
The Role of the Network in Distributed
Optimization Algorithms:

Convergence Rates, Scalability,
Communication/Computation Tradeoffs and

Communication Delays

Konstantinos I. Tsianos

Doctor of Philosophy

Department of Electrical and Computer Engineering

McGill University

Montréal, Québec

July 2, 2013

A thesis submitted to McGill University in partial fulfillment of the requirements
of the degree of Doctor of Philosophy

c©Konstantinos I. Tsianos, 2013

ACKNOWLEDGEMENTS

Pursuing a PhD is a long and mostly a lonely journey that in many ways defines

you from there on. However, no matter how much effort and dedication you put

into it, it is very hard to go on without the help of other people. Sometimes their

importance is not obvious at the time, but now looking back there is several people

that I would like to thank. I have to start with my parents and sister whom I have

been away from for so long. They have always looked up for me and supported

my choices and my efforts no matter what. I am also most grateful to my advisor

Mike who has given me the chance to come to Montréal and provided me with the

conditions I needed to work. It was a pleasure working together while observing

him handle obstacles and uncertain situations along the way. Many thanks to Babis,

Mihalis, Ioan and George who have been maybe my closest friends even though all

of them are at least on flight away around the world. Having people you can rely

on for their honest opinion about research and life is of uttermost importance. I

am also very fortunate to have Véro in my life. She has been the highlight of my

last year making the difficult last mile as smooth as possible. Finally, I should

acknowledge and thank all of my friends, colleagues, professors and administrative

staff whom I have interacted with all these years. I may have been closer to some

than others but they have all been valuable to me in this adventure.

ii

ABSTRACT

Many questions of interest in various fields ranging from machine learning to

computational biology and finance require the solution of an optimization prob-

lem. Frequently such problems are classified as large scale in the sense that they

involve complex computations over very large datasets. The increasing interest in

distributed optimization algorithms is motivated by two main reasons. First, the

problem complexity pushes today’s processors to their limits and the need for dis-

tributed algorithms arises quite naturally. A second and more practical reason is

that sometimes the data is collected in a distributed manner and transmitting it

to a single location is either too costly or violates privacy. The starting point of

this thesis is the simple realization that the main difference between a serial and a

distributed algorithm is that in the latter, a processor needs to exchange messages

over a network to access another processor’s information. Network communication

is in general less reliable and orders of magnitude slower than local disk accesses.

Furthermore, in an arbitrary network topology to achieve global performance mes-

sages might need to travel over multiple hops. Finally, the hardware’s capabilities

also limit the ways in which a distributed algorithm may be implemented. All these

factors highlight the important role of the network in distributed optimization algo-

rithms. To understand that role we focus on the class of consensus-based distributed

optimization algorithms. Those algorithms admit an elegant theoretical analysis

while remaining easy to implement. In addition they tend to be scalable and robust

to communication delays. The contributions of this work can be grouped into four

important areas: 1) understanding the communication/computation tradeoff and its

effect on scalability with the network size, 2) understanding the limitations of the

network and the necessary features that distributed algorithms need to possess to

be practical, 3) understanding the effects on convergence of network-induced com-

munication delays and 4) understanding the theoretically achievable convergence

iii

rates of distributed algorithms. These areas impact the design and deployment of

any consensus-based distributed optimization algorithm.

iv

ABRÉGÉ

Il y a une grande variété de domaines d’ apprentissage automatique, de la bi-

ologie à la finance, où l’on doit résoudre des problèmes d’optimisation. Souvent

ces problèmes impliquent des calculs complexes sur de vastes ensembles de données.

Pour résoudre ces problèmes le développement d’ algorithmes distribués est devenu

très populaire pour deux raisons. Premièrement, la complexité des problèmes pousse

les processeurs actuels à leurs limites. Naturellement, il devient essentiel d’utiliser

des systèmes distribués. La deuxième raison est que la collecte des données est par-

fois distribuée, et il est difficile, coûteux ou en violation d’ accords de confidentialité

de transférer toutes les données au même endroit. La fondation de cette thèse est

la réalisation simple que la grande différence entre un algorithme centralisé et un

algorithme distribué est que ce dernier utilise un réseau pour permettre l’ échange

d’ information d’un processeur à un autre. Généralement, la communication sur

un réseau est moins fiable et beaucoup plus lente que l’accès d’information sur un

disque local. De plus, pour une topologie de réseau arbitraire, la communication

de messages nécessite plusieurs sauts. Finalement, les capacités matérielles aussi

limitent les façons par lequelles les algorithmes distribués théoriques peuvent être

mis en oeuvre. Tous ces facteurs, rappellent l’importance du réseau. Pour com-

prendre cette importance, nous nous concentrons, sur la classe des algorithmes de

consensus pour optimisation distribuée. Ces algorithmes aussi possédent des anal-

yses théoriques très élégantes tout en restant faciles a mettre en oeuvre. Aussi, ils

sont robustes aux délais de communication et extensibles. Les contributions de cette

thèse peuvent être classifiées selon les quatres catégories suivantes: 1) comprendre le

compromis entre communication et calculs locaux, et l’extensibilité avec la taille du

réseau, 2) comprendre les limites posées par le réseau aux fonctionnalités nécessaires

que chaque algorithme distribué doit posséder en pratique, 3) comprendre les effets

de délais de communication et les propriétés de convergence de ces algorithmes

v

en présence de délais, 4) comprendre les taux théoriques de convergence des algo-

rithmes d’optimisation distribués. Tous ces domaines affectent la conception et le

déploiement de chaque algorithme de consensus d’optimisation distribué.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . v

LIST OF FIGURES . x

1 Introduction . 1

1.1 Motivation . 1
1.2 Distributed Algorithms . 1
1.3 Contributions . 3
1.4 Basic Problem Statement . 5
1.5 Consensus-based Distributed Optimization 8
1.6 Publications . 11
1.7 Notation . 12

2 Background and Previous Work . 13

2.1 Distributed Consensus . 13
2.2 Communication Delays . 17
2.3 Non-Linear Convex Optimization 18
2.4 Online and Stochastic Optimization 20
2.5 Distributed Optimization . 26

2.5.1 Distributed Dual Averaging (DDA) 30
2.6 Distributed Programming Models 33

3 Communication/Computation Tradeoff and Scalability 36

3.1 Introduction . 36
3.2 Scalability in Consensus-based Distributed Optimization 37
3.3 Quantifying the Tradeoff . 38
3.4 Time model . 40
3.5 Simple Case Analysis: Communicate at Every Iteration 41
3.6 General Case Analysis: Sparse Communication 43

3.6.1 Bounded Intercommunication Intervals 43
3.6.2 Increasingly Infrequent Communication 45

3.7 Experimental Evaluation . 47
3.7.1 Application to Metric Learning 48
3.7.2 Nonsmooth Convex Minimization 49

3.8 Conclusions and Future Work . 51

vii

4 Parallelization at the Task Level . 53

4.1 Introduction . 53
4.2 Algorithms . 54
4.3 Communication/computation Tradeoff for Multiple Tasks 55
4.4 Experimental Study . 58

4.4.1 Cluster description . 59
4.4.2 Solving Multiple Identical Jobs 59
4.4.3 Sweeping a Problem Parameter 62
4.4.4 Collisions between MIGD Random Walks 63

4.5 Discussion . 64

5 Practical Consensus Algorithms . 67

5.1 Introduction . 67
5.2 Features of Distributed Consensus Algorithms 68

5.2.1 Averaging . 70
5.2.2 One-Directional Communication 72
5.2.3 Time varying protocols . 73
5.2.4 Semantics of Different Consensus Matrices 74

5.3 Push-Sum Consensus . 75
5.4 Push-Sum Distributed Dual Averaging (PS-DDA) 78
5.5 Implementation Remarks . 80

5.5.1 One directional communication 80
5.5.2 Numerical instability . 80
5.5.3 Step-size de-synchronization 81
5.5.4 Incoming message handler 82
5.5.5 Communicator saturation 82

5.6 Experimental Evaluation . 83
5.6.1 Benchmark Problem and Setup 83
5.6.2 Doubly Stochastic Matrices cannot be maintained in Practice 83
5.6.3 Comparison with AllReduce 84

5.7 Concluding Remarks and Future Work 86
5.8 Proof of Theorem 5.1 . 88

6 Communication Delays . 94

6.1 Introduction . 94
6.1.1 Time Delayed Consensus 95
6.1.2 Main Results . 96

6.2 Fixed Communication Delays . 97
6.2.1 Fixed Delay Model . 97
6.2.2 Stationary Distribution under Fixed Delays 100
6.2.3 Convergence Rate under Fixed Delays 102
6.2.4 Effect of Delays on Second Eigenvalue 104
6.2.5 Distributed Optimization under Fixed Communication

Delays . 108
6.2.6 Convergence of DDA with Fixed Edge Delays 115

6.3 Time Varying Communication Delays 116

viii

6.3.1 Random Delay Model . 116
6.3.2 Convergence under Time-Varying Delays 123

6.4 Push-Sum Consensus with Delays 131
6.4.1 Consensus with Fixed Delays using Push-Sum 132
6.4.2 Consensus with Random Delays using Push-Sum 133
6.4.3 Convergence of Push-Sum Consensus with Random Delays 134

6.5 Simulation . 136
6.6 Concluding Remarks and Future Work 137

7 Improved Convergence Rate for Distributed Convex Optimization . . . 139

7.1 Introduction . 139
7.2 A Time Optimal Algorithm for General Convex Functions 139
7.3 Analysis and Proof of Theorem 7.1 141
7.4 Comments . 145

8 Distributed Strongly Convex Optimization 146

8.1 Introduction . 146
8.2 Distributed Online Gradient Descent (DOGD) 147
8.3 Analysis of DOGD . 148

8.3.1 Properties of Strongly Convex Functions 149
8.3.2 The Lazy Projection Algorithm 150
8.3.3 Evolution of Network-Average Quantities in DOGD 151
8.3.4 Analysis of One Round of DOGD 152
8.3.5 Bounding the Network Error 154
8.3.6 Analysis of DOGD over Multiple Rounds 155
8.3.7 Proof of Theorem 8.1 . 157

8.4 Extension to Stochastic Optimization 158
8.5 Concluding Remarks . 159

9 Summary and Open Questions for Future Work 161

Appendix A: Proof of equation (3.16) . 166

Appendix B: Proof of equation (3.19) . 167

Appendix C: Proof of Theorem 6.1 . 168

References . 172

ix

LIST OF FIGURES
Figure page

3–1 Optimal number of processors in complete graphs. 50

3–2 Optimal number of processors in complete graphs, reduced commu-
nication. 50

3–3 Sparse communication comparison 51

4–1 DDA vs MIGD for identical tasks . 60

4–2 Task interference . 61

4–3 Cumulative time to solve multiple identical tasks with DDA and MIGD 61

4–4 Cumulative time to solve multiple different tasks 62

4–5 Cumulative number of collisions, 8 tasks 63

4–6 Cumulative number of collisions, 64 tasks 63

4–7 Average number of collisions per iteration 64

5–1 Illustration of optimization bias . 71

5–2 Illustration of deadlock . 73

5–3 Receiving unknown number of messages per iteration 74

5–4 Unbalanced graph topology . 84

5–5 Loss of convergence due to unbalanced communication 85

5–6 Illustration of asynchronism . 85

5–7 Illustration of slow node problem . 87

6–1 Adding fixed delay . 98

6–2 Canonical paths under fixed delays 106

6–3 Validation of spectral gap bound . 109

6–4 Optimization under fixed delays . 116

6–5 Effect of fixed delay on optimization bound 117

6–6 Adding random edge delay . 118

6–7 Average consensus with random delays 136

x

CHAPTER 1
Introduction

1.1 Motivation

Distributed algorithms for optimization have received an increasing interest

over the last two decades [10, 22]. Besides the academic motivation of how to de-

sign algorithms so that a group of computers communicating over a network can

be employed to optimize an objective, there is an emerging great practical inter-

est. Consider for example the challenge of understanding and analyzing a physical

process. To apply a computational method, one starts by collecting measurements

of what are perceived to be the important and defining features of the process’ be-

haviour. The initial lack of knowledge of the complex physical world typically leads

to a large number of measurements, large number of features, or both, and it is

not uncommon to have extremely large datasets (see for example [1]). To process

the data, there exists a large collection of algorithms falling under the general area

of machine learning [11, 38]. Machine learning algorithms typically need to per-

form some kind of calculation on the data which goes beyond analyzing the data

statistical properties. Very often the calculation involves or can be cast into an

optimization problem where the quality of a model perhaps is measured by a cost

function that must be minimized. When the optimization problems push current

computers to their limits due to the sheer volume of data but also complexity of the

calculations, the need for distributed optimization algorithms arises.

1.2 Distributed Algorithms

Even the fastest single computer could be perceived as ”slow” when used to

solve a computationally hard problem. Suppose that to solve a problem at hand in

a reasonable amount of time, we would need a single computer that is n times more

powerful than today’s state-of-the art computers. Physical limitations prohibit us

from building such a powerful single computer (at least at the moment). Distributed

1

and parallel computing are used as a surrogate in lack of powerful enough single

processors. The goal is to use n ”slow” computers that are readily available in place

of a single processor, and achieve the same performance as what we would expect

from an ideal (n times faster) single processor.

Although the end goal is the same (i.e., increased performance), the terms

parallel and distributed computing should not be used interchangeably since they

signify different approaches on using multiple computers to solve a problem. As

the name suggest, parallelization implies tasks or processes that are running con-

currently. This usually means that the tasks have minimal or ideally no interaction

with one another. From this point of view, the challenges are on how to separate

the problem data and how to wire the network connections between processors to

facilitate the parallel task execution. The implementation design is conceptually

hierarchical or even centralized. The computation is structured and proceeds in

stages acting as synchronization points and a processor may have a different role

or stay idle at every stage. The increased control over each node’s role may offer

opportunities for harnessing speedup through careful engineering at the system’s

level.

This thesis is concerned with distributed rather than parallel algorithms. The

difference is that in distributed systems, the nodes are ideally indistinguishable.

There is no master node and the same code is run on each processor. Typically,

distributed algorithms are less structured and nodes coordinate by exchanging mes-

sages. This design has several advantages. Synchronization points are eliminated

and such systems can run asynchronously requiring only minimal communication

infrastructure. This offers increased robustness to individual node failures since no

particular node is special, and scalability since in principle there is no master node

that could be a bottleneck. However, achieving global performance relying only on

local interactions becomes the main challenge. Furthermore, as is emphasized in

Section 1.3, performance is critically dependent on the properties of the network

over which messages are being exchanged.

2

In general, not all problems are suitable for employing a distributed solution.

A good indicator that a problem is distributable is some form of separability. For

example, when a dataset is large, it is natural to split the data into subsets and

distribute those among the computation nodes. The split may be deliberate or the

data itself may be collected in a distributed manner and transferring the data in

a single location is too expensive. Splitting the data has a clean interpretation in

empirical loss minimization problems which are ubiquitous in machine learning; how

much an algorithm has learned from the data is measured in terms of a loss function

which is taken to be the sum of loss over all data points. Splitting the data implies

assigning a partial loss to each processor and the goal is to minimize the overall sum

of losses over all nodes. Alternatively, it has been proposed to have a split in the

feature space. In this case each node is responsible for learning only from a subset

of the problem dimensions. Finally, it is possible to require the solution of multiple

problems of the same nature, e.g., tuning a kernel parameter with a sweep. In that

case, it might be beneficial to solve those problems in parallel on the same network

harnessing parallelization at the task level.

1.3 Contributions

The discrepancy between an n-times faster single processor and an arrangement

of n slow processors is the communication cost. The ideal fast processor is able to

access all of the problem’s parameters and data via local memory and disk accesses.

Each of the n processors inevitably has to use communication over a network to

access remote information residing in another processor. If communication over

the network was free (i.e., instantaneous between any two processors independent

of the message size), a team of n networked processors would be able to perfectly

simulate a single processor which is n times faster. This fundamental realization

illustrates the critical role of the network which is the central theme of this thesis.

With distributed computing and the role of the network in mind, the contributions

of this work are grouped into four directions:

1. Communication cost: How much time does it take to transfer information

relative to the time it takes to perform local computations? In other words,

3

how much slower is the network relative to the processor speed? As shown

in Chapters 3 and 4, what matters is not the speed of a processor or network

latency in isolation, but rather the relative performance of the two.

2. Network infrastructure: Many distributed algorithms are described in a way

that facilitates mathematical analysis. This is, to some degree, always nec-

essary if the theoretical findings are to have any generality. However, when

faced with an implementation problem, many of the implicit theoretical as-

sumptions do not hold in practice. Chapter 5 investigates the discrepancies

between theoretical assumptions and difficulties in practice. We identify av-

eraging, one-directional communication and asynchronism as the three key

issues that make the design of distributed algorithms more compatible to the

physical limitations of a network. We also describe and analyze both theoreti-

cally and experimentally a distributed algorithm that possesses many desirable

properties and has good performance.

3. Communication Delays: Even in highly controlled and well-maintained envi-

ronments such as clusters, the network is a volatile medium whose performance

is bound to fluctuate. We can not assume that all messages are delivered in a

timely manner and in the order in which they were transmitted. Rather, it is

almost certain that messages will be delayed. Chapter 6 studies the questions

of how to model communication delays and then how to use delay models to

reason about the effects of delay on convergence of distributed algorithms.

4. Convergence Rate Analysis: Convergence rates from gradient based optimiza-

tion methods are relatively well understood for single processor algorithms.

In a distributed setting, the network is the medium for accessing another pro-

cessor’s information in an attempt to still achieve global performance. It is

important to understand what convergence rates are achievable by distributed

algorithms for different classes of problems and how those rates relate to the

4

convergence rates for serial algorithms. Chapters 7 and 8 analyze two dis-

tributed algorithms that bridge some of the theoretical gaps between the op-

timal serial algorithm and their distributed counterparts by improving on ex-

isting convergence rate results (Chapter 7) and providing new algorithms with

faster convergence rates (Chapter 8).

The thesis structure follows the above list in an attempt to keep the chapters self

contained. Nevertheless, it should be clear that when deploying an actual system and

implementing a specific algorithm all the issues studied here are present and will have

to be dealt with. We need to design an algorithm that does not deadlock, is robust

to communication delays and uses the right number of processors to fully exploit

the network topology and communication/computation tradeoff for the hardware

and problem at hand. In that sense, this thesis should not viewed as a linear

document where each chapter is improving on the chapter that precedes it. Instead,

the chapters are interconnected. In the rest of the introductory chapter we first

give a general problem definition in Section 1.4. This problem will be referred to

and appropriately customized at each chapter to highlight the particular research

question studied in that chapter. Section 1.5 summarizes the important components

found in all the algorithms of the consensus-based distributed optimization family

that will be the focus of the thesis. The introduction concludes with an enumeration

of the relevant publications that have been the results of this research.

1.4 Basic Problem Statement

Before proceeding in analyzing specific research questions it is important to

define a prototype problem that needs to be solved. We describe this problem here.

In each subsequent chapter, this problem may be customized of further refined to

reflect the important relevant aspects in a specific context.

Most of the results apply to the general setting where we are interested in

minimizing a separable convex objective of the form

F (w) =
1

m

m∑

j=1

fj(w) (1.1)

5

where each fj is assumed convex and w ∈ W ⊆ Rd′ is the optimization variable.

This framework fits well in the context of machine learning applications which are

one of the motivations for this work. Assume that a dataset D is given in the form

of vectors or measurements: D = {xT1 ,xT2 , . . . ,xTm},xi ∈ X ⊆ Rd. For a given w, a

data point x incurs a cost l(w,x), l : Rd
′ 7→ R which is parameterized by the data

x. The overall cost is taken to be

F (w) =
1

m

m∑

j=1

l(w,xj). (1.2)

The problem is to find a minimizer w∗ of F (w). As an example, consider a linear

binary classification problem where we are looking to find a separating hyperplanew

that accurately predicts the label of an unseen data point x as positive or negative.

For example a commonly used loss function to quantify the misclassification error

is the hinge loss which is used in support vector machines. For a data point x ∈ Rd

with label y ∈ {−1, 1} the hinge loss at w is defined as

l(w, (x, y)) = max(0, 1− y wTx). (1.3)

Given a w, a data point’s label is estimated as ỹ = sign(wTx). Notice that if the

estimated label matches the true label, the loss is zero.

From the description so far, the problem of minimizing (1.2) is underspeci-

fied. To make the discussion concrete we list the basic assumptions that will hold

throughout the thesis.

Assumption 1.1. Norm: From now on, by ‖·‖ we indicate the Euclidean norm

‖·‖2.

Generalizations to other norms are certainly possible and sometimes just an

exercise. However they are not the focus of this thesis and we refer the interested

reader to the related literature.

Assumption 1.2. Bounded domain: We assume that w ∈ W ⊂ Rd′ where d 6= d′

in general. We require that the domain W is closed and convex. Furthermore, the

6

domain W has a radius
√

2R for some positive constant R, i.e.,

max
w1,w2∈W

‖w1 −w2‖ ≤
√

2R. (1.4)

Since the solution w∗ should have a meaningful interpretation and practical

use e.g., as the best linear classifier of our dataset, it is convenient to restrict the

domain so that optimal solutions remain bounded.

Assumption 1.3. Convexity: A cost function l(·, ·) is convex in its first argument

l(θw1 + (1− θ)w2,x) ≤ θl(w1,x) + (1− θ)l(w2,x) (1.5)

for all w1,w2 ∈ W,x ∈ X , θ ∈ [0, 1]. This implies that F (w) is also convex.

Assumption 1.4. Lipschitz continuity: We assume throughout that each cost func-

tion and thus F (w) are Lipschitz continuous functions with constant L i.e.,

|l(w1,x)− l(w2,x)| ≤ L ‖w1 −w2‖ ,∀w1,w2 ∈ W,x ∈ X . (1.6)

It is a direct consequence of the previous assumption that each cost function

has bounded sub gradients i.e.,

‖∇wl(w,x)‖ ≤ L,∀w ∈ W. (1.7)

Note that in general we need to use the dual norm for sub-gradients but under

Euclidean distances from assumption 1.1 the two norms are the same.

Minimizing the objective (1.2) can be challenging if the dataset size m, data

dimension d and domain dimension d′, are very large. We thus focus on how to

perform the minimization using a team of n processors. For this thesis we restrict to

distributing the data over the processors since there is no conclusive evidence that

distributing features is superior. We assume that the processors have the ability to

communicate with one another but in general not every processor can send direct

message to every other processor. To represent this restriction, the network of

processors is viewed as a graph G = (V,E) with processors being the nodes (so

that |V | = n) and available direct communication channels being the edges E. The

graph G may be directed or undirected. The only requirement for graph G is that

7

there is a directed path between any pair of nodes (i, j). Graphs with this property

are called strongly connected.

We create a distributed optimization problem by splitting the data split evenly

among the nodes. For simplicity we assume in the rest that the number of data

points m is divided exactly by the number of processors n.

minimize
w∈W

F (w) =
1

m

m∑

j=1

l(w,xj) =
1

n

n∑

i=1

 n

m

m
n∑

j=1

l(w,xj|i)

 =

1

n

n∑

i=1

fi(w),

(1.8)

where xj|i we refer to the j-th datapoint in processor i’s subset (i.e., j|i = (i −

1)mn + j). To unclutter notation the local objective is shown as fi(w) and the data

dependence will be suppressed except for the sections where it is necessary to show

it.

Observation: One way to arrive at a problem of the form (1.8) is through

empirical loss minimization for data-driven machine learning problems. However,

equation (1.8) describes a general separable convex minimization problem that does

not have to depend on data. From that perspective, many of the conclusions in this

thesis extend beyond machine learning problems.

Finally, at this point it is instructive to mention another difference between

parallel and distributed algorithms. A parallel algorithm will typically maintain

only one estimate w that is updated by computations done on all nodes. As al-

ready mentioned in Section 1.2, updating a single estimate may cause contention or

introduce synchronization points in the system. A distributed algorithm will avoid

maintaining a centralized estimate. Instead each node has a local estimate wi. The

increased robustness and scalability is traded off for an iterative message passing

algorithm such that each wi approaches the true minimizer w∗ asymptotically.

1.5 Consensus-based Distributed Optimization

As described in Section 1.4, in our distributed setting, each processor is a node

in a graph G and is responsible for the i-th component fi(w) of a global objec-

tive that needs to be minimized. The thesis studies the family of consensus-based

8

distributed optimization algorithms that solve separable convex optimization prob-

lems. In this subsection we describe the major components that the reader should

anticipate to encounter in all algorithms of this family. Based on the behaviour and

interaction between those components, algorithms with different properties can be

developed.

• Time: All of the algorithms considered in this work are iterative. Each node

has an iteration counter and repeats a sequence of steps in each iteration,

updating its local estimate. We do explicitly consider a relationship between

iterations and actual wall clock time in Chapters 3 and 4. However, unless

stated otherwise, we may use the term time to refer to discrete time and itera-

tion number. Sometimes we will assume that the iteration counter is common

for all nodes which will indicate an algorithm is synchronous. Alternatively,

each node may maintain its own iteration counter in which case the algorithm

is asynchronous. Unsurprisingly, synchronous algorithms are easier to analyze

theoretically and many times we focus on the synchronous setting to prove

theoretical results and gain insights.

• First-order Optimization: The focus is on general non-linear convex optimiza-

tion. In lack of any specific assumptions on the structure of the components

fi(w), we rely on gradient information to locate the optimum. Furthermore,

without any extra smoothness assumptions, the reader should expect to en-

counter computations of subgradients of the local objectives. It should also

not come as a surprise that to ensure convergence, a diminishing step-size has

to be used.

• Constraints: Dealing with complex constraint sets W that may even differ

among nodes, is not the main focus of this work. However, we do accommodate

a case of simple convex constraints that still remains of great practical interest.

We assume that the solution is sought inside a set W which is known to all

nodes. To ensure that the estimates remain within W, a projection operator

is used to map estimates back into W. In most cases a simple Euclidean

9

projection will suffice, i.e.

ΠW [y] = argminw∈W ‖w − y‖
2 . (1.9)

For the analysis of computation time of different algorithms it will be assumed

that the set W has a simple enough structure so that projections are easy to

compute in the sense that they do not consume the bulk of the iteration’s

computation time.

• Coordination: We will be studying distributed algorithms with no special mas-

ter processor. Instead, our algorithms will guarantee that all nodes approach

the global optimum. To reach an agreement on the optimal solution, the pro-

cessors rely on distributed consensus algorithms that involve communication.

In a typical consensus step, a node exchanges messages with its neighbours on

the graph and forms a convex combination of the received information. Under

appropriate conditions on the weights assigned on the incoming messages, it is

possible to guarantee convergence to consensus on a value among all the nodes

on the graph. Depending on the approach, in our optimization context, the

nodes may try to reach consensus on the optimum point directly, or instead,

they may try to agree on the direction towards the optimum. The latter can

greatly simplify the analysis.

All of the algorithms in the family of consensus-based distributed optimization

make use of the above three components in one form or the other. A typical itera-

tion will include computation in the form of a gradient calculation and a projection,

and coordination through a consensus step where the main cost comes from com-

munication. The algorithm designer typically has the freedom to decide the step

size strategy, the consensus matrix weights, the communication strategy (e.g., nodes

only send messages, or nodes both send and block until they receive a message),

as well as the number of gradient and consensus steps to be executed within each

iteration. As we will see, these design choices will play a role in the presence of

different network effects.

10

1.6 Publications

Parts of the work presented in this thesis have been published in different

venues. Below find a full list of the relevant publications:

1. Konstantinos I. Tsianos and Michael G. Rabbat, The Impact of Communica-

tion Delays on Distributed Consensus Algorithms, preprint arXiv:1011.2235,

2012 (submitted to IEEE Trans. on Automatic Control)

2. Konstantinos I. Tsianos and Michael G. Rabbat, Simple Iteration-Optimal

Distributed Optimization, European Signal Processing Conference (EUSIPCO),

2013

3. Konstantinos I. Tsianos, Sean Lawlor and Michael G. Rabbat, Communi-

cation/Computation Tradeoffs in Consensus-Based Distributed Optimization,

Neural Information Processing Systems (NIPS), pp 1952–1960, 2012

4. Konstantinos I. Tsianos Sean Lawlor and Michael G. Rabbat, Consensus-

Based Distributed Optimization: Practical Issues and Applications in Large-

Scale Machine Learning, 50th Allerton Conference on Communication, Con-

trol and Computing, pp 1543 - 1550, 2012

5. Konstantinos I. Tsianos and Michael G. Rabbat, Distributed Strongly Con-

vex Optimization, 50th Allerton Conference on Communication, Control and

Computing, pp 593 - 600, 2012

6. Konstantinos I. Tsianos, Sean Lawlor and Michael G. Rabbat, Push-Sum Dis-

tributed Dual Averaging for Convex Optimization, IEEE Conference on Deci-

sion and Control (CDC), pp 5453 - 5458, 2012

7. Konstantinos I. Tsianos and Michael G. Rabbat, Distributed Dual Averag-

ing for Convex Optimization under Communication Delays, American Control

Conference (ACC), pp 1067 - 1072, 2012

8. Konstantinos I. Tsianos and Michael G. Rabbat, Distributed Consensus and

Optimization under Communication Delays, 49th Allerton Conference on Com-

munication, Control and Computing, pp 974 - 982, 2011

11

1.7 Notation

We summarize here the most important symbols and notation. A conscious

attempt was made to keep the same meaning for the same symbol. Unavoidable

symbol overloading will be explicitly stated wherever necessary.

• D: A dataset

• m : Dataset size

• xi : A data vector

• t : Discrete time variable, iteration

• T : Total number of iterations

• wi(t) : Estimate at node i at time/iteration t

• wi(t) : Local running average of wi

• zi(t) : Dual variable at node i at time/iteration t

• z(t) : Average of all zi(t)

• W : Solution domain

• R : Domain W’s radius

• L : Lipchitz constant, gradient magnitude bound

• F (w) : Objective to be minimized

• fi(w) or f(w,xi) : component of the objective F (w) residing at node i

• ∇wfi(w), gi(w) : Sub-gradient of fi at w

• ∂wfi(w) : Sub-differential of fi at w

• G = (V,E) : A graph of V nodes connected over edges in E

• n : Number of nodes in a network

• P : n×n Consensus protocol conformant to G. Column,row or doubly stochas-

tic matrix

• Pij or [P]ij : Element in row i and column j of matrix P

• [P]i,: and [P]:,j : The i-th row and j-th column of P respectively

12

CHAPTER 2
Background and Previous Work

Before proceeding to the main results of the thesis, it is important to review the

related literature and put this work in context. This chapter collects some necessary

background and results. These results will be referenced wherever necessary in the

rest of the thesis.

2.1 Distributed Consensus

This work studies consensus-based distributed optimization algorithms which

have first been discussed in detail by Tsitsiklis, Bertsekas and Athans [10, 94]. Re-

cently these algorithms have received a lot of attention in the context of large-

scale optimization and machine learning, as well as in wireless sensor networks [30].

Consensus-based distributed optimization algorithms generally interleave a local op-

timization step with an iteration of distributed consensus to coordinate or synchro-

nize values across the network. We review the distributed optimization literature in

Section 2.5. Here we start with distributed consensus and averaging.

Assume each node i ∈ V in a strongly connected network G = (V,E) of |V | = n

nodes holds a value zi. We stack the initial values in a vector z(0) = (z1, . . . , zn)T .

The general consensus problem asks for a distributed algorithm such that the nodes

of the network exchange messages with their neighbours and update their state to

reach consensus: z(t)→ c1 as t→∞. In other words, we want the nodes to agree on

a common value c using only local communication. As briefly mentioned in Section

1.5, to reach consensus, each node transmits its local state to its neighbours in G. A

node updates its state by forming a convex combination of the incoming messages.

If we arrange the weights that node i uses to linearly combine incoming information

from its neighbours into the row of a matrix P , consensus can be achieved by

13

repeating the iteration

z(t) = Pz(t− 1) = P tz(0) (2.1)

for appropriately chosen matrices P . From now on we will refer to P as the con-

sensus matrix. If Pij > 0, that means that node j transmits information to node

i. If Pij = 0 then there is no direct communication from j to i. Consequently, P

conforms exactly to the structure of the graph G. Equation (2.1) in general repre-

sents a broadcast protocol where each node broadcasts its value to its neighbours.

Each node as a receiver forms a linear combination of the incoming messages. An

important special case of distributed consensus is averaging, where we demand that

the limit value c is equal to the average of the initial values 1
n

∑n
i=1 zi(0). Chapter

5 explains in detail why averaging is critical for solving optimization problems.

There is a rich literature on distributed consensus and averaging (see [30, 63]

and references therein) and a lot of effort has been devoted to analyzing the rate of

convergence to the consensus value through the properties of the consensus matrix

P [13, 65].

When P (t) ≡ P for all t, we have a time-homogeneous consensus protocol,

which must be implemented using synchronous, blocking communications so that

each node receives a message from all of its neighbours before computing the update

for each iteration. Such protocols admit fairly straightforward convergence analysis.

To reach consensus it suffices to use a matrix P whose rows sum to one i.e., P1 = 1.

Such a matrix is called row stochastic and corresponds to the transition matrix of

a Markov chain. As is emphasized in [15], we can study consensus through the

spectral properties of the corresponding Markov chain. For example, recall that for

this work P conforms to a strongly connected graph G so that every two processors

in our network can exchange information over a path of G. In the Markov chain

literature, such a chain P is called irreducible. Let us call π, the unique stationary

14

distribution of P i.e., πTP = πT . If P represents a reversible Markov chain1 ,

(e.g., if G is an undirected graph), convergence is established by Perron-Frobenius

theory [73]. Specifically, one can verify that 1 is the unique largest eigenvalue of P

and thus P converges to a rank 1 matrix all of whose rows are equal to the chain’s

unique stationary distribution π. Furthermore convergence is geometric at a rate

O(|λ2(P)|t), where λ2(P) is the second largest eigenvalue of P (see Theorem 4.2

in [73]). It is easy to show that if in addition P is doubly stochastic (i.e., if the

columns sum up to one too) then P is an averaging matrix since its stationary

distribution can be shown to be uniform and P t → 1
n11T .

More generally, if P is not reversible (e.g., if G is directed) then the theory for

reversible chains can still be applied to obtain bounds on the convergence rate by

first reversibilizing the chain (akin to a symmetrizing transformation); see, e.g., [34].

In general, the reversibilization transforms require that P be strongly aperiodic

(all diagonal elements satisfy Pi,i ≥ 1/2). When this is not true, it is common

to study a lazy version of the corresponding chain, 1
2(I + P). The lazy chain

converges no more than two times slower than the original chain due to the presence

of self-loops. We will see an application of these techniques in Chapter 6 when we

model communication delays. We remark that more recent results for characterizing

the mixing times2 of non-reversible Markov chains with zero minimum holding

probability3 may lead to tighter results since they do not use the lazy chain [53].

Making use of these results is an interesting direction for future work.

1 A chain is reversible iff πiPi,j = πjPj,i for all i and j.

2 The mixing time of a Markov chain is the number of iterations required for the
chain to be sufficiently close to its stationary distribution. Intuitively, if a chain P
has stationary distribution π, the probability of the Markov chain being at state i
after mixing time number of steps is close to πi.

3 The holding probability for state i = 1, . . . , n of a Markov chain is the proba-
bility that after taking a step from state i the chain finds itself returning to state i.
The holding probabilities are the diagonal elements of the Markov chain matrix P .

15

It is of great practical interest to also study time-varying versions of (2.1)

by allowing the consensus matrix to change at every iteration using time varying

matrices P (t). For example this allows us to implement and study asynchronous

protocols where each node decides when to transmit independently. It is generally

more difficult to establish convergence properties for time-varying updates because

one needs to analyze products of time-varying stochastic matrices. For example, for

time-varying protocols, [82] provides necessary conditions under which convergence

is achievable while [66] characterizes the expectation and variance of the consensus

value. In addition, [4] shows that using asynchronous broadcasts and forming convex

combinations of incoming information guarantees convergence to the average only

in expectation.

If the matrices P (t) are drawn independently and identically distributed (i.i.d.)

according to a known distribution, then the bounds mentioned above for time-

homogeneous protocols can be applied to the expected update matrix E[P (t)]. When

all matrices P (t) are row stochastic, the process (2.1) gives rise to a backward

product

z(t) = P (t)P (t− 1) · · ·P (1)z(0)
def
= T (1, t)z(0). (2.2)

Convergence properties of backward products of stochastic matrices are typically

obtained by establishing weak ergodicity [73]; i.e., that |[T (r, t)]i,s − [T (r, t)]j,s| → 0

as t → ∞ for all i, j, s, and r, where [T]i,j denotes the entry of the matrix T in

row i and column j. For time varying Markov chains, convergence and convergence

rates are traditionally obtained using coefficients of ergodicity which are metrics

that characterize the distance from convergence of the backward product based on

the metrics of the individual product terms. Related to that are also the scrambling

properties of the matrices in the process P (t), i.e., the number of steps necessary for

any two pairs of nodes to exchange information. For more details consult [20,73,82].

It is worth mentioning that establishing convergence is significantly harder and

the derived rates tend to be very conservative. More recently, the PhD thesis of

Touri [84] provides rates of convergence for backward products using a suitable

16

Lyapunov function and the infinite flow property which ensures that the graph

formed by putting edges between nodes that exchange information infinitely often,

is connected. In general, these rates of convergence are also pessimistic, involving a

worst-case analysis. For example, when packets can be delayed, the bounds depend

on the largest possible delay.

Besides the simple iteration (2.1), as we will emphasize in Chapter 5 it is

possible to achieve average consensus using column stochastic matrices P . This

might be surprising at first since a column stochastic matrix P alone does not

preserve the sum of the value in (2.1). However, this complication is overcome with

the exchange of extra scalar information. An example of this family of algorithms is

Push-Sum [49]. If we allow the consensus matrix to vary with time, we end up with

what is called a forward product of column stochastic matrices and is analogue to

(2.2). See [7, 31,73] for some convergence analysis in the time varying case.

2.2 Communication Delays

As explained in the introduction, communication delays are almost always ex-

pected to occur for any real networked system and there exist studies of delays in

various contexts. For applications in partial differential equations, distributed con-

trol and multi-agent coordination see [12,71] and [64,74] which analyze continuous-

time delay models where all messages incur the same constant delay. In this work

we are interested in the effect of communication delays on consensus algorithms and

distributed optimization where both computation and communication happen in

rounds and take a significant amount of time. For this reason we focus on discrete-

time models. An early treatment of delays in discrete-time distributed averaging

algorithms can be found in [10], where it is proved that convergence is not guar-

anteed if delays are unbounded. An analysis of conditions for convergence in the

presence of delays is given in [13]. Closer to our work are [21], [56] and [95] which

model delays in discrete time for consensus problems by augmenting the state space

with delay nodes. However, in [21] the value to which the consensus algorithm

asymptotically converges is not characterized. The model in [95] accumulates all

the delayed information in a single delay node and does not allow for delivery of

17

messages out of order. The model in [56] has the same expressive power as the

random delay model introduced in Chapter 6, although the equation describing the

consensus dynamics in [56] does not allow for receiving multiple messages from the

same sender in one iteration.

