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Abstract 

In the first part of this thesis, building on ideas of R. Pollack and 

G. Stevens, we present an efficient algorithm for integrating certain 

rigid analytis functions attached to automorphic forms on definite 

quaternion algebras. We then apply these methods, in conjunction 

with the Jacquet-Langlands correspondence and the uniformization 

theorem of Cerednik-Drinfeld, to the computation p-adic periods of 

and Heegner points on elliptic curves defined over Q and Q( VS) 
which are uniforrnized by Shimura curves. In part two, we give a 

new proof of the result, originally proved in unpublished work of 

Glenn Stevens [27], that every modular eigensymbol of non-critical 

slope lifts uniquely to a rigid-analytic distribution-valued eigensym­

bol. The proof is algorithmic and facilita tes the efficient calculation 

of certain p-adic integrals. This has applications to the calculation 

of Stark-Heegner points on elliptic curves defined over Q as weIl as 

over certain imaginary quadratic fields. 





Resumé 

Dans la première partie de cette thèse, nous donnons un algo­

rithme pour intégrer certaines fonctions rigide-analytiques attachées 

à une forme automorphe sur une algèbre definie de quaternions. 

En utilisant la correspondence de Jacquet-Langlands et le théorème 

de Cerednik et Drinfeld, nous appliquons cet algorithme au calcul 

des points de Heegner sur des' courbes élliptiques définies sur Q et 

sur Q(.J5) qui sont parametrées par des courbes de Shimura. En 

deuxième lieu, nous présentons une nouvelle preuve d'un théorème 

de G. Stevens ([27], non-publié) stipulant que chaque symbole mod­

ulaire, vecteur propre pour les opérateurs de Hecke, se relève unique­

ment en un symbole modulaire à valeurs dans un module de distrib­

utions. Notre démontsration est algorithmique et s'applique au cal­

cul des points de Stark-Heegner sur des courbes elliptiques défillies 

sur Q ainsi que sur certains corps quadratiques imaginaires. 

iii 
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Introduction 

This thesis is composed of two papers whose underlying theme is 

the connection between Heegner points and rigid analytic modular 

forms. 

The goal of the first paper is the development of a polynomial­

time algorithm for computing Heegner points on elliptic curves over 

Q, arising from certain Shimura curve parametrizations. Let E be an 

elliptic curve over Q admitting a uniformization 

(1) 

by the Jacobian variety J of a Shimura curve X. The Heegner points 

under consideration are the images under cp of CM divisors of degree 

o on X. (See Chapter 1 for a more detailed exposition.) Due to the 

lack of cusps on X, or equivalently, to the fact that modular forms 

for groups arising from indefinite quaternion algebras to not admit 

q-expansions, we know of no explicit formula for the uniformization 

cp in terms of classical (i.e. archimedian) analysis. This is in stark con­

trast to the case of parametrizations by the classical modular curves 

Xo(N). 

However, the lack of q-expansions in the Shimura curve case is in 

sorne sense compensated for by a p-adic uniformization 

ix 



x INTRODUCTION 

of X, where S'.Jp = JlDI(Cp) - JlDI(Qp) is the so-called p-adic upper half 

plane. The existence of this uniformization was proved (indepen­

dently, using different methods) by Cerednik [4] and Drinfeld [14]. 

In [1], Bertolini and Darmon (developing work of Gross [19]) use 

Drinfeld's moduli theoretic construction of 7f to identify the preim­

ages in S'.Jp of the CM points on X(Cp ) with fixed points of the action 

of an algebraic torus in GL2 (Qp) arising from a quadratic order in a 

definite quaternion algebra; see Chapter 1, § 7. Using ideas developed 

independently by Iovita and Spiess, the above work is reinterpreted 

in [3] to give a formula for the Heegner points on E in terms of p-adic 

integration. 

We are able to give an algorithm, running in polynomial time, 

for evaluating this p-adic integral formula. The key to this algorithm 

is a method devised by Pollack and Stevens [22] for explicitly lifting 

standard modular symbols to overconvergent ones; see Chapter 2,§3. 

We successfully adapt their method to our situation, where the role 

of the modular symbols is played by automorphic forms on definite 

quaternion algebras; see Chapter 1, § 7. 

The crucial step in the algorithm of Pollack and Stevens for lifting 

a modular eigensymbolsymbol 'ljJ to an overconvergent eigensymbol 

\Ir is the explicit construction of an initial lift of 'ljJ to an overconvergent 

not-necessarily-eigen-symbol \Ira. This is a nontrivial process involv­

ing a careful analysis of the geometry of the modular curve Xa(pN) 

which is necessary in order to ensure that certain relations (mirroring 

the phenomenon of certain unimodular paths on S'.J collapsing to 0 in 

Hl (Xa(pN), Z)) are satisfied by \Ira. In our Shimura curve situation, 

however, the automorphic forms in question are really just functions 

on the finite set of right ideal classes of a certain quaternion order. 
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Consequently, the difficulties arising in producing an initial lift do 

not arise for us. More conceptually, ideas of Gross [19] lead to the 

identification of the above mentioned set of right ideal classes with 

the set of connected components of a certain conic, Le. with an Ho. 

Therefore, there are no nontrivial coboundary relations to be satis­

fied. 

When coding and testing our algorithm, we realized that it was 

not necessary to compute the initial lift Wo at aIl. This led us to ex­

amine the work of Pollack and Stevens more closely to determine 

whether this involved computation could be dispensed with in the 

modular symbol situation as weIl. (Our interest in such a possibility 

was mainly due to potential applications to the calculation of Stark­

Heegner points - see below.) 

We realized that the necessity of computing the initial lift Wo as 

Pollack and Stevens did was an artifact of their initial purpose in de­

signing their method - the investigation of the p-adic L-function(s) 

associated to a modular form of critical slope at p, Le. a modular 

eigenform j E Sk+2(ro(pN)) suchthat the ordp ap(f) = k + l, where 

jlUp = ap(f)f. For our applications of interest, however, the modu­

lar forms j which arise all have weight 2 and satisfy ap(f) = ±l. 

In the second paper, we give an algorithm for lifting a modular 

symbol W, of arbitrary weight and non-critical slope, to a rigid ana­

lytic (and therefore overconvergent) modular symbol W which does 

not necessitate the construction of an initial lift wo. This algorithm 

is based on a new proof of the result, originally due to Stevens [27], 

that a modular symbol of noncritical slope lifts uniquely to a rigid 

analytic modular symbol. 
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As mentioned above, our motivation for pursuing the work of 

this second paper was to facilite of the computation of algebraie 

points on elliptie curves, in partieular, Stark-Heegner points. These 

points, first constructed by Darmon in [6], are local points on el­

liptie curves whieh are conjecturally defined over global class fields 

of reaZ quadratie fields. Otherwise, though, they are believed to be­

have like classieal Heegner points. In [10], Darmon and Pollack give 

an efficient algorithm, based on [22], for computing Stark-Heegner 

points, thereby presenting convincing evidence for the conjectures 

of [7]. The results of our second paper serve to simplify the approach 

of [10], both technieally and conceptually. 

Moreover, since the method described in Chapter 2 is "geometry 

free", it to generalizes to situations where the geometry involved is 

more complicated. In [28], Trifkovié has adapted these ideas to work 

with modular symbols constructed from certain automorphic forms 

on GL2 of an imaginary quadratie field F, and has implemented his 

generalization in PARI to compute certain Stark-Heegner points on 

elliptie curves defined over F. In his situation, the automorphie 

forms in question manifest themselves geometrieally as harmonie 

forms on certain real-analytie threefolds. As the geometry of these 

threefolds is quite complicated compared to that of modular curves, 

our" geometry free" method proves quite helpfuL 

This the sis is organized as follows. Chapter 1 contains the text 

of the first, with several complements following as appendices. The 

second paper is presented in Chapter 2. Chapter 3 consists of a dis­

cussion of the results of the first two chapters and raises several nat­

ural questions for further investigation. 



CHAPTER 1 

Heegner point computations via 

numerical p-adic integration 

1. Heegner points on elliptie eurves 

Let E/Q be an elliptic curve of conductor N. Then by the work 

of Wiles and his school, there exists a dominant morphism defined 

over Q, 

q?N: Xo(N) ---4 E, 

arising from the modularity of E. Let A ---4 A' be an isogeny of el­

liptic curves with complex multiplication (henceforth, CM) by the 

same imaginary quadratic order 0 C K. Then by the classical theory 

of complex multiplication, the point P = (A ---4 A') represents an el­

ement of Xo(N)(Ho), where Ho is the ring class field attached to the 

order o. As q?N is defined over Q, the point q?N(P) belongs to E(Ho). 

Such a point on E is called a (classical) Heegner point. These points 

are of significant interest. In particular, the proof of the conjecture 

of Birch and Swinnerton-Dyer for elliptic curves over Q of analytic 

rank at most one (due to Gross-Zagier and Kolyvagin) depends es­

sentially on their properties. 

These classical Heegner points may be efficiently computed in 

practice. Let JE E S2(N) be the normalized newform attached to E 

and let 7 E .fj represent the point P, where.fj is the complex upper 

1 



2 1. p-ADIC HEEGNER POINT COMPUTATIONS 

half plane. Then 

where 

• W : C ---t CI A 9:! E(C) is the Weierstrass uniformization of 

E(C), and 

• an(fE) is the n-th Fourier coefficient of JE. 

The quantities ap(E) may be computed by counting points on E 

modulo p. The existence of a point P = (A ---t A') on Xo(N) where 

both A and A' have CM by an order in K implies the validity of the 

classical Heegner hypothesis: that aIl primes I! dividing N are split in 

K. Due to the theoretical importance of classical Heegner points, it 

is natural to desire an analogous systematic construction of algebraic 

points defined over class fields of imaginary quadratic fields which 

do not necessarily satisfy this stringent hypothesis, as weIl as meth­

ods to effectively compute these points in practice. Such a general­

ization requires admitting uniformizations of E by certain Shimura 

curves. 

Assume that N is squarefree and N = N+ N- is factorization of 

N such that N- has an even number of prime factors. Let C be the 

indefinite quaternion Q-algebra ramified precisely at the primes di­

viding N- and let S be an Eichler Z-order in C of level N+. (For 

basic definitions and terminology concerning quaternion algebras, 

see [31].) Fix in identification ioo of C@lR with M2 (lR) and let fN+,N­

denote the image under ioo of the group of units in S of reduced 

norm 1. Then f N+ ,N- acts discontinuously on S'.J with compact quo­

tient XN+,N- (C). 
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By Shimura's the ory [24], the Riemann surface XN+,N- (te) has 

a canonical model XN+,N- over Q. This is proved by interpreting 

X N+ ,N- as a moduli space for certain abelian surfaces. Consequently, 

there is a natural notion of a "CM-point" on XN+,N-. Let SJ( 0) C SJ 

be those points whose images on XN+,N- have CM by o. Then SJ(o) 

is fN+,N--stable and the quotient CM(o) ,:= fN+,N- \SJ(o) is a finite 

subset of XN+,N-(Ho). The set CM(o) is nonempty if and only if a11 

rational primes C dividing N+ (resp. N-) are split (resp. inert) in 

the fraction field K of o. We dub this condition the Shimura-Heegner 

hypothesis. 

Let JN+,N- denote the Jacobian variety of XN+,N-. By the mod­

ularity theorem for elliptic curves over Q together with the Jacquet­

Langlands correspondence, there exists a dominant morphism 

(3) 

defined over Q. (See [7, Ch. 4] for a discussion of this point.) The uni­

formization, <PN+,N- maps the set CM(o) into E(Ho). To emphasize 

their origin, we sha11 refer to such points on E as Shimura-Heegner 

points. 

Shimura formulated a reciprocity law which gives an alternate 

description of the Galois action on Shimura-Heegner points. Sup­

pose that K satisfies the Shimura-Heegner hypothesis. He showed 

that there is a natural free action of Pic 0 on CM( 0) with 2w (N) orbits 

(w(N) = number of prime factors of N) such that for 

wehave 
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where (-, Ho/ K) : Pic 0 ....... Gal Ho/ K is the reciprocity map of class 

field the ory. 

