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Abstract—Objective: Idiopathic REM sleep behavior disorder
(RBD) is a serious risk factor for neurodegenerative processes
such as Parkinson’s disease (PD). We investigate the use of
EEG algorithmic complexity derived metrics for its prognosis.
Methods: We analyzed resting state EEG data collected from
114 idiopathic RBD patients and 83 healthy controls in a longi-
tudinal study forming a cohort in which several RBD patients
developed PD or dementia with Lewy bodies. Multichannel data
from ∼5 minute recordings was converted to spectrograms and
their algorithmic complexity estimated using Lempel-Ziv-Welch
compression (LZW). Results: Complexity measures and entropy
rate displayed statistically significant differences between groups.
Results are compared to those using the ratio of slow to fast
frequency power, which they are seen to complement by display-
ing increased sensitivity even when using a few EEG channels.
Conclusions: Poor prognosis in RBD appears to be associated with
decreased complexity of EEG spectrograms stemming in part
from frequency power imbalances and cross-frequency amplitude
coupling. Significance: Algorithmic complexity metrics provide
a robust, powerful and complementary way to quantify the
dynamics of EEG signals in RBD with links to emerging theories
of brain function stemming from algorithmic information theory.

Index Terms—Biomarkers, EEG, LZW, PD, LBD

I. INTRODUCTION

REM Behavior Disorder (RBD) is a serious risk factor
for neurodegenerative diseases such as Parkinson’s disease
(PD). RBD is a parasomnia characterized by vivid dreaming
and dream-enacting behaviors associated with REM sleep
without muscle atonia [1]. Idiopathic RBD occurs in the
absence of any neurological disease or other identified cause,
is male-predominant and its clinical course is generally chronic
progressive [2]. Several longitudinal studies conducted in
sleep centers have shown that most patients diagnosed with
the idiopathic form of RBD will eventually be diagnosed
with a neurological disorder such as Parkinson disease (PD)
and dementia with Lewy bodies (DLB) [1]–[3]. In essence,
idiopathic RBD has been suggested as a prodromal factor of
the synucleinopathies PD, DLB and less frequently multiple
system atrophy (MSA) [1].

RBD has an estimated prevalence of 15-60% in PD and has
been proposed to define a subtype of PD with relatively poor
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prognosis, reflecting a brainstem-dominant route of pathology
progression (v. [4] and references therein) with a higher risk
for dementia or hallucinations. PD with RBD is characterized
by more profound and extensive pathology—not limited to the
brainstem—,with higher synuclein deposition in both cortical
and sub-cortical regions.

The human brain can be modeled as a highly dimensional
complex dynamical system which instantiates electrochemi-
cal communication and computation. Electroencephalographic
(EEG) and magnetoencephalographic (MEG) signals contain
rich information associated with these processes, and are
accessible non-invasively. To a large extent, progress in the
analysis of such signals has been driven by the study of
classical temporal and spectral features in electrode space,
and applied to the study the human brain in both health and
disease. For example, the “slowing down” of EEG is known
to characterize neurodegenerative diseases [5], [6], and the
slow to fast ratio (the ratio of power in delta and theta bands
to alpha and beta) has shown good discriminatory sensitivity
[6], [7]. However, brain activity measurements exhibit non-
linear dynamics and non-stationarity, limiting the usefulness
of classical, linear approaches and calling for the use of novel
methods capable of exploiting underlying spatiotemporal hier-
archical structures. Deep learning techniques in particular and
neural networks in general are bio-inspired by neural structure
and function—the same biological systems generating the
electric signals we aim to decode—and should be well suited
for the task. In past work, for example, we studied a particular
class of recurrent neural networks called Echo State Networks
(ESNs) combining the power of networks for classification
of temporal patterns and ease of training, reasoning that as
they implement non-linear dynamics with memory they may
be ideally poised for the classification of complex EEG time
series data. Starting from a dataset of recordings of resting
state EEG from idiopathic RBD patients who later converted
to PD and from healthy controls (HC), we showed that using
such recurrent networks using temporal series of EEG power
led to a prognosis classification accuracy of 85% in the binary,
balanced classification problem [8].

