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Abstract

This thesis comprises of three essays on the pricing of financial deriva-
tives. In the first essay, we assess the return fitting and option valuation

performance of generalized autoregressive conditional heteroscedasticity (GARCH)
models. We compare component versus GARCH(1,1) models, affine versus nonaffine
GARCH models, and conditionally normal versus nonnormal GED models. We find
that nonaffine models dominate affine models in terms of both fitting returns and
option valuation. For the affine models, we find strong evidence in favor of the com-
ponent structure for both returns and options; for the nonaffine models, the evidence
is less convincing in option valuation. The evidence in favor of the nonnormal GED
models is strong when fitting daily returns, but not when valuing options.

In the second essay, we introduce a dynamic volatility model in which stock mar-
ket volatility varies around a time-varying fundamental level. This fundamental level
is determined by macroeconomic risk, quantified using a mixed data sampling (MI-
DAS) structure to account for changes in the recently introduced Aruoba-Diebold-
Scotti (ADS) Business Conditions Index. The new model outperforms the benchmark
in fitting asset returns and in pricing options, especially in the 1990-1991 and 2001
recessions. The benchmark model exhibits a counter-cyclical option-valuation bias
across all maturities and moneyness levels, and the newly introduced model removes
this cyclicality by allowing the conditional expected level of volatility to evolve with
business conditions. We extract the volatility premium implied by the model and find
that an economically significant 13% of its variation through time can be explained
by the impact of macroeconomic risk.

In the third essay, we study the impact of systematic risk on the pricing of
two economically similar derivative contracts: credit default swaps and equity put
options. We document, for roughly 130 firms that have been part of the CDX index
between 2004 and 2007, that the greater proportion of a firm’s volatility that is
systematic, the more expensive it is to purchase insurance via both (i) put options
and (ii) credit default swaps. We provide evidence that these two derivatives are
influenced by systematic risk through the same channel.
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Résumé

Cette thèse repose sur trois essais traitant de l’évaluation de produits
dérivés financiers. Le premier essai porte sur la performance relative de dif-

férents modèles d’évaluation d’option à variance GARCH. Nous comparons ces mod-
èles suivants trois axes : variance à deux composantes vs. GARCH(1,1), variance
affine versus non affine, rendements conditionnellement Gaussiens ou non. Les dif-
férents modèles sont comparés sur la base de leur capacité à correctement expliquer
la série des rendements (estimation) et à prédire le prix des options (prédiction). Les
résultats obtenus favorisent largement les modèles à volatilité non affine sur ceux à
volatilité affine, tant du point de vue de l’estimation que de la prédiction. Pour les
modèles à volatilité affine, les modèle à composantes sont favorisée par les données, à
l’estimation et à la prédiction ; pour les modèles à volatilité non affine, les résultats
sont moins convaincants au point de vue de la prédiction. À l’estimation, la supéri-
orité des modèles qui ne reposent pas sur une hypothèse de normalité conditionnelle
est clairement démontrée, mais les résultats à la prédiction sont plus mitigés.

Dans le second essai, nous introduisons un modèle de volatilité dynamique suiv-
ant lequel la volatilité du marché varie autour d’un processus de volatilité fonda-
mental dont le niveau est déterminé par une mesure de risque macroéconomique. Ce
risque est quantifié à l’aide d’une structure de données échantillonnées à intervalles
irréguliers (MIDAS) permettant de capturer les variations d’un nouvel indicateur
macroéconomique, le Aruoba-Diebold-Scotti (ADS) Business Conditions Index. Le
nouveau modèle performe mieux que le modèle de référence, tant en ce qui à trait à
l’estimation qu’à la prédiction, tout particulièrement aux environs des récessions de
1990-1991 et de 2001. Peu importe la maturité ou le degré de parité des options, le
modèle de référence présente une saisonnalité dans ses erreurs de prédictions ; elles
s’accroisse quand les conditions macroéconomiques se détériorent. Le modèle ici
introduit, en ajustant ses prédictions aux conditions macroéconomiques courantes,
permet de corriger cette saisonnalité. L’effet du risque macroéconomique sur le mod-
èle explique près de 13% de la variation la prime de volatilité implicite au modèle.

Dans le troisième essai, nous étudions l’influence du risque systématique sur deux
types de contrats économiquement similaires : les swaps sur défaillance et les options
sur actions. Nous documentons, pour un ensemble de 130 firmes ayant fait parti de
l’indice CDX entre 2004 et 2007, qu’une plus grande part de risque systématique
augmente le prime de risque encourue pour acheter autant les swaps que les options.
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1 Introduction

Over the last decade, financial derivative markets expanded at a roaring

pace. According to the semiannual over-the-counter derivatives markets

statistics from the Bank of International Settlements,∗ the notional value of all

derivatives contract traded in the G10 grew from 72,134 billions of US dollars in

1998 to 604,622 billions in early 2009. The gross market value of these derivative

contracts grew from 2,580 billions to 25,372 billions over the same period. While

Black and Scholes’ (1973) seminal paper contributed to the structuring and early

growth of option markets, the growth of derivatives markets observed over the last

decade is largely due to the introduction of new derivative contracts. These new

products are often increasingly complex, and so are the models required to evaluate

these products.

Yet, even the most sophisticated models rely on a variety of assumptions, of

modeling choices made by the econometrician. When using these models for fi-

nancial decision making, it is important to understand the implications of these

assumptions on the economic properties of the models available to evaluate a given

derivative contract. Proper understanding of the weaknesses of the models at hand

is key to an investor’s ability to manage the model risk inherent to the fact that his

decision making process is influenced by the use of a given model or array of mod-

els. The LTCM debacle, in September 1998, is an obvious example of the possible

consequences of underestimating the importance of model risk. Some will argue that

erroneous models also played a part that the recent credit crisis.

In the option-valuation literature, it is now accepted that Black and Scholes

(1973) model’s constant volatility assumption is violated in the data. The Heston

(1993) stochastic volatility model relaxes this assumption by assuming that variance

follows a Cox, Ingersoll, and Ross (1985) process and reacts to shocks correlated with

∗As of end-June 2009.
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Figure 1.1: Gross Market Value
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those affecting the underlying’s price process. Similarly to the Black and Scholes

model, the Heston model provides a (quasi-) closed-form solution for option prices.

Unfortunately, estimating the model is relatively difficult. This drawback is overcome

by Heston and Nandi (2000) who propose a model in which the variance follows

generalized autoregressive conditional heteroscedasticity (GARCH) process.

Option-valuation models that are based on GARCH variance processes are always

straightforward to estimate. However, in order to obtain a closed-form solution for

option prices, Heston and Nandi (2000) use a particular affine GARCH variance

specification, a structure that implies that all moments of variance are affine in the

current variance level. Yet, most GARCH models are of a nonaffine form.∗ Besides,

the Heston and Nandi model assumes conditional normality, and the variance process

is assumed to be a simple GARCH(1,1) as opposed to, for instance, a two-component

model.† The first paper of this thesis, in Chapter 2, assesses the impact of these three

typical modeling choices.

First, like Engle and Lee (1999), we find strong evidence in favour of component

models from the standpoint of modeling daily return dynamics. When using option

prices to assess the models, we also find strong evidence for the component struc-

ture in the affine GARCH models, but less so in the nonaffine models. Second, we

∗See Christoffersen and Jacobs 2004.
†Christoffersen, Heston, and Jacobs (2006) provide an extension to Heston and Nandi’s (2000)

model that allows for Inverse Gaussian innovations to the return process. In continuous-time settings,

Christoffersen, Heston, and Jacobs (2009) and Gauthier and Possamäı (2009) discuss two-factor

versions of the Heston (1993) model.
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consider nonaffine versus affine GARCH models. We compare the affine GARCH(1,

1) model with the nonaffine GARCH(1, 1) model of Hsieh and Ritchken (2005), who

find strong support for the nonaffine specification. Our results support their findings,

and we also find that the nonaffine models outperform affine models when allowing

for component structures and nonnormal shocks. Third, we consider conditionally

normal versus conditionally nonnormal models. We find that assuming GED shocks

for the daily asset returns greatly improves the fit of all the models to daily returns,

but the improvement in option valuation is much less evident. These results are most

likely due to the choice of the nonnormal distribution used in this paper, the Gener-

alized Error Distribution (GED). In light of the overwhelming literature highlighting

the importance of accounting for nonnormality in option valuation, we believe that

our results simply discredits the GED in option valuation settings.∗

Hence, amongst many others, our results further support the growing consensus

that two volatility components are required to properly describe the time-series prop-

erties of stock market volatility; one component accounting for transient shocks to

the volatility process, another accounting for long-lasting shocks.† In Chapter 3, the

second paper of this thesis focuses on providing economic insights into the macroe-

conomic determinants of this long-run volatility process. Most two-factor volatility

models rely on latent, autoregressive volatility factors. However, to the extent that

stock market volatility reflects the uncertainty or fear of market participants, volatil-

ity levels should be related to the current business conditions, which most likely affect

expectations regarding macroeconomic risk.

Building on this insight, I develop a model, the MacroHV-MIDAS model, ac-

counting for improving or deteriorating business conditions, and I show that they

not only affect current volatility levels, but also the impact of volatility on option

prices. These results strengthen those of Engle and Rangel (2008) and Engle, Ghy-

sels, and Sohn (2008) who extensively study physical volatility processes and find

them to be counter-cyclical. However, neither study directly discusses the impli-

∗Amongst many, many others, see Barndorff-Nielsen (1997), Bakshi, Cao, and Chen (1997),

Bakshi, Kapadia, and Madan (2003), Carr, Geman, Madan, and Yor (2002), Chernov, Gallant,

Ghysels, and Tauchen (2003), Carr and Wu (2003a,2003b,2004), Huang and Wu (2004), Eraker

(2004), Bakshi, Carr, and Wu (2008), and Ornthanalai (2009).
†See, amongst others, Engle and Lee (1999), Andersen, Bollerslev, Diebold, and Ebens (2001),

Alizadeh, Brandt, and Diebold (2002), and Christoffersen, Jacobs, Ornthanalai, and Wang (2008).
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cations for financial derivatives. The model introduced in this paper is shown to

outperform Duan’s (1995) NGARCH in fitting asset returns and pricing options,

especially around the 1990-1991 and 2001 recessions. In particular, the MacroHV-

MIDAS model improves on the benchmark’s option-valuation abilities by mitigating

the counter-cyclicality of its implied-volatility bias, across all maturity and money-

ness levels. The MacroHV-MIDAS model also allows us to isolate the contribution

of macroeconomic risk to the volatility premium, and this contribution is found to

account for a sizeable 13% of the variation in the premium through time.

These results, like those of Chapter 2, were obtained studying the behaviour of

the volatility of the S&P 500 index. Assuming that the S&P 500 index proxies for the

market portfolio, the index volatility can be seen as a proxy for market volatility.∗

In Chapter 4, the third paper of this thesis analyzes how the breakdown of a firm’s

volatility between its systematic and idiosyncratic components is reflected both in

option prices and credit default swap spreads.

We show that two simple and internally consistent models for option prices and

credit spreads, the Merton (1974) and Geske (1979) models, provide an intuitive

prediction for both markets: options and credit default swaps on firms with more

systematic risk exposure should be more expensive, all else equal. In other words,

purchasing insurance on a firm with put options or credit default swaps should be

costlier, after controlling for among other things total risk, leverage and risk free

interest rates, the greater the systematic risk. This is a simple insight, a straight-

forward one in a CAPM world (Sharpe 1964; Lintner 1965; and Mossin 1966), yet

options and credit derivatives are often viewed through the prism of risk-neutral

(relative) pricing and, as a result, the wedge between risk-adjusted and physical

probability return distributions tends to remain out of view.

Recently, Duan and Wei (2009) have shifted the focus onto the cross-sectional

pricing of risk in stock option markets, relating prices to the proportions of systematic

risk in equity volatilities. We document that their findings are robust to a more recent

and broader data set, and then ask whether (as our comparative statics suggest) these

findings have an analogue in the credit derivative markets. We find this to be the

∗As discussed by Roll (1977), this assumption is a drastically simplifying one.
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case: the proportion of the price of default insurance due to a risk premium is greater

the larger the systematic risk exposure a firm has.

In summary, this thesis analyzes three closely interrelated themes of financial

derivatives pricing: model risk, macroeconomic risk, and systematic risk. Better un-

derstanding and quantifying macroeconomic risk and its impact on financial deriva-

tives could prove highly relevant in better understanding and hedging the risk inher-

ent to option portfolios throughout the business cycle. Options on indexes can be

used to hedge a portfolio’s exposure to systematic risk, that is, of course, assuming

that one is conscious of the impact of systematic risk on his portfolio. And the first

step in quantifying and managing these risks is to know what model to trust or, more

reasonably, when to trust which model.



6 Introduction
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2.1 Introduction

Following the groundbreaking work of Engle (1982) and Bollerslev (1986), general-

ized autoregressive conditional heteroscedasticity (GARCH) models have become an

ubiquitous tool kit in empirical finance. In this article we assess the ability of eight

different GARCH models to fit daily return dynamics and their ability to match

market prices of options in a sample of close to 22,000 contracts. The eight models

that we investigate differ along three dimensions.

First, we consider component models versus GARCH(1,1) models. Engle and

Lee (1999) were the first to develop a component GARCH model, which they built

from the nonaffine NGARCH(1,1) model analyzed by Engle and Ng (1993) and

Duan (1995). Component GARCH models can be viewed as a convenient way of

incorporating long-memory-like features into a short-memory model, at least for the

horizons relevant for option valuation. Bollerslev and Mikkelsen (1999) find support

for a long-memory GARCH option valuation model applied to long-maturity options.

We consider options with up to 1-year maturity, for which the component models

are likely to provide good approximations to long-memory processes. Maheu (2005)

presented Monte Carlo evidence indicating that a component model similar to those

presented in this article can capture long-memory volatility dynamics. Adrian and

Rosenberg (2008) demonstrated the relevance of the component volatility structure

for cross-sectional asset pricing.

Second, we consider nonaffine versus affine GARCH models. Most GARCH

models are of a nonaffine form (see Christoffersen and Jacobs 2004), but Heston

and Nandi (2000) developed a class of affine GARCH models. From the affine

GARCH(1,1) specification, Christoffersen, Jacobs, Ornthanalai, and Wang (2008)

developed an affine GARCH component model, which we also consider herein. The

affine GARCH(1,1) model was compared with the nonaffine NGARCH(1,1) model by

Hsieh and Ritchken (2005), who found strong support for the nonaffine specification.

Third, we consider conditionally normal versus conditionally nonnormal models.

In particular, we modify the foregoing four conditionally normal GARCH models by

modeling the return shock using a generalized error distribution (GED). The GED

distribution, suggested by Duan (1999) for its tractability in asset return modeling,
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conveniently nests the normal distribution. A skewed version of the GED distribution

was developed by Theodossiou (2001) and has been used for option valuation by

Lehnert (2003). Lehnert found support for a nonaffine EGARCH model with skewed

GED shocks when comparing its option pricing performance with that of the affine

GARCH(1,1) model of Heston and Nandi (2000), which has normal innovations.

We extend Lehnert’s work by analyzing whether the improvement comes from the

nonaffine variance dynamic, from the nonnormal shocks, or from both features.

We estimate the resulting eight models using maximum likelihood (ML) esti-

mation on S&P 500 returns. This empirical comparison allows us to compare the

importance of three types of modeling assumptions: (a) the importance of the com-

ponent structure versus the simpler and more parsimonious GARCH(1,1) structure,

(b) the restrictions of the affine structure, and (c) the importance of nonnormal re-

turn innovations. We find that the likelihood criterion based on return data strongly

favors the component models in all cases, as well as the nonnormal return innova-

tions. Although the affine models are not nested in the nonaffine models, comparing

the likelihoods suggests that the nonaffine models fit the return data the best.

Using the ML estimates, we characterize key properties of each model: multiday

variance forecasting functions, conditional volatility of variance paths, and condi-

tional correlations between returns and variance. We find important differences

between affine and nonaffine models suggesting that the nonaffine structure provides

more flexibility in a parsimonious fashion. We also find substantial differences be-

tween GARCH(1,1) and component models and between models with normal and

nonnormal innovations.

When we use the estimated model parameters for option valuation, we again

find strong support for the nonaffine variance specifications, but less evident support

for the nonnormal return innovations. The component structure yields significant

improvements in the affine class of models. In the nonaffine class, it yields improve-

ments for long-maturity and out-of-the-money options.

The article is organized as follows. In Section 2 we develop the eight GARCH-

based asset models that we investigate empirically in this work. In Section 3 we

report the model estimates from daily returns and present some key dynamic prop-

erties of the models. In Section 4 we provide the theoretical mappings from physical
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to risk-neutral dynamics by applying the general approach of Duan (1999). In Sec-

tion 5 we present the empirical results from using the GARCH models in option

valuation, as well as an economic analysis of the option pricing errors. In Section 6

we conclude and suggest some promising avenues for future research.

2.2 Asset Return Models

In this section we introduce the eight GARCH models to be used for option valu-

ation. The eight models cover all of the possibilities in our three-way comparison:

GARCH(1,1) versus component GARCH, affine versus nonaffine GARCH, and nor-

mal versus GED-distributed return shocks.

2.2.1 The Affine GARCH (1,1) Model With Normal Shocks

We first introduce the affine normal GARCH(1,1) model of Heston and Nandi (2000).

The return dynamics on the underlying asset are

Rt+1 ≡ ln
(

St+1

St

)
= r + λht+1 +

√
ht+1zt+1 , (2.1)

ht+1 = w + b′ht + a
(
zt − c

√
ht

)2
,

where St+1 is the underlying asset price on the close of day t + 1, r is the risk-free

rate, λ is the price of risk, zt is the iid N(0, 1) return shock, and ht+1 is the daily

variance on day t + 1 that is known at the end of day t. We refer to this model as

the AGARCH(1, 1)-N model.

Note that c renders the variance response asymmetric to positive versus negative

innovations in returns. If c is 0, then the variance dynamic is symmetric in zt,

and the conditional distribution of returns will be largely symmetric at all horizons,

because the distribution of zt is symmetric as well. In that case, the only source of

asymmetry is the conditional mean return,

Et [Rt+1 ] = r + λht+1 , (2.2)

and this effect typically is very small in magnitude.
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We next derive some features of the model that are particularly important for its

performance in option valuation. The model’s unconditional variance can be derived

as

E [ht+1 ] = σ2 =
w + a

1− ac2 − b′
. (2.3)

If we use this expression to substitute for w and also define variance persistence as

b = b′ + ac2, then we can write

ht+1 = σ2 + b
(
ht − σ2

)
+ a

(
z2
t − 1− 2c

√
htzt

)
. (2.4)

The options that we analyze herein have maturities of between 1 week and 1

year. Thus it is important to gauge the model’s properties at multiday horizons. In

this regard, consider the conditional variance k days ahead,

Et [ht+k ] = σ2 + bk−1
(
ht+1 − σ2

)
. (2.5)

Although by design, the 1-day-ahead variance is deterministic in the GARCH

models, the multiday variance is stochastic, and its distribution is important for

option pricing as well. For 2 days ahead, the conditional variance of variance is

easily derived from (2.4) as

Vart [ht+2] = 2a2 + 4a2c2ht+1 . (2.6)

Note that the variance of ht+2 is linear in ht+1, which is a defining characteristic

of the affine GARCH model. Note further that if c is 0, then the future variance

will have constant conditional variance. This is at odds with the empirical evidence

reported by, for example, Jones (2003), who found that the volatility of implied

options volatility is higher when the level of implied options volatility is larger. Thus

in the affine normal GARCH(1,1) model, the c parameter is needed both to provide

conditional variance of variance dynamics and to provide substantial conditional

distribution asymmetry. This double duty may cause a tension in the model; we

revisit this later.

The relationship between future variance and return is also of interest for option

valuation. The so-called “leverage effect” was noted by Black (1976), who observed

a negative correlation between volatility and returns. To describe this relationship,

we consider the conditional covariance

Covt [Rt+1,ht+2] = Et

[√
ht+1zt+1a

(
z2
t+1 − 1− 2c

√
ht+1zt+1

)]
= −2acht+1 . (2.7)
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Note that because a must be strictly positive to ensure that the GARCH process is

identified and positive, the sign of the leverage effect is driven entirely by c. From

this conditional covariance, the conditional correlation is easily derived as

Corrt [Rt+1,ht+2] =
−2c

√
ht+1√

2 + 4c2ht+1

. (2.8)

Note that this conditional correlation is time-varying, which is a relatively unique

property of the affine GARCH model.

2.2.2 The Affine GARCH Component Model With Normal Shocks

Many investigators (see, e.g., Bollerslev and Mikkelsen 1999) have found that simple

exponential decay of the conditional variance to its unconditional value, in (2.5),

is too fast. This motivates the affine normal GARCH component model developed

by Christoffersen, Jacobs, Ornthanalai, and Wang (2008), who built on the work

of Engle and Lee (1999) and Heston and Nandi (2000). The return and variance

dynamics are now

Rt+1 = r + λht+1 +
√

ht+1zt+1 , (2.9)

ht+1 = qt+1 + β(ht − qt) + α
(
z2
t − 1− 2γ1

√
htzt

)
,

qt+1 = σ2 + ρ
(
qt − σ2

)
+ ϕ

(
z2
t − 1− 2γ2

√
htzt

)
.

Instead of mean-reverting to a constant unconditional variance, the conditional vari-

ance, ht+1, now moves around a long-run component, qt+1, which itself mean-reverts

to the constant unconditional variance, σ2. Furthermore, the two parameters γ1 and

γ2 in the component model allow for a different degree of asymmetry in the two

components, (ht+1 − qt+1) and qt+1. We refer to this model as the AGARCH(C)-N

model.

The added dynamics in this model chiefly serve to generate more flexible dynam-

ics in the multi-day-ahead conditional variance. We now have

Et [ht+k ] = Et [ qt+k + (ht+k − qt+k) ]

= σ2 + ρk−1
(
qt+1 − σ2

)
+ βk−1 (ht+1 − qt+1) , (2.10)

which clearly allows for slower mean-reversion than (2.5). We refer to ρ as long-run

persistence and to β as short-run persistence.
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This component model also offers greater flexibility in the conditional variance

of variance dynamic, which is now

Vart [ht+2] = 2 (α + ϕ)2 + 4 (αγ1 + ϕγ2)
2 ht+1 (2.11)

so that the affine structure is preserved. The conditional covariance and correlation

are

Covt [Rt+1,ht+2] = −2 (αγ1 + ϕγ2) ht+1 (2.12)

and

Corrt [Rt+1,ht+2] =
−2 (αγ1 + ϕγ2)

√
ht+1√

2 (α + ϕ)2 + 4 (αγ1 + ϕγ2)
2 ht+1

. (2.13)

Note that in these formulas, (α + ϕ) has replaced a in the AGARCH(1,1)-N model’s

formula, and similarly (γ1α + γ2ϕ) has replaced c. Thus, whereas c had to per-

form double duty (creating asymmetry and variance of variance dynamics) in the

AGARCH(1,1)-N model, the component model offers much added flexibility. The

return asymmetry and variance of variance are now driven by two sources, parame-

terized by γ1 and γ2.

2.2.3 The Nonaffine GARCH(1,1) Model With Normal Shocks

The benchmark NGARCH(1,1)-N model of Engle and Ng (1993), which also was

used for option valuation by Duan (1995), is defined as

Rt+1 = r + λ
√

ht+1 −
1
2
ht+1 +

√
ht+1zt+1 , (2.14)

ht+1 = w + b′ht + aht (zt − c)2 .

The parameter c again renders the variance response asymmetric to positive versus

negative return shocks and creates asymmetry in the conditional distribution of

multiday returns beyond that created by the conditional return mean,

Et [Rt+1 ] = r + λ
√

ht+1 −
1
2
ht+1 . (2.15)

Although this conditional mean specification differs from that used in the affine

model, we use it because it will generate a risk-neutral conditional variance speci-

fication that is similar to the physical one, as we describe in Section 4. Similarly,

the affine conditional mean specification in (2.2) will generate an affine conditional
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variance under the risk-neutral measure. We discuss this issue in more detail later

in this article.

The unconditional variance is now

E [ht+1] = σ2 =
w

1− b′ − a (1 + c2)
. (2.16)

Defining variance persistence as b = b′ + a(1 + c2), we can rewrite the conditional

variance as

ht+1 = σ2 + b
(
ht − σ2

)
+ aht

(
z2
t − 1− 2czt

)
. (2.17)

The conditional variance k days ahead has the same form as in the affine model,

Et [ht+k ] = σ2 + bk−1
(
ht+1 − σ2

)
, (2.18)

and the conditional variance of variance can be derived from (2.17) as

Vart [ht+2] = a2
(
2 + 4c2

)
h2

t+1 . (2.19)

Thus the variance of ht+2 is now quadratic in ht+1, whereas it was linear in the affine

model. Note also that even if c is 0 in the nonaffine model, the future variance will

still have a dynamic variance, now driven by a.

The conditional covariance in this model is

Covt [Rt+1,ht+2] = −2ach
3/2
t+1. (2.20)

Thus the leverage effect again is driven by c, but now the covariance is nonlinear

in ht+1. Given the foregoing formula for conditional covariance, the conditional

correlation is simply

Corrt [Rt+1,ht+2] =
−2c√
2 + 4c2

. (2.21)

Note that conditional correlation in the nonaffine model is constant, whereas it was

time-varying in the affine model. Thus, along this dimension, the affine model seem-

ingly offers more flexibility.

2.2.4 The Nonaffine GARCH Component Model With Normal Shocks

As described in Section 2.2, this model is obtained by replacing the constant σ2

in the NGARCH(1,1)-N model with a time-varying, long-run component qt+1. We
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write

Rt+1 = r + λ
√

ht+1 −
1
2
ht+1 +

√
ht+1zt+1 ,

ht+1 = qt+1 + β(ht − qt) + αht

(
z2
t − 1− 2γ1zt

)
, (2.22)

qt+1 = σ2 + ρ
(
qt − σ2

)
+ ϕht

(
z2
t − 1− 2γ2zt

)
,

and refer to this model as the NGARCH(C)-N model.