The phenomenon of Shimura curves uniformizing elliptic curves 

generalizes to certain elliptic curves defined over totally real fields. 

For simplicity, let F /Q be a real quadratic field with infinite places 

0"1 and 0"2 and let 13 be a finite prime of F. Let C be the quaternion 

F-algebra ramified at 13 and 0"1 and let 5 be a maximal order of C. 

Fix an isomorphism LU2 : C Q9u2 IR ....... M2 (lR) and let r be the image 

under LU2 of the group of units in 5 with reduced norm 1. Then as 

above, the quotient r\5J is a compact Riemann surface which admits 

a description as the complex points of a Shimura curve X, as well as 

a corresponding CM theory. 

Let f E 52 (13) be a Hilbert modular form. Then the Jacquet­

Langlands correspondence together with the appropriate analog of 

the Eichler-Shimura construction asserts the existence of an elliptic 

curve E / F of conductor 13 and a uniformization J ....... E, where J 

is the Jacobian of X, such that the L-functions of E and f match. 

The images of CM divisors on X in E, also called Shimura-Heegner 

points, satisfy a reciprocity law analogous to (4). Zhang [32L gen­

eralizing the work of Gross-Zagier, has derived formulas relating 

heights of these Shimura-Heegner points to special values of deriv­

atives of L-functions. 

Unfortunately, since modular forms on non-split quaternion al­

gebras do not admit q-expansions, there is no known explicit for­

mula for the map (3) analogous to (2) which may be exploited to 

compute these important Shimura-Heegner points in practice. Our 

goal in this work is to describe and implement a p-adic analytic algo­

rithm for performing such computations. The existence of a general 
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algorithm for performing such Heegner point computations using 

only classical (i.e. archimedian) analysis remains an open problem, 

although sorne progress has been made by N. Elkies [15]. 

This paper is organized as follows: In §§2-5 we introduce p-adic 

automorphic forms on definite quaternion algebras and adapt ide as 

of Pollack and Stevens to develop an algorithm for lifting such forms 

to rigid analytic automorphic ones (see §4 for definitions). In §§6-7, 

we discuss (following [1]) how one may use the Cerednik-Drinfeld 

theorem on p-adic uniformization of Shimura curves to give a p-adic 

integral formula for the Shimura-Heegner points introduced above. 

In §8 we show that the lifting algorithrn of §5 may be exploited to 

evaluate this formula efficiently and to high precision. For sirnplicity, 

we will develop the above mentioned theory in the situation where 

the base field is Q, although an analogous theory exists for totally 

real base fields. We have irnplemented these methods in Magma to 

compute Shirnura-Heegner points on 

(1) elliptic curves defined over Q with conductor 2p, where p is 

an odd prime, 

(2) elliptic curves defined over Q( VS) with degree one prime 

conductor. 

Sample computations are given in §9. 

This work owes much to the ideas of Pollack and Stevens, and the 

author wishes to thank them for providing hirn with a draft of [22]. 

This paper is part of the author's PhD thesis [18], written at McGill 

University under the supervision of Prof. Henri Darmon, whom the 

author would like to gratefully acknowledge for his expert guidance, 

advice, and encouragement. 
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2. p-adic integration 

Let p be a prime, let T be a complete subring of Cp and let X be a 

compact, totally disconnected topological space. 

DEFINITION 1. A T -valued distribution on X is a finitely additive 

T-valued function on the compact-open subsets of X. If the values 

of a distribution are p-adically bounded, then we calI it a measure. 

Let D(X, T) denote the set of T-valued measures on X and let 

Do(X, T) denote the subspace of measures f.1 of total measure zero. 

If f.1 is in D (X, T) and j : X -- T is locally constant, the symbol 

Ix j(x)df.1(x) can be defined in the obvious way. To ease notation, 

we will sometimes write f.1(J) instead. If f.1 is a measure, then we may 

extend f.1 to a linear functional on the space e(X, T) of continuous T­

valued functions on X. (For details, see [17, §1.2].) 

Suppose now that the distribution f.1 on X takes actually values 

in Z (implying, in particular, that f.1 is a measure). If j = L:i ailEi 

is a locally constant function on X, we may define the multiplicative 

integral of j against f.1 by the formula 

lx j(x)df.1(x) = II ar(Ei
) . 

• 
By the boundedness of f.1, the multiplicative integral extends to a 

group homomorphism from e(X, T*) into the group of units T* of 

T. 

Let 5)p = ]pl(Cp) - ]pl (Qp) be the p-adic upper half-plane, let f.1. be 

a Cp-valued measure on ]Pl(Qp) and choose points T, T' E 5)po We 

define a p-adic line integral by the formula 

(5) 17

1 

W/l- = { log (x - T') df.1(X), 
7 Ill"l(Qp) X - T 
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where "log" denote the branch of the p-adic logarithm satistying 

log p = O. If I-t takes values in Z, we may define a multiplicative 

analog of (5) above by posing 

(6) 

Noting the relation 

we see that (6) is actually a refinement of (5) as we avoid the choice 

of a branch of the p-adic logarithm. For motivation behind the for­

malism of p-adic line integration, see [7, Ch. 6]. 

3. Rigid analytic distributions 

In this section, we consider p-adic integration over Zp. The prob­

lem of computing an integral of the form 

(7) 

to an accuracy of p-M is of exponential complexity, where the size 

of the problem is defined to be M (cf. [9]). Fortunately, many of the 

functions v(x) which arise in practice are of a special type. Let 

(8) Arig = {v(x) = Lanxn : an E Qp, an -+ 0 as n -+ oo}. 
n~O 

Elements of Arig are rigid analytic functions on the closed unit disk 

in Cp which are defined over Qp. 

DEFINITION 2. Let Drig be the continuous dual of A. Elements of 

Drig are called rigid analytic distributions. 
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Let M E Drig. Then by the continuity of M, the problem of comput­

ing (7) for v E Arig is reduced to the calculation of the moments 

A polynomial time algorithm for calculating such moments was re­

cently discovered by R. Pollack and G. Stevens [22] in the situa­

tion where the measure M is that attached to a cuspidal eigenform 

form on fo(N) as in [20]. Although the main goal of their theory 

was the study of normalized eigenforms 9 of weight k + 2 satis­

fying ordp ap(g) = k + 1 (a so-called critical slope eigenform) and 

their p-adic L-functions, we are interested case ordp ap(g) = 0, the so­

called ordinary case. The main objects of study in [22] are modular 

symbols. We will develop analogs of their results where the role of 

the modular symbols are played by automorphic forms on definite 

quaternion algebras (see §4). 

Let D~ig be the subset of D rig consisting of those distributions with 

moments in Zp. The space D~ig admits a useful filtration, first intro­

duced by Pollack and Stevens in [22]. Define 

P ND O _ { DO. (j) N-j'71 
rig - M E rig' M x E P /Up , j=O, ... ,N-l}, N~1. 

Nowlet 

We call A ND~ig the N -th approximation to the module D~ig, following 

the terminology of [22]. 
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4. Automorphic fonns on definite quaternion algebras 

Let N, N+, and N- be as in § 1 and assume the existence of a 

prime p dividing N-. Let B be the definite quaternion algebra ram­

ified precisely at the infinite place of Q together with the primes 

dividing N- /p, and let R be an Eichler Z-order in B of level pN+. 

Fix an identification Lp of Bp := B ® Qp with M2 (Qp) under which 

Rp := R ® Zp corresponds to 

Let Q be the finite adèles of Q and let Z = ne Ze be the profinite 

completion of Z. Let Ê = B ®Q Q and R = R ®z Z be the adelizations 

of Band R, respectively. 

Define the semigroup 

Eo(p) ~ { (: :) E M,(z,,) : pic, dE Z;, and ad - bc '" 0 } 

Let A be a left L:o(p)-module. 

DEFINITION 3. An automorphic form on B of level R taking val­

ues in A is a map f : B*\Ê* -> A such that upf(zbu) = f(b) for aIl 

u E R* and z E Q*, where U p denotes the p-component of u. 

We denote the set of such automorphic forms by S(B, R; A). 

The double coset space B*\Ê* / R* is in bijection with the set of 

right ideal classes of the order R, which is finite of cardinality h, say. 

Writing 

h 

(10) Ê* = Il B*biR*, 
k=l 
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we see that an automorphic form f E S(B, R; A) is completely deter­

mined by the finite sequence (J(b1 ), . .. , f(bh )). 

View Bp as a subring of Ê via the natural inclusion jp. By the 

strong approximation theorem, Ê* = B* B;R*, so jp induces a bijection 

Letting S(Bp, Hp; A) be the collection of functions <p : R[1/p]*\Bp --+ A 

such that u<p(zbu) = f(b) for aIl uER; and z E Q;, it is easy to see 

thatjp induces anisomorphismof S(B, R; A) withS(Bp, Rp ; A). Since 

it shall be easier for us to work locally at p rather that adelically, we 

will work mostly with S(Bp , Rp ; A). 

The group S(Bp , Rp ; A) is endowed with the action of a Hecke 

operator Up given by 

(11) (Up<p)(b) = ~((p a) <p)(b) = ~ <p(b (p a)). 
a=O 0 1 a=O 0 1 

When the action of ~o(p) is trivial, an Atkin-Lehner involution Wp 

also acts on S(Bp , Hp; A) by the rule 

p-l (0 1) 
Wp<p(b) = ~ <p(b pO)' 

Other Hecke opera tors Tf. for R f N may also be defined using stan­

dard adelic formluas (see [19], for instance). 

Automorphic forms whose coefficient module is equipped with 

the trivial ~o(p)-action "are" measures on JP'l(Qp): Let 23 be the set 

of balls in JPl(Qp), on which GL2(Qp) acts transitively from the left 

inducing an identification of GL2(Qp)/fo(pZp)Q; with 23. Therefore, 

a form <p E S(Bp, Rp; Cp) may be viewed as a R[1/p]*-invariant func­

tion on the balls in JP'l(Qp). With this interpretation, the value of 
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UpCP on a baIl b is the SUffi of the values cp(b(i») where the balls b(i), 

i = 1, ... ,p, form the standard subdivision of the baIl b. The value 

of Wpcp on b is simply the value of cp on its complement ]P>l(Qp) - b. 

Suppose that Up'P = - Wp'P = ap = ±l. Define a function f1cp on 13 by 

where 

(12) sign 'V = aordp det 'Y 
pl P • 

Then f1cp is a 9-invariant measure on ]P>l(Qp) of total measure zero, 

where 9 := ker(signp : R[ljp]* -> {±1}). Note that if ap = 1, then 

. f1cp = 'P and 9 = R[ljp]*. 

The left action of L:o(p) on ]P>l(Qp) induces a right action of L:o(p) 

on Arig. The space D rig inherits a left action of L:o(p) by duality. The 

spaces D~ig and FND~ig, N :?: 1 are aIl easily seen to be L:o(p)-stable. 

Therefore, the approximation modules ANDrig inherit a L:o(p)-action. 

Consequently, these modules are all valid coefficient groups for p­

adic automorphic forms. We shall refer to elements of S(Bp , R p ; D rig ) 

as rigid analytic automorphic forms. 

5. Lifting Up-eigenforms 

5.1. Existence and uniqueness of lifts. Define the specialization 

map 

by the rule p(<I»(b) = <I>(b)(lzp)' It is easily verified that p is U'p­

equivariant. Let cp E S( Bp, Rp; Qp) be a Up-eigenform with eigen­

value ap = ±1 and let f1cp be the associated measure on ]P>l(Qp) as 

constructed in §4. The following proposition should be viewed as an 
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analog of the containment of classical modular forms in the space of 

p-adic modular forms. 

PROPOSITION 4. The form <p lifts canonically with respect to p to a 

Up-eigenform cp satisfying cp(l) = /-l'P' 

PROOF. Define \li : Bp -; D(lP1(Qp), Qp) by \lI(b) = (signpb)b-1<p 

where signpb is as defined in (12), and let cp : B; -; Drig be given 

by cp(b) = \lI(b)lzp ' The conclusions of the proposition are now easily 

verified. 0 

The next proposition forms the basis of our algorithm. 