With the goal of developing metrics that capture non-linear
dynamics from EEG signals, here we explore a different
feature extracted from EEG data—upper bounds on algo-
rithmic complexity. Algorithmic information is formalized by
the mathematical concept of algorithmic complexity or Kol-
mogorov complexity (K), co-discovered during the second half
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TABLE I
Baseline sociodemographic and clinical data for the four groups.

Group / data HC RBD PD DLB
N (F/M) 83 (30/53) 83 (18/65) 19 (5/14) 12 (2/10)
〈age〉 66 ± 9 67 ± 7 67 ± 7 71 ± 6
〈follow-up〉 1 ± 1 4 ± 3 4 ± 2 4 ± 2

Number of subjects per group with gender breakdown
(female/male), mean and standard deviation for age and follow-up
time (in years). Acronyms: HC: healthy controls; RBD: idiopathic
RBDs who remained idiopathic RBD on follow-up; PD: idiopathic
RBD who converted to PD on follow-up; DLB: idiopathic RBD
who converted to LBD on follow-up.

of the 20th century by Solomonoff, Kolmogorov and Chaitin.
We recall its definition: the Kolmogorov complexity of a string
is the length of the shortest program capable of generating
it. More precisely, let U be a universal computer (a Turing
Machine), and let p be a program. Then the Kolmogorov or
algorithmic complexity of a string x with respect to U is
given by KU(x) = minp:U(p)=x l(p), i.e., the length l(p) of
the shortest program that prints the string x and then halts
(see e.g., [9], [10]). Crucially, although the precise length of
this program depends on the programming language used, it
does so only up to a string-independent constant. Algorithmic
information is notoriously difficult to estimate. Here we rely
on the notion of complexity as measured from Lempel-Ziv-
Welch compression (LZW) or entropy rate, two closely related
metrics that provide an upper bound to algorithmic complexity.

As discussed in [11] and references therein, the healthy
brain generates apparently complex (entropic) data. Complex-
ity should be associated to cognitive health and conscious
state, and complexity appears to decrease with age (see, e.g.,
[12] and references therein). While a brain capable of universal
computation may produce many different types of patterns—
from simple to highly entropic—a healthy brain engaging
in modeling, prediction and interaction with the world will
produce complex-looking, highly entropic data which can
presumably be measured from behavior or directly in brain
activity. Entropy and LZW represent direct measures of appar-
ent complexity and can be applied to, e.g., electrophysiological
or metabolic brain data [13]–[17]. We hypothesize here that
global apparent EEG algorithmic complexity or entropy rate
in our dataset will decrease with worsening neurodegenerative
disease prognosis or progression, in a similar manner to that
already reported in the PD literature [18] and in the case of
Alzheimer’s disease [19]–[21]. As a starting point, we further
assume that algorithmically relevant aspects in EEG data
are present in compositional features in the time-frequency
spectral amplitude representation.

II. METHODS

A. Participants

Idiopathic RBD patients (called henceforth RBD for data
analysis labeling) and healthy controls were recruited at the
Center for Advanced Research in Sleep Medicine of the
Hôpital du Sacrè-Cœur de Montral. All patients with full EEG

Fig. 1. Group PSDs. Average power Spectral Density (all channels) for each
group with standard error of the mean (SEM), displaying the characteristic
“slowing” of EEG with more power at low frequencies.

montage for resting-state EEG recording at baseline and with
at least one follow-up examination after the baseline visit were
included in the study. The first valid EEG for each patient
enrolled in the study was considered baseline. Participants also
underwent a complete neurological examination by a neurolo-
gist specialized in movement disorders and a cognitive assess-
ment by a neuropsychologist. No controls reported abnormal
motor activity during sleep or showed cognitive impairment
on neuropsychological testing. The protocol was approved by
the hospital’s ethics committee, and all participants gave their
written informed consent to participate. For mode details, the
reader is directed to [6].