Once again, the added dynamics in this model chiefly serve to generate more

flexible dynamics in the multi-day-ahead conditional variance. Here the multiday

conditional variance is

Et [ht+k ] = Et [ qt+k + (ht+k − qt+k) ]

= σ2 + ρk−1
(
qt+1 − σ2

)
+ βk−1 (ht+1 − qt+1) . (2.23)

The conditional variance of the variance dynamic is

Vart [ht+2] =
[
2 (α + ϕ)2 + 4 (αγ1 + ϕγ2)

2
]
h2

t+1, (2.24)

which has contributions from both components and again is quadratic in ht+1. The

conditional covariance and correlation are

Covt [Rt+1,ht+2] = −2 (αγ1 + ϕγ2) h
3/2
t+1 , (2.25)

which is nonlinear in ht, and

Corrt [Rt+1,ht+2] =
−2 (αγ1 + ϕγ2)√

2 (α + ϕ)2 + 4 (αγ1 + ϕγ2)
2
, (2.26)

which again is constant.

2.2.5 Generalized Error Distribution Shocks

The assumption that the daily return shock, zt, is normally distributed is typically

rejected empirically for daily asset returns. Our empirical analysis here is no excep-

tion. Note, however, that while the conditional 1-day distribution is normal when zt

is normal, the multiday distribution is not normal, and neither is the unconditional

distribution. Thus the effect of the normal innovation assumption on option valua-

tion in a GARCH model is not straightforward. Our analysis investigates whether
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these dynamics are sufficient to fit the underlying asset return as well as the option

prices on the underlying asset, or whether the conditional normality assumption

should be relaxed.

Following Duan (1999), we assume that the iid return shock, denoted by zt in the

normal case earlier, now follows the GED and is denoted by ζt. Once it is normalized

to get a 0 mean and unit variance, we have the probability density function

gν(ζ) =
ν

21+ 1
ν θ (ν) Γ

(
1
ν

) exp
(
−1

2

∣∣∣∣ ζ

θ (ν)

∣∣∣∣ν) for 0 < ν ≤ ∞,

where Γ is the gamma function and θ(ν) = (2−2/νΓ( 1
ν )/Γ( 3

ν ))1/2.

The parameter ν determines the thinness of the density tails. For ν < 2, the den-

sity function has fatter tails than those of the normal distribution, and the opposite

is true for ν > 2. The expected simple return exists as long as ν > 1, which thus is

a natural lower bound in financial return applications.

The GED innovation ζ has a skewness of 0 and a kurtosis of κ(ν) = Γ( 5
ν )Γ( 1

ν )/Γ( 3
ν )2.

In the special case where ν = 2, we get κ(2) = 3, and because Γ(1
2) =

√
π, we get

g2(ζ) =
1√
2π

exp
(
−1

2
ζ2

)

so that the standardized GED conveniently nests the standard normal distribution

that obtains when ν = 2. Nelson (1991), Hamilton (1994), and Duan (1999) have

provided more details on the properties of the GED distribution.

Replacing the normal distribution by the GED distribution in each of the four

foregoing models provides four new models. The resulting eight models allow us to

study the three dimensions of modeling in which we are interested: GARCH(1,1)

versus component GARCH, affine versus nonaffine GARCH, and normal versus non-

normal return shocks.

The GED distribution does not directly affect the variance persistence and, conse-

quently, the multiday conditional variance in the first four models that we considered.

The functional form for the conditional covariance is also unchanged in these models.

But the excess kurtosis of the GED distribution does affect the conditional variance
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of variance in the four GED models; we now have

AGARCH(1, 1)-GED: Vart(ht+2) = (κ(ν)− 1)a2 + 4a2c2ht+1,

AGARCH(C)-GED: Vart(ht+2) = (κ(ν)− 1)(α + ϕ)2 + 4(αγ1 + ϕγ2)2ht+1,

NGARCH(1, 1)-GED: Vart(ht+2) = (κ(ν)− 1 + 4c2)a2h2
t+1,

NGARCH(C)-GED: Vart(ht+2) =
[
(κ(ν)− 1)(α + ϕ)2 + 4(αγ1 + ϕγ2)2

]
h2

t+1,

where κ(ν) = Γ( 5
ν
)Γ( 1

ν
)

Γ( 3
ν
)2

denotes the kurtosis under the GED distribution. This in

turn affects the conditional correlation between return and volatility. In each of the

conditional correlation formulas for the first four models, the 2 in the denominator

is replaced by a (κ(ν)− 1) term.

2.3 Asset Return Empirics

In this section we present the empirical results from fitting our GARCH models to

daily returns. First, we use ML estimation on a long time series of S&P 500 return

data to estimate eight models: AGARCH(1,1)-N, AGARCH(C)-N, NGARCH(1,1)-

N, NGARCH(C)-N, and the four GED-based models. We then discuss the param-

eter estimates and their implications for the salient properties of the models. The

eight models allow us to make three types of comparisons: component models ver-

sus GARCH(1, 1) models, affine models versus nonaffine models, and nonnormal

innovations versus normal innovations.

2.3.1 Parameter Estimates From Daily Return Data

Table 2.1 presents the ML estimation results obtained using daily returns data from

July 1, 1962 through December 31, 2001, obtained from CRSP. Standard errors,

calculated as done by Bollerslev and Wooldridge (1992), are given in parentheses.

The table reports the physical conditional variance parameters, as well as the price of

risk, λ. The estimates of λ must be positive to guarantee positive excess log returns.

We use variance targeting to control the unconditional variance level across mod-

els, which is important for the subsequent option valuation exercise. We thus force
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the annualized return standard deviation to be 14.66%. This technique fixes the

parameter w in each model, and thus we do not report standard errors for w in

Table 2.1.

In the AGARCH(1,1) cases, the unconditional variance is defined by σ2 = w+a
1−b .

Thus, if the data warrant a high a (perhaps to match variance of variance), then w will

be small, to match σ2. If left unconstrained, the w estimate may be negative, which

yields the possibility of a negative conditional variance and thus causes problems in

the subsequent Monte Carlo computation of option prices. Therefore, we constrain

w to be positive in the estimation.

Table 2.1 reports the total variance persistence in each model. If we substitute

out qt+1 and qt from the ht+1 equation in the component models, then persistence

can be computed as the sum of the coefficients on ht and ht−1. Thus the total

persistence in the component models is ρ + (1 − ρ)β. In the GARCH(1,1) models,

persistence is simply b. Note from Table 2.1 that while the GARCH(1, 1) models have

high persistence, the persistence is even higher for each corresponding component

model; this is particularly true for the affine models. The very large component

variance persistence is driven by a large long-run component persistence, ρ, plus the

contribution from [(1− ρ) times] the less persistent short-run component, β.

In the GARCH(1,1) models, the correlation between return and conditional vari-

ance is driven by c, which is, as expected, significantly positive in all cases. In the

component models, the correlation is driven by a combination of γ1 and γ2, both of

which are significantly positive in all four component models. Thus both the long-

run and short-run components contribute to the overall correlation with the expected

sign. The average conditional correlations between the return and conditional vari-

ance, reported in the third-to-last row of the table, are all negative, as expected.

The results demonstrate that for each set of models, the component model displays

a more pronounced leverage effect than its GARCH(1,1) counterpart, in that the

average correlation is more negative.

The variance of variance is driven mainly by the a parameter in the GARCH(1,1)

models and by the α and ρ parameters in the component models. In the GED mod-

els, the ν parameter also contributes. Table 2.1 also reports the overall unconditional

volatility of variance (annualized square root of variance of variance). Note again
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that in each case, the component model has a larger volatility of variance than its

GARCH(1,1) counterpart. Thus three important empirical regularities emerge when

comparing component models with their GARCH(1,1) counterparts: the component

models allow us to (simultaneously) capture a larger variance persistence, a larger

leverage effect, and a larger volatility of variance than their GARCH(1, 1) counter-

parts.

Finally, Table 2.1 presents log-likelihood values for each model. In all cases, the

component model has a significantly larger log-likelihood than the nested GARCH(1,1)

model. Comparing the GED models with their normal counterparts also shows that

the GED-based models have significantly larger log-likelihood values. Thus this

return-based analysis strongly favors the component models over the GARCH(1,1)

models and favors the GED models over the normal models. Although the affine

and nonaffine models are not nested, a casual comparison of the log-likelihoods sug-

gests that the nonaffine GARCH models also are strongly preferred over the affine

GARCH models in all four cases.

2.3.2 Time Series Properties

To explore the asset return models further, here we plot various key dynamic prop-

erties of the models for the period 1989-2001. This period includes the dates for the

option valuation exercise presented in Section 5.

Figure 2.1 plots the conditional volatility for the period 1989-2001. To be exact,

the annualized conditional standard deviation is plotted as a percentage, that is, 100∗√
252ht+1. Note that the conditional volatility patterns across the four GARCH(1,1)

models in the left column and the corresponding four component models in the right

column display some similarities. The models all capture the low volatility during

the equity market runup in 1993-1998, preceded by higher volatility during the first

Gulf War and the 1990-1991 recession. The LTCM and Russia crises in the fall of

1998 are evident, as is the higher volatility during the dot-com bust and the 2001

recession in the later part of the sample.

But Figure 2.1 also reveals some important differences among the models. The

nonaffine models (in the second and fourth rows) appear to display much more
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Figure 2.1: Conditional Volatility Paths
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The annualized conditional volatility in percent, 100 ∗
√

252ht+1, is plotted for each of the eight

models that we consider. The parameter values for the underlying GARCH models are obtained

from ML estimation on daily S&P 500 returns, as reported in Table 2.1.
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Figure 2.2: Conditional Volatility of Variance and Conditional Correlation Paths – Condi-

tionally Normal Models
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We plot the annualized conditional volatility of variance path in percent, 100 ∗ 252 ∗√
V art (ht+2)(top four panels) and the conditional correlation path, Corrt (Rt+1, ht+2) (bottom

four panels) for the four conditionally normal models. The parameter values for the underlying

GARCH models are from Table 2.1.
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variation in the conditional volatility during the second half of the sample than do

the two affine models (in the first and third rows).

Figure 2.2 plots the annualized conditional volatility of variance path, 100 ∗

252
√

Vart(ht+2) for each of the four conditionally normal models in the top four

panels. These plots confirm the findings presented in Figure 2.1. The nonaffine

models in the second row of Figure 2.2 display a much larger volatility of variance

than the affine models in the first row. This is true for both the GARCH(1,1) models

in the left column and the component models in the right column. The nonaffine

models display a much larger volatility of variance during the first Gulf War and the

1990-1991 recession, and especially during the LTCM and Russia crises in the fall of

1998 and the dot-com bust in 2000-2002.

The bottom two rows of Figure 2.2 plot the conditional correlation path,

Corrt(Rt+1, ht+2), for each of our four conditionally normal models. Note that,

as derived earlier, the nonaffine models imply a constant conditional correlation and

thus exhibit a flat line in the plot. The affine models instead have time-varying cor-

relation and imply a conditional correlation very close to -1 when economic events

drive volatility up, as during, for example, the 1990-1991 recession and from 1999 on-

ward. During the equity market runup in the mid 1990s, the conditional correlation

implied by the affine models is much lower in magnitude.

Table 2.2: Model Properties and RMSE from Option Valuation

AGARCH-N NGARCH-N AGARCH-GED NGARCH-GED
Correlation GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components GARCH(1,1) Components
Conditional

- Volatility 1.0000 0.9297 0.9373 0.9297 0.9995 0.9306 0.9365 0.9337
- Vol. of variance 1.0000 0.9267 0.7499 0.7571 0.9993 0.9283 0.7549 0.7667
- Correlation 1.0000 0.9113 0.0000 0.0000 0.9980 0.9270 0.0000 0.0000

Option RMSE
Overall RMSE ($) 2.6927 1.8138 1.5875 1.3820 2.6819 1.7404 1.4599 1.4270
RMSE/Avr call price 0.0965 0.0650 0.0569 0.0495 0.0961 0.0623 0.0523 0.0511

We compute the correlation between the AGARCH(1,1) and each of the other models for the conditional volatility, the condi-
tional volatility of variance, and the conditional correlation between return and variance. We then use the MLE parameters
from Table 2.1 to risk neutralize the models and compute option prices. From the model option prices we compute the root
mean squared error (RMSE) in dollars as well as divided by the average option price for the sample.

The top row of Table 2.2 provides the correlation between conditional volatility

in the AGARCH(1,1)-N model and each of the other models. As Figure 2.1 sug-

gests, these correlations are very high. Not surprisingly, the correlation with the
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AGARCH(1,1)-GED model is virtually 1. The second row in Table 2.2 gives the

correlation between the conditional volatility of variance in the AGARCH(1, 1)-N

model and the other models. This correlation is still high when computed for other

affine models but is now considerably lower for nonaffine models. The third row in

Table 2.2 computes the correlation between the conditional return-variance corre-

lation in the AGARCH(1, 1)-N model and the other models. Note again that this

correlation is very high when computed for other affine models. It is, of course, zero

for the nonaffine models, which have a constant conditional correlation over time.

2.3.3 Variance Term Structure Properties

While Figures 2.1 and 2.2 depict various aspects of the dynamics of the 1-day-ahead

conditional distribution, Figure 2.3 captures the properties of the variance dynam-

ics across longer horizons. In this figure, we plot the expected future conditional

variance from 1 to 252 days ahead. The dashed lines in Figure 2.3 denote multiday

variance forecasts starting from a low current spot variance corresponding to the

25th percentile of the path of variances from 1962 to 2001. The solid lines in Fig-

ure 2.3 denote multiday variance forecasts starting from a high current spot variance

corresponding to the 75th percentile of the path of variances from 1962 to 2001.

In the component models, the 25th and 75th percentiles are used for the current

spot values for both components. The forecasts are normalized by the unconditional

variance and shown in percentage terms, so that for each model, we are plotting

100 ∗ ( Et [ht+k ]− σ2)/σ2 against horizon k.

Figure 2.3 shows that the variance term structure properties vary strongly across

models. In the AGARCH(1,1) models, the relatively low daily variance persistence

implies that the conditional variance forecasts converge to their unconditional levels

after around 100 days. This is true for both the normal and GED version of the

model. The AGARCH(C) models display some variation in variance forecasts across

initial spot variance up until 252 days ahead, comparable to the variation displayed

by the nonaffine GARCH(1,1) models. The nonaffine component models display the

most variation in variance forecasts at long horizons. These differences across models

should have important implications for the option pricing properties.
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Figure 2.3: Variance Forecasts across Forecast Horizons
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We plot the normalized k-day ahead variance forecast 100 ∗
“

Et [ ht+k ]− σ2
”

/σ2 for a low initial

spot variance (dashed line) and a high initial spot variance (solid line). See the text for details.
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2.4 Option Valuation Methodology

To price options using the models developed earlier, we need to know the mapping

between the physical return shocks, zt, and the risk-neutral return shocks. This

mapping will allow us to use the physical asset return models developed earlier to

simulate future stock prices from the risk-neutral distribution. These risk-adjusted

prices can in turn be used to compute simulated option payoffs that once averaged

and discounted using the risk-free rate, yield the current model option price.

Duan (1999) extended the normal case of Duan (1995) and derived a generalized

local risk-neutral framework for option valuation in conditionally nonnormal GARCH

models. As before, let zt+1 be iid normal under the physical measure and let z∗t+1

be iid normal under the risk-neutral measure. Define the t + 1 mean-shift between

the two measures by

ηt+1 = z∗t+1 − zt+1 . (2.27)

For a GED-distributed ζt+1 shock, we can write the mapping as

ηt+1 = z∗t+1 − Φ−1 (Gν (ζt+1)) ,

where Φ−1 is the standard normal inverse cumulative distribution function (cdf) so

that zt+1 = Φ−1(Gν(ζt+1)) is normally distributed. We can then rewrite the linear

normal mapping in (2.27) as a nonlinear GED mapping given by

ζt+1 = G−1
ν

(
Φ
(
z∗t+1 − ηt+1

))
. (2.28)

The derivation of the risk-neutral model requires solving for ηt+1. This is done

by setting the conditionally expected risk-neutral asset return in each period equal

to the risk-free rate. In general, we can write

exp (r) = EQ
t

[
exp

{
Et [Rt+1 ] +

√
ht+1G

−1
ν

(
Φ
(
z∗t+1 − ηt+1

))} ]
,

where the normal case obtains for ν = 2.

2.4.1 The Affine-Normal Models

Recall from before that in the affine models, the conditional return mean is defined

as

Et [Rt+1 ] = r + λht+1 . (2.29)
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In the normal case, of course, we have G−1
2 = Φ−1, so that the solution for ηt+1 can

be found as

exp (r) = EQ
t

[
exp

{
r + λht+1 +

√
ht+1

(
z∗t+1 − ηt+1

)} ]
⇔ 1 = exp (λht+1) exp

(
−ηt+1

√
ht+1

)
exp

(
1
2
ht+1

)
⇔ ηt+1 =

(
λ +

1
2

)√
ht+1

so that

zt+1 = z∗t+1 −
(

λ +
1
2

)√
ht+1 , (2.30)

which corresponds to the mapping of Heston and Nandi (2000).

Future stock returns can now be simulated under the risk-neutral measure by

substituting the shock transformation in (2.30) into the asset return models in (2.1)

and (2.9). In the affine GARCH(1,1) model, we get

R∗
t+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1 , (2.31)

ht+1 = w + b′ht + a
(
z∗t − c∗

√
ht

)2
,

where z∗t+1 ∼ N(0, 1) and c∗ = c + λ + 1
2 . Note how the structure of the expected

return, via its impact on the mapping from zt+1 to z∗t+1, ultimately provides a risk-

neutral volatility dynamic similar to the physical one.

2.4.2 The Nonaffine-Normal Models

In these models, we have

Et [Rt+1 ] = r + λ
√

ht+1 −
1
2
ht+1 (2.32)

so that the solution for ηt+1 is found to be ηt+1 = λ, which gives the mapping

zt+1 = z∗t+1 − λ, (2.33)

which in turn corresponds to the mapping of Duan (1995).

Future stock returns can be simulated under the risk-neutral measure by substi-

tuting the shock transformation in (2.33) into the asset return models in (2.14) and
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(2.22). We get

R∗
t+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1 , (2.34)

ht+1 = w + b′ht + aht (z∗t − c∗)2 ,

where z∗t+1 ∼ N(0, 1) and c∗ = c + λ. Note how once again, the structure of the ex-

pected return ultimately provides a nonaffine risk-neutral volatility dynamic similar

to the nonaffine physical volatility dynamic.

2.4.3 The Affine GED Models

In the nonnormal case, an exact solution for ηt+1 involves a prohibitively cumber-

some numerical solution for ηt+1 on every day and on every Monte Carlo path.

Consequently, we develop the following approximation.

In the GED case, the parameter ν determines the degree of nonnormality in the

cdf Gν . When ν = 2, we get normality, and when ν < 2, we get fat tails. In the

normal special case, we have G−1
2 (Φ(z)) = z for all z. Because the normal and GED

are both symmetric, we know that G−1
ν (Φ(0)) = 0 for all ν. We use this to suggest

the linear approximation

G−1
ν (Φ (z)) ≈ bνz,

where bν is easily found for a given value of ν by fitting ζi = G−1
ν (Φ(zi)) to zi

for a wide grid of zi values. This approximation is motivated by the fact that the

probability integral transform, ζ = G−1
ν (Φ(z)), is very close to linear for ν values

around the empirical estimates in Table 2.1.

With this approximation, we can write

1 = exp (λht+1) EQ
t

[
exp

{√
ht+1G

−1
(
Φ
(
z∗t+1 − ηt+1

))} ]
≈ exp (λht+1) EQ

t

[
exp

{√
ht+1bν

(
z∗t+1 − ηt+1

)} ]
= exp (λht+1) exp

(
−ηt+1

√
ht+1bν

)
exp

(
1
2
ht+1b

2
ν

)
.

Taking logs yields

0 = λht+1 − ηt+1

√
ht+1bν +

1
2
ht+1b

2
ν ,

and solving for ηt+1 yields

ηt+1 =
(

λ

bν
+

1
2
bν

)√
ht+1 ,
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where, of course, the normal case obtains when bν = 1.

The mapping between the physical GED and the risk-neutral normal shocks is

now

ζt+1 = G−1
ν

(
Φ
(

z∗t+1 −
(

λ

bν
+

1
2
bν

)√
ht+1

))
, (2.35)

which can be substituted into the return dynamics for the AGARCH(1,1)-GED and

AGARCH(C)-GED models to get the risk-neutral processes.

Note that whereas the linear approximation greatly facilitates computing ηt+1

in the GED models, computing option prices is still more cumbersome with GED

innovations because of the frequent inversion of the GED cumulative distribution

function in (2.35).

2.4.4 The Nonaffine GED Model

Using the nonaffine return drift but the same approximation of G−1
ν (Φ(·)) as before,

we can write

1 = exp
(

λ
√

ht+1 −
1
2
ht+1

)
EQ

t

[
exp

{√
ht+1G

−1
(
Φ
(
z∗t+1 − ηt+1

))} ]
≈ exp

(
λ
√

ht+1 −
1
2
ht+1

)
EQ

t

[
exp

{√
ht+1bν

(
z∗t+1 − ηt+1

)} ]
= exp

(
λ
√

ht+1 −
1
2
ht+1

)
exp

(
−ηt+1

√
ht+1bν

)
exp

(
1
2
ht+1b

2
ν

)
.

Taking logs yields

0 = λ
√

ht+1 −
1
2
ht+1 − ηt+1

√
ht+1bν +

1
2
ht+1b

2
ν ,

and solving for ηt+1 yields

ηt+1 =
λ

bν
+
(

bν

2
− 1

2bν

)√
ht+1 ,

where, of course, the normal case again obtains when bν = 1. The mapping between

the shocks is then

ζt+1 = G−1
ν

(
Φ
(

z∗t+1 −
λ

bν
−
(

bν

2
− 1

2bν

)√
ht+1

))
,

which can be substituted into the return dynamics for the NGARCH(1,1)-GED and

NGARCH(C)-GED models to get the risk-neutral processes.
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2.4.5 Monte Carlo Simulation

The European call option prices are computed via Monte Carlo, simulating the risk-

neutral return process and computing the sample analog of the discounted risk neu-

tral expectation. For a call option, Ct,T , quoted at the close of day t with maturity

on day T and strike price X, we have

Ct,T = exp (−r(T − t))E∗
t [Max(ST −X, 0)]

≈ exp (−r(T − t))
1

MC

MC∑
i=1

[
Max

(
St exp

(
T−t∑
τ=1

R∗
i,t+τ

)
−X, 0

)]
,

where R∗
i,t+τ denotes future daily log returns simulated under the risk-neutral mea-

sure. The subscript i refers to the ith out of a total of MC simulated paths.

To compute the option prices numerically, we use 20 affine matrix scrambles

of 5,000 Sobol sequences each, for a total of 100,000 simulated paths. We use the

empirical martingale method of Duan and Simonato (1998) to increase numerical

efficiency.

To assess the accuracy of our Monte Carlo implementation, we use the model

of Heston and Nandi (2000), for which quasi-analytical option prices are available

via Fourier inversion of the conditional characteristic function. We compare these

analytical option prices with the Monte Carlo prices for various strike prices, maturi-

ties, and volatility levels. We use the parameterization of the Heston-Nandi variance

process from Table 2.1.

Figure 2.4 reports the results. The figure presents results for two maturities (1

month and 3 months) and for three spot volatility levels [6.48%, 12.11%, and 24.00%,

equal to the minimum, median, and maximum model volatility of the AGARCH(1,

1)-N between January 1990 and December 1995]. In all cases, the Monte Carlo

prices, denoted by “+,”, offer a very good approximation to the analytical prices,

denoted by solid lines.

2.4.6 Option Valuation: Model Mechanics

Before turning to an empirical investigation of the various option valuation models,

we analyze how the models differ in terms of option valuation by generating synthetic

option prices for standardized moneyness, maturity, and volatility. This exercise
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Figure 2.4: Accuracy of Monte Carlo Simulated Prices
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Using the AGARCH(1,1)-N model and the parameters from Table 2.1, we compare quasi-analytical

option prices from Fourier inversion (solid) to the Monte Carlo prices (“+”) for various strike prices,

maturities, and volatility levels. The three spot volatility levels are 6.48%, 12.11%, and 24.00%,

corresponding to the minimum, median, and maximum model volatility of the model between 1990

and 1995.
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provides us with intuition on how the various models are able to match option prices,

and indicates in which dimensions different models fall short. We generate synthetic

prices using the parameter estimates in Table 2.1, which reflect model properties at

the optimum.

Figure 2.5 presents weekly synthetic prices for the four models with normal in-

novations. The results are very similar for the GED models, and thus we do not

report these here. To include multiple maturities in the same figure, we convert

the prices to Black-Scholes implied volatilities. The light-gray band plots results for

a 1-month option, and the dark-gray band plots results for a 1-year option. The

thickness of each band indicates the range of option prices generated by each model

across the moneyness of the options. Each week, we value an option with money-

ness (S/X) equal to 0.95 and 1.05; the thickness of the band indicates the difference

between these two prices. Option prices are monotonic in moneyness, and all other

determinants of price are kept constant; thus the width of the band is a function of

moneyness only. Therefore, Figure 2.5 allows us to comment on differences between

the models as a function of moneyness and maturity, as well as differences in model

price over time, which are related to the volatility level.