PROPOSITION 5. Let \li belong to ker p n S(Bp, Rp; FND~ig)' Then 

Up\ll E ker p n S(Bp, Rp; FN+1Drig). 

PROOF. By the Up-equivariance of p, its kernel is certainly Up -

stable. For 1 ~ n ~ N, we have 

Note that the k = 0 term in the above SUffi vanishes as \li E ker p. If 

1 ~ k ~ n and 0 ~ a ~ p - 1, then 

(~)p'r'w (b (~ :)) (x') E pV-'71p ~ pN 71p C pN+l-n71p• 

The result follows. 0 
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Let <P E S(Bp , Rp ; Drig) be the lift of i.p constructed in Proposi­

tion 4. Since the doub1e-coset space R[l/p]*\Bp/ Hp is finite, we may 

assume without 10ss of generality that all moments invo1ved are ac­

tually in Zp Qust multip1y i.p, <P, and <Po by an suitab1y chosen sca1ar 

cE Qp). Let <pN be the natura1 image of <P in S(Bp,Hp; AND~ig)' 

COROLLARY 6. 

(1) (a) <p N is the unique Up-eigenform in S(Bp, Rp; AND~ig) lifting 

i.p. 

(b) If <P~ is any element ofS(Bp, Rp; AND~ig) lifting i.p, then 

(apUp)N<p~ = <P. 

(2) (a) <p is the unique Up-eigenform in S(Bp, Rp; Drig ) satisfying 

p( <p) = i.p. 

(b) If <Po is any element ofS(Bp, Rp; Drig ) satisfying p(<po) = i.p, 

then the sequence {(apUp)n<po} converges to <P. 

PROOF. Statement (2) follows from statement (1) and the relation 

S(Bp,Rp;Drig ) = (~S(Bp,Hp;AND~ig)) ®zp Qp. 
N 

By the above proposition, we have 

Statement (1) now follows easily. o 

The unicity result 2( a) of the corollary may viewed as an analog of 

the assertion that ordinary p-adic modular eigenforms are classical. 

By Corollary 6, in order to approximate the moments of <p(b) 

for b E B;, it suffices to produce an initial approximation <Po to 

<p and then to apply the Up-operator repeated1y until the desired 
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accuracy is achieved. Such an initial approximation may be con­

structed explicitly as follows: Using the decomposition (10), let Sk = 

R; n bk1 R[ljp]*bk , which is finite as it is contained in bk1 R*bk (the 

group of units of a Z-order in a definite quaternion algebra over Q is 

finite). For z E Zp, let bz E D rig is the Dirac distribution centered at 

z, i.e. bz(J) = f(z). 

PROPOSITION 7. There is a unique element <I>o ofS(Bp , Rp ; Drig ) sat­

isfying 

(13) 1 ~ k ~ h. 

Its moments are given by 

<I>(bk)(xn) = ~~: L z~, where Zv = v· O. 
VESk 

(By v . 0 we mean the image of v in GL2(Qp) acting as a fractional 

linear transformation on 0 E JP'l(Qp).) 

PROOF. To see that the formula (13) gives a well defined element 

of S(Bp , Hp; Drig ), notice that if Îbku = bkt then v varies over Sk if and 

only if vu does. The uniqueness is clear. o 

5.2. Computing the lifts in practice. We now turn to the prob­

lem of computing <I>N in practice. Representing an element of the 

space S(Bp , Rp ; AND~ig) is straight-forward. First observe that the 

correspondence 

for f-t E D~ig descends to an isomorphism 
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Therefore, an element of AND~ig may be stored simply as an N -tuple 

of integers. 

The I:o (p )-action on A NDrig may be computed as follows: Let p, E 

D rig and let 1/ be any lift of p, to D~ig' For any u = (~ â) E I:o and n ~ 

0, the rational function (~:t~)n may be expanded in a Taylor series 

2: ŒmX
m

, and the moments of UI/ may be computed by "integrating 

term by term": 

Moreover, by the stability of FND~ig under I:o(p), the image of UI/ is 

up,. Therefore, the N -tuple representing up, may be computed from 

that representing p,. 

Recall the double-cos et decomposition (10). Then since an auto­

morphic form 'IF E S(Bp , Hp; AND~ig) is completely determined by 

'IF(b1), ... , 'IF (bh ), itmaybe stored simply as a sequence of h N-tuples 

of integers. Assuming knowledge of the values of cp, the moments of 

the initial lift épb' of cp constructed explicitly in Proposition 7 may be 

computed and thus épb' may be stored as a sequence of N -tuples as 

described above. 

It remains to describe how to ob tain, for a form 'IF as above, the 

data 

from the corresponding data for 'IF. For 1 ~ k ~ h and 0 ~ a ~ p - 1, 

findelements,(k, a) E R[l/p]*,u(k,a) E R;, andj(k, a) E {O, ... ,p-

1} such that 

(14) 
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and let Ç-(k, a) = (b n u(k, at1
• Then Upw is given by the formula 

p-l 

(15) (UpW)(bk) = L Ç-(k, a)W(bj(k,a)). 
a=O 

The measures W(bj(k,a)) are assumed to be known and the action of 

the Ç-(k, a) on them may be computed as described above. Thus, an 

algorithm for computing <I>N from <p may proceed as follows: 

(1) Compute the elements "((k, a), j(k, a), and u(k, a) as in (14). 

(2) Compute an initial lift <I>[/ of <p to S(Bp , Hp; ANDrig) as in 

Proposition 7. 

(3) Compute (apUp)N <I>[/. By Corollary 6, the result is <I>N. 

6. p-adic uniformization 

Let r~~,N- denote the image under ~p of the elements of R[l/p] of 

reduced norm 1. The group r~~ ,N- acts discontinuously on SJp and 

the quotient r~~ ,N- \SJp , has the structure of a rigid analytic curve 

x~l ,N-' The following result, due to Cerednik and Drinfeld, con­

nects this rigid variety with the Shimura curves introduced in § 1. 

THEO REM 8 ([4,14]). There is a canonical rigid analytic isomorphism 

Let n denote the global sections of the sheaf of rigid analytic dif­

ferential1-forms on XjJ'l,N-' 

PROPOSITION 9. The spaces n and S(Bp, Hp; Cp) are naturally iso­

morphic as Hecke-modules. 
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(A p-adic residue map and Teitelbaum's p-adic Poisson integral give 

the mutually inverse isomorphisms proving the theorem. For de­

tails, see [7, Ch. 5].) This proposition, together with the Jacquet­

Langlands correspondence as invoked in §1, give the following corol­

lary: 

COROLLARY 10. Choosing an isomorphism of C with Cp! there is an 

isomorphism of Hecke-modules 

REMARK 11. This result was originally proved by Eichler using 

his trace formula. 

Let E /Q be an elliptic curve of conductor N and JE the associated 

newform. Then by Corollary 10, there is a corresponding form!.pE E 

S(Bp , Rp ; Cp) with the same Hecke-eigenvalues as JE. In fact, we 

may (and do) assume that !.p takes values in Z. Let ME = M'PE be the 

associated measure on JPl(Qp) as constructed in §4. 

Consider the map \li : Divo np ~ Cp given by 

[TI 
w(r' - r) = Ir WME • 

Let Tate: C; ~ E(Cp ) be the Tate parametrization of E and recall 

the map <I> N+ ,N- of (3). Assume that E is the strong Weil curve for (3) 

at the cost of replacing it by an isogenous curve. 

PROPOSITION 12. The following diagram is commutative: 

DivO np 
\II 

C* ~ 
P 

CD 1 1 Tate 

JN+,N- (Cp) ~ E(Cp ) 
iI>N+,N-

For a discussion of this result, see [1]. 
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7. A p-adic integral formula for Heegner points 

Let K be an imaginary quadratic field satisfying the Shimura­

Heegner hypothesis and 0 be an order in K of conductor prime to 

N. Let us call an embedding 'IjJ of o[l/p] into R[l/p] optimal if it does 

not extend to an embedding of a larger Z[l/p]-order of K. Denote 

by ëp(o) the set of all such. The Shimura-Heegner hypothesis guar­

antees that ëp(o) is nonempty. For each 'IjJ E ëp(o), the order o[l/p] 

acts on.f)p via the composite "p 0 'IjJ with a unique fixed point T1/; E .f)p 

satisfying 

for all Œ E o[l/p]. Let .f)p(o) be the set of all such T1/;, and let CMp(o) 

be its image in X;:l,N-. The set CMp(o) is endowed with a natural 

action of Pic 0 = Pic o[l/p] (see [19]). The sets CM(o) and CMp(o) are 

related through Theorem 8: 

THEOREM 13 ([l, Proposition 4.15]). The map CD restricts to a Pic 0-

equivariant bijection from CMp( 0) onto CM( 0). 

Combining this theorem with Proposition 12, we see that module 

of Shimura-Heegner points on E defined over the ring class field 

attached to 0 is generated by points of the form Tate ( J( T, T')), T, T' E 

.f)p(O), where 

(16) 

8. Computing the integrals 

Let <I> E be the eigenlift to S( Bp, Rp; Drig ) of the Cp-valued auto­

morphic form 'PE attached to E, as in §6. The computation of the 
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integral (16) to precision p-M may be reduced to that of a certain 

approximation cplf" E S(Bp , Rp ; AND~ig) to cp E. 

It is easy to see that the points of 5Jp ( 0) actually lie in the subset 

I[l>1(Qp2) - I[l>l(Qp) of 5Jp1 where Qp2 is the quadratic unramified ex­

tension of Qp. Let 5Jg be the set of elements l' in 5Jp whose image 

under the natural reduction map I[l>l(Cp) ~ I[l>l(lFp) does not belong 

to JP'l(IFp ). We assume, without loss of generality, that: 

(1) l' and T' reduce to elements of 5Jg. 
(2) there exists an element i E R[l/p] such that i 2 = -1. 

By assumption 2., we may choose the isomorphism /"p in such a way 

that /"p(i) = (~cl). (Instead of assuming the existence of such an i, 

one could work with the two measures /-tE and (~ (} ) /-tE, and thus 

no generality is lost.) 

By the first assumption, J( T, T') lies in Z;2 and its Teichmüller 

representative is the same as that of 

p-l II (: ~ ~) ~E(a+pZp) , 
a=û 

an easily computed quantity (actually, we need oruy compute it mod­

ulo p). Therefore, it suffices to compute log J( T, T'). 

Write 

log J(T, T') = L log Ja(T, T'), where 
aElP'l(lFp ) 

1 X-T 
Ja(T, T') = --,d/-tE(X), 

ha X - l' 
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and ha is the standard residue disk around a. Let 

Joo(T) = [ (1 + Tx)dJ-lE(X) , 
.ho 

Ja(T) = [ (x - T)dJ-lE{x), 0 SaS p - 1. 
.ha 

Then for each a E JP>l(lFp ), we have 

(To prove the above for a = 00, we use assumption 2.) 

Straightforward manipulations (see [10, §1.3]) show that the ex­

pansions 

(18) 
1 

logJa(T)=" ( ) w(a,n), Osasp-1 ~na-Tn 
n~l 

are valid, where (following the notation of [10]), 

Let 

(19) 

w(a, n) = { (x - a)ndJ-lE(X), 0 sas p - 1. 
Jba 

Mil = M + llogM/J. 
logp 

An examination of formulas (17) and (18) shows that they may be 

computed to a precision of p-M given the data 

(20) w(a, n) (mod pM"), 0 sas p - l,OS n S M'. 

PROPOSITION 14. Let \]i E S(Bp, Rp; Drig ) be a Up-eigenform with 

eigenvalue ap = ± 1. Then we have the formula 
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holds for 1 ::::; a ::::; p -1. Consequently, the data (20) may be extracted from 
cp Mil 
E' 

PROOF. 

as desired. 

To prove the second statement, take 'l1 = cp E and b = 1. By the 

definition of cpM" , 

VE ((~ :)) (x") (modpM"-n) = vW" ((~ :)) (x") 

for 0 ::::; a ::::; p - 1 and 0 ::::; n ::::; Mil. Now multiply the above 

by pn and apply the first statement of the proposition, noting that 

Mil ~ M'. 