B. EEG dataset

As with previous work [22], the raw data in this study
consisted of resting-state EEG collected from awake patients
and healthy controls using a subset of 14 scalp electrodes
(C3, C4, F3, F4, F7, F8, O1, O2, P3, P4, P7, P8, T7, T8).
The recording protocol consisted of conditions with periods of
“eyes open” of variable duration (approximately two minutes)
followed by periods of “eyes closed” in which patients were
not given any particular task. Resting EEG signals were
digitized with 16-bit resolution at a sampling rate of 256 S/s.
The amplification device used a hardware band pass filter
between 0.3 and 100 Hz and a line-noise notch filter at 60
Hz. All recordings were referenced to linked ears.

After quality check with rejection of subjects with insuf-
ficient data or subjects with abnormal cognition at the time
of acquisition, the dataset (of initially 213 subjects) consisted
of eyes-closed resting EEG data from a total of 114 patients
who were diagnosed with idiopathic RBD at the time of
acquisition and 83 healthy controls without sleep complaints
in which RBD was excluded. EEG data was collected in
every patient at baseline, i.e., when they were still diagnosed
with idiopathic RBD. After 1–10 years of clinical follow-
up, 19 patients developed Parkinson disease (PD), 12 Lewy
body dementia (DLB) and the remaining 83 ones remained
idiopathic RBD. Summary demographic data are provided in
Table I. Group averaged power spectral density plots for each
group are provided in Figure 1.
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Fig. 2. Computation of description length and entropy metrics from sub-
ject spectrogram frame stack. To compute a global measure of complexity
for each subject, the frame stack S(t, f, ch, F ) is flattened and binarized
prior compression or entropy computation, where t denotes time in each
spectrogram, f frequency, ch channel, and F frame number.

C. Data preparation

First, the EEG dataset from each subject was converted
into a spectrogram stack of “frames” (time frequency bi-
dimensional arrays) (see Figure 2), with each stack represent-
ing about 3 minutes of eyes-closed resting EEG. To generate
it, EEG data for each channel was processed using Fourier
analysis (FFT) after detrending one-second data blocks with
a Hann window (50% overlap FFT with resolution is 1 Hz
in the range 1–50Hz). Each spectrogram frame was generated
from 20 second long artifact free sequences for each of the 14
EEG channels using a sliding window of one second between
frames. The resulting data frames are thus “tensors” of the
form [channels (14)] x [FFT bins (50)] x [Time bins (39)], and
the full stack is four dimensional, with the fourth dimension
indexing frame epoch.

Using the spectrogram frame stack dataset we carried out
an analysis of the complexity for each subject, as we discuss
next.

D. Lempel-Ziv-Welch complexity and entropy rate

As discussed above, in order to provide an upper bound
to description length or algorithmic complexity we use LZW
compression. The LZW algorithm seeks increasingly long
reappearing patterns in the data, and compresses information
by reusing them: instead of rewriting a previously seen se-
quence, it will refer to the identifier of the one seen last [23].
After applying LZW to a string, we are provided with a set
of words (or phrases, as they are sometimes called) c(n) that
form a dictionary. The length of the compressed string will,
in general, be lLZW . n. We note that LZW can be used to
obtain an upper bound on algorithmic complexity, but, given
its reduced programming repertoire (LZW is the Kolmogorov
complexity computed with a limited set of programs that
only allow copy and insertion in strings [24]), it will fail to
compress random-looking data generated by simple, but highly
recursive programs, e.g., the sequence of binary digits of π,
with more sophisticated regularities than sequence repetition
(deep programs [8]). As an example of how LZW or entropy
rate are limited tools for compression, and therefore coarse
approximations to algorithmic complexity, consider a string
and its bit-flipped version, or a “time-reversed” version in a
file with the ordering of symbols temporally inverted, or a
string and “time-dilated” string where each symbol is repeated,
say twice. Such simple algorithmic manipulations will not be

detected and exploited by LZW. Despite these limitations, such
compression algorithms can be useful, as we shall see below.