We draw the following conclusions. First, the thickness of the bands clearly

indicates that for longer-maturity options, the nonaffine models generate much more

price variation across moneyness than the affine models. Second, differences between

the models are more pronounced for longer-maturity options, which is not surprising;

however, the nonaffine models value the 1-month options somewhat differently than

the affine models. For comparison, we indicate the time path of the VIX by a black

line. For the nonaffine models, the time path of the band for the 1-month option

follows the VIX much more closely.

Third, some models—most notably the AGARCH(1, 1)-N—generate very little

variation in long-maturity prices over the 1990-1995 sample. The nonaffine models

and component models perform very differently in this respect. For example, it

is striking that the time paths for the long-maturity and short-maturity bands are

much more correlated for the NGARCH(C)-N model than for the other models.

Thus we conclude that models strongly differ in their pricing results under changing

(volatility) conditions. The nonaffine models allow for more variation in prices as a
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Figure 2.5: Synthetic Option Implied Volatilities across Time
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We plot weekly synthetic implied Black-Scholes volatilities for the four models with normal innova-

tions. The light grey band plots the results for a 1-month option, and the dark grey band plots the

results for a one-year option. The black line denotes the VIX index. Each week, we value an option

with moneyness (S/X) equal to 0.95 and 1.05; the thickness of the band indicates the difference

between these two prices.

function of volatility, such as, for example, higher prices in the more volatile 1990-

1991 period. But obtaining prices for long-maturity options that are more correlated

with those of shorter-maturity options requires component models.

Figure 2.6 provides further insight by presenting plots of synthetic 1-month option

prices as a function of moneyness and volatility. To accentuate differences between

models, we plot the differences between model prices and Black-Scholes prices. Be-
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cause of space constraints, we provide results only for the nonaffine models with

normal innovations.

Figure 2.6: Synthetic NGARCH-N Option Prices across Moneyness (S/X) and Volatility
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For the NGARCH normal models, we plot the synthetic model option price less the Black-Scholes

price as a function of moneyness (S/X) and volatility for options with one month to maturity. For

the component model, we set the proportion of the long-run variance factor, qt, to the total variance,

ht, equal to the 90th percentile (top-right) and the 10th percentile (bottom-right) of its historical

distribution.

While the volatility level on the horizontal axis in the figure fixes the spot variance

ht in the models, we still need to fix the long-run variance factor, qt, in the component

models. We proceed as follows. In the top right panel of Figure 2.6, we set qt, so

that the ratio qt/ht corresponds to the 90th percentile of the historical ratio, thus
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generating a relatively high long-run variance factor. In the bottom right panel of

Figure 2.6, we set qt, so that the ratio qt/ht corresponds to the 10th percentile of

the historical ratio, generating a low long-run variance factor. Note again that the

overall variance, ht, is kept the same across models. Thus the values for the two

GARCH(1,1) models in the left panels are identical. Finally, note that while option

model prices increase as a function of volatility, of course the same need not apply

to the model price net of the Black-Scholes price.

Figure 2.6 shows large differences between the GARCH(1,1) and the component

models when the long-run variance factor is high. The nonaffine GARCH(1,1) model

generates larger differences with Black-Scholes when volatility is high; however, this

difference is dwarfed by the difference between the GARCH(1,1) and component

models when the long-run variance component is high.

The bottom-right panel of Figure 2.6 shows the case where the long-run variance

factor is low. Note that we have kept the overall volatility the same as in the top-right

panel. When the long-run variance factor is relatively low, the component models

generate prices that are even closer to Black-Scholes than those generated by the

GARCH(1,1) models.

The overall conclusion from Figure 2.6 is that the component structure gives

additional flexibility in generating option prices that vary not only as a function of

the overall level of volatility, but also as a function of the composition of overall

volatility into short-run and long-run components.

2.5 Option Valuation Empirics

We are now ready to use the eight models estimated in Section 2 and the transfor-

mation to risk-neutrality in Section 4 to assess the performance of the models for

option valuation. In this section, we first introduce the options data, then use each of

our eight models to price the option contracts and compare model and market prices

for various maturities, strike prices, and sample years. We then report an economic

analysis of the errors, and finally investigate alternative estimation strategies.
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2.5.1 Option Data

We use 6 years of S&P 500 call option data covering the period 1990-1995. Starting

from the raw data from the Berkeley option data base, we apply standard filters

following Bakshi, Cao, and Chen (1997). We use only options with more than 7 days

to maturity. We also use only Wednesday options data. Wednesday is the day of

the week least likely to be a holiday, and is also less likely than other days, such

as Monday and Friday, to be affected by day-of-the-week effects. If Wednesday is

a holiday, then we use the next trading day. Using only Wednesday data allows us

to study a fairly long time series, which is useful considering the highly persistent

volatility processes.

Our sample comprises 21,752 options with a wide range of moneyness and ma-

turity. The average overall price is $27.91. The data have been described in more

detail by Christoffersen, Jacobs, Ornthanalai, and Wang (2008).

The implied Black-Scholes volatilities display strong evidence of a “smirk” or

“skew” across strikes, with higher implied volatility for in-the-money calls than at-

the-money calls, and this holds for all maturities. This empirical regularity illustrates

that the Black-Scholes option valuation formula, which assumes a constant per period

volatility across time, maturity, and strike prices, will result in systematic pricing

errors, which motivates the use of GARCH models for option valuation.

2.5.2 Overall Option Valuation Results

When calculating option prices according to the eight GARCH models, we use the

ML estimation parameters in Table 2.1 transformed to the risk-neutral measure. We

use these risk-neutral parameters, along with the conditional variance paths from

Figure 2.1 as inputs into the option pricing formula. In the case of the nonaffine

and/or nonnormal models, Monte Carlo simulation is required to calculate the price.

In the case of the normal affine models, numerical integration solutions exist; how-

ever, to ensure that the results are not driven by the numerical pricing technique, we

use Monte Carlo simulation using the same set of random numbers for all models.

The overall RMSEs for the eight GARCH models are reported in the next to last
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row of Table 2.2. The root mean squared error (RMSE) is computed as

RMSE =
√

1
N

∑
i,t

(
CMarket

i,t − CModel
i,t

)2
,

where the summation is over contract i observed on day t and where N is equal to

21,752, the total number of option contracts in the sample. The last row in Table 2.2

normalizes the RMSE by dividing it by the average call price in the sample.

Note first that the best overall model (i.e., that with the lowest RMSE) is the

NGARCH(C)-N, with an RMSE of 1.38, followed closely by the NGARCH(C)-

GED, with an RMSE of 1.43. The two nonaffine GARCH(1,1) models also perform

relatively well, with RMSEs of 1.46 in the GED case and 1.59 in the normal case.

The affine models as a group perform worse than the nonaffine models. The RMSE

of the AGARCH(C)-GED model is 1.74, and that of the AGARCH(C)-N model is

1.81. The two affine GARCH(1, 1) models perform the worst, with an RMSE of 2.68

in the GED case and 2.69 in the normal case.

These overall RMSE results allow us to make comparisons in three dimen-

sions: affine versus nonaffine variance dynamics, GED versus normal shocks, and

GARCH(1,1) versus component variance models.

First, as noted earlier, we see that nonaffine models perform much better than

affine models. This is true both for GARCH(1,1) and component models and for

GED and normal shocks. Thus our results confirm and extend those of Hsieh

and Ritchken (2005) who compared an affine model and a nonaffine model in the

GARCH(1,1) case with normal shocks.

Second, we see that GED models perform only marginally better than normal

models. The greatest improvement is in the NGARCH(1,1) case, where the RMSE

drops from 1.59 to 1.46 when going from GED to normal shocks. In the other

pairwise comparisons, the difference between the GED and the normal RMSE is

around 5 cents.

Third, we see that the component structure offers large improvements in fit for

the affine class of models but more modest improvements in the nonaffine class of

models. For the affine models, the RMSE drops from 2.69 to 1.81 for normal shocks

and from 2.68 to 1.74 for GED shocks, whereas for the nonaffine models, the RMSE

drops from 1.59 to 1.38 for normal shocks and from 1.46 to 1.43 for GED shocks.
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Recall now the main findings in terms of daily return log-likelihood values in

Table 2.1. In all cases, the component model has a significantly larger log-likelihood

than the nested GARCH(1,1). Comparing the GED models with their normal coun-

terparts reveals that the GED-based models have significantly larger log-likelihood

values. The log-likelihood values also suggest that the nonaffine GARCH models are

strongly preferred over the affine GARCH models. The option-based results support

the return-based improvement of nonaffine models over affine models. They also

support the component model improvements over GARCH(1, 1) for affine models,

but somewhat less so for nonaffine models. While the GED offers drastic improve-

ments in the return-based likelihood analysis, the improvements offered in option

valuation are much more modest. The normal GARCH models may offer sufficient

nonnormality in the multiday distribution, or, alternatively, the GED specification

may not be adequate for the purpose of option valuation.

2.5.3 Results by Moneyness, Maturity, and Volatility Level

Figure 2.7 provides more intuition for the models’ performance by plotting the

RMSE and bias results as a function of moneyness (i.e., index value over strike

value), maturity, and volatility level. Note that the scales differ across panels in

Figure 2.7, to focus on the differences between models.

The plots in the top row of Figure 2.7 show RMSE and bias for each model

using six moneyness bins. RMSE is presented in the left panel, and bias is shown

in the right panel. Bias is defined as average market price minus model price. In

each panel, the solid line represents the model with normal innovations and the

dashed line represents the model with GED innovations. The bias plots indicate that

model prices are generally larger than market prices, especially for out-of-the money

call options. An important observation is that while the GED models outperform

the models with normal innovations, the differences in performance are small, and

for many models are almost nonexistent in most of the bins. This confirms the

results presented in Section 2.5.2. But the GED models slightly outperform the

models with normal innovations for out-of-the-money options, where nonnormality

has more impact. Furthermore, while affine models perform similar to nonaffine

models for in-the-money options, nonaffine models perform much better for out-of-
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Figure 2.7: Option RMSE and Bias against Moneyness, Maturity, and VIX Level
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We plot RMSE (left column) and bias (right column) for each model using six moneyness bins

(top row), maturity bins (middle row) and VIX levels (bottom row). Normal models are solid

and GED models are dashed lines. AGARCH(1,1) is marked with “ ◦ ”, NGARCH(1,1) with “� ”,

AGARCH(C) with “+” and NGARCH(C) with “ * ”.

the money and at-the-money options. The affine models perform particularly poorly

for out-of-the money options, perhaps not providing sufficient nonnormality at the

relevant horizons. Differences across models also are generally larger for out-of-the-

money options, driving the overall RMSE result. Finally, the nonaffine component
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models significantly outperform the NGARCH(1, 1) models, suggesting that in the

moneyness dimension, both the nonaffine structure and the component structure are

needed.

The plots in the middle row of Figure 2.7 strongly suggest that both components

and a nonaffine structure are also needed in the maturity dimension. The plots show

RMSE and bias for each model using six maturity bins. The nonaffine compo-

nent models significantly outperform the affine component models and the nonaffine

GARCH(1,1) models, suggesting that the nonaffine structure and the component

structure by themselves are not sufficient to capture the richness of the data. The

other important conclusion is, of course, that differences in model performance ap-

pear mainly at long maturities. The affine component models do well for the shortest

maturities, but the nonaffine component and GARCH(1,1) models perform better

than the affine models at longer maturities. The relative lack of flexibility in the

longer-term variance dynamics shown in Figure 2.3 seems to hurt the affine models

in the valuation of long-maturity options.

Finally, the plots in the bottom row of Figure 2.7 show RMSE and bias for each

model using eight volatility bins. To ensure meaningful comparisons, we define the

volatility on a given day as the level of the CBOE’s VIX volatility index. These

plots illustrate the problems with the AGARCH(1,1) models even more starkly. In

particular, the RMSE plots indicate that these models perform similarly to the

other models only when the VIX index is near its average over the sample period

(i.e., 15.98%). Interestingly, the differences between the NGARCH(C) models on the

one hand and the AGARCH(C) and NGARCH(1,1) models on the other hand seem

to be smaller than those in the moneyness and maturity dimensions depicted in the

top and middle rows. Most notably, even with the nonaffine component models, a

substantial bias clearly remains at high volatility levels.

2.5.4 Economic Assessment of Option Valuation Performance

We now turn to a more detailed analysis of the option valuation performance of the

models over time. Toward this end, we regress the weekly option bias (defined as

the weekly average market price less the weekly average option price) on some key

economic variables: the VIX index, the weekly S&P 500 return, the weekly crude



2.5 Option Valuation Empirics 41

Brent Oil price, the 3-month T-bill rate, the credit spread (defined as the yield on

corporate bonds rated Baa less the yield on Aaa bonds as rated by Moody’s), and

the term spread, defined as the difference between the yield on 10-year T-bond and

the 3-month T-bill rate. We also include as regressors the weekly average moneyness,

defined as index value over strike price (S/X), and the weekly average maturity in

years. For these variables, averages are taken each week across the option contracts

observed on the Wednesday of that week. The final regressor is the model-specific

variance forecast for each model, defined as the average of the model’s variance

forecasts for the next month, as implied by the parameters given in Table 2.1.

Table 2.3: Regressing Weekly Bias on Economic Variables

AGARCH-N NGARCH-N AGARCH-GED NGARCH-GED
garch(1,1) Components garch(1,1) Components garch(1,1) Components garch(1,1) Components

Avr weekly bias -0.9684 -0.3031 -0.1260 0.5500 -0.9745 -0.2186 0.0700 0.6467

Regressor t-Statistics using White’s Robust Standard Errors
Constant -3.983 -3.247 -1.497 -1.537 -3.970 -3.117 -1.581 -1.237
VIX 10.559 10.345 9.520 10.978 10.326 10.947 9.511 11.142
S&P500 weekly return -1.269 -2.215 -1.734 -4.023 -1.250 -2.870 -1.755 -4.011
Oil price 1.651 3.648 6.077 5.745 1.725 3.494 6.281 5.873
3-month T-bill rate 2.993 0.731 0.309 -3.247 3.008 0.322 0.054 -3.408
Credit spread 7.548 7.233 4.724 1.646 7.564 6.794 4.553 0.887
Term spread 3.376 0.790 0.076 -2.748 3.292 0.543 -0.261 -2.772
Avr moneyness (S/X) 2.049 1.766 0.115 0.685 2.053 1.717 0.238 0.402
Avr maturity (YTM) -0.356 0.580 -1.844 3.233 -0.562 1.308 -0.914 3.721
Model variance forecast -5.950 -12.011 -15.830 -14.017 -5.787 -12.911 -16.046 -14.194

Regression R-squared 0.8881 0.7582 0.7405 0.6124 0.8856 0.7432 0.7298 0.6112

For each model we regress the weekly bias on a constant and various weekly economic variables, as well as the average weekly
moneyness and maturity of the options in the sample. We also regress on the model-specific variance forecast. We report
the t-statistic for each regressor using White’s robust standard errors. Numbers in bold are larger than two in absolute value.
The top row shows the average weekly bias and the bottom row reports the R-squared regression fit.

Table 2.3 reports the results of the regressions of weekly option bias on the

economic variables. The top row reports the average weekly bias (across the whole

sample) for each model. t-statistics for each regressor are given, with the standard

deviation for each regressor computed using White’s robust variance matrix. Any

t-statistic exceeding 2 in absolute value is in bold type. The bottom row gives

the regression fit via the R-squared statistic. Most importantly, note that the R-

squared values are quite high, suggesting that for these models, misspecification can

be detected quite easily by analyzing model bias. Note that the explanatory power

is particularly high in the affine GARCH(1,1) models and lowest in the nonaffine

component models.
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The VIX is positive and significant for all models, and the variance forecast is

negative and significant. The coefficient on the S&P 500 return is estimated to be

negative for all models (the opposite sign of the VIX), but it is not always significant.

The increase in the short-term rate, as well as the decline in the term and credit

spreads, seem capable of explaining some of the upward bias in the affine model

prices seen in the second half of the sample.

In summary, this specification analysis highlights some interesting differences be-

tween the models and provides insight into the models’ strengths and weaknesses.

These findings also suggest that building option pricing models with variance dy-

namics driven by key economic variables, such as credit spreads and oil prices, is a

viable avenue for future research.

2.5.5 Alternative Estimation Strategies

So far, we have estimated the GARCH models on daily returns only and then used

them for option valuation without letting the model parameters be driven in any way

by the observed option prices. We now want to check the robustness of our results

in two ways. First, because the return sample period (1962-2001) used here overlaps

with the option sample period (1990-1995), we shorten the return sample period to

end in 1989, just before the start of the option sample period. Second, we use options

to estimate the weekly spot variance, ht, minimizing the weekly option RMSE while

keeping the model parameters fixed at the ML estimate values estimated on the

1962-1989 sample of daily index returns. These results are presented in Table 2.4

and Figure 2.8.

Panel A of Table 2.4 summarizes the valuation results using the ML estimation

parameters from 1962-2001. The RMSE in the top row of Table 2.4 is simply

repeated from the next to last row of Table 2.2. The second row of Table 2.4 reports

the overall bias, which is close to 0 for all models. The third row reports the average

spot volatility across the 313 option sample days. Because of the variance targeting

used in ML estimation, these average volatilities are quite similar across models.

Finally, the fourth row reports the standard deviation of the 313 spot variances. In

keeping with the results in Figure 2.2, the volatility of variance is highest in the

nonaffine models.
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Panel B of Table 2.4 reports the same set of results using ML estimates of the

GARCH parameters from daily returns from 1962 through 1989 rather than through

2001. Note that the option RMSE often is lower when parameters are estimated

on returns observed through 1989 than when estimated on returns observed through

2001. Compared with the 2001 estimates, the 1989 estimates result in higher option

RMSEs only in the two nonaffine component models. Whereas the evidence in

favor of nonaffine component models weakens, the other overall conclusions from

the 2001 estimates remain intact. The poorer option valuation performance of the

nonaffine component models when using the shorter sample could be driven by the

fact that the component models require a longer return sample to properly identify

the components.

Panel C of Table 2.4 uses the GARCH parameters from ML estimation on re-

turns up through 1989, but estimates the GARCH spot variance, ht, each week by

minimizing that week’s option RMSE using a nonlinear least squares (NLS) tech-

nique. Comparing the pure MLE RMSEs in Panel B with the hybrid RMSEs in

panel C shows that the reduction in RMSE is dramatic in all models. The four

nonaffine models now all have an RMSE of around $1, compared with around $1.36

for the two affine component models and around $2 for the GARCH(1,1) models.

The overall ranking of models from the pure ML estimation analysis remains largely

intact.

Figure 2.8 elaborates further on this finding by plotting the weekly spot volatility

from NLS (dots), along with the corresponding ML estimation-based spot volatili-

ties (solid lines). The differences between the ML estimation-based and NLS-based

results in Figure 2.8 are quite striking. In the affine GARCH(1,1) models, the NLS

optimizer forces the spot volatility to zero in much of the second half of the sample

to decrease the overpricing.

Table 2.4 also reports the RMSE between the annualized RMSE-optimal volatil-

ity and its ML-optimal counterpart. These numbers confirm the visual impression

from Figure 2.8 and also corroborate some of our earlier findings. First, the nonaffine

models have a much closer correspondence between option-implied and purely return-

generated spot volatility. Second, the component structure reduces the volatility

RMSE by well over 50% in the affine models and also quite substantially in the
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Figure 2.8: RMSE-Optimal Spot Volatility Estimated Weekly by NLS
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The dots show the weekly RMSE-optimal GARCH annualized spot volatilities, 100 ∗
√

252ht, esti-

mated by NLS. The annualized ML estimation-optimal volatility path is show in solid lines.

nonaffine models. Third, the GED shocks do not have much effect when judged by

this metric either.

In the last four rows of Table 2.4, we split the 1990-1995 sample into two halves

and report the option RMSE and bias for each half, using the NLS estimation

results. Note that the AGARCH(1, 1) models are characterized by large negative

bias in the second half of the sample, which leads to large RMSEs. Thus the
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overpricing persists even when the NLS optimization drives the spot variances to

zero in the second half of the sample.

Finally, it must be emphasized that the smaller NLS bias cannot be interpreted

as suggesting the superiority of this type of exercise. The MLE setup clearly provides

more challenges for any model, thereby automatically leading to a higher bias.

2.6 Conclusion and Directions for Future Work

We have assessed the ability of eight different GARCH models to fit daily return

dynamics and their ability to match market prices of options. First, we considered

component models versus GARCH(1,1) models. Like Engle and Lee (1999), we found

strong evidence in favor of component models from the standpoint of modeling daily

return dynamics. When using option prices to assess the models, we also found strong

evidence for the component structure in the affine GARCH models, but less so in the

nonaffine models. Second, we considered nonaffine versus affine GARCH models. We

compared the affine GARCH(1, 1) model with the nonaffine NGARCH(1, 1) model of

Hsieh and Ritchken (2005), who found strong support for the nonaffine specification.

Our results support their findings, and we also found that the nonaffine models

outperform affine models when allowing for component structures and nonnormal

shocks. Third, we considered conditionally normal versus conditionally nonnormal

models. We found that assuming GED shocks for the daily asset returns greatly

improves the fit of the all models to daily returns, but the improvement in option

valuation is much less evident.

The empirical results suggest some viable directions for future research. First,

it remains to be seen whether the differences in performance between models are

confirmed when using model parameters estimated from option prices, or when using

an integrated analysis that uses option prices as well as underlying returns (see Bates

2000; Chernov and Ghysels 2000; Eraker 2004). The analysis in Table 2.4 suggests

that the relative performance of the models is comparable when the spot volatility

is estimated from options rather than filtered from returns.
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Second, it would be interesting to expand the analysis of nonnormal shocks to

a wider class of distributions. Toward this end, Christoffersen, Heston, and Ja-

cobs (2006) developed an inverse-Gaussian GARCH model, Duan, Ritchken, and

Sun (2006) suggested augmenting GARCH models with jumps, and Lehnert (2003)

applied an EGARCH model with skewed GED shocks.

Third, we have restricted attention to European-style options on the S&P 500

index. It would be interesting to apply the GARCH modeling framework to some

of the many American-style contracts traded in the derivatives markets. Ritchken

and Trevor (1999) and Stentoft (2005) have provided fast numerical techniques for

GARCH option valuation with early exercise.

Finally, it would be interesting to compare the range of discrete-time GARCH

models considered here with continuous-time stochastic volatility models. Bates

(1996), Bakshi, Cao, and Chen (1997), and Eraker (2004) have studied stochastic

volatility models with jumps; Taylor and Xu (1994) have studied multifactor stochas-

tic volatility models; and Bates (2000) has analyzed models with Poisson jumps and

multiple volatility factors. Comparing GARCH and SV models for the purpose of

option valuation may provide more insight into the strengths and weaknesses of the

various models.
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3
Business Conditions, Market

Volatility, and Option Prices

Abstract We introduce a dynamic volatility model in which stock market volatility

varies around a time-varying fundamental level. This fundamental level is determined

by macroeconomic risk, quantified using a MIDAS structure to account for changes

in the recently introduced ADS Business Conditions Index. The new model outper-

forms the benchmark in fitting asset returns and in pricing options, especially around

the 1990-1991 and 2001 recessions. The benchmark model exhibits a counter-cyclical

option-valuation bias across all maturities and moneyness levels, and the newly in-

troduced model removes this cyclicality by allowing the conditional expected level

of volatility to evolve with business conditions. We extract the volatility premium

implied by the model and find that an economically significant 13% of its variation

through time can be explained by the impact of macroeconomic risk.

Keywords Business conditions; Macroeconomic risk; Generalized autoregressive

conditional heteroscedasticity; Mixed data sampling; Option valuation; Volatility.
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3.1 Introduction

Volatility is one of the main determinants of option prices, and much emphasis is

placed on improving the dynamic volatility models used to value options. Interest-

ingly, most of these models do not include observables and let volatility mean-revert

to a constant level regardless of the current business conditions. However, stock mar-

ket volatility is robustly found to be highly counter-cyclical, and so the data suggest

that a model’s volatility process should mean-revert to different levels depending

on macroeconomic conditions. Recent work by Engle, Ghysels, and Sohn (2008)

builds on this insight and lets volatility vary around a time-varying mean-reversion

level that evolves along with the economic fundamentals.∗ These authors find that

this fundamental volatility process is significantly related to such factors as inflation

and industrial production growth.† This study extends their results and investigates

the extent to which the impact of business conditions on stock market volatility is

reflected in option prices.

Central to this analysis is the new business conditions index recently introduced

by Aruoba, Diebold, and Scotti (2009; henceforth ADS). Using this index within a

mixed data sampling (MIDAS) model,‡ we suggest a model in which volatility varies

around a fundamental volatility process that accounts for recent volatility levels and

for changes in business conditions. We refer to this model as the MacroHV-MIDAS

model, where HV stands for historical volatility. Our model nests Duan’s (1995)

GARCH model and significantly outperforms it in fitting asset returns and stock

market volatility. These results are consistent with the growing consensus that two-

factor volatility processes better capture the time-series properties of volatility by

accounting separately for transient and high-persistence volatility shocks.§

However, two-factor models mostly rely on two latent, autoregressive volatility

factors. Whereas the actual drivers of these processes are usually left unidentified,
∗Regime-switching models, à la Hamilton and Susmel (1994), would provide another approach

to allowing for different mean-reversion levels. However, using economic fundamentals has the

advantage of identifying the determinants of gradual changes in conditional expectations.
†Engle, Ghysels, and Sohn (2008) refer to this fundamental volatility process as the secular

volatility process.
‡On MIDAS models, see, for instance, Ghysels, Santa-Clara, and Valkanov (2005); Forsberg and

Ghysels (2007); Ghysels, Sinko, and Valkanov (2007); and Engle, Ghysels, and Sohn (2008).
§On two-factor models, see, amongst others, Engle and Lee (1999); Andersen, Bollerslev, Diebold,

and Ebens (2001); Alizadeh, Brandt, and Diebold (2002); and Engle and Rangel (2008).
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our fundamental volatility process acknowledges that macroeconomic determinants

do impact conditional volatility expectations. Our results demonstrate that changes

in business conditions are an important determinant of the fundamental volatility

process. Considering a restricted version of the model in which the business con-

ditions are constrained not to contribute, we find that the constrained model still

offers a significantly better fit to asset returns than that of Duan’s benchmark model,

but offers a significantly worse fit than that of the MacroHV-MIDAS model. Thus,

changes in business conditions have an impact on conditional volatility expectations

that extends beyond that of recent volatility levels.