9. Examples 

EXAMPLE 15. Consider the elliptic curve 

E: y2 + xy + y = x3 + x2 - 70x - 279 

o 

(38B2), 

and set N+ = 2, N- = p = 19. Then B is algebra of rational Hamilton 

quaternions. The field K == Q(ç-), where ç- = (1 + )-195)/2, satisfies 
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the Shimura-Heegner hypothesis. Let 0 = Z[ç-] be its maximal order. 

The class number of K is 4 and Pic 0 ~ (Z/2Z)2. In fact, the Hilbert 

class field H of K is K( H, VS). Therefore, Pic 0 has three charac­

ters Xl, X2, X3 of exact order 2, corresponding to the three quadratic 

subfields K(J-15), K(VS), and K(V65) of H. Let T E SJp(o) be a 

base point and define divisors 

(Ji = L Xi(a)Ta E DivO SJp(o), i = 1,2,3. 
aEPico 

Define a divisor (Jo (corresponding to the trivial character) by 

(JO = L ((3 + 1 - T3)T)a 
aEPico 

where T3 is the standard Hecke operator. Let 

Pi = Tate(ti W/lE ) , ,i = 0,1,2,3. 

be the corresponding Heegner points. We computed the points Pi as 

described above and these points were recognized as 

Po = (-4610/39, 1/1521( -277799Ç- + 228034)), 

Pl = (25/12, -94/9u + 265/72), 

P2 = (10, -l1v), 

P3 = (1928695/2548, 1/463736( -2397574904w + 1023044339)), 

where 1 + J=I5 
u= 

2 
v= 

l+VS 
2 

w= 
1+V65 

2 

EXAMPLE 16. Let W = (1 + yb) /2 and let F = Q( w). Consider the 

elliptie curve 

E: y2 + xy + wy = x3 
- (w + 1)x2 - (30w + 45)x - (l1w + 117) 
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defined over F. The conductor of E is 3 - 5w, a degree one prime 

of F dividing 31. Here, N = N- = 1', N+ = l, and B is the base 

change to F of the Q-algebra of Hamilton's quaternions. Let ç = 

"';2w - 15. Then K = F(Ç) is a CM field satisfying the Shimura­

Heegner hypothesis in this context. The class group of K is cyclic 

of order 8 and thus has a unique char acter X of exact order 2 whose 

kemel has fixed field K ( "';2 - 13w). Let T E S)p (0) be a base point, 

define a divis or ~x attached to X as in Example 15, and let Px be the 

corresponding Heegner point. Then our computations, performed 

to an accuracy of 31-6°, yielded a point recognizable as the point 

(x, y) E E(F( "';2 - 13w)), where 

x = 1/501689727224078580 x (-20489329712955302181w+ 

1590697243182535465) 

y= 1/794580338951539798133856600x 

( -24307562136394751979713438023w-

52244062542753980406680036861)"'; -13w + 2+ 

1/1003379454448157160 x (19987639985731223601w 

- 1590697243182535465). 

Appendix A. Remarks on the computations 

A.l. Two special cases. In this section we discuss the implemen­

tation of the ab ove methods on a computer. We have written code to 

compute p-adic periods of and Heegner points on elliptic curves E 

in the following two cases: 

(1) E is defined over Q and has conductor N = 2p, where p is 

an odd prime. 
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(2) E is an elliptic curve over F = Q( J5) with prime conductor. 

As we shall see below, the consideration of these particular cases al­

lows for certain simplifications which prove extremely convenient 

for the implementation. In addition, we feel these cases serve to 

illustrate effectively the utility and scope of the theory presented 

above. In what follows, we draw freely from the notation of pre­

vious sections 

In Case l, we consider the factorization N- = 2, N+ = p. Thus, 

the quaternion algebra B which cornes into play is the algebra of 

Hamilton's quaternions. We insist our Eichler Z-order R c B of 

level p to be contained in the maximal order 

3 =/1' . l+i+j+k) 
\ ,Z,), 2 ' 

the so-called "Hurwitz integral quaternions". Further, we choose 

our isomorphism tp : Bp ---> M2 (Qp) in such a way that tp(3p) 

M2 (Zp) and tp(Rp) = Mo(pZp). 

In Case 2,let p denote the conductor of E. For simplicity, assume 

that p has degree one, so that the completion Fp is just Qp1 where p 

is the absolute norm of p. Here, we choose B to be the quaternion 

F-algebra ramified at the two infinite places of F. 5ince 2 is inert 

if F, it follows that B is simply the base change of the Q-algebra of 

Hamilton's quaternions to F. We consider the maximal op-order 3 

in B with basis 

el = (1 - wi + wj)/2 

el = (wi-wj+k)/2 

e2 = (-wi + j + wk)/2 

e2 = (i + wj - wk)/2, 
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where w = (1 + J5)/2, and choose R to be an Eichler op-order 

contained in S of level p. As ab ove, we choose our isomorphism 

ip : Bp ~ M2(Qp) in so that ip(Sp) = M2(Zp) and ip(Rp) = Mo(pZp). 

It will be extremely useful for us that in both cases considered 

above, the maximal quaternion order S has class number one, i.e. 

there is a single equivalence class of left or right S-ideals in B. 

Since, in both cases, much of the computation takes place in Qp 

(thanks to our assumption that pis of degree one), the details of the 

implementation are quite similar for the two cases. Therefore, in 

what follows, we will describe the highlights of the implementation 

in Case l, remarking appropriately when features of the implemen­

tation of Case 2 differ. 

A.2. Enumeration of quaternions of a given norm. The compu­

tation of the measure attached to an elliptic curve, the Hecke-action, 

and the action of Pic 0 (Shimura reciprocity) aIl reduce to the prob­

lem of enumerating elements of a given norm in the maximal order 

S. 

We first consider Case 1. The problem of enumerating elements 

of S of norm n is just the problem of representing an integer as a 

sum of four squares, or equivalently, of finding vectors of length n in 

the standard 4-dimensionallattice. Efficient methods forenumerat­

ing such vectors, based of the LLL-aigorithm, are included with the 

standard Magma distribution. 

Case 2 is more complicated. If À E S, then we may write 



26 1. p-ADIC HEEGNER POINT COMPUTATIONS 

where Xi, Yi E Z. One computes that 

4 4 

Norm À = L)x~ + y;) + w z)y; + 2XiYi) =: f(x, y) + wg(x, y). 
i=l i=l 

Note that the quadratic form f(x, y) is positive definite. To solve 

N orm a = u + vw, we continue generating new solutions of f (x, y) = 

u using the above mentioned· techniques (but in an 8-dimensional 

lattice), each time testing whether g(x, y) = v holds. This method is 

likely far from optimal, but serves weIl enough for our purposes. 

A.2.1. Computing the Hecke-action. Because of its central role in 

our algorithm, we discuss in detail the computation of the action of 

the Up-operator on automorphich forms on B. In §5.2, we showed 

that in order to compute the Up-action, it suffices to determine the 

data (14). As the double-coset space S[ljp]*\B;j S; parametrizes left 

ideal classes of S, it follows that 

B; = S[ljp]* S;. 

Therefore, choosing bk E B; such that 

o ::; k ::; p, 

wehave 
p 

Bp = S[ljp]* S; = Il R[ljp]*bkR;. 
i=O 

Let 

For k and a between 0 and p, let j(k, a) be such that 
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Then there exist ')'(k, a) E R[I/p]* and u(k, a) E R; such that bk'Wa = 

')'(k, a)bj(k,a)u(k, a). Solving for ')'(k, a), we have 

implying that ')'(a, k) E R[I/p] n Rp = Rand that det')'(a, k) = ±p. 

Since B is definite, there are only finitely many elements in R of 

norm p. Therefore, by enumerating these, the elements ')'(k, a) E R 

and the indices j(k, a) may be determined in practice. This is how 

we computed the data (14) in our Magma implementation. 

A.2.2. Computing the action of Pic o. Let K = Q(ç-) be an imagi­

nary quadratic field such that the pair (E, K) satisfies the Shimura­

Heegner hypothesis with respect to the factorization N- = 2, N+ = 

p. Let 0 be the maximal order of K. Let j be an optimal embedding 

of o[l/p] into R[I/p] = S[I/p]. Note that j is completely determined 

by the image of ç-, and thus is easily represented on a computer. 

Let al, ... , ah be a list of generators of Pic O. Find ide ais Ill, ... , Ilh 

of norms nI, ... , nh (the smaller the better) generating the respective 

ideal classes. Since S has class number one, the ideals Sj(ai) are all 

principal. Therefore, there exist quaternions Àl' ... ,Àh E S of norms 

nI ... , nh such that 

Such elements may be found using the above enumeration tech­

niques. The optimal embedding ai * j is given by ÀJ Ài l (cf. [19]). 
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Appendix B. p-adic periods of Shimura curves 

Let f1 be the Z-valued measure on JP1(Qp) attached to E. The mea­

sure f1 is invariant under the group 

r = {{iP('\):'\ E R[l/p]*, ordpNorm'\ iseven}. 

i p (R[l/p]) , 

ap = -1, 

Let T E S)p. By the theory outlined in §6, the group of p-adic 

periods 

Ap, = {i'"'fT 

wp, : r Er} cCC; 

has the form qZ x T, where T is a finite (cyelie) subgroup of CCp and 

Iql < 1. 

5ince S has elass number one, it is easy to find generators for the 

group r = r~~,N':' jp: 

{

(P' {ip(WI/W2): Wi E S, Normwi = p}), ap =-1 
r= 

({w: W E S, Normw = p}), ap = 1. 

Therefore, 

ap = -1, 

In either case, it is elear that an enumeration of the elements in R of 

norm p should facilitate the calculation of Ap, via p-adic integration. 

For each P E JP1(Qp2) and n 2 A, let rednP be the natural image 

of P in JP1 (Zp2 /pn+1Zp2). Inductively define the sets 

S)~ = {P E JPl(Qp2) : redoP rf.JP1 (ZpjpZp)}, 

S); = {P E ]p>1(Qp2) : rednP ~ ]p>l(Zp/pn+1Zp)} - S);-1, n 2 1. 

It is elear that S)p = Un~O S)~. 
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LEMMA 17. Let r E Sj~ and let 'Y E M2 (Qp) such that ordp det 'Y = 1. 

Then 'Yr E Sj~. 

PROOF. Write Qp2 = Qp(ç) where e E Qp1 write r = u + vç, and 

let 'Y = ( ~ â). Then 

(21) 
acN(r) + (ad + bc)u (ad - bc)v c 

'Yr = + -'---""""-:'-", 
N(cr + d) N(cr + d) , 

where N denotes the norm from Qp2 to Qp. We now note that cr + dis 

divisible by p if and only c and d both are. In this case ordp N (cr + d) 

is exactly 2 and the valuation of the coefficient of ç in (21) is -1. If 

neither c nor d is divisible by p, then the valuation of this coefficient 

is + 1. The lemma follows easily from these observations. 0 

By the above lemma, the the ory of §8 does not suffi ce for the com­

putation of p-adic periods, since assumption (1) of that section can 

no longer be valid (although we continue to assume, without loss of 

generality, that assumption (2) is). This can be remedied, however, 

by considering moments of measures over certain balls of radius p-2. 

For 0 ::; a, b ::; p - 1, let 

b",b = {x E <Qlp , lx ~ (a + bp)1 ~;p-2}, boo,b = (~ ~) bD,. 

be the standard partition of 1P'1 (Qp) into p2+p balls of radius p-2. Sup­

pose that r is in Sj~ and that r' is in Sj~. We generalize the analysis 

of §8, drawing freely from the notation of that section. The evalua­

tion ofthe integrals 1a(r) remains unchanged. In evaluating 100(r'), 

we have two cases to consider: 

Case 1: Ir'i ::; 1. In this case, 100(r') E 1 + p2Zp • Therefore, 100(r') = 

exp log 1(r'). Expanding in a Taylor series, convergent as x E pZp 
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and T' E Zp2, we see that 

(22) 

Case 2: IT'I > 1. In this case, we have IT'I = p and 

where 

Joo(T') = w II Joo,b(T') 
bEr1 (lFp ) 

w = II (1 + bpT')M(bo,b) and 
bEr1 (lFp ) 

, 1 ( (x - bp)T') Joo,b(T) = 1 + 1 b ' dp,(x). 
bo b + 'PT 

Notice that 1 + bPT' E Z;2 for aU band that (x - bp)T' E pZp2 for 

aU x E bO,b and aU b. Therefore, we have Joo,b(T') = exp log Joo(T'). 