Let H0(p) = −p log p − (1 − p) log(1 − p) denote the
univariate or zero order entropy, with p the probability of a
Bernoulli (binary) process (Markov chain of order zero). By
the entropy rate of the stochastic process {Xi}, we will mean

H(X) = lim
n→∞

1

n
H(X1, ..., Xn),

when this limit exists, with H denoting the usual multivariate
entropy of X , H(X) = −EX [log(P (X)]. We note that
entropy rate of a stochastic processes is non-increasing as a
function of order, that is, 0 ≤ H ≤ .. ≤ Hq ≤ ... ≤ H0 ≤ 1. A
fundamental relation is that description length computed from
LZW is closely related to entropy rate, that is,

lLZW ≈ c(n) log2 c(n) −→ nH.

(see [9], [25]). Thus, the description length of the sequence
encoded by LZW can be approximated by the number of
phrases times the number of bits needed to identify a seen
phrase. In order to apply LZW we need first to digitize the
data. Here we binarize the data to reduce the length of strings
needed for LZW to stabilize. A reasonable strategy in analysis
of algorithmic information of EEG data is to preserve as much
information as possible in the resulting transformed string. In
this sense, using methods that maximize the entropy of the
resulting series are recommended, such as using the median
for thresholding (this is guaranteed to result in H0 = 1 and
makes the result independent of overall scale).

Two associated metrics are commonly used in the field: c(n)
and lLZW . Of the two, the latter is more closely related to
Kolmogorov complexity or description length. Both contain
similar information (in fact one is a monotonic function of
the other). A natural manner to normalize this metric is to
divide description length by the original string length n, ρ0 =
lLZW /n → H, with units of bits per character. This is the
LZW compression ratio metric we will use here. For details
and code used to compute LZW complexity see [25].

E. Data flattening and binarization

LZW and entropy rate can be sensitive to inherent choices
in data flattening (that is, how the multidimensional 4D
arrays are flattened into a one dimensional string). Here we
have focused on the search for temporal patterns. For this
purpose, the stack data tensor for each subject was converted
to a one-dimensional array maintaining temporal adjacency
in each frame (with flattening in this order: time in each
frame, epoch, channel, frequency). The spectrogram hypercube
flattened arrays for each subject were then binarized using
the median as a threshold. We note here that binarization
will produce sequences with information related to burst or
“bump” events in each band. Moreover, these sequences are
independent of overall scale of the data, since we used the
median for binarization. We computed ρ0 and the entropy rate
for orders 0 (H0) to 5 (H5, there are 26 =64 cases or bins in
the associated histogram, which is a reasonable number given
the length of the strings analyzed), and computed the log-log
line fit slope and clustering coefficient of MAI derived graphs
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using µ0 as an additional metric. Since these metrics can be
sensitive to data string length [24], for the computational of
global complexity we chose a minimal string length and fixed
it for all subjects data prior compression (using the first N bits
of the flattened spectrogram frame stacks, with N = 4.6×106,
or about 169 twenty-second epochs, as a reasonable tradeoff
between number of subjects and data quantity per subject).
In an analysis variant we carried out the complexity analysis
frame by frame, producing an estimate for each frame and then
an average of frame complexity across epochs per subject. In
this case, we could use all the available data per subject, since
string length equality in LZW was then guaranteed regardless
of number of epochs used for averaging.

F. Mutual information

A measure such as ρ0 applied to multi-channel, multi-epoch
spectrograms reflects any detectable regularities across time,
channels and frequencies in the frame stacks, and exploit,
in that sense, the integration of multichannel, multifrequency
EEG data. We can apply it in a global sense by compressing
the entire dataset, that is, all channels and frequencies and
epochs forming a single input data string. Or, we can study
different data subsets to further dissect the driving elements of
integration (compression) of the global dataset. We can ask,
for example, how much is to be gained in the compression
of a spectrogram stack by feeding all the stack (channels
and frequencies) into the compression engine, compared to
what can be achieved compressing, for example, each fre-
quency independently and then adding the results. The more
“integrated” the data is, the more is to be gained by global
compression. If there is mutual algorithmic information across
frequency bands, for, example, LZW may be able to use it,
making a better job than compressing one channel at the time.
In this vein, we can define several compression “integration”
measures, depending along what axis we want to segment
spectrogram stack data, for example channel or frequency.