These results strengthen those of Engle and Rangel (2008) and Engle, Ghysels,

and Sohn (2008) who extensively study physical volatility processes and find them

to be counter-cyclical. However, neither study directly discusses the implications for

financial derivatives. With the MacroHV-MIDAS model, we propose a risk neutral-

ization that accounts for the correlation between financial returns and changes in

business conditions. This risk-neutralized form of the model warrants an analysis

of option-pricing errors on twenty years of weekly option data, spanning from June

1988 to December 2007, for a total of 1020 weeks of observations. This is one of the

most extensive data sets analyzed in the option pricing literature. We find that our

MacroHV-MIDAS model consistently outperforms Duan’s (1995) benchmark model

in pricing options.∗

By explicitly accounting for changes in business conditions, our model furthers

understanding of the impact of business conditions on option prices. Notably, the

analysis of option-pricing errors from a time-series perspective reveals that much of

the MacroHV-MIDAS model’s improvement over its benchmark arises from its ability

to better capture the spot volatility and its dynamics around the 1990-1991 and 2001

recessions. Duan’s benchmark model exhibits counter-cyclical biases on options of

all maturities and all moneyness levels. By allowing the conditional expected level

of volatility to evolve with business conditions, our model is able to remove this

cyclicality in the bias, across all maturities and moneyness levels.

∗Our results are thus consistent with those of, for instance, Christoffersen, Jacobs, Ornthanalai,

and Wang (2008), and Christoffersen, Dorion, Jacobs, and Wang (2008). In these articles, however,

the long-run volatility component is driven only by innovations to the return process, and thus the

model offers no insight regarding the fundamental drivers of expected stock market volatility levels.
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The MacroHV-MIDAS model also allows us to measure the contribution of macroe-

conomic risk to the model-implied volatility premium, defined as the difference be-

tween the volatility processes under the risk-adjusted and physical measures. We

estimate the price of risk parameter of the MacroHV-MIDAS model using VIX data

and then extract the volatility premium implied by the model. The contribution of

macroeconomic risk to the premium is economically significant. While short-term

volatility is found to be the main driver of the volatility premium, explaining up

to 79% of its variation through time, the volatility impact of changes in business

conditions is found to account for a sizeable 13% of the premium’s fluctuations.∗

In summary, this paper shows that a simple dynamic volatility model is able to

draw on the informational content of the ADS Business Conditions Index to better

capture and understand properties of stock market volatility and of option prices.

This ability could prove highly relevant in better understanding the risk inherent to

option portfolios throughout the business cycle. In cross sections of option returns,

Aramonte (2009) finds macroeconomic uncertainty to be a priced factor, and his

results are robust to controlling for a variety of relevant factors such as market and

liquidity factors, higher moments of intra-daily returns, and the SMB and HML fac-

tors. Our paper suggests that these results are a consequence of an intuitive reality:

the expected level of stock market volatility varies along with business conditions.

This article is organized as follows. Section 3.2 presents the MacroHV-MIDAS

model. Section 3.3 briefly discusses the ADS Business Conditions Index, and com-

pares it to other macroeconomic series of interest before discussing the estimation

of the MacroHV-MIDAS model using maximum likelihood. Section 3.4 uses the

maximum likelihood estimates to price twenty years of option data and analyzes

the impact of business conditions on the model’s implied volatilities. Using option

data and nonlinear least-squares estimation, Section 3.5 refines the results of Sec-

tion 3.4 and studies the time-series dynamics of the volatility premium implied by

the MacroHV-MIDAS model. Finally, Section 3.6 concludes.

∗In related work, Corradi, Distaso, and Mele (2009) also analyze the volatility risk premium and

obtain similar results in a no-arbitrage framework in which the asset price process endogenously

determines volatility dynamics that are linked with macroeconomic factors. These authors focus

on time-varying risk premia, while the focus of this paper is time-varying conditional expectations;

both papers are thus somewhat complementary.
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3.2 The MacroHV-MIDAS Model

3.2.1 The Model’s Foundations

Dynamic volatility models can be divided into two broad categories: GARCH mod-

els and stochastic volatility models. In a stochastic volatility model, the volatility

process is driven by unobservable shocks that are imperfectly correlated with shocks

to the return process. In a GARCH model, the shocks to the volatility process are

assumed to result from a deterministic transformation of the return innovations.

On the market, one observes returns and can estimate volatility, but never ob-

serves it. In this way, stochastic volatility models are somewhat more realistic. How-

ever, by assuming a single source of randomness, GARCH models offer a framework

where, given the observable return process Rt = log (St/St−1), where St is the stock

price, the filtration of the return shocks is trivial. In stochastic volatility models,

inferring two unobservable shocks using a single observable is a more difficult task.

For this reason, we choose to cast our study in a GARCH framework. The return

process is given by

Rt+1 = µt+1 +
√

ht+1εt+1 , εt+1
P∼ N (0, 1) , (3.1)

ht+1 = f ( · | Θ, Ft ) , (3.2)

where µt+1, the conditional expected return, and ht+1, the conditional variance of

returns, are Ft−measurable, and where Θ is a (deterministic) vector of parameters.

Most dynamic volatility models, ergo most GARCH models, eventually mean

revert to a constant volatility level, a somewhat undesirable property. The newly

introduced GARCH-MIDAS model of Engle, Ghysels, and Sohn (2008; henceforth

EGS) was introduced to capture a simple intuition: the stock market volatility pro-

cess should mean revert to different levels depending on macroeconomic conditions.

Consider the following multiplicative variance specification, suggested by Engle and

Rangel (2008) and EGS:

ht+1 = gt+1τt+1 , (3.3)

gt+1 = (1− α− β) + αgtε
2
t + βgt , (3.4)

where τt, which refers to the fundamental volatility process, can be interpreted as a

time-varying conditional expectation for the level of stock market volatility. The gt
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process, which has an unconditional mean of one, accounts for transient shocks to

the volatility process by allowing short-run volatility to diverge from fundamental

volatility.

Historical volatility, defined as the sum of squared returns over a given horizon,

HVt =
N−1∑
n=0

R2
t−n , (3.5)

provides a statistically consistent estimate of stock market volatility.∗ EGS thus

suggest the following specification for the fundamental volatility process:

log (τt+1) = m + θhv

K−1∑
k=0

φk (whv) HVt−k , (3.6)

where historical volatilities are computed on a daily basis using the N last daily

returns observed on the market.† Rather than focusing solely on the last historical

volatility measure, this specification smoothly loads on recent observations in the

MIDAS spirit. Here, φk is a Beta weighting scheme,

φk(w) =
(1− k/K)w−1∑K−1

j=0 (1− j/K)w−1
,

which discards past observations at a rate controlled by w; the larger the w, the faster

past historical volatility levels are discarded.‡ While w can be estimated through

maximum likelihood, the number of observations used, N in Equation (3.5), just as

the number of lags considered, K in Equation (3.6), are selected using the Bayesian

information criterion (hereafter referred to as the BIC, Schwarz 1978). In their

analysis, EGS find quarterly historical volatilities (N = 63 trading days) computed
∗EGS refer to the estimate of Equation (3.5) as a realized volatility (RV) estimate. Strictly

speaking, the estimator is indeed a RV estimate, but some readers may associate RV with the

intraday, high-frequency version of the estimator in Equation (3.5). We use the historical volatility

(HV) terminology to highlight the low-frequency nature of the RV estimator used here. For more

on realized volatility, see, amongst many others, Andersen, Bollerslev, Diebold, and Ebens (2001),

Andersen, Bollerslev, Christoffersen, and Diebold (2006), Liu and Maheu (2008), and Andersen and

Benzoni (2008).
†Equation (3.6) is based on distributed lags of historical volatility measures that are positive by

construction. Hence, there is no need to model the logarithm of the fundamental variance. However,

EGS show that there is little impact from doing so, and this specification has the advantage of

allowing for negative values to enter the smoothing function, which proves handy when it comes to

using macroeconomic series.
‡Beta weights are usually parameterized by two parameters; we omitted the one allowing for

hump-shaped weightings for the sake of parsimony as preliminary experiments showed it came at

little cost. Engle, Ghysels, and Sohn (2008) do the same in their analysis of historical volatility.
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on each day of the past four years (K = 1008) to be the best BIC-performing time

spans. As our data set largely overlaps theirs, we use these time spans in our analysis.

3.2.2 MacroHV-MIDAS: Recent Volatility Levels and Business Con-

ditions

This paper studies the following model:

Rt+1 = r + λ
√

ht+1 −
1
2
ht+1 +

√
ht+1εt+1 , (3.7)

ht+1 = gt+1τt+1 , (3.8)

gt+1 = (1− α(1 + γ2)− β) + αgt(εt − γ)2 + βgt , (3.9)

log (τt+1) = m + θhv

K−1∑
k=0

φk (whv) HVt−k + θm

K−1∑
k=0

φk (wm) ∆xt−k , (3.10)

where xt is a daily indicator of the quality of business conditions, and where ∆xt =

xt−xt−N denotes a measure of the improvement (or deterioration) of business condi-

tions over the last N business days. As we will see in Section 3.3, the ADS Business

Conditions Index provides an appropriate measure of xt. While the MIDAS frame-

work is, first and foremost, useful for dealing with data sampled at mixed frequencies,

it still proves relevant here even though HVt and ∆xt are both available on a daily

basis. Indeed, the functional form of Equation (3.10) allows for a rich lag structure

that enables the model to combine past observations of historical volatilities and

business conditions in a non-trivial way.

EGS estimate the GARCH-MIDAS model of Equations (3.3)–(3.6) replacing his-

torical volatilities by measures of inflation or of industrial production growth. In the

1953–2004 period, they find the level of these variables to explain 35% and 17% of

the expected volatility, respectively. We suggest that changes in business conditions

constitute a source of risk that contributes to expected volatility levels beyond what

is measured by recent historical volatility levels. In this way, we are essentially pair-

ing the informational content of historical volatilities and business conditions. In

order to evaluate the relevance of accounting jointly for both observables, we also

consider two restricted versions of the MacroHV-MIDAS model: (i) the HV-MIDAS

model, in which we constrain θm to be zero, and (ii) the Macro-MIDAS model, in

which we constrain θhv to be zero.
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Besides, note that we introduce a γ parameter in the short-run variance spec-

ification of Equation (3.9) to allow for the well documented leverage effect (Black

1976), which is particularly important when considering the option-valuation prop-

erties of a model for index options.∗ Now, by fixing τt to the constant value

em = ω/(1 − α(1 + γ2) − β), one retrieves the nested non-affine GARCH model

of Duan (1995) in which ht simply varies around a constant expected variance level

parameterized by ω,

ht+1 = ω + αht(εt − γ)2 + βht . (3.11)

In fact, our model could have been designed so as to nest the affine GARCH

model of Heston and Nandi (2000). This latter model offers the advantage of admit-

ting a quasi-closed form solution for the value of European calls, and thus relieves

the computational burden inherent to a GARCH option-pricing exercise involving

Monte Carlo simulations. However, Hsieh and Ritchken (2005) find that the non-

affine GARCH specification (hereafter, NGARCH) is superior at removing biases

from pricing residuals for all moneyness and maturity categories. These results are

supported by Christoffersen, Dorion, Jacobs, and Wang (2008; henceforth CDJW)

and extended to models allowing for two (additive) variance components and for non-

normal innovations. CDJW also show that the NGARCH specification outperforms

its affine counterpart from an asset-returns perspective. In results not reported here,

we confirm that the superiority of the NGARCH model over its affine counterpart

holds in our data sets, both from the asset returns and option valuation standpoints.

We, thus, choose the non-affine specification as a more stringent benchmark.

3.3 Estimating the Model using the ADS Business

Conditions Index

The fundamental variance process of the MacroHV-MIDAS model, defined in Equa-

tion (3.10), requires a daily measure of business conditions. Before discussing the

estimation of the model, this section presents the ADS Business Conditions Index
∗See, for instance, Nandi (1998), Heston and Nandi (2000), Chernov and Ghysels (2000), Christof-

fersen and Jacobs (2004), and Christoffersen, Heston, and Jacobs (2006).
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and argues that it is well suited to fulfill the role implied by our characterization of

the fundamental variance process.

3.3.1 The ADS Business Conditions Index

On January 9, 2009, the Federal Reserve Bank of Philadelphia introduced the ADS

Business Conditions Index, an index that is built on the work of Aruoba, Diebold,

and Scotti (2009; henceforth ADS). In their paper, ADS develop a sophisticated

model that infers latent business conditions from daily term spread observations,

weekly initial jobless claims, monthly (non-agricultural) payroll employment, and

quarterly real GDP.∗

The ADS procedure cleverly handles missing data, temporal aggregation, com-

plex lag structures and time trends so that they ultimately obtain a linear state-space

representation. The authors are thus able to filter out a daily autoregressive process

xt = ϕxt−1 + vt , vt
P∼ N (0, 1) , (3.12)

that is referred to as the business conditions index. The average value of the ADS

index, E [xt ], is zero, and progressively larger positive values indicate progressively

better-than-average conditions. The converse is true for negative values. The vt

innovations are assumed to have unit variance. The first column of Table 3.1 reports

summary statistics on the index, and the lower right panel of Figure 3.1 plots its

value through time, with shaded regions highlighting the NBER recessions. All deep

troughs of the index coincide with NBER recessions. In that sense, the index clearly

seems to adequately captures the business conditions’ relative quality level through

time. Note that while the NBER typically announces that the economy reached a

peak or a trough several months after it actually occurred, the ADS index value can

be updated each time one of its input series is updated. For instance, the ADS Index

captured the U.S. economy’s December 2007 downturn in real time, while the NBER

officially announced it 12 months later, on December 1, 2008.

ADS have to rely on the very simple dynamics of Equation (3.12) for the xt

business conditions index; in particular, the homoskedasticity assumption is neces-
∗The term spread is defined here as the difference between ten-year and three-month Treasury

yields. The index published by the Federal Reserve Bank of Philadelphia is based on the ADS paper,

but includes some modifications. However, we use the data as kindly provided by Aruoba, Diebold,

and Scotti; the series was computed on April 7th, 2008.
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sary for identification. The second column of Table 3.1, however, makes clear that

vt innovations are all but standard normal. The third and fourth columns of the

same table are obtained by fitting a simple GARCH(1,1) to the vt innovations of

Equation (3.12),

vt =
√

hx
t ut , ut

P∼ N (0, 1) , (3.13)

hx
t = ωx + αxv2

t−1 + βxhx
t−1 . (3.14)

That is, given the filtered index values, we relax the homoskedasticity assumption and

allow innovations to the business conditions index to have a time-varying variance hx
t .

While the ut are still far from normally distributed, as indicated by the value of the

Jarque-Bera statistic, their likelihood and moments are nonetheless more reasonable.

The model of Equations (3.12)–(3.14) is, thus, preferable for forecasting purposes.

Table 3.1: Descriptive Statistics on the Business Conditions Index

GARCH

Index: xt Residuals: vt Residuals: ut Variances: ht × 1e4

Min -4.36 -0.36 -9.16 0.13

Mean 0.02 0.00 0.02 4.91

Max 1.83 0.21 6.52 171.50

Std. Dev. 1.04 0.02 1.06 9.31

Skewness -1.21 -0.92 -0.26 6.95

Kurtosis 4.84 23.51 7.88 76.91

Log-Likelihood -9254.3 27298.5

Jarque-Bera 177850.0 10099.2

This table reports summary statistics on the processes of Equation (3.12), (3.13) and (3.14) :

xt = ϕxt−1 + vt , vt =
p

hx
t ut , hx

t = ωx + αxv2
t−1 + βxhx

t−1 .

Maximum likelihood parameter estimates are ϕ = 0.999999, ωx = 1.4117e − 06, αx = 0.1183 and

βx = 0.8817, implying a variance persistence of 0.9999.

3.3.2 Business Conditions and Other Macroeconomic Series

To justify the use of the ADS Business Conditions Index in our model, this subsection

demonstrates that this index conveys some of the informational content usually at-

tributed to indicators such as inflation and industrial production growth. Figure 3.1

reports some key macroeconomic series throughout the time period considered in

this paper.
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Table 3.2: Correlations between Macroeconomic Series
ADS TBill TS UE EMPLOY Inflation RA

Monthly TBill -0.026∗

Term Spread -0.276 -0.436

UE -0.475 0.304 0.532

EMPLOY 0.724 0.142 -0.204 -0.282

Inflation -0.073∗ 0.556 -0.456 0.0904.8% 0.141

Real Activity 0.794 -0.059∗ -0.286 -0.585 0.903 -0.023

Quarterly Real GDP 0.1703.1% -0.502 -0.350 -0.733 0.012∗ -0.074∗ 0.264

This table reports the correlations between eight of the series displayed in Figure 3.1. For the first

six rows, the three daily series are sampled monthly; daily correlations between these are similar

to the ones reported here. The last row reports the correlations of the first seven series, sampled

quarterly, with the detrended real GDP; again, unreported quarterly correlations are very similar to

the monthly ones. Correlations marked with an asterisk are not statistically significant at the 90%

level; the exponent, whenever there is one, is the correlation’s p-value; all other correlations are

significant at least to the 99% level.

The lower left panel of Figure 3.1 plots Ang and Piazzesi’s (2003) Inflation factor.

This factor is computed from the principal component of three inflation measures

based on the consumer price index (CPI), the production price index for finished

goods (PPI), and spot market commodity prices as given by the CRB Spot Index

(PCOM). For these three indices, we follow Ang and Piazzesi in computing a growth

measure, log
(

Pt
Pt−12

)
, where Pt is the index level. The resulting series, which are used

to compute the principal component, are displayed above the Inflation factor in Fig-

ure 3.1. Analogously, the central panels plot the series that are used to compute Ang

and Piazzesi’s Real Activity factor. These series are the growth rate—log
(

It
It−12

)
,

where It is the level—of employment (EMPLOY) and of industrial production (IP),

and the unemployment rate (UE). We refer the reader to Ang and Piazzesi (2003)

for more details on how the series are processed.∗

Table 3.2 reports the correlations between the business conditions index, the rate

on the three-month treasury bill, the term spread, the growth rate of employment,

the unemployment rate, the (detrended) real GDP, † and Ang and Piazzesi’s factors.

∗The series were obtained from Federal Reserve and the Commodity Research Bureau websites.

This paper does not account for the Index of Help Wanted Advertising in Newspapers in its repli-

cation of Ang and Piazzesi’s Real Activity factor. At first glance, this omission does not yield any

notable qualitative difference.
†We are interested in the index’s correlation with these four series (TS, EMPLOY, UE and GDP)

since they are closely related to the index’s inputs. Yet, note that the EMPLOY, UE, and GDP

series are, here, processed as in Ang and Piazzesi (2003) while Aruoba, Diebold, and Scotti (2009)

use levels directly in a much more sophisticated approach.
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Daily series are sampled monthly for monthly correlations; daily and monthly series

are sampled quarterly for quarterly correlations.

The index is strongly and positively correlated with the growth rate of employ-

ment (72.4%), with the Real Activity factor (79.4%), and, to a lesser extent, with

real GDP (14.6%). As the term spread is the sole daily driver of the index, it is not

surprising that it has a relatively strong correlation with the index at the daily level

(−27%); interestingly, this correlation remains mainly unchanged by sampling the

series monthly (−27.6%). As expected, the index has a strong negative correlation

with the unemployment rate (−47.5%). Finally, the index’s correlation with the

Inflation factor is negative (−7.3%) but, surprisingly, insignificant.

In sum, the business conditions index seems to covary intuitively with many

macroeconomic series of interest, while offering the great advantage of accounting

for daily innovations.

3.3.3 Model Estimation: Asset Returns and Stock Market Volatil-

ity

Equipped with the ADS Index as a measure of business conditions, we can now

estimate the MacroHV-MIDAS model given by Equations (3.7)–(3.10). Table 3.3

reports the maximum likelihood estimates obtained using S&P 500 returns between

January 1968 and December 2007 for the MacroHV-MIDAS model, for the nested

HV- and Macro-MIDAS constrained versions, as well as for the NGARCH benchmark

from Duan (1995).∗

All MIDAS models significantly outperform the nested NGARCH model. That

the variance is decomposed into two components allows each component to take

on one of the two fundamentally different roles that must unduly be assumed by

the single component in the NGARCH model. The fundamental variance process

captures the long-memory-like properties of stock market volatility. The MacroHV-

MIDAS model’s fundamental variance process, for instance, has a persistence of only

∗ This study uses S&P 500 data (SPX) because of its availability over a long horizon and because

options on the SPX have been actively traded for a long time. Returns on major indexes and their

volatility are usually highly correlated, and volatility tends to be higher in recessions regardless of

the index being considered. We are thus confident that the results obtained in this paper would also

obtain using data for other stock indexes.
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Table 3.3: Maximum Likelihood Estimates

MIDAS

NGARCH HV Macro MacroHV
λ 0.0151 0.0156 0.0149 0.0155

(2.31E-08) (2.48E-08) (2.23E-09) (1.24E-08)

ω,m 1.03E-06 -9.714 -9.255 -9.730

(1.30E-12) (9.78E-07) (3.26E-07) (2.17E-07)

α 0.0567 0.0624 0.0589 0.0629

(1.29E-09) (4.09E-08) (3.66E-09) (8.30E-09)

β 0.9067 0.8846 0.8951 0.8725

(4.77E-08) (1.72E-08) (2.16E-08) (5.23E-08)

γ 0.6873 0.7283 0.7278 0.7850

(4.33E-07) (1.10E-06) (2.29E-07) (4.44E-07)

θhv 68.234 63.825

(5.27E-05) (3.21E-06)

whv 2.931 3.203

(2.68E-06) (1.38E-06)

θm -1.238 -1.009

(1.54E-06) (5.53E-07)

wm 3.370 3.722

(7.31E-07) (1.82E-06)

SR Persistence 0.9902 0.9801 0.9852 0.9741

1.0 − LR (×104) 0.6616 0.7376 0.7036

SR VoV (×104) 1.576 1.786 1.677 1.862

LR VoV (×104) 0.0338 0.0483 0.0533

Corr(Rt+1,ht+2) -69.70% -71.75% -71.72% -74.30%

Corr(εt+1,ut+1) 5.04% 5.03%

Log-Likelihood 33791.3 33806.7 33803.0 33822.0

BIC -6.7080 -6.7093 -6.7085 -6.7105

This table reports maximum likelihood estimates for the NGARCH model as well as those of MIDAS

models for three different specifications: (i) HV-MIDAS: quarterly historical volatilities computed

from daily returns; (ii) Macro-MIDAS: quarterly differences of the Business Conditions Index values;

and (iii) MacroHV-MIDAS: a combination of both (i) and (ii). Below each parameter estimate, we

report its Bollerslev-Wooldridge standard error. The Bayesian information criterion (BIC) values

account for the number of parameters in each model and for the length of the time series of S&P 500

returns between January 1968 and December 2007.

Short-run (SR) persistence and annualized volatility of variance (VoV) are α(1+γ2)+β and the

average of
q

252 α2(2 + 4γ2)h2
t+1, respectively. For the long-run (LR) component, we approximate

the persistence and volatility of variance by fitting an AR(1) to the fundamental volatility process,

i.e.,

τt = φ0 + φ1τt−1 +
√

νet ,

where et is white noise. The volatility of variance is approximated by
√

252ν, while the long-run

persistence is approximated by φ1 and is very close to one for all MIDAS models; we here report

104 × (1− φ1).
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0.70 basis points (0.70× 10−4) below unity. The θhv and θm loadings on historical

volatilities and business conditions are positive and negative, respectively. The for-

mer captures the persistence of variance following financial turmoils; fundamental

variance strongly and positively loads on recent historical variance levels. Fundamen-

tal variance loads negatively on recent changes in business conditions thus capturing

the counter-cyclical nature of volatility; when business conditions deteriorate, the

expected variance level rises.

Note that the θ parameters are smaller (in absolute terms) in the MacroHV-

MIDAS model than in the HV- and Macro-MIDAS models. This highlights that the

historical volatility levels are not independent from changes in business conditions;

when the latter deteriorate, the historical volatility levels tend to rise. Along the

same line, both w parameters rise when recent volatilities and changes in business

conditions are paired. That is, the MacroHV-MIDAS model weights the recent values

of both signals more than the nested models that discard the older values slower.

Yet, while not orthogonal, the informational content of both signals is clearly not

the same; tests based on the likelihoods reported in Table 3.3 strongly reject the

HV- and Macro-MIDAS nested models in favor of the MacroHV-MIDAS model—

the likelihood ratio statistics and their p-values are not reported, but the latter are

below 1e-6. The MacroHV-MIDAS model would also be selected according to the

Bayesian information criterion.

Figure 3.2 illustrates how the MacroHV-MIDAS model blends both fundamental

volatility processes implied by the nested HV- and Macro-MIDAS models. As a ref-

erence, we plot a horizontal line at 16.31%, the NGARCH model’s expected variance

level implied by
√

252 E [ht ] =
(
252ω/(1−α(1+γ2)+β)

) 1
2 . The MacroHV-MIDAS

model’s fundamental volatility process ranges from 11.3% to 25%, at times driven

by the contribution of historical volatilities, at times by the contribution of changes

in business conditions. The contribution of the ADS Index is remarkably domi-

nant around recessions. The contribution of historical volatilities is most important

around the October 1987 crash. Besides, historical volatilities have a surprisingly

modest impact in the late 90s, given the relatively high level of volatility observed

during the Russian/LTCM crisis.