Expanding log Joo(T') in a Taylor series, we have 

(23) 

We now turn to the evaluation of the terms Ja (T') for 0 :::; a :::; p - 1. 

Again, we consider two cases: 

Case 1: IT' - al ~ 1. In this case, 

Observing that IT' - al ~ 1, it foUows that the above multiplicative 

integral is simply the p-adic exponential of the logarithmic series 

(24) '" ( 1 ) r (x - atdp,(x). L...J n a - T' n lb 
n~l a 
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Case 2: l'T' - al < 1. In this case, 'T' E .f)~ and l'T' - al = p-l. Write 

where 

Ja ('T') = w· II Ja,b( 'T'), 
bElP'l(IFp ) 

w = II (( a + bp) - 'T')J.t(ba,b) and 
bElP'l(IFp ) 

, 1 ( x-(a+bp)) Ja,b('T) = 1 - , ( b) dfL(X). 
ba,b 'T - a + p 

Noticing that the integrand in the expression for Ja,b( 'T') is in 1 + 
p27Lp2, for aIl x E ba,b, if foIlows as above that Ja,b( 'T') is the p-adic 

exponential of the series 

(25) 

We introduce the notation 

(26) 

for the various moments of the measure fL, generalizing that intro­

duced in §8. 

To compute (22) and (24) to an accuracy of p-M, it suffices to com­

pute 

where M'and Mil are as in (19). 

Turnirig to (23), we see that 
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where M' is as above. This time though, to evaluate the n-th sum­

mand to an accuracy of p-M, we must compute 

Therefore, it certainly suffices to compute each of the above moments 

to an accuracy of p-M
11I 

where 

Mill = M + M' + llogM/J = M + M". 
logp 

Observe M" ~ M and Mill ~ 2M" when M is large. Therefore, it is 

enough (and convenient) to evaluate the data 

n = 0, ... , 2M", b = 0, ... ,pv - 1. 

The analysis of (25) is analogous. 

EXAMPLE 18. There are two isogeny classes of elliptic curves over 

Q of conductor 2· 19 = 38, namely 38A and 38B. Let J-LA and J-LB be 

the corresponding Z-valued measures on JID1(Qp). Using the p-adic 

integration techniques outlined above, we compute that the lattices 

AA = AJ.LA and AB = AJ.LB are generated by periods qA and qB, respec­

tively, where 

qA == 19 . 264507652379 

qB == 195 
. 1545123 

(mod 1910), 

(mod 1910
). 

Modulo 1910, the periods qA and qB are congruent to the Tate periods 

of the elliptic curves 

E A : y2 + xy + y = x3 
- 86x - 2456 

E B : y2 + xy + y = x3 + x2 - 70x - 279 

(38A3) 

(38B2). 
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This suggests the rigid analytic isomorphisms 

and that we should attempt to locate Heegner points on the repre­

sentatives EA and EB of the two isogeny classes of elliptic curves 

over Q of conductor 38. It is interesting to note that these are not 

strong Weil curves for Xo(38). 

EXAMPLE 19. Let F = Q(w), where w = (1 + VS)/2. According 

to the tables compiled by Dembélé [12], there is a unique Hilbert 

modularnewform f onro(3-5w), where 3-5w is adegree one prime 

lying over 31. It has the property that a3-5w = -1. The approximate 

period computed from the measure attached to the system of Hecke­

eigenvalues of f is given by 

q = 318 
. 747626750421999505 (mod 3120

) 

this agrees with the Tate period of the elliptic curve 

E3+5w: y2 + xy + wy = x3 
- (w + 1)x2 - (30w + 45)x - (l1w + 117) 

of Example 16. In the next section, we present a sampling of the 

Heegner points on this curve. 

Appendix C. Tables 

In this section, we further demonstrate the utility of our algo­

rithm by presenting more examples of Shimura-Heegner points de­

fined over class fields of imaginary quadratic fields. 

Recall the curve E B of conductor 38 of the previous section. Let 

K be an imaginary quadratic field such that the pair (EB' K) satis­

fies the Shimura-Heegner hypothesis with respect to the factoriza­

tion N- = 2, N+ = 38, and let 9K be its genus field, of degree 2n 
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over K, say. As in §9, we compute points corresponding to the 2n -1 

characters of CIK of exact order 2, as well as a point Po correspond­

ing to the trivial character. Sometimes, the point Po = Tate(Jo) was 

of very large height and inconvenient to recognize as an algebraic 

point. We noted empirically, however, that Po is often divisible by 

factors of 5 = 3 + 1 - a3' Thus, if we were unsuccessful in recogniz­

ing the point Po, we attempted to recognize the points 

Qi,j = Tate((~qj/5 J~/5), O:S; i,j :s; 4 

where (5 is a primitive 5-th root of units and q is the tate period of EB • 

This approach was often successful. We computed these points for 

imaginary quadratic fields K of even class number and discriminant 

D K :s; 500. The results are displayed below in Table 1. For each field 

K, the first point listed is that corresponding to the trivial character 

(such points obtained by "dividing by 5" as above are denoted "5 x 

Qi,/' in the table). 

In Table 2, we display the results of similar computations for the 

curve E3- 5w of the previous section. We compute points for CM ex­

tensions K of F of the form F( y'W), where 'W is a prime element of 

F of norm :s; 200.' Again, the first point listed in each row is that 

corresponding to the trivial character. 
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Table 1: Heegner points on 38B2 

DK = -35, CIK = 71.,/271." 9K = K( V5) 

(30/7, 1/98(-361y'-35 - 259)) 

(10, 1/2(-11V5 -11)) 

DK = -115, CIK = 7/.,/271." 9K = K(V5) 

(-895/92, 1/4232( -7942y'-115 + 18469)) 

(10, 1/2(-11V5 -11)) 

DK = -123, CIK = 71.,/271." 9K = K( v'4I) 

(10/243, 1/13122(-19855y'-123 - 6831)) 

(55/41/8( -50v'4I -59)) 

DK = -187, CIK = 71.,/271." 9K = K( y'-11) 

5 x (-330860/1377, 1/421362( -114395485y'-187 + 50410899)) 

(-20/9, 1/54( -185J,-11 + 33)) 

DK = -195, CIK = (71.,/271.,)2, 9K = K(y'-15, V5) 

5 x (-4610/39, 1/3042( -277799 y' -195 + 178269)) 

(25/12, 1/72( -376y'-15 - 111)) 

(10, 1/2(-11V5 -11)) 

(1928695/2548, 1/463736( -1198787452V65 - 175743113)) 

DK = -235, CIK = 71.,/271." 9K = K( V5) 

(904/235, 1/110450(-156313y'-235 - 267665)) 

(52424/605, 1/66550( -24063139V5 - 2916595)) 

DK = -267, CIK = 71.,/271." 9K = K( V89) 

(-410/867, 1/88434( -84835y' -267 - 23307)) 

(52595/4356, 1/287496( -875080V89 - 1879383)) 

35 
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DK = -291, CIK = 7l/271, 9K = K( V97) 

(2/3,1/18(-19y'-291-15)) 

(8196823/864900,1/804357000(-417006106V97-4213701195)) 

DK = -339, CIK = 7l/271, 9K = K( y'll3) 

(-479/108, 1/1944( -608y' -339 + 3339)) 

(1774281903006895/39181665744676, 

1/245258655452108783576(-6997901820985564777310y'll3 

-5675711179326623107673) ) 

DK = -403, CIK = 7l/271, 9K = K(y'-31) 

5 x (-617060/122317, 1/308483474( -76393015y' -403 + 623870923)) 

(-12395/784, 1/21952(-209345y'-31 + 162554)) 

DK = -427, CIK = 7l/271, 9K = K( y'6ï) 

(-33589240/5632263,1/70729958754 

5 x (-19338241135y' -427 + 175541858583)) 

(280/9, 1/54(-1175y'6ï - 867)) 

DK = -435, CIK = 7l/271, 9K = K(y'145, y'-15) 

(-170/87, 1/15138( -8759y' -435 + 7221)) 

(4118255/301716,1/892475928(-2916529916y'145-6537137109)) 

(25/12, 1/72( -376y'-15 - 111)) 

(36063677855/2150547876, 

1/99729507201624(-2684620739812946vf:5-886073252024697)) 



Table 2: Heegner points on Eaw+b 

K = F( J-w - 5), CIK = Z/2Z, 9K = K( H) 
2 x (1/1892721080644( -54585933978772w - 44949443766637), 

1/650983434837237682 ( -65983187664321368179w-

43925206151868340008)J -w - 5 + 1/3785442161288(52693212898128w + 44949443766637)) 

(1/90(578w -1), 1/2700(-27178w - 9701)H + 1/180(-668w + 1)) 

K = F(Jw -10), CIK = Z/4Z, 9K = K(H) 

4 x (1/6305718039536929924(31552400795304062108w - 6896469078321153517), 

> :g 
!TI 

~ 
o 
~ 

1/3958601908412301817116806242(-18261216303749133693083845421w -7091952695328828742991576902)Jw - 1~ 
!TI 

+1/12611436079073859848(-37858118834840992032w+6896469078321153517)) ~ 

o 
K = F( Jw - 14), CIK = Z/lOZ, 9K = K( H) 
4 x (1/4909777131551752136154256(142056226098409414593511183w- 190235634429111809742141545), 

1/10879092467992056837422758579391299904(-576572433660511567637385866471423820619w 

+852706290994086680876027040033036714524)Jw- 14+ 

~ 



1/9819554263103504272308512(-146966003229961166729665439w+190235634429111809742141545)) 

(1/90(578w - 1), 1/2700( -27178w - 9701)A + 1/180( -668w + 1)) 

K = F(J-2w -7), CIK = Z/2Z, 9K = K(y'w) 

4 x (1/75685512100(100132192628w - 660391563537), 

1/10410920616915500(-62823845900456566w + 73750317186356 049).j-2w- 7 

V> 
r:7J 

..... 