To do this we start from the mutual algorithmic information
(MAI) between two strings [26], the algorithmic analog of
Shannon mutual information. Let K(x) denote the description
length of a string x, which we approximate by the LZW
description length. The MAI between two strings is then

IK(x :y) ≈ K(y) +K(x)−K(x, y)
≈ lLZW (x) + lLZW (y)− lLZW (x, y)

where K(x, y) denotes the complexity of the concatenated
strings, and where we again approximate Kolmogorov com-
plexity by LZW description length (see [11], annotated ver-
sion). We now define the mutual algorithmic information
coefficient between to strings to be

µ0(x, y) =
IK(x :y)

K(y) +K(x)
≈ 1− lLZW (x, y)

lLZW (x) + lLZW (y)

This metric is closely related to the Normalized Compression
Distance [27], [28]. Using it we can assess the MAI between
frequency bands, for example, and build an adjacency matrix
or graph defined by a set of nodes (e.g., frequencies) and edges
or links (MAI between nodes using a threshold). In this way,

Fig. 3. Entropy rate Hn as a function of order. Entropy rate plot with
error bar (standard error of the mean) as a function of order.

we associate a mutual information graph with each subject
frame stack. We can then analyze these graphs using standard
metrics such as average degree or clustering index C [29],
[30]. Such analysis can also help analyze how compression of
the data is actually taking place, as we discuss below.

III. RESULTS

Entropy rate estimates as a function of order for each group
are shown in Figure 3, displaying clear differences across two
super-groups (HC+RBD vs PD+DLB) and also a flattening out
with increasing order. LZW complexity metrics per subject
are shown, sorted, in Figure 4 together with the slow-to-fast
ratio (further discussed below), and summarized in Figure 5.
In terms of statistical performance, the related complexity
related metrics we tested (ρ0, entropy rate and log-log entropy
rate slope) produced similar results. Statistical results for the
main metrics are summarized in Table II (mean with standard
error of the mean and four-way Kruskal-Wallis test). Since H5

entropy rate or power law slope led to very similar results to
those using ρ0 (which is much faster to compute), we will
drop them in what follows. Table III provides the two-way
Wilkoxon ranksum statistic test for several comparisons of the
three main metrics.

For completeness, we explored complexity applied on an
epoch by epoch basis, which allowed us to use all the data
from every subject (string length prior compression not being
dependent on number of epochs). Complexity per epoch was
averaged, leading to an overall increase in complexity but
slightly improved statistical performance (p < 3 × 10−5 four
group Kruskal-Wallis).

For comparison, we have also computed the slow-to-fast
frequency power ratio, normally defined as [(δ+ θ)/(α+ β)],
with δ [0.5,4 Hz), θ [4,8 Hz), α [8,13Hz), and β [13,32Hz) [7].
Here we computed it as the ratio of power in the interval [4,
8) Hz (θ) frequencies versus [8, 32) Hz (α+β), which we saw
gave much better performance than the canonical one (which
produced barely significant four-group p<0.05 Kruskal-Wallis
statistical test results).

Finally, we studied the impact of using a few channels
instead of the full set of 14. Complexity metrics remained
robust, indicating that relevant information for statistical dis-
crimination is available in each channel. For example, using
ρ0 with stacks generated from channels P4 and P7 led to a
statistically significant results in the four-group Kruskal-Wallis
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Fig. 4. Complexity and (log) slow-to-fast scores per subject using full-
band spectrograms. Complexity metric (ρ0 − 1 is shown for convenience)
per subject for each class (HCs in blue, RBDs in green, PDs in orange and
DLBs in red). The second one displays the log of slow-to-fast metric and the
last displays ρ0 vs log of the slow-to-fast (line fit: slope: slope:-3.03 ± 0.06,
r: -0.07, p-value: p < 0.5 ).

Fig. 5. Histograms and scatter plots for ρ0 complexity and slow-to-fast
metrics from full-band spectrograms. Scatter plots (top), and histograms
for ρ0 and slow-to-fast with each class (HCs in blue, RBDs in green, PDs in
orange and DLBs in red).

analysis (p < 2 × 10−4). The same analysis using the slow-
to-fast ratio metric was not significant.

