipulators are de­

rived separately, each through the premultiplication of the transpose of the kinematic­

constraint matrix by the assembled set of the link Lagrange equations; this matrix 

is the natural orthogonal complement of the kinematic-constraint wrench. Obviously, 

the reaction wrench acting between the rigid-robot base and the end-effector of the 

flexible submanipulator couples the two sets of dynamics equations. This wrench can 

be determined by substituting the twist-rate of the base, i.e., its angular and trans­

lational accelerations, into the dynamics equations of the rigid submanipulator and, 

subsequently, solving them. Then, considering the wrench as a time-dependent input 

for the flexible arm, we take the flexible-arm dynamics as the modelled dynamics in 

the observer. The reduced-order dynamics helps dramatically reduce the required 

floating-point operations within the observer. 



Two redundancy-resolution techniques, namely, rigid-link redundancy resolution 

and fiexible-link redundancy resolution, are discussed. Whereas the former assumes 

all the links to be rigid, the latter takes the flexibility effects into account. In both 

approaches, the self-motion of the system is computed so as to minimize the forces 

exciting its lowest "modal coordinates" while imposing a proportional damping on 

the flexural dynamics. 

ii 



R,ésumé 

Les manipulateurs cinématiquement redondants, composés d'un robot ayant des 

liens rigides et des joints rigides montés sur un bras à structure flexible, constituent 

un nouveau paradigme pour les systèmes de manipulation de longue portée. Afin 

de permettre à l'effecteur de ce système de suivre une trajectoire prédéterminée, 

nous devons être capables de surveiller d'une façon fiable les mouvements du sous­

manipulateur flexible dus à ses déformations élastiques. À cet effet, des mesures 

redondantes de l'accélération de points situés sur les liens flexibles seront utilisées 

comme données dans un filtre de Kalman, de type étendu, dans le but d'estimer 

les états flexibles du sous-manipulateur flexible. Plus précisément, ceci est réalisé en 

traitant les données d'accélération mentionnées ci-dessus avec une nouvelle technique 

d'estimation, développée dans le cadre de la présente thèse, dans le but d'obtenir la 

position et l'orientation du bout du lien flexible; la situation et le torseur cinématique 

seront ainsi les sorties mesurées pour l'observateur. Bien sûr, nous devons linéariser 

les relations état-sortie; ceci est effectué sous forme symbolique. 

Les modèles mathématiques des sous-manipulateurs rigides et flexibles sont for­

mulés séparément, en multipliant la transposée de la matrice de contraintes cinéma­

tiques par l'ensemble des équations Lagrange de chaque lien; la matrice en ques­

tion constitue le complément orthogonal naturel du torseur statique de contraintes 

cinématiques. Evidenment, le dit torseur de réaction agissant entre la base du robot 

rigide et l'effecteur du sous-manipulateur flexible effectuera le couplage des deux en­

sembles des équations dynamiques. En substituant les accélérations, angulaire et 

punctuelle, de la base, soit la dérivée temporelle du torseur cinématique de la base, 

le torseur statique est déterminé en résolvant les équations dynamiques du sous­

manipulateur rigide. Ensuite en considérant le torseur statique comme une entrée 

variable dans le temps pour le manipulateur flexible, sa modélisation dynamique 
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sera. utilisée dans l'observateur. Le modèle dynamique d'ordre plus petit réduit con­

sidérablement les opérations à virgule flottante requises dans l'observateur. 

Deux techniques de résolution de redondance, à savoir, la résolution de redondance 

des liens rigides et la résolution de redondance des liens flexibles sont discutées. Alors 

que la première suppose que tous les liens sont rigides, la deuxième tient compte de 

l'effet de la flexibilité sous-jacente. Dans les deux approches, le mouvement propre­

selJ.motion en anglais-du système est calculé de façon à minimiser les forces qui 

excitent les "coordonnées modales" les plus basses, tout en imposant une atténuation 

proportionnelle sur la dynamique flexible du système. 
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Claim of Originality 

The ideas expressed in this thesis, to the best of the author's knowledge, are original1. 

The contributions of this thesis are listed below: 

•• Novel algebraic definitions for the twist and the Jacobian-in the context of 

kinematic chains-have been proposed . 

•• The partial derivative of the angular velo city of a body in a seriaI kinematic 

chain-structurally flexible or otherwise-with respect to the chain generalized 

coordinates has been derived in closed Jorm. The relation has then been ex­

tended to obtain the linearized kinematic relations of such manipulators. 

'. The use of accelerometer arrays for the estimation of the complete pose and 

twist of rigid bodies has been proposed. The effect of the accelerometer-array 

attitude errors on the accuracy of the results has been recognized; to alleviate 

these errors, two attitude-calibration techniques for accelerometer arrays have 

been developed. 

• An observer structure that is based on the dynamics of the flexible submanipu­

lat or alone has been proposed. 

• An algorithm for fiexible-link redundancy resolution has been formulated. 

• A novel formulation for the pose-error vector has been given. 

• The use of proportional-damping properties in a trajectory-tracking control of 

manipulators with flexible and rigid subsystems has been proposed; with this 

approach, the control law can conditionally stabilize the flexural motions. 

lSome of the results reported in this thesis have in part been published in (Parsa et al., 2001; 
2002a;b). 
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Chapter 1 

IIltroduction 

1.1 Background 

In many practical applications involving long-reach manipulation it is desirable to have 

a smaller manipulator located at the end of a larger arm to perform specific tasks. 

The larger arm, named macro-manipulator, does the coarse positioning, whereas the 

smaller manipulator, called micro-manipulator, performs the task requiring fine posi­

tioning. 

Many potential applications of such kinematically redundant systems, ranging 

from the Mobile Servicing System (MSS) of the International Space Station to the 

aircraft industry, and to in-situ robotic brick masonry, have been explored (Robins, 

1997). Particularly, in the case of the MSS, shown in Fig. 1.1, the system has been 

designed to execute a variety of tasks which are not easily performable otherwise, 

such as cleaning the solar panels. As seen in the figure, the MSS comprises three 

subsystems: The Mobile Base System; the Space Station Remote Manipulator System 

(SSRMS), a.k.a. Canadarm2, which acts as the macro-manipulator; and the dual-arm 

Special Purpose Dexterous Manipulator (SPDM), which is to take on the role of the 

micro-mani pulator. 

As an alternative to the macro-micro structure, one can use a stationary robotic 

manipulator. In that case, however, in order to carry out such tasks as shot-peening, 

painting, stripping, cleaning, and deicing of aircraft, large robots will be required; like 
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Figure 1.1: The Mobile Servicing System (http://www.mdrobotics.ca) 

the robotic aircraft-cleaning system shown in Fig. 1.2. 

The macro part of the macro-micro setup is often structurally far more flexible 

than its micro counterpart. This is especially true for space applications because, as 

Book (1993) put it, "space mearis long and lean." 

For a particular macro-micro system, the great difference in the flexibility of the 

two subsystems can be ascertained by comparing the lowest of the link natural frequen­

cies of the micro-manipulator with that of the macro-manipulator. If the frequency 

pertaining to the latter is several orders of magnitude below the one pertaining to 

the former, then, for an analysis purposes, the micro-manipulator can be assumed to 

have rigid links-despite the physical impossibility of rigidity (Resnick, 1968). More­

over, the macro-manipulator should be assumed to have flexible links and be modelled 

accordingly. Otherwise, the flexibility can cause inaccuracies in the Cartesian trajec­

tory of the end-effector, which, if not negligible, may result in serious damage to the 

workpiece, to the environment, or even to both. 

Obviously, the above-mentioned inaccuracies can occur regardless of the size ratio 
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Figure 1.2: A robotic aircraft-cleaning system 
(http://www.putzmeister.de) 

Figure 1.3: A micromachined triaxial acceler­
ometer (http:// 

www.sandia.gov/micromachine) 

of the two submanipulators1. Therefore, we henceforth relax the implicit size-ratio 

condition and, by generalization, call the two subsystems the flexible submanipulator 

and the rigid submanipulator. 

Effective control of a manipulator having flexible links, in addition to a correct dy­

namics model, requires accurate information on the states of the system. Apparently, 

for a flexible-link manipulator, the states must-in sorne form-include the flexural 

generalized coordinates and the flexural generalized velocities of the flexible links. The 

flexural generalized coordinates, or flexural coordinates for brevity, are understood here 

as a set of real variables that can describe the deformed shape of a structurally flexi­

ble link or system in a discretized sense. These coordinates can be, for example, the 

nodal displacements in a finite-element mesh, the end-point displacements of the flex­

ible links, or the generalized coordinates used in the assumed-modes method. These 

generalized coordinates along with their time-rates of change, the flexural generalized 

velocities, constitute the fiexural states. 

1 In fact, if the micro-manipulator is multiple orders of magnitude smaller than its macro coun­
terpart, as the terms suggest, its motions will clearly have no significant effect on the dynamics of 
the macro-manipulator. 
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Figure 1.4: An accelerometer array 

Most of the times, however, the fiexural states cannot be measured directly and 

thus, should unavoidably be inferred from other measurements using astate estimator. 

In this thesis, we propose a procedure through which these states can be estimated 

using the position, orientation, velo city, and angular-velocity data of the base of 

the rigid submanipulator. These data can be inferred from the point-acceleration 

information acquired from an accelerometer array, which is an instrument composed 

of a kinematically redundant set of triaxial accelerometers; a typical micromachined 

triaxial accelerometer and a prototype array are shown in Fig. 1.3 and 1.4, respectively. 

1.~2 Pose and Twist Estimation 

The real-time estimation of the pose-position and orientation-and the twist­

velo city and angular velo city-of rigid-bodies has been the focus of extensive research 

for several decades, the principal reason, perhaps, being its application in the guid­

ance and navigation of aircraft, spacecraft, and satellites. However, new applications 

are being found in the realm of robotics and automation; mobile robots are sometimes 

equipped with systems that can help determine pose and twist, for example. 
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Figure 1.5: A rate-gyro (http:// 

www.spp.co.jp/SSSj/sirikon-e.html) 

Figure 1.6: A three-axis rate-gyro (http:// 

www.spp.co.jp/sssj/sirikon-e.html) 

In inertial navigation systems, aceelerometers have long been used beside other 

sensors such as rate-gyros, inclinometers, or combinat ions thereof to determine the 

pose and twist of moving bodies. In such a system, the rate-gyro-which may look like 

one ofthe sens ors shown in Figs. 1.5 and 1.6-is used to measure the absolute angular 

velo city, upon the numerical integration of which the body attitude is obtained. Then, 

by reading the aceelerometer signaIs, the navigation system can determine an inertial­

frame representation of the absolute aceeleration of the body (Grubin, 1973). Next, 

this acceleration is integrated to infer the full twist and pose of the body. Sinee 

different types of sensors are used in these systems, sensor-data fusion becomes an 

issue; the aceelerometer being a part of the sensor system, its readouts are fused with 

the signaIs from the other sensors through applicable kinematic relations and noise 

models. Such an approach has been used in a number of works, sorne of which are 

reviewed below. 

Vaganay et al. (1993) and Vaganay and Aldon (1994) described an attitude-

estimation algorithm for mobile robots; in the algorithm, five inertial sensors-two 

single-axis aceelerometers and three rate-gyros-were used in addition to an odometer 

to estimate the roll, pitch, and yaw angles. The attitude was calculated in two dif-

5 
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ferent ways: The first was based on the roll and pitch angles estimated by measuring 

the components of the gravitational acceleration with the accelerometers2 ; the sec­

ond, however, was based on obtaining all three angles via integration of the rate-gyro 

data using a third-order Runge-Kutta method (Grubin, 1973). Finally, the authors 

fused the two sets of pitch and roll results together through an EKF to obtain better 

estimates, but, due to the complexity of the dynamics of the underlying system, a 

rate-gyro noise model was utilized as the system dynamics instead. 

Markley et al. (1994) reported a spacecraft attitude-estimation algorithm which 

fused the rate-gyro data with that of one or more sensors of other types such as star 

trackers or magnetometers. The measurement system did not include any accelerome­

ter, but the data filtering was still performed based only on kinematic relations and a 

gyro-drift model, i.e., the spacecraft dynamics was not involved. The approach taken 

in this reference was deterministic, meaning that the system and the measurement 

pro cess as well as the errors were assumed to be deterministic while the errors were 

considered unmeasurable. The algorithm proposed by the authors was Hoo-based, and 

the resulting filter could thus be seen as an extended Hoo filter, due to the nonlinearity 

of the equations. The authors gave a necessary condition for the boundedness of a 

"generalized estimation error." 

In (Baerveldt and Klang, 1997), a low-cost, low-weight attitude-estimation system 

was proposed for autonomous helicopters. The system comprised a dual-axis incli­

nometer and a rate-gyro. The sensor signaIs were conditioned using analog filters 

that produced independent attitude estimates, and the sensor-data fusion was sim ply 

performed by directly summing up the output of the filters. 

Roumeliotis et al. (1998; 1999a) discussed the problem of attitude estimation for 

mobile robots in the plane. To determine the yaw angle of the robot, they suggested 

two separate measurements: The angular velocity of the robot about an axis perpen­

dicular to the plane of motion using a single-axis rate-gyro, which-upon integration-

2The authors of the cited references stated that it is impossible to obtain the yaw angle using 
accelerometers. Obviously, this is so if insufficient acceleration measurements are available. 
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could produce an online estimate for the body attitude, represented by the angle of 

rotation; and the absolute orientation of the body measured by another sensor that 

could give attitude information only intermittently. The authors argued that using 

a model for gyro bias relieves one from the trouble of the dynamics modelling al­

together; consequently, the results obtained would bec orne applicable to any other 

sim:ilar attitude-estimation problems, whether that of mobile robots or otherwise. 

Through Kalman filtering the rate-gyro signal, Roumeliotis et al. integrated the gyro 

signal to obtain rather accurate estimates for the yaw angle. 

The same problem in three dimensions, mostly motivated by the localization prob­

lem of Mars rovers, was studied in (Roumeliotis et al., 1998; 1999b), where an instru­

mentation system composed of three rate-gyros, three single-axis accelerometers, and 

a sun sensor was proposed. While the gyro signaIs were integrated forward in time 

to provide estimates of the attitude of the body as it moved, the accelerometers and 

the sun sensor were used to obtain more accurate data on the orientation of the robot 

when it stopped. Then, the accurate data collected were propagated backward until 

the robot previous stop, to obtain another set of estimates for its attitude over the 

time-interval. Next, a smoother was introduced to reconcile the attitude estimates 

obtained by both the forward and the backward filters. Finally, the smoothened ori­

entation results were used along with acceleration signaIs to obtain an estimate of the 

position vector of the robot. 

Rehbinder and Hu (2001) studied the problem of attitude estimation for walking 

robots, which usually experience periods of abrupt variations in their acceleration, 

using a triaxial rate-gyro and a triaxial accelerometer. These researchers partitioned 

the entire manoeuvre time to an alternating sequence of low-acceleration and high­

acceleration periods. Over the former periods, they suggested using the accelerometer 

readouts, which are proportional to the components of the gravitational acceleration, 

as the output of the dynamic system represented by the kinematic differential rela­

tion between the attitude and the angular velo city of the body. The body attitude, 
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represented by one column of the rotation matrix from a body-attached frame to an 

inertial frame, was obtained using a "linear" Kalman filter, as opposed to an EKF. 

Over the latter periods, however, the system became unobservable, and an estimate 

of the attitude was obtained by numerically integrating the differential kinematic re­

lation, which could be thought of as another Kalman filter with no feedback, the 

authors assert. In other words, the attitude was calculated through switching back 

and forth between these two Kalman filters. 

In order to time-discretize the system dynamics equations, Rehbinder and Hu 

integrated the kinematic relation in "closed form," as though the angular velo city 

remained constant over the sampling period. Then, based on the assumption that 

the dynamics equations were linear, they showed that, under certain conditions, the 

system is stochastically observable, the attitude-estimation algorithm thus being con­

vergent. However, the dynamics model was actually a linearized one, and the Kalman 

filter was indeed an EKF. 

Liu and Pang (2001) reported a mobile-robot positioning system in which the sig­

naIs from a two-axis solid-state accelerometer were integrated twice to estimate the 

robot position vector. Recognizing the divergence of the integration results from the 

actual values, the authors suggested, without actual implementation, that the "peri­

odic recalibrations" of the positioning system with the aid of other kinds of sensors 

which can independently measure the robot position, velo city, and attitude could 

avert the instability problem. Liu and Pang also proposed Kalman filtering to fuse 

the sens or data without having to involve the motion dynamics. Sorne experimental 

results collected while displacing the positioning system by the end-effector of a Sony 

SRX-410 robotic arm were reported. 

As seen from the references cited ab ove , the problem of dynamics complexity, in 

this context, has been addressed in the literature. Moreover, although accelerometers 

have long been employed not only in vibration- and impact-related measurements but 

also in inertial navigation systems to infer the position and velo city of moving objects, 
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they had neve been considered to be used alone for real-time, complete pose and twist 

estimation, until very reeently (Parsa et al., 2001). 

The determination of the angular-velocity vector of a rigid-body from the veloc­

ity data of three noncollinear points of the body was studied by Angeles (1986). 

Then, in a related work (Angeles, 1987), the same author discussed the determination 

of the angular-aceeleration using the velo city and aceeleration information of three 

noncollinear points of the body; the results were then extended to the redundant­

measurement case, for which the compatibility relations were obtained. The methods 

proposed were linear. Sinee measurements are more often than not contaminated 

by noise, Angeles (1990) developed a pose- and twist-estimation algorithm that fil­

tered the noise content of the pose- and the twist-measurement signaIs through a 

least-square approach. Later, generalizing the results of (Angeles, 1987) to the situa­

tions whereby statistical weighting is desired, Sommer III (1992) proposed a nonlinear 

algorithm which addresses the problem of determining the angular-aceeleration. 

Even though the above-mentioned researchers studied the estimation of pose, twist, 

and angular aceeleration of a rigid-body, they both assumed that the data were given 

in a fixed referenee frame, but aceelerometers always deliver the aceeleration data in 

their own local frame. Therefore, taking this fact into account, Parsa et al. (2001) 

solved the problem of pose and twist estimation using an accelerometer array. How­

ever, sinee they also considered the possibility of aceelerometers having installation 

error in orientation, the authors were able to show that orientation errors as small as 

0.10 can cause even the angular-velocity estimate, obtained by integrating the angular 

aceeleration, to rapidly diverge from its actual value, thereby completely undermin­

ing the accuracy of the results. To overcome this problem, they suggested fusing the 

results inferred from aceeleration measurements with those from another type of sen­

sor; for this purpose, the authors considered a reeently developed pose-measurement 

fiber-optic sensor, called Shape-Tape (Danisch, 1998; 2000; Danisch et al., 1999). The 

pose and twist estimation results thus obtained were stable. However, it seems that 
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an even better solution is to devise attitude-calibration schemes for the accelerometer 

arrays. 

1.:J Estimation of Flexural States and Control of 
Flexible Manipulators 

Sinee the very early experiments on flexible manipulators, the problem of determining 

the flexural states has attracted many researchers' attention3 . Cannon and Schmitz 

(1984) used an optical sensor comprising a light bulb, a focusing lens, and a photo­

detector to determine the end-link displaeement of a single-link flexible manipulator. 

This displaeement was then fed back in a full-state, discrete Linear Quadratic Gaus­

sian (LQG) controller to control the end-point motion. Using numerical simulations, 

the authors showed that the LQG controller suffers from low stability margins. Can­

non and Schmitz argued that the stability of the control system can be improved 

by means of a lower-order compensator. Indeed, Doyle (1978) showed that the LQG 

controllers can have very poor stability margins. For more on the issue, one can refer 

to (Maciejowski, 1989). 

Kotnik et al. (1988) reported on their experiments with a single-link flexible manip­

ulator. The system was equipped with a vision system and an accelerometer located 

at the end-point of the link. Three different control systems were tested. In the 

first one, the end-point position, obtained through the vision system, was fed back 

to CL classical control system designed using the root-Iocus method. The second also 

used the position data; however, astate estimator and a Linear Quadratic Regulator 

(LQR) were used to control the system. In the third control system, the end-point 

acceleration was utilized along with the joint encoder to control the system. The 

authors asserted that the results of the acceleration feedback were very promising. 

A study on the control of a two-link, three-degree-of-freedom flexible manipulator 

3In this section, the specialized literature on the control of flexible-manipulators is reviewed only 
as far as it involves the estimation of the flexural states, the exception being a few references regarding 
input shaping, which are cited for sake of completeness. 
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was conducted by Fukuda and Arakawa (1989), who suggested the use of three-axis 

force and moment sensors at the the proximal end of each link to estimate the flex­

uraI states using an observer. The flexural states considered were the two bending 

deflections of each link in addition to the link torsion. The estimated states as weIl 

as the measured ones were then used in an LQR control system. After presenting 

sorne simulation results, the authors discussed the sensitivity of the control system to 

variations in the physical parameters of the system. From their sensitivity analysis, 

Fukuda and Arakawa concluded that a "stable domain of the parameter's uncertainty 

can be found." 

Matsuno and Sakawa (1990) used three single-axis accelerometers and "an angular 

accelerometer of servo type" to estimate the flexural coordinates of a six-degree-of­

freedom flexible manipulator. In their case, however, the link masses and inertias were 

considered negligible compared with those of the end-effector; the authors could thus 

derive a simple dynamics model by considering equivalent springs representing the 

arrn flexibility. Installing the above-mentioned sensors on the end-effector, Matsuno 

and Sakawa designed an observer to estimate the flexibility-caused displacement of 

the end-effector. They also devised a stable control law for the system. At the end, 

sorne experimental results were reported. 

The end-point control of a single-link flexible arm with a payload which has un­

known dynamics was the subject of other research works (AIder and Rock, 1993; 1994). 

A pendulum of variable length that could be locked at will acted as the payload. The 

instrumentation system included a CCD camera for measuring the end-point position. 

The control system comprised a self-tuning regulator that handled the unknown dy­

namics of the payload; the high-frequency unmodeIled dynamics of the flexible arm, 

on the other hand, was taken care of by a frequency-weighted LQG which had an 

improved robustness. 