~ o 
+ 1/151371024200( -175817704728w + 660391563537)) ~ 

t'I1 

(1/21780( -178785w + 137189), 1/7187400(-48437001w + 96416473)J-2w - 7y'w + 1/43560(157005w - 137189)) Q 
t'I1 

K = F(J-3w - 8), CIK = Z/4Z, 9K = K(y'w) ~ 

4 x (1/52194885444(105459233508w - 151033021417), 

1/5962273959153564( -10003101051835195w - 14072800013231530).j -3w - 8 

+ 1/104389770888( -157654118952w + 151033021417)) 

(1/20( -101w + 57), 1/200( -78w - 71)J-3w - 8y'w + 1/40(81w - 57)) 

K = F( J5w - 17), CIK = Z/6Z, 9K = K( y'w) 

4 x (1/1546846186704460255436709056(-2699094580311414122855782373w-9384962667717985968313756703), 

1/813949033918199813472354399427168377630208(-2845895189663937627772646864729819401484183w 

-579097431983368135531594308872427128311791)J5w- 17 

~ ...., 

~ 
~ 
~ 
::l 
ri z 
[J) 



+1/3093692373408920510873418112(1152248393606953867419073317w+9384962667717985968313756703)) 

(1/106619910654648471999912180(-17252790821612320107051063193w+29173628836863397348561245365) 

1/2461741650279078260879858454682880045400(-2253272893981427522361339666198644564524481w 

+3651565134419029242455181200316537167098338)~5w- 17vfcJ 

1/213239821309296943999824360(17146170910957671635051151013w -29173628836863397348561245365)) 

K = F( ~2w - 15), CIK = Z/8Z, 9K = K( vfcJ) 

o 
(1/50168972 7224078580 ( - 20489329712955302181w + 1590697243182535465), 

1/794580338951539798133856600(-24307562136394151979713438023w 

-52244062542753980406680036861)~2w - 15vfcJ 

+1/1003379454448157160(19987639985731223601w - 1590697243182535465)) 

K = F( ~2w - 9), CIK = Z/2Z, 9K = K( ~-w) 

4 x (1/21780(45524w - 256709)1/3593700( -33377604w + 29070707)~2w - 9 + 1/43560( -67304w + 256709)) 

(1/873620(-1390901w + 9800496), 

1/1825865800( -23074830142w + 73328702231)~-w + 1/1747240(517281w - 9800496)) 

K = F(~-w - 3), CIK = Z/2Z, 9K = K(~-w) 

:> 
::g 

~ x 
(1 

~ 
Oj 
r< 
1'1 
(fl 

~ 



(1/12924002415361955830582477262400(85704092177525688230248145253482w 

+3251473361432045889728679807295), 

1/46461748087392552590839753329061817614650432000(-132888641351372979181529758366848752886424859705w 

~ 

1-' -143895594594973618880550417814974523898758438823)y1-w-3 

+1/25848004830723911661164954524800(-98628094592887644060830622515882w 

-3251473361432045889728679807295)) 

1-
~ 

(1/2( -Hw + 9), 1/4( -28w + 59)y1-w + 1/4(9w - 9)) 

K = F( y12w - 13), CIK = 71,/671" 9K = K( yi -w) 

4 x (1/16782027532336(14779551523822w - 159359342975843), 

1/810539238422195809472( -4475388013943905281774w + 3328863329971908717157)y12w - 13 

+ 1/33564055064672( -31561579056158w + 159359342975843)) 

(l/873620(-1390901w + 9800496), 

1/1825865800( -23074830142w + 73328702231)y1-w + 1/1747240(517281w - 9800496)) 

K = F(y16w -17), CIK = 71,/871" 9K = K(y1-w) 

4 x (1/1421030129681404(57740136081895033w - 105079944675237432), 

1/658253842603469264454808(-62024712214163791366936887w+l04184135144382162319064921)y16w- 17 

~ 
~ 
t'ri 
:;;;:1 

~ 
n 

~ 
2! 
~ 

~ 



+ 1/2842060259362808( -59161166211576437w + 105079944675237432)) 

(1/2( -l1w + 9), 1/4( -28w + 59)J-w + 1/4(9w - 9)) 

K = F( J3w - 16), CIK = Z/4Z, 9K = K( J-w) 

4 x (1/2997407624399533004411035706539785517476(20331327375159170644997940039976772307207w 

+1443404258046320380336532959238153928107), 

1/164103827880603827275377719938649734668897645973390588237224x 

(-258898725060932686205954047782328297019113437164110021271745w 

-213305812499645643311998408938888304675209602651188806153865)J3w- 16 

+1/5994815248799066008822071413079571034952(-23328734999558703649408975746516557824683w 

-1443404258046320380336532959238153928107)) 

(1/2( -l1w + 9), 1/4( -28w + 59)J-w + 1/4(9w - 9)) 

K = F(J-2w -13), CIK = Z/6Z, 9K = K(J-w) 

4 x (l/1243926464(5928430018w - 2286794607), 

1/606329564200448(-1352880017956328w -1847770546529331)yI-2w -13 

+ 1/2487852928( -7172356482w + 2286794607)) 

o 

~ 

~ 
o 
~ 
l:I:l 

~ 
Vl 

HO> ...... 
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CHAPTER 2 

Lifting modular symbols 

of noncritical slope 

1. Introduction 

Let p be a prime and let M be a positive integer prime to p. Let 

f E S2(ro(pM)) be a normalized eigenform with rational (and hence 

integral) Fourier coefficients. (We will consider higher weights in 

later sections.) One associates to f a modular symbol 

and a measure P f on Zp by the rules 

1 18 

cpf{r -7 s} = n+ Re r 27rif(z)dz, 

(27) pf(a + pnzp) = ap(J)-ncpf{ 00 -7 ajpn}, 

where n+ is the canonical real period of f and ap(J) is its p-th Fourier 

coefficient. Suppose now that ap(J) E Z;. Then one may show (using 

Eichler-Shimura theory, for instance) that CPf and thus Pf take values 

in Zp. Therefore, the integral 

(28) 

defined as a limit of Riemann sums over increasingly fine partitions 

of Zp1 is well defined for any continuous v : Zp -7 Cp' 

Computing such integrals is an important problem in practice 

with many applications. The application of principal interest to us 

43 
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is the calculation of algebraic points on elliptic curves via p-adic in­

tegration. Unfortunately, the naive method for computing integrals 

of the form (28) is of exponential complexity in the sense of [9]. For­

tunately, many of the functions v(x)which arise in practice are of a 

special type. Let 

(29) A = {v(x) = 2:= anxn : an E Qp, an ---? 0 as n ---? oo}. 
n~O 

Elements of A are rigid analytic functions on the closed unit disk 

in Cp which are defined over Qp. As such series may be integrated 

term-by-term, the problem of computing (28) is reduced to the cal­

culation of the moments 

A polynomial time algorithm for calculating such moments was 

recently discovered by R. Pollack and G. Stevens [22]. Although the 

main goal of their theory was the study of normalized eigenforms 9 

of weight k + 2 with ordp ap (g) = k + 1 (a so-called critical slope eigen­

form) and their p-adic L-functions, we are particularly interested in 

their results in the (we shall see, simpler) case ordp ap(g) < k+ 1 (the 

non-critical slope case). For simplicity of exposition, we remain for 

the moment in the situation considered ab ove where f has weight 

two and ap(J) is a p-adic unit. In later sections, we will deal with 

general weights and non-critical slopes. 

Let D be the continuous dual of A. Elements of D are called 

rigid-analytic distributions. Pollack and Stevens were able to produce 

a ro(pM)-equivariant eigensymbol 
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satisfying 

Moreover, cp f is a lift of 'P f in the sense that 'P f {r ~ s} is the total 

measure of cpf{r ~ s} for aIl r, s E jp>l(Q), Le. 

(cf. [10, Proposition 1.3]). Through a careful analysis of the geom­

etry of a fundamental domain of ro(pM) acting on the upper half­

plane Sj, a process they dub "solving the Manin relations", Pollack 

and Stevens are able to give an explicit presentation of the group 

of ro(pM)-equivariant D-valued modular symbols. Using this pre­

sentation, they explicitly produce a lift \li of 'Pf in such a way that 

\lI{r ~ s }(xn) can be easily computed for aIl r, s E jp>l(Q) and n ~ O. 

It can then be shown (see [10, Proposition 2.6]) that 

is a D-valued eigensymbollifting 'Pf' Moreover, and essential for 

computational purposes, the moments of the symbols (\lIIU;+l){ r ~ 

s} can be explicitly computed from those of (\lit U;) {t ~ u}. A theory 

analogous to the ab ove exists for aIl modular forms of noncritical 

slope, Le. forms JE Sk+2(rO(pM)) with ordp ap(J) < k + l. 
In this note, we show that in this non-critical slope situation, one 

may eliminate geometric considerations, Le. the need to "solve the 
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Manin relations", from the Pollack-Stevens algorithm. The Pollack­

Stevens algorithm has been applied in [10] to the calculation of Stark­

Heegner points on elliptie curves defined over Q. The incorpora­

tion of our method would simplify this work conceptually, in addi­

tion to streamlining the implementation. Our method also general­

izes easily to the case of modular symbols constructed from certain 

automorphie forms on GL2 over imaginary quadratie fields. These 

forms manifest themselves geometrically as harmonie forms on cer­

tain real-analytie threefolds. M. Trifkovié has recently implemented 

a version of our algorithm in PARI to compute certain Stark-Heegner 

points on elliptie curves defined over imaginary quadratic fields. 

As the geometry of the real-analytie threefolds arising in the work 

of Trifkovié is quite complicated compared to that of the modular 

curves, our" geometry free" method proves quite helpful. Suitably 

adapted to certain automorphic forms on definite quaternion alge­

bras, our ideas can be used for the efficient calculation of Heegner 

points arising from Shimura curve parametrizations via the theory 

of Cerednik-Drinfeld; see [1], [19] and [18]. 

The author would like to sincerely thank his PhD supervisor Prof. 

Henri Darmon as weIl as Mak Trifkovié for many useful discussions 

regarding this work. FinaIly, the author is extremely grateful to the 

anonymous referee for many valuable comments, observations and 

suggestions whieh led to a significant reworking of this paper. 

2. Coefficient modules 

Let p E Z be a rational prime, and define the semigroup 

~o(PZ,) ~ { (: :) E M,(Z,) : c E pZ" a E Z;, and ad - bq' 0 } 
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For a Zp-module A and an integer k ~ 0, let 

Lk(A) = {f E A[T] : deg f(T) ::; k}. 

The group Lk(A) is equipped with a right action of ~o(pZp) defined 

by 

(flkl)(T) = (d - cT)k f (~b~ca;) . 
Let K be a finite extension of Qp with ring of integers eJ, uni­

formizer n, ramification index e, and valuation v, normalized so that 

v(n) = 1 (i.e. v(p) = e). Generalizing (29) slightly, we let 

Ak(K) = {v(x) = :~:~:>nxn : an E K, an ~ 0 as n ~ oo}. 
n~O 

equipped with the left weight k action of ~o(pZp) given by the rule 

('y 'kf)(x) = (a+cx) f --k (b+dX) 
a+cx 

for f E Ak(K) and '"Y E ~o(pZp). The sup-norm equips Ak(K) with 

the structure of a p-adic Banach space. 

As in the introduction, we let Dk(K) denote the continuous dual 

of Ak(K), the elements of which we refer to as rigid-analytic distri­

butions. As the polynomial functions are dense in Ak(K), a distri­

bution J-t in Dk(K) is completely determined by its moments J-t(xn), 

n ~ O. By duality, Dk(K) has a weight k action of ~o(pZp) from the 

right written (J-t, '"Y) ~ J-tlkl, or simply J-th if the weight of the action 

is clear from context. 

Set 

A simple computation (cf. proof of Lemma 21) shows that Dk(eJ) is 

a ~o (pZp )-stable subspace of D k (K). 
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LEMMA 20. Let f-l E Dk(K). Then moments f-l(xn ) of f-l are uniformly 

bounded. Consequently, Dk(K) ~ Dk(CJ) Q9(') K. 

PROOF. Let Il . liA and Il . lin be the sup norm on Ak(K) and the 

dual norm on Dk(K), respectively. By the continuity of f-l, we have 

The space Dk(CJ) admits a useful filtration: 

pODk(CJ) = {f-l E Dk(CJ) : f-l(xO) = f-l(x1
) = ... f-l(xk) = O} 

pNDk(CJ) = {f-l E pODk(CJ) : f-l(xk+j
) E 7r

N
-j+

1CJ, j = 1, ... , N}, 

for N :;::: 1. 

o 

PROOF. It suffices to show that pNDk(CJ) is stable under the ac­

tion of matrices of the form 

(Cl 0
1
), cE pZPl and 

as we have the factorization 

in ~o(pZp), where ~ = ad - bc of- O. 

Let 'Y = (~ ~) with c E pZp and let f-l E FNDk(tJ). If 0 ~ e ~ k, 

then 



3. MODULAR SYMBOLS 49 

Now suppose 1 ~ j ~ N. Then a direct calculation shows that 

As en E pnzp t: 7fn tl and J-l(xk+j+n) E 7fN- j - n+1tl, it foilows that 

each term in (3D), and therefore (J-l!n) (xk+j), is in 7fN-j+1tl. The case 

'Y = (g â) is similar. o 

Thanks to the above lemma, we may define the :Eo(pZp)-modules 

We cali ANDk(tl) the N-th approximation to the module Dk(tl), fol­

lowing the terminology of [22]. Note that ANDk(tl) is a finitely gen­

erated tl-module. This will be crucial for our computational appli­

cations. 