2.3 Non-Linear Convex Optimization

The question of finding the minimizer of a generally non-linear convex objective

F (w) over a convex setW, has been studied for many decades [8]. Several textbooks

such as [17] and [62] cover the topic in detail focusing either on the engineering aspect

of how to express a given task as an optimization problem, or on what algorithms

and technical issues must be addressed when searching for a solution. In the rest

of this thesis we will focus on first-order gradient-based methods, and we will not

consider other alternatives such as second order and interior point methods. The

reason is that gradient-based methods are very simple and can be extended to the

distributed setting quite naturally. Furthermore, gradient methods tend to be very

efficient in terms of computational overhead and memory requirements, and they

remain competitive when the problem is high-dimensional and the objective does

not have any special structure that can be exploited.

The basic gradient descent algorithm for solving unconstrained problems (where

W = Rd
′
), performs updates

w(t+ 1) = w(t)− a(t)∇wF (w(t)) (2.3)

where a(t) > 0 is a step-size and ∇wF (w(t)) is the gradient of the objective at the

most recent estimate. The two relevant questions are: under what conditions for the

objective and the step size sequence does (2.6) converge to the true minimizer w∗ of

F (w), and how many iterations are needed to guarantee that w(t) is an ε-accurate

solution i.e., after how many iterations the error

F (w(t))− F (w∗) (2.4)

is less than some positive ε. An excellent reference for answering these questions,

depending on the properties of the objective function, is [60].

18

For the gradient method, if F (w) is smooth with L−Lipschitz continuous gra-

dients then convergence is guaranteed at a rate

F (w(T))− F (w∗) = O

(
1

T

)
(2.5)

if we use the optimal constant step size a(t) = 1
L where L is the Lipschitz constant

of the objective [60].

In general we will be interested in solving non-smooth problems. For example

the hinge loss from equation (1.3), is not differentiable at zero. For non-differentiable

problems, to find a minimizer within a constraint set W we can use the Projected

Subgradient method [8] that uses sub-gradients in place of gradients:

w(t+ 1) = ΠW [w(t)− a(t)∇wF (w(t))] (2.6)

Here ΠW [·] is a projection operator such as (1.9) and a(t) > 0 is a step-size sequence.

If the objective is L-Lipschitz continuous (see definition in Section 1.4), then using a

diminishing step size sequence a(t) = O(1√
t
), the projected sub-gradient algorithm

converges as (Theorem 3.2.2 in [60])

F (w(T))− F (w∗) = O

(
1√
T

)
(2.7)

if we decide a priori the number of iterations T that the algorithm shall execute.

Notice that this rate is significantly slower, indicating that non-smooth problems

are much harder to solve. The rate is improved however, if the objective has more

structure.

Definition 2.1. A function F (w) is σ-strongly convex if there exists a constant

σ > 0 such that for all θ ∈ [0, 1] and all u,w ∈ W,

F (θu+ (1− θ)w) ≤ θF (u) + (1− θ)F (w)− σ

2
θ(1− θ) ‖u−w‖2 . (2.8)

If the objective to be minimized is strongly convex, then as explained in [39,76],

the projected subgradient algorithm with a step size sequence a(t) = O(1
T) converges

19

at a rate

F (w(T))− F (w∗) = O

(
log(T)

T

)
. (2.9)

The intuition is that strong convexity ensures that the objective does not flatten

out too much near w∗ and thus the sub-gradient algorithm can keep approaching

the minimum quickly.

We conclude this section with another important algorithm attributed to Nes-

terov [61] called dual averaging. The name comes from the use of a dual variable

z(t) which at every iteration is the cumulative sum of past gradients which are vec-

tors that lie in the dual space W∗. At each iteration the algorithm performs the

updates

z(t+ 1) =z(t) + ∂wF (w(t)) (2.10)

w(t+ 1) = argminw∈W

[
wT · z(t+ 1) +

1

2a(t)
ψ(w)

]
. (2.11)

The second equation uses a 1-strongly convex function ψ(w) to compute a projec-

tion. Observe that if ψ(w) = wTw
2 = ‖w‖

2 then the step reduces to a Euclidean

projection and the algorithm is referred to as lazy projection in [103]. Using a step

size sequence a(t) = O
(

1√
t

)
, dual averaging converges at the same optimal rate

F (w(T)) − F (w∗) = O
(

1√
T

)
for general non-differentiable, L−Lipschitz contin-

uous functions. Finally, it is worth mentioning that the convergence results given

above are still achievable when the gradients are noisy and the projection operations

are imprecise [72].

2.4 Online and Stochastic Optimization

Online and stochastic optimization considers scenarios where an algorithm is

not given all the data in advance [75]. Chapter 8 studies convergence rates of

distributed algorithms for such problems so we review some of the recent related

literature here. Again we will focus on first order gradient methods. We first define

the related problem of online prediction and then proceed to give the convergence

results for online optimization.

20

An online prediction algorithm [23] receives convex and L-Lipschitz continuous

cost functions f1(w), f2(w), . . . sequentially one at a time. In general, the cost

functions do not have to be related in anyway. With time, the algorithm produces

a sequence of estimates w(1), . . . ,w(T) and accrues cost
∑T

t=1 ft(w(t)). The goal

is to accumulate as little cost as possible. To put this abstract setting in context,

consider the case where the algorithm needs to process a dataset and the data points

are arriving one at a time. In this case, the cost functions may be parameterized by

the data, i.e., the algorithm receives f(w,x(1)), f(w,x(2)), . . . where the temporal

dependence is encoded in the data index. This situation could occur either when

the data is collected in real time, or deliberately enforced when the dataset is large

and is processed sequentially to save memory. An important special case is when

the data, and thus the costs, are drawn randomly from an unknown distribution.

We call this a stochastic online prediction problem.

The goal in online prediction is to produce a sequence of estimates {w(t)}Tt=1

that accumulates as little cost as possible. To quantify this notion, rather than

an objective function the notion of regret is used. Consider an offline algorithm

that has access to all the data, or more generally, all the cost functions in advance.

Based on that privileged information the offline algorithm is allowed to choose the

best possible fixed estimate w∗. Then, an online algorithm is evaluated based on

how much it regrets using its sequence of estimates rather than w∗ at every step.

Formally for a serial online prediction algorithm regret is defined as

R1(T) =

T∑

t=1

f(w(t),x(t))− min
w∈W

T∑

t=1

f(w,x(t)). (2.12)

This comparative performance is fair in the sense that either we have perfect infor-

mation but commit to one single optimal predictor w, or information is revealed

progressively and the predictor w is allowed to change accordingly. Finally, observe

that if we analyze an online algorithm but feed the algorithm the same data at every

iteration then the resulting rates describe the performance of an offline algorithm

21

that uses that same data so the reader should recognize here many of the results of

the previous section.

Turning now to optimization, in the stochastic case, we can retrieve the op-

timization setting introduced in Section 1.4. Suppose the goal is to minimize an

objective F̄ (w) = ED [f(w,x)] where the expectation is taken with respect to an

unknown fixed distribution that generates the data x. Using a finite set of T data

samples, we can minimize minimize F (w) = 1
T

∑T
t=1 f(w,x(t)). The minimizer of

F (w) approaches the minimizer of the true objective F̄ as T grows [59, 76]. This

approach is called empirical loss minimization since we use the finite set of observed

data (empirical data) to approach the minimum of an objective that is expressed

as an expectation and for which we do not have an analytic expression. Notice

that with T finite, a subgradient ∂wf(w) at some point w is only a noisy unbi-

ased estimate of the true subgradient ∂wF̄ (w). Consider now the running average

w(T) = 1
T

∑T
t=1w(t). From the convexity assumption, the expected optimization

error is bounded by the average expected regret:

EX [F (w(T))− F (w∗)] ≤ 1

T
EX [R1(T)] (2.13)

where the expectation is taken with respect to the unknown data distribution (see

[100]). In the rest of this section we report some recent results on convergence rates

for stochastic optimization as well as the extension to the distributed setting. To

describe all of the results in an optimization form, we express the bounds in terms

of the average or expected average regret depending on whether the bound refers to

a general online or a stochastic problem:

∆1(T) =
1

T
R1(T) or E [∆1(T)] =

1

T
E [R1(T)] (2.14)

where the expectation is taken with respect to the unknown data distribution.

The question, of course, is how quickly does ∆1(T) or E [∆1(T)] converge to

zero. The answer depends on the convexity and smoothness properties of the ob-

jective. When the cost functions f(w,x) are convex in w for every x ∈ X and the

22

sub-gradient ∇wf(w,x) is bounded uniformly then stochastic sub-gradient descent:

w(t+ 1) = ΠW [w(t)− a(t)∂wf(w(t),x(t))] (2.15)

achieves the rate ∆1(T) = Θ
(

1√
T

)
and this algorithm is optimal [14, 39, 103]. The

same rate can also be achieved by an online or stochastic implementation of the

dual averaging algorithm (2.10) using subgradients [61,100]. In both cases, the rate

is achieved using a step size sequence a(t) = O
(

1√
t

)
.

There has also been a lot of recent work on the case where cost functions

are strongly convex (recall the definition (2.1)). In this case, the rate for general

online problems can be improved to ∆1(T) = Θ
(
log(T)
T

)
using either stochastic

subgradient or dual averaging methods [39, 48, 67, 76, 77, 100]. There are several

variants of the basic algorithms we have seen that achieve these rates. Typically, for

a σ-strongly convex objective (see definition 2.1) one can get the optimal rate using

algorithm (2.15) with a step size sequence a(t) =
(

1
σt

)
. If the convexity parameter

σ is not known in advance one can achieve the same rates using adaptive methods

[5]. Interestingly, for strongly convex objective functions the general online and

stochastic scenarios can be solved faster. In particular, [40] describes an algorithm

that achieves a rate E [∆1(T)] = O
(
1
T

)
for stochastic optimization which is faster

by a logarithmic factor.

Example: Training a Classifier. It is instructive to mention an example

application for the reader’s convenience. Suppose the t-th data point x(t) ∈ X ⊆ Rd

is drawn i.i.d. from an unknown distribution D, and let f(w,x(t)) denote the cost

of the t-th data point with respect to a particular estimate w. One would like to

find the point w that minimizes the expected loss ED[f(w,x)], possibly with the

constraint that w be restricted to a space W. Since the data are drawn i.i.d., as

T → ∞, the objective F (w) = 1
T

∑T
t=1 f(w,x(t)) approaches ED[f(w,x)], and so

if the data stream is finite this motivates minimizing the empirical loss F (w). The

reason the costs are processed sequentially could be either because the data points

are collected and arrive in real time one after another, or because we deliberately

process them serially to keep memory and computation cost per iteration low. For a

23

specific example, consider the problem of training an SVM classifier using the hinge-

loss with `2 regularization [77] that we saw earlier (see (1.3)). In this case, the data

stream consists of pairs {x(t), y(t)} such that x(t) ∈ X and y(t) ∈ {−1,+1}. The

goal is to minimize the misclassification error as measured by the `2-regularized

hinge loss. Formally, we wish to find the w∗ ∈ W ⊆ Rd that solves

minimizew∈W
σ

2
‖w‖2 +

1

m

m∑

t=1

max{0, 1− y(t)wTx(t)} (2.16)

which is σ-strongly convex4 . For problems like (2.16) using a single-processor

stochastic gradient descent algorithm, one can achieve R1(T)
T = O

(
log T
T

)
[77] or

R1(T)
T = O

(
1
T

)
[40] by using different update schemes.

Let us now turn our attention to the distributed case where we have a net-

work of n processors which all receive data and update their estimates over time.

Specifically, processor i receives data xi(1),xi(2), . . . , and updates a local variable

wi(1),wi(2), In this distributed setting, when each processor receives T data

points, performance is measured in terms of the cumulative regret over all proces-

sors,

Rn(T) =
n∑

i=1

T∑

t=1

f(wi(t),xi(t))− arg min
w∈W

n∑

i=1

T∑

t=1

f(w,xi(t)). (2.17)

Furthermore, the processors communicate and coordinate their actions to satisfy

three objectives.

1. The processors should collectively minimize the regret Rn(T).

2. The processors should agree on the optimal point w∗, and hence we require

some form of consensus.

3. The distributed algorithm should be scalable in the sense that the regret Rn(T)

should scale well with the number of processors n; i.e., the overhead involved

in coordinating the processors should not grow substantially as n increases.

4 Although the hinge loss itself is not strongly convex, adding a strongly convex
regularizer makes the overall cost function strongly convex.

24

With respect to the third objective, if the n processors act independently then there

will be no overhead for coordination, but the regret will inevitably grow at a rate

of nR1(T). On the other hand, processing the entire data stream

x1(1), . . . ,xn(1),x1(2), . . . ,xn(2), . . . (2.18)

sequentially with a single processor would give a regret of R1(nT). In light of the

discussion in Sections 1.2 and 1.3 any reasonable distributed algorithm that uses

some coordination will have a regret Rn(T) for which

R1(nT) ≤ Rn(T) ≤ nR1(T). (2.19)

Observe that for distributed algorithms the convergence rate question has two as-

pects. The first is to ensure that a distributed algorithm converges with the number

of iterations T , at the same rate as its serial counterparts. The second aspect is to

optimally utilize the power of n processors and scale with the network size. We say

that a distributed online stochastic prediction algorithm achieves optimal scaling if

Rn(T) = Θ(R1(nT)) since in that case the distributed regret with n processors is of

the same order as the serial regret of a single processor that sees the same amount

of data.

Contrary to the serial case, the existing results for distributed/decentralized

algorithms are less complete. Both serial gradient descent and dual averaging can be

implemented in a distributed manner using consensus iterations over a network [32,

58,69]. Similar to the serial case, if we define

∆n(T) =
1

nT
Rn(T) (2.20)

then the best consensus-based algorithms scale as ∆n(T) = O
(
log(
√
nT)√
T

)
when

nodes coordinate over a constant-degree expander graph5 if the cost functions are

convex with bounded subgradients. Note that this rate is not optimal with T or

5 Expanders graphs are graphs with relatively low degree per node but never-
theless remain well connected and allow for fast information diffusion. There is

25

n due to the logarithmic factor in the numerator. For strongly convex functions

Chapter 8 describes an algorithm that achieves a rate ∆n(T) = O
(
log(
√
nT)

T

)
which

is time optimal for online optimization.

As an alternative to consensus-based algorithms, there also exist hierarchical

schemes where a system consists of n slave processors and one master node [2, 50].

In such an architecture the master maintains and updates the estimate w(t). The

slaves are responsible for computing gradients which they communicate back to the

master. Typically, only one node can communicate with the master at a time and

consequently the rest of the slaves need to wait or perform gradient computations

with stale values of the estimate w(t). It turns out that such a scheme can achieve

an optimal rate E [∆n(T)] = O
(

1√
nT

)
for convex objectives that are also smooth,

even in the presence of bounded maximum delay [2]. A drawback of implementing

this approach is that the master node is a bottleneck of the system. At the expense

of building a tree hierarchy among the nodes, the problem can be alleviated, but

bottlenecks and vulnerability to single points of failure are still present.

Finally, Dekel et al. [28] also describe a distributed algorithm that asymptot-

ically achieves the optimal distributed rate of E [∆n(T)] = O
(

1√
nT

)
for smooth

convex functions and E [∆n(T)] = O
(

1
nT

)
for smooth strongly convex functions.

Their algorithm is synchronous, processes the data in mini-batches and relies on

global communication for perfect coordination. Specifically, each node performs a

local gradient step in the direction of the average gradient of a mini-batch of incom-

ing data. After each gradient update all nodes participate in a global communication

step which is synchronous and computes the true average of the estimates.

2.5 Distributed Optimization

Over the last few years a plethora of parallel and distributed algorithms have

been developed to use multiple processors for solving difficult optimization and

great interest on both existence and construction methods of expander graphs with
bounded or even fixed degree per node [70].

26

machine learning problems . Reference [22] gives a taxonomy of different classes of

distributed optimization algorithms and problems. The more recent reference [6,79]

gives a fairly extensive collection of applications of distributed optimization for

machine learning. These applications cover whole range of different platforms from

clusters to shared memory machines and GPUs following recent hardware trends.

This thesis focuses on large scale computations that take place either in clusters or in

general networks of computers. We will not be concerned with the growing literature

in multi-threaded programming for shared memory machines or the emerging trend

of parallelization using GPUs. Section 1.2 talks about the difference between parallel

and distributed algorithms which is mostly conceptual and based on how many

synchronization points there are and how much communication is needed. In this

section we review a few different algorithms for computations over clusters. We

review some representative consensus-based optimization algorithms in more detail

to equip the reader with the necessary background for what follows.

We have already discussed some distributed algorithms that are also suitable for

stochastic optimization. These include hierarchical algorithms with a master-slave

architecture [2, 50] where a team of processors is responsible for gradient computa-

tions while a master node collects all partial gradients to update the state, and a

mini-batch algorithm which relies on global blocking communication to ensure that

all processing nodes have access to the same state w(t) at all times. A different

strategy to guarantee the existence of only one estimate shared among the nodes is

that of incremental methods such as [9, 47]. For example in [47] there is only one

estimate w(t) which is known to only one node at any given time. The node that

holds the estimate performs a gradient update using its local data and then passes

on the estimate to another node. As the estimate goes through the nodes, either

in a cyclic or a random order, the global objective is minimized. One could argue

that such a scheme is not a distributed algorithm since only one node is performing

computations at any given time. However, in Chapter 4 we show that these meth-

ods can be superior when we need to solve multiple optimization tasks on the same

cluster in parallel.

27

Over the last few years there has been great interest in an algorithm called the

Alternating Direction Method of Multipliers (ADMM) [16,41,44, 96]. This method

relies on a dual decomposition [57, 83] of the objective to bring the problem in a

separable form that can be solved in a distributed manner. The method is itera-

tive and involves local computation and communication. A drawback is that each

iteration requires global coordination and a barrier mechanism to synchronize the

nodes and update shared global variables. However, the clean separation between a

local computation and a synchronized global communication step renders ADMM

compatible with a very popular distributed programming model called MapReduce

(see [27] and Section 2.6), where a distributed task is mapped onto n workers that

perform computation in isolation and then a reduce step coordinates the nodes and

updates the state. For similar examples see also [51] which intentionally creates an

overlap of the data subsets of different nodes as an implicit form of communication,

or Chapter 1 in [6] which report that such an approach can scale well in practice.

An extreme example at the moment of this writing is the algorithm in [1] which

uses MapReduce to apply a simple gradient descent algorithm and train an SVM

classifier with terabytes of data.

A simple but powerful approach is proposed in [104]. This scheme suggests to

first optimize the components of the objective locally at each node without com-

munication and then average the estimates only once at the end. This algorithm

conforms more to the parallel paradigm as described in Section 1.2. A similar ap-

proach, but closer to this thesis, is described in [52] for training neural networks.

There the idea of solving the local problems and then fusing the estimates is not

just done once, but rather it is repeated for many training epochs.

All the algorithms mentioned so far rely on either maintaining a unique estimate

of the solution at all times, or obtaining such an estimate exactly at some point in

the computation. This thesis follows a line of work that started with Tsitsiklis and

Bertsekas [10, 94] who showed that it is possible to solve separable optimization

problems over a network without structuring the computation hierarchically. In

that sense, all nodes have the same role throughout the process and the algorithms

28

become much simpler to implement and analyze while remaining robust to individual

node failures. However, this comes at the price of settling for an iterative algorithm

where the nodes arrive all at the same solution only asymptotically.

The consensus-based optimization literature has grown significantly in the last

few years with several papers exploring the many different questions associated with

these algorithms [25, 32, 58, 68]. Besides the practical advantages of scalability, ro-

bustness, and asynchronism, it is possible that these algorithms attract attention

because they lend themselves to elegant theoretical analysis while maintaining the

potential to be useful in real life applications; two aspects that sometimes tend to

contradict each other. Maybe the simplest algorithm in this family is Distributed

Sub-gradient Descent (DSD) [55] which extends the basic sub-gradient descent algo-

rithm (2.6) to the case of a network. Specifically, after choosing a doubly stochastic

matrix P for a connected network G of n nodes, DSD repeats the update

wi(t+ 1) = ΠW

n∑

j=1

Pijwj(t)− ai(t)gi(wi(t))

 (2.21)

at each node where ai(t) is the step size used by node i at time t and gi is a sub-

gradient of fi(w) that node i computes at point wi(t). Note that since the estimates

wi(t) are in general vectors, the subscript here is bold to indicate that wi(t) is node

i’s estimate. This is not to be confused with the i-th element of a vector that is

denoted by wi and is not bold. Observe that this iteration reduces to the serial

algorithm with n = 1 and P = 1. Otherwise, each node forms a convex combination

of its neighbours estimates. The role of consensus is to bring the estimates to

an agreement on the optimum. Using a diminishing step size a(t) = O
(

1√
t

)
at

all nodes DSG converges to the optimal solution for L-Lipshitz convex functions

at the time optimal rate of O
(

1√
T

)
. A number of papers explore extensions of

DSG such different constraint set per node, noisy communication links and noisy

gradients [58,69,80].

An interesting direction is to improve the speed of convergence by employing

more tools from the serial optimization literature. For example, [45] achieves a

29

convergence rate of O
(
log(T)
T

)
for smooth unconstrained problems using Nesterov’s

accelerated method [85] while [24] builds upon recent work on inexact proximal

methods [72] and acceleration techniques to describe a distributed algorithm that

converges at a rate O
(
1
T

)
for smooth convex functions. A drawback of the latter

is that it requires using a increasing amount of communication after every gradient

iteration which could render the algorithm not practical. In the following subsection

we describe in more detail the distributed version of dual averaging. The reason

is that this algorithm is representative of the consensus-based literature in terms

of its assumptions and performance but has a much cleaner mathematical analysis.

It will thus be used as a prototype for investigating the role of the network. We

conclude this section by noting that there is also an increasing interest on the less

well understood topic of non-convex distributed optimization [102].

2.5.1 Distributed Dual Averaging (DDA)

A distributed version of Nesterov’s dual averaging algorithm (2.10) (from now

on DDA) is developed and analyzed in [32]. Again, a network G of n nodes is given

together with a doubly stochastic consensus protocol P . Each node maintains a

primal variable wi(t) and a dual variable zi(t). At iteration t, node i uses a step

size a(t) and performs three steps:

1. Communicate: Send zi(t) and receive zj(t) from neighbors according to G

2. Compute: Update the primal and dual variables by setting

zi(t+ 1) =
n∑

j=1

Pijzj(t) + gi(t) (2.22)

wi(t+ 1) =Πψ
W [zi(t+ 1), a(t)] (2.23)

3. Update: The final estimate of the optimum is the local running average at

each node:

wi(t+ 1) =
1

t+ 1

t+1∑

s=1

wi(s). (2.24)

30

In (2.22), gi(t) ∈ ∂fi(wi(t)) is the latest local subgradient and the projection oper-

ator Πψ
W [·, ·] is defined as

Πψ
W [z, a] = argmin

w∈W

[
〈z,w〉+

1

2a
ψ(w)

]
. (2.25)

The projection makes use of a 1-strongly convex function ψ(w) for which it is

assumed that ψ(0) = 0. In [48] it is explained that the form of this projection stems

from Fenchel duality theory. For this work, it suffices to observe that if we chose

ψ(w) = 1
2 ‖w‖

2 we retrieve the standard Euclidean projection of the vector −az.

Observe that DDA uses consensus to bring the dual variables zi(t) variables

to an agreement as t → ∞ rather than the estimates themselves. The intuition is

that each dual variable zi(t) represents the direction towards the global optimum

according to node i and DDA is trying to bring the directions to an agreement.

Since we will be using and modifying this algorithm in the sequel, it is use-

ful to make some comments about the analysis of the algorithm and collect some

intermediate lemmas and theorems with respect to the convergence rate of DDA.

These results can be found in [32] but are included here to keep the manuscript self-

contained. First of all, as is common in the analysis of consensus-based optimization

algorithms, it is convenient to break the overall error into two terms, an optimiza-

tion error and a network error. This is done by defining an auxiliary centralized

sequence that would only be available if the algorithm had the ability to do perfect

averaging at every step. In general perfect averaging is not possible so rather than

tracking the error at each node directly, we track how far the average sequence is

from the solution and how far each node is from the average. The first corresponds

to an optimization error very similar to serial algorithms while the second depends

on the performance of distributed consensus over this particular network. For DDA,

the average sequences of interest are

z(t) =
1

n

n∑

i=1

zi(t) and y(t) = Πψ
W [z(t), a(t− 1)] (2.26)

31

i.e., the true average direction to the optimum and an estimate sequence y(t) that

evolves accordingly.

We are now ready to state the results. Recall that the objective is assumed to

be L-Lipschitz continuous and convex as stated in Section 1.4.

Lemma 2.1. Consider the sequences {wi(t)}∞t=1, {zi(t)}∞t=1, defined in (2.23),

(2.22) together with (2.26). For each i = 1, . . . , n and any w∗ ∈ W we have

T∑

t=1

F (wi(t))− F (w∗) ≤
T∑

t=1

F (y(t))− F (w∗) + L

T∑

t=1

a(t) ‖z(t)− zi(t)‖ , (2.27)

and with y(T) = 1
T

∑T
t=1 y(t),

F (wi(T))− F (w∗) ≤F (y(T))− F (w∗) +
L

T

T∑

t=1

a(t) ‖z(t)− zi(t)‖ . (2.28)

This lemma helps to break down the local error at each node into an optimiza-

tion error of the centralized true average sequence, and a network error showing the

discrepancy between the local estimates and their true average.

Lemma 2.2. Let {g(t)}∞t=1 ⊂ Rd be an arbitrary sequence of vectors, let {a(t)}∞t=1

be a non-increasing sequence, and consider the sequence

w(t+ 1) = Πψ
W

[
t∑

s=1

g(s), a(t)

]
. (2.29)

For any w∗ ∈ W we have

T∑

t=1

〈g(t),w(t)−w∗〉 ≤ 1

2

T∑

t=1

a(t− 1) ‖g(t)‖2 +
1

a(T)
ψ(w∗). (2.30)

This lemma is standard in proofs of serial gradient-based optimization algo-

rithms. It will help bound the optimization error of the centralized true average

sequence which behaves like a serial algorithm.

Lemma 2.3. For an arbitrary pair u,v ∈ Rd, we have

∥∥∥Πψ
W [u, a]−Πψ

W [v, a]
∥∥∥ ≤ ‖u− v‖ . (2.31)

Based on these Lemmas, [32] proves also a theorem that we will use in the

sequel.

32

Theorem 2.1. (Theorem 1, [32]) Consider the DDA algorithm (2.22)-(2.24) solving

problem (1.8). Assume without loss of generality that for a minimizer w∗ we have

ψ(w∗) ≤ R2 for some real constant R > 0. The error at any node i after T iterations

is bounded by

Erri(T) = F (wi(T))−F (w∗) ≤ R2

Ta(T)
+
L2

2T

T∑

t=1

a(t− 1)

+
L

T

T∑

t=1

a(t)

 2

n

n∑

j=1

‖z(t)− zj(t)‖+ ‖z(t)− zi(t)‖

 .

(2.32)

Theorem 2.1 illustrates exactly the separation between an optimization error

associated with the true average sequence (bounded by the first two terms in the

right hand side of (2.32)), and a network error captured by the terms involving

‖z(t)− zj(t)‖. From this expression, we can bound the network error term to obtain

concrete expressions for the convergence rate. Specifically, following the derivation

of Theorem 2 in [32], if we select a step size sequence a(t) = A√
t

and find the constant

A that minimizes the bound, we arrive at6

Erri(T) ≤ C1
log (T

√
n)√

T
, C1 = 2LR

√
19 +

12

1−
√
λ2
, (2.33)

where λ2 is the second largest eigenvalue of the consensus matrix P . As we see, due

to the logarithmic factor, DDA is neither time optimal nor scalable with the network

size n because as was discussed, an ideal distributed algorithm would achieve a

convergence rate of O
(

1√
nT

)
after T iterations.

2.6 Distributed Programming Models

A significant part of this work is concerned with the practical issues in the

implementation of distributed algorithms. In this section we briefly discuss the

main programming tools that are available. We start by referring the reader to

6 A generalized version of this derivation is given in Section 3.6.

33

the introduction of [36] for a classic reference that describes the semantics of dif-

ferent communication schemes. This is important to understand what is possible

in practice. See for example Section 5.2.2 which explains why a very popular and

elegant consensus algorithm cannot be implemented out-of-the-box in practice. In

short the reason is that this particular consensus algorithm relies on bi-directional

communication where two nodes need to both send and receive information and

block until the exchange is complete. Without extra assumptions, this blocking

communication causes deadlocks.

To have maximum control one of course has to program at a low level and use

sockets [81]. Socket programming is supported in all major programming languages

and provides functionality for point-to-point communication between processors.

Conveniently, asynchronous consensus-based algorithms rely only on pairwise in-

teractions and can be programmed using sockets. However at that low level it is

hard to impose global synchronization e.g., using barriers. Another difficulty arises

when the message sizes are much larger than typical TCP packet sizes. Even though

in a truly asynchronous algorithm nodes needs to decide completely independently

when to transmit and receive, with messages of several MB in size (as is common

in machine learning problems) it is a non-trivial programming exercise to ensure

that messages are received and the sockets do not choke. Fortunately, most pro-

gramming languages also have an API for the message passing interface (MPI) [37]

which is a very versatile framework for implementing parallel and distributed algo-

rithms. MPI offers functionality for both blocking and non-blocking point-to-point

communication so it is suitable for implementing asynchronous algorithms. How-

ever the issues of delivering large messages are easier to handle through the MPI

interface. Furthermore, MPI provides functionality such as barriers and efficient all-

to-all communication so it is convenient to code synchronous distributed algorithms

that interleave communication with computation.

Finally, we need to mention a programming framework that is at an even higher

level than MPI and has received a significant amount of attention in the last few

years. As it turns out, many of the distributed optimization algorithms of interest

34

operate in stages interleaving communication with computation. The computation

can take place in parallel independently on all processors while communication is

necessary to update some common variables. This structure fits nicely in a frame-

work called MapReduce [27]. MapReduce is specifically designed for large-scale data

processing in clusters. It abstracts a lot of the low-level functionality behind two

main operations: map and reduce. Mapping refers to distributing a load of work

into different processors, while the reduce step uses communication to collect and

fuse the results. By repeated application of map and reduce steps it is possible

to implement synchronous versions of most of the distributed algorithms we have

described so far. For an extensive list of recent success stories see also [6]. However,

MapReduce does not come without shortcomings. In particular, implementations

of iterative algorithms like the gradient descent schemes we have discussed earlier,

required sequential calls to MapReduce which imposes synchronization of the nodes

and makes the system vulnerable to real cluster delays. In particular, Chapter 5

illustrates the slow node problem which is common in large clusters. In short, a

synchronous algorithm is bound to run at the speed of the slowest node. In a large

cluster where nodes share their computation cycles between many users, it is very

common to have a very slow processor that holds back the whole system. This is one

of the main arguments in favour of asynchronism that is not natural to implement

within the MapReduce framework.

35

CHAPTER 3
Communication/Computation Tradeoff and Scalability

3.1 Introduction

Communication over the network is an expensive operation that introduces a

discrepancy between the performance of a network of n processors as compared to an

idealized single processor that is n times faster than any of them. By increasing the

number of processors for a given problem, the total computational capacity of the

system increases but so does the overall communication cost. This naturally leads

to a tradeoff between communication and computation and it is not the case that

adding more computers is always better. To understand this tradeoff, we need to

refine the existing analysis of consensus-based distributed optimization algorithms.

As will be discussed, an analysis based on number of iterations to convergence

is not enough and can even be misleading since it does not account for the cost

of communication. The simple intuition is that not all iterations cost the same in

actual user time, and thus many cheap iterations might be faster than few expensive

ones. For a specific problem, the performance will depend on the relative speed of

communication and computation on the available hardware. Given that this speed

can be estimated relatively easily, we can calculate what kind of performance to

anticipate from our algorithm.

We study the importance of the communication/computation tradeoff in two

contexts. This chapter studies the tradeoff focusing on scalability with the network

size1 . To make the discussion concrete we present our analysis within the context

of DDA [32] which was summarized in Section 2.5.1. However it should be evident

that our findings can be generalized to other consensus-based algorithms. In the

1 The work presented in this chapter is based on [86].

36

chapter that follows (Chapter 4) we use the idea of quantifying the communica-

tion/computation tradeoff to study parallelization at the task level by looking at

scenarios where we need to solve many optimization problems on the same cluster.

It is shown that based on the characteristics of the hardware and problems to be

solved, it might be possible to solve many tasks in parallel instead of preferring to

solve them one after the other.

3.2 Scalability in Consensus-based Distributed Optimization

This section focuses on understanding the limitations and potential for scal-

ability of consensus-based optimization. Furthermore our results are of practical

interest. There is a growing trend to perform more and more computation “in the

cloud” where a user is charged based on the amount of computational resources

used. Having a reasonable estimate of what is the optimal number of processors for

a given problem could prevent paying for resources that will not be helpful or will

not get used.

The driving questions for this section are: How many processors should we use

and how often should they communicate to solve a distributed optimization problem?

The recent distributed optimization literature contains multiple consensus-

based algorithms with similar rates of convergence for solving problem (1.8). We

adopt the distributed dual averaging (DDA) framework [32] because its analysis ad-

mits a clear separation between the standard (centralized) optimization error and

the error due to distributing computation over a network. This facilitates our in-

vestigation of the communication/computation tradeoff. The algorithm is described

in Section 2.5.1. We first repeat the update equations of DDA and then proceed

to quantifying the communication/computation tradeoff and show how it can be-

come part of the analysis. The experimental evaluation that follows, validates the

theoretical findings.

37

In DDA, nodes iteratively communicate and update optimization variables to

solve

minimize
w∈W

F (w) =
1

n

n∑

i=1

fi(w). (3.1)

Nodes only communicate if they are neighbors in a communication graph G =

(V,E), with the |V | = n vertices being the number of processors. The communica-

tion graph G is user-defined (application layer) and does not necessarily correspond

to the physical interconnections between processors. The DDA update equations

are

zi(t) =

n∑

j=1

Pijzj(t− 1) + gi(t− 1) (3.2)

wi(t) =argmin
w∈W

[
〈zi(t),w〉+

1

2a(t)
ψ(w)

]
(3.3)

wi(t) =
1

t

(
(t− 1) ·wi(t− 1) +wi(t)

)
(3.4)

To update zi(t) in (3.2), each node must communicate to exchange the variables

zj(t) with its neighbors in G. Recall from (2.33) that the convergence rate of DDA

is

Erri(T) ≤ C1
log (T

√
n)√

T
, C1 = 2LR

√
19 +

12

1−
√
λ2
, (3.5)

The dependence on the communication topology is reflected through λ2 the second

largest eigenvalue of the consensus matrix P which is conformant to the communica-

tion network G. According to (3.5), increasing n slows down the rate of convergence

even if λ2 does not depend on n. At first sight, this sounds disappointing since

one would hope that employing more processors should yield some computational

speedup when solving the same problem of a given size.

3.3 Quantifying the Tradeoff

In consensus-based algorithms such as DDA, the communication graph G and

the cost of transmitting a message have an important influence on convergence

speed, especially when communicating one message requires a non-trivial amount of

time (e.g., if the dimension of the problem is very high and the messages are large in

38

size). Intuitively, nodes should engage in expensive communication operations only

when the value of the exchanged information is worth it. There exists indeed some

work that quantify how much information is needed to learn classifiers from data

within a specified accuracy [42] (and references therein). Here we start from the

iteration-based convergence bound which describes how much the error can drop in

the worst case at each iteration.

To evaluate performance, we are interested in the shortest time to obtain an ε-

accurate solution where Erri(T) ≤ ε. From (3.5), convergence is faster for topologies

with good expansion properties, i.e., when the spectral gap 1−
√
λ2 does not shrink

too quickly as n grows. In addition, it is preferable to have a balanced network,

where each node has the same number of neighbors so that all nodes spend roughly

the same amount of time communicating per iteration. Below we focus on two

particular cases and take G to be either a complete graph (i.e., all pairs of nodes

communicate) or a k-regular expander graph [70]. This assumption simplifies the

analysis and allows us to gain a better intuition of the tradeoff. Furthermore, if

we have control over designing the communication topology and we do not want to

impose a hierarchy, treating some nodes differently, then there is no reason to deviate

from a regular graph. Furthermore, a graph with heavily unbalanced node degrees

could be bad simply because some nodes would have to communicate significantly

more than others.

By using more processors, the total amount of communication inevitably in-

creases but also more data can be processed in parallel in the same amount of time.

We focus on the scenario where the size m of the dataset is fixed but possibly

very large. To understand whether there is room for speedup, we move away from

measuring iterations and employ a time model that explicitly accounts for commu-

nication cost. This will allow us to study the communication/computation tradeoff

and draw conclusions based on the total amount of time to reach an ε-accurate

solution.

39

3.4 Time model

At each iteration, in step (3.2), processor i computes a local sub-gradient on

its subset of the data:

gi ∈
∂fi(w)

∂w
=

n

m

m
n∑

j=1

∂lj|i(w)

∂w
. (3.6)

The cost of this computation increases linearly with the subset size. Let us normalize

time so that one processor computes a sub-gradient on the full dataset of size m

in 1 time unit. Then, using n cpus, each local gradient will take 1
n time units to

compute since each node’s data subset is 1
n -th of the full dataset size. We ignore

the time required to compute the projection in step (3.3); often this can be done

very efficiently and requires negligible time when m is large compared to n and d.

We account for the cost of communication as follows. In the consensus up-

date (3.2), each pair of neighbors in G transmits and receives one variable zj(t−1).

Since the message size depends only on the problem dimension d′ and does not

change with m or n, we denote by r the time required to transmit and receive one

message, relative to the 1 time unit required to compute the full gradient on all the

data. If every node has k neighbors, the cost of one iteration in a network of n

nodes is

1

n
+ kr time units / iteration. (3.7)

Using this time model, we study the convergence rate bound (3.5) after attaching

an appropriate time unit cost per iteration. To obtain a speedup by increasing

the number of processors n for a given problem, we must ensure that ε-accuracy

is achieved in fewer time units. We perform an analysis of DDA for two scenarios.

First, when each node transmits and computes a new gradient at every iteration.

This serves as a base case as it conforms to the original description of the algorithm.

Then, we analyze scenarios where nodes transmit less frequently and focus more on

local gradient steps. As we will see, the results are sometimes surprising but in the

end confirm our intuition and are verified in practice.

40

3.5 Simple Case Analysis: Communicate at Every Iteration

In the original DDA description (3.2)-(3.4), nodes communicate at every iter-

ation. According to our time model, T iterations will cost T (1
n + kr) time units.

From (3.5), the time τ(ε) to reach error ε is found by substituting for T and solving

for τ(ε). In the derivation we ignore the logarithmic factor in (3.5) because in

light of the analysis in Chapter 7, the logarithm can be saved. Our experimental

results also agree with the theory developed here and there does not seem to be any

prominent effect that we smooth out. We have:

C1
1√
τ(ε)
1
n
+kr

= ε =⇒ τ(ε) =
C2
1

ε2

(1

n
+ kr

)
time units. (3.8)

This simple manipulation reveals some important facts. If communication is free,

then r = 0. If in addition the network G is a k-regular expander, then λ2 is fixed [26],

C1 is independent of n and τ(ε) = C2
1/(ε

2n). Thus, in the ideal situation, we obtain

a linear speedup by increasing the number of processors, as one would expect. In

reality, of course, communication is not free.