In (Chiang et al., 1991), a macro-mini manipulator composed of a long, highly 

flexible link and a short, rigid link was used in fast and accurate pick-and-place oper-
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ations by a pneumatic gripper. To accommodate the desired high-speed operations, 

the manipulator was equipped with an optical measurement system, similar to that 

used by Cannon andSchmitz (1984), which could determine the position of the tip of 

the mini-manipulator. The control system comprised two successive loops: The first 

loop was closed on the wrist tip position, the second trying to control the motion of 

the flexible link. The authors maintained that the performance achieved was "similar 

to that obtained ... [using the] LQG control methods." Their results suggested that 

the performance of the proposed two-Ioop control system was acceptable. 

Qian and Ma (1992) also researched the control of a single-link flexible manipu­

lator, their instrumentation system including four strain gauges along the link and 

an infrared optical system with the source LED attached to the tip and the position­

sensitive device located at the root. The signaIs from the two middle strain gauges 

and the one from the optical system were used to directly calculate the three flexural 

coordinates taken to discretize the link; the flexural generalized velocities and the joint 

rate were obtained by four independent observers. The tip position was controlled 

by a sliding-mode controller. The simulation results were compared with those of a 

simple joint control, which caused long-lasting vibrations in the link. The authors 

argued that, because of the undershoot in the system step response-which should be 

due to the system being nonminimum-phase--the controlloop must run at a period 

lower than the tirrie delay between the torque application and the tip displacement in 

the same direction. 

Panzieri and Ulivi (1993) addressed state estimation for a two-link arm in which 

the second link was flexible. The deformation of the flexible link was measured through 

optical sensing of the displacements of three different points of the link. The measure­

ments were processed in a steady-state-gain Kalman filter to estimate aIl the states. 

Then, a singular-perturbation approach was used to control the tip motion. The 

control results were compared with those obtained using a PD controller. 

The flexible manipulator used by Carusone et al. (1993) to perform experiments 
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on end-effector trajectory tracking was a planar, two-link arm. The deformation of 

each link was measured by three strain sensors, corresponding to which three flexural 

coordinates were chosen to describe the link deformation. The flexural coordinates 

were estimated by applying a curve-fitting technique on the link strain data, which 

obviated the need to astate estimator, as Carusone et al. suggested. The control 

algorithm used was a gain-scheduled LQR devised by Carusone and D'Eluterio (1993) 

in which the state-feedback gain at each instant was the steady-state gain computed 

from the underlying algebraic Riccati equation for the linearized dynamics equations 

at that instant. Furthermore, to reduce the induced vibrations in the links, the plant 

dynamics was augmented by sets of two cascaded integrators. In addition to the 

experimental results of the application of this controller, the authors reported those 

of a PID joint-motion controller. The former results were considerably better than 

those of the latter. 

To estimate the flexural generalized velocities, Moallem et al. (1996) proposed 

three different observers. In an the three observers, the flexural coordinates were 

implicitly assumed to be accurately obtained from strain measurements on the links. 

The first observer was a full-flexural-state observer, the second and the third being 

a reduced-order observer and a sliding-mode observer, respectively. Even though the 

stability of each of the three observer designs was proven or otherwise concluded, 

due to the implicit assumption of access to accurate flexural-coordinate data-which 

is not true in practice-it can be imagined that the observer would actually not 

remain stable at aIl times. This is especially crucial because the authors used the 

assumed-modes method for flexible-link discretization, and there consequently was 

no exact relation between the measurements made on the link and the link flexural 

coordinates. The assumption might have been more realistic had the discretization 

been made using cubic splines; of course, the formulation presented by the authors is 

symbolic in nature, and can presumably be used for that case too. 

The three foregoing observers were implemented on a two-link planar manipulator 
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whereby the first link was short and rigid, while the second was three-times as long 

and flexible with a payload at its end. The end-effector trajectory-control strategy 

used was feedback-linearization-based. As reported in (Moallem et al., 1997), the au­

thors found out that the lower the number of flexural coordinates used the better the 

results. They also reported sorne experimental results with regular PD controllers. 

Not unexpectedly, they found that the results improved when the clamped-free eigen­

functions were replaced by the eigenfunctions of a cantilever beam which has a mass 

at the end. For the complete details of the observers and the controller, one can see 

(Moallem et al., 2000). 

Konno et al. (1997) studied the vibration controllability of flexible manipulators, 

neglecting all second-order terms of the dynamics equations and the dependence of 

the mass matrix upon the flexural coordinates. The authors argued that, because the 

well-known controllability matrix obtained through linearized dynamics equations had 

no physical interpretation, they projected the equations onto the modal space. Then, 

the system was called "modal accessible" if all the principal generalized coordinates 

could be affected by the actuation wrench. A case study on a two-link manipulator 

kinematically similar to that of Fukuda and Arakawa (1989) was conducted. Konno 

et al., however, àssumed that the link masses were concentrated at the link end-points. 

In the experimental setup, one strain gauge was attached to the root of each link, by 

means of which the tip deflection was monitored. Obviously, given the assumptions 

made in this work, for a general structurally flexible manipulator, their results cannot 

be directly applied to study the study of the vibration controllability of the system. 

Estimation of the elastic displacement of the tip in a single-link manipulator with 

a mass payload using an optical position-sensing system was revisited by Li and Chen 

(1998). The laser-emitting diode was installed at the link root, and the position­

sensing device was attached at the tip. The estimator proposed by the authors was a 

fixed gain Kalman filter. The main differences with the work of Cannon and Schmitz 

(1984), as far as the state estimation is concerned, appear to be in the measurement 
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system and in the presence of the payload. 

Zaki and EIMaraghy (1993) discussed the Model Reference Adaptive Control 

(MRAC) of an arm kinematically similar to that considered by Fukuda and Arakawa 

(1989). The MRAC results were compared with those of an LQG controller. The 

instrumentation system included two single-axis accelerometers attached at the end 

of each link, from which the authors calculated the second time-derivative of the link 

deflections using least squares. However, it was not made clear in the paper whether 

the orientation change of the accelerometers was also accounted for or not. 

In a later paper (Zaki and EIMaraghy, 1995), the authors reported the implemen­

tation of a full-state sliding observer on the same system; the measurements were the 

accelerometer signaIs and the joint variables. The accelerometer signaIs were filtered 

and integrated in charge amplifiers to obtain the link end-point velo city, from which 

it seems that the foregoing orientation change was indeed neglected. A PD controller 

was used to control the joint variables. Additional experimental results on the system 

were reported in (Zaki et al., 1998a;b). 

Another research work is that of Wilson et al. (1998), in which their experiments 

with two planar, single- and two-link flexible manipulators are reported. Strain gauges 

were used to infer the flexural coordinates of the links. The generalized velocities of 

the system were estimated using a linear observer, meaning that the nonlinearity of 

the system was neglected. The control was achieved using the sliding-mode control. 

A large number of other researchers have also reported the use of accelerometers, 

either alone or along with strain gauges, in the instrumentation system of structurally 

flexible manipulators, (e.g., Hillsley and Yurkovich, 1991; Sim and Lee, 1993; Tiemin 

et al., 1996; Tokhi and Azad, 1997). However, they an use the accelerometer signaIs 

for feedback, not for estimation of flexural states. 

Input shaping is another approach, as reported by some researchers (e.g., Meckl 

and Seering, 1988; Cleary et al., 1992; Magee and Book, 1995), to reduce the vibra­

tion of flexible links. Obviously, such method is only useful for linear systems with 
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constant coefficients, its effectiveness thus being very limited; a multi-link flexible ma­

nipulator with moving joints, for instance, does not fit this description. Indeed, even 

if the flexible links of this manipulator are linearly elastic, the overall system entails 

nonlinearities due to the varying geometry of the system. 

1.Ll Dynamics and Control of Manipulators with 
Rigid and Flexible Subsystems 

There is a vast literature on the dynamics modelling of rigid and flexible multibody 

systems, of which the two review papers (Schiehlen, 1997; Shabana, 1997) give very de­

tailed accounts for a number of well-known methods; these papers include 197 and 105 

references, respectively. Therefore, we will not review the literature available on the 

subject of dynamics modelling, the reader being referred to these two papers; another 

paper that can be helpful on the subject of mathematical modelling of multibody sys­

tems is (Schwertassek, 1998), where the author also addresses the geometric-stiffening 

effect (Sadigh and Misra, 1995). Nonetheless, in the next chapters, explanations will 

be given, and remarks will be made on the specifics of the method used here for the 

dynamics modelling whenever the need arises. 

Regarding the vibrations of the macro-manipulator and its effects on the end­

effector trajectory, three different approaches have been pursued: (i) Damping the 

vibrations of the macro using the dynamic forces applied upon its end-effector by the 

micro base; (ii) compensating for the effects of the micro-base motion on the Cartesian 

trajectory of the end-effector by correcting the trajectory of the micro-manipulator 

in the joint space on-line; and (iii) planning trajectories that, while the end-effector 

moves ta perform a task, excite as litt le macro flexible motion as possible. 

Many researchers have investigated the first approach, for example, (Torres et al., 

1996; Lew and Trudnowski, 1996; Sharf, 1996; Lew and Moon, 1999; Book and Loper, 

1999); with the exception of Sharf, all of these authors modelled the macro-manipu­

lator as a lumped mass-spring system. 
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In the control method proposed by Torres et al., the kinetostatic force-torque 

relation was used to calculate the required joint torques, given the required vibration­

dampening force. Lew and Trudnowski (1996) suggested a PD controller for the 

vibration of a single-link, fixed, flexible-link macro under the action of a single-link 

rigid arm. 

Pursuing the same approach, i.e., approach (i), Sharf (1996) formulated the prob­

lem for multiple-link manipulators. Even though the dynamics of the macro-manipu­

lator was considered as weIl, it was linearized. Moreover, it was implicitly assumed 

that the macro-joints would not move after redeployment, and that the geomet­

ric nonlinearities were small enough, thus neglecting the dependence of the macro­

manipulator mass matrix on the flexural coordinates. State-feedback control was used 

to control the motion ofthe micro-manipulator joints. The results were then extended 

to the case whereby the micro-manipulator is kinematically redundant, and the end­

effector is to trace a trajectory while trying to minimize its base vibration. However, 

it is apparent that, to be able to perform both functions simultaneously, the rigid 

manipulator must have a large degree of redundancy. 

Lew and Moon (1999) investigated the problem and tried to solve it using a "sim­

ple, robust decoupling method." However, the authors did not substantiate their ro­

bustness daim. In this paper, the micro-manipulator base was considered to possess 

six degrees of freedom. In the controlloop, which appears to be feedback-linearization 

based, the joint accelerations-assumed to be inferred from optical encoders-were 

used. 

Book and -Loper (1999) also assumed the macro-manipulator dynamics as linear. 

Furthermore, the angular motion of the rigid-robot base was neglected. The joint 

angles were controlled using PI compensators, and some simulation and experimental 

results were compared, which appeared promising. 

Yoshikawa et al. (1993), following the second approach, used the self-motion of 

a redundant micro-manipulator to compensate for the end-effector trajectory errors 
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caused by the flexural motions of the macro-manipulator. The redundancy of the 

whole system was resolved by optimizing a performances index called the compens­

ability measure, which actually is the inverse of the product of the singular values of 

a Jacobian matrix that maps the flexural generalized velocities to the required com­

pensatory micro joint rates. (Very recently, Staffetti et al. (2002) have argued that 

such performance indices do not show how well-conditioned a certain configuration 

is.) Then, two sets of PD controllers were considered for the two submanipulators; the 

set-point of the micro-manipulator controlloop was corrected by the compensatory 

joint-angle signaIs. The authors also reported several simulation results. 

The foregoing method was generalized by Yoshikawa et al. (1996) to be applied for 

the hybrid control of macro-micro manipulators. Although the dynamics of the system 

was also taken into account, the dynamics model of the macro was obtained assuming 

that the mass and the stiffness of the macro links were lumped. Furthermore, the 

macro links were independently controlled using an LQR controller, presumably a 

gain-scheduled one, while the hybrid control of the system was realized by hybrid­

controlling the micro-manipulator alone. 

Torres and Dubowsky (1993) and Torres et al. (1994) addressed a trajectory­

planning problem, the third approach, in which only two points of the end-effector 

path were predetermined, the beginning and the end. In other words, no trajectory 

tracking was involved. Assuming that the interaction between the lumped-modelled 

flexible base and the micro-manipulator dynamics was negligible, these researchers 

tried to compute joint-space trajectories with minimum elastic potential energy re­

stored in the flexible base. However, such a method could not give the whole picture 

because its results are totally independent of the manipulator joint-rates. Addition­

ally, not only does the implementation of such a method become complicated as the 

number of links increases but also its very effectiveness is uncIear. 

In (Hanson and ToIson, 1995), a locally optimal control of the macro-micro sys­

tem was proposed to handle the first and the last tasks-base-vibration suppression 
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and trajectory planning-together. This was achieved using a weighted sum of two 

control inputs. One input made the micro-manipulator follow a trajectory in the joint 

space for which, if the base vibration were neglected, the end-effector could follow the 

desired Cartesian trajectory while causing a minimum dynamic reaction wrench­

force and moment-between the base and the rigid robot. The other control input 

was calculated so as to minimize a pseudo-kinetic energy (Nakamura, 1991) of the 

rigid submanipulator at the next time step. Hanson and ToIson showed that their 

second control input could render the pseudo-kinetic energy what, in effect, was a 

Lyapunov function. However, the authors implicitly assumed that the flexural states 

were aIl known exactly. For the simulation results reported, the authors assumed 

the flexible submanipulator to be actually a rigid-link manipulator with lumped stiff­

ness at the joints; in that case, the flexural states are indeed the joint angles of the 

macro-manipulator and their time-rates. 

A control algorithm designed to achieve aIl the three goals was proposed by 

Nenchev et al. (1997; 1999). Reportedly, the algorithm was obtained from the mar­

riage of two methods: A control method for flexible-link manipulators and another 

one for free-flying space robots. The authors assumed that the macro joints were 

locked after redeployment, Le., the macro-manipulator was used only for coarse po­

sitioning. They further assumed that the self-motion of the micro-manipulator was 

used to compensate for the errors caused by the macro-manipulator flexibility in a 

manner that minimized the negative effect on the micro-base vibration. However, the 

dynamics analysis used by the authors does not appear to be rigorous. 

Jiang and Goldenberg (1998) also attempted to combine aIl three approaches to­

gether by defining three state-space performance constraints corresponding to the 

three approaches, and devising quite a sophisticated controllaw that forced the macro­

micro system to move in the constraint subspace. A major component that this 

method lacks is an algorithm for resolving kinematic redundancy; therefore, it can 

only provide end-effector trajectory tracking by controlling the joint angles. 
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The stability of this control law was proven using a Lyapunov function. It was 

further shown that the stability was exponential. The dependence of the mass matrix 

and that of the inertia forces of the system on the state-trajectory of the system, 

however, were totally neglected in the stability analysis, for which an inaccurately 

linearized model of the system was used. This practically means that the proof given 

might not remain valid for the actual dynamics model. 

The control of kinematically redundant, flexible manipulators was addressed in 

(Nguyen et al., 1992). The redundancy resolution and the vibration minimization were 

done together by obtaining the general expression for the joint accelerations that, if 

realizable without exciting vibrations in the flexible links, would make the end-effector 

follow the desired trajectory; then, among the infinitely many possible solutions, the 

one that would minimize the excitation generalized force in the Euclidean norm was 

chosen. This planned joint-space trajectory was afterwards put in a computed-torque 

controlloop with a PD compensator to control the robot. 

The above method was complemented by Kim and Park (1996; 1998) in the sense 

that they wrote the driving dynamics of the flexural motions in state space; the authors 

then tried to use linear-system tools to obtain the lowest-frequency "principal modes" 

of the vibrations, and to dampen them through a proper choice of the manipulator 

self-motions. 

Although many researchers have considered the full-pose trajectory control of the 

end-effector, the formulations developed do not reflect the non-vector nature of the 

attitude part of the pose. In other words, it has implicitly been assumed that the pose 

is represented by a six-dimensional vector, and that the pose error can be obtained 

by an element-by-element subtraction of the current pose form the desired one. 

1 1"" .a Thesis Outline 

The thesis hinges on a problem of paramount importance in robot control, which, 

nevertheless, has not been addressed in sufficient detatil in the specialized literature. 
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Indeed, the effectiveness of any control scheme depends on how accurately the states 

of the plant are known. By virtue of the unavoidable instrument noise, round off 

error, and unmodellable features, the plant states can be known only approximately, 

the accuracy of their approximation depending on how accurately these states are 

estimated. Hence the importance of an effective state estim:ator, literature on which 

seems to be scanty. Here is where the main contribution of the thesis lies. 

As mentioned in Section LI, the pose and twist data of the rigid-robot base, de­

termined through acceleration sensing, are intended for the estimation of the flexural 

states of the flexible submanipulator in an observer. However, the state-output rela­

tions, i.e., the relations between the flexural coordinates and the foregoing data, are 

nonlinear and, thus, have to be linearized. In Chapter 2, we derive, in closed form, 

the required partial derivatives in terms of other usually available entities, such as 

the Jacobian of the flexible submanipulator and the base angular velocity4. Both the 

twist and the Jacobian matrix mentioned above are defined in Section 2.1. 

The recursive kinematic relations and the spatial discretization of flexible links are 

two other subjects discussed in Chapter 2, where some basic relations pertaining to 

the Euler parameters and their time-derivative are also reviewed. 

Chapter 3 is devoted to the estimation of the pose, twist, and twist-rate of a 

rigid-body from the point-acceleration data delivered by an on-board accelerometer 

array. To address the attitude-calibration problem mentioned in Section 1.2, two algo­

rithms are proposed, one using gravitational-acceleration measurements and the other 

employing acceleration data collected over an arbitrary manoeuvre. Our simulation 

results show that the latter, which is an iterative procedure performed off-line, can be 

utilized to calibrate an accelerometer array quite accurately. Furthermore, unlike the 

procedure reported in (Parsa et al., 2001)-where the angular velocity was estimated 

by numerical integration, the error incurred thus being accumulative-the angular 

4The partial derivatives at play may, of course, be obtained by symbolic differentiation of the 
twist relations. However, the drawback of such a method is that the differentiations have to be 
do ne for each manipulator separately, and that redundant algebraic manipulations and arithmetic 
operations are unavoidable. 
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velo city is determined directly and accurately from the accelerometer data. 

The dynamics model of the system is derived in Chapter 4 using the natural 

orthogonal complement. Albeit any manipulator with flexible and rigid subsystems 

can be treated as one manipulator with flexible and rigid links, we han dIe the two 

submanipulators separately. As explained in Chapter 5, by doing so, the mathematical 

model of the flexible arm alone-which is obviously of a lower or der than that of the 

entire system-can be used as the modelled dynamics in an extended Kalman fllter 

acting as the state estimator. The dependence of the mass matrix on the system 

generalized coordinates is also accounted for in the linearization of the dynamics 

equations. 

The control algorithm we use in this thesis is an extended, more accurate variant 

of earlier works (Kim and Park, 1996; 1998), which requires less computations; this 

algorithm is discussed in great detail in Chapter 6. Therein, we try to address the 

pose-error problem through a mapping that takes the seven-dimensional error in the 

vector of end-effector generalized coordinat es to a six-dimensional vector. At the end 

of the chapter, some numerical results of the application of the methods developed in 

the thesis on a planar RRRR manipulator are reported. 

The thesis ends in Chapter 7 with some concluding remarks and recommendations 

for further research. 

1.6 On Notation 

Throughout this thesis, all vectors and cross-product matrices are expressed in their 

related local frames, unless otherwise specified by use of a left-superscript. For exam­

pIe, while Pi represents the position vector of the origin of the body-frame :ri expressed 

in ~Fi, :RPi is the same position vector expressed in the inertial frame ~. 

Furthermore, two kinds of differentiations with respect to time are used: (i) The 

element-wise differentiation of a vector with respect to time, which is denoted by a 

dot on top of a variable; and (ii) differentiation with respect to time in an inertial 
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reference frame, which is specified by dl dt. 
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Chapter 2 

Basic Kinematic Relations 

2.1 Rigid-Body Kinematics 

This section mainly deals with rigid-body kinematics. At times, however, we will also 

refer to the case of flexible bodies. 

2.1.1 Attitude Representation 

The attitude of a rigid body can be expressed using many different three- or four­

parameter representations, such as the different sets of Euler angles, Gibbs vectors 

(Wertz, 1978), natural and linear rotation invariants (Angeles, 2002), Rodrigues vec­

tor, Euler parameters, Cayley-Klein parameters, and Pauli's spin operators (Gold­

stein, 1980). Of course, in any case, only three parameters are independent. Among 

these different representations, the Euler parameters have proven to be the best re­

garding the ease of algebraic manipulation, algebraic robustness, and ease of integra­

tion into the dynamics models of rigid bodies. In spacecraft applications, particularly, 

these parameters are desirable because sorne globally stable control systems have been 

devised that use Euler parameters as feedback (Reynolds, 1998). 

The Euler parameters constitute a set of unit quaternions and can be expressed 

as a unit-norm, four-dimensional array "., given by 

(2.1) 

This representation means that the rigid body has arrived at its new attitude, from a 
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reference orientation, via a rotation through an angle 4> about an axis parallel to the 

unit vedor e. As shown in (Angeles, 2002), this rotation can also be represented by 

the rotation matrix Q given by 

Q = erf>E _ 1 + sin 4>E + (1 - cos 4> )E2 (2.2) 

where E is the cross-product matrix1 (CPM) of e. In terms of the Euler parameters, 

Q can be written as 

Q = 1 + 2uoU + 2U2 (2.3) 

in which U is the CPM of u, the vedor part of the quaternion (Angeles, 2002). 

As shown in Appendix A, il, the time-rate of change of 1J in the body-frame, is 

related to the angular velocity w of the body, expressed in the same frame, by 

il = H(1J) w, 

H _ H(1J) t:, ~ [uol- U _U]T. 
2 

(2.4a) 

(2.4b) 

Notice that, although the Euler parameters are the same in both the local and the 

inertial frames, their time rates are different in the two frames. 

Furthermore, it can be shown that the inverse relations of eqs. (2.4) are given by 

w = H(1J) il, 

H - H(1J) t:, 4HT 2 [uol- U -u]. 