Including a fundamental variance component gives the short-run variance com-
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ponent the flexibility to allow for greater volatility of variance and to better capture

the leverage effect. Indeed, the value of β, the autoregressive variance coefficient, is

lower for MIDAS models than for the NGARCH, and lower for the MacroHV-MIDAS

than for the two nested ones. In the same line, values of α and γ are higher for the

three MIDAS models than for the GARCH(1,1) benchmark, and even more so in

the MacroHV-MIDAS case. Altogether, our MacroHV-MIDAS model allows for an

18% higher volatility of variance than that of the NGARCH model (1.862 vs. 1.576)

and yields a correlation of -74.3% between the returns and variance processes, about

4.6% greater in magnitude than that of the NGARCH model. By way of comparison,

between January 1990 and December 2007, the correlation between excess returns

on the S&P 500 and changes in the VIX is -74.1%; considering changes in variance

terms, i.e., ∆VIX2, the correlation is -73.0%.

Table 3.3 also reports, for both models accounting for business conditions, the

correlation between total market innovations and innovations to the business condi-

tions index. This correlation, Corrt(εt+1, ut+1), is about 5% under both the Macro-

MIDAS and the MacroHV-MIDAS models. That the observed correlation is positive

is somewhat consistent with the preliminary analysis of Section 3.3.2, which shows

that the business conditions index is negatively correlated with Ang and Piazzesi’s

(2003) Inflation factor, but positively with their Real Activity factor.∗ Five per-

cent may seem low but is consistent with the fact that the business condition index

evolves relatively smoothly through time and does not distinguish between expected

and unexpected movements of the underlying business conditions. As Cenesizoglu

(2005) highlights, the literature agrees that returns mainly react to the surprise con-

tent of news and tend to react negatively to positive unanticipated news. Obtaining

a low, positive correlation here suggests that increases in the business conditions

∗Bodie (1976) finds that stock returns covary negatively with both anticipated and unanticipated

inflation. Fama (1981) suggests that this negative relationship is driven by real variables covarying

positively with stock returns, but negatively with inflation. Yet, the impact of real macro vari-

ables on equity returns has found mitigated support for many years. Flannery and Protopapadakis

(2002) note that Chen, Roll, and Ross (1986) express their “embarrassment” with the situation

and that Chan, Karceski, and Lakonishok (1998) “are at a loss to explain” the poor performance

of macroeconomic factors in explaining stock returns. However, in their own work, Flannery and

Protopapadakis, estimating a GARCH model of equity returns, find that these returns are affected

by announcements of nominal and real macroeconomic factors.
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Figure 3.2: Fundamental Variance Processes
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In both panels, we plot, as a solid black line, the annualized fundamental volatility level of the

MacroHV-MIDAS model along with a dashed horizontal line at 16.31%, which corresponds to the

NGARCH model’s expected volatility,
p

252ω/(1− α(1 + γ2)− β). In the upper panel, we super-

impose the fundamental volatility level obtained for the HV-MIDAS model; in the lower panel, we

superimpose the volatility level obtained for the Macro-MIDAS model.
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index reflect heightened expectations about the state of the economy rather than

the arrival of unexpected positive news.

3.4 Option-Valuation Empirics: An Assessment of the

Model’s Forecasting Abilities

Accounting for business conditions in modeling the physical volatility process does

improve a model’s capacity to capture the distribution of the volatility of observed

returns. Now, we address the extent to which business conditions impact option

prices, of which spot volatility is a major determinant. The first step entails analyzing

the option-valuation properties of our MacroHV-MIDAS model. We consider twenty

years of call option prices from 1988 to 2007, one of the most extensive data sets in

the option pricing literature. Even so, our data set covers only two recessions, the

early 1990 and 2001 ones.

3.4.1 Risk Neutralization

In order to analyze the option-pricing properties of the MacroHV-MIDAS model,

a risk-neutral form of the model is needed. Typically, GARCH volatility models

include a single source of randomness, the εt+1 innovation of Equation (3.1). How-

ever, accounting for time-varying business conditions introduces a second source of

randomness in the MacroHV-MIDAS model, that is the macroeconomic ut+1 inno-

vation of Equation (3.13). Moreover, as observed in Section 3.3.3, the correlation

between the two innovation processes, Corrt(εt+1, ut+1), is non-zero: market returns

are correlated with macroeconomic news. This correlation is however imperfect, i.e.,

there is a “pure-market” innovation process zt+1
P∼ N (0, 1), independent from ut+1,

such that

εt+1 = ρut+1 +
√

1− ρ2zt+1 , (3.15)
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where ρ = Corrt(εt+1, ut+1) by construction.∗

Our risk neutralization, building on Christoffersen, Elkamhi, Feunou, and Jacobs

(2009), relies on the assumption that the equity risk premium on the macroeconomic

source of risk is subsumed by the premium on volatility risk and by the contribution

of macroeconomic conditions to the volatility process. This assumption was car-

ried over to the model by maintaining the Ft-measurable λht+1 as sole determinant

of the equity risk premium in the expected return specification of Equation (3.7).

We show in the appendix that, under this assumption, the correlation structure of

Equation (3.15) leads to the following risk neutralization of the macroeconomic and

pure-market innovation processes:

u∗t = ut + ρλ (3.16)

z∗t = zt +
√

1− ρ2λ . (3.17)

So, the mean shift on each process is proportional to the conditional correlation of

that process with total market innovations. Interestingly, if ρ=0, that is, if market

shocks and macroeconomic shocks were uncorrelated, the latter would be unaffected

by the risk neutralization.

Given Equations (3.16) and (3.17), the risk-adjusted returns of the MacroHV-

MIDAS model are given by

Rt+1 = r − 1
2
√

τt+1gt+1 +
√

τt+1gt+1

(
ρu∗t+1 +

√
1− ρ2z∗t+1

)
(3.18)

gt+1 = (1− α(1 + γ2)− β) + αgt

(
ρu∗t +

√
1− ρ2z∗t − γ − λ

)2
+ βgt (3.19)

log (τt+1) = m + θ

K−1∑
k=0

φk(whv) HVt−k + θm

K−1∑
k=0

φk(wm) xt−k (3.20)

xt = ϕxt−1 +
√

hx
t (u∗t − ρλ) (3.21)

hx
t = ωx + αxhx

t−1

(
u∗t−1 − ρλ

)2 + βxhx
t−1 , (3.22)

where u∗t and z∗t are independent and serially uncorrelated standard normal innova-

tions under the risk-adjusted measure Q.
∗This correlation structure implies that market movements do not feed back into the real economy;

this implicit assumption is most likely violated in practice (see, for instance, Bernanke, Gertler,

and Gilchrist (1999) on the financial accelerator hypothesis), but is necessary here for the sake of

simplicity. Corradi, Distaso, and Mele (2009) rely on a similar assumption in a continuous-time

setting.
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Table 3.4: Option-Pricing Results

MIDAS

Moneyness N Avg. NGARCH HV Macro MacroHV

Log-Likehood 33791.3 33806.7 33803 33822

IVRMSE 68923 18.41 5.23 5.14 5.21 5.10

DTM ≤ 45 (0.33, 0.95) 5478 29.83 12.61 12.52 12.49 12.39

[0.95,1.00) 7464 17.81 4.29 4.19 4.18 4.08

[1.00, 1.05) 8431 15.03 2.67 2.55 2.62 2.47

[1.05, 1.87] 3147 18.28 3.81 3.57 3.72 3.41

45 < DTM ≤ 91 (0.33, 0.95) 3295 23.02 7.08 6.98 6.82 6.77

[0.95,1.00) 3854 17.27 3.84 3.79 3.72 3.67

[1.00, 1.05) 5282 15.13 3.01 2.96 3.02 2.93

[1.05, 1.87] 4112 16.01 2.96 2.72 2.98 2.72

91 < DTM ≤ 182 (0.33, 0.95) 3221 21.54 5.36 5.43 5.23 5.34

[0.95,1.00) 2519 17.88 3.68 3.72 3.61 3.63

[1.00, 1.05) 2924 16.49 3.36 3.32 3.40 3.31

[1.05, 1.87] 4018 16.02 3.37 3.11 3.43 3.07

DTM > 182 (0.33, 0.95) 2950 20.90 4.95 5.21 5.21 5.41

[0.95,1.00) 2572 18.40 4.06 4.11 4.30 4.27

[1.00, 1.05) 3105 17.89 4.08 4.00 4.35 4.18

[1.05, 1.87] 6551 16.60 3.73 3.31 3.96 3.43

RMSE 68923 $40.44 39.34 32.35 38.23 30.55

For each model, we first recall its log-likehood as estimated in Section 3.3.3. Then, we report overall

IVRMSE values, followed by IVRMSE values obtained over maturity/moneyness buckets of options.

For completeness, we also report the overall RMSE values; IVRMSEs and RMSEs are computed as

follows:

IV RMSE =

s
1

N

X
t,k

“
IV (Ct,k)− IV

“
Cmodel

t,k

””2

and RMSE =

vuut 1

N

X
t,k

„
Ct,k − Cmodel

t,k

Ct,k

«2

.

Apart from the average call price (40.44$), all entries are percentage points. In each row, the entry

for the best performing model for that row is in bold font.
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3.4.2 Option Valuation Results

Using parameter estimates of Table 3.3 and the above risk neutralization, it is easy

to evaluate call option prices through simulations. We consider cross sections of call

options on the S&P 500 index from June 1988 to December 2007. This data set is

assembled from three different segments: (i) from June 1988 to December 1989, we

use the data from Bakshi, Cao, and Chen (1997); (ii) from January 1990 to December

1995, we use data from Christoffersen, Dorion, Jacobs, and Wang (2008); and (iii)

from January 1996 to December 2007, we use OptionMetrics data. For OptionMetrics

data, the midpoint between bid and ask prices is used as the option price, and the

dividend yield provided by OptionMetrics is used to infer an ex-dividend index level

to be used in the option pricing. We also filter zero-volume quotes, and we apply

the filtering rules suggested in Bakshi, Cao, and Chen (1997).

Then, for each model, on each Wednesday tw, we perform Monte Carlo simula-

tions using 2000 paths of {z∗tw+τ,k} and, when needed, of {u∗tw+τ,k} in order to price

options quoted on week tw. The shocks are generated using Sobol sequences and we

perform Duan and Simonato’s (1998) empirical martingale adjustment.∗ Simulations

are performed using only the information set up to time tw, Ftw , with the notable

exception that we use parameter estimates from Section 3.3.3. As these parameters

were estimated using physical data spanning from 1968 to 2007, and as they are used

to price options within that time frame, this is not strictly an out-of-sample exercise.

Yet, as the models were estimated without using option data, this exercise is still a

stringent exercise in terms of analyzing a model’s capacity to properly describe the

likely future behavior of volatility.

Aggregate option-valuation metrics are reported in Table 3.4. The MacroHV-

MIDAS model performs, overall, better than all other models. On short- and

medium-term options, MIDAS models better capture the volatility smirk than does

the benchmark NGARCH model. On long-term options, however, the MacroHV-

MIDAS model is outperformed by its benchmark; we will return to this result shortly.

Figure 3.3 sheds some light on these results by casting them in a time-series perspec-

tive. The upper panel reports yearly IVRMSE values. First, the MacroHV-MIDAS
∗Christoffersen, Dorion, Jacobs, and Wang (2008) illustrate the accuracy of these simulation

settings by comparing the quasi-Monte Carlo results with the exact results computed using the

quasi-analytical solutions for the affine model of Heston and Nandi (2000).
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model outperforms the NGARCH in 1988 and slightly less so in 1989. Looking at

the performance of the nested HV-MIDAS and Macro-MIDAS models in these two

years, we see that the performance of the MacroHV-MIDAS model is driven by the

persistent contribution of past historical volatilities; in the single component model,

the volatility impact of the Black Monday wears off too quickly.

In 1990 and 1991, the MacroHV-MIDAS model again offers a better fit to option

prices, but this time draws on the informational content of the business conditions

index. The same observation holds around the second recession in our sample, while

the MacroHV-MIDAS model experiences bad performances during the “irrational

exuberance” period and throughout the Russian/LTCM crisis. Figures 3.4 and 3.5

further illustrate how these results unfold through time and break up the results

along the maturity and moneyness dimensions. Figure 3.4 reports, throughout the

sample, 13-week moving averages of the forecast improvement in IVRMSE terms of

the MacroHV-MIDAS model over the NGARCH model; Figure 3.5 similarly reports

the MacroHV-MIDAS model’s bias at forecasting implied volatilities.∗ In short,

while the benchmark NGARCH model exhibits strongly counter-cyclical biases, the

MacroHV-MIDAS model removes this cyclicality, especially (i) for longer maturity

options and (ii) as we go from ITM to OTM calls.

As previously noted, in IVRMSE terms, it is only on long-term options that the

MacroHV-MIDAS model shows a worse fit to implied volatilities than its bench-

mark does. However, the MacroHV-MIDAS model actually fits the implied volatili-

ties of long-term options dramatically better than its benchmark around recessions.

On the other hand, as evidenced in the lower-left panel of Figure 3.4, the model

shows a significant bias on long-term options in the late 90s and, for this subset

of options, this cancels the improvements realized around recessions. In fact, the

counter-performance of the MacroHV-MIDAS model over the late 90s, evidenced in

Figure 3.3, is shown in Figure 3.5 to be due to large negative bias at all maturities

and over all moneyness levels during this period.

A second look at Figure 3.2 can provide us with an intuition why this is so.

Indeed, while the VIX reaches all-time highs during the Russian/LTCM crisis, the

∗We plot 13-week moving averages solely for the sake of clarity; the weekly measures are very

noisy, especially for short-term options and for ITM options. The averages reported above each

subplot are, however, based on these weekly measures.
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time-varying volatility expectations captured by the fundamental volatility process

are rising at a very slow pace. It is likely that the fundamental volatility process,

as specified, is too smooth to account for drastic changes in the market’s expecta-

tions about future volatility. Besides, while stock market volatility is relatively high

during this period, business conditions are better than average. As defined here,

the fundamental volatility process simply sums, in the log-volatility domain, the im-

pact of both historical volatilities and recent changes in business conditions. It is

possible that, during the late 90s, this naive blend puts too much emphasis on the

better-than-average business conditions and too little on recent volatility levels.

Nonetheless, on average, the MacroHV-MIDAS model exhibits an implied-volatility

bias of smaller magnitude than that of its benchmark, for any maturity or money-

ness, as evidenced by the averages reported along with Figure 3.5. However, the

MIDAS model still underprices all options on average, and this is even more obvious

on short-term and in-the-money calls. This underpricing is likely to be a conse-

quence of the conditional normality assumption, but could also be due to the choice

of a linear pricing kernel; see Christoffersen, Elkamhi, Feunou, and Jacobs (2009) for

further discussion on these issues.

3.4.3 The Impact of Business Conditions

Along with Figure 3.4, we report average improvements of the MacroHV-MIDAS

model over its benchmark, conditioned on whether a given week falls within an

expansion or a recession period. Average improvements over recessions, reproduced

in the Panel A of Table 3.5, are highly statistically significant. However, of the 1020

weeks in our data set of options, only 72 (approximately 7.1%) fall within a recession.

To further study the extent of the MacroHV-MIDAS model’s improvements over the

benchmark and detail the role of business conditions in these improvements, Panel A

of Table 3.5 also reports statistics conditional on the contemporary level of the ADS

Index. That is, instead of relying on a NBER recession dummy to determine that a

week falls within a period of bad business conditions, we compute centered quarterly

moving averages of the ADS on each Wednesday t,

x
(63)
t =

1
63

t+31∑
s=t−31

xs . (3.23)
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Figure 3.4: MacroHV-MIDAS Model’s IVRMSE Improvement Over the NGARCH Model
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Using parameter estimates in Table 3.3, we price options and compute weekly IVRMSE mea-

sures for the NGARCH model, IV RMSEng
w , and for the MacroHV-MIDAS model, IV RMSEhv,∆x

w .

This figure reports the relative improvement of using the latter model over the former, that is,

(IV RMSEng
w − IV RMSEhv,∆x

w )/IV RMSEng
w . On the left-hand side, results are divided along the

options’ maturity: 45 days to maturity (DTM) or less, between 46 and 90 DTM, or more than

90 DTM. On the right-hand side, results are divided along options’ moneyness: K/S ≤ 0.975,

0.975 < K/S < 1.025, and K/S ≥ 1.025. Above each subplot, we report the overall average improve-

ment (Avg), as well as the average through expansion and recession periods (Exp/Rec).
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Figure 3.5: Implied-Volatility-Forecasting Bias of the MacroHV-MIDAS Model
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This figure reports the time series of implied-volatility biases for the MacroHV-MIDAS model. On

the left-hand side, results are divided along the options’ maturity: 45 days to maturity (DTM)

or less, between 46 and 90 DTM, or more than 90 DTM. On the right-hand side, results are

divided along options’ moneyness: K/S ≤ 0.975, 0.975 < K/S < 1.025, and K/S ≥ 1.025. Above

each subplot, we report the overall average bias (Avg), as well as the average through expansion

and recession periods (Exp/Rec); by way of comparison, the same averages are reported for the

NGARCH model (vs).
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As the index average is theoretically zero, we will say that a week is in the

middle of a quarter with “bad” business conditions when x
(63)
t < 0, “severe” business

conditions when x
(63)
t < −1, “extreme”business conditions when x

(63)
t < −1.5. In our

sample, 380 weeks (37.3% of the 1020 weeks) are exposed to bad business conditions,

178 (17.5%) to severe ones, and 45 (4.4%) to extreme ones. Across all maturities

and moneyness levels, Panel A of Table 3.5 reports that the improvement brought

by the MacroHV-MIDAS model increases as business conditions deteriorate.

Besides, even if we don’t have option data prior to 1988, we can use the models

to price a synthetic at-the-money option through time. On each day from January

1968 to December 2007, we use the NGARCH and MacroHV-MIDAS models to

price a 30-day option with its strike equal the the index value on that day. The time

series of NGARCH implied volatilities for such an option is reported in the upper-left

panel of Figure 3.6, and statistics for this time series are reported in the first row

of Table 3.5’s Panel B. Statistics on the difference between the MacroHV-MIDAS

model’s implied volatilities and those of the NGARCH are reported on the second

row of Panel B and are broken down in the mid- and lower-left panels of Figure 3.6.

The right-column panels of Figure 3.6 and the remainder of Table 3.5’s Panel B

report the same results but in the price domain.∗

As we have seen in Figure 3.5, both models consistently underprice options. Thus,

to improve on the NGARCH model, the MacroHV-MIDAS model should predict

higher implied volatilities than those of NGARCH, and Table 3.5’s Panel B reports

that it does so on average. Interestingly, this implied-volatility difference is increasing

as business conditions deteriorate. For example, under extreme business conditions,

the 30-day, at-the-money implied volatility of the MacroHV-MIDAS model is 1.6%

higher than that implied by the NGARCH model. In terms of option prices, this

translate in a 9.1% higher option price on average, a difference of sizable economic

importance. In sum, Table 3.5 shows that business conditions indeed play a key role

the ability of MacroHV-MIDAS model to outperform its benchmark.

Table 3.6 sheds further light on the role played by business conditions in the

∗The average NGARCH IV reported in Panel B is higher in recessions than in expansion, as

expected. Interestingly, the average call price is higher in expansion. While this might seem contra-

dictory, it is actually due to the fact that the underlying, the S&P 500 index is, on average, higher

in expansion than in recessions.
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Figure 3.6: Synthetic Options
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The upper-left panel of this figure reports the time series of implied volatilities obtained using the

NGARCH model to price synthetic, at-the-money options with 30 days to maturity, daily from Jan-

uary 1968 to December 2007. These options are created assuming that their strike is equal to the

index value on each given day. The mid-left panel reports the difference between the HV-MIDAS

model’s implied volatilities for these synthetic options and the NGARCH implied volatilities. Sim-

ilarly, the lower-left panel reports difference in implied volatilities when comparing the MacroHV-

MIDAS and HV-MIDAS models. The right-column panels report the data of the left column but in

the price domain. Note that price differences are in relative terms, e.g. (Chv
t − Cngarch

t )
‹
Cngarch

t .
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MacroHV-MIDAS model’s option-valuation performance. In this table, the MacroHV-

MIDAS model is compared to the HV-MIDAS, rather than the NGARCH, in order

to better grasp the marginal impact of accounting for changes in business condi-

tions. Moreover, the expansion results are unfolded in three parts: “good”, “very

good” and “exceptional” business conditions when x
(63)
t respectively is above 0, 1,

and 1.5. Overall, the MacroHV-MIDAS model improves on the HV-MIDAS when

business conditions are bad; in relative terms, the former model cuts the benchmark’s

IVRMSE by 7.1% more than the latter model. When business conditions are good,

however, the HV model outperforms the MacroHV by 1.2%. Interestingly, when

business conditions are very good or exceptional, this figure is once more reversed

and the MacroHV does better than the HV by 3.7% and 7.2% respectively. Panel A

of Table 3.6 illustrates that this pattern is rather robust to maturities and moneyness

levels.

As highlighted by Panel B of Table 3.6, the MacroHV model predicts higher

implied volatilities than the nested HV model when business conditions are bad,

and lower ones when business conditions are good. This difference between the two

models evolves monotonically as business conditions improve from extreme to excep-

tional, which is consistent with the smooth, log-linear fashion in which the MIDAS

specification accounts for changes in the index in the MacroHV model. The results in

Panel A, in particular the under-performance of the MacroHV model when business

conditions are good but not very good, are thus probably highlighting, once more,

that the log-linear mix of recent historical volatility levels and changes in business

conditions is suboptimal. A possible explanation of the above pattern could be that

fundamental volatility does not decrease when business conditions are only mildly

good since economic agents might still perceive some macroeconomic risk, a phe-

nomenon that the current fundamental volatility specification cannot accommodate.

3.5 Model-Implied Volatility Premium

Under certain assumptions, the volatility premium, defined as the difference between

expected future volatility under the risk-neutral and the objective measure, can be
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Table 3.5: The MacroHV-MIDAS Model and Business Conditions

Panel A: MacroHV-MIDAS IVRMSE Improvement Over the NGARCH Model

Expansion Overall Recession x
(63)
t < 0 x

(63)
t < -1 x

(63)
t < -1.5

# Weeks 948 1020 72 380 178 45

All Calls 3.35 4.50 19.73 12.88 22.18 29.75

(0.69) (0.68) (2.58) (1.02) (1.60) (2.64)

Short-Term 5.65 5.85 8.42 9.84 10.63 23.45

(1.28) (1.24) (4.93) (1.81) (3.61) (3.45)

Medium-Term 4.21 5.88 31.38 16.22 21.35 39.06

(1.17) (1.14) (3.79) (1.88) (3.68) (3.20)

Long-Term -8.71 -6.12 28.01 11.95 30.07 42.92

(1.27) (1.25) (3.61) (1.60) (1.87) (3.09)

ITM Calls 0.77 1.89 16.65 9.85 16.65 24.21

(0.67) (0.66) (2.46) (0.95) (1.64) (2.68)

ATM Calls -1.66 0.39 27.38 16.86 29.45 42.71

(1.28) (1.23) (3.33) (1.57) (2.01) (2.54)

OTM Calls 6.60 8.42 32.24 15.24 34.23 45.16

(2.26) (2.12) (3.51) (4.80) (2.43) (3.58)

Panel B: Synthetic 30-DTM, ATM Options

Expansion Overall Recession x
(63)
t < 0 x

(63)
t < -1 x

(63)
t < -1.5

# Days 8684 10068 1384 3833 1640 819

NGARCH IV 14.12 14.68 18.19 15.57 17.86 17.01

(0.06) (0.06) (0.13) (0.08) (0.12) (0.13)

IV Difference 0.06 0.13 0.56 0.57 1.02 1.60

(0.01) (0.01) (0.04) (0.02) (0.04) (0.05)

NGARCH Price ($) 9.90 9.44 6.56 8.88 11.41 6.73

(0.11) (0.10) (0.25) (0.16) (0.27) (0.29)

Relative Price 0.77 1.12 3.31 4.00 6.26 9.05

Difference (%) (0.07) (0.07) (0.19) (0.11) (0.20) (0.30)

In Panel A, using parameter estimates in Table 3.3, we price options and compute weekly

IVRMSE measures for the NGARCH model, IV RMSEng
w , and for the MacroHV-MIDAS model,

IV RMSEhv,∆x
w . Panel A reports averages of the relative improvement resulting from using the lat-

ter model over the former, that is, (IV RMSEng
w − IV RMSEhv,∆x

w )/IV RMSEng
w . The average

over all 1020 weeks in the option data set is reported under the Overall column. The first and third

columns report averages when restricting to weeks falling in periods of expansion or recession. The

last three columns report the average when restricting to Wednesdays for which the centered quarterly

moving average of the ADS Index
`
x

(63)
t = 1

63

Pt+31
s=t−31 xs

´
is below 0, -1 or -1.5. All entries are

in percentage points, and standard errors are parenthesized below each average. Similarly, Panel B

reports the average NGARCH implied volatility of a synthetic 30-DTM, at-the-money call (obtained

by setting the call’s strike at the index level on each day in our sample), from January 1968 to

December 2007 (the time series is reported in the upper-left panel of Figure 3.6). The difference

between the MacroHV-MIDAS model’s implied volatility and that of the NGARCH is then reported.