Complete graph: Suppose that G is the complete graph, where k = n−1 and

λ2 = 0. In this scenario we cannot keep increasing the network size without eventu-

ally harming performance due to the excessive communication cost. For a problem

with a communication/computation tradeoff r, the optimal number of processors is

calculated by minimizing τ(ε) for n:

∂τ(ε)

∂n
= 0 =⇒ nopt =

1√
r
. (3.9)

Again, in accordance with intuition, if the communication cost is too high (i.e.,

r ≥ 1) and it takes more time to transmit and receive a gradient than it takes to

compute it, using a complete graph cannot speedup the optimization. We reiterate

that r is a quantity that can be easily measured for a given hardware and a given

optimization problem. As we report in Section 5.6, the optimal value predicted by

our theory agrees very well with experimental performance on a real cluster.

41

Expander: For the case where G is a k-regular expander, the communication

cost per node remains constant as n increases. From (3.8) and the expression for

C1 in (3.5), we see that n can be increased without losing performance, although

the benefit diminishes (relative to kr) as n grows.

Other graphs: For the rest of the chapter we focus on complete and bounded-

degree expanders which are the most favourable cases. Before proceeding, we com-

ment here on the communication/computation trade-off for other types of graphs

such as k-regular graphs and grids. Using the convergence rates proven in Corollary

1 in [32], we have

1. k-regular: If a graph is k-regular but not an expander, then the DDA error

decreases at a rate

Err(T) =
C√
T

n log Tn

k
. (3.10)

The same manipulation as before yields a time to ε-accuracy of

τ(ε) =
C2

ε2

(
n

k2
+
n2r

k

)
. (3.11)

In this case, unless k >
√
n, the time τ(ε) increases with n and there is no

trade-off. We can only lose by increasing n.

2. k-connected
√
n ×
√
n grid: If a graph is an

√
n ×
√
n grid with every node

connected to its k nearest horizontal and vertical neighbours, we have k ≤ n
1
4

and a node has in general 4k neighbours2 . The DDA error decreases at a rate

Err(T) =
C√
T

√
n log Tn

k
(3.12)

2 Ignoring the few nodes on the boundaries who have 2k neighbours at the corners,
and 3k neighbours on the edges.

42

which is faster than k-regular graphs by a factor of
√
n. When taking the

communication cost into account, the time to ε-accuracy is

τ(ε) =
C2

ε2

(
1

n
+ 4rk

)
n

k2
=
C2

ε2

(
1

k2
+

4rn

k

)
. (3.13)

In this case, if k = Θ(1) again there is no trade-off and performance is worse

as n increases. If we let k grow with n but without making the graph too

well-connected, a trade-off can be retrieved. For example, by taking k = n
1
4 ,

we have

τ(ε) =
C2

ε2

(
1

n
1
2

+ 4rn
3
4

)
, (3.14)

and the optimal number of processors is

nopt =
1

(6r)
4
5

(3.15)

which is smaller than in the case of the complete graph.

3.6 General Case Analysis: Sparse Communication

Next we investigate the more general situation where we adjust the frequency

of communication. A natural choice is to fix an intercommunication interval h and

only transmit every h gradient steps. A more adaptive approach is to increase

h with time. The motivation for this is that in the beginning the nodes could

start from completely different estimates and they need to communicate frequently

to coordinate their search directions for the optimum. However as the estimates

approach the solution the nodes may not need that much communication to stay

aligned, simply because proximity to the solution implies exploring the most flat

region of the convex objective where individual gradient steps have small impact.

3.6.1 Bounded Intercommunication Intervals

Suppose that a consensus step takes place once every h + 1 iterations. That

is, the algorithm repeats h ≥ 1 cheap iterations (no communication) of cost 1
n time

units followed by an expensive iteration (with communication) which takes 1
n + kr

time units. This strategy clearly reduces the overall average cost per iteration. The

43

caveat is that the network error ‖z(t)− zi(t)‖ is higher because of having executed

fewer consensus steps.

In a cheap iteration, we replace the update (3.2) by zi(t) = zi(t−1)+gi(t−1).

After some straight-forward algebra we can show that (for proofs of (3.16), (3.19)

please consult Appendix A and B):

zi(t) =

Ht−1∑

w=0

h−1∑

k=0

n∑

j=1

[
PHt−w]

ij
gj(wh+ k) +

Qt−1∑

k=0

gi(t−Qt + k), (3.16)

where Ht = b t−1h c counts the number of communication steps in t iterations, and

Qt = mod(t, h) if mod(t, h) > 0 and Qt = h otherwise. Using the fact that P1 = 1,

we obtain

z(t)− zi(t) =
1

n

n∑

s=1

zs(t)− zi(t) (3.17)

=

Ht−1∑

w=0

n∑

j=1

(1

n
−
[
PHt−w]

ij

) h−1∑

k=0

gj(wh+ k)

+
1

n

n∑

s=1

Qt−1∑

k=0

(
gs(t−Qt + k)− gi(t−Qt + k)

)
. (3.18)

Taking norms, recalling that the fi are convex and Lipschitz, and since Qt ≤ h, we

arrive at

‖z(t)− zi(t)‖ ≤
Ht−1∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hL+ 2hL (3.19)

Finally, by bounding the `1 distance of row i of PHt−w to its stationary distribution

as t grows (see Appendix C), we can show that

‖z(t)− zi(t)‖ ≤ 2hL
log(T

√
n)

1−
√
λ2

+ 3hL. (3.20)

for all t ≤ T . Comparing (3.20) to equation (29) in [32], the network error after t

iterations is no more than h times larger when a consensus step is only performed

once every h+ 1 iterations. Finally, we substitute the network error in (2.32). For

44

a(t) = A√
t
, we have

∑T
t=1 a(t) ≤ 2A

√
T , and

Erri(T) ≤
(
R2

A
+AL2

(
1 +

12h

1−
√
λ2

+ 18h

))
log (T

√
n)√

T
= Ch

log (T
√
n)√

T
.

(3.21)

We minimize the leading term Ch over A to obtain

A =
R

L

(√
1 + 18h+

12h

1−
√
λ2

)−1
and Ch = 2RL

√
1 + 18h+

12h

1−
√
λ2
. (3.22)

Of the T iterations, only HT = bT−1h c involve communication. So, T iterations

will take

τ = (T −HT)
1

n
+HT

(
1

n
+ kr

)
=
T

n
+HTkr time units. (3.23)

To achieve ε-accuracy, ignoring again the logarithmic factor, we need T =
C2

h
ε2

iter-

ations, or

τ(ε) =

(
T

n
+

⌊
T − 1

h

⌋
kr

)
≤
C2
h

ε2

(
1

n
+
kr

h

)
time units. (3.24)

From the last expression, for a fixed number of processors n, there exists an optimal

value for h that depends on the network size and communication graph G:

hopt =

√
nkr

18 + 12
1−
√
λ2

. (3.25)

If the network is a complete graph, using hopt yields τ(ε) = O(n); i.e., using more

processors hurts performance when not communicating every iteration. On the

other hand, if the network is a k-regular expander then τ(ε) = c1√
n

+c2 for constants

c1, c2, and we obtain a diminishing speedup.

3.6.2 Increasingly Infrequent Communication

Next, we consider progressively increasing the intercommunication intervals.

This captures the intuition that as the optimization moves closer to the solution,

progress slows down and a processor should have “something significantly new to

say” before it communicates. Let hj − 1 denote the number of computation-only

iterations performed between the (j − 1)st and jth expensive iteration,i.e., the first

45

communication is at iteration h1, the second at iteration h1 + h2, and so on. We

consider schemes where hj = jp for p ≥ 0. The number of iterations that nodes

communicate out of the first T total iterations is given by HT = max{H :
∑H

j=1 hj ≤

T}. We have

∫ HT

y=1
ypdy ≤

HT∑

j=1

jp ≤ 1 +

∫ HT

y=1
ypdy =⇒

Hp+1
T − 1

p+ 1
≤ T ≤

Hp+1
T + p

p+ 1
, (3.26)

which means that HT = Θ(T
1

p+1) as T → ∞. Similar to (3.19), the network error

is bounded as

‖z(t)− zi(t)‖ ≤
Ht−1∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hw−1∑

k=0

L+ 2htL (3.27)

= L

Ht−1∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hw + 2htL. (3.28)

We split the sum into two terms based on whether or not the powers of P have

converged. Using the split point t̂ = log(T
√
n)

1−
√
λ2

, the `1 term is bounded by 2 when w

is large and by 1
T when w is small:

‖z(t)− zi(t)‖ ≤L
Ht−1−t̂∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hw (3.29)

+ L

Ht−1∑

w=Ht−t̂

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hw + 2htL (3.30)

≤L
T

Ht−1−t̂∑

w=0

wp + 2L

Ht−1∑

w=Ht−t̂

wp + 2tpL (3.31)

≤L
T

(Ht − t̂− 1)
1

p+1 + p

p+ 1
+ 2Lt̂(Ht − 1)p + 2tpL (3.32)

≤ L

p+ 1
+

Lp

T (p+ 1)
+ 2Lt̂Hp

t + 2tpL (3.33)

since T > Ht − t̂ − 1. Substituting this bound into (2.32) and taking the step size

sequence to be a(t) = A
tq with A and q to be determined, we get

Erri(T) ≤ R2

AT 1−q +
L2A

2(1− q)T q
+

3L2A

(p+ 1)(1− q)T q
+

3L2pA

(p+ 1)(1− q)T 1+q

+
6L2t̂A

T

T∑

t=1

Hp
t

tq
+

6L2A

T

T∑

t=1

tp−q. (3.34)

46

The first four summands converge to zero when 0 < q < 1 as t → ∞. Since

Ht = Θ(t
1

p+1),

1

T

T∑

t=1

Hp
t

tq
≤ 1

T

T∑

t=1

O(t
1

p+1)p

tq
≤ O

(
T

p
p+1
−q+1

T

)
= O

(
T

p
p+1
−q
)

(3.35)

which converges to zero if p
p+1 < q. To bound the last term, note that 1

T

∑T
t=1 t

p−q ≤
T p−q

p−q+1 , so the term goes to zero as T →∞ if p < q. In conclusion, Erri(T) converges

no slower than O(log (T
√
n)

T q−p) since 1

T
q− p

p+1
< 1

T q−p . If we choose q = 1
2 to balance the

first three summands, for small p > 0, the rate of convergence is arbitrarily close to

O(log (T
√
n)√

T
), while nodes communicate increasingly infrequently as T →∞.

Out of T total iterations, DDA executes HT = Θ(T
p

p+1) iterations involving

communication and T −HT iterations without communication, so

τ(ε) = O

(
T

n
+ T

p
p+1kr

)
= O

(
T

(
1

n
+

kr

T
1

p+1

))
. (3.36)

In this case, the communication cost kr becomes a less and less significant proportion

of τ(ε) as T increases. So for any 0 < p < 1
2 , if k is fixed, we approach a linear

speedup behaviour τ(ε) = Θ(Tn). To get Erri(T) ≤ ε, ignoring the logarithmic

factor, we need

T =

(
Cp
ε

) 2
1−2p

iterations, with Cp = 2LR

√
7 +

12p+ 12

(3p+ 1)(1−
√
λ2)

+
12

2p+ 1
.

(3.37)

From this last equation we see that for 0 < p < 1
2 we have Cp < C1, so using

increasingly sparse communication can, in fact, be faster than communicating at

every iteration in terms of time units .

3.7 Experimental Evaluation

To verify our theoretical findings, we implement DDA on a cluster of 14 nodes

with 3.2 GHz Pentium 4HT processors and 1 GB of memory each, connected via

Ethernet that allows for roughly 11 MB/sec throughput per node. Our imple-

mentation is in C++ using the send and receive functions of OpenMPI v1.4.4 for

47

communication. The Armadillo v2.3.91 library, linked to LAPACK and BLAS, is

used for efficient numerical computations.

3.7.1 Application to Metric Learning

Metric learning [97, 98, 101] is a computationally intensive problem where the

goal is to find a distance metric D(u, v) such that points that are related have a

very small distance under D while for unrelated points D is large. Following the

formulation in [78], we have a data set {uj ,vj , sj}mj=1 with uj ,vj ∈ Rd and sj =

{−1, 1} signifying whether or not uj is similar to vj (e.g., similar if they are from

the same class). Our goal is to find a symmetric positive semi-definite matrix A � 0

to define a pseudo-metric of the form DA(u,v) =
√

(u− v)TA(u− v). To that end,

we use a hinge-type loss function lj(A, b) = max{0, sj
(
DA(uj ,vj)

2 − b
)

+ 1} where

b ≥ 1 is a threshold that determines whether two points are dissimilar according to

DA(·, ·). In the batch setting, we formulate the convex optimization problem

minimize
A,b

F (A, b) =

m∑

j=1

lj(A, b) subject to A � 0, b ≥ 1. (3.38)

The subgradient of lj at (A, b) is zero if sj(DA(uj ,vj)
2 − b) ≤ −1. Otherwise

∂lj(A, b)

∂A
= sj(uj − vj)T (uj − vj), and

∂lj(A, b)

∂b
= −sj . (3.39)

Since DDA uses vectors wi(t) and zi(t), we represent each pair (Ai(t), bi(t)) as

a d2 + 1 dimensional vector. The communication cost is thus quadratic in the

dimension. In step (3.2) of DDA, we use the proximal function ψ(w) = 1
2w

Tw, in

which case (3.3) simplifies to taking wi(t) = −a(t− 1)zi(t), followed by projecting

wi(t) to the constraint set by setting bi(t)← max{1, bi(t)} and projecting Ai(t) to

the set of positive semi-definite matrices by first taking its eigenvalue decomposition

and reconstructing Ai(t) after forcing any negative eigenvalues to zero.

We use the MNIST digits dataset which consists of 28×28 pixel images of hand-

written digits 0 through 9. Representing images as vectors, we have d = 282 = 784

and a problem with d2 + 1 = 614657 dimensions. The goal is to learn a 784 × 784

48

matrix A. With double precision arithmetic, each DDA message has a size ap-

proximately 4.7 MB. We construct a dataset by randomly selecting 5000 pairs from

the full MNIST data. One node needs 29 seconds to compute a gradient on this

dataset, and sending and receiving 4.7 MB takes 0.85 seconds. The communica-

tion/computation tradeoff value is estimated as r = 0.85
29 ≈ 0.0293. According to

(3.9), when G is a complete graph, we expect to have optimal performance when

using nopt = 1√
r

= 5.8 nodes. Figure 3–1 shows the evolution of the average function

value

F (t) =
1

n

∑

i

F (wi(t)) (3.40)

for 1 to 14 processors connected as a complete graph, where wi(t) is as defined

in (3.4). There is a very good match between theory and practice since the fastest

convergence is achieved with n = 6 nodes.

In the second experiment, to make r closer to 0, we apply PCA to the original

data and keep the top 87 principal components, containing 90% of the energy. The

dimension of the problem is reduced dramatically to 87 · 87 + 1 = 7570 and the

message size to 59 KB. Using 60000 random pairs of MNIST data, the time to

compute one gradient on the entire dataset with one node is 2.1 seconds, while

the time to transmit and receive 59 KB is only 0.0104 seconds. In this case r =

0.0104
2.1 = 0.005 and nopt = 14.15. Again, for a complete graph, Figure 3–2 illustrates

the evolution of F̄ (t) for 1 to 14 nodes. As we see, increasing n speeds up the

computation. The speedup we get is close to linear at first, but diminishes since

communication is not entirely free.

3.7.2 Nonsmooth Convex Minimization

Next we create an synthetic problem where the minima of the components

fi(w) at each node are very different, so that communication is essential in order to

obtain an accurate optimizer of F (w). We define fi(w) as a sum of a max of high

49

50 100 150 200 250 300 350 400 4500

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

F̄
(t
)

n = 1
n = 2
n = 4
n = 6
n = 8
n = 10
n = 12
n = 14

Figure 3–1: In a subset of the Full MNIST data for our specific hardware, nopt =
1√
r

= 5.8. The fastest convergence is achieved on a complete graph of 6 nodes.

10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

F̄
(t
)

n = 1
n = 2
n = 4
n = 6
n = 8
n = 10
n = 12
n = 14

Figure 3–2: In the reduced MNIST data using PCA, the communication cost drops
and a speedup is achieved by scaling up to 14 processors.

dimensional quadratics,

fi(w) =
M∑

j=1

max
(
l(w,x1

j|i), l(w,x
2
j|i)
)
, (3.41)

l(w,xξj|i) = (w − xξj|i)
T (w − xξj|i), ξ ∈ {1, 2}, (3.42)

where w ∈ R10,000, M = 15, 000 and x1
j|i,x

2
j|i ∈ R

10,000 are the data, and in this

case, the centers of the quadratics. Figure 3–3 illustrates again the average function

value F̄ (t) for 10 nodes in a complete graph topology. As a baseline performance,

we compare to the performance when nodes communicate at every iteration (h = 1).

For this problem r ≈ 0.00089 and, from (3.25), hopt = 1. Naturally, communicating

every 2 iterations (i.e., h = 2) slows down convergence. Over the duration of the

experiment, with h = 2, each node communicates with its peers 55 times. We select

p = 0.3 for increasingly sparse communication, and get HT = 53 communications

per node. As we see, even though nodes communicate as often as in the h = 2 case,

convergence is even faster than when communicating at every iteration. This verifies

50

20 40 60 80 100 120 140 1601.2

1.4

1.6

1.8

2

2.2

2.4

x 105

Time (sec)

F̄
(t
)

h = 1
h = 2
h = t0.3

h = t

Figure 3–3: Sparsifying communication to minimize (3.41) with 10 nodes in a com-
plete graph topology. When waiting t0.3 iterations between consensus steps, con-
vergence is faster than communicating at every iteration (h = 1), even though the
total number of consensus steps performed over the duration of the experiment is
equal to communicating every 2 iterations (h = 2). When waiting a linear number
of iterations between consensus steps (h = t) DDA does not converge to the right
solution. Note: all methods are initialized from the same value; the x-axis starts at
5 sec.

our intuition that communication is more important in the beginning. Finally, the

case where p = 1 is shown. This value is out of the permissible range, and as

expected, DDA does not converge to the correct solution. This can be seen on the

graph where the line for p = 1 does not continue to decrease the objective value and

flattens out instead.

3.8 Conclusions and Future Work

This chapter focused on understanding the tradeoff between communication

and computation in consensus-based distributed optimization. The main message

is that a convergence rate describing the number of iterations required to obtain

an ε-accurate solution may not be representative of an algorithm’s performance as

experienced by the end user. Whenever communication is non-negligible it must be

taken into account as not all iterations cost the same amount of time. In particular,

we saw that for complete graphs there is an optimal number of processors that bal-

ances the two costs while for expander graphs we have a diminishing reward in terms

of speedup. Furthermore, we showed that communicating less frequently as the al-

gorithm approaches the solution can yield significant time savings. We were able to

reason about these findings theoretically and also validate them in experiments on a

51

real cluster. It would be interesting to have an even more detailed analysis that cov-

ers graphs with uneven degree distributions or where the cost of transmitting to k

neighbours is something faster than just worst case O(k). Finally, it would be impor-

tant to extend this analysis to stochastic optimization scenarios where rather than

reducing the gradient computation cost when we add more nodes, we are instead

able to process more data in the same amount of time. Finally, we claim that our

tradeoff analysis extends beyond DDA to other algorithms in the consensus-based

optimization family such as DSG as well as various distributed averaging-type algo-

rithms (e.g., [51,52,104]). The reason is that this chapter proposes a meta analysis

that accounts for communication computation costs. The analysis does not rely on

any particular properties of DDA but rather exploits DDA’s clean mathematical

convergence proofs to draw important conclusions. The meta analysis should be

possible for other algorithms as well, even though the mathematical details would

depend on the specific convergence proof of each algorithm. Verifying this claim as

well as extending the analysis to the case of stochastic optimization, where ht = tp

could correspond to using increasingly larger mini-batches would be important di-

rections for future work.

52

CHAPTER 4
Parallelization at the Task Level

4.1 Introduction

There are many machine learning scenarios where the same data needs to be

used to solve multiple related optimization problems. Fitting models with free

parameters typically requires sweeping through a range of values for parameter

tuning. Cross-validation involves performing the same computation on different

overlapping subsets of the data. One approach to multiclass classification is to train

several “one-versus-all” classifiers, which could be learned in parallel. In exploratory

data analysis, one may not know a priori which loss function or kernel function

is best suited to the data, and running several learning algorithms with different

characteristics can help determine an appropriate model.

To solve S optimization problems using a consensus approach, we must run

S instances of the algorithm one after the other. Is there a way to work simul-

taneously on the S instances to speed up the computation? In other words, is it

possible to benefit from parallelizing at the task level? As it turns out, the answer

is not straightforward, and as one might guess, it again depends on the relative

communication to computation cost.

The main drawback of consensus-based optimization algorithms comes from the

potentially high communication cost associated with distributed consensus. The dis-

tributed optimization literature includes also incremental algorithms [9,47,54] which

can significantly reduce the communication cost by visiting the function components

fi one at a time; communication involves passing a single copy of the optimization

variable from one node to the next, as opposed to each node maintaining a local copy

that needs to be communicated to all neighbours. References [54] and [9] analyze

the situation where every component fi(w) has to be visited once in every cycle,

essentially assuming that the nodes are connected as a complete graph. Markov

53

Incremental Gradient Descent (MIGD) [47] generalizes Nedic and Bertsekas’ algo-

rithm for any connected graph assuming that information can only be transmitted

between neighboring nodes. The side effect of this type of scheduling is that incre-

mental methods converge slower in practice and have a worse scaling with the size

of the network n even though asymptotically the convergence rate, as a function

of the number of iterations T , is O(1√
T

) for both consensus-based and incremental

methods when the components fi are convex and Lipschitz continuous (see, e.g., the

comparison in [32]).

A key observation is that, with incremental algorithms, it is possible to run S

instances in parallel. For example in MIGD, many instances can move through the

network according to independent random walks so in principle MIGD could solve S

problems in the same time it would take to solve one. Now the question becomes: Is

it better to run serial consensus-based procedures or parallel incremental procedures?

To make the comparison concrete, we focus on two specific algorithms, Dis-

tributed Dual Averaging (DDA) [32] and Markov Incremental Gradient Descent

(MIGD) [47]. These algorithms are chosen as representatives of the consensus and

incremental approaches to optimization. The convergence rate of both DDA and

MIGD depends on the structure of the communication graph over which they are

executed. In [32] it is argued that for well-connected graphs (e.g., expanders), DDA

achieves a target error n times faster than MIGD on a network of n nodes. This

analysis suggests that parallel copies of MIGD should be much slower than DDA. In

addition, since for MIGD the instances are behaving as independent random walks,

nothing prevents the instances from colliding, causing additional delays.

4.2 Algorithms

DDA has already been discussed in Section 2.5.1 and earlier in this chapter.

The theoretical analysis [32] shows that all nodes achieve accuracy ε after T = O(1
ε2

)

iterations if the nodes communicate over a well-connected graph (complete or ex-

pander). The description of DDA in [32] assumes synchronous iterations, requiring

nodes to use blocking communication. This is convenient for analysis, but as ex-

plained in [87], in practice synchronous DDA is impossible to implement without

54

using a barrier mechanism to synchronize the nodes. Furthermore, when barriers

are used, synchronization forces the algorithm to run at the speed of the slowest

node. For this reason, in the experiments reported below, we use an asynchronous

version called Push-Sum DDA (PS-DDA) [88], for which the error converges at the

same rate but with different constants. PS-DDA has a lot of other advantages and

it is the described in detail in Chapter 5.

For MIGD see Algorithm 1. The setup in [47] considers minimizing the function

F (w) =

n∑

i=1

fi(w), w ∈ W. (4.1)

To match this setting with our standard objective (1.8), each term fi(w) for MIGD

is scaled by 1
n . Consider the case where we only have one optimization problem.

One node in the network has a token, meaning that this node holds the most recent

estimate and will perform a projected gradient descent update based on its local

objective component fi. Once the node has updated the estimate, it chooses a

neighbour at random according to the corresponding column of a doubly stochastic

matrix P , and passes on the token and the estimate to this neighbour. As explained

in [32], to reach accuracy ε, MIGD requires T = O(n
ε2

) iterations on a well-connected

graph.

MIGD operates with a fixed step size a which is set to

a ≤ 2εn2

L2K
, (4.2)

for ε accuracy, and K is a constant that depends on the network connectivity im-

plicitly through P as follows:

K = max
i

{
2n2

[(
I − P +

11T

n

)−1]

ii

− n

}
. (4.3)

4.3 Communication/computation Tradeoff for Multiple Tasks

Consider solving S ≤ n optimization problems of the form (1.8) using DDA or

MIGD on a network of n nodes. To remove the effect of different graph topologies,

from now on we assume that the nodes communicate over a well connected graph;

55

Algorithm 1 MIGD

1: Initialize: t = 1,w(1) = 0d, tok1 = 1, toki = 0, i > 1, ε ∈ R, a = 2εn2

L2K
2: while t ≤ T do
3: for i ∈ [n] do
4: if toki = 1 then
5: Compute subgradient gi(t) ∈ ∂wfi(w(t))
6: wtmp = w(t)− agi(t)
7: w(t+ 1) = ΠW [wtmp]
8: Sample a neighbour j ∈ V according to P:,j

9: Set t = t+ 1
10: Send w(t), toki and t to j
11: Set toki = 0
12: else
13: Poll neighbours for incoming messages
14: if There is a message msgj from j then
15: t = msgj(t)
16: toki = msgj(tokj)
17: w(t) = msgj(w(t))
18: end if
19: end if
20: end for
21: end while

i.e. either a complete graph or a k-regular expander. To solve S problems with DDA,

we run the S jobs sequentially. For MIGD we start S random walks at different

nodes in the network. We assume that each processor will only work on one problem

at a time, so if two random walks arrive at the same node, one is served and the

other one is buffered until the node’s CPU becomes available to process it.

Let us momentarily assume that all jobs take the same number of iterations to

reach the desired accuracy1 . To solve all problems to ε-accuracy, DDA will need

ST = O(S
ε2

) iterations in total. For MIGD, if the random walks do not collide (so

that no job idles in buffer) then the time to solve S problems is identical to the time

to solve 1; i.e., the total number of MIGD iterations is O(n
ε2

). Immediately we see

that, in this idealized scenario, if S = Θ(n) then MIGD exploits task parallelization

to become competitive with DDA. Note, however, that this discussion is in terms

1 This is the case, e.g., if all jobs are clones of each other. We make this simplifying
assumption here for the sake of gaining intuition, and our results do not rely on it.

56

of the number of iterations or gradient steps taken by the nodes. This abstraction

ignores the time for communicating the messages between nodes which, for some

problems, may be commensurate with the time to perform a single update. Let us

thus refine the analysis following the model of [86] presented in Section 3.3.

With S = 1, at every iteration, if every node has k neighbours, the cost of one

iteration in DDA is,

1

n
+ kr time units / iteration. (4.4)

Observe that the same approach can be used for MIGD for the node that has the

token. Since that node will only transmit the estimate to one neighbour, the cost

of a MIGD iteration is simply

1

n
+ r time units / iteration. (4.5)

We can use these time models to reason about the time to achieve ε accuracy rather

than the number of iterations. In particular, to reach ε accuracy on S problems,

DDA will take S · T iterations or

τdda(ε) = Cdda
S

ε2

(
1

n
+ kr

)
time units (4.6)

where Cdda is a constant that does not depend on n. For MIGD on the other hand,

in the ideal case where the random walks do not collide and there are no delays, the

total is equivalent to the time it takes to do T iterations; i.e.,

τmigd(ε) =Cmigd
n

ε2

(
1

n
+ r

)

=Cmigd
1

ε2
(1 + nr) time units. (4.7)

This simple manipulation reveals that the relative performance of the two algorithms

is more delicate than what the iterations bounds suggest. If G is the complete graph,

where k = n− 1, then asymptotically as n increases, τdda(ε) = Θ(τmigd(ε)); i.e., the

algorithms are equivalent. This is not surprising. Even though MIGD needs n

times more iterations, each MIGD iteration takes only 1
n -th of the time since MIGD

57

requires communication with only one neighbor instead of n − 1. Of course, if the

message size is very small, the network bandwidth is very high, or computation

takes significantly longer than a transmission, then r → 0 and in that case MIGD

is indeed n times slower.

For a non-vanishing communication cost, if the graph is a k-regular expander,

then as n increases we see that the defining factor is the relative size of S · k and n

which multiply the communication/computation tradeoff r in (4.6) and (4.7), and it

could be the case that either algorithm is faster. Following similar reasoning, these

arguments can be generalized to the case where the jobs are not identical. We omit

this analysis but refer the reader to the experiments section below.

Finally, before moving on to the empirical study of the communication / com-

putation tradeoffs, we note that, without additional coordination or scheduling, the

MIGD random walks are not guaranteed to avoid each other, and so collisions are

bound to occur as the number of jobs S increases. Thus, in practice, MIGD suffers

from additional delay while jobs are sitting idle, and this additional delay depends

on the number of jobs executing relative to the number of nodes.

4.4 Experimental Study

In order to understand the difference between consensus-based and incremen-

tal optimization procedures when running many jobs, we implemented DDA and

MIGD on a cluster and compared their performance on the metric learning task

used in Section 3.7. We emphasize that these experiments are designed to illustrate

the different regimes for these two procedures, and that the “best” optimization

procedure will depend on the particular task and hardware.

Our experiments involve solving multiple instances of the metric learning prob-

lem introduced in Section 3.7. To solve S instances we run DDA S times serially

and run S copies of MIGD in parallel. Because the instances in MIGD move ac-

cording to a random walk, different instances may collide; if an instance i moves to

a node which is already busy processing job j, job i waits in a buffer until the node

completes processing job j. When there are many instances, collisions can cause a

delay in the convergence of MIGD; see Section 4.4.4 for details.

58

For these experiments we use 32000 randomly selected pairs of MNIST images,

partitioned evenly among the processors. To decrease the communication cost and

make DDA more competitive, we exploit the symmetry of matrix A to represent

each message as d(d−1)
2 + d + 1 doubles for the upper triangular part of A and the

bias b. With each MNIST digit image being a 282 = 784-dimensional vector, each

message becomes 307721 doubles or approximately 2.4 MB in size.

4.4.1 Cluster description

The experiments are performed on a cluster with 8 worker nodes running Mat-

lab 2009b. Each node has two 4-core Xeon processors clocked at 2.5GHz with 14GB

of RAM, and 300GB of storage. All nodes communicate over 100Mbps Ethernet.

Communication among the 64 available CPUs is organized as an expander graph

G with average node degree 32 ± 2.6. To create G, we sample graphs from the

family of Erdős-Rényi random graphs [33] with p = 0.5, which are known to have

good expansion properties with high probability, and keep the graph for which P

has the smallest second eigenvalue. The implementation of DDA and MIGD is in

Matlab using the labSend and labReceive communication primitives supported by

the Parallel Computing Toolbox. No coordination of the nodes is imposed and both

algorithms are completely asynchronous and subject to real network conditions and

communication delays.

4.4.2 Solving Multiple Identical Jobs

Our first experiment is designed to illustrate the effects of communication cost

and delay (due to buffering and network effects beyond our control) on distributed

optimization. The theoretical analysis in Section 4.3 made the simplifying assump-

tion that all problems being solved are identical in order to make statements with

some level of generality. To keep the conditions of this first experiment somewhat

symmetric and stay close to the theoretical models discussed in Section 4.3, we solve

a varying number of identical instances of the metric learning problem. The more

realistic scenario of solving tasks that are different, is studied in Section 4.4.3.

Since all instances are identical, they all take approximately the same time to

complete. To limit the overhead of monitoring, we focus on one instance. For DDA

59

0 1000 2000 3000 4000 5000 6000 7000

100

101

Time (sec)
O

bj
ec

tiv
e

 DDA
DDA Fixed
MIGD, S=1
MIGD, S=2
MIGD, S=4
MIGD, S=8
MIGD, S=16
MIGD, S=24
MIGD, S=32
MIGD, S=40
MIGD, S=50
MIGD, S=64

Figure 4–1: Evolution of the objective for DDA for diminishing and fixed step size,
and MIGD with a varying number of jobs running in parallel. Experiment run on
an expander graph with n = 64.

we measure the time it takes to complete one instance of the problem. For MIGD

we track one instance of the problem and measure the total time it takes for this

job to converge in the presence of other jobs.

Figure 4–1 shows the objective value as a function of the total wall time in the

system for the two algorithms with varying numbers of jobs. Since MIGD uses a

fixed step size, we also show DDA with a fixed step size even though the default

DDA algorithm using a diminishing step size. As we expect, the time for a single

DDA instance to complete is very fast. MIGD is slower but not by a factor of n.

As the number of parallel instances increases there is an additional slowdown for

MIGD per instance as a result of buffering from random walk collisions. Figure

4–2 illustrates this slowdown by graphing how much service (i.e., processor time)

task 1 receives in the presences of other tasks. All data points on the plot are taken

by running the experiment for the same amount of time. To generate the figure,

we plot the fraction of gradient steps that job 1 receives in the presence of other

jobs running in parallel, relative to the case of 100% service when job 1 is running

alone. In a perfect parallelization scenario, increasing the number of tasks should

not affect task 1. However, due to task interference serialization points occur and

task 1 receives less and less gradient steps for the duration of the experiment in the

presence of other tasks.

60

12 4 8 16 24 32 40 50 640

20

40

60

80

100

Number of parallel jobs
%

 S
er

vi
ce

 o
f j

ob
 1

Figure 4–2: Amount of service received by job 1 in the presence of 2− 64 other jobs
relative to the service received when the job is running alone. All experiments are
run for the same amount of time.

12 4 8 16 24 32 40 50 640

1

2

3

4

5x 104

Number of jobs

Ti
m

e
to

 s
ol

ve
 a

ll
jo

bs
 to

 a
cc

ur
ac

y

DDA
DDA Fixed
MIGD

Figure 4–3: Cumulative time to solve S = 1, . . . , 64 jobs with MIGD and DDA with
fixed and diminishing step size. In both cases there is a cross over point beyond
which MIGD exploits its ability to solve many jobs in parallel to become the faster
algorithm.

In Figure 4–3 we plot the cumulative time it takes to solve S tasks with DDA

and MIGD up to some desired accuracy ε for S between 1 and 64. We can see

that there is indeed a tradeoff in wall time between consensus-based and iterative

algorithms. For few tasks DDA is indeed fast enough that it has time to solve 4

tasks one after the other before MIGD solves them in parallel. However at that

point, MIGD is able to accommodate and solve more and more tasks in parallel

and is therefore preferable. Notice also that DDA with fixed step size is faster than

DDA with diminishing step size, so the cross over point between DDA and MIGD

is moved from 4 to 20 jobs but it still exists.

61

1 2 4 8 12 160

1000

2000

3000

4000

5000

Number of Jobs
Ti

m
e

to
 s

ol
ve

 a
ll

jo
bs

 to
 a

cc
ur

ac
y

DDA Fixed
MIGD

Figure 4–4: Cumulative time to solve S = 1, . . . , 16 jobs to accuracy ε using DDA
with fixed step size and MIGD.

4.4.3 Sweeping a Problem Parameter

In the previous example we considered running multiple identical instances of

the same problem. We now turn to a problem where there is a parameter in the

optimization and we wish to run multiple instances for different values of the pa-

rameter. As an example we chose to do `2-regularized metric learning as suggested,

e.g., in [46]

argmin
A,b

1

m

m∑

j=1

lj(A, b) +
λ

2
‖A‖F s.t. b ≥ 1, A � 0.

In this case, varying the amount of regularization makes the target problem

harder (large λ) or easier (small λ). On an expander graph of 16 nodes we solve

1 to 16 different task sweeping values of λ from 1 to 0.0001. Figure 4–4 shows the

cumulative amount of time needed to solve all problems with MIGD and DDA with

fixed step size. Despite the fact that the jobs are now different from each other,

the same behaviour is still evident For very few jobs, DDA is superior, while adding

more jobs renders MIGD a better choice. Notice that extrapolating from this figure

we see that the benefit of MIGD cannot be sustained. In fact, if we let the number of

tasks grow, eventually we expect that due to excessive number of collisions, MIGD

would again fall back and become slower than DDA.

62

0 500 1000 1500 2000 2500 3000 3500 4000 45000

10

20

30

40

50

60

Time
C

um
ul

at
iv

e
nu

m
be

r o
f C

ol
lis

io
ns

True Collisions
 linear

Figure 4–5: Cumulative number of collisions on an expander of size 64 with 8
jobs solved by MIGD simultaneously. A linear fit shows that the collision rate is
approximately 0.013 collisions per second.

0 1000 2000 3000 4000 5000 6000 70000

5000

10000

15000

TIme

C
um

m
ul

at
iv

e
N

um
be

r o
f C

ol
lis

io
ns

True Collisions

Figure 4–6: Cumulative number of collisions on an expander of size 64 with 64 jobs
solved by MIGD simultaneously. The collision rate is 2 collisions per second.

4.4.4 Collisions between MIGD Random Walks

It is clear that collisions between random walks prevent MIGD from achieving

perfect parallelization at the task level. Quantifying the expected number of col-

lisions is a challenging combinatorial problem because the jobs move according to

the graph structure and we leave the full theoretical investigation for future work.

However, we track the frequency of collisions experimentally in order to get a sense

of how the collisions affect performance.

To count collisions in our first experiment with a 64-node graph, every time an

idle processor receives a new message, it also polls its buffer. If the buffer is not

empty, that processor registers a collision since there is at least one other job in

its buffer waiting for service. Figures 4–5 and 4–6 show the cumulative number of

collisions counted by all 64 nodes when S = 8 and 64 respectively.

63

12 4 8 16 24 32 40 50 640

0.05

0.1

0.15

0.2

0.25

0.3

Number of jobs
C

ol
lis

io
ns

 p
er

 it
er

at
io

n

Figure 4–7: Total number of collisions per iteration with S = 1, . . . 64 random walks
on the same expander graph.

Figure 4–7 shows the average number of collisions per iteration as the number

of jobs increases. With more than one job on the same graph the probability of a

collision is non-zero but with few jobs this probability is actually very small. On our

graph with 64 nodes, we observe that in practice up to 4 jobs fit without having any

interference between them. However increasing the number of jobs further yields a

linear increase in the number of collisions per iteration. Figure 4–7 could be used

in practice to estimate how long to run MIGD for; if we have S jobs and each job

needs T iterations to reach the desired optimization accuracy, without collisions we

would run MIGD for T iterations. In practice, from the figures we can estimate

a rate q of collisions per iteration, and then run MIGD for (1 + q)T iterations to

achieve the desired accuracy.

Finally, for the experiments so far, MIGD was terminated based on a time limit.

If we instead terminate MIGD based on an achieved accuracy, it is possible to stop

certain walks when the accuracy is reached and reduce the rate of collisions. This

would require evaluating the objective regularly and may not be possible if that

computation is expensive.