(2.5a) 

(2.5b) 

It is thus apparent that the right-hand sides of eqs. (2.4a & 2.5a) are the linear 

transformations of the Euler parameters into the angular velo city, and vice versa. We 

now have 

Lemma 1. The relations between the time-derivative of the Euler-parameter array 

and the angular-velocity vector of a rigid body, eqs. (2.4a f3 2.5a), can equivalently be 

IThe cross-product matrix V of a vector v, not dependent upon x, is the skew-symmetric matrix 
given by 

r:. 8(v x x) 
V == CPM(v) = 8x ' "Ix E ]R3 Vx == v xx. 
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expressed as 

il = K(w) rJ, 

w = K(il) rJ, 

respectively, where 

K = K(w) ~ ~ [-=-~T ~] 
K - K(il) ~ -H - -2 [ùol- Ù -û.] 

in which n is the cross-product matrix of w. 

Proof: To prove eq. (2.6a), expand eq. (2.4a) using eq. (2.4b): 

. = ~ [uol + V] w = ~ [uow + V w] = ~ [uow - nu] 
rJ 2 -UT 2 -uTw 2 -wTu 

1 [-n w] [u] ="2 -wT 0 Uo 

which, using the definition given by eq. (2.6c), becomes eq. (2.6a). 

To obtain eq. (2.6b), notice that, based on eqs. (2.5a & 2.5b), 

w = 2 [uol - V -u] [!] = 2(uoû. - Vû. - Uûo) 

=-2[(ûol-Ù)u-û.uo] =-2 [ùol-Ù -û.] [~] 
= -HrJ 

which basically is eq. (2.6b) with K(il) defined by eq. (2.6d). 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

o 

A property of the matrices H and H which is needed for the derivations reported 

in Section 2.2 and Appendix B is summarized below: 

Lemma 2. Matrices H and H, defined in eqs. (2.4b f:j 2.5b), obey 

-. 1 
HH--n 

2 

where n is the CP M of the angular-velocity vector w. 
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Praof. The proof of the counterpart of this property in the fixed frame was given by 

Nik:ravesh et al. (1985). Nevertheless, because the type of notation used by these 

authors is very different from the one used in this thesis, an independent proof of 

eq. (2.7) is produced here. 

If the left-hand side of eq. (2.7) is post-multiplied by an arbitrary vector x, and 

then expanded, we obtain 

HHx = [uol- U _ ] [uol + Û] U .T X -u 

= (uouol- UÛ + uoÛ - uoU + uU:T)x. (2.8) 

From the triple-vector-product relation (Arfken, 1985), however, it follows that, for 

the cross-product matrices A and B of any two arbitrary vectors a and h, respectively, 

the matrix product AB can be calculated as 

(2.9) 

in which 1 is the 3 x 3 identity matrix. Applying this relation to UÛ in eq. (2.8) 

results in 

which, by taking into account that 'fi is a unit vector-and thus UT u +u6 is constant­
becomes 

where X is the cross-product matrix of x. 

Now, applying eq. (2.9) to the first two terms on the right-hand si de and recalling 

eqs. (2.5), we can write the above relation as 

(2.10) 

Since this relation is valid for any arbitrary vector x, one obtains eq. (2.7). o 
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Another useful relation for the angular-velocity matrix 0 is the one that expresses 

this matrix in terms of the body rotation matrix and its time rate as 

(2.11) 

This relation was proven in (Parsa et al., 2001) using the approach taken in (Angeles, 

2002) for its fixed-frame counterpart, namely, 

(2.12) 

2.1.2 The Twist Vector and Its Time-Rate of Change 

The twist vector of a body is defined here as a set of scalar variables that comprise the 

necessary and sufficient amount of information to determine the velo city field in the 

body2. For a rigid body, these variables can be the three components of the velo city 

vector of a landmark point and those of the angular-velocity vector of the body. Both 

vectors are expressed in the same coordinate frame, whether inertial or not, for the 

concept of twist is purely kinematical. If the body is flexible, the twist is augmented 

by a set of generalized velocities representing the body deformation rate. 

The twist is usually defined as an array comprising the components of the absolute 

velocities, both translational and angular, expressed in the local frame. An alternative 

twist vector that includes the element-wise time derivative of the position vector in 

the local frame facilitates the partial differentiations needed for the linearization of 

the kinematic relations in Section 2.2. Corresponding to these two definitions, two 

different-but kinematically equivalent-twist vectors are defined herein. The one 

corresponding to the alternative twist is denoted by t and called briefly the twist, 

while the other twist vector is represented by t and termed the Cartesian twist, for it 

2In screw theory, the twist-or as originally defined by BalI (1900) the velocity twist-is defined 
as a screw, which is a geometrical object represented by two three-dimensional vectors (Hunt, 2000). 
This is conceptually different from our definition. Based on our definition, the elements of the twist 
can serve as generalized velocities, which is not true for the screw twist. Furthermore, if the rigid­
body twist is defined as a screw, the generalization of the twist concept to flexible bodies does not 
seem possible. 
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contains the Cartesian velocities-angular and translational-of the body, Le., 

t 6 
[:], (2.13) 

where p and v are the position vector of the local-frame origin and its absolute velo city, 

respectively, both expressed in the local frame. 

:F'rom elementary kinematics, one has 

t = [Il + ~ x p] = R t (2.14) 

R 6 [~ -:] (2.15) 

in which P 6 CPM(p), and 1 and 0 are the 3 x 3 identity and zero matrices, 

respectively. 

The translational and angular accelerations a and Ct can readily be seen to be 

related to the time-derivative of the twist vector, called the twist-rate, as given below: 

S 6 [:] =t+Wt 

W 6 [g g] 
with n defined already as the cross-product matrix of w. 

2.1..3 The Jacobian Matrix 

(2.16) 

(2.17) 

In robot kinematics, the Jacobian J can be defined as the partial derivative of the 

twist vector with respect to the vector of generalized velocities, i.e., 

(2.18) 

where q represents the vector of generalized coordinates, cl being the vector of gen­

eralized velocities. Since the relation between t and cl is linear, the Jacobian is 

independent of the generalized velocities, and the relation between t and q can thus 

be written as 

(2.19) 
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with tt accounting for the motion of the robot base when it undergoes a prescribed 

motion, or when the base motion is a controUed motion. In general, both J and tt are 

functions of q and t, i.e., J _ J(q, t), and tt - tt(q, t). Moreover, sinee aU the above 

arguments are valid for the twist vector of any link, rigid or flexible, in a kinematic 

chain, heneeforth, the word twist can refer to the twist vector of any link. 

Given the way in which the twist vector has been defined, one can partition the 

Jacobian matrix into two blocks, corresponding to the two parts of the twist vector: 

in which 

J A Bi> d J A Bw . -'=- _ an U 

P - Bq W Bq' (2.20) 

2.~2 Linearized Kinematics 

The main goal of this section being the linearization, in closed form, of the link twist 

and its time rate of change, we start with the linearized relations: 

- Bt Bt. 
bt = Bq bq + Bq bq (2.21a) 

~ Bs ~ Bs ~. Bs ~ .. 
uS = Bq uq + Bq uq + Bq uq. (2.21b) 

The Cartesian twist t of a body and its time rate t, defined in Subsection 2.1.2, are 

the output variables. This section is based on the results reported by Parsa et al. 

(2002b). 

2.2.1 Partial Derivative of the Angular Velo city 

A result needed for deriving closed-form expressions for the partial derivatives of the 

twist and the twist-rate is given below: 

Theorem 1. The partial derivative of the angular velocity w of a rigid body in a 

serial kinematic chain with respect to the chain generalized-coordinate vector q can be 
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expressed in terms ~f the Jacobian Jw , its time rate, and the cross-product matrix n 
of the angular velocity as 

(2.22) 

Proof: We first recall eq. (2.5a), whereby the angular velocity of a body is expressed 

as a function of the Euler parameters and their time derivatives, i.e., as w - w("" r,). 
Having this functional relation, one can resort to the chain rule to write the partial 

derivative of w with respect to q as 

aw aw a", aw ar, 
-=--+--aq a", aq ar, aq (2.23) 

Then, given that the orientation of a body is, in general, a function of the generalized 

coordinates as well as time, one can write the first matrix product on the right-hand 

side of the above relation as 

T 
~ aw a", _ aw ar, _ aw ar, aw 
1----------a", aq a", aq a", aw aq 

which, in light of eqs. (2.4a, 2.6b, 2.6d, & 2.20), becomes 

However, since H H = 1, upon differentiation with respect to time, we obtain - H H = 

H II. Thus, according to Lemma 2, 

(2.24) 

The second matrix product on the right-hand side of eq. (2.23), in turn, can be 

computed as follows: 

T
2 
~ awar, = aw ~ (a", q + a",) = aw [~(a", q) + ~ (a",)] 

ar, aq ar, aq aq at ar, aq aq at aq 
aw d (a",) aw d (ar,) 

= ar, dt aq = ar, dt aq 
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Upon noticing that i] - i]('Y/, w) and applying the chain rule again, the above expres-

sion becomes 

T aw d (ai] aW) aw [ai] d (aW) d (ai]) ow 1 
2 = ai] dt ow aq = oi] aw dt oq + dt aw oq 

d (OW) OW d (ai]) ow 
= dt aq + oi] dt aw oq 

Using eq. (2.4a), Lemma 2, and eqs. (2.5a & 2.20), one can rewrite this relation in 

the simpler form given below: 

. 1 
T 2 = Jw + '2 nJw (2.25) 

Finally, adding up eqs. (2.24 & 2.25) yields 

OW . 
oq = Jw + nJw' 

D 

Example. To illustrate the foregoing theorem, assume that, for a certain rigid body, 

its Euler angles (q;, (), 'ljJ) are taken as the generalized coordinates. We will demonstrate 

that eq. (2.22) holds. To this end, notice that the angular velocity of a rigid body in 

terms of the Euler angles and their time rates are given by 

w = [~sin () sin 'ljJ + è cos 'ljJ ~ sin () cos 'ljJ - è sin 'ljJ ~ cos () + ~] T 

Setting q t::. [q; () 'ljJ] T, Jw and its time rate can then be found as 

OW [Sin () sin 'ljJ cos 'ljJ o~] 
J w - ~ = sin () cos 'ljJ - sin 'ljJ 

q cos () 0 

[

è cos () sin 'ljJ + ~ sin () cos 'ljJ 
j w = è cos () cos 'ljJ. - ~ sin () sin 'ljJ 

-() sin () 

Substituting w, Jw, and jw in the right-hand si de of eq. (2.22), after some algebraic 

manipulations, one obtains 

[o~ ~ cos () sin 'ljJ 
j w + nJ w = ~ cos () cos 'ljJ 

-q; sin () 
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which apparently is the partial derivative of w with respect to q, thereby confirming 

the validity of eq. (2.22). o 

Using the above theorem, one can readily show that, in the inertial frame, a similar 

relation holds, the only difference being the sign between the two right-hand-side terms 

of eq. (2.22). 

Corollary 1. The partial derivative of the angular velocity ~w, where::R represents 

the inertial frame, of a rigid body in a serial kinematic chain with respect to the chain 

generalized-coordinate vector q can be expressed in terms of the Jacobian ~ Jw , its 

time-rate, and the cross-product matrix ~n of the angular velocity as 

a~w = ~J' _ ~n ~J 
aq w U W· 

(2.26) 

2.2.2 Partial Derivatives of the Twist 

To derive closed-form expressions for the twist and the twist-rate partial derivatives, 

yet another result is needed, namely, 

Lemma 3. Let f f(q, q, t) be any vector function which is at least twice continuously 

difJerentiable, with q = q(t) a vector function of time, and q its element-wise time 

der:ivative. The partial derivatives of the element-wise time-derivative of f with respect 

to q and q are given by 

ai: ~(af) 
aq dt aq 

ai: = ~(af) + af 
aq dt aq aq 

(2.27a) 

(2.27b) 

Proof: To prove eq. (2.27a), con si der the (i,j) entry of ai:jaq. Using index notation 

for the sake of compactness, and according to the chain rule, one can write 

a ji a (a fi ." a li .. a fi ) 
-=- -qk+-qk+-
aqj aqj aqk aqk at 

a (a fi) . a ( a fi) .. a (a fi ) =- - qk+- - qk+- -
aqk aqj aqk aqj at aqj 

d (af i ) 
= dt aqj 
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which implies eq. (2.27a). 

Equation (2.27b) can be proven likewise: The (i,j) entry of of/oq is calculated 

by 

which completes the proof. D 

Relations similar to these appear quite frequently in the derivation of the Lagrange 

equations of multibody systems. The main difference with analytical dynamics is that, 

in the latter, one deals mostly with scalar functions. 

By means of Theorem 2.2.1, recalling the definition of the twist t, and applying 

the first result of Lemma 3 on p, one can conclude that 

op op 

[n~~l ot oq d oq 
=j+WJ - + oq ow dt ow 

-oq oq 

(2.28) 

where W is given by 

W--~ [0 - ° g]. (2.29) 

Then, from the definition of the Cartesian twist, one obtains the relation between the 

derivatives of t and t with respect to q: 

ot = R ot + ~ [-pc] 
oq oq oq 03 

=R ot +WJ oq 
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which, using eq. (2.28), can be written as 

at = Rj + RJ (2.31) aq 

R 6 RW+W= [g -~nl, (2.32) 

where matrices Rand W were defined in eqs. (2.15 & 2.17). Furthermore, from 

eqs. (2.13-2.15 & 2.18), we can readily see that 

at =RJ 
aq , 

the partial derivatives sought thus having been calculated. 

·We now turn our attention to the twist-rate. 

2.2:.3 Partial Derivatives of the Twist-Rate 

If eq. (2.27a) is applied to the twist-rate, using eq. (2.28), we arrive at 

ai .. -' -' 
aq =J+WJ+WJ 

(2.33) 

(2.34) 

As pertaining to the time-rate of the Cartesian twist, t, the same relation leads to 

at ... .-.:.-
aq = R J + (R + Ii) J + R J (2.35) 

On the other hand, exploiting eq. (2.27b) will provide the second set as 

ai '-
aq = 2J + W J (2.36) 

at "-
aq = 2 R J + (R + R) J (2.37) 

The last relations reported here are those of the partial derivatives of the vector 

s, defined in eq. (2.16), with respect to q and q. It can be shown that 

~: =Rj+ [R+R+(W-Y)R]j+ [it+(W-Y)R]J (2.38) 

as . [. - ] aq = 2RJ + R + R + (W - Y)R J (2.39) 

as 
aq =RJ (2.40) 
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where Y is given by 

y ~ [g ~l (2.41) 

in which V is the cross-product matrix of the velocity v. 

2.:3 Recursive Kinernatic Relations 

The manipulator recursive kinematic relations are needed for the derivation of both 

the Jacobian matrix and the Natural Orthogonal Complement (NOC), explained in 

Chapter 4, pertaining to the manipulator. These matrices are, in turn, needed for the 

kinematics and kinetics analyses of the manipulator. 

To derive the recursive relations, we begin with assigning a reference frame to each 

link, posed in accordance with the Denavit-Hartenberg convention proposed by Craig 

(1989); for a flexible link, this is done on the undeformed link. To obtain the relations 

for a rigid link, one can sim ply drop the terms pertaining to the flexural motions. 

Furthermore, we make a simplifying assumption here: The deformational rotation at 

the distal end of the link is small. 

2.:3~.1 Rotational Motion 

Rotation Matrix 

Let us define Qi and Ri as the rotation matrices that take ~i to 9( and ~i-l, respec­

tively. From Fig. 2.1, one can obtain the rotation matrix Ri as 

tively, and s(·) and c(·) denote the sine and the cosine of (.), respectively. Here, 6~-1 
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Zi-l Yi-l 
Yi-l 

Figure 2.1: The rotations due to bending, at the link endpoint 

represents the torsional deformation while 0t-1 and O~-l represent the rotations due 

to the bending of the link; aH three are assumed to be smaH. 

Moreover, it is clear that the rotation matrix Qi can be calculated from 

Qi = IIRj l::. RlR2' ··Ri-lRi , 

j=l 

(2.43) 

in which the product operator is defined such that the order of the matrix multipli-

cations is conserved. 

Angular Velo city 

The angular velocities of any two consecutive frames are related to one another 

through 

(2.44) 

where the angular velocities Wi-l and Wi pertain to the coordinate frames S:-i-l and 

g:'i' respectively, and small angular-deformation vector di-l is given by 

1:. l::. [.ri-l .ri-l .ri-l] T 
Ut-l U x uy U z . (2.45) 

The vectors in eq. (2.44) are considered as abstract quantities, on which the algebraic 

operations can be performed without any need to a common reference frame. In 
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Pi P 

o 

Figure 2.2: A flexible link 

component form, the recursive relation becomes 

(2.46) 

Using the above relation, the relative angular velo city iwi of ~i with respect to 

~i-l can be 0 btained as 

(2.47) 

in which, as per our convention, the left-superscript of iwi shows that the vector is 

expressed in ~i. The cross-product matrix of iwi can then be obtained as 

(2.48) 

Moreover, it can readily be se en that 

(2.49) 

2.~L2 Translational Motion 

Position Vector 

Using the assumptions set forth at the beginning of this section, it is seen from Fig. 2.2 

that the deformed position of point P on the neutral axis of the ith link at distance 

x from its proximal end, in abstract form, is given by the position vector 

P = Pi + Pi(X, t) (2.50) 
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in which pJx, t) is the position vector of the point P with respect to the origin of :Ji, 

and given by 

(2.51) 

where Ui(X, t) denotes the three-dimensional displacement vector of the link at P. 

Hence, in abstract form, we can write 

(2.52) 

the scalars di and li-l representing the ith link offset and the length of the (i - l)th 

link, respectively. Therefore, the foregoing equation can be rewritten as 

(2.53) 

To be able to calculate the components of the position vectors, however, one must 

take the rotation matrix between the two frames :Ji and :Ji- 1 into account, i.e., 

(2.54) 

Translational Velo city 

Differentiating the position-vector relation (2.54) element-wise, one can readily find 

the kinematic relation between the time-rate of the position vectors of two adjacent­

frame origins as 

(2.55) 

In or der to simplify this relation, one needs to der ive an expression for the time­

derllvative of the rotation matrix. To this end, we utilize eq. (2.12) to obtain 

from which the time derivative of the rotation matrix is obtained as 

R· . - i-lnr R· 
t - .l"i t 
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Substituting the above equation into eq. (2.55), we have 

in which the skew-symmetric property of cross-product matrices has been used. Upon 

substituting i-In[, given by eq. (2.49), into eq. (2.58), we obtain 

Pi = Rf [Pi-l + Ui-l (li-l, t) - ~i-l X (Pi-l + li-IXi-1 + Ui-l (li-l, t)) 

- ëi(Rizi ) x (Pi-l + li-IXi-1 + Ui-l(li-l, t))]. 

Hence, the recursive relation for Pi takes on the final form below: 

where Y i - 1 is defined as 

2.4: The Flexible-Link Spatial Discretization 

(2.59) 

(2.60) 

(2.61) 

The dynamics of a flexible body, in general, is expressed by a partial differential equa­

tion, for which a closed-form solution does not usually exist. Consequently, to analyze 

the dynamics of flexible manipulators-which are usually composed of multiple flexi­

ble and rigid elements-it is customary to spatially discretize the partial differential 

equations in play. By doing so, the flexible links, which have infinite degrees of free­

dom, are-in effect-approximated by elements with finite degrees of freedom, the 

partial differential equations thus being replaced by ordinary differential equations. 

These finite degrees of freedom are described by flexural generalized coordinates. 

For the dynamics analysis of flexible manipulators, different methods of spatial 

discretizations have been reported and utilized in the literature; among others, the 

assumed-modes (Cyril, 1988), finite-elements (Fattah, 1995), and cubic-splines (Cho, 

1995) techniques can be named. The derivations reported in this thesis are indepen­

dent of the particular discretization technique, the exceptions being the derivations 
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of the mass and stiffness matrices, given in Appendix C and Section 4.3.1, respec­

tively, and the derivation of the NOC, presented in Appendix D. Since, for these 

derivations, we will adopt the assumed-modes method, which is closely related to the 

Rayleigh-Ritz method (Meirovitch, 1997), a few words on this technique are deemed 

in order. 

It is assumed here that each of the flexible links can be considered as an Euler­

Bernoulli beam3 . This means that (i) the link material is linearly elastic, and its 

Young's modulus is the same in both extension and contraction; (ii) the bending and 

torsional deformations are small; (iii) the link does not undergo length change; (iv) 

the shear deformation is negligible; (v) the geometric shortening is negligible; (vi) 

the slenderness ratio, i.e., the ratio of the link length to the radius of gyration of its 

cross section, is greater than 10; (vii) the cross sections of the link remain planar 

after deformation; and (viii) the variations in the angular momentum due to the link 

vibration can be neglected. 

U sing the assumed-modes method, we discretize the link flexural displacement in 

the form 

(2.62) 

in which the elements of ~i(t) are the generalized coordinates describing bending 

deformation of the link, and the shape-function matrix Bi(X) is given by 

(2.63) 

where <'oi(x) is a vector of the shape-functions, or the so-called "modes," representing 

the bending deformation of the ith link in one direction; the entries of this vector 

can be the admissible or the quasi-comparison functions for a clamped-free beam 

(Meirovitch, 1997). The n}cdimensional vector ~i(t) can be decomposed into two 

3For a more general treatment of the problem of rotating flexible beam, one can refer to (Kane 
et al., 1987). 
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parts as follows: 

(2.64) 

Obviously, the two parts represent the bending deformations due to moments exerted 

on the link about Yi and Zi axes. It is worth mentioning that, as argued by Hughes 

(1987), the "modes should be selected on dynamical grounds other than frequency 

only." 

The torsion angle ti(X, t) of the link at a distance x from the proximal end of the 

link is discretized using 

(2.65) 

where hi (x) is the n }cdimensional vector of shape-functions used to discretize the 

torsional deformation of the ith link. 

Moreover, using the assumption of small angular deformation at the link end-point, 

vector ~i is calculated from 

(2.66) 

where li is the link length, and 

(2.67) 
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Chapter 3 

R,igid-Body Pose and Twist 
Estimation 

3 .1 Introduction 

It has been shown (Parsa et al., 2001) that the attitude calibration of an accelerometer 

array plays a very important role in the accuracy of the results of the pose and twist 

estimation of rigid-bodies using an accelerometer array. For this reason, in addition to 

a procedure for pose and twist estimation, we will introduce two calibration schemes 

in this chapter: 

(i) A gravitational attitude-calibration scheme, which can be used to calibrate an 

accelerometer array to a limited extent. 