3. Modular syrnbols 

DEFINITION 22. Let V be a right :Eo(pZp)-module, written (v, 'Y) ~ 

vl"f for v E V and 'Y E :Eo(pZp). A V-valued pre-modular symbol is sim­

ply a function cp : JPl(Q) x JPl(Q) ~ V,written(r,s) ~ cp{r ~ s}. If 

cp satisfies the additivity relation 

(31) cp{ r ~ t} = cp{ r ~ s} + cp{ s ~ t} 

for an r, s, t E JPl(Q), then cp is cailed a modular symbol. 

Let preSymb V and Symb V denote the set of pre-modular and 

modular symbols, respectively. 

The semigroup :Eo(pZp) acts on preSymb V and Symb V by the 

rule 
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where the action of ~o(pZp) on JP'l(Q) is by fractional-linear trans­

formations. If r c ~o(pZp), we denote by Symbr V the set of all 

rp E Symb V such that rpl'Y = rp for an 'Y E r. 
The group preSymb V and Symb V are equipped with the action 

of a Hecke operator Up defined by 

p-l (1 
rplUp = ~ rpl 0 :) 

REMARK 23. Fix a positive integer M prime to p and consider the 

double-coset decomposition 

(1 0) p-l 
ro(pM) ro(pM) = Il ro(pMha. 

o p a=O 

If rp belongs to Symbro(pM) V, then rplUp E Symbro(pM) V and 

p-l 

(r.pIUp){r - s} = Lrp{'Yar - 'Yas}ba 
a=O 

for any choice of representatives 'Ya. This is not true if rp is merely 

taken to be in Symb V or preSymb V. Thus, our extension of Up from 

Symbro(pM) V to these larger spaces is non-canonical. 

Let W be a K -vector space on which Up acts linearly, and let À E 

K be a Up-eigenvalue. We shan denote by WUp=À the corresponding 

eigenspace. 

DEFINITION 24. Let 'l/J be a nonzerovector in WUp=À. The slope of 

'ljJ is the number ordp À. If A is one of Lk(K), ANDk(<9) or Dk(K) and 

W = Symbro(pM) A, then we say that the slope of'l/J is non-critical if 

ordp À < k + 1. 
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REMARK 25. Note that the slope of 'lj; may be fractional if the 

eigenvalue À lies in a ramified extension of Qp-

By the Eichler-Shimura theory, Lk(C)-valued modular symbols 

correspond to classical modular forms of weight k + 2. To a form 9 

of weight k + 2 we associate the modular symbol 'Pg where 

(32) 

The following definition is due to G. Stevens [27]: 

DEFINITION 26. A rigid analytic modular symbol of weight k on 

fo(pM), defined over K, is an element of Symbro(pM) Dk(K). 

The following simple lemma will be useful. 

PROOF. The proof follows from Lemma 20, the stability of Dk(eJ) 

under the action of L:o(pZp), and the following weIl known fact con­

cerning modular symbols: There exist finitely many pairs 

with the property that for each pair (r, 8) E pl (Q) X pl (Q) there exist 

Çi E Z[fo(pM)] such that 

n 

(33) (8) - (r) = 2::çi((bi) - (ai)) 
i=l 

as formaI divis ors on PI(Q). Let 'lj; be in Symbro(pM) Dk(K). By 

Lemma 20, we may find an element c of eJ such that c'lj;{ ai ---> bi} E 

Dk(eJ) for a111 ~ i ~ n, implying that c'lj; E Symbro(pM) Dk(eJ). 0 
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There is a natural ~D(pZp)-equivariant, surjective specialization 

map 

given by 

Let m E Lk(K) and let fJ be the unique preimage of m under 1TD satis­

fying fJ(xj
) = 0 for j > k. We define the j-th moment of m, denoted 

m(xj
), to be the quantity fJ(xj

). Note that the section m ~ fJ of 1TD is 

not ~D(pZp)-equivariant. The map 1TO induces a corresponding func­

tion 

1T~ : Symbro(pM) Dk(K) ---;. Symbro(pM) Lk(K) 

in the obvious way. Since 1TO is a ~o(pZp)-module homomorphism, 

the induced map 1T~ is equivariant with respect to the action of the 

operator Up • 

We will also have need of notation for families of related maps. 

We let 1TN denote the natural projection from Dk(<9) onto AN D k(<9). 

If N > M, then 1TM reduces to a map 

Since these maps are all ~o(pZp)-equivariant, the induced maps 1T;; 

and 1T;;,M on modular symbols are all Up-equivariant. Note that our 

notation is consistent, as Lk(<9) ~ AODk(<9). 

The main goal of this paper is to give a new proof of the following 

result of G. Stevens [27], which translates into a simple effective al­

gorithm for computing eigenlifts of Lk(Qp)-valued modular symbols 

to rigid analytic modular symbols. 
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THEOREM 28. Let À be an eigenvalue of the Up operator acting on 

Symbro(pM) Lk(Qp) such ordp À < k + 1, and let K = Qp(À). Then the 

restriction 

is an isomorphism. 

REMARK 29. For applications to the construction of global points 

on elliptic curves as in [10], [18], and [28], it suffices to consider the 

case k = 0 and À = ±1. 

The next section is devoted to the proof of this theorem. In § 5, 

we will address the practical implementation of the proof as a com­

putational algorithm. 

4. Lifting eigensymbols 

Recalling the definition of the moments of an element of Lk (()) 

given after (34), we set 

where e is the ramification index of K/Qp and L·J is the floor func­

tion. That the group L~(()) is ~o(pZp)-stable can be shown using 

the same ideas as those used in the proof of Lemma 21. Let 'Po E 

Symbro(pM) Lk(K) be an eigensymbol with eigenvalue À in K of slope 

strictly less than k + 1. Assume further that 'Po takes values in L~«()). 

LEMMA30. 

(1) Let f-l E Dk«()) be such that 1fO(f-l) E L~«(J). Then 

pl G :) EÀDk(~) 
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(2) Let p, be in pNDk(<J). Then 

1'1 (~ ;) E ,IpN+1Dk (l'J). 

PROOF. If p, is in Dk(<J), then 

(1'1 (~ ;)) (xi) = l'((a + px)') 

= t (() aj-ipip,(xi). 
~=o_ 

Lett = lV(À)/eJ. Supposefirstthatp,isinL~(<J). If 0 ~ i ~ t,then 

If, on the other hand, i > t, then it is clear that ei > v(À), and hence 

pip,(Xi) = 1r
ei p,(Xi) is once again in À<J. This proves (1). Now suppose 

p, is in pNDk(<J). The terms in the above sum with 0 ~ i ~ k vanish. 

If j ~ l, then v(pk+j) ~ v(À) + l, implying that 

This completes the proof. o 

Assume the existence of a lift <pN of <po to Symbro(pM) ANDk(<J) 

such that <pN is also Up-eigensymbol with eigenvalue À. Choose an 

arbitrary lift <p of <pN to an element of preSymbDk(<J). As <p is also a 

lift of <po, part (1) of Lemma 30 implies that 

Therefore, we may define the symbol <pN+l by 
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The Up-equivariance of the projection maps together with the rela­

tion 1fN = 1fN+l,N 0 1fN+l imply that 

PROPOSITION 31. The pre-modular symbol rpN+l is a well defined 

modular symbol in Symbro (pM) AN + 1 D k (eJ), independent of the choice of 

lift rp used in its construction. Moreover, rpN+l is a Up-eigensymbol with 

eigenvalue À. 

We prove the proposition with a series of daims: 

CLAIM. The premodular symbol rpN+1 does not depend on the 

choice of lift rp. 

PROOF. Let rp' : JPl(Q) x JPl(Q) -+ Dk(eJ) be a second lift of rpN. 

Then for each pair (T, s) E JPl(Q) X JPl(Q), we have 

The daim now follows from the above part (2) of Lemma 30. 0 

CLAIM. The premodular symbol rpN+l satisfies the additivity re­

lation (31) and is thus a modular symbol. 

PROOF. Fix sorne s E JPl(Q), and define a symbol rp' by 

, {s+a} {s+a } rp {T -+ t} = rp T -+ -p- + rp -p- -+ t . 
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As i.p' is also a lift of i.pN, Claim 1 implies that 

= 7r
N+1(i.pI(.\-lUp ){r ~ s}) + 7r

N+1(i.pI(.\-lUp ){S ~ t}) 

= i.pN+l{r ~ s} + i.pN+1{ s ~ t}. 

As S was arbitrarily chosen, we are done. D 

CLAIM. The modular symbol i.pN+l is ro(pM)-'invariant. 

PROOF. Let 'Y be in ro(pM). Since the map 7r!"+1 is equivariant 

with respect to the action of I:o(P&:'p), it follows that 

Using the double coset decomposition 

ro(pM) (1 0) ro(pM) = iÎro(PM) (1 pa), ° P a=O ° 
there exist elements 'Y a E ro(pM) such that 
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But since <pN is fa (pM)-invariant, each <pha is also a lift of <pN. There­

fore, by Claim 1 again, 

as desired. o 

CLAIM. <pN+1 is a Up-eigensymbol with eigenvalue À. 

PROOF. Observe that <pIÀ-1Up is also a lift of <pN. The daim now 

follows from the L;o(pZp)-equivariance of 1f;:'+1 and an application of 

Claim 1 sirnilar in spirit those appearing above. o 

Proposition 31 follows from these daims. 

PROOF OF THEO REM 28. We begin by showing the injectivity of 

the map (35). By Lemma 27, it suffices to show that 

Let'lj1 be in the above intersection and set u = À -1 Up' Notice that 

Therefore, by part 2 of Lemma 30, we see that 

The injectivity follows. 

We not tum to the surjectivity of 1f~ on À-eigenspaces. Let <pa E 

Symbro(pM) L~(<9) be an eigensymbol with eigenvalue À. We con­

struct an eigenlift <poo E Symbro(pM) Dk(<9) of the symbol <pa. Using 
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the recipe of §4 together with Proposition 31, we may inductively 

construct a sequence 

of Up-eigensymbols satisfying the compatibility property 

By this compatibility relation, the 'PN glue together to a symbol 

'POO E ~ (Symbro(pM) p N D k (9))Up =À ~ (Symbro(pM) D k (9))Up =À. 

{11'~,N} 

By construction, we have 7l'~('POO) = 'Po. This establishes the surjec­

tivity and thus concludes the proof of Theorem 28. D 

REMARK 32. Let 'ljJ0 E Symbro(pM) Lk(K) be an eigensymbol with 

eigenvalue À and eigenlift 'ljJoo. Let s be the smallest positive integer 

such that 7l's'ljJ0 E Symbro(pM) L~(9). Then it is interesting to note that 

the above constructions gives an explicit, uniform lower bound of s 

for the 7l'-adic valuations of the moments 'ljJoo {r ~ s} (xn). It would be 

interesting to know how sharp this bound is in cases where v(À) > O. 

The above arguments show that the correspondences 'Po ~ 'PN 

extend to injections 

which are compatible in the sense that 7l':;+l,N ouf+! = uf. The maps 

uf can be packaged together into an injection 
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which is actually an isomorphism when tensored with K. If <pO is 

ordinary (Le. v(À) = 0), then LNV) is just Lk(V) and (36) itself is an 

isomorphism. 

5. Computing the lifts in practice 

Restricting ourselves to the modular symbols which arise in prac­

tice, let 9 E Sk+2(ro(pM)) be a normalized Hecke-eigenform with 

Up-eigenvalue À of non-critical slope, and let 'ljJg E Symbro(pM) Lk(C) 

be the modular symbol attached to 9 as in (32). Dividing 'ljJg by a 

suitable transcendental factor n, we may assume 

takes values in Lk(Q(g)), where Q(g) is the field generated by the 

Hecke-eigenvalues of g. 