A. The role of frequency in complexity and compressibility

To better understand changes in compressibility in PD and
DLB converter subject group data, we investigated the role

Fig. 6. Graph analysis using connectivity from algorithmic mutual
information (MAI, µ0) across frequency bands. Top: clustering coefficient
as a function of threshold for the different groups. Middle: corresponding
scatter plots. Bottom. Average graphs (threshold = 0.0425), with each node
representing a frequency bin (label in Hz). Note the increasing MAI within
low and within high bands in the second supergroup (PD+DLB).

of high versus low frequency bands in complexity. Shortly,
if only low frequency data (f < 14 Hz) is used to produce
binarized strings, complexity metrics fail to discriminate the
subject classes well. Similarly, restricting binarization and
analysis to either the β or γ band alone eliminated statistical
differences in ρ0 across the groups. If only high frequency data
is retained (f > 12 Hz), statistical performance (separability)
was partially maintained (p < 2 × 10−2 four-group Kruskal-
Wallis).

Next, using the concept of mutual algorithmic information
described above, we studied differences across groups from
graphs constructed using MAI across frequency bands (µ0)
using complex network theory [29], reasoning that there
may be an increase in mutual information across bands that
partly explains changes in compressibility of spectrograms (as
discussed further below). Table II provides the main statistics
for the mean frequency clustering coefficient—the cluster-
ing coefficient 〈Cf 〉 derived from the mutual algorithmic
information—, and Figure 6 provides the degree and clustering
coefficient as a function of threshold and the associated graph
for a representative threshold.

IV. DISCUSSION

Using a few minutes of eyes-closed resting EEG data to
generate spectrogram stacks, we have seen here that RBD
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Fig. 7. Statistics of MAI graphs (µ0) across frequency bands. Left: statistical differences between two groups at the edge level using per band binarization
to remove amplitude scale differences. Right. Associated graph displaying links with increased (red) or decreased (blue) scale-independent MAI connectivity
in the first group with respect to the second. In this particular case, we observe an increase in connectivity, especially in alpha+theta to gamma bands.

patients who later developed PD or DLB display diminished
complexity compared to HCs or to RBD patients who re-
mained disease-free. The results of our statistical analysis
are compelling, displaying significant differences between two
main super-groups: HCs and RBDs vs. PDs and DLBs. Data
from the latter group display lower complexity, entropy rates
and increased cross-frequency amplitude coupling. We have
also seen that as expected, LZW and entropy rate provide very
similar metrics (although LZW is much faster to compute).

These differences are remarkable as they reflect brain state
at the moment of idiopathic RBD diagnosis, years before
conversion to PD or DLB. The performance of these metrics
is slightly superior and complementary to those from power
analysis [6], [7], with which they are well aligned. Unlike in
previous studies in neurodegenerative diseases [19], [21], [31],
power ratio and complexity metrics were not correlated here
(we note that correlation of power metrics such as slow-to-fast
ratio and LZW or entropic complexity would not be entirely
surprising, since complexity analysis is based on compression
of spectrograms and EEG power imbalances that can lead
to more compressible spectrograms after binarization). In
addition to improving statistical separability, we note that the
global complexity metric provides a rather general detection
mechanism of regularities in the data. For example, imbalances
in power ratio across arbitrary different bands can lead to lower
complexity after data binarization. Complexity metrics can
detect such regularities in the data without the need to define
a priori which specific aspects to use (e.g., which bands to use
for a ratio computation). In this sense, they provide a rather
assumption-free analysis of the data which can then be further
dissected. Moreover, they remained robust even if applied (and
then averaged) epoch by epoch or using a few channels, which
could be useful for screening in clinical practice.

A. Analysis of sources of compressibility

As suggested above, even if complexity metrics detect
differences across groups, it is interesting to investigate where
specifically the relevant regularities lie in the data. They may
lie in the temporal series within bands and across epochs, sim-
ilarities across bands or across channels—that is, in frequency,

time and space. Where is the loss of complexity taking place
in patients with poor prognosis?