(ii) A kinematic calibration scheme, which is capable of identifying accelerometer­

attitude errors with high accuracy. 

The second scheme is an iterative procedure that can be performed off-line by pro­

cessing the acceleration readouts recorded over a long-enough, arbitrary motion of the 

body. 

3.:2 Gravitational Attitude Calibration 

Assume that a triaxial accelerometer is attached at each of the pickup points Pi 

(i := 1,2, ... , m) of the rigid body shown in Fig. 3.1, point C, of position vector 
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Pi 

Figure 3.1: A rigid body and its related frames 

c = (l/m) 2:7:1 Pi, being the centroid of {Pi}i· 

Obviously, due to installation errors, not only are the accelerometer axes skew 

with respect to their nominal installation orientations but also the accelerometers 

are located at points different from the nominal ones specified by ri. The effect of 

the latter is minimized by choosing Ilrill considerably larger than the upper bound 

of the existing position errors, and by choosing ~ to be the vertices of a Platonic 

solid (Angeles, 1990). To account for the orientation errors, however, one may use the 

gravitational attitude-calibration scheme explained in this section. Here, we further 

assume that the three axes in question are mutually orthogonal. 

To identify the attitude error of the accelerometers using gravit y, the body 

is given a redundant number n (more than three) of known orientations. At each 

instance, while in the given attitude, the accelerometers are used to measure the 

gravitational acceleration. Then, the data thus obtained are employed to produce 

estimates Qi of the rotation matrices Q 23Ai that relate the attitudes of the accelerom­

eter frames to that of the body frame. Below is this procedure explained in more 

detail: 

Assuming that the accelerometer gains are known, it is apparent that the gravita­

tional acceleration measured by the accelerometers can be related to the gravitational 

acceleration in the reference frame ~ in the form: 

(Q:R23)jQ23AiAigj = :Rg 
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where (Q~:B)j, the rotation matrix from the body frame 13 at the jth measurement to 

the reference frame, is assumed to be known. Furthermore, A igj is the gravitational 

acceleration measured by the ith accelerometer at instance j, and ~g = [0 0 - gJ T 

since we assume that the third axis of:R is vertical. It is worth mentioning that, as 

duly noted by Rehbinder and Hu (2001), Aigj is indeed the negative of the acceleration 

perceived by the accelerometer at rest. 

Therefore, for j = 1,2, ... , n, 

(3.2) 

in which (q3)j is the third column of (Q~:B)J. Assembling an the measurements 

performed by the accelerometer number i, one has 

(3.3) 

Let the matrix ofmeasurements on the left-hand side be G i and that on the right-hand 

si de be B. Then, eq. (3.2) becomes 

Q:BAiGi = -gB, i = 1,2, ... , m > 3. (3.4) 

It is known that 

(3.5) 

is the least-square solution1 of the over-determined system of linear equations (3.4), 

but it should be noted that GiGf is invertible if and only if no less than three of 

the Aigj measurements are linearly independent. Nevertheless, there is no guarantee 

that the rotation matrices computed from eq. (3.5) be orthogonal; they must thus 

be orthogonalized. To this end, the polar-decomposition theorem (Strang, 1988) is 

used; based on this theorem, any nonsingular, real, square matrix A can be uniquely 

decomposed into an orthogonal matrix U and a positive-definite matrix P such that 

(3.6) 

lSolution (3.5) will not be optimal if the measurements are noisy. 
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It has been proven (Giardina et al., 1975) that the orthogonal matrix described by 

this theorem minimizes Il A - U 112 over aIl orthogonal matrices of the same dimensions. 

Therefore, after calculating Q'BAi for i = 1, ... , m, one can find the best orthogonal 

matrices approximating them by applying the above theorem, thereby accomplishing 

a preliminary attitude calibration. These approximate rotation matrices are denoted 

by êk 
However, because this type of calibration is indeed imperfect, for the rotation 

matrix from the body frame to the reference frame cannot be exactly known, we 

express the actual rotation matrix Q'BAi from the ith accelerometer frame to the 

body frame as 

(3.7) 

where each calibration error is considered as a rotation matrix Qi, which, according 

to eq. (2.2), is calculated from 

(3.8) 

with CPi denoting the angle of the rotation carrying the assumed frame of the ac­

celerometer into its actual attitude; Ei is the cross-product matrix of the unit vector 

ei of that rotation, and 1 is the 3 x 3 identity matrix. Unfortunately, however, both 

CPi and Ei are unknown constants. 

Because of the preliminary calibration of the array, aIl CPi can be assumed smaIl, 

and hence, the right-hand si de of eq. (3.8) can be approximated linearly as 

(3.9) 

3.:3 Accelerometer-Array Kinematics 

3.3.1 Angular Acceleration 

From rigid-body kinematics, the absolute acceleration of the ith pickup point and 

that of the centroid C are related by 

(3.10) 
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where w and a are the angular velocity and angular acceleration of the body, re­

spectively, and ri, shown in Fig. 3.1, is the position vector of Pi with respect to C. 

As shown in (Parsa et al., 2001), however, the element-wise time derivative of the 

angular velocity of a body in its local-frame is exactly equal to its absolute angular 

acceleration expressed in the same frame, i.e., 

w=a. (3.11) 

Therefore, using the cross-product matrices n and n of w and w, respectively, one 

can rewrite eq. (3.10) in a more suit able form: 

(3.12) 

Moreover, using eq. (3.7) and recalling the definition of C, one can calculate the 

left··hand side of eq. (3.12) as 

= a~ + n~ 
~ t (3.13) 

in which ai and nr, after utilizing eq. (3.9), are defined as 

(3.14) 

(3.15) 

where Aiai is the acceleration measured by the ith accelerometer. Note that, even 

though the gravitational acceleration g must be added to each of the accelerometer 

measurements in or der to obtain the acceleration of the corresponding pickup point, 

this effect vanishes in ai - ac, no matter how accurate, or inaccurate for that matter, 

the calibration is. The accuracy of the final results, however, are affected. 
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Furthermore, let us define the 3 x m matrices R, Ar, and Na as 

R b. [rI r2 r m] , (3.16) 

Ar b. [al a2 a!"n] , (3.17) 

Na b. [nt na 2 n~] . (3.18) 

Then, by equating the right-hand sides of eqs. (3.12 & 3.13), assembling aIl the equa­

tions in matrix form, and noticing the definitions given by eqs. (3.14-3.18), one can 

write 

(3.19) 

with W b. n + 0 2 known as the angular-acceleration tensor (Angeles, 1999). Rence, 

the least-square solution of eq. (3.19) is 

(3.20) 

where Rt is the Moore-Penrose generalized inverse (Nobel and Daniel, 1988) of R, 

which must be calculated only once. 

Since n and 0 2 are skew-symmetric and symmetric, respectively, one can readily 

calculate the angular acceleration of the body by taking the axial vector2 of both sides 

of eq. (3.20), namely, 

w = vect(W) (3.21) 

in which W is computed using eq. (3.20) while neglecting Na. 

3.3.2 Angular Velo city 

The calculation of the angular velo city from 0 2
, however, is not as straightforward 

as that of the angular acceleration when there is a substantial calibration error. The 

reason is that, in such a case, there are six inconsistent quadratic equations in three 

unknowns. Therefore, solving them, i.e., calculating the best estimate for the angular­

velo city vector, requires an optimum estimation scheme, which can be computationally 

2The axial vector of a real, 3 x 3 matrix V = [Vij 1 is defined as 

v == vect(V) ~ (1/2) [V32 - V23 V13 - V31 V21 - V12f . 
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expensive; moreover, the result will not necessarily be consistent with the angular 

acceleration calculated from eq. (3.21). Our simulations demonstrated that, in the 

presence of calibration errors, the numerical integration of the angular acceleration 

alone will provide results suit able enough for the highly accurate calibration method 

proposed here. 

After the installation errors are identified and accounted for, however, the angular 

velo city can be determined quite accurately from 0 2 either using a numerical proce­

dure such as Newton-Raphson's (NR), as done in (Parsa et al., 2002a)3, or in closed 

form, as explained below: The system of nonlinear equations to be solved for w is 

given by 

(3.22) 

with 

(3.23) 

because the left-hand side of eq. (3.22) is identically equal to 0 2 (Angeles, 2002). 

Upon taking the trace of both sides of the foregoing equation, one obtains 

(3.24) 

in which trO represents the trace of (.). As a result, eq. (3.22) can be rewritten as 

(3.25) 

from which, by taking the square root of the diagonal elements, the components of 

w are obtained up to a sign change, which can be fixed by looking at the sign of the 

components of the approximate value of w at (i + l)st sampling time obtainèd using 

Simpson's rule, namely, 

(3.26) 

3The procedure reported here in this section is also superior to that of (Parsa et al., 2002a) in 
that, here, the angular velo city is obtained directly, i.e., no iteration is involved. 
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where h is the sampling time. 

Obviously, the norm of the angular velo city cannot be negative. However, when 

the angular velo city is at the verge of vanishing, due to round-off or measurement 

errors, the trace in eq. (3.24) can become positive. In such cases, one has to assume 

the trace to be zero. The same has to be done when any of the diagonal elements 

of the right-hand si de of eq. (3.25) becomes negative. In other words, the method 

explained here loses accuracy when the angular-velocity components go through a 

sign change or when they become zero and remain so. 

As seen from eq. (3.21), using the procedure outlined here, one can calculate the 

angular acceleration of the body without a priori knowledge of the body angular ve­

locity; this brings about a major accuracy improvement when compared with the 

procedure proposed by Parsa et al. (2001), where estimating the angular accelera­

tion of the body required a priori knowledge of the angular velo city. Furthermore, in 

that paper, the angular velo city was obtained by integrating the angular acceleration, 

which caused a drift in the estimation of the angular velo city, due to error accumu­

lations. Those results are reproduced here in a more suitable format, as Fig. 3.2, for 

comparison. The component indices are included in the figures. 

3.8.3 Translational Velo city and Position 

Using elementary kinematics, it can be shown that 

Ve = ae - Ove, (3.27) 

and 

C=Ve- Oc, (3.28) 

where Ve and c are the absolute velo city and the position vector of the centroid, 

respectively, expressed in the body-frame. Integrating the two above relations, given 

the initial conditions, one can obtain Ve and c. 
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3.3:.4 The Rigid-Body Attitude 

As observed from eqs. (2.6a & 2.6c), recalled here, the time-rate of change of", in the 

body frame, il, is related to the angular velocity w of the body, expressed in the same 

frame, by 

K b. ~ [-0 w]. 
2 -wT 0 

(3.29) 

This equation can be integrated numerically to compute the orientation of the body4. 

Due to truncation and round-off errors, however, the result of the integration at each 

time step most likely will not be consistent, i.e, the norm of", most likely will fail to 

be unity. 

To overcome this problem, one can find a least-square-error approximation by 

normalizing the quaternion thus obtained, i.e., by replacing ", by ",/11",11 at each time 

step. The reason, in short, is that the normal projection of any point in the four­

dimensional Euclidean space onto the unit hypersphere yields the closest point on the 

hypersphere. 

It has been proven (Giardina et al., 1975) that, if the non-normalized quaternion 

is used to calculate a corresponding non-orthogonal rotation matrix from eq. (2.3), 

recalled here, 

(3.30) 

then the orthogonalization of this rotation matrix through the polar-decomposition 

theorem yields an orthogonal matrix which is exactly the same as the rotation matrix 

corresponding to the normalized quaternion. 

Hence, the system of differential equations to be integrated to estimate the pose 

and twist of the rigid body is composed of eqs. (3.27-3.29). The important feature of 

these equations is that, sinee they are aIl written in the body-frame, no knowledge of 

the body attitude is required for the calculation of the twist. Consequently, the error 

40ne may be tempted to find the solution of this differential equation in closed-form as 'Tl(t) = 
exp U; Kdt)'Tlo· However, this solution can be correct only if the two matrices exp U; Kdt) and K 
commute under multiplication, which is not necessarily the case. 
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incurred at the pose-estimation level does not propagate back to the twist-estimation 

level although it causes inaccuracies in the reference-frame representation of the twist. 

3.4 Kinematic Attitude Calibration 

As shown in Section 3.5, due to gravitational calibration errors, the integration results 

are not stable even in the presence of small angular errors; in fact, the estimation errors 

for any of the pose and twist components, as weIl as the rate at which these errors 

grow, increase with the calibration errors. Therefore, to remedy the situation and to 

obtain a better estimate of the actual value of the states, a second calibration scheme, 

not requiring an accurate knowledge of the accelerometer-array pose, is needed to 

estimate the calibration-error rotation matrices Qi. One such scheme is proposed in 

this section. 

Firstly, vectors ei are defined as 

i = 1,2, .. . ,m. (3.31) 

Using these definitions, nf, given by eq. (3.15), can be rewritten as 

A-A l~A-A 
n~ = QiEi i ai - m ~ QjEj iaj 

j=l 

(3.32) 

where Ei 6 CPM(ei)' Then, from eq. (3.19), an estimate Na is evaluated from 

(3.33) 

in which W is an estimate of W and given by eq. (3.23). 

Calculating Na, one can obtain an approximate value for nf by just picking up 

the ith column of Na. On the other hand, from eq. (3.32), it can be seen that 

m-1A l~A 
- QiAiei + - ~ QjAjej = nf 
mm. 1 

J= 

(3.34) 

Ni 

where Ai 6 CPM(Aiai), and one thus arrives at a set of 3m linear equations in 3m 

unknowns, the elements of ei' Assembling an these equations, one obtains 

(3.35) 

53 



where the (i, j) block of A, e, and na are defined by 

!:;. 1 A 

A·· - (- - 6··)Q·A· ~J - m ~J J J 

- !:;. [-T -T e = el e2 ... -T]T em , 

a T]T n m . 

and 6ij is the Kronecker delta. 

(3.36) 

(3.37) 

(3.38) 

However, this system of equations cannot be solved as is because it is not linearly 

independent, for L::l(~ - 6ij )QjAj = O. Therefore, eq. (3.35) is written for N 

different measurements during an arbitrary manoeuvre of the body, and all 3mN 

equations thus generated are then assembled: 

(3.39) 

Upon solving this system of equations in the least-square sense, we obtain an approx­

imation of e. 

Using the vector e thus calculated, one can improve the Qi estimates by calculating 

Ct from eq. (3.8), after computing CPi and ei using CPi = Ileili and ei = edlleill, and 

then replacing Qi by QiQi' Notice that eq. (3.8) is used to ca1culate Qi even though its 

linear approximation, eq. (3.9), was originally used to simplify the equations involved; 

the reason is that Qi will not turn out to be orthogonal otherwise. This procedure 

may be implemented iteratively off-line in· order to achieve a small enough norm of 

cf>~: [CPI ... CPm] T . 

Our simulations show that, using this procedure, angular installation errors as 

large as 20° can be dealt with. 

3.5 Simulation 

3.S.1 First Results 

The sample rigid-body motion reported in (Parsa et al., 2001) was a harmonie motion 

about a fixed axis parallel to the vertical direction, so that both angular velo city and 
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Figure 3.4: Error in the angular-velocity esti­
mate; CPj = 10° 

angular acceleration varied harmonically over time. Figure 3.2 shows the estimated 

angular velocity and acceleration as weIl as their errors. The simulation was imple­

mented in Matlab. To integrate the system of differential equations, we used the 

second-order Runge-Kutta method. Moreover, it was assumed that the accelerometer 

data, coming from five accelerometers, were read at a rate of 100 Hz, and that the 

accelerometer calibration errors were 0.1° about arbitrarily chosen axes. 

As seen in Fig. 3.2, the results were unstable. Simulations carried out revealed 

that the estimation errors for any of the pose and twist elements, as weIl as the pace 

at which these errors would grow, increased with the calibration errors. 

To remedy the above situation and to obtain a better estimate of the actual value 

of the states, Parsa et al. (2001) suggested that one could fuse the Integration results 

with the data coming from a fiber-optic pose sensor called Shape-Tape (Danisch, 

1998; 2000; Danisch et al., 1999) at each time-step. To this end, two sets of weighting 

factors were chosen to be applied on the two sets of data; then, corresponding weighted 

variables were added up, so that, for each of the pose and twist elements, a corrected 

value was found. 

In the case of angular velo city, for instance, two estimates of w were evaluated: 

One by integrating eq. (3.21), and the other by taking the axial vector of the angular-
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velo city matrix calculated using eq. (2.11), after the rotation matrix delivered by the 

Shape-Tape was numerically differentiated. Albeit, theoretically, only three of the ni ne 

entries of n are needed to find the second estimate, we chose to employ this relation 

to filter the existing errors as far as possible because n would most likely not be 

skew-symmetric. Of course, to use this equation, one has to numerically differentiate 

the rotation matrix Qcalculated using the Shape-Tape software. 

Then, simulations were carried out for the same sample motion. The weight given 

to the integrated data was 0.8; 0.2 was assigned to the Shape-Tape data. By doing 

so, not only did the maximum errors decrease dramatically but also their growth 

stopped-see Fig. 3.5, and compare the errors with those shown in Fig. 3.2. 

The stabilized estimation error of the angular velo city and that of the attitude 

are plotted in Figs. 3.5 and 3.6, respectively. In the latter, the numbers refer to the 

component indices of vector u of eq. (2.1). 

3.5.2 Second Results 

The formulation proposed in Sections 3.3 and 3.4 was implemented in MATLAB. To 

integrate the system of differential equations, the second-order Runge-Kutta method 

was used. It is assumed that the accelerometer data, coming from an array of five 
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accelerometers, are read at a 100 Hz rate, and that the accelerometer calibration 

errors are 10° about arbitrarily chosen axes. The relative poses of the accelerometers 

with respect to each other, so far as the simulations are concerned, are irrelevant. 

However, in an actual application, the sensors should be located at the same relative 

distance and orientation, and as far from one another as possible for the best results. 

The first sample rigid-body motion to be observed is the motion considered in 

the foregoing subsection, namely, a fixed-point harmonic rotation about a vertical 

axis with an amplitude of 1.5 rad and a circular frequency of 1.0 rad/s. Figures 3.3 

1.5,------r----~---,__--~--_, 
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Figure 3.9: Error in the calculation of the 
skew-symmetric VW using NR 
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and 3.4 show the estimated angular velocity and its error, respectively. As seen in 

Fig. 3.3 and explained in the previous subsection, due to the calibration errors, the 

angular-velocity estimation results are not stable. 

Then, the calibration is applied iteratively six times to decrease the amount of 

calibration error. At the end of the first iteration, 1> is estimated as [7.82°, 11.0°, 

10.2.°, 10.5°, 9.31 o]T. At the end ofthe sixth iteration, however, the remaining angular 

error amounts to 1> = 10-14 X [1.63°,1.63°,4.40°,2.51°, 1.54o ]T. The angular-velocity 

and Euler-parameter error estimates at the end of the sixth iteration are quite small 

as shown in Figs. 3.7 and 3.8. Similar results were obtained, with the same number 

of iterations, when the initial orientation errors were set to 20°. 

As discussed by Parsa et al. (2002a), one can improve the results further by solv­

ing eq. (3.22) for w using the NR method; the numerical integral of the angular­

acceleration vector, i.e., the approximate value given by eq. (3.26), provides the re­

quired initial guess. Figures 3.9 and 3.10 show the errors after applying the Newton­

Raphson scheme with a relative tolerance of 10-7 . One interesting point in Fig. 3.9 

is that, as opposed to Fig. 3.7, the highest errors occur when the angular velo city 

undergoes a sign change, the sole reason being the inherent sign indeterminacy of 

the square-root problem. As reported in (Parsa et al., 2002a), the angular-velocity 

results obtained at this stage are three orders of magnitude more accurate than the 

results presented in (Parsa et al., 2001), where the readings of a fiber-optic pose sens or 

were used to correct the instability problem incurred due to calibration errors, for the 

same sample motion, in the presence of 0.1° angular errors. As for the quaternion 

errors, the results shown in Fig. 3.10 are at least as accurate, without resorting to an 

additional sensor. 

Another motion which is considered here as an example is the motion of a spinning 

top, shown in Fig. 3.11 as a cone, with the z-y-z Euler angles describing its attitude5 . 

5Notice that, to calculate the initial attitude and the attitude-estimation error, one should obtain 
the top attitude in terms of the Euler parameters; this can be done by applying the quaternion­
concatenation formula given in (Reynolds, 1998) twice. 
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We assume that the height of the cone is 0.15 m, and that, at time t = 0, () = 30°, 

'ljJ = 45°, and cp = 60°. It is further assumed that the precession and the spin motions 

take place at constant speeds of 0.5 and 1.5 rad/s, respectively, while the nutation 

angle 'ljJ varies sinusoidally with an amplitude of 22.5° and a circular frequency of 

0.2 rad/s. 

The plots displayed in Fig. 3.12 show estimation errors for w and Q under the 

assumption that each of the accelerometers in the array has a 20° installation er-

ror at an arbitrary direction. At this moment, 

if the kinematic calibration scheme reported in 

Section 3.4 is applied, after six iterations, the at­

titude errors can be identified and effectively ac­

counted for. Figure 3.13 shows the results after 

the installation errors are identified and taken 

into account in the calculations. At this stage, 

however, since the angular-velocity vector is still 

calculated by integrating the body angular ac­

celeration, the amplitude of the error is large. 

To remedy this problem, the angular velocity of 

the body is calculated from 0 2
. As a result, 

the estimation error for the angular velo city, as 

shown in Fig. 3.14, is dramatically lowered. 

If the angular-velocity results are integrated 

now, the attitude of the top at each instant can 

be determined. The attitude-estimation errors, 

in terms of Euler-parameter errors, are given in 

Fig. 3.15. As se en from this figure, the error is 

increasing; this was actually expected, for the 

integration operation is inherently unstable. 
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Figure 3.12: Estimation of w and 0: for the spinning-top problem before calibration; instalation error 20° 
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As explained in (Parsa et al., 2001), in order to render the formulation real-time oper­

ational, the authors "translated" the MATLAB m-files into C-code and subsequently 

compiled the code thus generated using MATLAB's mec translator. Even though spe­

cial attention was paid to the minimization of the number of calculations in MATLAB, 

simulations had revealed that the mee-generated C-code was not fast enough. There­

fore, an independent estimation program was developed in C. As reported in that pa­

per, the simulations showed a dramatic improvement in computation time: For each 

10-ms time step, from 24 ms in MATLAB through 10 ms with MATLAB-generated 

C-code to less than 0.5 ms with the independent C-code on a 300 MHz SGI machine 

with a MIPS R12000 Processor and 512 MB of RAM. 