For comparison, the NGARCH average price is reported for the different subsamples (the only entries

in dollar terms), along with the MacroHV-MIDAS – NGARCH price difference in relative terms,

i.e. based on
“
Chv,∆x

t − Cng
t

” ‹
Cng

t .
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Table 3.6: The MacroHV-MIDAS Model and the Marginal Impact of Business Conditions

Panel A: MacroHV-MIDAS IVRMSE Improvement Over the HV-MIDAS Model

x
(63)
t > 1.5 x

(63)
t > 1 x

(63)
t > 0 x

(63)
t < 0 x

(63)
t < -1 x

(63)
t < -1.5

# Weeks 22 52 640 380 178 45

All Calls 7.24 3.70 -1.16 7.09 10.94 19.82

(2.87) (1.29) (0.34) (0.84) (1.27) (2.27)

Short-Term 8.00 3.98 2.08 5.43 5.45 18.10

(7.82) (3.32) (0.45) (1.48) (2.84) (2.61)

Medium-Term 1.85 -0.96 -0.44 9.20 12.63 31.06

(3.13) (1.93) (0.69) (1.67) (2.95) (3.39)

Long-Term 20.92 9.36 -8.54 9.51 14.99 27.17

(3.16) (2.14) (0.74) (1.29) (1.83) (3.40)

ITM Calls 7.13 5.06 -1.45 6.67 10.05 17.97

(2.79) (1.29) (0.36) (0.82) (1.37) (2.60)

ATM Calls 6.04 0.78 -4.92 14.80 18.42 33.51

(3.35) (1.78) (0.68) (1.70) (1.89) (3.07)

OTM Calls 14.50 4.56 -3.33 18.10 16.76 28.50

(4.34) (2.29) (0.83) (7.67) (2.10) (3.45)

Panel B: Synthetic 30-DTM, ATM Options

x
(63)
t > 1.5 x

(63)
t > 1 x

(63)
t > 0 x

(63)
t < 0 x

(63)
t < -1 x

(63)
t < -1.5

# Days 375 1131 6235 3833 1640 819

NGARCH IV 17.61 16.54 14.14 15.57 17.86 17.01

(0.76) (0.30) (0.07) (0.08) (0.12) (0.13)

IV Difference -0.57 -0.50 -0.16 0.62 1.13 1.83

(0.05) (0.02) (0.01) (0.02) (0.03) (0.04)

NGARCH Price ($) 4.41 4.46 9.79 8.88 11.41 6.73

(0.24) (0.10) (0.13) (0.16) (0.27) (0.29)

Relative Price -2.31 -2.18 -0.78 3.66 6.34 9.87

Difference (%) (0.08) (0.07) (0.03) (0.09) (0.17) (0.25)

This tables adds to the results reported in Table 3.5. Panel A reports averages of the rela-

tive improvement resulting from using the MacroHV-MIDAS model over the HV-MIDAS, that is,

(IV RMSEhv
w − IV RMSEhv,∆x

w )/IV RMSEng
w ; the IVRMSE of the NGARCH is kept at the de-

nominator to ease comparison with Table 3.5. The columns report the average when restricting to

Wednesdays for which x
(63)
t is above 1.5, 1 or 0, or below 0, -1 or -1.5. Similarly, Panel B reports,

for a synthetic 30-DTM, at-the-money call, the difference between the MacroHV-MIDAS model’s

implied volatility and that of the HV-MIDAS, that is
`
IVhv,∆x

t − IVhv
t

´
. The comparison is also

performed in the price domain, i.e. based on
“
Chv,∆x

t − Chv
t

” ‹
Cng

t .
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directly related to the risk aversion of a representative agent.∗ As the risk neutral-

ization of the MacroHV-MIDAS model is set under Christoffersen, Elkamhi, Feunou,

and Jacobs’ (2009) framework, no assumption is made with respect to the represen-

tative agent or its utility function. It is nonetheless important to assess whether the

volatility premium generated by the MacroHV-MIDAS model has coherent proper-

ties. For instance, this premium was consistently found to increase when the stock

market volatility rises, and some found it to be even more counter-cyclical than

volatility itself.† Besides, the MacroHV-MIDAS model splits volatility between its

time-varying mean-reversion level and the short-run excess volatility and, moreover,

allows to easily isolate the contribution of macroeconomic risk to the volatility level.

These abilities prove interesting when it comes to better understanding the drivers

of the premium.

Since the residual implied-volatility bias of the MacroHV-MIDAS model reported

in Figure 3.4 is likely to be partly due to an underestimation of the volatility pre-

mium, we refine the model’s estimation before analysing the premium. To do so, we

perform nonlinear least squares to minimize the tracking error between the model’s

volatility forecasts under the risk-adjusted measure and the VIX. See Appendix 3.B

for details. The resulting daily volatility premium series is displayed in the lower

panel of Figure 3.7.

A simple glance at the figure confirms that the MacroHV-MIDAS model-implied

volatility premium is very strongly correlated with the current volatility level and

that it is counter-cyclical. The average value of the extracted volatility premium is

3.10%, with a standard deviation of 1.19%. On actual data, over the June 1988 to

December 2007 period, the average value of the VIX was 19.70% and the standard

deviation of excess returns of 15.61%, for an average premium of 4.09%; over the

1990-2007 period, the average value of the VIX was 18.97% and the standard devia-

tion of excess returns of 15.80%, for an average premium of 3.17%. The model seems

to slightly underestimate the premium on average. Much of this underestimation

seems to be due to the negative bias observed during the late 90s, in line with our

analysis in Section 3.4.2.

∗See, amongst others, Heston (1993), Eraker (2007), and Bollerslev, Gibson, and Zhou (2009).
†See, for instance, Bollerslev, Gibson, and Zhou (2009), Corradi, Distaso, and Mele (2009), and

Bollerslev, Tauchen, and Zhou (2009).
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Figure 3.7: The Volatility Premium
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In the upper panel, we plot the VIX through time and report its overall average level as well as that

through expansion and recession periods (Exp/Avg/Rec). For comparison sakes, we also plot the

MacroHV-MIDAS model’s fundamental volatility process; note that the latter is the long-run mean-

reversion level for the physical volatility of the model, while the VIX is the expectation of one-month-

ahead volatility under the risk-adjusted measure. The middle panel plots the model’s NLS-optimal,

risk-neutral volatility process and its difference with the VIX. The lower panel reports the volatility

premium obtained by substracting the model’s expected, one-month-ahead volatility process under the

physical measures from the foregoing risk-neutral volatility process.
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Panel C of Table 3.7 reports the results of nine linear regressions with, as regres-

sand, our model-implied volatility premium. Regressors are demeaned and, in order

to account for the likely strong autocorrelation of the residuals, t-stats are computed

using Newey-West standard errors with a lag of 63, corresponding to one quarter

of trading days.∗ First, we control for the annualized and demeaned fundamen-

tal volatility level under the objective measure. By itself, the current fundamental

volatility level accounts for 31.8% of the variation in the premium through time.

All else equal, a one-percent increase in the annualized fundamental volatility level

causes a statistically significant 24.5 bps increase in the volatility premium. Relative

to the 3.10% mean of the extracted volatility premium process, this is an 8% increase

(24.5 / 310) and is thus economically significant.

In our framework, macroeconomic risk impacts stock market volatility through

the contribution of changes in business conditions to the time-varying volatility mean-

reversion level. This contribution is easily extracted by setting θhv to zero in our

model, which effectively nullifies the contribution of recent historical volatilities to

the fundamental volatility level. A one-percent increase in this measure of macroe-

conomic risk translates into a 45.2 bps increase in the volatility premium, which is

a 14.6% change relative to the 3.10% mean, and macroeconomic risk explains 12.9%

of the time variation in the volatility premium process. On the other hand, when we

focus our attention on how recent historical volatilities contribute to the fundamen-

tal volatility level, that same one-percent increase translates into a 26.3 bps increase

in the premium, a 8.5% change relatively to the 3.10% mean. That the volatility

premium is more sensitive to each of the restricted signals than to the overall funda-

mental volatility level suggests, once again, that there might be more efficient ways

to combine the informational content of historical volatilities and that of business

conditions than simply summing them in the log-volatility domain.

In addition, we regress the premium on the standardized value of
√

gt. Remem-

ber that when this control is above its mean, the current level of physical volatility

is above its fundamental, expected level. By itself, this excess volatility explains

79.3% percent of the variation in the premium. A one-standard deviation increase

in
√

gt causes a dramatic 105.9 bps increase in the volatility premium, a 33.9%

∗The choice of a quarter-long lag is arbitrary and intended to be very conservative; in our case,

T = 4936, so that
¨
4(T/100)0.25

˝
= 10 would be the lag suggested by Newey and West (1994).
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move relative to the mean of the premium process. Note though that
√

gt is within

one-standard deviation of its mean on close to 87% of the trading days under con-

sideration. Nonetheless, short-run volatility is undeniably the main driver of our

model’s volatility premium.

Finally, to assess the cyclicality of the premium process, we consider a dummy

variable that has value one when a day falls within an NBER recession and zero

otherwise. As can be seen from the first column of Panel C, the average volatility

premium on a typical NBER recession day is 44.7% greater than the overall average

value, an increase of 138.5 bps over the 310 bps mean. The MacroHV-MIDAS model-

implied premium is thus strongly counter-cyclical. In a regression of the premium

on the fundamental volatility level and on the NBER dummy, the coefficient on the

dummy implies that even when controlling for time-varying volatility expectations,

the premium is higher on a recession day by a sizeable 54.3 bps (17.5% relative to

the mean). Although the magnitude of the effect could be seen as economically

significant, the NBER coefficient is scarcely statistically significant at the 10% level.

On the other hand, when controlling for both fundamental and time-varying volatility

levels, the coefficient on the NBER dummy is statistically significant at the 5% level,

but economically more modest at 14 bps, 4.5% of the 310 bps mean. Nonetheless,

the loading on the NBER dummy tells us that, all else equal, the volatility premium

is still higher on a typical recession day than what can be explained by the physical

volatility components.

In sum, the MacroHV-MIDAS model-implied volatility premium (i) is mainly

driven by short-run volatility effects; (ii) is strongly counter-cyclical and a sizeable

portion of this counter-cyclicality is driven by changes in expectations with respect

to the long-run volatility level (as modeled by the fundamental variance process);

and (iii) the premium is slightly more counter-cyclical than what is explained by

short-run and long-run volatility effects.
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3.6 Conclusion

This paper introduces the MacroHV-MIDAS model, a dynamic volatility model ac-

counting for both financial and macroeconomic sources of fundamental volatility.

This model is shown to outperform the NGARCH benchmark in fitting asset returns

and pricing options, especially around the 1990-1991 and 2001 recessions. In par-

ticular, the MacroHV-MIDAS model improves on the benchmark’s option-valuation

abilities by mitigating the counter-cyclicality of its implied-volatility bias, across

all maturity and moneyness levels. The MacroHV-MIDAS model also allows us to

isolate the contribution of macroeconomic risk to the volatility premium, and this

contribution is found to account for a sizeable 13% of the variation in the premium

through time.

This work offers several avenues for further research. For instance, conducting our

analysis in a stochastic volatility framework would allow us to assess the extent of the

relationship between the macroeconomic shocks entering our fundamental volatility

process and the unobservable volatility shocks inherent to stochastic volatility mod-

els. Apart from that, incorporating analyst forecasts or survey results in the business

conditions’ forecasting model could further improve the abilities of the MacroHV-

MIDAS model to explain observed option prices. Buraschi, Trojani, and Vedolin

(2009) also suggest that dispersion in analyst forecasts is strongly related to implied

volatility levels. Otherwise, once it is established that business conditions impact

option prices, option data could eventually be used to infer market expectations of

future business conditions.

Another line of investigation would be to refine how the informational content of

historical volatilities and business conditions are combined to model the fundamental

volatility process. Our work uses historical volatilities based on daily returns; when

intraday data are available, intraday realized volatilities could prove more reactive

to current market conditions. Moreover, the MacroHV-MIDAS model simply sums

the impact of historical volatilities and business conditions in the log-volatility do-

main. However, given that responses to macroeconomic news differ depending on the

current state of the economy, and as our results suggest that worsening business con-

ditions increase option prices more than improving business conditions lower them,
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it is likely that an approach allowing for further nonlinearities would prove fruitful.

Finally, in our opinion, a study of how higher moments of the stock returns’ distribu-

tion evolve with changing business conditions could further our understanding of the

volatility premium and of its time-series properties. The Lévy GARCH framework of

Ornthanalai (2009) or the mixed normal heteroskedasticity framework of Rombouts

and Stentoft (2009) could prove to be usuful in that regards.
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Appendix

3.A Risk Neutralization

We consider a GARCH model of the form

Rt+1 = r + λt+1

√
ht+1 − 1

2ht+1 +
√

ht+1

(
ρut+1 +

√
1− ρ2zt+1

)
(3.A.1)

ht+1 = f ( · | Θ, Ft ) , (3.A.2)

where λt+1 and ht+1 are Ft-measurable, and where { ut } and { zt } are independent

and serially uncorrelated innovation processes. To formally demonstrate the risk

neutralization of ut and zt as introduced in Equations (3.16) and (3.17), we here draw

on Christoffersen, Elkamhi, Feunou, and Jacobs (2009; henceforth CEFJ) treatment

of two-shocks stochastic volatility models (see CEFJ’s Section 7). Note that our

model is, however, fundamentally different from a stochastic volatility model in that,

here, the “second” shock, ut+1, does not contemporaneously impact the variance but

the mean of the return process. We will return to the implications of this fundamental

difference shortly.

First, we write the risk neutralization of our return process in terms of the risk

neutralization of the bivariate, uncorrelated normal innovations { ut, zt } using the

following Radon-Nikodym derivative:

ξτ ≡
dQ
dP

∣∣∣∣Fτ = exp

{
−

τ∑
t=1

(ηu,tut + ηz,tzt + Ψu,z
t (ηu,t, ηz,t))

}
, (3.A.3)

where Ψu,z
t is natural logarithm of the moment-generating function of the { ut, zt }

pairs, that is,

Ψu,z
t (ηu, ηz) = 1

2

(
η2

u + η2
z

)
. (3.A.4)

For the probability measure Q defined by Radon-Nikodym derivative of Equation (3.A.3)

to be an equivalent martingale measure (EMM), it must be the case that

1 = EQ
t−1

[
St

St−1

/
Bt

Bt−1

]
= EP

t−1

[
ξt

ξt−1

St

St−1

/
Bt

Bt−1

]
= EP

t−1

[
exp {−ηu,tut − ηz,tzt −Ψu,z

t (ηu,t, ηz,t)} exp
{

λt

√
ht − 1

2ht +
√

ht

(
ρut +

√
1− ρ2zt

)} ]
(3.A.5)
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or, equivalently,

0 = Ψu,z
t

(
ηu,t − ρ

√
ht , ηz,t −

√
(1− ρ2)ht

)
−Ψu,z

t (ηu,t, ηz,t)+λt

√
ht− 1

2ht , (3.A.6)

which boils down to

ρηu,t +
√

1− ρ2ηz,t = λt . (3.A.7)

Equation (3.A.7) admits an infinity of solutions. Yet, as highlighted above, our

model has the specificity that both shocks affect the mean of the return process.

Thus, the bivariate normal shocks can be seen as blending into a single stream of

standard normal innovations { εt } and Equation (3.A.1) is equivalent to

Rt+1 = r + λt+1

√
ht+1 − 1

2ht+1 +
√

ht+1εt+1 . (3.A.8)

This last equation is that of Duan’s (1995), which is a special case of CEFJ for which

the (linear) Radon-Nikodym derivative can be written as

ξτ ≡
dQ
dP

∣∣∣∣Fτ = exp

{
−

τ∑
t=1

(ηtεt + Ψε
t (ηt))

}
, (3.A.9)

where Ψε
t is natural logarithm of the moment-generating function of the { εt } inno-

vations, that is, Ψε
t (η) = 1

2η2 . Again, for the Q measure defined by Equation (3.A.9)

to be an EMM, it must be that

1 = EQ
t−1

[
St

St−1

/
Bt

Bt−1

]
= EP

t−1

[
ξt

ξt−1

St

St−1

/
Bt

Bt−1

]
= EP

t−1

[
exp {−ηtεt −Ψε

t (ηt)} exp
{

λt

√
ht − 1

2ht +
√

htεt

}]
(3.A.10)

⇔ 0 = Ψε
t

(
ηt −

√
ht

)
−Ψε

t (ηt) + λt

√
ht − 1

2ht , (3.A.11)

which implies that ηt = λt,∀t . Now, for Equations (3.A.3) and (3.A.9) to describe

the same Radon-Nikodym derivative, it must be that

ξτ = exp

{
−

τ∑
t=1

(
λtεt + 1

2λ2
t

)}
Using Equation (3.A.7)

= exp

{
−

τ∑
t=1

(
λtρut + λt

√
1− ρ2zt + 1

2

︷ ︸︸ ︷(
ρ2η2

u,t + 2ρ
√

1− ρ2ηu,tηz,t + (1− ρ2)η2
z,t

))}

= exp

{
−

τ∑
t=1

(ηu,tut + ηz,tzt + Ψu,z
t (ηu,t, ηz,t))

}
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where the last equality holds if, and only if, for all t,

ηu,t = ρλt and ηz,t =
√

1− ρ2λt . (3.A.12)

We thus have that u∗t = ut + ρλt, z∗t = zt +
√

1− ρ2λt, and

ε∗t = εt + λt = ρu∗t +
√

1− ρ2z∗t . (3.A.13)

3.B Refining Model Estimation Using the VIX

The VIX levels reflect the market’s one-month-ahead expectation of the (risk-neutral)

implied volatility process. For the MacroHV-MIDAS model, this implied-volatility

expectation is EQ
t

[√
ht+21

]
and can be easily computed using Monte-Carlo integra-

tion. In order to study the properties of the volatility premium, EQ
t

[√
ht+21

]
−

EP
t

[√
ht+21

]
, implied by our model, we must first ensure that the bias of its implied

volatility process is minimized; that is, EQ
t

[√
ht+21

]
should track the VIX level

as closely as possible. However, as can be observed in Figure 3.4, using the ML

parameter estimates the model systematically underprices short-maturity options.

The only difference between the objective and risk-neutral volatility processes of

conditionally normal GARCH model lies in the presence of the price of risk param-

eter, λ, in the risk-neutral specification. The ML estimate of λ is identified by the

model’s equity risk premium

log EP
t

[
e−r St+1

St

]
= log EP

t

[
exp

{
λ
√

ht+1 −
1
2
ht+1 +

√
ht+1εt+1

}]
= λ
√

ht+1.

(3.B.1)

Unfortunately, it is notoriously difficult to pin down the magnitude of the equity risk

premium, and economists have not even reached a consensus about its very exis-

tence.∗ Hence, an interesting alternative that has been pursued by many authors is

∗The literature on the subject is overwhelmingly vast, starting with Mehra and Prescott (1985).

Some authors, notably Brown, Goetzmann, and Ross (1995), argue that the equity risk premium

could be solely due to a survival bias, a hypothesis undermined by others like, for instance, Li and

Xu (2002). Pollard (2009) even attributes the premium to luck. DeLong and Magin (2009) offer a

long review on the subject, concluding that the equity premium is still a puzzle.
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to estimate a forward-looking price of risk parameter λ from option data.∗ Following

this path, we opt for a simple estimation criterion: minimizing, with respect to λ,

the tracking error between the model’s implied volatility and the VIX level, that is,

min
λ

∑
t∈T

(
EQ

t

[√
ht+21

]
−VIXt

)2
. (3.B.2)

A nonlinear least squares (NLS) estimation of λ is performed using the implied-

volatility sum of squared errors criterion in Equation (3.B.2). This estimation pro-

cedure is most similar to that used by Gibson and Schwartz (1990) who use a mean

squared error criterion on futures prices to estimate the market price of convenience

yield risk in the NYMEX crude oil futures market. Similarly, Rosenberg and Engle

(2002) extract empirical risk aversion levels on a monthly basis from options written

on the S&P 500 between 1991 and 1995.

Our estimation procedure involves, for each candidate value of λ suggested by

the optimizer, the computation of a Monte-Carlo integral for each date t entering

the sum in Equation (3.B.2). To ease the computational burden inherent to this

estimation procedure, only the VIX values that are observed on Wednesdays from

June 1988 to December 2007 are used in the estimation.† Given the so-obtained

NLS-optimal value of λ, we compare the model’s implied volatility values with non-

Wednesday observations of the VIX as an“out-of-sample”validation of the estimated

value of λ. Finally, the same Monte-Carlo integration procedure is performed un-

der the physical measure to obtain the MacroHV-MIDAS model’s one-month-ahead,

objective expectation EP
t

[√
ht+21

]
; the model-implied volatility premium, then, ob-

tains by subtracting this objective expectation from the foregoing risk-neutral one.

To provide a benchmark, the whole procedure is also applied to the NGARCH model.

In Table 3.7, Panel A summarizes VIX observations retained for our NLS esti-

mation exercise, while Panel B reports the results obtained by minimizing Equa-

∗See, for instance, Chernov and Ghysels (2000), Pan (2002), Eraker (2007), and Ornthanalai

(2009).
†When no data are available on a given Wednesday, we use the next trading day’s data. Note

that this is the same twenty-year period that is analyzed in Section 3.4.2. However, the (new) VIX

values are only available from January 1990. From June 1988 to December 1989, we therefore use

VXO values (often referred to as the “old” VIX) that are based on OEX options rather than SPX

ones and that are not model free. While the VXO is most likely a biased proxy of the value that

the VIX would have taken over this early period, we are confident that this bias has little impact

on the estimation of a single parameter using twenty years of weekly data.
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Table 3.7: Model-Implied Volatility Premium

Panel A: VIX Observations

# Average Min Median Max

Daily 4936 19.03% 9.31% 17.90% 45.74%

Wednesdays 1020 19.00% 9.31% 17.95% 43.51%

Out-of-Sample 3916 19.03% 9.48% 17.89% 45.74%

Panel B: NLS Estimation from VIX Observations

NGARCH MacroHV-MIDAS

λ 0.191 0.199

Wednesday (%)Out of Sample (%) Wednesday (%)Out of Sample (%)

IVRMSE

NLS 2.92 2.90 2.66 2.67

Benchmark 5.24 5.24 5.09 5.11

Improvement 44.34 44.59 47.63 47.71

IV Bias

NLS -0.23 -0.22 -0.06 -0.05

Benchmark -4.26 -4.25 -4.05 -4.05

Improvement 94.50 94.81 98.45 98.72

Panel C: MacroHV-MIDAS Model-Implied Volatility Premiump
τt(HV)

p
τt(∆x)

√
τt

cst 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0 310.0

(27.86) (32.05) (28.91) (34.82) (35.08) (52.44) (57.08) (197.63) (201.55)√
τt 26.3 45.1 24.5 22.7 18.9 18.4

(5.06) (4.56) (7.56) (6.33) (28.58) (26.93)
√

gt 105.9 102.9 97.7 97.4

(17.50) (16.99) (32.16) (31.05)

NBER 138.5 54.3 79.4 14.3

(4.59) (1.63) (4.48) (2.01)

R2 8.9% 24.2% 12.9% 31.8% 33.0% 79.3% 82.2% 97.7% 97.8%

Panel A summarizes VIX observations between June 1988 and December 2007; for our NLS exer-

cise, we retain one observation a week, on Wednesdays. Panel B reports the results obtained by

minimizing, with respect to the price of risk parameter λ, squared differences between the VIX level

and the expected one-month-ahead volatility implied by the NGARCH and MacroHV-MIDAS models

under the risk-neutral measure. The benchmark measures are those obtained when using the λ value

obtained by ML on asset returns (Table 3.3) and improvement measures are obtained by comparing

the magnitude of IVRMSEs and biases to these benchmarks. The minimization is performed using

only Wednesday observations; all measures of fit are also reported for non-Wednesday observations

(out of sample) by way of validation. Panel C reports the results of nine linear regressions with, as

regressand, the model-implied volatility premium of Figure 3.7, EQ
t

√̂
ht+21

˜
− EP

t

√̂
ht+21

˜
, obtained

by simulating daily physical and risk-adjusted volatility processes using the price of risk parameter

reported in Panel B. The
√

τt regressor is the annualized fundamental volatility, in percentage points,

under the physical measure; in the second and third columns, we restrict this process to the impact

of historical volatilities (θm = 0) and to that of changes in business conditions (θhv = 0), respec-

tively. The NBER regressor is a dummy variable that has value one when a day falls within an

NBER recession, and zero otherwise. All regressors are demeaned,
√

gt is further standardized, and

all loadings can be interpreted in basis points terms. The t-stats are computed using Newey-West

standard errors with a lag of 63, corresponding to one quarter of trading days, and are bold whenever

their magnitude is larger than 1.96.
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tion (3.B.2). Note that these latter results are reported in implied volatility root

mean squared error (IVRMSE) terms, that is, using

IVRMSE =

√
1

NT

∑
t∈T

(
EQ

t

[√
ht+21

]
−VIXt

)2
. (3.B.3)

The IVRMSE is strictly monotone in the objective function of Equation (3.B.2)

but easier to interpret because it is on the same scale as the VIX. Using the λ

values obtained from maximum likelihood on asset returns (Table 3.3), we compute

benchmark IVRMSE values and report them along with the relative improvement

achieved by using the NLS estimate of λ. The NLS estimates of λ for both the

NGARCH (0.191) and MacroHV-MIDAS (0.199) model are more than twelve times

higher than the estimates obtained under ML. Using the value of λ obtained under

ML estimation, the IVRMSE of the NGARCH model’s is 5.24% and the NLS estimate

reduces this error to 2.92%, a 44.3% improvement. For the MacroHV-MIDAS model,

the benchmark IVRMSE is lower at 5.09% and yet the improvement is greater at

47.6%.∗

As seen in Figure 3.4, using the values of λ obtained under ML on asset re-

turns, both models’ implied volatility errors are consistently negative through time.

Once the price of risk parameter is estimated using VIX data, the magnitude of the

NGARCH bias falls by 94.5% to -23 basis points (bps), while that of the MacroHV-

MIDAS model falls even further at -6 bps, a 98.5% improvement. It thus appears

that the time-series properties of the MacroHV-MIDAS model’s volatility process

are closer to those of the VIX than are those of the NGARCH model.