4.5 Discussion

In this chapter we saw another role of the communication/computation trade-

off when solving multiple problems on the same cluster. With many optimization

tasks to run on distributed data, choosing the right computational algorithm will

depend on the cluster node capabilities, network topology, time complexity of local

64

iterations, communication delays, and the number of tasks. In the case of a single

optimization problem we can choose the cluster size to trade off computation and

communication time but for a given cluster size, choosing how to optimize for many

parallel objectives affects this tradeoff as well. We illustrate that the bounds on

the iterations for consensus-based and incremental procedures do not necessarily

characterize the overall system time for solving multiple optimizations since there is

room for improvement by exploiting task parallelization. In particular, we showed

that there are regimes in which running parallel copies of the slower incremen-

tal MIGD algorithm is better than running sequential copies of the much faster

consensus-based DDA algorithm.

We illustrated this discrepancy via an application in metric learning but we be-

lieve that the phenomena we exhibit here are general. We considered two algorithms,

DDA and MIGD, that are representative of the consensus-based and incremental

approaches. The regimes for different algorithms will vary, but we believe it is rela-

tively clear that the tradeoff may appear in many problems of interest. In particular,

there may not be a single best algorithm which works for all optimization problem

sizes and clusters. For the future, our study of parallel MIGD has highlighted the

importance of collisions and now two related questions arise.

Question 1: What is the probability of a collision occurring and thus

what is the expected number extra iterations that we need to account

for due to collisions? Our empirical study indicates a regularity in the behaviour

of collisions as we increase the number of random walks. We observed similar lin-

ear growth in the collision rate for all complete and expander graphs that we tried.

Characterizing the behaviour of collisions probabilistically can be a challenging com-

binatorial problem. For example, consider the simplest case of S uniform random

walks running on a complete graph of n nodes. One can view this as a repeated

balls-in-bins Markov process. Each random walk is a ball and each node’s buffer

is a bin. We can start by throwing each ball randomly into a bin. Then, we pick

exactly one ball from each non-empty bin, and throw those balls back into the bins

randomly. The state of this system is the vector of bin occupancies which evolves

65

as a non-reversible Markov chain.2 Characterizing the stationary distribution of

this random walk would yield an estimate of how long a job has to wait in a buffer

before being serviced.

Question 2: Is it possible to design the random walks so that they

remain random and rapidly mixing while they avoid each other and cause

as few collisions as possible? Complementary to understanding and anticipating

the effects of collisions we might want to be proactive and try to avoid collisions

all together. Developing avoiding random walks is another challenging theoretical

problem. Recent work [3] has shown that O(n
logn) random walks can be coupled so

that they co-exist on a complete graph of n nodes without ever colliding with each

other. Although similar results are currently absent for other graph topologies, it

would be interesting to use such coupled random walks to schedule the execution of

parallel MIGD jobs.

More broadly, developing an analysis of the running time for optimization algo-

rithms which incorporates the effect of running parallel copies would help in head-to-

head comparisons. Another challenging problem is in scheduling very heterogeneous

jobs which operate on the same distributed data. If some jobs have very short local

iterations and others have very long local iterations, the queueing delay from paral-

lel MIGD may become very burdensome. Another interesting constraint to consider

is the energy consumption of computation and communication, which may alter

the tradeoffs for parallelization. Finally, developing a framework for analyzing the

performance of distributed optimization algorithms in a multi-user system with jobs

contending for computation time may lead to new ways of approaching distributed

optimization.

2 For example, if each bin has one ball, in one move all balls can be collected in
the same bin, but in the next move this cannot be reversed if we have more than
two balls.

66

CHAPTER 5
Practical Consensus Algorithms

5.1 Introduction

Consensus-based optimization algorithms have the appealing feature that they

can operate in a peer-to-peer fashion, with minimal coordination between nodes.

Much of the existing literature has focused on establishing and analyzing conver-

gence properties of these algorithms. However the theory does not always consider

issues that arise when implementing and using consensus-based algorithms for dis-

tributed optimization on a real scenario. To be of practical interest, a consensus-

based optimization algorithm needs to accommodate the constraints imposed by

the network. For example, not all (directed) networks admit a doubly stochastic

matrix [35] as required by both DDA and DSD algorithms. However, relinquishing

double stochasticity can introduce bias in the optimization [69, 90]. Moreover, it

is desirable to only rely on one-directional communication between nodes because

in the bi-directional case where each node blocks until it receives a response, dead-

locks can occur when the network has cycles. Finally, an algorithm should be able

to converge in the presence of network induced communication delays and should

allow for an asynchronous implementation to avoid delaying the whole computation

if a particular node is very slow.

This chapter describes and analyzes PS-DDA, an algorithm that addresses all

the concerns mentioned above. In particular, PS-DDA guarantees convergence to

the optimum without knowing the stationary distribution of the averaging matrix

or the size of the network, and the convergence rate is the same as standard DDA.

Furthermore, the communication semantics of the consensus matrices make PS-

DDA truly asynchronous and allow for a clean analysis when modelling varying

intercommunication intervals and communication delays. The chapter begins by

identifying and justifying what features are critical for consensus-based optimization

67

algorithms to be useful in practice. Then we proceed to describe PS-DDA, an

algorithm that has all the desired properties. Our theoretical analysis shows that

convergence is still achieved at a rate O
(

1√
T

)
where T is the number of iterations

and thus PS-DDA is competitive with the existing algorithms in the literature. The

true power of the algorithm is illustrated via experiments on a cluster under real

network conditions at the end of the chapter.

5.2 Features of Distributed Consensus Algorithms

Recall equation (2.22) of the DDA algorithm:

zi(t+ 1) =

n∑

j=1

Pijzj(t) + gi(t). (5.1)

If we disregard for the moment the addition of the latest local gradient gi(t), we see

that the equation involves a consensus step which requires communication between

nodes. Each node i transmits its latest dual variable zi(t) to its neighbours, receives

the dual variables zj(t) from its neighbours, and forms a convex combination. For

the network to agree on the vector which minimizes F (w), the nodes need to agree

on the direction to the optimal value which is locally captured by each variable zi.

This notion of agreement, or consensus in a network was described in Section 2.1.

If each node i in a network G holds a value zi, stacking all the values (treated

as scalars for simplicity), into a vector z = (z1, . . . , zn)T , a linear iteration scheme

of the form

z(t) = P (t)z(t− 1). (5.2)

can bring the node’s values to an agreement. Furthermore, from Perron-Frobenius

theory [73], with a time-homogeneous row stochastic matrix P (t) ≡ P ∈ Rn×n such

that P1 = 1 and pij > 0 if (j, i) ∈ E, consensus is achieved almost surely on a value

c that is a convex combination of the initial values z(0). A very popular special

case is the average consensus problem where the limit value must be the average of

the initial values i.e., zi(t)→ 1
n

∑n
i=1 zi(0) as t→∞.

68

In the following subsections, we analyze the consensus iteration from a practi-

cal standpoint. To design distributed optimization algorithms, we distinguish the

following three key properties that a distributed algorithm should possess to be

applicable:

Averaging. The consensus matrix needs to be an averaging matrix. As will

be explained shortly, for the purposes of optimization, the communication mecha-

nism should assign equal importance to all messages so as not to bias the objective

function being optimized. An important complication arises from the fact that the

easiest consensus algorithms to analyze theoretically, are based on doubly stochastic

matrices. However such algorithms are difficult to implement especially in presence

of the two next requirements.

One-directional Communication. In theory the way information exchange

is implemented receives little attention. In practice however, an engineer has avail-

able only the functionality that can be supported by the given hardware and soft-

ware. We argue that algorithms relying on one-directional communication where

each node only sends out information and does not need to receive a response, are

preferable to algorithms that rely on bi-directional communication. The intuition

is that the latter might lead to deadlocks when the network has cycles.

Time-Varying. Real networks, especially in clusters, are quite reliable. How-

ever there is still a certain degree of volatility and messages are not delivered in-

stantaneously. Furthermore, different nodes may have different workloads and may

not be able to process messages at the same speed. To be able to model random

variability in the network and the node’s performance, we would like to have asyn-

chronous algorithms where each node makes local decisions of when and with which

node to communicate. It becomes clear that a communication protocol that remains

fixed in time is too restrictive and cannot capture such complicated dynamics.

Next we proceed to explain and justify the above properties in more detail. As

one might expect, to accommodate all the requirements we need to restrict the set

of consensus matrices P that can be used. Consequently, much of the theory for

69

analyzing consensus becomes inapplicable if the matrices do not have nice properties

such as symmetry and double stochasticity. For this reason, we also include a section

explaining the semantics of different consensus matrices.

5.2.1 Averaging

For the purposes of consensus-based distributed optimization, an averaging

matrix is necessary in order not to bias the objective function. The importance of

averaging has been mentioned in previous work on distributed optimization (e.g.,

[69, 90]). To gain some intuition why averaging is important, consider equation

(2.22). Unwrapping the recursion and assuming zi(t) = 0 for simplicity, we have

zi(t) =

t−1∑

s=1

n∑

j=1

[
P t−s−1

]
ij
gj(s) + gi(t). (5.3)

As t grows, P t−s−1 converges to its limit 1·πT where π is the stationary distribution

of P . More importantly, the gradients of different nodes are weighted based on the

stationary distribution π, and this weighting is unequal unless π is the uniform

distribution. The implication for consensus-based optimization is that instead of

minimizing the true objective (1.8) a näıve consensus-based approach will minimize

the biased objective F̃ (w) =
∑n

i=1 πifi(w).

To avoid this problem, most previous work has insisted on using doubly stochas-

tic update matrices P , i.e., matrices P for which 1TP = 1T and P1 = 1. Such

matrices are averaging by definition. As we will explain below however, doubly

stochastic matrices are undesirable to use in practice because they require synchro-

nization and coordination. Furthermore, it turns out that averaging can be achieved

without them. For example, [90] and Chapter 6 show that a simple reweighing of

the objective removes the bias and achieves averaging. Specifically, for any row-

stochastic matrix P with stationary distribution π (see also the scaled agreement

algorithm in [65]):

F (w) =
1

n

n∑

i=1

fi(w) =
n∑

i=1

πi

[
fi(w)

πin

]
=

n∑

i=1

πihi(w). (5.4)

70

0 500 1000 1500100

101

102

103

Time
m

ax
 |f

(x
i(t

)
 f(

x*
)|

Doubly Stochastic P
Stochastic P No Correction
Stochastic P Correction

Figure 5–1: Illustration of optimization bias with non-doubly stochastic matrices.
The blue curve shows progress of distributed dual averaging with a doubly stochastic
consensus matrix P . With a row stochastic P that has a non-uniform stationary
distribution we end up solving a biased problem with a different optimum shown by
the red curve. By rescaling the objective function components we remove the bias
as shown in the purple curve.

In essence, the objective components are reweighed and then the optimization algo-

rithm ”uses” the bias to revert the weights back to uniform. To illustrate the effect

of bias, consider a simple problem where the objective component at each node i is

a simple quadratic: fi(w) = (w − i1)T (w − i1),w ∈ R5 and we are interested in

minimizing the quadratic sum. For this problem we can easily compute the exact

minimizer w∗ = 5.5 · 1 with F (w∗) = 412.5. In Figure 5–1 the blue curve shows

the progress of the minimization for DDA which uses a doubly stochastic matrix P.

The progress is captured in terms of the maximum error maxi|F (wi(t))− F (w∗)|.

Instead of a consensus protocol with a uniform stationary distribution 0.1 · 1, we

generate a stochastic matrix with stationary distribution

π = (0.06, 0.04, 0.11, 0.10, 0.09, 0.04, 0.10, 0.21, 0.14, 0.11)T (5.5)

giving significant weight to node 8. As a result, the optimal value is biased to be

w∗biased = 6.2847 · 1 with F (w∗biased) = 443.286. This is the value that DDA with a

row stochastic matrix converges to as shown by the red curve. Finally, by employing

the suggested rescaling of the objective function components, we remove the bias

and solve the original problem as the purple curve shows.

Note that an implementation of this approach requires that both π and n are

known. Moreover, it requires that P be time-homogeneous, which is not reasonable

71

when the network induces time-varying delays or the algorithms needs to be asyn-

chronous. Later in this chapter we will see a different solution that does not have

many of these limitations.

5.2.2 One-Directional Communication

There exist consensus algorithms with bi-directional communication between

nodes. For example, a popular algorithm for distributed averaging is Randomized

Gossip [15]. This is a very simple asynchronous algorithm where at each iteration

a node is activated at random (e.g., according to a global poisson clock), and that

node selects a random neighbour. The two nodes, exchange values and set their

new values to the pairwise average of their previous values. In the context of dis-

tributed optimization, this algorithm is suggested in [32] as a way to reduce the

communication overhead when nodes have a large number of neighbours. However,

in practice, the bi-directional communication model can be problematic as it creates

deadlocks. Consider, for example, three nodes i, j, and k connected in a clique as

shown in Figure 5–2. Without coordination, there is no way of enforcing a rule that

only two neighbours activate in one time instant and that no other node initiates

an averaging update until the one currently in progress is completed. Consequently,

suppose i attempts to exchange its value with j. While i blocks, awaiting j’s re-

sponse, node j attempts to exchange values with k. While j is blocked waiting, k,

being oblivious to the situation, independently initiates an exchange with i. Now

there is a deadlock since i cannot proceed without j’s value, j cannot proceed with-

out k’s value, and k is waiting for i. In practice, this scenario is highly unlikely

if the time it takes to transmit information is much shorter than the frequency of

communication. However, in distributed optimization problems, where the amount

of data transmitted is non-trivial, this scenario is not so rare and we have certainly

encountered it in our experiments. One remedy may be to artificially slow down the

rate at which nodes communicate (e.g., by sleeping for a random time before trans-

mitting), but this is undesirable since the ultimate goal is to solve the optimization

as quickly as possible. In addition, the added complexity of coordinating two nodes

that exchange information via blocking receive operations or idling in non-blocking

72

i" j"

k"

Figure 5–2: Illustration of a deadlock with bi-directional communication. Node i has
transmitted to j and is blocked until j responds. In the meantime j has transmitted
and is waiting for k’s response. Finally, k has transmitted and is waiting for i’s
response creating a deadlock.

communication is usually undesirable. For these reasons, we argue that a consensus

algorithm must rely on one-directional communication where nodes only transmit

information and then proceed with their local computations without expecting a

response.

5.2.3 Time varying protocols

The main reason to use a time varying consensus matrix P (t) is to add the

expressive power needed to model real network conditions. Consider for example

the case of network introduced random delays. Figure 5–3 shows a simple scenario

where node j does not know in advance how many messages it will receive from

node i. Suppose at time t, node i sends message M1 to node j and that message

is delayed by one time unit. This can be modelled by sending that message to a

virtual delay node. Then at time t + 1 node i transmits a second message M2

that is delivered without delay. Node j will receive M1 and M2 simultaneously.

It becomes clear that without knowing in advance how many messages node j will

receive, it is impossible to arrange weights and form a convex combination of the

incoming information with a fixed matrix P . Of course the justification does not

need to come from random delays. We can imagine scenarios where the nodes are

not all running at the same speed either due to varying work load or simply because

73

i" j"

M1"

M2"

Figure 5–3: Node i transmits two messages M1 and M2 at times t and t+ 1. If M1
is delayed by one time unit, both messages arrive simultaneously at j. Node j has
no way of knowing in advance how many messages it will receive.

the processing power is not the same. In that case a node might need to limit its

communication overhead by only transmitting to some of its neighbours at time.

5.2.4 Semantics of Different Consensus Matrices

With the above considerations in mind, we turn our attention to consensus ma-

trices P (t) which in general can be time-varying. In discrete time, at each iteration

the state vector of the node values evolves as (5.2). Depending on the structure

and behaviour of P (t), a matrix can encode the semantics of one- or two-directional

communication and they can drive z(t) to average consensus.

An important distinction is made depending on whether or not P (t) varies with

time. The case where P (t) = P is time-homogenous implies that the algorithm is

synchronous; i.e., each node communicates with all of its neighbours exactly once

at every iteration. Synchronous protocols require that nodes block until they have

received one message from each neighbour, and this is undesirable since then the

entire network moves at the pace of the slowest node. Allowing the consensus matrix

to be time-dependent provides the freedom to encode asynchronous communication

where a node may choose whether or not to transmit something to each neighbour at

each round. It also becomes possible to encode time-varying communication delays.

The topic is studied in detail in Chapter 6.

To achieve average consensus with one-directional communication, previous

work has insisted on using doubly stochastic consensus matrices where each row

and column of P (t) sums to 1. See for example [63]. However, with asynchronous

and time-varying matrices, agreeing on time-varying weights that preserve double

74

stochasticity requires additional coordination, effectively foregoing asynchronous op-

erations. In addition, in the presence of communication delays, double stochasticity

can be lost (see Chapter 6 and [56]). Finally, there might be cases where a directed

network does not admit a doubly stochastic consensus matrix [35]. For these reasons

we focus on the case where P (t) is stochastic but not doubly stochastic.

With stochastic matrices, the nodes become disentangled and more autonomous.

When P (t) is row stochastic, each node controls a row of the consensus matrix (each

node applies the weights in its row of P (t) to the messages it receives). At each

iteration, the new value at a node is a weighted average of the incoming values. The

weights are encoded in the corresponding row of P (t) and need to sum to 1. If on the

other hand we use a column stochastic matrix P (t), the semantics are different as

each node controls a column of the matrix; each node sends a portion of its current

value to each neighbour so that the portion fractions sum to one (as indicated by

the stochastic columns).The receiver simply sums up the incoming messages which

is convenient when we do not know how many messages will be received at each

iteration (e.g., due to random communication delays).

5.3 Push-Sum Consensus

In Section 6.2 it is proven that restricting to doubly stochastic consensus matri-

ces in distributed dual averaging is not necessary and it is still possible to converge

to the optimum with a general row stochastic matrix P . However there are multiple

reasons why using a row stochastic matrix may not be desirable. The bias correc-

tion described in Section 6.2 requires knowledge of the stationary distribution of

P in advance which is restrictive. Moreover, with a time-varying consensus matrix

P (t), we may not even be able to specify the stationary distribution beyond its

expectation and variance [66] or may only be able to achieve average consensus in

expectation [4].

We propose the use of a different one directional consensus algorithm called

Push-Sum. A simple asynchronous version of the algorithm was first analyzed in

[49] for complete graphs. In [7] convergence is proven for any graph based on

weak ergodicity arguments. Let us focus on the simple synchronous case where

75

all nodes exchange information with their neighbours simultaneously to gain some

understanding of how Push-Sum works. The reader is referred to the cited literature

for more detailed proofs on the general case. Given the topology of the network

G, choose a column stochastic matrix P conformant to G; i.e., Pij = 0 if there

is no directed edge (j, i). If (j, i) ∈ E we may still have Pij = 0 meaning that

although the channel is available the protocol chooses not to use it1 . The initial

values at the nodes are stacked in a vector z(0) and the goal is to compute the

average zave = 1T z(0)
n . In Push-Sum, each node i maintains two values, a cumulative

estimate of the sum si(t) and a weight ui(t). We initialize

s(0) = z(0) u(0) = 1 (5.6)

and the average estimate at each iteration is the ratio si(t)
ui(t)

. At each iteration, a node

j splits its total sum sj(t) and weight uj(t) into shares Sj→i(t) =
(
Pijsj(t), Pijuj(t)

)

where
∑n

i=1 Pij = 1, and sends the corresponding share Sj→i(t) to each neighbour

i. A receiving node just sums up all the incoming shares from its neighbours. At

each time, the estimate of the average at each node is z̃i(t) = si(t)
ui(t)

. In vector form

the state evolves as

s(t) = Ps(t− 1) (5.7)

u(t) = Pu(t− 1) (5.8)

z̃(t) =
s(t)

u(t)
(5.9)

where the division of s(t) and u(t) in (5.9) is element-wise. The algorithm relies on

a mass conservation property to converge to the correct average. Specifically, for

all iterations we can verify that through the updates (5.7), mass is conserved in the

1 As long as this does not break strong connectivity of G.

76

sense that for all t

n∑

i=1

si(t) =
n∑

i=1

zi(0) = 1Tz(0) = nzave (5.10)

n∑

i=1

ui(t) = n. (5.11)

To see why Push-Sum correctly computes the average, notice that since G is assumed

to be strongly connected and P conforms to G, matrix P is a scrambling matrix2

and P t converges to a rank-1 matrix exponentially fast [34,73]. Let P∞ be the limit

of P t as t → ∞. Matrix P∞ will be column stochastic with all columns the same.

At any node i we will have

z̃i(∞) =

[
P∞s(0)

]
i[

P∞u(0)
]
i

=

[
P∞z(0)

]
i[

P∞1
]
i

=

∑n
j=1 P

∞
ij zj(0)∑n

j=1 P
∞
ij

(5.12)

=
P∞i1

∑n
j=1 zj(0)

P∞i1
∑n

j=1 1
=

∑n
j=1 zj(0)

n
=

1Tz(0)

n
. (5.13)

We used the fact that elements in the same row of P∞ are the same i.e. P∞i1 =

P∞ij ,∀j. For a formal proof see [7]. Observe that convergence is achieved without the

need to know the stationary distribution of P or the size of the network n at every

node. This is possible because the weights u(t) are approaching the stationary

distribution of P as the algorithm progresses. Notice also that even though we

assumed that P is fixed for simplicity, the same argument for convergence to the

average applies if P = P (t). The only difference is that we need the forward product

T (1, t) = P (t)P (t− 1) · · ·P (1) to approach a limit P∞ as t→∞.

For the sequel, it will be useful to also note that from (5.10) and (5.9), conver-

gence implies that

sj(t)

uj(t)
→ 1

n

n∑

i=1

si(t). (5.14)

2 A stochastic matrix is scrambling if any two rows share a column where both
rows have a positive entry [43].

77

Finally, for the case where P remains fixed, we can obtain an eigenvalue bound

on the convergence rate of the algorithm. For more details refer to Chapter 6.

Here we just mention the result. In general, matrix P represents a non-reversible,

irreducible Markov chain and we have

∥∥∥π −
[
P t
]
:,i

∥∥∥
1
≤

√
λt2
πi
, (5.15)

where π is the stationary distribution vector of P and λ2 is the second largest

eigenvalue of the lazy additive reversibilization of P as explained in [89] and [34].

5.4 Push-Sum Distributed Dual Averaging (PS-DDA)

Based on the criteria set in this Chapter, neither DDA nor DSG or other similar

schemes are practical algorithms since they are synchronous and rely on bidirectional

communication with doubly stochastic consensus matrixs P . Here we propose a new

algorithm called Push-Sum Distributed Dual Averaging or PS-DDA, an algorithm

which employs Push-Sum for the coordination of the nodes. PS-DDA converges at

the same asymptotic rate as DDA and DSG but at the same time it has all the desired

practical features. The description of the algorithm is followed by a discussion of

issues that one needs to consider from an implementation stand-point together with

an experimental evaluation. The mathematical analysis of convergence is deferred

until the end of the chapter.

Equipped with the Push-sum averaging protocol, the Push-sum Distributed

Dual Averaging (PS-DDA) algorithm works as follows:

ui(t+ 1) =
n∑

j=1

Pijuj(t) (5.16)

zi(t+ 1) =

n∑

j=1

Pij(zj(t) + gj(t)) (5.17)

wi(t+ 1) =Πψ
W

[
zi(t+ 1)

ui(t+ 1)
, a(t)

]
(5.18)

wi(t+ 1) =
1

t+ 1

t+1∑

s=1

wi(s) (5.19)

where as usual gi(t) is a subgradient of fi(w) at point wi(t) and a(t) is a non-

increasing sequence of step sizes. Observe that to retrieve the correct cumulative

78

gradient we need to divide the dual variable zi(t) at every node by the appropriate

weight. The weight variables ui(t) automatically rescale the dual variables to ac-

count for the case where the stationary distribution of P is non-uniform. In this way,

PS-DDA more naturally accommodates the challenges posed by a real implemen-

tation. However, as we discuss in the next section, there still exist implementation

subtleties that need to be addressed. Notice also that, contrary to DDA, we first

locally integrate the most recent gradient and then execute the consensus step. This

leads to a cleaner derivation, but also has another advantage. In the case of a com-

plete graph with a doubly stochastic matrix P , (5.17) performs perfect averaging

and the network error is zero as one would expect. This is not the case with DDA.

We elaborate on this in Chapter 7.

Remark: We describe and analyze here PS-DDA with a fixed consensus matrix

P . This is done because it allows for a more elegant closed-form expression for the

convergence rate. If the fixed consensus matrix is replaced by a time varying matrix

P (t), an asynchronous version of PS-DDA can be obtained where each node decides

independently when to transmit a new message and to which neighbour. For our

experiments the asynchronous version is used and as discussed in Chapter 6, PS-

DDA converges to the right solution with time varying consensus matrices as well.

Finding a clean expression for the rate is more difficult in that case however, since

the analysis requires bounding a forward product of random matrices.

In Section 5.8 we prove that PS-DDA converges to the solution of (1.8) at a

rate given in the following theorem:

Theorem 5.1. Consider a strongly connected graph G and a consensus matrix P

that respects the structure of G. There exists a value c > 0 such that for all t and

all i, we have
∑n

s=1[P
t]is ≥ c. Let also π∗ = mins{πs} > 0 be the minimum entry

in π, the stationary distribution of P . Let λ2 be the second largest eigenvalue of P .

Suppose we want to solve the L-Lipschitz continuous problem (1.8). The PS-DDA

algorithm (5.16)-(5.19) using a strongly convex function ψ(w) with respect to norm

79

‖·‖ such that ψ(w∗) ≤ R2 and choosing step sizes

a(t) =
R

L
√

1 + 8+4n
c
√
π∗(1−

√
λ2)

1√
t
, (5.20)

converges for every node i ∈ V to the optimum w∗ ∈ W of (1.8) as

F (wj(T))− F (w∗) ≤ 2RL

√
1 +

8 + 4n

c
√
π∗(1−

√
λ2)

1√
T
. (5.21)

For a fixed network and consensus protocol, the convergence rate is O
(

1√
T

)

which is time optimal. The constant term reveals the dependence on the connectivity

and specific consensus protocol through λ2 as well as the network size n. The

dependence on n, c and π∗ is pessimistic and arises due to the fact that we are

analyzing products or column rather than row stochastic matrices.

5.5 Implementation Remarks

Here we summarize a number of issues that arise and must be addressed in

a real implementation. We assume that each node has the ability to send and

receive messages and also to poll its buffer for incoming messages that have not

been received yet. In our implementation, discussed in Section 5.6 below, these

features are provided by the message passing interface (MPI) library [37].

5.5.1 One directional communication

PS-DDA uses one-directional communications so that each node sends informa-

tion without expecting replies before it updates. Specifically, node i rescales ui(t)

and zi(t) by Pji and send the rescaled values to its neighbor j. The receiver forms

the sum of the received messages u and z. Notice that this mode of operation may

not be obvious from the algorithmic description (5.16)-(5.19). However, the one

directional nature of the algorithm is revealed by the fact that the only restriction

on matrix P is that it is column stochastic, and that node i only has control over

the values in the i-th row of the matrix.

5.5.2 Numerical instability

In an asynchronous implementation, each node independently decides when

to send a message to its neighbours. Moreover, a message from node i to node

80

j is a quantity (zi or ui) discounted by Pji. If, for some reason, node i finishes

its iterations faster than its neighbours, its incoming message buffer will be empty

most of the time and it will not update (5.16). It is then possible that ui(t) will

become very small due to repeated rescaling by Pji < 1 whenever node i transmits

something. In practice after a few thousand iterations we hit the limits of numerical

precision. To prevent this from happening, it is sufficient to add a condition that

node i does not transmit if ui(t) is too small. We use a threshold of 10−4 in our

experiments and find that this value suffices to avoid any numerical instabilities. If

transmitting is prevented consensus slows down. How often this condition becomes

true and consequently how much Push-Sum is delayed will depend on the relative

difference of processing speed between nodes. A theoretical characterization of the

effect could be very interesting.

5.5.3 Step-size de-synchronization

By allowing the consensus matrix P to be time-varying, the algorithm becomes

asynchronous. Note, however, that the description (5.16)-(5.19) is in terms of iter-

ations and the step size at each node is set as a(t) = O
(

1√
t

)
. If each node operates

at its own pace, maintaining a local iteration counter, the step sizes can end up

being very different at different nodes. This situation is problematic in practice be-

cause the incoming messages will be discounted by step sizes that differ by orders of

magnitude at different nodes simply because the nodes are at different stages of the

computation. To prevent this from happening, we update the step size based on ac-

tual wall clock time instead of iterations. Each node maintains a secondary iteration

counter τ which is incremented by 1 every 100ms. This way if a node experiences

a delay and finishes an iteration in, say, 1 second, then it will set τnew = τold + 10

and a(τnew) = 1√
τnew

. In a somewhat controlled environment like a cluster, where

nodes begin the computation at effectively the same time, this solution suffices. A

theoretical analysis of the effect of de-synchronized step-sizes is an important topic

for future work. Note also that the increment of 100ms is somewhat adhoc for our

specific cluster and might need some configuration in general. To comply with the

81

theory, the increment should be long enough for a node to be able to complete one

iteration involving one gradient step.

5.5.4 Incoming message handler

Clusters are shared resources, and it is not uncommon for one node to be

simultaneously assigned to process multiple tasks for different users. Moreover,

network throughput may vary significantly depending on other background traffic.

Both of those factors can result in some nodes transmitting more frequently than

others. Consequently, when the (slow) receiver polls its incoming message buffer it

may find multiple messages from the same neighbor. Those messages would have

been sent at different moments in time, but they arrive and are processed during the

same update due to, e.g., communication delays. It is an interesting question how

to handle such incoming information. At the one extreme, a node can wait until it

receives at least one message per neighbour. We have found that this approach does

not work well in practice and goes against the desired asynchronous operation. At

the other extreme, a node may empty its incoming buffer and sum all the incoming

messages at the beginning of each iteration. Then the sums in (5.16) and (5.17)

are over all messages in the buffer, not over all nodes. The danger in this case is

to run into a producer-consumer scenario where one node continuously sends new

information while another node continuously receives it. In this scenario, the receiver

may never exit the receive mode to continue with local computations. Although this

could happen in principle, in practice we did not observe this behaviour. It would

be interesting to explore if assigning less weight to older messages can speedup

convergence.

5.5.5 Communicator saturation

Depending on the CPU and the problem being solved, it is possible that the

local gradient and projection computations will be very quick, and a node may

poll its communicator (at the lowest level a TCP socket) very frequently for new

messages. This is not uncommon in practice and can result in the system stalling

simply because the network cannot be polled too frequently. This issue can also

82

be easily prevented by making sure that a minimal amount of time always lapses

between polls. A value of 10ms was found be sufficient in our implementation.

5.6 Experimental Evaluation

5.6.1 Benchmark Problem and Setup

To complement the discussion above, we report the results of experiments with

DDA and PS-DDA on a cluster of 15 nodes. Each node has a 3.2 GHz Pentium

4HT processor and 1 GB of memory, and they are physically connected in a star

topology through an Ethernet switch that allows for roughly 11 MB/sec throughput

per node. Our implementation is in C++ using the send and receive functions

of OpenMPI v1.4.4 for communication. The Armadillo v2.3.91 library, linked to

LAPACK and BLAS, is used for efficient numerical computations.

As a benchmark problem we seek to minimize a sum of quadratics with

fi(w) =
M∑

j=1

(w − xj|i)T (w − xj|i) (5.22)

where w ∈ R5,000, M = 500 and xj|i is the centre of the j-th quadratic of node i.

The data xj|i are chosen so that the minima of the components fi(w) at each node

are very different and coordination is essential to obtain an accurate optimizer of

F (w).

5.6.2 Doubly Stochastic Matrices cannot be maintained in Practice

The first experiment aims to illustrate that it is not possible to guarantee that

the updates P (t) are doubly stochastic due to network delays and nodes that ex-

perience different amounts of communication overhead and workload, even if the

consensus protocol is initially designed to be doubly stochastic. Consequently, the

standard consensus algorithm is not an averaging algorithm anymore and conver-

gence to the right solution is lost.

To illustrate the point, we solve problem (5.22) on a 15-node graph with neigh-

borhood structure defined through P so that node 1 has a much higher degree than

all other nodes, as shown in Figure 5–4. We expect that node 1 will spend more time

communicating than the others, and its iterations will take more time to complete.

83

1	

2	
3	 4	

5	

6	

7	

8	

9	

10	
11	

12	

13	

14	

15	

Figure 5–4: The unbalanced communication topology used in the first set of ex-
periments. In this topology, node 1 has many more neighbors than the others,
and consequently, it spends more time communicating than other nodes. Edges
connected to node 1 have a heavier weight than other edges.

We select P = I− D−A
dmax+1 where, D is a diagonal matrix containing the node degrees

(excluding self loops), A is the symmetric graph adjacency matrix and dmax is the

maximum node degree. It can be verified that P is doubly stochastic. Figure 5–5

shows the evolution of the objective value F (wi(t)) at each node when we solve the

problem using DDA (i.e., with asynchronous consensus updates that are not doubly

stochastic, not asynchronous Push-Sum). Note that if the true consensus matrix

used at each iteration was indeed the doubly stochastic matrix P , then all nodes

would converge to the average consensus solution. However, this is clearly not the

case in practice. As the figure shows, node 1 being slower than the rest, cannot

coordinate with the team. The resulting consensus protocol is no longer averaging

and we have disagreement. On the other hand, if we make use of the asynchronous

Push-Sum weights and run PS-DDA, then as Figure 5–6 shows consensus does work

and the objective is minimized as desired.

5.6.3 Comparison with AllReduce

In the next experiment, we compare the performance of consensus-based PS-

DDA with a solution that uses MPI’s specialized AllReduce communication capa-

bilities. The latter is available in high-performance computing clusters supporting

MPI and allows for all the nodes to exchange information with each other and obtain

the true average z at each iteration. AllReduce is designed as an efficient primitive

84

20 40 60 80 100 1200.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7x 105

Time (sec)

F
(w

i(
t)
)

Figure 5–5: Network of 15 nodes solving problem (5.22) on a graph where node
1 has many more neighbours that the rest of the nodes. Because of asynchronism
and delays, the resulting updates do not correspond to a doubly stochastic matrix,
and the nodes do not reach consensus on the average. Consequently, node 1 (solid
black line) does not converge to right solution and the algorithm does not solve the
problem.

20 40 60 80 100 1200.95

1

1.05

1.1x 105

Time (sec)

1 n

∑
n i=

1
F
(w

i(
t)
)

PS DDA
DDA

Figure 5–6: (Blue dashed) The average performance of the team produced by run-
ning DDA and ignoring the weights (average of plots inFigure 5–5). (Red Line)
When the weights w are not kept to 1 and true asynchronous PS-DDA is running,
the network converges to the right solution despite the asymmetry of communication
overhead of its nodes.

85

to allow all nodes in the network to exchange information in one function call. How-

ever, the call is blocking. Hence, using AllReduce implicitly requires a synchronous

approach and all nodes must call AllReduce simultaneously. This solution resembles

algorithms based on the popular Map-Reduce approach that have been developed

recently for distributed optimization [27]. We compare this solution with our PS-

DDA implementation operating in blocking and asynchronous mode, executing over

a communication topology G corresponding to the complete graph. In blocking

mode, at each iteration each node blocks in a receive call until one message from

each neighbour arrives. This turns PS-DDA into a synchronous algorithm and each

node computes the exact average z(t) at every iteration.

Figure 5–7 shows two sets of experiments. Initially, we solve problem (5.22)

with all three algorithms in a delay-free environment. As we see from the solid lines

at the bottom of the figure, the AllReduce implementation, is slightly faster than the

blocking PS-DDA which again is just slightly faster than the asynchronous PS-DDA

implementation. Then, to illustrate the benefits of asynchronism, we artificially

slow down one of the nodes by adding a 0.5 second pause after each local gradient

computation. In practice, a node could be slowed down because it is spending

cycles on unrelated tasks, it could have more data to process, or it could simply

have a less powerful CPU. It should come to no surprise that the synchronous

algorithms (purple and red dashed lines) are both severely impacted as their overall

computation runs at the speed of the slowest node. However, the asynchronous

algorithm (green dashed line) is not as affected. The fast nodes quickly converge to

the solution and the slow node is pulled to the right solution.

5.7 Concluding Remarks and Future Work

Consensus-based distributed optimization algorithms are an attractive alterna-

tive for solving large-scale problems over peer-to-peer networks. The advantages of

such an approach are increased robustness to node failures, scalability and asyn-

chronism. The main difficulty comes from the lack of sophisticated communication

infrastructure, and performance heavily depends on the network properties.

86

10 20 30 40 50 600.8

1

1.2

1.4

1.6

1.8

2x 105

TIme (sec)

1 n

∑
n i=

1
F
(w

i(
t)
)

AllReduce
AllReduce slow
Blocking
Blocking slow
Async
Async slow

Figure 5–7: (Red,Blue,Green solid) Average progress towards the solution of prob-
lem (5.22) with AllReduce, PS-DDA blocking and PS-DDA asynchronous algorithms
when all nodes are running at full speed. (Red,Blue,Green dashed) Average progress
when one node is artificially slowed down to have a 0.5 second delay at each local it-
eration. In this case the synchronous algorithms are running at the speed of the slow
node and their curves are overlapping. The asynchronous algorithms is significantly
less affected by the slow node.

We identify averaging, one directional communication, and asynchronism as

the three key ingredients that a consensus algorithm should contain for a reli-

able and efficient practical implementation. We note that the benefit of an al-

gorithm that accommodates real network constraints comes at the price of more

difficult mathematical analysis. We also discuss implementation issues we have ob-

served/experienced, including numerical instabilities and de-synchronizing the step

sizes of different nodes. For these issues we explain the root cause and side effects

as well as ways to prevent them from happening. Our discussion is complemented

by simulations on a real cluster that illustrate how the key ingredients mentioned

above yield practical algorithms that work correctly even in adverse circumstances

where the communication overhead of the nodes is not equally distributed or where

nodes experience different and unbalanced workloads.

In the future, it would be important to conduct a more thorough theoretical

investigation of the effect of de-synchronizing step sizes, as well as thresholding the

Push Sum weights to avoid numerical instabilities. Moreover, it would be interesting

to scale the experiments to a significantly larger cluster with many more than the

15 nodes used in the results reported here.

87

5.8 Proof of Theorem 5.1

We start by noting that Lemmas 2.2 and 2.3 are derived based on basic convex-

ity arguments and properties of the objective function and thus hold unaltered for

PS-DDA as well. Let π∗ = mins{πs} denote the minimum entry in the stationary

distribution of P . We know there exists a constant c > 0 such that for all t and all i,

∑n
s=1[P

t]is ≥ c since P is assumed to be a scrambling matrix (this is necessary since

G is strongly connected so that there is a directed path between any two nodes).

Without loss of generality we initialize zi(0) = 0 and gi(0) = 0 for all i.

We start by finding expressions for zi(t) and z(t) = 1
n

∑n
i=1 zi(t) based on the

gradients. It is convenient to use matrix notation to derive the recursion. Let us

just momentarily treat the zi variables as scalars to keep the notation simple. We

stack all the z variables in a vector Z(t) and all local gradients in a vector G(t).