Because the estimation procedure explained in (Parsa et al., 2001) is more com­

plicated and thus more time consuming than that of the procedure explained in this 

chapter, it can safely be assumed that the latter is also real-time operational. Further­

more, with the advent of GHz-processors over the past two years, the dock frequency 

of common comput ers have almost quadrupled. Therefore, insofar as the computation 
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time is concerned, no problem is anticipated in the real-time implementation of the 

algorithm proposed here. 
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Chapter 4 

Dynamics 

4.1 Introduction 

To derive the dynamics of the entire system, we separate the manipulator into its two 

kinematic chains, namely, the flexible submanipulator, and the rigid submanipulator. 

The dynamics model of each chain is derived by writing the dynamics equations of its 

links using the Lagrange equations, assembling these equations, and eliminating the 

additional equations through the application of the Natural Orthogonal Complement 

(NOC). Then, to obtain the mathematical model of the whole system the two sets 

of clynamics equations are assembled. This time again the addition al equations are 

eliminated by applying the NOC. 

As mentioned in Chapter 1, it is indeed possible to deal with the system as a single 

chain-without any need to distinguish between the parts of the flexible-manipulator 

and those of the rigid manipulator-by writing the dynamics equations of all the links, 

and then assembling the equations thus obtained at once. However, the approach we 

have taken here turns out to be computationally more efficient for the particular 

state-estimation technique proposed in this thesis. 

The methodology presented in this chapter is used in Appendix E to derive the 

dynamics equations of a planar RRR manipulator comprising a single-link flexible 

submanipulator and a two-link rigid submanipulator. 
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4.2 Generalized Coordinates and Generalized Ve­
locities 

Even though not an the links of the flexible manipulator have to be flexible, we assume 

that the generalized coordinat es of the flexible-manipulator links, in general, include a 

set of numbers that, given the discretization method, will provide information on the 

configuration of the link. In addition, the link-generalized-coordinate vecto-? must 

contain information on the pose of a local frame attached to the link. To satisfy 

these requirements, we take the vector qFi given below as the vector of generalized 

coordinates of the flexible-manipulator link number i: 

~ [T T ;-T]T 
qFi - PFi '11 Fi ~ i , for i = 1,2, ... , nF, (4.1) 

with nF being the number of links of the flexible manipulator. Vectors PFi and 'I1Fi 

are the position vector and the array of the Euler parameters of the link body-frame 

J"Fi~1 respectively, expressed in the local frame, with respect to the inertial reference 

frame ::R. The vector 'i of the link flexural coordinates has the form 

( 4.2) 

in which ei and /Li represent the flexural coordinat es pertaining to the bending and 

torsional deformations, respectively, of the link. 

The link generalized coordinates, i.e., the elements of qFi, however, are not inde­

pendent, due to the dependence of the Euler parameters; the constraint equation has 

the form 

(4.3) 

where 14 is the 4 x 4 identity matrix, nfi being the dimension of 'i' Le., the number 

of flexural coordinates of the ith link. 

1 We use here the term vector in the computer-science sense, Le., to indicate a one-dimensional 
array, not necessarily in the algebraic sense. For example, the "vector" of generalized coordinates 
may contain components associated with the attitude of a rigid body; the sum of two such vectors, 
with regards to its attitude components, has no kinematic meaning. 
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The vector of link generalized velocities, on the other hand, is defined by the twist 

t Fi given below: 

for i = 1,2, ... , nF ( 4.4) 

where WFi is the angular velo city of the body-frame expressed in the same frame. 

For rigid links, whether they belong to the flexible manipulator or to its rigid 

counterpart, in general, the generalized coordinates and generalized velocities are 

defined in the same manner, except for the flexural-coordinate part, which will be 

absent. Therefore, for the rigid link number j, we have 

t /). [. T 
j = Pj 

(4.5) 

( 4.6) 

It is worth mentioning that, because the position vector is expressed in the link 

body-frame, its element-wise time derivative, which is included in the link array of 

generalized velocities, will naturally not be the absolute velo city of the origin of the 

frame. 

4.:3 Dynamics of the Flexible Submanipulator 

4.:3~.1 The Link Kinetic and Potential Energies 

Upon spatial discretization of a flexible link, its kinetic and potential energies can be 

written as 

(4.7) 

(4.8) 

where M Fi and Ki are the positive-definite, symmetric matrices representing the mass 

and the stiffness of the link, respectively. The structure and the value of the entries 

of the matrices are dependent on the assumptions made about the flexible links and 

the type of discretization used to model the flexibility of the link. 

66 



Under the assumptions set forth in Section 2.4, the kinetic energy of the link can 

be expressed as 

(4.9) 

in which Pi(X, t), Ji(x), Ai(X), and 1'i(X, t) are the mass per unit length, the polar mo­

ment of inertia, the cross-sectional area, and the torsion angle of the link, respectively, 

while VFi(X, t) is the velocity of a typical point of the link neutral axis. If the link 

also has concentrated masses, they are taken care of by setting Pi(X) equal to impulse 

functions in the space-domain of appropriate magnitude applied at the points where 

the masses are located. 

Kinematic relations can be utilized to express VFi(X, t) and 1'i(X, t) in terms of the 

link twist t Fi . Next, these expressions are substituted into eq. (4.9), and the integrals 

are evaluated. The expression thus obtained for the link kinetic energy is then used 

to derive the mass matrix. This is done for the special case of uniform links with one 

conœntrated mass at the link distal end in Appendix C. 

The potential energy of the link2 , on the other hand, under the same conditions, 

can be written as 

1 1lFi
' (82 

i ( t) ) 2 1 1lFi (82
u

i 
(x t)) 2 V; . = - Eli () U z x, d + - Eli ( ) y , d 

Ft 2 0 y x 8x2 X 2 0 z X 8X2 X 

+ ~ t GJi(x) (iYyi~:' t)) 2 dx 

(4.10) 

in which E, C, I~(x), I!(x) are the Young modulus, the shear modulus, the cross­

sectional second moment about Yi axis, and that about Zi axis, respectively, u;(x, t) 

and u~(x, t) being the flexural displacements of the link neutral axis along the two 

axes. If the discretization relations (2.62 & 2.65) are used to simplify the potential­

energy expression, the stiffness matrix is then obtained as 

(4.11) 

2Here, we only consider the elastic potential energy, the effect of gravit y being addressed in 
Section 4.6. 
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4.3.2 The Link Governing Equations 

U sing the expressions of the kinetic and potential energies, we can write the link 

Lagrangian as 
1 T 1 T 

L Fi = 2"tFiMFitFi - 2"(i Ki(i, (4.12) 

the Lagrange equation of the link being, then, 

d (OLFi ) OLFi fd fex fk fa 
dt OqFi - OqFi = Fi + Fi + Fi + Fi' for i = l, ... ,nF. (4.13) 

where f~i' fFi, f;i' and fFi are the generalized forces due to the link material damp­

ing, the actuation forces, the kinematic-constraint forces, and the algebraic-constraint 

forces, respectively. Vector fFi is given by fFi t;,. ÀFi:EFiqFi in whi'ch À Fi is a Lagrange 

multiplier. It can be shown (Cyril, 1988) that this generalized force lies in the null­

space of the matrix (oqFdotFi)T, Rence, the premultiplication of eqs. (4.13) by this 

matrix will eliminate the algebraic-constraint force on the right-hand side: 

( OqFi)T[~(O~Fi) _ OLFi ] = (OqFi)T(f$i+f:~+f;i)' 
OtFi dt OqFi OqFi OtFi 

(4.14) 

Rowever, using eq. (4.12), one can readily show that 

d (0 LFi ) d (ot Fi ) T ( ot Fi ) T ( . . ) 
dt OqFi = dt OqFi MFitFi + O<iFi MFitFi + MFitFi , (4.15) 

and 

OLFi (OtFi)T 1 T OMFi ( O(i )T n-- = ~ MFitFi + -2tFi-!=:I--tFi - ~ Ki(i 
uqFi uqFi uqFi uqFi 

( 4.16) 

in which (oMFd OqFi)tFi is interpreted as 

OMFi tFi _ o(MFia) 1 

OqFi OqFi a=tF, 
( 4.17) 

If relations (4.15 & 4.16) are substituted into eq. (4.14), we can obtain the link 

dynamics equation as 
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(4.18b) 

( 4.18c) 



and 

S Â (. ). - 1 T âMFi 
W Fi - -Bi CiCi - KiCi - MFitFi - OFiMFitFi + "2tFi ât

Fi 
t Fi , 

with Bi and OFi defined by 

Bi ~ [106xnfi ] , OFi ~ diag(03X3,OFi,OnfixnfJ, 
nfixnfi 

(4.18d) 

(4.19) 

where OFi is the cross-product matrix of the link angular velocity. Ci is the positive­

definite, symmetric damping matrix due to the beam material damping; this matrix 

becomes a multiple of the stiffness matrix Ki if the Kelvin-Voigt viscoelastic model 

(Meirovitch, 1997) is used to model the material damping in the system. For the 

derivation of eqs. (4.18), the identities given below have been used: 

âtFi = _li (âtFi ) 
âqFi - dt â<lFi ' 

OF' = 2 (â<lFi ) T li ( âtFi ) T 
2 - âtFi dt â4Fi ' 

T âMFi _ (â<lFi)T T âMFi 
tFi-â--tFi = -â tFi-â--tFi' 

tFi t Fi qFi 

The above three identities are proven in Appendix B. 

4.8.3 Assembling the Link Equations 

(4.20a) 

(4.20b) 

(4.20c) 

To obtain the dynamics equation of the flexible manipulator, the link mass matrices, 

generalized velocities, and wrenches are assembled: 

MF ~ diag(MF1 , M F2 , ... , M FnF ) , 

~ [ T VF = t Fl t~2 T ]T 
t FnF ' 

w~x ~ [(w~~f (wF~f (wex f]T FnF ' 

k ~ [( k f wF = W F1 (W~2)T (W~nF)T]T , 

s ~ [( s )T w F = W F1 (wF2f (WFnFf]T. 

We can thus write the dynamics of the flexible manipulator as 

M . ex+ S + k FVF = wF W F wF 
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( 4.21a) 

(4.21b) 

(4.21c) 

( 4.21d) 

(4.21e) 

( 4.22) 



Because of the kinematic relations among the generalized velocities of the different 

links, however, the number of equations is greater than the degree of freedom of the 

flexible manipulator. Thus, to eliminate the extra equations, it is noticed that the 

total virtual work performed by the kinematic-constraint forces must be zero, i.e., 
nF 

bW; = L (f;i) T bqFi = 0 (4.23) 
i=l 

Rowever, the vector qFi of the link generalized coordinat es is a vector function of the 

generalized coordinates 1/JF of the flexible manipulator, Le., qFi qFi(1/JF)' Further­

more, let us arrange 1/JF as 

1/JF /:, [O~ <:T]T, 

<: /:, [<:f <:I ... <:~F] T , 

(4.24) 

(4.25) 

where OF is an array comprising all flexible-manipulator joint variables. These func­

tional relations can be used to relate the virtual changes of the link generalized coor­

dinates to those of the generalized coordinat es of the flexible manipulator: 

bqFi = ~~; b1/JF = ~:: b1/JF = ~i;: !%; b1/JF ( 4.26) 

Rence, upon substitution of bqFi into eq. (4.23), the expression for the total virtual 

work becomes 

6W; ~ t [(:;;n::ff;r6>PF ~ t [(:;/ ~r6>PF 
= [( :~: ) T W~i] T b1/JF = 0 

which shows that, since the entries of b1/JF are independent, the vector w~ of the 

kinematic-constraint wrench lies in the null-space of the transpose of 

NF /:, O-:F. 
81/JF 

( 4.27) 

For this reason, matrix NF is called the Natural Orthogonal Complementofthe system. 

This property can be used to eliminate w~ from the right-hand side of the dynamics 

equation (4.22): 

( 4.28) 
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However, we know that the relation between VF and 1pF is linear and can thus be 

written in the form 

(4.29) 

which, upon differentiation with respect to time, yields 

.. .. 
VF = N F1/7F + N F1/7F. ( 4.30) 

Substituting for VF into eq. (4.28) from eq. (4.30), we obtain the flexible-manipulator 

dynamics equations as 

~ s .6. NT (S M N· "i.) W F = F WF - F F'f"F· 

(4.31a) 

(4.31b) 

(4.31c) 

( 4.31d) 

The vector w} is called the system wrench (Cyril, 1988) of the flexible manipulator. 

Now, the elements of wpx are calculated using the definition of generalized forces 

as the coefficients of virtual displacements in the expression of the virtual work do ne 

by external forces when the virtual displacements are independent. To this end, the 

virtual work done by external forces is first calculated as 

nF nF 

8W;x = L)f;~)T 8qFi = L TFi88Fi - (f~~f 8qRo (4.32) 
i=l i=l 

where fRD and qRO are the generalized force applied on the base of the rigid manipulator 

by the tip of the flexible-manipulator end-effector and the generalized coordinates of 

the base of the rigid manipulator, respectively. The latter is, as in the case of any 

other rigid link, an array composed of the position vector of a landmark point and 

the attitude of the base. 

Substituting 8qFi and 8QRO in terms of 81/7F into eq. (4.32) gives 

nF 8 nF 8 
"'(fex)T qFi 1<,,/. '" 1<(} (fex)T qRO 1<,,/. 
~ Fi 81/7 U'f"F = ~ TFi U Fi - RO 81/7 U'f"F, 
i=l F i=l F 
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or 

( 4.33) 

8qFi 8qFi 8qFi 8tFi 8qFi 8T/Fi 8qFi 8tFi -- = -.- = ----.- + ----.- = ----.-, 
~F ~F m~~F ~~~F m~~F 

( 4.34) 

8QRO 8qRo 8<lRo 8tRo 8qRo 8T/RO 8QRO 8tRo -- = -.- = ---.- + ----.- = ---.-. 
81jJF 81jJF 8tRO 81jJF 8T/RO 81jJF 8tRO 81jJF 

( 4.35) 

N otiee that the reason for the caneellation of the second terms of the chain rule in 

the above relations is that none of the T/Fi or T/RO is a function of ipF' 

Henee, eq. (4.33) can be rewritten as 

where 'TF is an array comprising the flexible-manipulator joint torques. The above 

relation can readily be rewritten as 

(4.36) 

Henee, sinee the elements of 61jJF are independent, looking at eq. (4.36), one can 

realize that 

where 

N T ex _ A ex _ ac (8t RO )T ex 
FWF = W F - 'TF - -.- W RO 

81jJF 
(4.37) 

(4.38) 

in which On! is the zero vector of dimension equal to the total number of flexural 

coordinat es of the flexible manipulator. 
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4.4 Dynamics of the Rigid Submanipulator 

4.4.1 The Link Governing Equations 

The Lagrangian of the ith link can be calculated from 

( 4.39) 

where nR is the number of rigid links of the manipulator, and i = 0 corresponds to 

the rigid-manipulator base. Rence, the link Lagrange equation becomes 

~ (8LRi ) _ 8LRi _ fex fk fa 
dt 8 

. 8 - Ri + Ri + Ri' 
qRi qRi 

( 4.40) 

which, after eliminating the algebraic-constraint generalized force, takes on the form 

Mt' ex+ s+ k Ri Ri = W Ri W Ri W Ri 

ex ~ (8qRi ) T fex 
W Ri - 8t

Ri 
Ri 

k ~ (8<iRi)Tfk 
W Ri - 8tRi Ri 

s ~. - 1 T 8MRi 
W Ri - -MRitRi - ORiMRitRi + -tRi-8--tRi 

2 tRi 

with ORi defined in a manner similar to the definition of OFi in eq. (4.19). 

4.4.2 Assembling the Link Equations 

( 4.41a) 

(4.41b) 

(4.41c) 

(4.41d) 

Now again, let us assemble an the dynamics equations of the links of the rigid manip­

ulator: 

M R /:; diag (MRO , Mm, ... ,MRnR ) , 

VR /:; [t~o t~l ... t~nR]T, 

WR /:; [(WRO)T (WRlf ( ex f]T 
WRnR ' 

k /:; [( k f W R = W RO (w~lf (w~nRf]T , 

s /:; [( S f W R = W RO (wÎuf (wRnRfr· 
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(4.42a) 

( 4.42b) 

( 4.42c) 

( 4.42d) 

(4.42e) 

( 4.42f) 



As in the case of the flexible manipulator, these equations are not independent. and 

therefore, in order to obtain the dynamics equations of the rigid manipulator, we 

obtain the total virtual work performed by the kinematic-constraint forces of the 

rigid manipulator: 
nR 

bW~ = L (f~i)T bqRi = o. ( 4.43) 
i=l 

Here, as well, we write the functional relation between the generalized coordinates of 

the rigid-manipulator links with those of the rigid manipulator, denoted by epR' as 

qRi qRi ( epR)' wi th epR defined as 

A. t::. [T T (JT]T 'f'R = PRO 'I1RO R ( 4.44) 

in which (JR is an array including all the joint variables of the rigid manipulator. Using 

the above-mentioned functional relations, eq. (4.43) can be rewritten in the form 

nR a 
bw,k = '" (fk.)T qRi bA. = 0 R ~ Rt aep 'f'R . 

i=O R 

( 4.45) 

However, since the elements of epR are not independent, due to the presence of the Eu­

ler parameters of the rigid-manipulator base among the generalized coordinates of the 

rigid manipulator, one cannot conclude that the summation L:~:O(f~if(aqRdaepR) 

vanishes. 

To remedy this situation, we express the dependence of the elements of epR in the 

form of 

( 4.46) 

Then, taking the virtual variation of the constraint equation, we obtain 

( 4.47) 

This relation shows that the virtual change of epR is such that it lies on a hyperplane 

normal to the vector ~RepR. Thus, from eqs. (4.45 & 4.47), one can conclude that the 

only nontrivial value for L:~!o(f~if(aqRdaepR) is given by 

~ (aqRi)T k ~ aA. fRi = ÀR~RepR 
i=O 'f'R 

( 4.48) 
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where ÀR is a Lagrange multiplier. 

On the other hand, differentiating eq. (4.46) with respect to time results in 

(4.49) 

However, <PR can readily be written in terms of UR, which is given by 

(4.50) 

Therefore, eq. (4.49) can be rewritten as 

(4.51) 

which, due to the independence of the entries of UR, yields 

(
O(PR)T 
OUR :ER<PR = O. ( 4.52) 

Thus, premultiplying eq. (4.48) by (o(PRI OUR) T will make the right-hand side of that 

equation vanish, namely, 

which, using the chain rule and recalling the definition of the kinematic-constraint 

wrench, becomes 

Therefore, 

(
OVR)T k 
OUR W R = O. 

In other words, the premultiplication of eq. (4.42a) by the transpose of the rigid­

manipulator Natural Orthogonal Complement, defined as 

N ~ OVR 
R- 0 ' UR 
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cancels the kinematic-constraint wrench, thus deriving the dynamics equations of the 

rigid manipulator in the form 

AS 6. N T ( S M N· ) W R = R W R - R RUR, 

where wB, is termed the system wrench of the rigid manipulator. 

(4.54a) 

( 4.54b) 

(4.54c) 

( 4.54d) 

Using an approach similar to the one taken for the derivation of eq. (4.37), one 

can show that wa is given by 

( 4.55) 

(4.56) 

where tee and w~~ are the end-effector vectors of the generalized velocities and load 

wrench applied on the end-effector, respectively. 

Notice that w~~ is not a Cartesian wrench, Le., its elements are not the mere 

components of actual force and torque. The calculation of this wrench is the subject 

of the next subsection. 

4.4l.3 The End-effector External Wrench 

Assume that the Cartesian wrench given by 

c ~ [fT w ee - ee (4.57) 

is applied on the end-effector at a point Pee by sources external to the the flexible and 

rigid subsystems. Further, assume that the generalized coordinates of a local frame 

~ee with origin at Pee are the elements of qee 6. [Pee 1Jee]T. Now, if f:: is defined as 

the generalized force corresponding to the Cartesian wrench given by eq. (4.57), then 

consistent with the definition of the link external wrench, eq. (4.41b), we have 

ex 6. (84ee)Tfex 
W ee 8 ee· 

tee 
( 4.58) 

76 



The virtual work performed by the external forces on the end-effector can be 

calculated from 

(4.59) 

where, as per our convention, the left superscript ~ indicates an expression in the 

inertial frame. Notice the special case of MJee , which represents the virtual rotation 

of the end-effector in the three-dimensional space. In this case, the left superscript 

is put before 8 so as to emphasize that it is the virtual rotation which, due to its 

infinitesimal norm, has vector properties3 . 

The inertial-frame representation of Pee can be expressed as a function of the pose 

of ~Fee as :Rpee - :Rpee(Pee, 'rJee) = QeePee, in which Qee is the rotation matrix from 

~ee to ~. Therefore, the virtual change of :Rpee is given by 

( 4.60) 

The second term on the right-hand side of the above equation can be simplified as 

(4.61) 

where Pee and nee are the cross-product matrices of Pee and W ee , respectively, and c 

is a dummy variable. Thus, introducing eq. (4.61) into eq. (4.60), one has 

( 4.62) 

The second virtual displacement needed for eq. (4.59) is 88ee . To obtain it, we 

notice that, for any given 88ee , one can find a relative position vector r on the body 

such that it would lie in a plane perpendicular to 88ee . Now, when the body undergoes 

the virtual displacement 88ee , the vector r changes according to 

8r = 88ee x r. (4.63) 

3 As a matter of fact, Bee is not even defined here. 
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On the other hand, applying eq. (4.62) to the case of vector r, one can readily realize 

that 

(4.64) 

Hence, from eqs. (4.63 & 4.63), we have 

( 4.65) 

Since the above relation holds for any vector r perpendicular to bBee , and that the 

only vectors dependent on rare r itself and br, we can conclude that 

~i" oWee i" 
uBee = Qee~u'fJee. 