To find out in detail, we carried out tests reordering and
randomizing the data in different ways to detect which lead to
a loss of discrimination between the groups using complexity
metrics (see Figure 8 for a visual representation of the different
data re-shuffling methods). In general, all such tests led
to an overall increase in complexity, highlighting the fact
that compression exploits regularities across channels, across
time (within and across frames), across frequency and across
epochs, and that by randomizing the data it becomes harder
to compress (more complex). However, interestingly, not all
the above reshuffling methods led to a loss of discrimination
across groups.

We first randomized the frequency index at each time point
within each frame independently across frames. As expected,
this shuffling destroyed the discrimination performance of both
complexity and power ratio metrics. However, if the frequency
randomization was held constant within each spectrogram
frame (but randomized across frames), only the performance
of the power ratio metric (slow-to-fast) was severely affected.
Similarly, applying the same randomization procedure across
the temporal dimension (reshuffling time within each frame,
which leaves power ratio metrics unaffected, as they rely on
unordered time averages) increased overall complexity but
did not affect the discriminability of the complexity metric.
Thus, complexity metrics appear to rely on within-frame
temporal regularities across some frequencies (similar patterns
appearing in several frequencies or at several time points in
a frame), with highest complexity for HC and RBD, then
PD and finally DLB—irrespective of the actual shape of the
spectrum. Poor prognosis in RBD appears to be associated
with a decrease in cross-frequency, within-frame temporal
regularities in spectrograms. A partial explanation of the above
rests on the observation that binarization by the median of the
global stack can lead to simple sequences in some frequencies
bands which naturally tend to be far away from the global
median, i.e., low and high frequencies, which have power
typically either above or below the median. Frequency bands
whose values lie far from the median will tend to look simpler
(producing mostly chains of 0’s or 1’s). Thus, our complexity

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/200543doi: bioRxiv preprint 

https://doi.org/10.1101/200543
http://creativecommons.org/licenses/by-nd/4.0/


RUFFINI ET AL., IEEE TBME MANUSCRIPT, MARCH 2018 7

TABLE II
MEAN COMPLEXITY (ρ0), ENTROPY RATE (H5), FREQUENCY MUTUAL ALGORITHMIC INFORMATION MEAN CLUSTERING COEFFICIENT 〈Cf 〉 (FOR A

THRESHOLD OF 0.0425) AND SLOW-TO-FAST METRICS FOR EACH GROUP, WITH STANDARD ERROR OF THE MEAN (SEM). IN THE LAST ROW, THE
FOUR-GROUP KRUSKAL-WALLIS P-VALUE FOR EACH METRIC IS PROVIDED.

Group (N) ρ0 H5 〈Cf 〉 slow-to-fast
HC (70) 0.81 ± 0.02 0.72 ± 0.01 0.12 ± 0.01 0.21± 0.02
RBD (78) 0.78 ± 0.03 0.69 ± 0.03 0.18 ± 0.03 1.16 ± 0.96
PD (18) 0.68 ± 0.02 0.61 ± 0.02 0.29 ± 0.02 1.21 ± 0.36
DLB (12) 0.69 ± 0.02 0.62 ± 0.02 0.25 ± 0.02 1.20 ± 0.38
Kruskal-Wallis p-value 1× 10−4 2× 10−4 8× 10−8 1× 10−4

TABLE III
STATISTICS FOR COMPARISONS BETWEEN GROUPS FOR SELECTED METRICS: WILKOXON RANK-SUM STATISTIC SIGNIFICANCE TWO SIDED P-VALUE AND

THE AREA UNDER THE CURVE (AUC, IN PARENTHESIS).