From (5.17) we have

Z(t) =P (Z(t− 1) +G(t− 1)) (5.23)

=P 2Z(t− 2) + P 2G(t− 2) + PG(t− 1) (5.24)

= · · · (5.25)

=

t−1∑

r=1

P t−rG(r) (5.26)

where we used the fact that the initial conditions are zero. Separating the i-th row

for node i we have

zi(t) =
t−1∑

r=1

n∑

j=1

[P t−r]ijgj(r). (5.27)

88

Next, using (5.27), we derive an expression for the average dual variable z(t):

z(t) =
1

n

n∑

i=1

zi(t) (5.28)

=
1

n

n∑

i=1

t−1∑

r=1

n∑

j=1

[P t−r]ijgj(r) (5.29)

=

t∑

r=1

1

n

n∑

j=1

gj(r)

n∑

i=1

[P t−r]ij (5.30)

=
t−1∑

r=1

1

n

n∑

j=1

gj(r). (5.31)

For the last equality we used the fact that each P t−r is a column stochastic matrix

as a product of column stochastic matrices. We also need the sequence {y(t)}∞t=1

defined by the projection of z(t):

y(t) = Πψ
W (z(t), a(t)) (5.32)

and the running average y(T) = 1
T

∑T
t=1 y(t). Using standard convexity arguments

and Lemma 2.1, we can show that for any w∗ ∈ W (for a detailed derivation see

e.g. [32])

F (wj(T))− F (w∗) ≤ 1

T

T∑

t=1

1

n

n∑

i=1

〈
gi(t),wi(t)−w∗

〉
(5.33)

+
1

T

T∑

t=1

L

n

n∑

i=1

‖y(t)−wi(t)‖ (5.34)

+
L

T

T∑

t=1

‖wj(t)− y(t)‖ . (5.35)

89

We will bound the three RHS terms separately. For (5.33) we split the inner product

by adding and subtracting y(t):

n∑

i=1

〈gi(t),wi(t)−w∗〉 =

n∑

i=1

〈gi(t),y(t)−w∗〉 (5.36)

+
n∑

i=1

〈gi(t),wi(t)− y(t)〉 (5.37)

=

〈
n∑

i=1

gi(t),y(t)−w∗
〉

(5.38)

+
n∑

i=1

〈gi(t),wi(t)− y(t)〉 . (5.39)

To bound (5.38) we recall the definition (5.32) of y(t) and the expression (5.31) to

see that

y(t) = Πψ
W

[
t−1∑

r=1

1

n

n∑

i=1

gi(r), a(t− 1)

]
. (5.40)

Now, observe that

T∑

t=1

1

n

〈
n∑

i=1

gi(t),y(t)−w∗
〉

=
T∑

t=1

〈 1

n

n∑

i=1

gi(t),Π
ψ
W

[
t−1∑

r=1

1

n

n∑

i=1

gi(r), a(t− 1)

]
−w∗

〉
. (5.41)

Invoke Lemma 2.2 with 1
n

∑n
i=1 gi(t) as the vector sequence to get

T∑

t=1

1

n

〈
n∑

i=1

gi(t),y(t)−w∗
〉
≤ L2

2

T∑

t=1

a(t− 1) +
1

a(T)
ψ(w∗). (5.42)

For term (5.39), using the gradient magnitude bound, the definition (5.18) of

wi(t) and Lemma 2.3 we get

n∑

i=1

〈gi(t),wi(t)− y(t)〉 ≤
n∑

i=1

‖gi(t)‖ ‖wi(t)− y(t)‖ (5.43)

≤
n∑

i=1

L

∥∥∥∥Πψ
W

[
zi(t)

ui(t)
, a(t− 1)

]
−Πψ

W [z(t), a(t− 1)]

∥∥∥∥

(5.44)

≤
n∑

i=1

La(t− 1)

∥∥∥∥z(t)− zi(t)
ui(t)

∥∥∥∥ . (5.45)

90

Terms (5.34) and (5.35) are bounded similarly. Combining (5.33)-(5.35), (5.42),

(5.45) and Lemma 2.3 we can show that

F (wj(T))− F (w∗) ≤L
2

2T

T∑

t=1

a(t− 1) +
1

Ta(T)
ψ(w∗)

+
2L

nT

T∑

t=1

n∑

i=1

a(t− 1)

∥∥∥∥z(t)− zi(t)
ui(t)

∥∥∥∥

+
L

T

T∑

t=1

a(t− 1)

∥∥∥∥z(t)−
zj(t)

uj(t)

∥∥∥∥ . (5.46)

To complete the proof we thus need to bound each network error term
∥∥∥z(t)− zk(t)

uk(t)

∥∥∥

for any node k. From (5.16) we see that uk(t) =
∑n

s=1[P
t]ks. Now we proceed with

the bound:

∣∣∣
∣∣∣z(t)− zk(t)

uk(t)

∣∣∣
∣∣∣ =
∣∣∣
∣∣∣
t−1∑

r=1

1

n

n∑

j=1

gj(r)−
∑t−1

r=1

∑n
j=1[P

t−r]kjgj(r)∑n
s=1[P

t]ks

∣∣∣
∣∣∣
∗

(5.47)

≤
t−1∑

r=1

n∑

j=1

‖gj(r)‖∗

∣∣∣∣
1

n
−

[P t−r]kj∑n
s=1[P

t]ks

∣∣∣∣ (5.48)

≤L
t−1∑

r=1

n∑

j=1

∣∣∣∣
[P t−r]kj∑n
s=1[P

t]ks
− 1

n

∣∣∣∣ . (5.49)

We now show that the term in the absolute value remains bounded.

∣∣∣ [P t−r]kj∑n
s=1[P

t]ks
− 1

n

∣∣∣ =

∣∣∣∣
n[P t−r]kj −

∑n
s=1[P

t]ks
n
∑n

s=1[P
t]ks

∣∣∣∣ (5.50)

=

∣∣∣∣
∑n

s=1[P
t−r]kj −

∑n
s=1[P

t]ks
n
∑n

s=1[P
t]ks

∣∣∣∣ (5.51)

=

∣∣∣∣∣

∑n
s=1

(
[P t−r]kj − πk + πk − [P t]ks

)

n
∑n

s=1[P
t]ks

∣∣∣∣∣ (5.52)

≤
∑n

s=1

(∣∣[P t−r]kj − πk
∣∣+
∣∣πk − [P t]ks

∣∣)

n
∑n

s=1[P
t]ks

(5.53)

91

The bound (5.15) gives also an exponential convergence rate for each individual

element of P t, so

∣∣∣∣
[P t−r]kj∑n
s=1[P

t]ks
− 1

n

∣∣∣∣ ≤

∑n
s=1

√
λt−r
2
πj

+
∑n

s=1

√
λt2
πs

n
∑n

s=1[P
t]ks

(5.54)

≤
2n 1

mins{
√
πs}

√
λt−r2

n
∑n

s=1[P
t]ks

(5.55)

≤
2
√
λt−r2

c
√
π∗

(5.56)

where we used the fact that λ2 < 1. We thus conclude that

‖z(t)− zk(t)‖∗ ≤L
t−1∑

r=1

n∑

j=1

2
√
λt−r2

c
√
π∗

(5.57)

=
2Ln

c
√
π∗

t−1∑

r=1

√
λt−r2 (5.58)

=
2Ln

c
√
π∗

√
λ2 − (

√
λ2)

t

1−
√
λ2

(5.59)

≤ 2Ln

c
√
π∗

1

1−
√
λ2

(5.60)

(5.61)

where we used the formula for a finite geometric sum. Now we can go back to (5.46)

to get

F (wj(T)− F (w∗) ≤L
2

2T

T∑

t=1

a(t− 1) +
1

Ta(T)
ψ(w∗)

+
2L

T

2L

c
√
π∗

1

1−
√
λ2

T∑

t=1

a(t− 1)

+
L

T

2Ln

c
√
π∗

1

1−
√
λ2

T∑

t=1

a(t− 1). (5.62)

With ψ(w∗) ≤ R2

F (wj(T))− F (w∗) ≤L
2

2T

T∑

t=1

a(t− 1) +
R2

Ta(T)

+
1

T

2L2(2 + n)

c
√
π∗

1

1−
√
λ2

T∑

t=1

a(t− 1). (5.63)

92

Finally, if we choose a(t) = A√
t

and minimize for A, noticing that
∑T

t=1
1√
t
≤ 2
√
t

we arrive at the result in Theorem 5.1.

93

CHAPTER 6
Communication Delays

6.1 Introduction

This chapter studies an important and uncontrollable way in which a phys-

ical network can affect the behaviour of a distributed algorithm: communication

delays1 . For implementations of consensus-based optimization algorithms running

on clusters, the issue of communication delays arises quite naturally. For example,

in typical machine learning problems, the decision variable (and hence the message

size) can quickly exceed many megabytes in size. During the time it takes to trans-

mit such large messages, a modern processor can perform a significant amount of

local processing of its own data, and the received information always appears to

be delayed. In addition, cluster computing resources are typically shared among

many users, and delays to one task are introduced if processors devote some of their

cycles to other unrelated tasks. Finally, any network infrastructure is bound to

have some fluctuation in its performance for reasons beyond our control. It is thus

important first to model communication delays, and then incorporate those models

in the analysis of consensus algorithms to understand the effects of delays.

We begin with a high level description of delays in a discrete time consensus

algorithm and then summarize the results of this chapter. Then we proceed to

develop these results in detail.

1 This chapter is based on the previously published work [89,90,92].

94

6.1.1 Time Delayed Consensus

In its most common form, a consensus algorithm in discrete time updates the

network state through iterations of the form

z(t+ 1) = Pz(t) (6.1)

where P is the consensus matrix. As already discussed in Section 2.1, a row stochas-

tic matrix P is sufficient to drive the state z(t) to consensus on a value c that depends

on the initial values z(0). If in addition P is doubly stochastic, the value c becomes

the average of the initial values. For most of this chapter we will assume that P is

row or doubly stochastic while at the end we will turn the discussion to Push-Sum

a different consensus algorithm that was presented in Section 5.3. Push-Sum dif-

fers since it requires the exchange of extra information and uses column stochastic

matrices.

We say that a message from node i to node j is delayed by b if it is received b

time steps after it has been sent. For simplicity, let us first assume that each directed

edge (i, j) experiences a fixed delay bij in the sense that each message leaving node

i takes bij iterations to reach j. This suggests linear update consensus equations of

the form

zi(t+ 1) =

n∑

j=1

Pijzj(t− bij) (6.2)

where 0 ≤ bij ≤ B for a network with bounded maximum delay B <∞. This model

describes a system with fixed delays and is analyzed in Section 6.2. Each bij can be

thought of as the average delay experienced on that link.

A more realistic model relaxes the fixed delay assumption. Assume there exists

a maximum delay bound B so that all messages are eventually delivered. We model

random time-varying delays by sampling in {0, . . . , B} every time a new message

is sent. Under this random delay model analysis is more complicated since in one

iteration a node can receive multiple messages from the same sender. This situation

is analyzed in Section 6.3. For both models we assume that there is no delay in self

loop messages; i.e., each node always has access to its most recent local estimate.

95

For both cases we develop a formulation to describe the consensus update equations

with a new matrix P̂ that is constructed from the initial matrix P . The construction

involves an augmentation of the communication graph G with logical delay nodes.

The idea itself is not new and appears in other work such as [21] and [56]. However

our formulation is significantly different both in terms of the number of delay nodes

we introduce as well as the equations it leads to. In our model, the intuition is

that for every added unit of delay, the message is forced to pass through one more

intermediate logical delay node before reaching its destination.

As a last comment, we emphasize that in this work all delays occur in discrete

time. The reason is that both the consensus and the optimization algorithms we

study are iterative and proceed in discrete iterations so the amount of delay for

a message is also measured in terms of how many iterations of an algorithm are

performed during the time it takes from transmission to delivery of a message.

6.1.2 Main Results

This chapter studies communication delays in discrete time and effect of delays

on convergence of consensus algorithms; an integral part of distributed optimiza-

tion algorithms. The results revolve around modelling delays, either assuming they

are fixed or that they are random, and then analyzing how convergence rates are

affected. In summary, this chapter discusses the following:

Fixed delay model. We first introduce a fixed delay model where transmis-

sions over each directed link of a network experience some fixed amount of delay

that does not exceed B. Starting with a consensus matrix P it is shown that con-

sensus is still achieved in the presence of fixed delays at an exponential rate which

depends on the second largest eigenvalue of P̂ , the modified consensus algorithm

accounting for delays. Furthermore, we use geometric arguments to show that the

rate of convergence does not get worse by more than an factor of O(B2). In ad-

dition, we present an analysis of DDA in the presence of fixed delays to show how

delays can affect distributed optimization.

96

Random delay model. Given a strongly connected graphG and any stochas-

tic matrix P , we describe a construction for building a matrix P̂ that describes the

consensus updates on G when each message experiences a random amount of delay

that does not exceed B iterations.

Random delay consensus. If the initial matrix P on a graph G without

delays is row stochastic, using the proposed random delay model, the consensus

dynamics are captured by a sequence of matrices P̂ (t) which may contain all-zero

rows. This means that although the consensus updates remain linear, convergence

cannot be established based on standard theory for stochastic matrix products. We

give a complete proof of convergence under the proposed random delay model.

Push-Sum consensus with delays. Push-Sum consensus is presented in

Chapter 5 as the base for a new distributed optimization algorithm called PS-DDA.

We show here that convergence properties of Push-Sum are not affected in the

presence of delays. In particular, it is noteworthy that consensus on the average is

guaranteed even in the presence of bounded random delays which is not the case for

row stochastic matrices.

6.2 Fixed Communication Delays

We first analyze a model where the delay over each communication link does

not vary with time. This is generally not true in practice but a fixed delay model

can be appropriate in an average sense when the true delay does not fluctuate too

much. Furthermore, the fixed delay model is instructive in showing how the delays

affect rates of convergence for consensus and distributed optimization. For the rest

of this section, whenever we talk about a quantity Q, such as a graph or a matrix,

we use a hat (i.e., Q̂) to denote the transformed version of Q in the presence of

delays.

6.2.1 Fixed Delay Model

Assume that in a given network G, for a directed link (i, j), every message from

i to j is delayed by bij time units. We model this delay by replacing the link (i, j)

with a chain of bij virtual delay nodes in the network, acting as relays between i

97

1"

2"

3" 1"

2"

3"

d1"

d2"

Figure 6–1: (left) A network with 3 nodes. (right) The network when we add a
delay of 2 on the edge (1, 2).

and j. This leads to a network Ĝ which contains the original compute nodes, V ,

as well as b =
∑

(i,j)∈E bij delay nodes. Our goal is to study the corresponding

consensus algorithm running over Ĝ. We assume that a consensus matrix P in the

delay-free network G is given so that in the presence of delays, the compute nodes

still transmit and combine incoming messages using the weights provided by P .

We begin by describing how to construct a stochastic matrix P̂ in the augmented

space of n+ b nodes starting from a delay-free consensus matrix P . The matrix P̂

encodes communication of information between delay and compute nodes and has a

stationary distribution π̂ which is not uniform and depends on both P and the edge

delays. We clarify that the augmentation of G with delay nodes is done just for the

purpose of modelling and analysis; no physical delay nodes are actually added to

the network.

To illustrate the construction of P̂ from P , consider a graph G with 3 nodes

as in Figure 6–1. Suppose that the delay-free consensus algorithm is specified by

the matrix

P =

2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2

. (6.3)

To model a fixed delay of b12 = 2 incurred by messages transmitted from node 1 to

node 2, we augment G with two delay nodes d1→2
1 , d1→2

2 so that information from 1

to 2 must pass through them en route. In the augmented graph Ĝ, the consensus

algorithm is described by a row stochastic matrix P̂ . Using the rows of P we write

98

P̂ as

P̂ =

1 2 3 d1→2
1 d1→2

2

1
2
3

1
3 0 0 0

2 0 1
3

1
2 0 1

6

3
1
6

1
3

1
2 0 0

d1→2
1 1 0 0 0 0

d1→2
2 0 0 0 1 0

. (6.4)

Each compute node forms a convex combination of the incoming messages; e.g., in

P̂ , node 2 receives information from node d1→2
2 with weight 1

6 because p2,1 = 1
6 .

As it turns out, we can describe in matrix form an algorithm that will generate

P̂ starting with any row stochastic P by inserting delays on edges one at a time.

Suppose that after some delay insertions we have a matrix P̂ and want to add a

delay of bij on edge (i, j). We replace edge (i, j) by a delay chain d1, d2, . . . , dbij

and re-route all messages from i to j through that chain. Define an n × n matrix

M1 responsible for setting to 0 the entry of P̂ corresponding to sending information

from i to j without delay. Instead, i sends its message to the first delay node d1. A

message is delivered to j by delay node dbij . Node j has to assign a weight to this

message equal to the weight that would be used to receive from i directly without

delay, i.e., Pji. This is achieved by an n × bij matrix M2. A bij × n matrix M3

delivers the message from i to the first delay node in the chain d1 and we use a

bij × bij matrix M4 to pass messages along the delay chain. We use ei to denote

the i-th column of the n×n identity matrix and li to denote the i-th column of the

bij × bij identity matrix. With these definitions, we initialize P̂ = P . To add bij

99

delay nodes on the edge i→ j we apply the transformation

P̂ ←

P̂ +M1 M2

M3 M4

 (6.5)

M1 = −ejeTj P̂ eieTi (6.6)

M2 = −M1eil
T
bij

(6.7)

M3 = lie
T
j (6.8)

M4 =

bij−1∑

k=1

lk+1l
T
k . (6.9)

Using P̂ we can analyze the effect of delays on convergence based on the update

equations for row stochastic consensus

ẑ(t) = P̂ ẑ(t− 1), (6.10)

where ẑ(t) is the augmented state vector of dimension n + b containing values for

the compute nodes and virtual delay nodes.

6.2.2 Stationary Distribution under Fixed Delays

We have already seen that without delays a doubly stochastic matrix P has a

uniform stationary distribution. In the presence of fixed delays this is no longer true

since P̂ is only row stochastic. However, as it turns out, if the original matrix P is

doubly stochastic the stationary distribution π̂ of P̂ can be computed analytically.

Let us index the directed edges of G (without delays) by r = 1, 2, . . . , |E|. For any

directed edge r from node i to node j, by i(r) we indicate the origin of the edge and

j(r) the destination of the edge. The weight used by the receiving node j is Pj(r)i(r).

Moreover, let br denote the amount of delay on edge r. If a random walk leaves

node i through edge r, it will have to traverse all delay nodes that replace edge r

so intuitively the value of the stationary distribution vector for all delay nodes on

the delay chain replacing edge r will be the same. With a slight abuse of notation

we denote that value π̂r. For the same reason, since doubly stochastic matrices are

averaging matrices, we expect all of the original compute nodes to have the same

100

value in the stationary distribution say π̂V . Based on those observations we wish to

find the stationary distribution of P̂ which has structure

π̂ = [π̂V 1Tn π̂11
T
b1 · · · π̂|E|1

T
b|E|

]T . (6.11)

Assume the delay matrix P̂ is built as explained before and focus on the balance

equations π̂T P̂ = π̂T . For each edge r of G there is one column in P̂ whose only

non-zero value is Pj(r)i(r); the weight that node j assigns to incoming messages from

node i over edge r. This column is indexed by di→jbij
. See for example column d1→2

2

in (6.4). From all such columns we obtain equations of the form

πV Pj(r)i(r) = πr. (6.12)

Moreover, the elements of the stationary distribution π must sum to 1; i.e.,

1T · π = 1 ⇒ nπV +
m∑

r=1

brπr = 1. (6.13)

Substituting πr from (6.12) to (6.13), we first compute πV and then go back to

(6.12) to get the stationary distribution values:

πV =
1

n+
∑|E|

r=1 brPj(r)i(r)
(6.14)

πr =
pi(r)j(r)

n+
∑|E|

r=1 brPj(r)i(r)
. (6.15)

One can easily verify that the rest of the equations in (6.13) are satisfied with the

computed π. The stationary distribution depends both on the weight we use to

send messages through every edge r and also on the amount of delay br.

An intriguing corollary is that in the special case where P is the max-weight

doubly stochastic matrix2 , the entries of π̂ only take one of two values, one for the

compute nodes in the set V and one for the delay nodes; i.e., it does not matter

2 For an undirected graph G without self loops, with adjacency matrix A and node
degrees v = [deg1, . . . , degn] the max-weight matrix is defined as P = I− diag(v)−A

maxi degi+1
and is doubly stochastic.

101

how the delays are distributed over the links. Specifically, denoting by D the set of

delay nodes we have

π̂V =
dmax + 1

b+ n(dmax + 1)
, π̂D =

1

b+ n(dmax + 1)
(6.16)

where dmax is the maximum degree of G viewed as undirected ignoring self-loops.

Notice that even when P is doubly stochastic (and thus is an averaging matrix),

the row stochastic delayed matrix P̂ does not converge to the average in general,

since its stationary distribution is not uniform. To converge to the average as

required for distributed optimization we have two options. If we must use matrix

P with delays, we can rescale the initial values by the stationary distribution of P̂

as described in Section 5.2.1. Alternatively, we can use Push-Sum as the consensus

algorithm. Push-Sum has already been presented in Section 5.3. Later in this

chapter we will show that Push-Sum is an averaging algorithm that is immune to

communication delays if no messages get lost.

6.2.3 Convergence Rate under Fixed Delays

A question of great interest is how quickly does a consensus algorithm converge

in the presence of delays. We have already seen that the rate of convergence of con-

sensus and distributed optimization algorithms such as DDA and PS-DDA depends

on the second largest eigenvalue of the consensus matrix (see e.g., (5.15) in Section

5.3). Obtaining eigenvalue bounds becomes more challenging when the consensus

matrix is not symmetric nor doubly stochastic. The analysis is much easier when

the consensus matrix has non-zero return probabilities; i.e., non-zero entries in the

diagonal. However, by construction, the delay nodes only relay information and

have no self loops. Thus, the diagonal entries in P̂ corresponding to delay nodes are

zero. This makes P̂ a non-reversible Markov chain that is not strongly aperiodic3 ,

and the majority of the known convergence rate results for Markov chains do not

3 A Markov chain is strongly aperiodic if all the diagonal entries of its transition
matrix are at least 1/2.

102

apply. To get a bound on the convergence rate under fixed delays, we apply the

result from [34] with the lazy version P̂lazy = 1
2(I + P̂) of P̂ . First, the additive

reversibilization of a Markov chain with transition matrix P is defined as

U(P) =
P + P̃

2
, (6.17)

where P̃ is the time-reversed chain,

P̃ij =
πjPji
πi

, (6.18)

when P has a stationary distribution π. Since P̂lazy is strongly aperiodic and non-

reversible, Corollary 2.9 in [34] states that

∥∥∥[P̂ t]i,: − π̂
∥∥∥
2

TV
≤
∥∥∥[P̂ tlazy]i,: − π̂lazy

∥∥∥
2

TV
≤

(λ2(U(P̂lazy)))
t

4[π̂lazy]i
(6.19)

with π̂lazy = π̂. In the last equation
∥∥Pi,: − πT

∥∥
TV

= 1
2

∑n
j=1 |Pij − πj | is the total

variation distance of any row of stochastic matrix P and its stationary distribution.

At this point we are ready to ask three questions:

1. How do the delays affect the convergence rate of average consensus algorithms?

One way to answer is to understand how much larger is λ2(U(P̂lazy)) in com-

parison to λ2(P) since a larger eigenvalue implies slower convergence based on

bound (6.19).

2. How is the convergence of distributed optimization algorithms affected by the

delays? Using the results developed so far, we present an analysis for DDA to

characterize the effect of delays.

3. Finally one may ask a design question. Given a network G and the fixed delays

on its edges, what is the optimal set of weights? In other words, what is the

best possible matrix P that achieves the smallest possible second eigenvalue

λ2(P̂)? We do not have an analytic solution. However, this question can

be formalized as a non-convex minimization problem for which experimental

evidence in [89] illustrates that even a numerically computed local minimum

can offer substantially faster convergence to consensus.

103

We answer the first two questions below and leave the third as a direction for future

work.

6.2.4 Effect of Delays on Second Eigenvalue

The rate at which the powers of a consensus matrix P converge to its limit

1πT , as measured by the total variation distance, can be bounded by λ2(P), the

second largest eigenvalue of P . The second largest eigenvalue, in turn, can be

bounded using a geometric argument based on the Poincaré inequality [29,34]. The

intuition is to look for the bottleneck edge which limits the flow of information and

consequently the convergence speed. Let P be the transition matrix of a discrete-

time finite-state Markov chain with state space Ω, and suppose that P has stationary

distribution π. For a pair of states x, y ∈ Ω, a path γxy from x to y is a sequence

of states w0 = x,w1, . . . , wl = y such that Pwj ,wj+1 > 0 for all j = 1, . . . , l. The

Poincaré inequality requires that we define a canonical path γxy in P for every

pair of states x, y ∈ Ω. Let also Γ be the set of all selected canonical paths γxy.

To identify bottlenecks we consider how many paths γxy go through each edge

e ∈ {(v, w) ∈ Ω2 : Pvw > 0}. A measure of bottlenecks in P is given by the Poincaré

constant,

K = max
e=(v,w)

 1

πvPvw

∑

x,y: e∈γxy
|γxy|πxπy

 , (6.20)

where |γxy| is the length (number of edges) of the path γxy. The constant K quanti-

fies the load on the most heavily used edge. Paths are assigned a weight πxπy based

on the value of the stationary distribution value at the endpoints. Note that the

value of K is affected by the choice of the paths {γxy} used. The Poincaré constant

gives a bound on the second eigenvalue of P :

λ2 ≤ 1− 1

K
. (6.21)

Our goal is to use a given set of canonical paths Γ for G to construct a set

of canonical paths in Ĝ, the augmentation of G after adding fixed edge delays.

This will reveal how the delays affect the convergence rate of the delayed consensus

104

algorithms. To that end, we compute the Poincaré constant for Ĝ as a function of

the Poincaré constant of the original graph G.

Since P̂ represents a non-reversible Markov Chain on the state space Ω = V̂ ,

we consider the lazy additive reversibilization U(P̂lazy) which is strongly aperiodic,

reversible, has the same stationary distribution as P̂ , and whose convergence rate

bounds that of P̂ . With the exception of some added self loops on the delay nodes,

the graph structure compatible with U(P̂lazy) is the same as that of P̂ . We assume

that the delay on any edge is bounded by bij ≤ B for some B > 0, and we use

subscripts to index the nodes on a delay chain. To compute the Poincaré constant

K̂ for Ĝ we start by listing observations and consequences of the procedure described

above for augmenting G with fixed delays.

1. We claim that if e = (v, w) is the bottleneck edge in G with no delays, then

all edges on the delay chain v → d1 → · · · → dB′ → w,B′ ≤ B, that replaces e

in Ĝ are bottlenecks in Ĝ. The reason is that if a flow needs to go through e in

G, it will have to go through all of the delay edges replacing e in Ĝ. This is true

because the degrees of the compute nodes do not change by adding fixed delays

in the augmentation procedure described above; the paths between the compute

nodes in Ĝ are elongated without offering new path alternatives. Consequently, to

compute the Poincaré constant of U(P̂lazy) we do not need to maximize over all

edges in Ĝ. Instead we only examine edges in the middle of delay chains. If a delay

chain connecting compute nodes a and b has length B′ ≤ B, we focus on the edge

ê = (dab
bB′

2
c
, dab
bB′

2
c+1

).

2. We intend to use the given collection of canonical paths Γ in G to derive a

bound on the Poincaré constant of Ĝ. A Markov chain on Ĝ has |V̂ | = n+ b states,

but the paths Γ in G are only defined for the n states in V . However, to apply the

Poincaré inequality for P̂ , we need to define a set of paths between all pairs of states

in V̂ . We can design a collection of paths in Ĝ by associating each delay state in V̂

with a compute node in V ⊂ V̂ . The key point is to ensure that if a path γxy goes

through an edge e of G, then in Ĝ we will have a set of paths {γ̂xy} corresponding

to all states identified with the compute nodes x, y, and all of the paths in {γ̂xy}

105

x" y"v" w"
e"

�xy

x" y"v" w"
ê"

x"#

x"#

x"#
x+#

y+#

y+#
y"#

b�xy

Figure 6–2: (Top) A path γxy in G. (Bottom) After adding delays in Ĝ, all paths
from nodes {x−, x, x+} towards nodes {y−, y, y+} are associated with the same path
γxy. If e = (v, w) was a bottleneck edge in G, edge ê in the middle of the delay

chain that replaced e will be a bottleneck edge in Ĝ.

go through ê, the edge in the middle of the delay chain that replaced e in Ĝ. By

forming this path association, the expression for K will appear in the bound for K̂.

Let us use the notation x− to denote delay nodes before x associated with paths

through x, and x+ to denote delay nodes after x. Figure 6–2 illustrates the path

association.

We distinguish the following nine cases. If x, y are compute nodes in Ĝ, we

associate γ̂xy ∼ γxy. Note that |γ̂xy| ≤ (B + 1) |γxy| when the maximum possible

delay per edge is B. Next, to consider paths to or from delay nodes, we associate a

delay node with the compute node that is closest to it in the direction of the path.

For each path γxy of G going through edge e, we identify different cases of paths in

Ĝ going through ê . We have eight possibilities: x → y−, x → y+, x− → y−, x− →

y, x− → y+, x+ → y−, x+ → y, and x+ → y+.

3. To get a cleaner expression for the bound, assume that P is doubly stochastic.

In that case, from (6.14) we see that the stationary distribution of the compute nodes

in the presence of delays is π̂x = πx
c where c =

n+
∑

r brPr(i)r(j)

n . Moreover, for all

compute nodes x, we have π̂x ≥ pπ̂x− and π̂x ≥ pπ̂x+ where p = maxi 6=j Pij .

106

With the above considerations in mind, we start from the definition of the

Poincaré constant for Ĝ:

K̂ = max
h=(a,b)

[1

π̂aU(a, b)

∑

x,y : h∈γ̂xy

|γ̂xy| π̂xπ̂y
]
. (6.22)

Let e = (v, w) be a bottleneck edge of G. This means that the edge ê in the middle

of the delay chain that replaces e will be the bottleneck in Ĝ. After some algebra we

can bound K̂ with an expression that involves K (from (6.20)). Besides the leading

constant involving the bottleneck edge, we need to break the sum over the canonical

paths into summands according to the nine cases we described in consideration 2

above. We state here the final result and the proof can be found in Appendix D.

Theorem 6.1. Let G be a network endowed with a doubly stochastic consensus

matrix P and a set of canonical paths Γ yielding a Poincaré constant K, and let

e = (v, w) denote the corresponding bottleneck edge. Let {bij}(i,j)∈E denote the

network delays and assume bij ≤ B for all i, j. Then the corresponding augmented

weight matrix P̂ defined on Ĝ has a Poincaré constant K̂ for which

K̂ ≤ ZK, Z =
Pvw
4c

[
p2(2d2max + 3dmax + 1)B3

+ p(2pd2max + 2pdmax + 8dmax + 6)B2

+ (8pdmax + p+ 8)B + 8
]
, (6.23)

where p = maxi 6=j Pij, c =
n+

∑
r brPr(i)r(j)

n and dmax is the maximum degree in the

undirected graph G ignoring self-loops.

Theorem 6.1 yields a bound in the second eigenvalue and thus the spectral gap

of P̂ .

Corollary 6.1. Suppose a doubly stochastic matrix P on a graph G has a spectral

gap 1 − λ2(P) ≥ 1
K , and assume that messages over the edges of G experience

arbitrary fixed delays of up to B iterations. Then the spectral gap of P̂ is reduced

by at most a factor Θ(B2); i.e.,

1− λ2(P̂) ≥ 1

ZK
, Z = Θ(B2). (6.24)

107

Proof. From Theorem 6.1 we have λ2(P̂) ≤ λ2(U) ≤ 1 − 1
ZK . Since br ≤ B, r =

1, 2, . . . ,m we see that c =
n+

∑
r brpr(i)r(j)
n = Θ(B) and thus Z = Θ(B2).

To the best of our knowledge this is the first result to describe the effect of

a bounded fixed delay on the convergence rate of average consensus. It shows

that the delays cannot slow down consensus by more than a polynomial factor and

convergence remains exponentially fast.

Experimental Validation of Theorem 6.1

We conclude the discussion about the effect of delays on the convergence rate

of consensus algorithms by verifying Theorem 6.1 and Corollary 6.1 in simulation.

One difficulty with validating these results numerically is that Theorem 6.1 describes

the effect of fixed delays relative to a consensus matrix P on a graph G without

delays. To compute the Poincaré constant K̂ explicitly we still need to find a set

of canonical paths in G and apply (6.20) which can be computationally intractable.

Instead, we estimate K̂ as follows. For a given network of 15 nodes, matrix P ,

and delay bound B, we randomly select delays for all edges, construct U(P̂lazy) as

explained in Section 6.2.3 and compute the second eigenvalue of U . For each bound

B we repeat this procedure 50 times. Since K̂ ≥ 1

1−λ2(U(P̂lazy))
we keep the largest

λ2 out of the 50 trials to approximately maximize the lower bound on K̂. Figure 6–3

illustrates that the inverse spectral gap increases almost quadratically with B. It

appears that O(B2) might be increasing faster than K̂ so our bound might be loose

but not dramatically so. The mismatch could also be a result of poor approximation

on K̂ since for larger B, 50 trials might not be enough to capture the worst possible

scenario.

6.2.5 Distributed Optimization under Fixed Communication Delays

The previous section studied how communication delays effect the convergence

rate of consensus algorithms. However, as one might expect, exchanging delayed

information has an even more severe effect on distributed optimization algorithms.

We illustrate this effect in this section by studying synchronous DDA under fixed

delays. By following similar steps, this analysis can be extended to other algorithms.

108

2 4 6 8 10 12 14 160

100

200

300

400

500

Maximum edge delay B

In
ve

rs
e

Sp
ec

tra
l G

ap

 Estimated Inverse Spectral Gap
 O(B2)

Figure 6–3: (Red) Estimated inverse spectral gap 1

1−λ2(U(P̂lazy))
for a network G of

15 nodes when increasing the upper bound B of fixed delays. Each data point is
the maximum over 50 randomly selected delay distributions over the edges of G.
(Black) An approximate fit of an O(B2) curve to show that the inverse spectral gap
does not deteriorate by worse than a quadratic factor as we increase B.

Let us introduce b delay nodes in the network G. We associate with each delay

node a function fi(w) = 0, i = n+1, . . . , n+ b so that the subgradients on the delay

nodes are zero as well. To analyze distributed dual averaging with delays, we use P̂

as a transition matrix instead of P in equation (2.22).

zi(t+ 1) =

n+b∑

j=1

P̂ijzj(t) + gi(t), i = 1, . . . , n+ b. (6.25)

The matrix P̂ is not doubly stochastic and has a non-uniform stationary distribution

π̂ given in (6.14). As discussed in Section 5.2.1, the result is an undesired bias since

we end up optimizing the wrong objective function F̃ (w) =
∑n+b

i=1 π̂ifi(w). To

correct the bias, if we know the network size n and π̂, we rewrite our objective

function as

F (w) =
1

n

n+b∑

i=1

fi(w) =

n+b∑

i=1

π̂i

[
fi(w)

π̂in

]
=

n+b∑

i=1

π̂ihi(w). (6.26)

With this definition, in (6.25) and in the sequel we use subgradients gi(t) ∈ ∂hi(wi(t))

for which the Lipschitz constant is Lh = maxi
L
πin

.

109

First let us adapt the auxiliary sequences from (2.26):

z(t) =
n+b∑

i=1

π̂izi(t) (6.27)

y(t) =Πψ
W(z(t), a(t)). (6.28)

The weighted average cumulative gradient z evolves as follows:

z(t+ 1) =
n+b∑

i=1

π̂izi(t+ 1)

=
n+b∑

i=1

π̂i

n+b∑

j=1

P̂ijzj(t) + gi(t)

=

n+b∑

j=1

zj(t)

(
n+b∑

i=1

π̂iP̂ij

)
+

n+b∑

i=1

πigi(t). (6.29)

Since π̂ is a left eigenvector of P̂ , we know that π̂T P̂ = π̂T which implies
∑n+b

i=1 π̂iP̂ij =

π̂T P̂:,j = π̂j . Using this fact,

z(t+ 1) =
n+b∑

j=1

zj(t)π̂j +
n+b∑

i=1

π̂igi(t), (6.30)

and finally

z(t+ 1) = z(t) +
n+b∑

i=1

π̂igi(t). (6.31)

Using the last recursion, with zi(0) = 0, we rewrite (6.27) as

z(t) =

t−1∑

s=1

n+b∑

i=1

π̂igi(s), y(t) = Πψ
W

[
t−1∑

s=1

n+b∑

i=1

π̂igi(s), a(t)

]
. (6.32)

At this point we have all we need to proceed with the convergence proof. Since

F (w) is convex, for any w∗ ∈ W we have

F (wi(T))− F (w∗) ≤ 1

T

T∑

t=1

[
F (wi(t))− F (w∗)

]
. (6.33)

110

Using Lemma 2.1 we obtain

F (wi(T))− F (w∗) ≤ 1

T

T∑

t=1

[
F (y(t))− F (w∗)

]
+
Lh
T

T∑

t=1

a(t) ‖z(t)− zi(t)‖ .

(6.34)

To bound the first term in (6.34), we add and subtract
∑T

t=1

∑n+b
i=1 π̂ihi(wi(t)) and

since
∑n+b

i=1 πihi(w
∗) = F (w∗) we get

T∑

t=1

[
F (y(t))− F (w∗)

]
≤

T∑

t=1

n+b∑

i=1

π̂i
[
hi(wi(t))− hi(w∗)

]

+

T∑

t=1

n+b∑

i=1

π̂i
∣∣hi(y(t))− hi(wi(t))

∣∣. (6.35)

Using convexity of each component hi(w) with gi(t) ∈ ∂hi(wi(t)),

T∑

t=1

F (y(t))− F (w∗) ≤
T∑

t=1

n+b∑

i=1

π̂i〈gi(t),y(t)−w∗〉

+

T∑

t=1

n+b∑

i=1

π̂i〈gi(t),wi(t)− y(t)〉

+
T∑

t=1

n+b∑

i=1

π̂i
∣∣hi(y(t))− hi(wi(t))

∣∣. (6.36)

Focusing on the first term of (6.36) and recalling the definition (6.32) of y(t) we

have

T∑

t=1

n+b∑

i=1

π̂i〈gi(t),y(t)−w∗〉 =
T∑

t=1

〈 n+b∑

i=1

π̂igi(t),y(t)−w∗)
〉

=
T∑

t=1

〈 n+b∑

i=1

π̂igi(t),Π
ψ
W

[
t−1∑

s=1

n+b∑

i=1

π̂igi(s), a(t)

]
−w∗

〉
.