'fJee 
(4.66) 

Substituting for b~p and ~bBee from eqs. (4.62 & 4.66) into eq. (4.59) results in 

(4.67) 

Hence, 
T 

(f::fbqee= [(~ /~. ) Tf(ee + f)] bqee, 
uWee u'fJee 'T ee Pee x ee 

from which, by taking into account the norm constraint on 'fJee, and by using eq. (4.58), 

we obtain 

[ 
fee ] 

'Tee + Pee X fee . 
(4.68) 

4 1--.a Dynamics of the Entire System 

To derive the dynamics equations of the entire system, we st art by assembling the 

dynamics equations of the flexible manipulator, given by eqs. (4.31), and those of its 
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rigid counterpart , given by eqs. (4.54), namely, 

1 1). diag(lp , IR), 

U 1). [~~ Uk]T. 

'Tac 1). [( 'Tp)T ('T~)T] T , 

WS 
1). [( w~ )T (wîJ T] T , 

w=~ 1). [0fnF+nf) (w::)T(8t ee /8UR)]T, 

Wk 
1). [-(wRo)T(8tRO/8~p) (wRo )T(8tRO/8uR)]T. 

Now, let us define the vector 'ljJ of the system generalized coordinates as 

Apparently, U is a linear function of~; this relation can be given in the form 

with N given by 

However, 

a1/J.F
] aC = 

OUR 

o( 

InF 

OnfxnF 
~ 
o8F 

OnRxnF 

OnFxnR 

OnfxnR 

06xnR 

InR 

OnFxnf 

lnf 
otRO 

o( 
OnRxnf 

Hence, premultiplying both sides of eq. (4.69a) by NT, we obtain 

To simplify this equation, notice that 
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( 4.69a) 

( 4.69b) 

(4.69c) 

( 4.69d) 

(4.6ge) 

( 4.69f) 

( 4.69g) 

(4.70) 

( 4.71) 

( 4.72) 

(4.73) 

(4.74) 



in which 

6 [ T T = TF 

Thus, eq. (4.74) takes on the form 

.. s (atee)T ex 
M'l/J = T + W + a1p W ee , 

M 6 NTIN , 

(4.75a) 

(4.75b) 

(4.75c) 

Furthermore, it can be shown that, if IF and IR are divided into blocks corre­

sponding to the independent generalized-velocity vectors 1pF and UR, respectively, as 

given by 

1 [M~ M~] . [8F] (4.76) F = (M~f MF , 'l/JF = , ' 
ft' 

[ M~b M~] [tRO] ( 4.77) IR = (M!f M R , UR = OR ' 
rr 

then matrix M, corresponding to the generalized velo city 1p, will have the structure 

[

Mn M12 M13] 
M = Mf2 M22 M 23 , 

Mf3 Mr3 M33 

where 

(4.78) 

(4.79a) 

(4.79b) 

(4.79c) 

( 4.79d) 

(4.7ge) 

( 4.79f) 

Subscripts "r," "b," and "f" refer to the revolute degrees of freedom, the degrees of 

freedom of the rigid-manipulator base, and the fiexible-manipulator fiexural degrees 

of freedom, respectively. 

80 



4.6 Motion in a Gravitational Field 

To account for gravit y effects, one can take 1/JF as 

1/JF 6 [p~o (J~ (i ... (~F] T . ( 4.80) 

Then, letting PFO = -g, and PFO = PFO = 0, one can ignore the first three dynamics 

equations-which pertain to the first three generalized coordinates, i.e., the compo­

nents of PFo-unless it is desired to compute the supporting forces applied at the base 

of the flexible manipulator. 

Of course, adding PFO to the generalized coordinates of the systems requires some 

modifications to the dynamics equations even though the procedure remains the same. 
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Chapter 5 

Estimation of the Flexural States 

5.1 State-Estimator Structure 

State estimation using an observer requires two sets of equations: a set of dyna­

mics equations, expressing the modelled dynamics of the state evolution, and a set 

of measurement equations, otherwise known as state-output relations. The latter is 

an algebraic relation in the states, whereas the former, in continuous-time domain, 

comprises-usually-ordinary differential equations. Since the dynamics equations of 

a multilink manipulator are quite complicated, it would seem promising if the manip­

ulator kinematics relations could be used as the modelled dynamics, for the kinematic 

relations are far less involved algebraically. However, a kinematics-based observer has 

a major drawback: The kinematic relations, which relate the evolution of the states 

to the pose, twist, and twist-rate of one or more bodies in the kinematic chain, are of 

a pure-integrator nature, thus having an inherent instability problem. 

The dynamics equations of the entire system, when used as the modelled dyna­

mies for the observer of a manipulator with flexible and rigid submanipulators, is to 

be ilntegrated online and at each sampling time. This is especially expensivc compu­

tationally because of the usually twice-as-large dimension of the system of differential 

equations for the entire system. For this very reason, we suggest using the dyna­

mies equations of the flexible submanipulator alone as the modelled dynamics. This 

approach is explained in full detail in Section 5.2. 
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In the next two sections, the modelled-dynamics equations and the state-output 

relations are derived, linearized, and time-discretized. Then, in Section 5.4, the results 

thus obtained are used in an extended-Kalman-filter setting to estimate the flexural 

coordinat es of the flexible submanipulator. 

5.2 State-Space Dynamics Model 

The flexible-manipulator dynamics, given by eqs. (4.31,4.37, & 4.38), is recalled here 

in a more compact form: 

(5.1) 

In such a case, however, as seen from the above equation, the reaction wrench applied 

on the end-link of the flexible manipulator by the base of the rigid one is needed. 

This wrench can be calculated using the measurements delivered by an accelerometer 

array installed on the rigid-manipulator base, applying the dynamics equations of the 

rigid manipulator itself. This approach is formulated below. 

To calculate the reaction wrench, it is noticed that, using eqs. (4.54a & 4.77), one 

has 

(5.2a) 

(5.2b) 

in which M~b' M~r' and M~ are the blocks of the mass matrix of the rigid manipulator, 

and w~b and wbr are the corresponding subarrays of its system wrench, expressed in 

Subscripts "b" and "r" refer to the base and the revolute degrees of freedom of the 

rigid manipulator, respectively. 

Now, one can solve eq. (5.2b) and eq. (5.2a) for M~ëR and w RO , respectively, to 
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obtain 

(5.3a) 

(5.3b) 

Then, having determined the translational and angular accelerations of the micro base 

as well as its twist using the method reported in Chapter 3, one can readily obtain tRO 

and the other information needed for the right-hand sides of eqs. (5.3). Thereafter, 

solving the above linear equations sequentially is quite simple. 

Let us denote the state vector of the flexible manipulator by x, given by 

2 là. ,;,. = [OF] 
X - o/F - (: . (5.4) 

Using the above definitions of the states, one can write the mathematical model of 

the flexible manipulator, eq. (5.1), in a state-space format: 

jc2 = f(x) + B(x) u(t), 

with f(x), B(x), and u(t) defined below: 

f(x) t;. H(XI) w}(x) , 

B(x) t;. [Hl -H J~] , 

U(t)t;.[T!], 
w RO 

(5.5a) 

(5.5b) 

(5.6) 

(5.7) 

(5.8) 

in which matrix H, defined as the inverse of the mass matrix IF, is divided into two 

blocks: 

(5.9) 

The first block Hl is an NF x nF matrix, with NF and nF being the degree of freedom 

of the flexible manipulator and its number of links, respectively. 

84 



Hence, the discrete-time linearized form of eqs. (5.5), obtained via Euler's scheme1 

on the linearized equations, can be written as 

(5.10a) 

(5.10b) 

in which h is the sampling period, ml and m~ are the subarrays of the vector mk 

of the uncorrelated white-noise pro cesses representing the unmodelled dynamics, and 

Uk is a redefined input function given by 

Thus, in standard form, we have 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

To complete the derivation of the state-space dynamics model, the partial deriva­

tives of f with respect to Xl and X2 must be found. Between the two, however, it is 

the partial derivative of f with respect to Xl that needs extra attention, because of 

the dependence of H on the generalized coordinates. To obtain this partial derivative, 

we notice that 
af aH ~s HaWF 

&1 = ax1 WF + ax1' (5.15) 

in which, using an interpretation similar to that of eq. (4.17), (aH/ ax1 )wF can be 

written as 

aH ~ s = a(Ha) 1 _ a(HIFHa) 1 

a l W F - a 1 - a 1 
X X a=wp X a=wp 

aH ~ S H aIF H ~ S 

= 2 ax1 WF + ax1 WF (5.16) 

1 Euler's discrerization scheme has been chosen for its simplicity and speed. 
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from which we can readily conclude that 

8H A S _ H 8IF H A S H 8IF f 
8xI W F = - 8xI w F = - 8xI . (5.17) 

Hence, using eqs. (5.15 & 5.17), one can derive the partial derivative of f with 

respect to xl as 

(5.18a) 

The partial derivative of f with respect to x 2 is apparently given by 

8f _H8w~ 
8x2 - 81pF' 

(5.18b) 

5.:3 State-Output Relations 

To obtain the state-output relations for the system, we denote the output vector by 

y and define it as 

6 [yI] 1 6 [OF] 2 6 -Y = y2 j Y = é
F 

' Y = t Ro , (5.19) 

where tRo is the Cartesian twist of the rigid-manipulator base. 

Whereas the relation of yI with the states of the system is evidently linear and 

readily known, for the entries of yI are among the system states themselves, the state­

output relations pertaining to y2 are indeed nonlinear. However, a great number of 

today's well-known state-estimation techniques, e.g., the ones discussed in (Misawa 

and Hedrick, 1989; Canudas de Witt and Slotine, 1991; Sanchis and Nijmeijer, 1998; 

SüfFker et al., 1995), among many others, rely on the linearity of the state-output re­

lations. To apply such techniques in the case state-output relations are nonlinear, one 

may linearize the relations and then try the particular technique using the linearized 

relations on the system. 

To linearize the nonlinear state-output relations, y2 is expanded using Taylor's 

series about x. Neglecting the higher-order terms, we obtain 

y2(X) ~ y2(X) + 0:: lx (x - x) (5.20) 
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where X represents the estimated state vector, and, apparently, 

8y2 _ [Oy2 
--- --ox - (}xl 

(5.21) 

The partial derivatives of the Cartesian twist of the base of the rigid manipulator can 

be obtained using eqs. (2.31 & 2.33), namely, 

in which 

J /:,. OtRo 
F O;PF' 

PRO /:,. CPM(PRO), 

R /:,. [1 -PRO] 
o 1 ' 

R /:,. [nRO -PRO nRO] 
o nRO ' 

n RO /:,. CPM(WRO). 

(5.22) 

(5.23) 

(5.24) 

In the above definitions, t RO , PRO, and WRO are the twist, the position and the angular-

velo city vectors of the rigid-manipulator base, respectively. 

Consequently, upon redefining the output vector, the state-output relation can be 

rewritten as 

(5.25) 

(5.26) 

in which n(t) is the vector of the uncorrelated, white measurement-noise processes2
, 

and EnFxNF is a rectangular array of ones and zeros in which the largest left-hand-side 

square block is the nF x nF identity matrix. The new output vector, y, is defined as 

_ /:,. () (A) Oyl A Y = Y x - y x + ox Je x. (5.27) 

The time-discretized form of the state-output relations, eq. (5.25), can be readily 

written as 

(5.28) 

2 A more realistic model for noise on the translational-velocity part of the output, which is inferred 
from the accelerometer-array signaIs by integration, will perhaps be a Markov pro cess (Âstri::im and 
Wittenmark, 1997), of course, if the accelerometer noise is assumed to be white. 
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Notice that, in Section 2.2, we linearized the twist-rate relations as well. However, 

taking the twist-rate elements as outputs will then require differentiating the dynamics 

equations of the flexible manipulator, which, in turn, complicates the linearization of 

the state-space form of the mathematical model further. Therefore, this is avoided. 

Nevertheless, if, in a particular problem, taking only the twist does not produce 

reliable results, one can include the twist-rate in the outputs and use the linearized 

relations derived in Section 2.2. 

5.4: The Extended Kalman Filter 

With the linearized governing equations available, one can use the extended Kalman 

filter (EKF) relations to obtain state estimates. These relations are derived in (Chui 

and Chen, 1991) as 

and 

Po,o = Var(xo), Xo = E(xo), 

Pk,k-l = Ak-lPk-l,k-IALI + rk-IQk-IrLI' 

Al Al hA2 
xklk- I = xk-I + X k- 1' 

X~lk-1 = xLI + h [f(Xk-l) + B(Xk-l) Uk-l] , 

G k = Pk,k-ICnCkPk,k-ICr + Rktl, 

(5.29a) 

(5.29b) 

(5.29c) 

(5.29d) 

(5.2ge) 

(5.29f) 

(5.29g) 

where Qk-I and Rk are the covariance matrices of the uncorrelated white-noise pro-

cesses mk-I and nk, respectively. 

5 .. 5 Observability of the Flexural Motion 

A complete analysis of the observability issue for the type of systems treated in this 

thesis seems quite elusive, due to the nonlinear, highly complex nature of both dyna-
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mics equations and state-output relations. Nonetheless, to intuitively see how many 

flexural generalized coordinates one can estimate using one accelerometer array, con­

sider a cantilever flexible link. If an accelerometer array is installed at the tip of 

such a link, the three components of the translational acceleration and those of the 

angular acceleration of the array, totalling six, can be used to estimate six flexural 

coordinates: Four flexural generalized coordinates describing bendings in two planes 

plus two flexural coordinates in each plane; one flexural coordinate representing the 

torsional twist of the link; and the elongation of the link length. Consequently, if, 

in a particular case, more than two flexural coordinat es are needed to effectively de­

scribe the bending of a link in one plane, then additional accelerometer arrays must 

be installed on the link along its length. 

By the same token, if a flexible planar manipulator has more than two links or 

the bending deformation of any of the links is to be discretized with multiple flexural 

coordinates, then extra accelerometer arrays, in addition to the one located at the tip 

of the end link, have to be installed on the distal end-point of the links in order to 

provide the estimator with enough information. Otherwise, what the estimator will 

correctly estimate will be the translational and rotational motions of the end-point 

frame. If additional accelerometer arrays are to be used, one can relate the twist of 

two subsequent link-end frames to simplify the state-output relations; the required 

kinematic relations can readily be written using the recursive relations developed in 

Section 2.3. 
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Chapter 6 

Control Law and N umerical 
R,esults 

6.1 Redundancy Resolution 

The mathematical model of the entire system, given by eqs. (4.75), is partitioned 

below: 

where 

and 

.. .. 
Mrre + M rf ( = W r + T 

= [Wr].Q. s (otee) T ex w_ -w + . W ee ' 
Wf o1f; 

M .Q. [Mn M12] 
rr-MT M ' 12 22 M l!. [MI3] 

rf M ' 23 

in which M ij , for i,j = 1,2,3, are given by eqs. (4.79). 

Solving eq. (6.1b) for (, we obtain 

Substituting the above relation into eq. (6.1a) and then solving for T yield 
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(6.1a) 

(6.1b) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 



This relation will serve as a basis for devising a computed-torque controllaw (Slotine 

and Li, 1991) in Section 6.3. 

On the other hand, since the whole system has a fixed base, dropping subscript 

"ee" from tee for simplicity, we can conclude from eq. (2.19) that 

(6.6) 

where Jr and J f refer to the blocks of the Jacobian matrix that correspond to the 

joint-rates and the flexural generalized velocities, respectively. Differentiating this 

relation with respect to time, substituting for' from eq. (6.4), and then simplifying, 

the mathematical model in terms of () is derived, namely, 

(6.7) 

With the definitions 

(6.8) 

the above model becomes 

(6.9) 

Because the manipulator is kinematically redundant, this linear system of equations in 

() is underdetermined. This means that, given the joint variables and the joint-rates, 

the joint accelerations required for producing a desired end-effector twist-rate cannot 

be determined uniquely. However, using the Moore-Penrose generalized inverse1 zt 

of matrix Z, the general solution of the system can be written as 

ë = zt(i -v) + (1- ZtZ)€ (6.10) 

in which, if Z is of full rank, zt can be calculated from 

(6.11) 

IThe generalized inverse zt of Z need not be calculated explicitly, the solution (6.10) being 
efficiently calculated from eq. (6.9) using an orthogonalization procedure (Nobel and Daniel, 1988). 
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Using the solution given ab ove , for a given desired twist-rate id and an arbitrary 

vector E, which represents the "self-motion" of the redundant manipulator2 , one can 

calculate the required joint trajectories. 

If at this stage-the redundancy-resolution stage-we assume that all links are 

rigid, then we will arrive at a simpler solution to the redundancy-resolution problem. 

However, to render our formulation independent of whether the link fiexibilities are 

considered or not, four new parameters are defined: 

~ .. 
V r = JlJ, (6.12a) 

(6.12b) 

When Z and v in eq. (6.10) are replaced by Zr and Vr, respectively, the redundancy 

resolution will be called rigid-link redundancy resolution; on the other hand, if Z 

and v are taken as Zf and Vf, respectively, we will term the redundancy-resolution 

formulation fiexible-link redundancy resolution. 

The rigid-link redundancy-resolution method, which is apparently less accurate 

than its fiexible-link counterpart, is the one that was used in (Nguyen et al., 1992; 

Kim and Park, 1996; 1998). 

6.2 Tracking Error 

For effective tracking, two error vectors are defined: The pose-error vector, denoted 

by ep , and the twist-error vector, represented by et. The latter is simply defined as 

the numerical difference between the end-effector twist and its desired value: 

(6.13) 

The former, however, cannot directly be defined as the mere numerical difference of 

two vectors because the attitude of a rigid-body contributes to its pose vector, and 

no representation of attitude can be added-or subtracted, for that matter-element 

2 A self-motion of a kinemtically redundant manipulator is a joint-space motion of the manipulator 
whieh do es not result in any change in the end-effector pose, twist, or twist-rate. 
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by element to pro duce a meaningful result. To handle this problem, assuming that 

the attitude errors are small enough, we define the pose error as the image of the 

end-effector generalized-coordinate error D.qee under the mapping given below: 

(6.14) 

where 1 is the 3 x 3 identity matrix, and matrix H is defined by eq. (2.5b). 

6.:3 Computed-Torque Control 

The computed torque required for control is then suggested as 

_ -1 Tt· 
T com - (Mrr - MrfMff Mrf)Z (td + Kpep + Ktet - v) 

+ (Mrr - MrfMfflM~)(1 - ztZ)€ + M rfM ff
1Wf - Wr 

(6.15) 

where ep and et are given by eqs. (6.14 & 6.13), and Kp and Kt are the gains of the 

proportional and the derivative actions, respectively. In the case steady-state error 

is an issue, an integral action can be included as weIl. Upon the application of the 

foregoing torque at the joints, eq. (6.5) results in 

(Mrr - MrfMfflM~)ë = (Mrr - MrfMfflM~) [Zt(td + Kpep + Ktet - v) 

+ (1- ztZ)€] 
(6.16) 

which, by virtue of the non-singularity of the mass matrix M and as a result of the 

matrix inversion lemma (Brogan, 1991), simplifies to 

( 6.17) 

If this vector of joint accelerations is substituted into eq. (6.4), we obtain the flexural 

dynamics of the manipulator as 

(6.18) 

This mathematical model can then be rewritten as 

.. . 
Mff' + Cd' + K' = Wc;, (6.19) 
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where Cd is the desired proportional-damping3 matrix, given by 

Cd 1::. aMff + ,BK. (6.20) 

The scalars a and ,B are the proportionality constants. Moreover, Wc, and K are 

defined as 

1::. Tt· T t 
Wc, = -MrfZ (td + Kpep + Ktet - v) - Mrf(l- Z Z)E 

+Wf+Cd(+K( 
(6.21) 

K 1::. diag(KF1 , KF2' ... ,KFnF ), (6.22) 

K Fi being the stiffness matrix of the flexible-link number i. The generalized force 

Wc, is the force that induces vibrations in the flexible links of the system. The only 

free parameter that we can choose in eq. (6.19) is E, the vector of the manipulator 

self--motions. Even though eq. (6.19) looks like the mathematical model of a linear, 

time-invariant, damped system, it is actually not so, for both the mass matrix M ff 

and the excitation force depend upon the system generalized coordinates, and the 

latter also depends on the generalized velocities. 

Therefore, in general, system (6.19) cannot be treated using the common linear­

vibration tools4 ; for example, neither will the positive-definiteness of the damping 

matrix, in general, guarantee the stability of the system, nor the time-varying modal 

matrix diagonalizes the dynamics equations (Browder and Alexander, 1988). Hoping 

that, in case of a minimum-norm right-hand side, the vibrations are damped, and the 

system behaviour is acceptable, Nguyen et al. (1992) suggested calculating E in such 

a way that the norm of the excitation force is minimized by means of a least-square 

solution. However, if we assume that M ff does not vary dramatically, we can apply 

modal analysis and calculate the projection of the excitation force onto the modal 

space; then, one can try to minimize the components of the image corresponding to 

the lowest "natural frequencies." 

3For a more general form of proportional damping, see (Angeles and Ostrovskaya, 2002). 
4properly speaking, the dynamics expressed by eq. (6.19) is both time-varying and configuration­

dependent. As a result, none of the results reported for time-varying linear systems by Browder and 
Alexander (1988), Zhu and Johnson (1990), and Lee and Park (1998) are directly applicable. 
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This method was originally suggested by Kim and Park (1996; 1998). However, 

neither Nguyen et al. nor Kim and Park gave any clue as to how the damping matrix 

is chosen. Furthermore, since the damping matrix Kim and Park use had no specific 

structure, they had to write the equations in state-space form, thus ending up with a 

dimensionally-twice-as-Iarge system of equations. Assuming a proportional damping 

matrix, on the contrary, simplifies the solution in this regard and reduces the number 

of required fioating-point operations. 

Following a standard procedure for proportionally damped systems and neglecting 

the configuration dependence of the modal matrix, one can use eqs. (6.19 & 6.20) to 

rewrite the fiexural dynamics in modal form as 

(6.23) 

whereby matrices A and Tare obtained by solving the generalized eigenvalue problem 

(Meirovitch, 1997) given by 

Kx = )"Mffx. (6.24) 

T is the modal matrix, with its columns being the eigenvectors arranged in the as­

cending order of the corresponding eigenvalues5 . These, in turn, make up the diagonal 

elements of the diagonal matrix A. Furthermore, the modal-coordinate vector IL is 

defined by 

(6.25) 

Sinee both M ff and K are positive-definite, the modal matrix is real, and the eigen­

values are strictly positive. This is another advantage over the method reported by 

Kim and Park. 