As we use only Wednesday observations of the VIX in our NLS estimation of λ,

a legitimate concern is whether the time-series properties of the MacroHV-MIDAS

model’s implied volatility process are consistent with those of the VIX on a daily

basis.By way of validation, we also compute the IVRMSEs and implied volatility bi-

∗Just like Gibson and Schwartz (1990) in their footnote 17, we acknowledge that NLS relies on the

assumption that our implied volatility errors have a normal, independent, and identical distribution.

This assumption is most likely violated, as can be seen from the residuals in the middle panel of

Figure 3.7. However, just as in Gibson and Schwartz (1990), our focus is not on the statistical

significance of the parameter, and this is why we forgo developing a more involved procedure. In

our subsequent analysis of the time-series properties of the extracted volatility premium process, in

order to account for the strong autocorrelation of the residuals, we use Newey-West standard errors

with a conservative lag of 63, corresponding to one quarter of trading days.
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ases of both models on the non-Wednesday observations left aside for the estimation.

Out-of-sample improvements, both in terms of IVRMSE and IV biases, are very close

to the ones obtained in sample. So, we can be confident that the MacroHV-MIDAS

model’s implied volatility process, EQ
t

[√
ht+21

]
, is close to bias-free throughout the

twenty years of data we consider.
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4.1 Introduction

Recent work has documented the existence of a significant component in corporate

bond and default swap credit spreads over and above the actuarially fair compen-

sation for expected losses.∗ Although, by now, it has been documented that a part

of this component compensates for illiquidity and other risks, it is quite plausible

that the the bulk of this additional spread represents compensation for systematic

market risk (Elton, Gruber, Agrawal, and Mann 2001).† The purpose of this paper

is twofold. The first is to examine whether the cross section of risk premia in default

swap markets can, in fact, be related to firm-specific measures of systematic risk.

Second, in the light of recent related evidence in stock option markets (Duan and

Wei 2009), we seek to establish a link between risk premia in these two markets.

To lay the foundation for our empirical work, we consider risk premia in credit

and stock option markets through the lens of the Merton (1974) and Geske (1979)

models. Although many important improvements to both of these models have been

suggested in the more than three decades since their publication, once augmented

with the CAPM, these models are rich enough to provide both intuition and empirical

implications which are internally consistent across both markets.‡

Augmented with the CAPM, Merton’s framework provides two fundamental in-

sights: (i) firms with very different systematic risk profiles can have the same phys-

ical default probability but very different spreads; and (ii) firms with higher default

rates will tend to have proportionally less compensation for systematic risk in their

spreads. These insights have important practical implications. First, the debt of

firms within a given rating category may trade at very different spreads depending

on the exposure to market risk. This is clearly a crucial aspect for bond portfolio

∗We will throughout the paper view credit default swaps and corporate bond spreads as econom-

ically similar risk measures. This is justifiable exactly by means of a simple buy-and-hold arbitrage

argument for floating rate corporate bonds vis-à-vis CDS contracts. In practice, CDS spreads and

corporate bond spreads are not exactly equivalent. For example, Kim, Li, and Zhang (2009) provide

an interesting study of the differential, known as the basis. Nevertheless, we find it plausible that

our findings in relation to risk premia in CDS markets are instructive for bond markets as well.
†See e.g. Ericsson and Renault (2006), Chen, Lesmond, and Wei (2007), Tang and Yan (2007),

Berndt, Jarrow, and Kang (2007), Arora, Gandhi, and Longstaff (2009).
‡Interesting extensions of the Merton and Geske models include Black and Cox (1976), Leland

(1994), Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), Bhamra, Kuehn, and

Strebulaev (2009).
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management - if bonds are selected on the basis of providing a high yield for a given

rating, then this should tend to bias the portfolio towards greater amounts of sys-

tematic risk. A similar point can be made for capital standards, like those imposed

by Basel II. If capital requirements are set according to risk buckets defined in terms

of credit ratings, then institutions will have an incentive to increase the retun on

equity by opting for higher spread exposures within rating classes. Given the find-

ings in this paper, this would tend to yield a greater concentration of systematic

risk.∗ Point (ii) suggests that more highly rated debt will proportionally provide

more compensation for systematic risk. In other words, spreads on firms near de-

fault, will compensate more for expected losses and less for systematic risk. Highly

rated firms will compensate mostly for systematic risk.

The volatility premium in stock option markets can be analyzed along similar

arguments. We define the volatility premium as the difference between the risk-

neutral and physical implied volatility levels. Risk-neutral implied volatility may

sound pleonastic as implied volatility is usually thought of as risk-neutral concept.

Yet, augmenting the Geske model with the CAPM under the objective measure,

one can derive a physical counterpart to implied volatility, which is equal to the

risk-neutral one for a zero-beta firm and, interestingly, decreases as beta increases.

Hence, the augmented model predicts that the volatility premium explains a larger

proportion of the price of options on stocks facing greater systematic risk. These

predictions are consistent with recent empirical findings by Duan and Wei (2009)

who show that, for firms with greater proportions of systematic risk, the difference

between implied and historical volatilities is larger.†

We test our predictions on credit default swaps (CDS) and option data for the

approximately 130 firms that are part of the CDX index between 2003 and 2007. We

find that the split of a firm’s volatility into systematic and idiosyncratic components

matters for both option and CDS prices even after controlling for total volatility.

We first document that the results of Duan and Wei (2009) are robust to a broader

and more recent sample of stock option data; that is, the proportion of systematic

∗A similar point has been made in the context of collateralized debt obligations (CDO) by Coval,

Jurek, and Stafford (2009).
†See Bollerslev, Tauchen, and Zhou (2009), Driessen, Maenhout, and Vilkov (2009), and Todorov

(2010) for alternative explanations of the volatility (risk) premium.
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risk in a firm’s total volatility increases the difference between implied and historical

volatilities, interpreted as a risk premium. These results are economically significant.

A firm with 100 percent systematic volatility will, on average, have a volatility risk

premium that is 3% greater, on an annual basis, than a firm with only idiosyncratic

risk. The proportion of the former, “systematic” firm’s implied volatility that is due

to the premium is around 28% greater than for the latter, “idiosyncratic” firm.

For CDS contracts, the issue is more subtle. We first show that the proportion

of systematic volatility is important also for explaining CDS spreads. However,

surprisingly, CDS spreads are robustly, negatively related to the systematic risk

proportion for individual firms. We show that this intriguing result can at least

partially be explained by differences in systematic volatility proportions across rating

categories; differences which are in fact consistent with what the augmented Merton

model would predict. Although higher leverage in lower rating categories yields

higher betas on average, the proportion of systematic volatility is highest for the

most highly rated firms. At the same time, these firms tend to have lower CDS

spreads. In essence, understanding the impact of systematic volatility on the price of

default protection requires correcting for the various firm characteristics that impact

the level of the physical default probability. Candidates for such characteristics can

be gleaned by studying risk premia in the augmented Merton and Geske models.

As noted, corporate bond and credit default swap spreads can be separated into

two fundamentally different components: expected loss and risk premium compo-

nents. Elton, Gruber, Agrawal, and Mann (2001) were the first to measure the size

of the expected loss component. They found that expected losses explain a negligible

amount of short term spreads and between 10-30% for 10 year bonds. Elkamhi and

Ericsson (2008) find that the fraction due to expected losses is highly time varying.

In addition, risk premium and expected loss components are less than perfectly corre-

lated, depending in nonlinear and different ways on volatility and leverage. These, in

turn vary both cross-sectionally and over time. Thus it may not be all that surprising

that it is difficult to link spreads with a risk premium proxy, as these nonlinearities

cloud the link.

We then consider an alternative dependent variable - the spread corrected for the

expected loss component. When we repeat our empirical tests on this risk premium
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component, we find a robust and positive relationship, confirming our initial intu-

ition that default protection is more expensive, all else equal, for firms with more

systematic risk.

In summary, we have documented that equity and credit derivatives prices contain

risk premia in accordance with the predictions of simple contingent claims pricing

models augmented with the CAPM. This is of course interesting by itself. In addi-

tion it has, as mentioned above, implications for asset allocation and portfolio risk

measurement. Moreover, a growing literature has begun to use information in stock

option markets as explanatory variables for default swap spreads, and our findings

adds to this literature by discussing the relationship between pricing in these two

derivatives markets.

One of the first papers to relate risk premia in the two markets is Cremers,

Driessen, and Maenhout (2008). They consider whether jump risk premia from

individual stock option prices can explain the high observed level of credit spreads.

They rely on a structural credit risk model extended to incorporate jump-diffusion

firm value dynamics. They calibrate this model to firm and index options as well as

historical default and equity premium data. Option-implied jump risk premia allows

the calibrated model to produce spreads much nearer to observed levels.

Another recent example is Cao, Yu, and Zhong (2010), who find that individual

stock options’ implied volatility alone can explain about half of the variation in

CDS spreads. They also document that the link between the CDS market and the

options market is stronger among firms with lower credit ratings. Further, they

argue that the volatility risk premium is a significant determinant of CDS spreads,

even in the presence of future predicted volatility. They argue that the success of

implied volatility based variables is at least in part due to an embedded volatility

risk premium.∗ Our purpose here is, although related, quite different. We seek

to understand whether the cross-section of option and default swap prices can be

explained by systematic risk. Given the evidence in favour provided so far, and

that the empirical predictions for the two markets are derived using two internally

∗Wang, Zhou, and Zhou (2010) measure the volatility risk premium differently – relying on high

frequency data for expected volatility and model-free implied volatilities to compute option risk

premia. They find that a strong predictive power for the variance risk premium as regards spreads,

a strength that increases as the credit quality of CDS deteriorates.
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consistent models, we claim that CDS and options tend to be simultaneously more

expensive for firms with greater systematic risk.

The paper is organized as follows. Section 4.2 discusses risk premia in the aug-

mented Merton and Geske models with a view to defining our empirical predictions.

In Section 4.3, we then test these predictions on stock option data (§4.3.2), confirm-

ing the results of Duan and Wei (2009), and on CDS spread data (§4.3.3). Finally,

Section 4.4 concludes.

4.2 Risk Premia in Credit and Stock Option Markets

In this section, we revisit Merton’s and Geske’s models. Once augmented with the

CAPM under the objective measure, these models provide important empirical impli-

cations with respect to risk premia in credit and stock option markets, implications

that we here discuss. Our purpose in doing so is to understand the differences pre-

dicted under the respective frameworks for prices of credit instruments and stock

options with and without risk-adjustment.

4.2.1 Merton (1974) and Geske (1979)

The Merton (1974) and Black and Scholes (1973) models are intrinsically related.

The latter allows one to compute the value of an equity option given the current

value of the underlying stock and its volatility. In the Merton (1974) model, one

simply considers the equity and debt of a firm as claims written on the fundamental

value of the firm. The equity can be seen as a call option, the debt as a risk-free

bond and a (short) put option.

Both models allow for risk-neutral pricing, which is often convenient since es-

timating the proper discount factor under the physical measure can prove to be

difficult. Indeed, provided that we know the expected growth rate of the firm, µ, so

that

dVt = µVtdt + σVtdW , (4.2.1)
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simple calculus would allow us to compute a “physical” value for the equity

EP = e−rT2 EP
0

[
(VT2 − F ) · IVT2

>F

]
= e−rT2 EP

0

[
VT2 · IVT2

>F

]
− Fe−rT2 EP

0

[
IVT2

>F

]
= V0e

(µ−r)T2N(dP
1)− Fe−rT2N(dP

2), (4.2.2)

where r is the risk-free rate, F the face value, T2 the maturity of the firm’s debt,

dP
1 =

log V0/F + (µ + σ2/2)T
σ
√

T
, and dP

2 = dP
1 − σ

√
T . (4.2.3)

For the debt

DP = e−rT2 EP
0

[
F · IVT2

>F

]
+ e−rT2 EP

0

[
VT2(1− IVT2

>F )
]

= Fe−rT2 EP
0

[
IVT2

>F

]
+ e−rT2 EP

0 [VT2 ]− e−rT2 EP
0

[
VT2 · IVT2

>F

]
= Fe−rT2N(dP

2) + V0e
(µ−r)T2 − V0e

(µ−r)T2N(dP
1). (4.2.4)

Note that discounting takes place at the risk-free rate as we wish to compute

prices without any compensation for systematic risk. Of course, the growth rate

for the assets, µ, matters for the physical probabilities of survival, but implies no

risk premium. These formulas are in all regards similar to those obtained when

working under the risk-adjusted measure Q apart from the role played by the firm’s

growth rate, i.e. the classical Merton formulas obtain when one replaces µ with r in

Equation (4.2.3). Assuming that µ > r, would the claims on the firm priced under

the physical measure, the value of the equity would be higher than it actually is.

The stock price is thus discounted to reflect the risk inherent to the investment in

the firm, and this discount is proportional to µ− r.

The same rationale applies to the physical and risk-neutral value of the debt.

Given the actual value of debt DQ, bond spreads, sQ, can be obtained by solving

DQ = e−(r+sQ)T2F . (4.2.5)

Note that in what follows we derive comparative statics for bond spreads rather than

CDS spreads using the Merton model. This is done purely for expositional purposes

and all the qualitative implications are identical for CDS spreads computed in the

same model.∗ Letting sP be the spread that would be obtained under the physical
∗Default swap pricing in the context of structural models is discussed in detail in the appendix.
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measure (expected loss), the risk premium component of the spread would simply

be sQ − sP. For two otherwise equal firms with growth rates µ1 > µ2 > r, the

Merton (1974) model predicts sQ
1 = sQ

2 . It is however obvious from Equations (4.2.4)

and (4.2.5) that sP
1 < sP

2 . That is, the expected loss of the firm with the greater

expected growth is lower than that of the firm with the smaller expected growth.

By predicting that sQ
1 = sQ

2 , the Merton (1974) model implies that, while the

expected loss of the first firm is lower, the risk premium required to hold the bond

of that same firm is higher and offsets the lower expected loss. In other words, while

sQ
1 = sQ

2 , the proportion of the spread that is due to the risk premium, (sQ
i − sP

i )/sQ
i ,

is greater for the firm with the highest expected growth rate, µ1. While intriguing

at first sight, this result actually makes sense in a CAPM world. Indeed, if

µi = r + βi E [Rm − r ] , (4.2.6)

µ1 > µ2 then implies that the risk faced by firm 1 has a larger systematic component,

thus the larger risk premium.

The left panel of Figure 4.1 plots the risk premium ratio (sQ
i −sP

i )/sQ
i as a function

of the systematic risk proportion,

SRPi =
β2

i σ2
m

σ2
i

, (4.2.7)

the proportion of the firm’s volatility that is explained by the firm’s exposure to

systematic risk. All else equal, the relationship between the firm’s SRP and the

proportion of its spread that is due to a risk premium is clearly monotonic and

positive.

Stock Options

Focusing on the stock as the underlying, the Black and Scholes (1973) model gives

the price of a stock option assuming that the stock price follows a geometric Brow-

nian motion just like that in Equation (4.2.1). Geske (1979) sheds further light on

stock options by allowing the instantaneous equity volatility vary with the market

leverage of a firm. Geske’s model considers stock options as compound options on

the fundamental value of the firm described in Equation (4.2.1). This model has

rich implications and, in particular, allows us to better understand the links between
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Figure 4.1: Risk Premia and Systematic Risk
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Geske

We consider firms with initial value 100, 30% volatility, and paying no dividends. The firms have

a debt-to-firm value ratio of 50% and the debt has a maturity of 5 years. The risk-free rate is set

at 2.88%, the equity risk premium E [ Rm − r ] is set at 8.32% and the volatility of the market is

set at 12.13%; these numbers were obtained using 3-month Treasury Bill rates and S&P 500 data

between January 2003 and June 2007. The total spread, sQ, implied by the Merton model is 1.48%

and the Black-Scholes implied volatility of the call as priced under Geske’s model is 51.43%. The left

panel of the figure reports the Merton-implied CDS Risk Premium Ratios, RPRi = (sQ
i − sP

i )/sQ
i , as

a function of the firms’ Systematic Risk Proportion, SRPi = β2
i σ2

m/σ2
i . The right panel of the figure

reports the Volatility Premium, VPRi = (IVQ
i − IVP

i )/ IVQ
i , as a function of SRPi.

credit and stock option markets. Derivatives in both markets ultimately depend on

the same fundamental firm value.

Consider a call option on the stock that expires at T1 < T2 and has strike K. The

option’s value under the Geske model is

C = e−rT1 EQ
[ (

EQ(VT1)−K
)
· IVT1

≥V ∗

]
= e−rT1 EQ

[
VT2 · IVT2

>F ;VT1
>V ∗

]
− Fe−rT2 EQ

[
IVT2

>F ;VT1
>v∗

]
−Ke−rT1 EQ

[
IVT1

>V ∗

]
= V0M(a1, b1, ρ)− Fe−rT2M(a2, b2, ρ)−Ke−rT1N(a2), (4.2.8)

where the ai and bi are similar to Merton’s di. Applying a reasoning similar to that

which led to Equation (4.2.2), one can obtain a physical value for the call under

Geske’s framework, with aP
i and bP

i replacing ai and bi, while accounting for the

objective growth rate of the firm value, µ.

The right panel of Figure 4.1 plots the volatility premium ratio (IVQ
i − IVP

i )/ IVQ
i

as a function of the systematic risk proportion, SRPi. Once again, all else equal, the
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relationship between the firm’s SRP and the proportion of its implied volatility that

is due to a risk premium is clearly monotonic and positive.

4.2.2 Empirical Implications

Figure 4.1 is obtained in a highly controlled environment. The initial firm value, the

firm volatility, the debt-to-firm value ratio are kept constant through the cross section

of firms. To better understand the empirical implications of the CAPM-augmented

Merton and Geske models with respect to risk premia, we recast the analysis behind

Figure 4.1 in settings that are closer to what is observed in our data.

In the empirical section of this paper, we study CDS and stock options written on

roughly 130 firms that were part of the CDX index between January 2003 and June

2007. Data are aggregated monthly for a total of 3862 firm/month observations.

In the two upper panels of Figure 4.2, we grouped these observations according

to the firm’s rating on a given month. In the upper-left panel, we computed the

ratingwise average of firms’ equity volatility; the solid line reports the average and the

grey-shaded area form a two-standard error band around the average. As expected,

volatility increases as ratings deteriorate.

The upper-right panel of Figure 4.2 repeats the analysis of the upper-left panel,

but with the systematic risk proportion (SRP). While the volatility increases with

decreasing ratings, the SRP displays the opposite pattern. That is, the volatility of

highly rated firms tend to be explained in a larger proportion by market volatility.

We repeat the exercise of Figure 4.1, but considering seven hypothetical firms,

one per rating, with volatilities and SRP that mimic those observed in the upper

panels of Figure 4.2. Since volatility now varies across the ratings, the total spread

implied by the Merton model also varies, increasing with deteriorating ratings as

depicted in the mid-left panel of Figure 4.2. Nonetheless, as depicted by the mid-

right panel of Figure 4.2, the intuition from Figure 4.1’s left panel remains: the higher

the proportion of systematic risk, the greater the ratio of the risk premium to total

spread. However, the exercise points at potential difficulties in using total spreads as

a proxy for the risk premium component, an issue that will become apparent in the

empirical section of this paper. The stock option implications of the Geske model are

analogous. The lower-left panel of Figure 4.2 illustrates that the predicted implied
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Figure 4.2: Another Look at Risk Premia
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We grouped the 3862 firm/month observations according to the firm’s rating on a given month. In

the upper-left panel, the solid line reports the ratingwise average of the firms’ equity volatility and

the grey shaded area form a two-standard error band around the average. The upper-right similarly

reports the ratingwise average of the firms’ systematic risk proportion (SRP). The mid-left panel

reports, for each rating, the Merton spread of a firm with volatility and systematic risk proportion

set to those reported in the upper panels; representative firms on the solid line have a debt-to-firm

value ratio (d) of 50% and the grey area reports the ranges obtained by letting d vary from 40% to

60%. The mid-right panel reports the corresponding risk premium proportions. Finally, the lower-

left panel reports, for each rating, the implied volatility from the Geske price of an at-the-money call

with a grey band illustrating the sensitivity of this implied volatility to the call’s moneyness (ranging

from 85% to 115%). The lower-right panel reports the proportion of this implied volatility that is

due to the volatility premium.

volatility of an at-the-money call option increases with decreasing ratings, which is

consistent with the increasing volatility and the positive vega of stock options. Yet,

the proportion of implied volatility that is explained by the volatility premium is

increasing with the systematic risk proportion, and thus decreasing with ratings.

These “calibrated comparative statics” for stock options are analogous to what

we find for credit spreads. We thus find analogous implications for option and credit

markets: greater proportional systematic volatilities are related to greater risk pre-
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mia in the cross-section. Next, we seek to validate these implications in our sample

of stock option and CDS data for the constituent firms of the CDX index.

4.3 Empirical Results

In this paper, we study CDS and stock options written on roughly 130 firms that were

part of the CDX index between January 2003 and June 2007. Data is aggregated

monthly for a total of 3862 firm/month observations.

4.3.1 Firm Characteristics

Figure 4.3 provides a visual summary of the firms in our dataset. The top two panels

remind us that although overall risk, as measured by equity volatility, is greater for

the lower rating categories, the better rated firms are proportionally more exposed

to systematic risk. Levered betas appear stable across rating categories, with the

exception of the lowest rated firms for which greater leverage increases the beta.

There is no clear pattern in asset volatility across rating categories, nor for book and

market leverage ratios.

4.3.2 Stock Option Empirics

Duan and Wei (2009) demonstrate that systematic risk has an impact on stock option

prices. They find that, after controlling for the total volatility of the option’s under-

lying, a higher proportion of systematic variance in the stock’s total variance leads

to higher implied volatility levels. As seen above in Section 4.2, this result emerges

as a natural implication of the Geske (1979) model once the model is augmented

with the CAPM.

We start our empirical analysis by considering whether Duan and Wei’s results

hold in our broader and more recent data set. Figure 4.4 summarizes the variable of

interest in this regard. The upper-left panel of the figure reproduces the systematic

risk pattern across ratings that we observed in Figures 4.2 and 4.3. The upper-right

panel of Figure 4.4 reports the volatility premium, IVQ
t,j −σt,j , averaged through time

and over firms in a given rating. The positive relationship between the systematic
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Figure 4.3: Firm Characteristics
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We grouped the 3862 firm/month observations according to the firm’s rating on a given month. Each

panel in this figure reports the ratingwise average of a given variable for the firms with the given

rating. A two-standard error band around the average is also displayed.

risk proportion (SRP) and IVQ
t,j −σt,j is far from obvious by only considering this

figure.

Yet, Table 4.1 reports that the result which Duan and Wei obtained using options

written on 30 firms between January 1991 and December 1995 actually holds on a

broader and more recent data set: out-of-the-money (OTM) calls and puts quoted on

the stocks of 129 firms between January 2003 and June 2007. We reproduce exactly

Duan and Wei’s methodology here. For each month in our data set, we compute

the average implied volatility of OTM calls and puts in a given moneyness/maturity

bucket. This procedure is repeated for each firm for which we have data in the month
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Figure 4.4: Option Data
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We grouped the 3862 firm/month observations according to the firm’s rating on a given month. Each

panel in this figure reports the ratingwise average of a given variable for the firms with the given

rating. A two-standard error band around the average is also displayed.

under consideration. We also compute the historical volatility and systematic risk

proportion of each of these firms using a rolling window of 12 months of observations.

Each month t, this gives us a cross-section of implied volatility, volatility and SRP

measures. We then regress the volatility premium on systematic risk proportion, i.e.

IVt,j − σt,j = η0,t + ηSRP,t SRPt,j +εt,j . (4.3.9)

We perform such a cross-sectional regression each month, à la Fama and MacBeth

(1973), and report in the first two columns of Table 4.1 the average coefficient on

systematic risk and its Newey and West (1987) standard error, correcting for the

high autocorrelation in the coefficient time series. While they are not as striking,

our findings do confirm Duan and Wei’s results.

Consider two types of firms, the first with no exposure to systematic risk (SRP =

0), which we will refer to as“idiosyncratic”firms, and the second with no idiosyncratic

risk (SRP = 1), which we will refer to as a “systematic” firms. The average value of
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ηSRP,t in the first column of Table 4.1 implies that options on a systematic firm would

embed a volatility premium from 0.9% to 5.8% than those written on the stock of an

idiosyncratic firm. Statistical significance does not obtain for all moneyness/maturity

buckets however. The proportion of SRP coefficients that are greater than zero in

Duan and Wei’s analysis varies from 71.4% and 100% in the settings of our Table 4.1;

we obtain proportions that range from 50% to 74.1%. The R2 in their analysis ranges

from 4.2% to 23.1%; in ours, from 2.3% to 8.3%.