(6.37)

With
∑n+b

i=1 π̂igi(s) playing the role of the arbitrary vector sequence, the last equa-

tion can be bounded using Lemma 2.2 after applying the Cauchy-Schwartz inequality

111

and remembering that ‖gi‖∗ ≤ Lh:

T∑

t=1

n+b∑

i=1

π̂i〈gi(t),y(t)−w∗〉 ≤1

2

T∑

t=1

a(t− 1)
∥∥∥
n+b∑

i=1

π̂igi(t)
∥∥∥
2

∗
+

1

a(T)
ψ(w∗)

≤
L2
h

2

T∑

t=1

a(t− 1) +
1

a(T)
ψ(w∗). (6.38)

For the last two terms in (6.36) we use L-Lipshitz continuity of F (w) and Lemma

2.3 to get after some straightforward algebra that

T∑

t=1

n+b∑

i=1

π̂i

(〈
gi(t),wi(t)− y(t)

〉
+
∣∣hi(y(t))− hi(wi(t))

∣∣
)

≤
T∑

t=1

n+b∑

i=1

π̂i

(
Lh ‖y(t)−wi(t)‖+ Lh ‖y(t)−wi(t)‖

)

≤2Lh

T∑

t=1

n+b∑

i=1

π̂i

∥∥∥Πψ
W [z(t), a(t)]−Πψ

W [zi(t), a(t)]
∥∥∥

≤2Lh

T∑

t=1

n+b∑

i=1

π̂ia(t) ‖z(t)− zi(t)‖ . (6.39)

Going back to (6.34), we replace the bounds we derived for the first and last two

terms to obtain a generalized version of the bound in Theorem 2.1 for the modified

version of the algorithm:

F (wi(T))− F (w∗) ≤
L2
h

2T

T∑

t=1

a(t− 1) +
1

Ta(T)
ψ(w∗)

+
2Lh
T

T∑

t=1

n+b∑

i=1

π̂ia(t) ‖z(t)− zi(t)‖

+
Lh
T

T∑

t=1

a(t− 1) ‖z(t)− zi(t)‖ . (6.40)

Next we need to bound the network error ‖z(t)− zi(t)‖∗. If we define for

convenience Φ(t, s) = P̂ t−s+1 and back-substitute in the recursion (6.25) we can see

that (see also (5.27))

zi(t) =
t−1∑

s=1

n+b∑

j=1

[Φ(t− 1, s)]ij · gj(s− 1) + gi(t− 1). (6.41)

112

Recalling the definition (6.27) for z(t), after rearranging some terms and using the

fact that
∑n+b

k=1 π̂k[Φ(t− 1, s)]kj = π̂j , we see that

z(t)− zi(t) =

n+b∑

k=1

πkzk(t)− zi(t)

=

n+b∑

k=1

π̂k

[t−1∑

s=1

n+b∑

j=1

[
Φ(t− 1, s)

]
kj
· gj(s− 1) + gk(t− 1)

]

−
t−1∑

s=1

n+b∑

j=1

[
Φ(t− 1, s)

]
ij
· gj(s− 1)− gi(t− 1)

=

t−1∑

s=1

n+b∑

j=1

gj(s− 1)

n+b∑

k=1

πk
[
Φ(t− 1, s)

]
jk

+

n+b∑

k=1

π̂kgk(t− 1)

−
t−1∑

s=1

n+b∑

j=1

[
Φ(t− 1, s)

]
ji
· gj(s− 1)− gi(t− 1)

=

t−1∑

s=1

n+b∑

j=1

(
π̂j −

[
Φ(t− 1, s)

]
ij

)
gj(s− 1)

+

n+b∑

k=1

π̂k
[
gk(t− 1)− gi(t− 1)

]
.

Taking norms on both sides and using the bound Lh on gradient magnitudes, we

obtain

‖z(t)− zi(t)‖ ≤
t−1∑

s=1

n+b∑

j=1

∣∣∣π̂j −
[
Φ(t− 1, s)

]
ij

∣∣∣ · ‖gj(s− 1)‖

+
n+b∑

k=1

π̂k ‖gk(t− 1)− gi(t− 1)‖

≤Lh
t−1∑

s=1

∥∥∥π̂T −
[
Φ(t− 1, s)

]
i,:

∥∥∥
1

+ 2Lh. (6.42)

The last expression reduces to exactly the bound obtained in Theorem 2 in [32]

if P̂ is doubly stochastic and there are no delays, since in that case π̂i = 1
n and

Lh = L.

113

Instead of using the bounding technique of [32], we provide a different bound

that is tighter in the number of iterations. From (6.19) we know that for all i,

∥∥∥π̂ −
[
Φ(t− 1, s)

]
i,:

∥∥∥
1

= 2
∥∥∥π̂ − P̂ t−s+1

i,:

∥∥∥
TV
≤

√
λt−s+1
2

πi
(6.43)

where ‖·‖TV denotes total variation distance and λ2 is the second largest eigenvalue

of the lazy additive reversibilization of P̂ (see Section 6.2.3 and [89], [34]). Using

this result and applying the formula for a finite geometric series (since λ2 < 1), we

bound the network error by:

‖z(t)− zi(t)‖ ≤ Lh
t−1∑

s=1

√
λt−s+1
2

π̂i
+ 2Lh (6.44)

=
Lh√
π̂i

t−1∑

s=1

(√
λ2

)t−s+1
+ 2Lh

=
Lh√
π̂i

t∑

s=2

(√
λ2

)s
+ 2Lh

=
Lh√
π̂i

(√
λ2
)2 −

(√
λ2
)t+1

1−
√
λ2

+ 2Lh

≤ Lh√
π̂i

λ2

1−
√
λ2

+ 2Lh
4
= Ki. (6.45)

This bound is tighter than the one obtained in [32] since for fixed n it is constant and

does not increase logarithmically with time. This also changes the dependence on the

network size, through π̂i and λ2. Since the network error is bounded, from (6.40)

we can guarantee the converge of DDA to the right solution using any row stochastic

matrix and in the presence of fixed delays as long as we choose an appropriate step

size sequence. Furthermore, from bound (6.45) we can derive a convergence rate

that illustrates the effect of the delay. As a side effect of the analysis, we show that

DDA does not need a doubly stochastic matrix to converge to the right solution.

Any fixed row stochastic matrix with the appropriate rescaling of the objective

components suffices. The latter follows since all of the derivations treated P̂ as row

stochastic without explicitly requiring that is has the special structure of a fixed

delay matrix.

114

6.2.6 Convergence of DDA with Fixed Edge Delays

To derive a convergence rate that corresponds to standard DDA but in the

presence of fixed edge delays, suppose P is a stochastic matrix whose stationary

distribution π assigns equal probabilities to all the compute nodes. We can derive

a precise expression for the convergence rate by first observing from (6.14) that

πi ≥ 1
n+b , i ∈ V . We use this fact to get

Ki ≤
√
n+ b

λ2

1−
√
λ2

+ 2)Lh

=

(√
n+ b

λ2

1−
√
λ2

+ 2)

)

︸ ︷︷ ︸
Q

Lh
4
= QLh. (6.46)

By replacing the bound QLh in (6.40), using the fact that
∑T

t=1 t
−0.5 ≤ 2

√
T−1 and

selecting a(t) = O(1√
t
), after some algebraic manipulations we prove the following.

Theorem 6.2. Under the conditions of Theorem 2.1, using update (6.25) in place

of (2.22), assuming ψ(w∗) ≤ R2, using the step size sequence a(t) = R
Lh
√
1+6Q

√
t
,

assuming that P is doubly stochastic and in a network with fixed edge delays, for all

w∗ ∈ W

F (wi(T))− F (w∗) ≤2RLh
√

1 + 6Q
1√
T

(6.47)

≤2RL
(n+ b)

√
1 + 6Q

n

1√
T
. (6.48)

The influence of the network topology is captured by λ2 in Q and the effect

of the network size is O(n
1
4) since Q = O(

√
n). If b is the total amount of delay

cumulatively on all the links, the bound grows like O(b
5
4). Figure 6–4 illustrates the

effect of delays in a toy example. We create a random network topology of 10 nodes.

The objective for node i is a simple quadratic: fi(w) = (w− i1)T (w− i1),w ∈ R5.

For this problem we can easily compute the exact minimizer w∗ = 5.5 · 1 with

F (w∗) = 412.5. The blue curve shows the progress of the minimization without

delays as the evolution of the maximum error maxi|F (wi(t)) − F (w∗)|. The red

curve shows that the algorithm is slowed down when we inject a random fixed delay

115

0 500 1000 1500100

101

102

103

Time
m

ax
 |f

(x
i(t

))
 f(

x*
)|

No Delay
Fixed Delay B=5
Fixed Delay B=10

Figure 6–4: Illustration of the effect of fixed edge delays on distributed dual aver-
aging. Blue curve: Performance without delays. Red curve: Performance using a
fixed delay up to B = 5 time steps per directed link. Purple curve: Performance
using a fixed delay up to B = 10 time steps per directed link.

of up to B = 5 on each directed link (i, j). The purple curve allows for a maximum

possible delay B = 10.

To verify that the dependence in the total amount of delay appearing in the

bound (6.47) is in the right order of magnitude, in Figure 6–5 we record the amount

of time it takes to bring the optimization error below a threshold for varying amounts

of delay. Specifically, in our problem with 10 nodes, we measure the time until

maxi|F (wi(t))− F (w∗)| < 180. We also plot the dominant term in our theoretical

bound as O((n+b)
5
4

n) = 10 (n+b)
5
4

n +102. The bound and simulation are relatively well

matched. The discrepancy between the two is explained by the fact that the theory

predicts the worse case while the experimental bound illustrates the performance

for a specific instantiation of the edge delays.

6.3 Time Varying Communication Delays

To capture the volatility apparent in real networks, it is more appropriate to as-

sume that link delays vary randomly with time. We propose a discrete-time random

delay model that starts with any row-stochastic matrix and present a formal con-

vergence proof. Furthermore, we show how using Push-Sum and column stochastic

matrices simplifies both the construction and the convergence proof.

6.3.1 Random Delay Model

Similar to the fixed delay model, we add virtual delay nodes. We assume again

that delays are finite and upper bounded by a maximum delay B. To model random

116

0 100 200 300 400 500 600 700 8000

1000

2000

3000

4000

5000

Total amound of delay b
Ti

m
e

Bound
Real data

Figure 6–5: Blue curve: Time it takes for a network of 10 nodes to reduce the
objective function error maxi|F (wi(t))−F (w∗)| below 180 as we increase the total
amount of delay b in the network. The theoretical bound (red curve) is in the right
order of magnitude.

delays in discrete time we need to be careful. Others have previously analyzed a

consensus update of the form

zi(t+ 1) =
n∑

j=1

Pijzj(t− bij(t)), (6.49)

where bij(t) is the random delay experienced by link (i, j) at time t [56,64]. However,

this type of update implies that at time t each node i will only receive a single

(possibly delayed) message from each neighbour j. In practice this may not be true.

We have seen an example in Section 5.2.3 where, due to time varying communication

delays, a node does not know how many messages it will receive from a neighbour

at each iteration. This scenario can easily occur in practice when messages are large

in size and receiving a message takes a non-trivial amount of time during which

more messages can arrive. When this happens, the receiving node polling its buffer

experiences the arrival of many messages during the same time slot.

To model random bounded delays, we replace each directed edge of the original

graph with multiple delay chains of varying lengths to model varying amounts of

delay. Every time a message is sent, a random decision is made for which delay

117

1" 2" 1" 2"

Figure 6–6: Adding a random bounded delay on edge (1, 2). At this particular
instant, 1 sends with delay 2 since the connections to delays 1 and 3 are deactivated.

chain the message will take to reach its destination4 . If a communication network

with n computing nodes has m directed edges (not counting the self loops), each

edge delivers messages with some bounded delay that is randomly chosen between

0 and B. For example for an edge (i, j) with a maximum delay of 3 we augment

(i, j) in G with three parallel delay chains (d11), (d
2
1, d

2
2), (d

3
1, d

3
2, d

3
3) in Ĝ; see Figure

6–6. We avoid indexing the delay nodes by edge number to not clutter notation.

We augment the graph with B(B+1)
2 delay nodes per edge or b = mB(B+1)

2 delay

nodes total, where m is the number of edges in G. We also allow for messages to be

delivered without delay, by including the directed edges (i, j) of the original graph

G.

Next we seek to write an expression for the matrix P̂ (t) that describes the

linear consensus dynamics under random delays. We assume that we are given a

row stochastic matrix P for the graph G, and we construct P̂ (t) using the weights

suggested by P .

Every time a message is sent, it is routed randomly through one of the B delay

chains or the direct edge with zero delay. Outgoing edges to the other chains leading

to the same recipient are cut off. Here we consider a time-varying delay model where

the delays experienced by messages sent from compute node i to compute node j

are i.i.d. and are independent of the delays incurred by messages sent on other links.

4 Of course in reality this random choice is made by the environment, i.e., the
network, and is beyond our control. For modelling purposes to emulate and under-
stand the effect of delays, we can draw a random sample from a distribution that
we believe resembles how real network conditions fluctuate.

118

We associate with each edge in G a discrete probability distribution on the integers

0, . . . , B to govern the delays of messages sent on that edge.

As we see, the augmented graph topology changes at every iteration based on

which outgoing edges to delay chains are active. To describe the consensus update

equations we need to model the changing topology. At each iteration, a delay is

sampled for each message to be transmitted. Based on these delays, at iteration

t the graph adjacency matrix A(t) is a sample from the set {A1, . . . , A(B+1)m} of

possible adjacency matrices. Notice that a delay node could either contain a message

or be empty, and a zero message is not the same as the node being empty. To keep

track of which delay nodes are empty, we define the sequence of indicator vectors

{φ(t)}∞t=1, φ(t) ∈ {0, 1}b. Using A(t) and φ(t) we show how to write a transition

matrix P̂ (t) at each iteration t.

We begin by observing that the adjacency matrices A(t) have the block struc-

ture

A(t) =

In×n + L(t) Jn×b

R(t) Cb×b

 . (6.50)

Matrix A(t) should be interpreted as the adjacency matrix of a directed graph.

Element [A(t)]ij is 1 if there is a directed link from j to i. Its constituent parts L(t),

Jn×b, R(t), and Cb×b are described next.

The upper left block is an identity matrix to represent the self-loops, plus a

random n× n square matrix L(t) with zeros on the diagonal and a one at position

(i, j) if compute node j sends a message to compute node i with zero delay5 at

iteration t. Matrix R(t) is b×n and is also a random matrix. When a compute node

i transmits to another compute node j at iteration t using the delay chain of length

r ∈ {1, . . . , B}, the matrix R(t) encodes that random delay choice in the following

manner. For example, if at iteration t node j sends a message to i which is delayed

by 2 steps (so that it will arrive at time t + 3), R(t) will contain a block for edge

5 Note that zero delay means that a message sent at iteration t will be delivered
at iteration t+ 1, i.e., without any delay.

119

(j, i) indicating the delay chain that is active, as illustrated in equation (6.51).

R(t) =

1 ··· j ··· n

...
...

...
...

d11 0 · · · 0 · · · 0

d21 0 · · · 1 · · · 0

d22 0 · · · 0 · · · 0

d31 0 · · · 0 · · · 0

d32 0 · · · 0 · · · 0

d33 0 · · · 0 · · · 0

...
...

...
...

. (6.51)

Element (d21, j) of R(t) is 1 since j will transmit to the first delay node in the chain

of length 2 towards i. The entries that are not shown within each block are all zero.

Matrix Jn×b describes the connections between the delay nodes drr at the end

of each delay chain delivering messages to the compute nodes. The part of Jn×b

corresponding to the edge (j, i) of R(t) just discussed has the form

JTn×b =

1 ··· j ··· n

...
...

...
...

d11 0 · · · 1 · · · 0

d21 0 · · · 0 · · · 0

d22 0 · · · 1 · · · 0

d31 0 · · · 0 · · · 0

d32 0 · · · 0 · · · 0

d33 0 · · · 1 · · · 0

...
...

...
...

. (6.52)

i.e., for edge j → i, the entries (j, d11), (j, d
2
2) and (j, d33) in A(t) are all 1. Finally, we

define the matrix Cb×b for forwarding messages from one delay node to the next on

each chain. On a specific delay chain of length h, messages are forwarded through

the action of an h × h Toeplitz forward shift matrix with 1s on the first lower

120

diagonal, i.e.,

Sh =

0 0 · · · 0 0 0

1 0 0

0 1 0

...
. . .

...

0 1 0 0

0 0 · · · 0 1 0

. (6.53)

For any edge r = 1, . . . ,m, to forward messages through all delay chains we use a

block diagonal matrix Kr = diag(S1, S2, . . . , SB). Finally, since we have m edges

Cb×b = diag(K1,K2, . . . ,Km). (6.54)

Recalling (6.50), observe that every row of [R(k) Cb×b] contains at most one non-

zero element and there are rows that are all zero.

Next, we define an indicator vector φ(t) ∈ {0, 1}b that keeps track of whether

a delay node on any delay chain contains a message or is empty. Initially we have

φ(0) = 0b. At iteration t, the first nodes in the delay chains may receive new

information depending on which edges are activated by R(t). The rest of the delay

nodes will be non-empty only if their predecessors in the chains were non-empty in

the previous iteration. In other words, φ(t) evolves as

φ(t) = R(t)1n + Cb×bφ(t− 1). (6.55)

After understanding the structure of the time-varying adjacency matrices A(t),

to describe the consensus transition matrices P̂ (t) we need to specify the weights

used to combine incoming messages. Recall that a compute node may receive multi-

ple messages from a neighboring compute node in one iteration, with each message

arriving via a different delay chain. We assign equal weight to all incoming mes-

sages from the same sender, and messages from different senders will receive weights

according to P . For example, suppose compute node i receives ŵij + Lij(t) mes-

sages from node j where 0 ≤ ŵij ≤ B are the delayed messages and Lij(t) = 0 or

1 is a message without delay. Then node i assigns a weight
Pij

ŵij+Lij(t)
to each of

121

those messages. In this setting, the self-loop message from i to itself takes weight

Pii +
∑n

k=1 1[ŵik + Lik(t) = 0]Pik where the sum is over all neighboring nodes k

from which i does not receive anything at iteration t. Define Φ(t) = diag(φ(t)).

We can determine which delay nodes at the ends of delay chains have information

to be delivered by taking the product Jn×bΦ(t − 1) and locating the entries which

are equal to 1. Thus, to construct P̂ we locate all the entries equal to 1 in matrix

Jn×bΦ(t − 1) at row i and columns corresponding to deliveries from j, and replace

them by
Pij

ŵij+Lij(t)
. If Lij(t) = 1 we also replace the corresponding entry with

Pij

ŵij+Lij(t)
. Let us denote by P̄ [L(t)] and P̄ [φ(t− 1)] the operators that replace the

1s in L(t) and Jn×bΦ(t− 1) respectively with weights using P . If node i receives no

messages from its neighbor j, then ŵij +Lij(t) = 0 and the weight Pij is transferred

to the self-loop (i.e., diagonal weight) of i. The transition matrix P̂ (t) is now written

as

P̂ (t) =

P̂UL(t) P̄ [φ(t− 1)]

R(t) Cb×b

 (6.56)

P̂UL(t) = I − diag(P̄ [φ(t− 1)]1b + P̄ [L(t)]1n) + P̄ [L(t)]. (6.57)

The upper left block of P̂ (t) has this form since, for any row stochastic matrix P ,

we have Pii +
∑n

k=1 1[ŵik + Lik(t) = 0]Pik = 1 −
∑n

k=1 1[ŵik + Lik(t) > 0]Pik for

each compute node i. This is just another way of saying that the portion of the

weight not used on incoming messages at compute node i from other neighbours is

reassigned to the self-loop message.

Observe that the rows of P̂ (t) either sum to zero or to one. Each row i for i ≤ n

(corresponding to a compute node) is stochastic by construction, while each row i

for n < i ≤ n + b (corresponding to a delay node) contains at most a single 1 and

all other elements are 0. A row i > n corresponding to a delay node dr1 will contain

all zeros if the compute node at the source of the corresponding edge did not send

a message through the delay chain r. Let ẑ(t) ∈ Rn+b denote the augmented state

vector of compute and delay nodes. The consensus update equations using P̂ (t) are

122

given by

ẑ(t+ 1) =P̂ (t+ 1)ẑ(t), t ≥ 0 (6.58)

where to construct P̂ (t + 1) using (6.56) we need to first update the vector φ(t)

according to (6.55).

The presence of all-zero rows makes the transition matrices P̂ (t) not stochastic,

so we need a convergence proof specific to this family of matrices. As we see later,

one advantage of the Push-Sum algorithm is that the analysis of the random delay

model simplifies and we no longer have to deal with this complication.

6.3.2 Convergence under Time-Varying Delays

To show the iterations generated by the random delay model (6.58) we inspect

fundamental properties of the matrices {P̂ (t) : t = 1, 2, . . . }. First we need two

standard definitions [99].

Definition 6.1. A square matrix M is non-expansive with respect to a norm ‖·‖ if

for any vector x, we have ‖Mx‖ ≤ ‖x‖.

Definition 6.2. A square matrix M is paracontracting with respect to a norm ‖·‖

if for any vector x, we have ‖Mx‖ < ‖x‖ whenever Mx 6= x.

From the construction of the random delay matrices, it is easy to see that the

graphs represented by the adjacency matrices A(t) are all connected, and in addition,

every compute node performs an averaging operation of the incoming messages. We

can thus show that the product of sufficiently many consecutive matrices P̂ (t) is a

contractive mapping, leading to convergence.

Theorem 6.3. The product P̂2B+1(t) =
∏2B
s=0 P̂ (t+s) of 2B+1 consecutive random

delay matrices is non-expansive with respect to the infinity norms ‖·‖∞ and ‖·‖−∞.

Moreover, for some integer r ≥ 1 that depends on the network topology and is not

greater that the graph diameter, the product P̂r(2B+1)(t) is paracontracting. As a

result, at every time t, every non-empty node i such that 1 ≤ i ≤ n+b and φi(t) > 0

converges to the same value; i.e. ẑi(t)→ c as t→∞.

123

Proof. Consider the linear random delayed consensus updates subsampled at inter-

vals of 2B + 1 iterations:

ẑ(t) = P̂2B+1(t)ẑ(t− 1), t = 1, 2, (6.59)

Recall that the vector φ(t), which indicates which delay nodes are empty, evolves

in parallel to ẑ(t). To focus on the non-empty nodes, define the vector y(t) such

that yi(t) = ẑi(t) if φi(t) > 0 and yi(t) = −∞ if φi(t) = 0.

We claim that the maximum value of y(t) is less than or equal to the maximum

value of y(t − 1). If a compute node i ≤ n holds the maximum value of y(t − 1),

in B + 1 iterations it is certain that i will receive a message from a neighbouring

compute node j ≤ n. If at least one neighbour of i has a smaller value than i,

then the value of i will be reduced because i will set its new value to a convex

combination of incoming messages (including the self message). However, i may

send its (maximum) value to a node k ≤ n through the delay chain of length B at

iteration t. Regardless of whether the value at i is reduced or not, the maximum

of y(t − 1) will not change while it is traversing the delay chain towards k. When

the message reaches k, node k’s value will be reduced unless all of its neighbours

have sent messages to k equal to the maximum. To summarize, the maximum value

of y(t − 1) after 2B + 1 iterations will either stay the same or be reduced. The

maximum value will not change if multiple nodes hold that value and there exists

at least one node with no neighbors that contain a smaller value. As a result, the

maximum value of the state vector will certainly be reduced after r(2B + 1) where

r is an integer defined as follows. Assume a node i holds the maximum value of

y(t − 1). If at least one neighbour of i holds a smaller value, then r = 1. If all

nodes in the distance 1 neighbourhood N1(i) of i also contain the maximum value

then r = 2. If the neighbours of the neighbours N2(i) = N1(N1(i)) of i contain the

maximum value then r = 3 and so on. Hence, r is bounded by the diameter of G.

Notice also that if the delay nodes were real nodes initialized with random values

such that a delay node contained the maximum value in y(t − 1), then that value

would reach a compute node and would be reduced via an averaging update in at

124

most B + 1 iterations. We have shown that P̂2B+1(t) is non-expansive with respect

to ‖·‖∞.

Similarly, since averaging updates of the form (6.59) do not decrease the small-

est number in the state vector ẑ(t), P̂2B+1(t) is also non-expansive with respect to

‖·‖−∞ if we define y′(t) so that y′i(t) = +∞ if φi(t) = 0. Moreover, for a given

network, we have shown that there exists an integer r such that P̂r(2B+1)(t) cer-

tainly reduces the maximum value of y(t− 1) and increases the minimum value of

y′(t − 1). In other words, every product P̂r(2B+1)(t) is paracontracting and thus

after every r(2B + 1) iterations the minimum and maximum values in the graph

come close together. Even more importantly, in light of definition 6.2, the minimum

keeps increasing and the maximum keeps decreasing, until the minimum equals the

maximum. In other words, all values in vector ẑ(t) must converge to the same limit

c ∈ R.

Even though Theorem 6.3 establishes convergence to consensus under random

delays, the actual consensus value c is difficult to characterize since it depends on

the specific realization of the process—i.e., on the random matrices {P̂ (t)}∞t=1. As

future work, it might be possible to extend the results of [66] to describe the statistics

of c. However the extension is non-trivial since the results of [66] are based on the

assumption that all the matrices P̂ (t) have non-zero diagonals, which is not the case

in our model. Here, we show that, as one might expect, c is a convex combination

of the initial values vi at each node i ∈ V . We do this by showing that the upper

left n× n submatrix P̂UL(t) of P̂ (t) is a row stochastic matrix for all t.

After t iterations we have

ẑ(t) = P̂ (t)P̂ (t− 1) · · · P̂ (1)ẑ(0). (6.60)

The product
∏t
k=1 P̂ (k) is a matrix with block structure

t∏

k=1

P̂ (k) = M(t) =

M1(t) M3(t)

M2(t) M4(t)

 (6.61)

125

where matrix M1(t) is n× n and M2(t) is b× n. After one more iteration we have

ẑ(t+ 1) =P̂ (t+ 1)M(t)ẑ(0)

=

P̂UL(t+ 1) P̄ [φ(t)]

R(t+ 1) Cb×b

M1(t) M3(t)

M2(t) M4(t)

 ẑ(0). (6.62)

From the last equation, we obtain the two recursions

M1(t+ 1) =
(
In×n − diag

(
P̄ [φ(t)]1b + P̄ [L(t+ 1)]1n

)

+ P̄ [L(t+ 1)]
)
M1(t) + P̄ [φ(t)]M2(t) (6.63)

M2(t+ 1) =R(t+ 1)M1(t) + Cb×bM2(t). (6.64)

We will show that M1(t) is row stochastic for all t and that it converges to a rank-1

matrix. We begin by proving three intermediate lemmas and then proceed with the

proof of the claim.

Lemma 6.1. For all t ≥ 1, M2(t) and φ(t) have non-zero rows in exactly the same

positions.

Proof. We will proceed inductively, using the expressions for how M2(t) and φ(t)

evolve. We have φ(1) = R(1)1n +Cb×bφ(0) = R(1)1n and M2(1) = R(1), so clearly

the non-zero rows of R(1) are the non-zero rows of M2(1), and they also result

in non-zero entries of φ(1). For the inductive step, let us assume that φ(t) and

M2(t) have non-zero rows in the same positions. At step t + 1 we have φ(t + 1) =

R(t + 1)1n + Cb×bφ(t) and M2(t + 1) = R(t + 1)M1(t) + Cb×bM2(t). If row i of

φ(t) and M2(t) is non-zero, then due to multiplication by the shift matrix Cb×b, row

i + 1 of φ(t + 1) and M2(t + 1) will be non-zero. Moreover, if a row i of R(t + 1)

is non-zero then obviously row i of φ(t + 1) will be non-zero. For M2(t + 1), we

look at the term R(t + 1)M1(t). Observe that M1(t) has non-zero diagonal entries

for all t. This is easy to see by the update equation (6.63) for M1(t). As a result,

the product R(t+ 1)M1(t) will yield non-zero rows of M2(t+ 1) wherever a row of

R(t+ 1) is non-zero. This completes the inductive step of the proof.

126

The next two lemmas are also inductive, and they are coupled in the sense

that their proofs use each other’s inductive hypothesis. Specifically, assuming that

M1(t) is row stochastic and the non-zeros rows of M2(t) sum to 1, we show that the

non-zeros rows of M2(t+ 1) sum to 1 and M1(t+ 1) is row stochastic respectively,

establishing that both properties are true for all t.

Lemma 6.2. The non-zero rows of M2(t) sum to 1 for all t.

Proof. Initially, M2(1) = R(1), and the base case is true. Suppose for every non-

zero row 1 ≤ i ≤ b of M2(t) that
∑n

j=1[M2(t)]ij = 1. Also, by inductive hypothesis,

suppose that M1(t) is row stochastic. We will show that the non-zero rows of

M2(t+ 1) sum to 1. Take any row 1 ≤ i ≤ b of M2(t+ 1). We have

n∑

j=1

[M2(t+ 1)]ij =

n∑

j=1

[R(t+ 1)M1(t) + Cb×bM2(t)]ij

=

n∑

j=1

[R(t+ 1)M1(t)]ij +

n∑

j=1

[Cb×bM2(t)]ij . (6.65)

Given the way the delay nodes are arranged in the random delay model, row i of

R(t + 1) corresponds to a delay node dr2r1 such that 1 ≤ r2 ≤ B and r1 ≤ r2. By

definition, row i of R(t + 1) will be zero if r1 > 1 and may be non-zero if r1 = 1.

We thus distinguish two cases:

• Case r1 = 1 : By definition all rows of Cb×b corresponding to delay nodes at

the beginning of delay chains (identified as dr21), are zero. If row i = dr21 of R(t+ 1)

is non-zero, it will have all entries equal to zero except one entry equal to 1 at some

position 1 ≤ q ≤ n. As a result

n∑

j=1

[M2(t+ 1)]ij =

n∑

j=1

[R(t+ 1)M1(t)]ij +

n∑

j=1

[Cb×bM2(t)]ij

=
n∑

j=1

[M1(t)]qj +
n∑

j=1

0Tb [M2(t)]:,j =
n∑

j=1

[M1(t)]qj = 1, (6.66)

since, by inductive hypothesis, M1(t) has stochastic rows. Of course, if row i of

R(t+ 1) happens to contain only zeros, then the i-th row of M2(t+ 1) will be a zero

row too.

127

• Case r1 > 1 : In this case
∑n

j=1[R(t+ 1)M1(t)]ij = 0 and

n∑

j=1

[M2(t+ 1)]ij =
n∑

j=1

[Cb×bM2(t)]ij . (6.67)

Since Cb×b is just a shift matrix, each row i > 1 of M2(t+ 1) will equal to the row

i− 1 of M2(t) which by inductive hypothesis sums to 1. The first row of M2(t+ 1)

will be a zero row.

Lemma 6.3. Matrix M1(t) is row stochastic for all t.

Proof. Proceeding inductively, the base case is true since M1(1) = I. Assume at

step t > 1 that
∑n

j=1[M1(t)]ij = 1 for every row 1 ≤ i ≤ n. At step t+1 assume that

compute node i receives ŵij messages from node j through different delay chains

plus possibly a message without delay if Lij(t+ 1) = 1. Since the self loop message

is always delivered without delay we know that ŵii = 1 . We have

n∑

j=1

[M1(t+ 1)]ij

=

n∑

j=1

[(
In×n − diag(P̄ [φ(t)]1b + P̄ [L(t+ 1)]1n)

+ P̄ [L(t+ 1)]
)
M1(t) + P̄ [φ(t)]M2(t)

]
ij

(6.68)

=
n∑

j=1

[(
In×n − diag(P̄ [φ(t)]1b + P̄ [L(t+ 1)]1n)

)
M1(t)

]
ij

︸ ︷︷ ︸
T1

+

n∑

j=1

[
P̄ [L(t+ 1)]M1(t) + P̄ [φ(t)]M2(t)

]
ij

︸ ︷︷ ︸
T2

. (6.69)

Consider the term T1 first, and observe that In×n− diag(P̄ [φ(t)]1b + P̄ [L(t+ 1)]1n)

is a diagonal matrix so we have

T1 =(1− [diag(P̄ [φ(t)]1b + P̄ [L(t+ 1)]1n]ii)
n∑

j=1

[M1(t)]ij

=1−
n∑

j=1

1[ŵij > 0 or Lij(t+ 1) > 0]Pij . (6.70)

128

Next let us focus on term T2 which is composed of two summands. For the first

summand we have

n∑

j=1

[P̄ [L(t+ 1)]M1(t)]ij

=

n∑

j=1

n∑

k=1

P̄ [L(t+ 1)]ik[M1(t)]kj (6.71)

=
n∑

k=1

P̄ [L(t+ 1)]ik

n∑

j=1

[M1(t)]kj (6.72)

=
n∑

k=1

P̄ [L(t+ 1)]ik (6.73)

=
n∑

k=1

Lik(t+ 1)
Pik

ŵik + Lik(t+ 1)
(6.74)

=
n∑

j=1

1[Lij(t+ 1) > 0]Lij(t+ 1)
Pij

ŵij + Lij(t+ 1)
. (6.75)

To compute the second summand in T2, from Lemma 6.1 we know that the non-zero

rows of M2(t) are at the same position as those of φ(t). Observe now that those

positions are the same as the non-zero rows of Jn×bΦ(t) and thus the non-zero rows

of P̄ [φ(t)]. Assume that at iteration t node i receives delayed messages only from

the compute nodes in the set Ni(t) ⊆ V . Moreover, assume node i receives ŵinr ≥ 1

messages from neighbour nr ∈ Ni(t) through different delay chains. We have

n∑

j=1

[P̄ [φ(t)]M2(t)]ij =
n∑

j=1

P̄ [φ(t)]i,:[M2(t)]:,j (6.76)

=
n∑

j=1

∑

nr∈Ni(t)

ŵinr∑

l=1

Pinr

ŵinr + Linr(t+ 1)
[M2(t)]nrj (6.77)

=
∑

nr∈Ni(t)

ŵinr∑

l=1

Pinr

ŵinr + Linr(t+ 1)

n∑

j=1

[M2(t)]nrj (6.78)

=
∑

nr∈Ni(t)

Pinr

ŵinr + Linr(t+ 1)
ŵinr (6.79)

=

n∑

j=1

1[ŵij > 0]
Pij

ŵij + Lij(t+ 1)
ŵij . (6.80)

129

So now we see that

T2 =
n∑

j=1

1[Lij(t+ 1) > 0]Lij(t+ 1)
Pij

ŵij + Lij(t+ 1)

+
n∑

j=1

1[ŵij > 0]
Pij

ŵij + Lij(t+ 1)
ŵij (6.81)

=
n∑

j=1

1[ŵij > 0 or Lij(t+ 1) > 0] (6.82)

× Pij
ŵij + Lij(t+ 1)

(ŵij + Lij(t+ 1)) (6.83)

=

n∑

j=1

1[ŵij > 0 or Lij(t+ 1) > 0]Pij , (6.84)

and finally

n∑

j=1

[M1(t+ 1)]ij = T1 + T2 = 1. (6.85)

Therefore M1(t) is row stochastic for all t.

Finally, we can state the result as follows.

Theorem 6.4. Given a graph G and a row stochastic consensus matrix P , if we

run consensus on G with random delays up to B using updates (6.58) with P̂ (t)

given by (6.56), all compute nodes of G asymptotically reach consensus on a value

c that is a convex combination of their initial values.

Proof. After t iterations we have ẑ(t) = M(t)ẑ(0) where ẑ(t) is the augmented

vector containing the values of the compute nodes followed by all the delay nodes.

The delay nodes do not initially contain any information, so we have [ẑ(0)]n+1:n+b =

0. After t iterations,

ẑi(t) =M1(t)[ẑ(0)]1:n +M3(t)[ẑ(0)]n+1:n+b (6.86)

=M1(t)[z(0)]1:n. (6.87)

Therefore, since M1(t) is row stochastic from Lemma 6.3, we have that ẑi(t) → c

as t → ∞ where c is a convex combination of the initial values at the compute

nodes.

130

As a final comment, observe that the values at compute nodes converge to

a consensus even though the overall matrix M(t) does not converge to a limit.

Specifically, the rows of M(t) corresponding to delay nodes oscillate between zero

and non-zero values. However, this does not affect the upper left n× n sub-matrix

corresponding to the compute nodes. Notice, also, that from this analysis we cannot

say anything concrete about the rate of convergence. A convergence rate bound in

expectation could be obtained by applying the Poincaré technique from the previous

section on E[P̂ (t)]. Alternatively, it might be possible to derive a more accurate

bound by analyzing the recursions (6.63), (6.64). After realizing that CB = 0, M2(t)

can be eliminated given enough past terms, and the evolution of M1(t) resembles

that of the impulse response of a multivariate AR(B) model.

6.4 Push-Sum Consensus with Delays

The previous sections study the behavior of general consensus algorithms using

row stochastic matrices in the presence of fixed and random delays. In the random

delay case the model is a bit involved due to the fact that we need to keep track of

which delay nodes are empty, and also a compute node does not know how many

messages it will receive at each iteration. Moreover, the convergence proof needs to

be tailored specifically to the model because the resulting matrices P̂ (t) are not row

stochastic. Even more importantly, we do not have a statement characterizing the

convergence rate, and the limiting state is a convex combination of the initial values

at each node which is not necessarily the average. In this section we study fixed

and random delays with Push-Sum a different consensus algorithm that we already

in Chapter 5. As we will see, Push-Sum is a more natural algorithm for distributed

averaging in networks with delay; it alleviates all the aforementioned complications,

simplifies the delay models, and always converges to the true average.

Recall that Push-Sum makes use of column stochastic consensus matrices and

each node i maintains two values: a cumulative estimate of the sum si(t) and

a weight ui(t). The local estimate of the average at each iteration is the ratio

131

zi(t) = si(t)
ui(t)

. The algorithm is initialized by setting

s(0) = z(0) and u(0) = 1 (6.88)

In vector form the states of all nodes evolve as

s(t) = P (t)s(t− 1) and u(t) = P (t)u(t− 1) (6.89)

z(t) =
s(t)

u(t)
, (6.90)

where the division of s(t) and u(t) in (6.90) is element-wise.

6.4.1 Consensus with Fixed Delays using Push-Sum

In the case of fixed delays, the construction of a matrix with delays P̂ based

on an initial matrix P is the same as in Section 6.2. The only difference is that we

start with a column stochastic matrix P and convert it to a new column stochastic

matrix P̂ by adding delays one edge at a time. For example, if we start with the

matrix (6.3), after adding a delay of 2 on the edge (1, 2) we have

P̂ =

1 2 3 d1 d2

1
2
3

1
3 0 0 0

2 0 1
3

1
2 0 1

3
1
6

1
3

1
2 0 0

d1
1
6 0 0 0 0

d2 0 0 0 1 0

. (6.91)

In the case of Push-Sum, delay node d1 receives 1
6 of the share of node 1. Using P̂ ,

average consensus is achieved by iterating

ŝ(t) = P̂ ŝ(t− 1), ŵ(t) = P̂ ŵ(t− 1). (6.92)

The delay nodes are initialized with si(0) = ui(0) = 0, n+ 1 ≤ i ≤ n+ b since they

should not contain any information that might influence the final average. In vector

132

form

ŝ(0) = [z(0)T 0Tb]T (6.93)

û(0) = [1Tn 0Tb]T . (6.94)

Suppose that Push-Sum iterations are executed using the delay-augmented ma-

trix P̂ , and let P̂∞ = limt→∞ P̂
t. Observe that, in the limit, the estimate of the

average zi at each node i converges to the average of the initial values,

zi(∞) =

[
P̂∞ŝ(0)

]
i[

P̂∞û(0)
]
i

=

[
P̂∞[z(0)T 0Tb]T

]
i[

P̂∞[1Tn 0Tb]T
]
i

(6.95)

=

∑n
j=1 P̂

∞
ij zj(0)

∑n
j=1 P̂

∞
ij

=
P̂∞i1

∑n
j=1 zj(0)

P̂∞i1
∑n

j=1 1
=

∑n
j=1 zj(0)

n
(6.96)

since P̂ is column stochastic and P̂∞ will have identical columns. Obviously, the

convergence rate bound (6.19) applies here as well.