If p denotes the degree of redundancy of the system, we can set the right-hand 

sides of the first p equations of eq. (6.23) to zero. If we denote the submatrix of T 

consisting of the first p columns of T by T p, we obtain 

T;;[M~zt(td + Kpep + Ktet - v) +M~(l- ZtZ)€ - (Wf + Cd' + K()] = o. (6.26) 

5Because both Mff and K are real, symmetric matrices, aU the generalized eigenvalues are real. 
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One should notice that (TTMffT)-1 on the right-hand side of eq. (6.23) can be ignored 

here because it is both diagonal and- obviously-invertible, thus having no effect on 

the vanishing of T~w(. The reason is that the "modal vectors," the eigenvectors of 

the generalized eigenvalue problem, are mutually orthogonal with respect to Mff, for 

matrix K is symmetric6 . 

Keeping the terms involving the self-motion on the left-hand side and taking the 

rest to the other side, one obtains the system of equations7 

A€=b 

The least-square solution of eq. (6.27) is given by 

in which At is the Moore-Penrose generalized inverse of A. 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

If the result given by eq. (6.30) is substituted back into eq. (6.21), the "optimum" 

excitation force and its corresponding control torque are obtained as 

(6.31) 

+ M rfMif1
wf - W r · 

(6.32) 

Notice that (1 - ZtZ)At b = At b because, for any idempotent, symmetric matrix 1 

(Maciejewski and Klein, 1985), 

(6.33) 

6Similarly, because of the symmetry of Mlf, the eigenvectors are also mutually orthogonal with 
respect to K, and TTK T is, hence, diagonal as weIl. 

7Kim and Park (1996; 1998) also come up with a similar equation; in their case, however, both 
A and b are, as mentioned before, complex in general. To obtain the least-square solution in such 
a case, the least-square problem must be reformulated accordingly, for the difference in the norm 
definition, but these authors do not make such a distinction. It can readily be shown that, if A and 

b are complex, the least-square solution is given by E = [~(AH A)]t~(AHb) where the superscript 
H denotes the Hermitian, Le., complex-conjugate transposed, of a matrix, and ~O is the real part 
of (.). 

96 



and (1 - ZtZ) is one such matrix. 

As seen from eqs. (6.23 & 6.26), the choiee of € can affect the p "lower-frequency" 

elements of the projection of the excitation force onto the "modal" space, i.e., the 

tenn (TTMffT)-l T~w<:, if and only if none of the elements of T~M;;At b is zero. 

This means that the "principal modes" are in a sense "controllable" if At b is not 

orthogonal to any of the columns of the matrix product MrfT p' This "controllability" 

analysis appears to be in line with the work of Konno et al. (1997); the controllability 

of structurally flexible manipulators has also been addressed by Tonsunoglu et al. 

(1989; 1990; 1992). 

6.4: Stability of the Flexural Motion 

For a linear,time-invariant second-order system described by the general form 

Mx+ Cx+Kx = 0, (6.34) 

due to the monotonie reduction of the total energy of the system, the simultaneous 

positive-definiteness of the mass, the damping, and the stiffness matriees brings about 

the global asymptotic stabilitif of the system. However, if any of the three matrices 

is not constant, whether time-varying or state-dependent, the stability of the system 

is, in general, unknown and can only be determined via a more thorough treatment 

of the system, e.g., by Lyapunov's "second method." In other words, not any mere 

positive-definite choice of the desired damping matrix, Cd in eq. (6.19), guarantees 

the stability of the time-varying system. 

However, if we assume that the excitation force w <: can be kept zero at all times 

through self-motions € of acceptably small norm for any given Cd, then the flexural 

motion of the system, described by eq. (6.19), can be rendered stable by proper 

selection of the damping matrix. This is streamlined next: 

8In this case, the total energy of the system is a Lyapunov function (Caines, 1999; Slotine and 
Li, 1991) for the system. 

97 



The sum of the elastic-potential energy stored in the flexible links and the part of 

the kinetic energy of the links due to the flexural motions is given by 

(6.35) 

Due to the positive-definiteness of both mass and stiffness matrices, the energy func­

tion V is also positive-definite, thus being a candidate Lyapunov function. Then, to 

assess the stability of the system, one can obtain the time derivative of V with respect 

to time: 

(6.36) 

which, based on the dynamics model 

(6.37) 

can be rewritten as 

(6.38) 

It is apparent that, if the damping matrix is chosen such that (2Cd - Mff ) > 0, 

V turns out to be negative-definite, the energy function V thus being a Lyapunov 

function, the physical system described by eq. (6.37) being thereby stable. 

A note of caution, however, is in order: One cannot choose an arbitrarily "large" 

desired damping matrix because it may not then be possible to find self-motions of 

acceptably small norms that render w( negligibly small. Note that, by "large," we 

mean a matrix with a large norm, whatever the norm chosen. 

Another very important point to mention is that not an possible initial manipulator 

postures result in a stable control of flexural motion using the method outlined in 

Section 6.3, as observed from the simulations. This appears as an increasingly larger 

self-motion which is needed to keep the effect of w( negligible. As the degree of 

redundancy increases, so does the difficulty of choosing the initial conditions. 

98 



6 1"" 
.~) 

Constant-speed region 
7r /10 (rad/s) 

Acceleration region 
7r /15 (rad) 

Deceleration region 
7r /15 (rad) 

Figure 6.1: The end-effector Cartesian trajectory 

Numerical Results 

To demonstrate the ideas expressed here regarding state estimation and control, a 

planar RRRR manipulator is considered. The first two links of this manipulator are 

flexible and constitute the flexible submanipulator, while the last two are rigid and 

are assumed to make up the rigid submanipulator. The Cartesian trajectory to be 

followed by the end-effector is determined by only a prescribed position of the end­

effedor at any given time, i.e., the orientation of the end-effector is disregarded, and 

hence, the degree of redundancy is two. AU four links are slender, uniform, and of 

equal length and equal mass, their physical properties being given in Table 6.1. 

The desired end-effector trajectory is assumed to be a circle of radius 0.6 m with its 

centre located at 1.6 m from the origin on the positive x axis. The trajectory, as shown 

in Fig. 6.1, has three regions: The acceleration region, the constant-speed region, and 

the deceleration region. The acceleration and the deceleration regions, which are used 

to reduce the shocks applied to the system, are described by fifth-order polynomials 

Subsystem Link No. Mass (kg) Length (m) El (Nm2
) 

Flexible 1 0.50 1.0 93.266 
Submanipulator 2 0.50 1.0 93.266 

Rigid 1 0.50 1.0 -

Submanipulator 2 0.50 1.0 -

Table 6.1: The link dimensions of the RRRR manipulator 
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R (m) ()l ()2 ()3 ()4 

0.4 40.0° -124.6° 160.1° -105.0° 
0.5 40.0° -118.7° 155.1° -105.0° 
0.6 40.0° -112.9° 149.6° -105.0° 
0.7 40.0° -107.9° 143.7° -105.0° 
0.8 40.0° -101.5° 137.4° -105.0° 

Table 6.2: The initial joint angles 

and take 1.1 s each; the coefficients of the polynomials are determined based on 

the assumption that the initial and the final values of the end-effector tangential 

acceleration for each region are zero. Consequently, given the trajectory parameters 

specified in Fig. 6.1, the manoeuvre takes 20.9 s to complete. However, the simulations 

are performed until the 50th second so as to observe the behaviour of the control 

system when the desired end-effector twist is zero. The initial joint angles are reported 

in 1àble 6.2. 

As illustrated in Fig. 6.2( c), the joint torques are zero when the manoeuvre finishes. 

Nevertheless, as seen from Figs. 6.2(a) and 6.3, the joints are still moving thereafter. 

Our results9 have shown that, if the controllaw does not change, albeit the end-effector 

remains almost fixed, the joints keep rotating indefinitely due to lack of damping. As 

a consequence, despite the small values of the flexural generalized coordinat es and 

generalized velocities at the time the task is completed, the vibrations of the flexible 

links continue. To remedy this problem, one can add a light viscous damping to the 

computed-torque control given by eq. (6.32)10. Although this imposed damping solves 

the problem of indefinite rotation of the joints, its sudden presence has the effect of 

an impulse function on the system, which causes a jump in the flexural generalized 

velocities. This behaviour is clearly se en in Fig. 6.5. 

The initial and final postures of the manipulator are shown in Fig. 6.4. As se en 

from this figure and from Fig. 6.2(a), the joint-space trajectory is not cyclic; that 

is, the posture of the manipulator at the end of a task is different from that at the 

9These results are not included here as they would unnecessarily increase the bulk of the thesis. 
10 As it turns out, this has also been suggested by Sharf (1996). 
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Figure 6.2: Joint angles (a), flexural coordinates (b), actuation torques (c), and end-effector tra­
jectory errors (d) for R = 0.6 m; Kp = 250 and Kt = 150 

beginning, even though the Cartesian trajectory of the end-effector is closed, a typical 

phenomenon in redundant manipulators (Klein and Huang, 1983). 

Figure 6.5 demonstrates the time history of the flexural states beside those of 

their estimated values-which are used in the simulations to determine the control 

torques-obtained through extended Kalman filtering, as explained in Chapter 5, and 

the estimation error. As seen from this figure, the estimation errors are quite low for 

101 



0.5.------,---...,...-----,-----,------, 

i ! 
-0.5 End of 

Imano,n"" 

_1L---~---~--~---~--~ 

o 10 20 30 40 50 
Time(s) 

Figure 6.3: The joint speeds for R = 0.6 m; Kp = 250 and Kt = 150 

an Hexural states. 

2,-----~------~------~----_, 2,-----~------~------~----_. 

1 . 

o J.·l 

-1 

Trajectory 

-~1~-----~0------~------2~----~3 _2L----L-----L------L---~ 

-1 0 2 3 

(a) (b) 

Figure 6.4: Initial (a) and final (b) postures of the manipulator for R = 0.6 ID; Kp = 250 and 
Kt = 150 

102 



15
1 

15
1 

5) 

4 Il 

1O~ 10 '1 
:1 -------

Il 
S 3 1 

S : ! S s 
J 

,1 
: 1 '---" 

l! s 5 S 5 >C 
0 2 '---" '---" ..-1 0 0 

0 0 X 
..-1 ..-1 

~1 x 0 x 0 <v 
V <v 

v 0 

-5~ End of/ \1 "(2 -5r \ 1 
'---" 

-1 
manoeuvr~ 

-101 -10' -2 
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

Time(s) Time(s) Time(s) 

1--' 
0 
W 0.4 0.4 0.5 

0.3 0.3 
(2 -------00. 

----0.2 0.2 S 

------- -------
S 

00. 00. '---" 

---- ---- """ S (1 S 0 

O~ 0.1 0.1 ..-1 

S S X 
'---" '---" 

·v <·v -------0 0 <·v 

I·~ 

-
01

1 
-0.1 

-0.2' -0.5 -0.2 
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

Time(s) Time(s) Time(s) 

Figure 6.5: The state-estimation results for R = 0.6 m 



6.5.1 The Effects of Motion Speed and Amplitude 

To explore the effects of the speed and amplitude of the desired end-effector motion 

on the performance of the EKF and that of the control system, simulations have been 

carried out for circular trajectories 0.4, 0.5, 0.7, and 0.8 m in radius R, while keeping 

the control gains fixed. Since the angular velo city at the constant-speed region does 

not change, and neither do the acceleration and the deceleration times (see Fig. 6.1), 

the manoeuvre time remains unchanged at 20.9 s. 

The initial joint variables used in the simulations are given in Table 6.2. They 

have been chosen so as to put the end-effector on its desired location at the beginning 

of the manoeuvre; in other words, there is no initial disturbance. Furthermore, it is 

apparent from the values that the first and last joint angles have been kept fixed while 

the other two are calculated using the initial position of the end-effector; aIl initial 

postures belong to the same branch. 

The results are plotted in Figs. 6.6-6.17. As seen in these figures, the general 

behaviour explained for the R = 0.6 m case also holds here. However, as shown in 

Figs. 6.11, 6.8, 6.5, 6.14, and 6.17, the larger the end-effector trajectory the larger 

the motor torques and the higher the deformation of the flexible links. NaturaIly, 

the estimation errors also grow accordingly, but still remain 3-5 orders of magnitude 

smaller than the flexural states themselves. 

6.S.2 The Effects of the Control Gains 

The results reported in this subsection illustrate the effects of the control-gain changes 

on the performance of the control system as far as the tracking error and the defor­

mation of the flexible links are concerned. The state-estimation results are not shown 

here, as the state estimation is virtually not affected by variations in the control gains. 

The control gains Kp and Kt are taken to be Kpl (1/s2) and Ktl (l/s), respec­

tively. While Kt is kept fixed at 150, Kp is given values 25, 50, 100, 250, and 300, the 

results being shown in Figs. 6.18, 6.19, 6.20, 6.21, and 6.22, respectively. The results 
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Figure 6.18: The flexural coordinates (a) and the tracking error (b) for Kp = 25 and Kt = 150 

exhibit no observable influence on the vibration-dampening behaviour of the system, 

whether during the task-execution or afterwards. This is indeed expected because the 

objective of the vibration-control scheme is to reduce the excitation force, no matter 

what happens within the control system. Now, the system is just doing that. The 

same behaviour is seen when the derivative-action gain is changed. 
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For the error in the end-effector trajectory, however, the gain change does affect 

the response, and the effects are to a great extent typical: Increasing Kp brings about 

faster responses with smaller-amplitude errors. As a result, the settling time becomes 

smaller. This is particularly evident in the post-manoeuvre region of the responses, 

where the system behaves like a linear system due to the small variations in the joint 
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Figure 6.22: The flexural coordinates (a) and the tracking error (b) for Kp = 300 and Kt = 150 

angles and fiexural coordinates. 

To observe the effects of variations in the derivative-action gain on the behaviour 

of the control system, the gain Kp is kept fixed at 250 while Kt is given values 25, 

100, and 200. Figures 6.23, 6.24, 6.25 show the simulation results for these control 

gains. As seen in the figures, increasing this gain from 25 to 150 constantly decreases 
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the tracking error, but, if the gain is further increased to 200, the tracking error, 

while decreasing at the beginning, ends up with a drift. It seems that the reason 

should be numerical error because both the x and y components of the tracking error 

show added noise-like effects. The same effect is not present in the flexural-coordinate 

response. The reason could be that an generalized coordinates are obtained through 
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the integration of the dynamics equations by the stiff integrator ode15s of MATLAB. 
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Chapter 7 

Conclusions 

7.1 Summary 

The problems of dynamics modelling, flexural-state estimation, and the control of 

kinematicaHy redundant manipulators with flexible and rigid subsystems were studied. 

The dynamics of each submanipulator was obtained separately by means of as­

sembling the dynamics equations derived for aH links and then eliminating aH extra 

equations using the Natural Orthogonal Complement (NOC). Then, the NOC was 

used once again to obtain the dynamics model of the entire system. The two sepa­

rate sets of dynamics equations were also beneficial to the estimation of the flexural 

states of the flexible submanipulator; the flexural states are composed of the flexural 

generalized coordinates and the flexural generalized velocities. It was suggested that 

these states can be estimated if the twist and the twist-rate of the base of the rigid 

submanipulator, taken to be the outputs, are known. This was done by feeding the 

outputs, inferred from the measurement data, to an extended Kalman filter whereby 

the dynamics of the flexible manipulator is assumed to be the governing dynamics. 

Therefore, a pose and twist estimation algorithm which uses redundant acceler­

ation sensing was proposed. The acceleration measurements were considered to be 

made using an accelerometer array which was assumed to be rigidly attached to the 

base of the rigid submanipulator. AH the kinematic relations were written in the 

body frame, thus having the advantage of pose-estimation errors not propagating to 
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the twist estimates. It was shown that, mainly due to the calibration errors and the 

double integration of the accelerometer data, the results could turn out to be unstable. 

To overcome the above-mentioned instability problem, a novel iterative calibration 

procedure for accelerometer arrays was devised. The procedure was based on the 

cornpatibility of point accelerations of a rigid body undergoing a general motion. It 

was demonstrated that, using this procedure, one can estimate and thus account for 

fairly large installation errors, the direct calculation of the angular-velocity vector from 

acceleration data thus being possible. The calibration scheme is so powerful that, as 

long as the accelerometer orientations are roughly known, the scheme produces highly 

accurate results. 

State estimation requires linear state-output relations. However, the fiexural states 

are nonlinearly related to the output kinematic variables. Therefore, the state-output 

relations had to be linearized. That, in turn, required calculating the partial deriva­

tives of the twist and the twist-rate with respect to the generalized coordinates, gen­

eralized velocities, and generalized accelerations. Among aIl the partial derivatives, 

that of the twist with respect to the generalized coordinat es is the most important 

one. The reason is that the others are either directly related to the J acobian matrix, 

or that it is this very partial derivative which can be utilized to derive the rest in 

closed form through algebraic manipulations. 

To obtain compact, closed-form expressions for the above-mentioned partial deriva­

tives, rather general definitions for the twist vector and the Jacobian mat rix-in the 

context of kinematic chains-were given. Next, the partial derivatives sought were 

derived in terms of the Jacobian, its time rate, and other available kinematic variables. 

These relations rnake it possible to evaluate the partial derivatives without resorting 

to extra symbolic manipulations. 

The control algorithm employed was based on the well-known computed-torque 

control method. However, due to the kinematic redundancy of the manipulator, tra­

jectory planning was a part of the problem as weIl. In order to resolve the redun-
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dancy, a joint-space trajectory with minimum-norm joint acceleration was obtained 

using the Moore-Penrose generalized inverse. In this regard, two ways ofresolving the 

redundancy were considered: Flexible-link resolution, and rigid-link resolution. The 

latter corresponded to neglecting the flexibility of the manipulator, whereas the for­

mer meant accounting for aU the flexibilities modeUed in the dynamics of the system. 

Then, since moving the joints could excite vibrations in the flexible links, a self-motion 

that would minimize the excitation force in the modal space was computed. The de­

gree of redundancy of the system dictated the number of the "natural modes" to be 

dampened. Furthermore, it was shown that, under certain conditions, this control 

algorithm would be stable. 

Albeit the results reported in this thesis have been developed mainly for the par­

ticular purposes explained at each occasion, other applications also seem possible. 

For example, even though the pose-and-twist-estimation algorithm was originaUy in­

tended for the pose and twist estimation of rigid bodies undergoing vibratory motions, 

it may also be applied for mobile-robot localization. Another example of such a multi­

purpose result is the closed-form expression we obtained for the partial-derivative of 

the twist with respect to the generalized coordinates. This expression was derived 

for the linearization of the state-output relations. However, it can as weU be use­

fuI in the dynamics modelling of multibody systems at large, or in the derivation of 

optimal-control relations for such systems. 

7.2 Recommendations for Further Researèh 

To further examine the effectiveness of the methods developed here, the practical 

implementation of the proposed observer-controUer system on a test manipulator with 

rigid and flexible submanipulators should certainly be helpful. As a foUow-up to 

the feasibility study that motivated this work, Professors Jorge Angeles of McGill 

University and Rajni Patel of University of Western Ontario secured the NSERC 
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financing of such a system1
; the system is expected to be operational in 2003. 

The algorithm proposed in this thesis for pose and twist estimation is based on 

the assumption that each triaxial accelerometer measures aIl three components of the 

acceleration of a single point. However, this is actually not true: A triaxial accelerom­

eter is, in fact, composed of three separate single-axis accelerometers located at small 

offsets with respect to each other. Consequently, what each of these three acceleromé­

ters measures is actually one single component of the acceleration of the point at which 

that particular accelerometer is located. Therefore, it would be desirable to account 

for these offsets in the procedure; this will reduce the errors incurred in an actual 

task of pose and twist estimation. Moreover, an experimental study of the proposed 

algorithm can shed more light on the issues involved and is, thus, recommended. 

The partial-derivative expressions we have derived can only be used for the systems 

in which the generalized velocities are not dependent on the generalized coordinates. 

As :mch, the relations obtained are not directly applicable to a large class of systems; 

included are parallei manipulators and nonholonomic systems. This limitation was 

not a problem for this thesis, however, because the scope of the thesis only included 

seriaI manipulators, for which, by nature, the generalized velocities are independent of 

the generalized coordinates. To overcome this limitation, one can examine the steps 

taken to prove Theorem 1 and make the changes required to accommodate a wider 

range of systems. 

One of the major problems that we were faced with, for the generation of the final 

results, was the instability of the controllaw. Even though it was shown that under 

certain conditions the control system would be stable, it was not possible to predict 

whether the conditions remained fully met during the entire course of the end-effector 

manoeuvre. Furthermore, the behaviour of the control was quite dependent on the 

selection of the initial posture of the manipulator, i.e., by a wrong choice of initial 

joint angles the control could turn out unstable, which is, of course, a known problem 

IThe project is registered under the title "A frame work for the design and control of a macro­
micro manipulator system," and the reference number STGP215729-98. 
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of nonlinear systems. Hence, a more thorough investigation of the control problem is 

recommended. 

Finally, in the dynamics modelling of the RRRR manipulator studied as an ex­

ample in Chapter 6, the dynamic-stiffening effect was neglected in the interest of the 

model simplicity. It has been established in the literature that neglecting this effect 

may render the dynamics model unstable, whereas the actual system is stable. Thus, 

it could be anticipated that accounting for this effect, during the derivation of the 

mass and the stiffness matrices, may indeed help solve the instability problem. 
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A.ppendix A 

Time-Derivative of the 
Euler-Parameter Array in the 
Body-Frame 

Lemma 4. The time derivative i] of the Euler-parameter array 'fi = [UT UO]T of a 

rigid body in its body-frame '.B is related to the body-frame representation of its angular 

velocity and that of its Euler parameters according to 

i] =Hw 

H [), ~ [uol + Ul 
2 -UT , 

in which U is the cross-product matrix of u. 

(A.1) 

(A.2) 

Proof: If we denote the fixed coordinate frame with 9(, and caU it in short the fixed­

frame, then, the relation between i] and w in this frame is given by (Angeles, 2002) 

~. _ 1 [UOI - ~ul ~ 'fi - - ~ T W. 
2 - u 

(A.3) 

Renee, it is apparent that 

[ ~ù] = ~ [UOI - ;u] Q ~w = ~ [uoQ - ;UQ] 
Uo 2 - ~u 2 - ~u Q 

~w , (A.4) 

in which Q is the rotation matrix from the body-frame to the fixed-frame. 
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On the other hand, :Ru = Q 'Bu; upon differentiating this relation and solving it 

for 'Bu, we have 

Consequently, 

'Bu = QT:RU _QTQ 'Bu = QT:RU _ 'Bn 'Bu 

= QT:RU + 'BU 'Bw. (A.5) 

(A.6) 

because :RU can be taken from the inertial reference frame to the body-frame using 

the similarity transformation 'BU = QT:RU Q. 