Comparison ρ0 〈Cf 〉 slow-to-fast
HC vs. RBD 1× 10−1 (57%) 3× 10−3 (63%) 5× 10−3 (63%)
HC vs. PD 1× 10−4 (80%) 7× 10−7 (88%) 2× 10−2 (69%)
HC vs. DLB 3× 10−3 (77%) 7× 10−4 (82%) 9× 10−5 (85%)
RBD vs. PD 2× 10−2 (73%) 1× 10−4 (80%) 5× 10−1 (55%)
RBD vs. DLB 3× 10−2 (69%) 4× 10−2 (70%) 8× 10−3 (74%)
PD vs. DLB 6× 10−1 (56%) 3× 10−1 (62%) 4× 10−1 (59%)
HC vs. PD+DLB 7× 10−6 (78%) 2× 10−8 (86%) 6× 10−5 (75%)
HC vs. rest 3× 10−3 (63%) 6× 10−6 (69%) 2× 10−4 (67%)
HC+RBD vs. PD+DLB 2× 10−5 (75%) 2× 10−7 (80%) 1× 10−3 (69%)
RBD vs. PD+DLB 5× 10−4 (72%) 4× 10−5 (76%) 5× 10−2 (62%)

metric applied to global stacks in which either frequencies or
channels lie far from the median produces lower complexity
estimates. The complexity metric is insensitive as to where
these regularities are (in which frequency or channel)—it
detects events of similar symbol aggregation—chains of 0’s
or of 1’s.

A further test we carried out was to binarize each band
independently, which in essence removes differences in power
scale across bands since binarization then uses each band’s
median. This resulted in a loss of discriminability using
ρ0, indicating that imbalances in power across bands are an
important element in ρ0 complexity. However, as discussed
above, we observed that cross-frequeny MAI differences
across groups remained significant and discriminative despite
this manipulation (see, as an example, Figure 7). This implies
that there exist scale-independent cross-frequency (amplitude)
temporal regularities in the data (typically an increase in
regularity with disease progression).

Our results with regard to the role of high frequencies in
changes in complexity can be related to those in [31], where
multiscale entropy was employed as complexity metric to
study the differences in brain signal variability in PD patients
who developed dementia at follow-up with respect who did
not. The authors found significant changes, with lower signal
variability at timescales sensitive to higher frequencies (i.e.,
more compressibility at higher frequencies) in patients that
developed dementia than those who did not or in controls.
We do note, however, that multiscale entropy and LZW (or
entropy rate) estimate complexity in different ways.

Finally, one can ask how much does stack compression
benefit from having access to all frames from a subject as
opposed to compressing each frame independently. The answer

Fig. 8. Frame (intra-epoch) spectrogram shuffling. From left to right:
original, temporally shuffled, frequency and fully shuffled spectrograms. A
horizontal and a vertical line has been added for reference.

is that PD and DLB data benefit the most (with a ratio of per
frame vs. per stack ρ0 of 1.26). That is, using the full stack data
improves compression by 26% in these groups, compared to
22 and 23% in HC and RBDs (± 1%, p <6×10−5 four group
Kruskal-Wallis). There are longer term persistent regularities
in the PD and DLB groups than in HC or RBD.

V. CONCLUSION

In [11] it is hypothesized that while a system capable of
universal computation may produce many different types of
patterns, both simple (e.g., constant or repetitive) and complex,
a healthy brain engaging in modeling and prediction of com-
plex input-output strings will produce complex-looking, highly
entropic data. Such apparent complexity is what we actually
measure when using entropy rate and LZW compression of
electrophysiological or metabolic brain data [13]–[17]. First
order entropy, entropy rate or LZW provide (poor) upper
bounds on algorithmic complexity.

From our results with this dataset we conclude that LZW
and, equivalently, entropy rate highlight losses of estimated
algorithmic complexity in spectrograms of RBD patients likely
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to evolve into PD or DLB compared to those that remained in
RBD or to healthy controls. Our full band complexity scores
are generally more discriminative than spectral ratios, do not
require a pre-selection of the spectral bands to study, and
remain robust even when using a few channels. The loss of
complexity takes place both in low and high frequencies, and is
partly due to increased mutual information within and across
bands. These results indicate that information differentiation
(global complexity) is a potentially relevant metric for the
prognosis of RBD, and are in line with current views of the
brain stemming from information theory connecting theories
of cognition and consciousness with the phenomenology of
brain health, and in particular, neurodegeneration [11], [32].
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