6.4.2 Consensus with Random Delays using Push-Sum

In row stochastic matrices with random delays, we need an indicator vector

φ(t) to know whether a delay node contains information or is empty. We also need

to assign the portion of the weight that is being unused to the self-loop message.

Both of those complications arise from the fact that we do not know how many

messages will be received at each iteration. With Push-Sum consensus however, the

semantics suggest that the sending node decides how much weight to assign to each

outgoing message, and each receiving node simply adds up the values of s and w for

all incoming messages without caring about the number of messages received from

each neighbor. This fact simplifies both the model and the convergence analysis

when we account for time-varying delays.

Recall from the random delay model construction that the adjacency matrix

A(t) is given by (6.50). However, now we are given a column stochastic matrix

P and need to construct an augmented column stochastic matrix P̂ (t). Since P

133

indicates the outgoing weights, the construction is straightforward:

P̂ (t) =

diag(P) + P ◦ L(t) Jn×b

P̄ [R(t)] Cb×b

 , (6.97)

where diag(P) denotes a matrix with diagonal entries the same as those of P and

off-diagonal entries set to zero, and where ◦ denotes entry-wise (Hadamard) matrix

multiplication. For the analysis of Push-Sum we also define the operator P̄ [R(t)]

a bit differently than in the previous section. If [R(t)]dr1,j = 1, where dr1 is the

first node on a delay chain from compute node j to compute node i, then we set

P̄ [R(t)]dr1,j = Pij . Again for the purpose of analysis we initialize the values ŝi(0)

and ûi(0) for the delay states i ∈ V̂ \ V to zero.

With Push-Sum, the model is simplified because we no longer need the vector

φ to indicate which delay nodes contain information. Instead, we use the weights

û(t), and an empty delay node is represented by having a weight of zero. Notice,

in addition, that P̂ (t) is column stochastic by construction and does not contain

zero columns. This allows us to use weak ergodicity theory [73, 82] to establish

convergence.

6.4.3 Convergence of Push-Sum Consensus with Random Delays

Using the random delay model with column stochastic matrices yields a forward

product, and to prove that the iterates z(t) converge we need to establish weak er-

godicity. Since each matrix P̂ (t) in (6.97) contains zeros on the diagonal, we cannot

apply known results directly. In this section we derive a worst case (pessimistic)

geometric convergence rate. We first need the following lemma.

Lemma 6.4. If a strongly connected graph G has diameter D, the graph Ĝ obtained

by adding arbitrary delays of up to B on each edge has diameter at most D̂ ≤

(B + 1)D +B + 1.

Proof. Let K = v → v1 → · · · → vD−1 → w be a path in G with length equal to

D. By adding at most B delay nodes per directed edge, each edge of G is replaced

by B + 1 edges in Ĝ and the corresponding path K̂ has length (B + 1)D in Ĝ.

All neighbours of v and w in G belong to K or else the diameter would be longer.

134

Suppose that in the worst case, v has a neighbor z1 6= v1 and w has a neighbor

z2 6= vD−1 in G. After adding delays, the longest path in Ĝ goes from the delay

node in the middle of the longest delay chain between z1 and v and the delay node

in the middle of the longest delay chain between z2 and w and has length at most

D̂ ≤ (B + 1)D + B+1
2 + B+1

2 = (B + 1)D +B + 1.

Now we can state the main convergence result of this section.

Theorem 6.5. If we run Push-Sum on a strongly connected graph G using a column

stochastic weight matrix P , then in the presence of bounded time-varying delays

modelled by (6.97), consensus on the average is achieved at a geometric rate.

Proof. Since G is strongly connected, due to the way we model random delays, at

each iteration t there exists a path between any two compute nodes i and j. As a

consequence, due to Lemma 6.4, every column j ≤ n of every sub-product matrix

F (r, r+ D̂) = P̂ (r)T P̂ (r+ 1)T · · · P̂ (r+ D̂)T contains positive entries.6 This means

that for the (improper) coefficient of ergodicity χ(·) defined in [73](p. 137) as

χ
(
F (r, r + D̂)

)
=1− max

1≤s≤n+b
(min
k

[F (r, r + D̂)]ks) (6.98)

≤1− max
1≤s≤n

(min
k

[F (r, r + D̂)]ks) < 1 (6.99)

since the maximum over the minimum values in the compute node columns is cer-

tainly not zero. After running Push-Sum for t > D̂ iterations, divide the forward

product F (1, t) into intervals of D̂ iterations,

F (1, t) =

d t

D̂
e∏

k=1

F ((k − 1)D̂ + 1, kD̂) (6.100)

=F (1, D̂)F (D̂ + 1, 2D̂) · · ·F (t− D̂ + 1, t). (6.101)

6 In other words after D̂ iterations every compute node has received a message
from all other compute nodes.

135

5 10 15 20 25 30 35 40 45 501

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

N
od

e
Va

lu
es

Row Stochastic P
Push−Sum

Figure 6–7: Evolution of the node values on a graph of 5 nodes with random delays
no more than B = 5. The true average is xave = 3. (Blue) With Push-Sum all
nodes reach consensus to the correct average. (Red) Using a row stochastic matrix,
as expected consensus is reached but not to the average and the consensus value
varies between executions.

As explained above, χ
(
F ((k − 1)D̂ + 1, kD̂)

)
< 1 for each term. It follows that

∑∞
k=1

[
1− χ

(
F ((k − 1)D̂ + 1, kD̂)

)]
=∞, and from Theorem 4.9 in [73], the prod-

uct F (1, t) is weakly ergodic. Based on a derivation similar to (6.95), after initializing

ŝi(0) = 0 and ûi(0) = 0 for delay nodes i, the Push-Sum values at each compute node

converge to the true average. Furthermore, if maxk
(
F ((k−1)D̂+1, kD̂)

)
≤ χ0 < 1,

the forward product converges geometrically at a rate no worse than χ0.

6.5 Simulation

To illustrate that Push-Sum is resilient to time-varying delays, we simulate

a random network with 5 nodes and a maximum random delay of B = 5. We

plot the evolution of the node values when running consensus with equation (6.58)

and Push-Sum using consensus matrices of the form (6.97). We initialize the node

values to be the node ids 1 through 5. In both cases we start with a random row

stochastic matrix P without delays and use its transpose to generate the Push-Sum

weights. Figure 6–7 illustrates that since P is not doubly stochastic, the compute

nodes reach consensus as Theorem 6.4 suggests, but the consensus value is not the

average. Even worse, if we run the simulation again, the different random delays at

each iteration will yield a different consensus value. With Push-Sum, on the other

hand, the compute nodes always converge to the true average.

136

6.6 Concluding Remarks and Future Work

In this chapter we analyze the effect of communication delays in distributed

consensus and optimization algorithms. Initially we assume that each directed link

of a communication network G delivers messages with some fixed delay B. Delays

on different links need not be equal. We show how to model the effect of delays

by augmenting G with artificial delay nodes, and then we use geometric arguments

to show that a bound on the inverse spectral gap of a consensus matrix P̂ in the

presence of delays does not increase faster than Θ(B2). Thus, delayed consensus

iterations converge exponentially fast to a value which, in general, is not the aver-

age. For a given row stochastic weight matrix with known stationary distribution,

consensus on the average could be achieved by rescaling the initial values.

Next, we show how to model time-varying delays—a scenario that is more

realistic but also harder to analyze. For general row stochastic consensus weight

matrices we show that convergence to a consensus is still guaranteed, although the

consensus value is itself a random variable depending on the delay realizations. If

however we use Push-Sum as the consensus algorithm we are guaranteed to converge

to a consensus on the average, and the analysis of the time-varying delay model is

significantly simplified. These facts are together with Chapter 5, suggest that Push-

Sum is more suitable for practical implementations.

Following the example in Section 6.2.5, we can analyze PS-DDA with random

delays as well. This derivation is not shown because it will look exactly like the

results in Chapter 5. To obtain a more informative result we would need a precise

expression of the convergence rate for random delays; a result which is currently

missing in the literature. If that result existed, we could use it in the bound for the

network error such as ‖z(t)− zk(t)‖ for DDA or
∥∥∥z(t)− zk(t)

uk(t)

∥∥∥ for PS-DDA.

In the future, for the fixed delay scenario we would like to investigate the

following optimization problem: Given a network G, find the consensus weights

P that respect the structure of G and reach consensus as fast as possible in the

presence of known fixed delays bij . Observe that since we can use Push-Sum, any

column stochastic matrix that does not add edges to G will compute the average

137

and we are looking for the matrix with the smallest second eigenvalue. It would be

interesting to investigate if the techniques used for second eigenvalue optimization

for symmetric consensus matrices (see e.g., [15]) could be extended to answer this

question.

For the time-varying delay models considered in this paper, the analysis only

guarantees convergence with a loose geometric bound on the convergence rate for

the Push-Sum algorithm. It would be useful to have a more precise characterization

of the convergence rate and to extend the Poincaré technique presented in this paper

to understand the extent to which time-varying delays slow down convergence.

138

CHAPTER 7
Improved Convergence Rate for Distributed Convex Optimization

7.1 Introduction

The last part of this thesis focuses on the theoretical analysis of consensus-based

distributed optimization. Chapter 2 discusses the discrepancies between the optimal

convergence rates for serial algorithms and their distributed counterparts. This and

the next chapter bridge some of the gaps between serial gradient based optimization

algorithms and their distributed counterparts. In particular, our results improve the

time complexity for fixed networks. An important direction for future work would

be to see if the dependence on the network size n can also be improved.

This chapter specifically, focuses on general possibly non-smooth convex op-

timization problems which is exactly the setup of DDA1 . We improve on DDA,

by describing a distributed algorithm that achieves a time-optimal rate of O
(

1√
T

)

without increasing the communication cost or worsening the dependence on the

network size n.

7.2 A Time Optimal Algorithm for General Convex Functions

Looking at the original DDA algorithm from Section 2.5.1 we notice two things.

In the special case where there is only one node, DDA reduces to Nesterov’s dual

averaging algorithm [61]. However, for centralized dual averaging, it is known [61]

that the error F (w(T)) − F (w∗) decays at a rate O
(

1√
T

)
, whereas when we take

n = 1 and λ2(P) = 0 in (2.33), the bound on the error is only O
(
log(T)√

T

)
, and so the

bound is loose by a factor of log(T). We remark though that to save the logarithmic

factor in dual averaging, one needs to decide the number of iterations T in advance

in order to select the step size appropriately [60]. Even though predetermining the

1 This chapter is based on the recently submitted work [93]

139

number of iterations does not seem to benefit DDA we will see that in our proposed

algorithm pre deciding T helps tune the amount of communication to save a log(T)

factor.

Also consider the case where G is the complete graph on n nodes (i.e., E =

V × V). Then with P = 1
n11T , we have λ2(P) = 0 regardless of n. In this

case, each time nodes perform the consensus update their values should be exactly

synchronized, i.e.,
∑n

j=1 Pijzj(t) is the same at all nodes i. However, in DDA the

dual variables zi(t) are not all identical because the subgradients gi(t) at each node

are not necessarily the same. Although one would hope to achieve the O(1√
T

) error

rate equivalent to the centralized method in this case, the bound given by (2.33) is

O
(
log(T

√
n)√

T

)
.

Motivated by these two observations, we propose the following consensus-based

proximal gradient distributed optimization algorithm. Each node i ∈ V still main-

tains primal and dual variables wi(t), zi(t) ∈ Rd. Similar to DDA, we make use of

a sequence of non-increasing positive step sizes, {a(t)}∞t=0, and each node initializes

zi(0) = 0.

Each iteration of the proposed algorithm proceeds with the following steps.

First, each node i computes a subgradient gi(t) ∈ ∂fi(wi(t)), and sets

z̃i(t) = zi(t) + gi(t). (7.1)

Next, for an integer h ≥ 1, the nodes perform h consensus steps on the intermediate

dual variables z̃i(t), by setting

zi(t+ 1) =

n∑

j=1

[P h]ij z̃j(t), (7.2)

Finally, the primal variables are updated by a proximal projection,

wi(t+ 1) = Πψ
X [zi(t+ 1), a(t)] . (7.3)

The difference between the proposed algorithm and DDA is subtle, but it has non-

trivial impact on the resulting performance bounds. In the proposed approach,

140

nodes incorporate their gradient and then perform the consensus iterations, while

in DDA information is diffused through consensus first. This is analogous to the dis-

tinction between the “adapt-then-combine” and “combine-then-adapt” approaches

of [25]. Furthermore, we allow execution of more than one communication between

the gradient steps.

Our main results for the proposed algorithm are summarized in the following

theorem.

Theorem 7.1. Let w∗ ∈ W and select a 1-strongly convex function ψ(w) such

that ψ(w∗) ≤ R2. Let {wi(t)}∞t=0 and {zi(t)}∞t=0 be generated by the proposed

updates (7.1)–(7.3). If λ2(P) = 0 (i.e., G is the complete graph on n nodes), if

nodes perform h = 1 consensus steps per iteration, and if nodes use the step-size

sequence a(t) = R
L
√
t
, then for every node i ∈ V ,

F (wi(T))− F (w∗) ≤ L(1 +R)√
T

. (7.4)

Alternatively, if λ2(P) > 0 and nodes perform h ≥ log(T
√
n)

1−λ2(P) consensus steps per

iteration, and if they use the step-size sequence a(t) = R
L
√
19t

, then for every node

i ∈ V ,

F (wi(T))− F (w∗) ≤
√

19LR√
T

. (7.5)

We note that, regardless of the topology, the error rate, in terms of iterations,

of the proposed method is optimal, i.e., the error in the objective decays at a rate

O
(

1√
T

)
. When G is not the complete graph, we achieve this by applying h > 0

consensus steps per iteration to drive the network error down to a desired accuracy.

The total amount of communications (i.e., the total number of consensus steps) is

identical to that of DDA, but the proposed approach requires fewer iterations.

7.3 Analysis and Proof of Theorem 7.1

At a high level, the proof of Theorem 7.1 follows similar steps to those for the

proof of Theorem 2 in [32]. We have already seen two similar derivations in Chapters

5 and 6 so here we just emphasize those steps which are different.

141

The nodes apply h consensus steps in the dual variable update (7.2), which is

equivalent to setting

zi(t+ 1) =

n∑

j=1

P̃ij
(
zj(t) + gj(t)

)
, (7.6)

where P̃ = P h. Compared to (2.22), each node incorporates its more recent gradient

to the dual variable before communicating. Since P is doubly stochastic, P̃ is also

doubly stochastic, and with the initialization zi(0) = 0 we have

z(t+ 1) =
1

n

n∑

j=1

zi(t+ 1) (7.7)

=
1

n

n∑

j=1

(
n∑

i=1

P̃ij

)
(
zj(t) + gj(t)

)
(7.8)

=
1

n

∑

j=1

(
zj(t) + gj(t)

)
(7.9)

= z(t) +
1

n

n∑

j=1

gj(t) (7.10)

=

t+1∑

r=1

 1

n

n∑

j=1

gj(r)

 . (7.11)

The average dual variable z(t + 1) should be thought of as the update one would

get by performing centralized updates, and the corresponding primal variables are

y(t+ 1) = Πψ
X (z(t+ 1), a(t)), (7.12)

which should be compared with the primal variables wi(t + 1) at each node. We

also define the centralized running average after T iterations, y(T) = 1
T

∑T
t=1 y(t),

which is to be compared with wi(T).

Similar to (5.27), by back-substituting for zj(t) in (7.6), the dual variable zi(t)

at node i is expressed as

zi(t+ 1) =
t∑

r=1

n∑

j=1

[
P̃
]
ij
gj(r). (7.13)

As will be seen, the network errors ‖z(t)− zi(t)‖ play a key role in bounding the

error of the proposed algorithm.

142

Via standard convexity arguments (see [32, 61])) and using steps similar to

Section 6.2.5 we can retrieve Theorem 2.1, which can be written as

F (wj(T))− F (w∗) ≤ Opt + Net, (7.14)

where

Opt =
ψ(w∗)

Ta(T)
+
L2

2T

T∑

t=1

a(t), and

Net =
L

T

T∑

t=1

a(t)

[
‖z(t)− zj(t)‖+

2

n

n∑

i=1

‖z(t)− zi(t)‖

]
.

The two terms in Opt are similar to those typically arising in serial subgradient

methods [61], and the terms in Net quantify the error incurred due to running

the algorithm over a network [32]. In particular, the terms ‖z(t)− zi(t)‖ measure

how far the dual variable at node i is from the dual variable z(t) of the centralized

sequence after t iterations.

The main (subtle) difference from the DDA bound in [32] comes in the form

of zj(t) which affects the network error. For the proposed method we have the

expression (7.13), whereas for DDA, we get

zDDA
i (t+ 1) = gi(t) +

t−1∑

r=0

n∑

j=1

[P t−r]ijgj(r). (7.15)

Consequently, even when G is the complete graph so that one consensus step suffices

for all nodes to reach a consensus on the average, the network error for DDA is still

z(t+ 1)− zDDA
i (t+ 1) =

1

n

n∑

j=1

(
gj(t)− gi(t)

)
, (7.16)

which is non-zero in general.

On the other hand, if G is the complete graph, from (7.13) the network error

vanishes and the iterates {(wi(t), zi(t))}∞t=0 of proposed algorithm are equivalent

to those of a centralized dual averaging algorithm for solving (1.8). To see why,

143

observe that, in general, we have

‖zi(t)− z(t)‖ =

∥∥∥∥∥∥

t−1∑

r=0

n∑

j=1

([
P̃ t−r

]
i,j
− 1

n

)
gj(r)

∥∥∥∥∥∥

≤ L
t−1∑

r=0

∥∥∥P̃ t−rei − 1/n
∥∥∥
1
, (7.17)

where ei is the ith canonical vector. When G is the complete graph, P = P̃ = 1
n11T ,

in which case the right-hand side of the expression above vanishes.

When G is not the complete graph, we obtain a bound in terms of the second

largest eigenvalue λ2(P) of P . Since P̃ is doubly stochastic, for any probability

vector q ∈ Rn (i.e., with qi ≥ 0 for all i, and
∑n

i=1 qi = 1) and s ≥ 1,

∥∥∥∥P̃ sq −
1

n

∥∥∥∥
1

≤ λ2(P̃)s
√
n = (λ2(P̃))s

√
n. (7.18)

Therefore, if s ≥ s′ =
⌈

log(T
√
n)

log(λ2(P̃)−1)

⌉
then

∥∥∥∥P̃ sq −
1

n

∥∥∥∥
1

≤ 1

T
. (7.19)

Now, let us rewrite (7.17) with the substitution s = t− r,

‖zi(t)− z(t)‖ ≤ L
s′∑

s=1

∥∥∥∥P̃ sei −
1

n

∥∥∥∥
1

+ L
t∑

s=s′

∥∥∥∥P̃ sei −
1

n

∥∥∥∥
1

.

For s < s′, we use the bound
∥∥∥P̃ sei − 1

n

∥∥∥
1
≤ 2. When s ≥ s′, the right hand sum

is less than L
∑t

s=s′
1
T < L since t ≤ T . These bounds only apply when λ2(P̃) > 0

since for a complete graph λ2(P) = 0. We have,

‖zi(t)− z(t)‖ ≤

(
2L log(T

√
n)

log(λ2(P̃)−1)
+ L

)
I{λ2(P̃) > 0}, (7.20)

where I{·} is the 0/1 indicator function. Consequently, if λ2(P) = 0 the only error

is due to Opt. Next observe that

T∑

t=1

A√
t
≤ 1 +

∫ T

0
t1/2dt = 2

√
T − 1 < 2

√
T .

Therefore, using the step sizes as defined in Theorem 7.1, we have proven the first

claim.

144

Consider now λ2(P) > 0. Since λ2(P̃) = λ2(P)h, take

h ≥ log(T
√
n)

1− λ2(P)
≥ log(T

√
n)

log(λ2(P)−1)
. (7.21)

so that log(T
√
n)

log(λ2(P̃)−1)
< 1 and ‖zi(t)− z(t)‖ ≤ 3L. In this case, we obtain

Net ≤ 18L

T

T∑

t=1

a(t). (7.22)

Using a step size sequence a(t) = A√
t
, and minimizing the bound for A yields the

step size defined in Theorem 7.1, which completes the proof.

7.4 Comments

We described a distributed optimization algorithm whose error decays at the

same rate as the optimal centralized algorithm, in terms of the number of iterations.

Our algorithm relies on more communication per iteration that standard DDA.

When the communication topology is the complete graph, our scheme improves upon

existing bounds in the literature. For other topologies the proposed method uses

the same total amount of communications. Whereas other approaches communicate

once per iteration and require a number of iterations which grows with the network

size, the proposed approach requires the same number of iterations regardless of the

network size, and the number of consensus steps per iteration grows with the network

size. Alternatively, nodes could communicate “fewer than once” per iteration (i.e.,

take multiple gradient steps before communicating). This approach is explored in

Chapter 3.

145

CHAPTER 8
Distributed Strongly Convex Optimization

8.1 Introduction

In this last part of the thesis we study the problem of online strongly convex op-

timization1 where the optimization algorithm may receive a different cost function

at every iteration. As mentioned in [77] if we feed the same cost to the algorithm at

all iterations, we immediately obtain a bound for an offline optimization problem.

The setup has already been discussed in Section 2.4 but we quickly review the basic

concepts here as well.

The problem we want to solve is

minimize
w∈W

F (w) =
1

m

m∑

t=1

f(w,x(t)) (8.1)

where the cost functions arrive as a stream f(w,x(1)), f(w,x(2)), . . . and each of

them is L-Lipschitz continuous and strongly convex (see definition 2.1). In general

the cost functions are not related to one another and do not need to have the same

functional form. With a slight abuse of notation, we denote each cost by f(w,x(t))

to describe a function that is parameterized by data x(t). Recall that if the data

is generated i.i.d. from some (unknown distribution) then the problem is referred

to as stochastic optimization. Stochastic optimization is more relevant to machine

learning and empirical loss minimization but our algorithm does not rely on the

i.i.d. data assumption.

In a distributed setting, each of our n processors has access to its own inde-

pendent stream. The performance of the algorithm is quantified by the cumulative

1 This chapter is based on the previously published work [91]

146

regret which is defined as

Rn(T) =

n∑

i=1

T∑

t=1

f(wi(t),xi(t))− argmin
w∈W

n∑

i=1

T∑

t=1

f(w,xi(t)). (8.2)

As already discussed in Section 2.4 for optimization we can bound the optimization

error by the average regret

F (w(t))− F (w∗) ≤ Rn(T)

nT
. (8.3)

The algorithm presented in this chapter achieves a rate O
(
log (
√
nT)

T

)
distributedly

i.e., with each processor processing its own data stream while the processors converge

to the global minimum. Consulting Chapter 2, this rate is optimal in the number

of iterations T for strongly convex problems.

8.2 Distributed Online Gradient Descent (DOGD)

Assume again that we have a network of n processors endowed with a n × n

consensus matrix P which respects the structure of G, in the sense that [P]ji = 0 if

(i, j) /∈ E. We assume that P is doubly stochastic, although generalizations to the

case where P is just row or column stochastic are possible based on the discussion

of chapters 5, 6.

We propose the distributed online gradient descent (DOGD) algorithm to solve

problem (8.1). A pseudo-code description is given in Algorithm 2. In the algorithm,

each node performs a total of T updates to process nT = m data points. One

update involves processing a single data point xi(t) at each processor. The updates

are performed over k rounds, and Ts updates are performed in round s ≤ k. The

main steps within each round (lines 10–12) involve updating an accumulated gradi-

ent variable, zki (t), by simultaneously incorporating the information received from

neighboring nodes and taking a local gradient-descent like step. The accumulated

gradient is projected onto the constraint set to obtain wk
i (t), where

ΠW [z] = argminw ∈ W ‖w − z‖ (8.4)

147

denotes the Euclidean projection of z onto W, and then this projected value is

merged into a running average wi(r). The step size parameter ak remains constant

within each round, and the step size is reduced by half at the end of each round.

The number of updates per round doubles from one round to the next.

Algorithm 2 DOGD

1: Initialize:T1 =
⌈
2
σ

⌉
, a1 = 1, k = 1, z1i (1) = w1

i (1) = 0
2:

3: while
∑k

s=1 Ts ≤ T do . Each node i repeats
4: for t = 1 to Tk do
5: Send/receive zki (t) and zkj (t) to/from neighbors

6: Obtain next subgradient gi(t) ∈ ∂wf(wk
i (t),xi(t))

7: zki (t+ 1) =
∑n

j=1 Pijz
k
j (t)− akgi(t)

8: wk
i (t+ 1) = ΠW

[
zki (t+ 1)

]

9: end for
10: wk+1

i (1) = wk
i (Tk)

11: zk+1
i (1) = zki (Tk)

12: wk+1
i = 1

Tk

∑Tk
t=1w

k
i (t)

13:

14: Tk+1 ← 2Tk
15: ak+1 ← ak

2
16: k = k + 1
17: end while

Note that the algorithm proposed here uses a Euclidean rather than a proximal

projection. Also, in contrast to the distributed subgradient algorithms described

in [69], DOGD maintains an accumulated gradient variable in zki (t + 1) which is

updated using {zkj (t)} as opposed to the primal feasible variables {wk
j (t)}. Finally,

key to achieving fast convergence is the exponential decrease of the learning rate

after performing an exponentially increasing number of gradient steps together with

a proper initialization of the learning rate. The next section provides theoretical

guarantees on the performance of DOGD.

8.3 Analysis of DOGD

Our main convergence result, stated below, guarantees that the average regret

decreases at a rate which is nearly linear.

Theorem 8.1. Let w∗ be the minimizer of F (w). Under strong convexity and

Lipschitz continuity, and using a doubly stochastic P with λ2(P) not depending on

148

n, the sequence {wk
i } produced by nodes running DOGD to minimize F (w) obeys

F (wk+1
i)− F (w∗) = O

(
log (
√
nT)

T

)
, (8.5)

where k = blog2(T/2 + 1)c is the number of rounds executed during a total of T

gradient steps per node, and wk
i is the running average maintained locally at each

node.

Remark 1: We state the result for the case where λ2 is constant. This is

the case when G is, e.g., a complete graph or an expander graph [70]. For other

graph topologies where λ2 shrinks with n and consensus does not converge fast, the

convergence rate dependence on n is going to be worse due to a factor 1 −
√
λ2 in

the denominator; see the proof of Theorem 8.1 below for the precise dependence on

the spectral gap 1−
√
λ2.

Remark 2: The theorem characterizes performance of the online algorithm

DOGD, where the data and cost functions f(w,xi(t)) are processed sequentially at

each node in order to minimize an objective of the form

F (w) =
1

n

n∑

i=1

1

T

T∑

t=1

f(w,xi(t)). (8.6)

However, as pointed out in [77], if the entire dataset is available in advance, we can

use the same scheme to do batch minimization by effectively setting f(w,xi(t)) =

f(w,xi(1)), where f(w,xi(1)) is the objective function accounting for the entire

dataset available to node i. Thus, the same result holds immediately for a batch

version of DOGD.

The remainder of this section is devoted to the proof of Theorem 8.1. Our

analysis follows arguments that can be found in [32,40,103] and references therein.

We first state and prove some intermediate results.

8.3.1 Properties of Strongly Convex Functions

Recall the definition of σ-strong convexity (2.1). A direct consequence of this

definition is that if F (w) is σ-strongly convex then

F (w)− F (w∗) ≥ σ

2
‖w −w∗‖2 . (8.7)

149

Strong convexity can be combined with the assumptions above to upper bound

the difference F (w)− F (w∗) for an arbitrary point w ∈ W.

Lemma 8.1. Let w∗ be the minimizer of F (w). For all w ∈ W, we have F (w)−

F (w∗) ≤ 2L2

σ .

Proof. For any subgradient ∇g ∈ ∂F (w), by convexity we know that F (w) −

F (w∗) ≤ 〈∇g,w−w∗〉. It follows from L-Lipschitz continuity that F (w)−F (w∗) ≤

L ‖w −w∗‖. Furthermore, from strong convexity we obtain σ
2 ‖w −w

∗‖2 ≤

L ‖w −w∗‖ or ‖w −w∗‖ ≤ 2L
σ . As a result, F (w)− F (w∗) ≤ 2L2

σ .

8.3.2 The Lazy Projection Algorithm

The analysis of DOGD below involves showing that the average state,

1
n

∑n
i=1w

k
i (t), evolves according to the so-called (single processor) lazy projection

algorithm [103], which we discuss next. The lazy projection algorithm is an online

convex optimization scheme for the serial problem (8.1). A single processor sequen-

tially chooses a new variable w(t) and receives a subgradient g(t) of f(w(t),x(t)).

The algorithm chooses w(t+ 1) by repeating the steps

z(t+ 1) =z(t)− ag(t) (8.8)

w(t+ 1) =ΠW [z(t+ 1)] . (8.9)

By unwrapping the recursive form of (8.8), we get

z(t+ 1) = −a
t∑

s=1

g(t) + z(1). (8.10)

The following is a typical result for subgradient descent-style algorithms, and

is useful towards eventually characterizing how the regret accumulates. Its proof

can be found in the appendix of the extended version of [103].

Theorem 8.2 (Zinkevich [103]). Let w(1) ∈ W, let a > 0, and set z(1) = w(1).

After T rounds of the serial lazy projection algorithm (8.8)–(8.9), we have

T∑

t=1

〈g(t),w(t)−w∗〉 ≤ ‖w(1)−w∗‖2

2a
+
TaL2

2
. (8.11)

150

Theorem 8.2 immediately yields the same bound for the regret as lazy projection

[103].

8.3.3 Evolution of Network-Average Quantities in DOGD

We turn our attention to Algorithm 2. A standard approach to studying con-

vergence of distributed optimization algorithms, such as DOGD, is to keep track of

the discrepancy between every node’s state and an average state sequence defined

as

zk(t) =
1

n

n∑

i=1

zki (t) and yk(t) = ΠW

[
zk(t)

]
. (8.12)

We have encountered this concept before. Observe that zk(t) evolves recursively as

follows:

zk(t+ 1) =
1

n

n∑

i=1

zki (t+ 1) (8.13)

=
1

n

n∑

i=1

n∑

j=1

pijz
k
j (t)− akgi(t)

 (8.14)

=
1

n

n∑

j=1

zkj (t)
n∑

i=1

pij −
ak
n

n∑

i=1

gi(t) (8.15)

=z(t)− ak
n

n∑

i=1

gi(t) (8.16)

=− ak
t∑

s=1

1

n

n∑

i=1

gi(s) +
1

n

n∑

i=1

zki (1) (8.17)

where equation (8.16) holds since P is doubly stochastic. Keep in mind that due

to the nature of the algorithm we need to also keep track of the initial condition

zi(1). Notice also (cf. eqn. (8.10)) that the states {zk(t),yk(t)} evolve according to

the lazy projection algorithm with gradients g(t) = 1
n

∑n
i=1 gi(t) and learning rate

ak. In the sequel, we will also use an analytic expression for zki (t) derived by back

substituting in its recursive update equation. After some algebraic manipulation,

151

we obtain

zki (t) =− ak
t−1∑

s=1

n∑

j=1

[
P t−s+1

]
ij
gj(s− 1)− akgi(t− 1)

+
n∑

j=1

[P t]ijz
k
j (1), (8.18)

and since the projection in non-expansive and z1i (1) = 0, ∀i,

∥∥∥zk+1
i (1)

∥∥∥ =
∥∥∥wk+1

i (1)
∥∥∥ =

∥∥∥wk
i (Tk)

∥∥∥ =
∥∥∥ΠW

[
zki (Tk)

]∥∥∥

≤
∥∥∥zki (Tk)

∥∥∥

≤

∥∥∥∥∥−ak
Tk−1∑

t=1

n∑

i=1

[
P Tk−s+1

]
ij
gi(s− 1)

∥∥∥∥∥

+ ‖−akgi(Tk − 1)‖+
n∑

j=1

[
P Tk

]
ij

∥∥∥zkj (1)
∥∥∥

≤akTkL+
n∑

j=1

[
P Tk

]
ij

∥∥∥zkj (1)
∥∥∥ ≤ · · ·

≤L
k∑

s=1

asTs. (8.19)

8.3.4 Analysis of One Round of DOGD

Next, we bound the regret accumulated at round k of DOGD (lines 5–12 of

Algorithm 2) during which the learning rate remains fixed at ak. From convexity,

152

Lipschitz continuity, and the triangle inequality

Tk∑

t=1

[F (wk
i (t))− F (w∗)]

=

Tk∑

t=1

[
F
(
yk(t)

)
− F (w∗) + F (wk

i (t))− F
(
yk(t)

)]

≤
Tk∑

t=1

[
F (yk(t))− F (w∗) + L

∥∥∥wk
i (t)− yk(t)

∥∥∥
]

≤
Tk∑

t=1

1

n

n∑

i=1

[
f(wk

i (t),xki (t))− f(w∗,xki (t))
]

+

Tk∑

t=1

1

n

n∑

i=1

[
f(yk(t),xki (t))− f(wk

i (t),xki (t))
]

+

Tk∑

t=1

L
∥∥∥wk

i (t)− yk(t)
∥∥∥

≤
Tk∑

t=1

1

n

n∑

i=1

〈gi(t),wk
i (t)−w∗〉

︸ ︷︷ ︸
A1

+

Tk∑

t=1

1

n

n∑

i=1

L
∥∥∥yk(t)−wk

i (t)
∥∥∥

+

Tk∑

t=1

L
∥∥∥wk

i (t)− yk(t)
∥∥∥ . (8.20)

For the first summand we add and subtract yk(t) to obtain

A1 =

Tk∑

t=1

1

n

n∑

i=1

〈gi(t),wk
i (t)−w∗〉

≤
Tk∑

t=1

1

n

n∑

i=1

〈gi(t),yk(t)−w∗ +wk
i (t)− yk(t)〉

≤
Tk∑

t=1

1

n

n∑

i=1

〈gi(t),yk(t)−w∗〉
︸ ︷︷ ︸

A2

+

Tk∑

t=1

1

n

n∑

i=1

L
∥∥∥wk

i (t)− yk(t)
∥∥∥ . (8.21)

153

Invoking Theorem 8.2 for the sequences {yk(t)} and {zk(t)} and noticing that

‖g(t)‖ ≤ L2,

A2 =

Tk∑

t=1

1

n

n∑

i=1

〈gi(t),yk(t)− w∗〉 (8.22)

=

Tk∑

t=1

〈 1

n

n∑

i=1

gi(t),ΠW

[
zk(t)

]
−w∗

〉
(8.23)

=

Tk∑

t=1

〈
g(t),ΠW

[
zk(t)

]
−w∗

〉
(8.24)

≤
∥∥yk(1)−w∗

∥∥2

2ak
+
TkakL

2

2
. (8.25)

Collecting the bounds (8.20) and (8.22), so far we have shown that

Tk∑

t=1

[F (wk
i (t))− F (w∗)] ≤

∥∥yk(1)−w∗
∥∥2

2ak
+
TkakL

2

2

+

Tk∑

t=1

2

n

n∑

i=1

L
∥∥∥wk

i (t)− yk(t)
∥∥∥

+

Tk∑

t=1

L
∥∥∥wk

i (t)− yk(t)
∥∥∥ , (8.26)

and since the projection operator is non-expansive, we have

Tk∑

t=1

[F (wk
i (t))− F (w∗)] ≤

∥∥yk(1)−w∗
∥∥2

2ak
+
TkakL

2

2

+

Tk∑

t=1

2

n

n∑

i=1

L
∥∥∥zki (t)− zk(t)

∥∥∥ (8.27)

+

Tk∑

t=1

L
∥∥∥zki (t)− zk(t)

∥∥∥ .

The first two terms are standard for subgradient algorithms using a constant step

size. The last two terms depend on the error between each node’s iterate zki (t) and

the network-wide average zk(t), which we bound next.

8.3.5 Bounding the Network Error

What remains is to bound the term
∥∥zki (t)− zk(t)

∥∥ which describes an error

induced by the network since the different nodes do not agree on the direction

towards the optimum. By recalling that P is doubly stochastic and manipulating the

154

recursive expressions (8.18) and (8.17) for zi(t) and zk(t) using arguments similar

to those in [32,90], we obtain the bound,

∥∥∥zki (t)− zk(t)
∥∥∥ ≤akL

t−1∑

s=1

n∑

j=1

∣∣∣∣
1

n
1T −

[
P t−s−1

]
ij

∣∣∣∣
1

+ 2akL+
n∑

j=1

∣∣∣∣
1

n
− [P t]ij

∣∣∣∣
∥∥∥zkj (1)

∥∥∥

=akL

t−1∑

s=1

∥∥∥∥
1

n
1T −

[
P t−s−1

]
i,:

∥∥∥∥
1

+ 2akL+
n∑

j=1

∣∣∣∣
1

n
− [P t]ij

∣∣∣∣
∥∥∥zkj (1)

∥∥∥ . (8.28)

We have already seen the bound for the `1 norm (see Appendix C for h = 1), so

recalling (7.21), (7.20) and using (8.19) we arrive at

∥∥∥zki (t)− zk(t)
∥∥∥ ≤2akL

log (Tk
√
n)

1−
√
λ2

+ 3akL+
L
∑k−1

s=1 asTs
Tk

(8.29)

where λ2 is the second largest eigenvalue of P . Using this bound in equation (8.27),

along with the fact that F (w) is convex, we conclude that

F (wk+1
i)− F (w∗) =F

(
1

Tk

Tk∑

t=1

wk
i (t)

)
− F (w∗)

≤ 1

Tk

Tk∑

t=1

[
F (wk

i (t))− F (w∗)
]

≤
∥∥yk(1)−w∗

∥∥2

2akTk
+
akL

2

2
+ L2ak

[
6

log (Tk
√
n)

1−
√
λ2

+ 9

]

+
3L2

∑k−1
s=1 asTs
Tk

, (8.30)

where yk(1) = ΠW
[
1
n

∑n
i=1 z

k
i (1)

]
.