Let {(ai, bi) : 1 ::; i ::; n} be the finite set of pairs in JIDI (Q) X JIDI (Q) 

considered in Lemma 27. If the field Q(g) has a simple enough struc­

ture (e.g. Q(g) is Q or a quadratic field), then by computing (32) to 

sufficiently high accuracy, one should be able to recognize the val­

ues 'ljJ°{ai ---t bd as elements of Lk(Q(g)). These values completely 

determine 'ljJ0 as an element of Symbro(pM) Lk(Q(g)). Thus, 'ljJ0 maybe 

stored as the finite sequence of (k + 1 )-tuples 

1 ::; i ::; n. Let K be the completion of Q(g) at a place p ab ove p. Fix 

an embedding of Q(g) into K and let V, v, and 7r be as above. Let <po E 

Symbro(pM) L~(V) be obtained from 'ljJ0 by scaling by an appropriate 

power of 7r. Of course, the scaling factor involved in producing <po 

must be taken into account when deciding on the precision to which 

the eigenlift of <po must be computed. 
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A lift c.pN of c.p0 to Symbro(pM) ANDk(IJ) is determined by c.p0 to­

gether with the sequence of N -tuples 

N 

(c.pN {ai -> bi}( xk+1), ... , c.pN {ai -> bd (xk+N)) E II IJlrrN+1- j IJ, 
j=l 

1 :s:; i :s:; n. This data may be easily represented on a computer. 

Having dealt with the issue of storing ANDk(IJ)-valued modular 

symbols, it remains to indicate how the data 

may be computed given the corresponding data for c.pN. As in the 

proof of Lemma 27, for 1 :s:; i :s:; n and 0 :s:; Œ :s:; p - 1, we may find 

elements ~~,j E Z[fo(pM)] such that 

as formaI divisors on JP'l(Q) x JP'l(Q). For 1 :s:; i :s:; n, let Mi be a lift of 

c.pN {ai -> bi} to Dk(IJ) and define an distribution Vi by the formula 

Noting that 

it follows by part 1 of Lemma 30 that Vi is actually in Dk(IJ). 

PROPOSITION 33. The identity 

halds. 
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PROOF. Let cp be any lift of cpN to preSymbDk(CJ) and recall that 

cpN+1 = 7r~+1(cpl(>.-1Up)). For each Ct with 0 :=:; Ct :=:; p - 1, we have 

cp { ai + Ct -7 bi + Ct} _ ~ J-l.1 (ç-i .) -1 E pN D k (CJ). 
P P ~ J Oi,) 

J=1 

The proposition now follows from part 2 of Lemma 30. o 

The computation of the Vi from the J-li boils down to manipula­

tions with formaI power series: If 'Y = (~â) E ~o(pZp) and J-l E 

Dk(CJ), then one may compute the m-th moment of J-ll'Y by expand­

ing (~~:)m in a Taylor series and "integrating term-by-term" (see 

the proof of Lemma 21). Using these methods, our proof of Theo­

rem 28 translates into an efficient algorithm for computing eigenlifts 

of modular symbols of non-critical slope. 





CHAPTER 3 

Discussion and future directions 

Although we feel that we have convincingly demonstrated the 

feasibility of computing Shimura-Heegner points on elliptic curves 

via Cerednik-Drinfeld theory, our treatment of this issue is far from 

complete. We treated oruy the cases of curves over Q of conductor 2p 

and curves over Q(..;5) of prime conductor. It seems clear, however, 

that our methods should generalize fairly directly, at least to curves 

defined over Q or over a real quadratic field. The challenge in im­

plementing a more general algorithm would lie in the enumeration 

of various one-sided ideal classes of a quaternion algebra over such 

a field. Our approach to this enumeration process in the case of al­

gebras defined over Q( ..;5)- see Chapter 1, Appendix A.2 - is most 

likely highly inefficient. Further study of this enumerative problem 

would be interesting. 

In the Chapter 1, Appendix B, we showed how one may use p­

adic integration to compute the Tate period q attached to a Hilbert 

modular newform on fo(p) with rational Hecke eigenvalues. From 

the Tate period, one may compute the corresponding j-invariant 

j(q). If Ej(q) an elliptic curve over Q(..;5) with j-invariant j(q), then 

Ej(q) admits a "minimal" quadratic twist E of conductor p (see [25]). 

In this way, one may be able to pro duce tables of elliptie curves, in 

the spirit of Cremona [5], of prime conductor defined over Q(..;5) 

supplementing the tables of Fourier coefficients of Hilbert modular 

63 
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forms given in [12]. Of course, implementation of more general ver­

sions of our algorithm could facilitate construction of further tables. 

In light of the indispensability of Cremona's tables for number theo­

retic experimentation, this may be a worthwhile project to pursue. 

Let T E SJp be a fixed point of an optimal embedding of a qua­

dratic order 0, as in Chapter l, §7. As we have seen, we may canon­

ically associate to a character X : Pic 0 - {±1} of exact order 2 a 

divisor of degree 0 (see Chapter l, §9). When X is trivial, however, 

we are forced to exploit an auxilliary Hecke operator Tl! where e is 

a prime of good reduction for E, in order to obtain the degree zero 

divisor 

Due to the necessity of choosing an auxilliary prime, the Shimura­

Heegner point 

Pl = Tate ( 1 wJlE ). 

1(HI-Tt)T 

is not canonically associated to the character x. Although the point 

Pl certainly depends on e, it is nonetheless true that for any two 

primes e and e' of good reduction for E, we have 

In other words, the element (e + 1 - ae)-l Pe of E(Ho) 0 Q is inde­

pendent of e, where Ho is the ring cIass field attached to the order 

o. Although Pe is not in general divisible by (e + 1 - ae) in E(Ho), 

we have observed empirically that is very often divisible by factors 

thereof. At least for curves_over Q, the point Pl always turned out to 

be divisible by the quantity (e+ 1- ae)/#E(Q)tors in the several cases 

we have checked. Note that this is an integer as the denominator is 
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just #E(Yle), which divides #E(Q)tors by [26, Chapter VII, Prop. 3.1]. 

It is tempting to ask something like the following: 

• Is there a map np ---t <Cp! provisionally denoted 

( f T ) #E(Q)tors 
T~ wJ.L , 

such that 

Of course, the above formulation is modelled after Darmon's con­

jecture on the existence of semi-indefinite (semi-definite?) p-adic in­

tegrals, see [6, Conjecture 5] or [10, Conjecture 1.6]. If anything re­

sembling the above is true, it is almost certainly a p-adic manifesta­

tion of a construction of Zhang [32]. Here, he defines of a canonical 

map from a Shimura curve X into (JacX) ® Q using the canoni­

cal "Hodge" divisor class (of degree one on each component of X) 

as a base point for defining an Abel-Jacobi map. Due to relations 

with special values of L-functions, it would be extremely interesting 

to give a purely p-adic description of this map. Work of Bertolini­

Darmon and Dasgupta suggest that Hida theory could perhaps lend 

sorne insight into these issues. 

The Heegner point phenomenon is not restricted to elliptic curves 

defined over number fields - there is an analogous construction in 

the setting of elliptic curves defined over function fields of curves 

over finite fields. For simplicity, we consider the function field F = 
Ylp(t) with ring of integers A = Ylp[t]. Let 00 be the place of F with 

uniformizer t- 1 and denote by Foo the completion of F at 00. Let 0 00 

be the ring of integers of F 00 and let moo be the unique maximal ideal 
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of 000 , Set Coo equal to the completion of an algebraic closure of Foo 

and define the oo-adic upper half-plane Sjoo by 

Let E be an elliptic curve over F of conductor noo, where n is an 

ideal of lFp[t], and suppose that the reduction of E at 00 is split mul­

tiplicative. Then by Drinfeld's theory [13], E is analytically modular 

(borrowing terminology from [30, §3.2]) in the sense that one may 

attach to E an automorphic form <PE whose L-function matches that 

of E. By an invocation of strong approximation analogous that of 

Chapter l, §4, the form <P E may be viewed as a function 

where ro(n) (resp. J oo) is the subgroup of GL2 (A) (resp. of GL2(000) 

consisting of matrices which are upper-triangular modulo n (resp. 

modulo moo). Moreover, we may assume that <PE takes values in no 

proper subring of Z. Following the recipe of Chapter l, §4, we may 

identify <PE with a Z-valued measure /-lE on JIDl(Foo ). 

In addition to its analytic modularity, the curve E is, again in the 

terminology of [30, §3.3], geometrically modular in the sense that E 

admits a uniformization ~ by the Jacobian Jo(n) of the Drinfeld mod­

ular curve Xo(n). The curve Xo(n) is the compactification of an affine 

curve Yo(n) whose Coo-points are identified with the rigid analytic 

quotient ro(n)\Sjoo. The affine curve Yo(n) is a moduli space for pairs 

of n-isogenous Drinfeld F-modules. 

In [16], Gekeler and Reversat make explicit the relationship be­

tween the analytic and geometric modularity of E by giving an 00-

adic analytic description of the uniformization ~ : Jo(n) ---* E in 
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terms of the measure /-LE associated to the automorphic form !.pE. 

This description, originally phrased in terms of Drinfeld-Manin type 

theta functions, was reinterpreted by Longhi [17] in the language of 

oo-adic integration. Let 

be the composition of the projection Divo S)OO -----+ Divo XO(n) (Coo ) with 

the map induced by ~ on Coo-points and let Tate : C~ -----+ E(Coo ) be 

the Tate uniformization of E. Then Longhi's version of the result of 

Gekeler and Reversat states that for (T') - (1') E DivO S)oo, we have 

In addition, Longhi shows that if l' and T' represent CM points on 

Xo(n), then ~oo((T') - (1')) is a global point on E. We shall refer 

to global points on E constructed in this manner as Drinfeld-Heegner 

points. An independent construction of Drinfeld-Heegner points was 

given by Pal in [21]. As Drinfeld-Heegner points play an important 

role in the arithmetic of elliptic curves over function fields (e.g. for­

mulas of Gross-Zagier type are expected to hold), it would be ex­

tremely desirable to compute the se points in practice. Therefore, we 

ask the following question: 

• Is there an efficient algorithm for computing oo-adic inte­

grals of the form 

The obvious analogies with the Shimura-Heegner points consid­

ered in Chapter 1 may lead one to believe that our algorithm pre­

sented earlier may be easily adapted to the function field setting. 
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This is not so, however. In §8, we showed that in characteristic zero, 

the computation of integrals of the above form may be reduced (at 

least up to roots of unity and powers of p) to that of the moments of 

J.L E of the form 

1 (x - a)ndJ.LE(X), a E Z/pZ, n ~ O. 
a+pZp 

The essential point is that we need the p-adic exponential function 

- not available in characteristic p - to recover the Teichmüller repre­

sentative of the multiplicative integral in question from the values of 

the corresponding additive moments. In the function field case, an 

incredible amount of data is lost in passing from the measure J.LE to 

its moments of the form 

1 (x - a)ndJ.LE(X), a E ooo/moo, n ~ O. 
a+m= 

Evidently, such moments depend only on the values of J.LE modulo 

p. Thus, representing J.LE on a computer by the using the above se­

quences of moments does not preserve enough information to facil­

itate the computations that we with to carry out. Thus, we ask the 

following: 

• Give a sequence J.LYl), n ~ 0, of approximations to the mea­

sure J.LE, efficiently representable on a computer, such that 

the sequence J.LYl) completely determines J.LE· 

This question in complexity theory seems to be fundamental in the 

theory of automorphic forms of Drinfeld type. There is always the 

possibility that no such algorithm exists. This possibility strikes us 

as unlikely, but would nonetheless be extremely fascinating. Thus, 

progress on this problem in any direction should have extremely in­

teresting consequences. 
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We find the two problems mentioned above especially tantaliz­

ing, especially due to the fact that the rank conjecture for elliptic 

curves has been proven in the function field context [23,29]. More­

over, a result of Darmon [8] inspired by [29] states that, assuming the 

conjecture of Birch and Swinnerton-Dyer, one may construct many 

examples of elliptic curves of large rank over lFp(t) where this excess 

is the result of Drinfeld-Heegner point phenomena. Thus, an algo­

rithm for calculating these Drinfeld-Heegner points might allow us 

to actually compute examples of Mordell-Weil groups of arbitrarily 

large rank' 
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