Table 4.1: Fama-MacBeth Regressions of Volatility Premia on Systematic Risk Proportions

Duan and Wei Vol. Premium Ratios

Avg. Coeff t-stat Coeff > 0 R2 Avg. Coeff t-stat Coeff > 0 R2

Moneyness All maturities 0.0348 2.098 68.5% 3.5% 0.2436 4.523 83.3% 5.7%

(K/S) Short-term 0.0375 2.024 70.4% 3.8% 0.2553 4.491 83.3% 6.1%

0.90-0.95 Medium-term 0.0239 1.170 60.0% 7.3% 0.2345 3.277 75.6% 8.4%

Long-term 0.0579 3.273 70.2% 8.3% 0.3204 4.595 85.1% 10.6%

Moneyness All maturities 0.0412 3.004 74.1% 3.0% 0.2447 4.112 83.3% 4.1%

(K/S) Short-term 0.0386 2.457 70.4% 3.1% 0.2431 3.782 79.6% 3.9%

0.95-1.00 Medium-term 0.0532 3.059 67.4% 5.9% 0.2669 3.386 73.9% 6.6%

Long-term 0.0449 2.944 61.7% 7.5% 0.2783 3.405 76.6% 9.8%

Moneyness All maturities 0.0193 1.660 66.7% 2.3% 0.1276 2.447 68.5% 2.6%

(K/S) Short-term 0.0190 1.437 66.7% 2.4% 0.1269 2.220 66.7% 2.8%

1.00-1.05 Medium-term 0.0087 0.548 50.0% 5.4% 0.0828 1.547 57.7% 5.9%

Long-term 0.0219 1.910 68.5% 5.1% 0.1639 2.117 70.4% 5.7%

Moneyness All maturities 0.0234 1.952 61.1% 2.5% 0.1416 2.471 64.8% 3.1%

(K/S) Short-term 0.0208 1.501 63.0% 2.7% 0.1342 2.280 66.7% 3.3%

1.05-1.10 Medium-term 0.0367 1.905 60.0% 6.6% 0.2452 1.725 60.0% 6.5%

Long-term 0.0233 2.375 57.4% 4.9% 0.1229 3.106 57.4% 5.6%

On each month t, for each subset of options quoted on firm j, we compute the average implied volatility, IVt,j.

Likewise, we obtain the level of historical volatility σt,j for firm j during month t. Then, in a Fama-MacBeth

fashion, we perform the following regression

IVt,j − σt,j = η0,t + ηSRP,t SRPt,j +εt,j

each month. A given cross-section (month/option subset) is neglected if less than 10 observations are available.

We report the average of each coefficient η·,t time series, and t-statistics that are computed using Newey-West

standard errors with lag 3 in order to account for the likely autocorrelation and heteroskedasticity in the series of

coefficients. We also report the proportion of ηSRP,t coefficients that are positive (Coeff > 0) as well as the average

of the monthly R2 statistics.

There are many reasons why this was to be expected. First and foremost, the

data set we consider is by far more heterogeneous than considered by Duan and



108 Credit Default Swaps, Options, and Systematic Risk

Wei. Their data set comprises of the S&P 100 and its 30 largest component stocks.

The firms’ average annualized volatility ranges from 6.4% to 16.2%. Our data set

here comprises of 129 firms with ratings varying from AAA to CCC, with average

volatility levels that range from 15.3% (General Mills Inc.) to 51.6% (Visteon Corp.)

annually.∗

The Geske model implies that the higher the systematic risk proportion of a

firm, the greater the proportion of its implied volatility that will be explained by the

volatility premium.† Given that the firms in our data set have such a wide range of

volatility levels, we revisit Duan and Wei’s regressions and use volatility premium

ratios (VPR) rather than absolute premia, i.e.

IVt,j − σt,j

IVt,j
= η0,t + ηSRP,t SRPt,j +εt,j (4.3.10)

The lower-right panel of Figure 4.4 reports the ratingwise average proportion of

implied volatilies that is explained by the volatility premium, i.e. the average of

VPRt,j =
(
IVt,j −σt,j

)
/ IVt,j for firms with a given rating. The low-rating averages

are scaled down (compared to those in the upper-right panel), reflecting the fact that

these firms display higher implied volatility levels on average. The fifth to eighth

columns of Table 4.1 report the results of this new regression. The relationship

between volatility premium ratios and systematic risk is positive for all moneyness/-

maturity buckets, highly statistically significant for OTM puts and slightly less so

for OTM calls. Proportions of positive ηSRP,t coefficients range from 73.9% to 85.1%

of OTM puts and from 57.4% a 68.5% for OTM calls. As for economic significance,

the proportion of the implied volatility explained by volatility premium would be

23.5% to 32.0% higher for OTM put options written on a systematic firm than for

similar options written on an idiosyncratic firm. For OTM call options, the differ-

ence ranges between 8.3% and 24.5%. The relationship between systematic risk and

the volatility premium seems to be of greater statistical and economic significance

∗The heterogeneity of our data set as compared to that of Duan and Wei (2009) might also

explain why, while we find their results with regards to the level effect to hold, we couldn’t find a

significant effect in our data set using the slope proxy suggested in Duan and Wei (2009).
†In a comparative static setting, this holds true also for the difference between volatilities IVt,j −

σt,j . However, recall Figure 4.3, where the implied-volatility ratio decreases as credit quality declines.

This relationship when plotted on the basis of the difference rather than the ratio, yields a more or

less flat relationship. This suggests that given the heterogeneity in the data, it should be easier to

identify a relationship based on ratios.
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on OTM puts than on OTM calls, which could be a consequence of the slope effect

documented by Duan and Wei (2009). However, we couldn’t find a significant slope

effect in our data set using the slope proxy suggested in Duan and Wei (2009); as

discussed above, the heterogeneity of our data set as compared to that of Duan and

Wei (2009) might explain why we can’t reproduce their results with regards to the

slope effect.

In Table 4.2, we focus, on the OTM puts (0.90 ≤ K/S < 0.95) with short

or long maturities and assess the robustness of the positive relationship between

systematic risk and the volatility premium by control for firm characteristics. The

constant in Equation (4.3.10) is replaced by dummy variables controlling for the

firm’s rating. When only the firm’s rating is controlled for, short-term options on the

stock of a systematic firm will embed a 27.5% higher volatility premium proportion

than those on an idiosyncratic firm; for long-term options, the difference rises to

28.8%. We further control for the annualized conditional equity volatility (as mesured

by standard deviation of daily stock returns over the last 12 months), firm size

(using the logarithm of market capitalization), and the firm’s market leverage. A

systematic firm would have 11.0% higher volatility premium ratios on its short-

term options and 7.4% higher on its long-term options than would an otherwise

equal idiosyncratic firm. Interestingly, after controlling for firm characteristics, the

statistical and economic significance of the volatility premium in stock option prices

is greater for short-term options. This is interesting and suggestive in light of the

findings in Elton, Gruber, Agrawal, and Mann (2001) who show that expected losses

in corporate bond spreads are negligible for short term bonds. This implies that

risk premia and other sources of compensation in bond spreads need to be relatively

larger, and thus likely easier to discern empirically.

In summary, we find that options on stocks with more systematic volatility are

relatively more expensive, consistent with the findings of Duan and Wei (2009). In

turn this is consistent with the Geske (1979) model augmented by the CAPM. We

now turn our attention to the predictions obtained under the framework of Merton

for the credit derivatives markets.
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Figure 4.5: CDS Data
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We grouped the 3862 firm/month observations according to the firm’s rating on a given month. Each

panel in this figure reports the ratingwise average of a given variable for the firms with the given

rating. A two-standard error band around the average is also displayed.

4.3.3 CDS Empirics

The Merton model, which is internally consistent with the Geske model, provides

an analogous intuition for the relationship between systematic risk and risk premia

observed in credit markets. The upper-left panel of Figure 4.5 reproduces the system-

atic risk pattern across ratings that we observed in previous figures. The upper- and

lower-right panels report on spreads and expected losses; firm’s with better ratings

have lower probability of default, thus requires a lower compensation for expected

loss and, overall, have lower spreads. The lower-left panel however tells us that a

larger proportion of the spreads of high-rated firms, which have larger systematic risk

proportions, is due to the risk premium component of spreads. This is preliminary

evidence that the empirical prediction we obtained under Merton’s framework holds

in the data. It seems that, across rating categories, firms with a greater proportion

of systematic volatility also have higher proportions of risk premia in their spreads.
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It is tempting to interpret the prediction of the Merton model as implying that

for two otherwise equal firms, the one with greater exposure to systematic risk should

require larger spreads. Table 4.3 clearly shows that this is not the case. In this table,

we repeat the regression of Table 4.2, but with spreads as dependent variable. The

relationship between spreads and systematic risk is robustly negative. Li (2008) also

obtains this result and finds this negative relationship to be robust.∗ To explain

her findings, Li suggests an explanation based on transaction costs. She argues that

contracts on a firm with a lower systematic risk proportion are subject to higher

transaction or hedging costs for the seller; the more closely a firm’s value moves with

the market, she says, the easier it is for the seller to find cheap hedging instruments.

Thus, higher hedging costs would justify higher CDS prices.

We suggest an alternative explanation that appeals to the decomposition of a

spread into its expected loss and its risk premium components. In recent work on

structured credit products, Coval, Jurek, and Stafford (2009) argue that, for a given

expected loss, a fixed income product that is more likely to default in bad states

of the economy should require a relatively larger risk premium than an otherwise

identical product more likely to default in good states.

Rephrasing this insight and assuming that the value of the market portfolio

proxies for the state of the economy, firms with higher systematic risk proportions

should require a higher risk premium and thus higher spreads. However, there is

an endogeneity issue here; in light of Figure 4.5, firms with larger systematic risk

proportions are also likely to be well established firms with lower expected losses,

and thus lower spreads. In addition, risk premia depend in a nonlinear fashion on

leverage and volatility. To deal with these issues, we propose decomposing spreads

into their expected loss and risk premium components before running our regression

analysis. The appendix provides a summary of our methodology. In essence we rely

on physical default probabilities constructed using a structural model to compute

”physical” bond prices as in Section 4.2. We then use the ratio of the spread risk

premium component to total spread as dependent variable.

Table 4.4 reports the results of the same regressions as Table 4.3, but with risk

premium ratios as the dependent variable. The proportion of 5-year spreads that
∗Li’s dataset was CDS spreads provided by GFI for the period of January 2000 to December

2004.
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is due to the risk premium ranges from 51.2% on average for CCC-rated firms to

79.7% for AA-rated firms. This corroborates the findings of Elton, Gruber, Agrawal,

and Mann (2001). The dummies here control for the rating of the different firms.

Omitting other controls, a systematic firm would have 34.6% higher risk premium

ratio than an idiosyncratic firm on its 5-year spreads, and 21.5% higher on its 10-

year spreads. Even after controlling for the level of equity volatility, firm size, and

market leverage, the impact of systematic risk remains of economic significance. A

systematic firm would have 21.5% higher risk premium ratio than an idiosyncratic

firm on its 5-year spreads, and 20.0% higher on its 10-year spreads.

Interestingly firm size is not significant for the risk premium ratios on 5-year

spreads, but is significant for RPRs on 10-year spreads. The opposite is true for

market leverage. Equity volatility is never significant in explaining risk premium

ratios.

4.4 Conclusion

We show that two simple and internally consistent models for option prices and

credit spreads provide an intuitive prediction for both markets. Options and credit

default swaps on firms with more systematic risk exposure should be more expensive,

all else equal. In other words, purchasing insurance on a firm with put options or

credit default swaps should be costlier, after controlling for among other things total

risk, leverage and risk free interest rates, the greater the systematic risk. This is a

simple insight, yet options and credit derivatives are often viewed through the prism

of risk-neutral (relative) pricing and, as a result, the wedge between risk-adjusted

and physical probability return distributions tends to remain out of view.

Recently, Duan and Wei (2009) have shifted the focus onto the cross-sectional

pricing of risk in stock option markets, relating prices to the proportions of systematic

risk in equity volatilities. We document that their findings are robust to a more recent

and broader dataset, and then ask whether (as our comparative statics suggest) these

findings have an analogue in the credit derivative markets. We find this to be the
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case: the proportion of the price of default insurance due to a risk premium is greater

the larger the systematic risk exposure a firm has.

These findings have important implications both in asset allocation and risk

management applications. It becomes clear that risk metrics that abstract from any

systematic risk adjustment (such as credit ratings) may lead to incentive issues in

portfolio selection. If an institution faces a ratings based investment constraint, then

it is possible it may favour higher promised yields per rating unit, which in turn will

lead to systematic risk concentration. Similarly, an institution facing capital charges

on the basis of ratings-defined risk categories, may seek to enhance yield in much

the same way.
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Appendix — Extracting the Expected Loss Component

of Spreads

The Merton (1974) model, the simplest structural model, is rich enough to generate

the empirical implications of Section 4.2.2. For expositional purposes, there was

thus no reason to consider a more complex model in Section 4.2. When it comes

to estimating default probabilities, the Merton model however lacks the flexibility

needed to capture the rich structure of the data. We thus use the Leland and Toft

(1996) model in the estimation of default probabilities and resulting expected losses.

Here, we briefly describe the Leland and Toft (1996) model; the reader is invited

to consult the original paper for details. Since the model does not treat the valuation

of credit default swaps (CDS), we also present the building blocks needed to value

a CDS. We calibrate our structural model to both equity and CDS spreads to get

precise default probabilities.

4.A.1 Overview of the Leland-Toft Model

The fundamental variable in the Leland-Toft model is the value of the firm’s assets,

which is assumed to evolve as a geometric Brownian motion under the risk-adjusted

measure,

dvt = (r − q)vtdt + σvtdWt , (4.A.1)

where v is the value of the firm’s assets, r is the risk-free interest rate, q is the payout

ratio, σ is the volatility of the asset value, and Wt is a Brownian motion under the

risk-adjusted measure.

Default is triggered by the shareholders’ endogenous decision to stop servicing

debt. The exact asset value at which this occurs is determined by several parameters

of the model and is denoted by L. The value of the firm differs from the value of the

assets by the values of the tax shield and the expected bankruptcy costs. Coupon

payments are tax deductible at a rate τ and the realized costs of financial distress

amount to a fraction α of the value of the assets in default (i.e. L). In this setting,

the value of the firm (z) is equal to the value of assets plus the tax shield (TS) less

the costs of financial distress (BK). The value of the firm is, of course, split between
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equity (E) and debt (D), and thus

z(vt) = vt + TS(vt)−BK(vt) (4.A.2)

= E(vt) + D(vt).

4.A.2 Building Blocks for CDS valuation

First, define default as the first time (T ) at which the asset value hits the default

boundary L from above, so that ln
(

vT
LT

)
=0. Then, define G(vt, t) as the value of a

claim paying off $1 in default,

G(vt, t) = EB
[
e−r(T −t) · 1

]
. (4.A.3)

We let EB denote expectations under the standard pricing measure. The value of G

is given by

G(vt, t) =
(

vt

Lt

)−θ

(4.A.4)

with the constant given by

θ =

√
(hB)2 + 2r + hB

σ
, where hB =

r − q − α− 0.5σ2

σ
.

Define the dollar in default with maturity T , G(vt, t;T ), as the value of a claim

paying off $1 in default if it occurs before T

G(vt, t;T ) = EB
[
e−r(T −t) · 1 · (1− IT ≮T )

]
(4.A.5)

and define the binary option H(vt, t;T ) as the value of a claim paying off $1 at T if

default has not occurred before that date

H(vt, t;T ) = EB
[
e−r(T −t) · 1 · IT ≮T

]
. (4.A.6)

IT ≮T is the indicator function for the survival event, i.e. the event in which the asset

value (vT ) did not hit the barrier prior to maturity (T ≮ T ).

The price formulae for the last two building blocks are given below. They con-

tain a term that expresses survival probabilities, the probabilities (under different

measures) of the survival event T ≮ T . The probabilities of the survival event at t

under the probability measures Qm : m = {B,G} are

Qm(T ≮ T ) = N
(

km

(
vt

Lt

))
−
(

vt

Lt

)− 2
σ

hm

N
(

km

(
Lt

vt

))
, (4.A.7)
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where

km(x) =
lnx

σ
√

T − t
+ hm

√
T − t,

hG = hB − θ · σ = −
√

(hB)2 + 2τ ,

and N(k) denotes the cumulative standard normal distribution with integration limit

k.

The probability measure QG is the measure having G(vt, t) as numeraire (the

Girsanov kernel for going to this measure from the standard pricing measure is

θ · σ). Using this lemma we obtain the pricing formulae for the building blocks in a

convenient form. The price of a down-and-out binary option is

H(vt, t;T ) = e−r(T−t) ·QB(T ≮ T ).

The price of a dollar-in-default claim with maturity T is

G(vt, t;T ) = G(vt, t) · (1−QG(T ≮ T )).

To understand this second formula, note that the value of receiving a dollar if

default occurs prior to T must be equal to receiving a dollar-in-default claim with

infinite maturity, less a claim where you receive a dollar in default conditional on it

not occuring prior to T :

G(vt, t;T ) = G(vt, t)− e−r(T−t)EB
[
G(vT , T ) · IT ≮T

]
.

Using a change of probability measure, we can separate the variables within the

expectation brackets,

G(vt, t;T ) = G(vt, t)− e−r(T−t)EB
[
G(vT , T ) · IT ≮T

]
= G(vt, t) · (1−QG(T ≮ T ).

CDS Valuation

A CDS provides insurance for a specified coporate bond termed the reference obli-

gation. The firm issuing this bond is designated as the reference entity. The seller of

insurance, the protection seller, promises, should a default event occur, to buy the

reference obligation from the protection buyer at par.
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The valuation of a CDS involves two parts, the premium paid by the protection

buyer to the protection seller and the potential buy-back by the protection seller. Let

T denote the maturity of a CDS contract and Q the fee. The value of the premium

at time t is

E
[ ∫ T

t
e−r(s−t) ·Q · IT ≮s · ds

]
, (4.A.8)

where we let IT ≮s be the indicator function for nondefault before s and E denotes

the expectation under the standard pricing measure. The maturity of the credit

default swap is typically shorter than the maturity of the reference obligation (T ).

In fact, the most common maturity for CDS in practice is T ∗ = 5 years.

Assume that the bondholder in the event of a default recovers a fraction R of the

par value P. The second part of the value of a CDS contract is the expected value

of receiving the difference between the par value P and the amount recovered,

E
[
e−r(T−t) · (P −R · P ) · IT ≮T ∗

]
. (4.A.9)

The expectation is conditional on default occurring before maturity of the CDS.

Using the previously outlined building blocks, we can formalize the value of a CDS

as below.

Assume a CDS involves receiving an amount P − R · P if T ≮ T , and paying a

continuous premium Q until min(T ∗, T ). The value of the CDS is

CDS(vt, t) = (P −R · P ) ·G(vt, t;T ∗)− Q

r
(1−H(vt, t;T ∗)−G(vt, t;T ∗)).

The first term of the CDS formula captures the value of receiving the bond’s face

value in case of default. The second term captures the cost of paying the premium as

a risk-free, infinite stream
(

Q
r

)
less two terms: the first (H) reflecting the discount

attributable to the finite maturity of the swap, and the second (G) repoducing the

discount due to disrupted payments when and if default occurs.

Typically, the fee is chosen so that the credit default swap upon initiation (t = 0)

has zero value:

Q =
r · (P −R · P ) ·G(vt, t;T ∗)

(1−H(vt, t;T ∗)−G(vt, t;T ∗))
.

Intuitively, holding a CDS together with the reference obligation is close to holding

the corresponding risk-free bond only. The positions are not identical, however,

since the CDS typically has a different maturity and assures its holder the nominal
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amount (P ), rather than value of the risk free bond (B), upon default. Yet, it is

often convenient to think of the default swap premium of a just initiated swap as

akin to spread on the underlying corporate bond.

4.A.3 Estimation methodology

In the previous section we laid down the pricing formulae for credit default swaps.

In this section we discuss issues related to the practical implementation as well as

extracting risk premia from credit default swaps. In addition to benchmark term

structures, the following inputs are needed to price equity as well as CDS. The

recovery rate of the bond R,the total nominal amount of debt, N , coupon C and

maturity T. The costs of financial distress α. The tax rate τ. The rate at which

earnings are generated by the assets q. Finally the current value, v, and volatility of

assets σ.

Since, the recovery rate of the bond in financial distress is not readily observed

we set it equal to 40%, roughly consistent with average defaulted debt recovery

rate estimates for US entities between 1985-2003. The nominal amount of debt is

measured by the total liabilities as reported in COMPUSTAT. For simplicity, we

assume that the average coupon paid out to all the firm’s debtholders equals the

risk-free rate: c = r · N . We set the maturity of newly issued debt equal to 6.76

years, consistent with empirical evidence reported in Mauer and Stohs (1994).

Finally, we assume that 15% of the firm’s assets are lost in financial distress

before being paid out to debtholders and fix the tax rate at 20%. The choice of 15%

distress costs lies within the range estimated by Andrade and Kaplan (1998). The

choice of 20% is intentionally lower than the corporate tax rate to reflect personal

tax benefits to equity returns, thus reducing the tax advantage of debt.

We compute q as the weighted average of net of tax interest expenses (relative

to total liabilities (TL)) and the equity dividend yield (DY ):

q =
IE

TL
× lev × (1− TR) + DY × (1− lev) (4.A.10)

where

lev =
TL

TL + MC
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where MC denotes the firm’s equity market capitalization and TR is the effective

tax rate.

Next, we require estimates of asset value and volatility. Since, we have two un-

knowns (asset value and volatility), we require two equations to solve for our two

unknowns. The usual approach is to match the observed equity value to the model-

implied equity value and observed equity volatility to model-implied equity volatility.

In particular, this approach involves solving backwards from equity value and volatil-

ity to get implied asset value and asset volatility, where equity is treated as a call

option on the firm’s assets. We need to value the underlying CDS contracts precisely.

The approach of backing out asset value and volatility from equity value and volatil-

ity may not provide precise valuation of a CDS contract for each data point. So,

instead of using equity value and volatility to back out asset value and volatility, we

use equity value and CDS spread to back out the two unknowns. The advantage of

using this approach is that it allows us to match the observed CDS spread and hence,

allows to extract the default probabilities under risk-neutral measure precisely.

4.A.4 Estimating default probabilities

Above, we describe our methodology for valuation of CDS and calibration of the

structural model. We also need to extract default probabilities under both risk-

neutral and physical measure. Below, we describe the methodology to extract default

probabilities from the calibrated structural model.

We set the loss rate l equals to 60%, roughly consistent with average defaulted

debt recovery rate estimates for US entities between 1985-2003. Previous studies on

default risk premium Berndt, Douglas, Duffie, Ferguson, and Schranz (2008), Saita

(2006) and Berndt, Lookman, and Obreja (2006) used Expected Default frequen-

cies (EDFs) provided by Moody’s KMV as their estimate of the historical default

probabilities. In this paper, we estimate company specific default probabilities using

the Leland and Toft (1996) model. This methodology yields estimates conceptually

similar to EDFs.

Under the physical measure, the survival probabilities Pt (τ > Ti) are given in
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closed form by

Pt (τ > Ti) = N
(
dP

Ti

(vt

L

))
−
(vt

L

)−2µv−0.5σ2

σ2
N
(

dP
Ti

(
L

vt

))
, (4.A.11)

with

dP
Ti

(vt

L

)
=

ln
(

vt
L

)
+
(
µv − 0.5σ2

)
(Ti − t)

σ
√

Ti − t

and dB
Ti

(
L

vt

)
=

ln
(

L
vt

)
+
(
µv − 0.5σ2

)
(Ti − t)

σ
√

Ti − t
,

and where µv, the expected return of the asset value under the objective measure, is

the only parameter that still needs to be estimated at this point.

Previous studies such as Leland (2004) and Huang and Huang (2002) have used

the CAPM beta of the firm multiplied with an average market risk premium figure

to provide an estimate of the expected asset return. In contrast, we use the same

methodology that we applied above to link the bond risk premium and the equity

risk premium. Equity is a contingent claim on the asset value and we can write

µv − r = (Rv (t)− r) = ∆E · (RE (t)− r),

where

∆E =

(
∂E(vt,t)

∂vt
v

E (vt, t)

)−1

and where ∂E(vt,t)
∂vt

is computed using the Leland-Toft model, and (RE (t)− r) is the

estimated equity risk premium.
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5 Conclusion

This thesis analyzes three closely interrelated themes of financial derivatives pricing:

model risk, macroeconomic risk, and systematic risk. Whichever the source of risk

under consideration, the risk being faced is unavoidably quantified using some model.

Model risk is thus a very broad concept of which we study only a very specific aspect.

Nonetheless, the study in Chapter 2 is of importance as it sheds light on the

relative performance of eight different models divided along three major modeling

axes. We demonstrate that the modeling choices being made impact on the economic

properties of the different option-valuation models. For example, we find that con-

straining variance processes to an affine specification puts an undue burden on some

of the model’s parameters that end up playing multiple economical roles. We also

find that omitting to properly model for the long-memory-like properties of volatility

significantly impairs the model’s ability to capture the variations in options prices,

through time, and across maturities and moneyness levels.

Models with two volatility components allow for a richer structure of variance

than single-component models. For example, given the current volatility level, a

component model’s variance forecast can significantly differ depending on whether

this current level is above or below the long-run level of variance given by the sec-

ond component. In Chapter 3, I consider a model where this second component is

designed to capture time-varying expectations and relies on observables rather than

being latent. In particular, I analyze the impact of changes in business conditions

on option prices. The model I introduce outperforms the benchmark in fitting asset

returns and in pricing options, especially in the 1990-1991 and 2001 recessions. By

letting macroeconomic risk play a significant role in its volatility forecasts and, con-

sequently, in its option price predictions, the model removes the typically observed

counter-cyclical patterns in pricing errors.

In Chapter 4, rather than correcting the weaknesses of a given model, we simply
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revisit fairly simple models, the Merton (1974) and Geske (1979) models, and high-

light some their implications for risk premia that have been partly neglected so far.

Interestingly, these simple models, augmented with the CAPM, straightforwardly

link the risk premia in credit and stock option markets, a link that is due to the

systematic risk faced by the firm from which these contingent claims derive their

value. However imperfect the Merton and Geske models may be, we find that their

predictions regarding systematic risk holds in the data. The greater the systematic

risk faced by a firm, the greater the importance of the risk premium in observed

spreads and option prices.

Macroeconomic risk is an important determinant of market volatility and inher-

ently contributes to systematic risk, which in turn is a fundamental determinant of

asset prices. From a portfolio management perspective, acknowledging and under-

standing the different sources of risk to which an investment is exposed is a first step

of paramount importance in properly managing the risk inherent to the investment.

This thesis contributes in deepening, although modestly, our understanding of these

risks and of their determinants.
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