8.3.6 Analysis of DOGD over Multiple Rounds

As our last intermediate step, we must control the learning rate and update

of Tk from round-to-round to ensure linear convergence of the error. From strong

convexity of F we have

∥∥∥yk(1)−w∗
∥∥∥
2
≤ 2

F (yk(1))− F (w∗)

σ
(8.31)

155

and thus

F (wk+1
i)− F (w∗) ≤F (yk(1))− F (w∗)

σakTk
+
L2ak

2

[
12

log (Tk
√
n)

1−
√
λ2

+ 19

]

+
3L2

∑k−1
s=1 asTs
Tk

. (8.32)

Now, from Theorem 3 in [103] which is a direct consequence of Theorem 8.2 for the

average sequence y viewed as a single processor lazy projection algorithm, we have

that after executing Tk−1 gradient steps in round k − 1,

F (yk(1))− F (w∗) ≤
∥∥yk−1(1)−w∗

∥∥2

2ak−1Tk−1
+
ak−1L

2

2
(8.33)

and by repeatedly using strong convexity and Theorem 8.2 we see that

F (yk(1))− F (w∗) ≤F (yk−1(1))− F (w∗)

σak−1Tk−1
+
ak−1L

2

2

≤ · · · ≤ F (y1(1))− F (w∗)
∏k−1
j=0(σak−jTk−j)

+

k−1∑

j=1

ak−jL
2

2
∏j−1
s=1(σak−sTk−s)

. (8.34)

Now, let us fix positive integers b and c, and suppose we use the following rules to

determine the step size and number of updates performed within each round:

ak =
ak−1
b

= · · · = a1
bk−1

(8.35)

Tk =cTk−1 = · · · = ck−1T1. (8.36)

Combining (8.34) with (8.32) and invoking Lemma 8.1, we have

F (wk+1
i)− F (w∗) ≤ 2L2

σ
∏k−1
j=0

(
σa1T1

(
c
b

)k−j−1)

+
k−1∑

j=1

a1L
2

2bk−j−1
∏j−1
s=0

(
σa1T1

(
c
b

)k−s−1)

+
L2a1
2bk−1

[
12

log (T1c
k−1√n)

1−
√
λ2

+ 19

]

+
3L2

∑k−1
s=1 a1T1

(
c
b

)s−1

T1ck−1
. (8.37)

156

To ensure convergence to zero, we need c ≥ b and σa1T1 > 1 or a1 >
1
T1σ

. Given

these restrictions, let us make the choices

a1 = 1, T1 =

⌈
2

σ

⌉
, c = b = 2. (8.38)

To simplify the exposition, let us assume that T1 = 2
σ is an integer. Using the

selected values, we obtain

F (wk+1
i)− F (w∗) ≤ 2L2

σ
∏k−1
j=0

(
2
(
2
2

)k−j−1)

+
k−1∑

j=1

L2

·2 · 2k−j−1
∏j−1
s=0

(
2
(
2
2

)k−s−1)

+
L2

2 · 2k−1

[
12

log (2
σ · 2

k−1√n)

1−
√
λ2

+ 19

]

+
3L2

∑k−1
s=1

(
2
2

)s−1

2k−1
(8.39)

≤2L2

σ2k
+
k−1∑

j=1

L2

2k−j2j

+
L2

2k

[
12

log (2
k√n
σ)

1−
√
λ2

+ 19

]
+

3L2(k − 1)

2k−1
(8.40)

≤2L2

σ2k
+
L2(k − 1)

2k

+
L2

2k

[
12

log (2
k√n
σ)

1−
√
λ2

+ 19

]
+

6L2(k − 1)

2k
. (8.41)

Finally, we have all we need to complete the analysis of Algorithm 2.

8.3.7 Proof of Theorem 8.1

Suppose we run Algorithm 2 for T total steps at each node. This allows for k̃

rounds, where k̃ is determined by solving

k̃∑

i=1

Ti ≤ T ⇐⇒
k̃∑

i=1

2 · 2i ≤ T ⇐⇒ k̃ ≤ log2

(
T

2
+ 1

)
. (8.42)

157

Using this value for k we see that

F (wk̃+1
i)− F (w∗) ≤L

2

σ
2k̃ +

L2(k̃ − 1)

2k̃

+
L2

2k̃

12

log (2
k̃√n
σ)

1−
√
λ2

+ 19

+

6L2(k̃ − 1)

2k̃

≤ L2

σ
(
T
2 + 1

) +
L2(log2

(
T
2 + 1

)
− 1)(

T
2 + 1

)

+
L2

(
T
2 + 1

)

12

log

(
(T

2
+1)
√
n

σ

)

1−
√
λ2

+ 19

+
6L2(

(
T
2 + 1

)
− 1)(

T
2 + 1

)

=O

(
log (
√
nT)

T (1−
√
λ2)

)
= O

(
log(
√
nT)

T

)
, (8.43)

when λ2 is constant and does not scale with n. This concludes the proof of Theo-

rem 8.1.

8.4 Extension to Stochastic Optimization

The proof in the previous section can easily be extended to the stochastic case

where the data and thus the cost functions f(w,xi(t)) are generated i.i.d. from

some unknown distribution. In that case, at each iteration the gradient ĝ(t) at each

node is just an estimate of the true gradient in the sense that E[ĝ(t)] = g(t). We

assume however that noisy gradients have bounded variance i.e., E[‖ĝi(t)‖2] ≤ L2.

In this setting, instead of equation (8.22), we have

A2 =

Tk∑

t=1

1

n

n∑

i=1

〈gi(t),yk(t)−w∗〉

=

Tk∑

t=1

〈 1
n

n∑

i=1

ĝi(t),y
k(t)−w∗〉

+

Tk∑

t=1

1

n

n∑

i=1

〈gi(t)− ĝi(t),yk(t)−w∗〉. (8.44)

Now notice that Theorem 8.2 holds for noisy gradients ĝ(t) as well. Moreover, we

have E[‖ĝi(t)‖] ≤ L, and by Hölder’s inequality E[‖ĝi(t)‖ ‖ĝj(t)‖] ≤ L2. This yields

E
[∥∥ 1

n

∑n
i=1 ĝi(t)

∥∥2
]
≤ L2. Thus, invoking Theorem 8.2, if the new data and thus

158

the subgradients are independent of the past, and since E[ĝi(t)] = gi(t), we have

E[A2] ≤
∥∥yk(1)−w∗

∥∥2

2ak
+
TkakL

2

2

+ E[

Tk∑

t=1

1

n

n∑

i=1

〈gi(t)− ĝi(t),yk(t)−w∗〉]

=

∥∥yk(1)−w∗
∥∥2

2ak
+
TkakL

2

2
. (8.45)

Furthermore, the network error bound holds in expectation as well, i.e.,

E
[∥∥∥yk(t)−wk

i (t)
∥∥∥
]
≤E

[∥∥∥zk(t)− zki (t)
∥∥∥
]

≤2akL
log (Tk

√
n)

1−
√
λ2

+ 3akL+
L
∑k−1

s=1 asTs
Tk

. (8.46)

Collecting all these observations we have shown that, in expectation,

E
[
F (wk+1

i)− F (w∗)
]
≤
∥∥yk(1)−w∗

∥∥2

2akTk
+
akL

2

2

+ L2ak

[
6

log (Tk
√
n)

1−
√
λ2

+ 9

]
+

3L2
∑k−1

s=1 asTs
Tk

, (8.47)

which, after using the update rules for ak and Tk, is exactly the same expression as

(8.37) so the final convergence rate result is again O
(

log (
√
nT)

T (1−
√
λ2)

)
. We note however

that there may still be room for improvement in the distributed stochastic opti-

mization setting since [40] describes a single-processor algorithm that converges at

a rate O
(
1
T

)
.

8.5 Concluding Remarks

In this chapter we have proposed and analyzed a novel distributed optimiza-

tion algorithm which we call Distributed Online Gradient Descent (DOGD). Our

analysis shows that DOGD converges at a rate O(log(
√
nT)

T) when solving online,

stochastic or batch constrained convex optimization problems if the objective func-

tion is strongly convex. This rate is optimal in the number of iterations for the

online and batch setting and slower than a serial algorithm only by a logarithmic

factor in the stochastic optimization setting. The open question that remains is

159

whether a rate of O
(

1
nT

)
for strongly convex functions is attainable by a consensus

based distributed algorithm.

160

CHAPTER 9
Summary and Open Questions for Future Work

This work is motivated by the plethora of large scale optimization problems

that arise more and more frequently in various domains from machine learning to

computational biology and finance. Many of these problems present extreme com-

putational challenges due to the sheer volume of data that needs to be processed.

Furthermore there exist situations where the data itself is distributed and collecting

it in a single location might be costly or violating data privacy. For all those reasons

distributed computing is becoming the method of choice for solving such problems.

Within the growing literature of different methods for parallel and distributed com-

putation, we focus on the general class of consensus-based distributed optimization

algorithms which are suitable for computer clusters and distributed computing over

general ad-hoc networks.

The starting point for this work is the fundamental realization that the differ-

ence between a network of n slow computers and an n-times faster single processor is

indeed the communication network. Any information exchange that takes place over

the network is in general orders of magnitude slower than the local processing speed

and especially in high-dimensional problems this communication cost can no longer

be ignored. This simple observation brings up the important role of the network.

In an attempt to understand this role, this thesis asks questions and contributes

answers in four different directions:

1. How can the communication cost be modelled and how does it affect the

scalability of different algorithms? Our results suggest that it is the trade-

off between communication and computation on a given system for a given

problem that is the defining factor. It is also shown that this tradeoff can

be exploited to achieve parallelization at the task level when solving multiple

optimization problems on the same network.

161

2. What are the properties of practical distributed optimization algorithms that

can work well in real network conditions? We identify three key properties

– averaging, one-directional communication and asynchronism – which as we

show are important to develop practical algorithms with guaranteed perfor-

mance even in the presence of communication delays and slow nodes in the

network.

3. What is the effect of communication delays? This work proposed models for

both fixed and time varying-communication delays. Those models are used

to analyze the effects of delays on convergence rates of different distributed

optimization algorithms.

4. What are the best achievable convergence rates of consensus-based distributed

algorithms? For this question the role of the network enters just through the

network topology and the results are valid even if the actual cost of communi-

cation was free. Our work bridges some of the gaps between the performance

of the best possible serial algorithms and their distributed counterparts.

For all of the work presented in the thesis, a conscious attempt is made to pro-

vide the necessary intuition, a theoretical analysis and explanation and experiments

in simulation or real clusters that match, illustrate and validate the intuition and

theoretical findings. However, this work in many ways only scratches the surface

and in many ways opens the door for many more and exciting questions that need

answers. Many of those questions have been mentioned at the end of each chapter.

Here we summarize a full list of possible future directions:

1. There is a growing literature in both consensus-based distributed algorithms

and also in parallel and hierarchical approaches that in many cases rely on

communication tools such as MapReduce which may lead to simpler algorithms

at the expense of restricting what an algorithm can do. The former class of

algorithms provides full flexibility to the programmer and tends to lend itself to

a more elegant theoretical analysis while the latter seem to currently exhibit

the most promising results in practice. The experiments on a small scale

(15 to 64 processors) in this thesis (see e.g., Section 5.6.3) seem to suggest

162

that asynchronous consensus-based algorithms could be a good alternative in

practice and this is in agreement with the author’s personal correspondence

with practitioners. However, a large scale comparison of all state-of-the art

methods on the same problem using hundreds of machines is still missing from

the literature. Since this line of research is not purely theoretical but aims at

solving large scale real life problems, a fair comparison under real conditions

is becoming more and more necessary.

2. There is a secondary effect related to the network that has not been investi-

gated in this thesis. We have focused on the optimization of separable prob-

lems which fortunately fit naturally in the framework of empirical loss mini-

mization. No assumptions were made about the individual component func-

tions fi(w) that reside at each node. However, the similarity of those functions

should somehow be important. For example if the minima of the components

are not located in the same place, without communication it is impossible to

converge to the true solution. However, on the other extreme, in a stochastic

optimization setting, if the data streams at the processors are i.i.d., then com-

munication is not necessary as each node individually will eventually converge

to the right solution. This naturally raises a question that merits some inves-

tigation in the future: Can we regulate the amount of communication based

on the similarity or dissimilarity of the objective’s components?

3. Related to the previous point, in stochastic optimization scenarios each node

can individually reach the right solution given enough time. Thus, the purpose

of communication is to reduce the time it takes to reach the solution. In

Chapter 3 we saw that for a fixed dataset, using more nodes reduced the

computation cost per node and this computational benefit can be trade off

for the extra communication required when adding more processors to the

network. It is interesting to ask if the same conclusions can be drawn for

the stochastic setting. Notice that in that case, computation is the same

per node (one point gradient) regardless of the network size. However, with

more nodes, the network sees collectively more data in the same amount of

163

time. Previous work has exploited this observation in combination with mini-

batches for variance reduction and perfect averaging to describe an algorithm

that achieves the optimal distributed convergence rate O
(

1√
nT

)
, [28]. It is

still an open question whether the same rate is achievable by a consensus-based

algorithm.

4. Most of the research on distributed algorithms has focused on first-order meth-

ods that only use gradient information. This is justified by the fact that first

order methods have a consistent performance even for high dimensional prob-

lems while they remain very simple. Simplicity is particularly important to

have any hope of transitioning to a distributed algorithm which is amenable

to theoretical analysis. However, despite the generality and minimal assump-

tions (convexity and Lipschitz continuity) required by first order methods,

many problems of interest are also smooth and thus second order information

is also available. In the serial algorithm literature, Newton methods [62] and

limited memory LBFGS methods [19] are known to convergence in very few

iterations. Furthermore, second order information can also be estimated and

be helpful in the stochastic setting [18]. It would be important to see if any

of those second order methods can be adapted to distributed optimization

settings. That would require understanding what kind of information needs

to be shared among nodes in an attempt to reach consensus. It is unclear if

the second order Hessian or pseudo-Hessian should remain a locally computed

quantity of if the extra communication of transmitting can yield computational

speedups and reduction of number of iterations.

5. Finally, most of the literature so far has restricted to solving convex problems

since there is no ambiguity about the location of the optimum. However, in

practice there exist many real life problems in areas that range from from

protein folding in bioinformatics to reservoir optimization in the oil and gas

industry that are very computationally expensive and non-convex. Naturally,

distributed non-convex optimization would be very desirable. However, non-

convexity adds an extra degree of difficulty since it becomes hard to guarantee

164

convergence even to a local minimum due to oscillations. Non-convex dis-

tributed optimization is a highly open and unexplored field that merits further

investigation.

165

Appendix A: Proof of equation (3.16)

We are looking to derive a recursive relationship.To unclutter notation, assume

that d = 1 i.e., that all the DDA variables are scalars. Let us stack the local node

variables in a vector z = [z1 · · · zn]T and g = [g1 · · · gn]T . From (3.2) in matrix form

we have after back-substituting in the recursion

z(h+ 1) = Pz(h) + g(h) = P

h−1∑

k=0

g(k) + g(h) (9.1)

which can be generalized for s steps ahead to

z(sh+ 1) =
s∑

w=1

h−1∑

k=0

Pwg
(
(s− w)h+ k

)
+ g(sh). (9.2)

So in general

z(t) =

Ht∑

w=1

h−1∑

k=0

Pwg
(
(Ht − w)h+ k

)
+

Qt−1∑

k=0

g(t−Qt + k) (9.3)

=

Ht∑

w=1

h−1∑

k=0

PHt−w+1g
(
(w − 1)h+ k

)
+

Qt−1∑

k=0

g(t−Qt + k) (9.4)

=

Ht−1∑

w=0

h−1∑

k=0

PHt−wg
(
wh+ k

)
+

Qt−1∑

k=0

g(t−Qt + k) (9.5)

where Ht = b t−1h c counts the number of communication steps in t iterations and

Qt = mod(t, h) if mod(t, h) > 0 and Qt = h otherwise. From this last expression we

take the i-th row to get the result.

166

Appendix B: Proof of equation (3.19)

If the consensus matrix P is doubly stochastic it is straightforward to show

that P t → 1
n11T as t → ∞. Moreover, from standard Perron-Frobenius is it easy

to show (see e.g., [29])

∥∥∥∥
1

n
1T −

[
P t
]
i,:

∥∥∥∥
1

= 2

∥∥∥∥
1

n
1T −

[
P t
]
i,:

∥∥∥∥
TV

≤
√
n
(√

λ2

)t
(9.6)

so in our case
∥∥∥ 1
n1T −

[
PHt−w

]
i,:

∥∥∥
1
≤
√
n
(√
λ2
)Ht−w. Next, demand that the right

hand side bound is less than
√
nδ with δ to be determined:

√
n
(√

λ2

)Ht−w
≤
√
nδ ⇒ Ht − w ≥

log (δ−1)

log (
√
λ2
−1

)
. (9.7)

So with the choice δ−1 =
√
nT ,

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

≤
√
n

1√
nT

=
1

T
(9.8)

if Ht − w ≥ log (δ−1)

log (
√
λ2
−1

)
= t̂. When w is large and Ht − w < t̂ we simply take

∥∥∥ 1
n1T −

[
PHt−w

]
i,:

∥∥∥
1
≤ 2. The desired bound of (3.19) is not obtained as follows

Ht−1∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hL+ 2hL

=

Ht−t̂−1∑

w=0

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

+

Ht−1∑

Ht−t̂

∥∥∥∥
1

n
1T −

[
PHt−w]

i,:

∥∥∥∥
1

hL+ 2hL

(9.9)

≤

Ht−t̂−1∑

w=0

1

T
+

Ht−1∑

Ht−t̂

2

hL+ 2hL (9.10)

≤ Ht − t̂
T

hL+ 2t̂hL+ 2hL. (9.11)

Since t < T we know that Ht − t̂ < T . Moreover, log (
√
λ2)
−1 ≥ 1 −

√
λ2. Using

there two fact we arrive at the result.

167

Appendix C: Proof of Theorem 6.1

Consider a graph G with a consensus protocol P . Given a set of canonical

paths Γ = {γxy} on G we can compute the Poincaré constant K. If each link of G

delivers messages with some arbitrary fixed delay of no more than B, we will show

that the Poincaré constant K̂ of Ĝ using the lazy additive reversibilization U of

P̂ is bounded like K̂ ≤ ZK where Z = Θ(B2) We start with the definition of the

Poincaré constant for K̂ and use the path associations discussed already to break the

sum over all paths into nine summands. Assume that there are Nvw canonical paths

in G that go through the bottleneck edge e = (v, w) of G and let the bottleneck

edge of Ĝ be ê = (u, z) where u is in the set v+ and z is in the the set w−. Let x, y

denote the starting and ending node of a path γ̂i. We have

K̂ =
1

π̂v+ [U]uz

(
T1[x→ y] + T2[x→ y−] + T3[x→ y+]

+ T4[x
− → y−] + T5[x

− → y] + T6[x
− → y+]

+ T7[x
+ → y−] + T8[x

+ → y] + T9[x
+ → y+]

)
(9.12)

168

with

T1 =
Nvw∑

i=1,ê∈γ̂i

|γ̂i| π̂xπ̂y (9.13)

T2 =
Nvw∑

i=1,ê∈γ̂i

−1∑

k=−B−
2

(
|γ̂i|+ k

)
π̂xπ̂y− (9.14)

T3 =

Nvw∑

i=1,ê∈γ̂i

deg(y)∑

r=1

Br
2∑

k=1

(
|γ̂i|+ k

)
π̂xπ̂y+r (9.15)

T4 =

Nvw∑

i=1,ê∈γ̂i

deg(x)∑

h=1

−1∑

j=−Bh
2

−1∑

k=−B−
2

(
|γ̂i|+ j + k

)
π̂x−h

π̂y− (9.16)

T5 =
Nvw∑

i=1,ê∈γ̂i

deg(x)∑

h=1

−1∑

j=−Bh
2

(
|γ̂i|+ j

)
π̂x−h

π̂y (9.17)

T6 =
Nvw∑

i=1,ê∈γ̂i

deg(x)∑

h=1

deg(y)∑

r=1

−1∑

j=−Bh
2

Br
2∑

k=1

(
|γ̂i|+ j + k

)
π̂x−h

π̂y+r (9.18)

T7 =
Nvw∑

i=1,ê∈γ̂i

−1∑

j=−B+

2

−1∑

k=−B−
2

(
|γ̂i|+ j + k

)
π̂x+ π̂y− (9.19)

T8 =

Nvw∑

i=1,ê∈γ̂i

−1∑

j=−B+

2

(
|γ̂i|+ j

)
π̂x+ π̂y (9.20)

T9 =
Nvw∑

i=1,ê∈γ̂i

deg(y)∑

r=1

−1∑

j=−B+

2

Br
2∑

k=1

(
|γ̂i|+ j + k

)
π̂x+ π̂y+r (9.21)

To obtain a cleaner bound for K̂ we assume that P is doubly stochastic, re-

calling that the stationary distribution of delay nodes is π̂x∗ ≤ pπ̂x = pπx
c for

p = maxi 6=j(Pij) and replacing ∗ with either +,−. Recall also that each path in

Ĝ corresponds to exactly one path in G. Below we show how to bound the term

T6; bounds for all of the other terms defined above are obtained using similar argu-

ments. Observe that for every path γxy between compute nodes x and y, if γxy goes

through a bottleneck edge e in G, then all the delay paths γ̂ that are associated

with γxy will go through ê in the middle of the delay chain that replaces e. So, for

169

term T6 we have

T6 ≤
Nvw∑

i=1,e∈γi

deg(x)∑

h=1

deg(y)∑

r=1

−1∑

j=−Bh
2

Br
2∑

k=1

(
(B + 1) |γi|+ j + k

)

× pπx
c

pπy
c

(9.22)

≤p
2

c2

Nvw∑

i=1,e∈γi

deg(x) deg(y)

×
−1∑

j=−B
2

B
2∑

k=1

(
(B + 1) |γi|+ j + k

)
πxπy (9.23)

Now since all paths γi are at least one edge long, bounding the node degrees by the

maximum degree dmax in G gives

T6 ≤
p2

c2
d2max

−1∑

j=−B
2

B
2∑

k=1

(
(B + 1) + j + k

)

×
Nvw∑

i=1,e∈γi

|γi|πxπy (9.24)

=
p2d2max
c2

B3 +B2

4

Nvw∑

i=1,e∈γi

|γi|πxπy (9.25)

Through a similar derivation, all nine terms can be bound by a constant times

∑Nvw

i=1,e∈γi |γi|πxπy which appears in the expression for the Poincaré constant K

without delays (see (6.20)). To make the exact expression for K appear, we focus

on the leading term in (9.12) to see that

1

π̂v+ [U]uzc2
=

c

πv
[U]uz+[Ũ]uz

2 c2
=

2

πv([U]uz + 0)c
(9.26)

=
2

πvc
=

2pvw
c

1

πvpvw
. (9.27)

Next, remembering that e = (v, w) is the bottleneck edge, after computing the exact

constants in all terms, we write K̂ ≤ ZK where Z is a function of the node degrees,

170

edge delays and consensus matrix P . Specifically,

K̂ ≤2pvw
c

[
(B + 1) + p

3B2 + 2B

8
+ p dmax

5B2 + 6B

8

+ p2dmax
B3

8
+ pdmax

3B2 + 2B

8
+ p2d2max

B3 +B2

4

+ p2
B3

8
+ p

3B2 + 2B

8
+ p2dmax

B3 +B2

4

]

× 1

πvpvw

Nvw∑

i=1,e∈γi

|γi|πxπy
︸ ︷︷ ︸

K

= ZK. (9.28)

Finally, focusing on the expression for Z, after some algebra, we see that

Z =
pvw
4c

[
p2(2d2max + 3dmax + 1)B3

+ p(2pd2max + 2pdmax + 8dmax + 6)B2

+ (8pdmax + p+ 8)B + 8
]

(9.29)

which completes the proof.

171

References

[1] Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, and John Langford. A
reliable effective terascale linear learning system. arXiv:1110.4198v2, 2012.

[2] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimiza-
tion. In Neural Information Processing Systems, 2011.

[3] Omer Angel, Alexander E. Holroyd, James Martin, David B. Wilson, and
Peter Winkler. Avoidance coupling. In arXiv:1112.3304v1, 2011.

[4] Tuncer C. Aysal, Mehmet E. Yildiz, Anand D. Sarwate, and Anna Scaglione.
Broadcast gossip algorithms for consensus. IEEE Transactions on Signal Pro-
cessing, 57(7):2748 – 2761, July 2009.

[5] Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gra-
dient descent. In J C Platt, D Koller, Y Singer, and SEditors Roweis, editors,
Advances in Neural Information Processing Systems 20. MIT Press, 2007.

[6] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up Machine
Learning, Parallel and Distributed Approaches. Cambridge University Press,
2011.

[7] Florence Benezit, Vincent Blondel, Patrick Thiran, John Tsitsiklis, and Mar-
tin Vetterli. Weighted gossip: Distributed averaging using non-doubly stochas-
tic matrices. In IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), pages 1753 – 1757, 2010.

[8] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[9] Dimitri P. Bertsekas. Incremental gradient, subgradient, and proximal meth-
ods for convex optimization: A survey. Technical Report 2848, MIT-LIDS,
2010.

[10] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computa-
tion: numerical methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1st edition, 1989.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[12] Pierre-Alexandre Bliman and Giancarlo Ferrari-Trecate. Average consensus
problems in networks of agents with delayed communications. Automatica,
44, 2008.

172

173

[13] Vincent D. Blondel, Julien M. Hendrickx, Alex Olshevsky, and John N. Tsit-
siklis. Convergence in multiagent coordination, consensus, and flocking. In
IEEE Conference on Decision and Control, pages 2996 – 3000, 2006.

[14] Leon Bottou. Large-scale machine learning with stochastic gradient descent.
In Yves Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th
International Conference on Computational Statistics, pages 177–187, Paris,
France, August 2010.

[15] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Random-
ized gossip algorithms. IEEE Transactions on Information Theory, 52:2508–
2530, 2006.

[16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2010.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 2004.

[18] Richard H. Byrd, Gillian M. Chiny, Will Neveitt, and Jorge Nocedal. On
the use of stochastic hessian information in optimization methods for machine
learning. SIAM Journal on Optimization, 21(3):977–995, 2011.

[19] Richard H Byrd, Peihuang Lu, and Jorge Nocedal. A limited memory algo-
rithm for bound constrained optimization. SIAM Journal on Scientific and
Statistical Computing, 16(5):1190–1208, 1995.

[20] Ming Cao, Stephen A. Morse, and Brian D. O. Anderson. Reaching a con-
sensus in a dynamically changing environment: A graphical approach. SIAM
Journal on Control and Optimization, 47(2):575–600, February 2008.

[21] Ming Cao, Stephen A. Morse, and Brian D. O. Anderson. Reaching a consen-
sus in a dynamically changing environment: Convergence rates, measurement
delays, and asynchronous events. SIAM Journal on Control and Optimization,
47:601–623, 2008.

[22] Yair Censor and Stavros Andrea Zenios. Parallel Optimization: Theory, Al-
gorithms, and Applications. Oxford University Press, 1997.

[23] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006.

[24] Annie I. Chen and Asuman Ozdaglar. A fast distributed proximal-gradient
method. In 50th Allerton Conference on Communication, Control, and Com-
puting, 2012.

[25] Jianshu Chen and Ali H. Sayed. Diffusion adaptation strategies for distributed
optimization and learning over networks. IEEE Transactions on Signal Pro-
cessing, 60(8):4289–4305, August 2012.

[26] Fan Chung. Spectral Graph Theory. AMS, 1998.

174

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM Magazine - 50th anniversary
issue, 51(1):107–113, 2008.

[28] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. Journal of Machine Learning
Research, 13:165–202, 2012.

[29] Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of
markov chains. The Annals of Applied Probability, 1(1):36–61, 1991.

[30] Alexandros G. Dimakis, Soummya Kar, Jose M.F. Moura, Michael G. Rab-
bat, and Anna Scaglione. Gossip algorithms for distributed signal processing.
Proceedings of the IEEE, 98(11):1847 – 1864, November 2010.

[31] Alejandro D. Domnguez-Garca and Christoforos N. Hadjicostis. Distributed
matrix scaling and application to average consensus in directed graphs. IEEE
Transactions on Automatic Control, 2013.

[32] John Duchi, Alekh Agarwal, and Martin Wainwright. Dual averaging for
distributed optimization: Convergence analysis and network scaling. IEEE
Transactions on Automatic Control, 57(3):592–606, 2011.

[33] Pául Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hungary. Acad. Sci., 5:17–61, 1960.

[34] James Allen Fill. Eigenvalue bounds on convergence to stationarity for non
reversible markov chains, with an application to the exclusion process. The
Annals of Applied Probability, 1(1):62–87, 1991.

[35] Bahman Gharesifard and Jorge Cortes. When does a digraph admit a dou-
bly stochastic adjacency matrix? In Proceedings of the American Control
Conference, pages 2440–2445, Baltimore, Maryland, 2010.

[36] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduc-
tion to Parallel Computing. Addison-Wesley, 2003.

[37] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference -
Volumes 1,2. MIT Press, Cambridge, MA, 1998.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[39] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret
algorithms for online convex optimization. In 19’th COLT, pages 499–513,
2006.

[40] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an
optimal algorithm for stochastic strongly-convex optimization. In 24th Annual
Conference on Learning Theory (COLT), 2010.

175

[41] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating
direction method of multipliers. arXiv:1208.3922v3, 2013.

[42] Hal Daume III, Jeff M. Phillips, Avishek Saha, and Suresh Venkatasubra-
manian. Efficient protocols for distributed classification and optimization.
In Proceedings of the 23rd international conference on Algorithmic Learning
Theory, pages 154–168, 2012.

[43] Ilse C. F. Ipsen and Teresa M. Selee. Ergodicity coefficients defined by vector
norms. SIAM Journal on Matrix Analysis and Applications, 32(1):153–200,
2011.

[44] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asyn-
chronous distributed optimization using a randomized alternating direction
method of multipliers. In IEEE Conference on Decision and Control, 2013.

[45] Dusan Jakovetic, Joao Xavier, and Jose M.F. Moura. Fast distributed gradient
methods. arXiv:1112.2972v3, 2013.

[46] Rong Jin, Shijun Wang, and Yang Zhou. Regularized distance metric learning:
Theory and algorithm. In Neural Information Processing Systems, 2012.

[47] Bjorn Johansson, Maben Rabi, and Mikael Johansson. A randomized incre-
mental subgradient method for distributed optimization in networked systems.
SIAM Journal on Control and Optimization, 20(3), 2009.

[48] Sham M. Kakade and Shai Shalev-Shwartz. Mind the duality gap: Logarithmic
regret algorithms for online optimization. In Neural Information Processing
Systems, 2009.

[49] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation
of aggregate information. In FOCS, vol. 44. IEEE Computer Society Press,
pp. 482–491, 2003.

[50] John Langford, Alexander J. Smola, and Martin Zinkevich. Slow learners are
fast. In Neural Information Processing Systems, 2009.

[51] Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and
Daniel D. Walker. Efficient large-scale distributed training of conditional
maximum entropy models. In Neural Information Processing Systems, pages
1231–1239, 2009.

[52] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strate-
gies for the structured perceptron. In Annual Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics, pages 456–464,
2012.

[53] Ravi Montenegro and Prasad Tetali. Mathematical Aspects of Mixing Times
in Markov Chains. Foundations and Trends in Theoretical Computer Science
(Vol 1, No 3), 2006.

176

[54] Angelia Nedic, Dimitri P. Bertsekas, and Vivek S. Borkar. Distributed asyn-
chronous incremental subgradient methods. In Inherently parallel algorithms
in feasibility and optimization and their applications, 2000.

[55] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control, 54(1),
January 2009.

[56] Angelia Nedic and Asuman Ozdaglar. Convergence rate for consensus with
delays. Journal of Global Optimization, 47(3):437–456, 2010.

[57] Angelia Nedic and Asuman Ozdaglar. Cooperative distributed multi-agent
optimization. Convex Optimization in Signal Processing and Communications,
2010.

[58] Angelia Nedic, Asuman Ozdaglar, and Pablo A. Parrilo. Constrained consen-
sus and optimization in multi-agent networks. IEEE Transactions on Auto-
matic Control, 55(4):922–938, 2010.

[59] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alex Shapiro. Ro-
bust stochastic approximation approach to stochastic programming. SIAM
Journal on Optimization, 19(4):1574–1609, 2009.

[60] Yuri Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer, Boston, 2004.

[61] Yuri Nesterov. Primal-dual subgradient methods for convex problems. Math-
ematical Programming Series B, 120:221–259, 2009.

[62] Jorge Nocedal and Steve J. Wright. Numerical Optimization. Springer, 1989.

[63] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and
cooperation in networked multi-agent systems. In Proceedings of the IEEE,
volume 95:1, pages 215 – 233, 2007.

[64] Reza Olfati-Saber and Richard M. Murray. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Transactions on
Automatic Control, 49(9):1520–1533, September 2004.

[65] Alex Olshevsky and John N. Tsitsiklis. Convergence speed in distributed
consensus and averaging. SIAM Journal on Control and Optimization, 48, No
1:33–55, 2009.

[66] Victor M. Preciado, Alireza Tahbaz-Salehi, and Ali Jadbabaie. On asymptotic
consensus value in directed random networks. In 49th IEEE Conference on
Decision and Control, Atlanta, GA, USA, December 2010.

[67] Alexander Rakhlin, Ohad Shamir, and Karthik Sridaran. Making gradient
descent optimal for strongly convex optimization. In arXiv:1109.5647v6, 2012.

[68] S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. A new class of
distributed optimization algorithms: Application to a new class of distributed

177

optimization algorithms: Application to regression of distributed data. Opti-
mization Methods and Software, 27(1):71–88, 2009.

[69] S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. Distributed
stochastic subgradient projection algorithms for convex optimization. Journal
of Optimization Theory and Applications, 147(3):516–545, 2011.

[70] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics,
155(2):157–187, 2002.

[71] Jeal-Pierre Richard. Time-delay systems: an overview of some recent advances
and open problems. Automatica, 39:1667–1694, 2003.

[72] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of
inexact proximal-gradient methods for convex optimization. In 25th Annual
Conference on Neural Information Processing Systems (NIPS), 2011.

[73] Eugene Seneta. Non-negative Matrices and Markov Chains. Springer, 1973.

[74] Alexandre Seuret, Dimos V. Dimarogonas, and Karl H. Johansson. Consensus
under communication delays. In Proceedings of the 47th IEEE Conference on
Decision and Control, 2008.

[75] Shai Shalev-Shwartz. Online learning and online convex optimization. Foun-
dations and Trends in Machine Learning, 4, (2):107-194, 2012.

[76] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridaran.
Stochastic convex optimization. In Proceedings of the Conference on Learning
Theory (COLT), 2009.

[77] Shai Shalev-Shwartz and Yoram Singer. Logarithmic regret algorithms for
strongly convex repeated games. Technical report, The Hebrew University,
2007.

[78] Shai Shalev-Shwartz, Yoram Singer, and Andrew Y. Ng. Online and batch
learning of pseudo-metrics. In International Conference in Machine Learning
(ICML), pages 743–750, 2004.

[79] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for
Machine Learning. MIT Press, 2011.

[80] Kunal Srivastava and Angelia Nedic. Distributed asynchronous constrained
stochastic optimization. IEEE Journal of Selected Topics in Signal Processing,
5:4:772–790, 2011.

[81] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Unix Network
Programming, Volume 1: The Sockets Networking API. Addison-Wesley Pro-
fessional Computing Series, 2003.

[82] Alireza Tahbaz-Salehi and Ali Jadbabaie. Necessary and sufficient conditions
for consensus over random independent and identically distributed switching

178

graphs. In Proceedings of the 46th IEEE Conference on Decision and Control,
2007.

[83] Hakan Terelius, Ufuk Topcu, and Richard M. Murray. Decentralized multi-
agent optimization via dual decomposition. In IFAC World Congress, 2011.

[84] Behrouz Touri. Product of Random Stochastic Matrices and Distributed Av-
eraging. PhD thesis, University of Illinois at Urbana-Champaign, 2011.

[85] Paul Tseng. On accelerated proximal gradient methods for convex-concave
optimization. SIAM Journal on Optimization, 2008.

[86] Konstantinos I. Tsianos, Sean Lawlor, and Michael G. Rabbat. Communi-
cation/computation tradeoffs in consensus-based distributed optimization. In
Neural Information Processing Systems, pages 1952–1960, 2012.

[87] Konstantinos I. Tsianos, Sean Lawlor, and Michael G. Rabbat. Consensus-
based distributed optimization: Practical issues and applications in large-scale
machine learning. In 50th Allerton Conference on Communication, Control,
and Computing, pages 1543 – 1550, 2012.

[88] Konstantinos I. Tsianos, Sean Lawlor, and Michael G. Rabbat. Push-sum
distributed dual averaging for convex optimization. In 51st IEEE Conference
on Decision and Control, pages 5453 – 5458, 2012.

[89] Konstantinos I. Tsianos and Michael G. Rabbat. Distributed consensus and
optimization under communication delays. In 49th Allerton Conference on
Communication, Control, and Computing, pages 974 – 982, 2011.

[90] Konstantinos I. Tsianos and Michael G. Rabbat. Distributed dual averaging
for convex optimization under communication delays. In American Control
Conference (ACC), pages 1067 – 1072, 2012.

[91] Konstantinos I. Tsianos and Michael G. Rabbat. Distributed strongly convex
optimization. In 50th Allerton Conference on Communication, Control, and
Computing, pages 593 – 600, 2012.

[92] Konstantinos I. Tsianos and Michael G. Rabbat. The impact of communica-
tion delays on distributed consensus algorithms. Submitted to Transactions
on Automatic Control (http://arxiv.org/abs/1207.5839), 2012.

[93] Konstantinos I. Tsianos and Michael G. Rabbat. Simple iteration-optimal
distributed optimization. In European Signal Processing Conference, 2013.

[94] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed
asynchronous deterministic and stochastic gradient optimization algorithms.
IEEE Transactions on Automatic Control, 31(9):803–812, 1986.

179

[95] Nitin H. Vaidya, Christoforos N. Hadjicostis, and Alejandro D. Dominguez-
Garcia. Distributed algorithms for consensus and coordination in the pres-
ence of packet-dropping communication links - part ii: Coefficients of ergodic-
ity analysis approach. Technical Report UILU-ENG-11-2208 (CRHC-11-06),
UIUC, 2011.

[96] Ermin Wei and Asuman Ozdaglar. Distributed alternating direction method
of multipliers. In IEEE Conference on Decision and Control, pages 5445–
5450, 2012.

[97] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for
large margin nearest neighbor classification. Journal of Optimization Theory
and Applications, 10:207–244, 2009.

[98] Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul. Convex optimizations
for distance metric learning and pattern classification. IEEE Signal Processing
Magazine, 2010.

[99] Chai Wah Wu. On some properties of contracting matrices. Linear Algebra
and its Applications, 428:2509–2523, 2008.

[100] Lin Xiao. Dual averaging methods for regularized stochastic learning and
online optimization. Journal of Machine Learning Research, 11:2543–2596,
2010.

[101] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance
metric learning, with application to clustering with side-information. In Neural
Information Processing Systems, 2003.

[102] Minghui Zhu and Sonia Mart́ınez. An approximate dual subgradient algorithm
for distributed non-convex constrained optimization. In 49th IEEE Conference
on Decision and Control (CDC), pages 7487 – 7492, 2010.

[103] Martin A. Zinkevich. Online convex programming and generalized infinitesi-
mal gradient ascent. In 20th International Conference on Machine Learning
(ICML), 2003.

[104] Martin A. Zinkevich, Markus Weimer, Alexander Smola, and Lihong Li. Paral-
lelized stochastic gradient descent. In Neural Information Processing Systems,
2010.