Thus, in the body-frame, we have 

o 
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A.ppendix B 

Simplifications of the Link 
Dynamics Equations 

For the simplification of the link dynamics equations, three relations were used: 

in which the subscripts have been dropped for brevity. 

These identities are proven here for the fiexible-manipulator links: 

(i) 8t/8q reduces to 

8t 
8q 

03X4 

8w/8ry 
Onfi x4 

(B.1) 

(B.2) 

(B.3) 

(BA) 

As seen from the above relation, the only non-zero block of this matrix is 8w / 8ry. 

From eqs. (2.5a, 2.5b, 2.6b, & 2.6d), however, it is apparent that 

(B.5) 

On the other hand, from the definitions of t and q, it can readily be seen that 

(B.6) 
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Hence, differentiating eq. (B.6) and using the relations given byeqs. (B.4 & B.5), 

one obtains eq. (B.1). 

(ii) To prove eq. (B.2), notice that the partial derivative of 4 with respect to t, and 

that of t with respect to 4 can be readily derived as 

Hence, 

~; = diag(13, H, lnf)' 

;~ = diag(13, 4HT
, lnf)' 

However, according to Lemma 2 of Chapter 2 and using eq. (2.5b), 

Therefore, 

(84)T.!!... (8t)T = !n 
8t dt 84 2 

where 

(iii) It is apparent that t T (8M/ 8q)t can be evaluated as 

in which a is a dummy variable. From this relation, we can see that 

(84)TtT 8Mt = (84)T ~(aTMa) 1 = (84)T ~(aTMa) 1 

8t 8q 8t 8q a=t 8t 8q a=t 

8 ( T')I T8M 
= -8 a Ma = t -8 t. 

t a=t t 

138 

(B.7a) 

(B.7b) 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

(B.13) 



Appendix C 

Calculating the Link Mass Matrix 

C.I Deriving the Link Kinetic Energy 

Subject to the assumptions mentioned in Section 2.4, the kinetic energy of a flexible 

link can be expressed as 

111 111 J a, 1 T = - pllv(x, t)11 2dx + - PA (-;:) )2dx + -Mllv(l, t)11 2 

2 0 2 0 ut 2 
(C.l) 

in which p, J, A", and M are the mass per unit length, the polar moment of inertia, 

the cross-sectional area, the angle of torsion of the link, and the concentrated mass at 

the end of the link, respectively, an of them assumed constant. For brevity, we have 

dropped the subscript i from an our equations in this Appendix. 

We will derive the kinetic energy in four steps: First, the square of the norm of 

the absolute velo city is obtained; then, over the next two steps, the first and the 

second integrals of eq. (C.l) are evaluated in terms of the generalized velocities and 

the shape-functions; as the fourth step, we put an the results together and obtain the 

link kinetic-energy. 

Deriving IIv(x, t)11 2 

To calculate Ilv(x, t)11 2
, let the position vector p of the origin of the ith frame be 

expressed in the body-frame. Then, the velocity v(x, t) is obtained from 

v(x, t) = :tP + W x p(x, t) + p(x, t) 
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where, from eqs. (2.51 & 2.62), we have 

p(x, t) = xx + u(x, t) 

u(x, t) = B(x)e(t), 

in which x is a unit vector parallel to the X axis. 

However, 
d . 
dt P = p+w x p, 

which, upon substituting into eq. (C.2), we obtain 

v(x, t) = p + w x P + w x p(x, t) + ü(x, t). 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

It can be shown (Cyril, 1988) that the square of the Euclidean norm of v(x, t) is 

given by 

where 

Ilv(x, t) 11
2 

= Il :tP112 - (:tp ) T (2xX + 2U(x, t))w + 2 (:tP ) T ü(x, t) 

+ wT [x2(1- xxT) - x(xuT(x, t) + u(x, t)xT) 

+ (1Iu(x, t)11 2 - u(x, t)uT(x, t))] 

+ wT(2xX + 2U(x, t))ü + Ilü(x, t)11 2 

(C. 7) 

U(x,t) ~ CPM(u(x,t)), and X ~ CPM(x). (C.8) 

However, the first three terms of eq. (C.7) are obtained from (C.5) as 

Il ! P 11 2 
= (p + w x P f (p + w x p) 

= IIpl12 +2pT(W X p) + (w x pfw x p) 

= IIpl12 - 2pTp W + wT (llpl121 - ppT)W, 

(!p) T (2xX + 2U(x, t))w = pT (2xX + 2U(x, t))w 

+ wTp(2xX + 2U(x, t))w, 
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(C.9) 

(C.10) 



and 

(:tp ) T Ü(X, t) = pT Ü(X, t) + WTp Ü(X, t), (C.ll) 

in which P b. CPM(p). 

Thus, Ilv(x, t)11 2 can be calculated as 

Ilv(:r, t)11 2 
= IIpl12 - pT (2xX + 2U(x, t) + 2P)w + 2pT ü(x, t) 

+ wT [x2(1- xxT) - x(xuT(x, t) + u(x, t)xT) _ (1IpI121- ppT) 
(C.12) 

+ (1Iu(x, t)11 2 - u(x, t)uT(x, t)) - P(2xX + 2U(x, t))]w 

+ wT (2xX + 2U(x, t) + 2P)ü(x, t) + lIü(x, t) 11
2. 

However, for any vector a, we have 

Therefore, eq. (C.12) is simplified to 

Ilv(x, t)11 2 = IIpl12 - 2pT (xX + U(x, t) + p)w + 2pT ü(x, t) 

+ wT [ - X
2X2 - x(xuT(x, t) + u(x, t)xT) - U 2 (x, t) _ p 2 

- 2P(xX + U(x, t))]w 

+ 2wT (xX + U(x, t) + p)ü(x, t) + Ilü(x, t) 11
2. 

(C.13) 

(C.14) 

Consequently, the square of the norm of the link-endpoint velo city is calculated as 

Ilv(l, t) 11 2 = IIpl12 - 2pT (lX + U(l, t) + p)w + 2pT ü(l, t) 

+ wT [ _l2X2 - l(xuT(l, t) + u(l, t)xT) - U2(l, t) _ p 2 

- 2P (lX + U (l, t) ) ] w 
(C.15) 

+ 2wT(lX + U(l, t) + P)ü(l, t) + Ilü(l, t)11 2. 
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Simplifying the First Integral 

Using eq. (C.14), the first integral of eq. (C.l) ean be written as 

Tl ~! t pllv(x, t) 11 2dx 
2 Jo 

= ~P [lllpl12 - 2pT il (xX + U(x, t) + P)dxw + 2pT il ü(x, t)dx 

+ wT il ( -2P(xX + U(x, t)) - X2X2 (C.16) 

- x(xuT(x, t) + u(x, t)xT) - U 2 (x, t) - P2)dxw 

+ 2wT il (xX + U(x, t) + p)ü(x, t)dx + il Ilü(x, t) 11 2dx J. 

Rowever, upon differentiating eq. (C.4), one ean write 

ü(x, t) = B(x)ë(t). (C.17) 

Renee, sorne of the integrals on the right-hand side of eq. (C.16) ean be evaluated as 

given below: 

li l2 li 
(xx + U(x, t) + P)dx = "2X + U(x, t)dx + Pl, 

o 0 

j'l t 
o ü(x, t)dx = Jo B(x)dxë, 

J:l -2P(xX + U(x, t))dx = - (l2PX + 2P il U(x, t)dX), 

t -P2dx = _P2 l, 
Jo 

11 Ilü(x, t)11 2dx = ë
T (11 BT(X)B(X)dX) ë, 

J~l (xx + U(x, t) + P)üdx = (x il xB(x)dx + il U(x, t)B(x)dx 

+ P il B(X)dX) ë. 
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(C.19) 

(C.20) 

(C.2l) 

(C.23) 

(C.24) 

(C.25) 



Furthermore, one can readily derive U 2 (x, t) as explained below: From eq. (C.4), we 

know that 

u(x, t) = B(x)e(t) = [~: ~~] [;(1)] = [<pT~(1)] . 
OT <pT ~(2) <pT e(2) 

(C.26) 

The cross-product-matrix of u is therefore given by 

(C.27) 

Then, 

(C.28) 

Renee, using eqs. (C.27 & C.28), one can conclude that 

J~ <pT dxe (1)] 
o , 
o 

(C.29) 

and 

which, if the clamped-free eigenfunctions are chosen as shape-functions, becomes 

(C.30) 

Moreover, in body-frame coordinates, 

[
0 0 0] 

X CPM(x) = 0 0 -1 , 
o 1 0 

(C.31) 

and therefore, 

x' = [~ ~1 ~], 
-1 

(C.32) 
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and 

PX= pz ] o . 
-Px 

(C.33) 

Also, one can show that 

Here, let us use sorne of the definitions given by Cyril (1988) to sirnplify the results: 

Tl 6 11 B(x)dx, 

T 2 6 11 xB(x)dx, 

T 3 6 11 BT(x)B(x)dx, 

T 4 6 11 h(x) hT(x)dx, 

T 7 6 11 U(x, t)dx. 

(C.34) 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

Furtherrnore, we would like to define sorne other durnrny variables, which are different 

frorn the ones defined in Cyril (1988). 

Tg 6 11 U 2(x, t)dx, (C.39) 

T lO 6 11 x(xuT(x, t) + u(x, t) xT)dx = xeT 11XBT(X)dX + 11XB(x)dxexT, (C.40) 

Tu 6 11 U(x, t)B(x)dx. (C.41) 

Henee, in light of eqs. (C.18-C.25) and definitions (C.34-C.41) , one can sirnplify 

eq. (C.16) as 

~ t pllv(x, t)11 2dx = -2
1 

[Pl llpl1 2 
- 2ppT(l2 X + T 7 + Pl)w + 2ppTTI~ 

~ ~ 2 

+ pwT( -l2pX - 2PT7 - l3 X 2 - Tg - T lO -lP2)W (C.42) 
3 

+ 2pwT(XT2 + T n + PTI)~ + p~T T3~]. 
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Simplifying the Second Integral 

Using eq. (C.15), the second integral of eq. (C.1) is written 

1t Jéh 1t J 
2 Jo p A (8t )2dx = 2 Jo P AP7h(x)h(xf jLdx 

= ~jLT (11 P ~ h(X)hT(X)dX) jL. 

Obtaining the Kinetic-Energy Expression 

Finally, the kinetic-energy expression for the link takes the form 

T = ~ [(Pl + M)llpl12 - 2pT (p(l; X + T 7 + Pl) + M(lX + U(l, t) + P))w 

+ 2pT(pT1 + MB(l))ë 

- wT (P(l2PX + 2PT7 + ~ X 2 + Tg + T lO + lP2) 

(C.43) 

+ M( 2P(lX + U(l, t)) + l2X2 (C.44) 

+ l(xuT(l, t) + u(l, t)xT) + U 2 (l, t) + p 2
) )w 

+ 2wT (p(XT2 + Tu + PT1) + M(lX + U(l, t) + P)B(l))ë 

+ ë
T 

(pT3 + MBT (l)B(l))ë + ~ jJ7T 4jL] . 

C.2 The Mass Matrix 

The expression obtained for the kinetic energy, in the foregoing section, can be cast 

in the form 

where t is the link twist defined as 

t l::,. [pT wT èT jJ7] T . 

Thus, the mass matrix M has the structure given below 

[

Mdd Mdr Mdb 0 1 
M - Mar M rr M rb 0 

- Mab M~ Mbb 0 
o 0 0 Mtt 
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in which 

Mdd 1). (pl + M)1 3x3 , 

12 

M dr 1). -p("2X + T 7 + Pl) - M(lX + U(l, t) + P), 

(C.47a) 

(C.47b) 

M:db 1). pTl + MB(I) (C.47c) 

M rr 1). -p(12PX + 2PT7 + l3 X2 + Tg + T lO + IP2), ( ) 
3 C.47d 

- M(2P(IX + U(l, t)) + 12X2 + l(xuT(I) + u(l)xT) + U2(1, t) + p2), 

lVlrb 1). p(XT2 + T 11 + PTd + M(IX + U(l, t) + P)B(I), (C.47e) 

Mbb 1). pT3 + MBT(I)B(I), (C.47f) 

1). pJ 
Mtt = AT4. (C.47g) 

As seen in Chapter 4, in addition to the link mass matrix, the time-derivative of 

the mass matrix is also needed. Therefore, eqs. (C.4 7) are differentiated with respect 

to time. The results are given below: 

and 

Mdr = -p(T7 + Pl) - M(U(l, t) + p), 

Mrr = -p(12PX + 2PT7 + 2PT7 + Tg + T lO + I(PP + PP)) 

- M( 2P(IX + U(l, t)) + 2PU(I, t) + l (xuT(I, t) + u(l, t)xT) 

+ U(l, t)U(I, t) + U(l, t)U(I, t) + PP + PP), 

Mrb = p(T11 + PTl) + M(U(l, t) + P)B(I), 
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(C.48a) 

(C.48b) 

(C.48c) 

(C.48d) 

(C.48e) 

(C.48f) 

(C.48g) 



where 

(C.4g) 

(C.50) 

(C.51) 

(C.52) 
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Appendix D 

Deriving the NOe 

D.I The NOe of the Rigid Submanipulator 

Dropping the terms related to link fiexibility from eqs. (2.60 & 2.61), we obtain 

(D.1) 

with 

(D.2) 

Upon substitution of eq. (D.l) into itself recursively, for j = 1, ... ,i, one obtains 

i i 

Pi = Qf Po + L( II Rj)T kYk_1 èkZk (D.3) 
k=l j=k+l 

in which Po is the position vector of the base of the rigid submanipulator, and Qj 

for j = 1, ... ,nR is the rotation matrix that takes 9='j to 9='0, which is attached to the 

base. The product operator in the above equation is defined such that the matrix­

mulltiplication or der shown below is conserved: 

i 

II Rj 6 Rk+1Rk+2" . Ri = QrQi' 
j=k+1 

Renee, eq. (D.3) is simplified to 

i 

Pi = Qf Po + L QfQk kYk_1 èkzk , 

k=l 
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which can be rewritten as 

Q
TQ i-l'V' 
i i-l .L i-2 Zi-l (D.6) 

!Ji 

Hegarding the angular velo city of the ith link, on the other hand, we recall 

eq. (2.46), which, upon and dropping the terms related to link deformation, results in 

(D.7) 

or 

(D.8) 

where Wo is the base angular velo city. 

Now, using eqs. (D.6 & D.7) and the definition of NR , given by eq. (4.53), we 

can obtain the blocks of NR. Given the large number of the blocks of this array, we 

display N R using a tabular format in Table D .1. 

The time-derivative of N R , which is also needed for our calculations, can readily be 

computed through differentiating its elements one by one. We start with the elements 

corresponding to Pi: 

(D.9) 

where ni is the cross-product-matrix of (Wi - wo) expressed in g:'i. Also, we notice 

that 

d k d T ·T T· T· 
dt Yk-l = dt (Rk Y k-lRk) = Rk Y k-lRk + Rk Y k-lRk + Rk Y k-lRk 

= - kn~ kYk_l + kPk _ 1 + kYk _ 1 n~ 

(D.10) 

because, as defined by eq. (2.49), kn~ is given by 

(D.11) 
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f-' 
~ 
o 

N R = 

r 13x3 03X3 03 ••••••••• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 
1 

03x3 13x3 03 

Qi 03X3 
1 
YOZl 03 

03X3 Qi Zl 03 

Qf 03X3 Rf lYOZl 2Y1 Z2 

03X3 Qf 2Z1 Z2 

Qf 03X3 QfQlYo Zl QfQlYl Z2 

03x3 Qf 
i Z1 i Z2 

Q~ 03X3 Q~QlYo Zl Q~QlYl Z2 

03x3 Q~ n Z1 n
Z2 

03 

03 

R'r i-1 Yi_2 Zi-l 
~ 

iZi_1 

iYi_1 Zi 03 .. 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 

Zi 03 00 00000000000 0 0 0 0 0 0 0 

R T n-ly n-2 Zn-l n 

n
Zn

_
1 

nYn_l Zn 

Zn 
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Therefore, 

! (Q;Qk kYk_1 Zk) = -OiQ;Qk kYk _1 Zk + Q;QkOk kYk _1 Zk 

T . k k· . k 
+ Qi Qk( -OkZk Yk-l + P k- 1 +Ok Yk-l Zk)Zk 

T k T (k k k . ) ( ) = -OiQi Qk Yk-l Zk + Qi Qk Ok-l Yk-l + P k- 1 Zk D.12 

because 

and 

(D.13) 

in which 

(D.14) 

For the elements of N R pertaining to Wi, however, we have 

dizk d T T T 
dt = dt (Qi QkZk) = -Oi Qi QkZk + Qi Qk Ok Zk· (D.15) 

D.2 The NOe of the Flexible Submanipulator 

Using eq. (2.60), in a manner similar to the derivation of eq. (D.3), one can readily 

show that 

k=l k=l 
i-l 

+ L Q;Qk y k (Ck(lk)j.tk + Dk(lk)ék) 
k=l 

i-l (D.16) 

+ L Q;Qk y kCk(lk)j.tk· 
k=l 
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To calculate the angular velo city of ~i, recalling eq. (2.46), we write 

i-l 
Wi = Rf(wi-l + 6i- 1) + éizi = L iZk ék + L i6k 

k=l k=l 
i i-l i-l 

= L Q;QkZkék + L Q;QkDk(lk)ëk + L Q;QkCk(lk)itk· (D.17) 
k=l k=l k=l 

The coefficients of the generalized velocities in relations (D .16 & D .17) are the blocks 

of NF, which can be obtained by assembling the blocks obtained for i = 1, ... ,nF, as 

done for N R in the previous section. 

To derive NF, one should differentiate the coefficients of the generalized velocities 

in relations (D.16 & D.17) with respect to time. Then, for the coefficients of Pi, we 

have 

where Oi = CPM(Wi). 

The next term to be differentiated is QfQk kYk_1 Zk: 

:t (Q;Qk kYk_1 Zk) = -OiQ;QkkYk_1 Zk + Q;QkOkkYk_l Zk 

T d (k + Qi Qk dt Yk-l)Zk. 

Rowever, noticing that d( kYk_1 )/dt = d(R[Yk-1Rk)/dt, we obtain 

:t ( kyk_1) = -O~R[Y k-1Rk + R[Y k-1RkO~ + R[i' k-1Rk 

= -O~ kYk_1 + kYk_1 O~ + R[i' k-1Rk 

in which i' k-l can be calculated from 

Rence, eq. (D.19) can be simplified as 

! (Q;Qk kYk_1 Zk) = -OiQ;Qk kYk_1 Zk + Q;QkOk kYk_1 Zk 

(D.18) 

(D.19) 

(D.20) 

(D.21) 

T [rk k r T( .. )] + Qi Qk - Ok Yk-l + Yk-l Ok + Rk P k- 1 + Uk-1(lk-l, t) Rk , 
k-l 
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or 

The rest of the time-derivatives related to Pi can be readily computed as 

and 

:t ( QfQk (Bk(lk) + l\Dz(lk))) = -niQfQk (Bk(lk) + Y kDZ(lk)) 

+ QfQknk(Bk(lk) + YkDz(lk)) 

+ QfQk(l\ + Ùk(lk, t)), 

:t (QfQj-lBj-l(dj-l)) = -niQfQj-lBj-l(dj-l) 

+ QfQj-lnj-lBj-l(dj-l), 

:t (QfQk YkCk(lk)) = -niQfQk YkCk(lk) 

+ QfQknk YkCk(lk) 

+ QfQk(Pk + Ùk(lk, t))Ck(lk). 

(D.22) 

(D.23) 

(D.24) 

(D.25) 

The derivation of the time-derivative of the elements of NF pertaining to Wi is 

also straightforward, the results being 

d( T) T T dt Qi QkZk = -niQi QkZk + Qi QknkZk, 

:t (QfQkDk(lk)) = -niQfQkDk(lk) + QfQknkDk(lk), 

~ (QfQkCk(lk)) = -niQfQkCk(lk) + QfQknkCk(lk). 
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(D.26) 

(D.27) 

(D.28) 



A,ppendix E 

Simplifications for a Planar RRR 
Manipulator 

Here the dynamics equations of a planar RRR manipulator are derived using the 

procedure laid out in Chapter 4. The first link of the manipulator being flexible, it is 

taken to be the flexible submanipulator. The two other links are rigid and constitute 

the rigid submanipulator. 

E.l Link Mass Matrices and System Wrenches 

E.1.1 Link 1 

Simplifying the mass-matrix relations (C.46 & C.47) for a flexible link moving in 

plane, we obtain 

where 

I b. (lr Il 112) (li T) M rr = -p -3 + II e = -ml -3 + e e , 
m~b b. p l l1 

xcfJf(x) dx, 

M~b b. m I l n1 xn1 

in which nI is the number of mode shapes used to discretize this link. 

154 

(E.1) 

(E.2a) 

(E.2b) 

(E.2c) 



The system wrench for this link is obtained by simplifying eq. (4.18d): 

where 

E.1.2 Link 2 

Similarly, the mass matrix of the second link is obtained as 

where 

and the system wrench for this link is calculated from 

where 

E.1.3 Link 3 

(E.3) 

(E.4) 

(E.5) 

(E.6a) 

(E.6b) 

(E.6c) 

(E.7) 

(E.8) 

The mass matrix and the system wrench of the third link is similar to those of the 

second link 

(E.g) 
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in which 

and 

M~d b. m3 12x2, 

m~r b. -m3(l3Xj2 + P3)(1:2,3) = -m3 [ l jP2§ Y Tl, 
- 3 - P3 X 

M:r b. m3 (h (pf x + ~) + P§ P3) , 

E.2 Dynamics Equations 

(E.10a) 

(E.10b) 

(E.10c) 

(E.ll) 

Now, the equations can be assembled to obtain the mathematical model ofthe system: 

MiP = w S + Bu(t) (E.12) 

where 

(E.13) 

and 

(E.14) 

in which 

(E.15) 

and 

(E.16) 
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